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Abstract (Hungarian)

A különféle mechanikai számítások során az anyagok mechanikai viselkedését paraméte-
res egyenletekkel - anyagmodellekkel - írhatjuk le. Ezen számítások (pl. VEM szimulációk)
pontosságához a megfelelő modell kiválasztásán túl elengedhetetlen az anyagparaméterek
pontos ismerete, ezért ez a paraméteridentifikáció gyakori probléma a mérnöki gyakorlat-
ban.

Diplomatervemben az ABAQUS [12] kereskedelmi végeselemes szoftverben elérhető
"Two-layer viscoplastic" modell paramétereinek meghatározásával (avagy illesztésével) fog-
lalkozom. A modell segítségével hatékonyan tudjuk modellezni a hőre lágyuló polimerek
anyagi viselkedését, de fémekhez is egyaránt használható. Ez az anyagmodell két fő részből
áll: az egyik rész írja le a rugalmas-képlékeny viselkedést, míg a vele párhuzamosan kap-
csolt másik rész felelős a viszkoelasztikus viselkedés modellezéséért. A modell anyagpara-
métereinek száma a felhasznált nemlineáris elemektől függ. Az általam vizsgált modellnek
összesen 7 paramétere van.

Az anyagparaméterek meghatározása egy optimalizálási problémaként írható le, mely-
nek során a mért adatok és az anyagmodell által előrejelzett viselkedés közötti eltérését mi-
nimalizáljuk a modellparaméterek megfelelő megválasztásával. Összetett viselkedésű anya-
gok (mint a "Two-layer viscoplastic" modell) esetén ez egy sokdimenziós problémát jelent,
ami már manuálisan vagy a legegyszerűbb algoritmusokkal sem kezelhető könnyedén.

A fenti modell paraméterillesztése elvégezhető kereskedelmi szoftverek használatával.
Az irodalomban több helyen javasolt módszer az ABAQUS (vagy más végeselem program)
összekötése egy külső optimalizálóval. Bár ez a módszer működőképes, egyetlen mérés
kiértékelése sok órát vehet igénybe.

A munkám során egy olyan szoftvert fejlesztettem a Python környezetben, ami a pa-
raméterillesztést sokkal hatékonyabban képes elvégezni. A program a Pythonhoz elérhető
számos modult és saját fejlesztésű kódot egyaránt felhasznál. A programhoz grafikus fel-
használói felület (GUI) is készült, ami könnyebben megtanulhatóvá és kényelmesebbé teszi
a használatát. A paraméterek illesztése teljesen elvégezhető a GUI használatával, ahol meg-
találhatóak az optimalizálási folyamat fontos beállításai is. Munkám során számos algorit-
must és beállítást vizsgáltam meg, hogy a leghatékonyabb módszert megtaláljam.

Az elkészített program teljesíti a kitűzött célokat. A paraméterek meghatározása valós
mérési adatokon néhány percbe telik, adott esetben 300-400x gyorsabban, mint a külső opti-
malizálót használó módszer esetén. Ezen kívül az így kapott anyagparaméterek által adott
viselkedés jobban követi a mérési adatokat. A gyorsabb kiértékelés kutatási célokra is hasz-
nos, például a paraméterek hőmérsékletfüggésének vizsgálata során.

Bár a dolgozatom a "Two-layer viscoplastic" modellel foglalkozik, az elkészített szoftver-
hez - a moduláris felépítés miatt - hozzáadhatók más anyagmodellek is, így a paraméter
identifikáció azokon is elvégezhető.
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Abstract

In the field of mechanics, we can describe the behavior of materials with parametric equa-
tions (material models) during our calculations. For the accuracy of our calculations (e.g.,
FEM simulations), we must use an appropriate model. Furthermore, it is crucial to know
the precise value of the material parameters. For this reason, the identification of these pa-
rameters is a common task in engineering practice.

In this thesis, the parameter calibration (or identification, fitting) of the "Two-layer vis-
coplastic" model found in the commercial finite element software ABAQUS [12] is examined.
This model can efficiently model thermoplastic polymers, but it can be used for metals as
well. This model consists of two main parts, which are in parallel connection. One describes
the elastic-plastic behavior, while the other is responsible for the modeling of the viscoelas-
tic effect. The total number of parameters depends on the nonlinear elements used in the
model. The particular model I examine has 7 parameters.

The calibration of the material parameters can be described as an optimization problem
where the difference between the measured data and the behavior predicted by the model
must be minimized via the appropriate choice of the material parameters. In case of com-
plex material behavior (like two-layer viscoplasticity), this is a multi-dimensional problem,
which cannot be treated easily manually or by the simplest algorithms.

To obtain the material parameters of the model mentioned above, commercial products
can be used. The approach recommended by the literature is to connect ABAQUS (or an-
other finite element software) with an external optimizer. While this method does work, it
can take several hours to fit the parameters on a single measurement file.

My task was to develop a software in the Python environment, which is able to perform
the parameter calibration much more efficiently. The software relies on the vast array of
modules available for Python, as well as custom code. The program was given a graphical
user interface (GUI) to make its use easier to learn and more convenient. The calibration
process can be done entirely using the GUI, as it contains the important settings for the
optimization process as well. During my work, I have investigated several algorithms and
settings to determine the most effective way of the parameter fitting.

The created software achieved its goal. When tested on real measurement data, it gave
results in a few minutes, sometimes 300-400x faster than the method using an external opti-
mizer. Furthermore, the obtained parameter values modeled the behavior more closely. The
faster evaluation of measurements is useful for research purposes as well, e.g., during the
investigation of the temperature dependence of the parameters.

While my thesis focuses on the "Two-layer viscoplastic" model, other material models
can be added to my software due to its modular design. The parameter identification can be
carried out on these added models as well.

Keywords: two-layer viscoplasticity, parameter fitting, optimization, Python
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Symbols, notations

During my thesis these notation will be used:
Engineering strain in a specimen with L0 initial length and ∆L length change under the

uniaxial load:
εeng = ∆L

L0
[-]. (1)

True or logarithmic or Hencky strain in a specimen with L0 initial length and ∆L length
change under the uniaxial load:

εtrue = ln
(∆L+ L0

L0

)
[-]. (2)

Conversion from engineering strain to true strain:

εtrue = ln(1 + εeng). (3)

Conversion from engineering strain rate to true strain rate:

ε̇true = ∂ ln(1 + εeng)
∂εeng

ε̇eng = ε̇eng

1 + εeng

. (4)

Engineering stress in a specimen with A0 initial cross section and under F uniaxial load-
ing force:

σeng = F

A0
[Pa]. (5)

True stress in a specimen under F uniaxial loading force with Ac current cross section:

σtrue = F

Ac

[Pa]. (6)

Conversion from true stress to engineering stress in one dimensional incompressible ca-
se:

σtrue = σeng(1 + εeng). (7)

In small strain theory (εeng ≤ 0.05) the two strain measures are approximately the same:
εeng ≈ εtrue. In this case, the engineering quantities can be used. In finite strain (εeng > 0.05),
it is necessary to use the true strain and stress.

A load case is the force or displacement load on a material, given as a function of time.
In my thesis, usually, εeng(t) will be given.

Note

In my thesis, in some equations, I did not specify if they are in the small or the finite strain
region. In this case, I have used ε and σ. If εeng and σeng is substituted respectively, then
the equation is true for small strain theory. Substituting εtrue and σtrue gives the equation for
finite strain.





Chapter 1

Introduction

1.1 Overview

In the last decades, the significance of computer simulations has increased year-by-year
in many fields of engineering practice. An essential factor is the available computational
power, which increased by magnitudes. This makes it possible to use highly accurate nu-
merical approximations in complex design cases instead of analytical formulae for simpli-
fied cases or empirical formulae.

As the investigated phenomena became more complex, more complex equations had
to be used to describe them accurately. The analytical solution of these equations is often
unknown. However, numerical methods can provide good enough approximations to use
these equations during engineering tasks. One of the most famous examples is the Navier-
Stokes equations. Their analytical solution is still unknown after well over 100 years, but
numerical solutions provide good enough approximations to solve many problems in prac-
tice (e.g., design airplanes).

In the field of mechanics, some material models cannot be solved in closed form as well.
In this thesis, I will be investigating the ’Two-layer viscoplastic’ model, which does not have
a known analytical solution either.

It is essential to determine the precise value of the parameters in the material model
equations o approximate the real phenomena accurately. It is possible to carry out several
measurements, each focusing on a different type of behavior and determine the parameters
this way. However, this method has multiple limitations.

Another method is to use data from a single measurement and fit the material parameters
by software designed for this task. During the parameter fitting, we compare the calculated
material behavior to measurement data for a specific load case. The fitting process can be
treated as an optimization problem, where the difference between the calculated and mea-
sured behavior must be minimized via the appropriate choice of the material parameters.

1.2 Goal

The previously mentioned optimization task is often too complicated to do manually or
handle it by trivial algorithms. Such software do exist, but they are not freely available.
(Source: [10], [11].) The goal of my thesis is to create a software, which is able to perform the
parameter fitting.

This software must perform this task efficiently, meaning under as short time as possible.
Efficiency will be measured against an other method using commercial software.

The software must have a graphical user interface (GUI) so it can be used effectively

1



1. CHAPTER. INTRODUCTION

without any programming background. The important settings of the material fitting pro-
cess should be available on the GUI.

Finally, this software should have a modular structure. While my thesis focuses on the
two-layer viscoplastic model, most of the program code is not specific for this particular
model. Having a modular structure allows the software to be easily expanded by new ma-
terial models, numerical methods, optimization algorithms, etc. These expansions should
work with the existing GUI.

1.3 Structure

In the second chapter of my thesis, I am going to give a detailed description of the ’Two-layer
viscoplastic model’ in general. I will introduce the particular configuration I used during my
work. The notations specific for this model will be introduced. This will be followed by the
description of the parameter fitting process.

The third chapter includes the details of the developed software. First, the programming
language and used modules are introduced. Then I will write about the developed graphi-
cal user interface, its design, and functionality. After this, I describe a few test cases which
I will use later to compare different methods. Then the numerical solution of the material
equations is shown, including the comparison of different numerical methods. This is fol-
lowed by the introduction of the optimizer algorithms and their settings. This part includes
some comparisons between different algorithms and settings. Finally, I briefly describe the
internal organization of the code.

The fourth chapter includes the results obtained on real measurement data. First, the
measurements are described. Then I show the results of the parameter fitting on the shown
data. The process of the optimization is analyzed on a selected case. Based on the results, the
temperature dependence of parameters is investigated. Finally, I compare the performance
of my software to another parameter calibration method, which uses commercial software.
I show the efficiency of my method.

In the final main chapter, I evaluate the developed software by investigating the goals set
at the start of my thesis. I will briefly write about potential ways to improve the program.
After this, the results are summarized.

The references and sources are included in chapter six. This is followed by the Appendix.
Appendix A contains the plots of the fitted curves on the measurement data. Appendix B
contains a step-by-step user guide.
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Chapter 2

The two-layer viscoplastic model

The two-layer viscoplastic model (denoted as TLVP from now on) was proposed by Kichen
in 1992. (Source: [6], [1]) While the original model was developed for polymers, the imple-
mentation in the finite element software ABAQUS is recommended for metals at elevated
temperatures as well. In general, this implementation is meant to model materials, where
plasticity, as well as time-dependent behavior, is observed. (Source: [12], [13])

The TLVP model, in general, consists of two ’branches’, which are in parallel connection.
One branch models the elastic-plastic behavior, the other is responsible for the viscoelastic
behavior. This generic configuration in 1D can be seen in Figure 2.1. The specific elements
are not determined in the branches, only the type of behavior they show. The particular
elements in the model can be changed to e.g., some nonlinear elements. For this reason, this
model has numerous particular versions.

Figure 2.1. The branches of the generic 1D model

2.1 Particular configuration

The version discussed in this thesis is identical to the one presented in Figure 2.1. The
equations were written for the 1-dimensional case, as this represents uniaxial loading. 1D
equations are also much easier to solve numerically.
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2. CHAPTER. THE TWO-LAYER VISCOPLASTIC MODEL

2.1.1 Elastic-plastic branch

Parameters

This branch shows linear isotropic hardening, which can be described with 3 material pa-
rameters.

Figure 2.2. The elastic-plastic network

• E - Elastic modulus [Pa]

• H - Plastic hardening modulus [Pa]

• σY 0 - Initial yields stress [Pa]

All of these material parameters (E, H , σY 0) must be positive and usually H < E.

Behavior

From parameters above the elastic-plastic modulus Eep can be calculated as:

Eep = EH

E +H
. (2.1)

During loading, the material has linear elastic behavior with elastic modulus E as long
as the stress is lower than the current yield stress σY . If the stress exceeds the yield stress σY ,
the material enters the plastic region. The further stress changes will be calculated according
to the elastic-plastic modulus Eep as long as the material is not unloaded.

If the stress exceeds the yield stress σY , the current yield stress is updated to the new
maximum absolute stress. This behavior can be seen in Figure 2.3.

Equations

The yield function F defines the elastic and elastic-plastic region as:

yield function: F = |σ| − σY ≤ 0, (2.2)

elastic region (F < 0): σ̇ = Eε̇, (2.3)

elastic-plastic region (F = 0): σ̇ = Eepε̇. (2.4)

F > 0 has no meaning by definition.
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2. CHAPTER. THE TWO-LAYER VISCOPLASTIC MODEL

Figure 2.3. Isotropic hardening behavior

2.1.2 Viscoelastic branch

Parameters

This branch contains a spring-like and a dashpot-like element. In my case, the spring is lin-
ear, and the damping is nonlinear with time hardening. In total, this branch is characterized
by 4 material parameters.

Figure 2.4. The viscoelastic network

• E - Elastic modulus [Pa]

• A - Nonlinear member multiplier [Pa−ns−m−1]

• n - Exponent of σ [-]

• m - Exponent of time [-]

From these parameters E, A and n must be positive and −1 < m < 0. A is typically
several orders of magnitude lower than E. n is typically between 1 and 5.

These equations are true for both small-strain and finite strain. In case of small-strain,
we interpret ε as εeng and σ as σeng. In case of finite strain we use εtrue and σtrue respectively.
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2. CHAPTER. THE TWO-LAYER VISCOPLASTIC MODEL

Note: as indicated before, the unit of A is [Pa−ns−m−1]. However, to simplify notations I
will use [-] for the rest of this thesis.

Behavior

During loading, this material builds up stress. When the deformation amount is kept con-
stant, relaxation happens, meaning that the stress will eventually reach zero in the deformed
state. A typical example can be seen in Figure 2.5.

Figure 2.5. Typical viscoelastic behavior

Equations

Let us denote the elastic deformation of the spring with εe and the deformation of the dash-
pot - which is responsible for the creep - with εcr. The total deformation of the viscoelastic
network is:

ε = εe + εcr. (2.5)

We can write the following equation for the spring:

εe = σ

E
. (2.6)

The same equation in differential form:

ε̇e = σ̇

E
. (2.7)

For the dashpot we can write the equation in differential form:

˙εcr = Aσntm, (2.8)

where t denotes time.

6



2. CHAPTER. THE TWO-LAYER VISCOPLASTIC MODEL

If we substitute (2.7) and (2.8) into the time derivative of (2.5) we get:

ε̇ = σ̇

E
+ Aσntm. (2.9)

We can express σ in differential form:

σ̇ = Eε̇− EAσntm. (2.10)

Unfortunately, the general analytical solution of equation 2.10 is unknown. However, it
can be handled by numerical methods.

These equations are again true for both small-strain and finite strain. In case of small-
strain, we interpret ε as εeng and σ as σeng. In case of finite strain we use εtrue and σtrue

respectively.

2.1.3 Full network

In total this particular configuration has 7 material parameters.
As the two branches are in parallel connection, the deformation is identical in both. The

stresses can be added to obtain the stress in the complete system. Using the notations pre-
sented on Figure 2.1:

σ = σep + σve, (2.11)

ε = εep = εve. (2.12)

2.2 Notations based on ABAQUS

The notations used in the ABAQUS finite element software can be seen in Figure 2.6.
(Source: [13])

Figure 2.6. The notations used by ABAQUS

However, in the software, Kp and Kv are not given directly. E and f is given instead,
where E is the ’total elastic modulus’, and f is the proportion of the viscoelastic part in it. In
this case E is positive and 0 ≤ f ≤ 1. My software also uses this kind of notation instead of
giving Kp and Kv.

E = Kp +Kv. (2.13)

f = Kv

Kv +Kp

. (2.14)
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2. CHAPTER. THE TWO-LAYER VISCOPLASTIC MODEL

The notations used in ABAQUS and in my thesis and software differ only very slightly.
However, the table below lists all of them to avoid any confusion.

Table 2.1. Notations

Quantity ABAQUS notation My notation
Total elastic modulus E E

Viscoelastic proportion f f
Hardening modulus H ′ H

Initial yield stress σy σY 0 or sY 0
Nonlinear member multiplier A A

Stress exponent n n
Time exponent m m

2.3 Parameter fitting

Parameter fitting can be done in multiple ways, as mentioned in the Overview section.

2.3.1 Suggested method by ABAQUS

The ABAQUS manual does describe a way to do the calibration of the material parame-
ters. (Source: [13]) This method requires multiple measurements, each focusing on different
properties of the material. During this process, m = 0 is assumed, and time hardening is
ignored. This leaves 6 parameters to calibrate: Kv, Kp, σy, H ′, A, and n.

The experiments need to be performed in uniaxial tension at different constant strain
rates. Using a very low strain rate (effectively static load), the elastic-plastic branch domi-
nates the behavior. The stress in the viscoelastic branch is ’relaxed out’ too quickly in this
case. This way the parameters of the elastic-plastic branch (Kp, σy, H ′) can be determined.

E = Kp + Kv can be determined by using the initial section of the measurement at a
relatively high strain rate. It is recommended to repeat this experiment several times with
different strain rates to obtain a result independent from the strain rate. From this, Kv can
be calculated as Kv = E −Kp.

At constant applied strain rate (ε̇0) the steady-state behavior of the viscoelastic branch
yields constant stress:

σv = A−
1
n ε̇

1
n
0 . (2.15)

Assuming that Kp � H the behavior of the entire material in steady-state:

σ = A−
1
n ε̇

1
n
0 + σY 0 +Hε̇0. (2.16)

To determine if the steady-state was reached, one can plot σ = σ − σY 0 − Hε̇0 and see
where it becomes constant. This constant value of σ will be equal to σv. By conducting
several experiments like this, the value of A and n can be determined.

Issues

The reason I described this method in such detail is to demonstrate that it is possible to cali-
brate the parameters without the heavy use of computer algorithms. However, this method
has several drawbacks.
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First, during the entire process, m = 0 is assumed. This means that it is not possible
to calibrate m with this method. The other assumption is Kp � H . We will be able to
see from the results, that this is not necessarily true either, sometimes Kp ≈ 2...5H . These
assumptions might affect the accuracy of the parameter fits negatively.

It is also clear from this description that several measurements are needed to determine
all 6 material parameters. (Unfortunately, the guide does not give an approximate number
for the number of experiments needed.) During these experiments, the material specimen
might get permanently damaged or destroyed. For example, from Equation (2.16), we can
see that the material is expected to enter the elastic-plastic region - this means permanent
deformation.

Overall, this can be a time consuming and expensive process. It is also possible that we
don’t have enough specimens from the material, especially if investigating the thermal de-
pendence of the parameters. For examining thermal dependence, this series of experiments
need to be repeated on multiple temperature levels, further amplifying the disadvantages
of this method.

2.3.2 General method

For the reasons mentioned above, it would be beneficial to find a method that can calibrate
the material parameters based on a single (or only a few) measurements.

Parameter fitting via computer optimization offers a solution to this problem. With this
method, the material equations can be solved many (thousands of) times for the load applied
during the measurement. The simulated behavior can be compared to measurement data.
The difference between the calculated and measured behavior can be expressed by a scalar.
This scalar should get smaller the closer the curves get to each other.

Overall the scalar measuring the difference is a function of the material parameters. This
can be treated as a multi-dimensional optimization problem where this function should be
minimized. There are numerous algorithms available for minimizing such scalar-valued
vector functions. The optimizer calculates new parameters to check based on the previous
attempts. When the difference becomes low enough (or a certain number of attempts is ex-
ceeded), the optimization stops. The ’calculation-evaluation-new parameters’ cycle is called
the optimization loop.

As no assumptions are made, the results obtained with this method might be more accu-
rate than the results from the previous method. Determining the material parameters from
a single measurement saves work hours and material specimens as well. Instead of human
work hours, computational time is used.
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Figure 2.7. The flowchart of the genaral method
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Chapter 3

The calibration software

As mentioned in the Introduction chapter, fitting or calibration the material parameters can
be a complicated process which cannot be treated with trivial methods. This configuration
of the TLVP model has 7 parameters, meaning that the simplest approaches will not be
effective. A complex optimization algorithm is needed to obtain a good solution. Currently,
there is no freely available software that would handle this task.

The commercial material parameter fitting software I found do not handle the TLPV
model either. The calibration can be solved by connecting a FEM software (which has the
TLPV model, e.g., ABAQUS) and an external optimizer. However, this method is magni-
tudes slower than a single software that can solve the material model equations and do
the optimization as well. Naturally, it would be hard to compete with commercial FEM
software in case of analyzing complex 3D geometry. However, here we only consider the
material equations in a 1D case. As optimization is an iterative process, the FEM software
loses a significant amount of time in each iteration because e.g., it has to start up for each
iteration. As we will see later in this thesis, using FEM software with an external optimizer
does provide a solution for parameter fitting. However, this process can take several hours.

The main goal of my software is to provide an efficient method for parameter fitting.
Also, the user interface can be designed according to the task, so it is easy for new users to
learn it.

Most of the programming effort (or lines of code) are not specific to the TLPV model.
For this reason, I wrote the code in a way that new materials or numerical methods can
be added to the existing software. These new models will appear on the interface (after a
program restart). They will also work with the optimization methods, etc.

There are numerous programming languages, which could be used to create such soft-
ware. For applications where performance is important, C/C++ is generally considered a
good solution. However, developing software in C/C++ is considerably slower and less
productive for someone without particular knowledge of this field.

For this reason, Python was used for the development of the parameter fitting software.
I have used previously, it is suitable for quick development, and it has satisfactory perfor-
mance when the right modules are used.

3.1 The Python programming language

Python is a high level, object-oriented, interpreted, general-purpose programming lan-
guage. The first version was published by Guido van Rossum in 1991. Its design focuses on
code readability and making software development easier over performance. Since 2001, it
is developed by Python Software Foundation. (Source: [15], [14])

11



3. CHAPTER. THE CALIBRATION SOFTWARE

Over the past 5 years, Python was one of the most rapidly growing languages. While it is
difficult to measure how ’important’ and ’good’ a programming language is, Python is defi-
nitely one of the most used programming languages today. It is used scientific applications,
artificial intelligence, web development, etc. (Source: [16], [17])

3.1.1 Advantages of Python

There are several reasons why Python became so popular. For my work, these were the most
important ones:

• It is free. Python is open source and in active development, meaning the current and
all future versions can be freely downloaded and used for any purpose freely. This is a
major benefit compared to e.g., MatLab or Wolfram Mathematica, as there is no licens-
ing needed. Python can be installed and kept up-to-date on any number of machines.

• It is platform-independent. Python is available on all major operating systems. After
installing the interpreter, the code can run without any modifications. Python code
can also be ’packed’ into self-contained executables, so an interpreter is not needed.
(However, these executables are no longer platform independent.)

• Well-made third-party modules. The Python community created several powerful
modules that are easy to install thanks to the Python developers supporting exter-
nal modules. These modules are easy to learn, as they are logically built similarly to
Python. These modules are a fundamental part of why Python is so popular. They
make development as well as runtimes magnitudes faster. Most modules are free to
use for any purpose.

• Well-structured code. As the language has strict syntax, the structure of the code is
more consistent. This helps code to remain readable and understandable even in larger
programs. Naturally, a lot depends on the programmer, but the syntax helps to keep
the code organized.

(Source: [15], [18])

3.1.2 The most important used modules

3.1.2.1 NumPy

Its name comes from ’Numerical Python’. This is a fundamental module for scientific use
and numerical computations. It contains data structures (e.g., C-like arrays) and functions
essential for quick numerical applications. It often utilizes highly optimized C/C++ or For-
tran code in the background. C/C++ and Fortran still provide one of the fastest running
codes in numerical applications. This implementation allows Python to use the speed of
C/C++ and Fortran while keeping the benefits of Python. (Source: [19])

3.1.2.2 SciPy

The name comes from ’Scientific Python’. This module contains a wide array of numerical
methods e.g., for solving differential equations and other tools for interpolation, statistics,
etc. It also contains the optimization algorithms I used for parameter fitting. It is used most
commonly combined with NumPy and utilizes C/C++ and Fortran code as well. (Source:
[20])
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3.1.2.3 Matplotlib

The main purpose of this module is to create high-quality 2D plots. However, it is also able
to create animations and 3D plots, as well. It is often used for static figures, but interactive
plots can be made as well. (Source: [21])

3.1.2.4 PyQt5

Qt is a C++ library for creating platform-independent graphical user interfaces. The PyQt5
module makes it possible to use version 5 of Qt from Python. Unlike the other listed mod-
ules, this module is not completely free. License fee has to be paid for selling software
made with it. However, as my program is not made for commercial distribution, I chose this
graphical interface module because it is platform-independent, powerful, and easy to use.
(Source: [22])

In Qt, the elements (labels, input fields, buttons, etc.) are called ’widgets’. The position-
ing of widgets relative to each other is done with ’layouts’. One of the most useful abilities
of Qt is that layouts can be ’nested’, so a layout can position other sub-layouts (which con-
tain their own widgets). This allows for great flexibility when designing the interface, as an
entire set of widgets can be repositioned easily without breaking their relative positions to
each other.

Moreover, Qt and the layouts handle the basic GUI functions without having to program
them, e.g., closing, minimizing, or resizing the window.

3.2 Graphical user interface (GUI)

The GUI was made using the previously presented PyQt5 module. As the focus of my thesis
is on the parameter fitting, I will not go into great detail regarding the internal structure of
the GUI.

The most important design principle was that the layout of the GUI should logically
follow the steps of the optimization workflow. The other principle was to keep the area of
the plot as large as possible. The user input area is on the upper part, while the bottom is
only for plotting the results.
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Figure 3.1. The GUI of the program after a fresh start

The user input area is organized into three tabs based on the type of functionality it is
responsible for. These are visible on the top-left part of the GUI.

3.2.1 Parameter fitting tab

This is the most important part of the GUI, as it contains what is needed to do material
parameter calibration. The widgets are organized into three groups.

3.2.1.1 Input file

Figure 3.2. The file input group

In the ’input file’ group, the user can pick the file containing the measurement data used
for fitting the material parameters. The input file must be in .csv format. The first 3 columns
will be considered only. These columns should contain the time data in [s], the engineering
strain data, and the engineering stress data in [MPa]. The order of these columns can be
defined by the user. By default, the order is time, engineering strain, engineering stress.
Alternatively, the user can select true strain instead of engineering strain. Every type of
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data (time, strain, stress) must be defined exactly once. The fitting process cannot be started
otherwise. The data in the time column must strictly monotonously increasing for the file to
be considered valid.

The input file may have a header or other comment rows. These must have a ’#’ as a first
character.

As many measurement data files had a few duplicated rows for unknown reasons, the
user can allow the program to remove these automatically.

3.2.1.2 Material selection and settings

Figure 3.3. The material settings group

Here the user can select the material model which should be fitted on the measurement
data. The numerical method used for calculating the material equations can be selected as
well. If no numerical method is selected, the default will be used. The numerical implemen-
tation of the material equations will be discussed in their own section of this thesis.

The finite strain calculations can be enabled via a checkbox, and small strain theory is
used otherwise. The results will be returned in engineering strain and stress, regardless of
the selected strain theory. The initial stress in the material can be given in the ’Sigma0’ input
field.

On the right side, the user can set the material parameters. The ’Value’ will be used by
the optimizer as an initial guess. As these parameters have some constraints (e.g., most of
them should be positive), the user can give their lower and upper limits in the ’Min’ and
’Max’ columns, respectively. By default, the theoretical limits are applied, ’inf’ denotes∞.
The handling of these limits will be discussed later. The ’Result’ column cannot be edited by
the user; the result of the optimization will appear there.

3.2.1.3 Optimizer settings

Here the user can select the optimizer algorithm, the objective function, and other settings.
The parameter fitting process can be started from here when everything has been set. As
these settings have a great impact on the parameter fitting process, they will be discussed in
detail in their own section of this thesis.

3.2.1.4 Status bar

A status bar is located on the bottom of this tab, where the program can display various
messages to the user. These include error messages in case of incorrect or missing inputs.

During parameter fitting the iteration counter, the elapsed time and the R2 value of the
fitted curve is also displayed here.
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Figure 3.4. The optimizer settings group

3.2.2 Material behavior tab

In this tab, the user can solve the material model equations for a specific load case with
specific parameters. This is useful for testing how the material would perform in these
specific cases, comparing the speed of different numerical methods, the effect of parameter
combinations on performance, etc.

Moreover, the results for specific cases can be compared to results obtained from other
calculations (e.g., ABAQUS).

3.2.2.1 Material selection and settings

The material settings are mostly the same as described in the ’Parameter fitting’ tab. The
parameter limits are displayed as a reminder for the user, but they have no effect on the
calculations. The ’Results’ column is also not displayed on this tab, as the parameters are
given by the user.

3.2.2.2 Load case

Defining a load case is not necessary for the parameter fitting process, but it can be used to
study the material behavior under the specified load. The load case is defined by time and
engineering strain data. The user can give up to 10 data points. Between these data points,
linear interpolation is applied, the ’Splits’ column defines the number of intervals defined
between the two points. (This is defined at the endpoint of the interval.)

For example, if the user inputs are:

Figure 3.5. Defining a load case

then the resulting load case can be seen on Figure 3.6 (the ’x’ markers denote the resulting
loading data).

16



3. CHAPTER. THE CALIBRATION SOFTWARE

Figure 3.6. The defined load case

If the load case table is left empty, then the program will look for load data from the
measurement file loaded in the ’Parameter fitting’ tab and calculate using that data. If no
load data is found, then the calculation cannot be started.

3.2.2.3 Status bar

Similarly to the parameter fitting tab, this tabs has it’s own status bar. It will display er-
ror messages if needed, and it will display the calculation time of the material model in
milliseconds.

3.2.3 Settings tab

Figure 3.7. The available options

This tab contains the plotting settings. The user can switch between plotting the stress
against time or strain. The plot is updated after switching the mode. Here the user can plot
the measurement data in various formats.

All input measurement data and calculated and stored data can be cleared here as well.
This can be useful if the user wants to check the behavior of a material, but he has a mea-
surement file loaded. If the data is not cleared, the program will automatically draw the
’Difference’ curve - even if the studied material is completely unrelated to the measurement
file.

As this tab contains mostly ’convenience’ functionality (i.e., this functionality is not
needed directly for the parameter fitting), it received the least amount of attention during
development. The number of available settings will be increased as the code is further de-
veloped.
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3.2.4 Behavior during the parameter fitting process

While the parameter fitting process is running, the interface remains responsive, but the
’Start optimizer’ button is disabled.

At the end of each iteration, the plotting area shows the latest result of the optimizer. At
the same time, the ’Results’ column is updated with the current material parameters. The
status bar is also refreshed with the elapsed time and R2 value of the current fit.

The optimizer algorithms are supposed to return the current best result after the itera-
tions. This is used to visualize the improvements made in almost real-time. However, one
of the algorithms (SLSQP) does not send the best result for unknown reasons. (The code
is the same for all optimizer algorithms. It works as expected for every other algorithm.)
This only affects the displayed and plotted values during the optimization, but not the final
result. The type of plot (σeng − t or σeng − εeng) can be changed during the process from the
’Settings’ tab.

During the parameter fitting process, three logfiles are saved. One contains the material
parameters after every function evaluation. The second is quite similar, but it contains the
parameters handled by the optimizer. The third logfile records the optimizer parameters
after every iteration, using the callback function.

These logs can be used to visualize the evolution of the solution (see section 4.3). They
can be useful for debugging purposes as well during the development of the code.

3.3 Test cases for comparisons and benchmarks

In order to be able to compare numerical methods and measure performance in general, I
have defined a few load cases as well as material parameter combinations. The load cases
are similar to the later presented measurements, and they have increasing complexity. The
parameters have the same order of magnitude as expected from previous parameter fittings.

The test cases do not have their temporal resolution pre-defined. The load case (ε(t)) is
only given by a few points, and it is assumed to be linear between these points.

The material parameters are in [MPa] instead of [Pa]. This will be true for the stress
values shown later in the thesis as well.

3.3.1 Test case 1

Table 3.1. Load case and material parameters for Test case 1

t [s] εeng [-]
0 0
20 1
40 1
60 0.5
80 0.5

Parameter Value
E [MPa] 800
f [-] 0.5

σY 0 [MPa] 5
H [MPa] 20
A [-] 0.001
n [-] 2
m [-] −0.5
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Figure 3.8. Test case 1

3.3.1.1 Test case 1/b and 1/c

These test cases are identical to Test case 1, with the exception of the parameter f . In Test
case 1/b f = 0.001. This setup primarily examines the elastic-plastic behavior. In Test case
1/c f = 0.999. This setup primarily examines the viscoelastic behavior.

These cases were defined, so their numerical solution can be compared to the solution
obtained by ABAQUS. This way, it can be examined, which branch is responsible for any
potential difference between the two methods.

3.3.2 Test case 2

Table 3.2. Load case and material parameters for Test case 2

t [s] εeng [-]
0 0
20 0.5
50 0.5
80 -0.5

100 -0.5

Parameter Value
E [MPa] 500
f [-] 0.7

σY 0 [MPa] 10
H [MPa] 30
A [-] 0.002
n [-] 2.5
m [-] −0.3

Figure 3.9. Test case 2
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3.3.3 Test case 3

Table 3.3. Load case and material parameters for Test case 3

t [s] εeng [-]
0 0
20 0.3
40 0.3
70 -0.2
90 -0.2

120 0.4
150 0.4

Parameter Value
E [MPa] 400
f [-] 0.4

σY 0 [MPa] 3
H [MPa] 50
A [-] 0.002
n [-] 3.5
m [-] −0.6

Figure 3.10. Test case 3

3.3.4 Test case 4 - for optimizer benchmarks

In order to be able to compare different optimizer settings, I have defined a problem based
on the previous test cases. It is important to note that this is a single test case, and the
optimizer algorithms can be sensitive to the exact settings and tasks. However, the most
important trends will hopefully be demonstrated.

The load case is the same as in Test case 1 because it is similar to the measurements. The
material behavior was simulated with 200 ms temporal resolution, then imported into the
software as a measurement result file.

The test starts the optimizer from a ’good’ initial guess. The quality of the guess is rea-
sonable for real cases. This task is meant to test the speed of different algorithms.

3.3.5 A note on benchmarks

The presented results were measured on a laptop with the following main specifications:
CPU: Intel Core i7-4500U @ 1.80GHz (4 cores)
RAM: 8 GB (DDR3)
Operating system: Ubuntu 18.04.3 LTS 64-bit
Naturally, the runtimes would be different on other hardware.
It is important to note that my program mostly uses 1 core for the calculations. The

individual measured runtimes have a noticeable deviation from the average (especially at
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Table 3.4. Optimizer test case 4

Parameter Accurate value Initial guess Lower limit Upper limit
E[MPa] 500 800 300 1200
f [-] 0.7 0.5 0.1 0.9

σY 0[MPa] 10 3 1 30
H[MPa] 30 50 10 100
A[-] 0.002 0.001 0 0.1
n[-] 2.5 1.5 1 5
m[-] −0.3 −0.5 −0.9 −0.1

very short times). For this reason, I have tried to measure the runtime several times and
average the results.
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3.4 Numerical solution of the material model

We have to solve the material model equations with the specific material parameters in order
to be able to compare the results with the measured data.

During the calculation, the material parameters and the load case (ε, ε̇) are always
known.

In small strain, the obtained results are in engineering stress. However, in finite strain
theory solving the equations gives true stress. As the measurement data is expected to be in
engineering stress, the calculated stress for finite strain needs to be converted into engineer-
ing stress as well. This is done after the calculations, using Equation (7).

3.4.1 Elastic-plastic branch

The equations describing the behavior are given in subsection 2.1.1. Two methods are im-
plemented in the program to solve the equations numerically.

We have 3 material parameters (E, σY 0, H) and Eep is calculated according to Equation
(2.1):

Eep = EH

E +H
.

3.4.1.1 Incremental method

This method is solving the equations incrementally. In each step, the solver does a trial step.
If calculating the (n+ 1)th state form the known nth state:

∆σtrial = σn + E · (εn+1 − εn). (3.1)

Then we must check the following inequality:

∆σtrial ≤ σY,n. (3.2)

If (3.2) is fulfilled, then the yield function (see Equation (2.2)) has a negative value (F <
0), meaning that the material is in the elastic region. In this case σn+1 := ∆σtrial and the
solver moves on to the next increment.

If (3.2) is violated, then the material has entered the elastic-plastic region. In this case we
calculate σn+1 as:

σn+1 = σn + Eep · (εn+1 − εn). (3.3)

To satisfy the condition that the yield function cannot be positive, we must update the
yield stress:

σY,n+1 = |σn+1|, (3.4)

then the solver can move on to the next increment.

Issues with the incremental method

This method is easy to implement, but it does have some issues. Most importantly, the
method relies on sufficiently small increments. If this condition is not met, then it loses
accuracy. The most extreme case is where the first increment already falls into the plastic
region - in this case, the elastic region is entirely missing, yielding very inaccurate results.

Figure 3.11 illustrates another source of inaccuracy. If a trial step is just barely over the
yield stress, then plastic behavior is assumed for the entire increment. This ’shifts’ the entire
σ − ε curve down significantly as the σ − ε curve is usually much more steep in the elastic
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region. However, if the trial step is just below (on equal to) the yield stress, then the obtained
solution will be much more accurate, as the next increment will be in the plastic region
almost completely.

Figure 3.11. ’Unlucky’ and ’lucky’ trial steps

This introduces some uncertainty in the results as the demonstrated effect depends not
only on the ε increments, but the material parameters as well. This uncertainty can be mit-
igated by using much smaller increments. However, this increases computational costs as
well. As the method is incremental, any error from the accurate solution will be carried over
to the next increments, and accuracy is never regained.

Figure 3.12 shows the effect of the number of increments used on the results. (The ma-
terial parameters were E = 1000 [MPa], σY 0 = 10 [MPa], H = 100 [MPa].) As we can see,
using only 9 increments leads to very inaccurate results, as the elastic region is skipped.
With 10 increments, we get fully accurate results, as the first increment ended precisely at
the end of the elastic region. Using 11 increments creates a slight error, and using 19 pro-
duces quite inaccurate results again. As we can see, increasing the number of increments
does not necessarily increase accuracy.

Figure 3.12. The effect of the number of increments

These uncertainties affect parameter fitting as well. The performance of some optimizer
algorithms can get hindered by the non-continuous behavior of parameter changes.
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There are ways to mitigate the described drawbacks (interval halving near the plastic
limit, etc.). However, these would increase computational costs considerably and would
never completely remove the inaccuracies.

3.4.1.2 ’Elastic-Plastic Transition’ method

The main idea of this method is to calculate the strain value analytically, where the transition
happens from the elastic region to the elastic-plastic region.

This algorithm splits the load case based on whether the material is exposed to tension
on compression. This is done based on the sign of ε̇. Positive ε̇ means tension, negative ε̇
means compression. (If ε̇ = 0 the stress is constant as well.)

The program does the following calculations on each load segment. At the start of the
ith load segment, the value of the strain and stress in known, denoted by σi and εi. The
yield stress at the start of the segment is known as well, denoted by σY,i. From this, we can
calculate the strain change needed to enter the plastic region in this given load segment.

Figure 3.13. Limit strain changes

For tensile load:
∆εpos,i = σY,i − σi

E
≥ 0. (3.5)

For compressing load:

∆εneg,i = −σY,i + σi

E
≤ 0. (3.6)

The material is in the plastic region at calculation point εn if (in the ith load segment):

εn > ∆εpos,i + εi, (3.7)

or
εn < ∆εneg,i + εi. (3.8)

If point εn is in the elastic zone then:

σn = σi + E(εn − εi). (3.9)

If point εn is in the plastic zone during tension then:

σn = σY,i + Eep(εn − (∆εpos,i + εi)). (3.10)
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If point εn is in the plastic zone during compression then:

σn = σY,i + Eep(εn − (∆εneg,i + εi)). (3.11)

At the end of each load segment, the yield stress is updated if the maximum of the abso-
lute value of the stress is higher than the current yield stress.

This method keeps its accuracy regardless of the density of the strain data. This is ben-
eficial for the optimizer algorithms as well, as the results will be a continuous function of
the parameters. Despite having a more complex computational algorithm than the iterative
method, it also runs faster.

As the Elastic-Plastic Transition approach is superior to the iterative method both in ac-
curacy and performance, my program always uses the Elastic-Plastic Transition method by
default. The iterative approach is available for the sake of being able to compare the two
methods, but it is quite impractical to use during ’real’ calculations.

3.4.1.3 Performance comparison of the two methods

I have compared the performance of the two methods as a function of the resolution. I have
used the previously introduced Test case 3. (From the material parameters, only E, σY 0, and
H were used.) As the strain goes over 5% significantly, finite strain theory was used.

The resolution is given as the total number of ε(t) points, given at uniform increments in
time. Runtimes were measured as the average of at least 100 runs.

Table 3.5. Performance comparison: elastic-plastic branch

Resolution Incremental runtime [ms] Elastic-Plastic Transition runtime [ms]
7 0.041 0.360

61 0.238 0.418
601 2.111 0.494

6001 25.042 0.852
60001 187.949 4.984

As we can see from this data, the Elastic-Plastic Transition method is slower than the
incremental method at very low resolutions. Measurements typically created a few hundred
to a few thousand measurement points. In this range, the Elastic-Plastic Transition approach
is much faster.

3.4.2 Viscoelastic branch

The differential equation has the following form (Equation (2.10)):

σ̇ = Eε̇− EAσntm.

For small strain we can write:

σ̇eng = Eε̇eng − EAσn
engt

m. (3.12)

For finite strain:
σ̇true = Eε̇true − EAσn

truet
m. (3.13)
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The conversion formula (Equation (4)) between the true and engineering strain rates:

ε̇true = ε̇eng

1 + εeng

.

Substituting (4) into (3.13):

σ̇true = E
ε̇eng

1 + εeng

− EAσn
truet

m. (3.14)

With this formula, we can calculate the true stress directly from the engineering strain.
The equation was solved at the points where εeng the time was known. ε̇eng at the ith

point was calculated with a simple numerical formula:

ε̇eng,i = εeng,i − εeng,i−1

ti − ti−1
. (3.15)

As the initial stress is an input parameter (usually 0), it is not needed to solve the equation
at the starting point. Thus the value of ε̇eng at the initial point is not necessary to calculate.

These equations have a singularity at t = 0. For this reason a numerical ’trick’ is used. If
the value of t is below a certain threshold (e.g. 10−6) a small number err is added to it. In
my code err = 10−50. Note, that usually σ = 0 at t = 0, which cancels this term.

The σn term in Equation (2.10) is correct for positive stress. It can be extended to handle
negative stresses using the usual method (like ABAQUS does internally):

sign(σ) · |σ|n. (3.16)

There are several numerical methods available to solve the Equations (3.12) and (3.14)
with the previously described numerical ’tricks’.

3.4.2.1 The Runge-Kutta method (RK45)

The principal idea of the Runge-Kutta method was proposed by C. Runge and developed
later by W. Kutta and others around 1900. (Source: [23])

’Runge-Kutta’ denotes an entire family of numerical methods. Their detailed description
can be found in [2].

The most commonly used version is the fourth-order Runge-Kutta method - also known
as ’the Runge-Kutta method’, ’RK4’, ’RK45’, or ’RK4(5)’. It is a common numerical solver
as it is relatively simple, robust, and many efficient implementations are freely available in
many programming languages.

My program uses the implementation in SciPy available in the scipy.integrate.ode
function, named ’dopri5’. This implementation sets its time steps automatically, and the
results are returned where the input data is given in time.

In the expected range of the material parameters, this method performs well, usually
solving the equation within 50-500 ms. However, with some parameter combinations, the
equation becomes stiff. In this case, performance is significantly impacted. (See subsection
3.4.2.3 for details.)

3.4.2.2 The LSODA method

LSODE (Livermore Solver for Ordinary Differential Equations) is a solver for both stiff and
non-stiff problems described around 1990. A detailed description of the method can be
found at: [3].
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The SciPy implementation is available in the scipy.integrate.ode function, named
’lsoda’. This method also sets its time steps automatically, and the results are returned
where the input data is given in time.

In the expected range of the material parameters, this solver is considerably slower than
the Runge-Kutta method. However, it handles stiff parameter combinations much better.
It loses some performance in stiff cases, but not nearly as much as the RK45 method. (See
subsection 3.4.2.3 for details.)

3.4.2.3 Performance comparison

The performance was compared on the previously presented Test case 1. From the material
parameters, only E, A, n, and m were used.

As the strain goes over 5% significantly, finite strain theory was used. The resolution is
given as the total number of ε(t) points given at uniform increments in time. Runtimes were
measured as the average of at least 20 runs.

Non-stiff case

Table 3.6. Performance comparison: viscoelastic branch (non-stiff case)

Resolution RK45 runtime [ms] LSODA runtime [ms]
5 8.973 25.422
41 15.712 56.904

401 36.646 216.991
4001 248.890 374.771

40001 2419.490 582.125

Stiff case

The equation gets stiff if the E · A product is high. To create the stiff test, Test case 1 was
modified to have E = 800000 (this is 1000 times higher than the original value).

Table 3.7. Performance comparison: viscoelastic branch (stiff case)

Resolution RK45 runtime [ms] LSODA runtime [ms]
5 47.311* 58.221
41 437.093* 128.349

401 1866.942* 607.500
4001 2596.646 2896.363

*: in these cases, the solver gave warnings, that the maximum number of allowed steps was
reached. It is likely that the solutions are not accurate here.

As we can see, the LSODA solver is indeed faster with stiff problems. More importantly,
it keeps its accuracy as well.
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However, in the non-stiff case, the RK45 method performed better. As the material pa-
rameters are expected to give a non-stiff equation, the RK45 method is the default setting in
the program. The LSODA solver is available as well.

It is important to note that even in the non-stiff case, both methods are much slower than
the calculations done in the elastic-plastic branch. The difference according to Tables 3.5
and 3.6 and additional tests is about 50-100x times. So to increase the performance of the
full material model, the viscoelastic branch should be improved first.

3.4.3 Comparing to ABAQUS

The strains are the same in the two branches, and the stresses can be added together accord-
ing to subsection 2.1.3.

It is important to investigate how the material behavior in my software compares to the
material behavior calculated by ABAQUS. For this, I have used to previously described test
cases.

The ABAQUS results were imported as measurement results (hence the label ’Measure-
ment’ on the plot legend). The temporal resolution is fixed at 10 ms. For this reason, the
individual points are not marked on the plot (the markers would be too close and blend into
each other). During the ABAQUS solution, the Creep, swelling, and viscoelastic strain error
tolerances were set to 10−5 based on the recommendations.

The ’Difference’ is calculated by subtracting the ABAQUS results from the result ob-
tained from my code. The maximum absolute difference is marked by a green dot.

It is important to note that my software got the ABAQUS results as a measurement result
file with 10 ms time increments. For this reason, the stress response is obtained with 10 ms
increments as well. However, the RK45 (or LSODA) method uses smaller time steps to
obtain a better solution. These timesteps are chosen automatically by the solver.

The relative difference is calculated as:

Relative difference = my calculation - ABAQUS result
ABAQUS result

. (3.17)

3.4.3.1 Test case 1

Figure 3.14. Comparison with ABAQUS - Test case 1

Maximum absolute difference: 0.537 [MPa]
Relative difference at the maximum absolute difference: −3.676%
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3.4.3.2 Test case 1/b

This case primarily examines the elastic-plastic behavior.

Figure 3.15. Comparison with ABAQUS - Test case 1/b

Maximum absolute difference: 0.208 [MPa]
Relative difference at the maximum absolute difference: 1.388%

3.4.3.3 Test case 1/c

This case primarily examines the viscoelastic behavior.

Figure 3.16. Comparison with ABAQUS - Test case 1/c

Maximum absolute difference: 0.076 [MPa]
Relative difference at the maximum absolute difference: −1.634%
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3.4.3.4 Test case 2

Figure 3.17. Comparison with ABAQUS - Test case 2

Maximum absolute difference: 3.003 [MPa]
Relative difference at the maximum absolute difference: 3.327%

3.4.3.5 Test case 3

Figure 3.18. Comparison with ABAQUS - Test case 3

Maximum absolute difference: 3.266 [MPa]
Relative difference at the maximum absolute difference: −9.551%

3.4.3.6 Summary

The relative differences at the maximal absolute differences are well below 5% in most cases.
In Test case 3, it almost reaches 10%. However, this test case is considerably more complex
than the measurements.

Overall the results obtained from my code follow the ABAQUS results quite well. Thus
the material parameters obtained at the end of the fitting process will be usable in ABAQUS.

3.5 Optimizer algorithms and settings

The interface of the optimizer settings can be seen on Figure 3.4. In this section I will go over
these settings and their impact on the optimization process.
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Terminology

An optimizer method or algorithm is a computer algorithm designed to find the local min-
imums (or maximums) of a multi-variable scalar valued function by changing the value of
the variables.

The quality or object(ive) function is the function what is minimized (or maximized).
In my case this function expresses the difference between the measured and simulated data
as a scalar. The closer are the measured and simulated behaviors, the smaller is the value of
this function. For this reason my software is minimizing the quality function.

A function evaluation means one calculation, where the material behavior is simulated
for a specific load case and parameters, then the difference from the measured behavior is
calculated by the quality function.

An (optimizer) iteration means one internal cycle of the optimizer algorithm. One itera-
tion may involve several (sometimes 50-100) function evaluations.

Bounded optimization means that the variables can have lower and/or upper limits.
Not all algorithms are designed for bounded optimization.

3.5.1 Investigated algorithms

The algorithms listed below can be selected from the interface. My program uses the imple-
mentation available in SciPy, in the scipy.optimize.minimize function.

3.5.1.1 Powell

The algorithm was published by M. J. D. Powell in the referenced article: [7].
A modified version of this method is available in SciPy. It does not calculate or estimate

the derivative of functions. For this reason, it is well suited for handling complicated but
continuous functions.

This was one of the more reliable and effective algorithms. It was not too sensitive for
the starting point. A detailed comparison to other methods will be shown later in this thesis.

3.5.1.2 BFGS, L-BFGS-B

The BFGS (Broyden-Fletcher-Goldfarb-Shanno) method was described in 1970 by Charles
George Broyden, Roger Fletcher, Donald Goldfarb, and David Shanno. (Source: [4])

In L-BFGS-B, the ’L-’ denotes the limited memory implementation, which is achieved by
simplifying the stored inverse of the Hessian matrix. ’-B’ denotes that this method is able to
do bounded optimization.

As this is a hill-climbing algorithm, it looks for local optima. For this reason, this method
is more sensitive to the starting point than the Powell method. A detailed comparison to
other methods will be shown later in this thesis.

3.5.1.3 SLSQP

Its name comes from Sequential Least Squares Programming. SciPy uses a version imple-
mented by Dieter Kraft in the background. Like L-BFGS-B, this method can also handle
bounded optimization. (Source: [8])

For my problem, this method gave solutions faster than other methods. However, it
was quite sensitive to the starting point and other settings. A detailed comparison to other
methods will be shown later in this thesis.
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3.5.1.4 Neldel-Mead

This algorithm is a simplex method, meaning that it uses geometric concepts for optimiza-
tion. (Source: [9])

This algorithm is robust, as no derivatives are taken during the optimization. It usually
needs more iterations than other methods but does fewer function evaluations per itera-
tion. However, in my cases, it’s performance was considerably worse than the previously
mentioned methods. For this reason, I decided not to do detailed tests with it.

3.5.1.5 CG

This method uses a nonlinear conjugate gradient algorithm described by Polak and Ribiere,
which only uses the first derivatives. (Source: [5])

In my cases, CG’s performance was considerably worse than the previously mentioned
methods. In many cases, it failed to find the optimum. For this reason, I decided not to do
detailed tests with it.

3.5.2 Quality functions

As described previously, the quality function quantifies the difference between the measured
and simulated data. The value of the quality function should get lower, as the measured and
simulated data gets closer; it should reach 0 when there is no difference between the two.
There is an infinite number of functions, which could be used as quality functions.

Figure 3.19. Good and bad fit (illustration)

The value of the quality function is denoted by Q, the measured and simulated data is
compared at the εeng values indexed by i = 1 . . . N . The measured engineering stress at the
ith point is denoted by σmeas

i . The simulated engineering stress at the ith point is denoted
by σsim

i .

Sum of absolute differences:

Qabs =
N∑

i=1
|σmeas

i − σsim
i |. (3.18)
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Sum of absolute differences weighted by ∆ε:

Qabs,∆ε =
N∑

i=2
|σmeas

i − σsim
i |(εi − εi−1). (3.19)

Sum of absolute differences, normalized:

Qabs,norm = Qabs

N
. (3.20)

Sum of squared differences:

Qsq =
N∑

i=1
(σmeas

i − σsim
i )2. (3.21)

Sum of squared differences weighted by ∆ε:

Qsq,∆ε =
N∑

i=2
(σmeas

i − σsim
i )2(εi − εi−1). (3.22)

Sum of squared differences, normalized:

Qsq,norm =
√
Qsq

N
. (3.23)

Using the formulas weighted by ∆ε does not have a significant impact of Q if the mea-
surement points are in equal ε distance from each other. (In this case, the weighting just
applies a constant multiplier.) However, if the distribution of the measurement points is far
from uniform, this option can help to obtain an overall better fit, as it will prevent a few
points close together ’pulling’ the curve away from the far away point.

Normalizing the Q value is beneficial in order to get a result independent from N . This
way, comparing the quality of two fits on different sets of data becomes possible.

3.5.3 Internal settings of the optimizer algorithms

Each method available in the scipy.optimize.minimize function has different settings.
While tweaking the internal settings ’properly’ might lead to improvements in performance,
changing them ’incorrectly’ might make them not find the optimum as well. One of the
design goals with this software was that it should be easy to use. For these reasons, the GUI
only includes the 3 most important options.

• ’maxiter’: Maximum number of allowed optimizer iterations.

• ’maxfev’: Maximum number of allowed function evaluations. After going over this
limit, the optimizer stops at the end of the iteration. This setting is ignored by BFGS,
SLSQP, and CG.

• ’eps’: Step size used for the estimation of the Jacobian matrix. This setting only af-
fects the BFGS, L-BFGS-B, CG, and SLSQP methods, as the other methods do not take
derivatives. (The other methods ignore this setting.)
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3.5.4 Penalty for crossing the parameter limits

From the described methods, only L-BFGS-B and SLSQP can handle bounded optimization
problems. The rest of the methods may go outside the parameter ranges defined by the
user. In order to ’discourage’ the algorithms from going out of bounds, a penalty function is
used. This makes the value of the quality function significantly worse if the boundaries are
violated.

3.5.4.1 The ’cutoff’ method

One possible way to handle boundary crossing is not to evaluate the quality function outside
the designated domain. In this case, a very large number can be returned as the value of Q
(e.g., 10100).

The advantage of this method is that no computational power is used to evaluate the
quality function at this invalid position. Invalid parameter values might mean physically
impossible behavior as well (e.g., if the optimizer tries E < 0). The numerical methods still
try to solve the equations with these parameter values. However, as the behavior might be
unstable, the solution may take 10-100 times longer than with valid parameters.

However, this method has significant disadvantages, as well. Cutting off at the boundary
means that the quality function is not continuous at the parameter boundaries. All of the
previously mentioned algorithms were made to handle continuous problems. They run on
non-continuous functions as well, but their behavior might be unpredictable. (For example,
a gradient-based method might estimate very high derivative near the boundary.)

Another drawback is that by cutting off the optimizer receives false information, and all
real information is lost. There is no difference between slight and major boundary violations.
The quality function forms a ’horizontal’ surface in the parameter space, with a tiny ’hole’
in it as the valid domain. As the value of the gradient on the ’horizontal’ surface is 0, the
optimizer cannot determine which direction to go towards.

For the reasons mentioned above, I have decided against the cutoff method.

3.5.4.2 Based on the number of boundary crossings

My code uses a penalty factor described by the following equation:

p = 2c. (3.24)

Here p denotes the penalty factor and c the number of boundaries crossed. The penalty
factor is applied as:

Qpenalized = pQ. (3.25)

This method does not differentiate between slight and significant boundary crossings
either. However, if the boundaries are set correctly, the value of Q expected to grow, the
further away are the parameters from the valid domain. This penalty function amplifies this
effect.

Q is again non-continuous at the boundary, but this effect is not nearly as severe as with
the cutoff method so that the algorithms can handle it better.

Using this method allows the optimizer to get some information from outside the valid
zone. The gradient is not 0, as should point towards the valid domain.

This option is turned on by default in the program, but it can be turned off by the user.
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3.5.5 Random starting points

In the case of new materials or models, it might be challenging to give a good initial guess
for the optimizer. In this case, it is common practice to give the optimizer some random
starting points as well. These are evaluated before the optimizer is started. The one with the
best quality function value is picked to be the actual starting point for the optimizer.

The functionality described above is available in my program is well. The user can set
the number of random points generated, up to 1000. However, this functionality should be
used with caution, as each point needs to be evaluated. In the case of a large amount of
points, this might take a significant amount of time.

For each random starting point, the material parameters are generated between their
respective bounds with uniform distribution. If the upper or lower boundary is not given (or
is ±∞), then ±10200 is used instead. As this value is unrealistically high for any parameter
using any reasonable unit, it is strongly recommended to set the upper and lower limit for
each parameter.

In general, the usage of this setting is not recommended if the initial guess is expected to
be good, e.g., because of a previous parameter fit under similar conditions. A more detailed
explanation is given in subsection 3.5.7.3.

3.5.6 Parameter handling mode

As we can see from the test cases, the expected value of the parameters is not in the same
order of magnitude. For the material the measurements were made on E ≈ 1000[MPa], and
A ≈ 0.001[−]. This means the ’largest’ parameter is about 6 orders of magnitude larger (in
absolute value) than the ’smallest’.

This difference can affect the performance of some optimizer algorithms negatively. This
can be avoided by applying a linear transformation on the parameters. This way, the opti-
mizer ’sees’ the transformed values only, and these are in the same order of magnitude if the
correct transformation is applied. Naturally inverse transformation is applied before pass-
ing the parameters to the material model. For this reason, my software has three options for
parameter handling.

’Values’ mode

With this setting, no transformation is applied. The optimizer handles the material parame-
ters directly.

’Multipliers’ mode

The initial material parameter values given by the user (x0) will be interpreted as multipliers
for the parameters, as:

xmaterial = x0 · xoptimizer, (3.26)

where xmaterial denotes the material parameter passed to the model and xoptimizer the param-
eter ’seen’ by the optimizer.

In this case, the optimizer uses 1 as the initial value for each parameter. This way, the x0
values given by the user will be equal to the actual material parameters of the initial guess.

The parameter boundaries need to be transformed accordingly as well. As they mean
the limits for the values seen by the optimizer:

Boptimizer = BGUI

x0
, (3.27)
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whereBoptimizer is the transformed boundary passed to the optimizer, andBGUI is the bound-
ary given by the user on the GUI.

In general, this method improved performance with all optimizer algorithms it was tried
with. For this, the user needs to give correct estimations for the order of magnitude of the
parameters, so the optimizer works with similar values for all parameters.

’Normalized’ mode

This method transforms all parameters to be between 0 and 1 based on the parameter limits.
The user has to define the parameter boundaries as finite values for this to work. The initial
values passed to the optimizer:

xoptimizer = x0 −Bl

Bu −Bl

, (3.28)

where Bl and Bu are the lower and upper boundaries given on the GUI, respectively.
In this mode, the lower limit for the optimizer is 0, and the upper limit is 1 for each

parameter.
The inverse transformation to obtain the material parameters for stress calculation:

xmaterial = xoptimizer(Bu −Bl) +Bl. (3.29)

This method does help performance as well, and it guarantees that the parameters are in
the same order of magnitude.

3.5.7 Test results for different algorithms and settings

This section will contain various tests performed on the optimizer. It is impossible to test
and include every possible combination of settings. However, the general trends will be
demonstrated.

3.5.7.1 Algorithm performance test

Performance was tested using Test case 4 (see Table 3.4). The quality function was set to the
normalized sum of squared differences. Maxiter and maxfev were both set to 500. Parameter
handling mode was ’Normalized’. Other settings were left on the default.

As we can see by the number of asterisks needed, comparing these algorithms is no triv-
ial task. However, the primary trend is visible: the best performing algorithms are Powell,
L-BFGS-B, and SLSQP. I will only test these algorithms for the rest of this thesis.

3.5.7.2 Effect of parameter handling mode

Performance was tested using Test case 4 (see Table 3.4). The quality function was set to
the normalized sum of squared differences. Maxiter was set to 250, maxfev to 2000. Other
settings were left on the default. The time required for the optimizer, and the quality of the
fit was investigated.

The optimizers did not always find the accurate values of the parameters. This is visible
on the value of Qsq,norm. Qsq,norm < 0.01 indicates that the actual optimum was certainly
found.

The Powell algorithm got stuck in a local optimum, which gave a good fit, but it was not
exactly at the accurate values.
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Table 3.8. Performance test of different algorithms

Algorithm Time needed [s]
Powell 27.5∗
BFGS 240.1∗∗

L-BFGS-B 68.2∗
SLSQP 69.4∗∗

Neldel-Mead 99.8∗∗∗
CG 690.1∗∗

*: reached the maxfev limit before fully converged, but good fit
**: ignores maxfev
***: acceptable fit (Q = 0.33) but not exactly at the optimum, may have converged if given
more time

Table 3.9. Effect of the parameter handling mode - performance and quality

Time [s] Values Multipliers Normalized
Powell 152.8∗ 105.5 118.6

L-BFGS-B 260.0∗ 199.4∗ 184.5
SLSQP N/A 217.2 84.4

Qsq,norm Values Multipliers Normalized
Powell 0.100∗ 0.100 0.101

L-BFGS-B 0.0037∗ 0.0217∗ 2.27 · 10−5

SLSQP N/A 0.229 4.33 · 10−5

*: maxfev reached
N/A: the optimizer stopped after a few iterations, without any good results

L-BFGS-B performed quite well; it found the optimum in ’Values’ mode but did not have
enough function evaluations to get the precise values. In ’Normalized’ mode, the optimum
was found with great precision. In ’Multiplies’ mode, it got close, and with more function
evaluations, it most likely would have found the optimum.

SLSQP is a sensitive algorithm, as mentioned previously as well. With the ’Values’ mode,
it failed to give any reasonable result. In ’Multipliers’ mode, it failed to find the optimum.
However, in ’Normalized’ mode, it found the optimum with great precision and over twice
as fast as L-BFGS-B.

Overall, both the ’Multipliers’ and ’Normalized’ mode seems to perform better than the
’Values’ mode. In this test, the ’Normalized’ mode was the best, but there are some cases
where ’Multipliers’ mode performs better.

About the algorithms, we can say that SLSQP is the fastest by a significant margin if
the settings are right. However, it is quite sensitive and can get unstable with the wrong
settings. Powell gives acceptable but not great results reliably. L-BFGS-B tends to find the
optimum with more precision than Powell, but it is slower than SLSQP.
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3.5.7.3 Effect of the random starting points

The short and long term effect of using additional random starting points was examined
using Test case 4. The SLSQP method was used with ’Normalized’ parameter handling.

When investigating the short term effect, ’maxiter’ was set to 50. A control run was made
with no random points. Then 10 runs were made with 100 additional starting points each.
The value of the quality function was examined after the 50 iterations.

Table 3.10. The short term effect of random starting points

Qsq,norm

Control run 0.01163
Test run #1 0.02412
Test run #2 0.02317
Test run #3 0.005229
Test run #4 0.07279

Test run #5 2.10231 (!)
Test run #6 0.04849
Test run #7 0.07499
Test run #8 0.07363
Test run #9 0.005188

Test run #10 0.06835

In all 10 test runs, one of the 100 random points was better than the provided initial
guess. However, after 50 iterations, the value of Qsq,norm was only better than the control
run two times. Seven times it was slightly worse, and once it was much worse. The runtime
of the control run was 60s. The test runs varied between 70− 120s.

The long term effect was investigated the same way, but ’maxiter’ was set to 200. The
optimizer always stopped before reaching 200 iterations.

Table 3.11. The long term effect of random starting points

Qsq,norm

Control run 3.31107 · 10−5

Test run #1 2.20085 · 10−5

Test run #2 2.70342 · 10−5

Test run #3 3.11567 · 10−5

Test run #4 2.98621 · 10−5

Test run #5 2.79169 · 10−5

Test run #6 0.04680 (!)
Test run #7 5.32332 · 10−5

Test run #8 4.05218 · 10−5

Test run #9 3.97268 · 10−5

Test run #10 3.48100 · 10−5

It is important to note that the parameters form the Qsq,norm ≈ 10−5 magnitude are prac-
tically identical, the difference is� 1%. 9 out of 10 times, the test runs found the optimum,
just like the control run did. However, one of the test runs showed noticeably worse re-
sults than the rest. The runtime of the control run was 100s. The test runs varied between
110− 180s.

Overall the usage of the random starting points has increased runtimes. Results were
rarely improved; they got worse on average in the short-term tests. Long term results were
not affected by much. However, in each test, there was a case where the results became
much worse. Similar trends were observed using only 10 random points.

For the reasons mentioned above, it is not recommended to use the random starting
points if the user can give a good initial guess. Runtimes will be increased, and results tend
to be worse when using random points with a good enough initial guess.

The nature of optimization algorithms can explain this observation. As this quality func-
tion is complex, it probably has many local minimums. It is unlikely that the initial guess
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by the user it close to one of them. However, the probability of ’hitting’ a local minimum in-
creases significantly, if we use several random points as well. However, this local optimum
is not likely to be the global optimum, but it will be better than the guess given by the user.
Thus the optimizer is started from the vicinity of a local optimum point. In this case, the
algorithm might never realize (or only later realize) that there exists a better minimum place
in the parameter space.

The probability of hitting a local minimum goes down, as the number of random points
is decreased. However, this overall questions the usefulness of this technique for a function
like the quality function of this problem.

3.6 Structure of the code

Before the current interface and structure were designed, the program had a previous ver-
sion. This version only had some very basic functionality. The user could only select the
material model and the optimizer algorithm. To change the rest of the settings, the source
code needed to be modified. However, this is quite impractical, as several settings need to
be changed regularly. Another drawback was that adding new items to the menus was not
automated.

Figure 3.20. The old interface

Later the program was rewritten almost completely. Only a few small parts of this code
were kept. However, it was a useful prototype and helped me design the current version of
the software.

3.6.1 Files building up the code

In Python, the content of another file (functions, classes, variables, etc.) can be imported like
any module with the import file command. The imported code will run just as quickly
as code written in the same file. Importing the file does take some time at the start of the
code, but this is barely noticeable. (According to my measurements, it is 100-150 ms for each
import.)

This allows the code to be split into multiple files without any significant performance
impact. This helps to keeps the code organized. Modifications are easier to make, as less
time is spent looking for the right piece of code to be modified. For these reasons I have split
my code into the following files:
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gui.py

This file contains everything related to the graphical user interface. This is the largest of
all files. It contains approximately 1200 lines of code. As the parts of this code are heavily
interconnected, I did not split it into smaller files.

This code builds the GUI layout and defines the function of each element. These include:
reading the measurement file and checking its format, passing the settings to the optimizer
algorithm, plotting the results, etc.

This is the main file, running this file in Python will launch the program with all func-
tionality.

mater_class.py

This file contains the definition of the ’material model’ and ’material parameter’ classes
in general. It does not contain any specific material models. It only provides a general
framework to define them. This is a short file with less than 100 lines of code.

The material parameters have the following important properties: value, minimum and
maximum. The latter two store the upper and lower boundary of the value.

The material models can have material parameters defined, but their most important
property is the calcstress function. When defined for a specific material, this contains all
the numerical methods for calculating the stress for a load case using the material parame-
ters. The material model class also contains a list of all available numerical methods.

mater_defs.py

This file contains specific material definitions and the definition of their numerical methods.
In my case, the isotropic hardening behavior and the nonlinear viscoelastic behavior are
defined here. The TLPV model uses the sum of the stresses of the two branches.

When building the GUI, gui.pywill look for material models in this file and add them to
the interface with their respective numerical methods. This means that when a new material
model is defined (or an existing model gets a new numerical method), it will automatically
appear on and work with the interface.

This file contains about 500-600 lines of code.

optimizerclass.py

The code in this file provides a framework to pass the settings to the optimizer algorithm
more easily from the GUI. It handles the different parameter interpretations. The random
starting points are generated and evaluated here as well. The ’callback’ function communi-
cates the current material parameters to the user interface.

This file contains about 200 lines of code.

quality_fns.py

This file contains the quality functions, which calculate the difference between the measured
and simulated results. To make the code more flexible linear or cubic interpolation can be
used on both the measured and simulated data to evaluate the quality function at different
positions.

Similarly to the material models, building the GUI, gui.py will look for quality func-
tions in this file and add them to the interface automatically.

This file contains about 100 lines of code.
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3.6.2 Multi-threading

The behavior of the program during the optimization process id described in subsection
3.2.4. In order to achieve this, the program has to use two treads during optimization.
(Threads are the structures used by the operating systems to manage different tasks at the
same time.)

The optimization process is started and ran by a single function call
(scipy.optimize.minimize) with the appropriate arguments. If this function was
using the same thread as the GUI, the interface would become unresponsive until the plot
of the result, the current value of the parameters, and changing the plotting mode.

For this reason, the GUI runs on the main thread. When the optimization is started, a
new thread is made to do the calculations. The main thread receives updates at the end
of each iteration using the callback function. PyQt5 does the creation and handling of the
calculation thread. Once the thread is started, it cannot be stopped by my code due to the
way how PyQt5 handles the thread.

The callback function only allows passing the current values used by the optimizer. To
plot the current material behavior on the GUI, these are converted to material parameters
based on the parameter handling mode. Then the material behavior is calculated on the
main thread as well. After this, plotting the behavior is possible.
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Results on measurement data

4.1 Measurement data

The measurements were made on a microcellular polyethylene-terephthalate (MC-PET) ma-
terial. This foam material is currently under development. The material consists of a foamed
core layer and an external solid skin layer. However, we can assume that it can be modeled
as a continuum, so the behavior is homogeneous.

In order to investigate both the elastic-plastic and viscoelastic behavior, the material was
put under uniaxial load on a Zwick-Roell Testing System. The uniaxial load cycles were
performed on multiple temperature levels, so the temperature dependence of the material
parameters can be investigated. (Source: [6])

One load cycle consisted of a strain-controlled uploading, relaxation, then force-
controlled unloading and relaxation. With this experiment, the elastic, plastic, and viscous
behavior can be examined as well. An example from the measurement data (at 21◦C) can be
seen on Figure 4.1 and 4.2.

Figure 4.1. Strain load on the specimen
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Figure 4.2. Stress response of the specimen

Measurements were made on the following temperatures: 21◦C, 60◦C, 75◦C, 83◦C, 90◦C,
97◦C, 106◦C, 120◦C, 160◦C, 210◦C.

4.2 Fitted parameters

I did the material fitting process for this set of measurement data as well. The efficiency of
the software allowed the use of the full measurement files with all measurement points.

I have used the SLSQP algorithm because it was the most efficient in previous test cases.
The quality function was the normalized sum of the squared differences, as this makes it
possible to compare the quality of different fits. ’maxiter’ was set to 200, ’maxfev’ is ignored
by SLSQP. The parameter handling mode was set to ’Multipliers’, because in this particular
case, it gave practically the same results as ’Normalized’, but faster. Finite strain theory was
used. All other settings were left on the default.

As the material parameters depend on the temperature, I have split the cases at 95◦C.
The optimizer got different bounds and initial guess below and above this limit. These can
be seen in Tables 4.1 and 4.2.

Table 4.1. Settings for T < 95◦C

Parameter Initial guess Lower limit Upper limit
E[MPa] 600 300 1200
f [-] 0.5 0 1

σY 0[MPa] 5 0 25
H[MPa] 40 1 100
A[-] 0.001 0 0.1
n[-] 2 1 5
m[-] −0.5 −1 0
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Table 4.2. Settings for T > 95◦C

Parameter Initial guess Lower limit Upper limit
E[MPa] 250 100 500
f [-] 0.5 0 1

σY 0[MPa] 3 0 10
H[MPa] 40 1 100
A[-] 0.005 0 1
n[-] 2 1 5
m[-] −0.5 −1 0

During the optimization I recorded the final value of Qsq,norm, the required runtime (de-
noted by trun) and the number of function evaluations (denoted byNeval) as well. The results
can be seen in the tables below. (The value of A is multiplied by 1000 for better readability.)
Appendix A contains the σeng − t and σeng − εeng plots for all fits.

Table 4.3. Results for T < 95◦C

Temperature 21 [◦C] 60 [◦C] 75 [◦C] 83 [◦C] 90 [◦C]
Qsq,norm [-] 0.1811 0.1567 0.1163 0.1209 0.1323
trun [s] 63 97 200 121 90
Neval 239 370 766 466 340

E [MPa] 807.302 669.398 501.825 468.175 416.924
f [-] 0.733 0.753 0.743 0.772 0.773

σY 0 [MPa] 5.231 3.268 0.0 0.0 0.0
H [MPa] 28.726 26.953 32.343 30.904 30.035

1000 ∗ A[-] 0.763 0.455 0.106 0.242 0.641
n [-] 3.357 3.654 3.519 3.469 3.235
m [-] −0.782 −0.723 −0.23 −0.331 −0.389
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Table 4.4. Results for T > 95◦C

Temperature 97 [◦C] 106 [◦C] 120 [◦C]∗ 160 [◦C]∗,∗∗ 210 [◦C]
Qsq,norm [-] 0.1531 0.1606 0.1478 0.1078 0.09345
trun [s] 88 107 124 99 150
Neval 315 387 447 589 560

E [MPa] 375.541 364.491 300.143 149.996 131.422
f [-] 0.798 0.828 0.793 0.891 0.824

σY 0 [MPa] 0.0 0.0 0.0 0.0 0.0
H [MPa] 30.01 29.806 24.51 99.991 12.658

1000 ∗ A [-] 1.524 2.721 12.747 75.842 562.011
n [-] 3.231 3.494 3.112 2.401 5.0
m [-] −0.477 −0.587 −0.641 −1.0 −0.944

*: parameter handling was changed to ’Normalized’ as ’Multipliers’ failed to yield accept-
able results
**: slightly changed boundaries

4.3 Details of a fitting

As the software saves detailed logs during the optimization process, the evolution of the
material parameters can be plotted. I have chosen the fitting for the T = 75 [◦C] case for
these plots.

The parameters are plotted similarly to how the ’Normalized’ parameter handling
works. The plot uses linear transformation, where the largest recorded value of the pa-
rameter gets transformed to 1 and the lowest recorded value to 0.

Figure 4.3. Evoultion of the material parameters

The evolution of the quality function was done on a logarithmic scale, as there are several
orders of magnitude between the best and worst values.
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Figure 4.4. Evoultion of the quality function

It can be seen on the plot, that the parameter values change rapidly as the algorithm
’experiments’ in about the first 100 function evaluations. After this initial period, there are a
lot less abrupt changes. The value of the quality function improves the most in this period.

Between the approximately 100th and 550th function evaluation, the parameters change
slowly compared to the initial period discounting a few ’spikes’. The improvements in the
quality function are very hard to notice. New noticeable improvements are made around
the 550-600th evaluation. In this period, the value of Qsq,nomr improves by 10-15% within
50 evaluations. We can see the value of the parameters oscillating before the improvement.
After this, the value of σY 0 andH does not change significantly. Other parameters (especially
n) are still getting tweaked slightly.

If we zoom in on the last 100-150 evaluations in Figure 4.4, we can see some minor im-
provements being made consistently. This zoomed-in view can be seen in Figure 4.5. It can
be observed that the quality function has several steps, each lasting for 9 function evalu-
ations. The steps are not perfectly flat, and there are only minor differences between the
values. As SLSQP is a derivative-based approach, these function evaluations are most likely
related to the numerical estimation of the derivatives, evaluated at a very small distance
from each other.
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Figure 4.5. Evoultion of the quality function - zoomed-in view

Overall we can say that the optimizer makes most of the improvements in the initial
phase of the optimization. However, even after a few 100 function evaluations without any
significant changes, noticeable improvements can happen.

4.4 Temperature dependence

Based on the results shown in Tables 4.3 and 4.4 we can investigate the dependence of the
material parameters on temperature. This is important in industrial applications. MC-PET is
a thermoplastic material. For this reason manufacturing products made of it often involves
heating of the material. In order to be able to predict the behavior of the material under
these conditions, the material parameters are needed as a function of temperature.

Figure 4.6. Temperature dependence - E [MPa]
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Figure 4.7. Temperature dependence - f [-]

The value of E decreases as temperature increases. This is expected of a thermoplastic
material. Up to 160 [◦C], the trend seems to be close to linear; however, there are not enough
measurement points to draw strong conclusions. The value of f (the proportion of the vis-
coelastic contribution to the total elastic modulus) increases as temperature goes up, but the
trend is not as ’smooth’ as with E.

Figure 4.8. Temperature dependence - H [MPa]
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Figure 4.9. Temperature dependence - n [-]

The value of both n andH does not change significantly below 150 [◦C]. Above this limit,
one of the points breaks this trend quite noticeably. This can be due to measurement error,
or the optimizer did not find the right parameters.

Figure 4.10. Temperature dependence - σY 0 [MPa]

At 75 [◦C] and above σY 0[MPa] is zero. This means that the material enters the plastic
region as soon as loaded and gets permanently deformed. The trends of A and m also
change at the 75 [◦C] measurement point. (A is plotted on logarithmic scale.) The value of
A decreases up to 75 [◦C], then increases consistently. m shows similar behavior: the trend
changes at 75 [◦C].

As 3 parameters have noteable behavior changes between 60 [◦C] and 75 [◦C] it is possi-
ble that the material structure indeed changes at this temperature.
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Figure 4.11. Temperature dependence - A [-]

Figure 4.12. Temperature dependence - m [-]

4.5 Comparison to another method

The described general parameter fitting method can be done using other software as well.
To compare my software to another solution using commercial products, I used the 21 [◦C]
measurement, excluding the relaxation part at the end of the load case. To have a fair com-
parison, both optimizers were started from the same point. The lower and upper boundaries
only apply to my software.
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Table 4.5. Starting point for the optimizers

Parameter Initial guess Lower limit Upper limit
E [MPa] 800 400 1200
f [-] 0.5 0 1

σY 0 [MPa] 5 0 25
H [MPa] 50 1 100
A [-] 0.002 0 0.1
n [-] 2 1 5
m [-] −0.5 −1 0

4.5.1 Results with Dassault iSight

Dassault iSight is a commercial software made for ’process automation and design explo-
ration’. (Source: [24])

It can be connected with ABAQUS and used as an external optimizer for the material
fitting process. Dassault Systems owns both iSight and ABAQUS, so we can assume that the
two products can communicate efficiently.

For the chosen set of measurement data, this method gave the following results:

Table 4.6. Parameters fitted with iSight

E [MPa] f [-] σY 0 [MPa] H [MPa] A [-] n [-] m [-]
420.048 0.529 4.706 26.207 0.0018250 1.809 −0.480

This method is slowed down considerably if many measured data points are given for
the load case and for the fitting. For this reason, the original set of approximately 1500 points
was reduced to approximately 600. Even with this simplification, iSight needed about 6-7
hours to obtain these results on stronger hardware than my laptop.

The fitted behavior can be seen on Figures 4.13 and 4.14. The two curves are quite close
to each other, indicating good fitted parameters.

Figure 4.13. The fitted behavior by iSight - σeng(t)
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Figure 4.14. The fitted behavior by iSight - σeng(εeng)

4.5.2 Results with the developed software

The starting point and parameter limits are described in Table 4.5. The SLSQP algorithm
was used with ’Multipliers’ parameter mode. All the available 1500 measurement points
were included during the calculations, unlike iSight.

Table 4.7. Parameters fitted with my software

E [MPa] f [-] σY 0 [MPa] H [MPa] A [-] n [-] m [-]
707.532 0.804 5.022 31.239 0.0004664 3.559 −0.913

To get these parameter values, my program only needed 68 seconds (there is some vari-
ance between runs) and 352 function evaluations. At the end of the process, the value of the
quality function was Qsq,norm = 0.0772. The material behavior is plotted on Figures 4.15 and
4.16. The two lines are very close to each other, and they overlap for most of the process.

Figure 4.15. The fitted behavior by the developed program - σeng(t)
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Figure 4.16. The fitted behavior by the developed program - σeng(εeng)

4.5.3 Comparing the results

If we compare the fitted parameters, we can see noticeable differences. They are most likely
both at local minimums of the quality function. However, based on the plots, we can say
that the minimum place found my software is either the global optimum or a ’better’ local
optimum than the one found by iSight. Unfortunately, complicated functions (like the one
between the material parameters and the value of the quality function) tend to have many
local minimums. This makes the optimization task quite challenging. Choosing one pa-
rameter incorrectly can be almost (but not completely) compensated by tweaking the other
parameters.

Figure 4.17. Fitted behavior comparison - σeng(t)
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Figure 4.18. Fitted behavior comparison - σeng(εeng)

In Figure 4.17 and 4.18 we can see both results as well as the measured data. It is visible
that the parameters found by my code follow the measurement data more closely. This is
especially visible on the σeng(εeng) curve, near the end of the load case. The parameters given
by iSight fail to capture the curvature of the curve at the end.

My software gave these results about 300-400 times faster than iSight. This is a huge
benefit of the developed code, especially when working with multiple measurements. This
also proves that the developed code is efficient - this was the primary goal of this software.
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Conclusion

5.1 Evaluating the set goals

At the start of my thesis, I have defined 3 goals for the developed software. Near the end
of my thesis, these goals should be investigated. Overall we can say that all the goals were
achieved.

Efficiency

The developed software’s performance was compared to a method using commercial prod-
ucts in section 4.5. Overall my software gave noticeably better results than iSight. It is
capable of doing the parameter calibration process in a few minutes, compared to iSight’s
several hours. On the particular investigated test case, the developed software gave the pa-
rameters about 350 times faster, despite iSight getting a reduced set of data to speed up the
process. My code also ran on weaker hardware than iSight.

Ease of use, graphical interface

The created graphical interface is described in detail in section 3.2. The entire parameter
fitting process can be done using this interface, and the layout tries to follow the workflow
as closely as possible.

Modular structure

The structure of the code is described in section 3.6. The existing interface will automati-
cally include any new material models, numerical methods os quality functions written in
the correct file in the correct format. The material models and quality functions are usable
without the GUI as well.

If new models are added, the parameter fitting process can be done on them as well.

5.2 Ways to improve the method

The code is proven to be well usable in its current state. However, it can be improved further.
The simulation of the material model can be further improved, especially in the vis-

coelastic branch. Using another RK45 implementation from SciPy shows a potential 2-5x
speedup. Currently, this method does not work well with the optimizer algorithms for un-
known reasons. The code does run without error, but the obtained results are completely
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wrong. Further testing is needed to identify the cause. As the evaluation of the viscoelas-
tic branch takes much more time (50-100x) than the elastic-plastic branch, this could be a
significant improvement.

In the current version of the code, there is a stability issue under some uncommon cir-
cumstances. This needs to be fixed before further improvements are made. The difference
between the simulated and measured data should be plotted on the σ(ε) curves as well.

The evolution of the parameters and the quality function cannot be seen from the GUI.
The log files include the necessary data to analyze them. However, an external script is
needed to do this efficiently. Such tools should be available on the interface, preferably as a
popup window, which should show the state of the optimization in real-time.

As the investigated function seems to have many local minima, other optimization tools
should be considered. Genetic algorithms are suited to handle such functions, but they are
generally slower than other optimization tools. It should be investigated whether their use
would be beneficial for this problem or not. SciPy does have tools for genetic algorithm
based optimization, but a custom algorithm can be developed as well.

5.3 Summary

The software able to do the parameter calibration of the TLPV model was successfully de-
veloped. Being a specialized tool, it gives better results than the commercial software it was
compared to. These results were obtained about 2 orders of magnitude faster, despite the
other method having fewer data points to work with.

The program can be expanded with other material models as well. As is contains sev-
eral algorithms and settings, it will most likely provide an effective solution for these new
models as well.

Overall the developed software seems to be an effective tool for material parameter cali-
bration.
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Appendix A

Fitted curves

This appendix contains the plots of the fitted material behavior for all measurement data.

Figure A.1. The σeng − t plot for the T = 21 [◦C] measurement

Figure A.2. The σeng − εeng plot for the T = 21 [◦C] measurement
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Figure A.3. The σeng − t plot for the T = 60 [◦C] measurement

Figure A.4. The σeng − εeng plot for the T = 60 [◦C] measurement

Figure A.5. The σeng − t plot for the T = 75 [◦C] measurement

Figure A.6. The σeng − εeng plot for the T = 75 [◦C] measurement
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Figure A.7. The σeng − t plot for the T = 83 [◦C] measurement

Figure A.8. The σeng − εeng plot for the T = 83 [◦C] measurement

Figure A.9. The σeng − t plot for the T = 90 [◦C] measurement

Figure A.10. The σeng − εeng plot for the T = 90 [◦C] measurement

62



A. CHAPTER. FITTED CURVES

Figure A.11. The σeng − t plot for the T = 97 [◦C] measurement

Figure A.12. The σeng − εeng plot for the T = 97 [◦C] measurement

Figure A.13. The σeng − t plot for the T = 106 [◦C] measurement

Figure A.14. The σeng − εeng plot for the T = 106 [◦C] measurement
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Figure A.15. The σeng − t plot for the T = 120 [◦C] measurement

Figure A.16. The σeng − εeng plot for the T = 120 [◦C] measurement

Figure A.17. The σeng − t plot for the T = 160 [◦C] measurement

Figure A.18. The σeng − εeng plot for the T = 160 [◦C] measurement
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Figure A.19. The σeng − t plot for the T = 210 [◦C] measurement

Figure A.20. The σeng − εeng plot for the T = 210 [◦C] measurement
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Appendix B

Step-by-step user guide

B.1 Instructions for parameter fitting

1. Load the measurement file into the program. The file is valid if all conditions are met:

(a) The file must be .csv format with comma (’,’) as separator.

(b) The data contains one column for time, one for strain and one for stress and:

i. time data should be measured in seconds
ii. strain can be either engineering or true strain

iii. stress is engineering stress measured in mega pascals.

The order of these columns should be selected on the interface before opening the
file.

(c) The time data is strictly increasing.

(d) The file may contain a header and other text, but all suck lines must start with a #
character.

2. Select the material model to be fitted.

(a) Change the numerical method if needed. The default methods should work good
in most cases.

(b) Check the ’Use finite strain’ checkbox if needed and set the initial stress if it is not
0.

3. Set the initial guess for each material parameter in the ’Value’ column.

4. Set the lower and upper boundary for each parameter in the respective ’Min’ and ’Max’
columns. (Optional, but strongly recommended.)

5. Select the optimizer algorithm. SLSQP is recommended, if a good initial guess is
known. In other cases Powell or L-BFGS-B is recommended.

6. Select the quality function. Using ’Squared diff (normalized)’ is recommended.

7. Set ’maxiter’ and ’maxfev’. (Optional.)

8. Select the parameter mode. To use the ’Normalized’ mode, set the parameter bound-
aries. Using ’Multipliers’ or ’Normalized’ is recommended. (Optional, but recom-
mended.)
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9. Set the other options of the optimizer.

(a) In the tested cases the default ’eps’ was good. Change it with caution, as non-
default values can harm convergence.

(b) ’Boundary cross penalty’ affects only Powell from the recommended algorithms.

(c) The use of random points not recommended if a reasonable initial guess is known.

10. Start the optimizer. Plotting mode can be changed in the ’Settings’ tab.

B.2 Instructions for material behavior testing

1. Define a load case by either of the methods below.

(a) Load a valid measurement file. The file is valid if all conditions are met:

i. The file must be .csv format with comma (’,’) as separator.
ii. The data contains one column for time, one for strain and one for stress and:

A. time data should be measured in seconds
B. strain can be either engineering or true strain
C. stress is engineering stress measured in mega pascals.
The order of these columns should be selected on the interface before opening
the file.

iii. The time data is strictly increasing.
iv. The file may contain a header and other text, but all suck lines must start with

a # character.

The strain data will be used for the load case. When the simulation is done, the
measured strain is plotted as well.

(b) Manually define a load case on the ’Material behavior’ tab.

i. Define the engineering stress values in time.
ii. Define the number of linear intervals used to connect the given points.

If the load case manually defined, it will be used instead of the measurement file.

2. Select the material model on the ’Material behavior’ tab.

(a) Change the numerical method if needed. The default methods should work good
in most cases.

(b) Check the ’Use finite strain’ checkbox if needed and set the initial stress if it is not
0.

3. Set the material parameters in the ’Values’ column.

4. Simulate the behavior by hitting the ’Calculate’ button.
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