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Abstract: Dynamics and stability of milling operations with helical fluted tool are 
investigated in time domain. Stability analysis is performed based on the governing
delay-differential equation using the numerical semi-discretization method. It is shown 
that unstable flip (period doubling) islands arise in the stability lobe diagram due to the 
helical flutes of the tool. These islands are separated by the lines where the axial depth 
of cut is equal to the multiples of the helix pitch. The phenomenon is explained using 
the Floquet theory of periodic delayed systems. The theoretical results are confirmed by 
experiments.
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1. INTRODUCTION

The commercialization of reliable high-speed machining systems during the past decade 
has driven the need for thorough dynamical investigations of high-speed cutting 
processes. One of the most important phenomena that limits the productivity of 
machining is the development of self-excited vibrations (known also as machine tool 
chatter) caused by the regeneration of surface waviness during successive cuts. The 
pioneering work of [Tlusty et al., 1962] and [Tobias, 1965] led to the development of 
the so-called stability lobe diagram that plots the boundary between stable and unstable 
depths of cut as a function of spindle speed. 

The mathematical model of the regenerative machine tool chatter is a delay-
differential equation (DDE) with a corresponding infinite dimensional state space (see, 
e.g., [Stépán, 1989]). The model equation for turning processes is a DDE with constant 
coefficients (autonomous DDE) while for milling operations, the repeated entering and 
exiting teeth of the rotating tool yields a DDE with time periodic coefficients. Stability 
analysis of periodic delayed systems is extremely difficult, and – apart from some trivial 
cases – close form stability conditions can not be given. Stability charts for milling 
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processes are usually determined either via numerical simulations (see [Smith and 
Tlusty, 1991], [Balachandran and Zhao, 2000], [Campomanes and Altintas, 2003]) or 
via different semi-analytical approximation techniques (see, e.g., [Altintas and Budak, 
1995, 1998], [Insperger and Stépán, 2000, 2004a], [Bayly et al., 2003], [Szalai and 
Stépán, 2003, 2006]). 

In turning processes, machine tool chatter is associated with Hopf instability that 
corresponds to a periodic oscillation of the tool-workpiece system at a well defined 
chatter frequency. In milling processes, chatter is associated with either secondary Hopf 
or flip (period doubling) instability. In the case of secondary Hopf instability, quasi-
periodic chatter arise, while flip chatter is associated with vibrations at frequency equal 
to the half of the tooth passing frequency. It should be mentioned that flip instability is 
directly related to the time-periodic nature of the milling process, it mostly occurs for 
operations with small radial immersion when the directional cutting force is strongly 
time-dependent. 

Period doubling phenomenon and the corresponding added stability lobes were 
discovered only in the recent years. [Davies et al., 2000, 2002] modeled small radial 
immersion milling as an impact-like cutting process and received analytical formulae 
for the flip stability boundaries. [Insperger and Stépán, 2000] investigated the 1 DoF 
model of milling and used the Fargue-type approximation of the corresponding periodic 
DDE. The results were confirmed by several other techniques: [Bayly et al., 2003] used 
the time finite element method, [Merdol and Altintas, 2004] used the multi-frequency 
solution developed by [Altintas and Budak, 1995, 1998], [Szalai and Stépán, 2003, 
2006] determined the characteristic functions of the system and obtained stability 
criteria using the argument principle, [Corpus and Endres, 2004] reduced the problem to 
the flip boundaries where ordinary differential equations (ODEs) describes the system 
instead of DDEs, [Insperger and Stépán, 2004a] used the semi-discretization method to 
show the effect of the time-periodicity of the milling process on the stability lobe 
diagram. Basically, all the abovementioned methods are based on the Floquet theory of 
DDEs. The existence of flip chatter was also confirmed by experiments in [Davies et al., 
2000, 2002], [Bayly et al., 2003], [Mann et al., 2003, 2004], [Gradišek et al, 2005].

Unstable islands in the stability charts were first found by [Szalai and Stépán, 2003, 
2006]. They investigated the interrupted turning process that can be considered as a 
model for small radial immersion milling. Based on a mathematically very accurate 
analysis, they showed that all the added stability boundaries, except the first one at the 
highest cutting speed, are closed curves (islands, lenses). Their finding was confirmed 
for milling processes in [Gradišek et al. 2005] using the numerical semi-discretization 
method. Still, in spite of the theoretical predictions, clear experimental verification of 
the unstable islands was not provided yet since the corresponding depth of cut values 
are usually relatively large. 

Flip islands associated with the helix angle of the tool was recently reported in
[Zatarain et al., 2006]. They extended the multi-frequency solution of [Budak and 
Altintas, 1998] for milling cases with helical tool, and received that the flip instability
areas (including the first flip lobe) are closed islands separated by the horizontal lines 
where the depth of cut equals a multiple of the mill helix pitch. Note that the flip islands



found by [Zatarain et al., 2006] are directly related to the helix angle of the tool, while 
the flip islands found by [Szalai and Stépán, 2003] are independent of the helix angle. 

In the current paper, the results of [Zatarain et al., 2006] are investigated based on
time domain considerations. A mathematical explanation is given for the helix-induced 
flip islands based on the Floquet theory of DDEs. 

2. MILLING MODEL WITH HELIX ANGLE

Machine tool chatter is induced by the relative vibrations between the tool and the 
workpiece. In general cases, both the workpiece and the tool experience vibrations and 
the chatter occurs along the most dominant modes of the tool-workpiece structure. Here, 
we will investigate the 1 DoF system presented in Figure 1. The workpiece is compliant 
in the y direction that is perpendicular to the feed direction x. The tool is assumed to be 
rigid. The governing equation of motion reads 
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where m, c, k are the mass, the damping and the stiffness parameters and H(t,ap) is the 
directional force coefficient. The regenerative delay is  = 60/(N), where  is the 
spindle speed in rpm and N is the number of the flutes. Due to the helix of the tool, the 
directional force coefficient can be given in the integral form
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where the function gj(t,z) defines if the jth tooth at axial location z is cutting or not. Kt

and Kr are the specific tangential and radial forces. The axial and radial depths of cut are 
denoted by ap and ae. Due to the helix angle , the position of the jth tooth at axial 
location z is given by 

Figure 1; Model of milling process with helix angle.
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where p is the helix pitch and D is the diameter of the tool. Further details on the model 
of helical tools in milling processes can be seen in [Balachandran and Zhao, 2000] or in 
[Insperger and Stépán, 2004b]. 

Stability of the above milling process is determined by the monodromy operator of 
Equation (1) that can be represented as an infinite dimensional matrix. If the 
eigenvalues of this monodromy operator (the so-called characteristic multipliers) are in 
modulus less than 1, then the system is stable, otherwise the system is unstable and 
chatter arises. There exist several numerical methods to determine the characteristic 
multipliers (see in the Introduction). In this paper, the semi-discretization method is 
used to construct stability charts (see in [Insperger and Stépán, 2004a]). 

3. STABILITY CHARTS

Stability charts for down-milling operations using a 4 fluted 20 mm diameter tool with 
different helix pitches are presented in Figure 2. The modal parameters of the 1 DoF 
system are m = 5.364 kg, c = 421.948 N/ms, s = 21.6 kN/mm. The corresponding 
relative damping is 1.96% and the natural frequency of the system is fn = 319.375 Hz. 
The radial depth of cut is ae = 1 mm and the specific cutting forces are Kt = 804.3 
N/mm2 and Kr = 331 N/mm2. These parameters correspond to the experimental 
measurements presented in the next section. The horizontal axes in the stability charts 
are scaled according to the ratio of the tooth passing frequency and the system’s natural 
frequency that yields a kind of normalized spindle speed.

In Figure 2, it can be seen that as the helix pitch p decreases, unstable islands 
appear in the stability chart. These islands are separated by the lines where the depth of 
cut is equal to the multiples of the pitch length (denoted by dotted lines in Figure 2). 
This phenomenon was first observed recently in [Zatarain et al., 2006]. Here, we will 
give some mathematical explanation to this phenomenon based on the Floquet theory of 
DDEs. 

In order to obtain a clear picture about the nature of these unstable islands, the 
qualitative differences between time-periodic and autonomous (time-independent)
systems should be considered. A system is time-periodic if its governing differential 
equation contains time periodic coefficients, like H(t,ap) in Equation (1). If the 
governing differential equation does not contain time-dependent coefficients, then the 
system is autonomous. 

Stability of autonomous systems is determined by the so-called characteristic roots: 
the system is stable if all the characteristic roots are in the left half of the complex plane. 
For autonomous systems, the following routes of instability may occur:

 Hopf instability: a complex pair of characteristic roots cross the imaginary axis,
 fold instability: a real characteristic root crosses the imaginary axis at the origin.



Figure 2; Stability charts for different helix pitches.

Stability of periodic systems are described by the so-called characteristic 
multipliers: the system is stable if all the characteristic multipliers are inside the unit 
circle of the complex plane. For periodic systems, the possible routes of instability are: 

 secondary Hopf instability: a complex pair of characteristic roots cross the unit 
circle,

 fold instability: a real characteristic root crosses the unit circle at 1,
 flip instability: a real characteristic root crosses the unit circle at -1.

While Hopf and fold instabilities are typical for both autonomous and periodic systems, 
flip instability is typical only for periodic systems. 

Since milling processes are periodic systems, flip instability is a typical for them. 
Practically, flip instability occurs mostly for milling operations with small radial 
immersion when the directional cutting force is strongly time-dependent.

The analysis of the directional force coefficient H(t,ap) in Equation (1) gives a clear 
explanation for the existence of the unstable islands. Due to the helix of the tool, the 
directional force coefficient changes with the axial depth of cut. If the axial depth of cut 



is equal to a multiple of the helix pitch, that is ap = rp, where r is an integer, then the 
directional force coefficient becomes constant in time:
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Here, we used that due to the helical tool, r number of flutes are in continuous contact 
with the workpiece between the enter and exit angles  e and  a (equality signs 1 and 2), 

and due to Equation (3), 


d
2

d
pN

z   and dt
60

2
d


   (equality signs 2 and 3). In 

Equation (4), H0(t) is the directional cutting force coefficient corresponding to a straight 
fluted tool ( = 0) with  0,j(t) = 2t/60 + j 2/N as the angular position of the jth

flute. K is the integral average of H0(t) that corresponds to the zeroth-order 
approximation of the multi-frequency solution of [Budak and Altintas, 1998]. 

So, if ap = rp then the helix averages the variations of the directional force 
coefficient according to Equation (4) and the equation of motion becomes

))()(()()()(  txtxrpKtkxtxctxm  . (5)

This equation is an autonomous DDE (i.e., it does not contain time-dependent 
coefficients), therefore it never experiences flip instability. Consequently, flip stability 
boundaries never intersect the lines ap = rp in the stability charts. If flip stability 
boundaries exist for other axial depths of cut (when ap ≠ rp) then they should form
bounded islands between the lines ap = rp. 

As a numerical verification, Figure 3 presents the stability chart associated with
helix pitch p = 25 mm and the directional force coefficients for different depth of cut 
values as a function of time. It can be seen that if the axial depth of cut equals to a 
multiple of the helix pitch then the directional force coefficient is constant in time, as it 
was shown in Equation (4). 



Figure 3; Connection between the flip islands and the directional force coefficient.

Note that the above flip islands are different from the ones reported in [Szalai and 
Stépán, 2003]. The flip islands in Figure 2 and 3 are directly related to the helix of the 
tool, and from now on, we will refer them as helix-induced islands. The flip islands 
found by [Szalai and Stépán, 2003] are related to the periodic nature of the machining 
process independently of the helix of the tool, therefore, we will refer them as 
parametrically induced islands. [Szalai and Stépán, 2003] investigated an interrupted 
machining model with piecewise zero and constant directional cutting coefficient 
without modelling the helix angle. Based on a mathematically accurate analysis, they 
showed that all the flip stability boundaries are closed curves (lenses or islands) except 
the first one above normalized spindle speed 2. Here, we saw that the helix-induced 
stability islands may occur for all flip boundaries including the first one, too.

Note that parametrically induced flip islands arise for the current milling model 
with straight fluted tool, too. If the radial depth of cut is set to ae = 0.5 mm, then a clear
(parametrically induced) flip island arises at about normalized spindle speed 0.7 (see
Figure 4.)

Figure 4; Stability chart for a straight fluted tool with ae=0.5 mm .



4. EXPERIMENTAL VERIFICATION

A 4 fluted 20 mm diameter tool with helix pitch p = 27.2 mm ( = 30°) was used to 
down-mill aluminium 7075T6 samples at radial depth of cut ap = 1 mm. The workpiece 
was mounted on a compliant fixture in order to receive a system with relatively small 
natural frequency (fn = 319.375 Hz). This way, the first flip boundaries are attained at 
spindle speeds around 10 krpm. All the mechanical and technological parameters were 
given in the previous section.

Since, for a 4 fluted tool, the flip (period doubling) frequencies interfere with the 
second harmonics of the tooth passing frequency, clear identification of flip chatter and 
chatter free cases based on the vibration spectra is difficult. Therefore, the experimental 
stability charts is demonstrated by the contour lines of the vibration level measured 
during the tests. The spindle speed – depth of cut pairs where the tests were taken are 
denoted by crosses. The sizes of the crosses change according to the corresponding 
vibration level (see the contour lines). This way, experimental stability chart can be 
presented without making a clear limit value of the vibration level. As it can be seen, the 
experimental results fully validate the theoretical predictions. The existence of a (helix-
induced) flip island at the area of the first flip lobe can clearly be seen. 

Figure 4;Theoretical and experimental stability charts for p=27.2 mm.



5. CONCLUSION

Flip islands in the stability diagram of milling processes associated with the tool helix 
was recently reported in [Zatarain et al., 2006]. In this paper, these islands were 
investigated based on time domain considerations. It was shown that if the axial depth 
of cut is equal to the multiples of the helix pitch, then the directional force coefficient 
becomes constant in time, and flip chatter cannot arise. This explains that the stability 
islands are separated by the lines where the axial depth of cut is equal to the multiples of 
the helix pitch. It was shown that the helix-induced stability islands differ from the 
parametrically induced islands reported in [Szalai and Stépán, 2003, 2006]. While the 
parametrically induced islands occur at all flip boundaries except the first one, the helix-
induced islands arise at the first flip boundary, too. The theoretical results were 
confirmed by experiments.

ACKNOWLEDGEMENT

This work was supported in part by the János Bolyai Research Scholarship of the 
Hungarian Academy of Sciences, and by the Hungarian National Science Foundation 
under grants no. OTKA T043368 and F047318.

REFERENCES

[Altintas and Budak, 1995] Altintas, Y., Budak, E.; "Analytical prediction of stability 
lobes in milling", Annals of the CIRP, 44(1), 1995, pp. 357-362.

[Balachandran and Zhao, 2000] Balachandran, B., Zhao, M. X.; "A mechanics based 
model for study of dynamics of milling operations", Meccanica, 35(2), 2000, pp. 
89-109.

[Bayly et al., 2003] Bayly, P. V., Halley, J. E., Mann, B. P., Davies, M. A.; "Stability of 
interrupted cutting by temporal finite element analysis", Journal of Manufacturing 
Science and Engineering, 125(2), 2003, pp. 220-225. 

[Budak and Altintas 1998] Budak, E., Altintas Y.; "Analytical prediction of chatter 
stability in milling - Part I: General formulation", Journal of Dynamic Systems, 
Measurement, and Control, 120, 1998, pp. 22-30.

[Davies et al., 2000] Davies, M. A., Pratt, J. R., Dutterer, B. S., Burns, T. J.; "The 
stability of low radial immersion milling", Annals of the CIRP, 49, 2000, pp. 37-40.

[Davies et al., 2002] Davies, M. A., Pratt, J. R., Dutterer, B., Burns, T. J.; Stability 
prediction for low radial immersion milling, Journal of Manufacturing Science and 
Engineering, 124(2), 2002, pp. 217-225.

[Campomanes and Altintas, 2003] Campomanes, M. L., Altintas, Y.; "An improved 
time domain simulation for dynamic milling at small radial immersions", Journal 
of Manufacturing Science and Engineering, 125(3), 2003, pp. 416-422.



[Corpus and Endres, 2004], Corpus, W. T., Endres, W. J.; "Added stability lobes in 
machining processes that exhibit periodic time variation - Part 1: An analytical 
solution", Journal of Manufacturing Science and Engineering, 126(3), 2004, pp. 
467-474.

[Gradišek et al. 2005] Gradišek, J., Kalveram, M., Insperger,T., Weinert, K., Stépán, 
G., Govekar, E., Grabec, I., "On stability prediction for milling", International 
Journal of Machine Tools and Manufacture, 45(7-8) (2005), pp. 769-781.

[Insperger and Stépán, 2000] Insperger, T., Stépán, G., 2000, "Stability of high speed 
milling", Proceedings of the 2000 ASME International Engineering Congress and 
Exposition, Orlando, Florida, AMD – 241, 2000, pp. 119-123.

[Insperger and Stépán, 2004a] Insperger, T., Stépán, G.; "Updated semi-discretization 
method for periodic delay-differential equations with discrete delay, International 
Journal of Numerical Methods in Engineering, 61(1), 2004, pp. 117-141.

[Insperger and Stépán, 2004b] Insperger, T., Stépán, G.; "Stability transition between 
1 and 2 degree-of-freedom models of milling", Periodica Polytechnica –
Mechanical Engineering, 48(1), 2004, pp. 27-39.

[Mann et al., 2003] Mann, B. P., Insperger, T., Bayly, P. V., Stépán, G., "Stability of 
up-milling and down-milling, Part 2: Experimental verification", International 
Journal of Machine Tools and Manufacture, 43(1) (2003) pp. 35-40.

[Mann et al., 2004] Mann, B. P., Bayly, P. V., Davies, M. A., Halley, J. E., "Limit 
cycles, bifurcations, and accuracy of the milling process", Journal of Sound and 
Vibration, 277(1-2), 2004, pp. 31-48.

[Merdol and Altintas, 2004] Merdol, S. D., Altintas, Y.; 2004, "Multi frequency 
solution of chatter stability for low immersion milling", Journal of Manufacturing 
Science and Engineering, 126(3), 2004, pp. 459-466. 

[Smith and Tlusty, 1991] Smith, S., Tlusty, J.; "An overview of modeling and 
simulation of the milling process", Journal of Engineering for Industry, 113, 1991, 
pp. 169-175.

[Stépán, 1989] Stépán, G.; "Retarded Dynamical Systems"; Longman, Harlow, 1989.
[Szalai and Stépán, 2003] Szalai, R., Stépán, G.; "Stability boundaries of high-speed 

milling corresponding to period doubling are essentially closed curves", 
Proceedings of ASME International Mechanical Engineering Conference and 
Exposition, Washington D.C., USA, 2003, paper no. IMECE2003-42122 (CD-
ROM).

[Szalai and Stépán, 2006] Szalai, R., Stépán, G., "Lobes and lenses in the stability 
chart of interrupted turning", ASME Journal of Computational and Nonlinear 
Dynamics, in press, 2006.

[Tlusty et al., 1962] Tlusty, J., Polacek, A., Danek, C., Spacek, J.; "Selbsterregte 
Schwingungen an Werkzeugmaschinen"; VEB Verlag Technik, Berlin, 1962.

[Tobias, 1965] Tobias, S. A.; "Machine Tool Vibration"; Blackie, London, 1965.
[Zatarain et al., 2006] Zatarain, M., Muñoa, J., Peigné, G., Insperger, T., "Analysis of 

the influence of mill helix angle on chatter stability", Annals of the CIRP, 2006, in 
press.




