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Abstract Traditional models used to study regenera-

tive machine tool chatter often ignore the radial runout

of multi-edge milling cutters and its influence on dy-

namic stability. This runout induces asymmetric forced

vibrations within each spindle revolution, which can

lead to irregular variations in the cutter-workpiece en-

gagement and in the delay patterns of the cutting pro-

cess. The actual dynamical system involves multiple

time delays, fly-overs, and nonlinearities, which pose

significant challenges for standard numerical solvers. In

this study, a path-following continuation technique is

employed to explore new periodic motions that emerge

when runout is considered. The results reveal that the

system’s behavior is more complex than previously thought,

with multiple stable and unstable solutions appearing

within a specific range of technological parameters. The-

oretical findings predicted by the improved model were

successfully validated experimentally using a workpiece

with a single dominant vibration mode. This work demon-

strates the existence of isolated solution branches and

bistability under realistic operating conditions.
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1 Introduction

In the early 20th century, researchers observed that the

machining quality strongly depends on the vibrations

that arise during cutting processes [1]. The works of

Tlusty and Spacek (1954) [2], as well as Tobias and

Fishwick (1958) [3], identified the sources of undesired

vibrations as a consequence of the loss of stability in

the cutting operation. The regenerative effect—as it

is termed—includes past motions of the tool and the

workpiece, which are responsible for the unstable self-

excited vibrations known as chatter. The correspond-

ing mathematical equations are functional differential

equations (FDEs) [4] that require deeper analysis than

ordinary differential equations (ODEs). While in turn-

ing operations these models often reduce to autonomous

delay-differential equations (DDEs), the problem is more

complex in case of milling, where non-autonomous time-

periodic delay-differential equations (TPDDEs) need to

be studied.

The regenerative model paved the way for researchers

to further investigate the dynamics of milling opera-

tions. Despite the complex nature of the problem, the

earliest approaches in the literature were simple enough

to treat the solution at (semi-) analytical level [5]. This

led to the development of the so-called stability lobe di-

agrams (SLDs), which separate the domain of stable

(chatter-free) and unstable machining parameters, typ-

ically, the spindle speed and dept of cut. These SLDs

were intended to help machinists in the optimal de-

sign of cutting processes and to avoid the undesired

vibrations. However, the reliability of the charts always

depended on numerous factors, such as modeling and

mathematical simplifications, as well as identification

and measurement errors.
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With the improvement of computational tools, nu-

merical solvers enabled more accurate analysis of sys-

tem dynamics. Among the widely used numerical ap-

proaches are the zero-order approximation [6], multi-

frequency solution [7], collocation [8], semi-discretization

[9], spectral element method [10], each offering distinct

advantages for analysis. A more comprehensive review

of numerical methods applied to the study of machine

tool vibrations can be found in the work of Insperger

et al. [11].

Although numerical algorithms have significantly evolved,

most models used in the literature still rely on initial

simplifications that may not hold under practical con-

ditions. These reductions substantially reduce the re-

liability of classical prediction methods. Robust meth-

ods [12,13] and probabilistic approaches [14,15] were

developed to address these challenges, but the real progress

in machine tool research depends on a deeper under-

standing of the cutting mechanics itself. A chronolog-

ical summary of uncertainty evaluation studies can be

found in the work of Schmitz [16].

The importance of tool runout—often referred to

as eccentricity—on the machining quality has been dis-

cussed in the works of Martellotti (1941) [17], Kline and

DeVor (1983) [18], and Wang and Liang (1996) [19],

among others. Their works present detailed studies on

chip formation kinematics, chip load and surface qual-

ity, however, they did not investigate forced vibrations

or dynamic stability. In the presence of runout, the ge-

ometric center point G of the tool is located on the axis

of rotation A of the spindle, see Fig. 1. In order to char-

acterize the imperfections generated by runout easily, a

well-known model with two parameters is considered in

the rest of this work [18]. These parameters are r and

ψ, where r represents the absolute value of the runout

(that is, the offset between the axis of rotation and the

geometric axis of the tool), and ψ is an alignment angle

that defines the position of the geometric axis relative

to an arbitrarily selected tooth (e.g., tooth #1). The

cutting edge points closer to A may not be engaged

during the complete (revolution) period leaving more

material to be removed by the subsequent flutes. Ex-

periments also verified that tooth marks on the surface

were distanced by the feed per revolution—the surface

is mostly cut by the so-called “high tooth”—, instead of

the typically expected feed per tooth [20]. This obser-

vation also indicates that the angles at which the sub-

sequent teeth enter and exit can be different. Thus, the

kinematic model also reveals that the cutter–workpiece

engagement (CWE) is geometrically asymmetric for the

neighboring cutting edges.

A common assumption in conventional milling mod-

els is that the CWE remains unaffected by the vibra-
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Fig. 1 Schematic figure of the dynamical model of milling
(the runout is greatly enlarged). Due to tool misalignment,
the axis of rotation A does not coincide with the geometric
center G resulting in a radial runout caused by the offset
between the two axes. (a) 3D-view on the dynamical model,
(b) 2D-view on the cross-section highlighting the effect of
runout.

tions induced by periodic forcing. More precisely, the

engagement of the cutting edge with the workpiece ma-

terial is computed first (without vibrations), and no

feedback mechanism is considered. It is like a rigid kine-

matic model, where the CWE is kept “frozen”, even if

it is not true. Nonetheless, this way of thinking is tech-

nically correct in case of ideal symmetric tools and cut-

ting operations, where the ideal periodic motions indeed

have no effect on the CWE. Similarly to linear systems,

in this case we can first compute cutting forces, and

solve the equation of motion, but its solution does not

affect the force itself at all, and the equation is practi-
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Fig. 2 Effect of runout on the cutter-workpiece engagement (the runout and vibrations are greatly enlarged for visualization
purposes). (a) The exclusion of runout (r = 0 µm) results symmetric cutting periods for each tooth cycle, (b) minor tool
runout changes the cutting cycles and the actual entering/exiting angles of the individual teeth, (c) elevated forced vibrations
drastically change the cutter-workpiece engagement and the cutting cycles leading to highly altered delay patterns.

cally solved. Still, the cutting processes in milling are

interrupted, inherently nonlinear and nonsmooth, and

the equation of motion may not be solved in a linear

manner. Specifically, in the presence of runout the forc-

ing becomes dependent on the tool vibrations, and the

two quantities cannot be separated as simply.

The frozen CWE can be used as an approxima-

tion—in spite of the mathematical incorrectness—if the

effect of vibrations on the actual cutting edge engage-

ments is minimal. Numerous studies utilized this ap-

proach [21,22,23,24,25,26], where the kinematic model

included tool runout, however, the mathematical lin-

earization was not performed around the true periodic

motion. Only some time-domain simulations indicated

that the conventional method may lack sufficient accu-

racy, as highlighted, for example, by Niu et al. [27].

Researchers eventually turned toward the nonlinear

analysis of the dynamical model to achieve a more accu-

rate representation of the physical process. The initial

work of Faassen et al. [28] introduced an improved tool

path model, though runout was not included in it; the

nonlinearities in that study were originating from the

trochoidal motion of the cutting edges. Later, in his

thesis work [29], Faassen presented time-domain sim-

ulations and numerical bifurcation diagrams that re-

vealed the effect of runout—referred to as eccentric-

ity—, but experimental validation did not incorporate

this effect. Bachrathy et al. [30] investigated a state-

dependent delay model without considering runout and

demonstrated that linear stability limits shift near res-

onances. More recently, Totis et al. [31] focused explic-

itly on runout, and showed that forced vibrations break

the symmetry and alter the actual CWEs; see Fig. 2

and the detailed discussions later in Section 2. This

phenomenon was further explored by Hajdu et al. [32],

who experimentally observed and validated symmetry

breaking effects across multiple scenarios.

The studies presented recently suggested that fur-

ther elaboration is needed to enrich the understanding,

as the numerical solvers were sometimes running into

converge problems. The nature of the nonlinear dynam-

ical equations implies that multiple solutions can coex-

ist, however, these were not studied systematically be-

fore (not even in the works [31,32]). Such complexity of

the solutions make the regular iterative approaches un-

reliable when the stability chart is scanned from point

to point. Therefore, a pseudo-arclength numerical con-

tinuation technique was implemented in this work to

clarify the topology of stability charts. The new theoret-

ical findings were verified experimentally using a flexi-

ble workpiece with a single dominant vibration mode,

but the predicted irregular vibrations can arise in gen-

eral for multiple-degrees-of-freedom oscillatory systems,

too. The topology insists that the complexity increases

at lower spindle speed, and the stability charts can hide

multiple (isolated) periodic motions.

The remainder of the paper is structured as follows.

The dynamical model of milling, including tool runout,
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is presented in Section 2. The discretization method

and the computation of periodic solutions are also dis-

cussed in this section. Subsequently, an experimental

case study is presented in detail in Section 3, which val-

idates the importance of the correct numerical analysis

and confirms the existence of multiple stable solutions.

Finally, the results are summarized in Section 4.

2 Dynamical analysis of milling

2.1 Milling dynamics with tool runout

The standard multiple-degrees-of-freedom (MDoF) model

of milling operations is presented in Fig. 1, where ωn,k

is the natural angular frequency (k = 1, . . . , d), ζk is

the relative damping ratio, Uk is the mass-normalized

mode shape vector, pk is the corresponding geometri-

cally normalized modal direction (pk = Uk/|Uk|), and
d is the number of the modes. The equation of motion

in this case can be written in the form

q̈(t) + Ĉq̇(t) + K̂q(t) = U⊤F (t, rt) , (1)

where q(t) ∈ Rd is the vector of modal coordinates,

□̇ stands for differention w.r.t. time t, U = coldk=1Uk

is the mass-normalized modal transformation matrix,

while Ĉ = diagdk=1(2ζkωn,k) and K̂ = diagdk=1(ω
2
n,k)

are diagonal matrices. The positional coordinate vector

r(t) = [x(t) y(t) z(t)]⊤ represents the tool tip coordi-

nates in the Cartesian coordinate system. Accordingly,

the modal transformation is expressed as Uq(t) = r(t).

The structural dynamics (the left-hand side of (1))

is assumed to be linear, but the forcing F(t, rt) is a

nonlinear and nonsmooth function of past vibrations

of the tool. For time-delay system it is common to use

the representation with the function segment rt(θ) :=

r(t−θ), θ ∈ [0, τmax] as the state, which defines all past

positions of the tool from t− τmax up to t, and τmax is

the largest delay (out of all) that occurs.

For the sake of simplicity and clarity, this study is

intentionally limited to regular milling cutters, where

Z is the number of equally spaced cutting edges. The

coordinate system is oriented in the direction of feed,

such that coordinate axis x is parallel to the feed veloc-

ity vector vf = [vf 0 0]
⊤ (vf is the feed rate or feed

speed), and axis z is parallel with the axis of rota-

tion. The angular velocity Ω (rad/s) of the tool is as-

sumed to be constant, and the spindle speed defined

in revolution per minute (rpm) can be computed as

n = Ω 60/(2π). In our context, it is more appropri-

ate from the technological point of view to define and

utilize the feed per tooth fZ , since it is fixed for a mea-

surement setup (but these technological parameter are

related as fZ = vf60/(Zn)). Therefore, the angular po-

sition φj (j = 1, . . . , Z) of each cutting edge point at

time instant t along the axial coordinate z can be given

as

φj(t, z) = n
2π

60
t+ (j − 1)

2π

Z
− 2z

D
tan γ, (2)

where D = 2R is the nominal diameter, R is the radius

of the tool, and γ is the helix angle of the flutes.

The spindle period (the time of one complete rev-

olution of the tool) can be defined as T := 60/n, and

consequently, the tooth passing period as TZ := T/Z.

Due to the geometric considerations, the possible re-

generative delays for regular tools (uniform pitch and

identical helix angles) are the multiples of the tooth

passing period, that is, τ, 2τ, . . . , Zτ , where τ := TZ is

the smallest (nonzero) delay, while the maximum delay

τmax := Zτ = T matches the spindle period. Specifi-

cally, the time delay between an arbitrary tooth j and

the previous tooth i can be computed as

τj,i =

{
(i− j)τ, if i > j,

(i+ Z − j)τ, if i ≤ j,
(3)

where we take into account that only the past cuts (up

to maximum one revolution) have effect on the surface

regeneration. Note that τj,j = Zτ = T refers to the

time delay corresponding to one complete revolution.

For regular tools, maximum Nτ = Z number of point

delays can be distinguished, but not all of them occur

necessarily in the equations. The active delays that are

really affecting the surface regeneration are determined

based on the actual CWE (see the delay patterns in

Fig. 2). Note that only T -periodic solutions are sought,

and the bifurcations beyond this are not in the scope

of the paper.

The engagement of the cutting edges are sometimes

drastically changed by the tool runout, see Fig. 2 again

as an example. In the ideal case, when the runout is

omitted (r = 0 µm in Fig. 2a), the solution is time-

periodic with the principal period being Tp = TZ . The

engagements of the edges, the uncut chip thickness h at

each teeth, and the delay patterns are all identical and

TZ-periodic, moreover, there is only a single active de-

lay (τ). However, if a minor runout is present (Fig. 2b),

then the solutions become instantly T -periodic (Tp = T ),

the delay pattern also changes, and multiple delays oc-

cur. In the extreme scenario (Fig. 2c), some cutting

edges fly over the workpiece, or can also miss a complete

cut due to the relatively high-amplitude vibrations.

Based on the two-parameter model of runout [18],

one can approximate the effective radius Rj(z) for each
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cutting edge j along the vertical axis as

Rj(z) ≈ R+ r cos
(
(j − 1)

2π

Z
− 2z

D
tan γ − ψ

)
︸ ︷︷ ︸

=: ∆rj(z)

, (4)

where ∆rj(z) is interpreted as the relative runout, mea-

sured with respect to the nominal radius R, and ψ is

an alignment angle that defines the position of the ge-

ometric axis. Alternatively, the relative runout of each

cutting edge can be measured individually and used to

generalize the model (more relevant for inserted cut-

ters), however, this extension is not considered here.

Based on the geometric considerations up to this

point, the so-called geometric uncut chip thickness hg
is approximated as

hg,j(t, z, rt) ≈
Z

min
i=1

(
n⊤
j (t, z)

(
τj,ivf+

r(t)− r
(
t− τj,i

))
+Rj(z)−Ri(z)

)
, (5)

where nj(t, z) = [sinφj(t, z) cosφj(t, z) 0]
⊤ is the local

normal direction of the cutting edge [33], see Fig. 1b.

The minimum of the function (5) does not only give

the physical uncut chip thickness, but the correspond-

ing delays τj,i can also be extracted, which determines

the delay patterns and the active delays. It is possible,

that this function gives negative values, which are phys-

ically not realistic, that is, the edge flies over the surface

without cutting when hg,j < 0. Consequently, when the

tool is not engaging the material, it is considered by the

fly-over screen function

gfo,j(t, z, rt) =

{
1, if hg,j(t, z, rt) > 0,

0, otherwise.
(6)

Moreover, the boundaries of the workpiece are also taken

into account, meaning that the entering angle φen and

exiting angle φex at which the tool can contact the ma-

terial are defined by the physical process, and mathe-

matically by the radial engagement screen function

gri,j(t, z) =

{
1, if φen < (φj(t, z)mod 2π) < φex,

0, otherwise.

(7)

The entering and exiting angles depends on the opera-

tion type (up- or down-milling) and on the radial im-

mersion ae (see Fig. 1b). The joint effect of the different

screen functions are considered by

gj(t, z, rt) = gri,j(t, z)gfo,j(t, z, rt) (8)

resulting in the actual physical uncut chip thickness for

each tooth by

hj(t, z, rt) = gj(t, z, rt)hg,j(t, z, rt). (9)

The cutting force characteristics

f(h) =

ft(h)fr(h)

fa(h)

 (10)

describes the cutting force as the function of the uncut

chip thickness h, where ft, fr and fa denote tangential,

radial and axial characteristics, respectively. These em-

pirical functions and the parameters therein are deter-

mined experimentally, often defined in the local edge

coordinate system [5]. The resultant cutting force is

then transformed into the global Cartesian coordinate

system, and can be computed as

F
(
t, rt

)
=

−
Z∑

j=1

∫ a

0

gj(t, z, rt)T
(
φj(t, z)

)
f
(
hj(t, z, rt)

)
dz, (11)

where the transformation matrix is

T
(
φj(t, z)

)
=

 cosφj(t, z) sinφj(t, z) 0

− sinφj(t, z) cosφj(t, z) 0

0 0 1

 , (12)

and a is the axial depth of cut (axial immersion). For

additional material on the topic, we refer to the work

of Dombovari et al. [33], and to the references therein.

2.2 Computation of periodic solutions

The equation of motion defined by (1) is generally non-

linear and nonsmooth due to the highly intermittent na-

ture of the milling cutting operation. This poses many

computational issues, which can be handled by improved

methods. For the proper mathematical treatment of the

time-periodic delay-differential equation (TPDDE), the

stationary solution r(t) = r(t+Tp), which satisfies (1),

must first be determined. Then, the defined variational

system around the stationary solution carries the sta-

bility properties that are obtained by computing the

Floquet multipliers of the associated TPDDE [9,34,35].

There are special scenarios, as mentioned before,

such as when the runout is ignored (r = 0 µm). In this

case the model simplifies a lot, because Tp = TZ = τ

(there is only one active delay), and the regenerative

term r(t) − r(t − τ) = 0 can be dropped from (5).

Although the dynamical system is still nonlinear and

nonsmooth, the periodic solution can be determined in

a linear manner. Moreover, the CWE is not affected
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by the stationary motion, and hence the classical ap-

proach is valid. This assumption is what mostly used

in the literature.

The exclusion of forced vibrations is not acceptable

in the presence of runout, since multiple delays can oc-

cur and the periodic solution does not vanish in (5).

The asymmetric engagement is elevated further due to

the vibrations, which can alter the delay patterns even

more, and can change the stability properties, too. Solv-

ing the equations in this case require the use of nonlin-

ear computational tools.

The mathematical problem outlined below is well-

established in nonlinear systems theory. Research pa-

pers, such as the work of Roose and Szalai [36], and

standard textbooks, including those by Kuznetsov [37]

and Govaerts [38], present efficient techniques that are

specifically developed for such models. Here, a rela-

tively simple approach is proposed using finite differ-

ence schemes (similarly to the works of Faassen et al. [28]

or Wahi and Chatterjee [39]), that keeps the numerical

treatment straightforward while still being capable of

revealing new topological features.

By formulating Newton’s method for this problem,

one can create a numerical iterative algorithm that con-

verges to the solution of the equation. To form a fixed-

point iteration problem, the nonlinear forcing in (1) is

linearized around a trial periodic motion rt, that is,

F
(
t, rt

)
≈ F

(
t, rt

)
+∆F

(
t, rt, rt

)
, (13)

where F
(
t, rt

)
is already T -periodic and the force vari-

ation ∆F is linear in rt and rt. The variational part can

be written as

∆F
(
t, rt, rt

)
= A0(t, rt)

(
r(t)− r(t)

)
+

Nτ∑
l=1

Al(t, rt)
(
r(t− τl)− r(t− τl)

)
, (14)

where the distinct point delays (for simplicity) are dis-

tinguished by τl (l = 1, . . . , Nτ ), and the time-periodic

coefficient matrices obtained after the linearization are

Al(t, rt) :=
∂F

(
t, rt

)
∂r(t− τl)

∣∣∣∣∣
rt=rt

, and (15)

A0(t, rt) := −
Nτ∑
l=1

Al(t, rt). (16)

Here, in (16) A0 is also referred to as the directional

factor matrix, which helps in distinguishing the topo-

logically different cutting operations [40].

For notational convenience, let us define τ0 := 0,

corresponding to the non-delayed terms. Then, insert-

ing the linearized forms into (1), employing modal tran-

Fig. 3 Discretization of the periodic solution over an equally
spaced grid with N intervals.

fomation Uq(t) = r(t), and simplifications, one can ob-

tain

q̈(t) + Ĉq̇(t) + K̂q(t) = U⊤F
(
t,Uqt

)
+

Nτ∑
l=0

Bl(t,qt)
(
q(t− τl)− q(t− τl)

)
, (17)

where Bl(t,qt) := U⊤Al(t, rt)U.

To formulate the iterative approach using the finite

difference schemes, the time-interval [0, T ] is divided

into N equally spaced segments (N + 1 points), where

t0 = 0 and tN = T , see Fig. 3. Then, the required

derivatives are approximated as

q̇(tk) ≈
q(tk+1)− q(tk−1)

2∆t
, ∆t =

T

N
= tk+1 − tk,

q̈(tk) ≈
q(tk+1)− 2q(tk) + q(tk−1)

∆t2
. (18)

The periodicity is guaranteed if we consider for all t

that q(t + T ) = q(t). Therefore, the delayed coordi-

nates are q(t − τl) = q(tk−ml
), where ml = ⌊τl/∆t⌋

(or an even better approximation is a linear interpola-

tion between neighboring points [28]). Since periodic-

ity is assumed, if a function value at negative time is

needed (tk−ml
< 0), then the index is shifted by N , i.e.,

q(tk−ml
) = q(tk−ml+N ), and it is used instead. In the

following, let us define the discretized states as

u =


q(t0)

q(t1)
...

q(tN−1)

 , u =


q(t0)

q(t1)
...

q(tN−1)

(
∈ RNd

)
, (19)

where only the points up to tN−1 are needed, since

q(tN ) = q(t0) is the periodicity constraint. The dis-

cretization yields N number of discrete matrix equa-

tions (consequently, Nd scalar equations, where d is

the number of modes), which are arranged in a large
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(but sparse) matrix equation. The corresponding vec-

tors (RNd) and matrices (RNd×Nd) are formulated as

Q(u) =


U⊤F

(
t0,Pu

)
U⊤F

(
t1,Pu

)
...

U⊤F
(
tN−1,Pu

)
 , P =


U

U
. . .

U

 ,
(20)

D =



d0 d1 d−1

d−1 d0 d1

d−1 d0
. . .

. . .
. . . d1

d1 d−1 d0

 ,
d−1 = 1

∆t2 I−
1

2∆tĈ,

d0 = − 2
∆t2 I+ K̂,

d1 = 1
∆t2 I+

1
2∆tĈ,

(21)

B(u) =

Nτ∑
l=0


··· N−ml N−ml+1 N−ml+2 ···

Bl(t0,u)

Bl(t1,u)
. . .

. . .

Bl(tN−1,u)

,
(22)

where the empty spaces in the matrix entries are filled

up with zeros (and the matrix is circularly banded).

Also note that matrix B is built up from submatrices

Bl(tk,u), where the nondelayed elements B0 (τ0 = 0

and m0 = 0) remain in the main diagonal, and all other

bands are circularly shifted from the diagonal element

to the left by ml blocks depending on the delays τl.

Using the discretized forms above, a nonlinear equa-

tion (G(u) = 0) and its linear approximation based on

(17) can be written as

G(u) = Du−Q(u)

≈ Du−Q(u)−B(u)(u− u).
(23)

Since the fixed point of (23) is yet unknown, it can be

reformulated into an iteration scheme as

u(i+1) = u(i) −
(
J(u(i))

)−1
G(u(i))

= u(i) −
(
D−B(u(i))

)−1(
Du(i) −Q(u(i))

)
,

(24)

where J is the Jacobian of G. The method converges

to u as i → ∞, but it should be stopped if the error

reaches a limit. For starting, u(0) = 0 may be used, and

it often works well, however, it may fail to converge if

multiple solutions close to each other exist. Note that at

every ith step, the discretized state u(i), vector Q(u(i))

and matrix B(u(i)) need to be updated considering the

change of the delay patterns and variations in the CWE.

Equation (24) is the core of the iteration process,

which is either used to find a stationary solution at one

specific point on the stability chart, or it can be im-

plemented in a continuation method. In this work, the

pseudo-arclength method in utilized [41], and the so-

lution curve is followed along the spindle speed n or

the depth of cut a. The algorithm is presented briefly

in Appendix A. To compute the Floquet multipliers µ,

which characterize the local stability of the periodic mo-

tion, the semi-discretization method is employed (see

Appendix B), however, more advanced numerical tech-

niques may also be used as alternatives.

3 Numerical study and experiments

Experimental validations are performed on a single-

degree-of-freedom (SDoF) test rig, see Fig. 4a. The dy-

namical response can be characterized well by a sin-

gle dominant vibration mode in direction y (Fig. 4b),

while the feed direction x (and also z) can be assumed

rigid. The corresponding modal parameters are given

in Tab. 1. (the unnormalized mode shape vector is U =

p/
√
m). The use of this test rig makes the study more

suitable for presentations, and reduces the impact of un-

certainties. Moreover, the displacements (accelerations)

can directly be measured on the flexure, which would

not be possible at the tool tip during operation.

A dynamometer was also placed under the work-

piece, which was used to measure cutting forces dur-

ing the tests. In order to eliminate the inertial effects,

a dynamic compensation technique (filtering) was uti-

lized [32]. Therefore, both the measured cutting forces

and stationary periodic solutions can be compared to

the predictions.

The cutting force characteristics were identified from

preliminary measurements, and the values of runout

magnitude and angle were identified from the fitted

cutting forces directly [32]. The workpiece was made of

aluminum (AL2024-T351) for which exponential char-

acteristics [42] were assumed in the form

fj(h) = Kc,jh+Ke,j(1− e−Ejh), j = t, r, a, (25)

see Fig. 4c with the actual parameters. The tool-, process-

and workpiece data used in this study are listed in

Tab. 2. Note that the force characteristics is contin-

uous at h = 0 (i.e., fj(0) = 0), which helps the conver-

gence of the numerical iterations. However, the steep

Table 1 Reference modal parameters of the workpiece.

ωn (Hz) ζ (%) m (kg) p (m/m)

247.405 0.8921 2.5045 [0 1 0]⊤
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Table 2 Technological data of the tool and process parameters.

tool data process data workpiece data

type Tivoly G9425160 feed per tooth fZ = 0.05 mm/tooth fj(h) = Kc,jh+Ke,j(1− e−Ejh)
solid carbide radial depth of cut ae = 6 mm Kc,t = 820.1 N/mm2

end mill process type down-milling (37.5%) Ke,t = 12.46 N/mm
tooth number Z = 3 Et = 704.5 1/mm
diameter D = 16 mm Kc,r = 45.37 N/mm2

helix γ = 30◦ Ke,r = 18.37 N/mm
runout magnitude r = 17.46 µm Er = 217 1/mm
runout angle ψ = 112◦ Kc,a = 134.1 N/mm2

Ke,a = 80.95 N/mm
Ea = 1.281 1/mm

y

z

accelerometer

dynamometer

x

flexure
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Fig. 4 Experimental setup on a test rig. The flexure is com-
pliant in direction y, which is perpendicular to the feed direc-
tion x. Accelerometers and dynamometer are used to measure
compensated cutting forces during the tests [32]. (a) SDoF
test rig, (b) frequency response function in the mode direc-
tion, (c) identified cutting characteristics corresponding to
the tool-workpiece combination.

slopes at very small h require higher resolution in the

discretization to avoid the numerical instabilities and

approximate sufficiently the characteristic multipliers.

For shifted discontinuous characteristics (fj(0) ̸= 0), in

general, the state must be approximated by piecewise-

smooth polynomials [43], which makes the numerical

implementation significantly more complex.

In this study, a three-fluted milling cutter (Z = 3)

was used, which showed unexpected behavior under cer-

tain technological parameters in earlier experiments [32].

Unusual stable attracting solutions were observed on

the SDoF test rig in down-milling (DM) operations,

that is, under conditions with a positive mean direc-

tional factor in our case [40]. By applying a continua-

tion technique (see Appendix A), we are able to uncover

new solution branches. Understanding these topological

features lays the groundwork for analyzing more com-

plex multiple-degrees-of-freedom (MDoF) models and

general milling cutters. While the mathematical frame-

work presented here extends naturally to MDoF sys-

tems—where similar bifurcation diagrams can be ob-

served—the interaction between modes introduces sig-

nificant complexity. Therefore, this case study focuses

on the SDoF case only.

3.1 Predicted stability lobe diagrams

First, the traditional stability chart is presented in Fig. 5a,

where the runout is set to zero, i.e., r = 0 µm. The cor-

responding modal parameters and technological data

are all given in Tab. 1 and Tab. 2, while the resolu-

tion of the discretization was N = 300 (same N is

used for the semi-discretization method). To accelerate

the computation and achieve a high-resolution chart,

a bisection method was applied following the approach

in [44]. The initial grid size was 100-by-10 points, and

four bisection steps were performed, effectively result-

ing in a refined grid of 1600-by-160 points. The green

shaded area indicates the domain of the stable tech-

nological parameters, while the red is unstable. Note
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Fig. 5 Stability lobe diagram without runout. (a) Domain of stable and unstable technological parameters. (b) Peak-to-peak
displacement amplitudes of the periodic solution at a = 3 mm axial depth of cut.

that the horizontal axis (spindle speed n) is in logarith-

mic scale, for visualization purposes. The stability of

the periodic solution at the boundaries (black curve) is

lost through either Hopf- (h) or period-doubling (pd)

bifurcation. In order to see how the periodic solutions

are changing along the spindle speed, the depth of cut

a = 3 mm is selected, and the continuation method was

utilized. Due to visualization difficulties, only the peak-

to-peak displacement amplitudes were plotted (yPP :=

max y(t) − min y(t)). There are definitely many other

factors (peak force, average force, tool edge engagement

time, surface quality, surface location error, etc.) which

can be very different at selected points, but this cannot

be fully studied in this work. Here, we most importantly

concentrate on the existence of the captured solutions

and on the validation of the dynamical model.

In Fig. 5a, the top horizontal axis is the dimension-

less spindle speed ν = n 2π/(60ωn), which helps to lo-

calize resonances, where one harmonic of the forcing is

close to the natural angular frequency ωn of the test

rig. The vibration amplitudes are high at the classical

resonances, where ν ≈ 1/(kZ), k ∈ N, see Fig. 5b.

The stability chart gets fundamentally different if

runout (r = 17.46 µm based on measurement) is taken

into account, see Fig. 6a. Again, the stability chart

was computed using a bisection method [44], where all

Newton iterations were initialized from the trivial solu-

tion (u(0) = 0). It is important to note that this may

not guarantee the convergence if multiple solutions ex-

ist, which resulted sometimes scattered boundaries. In

some cases only the stationary solution closest to the

initial guess was found, the others were consequently

lost. This can make the evaluation of the charts compli-

cated, the diagram is not complete (!) in the sense that

some possible stable domains remained hidden. Note

that the gray curve corresponds to the stability bound-

ary of the model without runout, so that the difference

between the two charts can be seen. Even far from res-

onances, the boundaries are slightly shifted. Also note

that the markers indicate measurement points, which

show excellent agreement with predictions, the details

are deeply discussed later in subsec. 3.2.

Figure 6b shows the computed periodic solutions

(only the peak-to-peak displacement amplitudes yPP)

obtained by the single-parameter continuation approach.

There are many unusual phenomena appearing, espe-

cially at regions R1/R2/R3 highlighted by yellow. At

region R1 an isolated branch of solutions is captured,
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where the two limit points are the fold points (f) of

the curves. At these limit points there exists a multi-

plier µ = 1 (cyclic-fold was observed in other publica-

tions [29,32]). At region R2, the branch is not detached,

but two stable periodic solutions can coexist at a very

narrow spindle speed region. Most surprisingly, at re-

gion R3 the nonlinear system has three stable and two

unstable solutions within a relevant range of spindle

speeds (note the logarithmic scale). A pair of stable and

unstable solutions similarly to region R1 are detached,

which is hard to capture and visualize. In Fig. 6b, the

zoomed-in views magnify the solution curves to see the

overlapping branches (details are discussed later in sub-

sec. 3.3).

The three-dimensional views of the highlighted re-

gions (R1/R2/R3) are shown in Fig. 7. In order to

see better the transition, the continuation method was

restarted at different depth of cuts. In Fig. 7a, the sep-

aration of the isola is not visible, it happens slightly

below a = 1 mm. At higher depth of cuts, the vibration

amplitudes increase and the isole move farther from the

low-amplitude unstable connected branch of solutions.

In experiments, the stable solutions on the isola can be

mistaken for unstable behavior (e.g., period-n bifurca-

tions [45,27]) due to the suddenly different dynamical

response. However, from a practical standpoint, it is not

straightforward to determine whether such behavior is

stable or unstable. This may be one reason why such
solutions are not reported in many case studies.

In Fig. 7b, the inner loop is being formed around

a = 2 mm, above which mathematically two stable so-

lutions can be distinguished. However, this region is

very small, the corresponding displacement amplitudes

are high, and the CWE may be very different compared

to the ideal case. Very often fly-overs and missed cuts

are present, which may not be technically favorable.

In Fig. 7c, due to the high-amplitude resonant vibra-

tions again, the loss of contact between the workpiece

and tool increases, leading to the formation of new pe-

riodic orbits. As mentioned before, a separated isola is

also found here, resulting in at least five distinct solu-

tions for a specific spindle speed (16000 rpm). However,

the descriptions in this region differ somewhat from the

others. The machining process is originally stable, and

no particularly unfavorable behavior was expected be-

forehand. The cutting operation remains stable (even

after transitioning from one solution to another), but

the switched CWE can be significantly different, which
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again has important technical implications. Since the

numerical approach cannot tell which solution is more

likely to attract the trajectories in time during real op-

erations, some experiments need to be conducted.

Based on the various stationary solutions observed

in Figs. 6 and 7, it is important to emphasize the tech-

nical challenges associated with continuous operation

under resonant vibration conditions. On the one hand,

the vibrations are high, which should be tolerated by

the machine and by its components. The tool cutting

edge engagements are very distorted, some teeth may

be partly flying, while others cut more material than

expected. On the other hand, tool life is a critical fac-

tor, it should be carefully considered, and some station-

ary motions may rather be avoided. Moreover, surface

quality and surface location error (SLE) [46] should also

be investigated in the future to see how it changes at

different speeds. To conclude, even though that the so-

lutions are T -periodic and stable mathematically, some

high depth of cuts or resonant spindle speed regions

may not be favored in real applications.

3.2 Chatter tests

The highlighted regions (R1/R2/R3) in Fig. 6 present

new unexpected solutions. The measurement points where

the stability chart was tested are indicated on Fig. 6a,

where the green circles are stable and red crosses are

unstable. This represents a typical qualitative compari-

son of stability (i.e., stable vs. unstable), but it does not

reflect the quantitative accuracy of the prediction. Since

it is too condensed to present all results from point by

point, only a few relevant tests were selected at mea-

surement lines M1/M2/M3 (colored by magenta), see

Fig. 6a. Note that similar experiments were presented

in previous works [31,32] for different technological pa-

rameters, but without the close investigation of multi-

stable regions.

One of the biggest issue of the experimental test

rig is the change of the physical mass of the work-

piece, which decreases as the material is being removed

(and sometimes the block is also replaced). The sta-

bility chart is drifting from test to test, and therefore

the dynamical parameters must be updated continu-

ously. In the next figures (in order to keep the pre-

dictions as accurate as possible), the actual updated

modal parameters are used, which are given in Tab. 3.

These modal parameters are fitted before conducting

new chatter tests, and are slightly different from the

reference parameters given in Tab. 1, but the charts

remain qualitatively the same.

The post-processed measured force signals, and the

periodic solutions are shown in Fig. 8. Note also that at

these measurements, the stable points are relevant only

(unstable orbits cannot be measured, but they can be

used to validate the boundary of stability). The peak-

to-peak displacement amplitudes of the stable measure-

ment points at the different setups are shown in panels

(a)-(c). The force signals including the entering and ex-

iting events, and some zoomed-in views are shown in

panels (d)-(f). In order to carefully compare the mea-

surements to predictions, the periodicity of the signal

was accurately identified, and the resampled time-periodic

quantities (forces and displacement) are all plotted in

panels (g)-(j). In the last panels (last three rows), the

Table 3 Updated modal parameters of the workpiece for the
individual chatter tests (M1/M2/M3).

test ωn (Hz) ζ (%) m (kg) p (m/m) a (mm)

M1 250.971 0.8583 2.4107 [0 1 0]⊤ 1.5
M2 247.405 0.8921 2.5045 [0 1 0]⊤ 3.0
M3 259.516 1.0763 2.1701 [0 1 0]⊤ 3.0
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black curves are the measured, while the green curves

correspond to the computed stable periodic motions.

Sample points picked along measurement lines M1

and M2 are shown in Fig. 8ab. The predictions at points

A and B show both qualitatively and quantitatively ex-

cellent agreement with predictions (Fig. 8gh). It can be

stated that the stable stationary solutions captured in

the measurements are very likely identical to what the

model with runout predicts.

Figure 8c is a special example from many aspects.

Numerical calculations could reveal that multiple sta-

ble solutions (three stable) coexist in the spindle speed

region circa 16200–16800 rpm. Nevertheless, measure-

ments initiated with a smooth engagement of the tool

with the workpiece tend to drive the system toward
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stable periodic solutions of higher amplitude. This is

counter-intuitive, as one might expect that the tran-

sients occurring during the entry would last long enough

for the system to eventually settle onto the lower-amplitude

solution. The only way the lower-amplitude motion could

be observed was through an external perturbation. Dur-

ing the cutting test, approximately 1 second after the

entering into the material, the test rig was hit slightly

in direction y by a hammer. A time-signal is shown in

Fig. 8f. As it can be seen the cutting process is station-

ary before the perturbation, but the cutting force peak

is relatively high. After impacting the workpiece, the

forces become smaller and more dense, meaning that

the CWEs before and after the impact are very differ-

ent. It can also be seen that the motion is stationary

until the process is finished, so both are stable. These

different periodic motions (at points C and D), and the

corresponding measured and predicted force signals are

presented in Fig. 8ij. The forces show again excellent

agreement, it is also visible that the high-amplitude

motion corresponds to nearly a single-tooth cutting op-

erations (C), while in the other case three teeth are

cutting (D).

Not all impacts lead to a shift between stationary

solutions, sometimes the system returns to the original

periodic motion. The issues of multistability in time-

delay systems, the effect of initial states, and the visu-

alization difficulties of the basin of attraction were dis-

cussed in the work of Yan et al. [47]. In that study, the

so-called stochastic basins of attraction are computed,

which can approximate the probability of a given initial

state going to a specific attractor by means of numeri-

cal simulations. However, in the experiments, the time

instant and energy level of the impact should be de-

signed well if we want to guarantee the jump between

the designated solutions, but this is practically infeasi-

ble. The multistable behavior during the cutting tests

was observed three times at different speeds (Fig. 8c),

and approximately half of the impacting test could shift

the stationary motion and clearly reveal bistability.

3.3 Remarks on multistability

Multistability worth a deeper investigation, as this pre-

sented topic (in the presence of tool runout) has not

been observed in other technical reports before. Bista-

bility is often referred to the unsafe zone near the sta-

bility boundary (subcritical Hopf-bifurcation), where

small perturbation may lead to jump to a different

steady-state solution with higher amplitude (quasiperi-

odic or chaotic) [48]. In this case, although the phe-

nomenon looks similar, it is very different from the

mathematical point of view. The multistability in this
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Fig. 9 Stable and unstable periodic solutions. (a) Multiple
periodic solutions predicted in the case study (Fig. 8ij) in the
presence of runout. (b) Ideal configuration without runout
(r = 0 µm), where high-amplitude solutions (S1/S2/S3 and
U1/U2/U3) are identical and only differ by a symmetric phase
shift.

work occurs due to the symmetry breaking effect, where

slightly different periodic solutions can belong to very

different CWEs, but all of them has the same principal

period.

The experimental case study showed the existence of

the bistable region, however, the structure suggests that

more hidden solutions can exist. In order to understand

it better, all stable and unstable periodic solutions are

visualized in Fig. 9a, which correspond to the measure-

ment setup M3. The low-amplitude solution S0 (D) be-

longs to the motion, where all teeth are engaged, but

slightly differently, see Fig. 8j. As opposed to this, the

high-amplitude solution S1 (C) belongs to the motion,

where one tooth is dominant only, and it removes most

of the material like a single-tooth cutter, see Fig. 8i.

The difference between the observed solution S1 and

unobserved S2 (Fig. 9a) is very minor, meaning that

both corresponds to similar CWEs, but the dominant

tooth is different. It insists that there may exist a third
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solution, which is shifted by the phase 2π/Z. However,

starting iterations from phase-shifted initial functions

did not converge. Therefore, the runout was reduced

and the search of the periodic solutions was restarted to

reveal the third hidden solution. Surprisingly, the next

periodic solution was only captured when the runout

was almost disappearing (r ≈ 0 µm). Aside from the

low-amplitude TZ-periodic regular motion, three stable

and three unstable T -periodic solutions can coexist in

the runout-free scenario, which only differ by symmet-

ric phase shifts, see Fig. 9b. It means that even in the

ideal configuration (r = 0 µm), a multistable region can

exist, where one tooth is dominant during cutting.

The observation of the multistable region may have

only a theoretical importance. If one checks the so-

lutions in Fig. 9b more carefully, it can be observed

that the (three) isole are relatively narrow, but not

unrealistic (200 rpm wide), while the unstable orbits

(U1/U2/U3) are very close to the stable ones (S1/S2/S3).

Therefore, even a slight perturbation may repel the tra-

jectories from S1/S2/S3, until S0 is reached. Still, it is

not the case in the presence of runout (Fig. 9a), where

the topology changes, and the periodic orbits are well

separated from each other in the state space. This is the

reason why two stable motions are captured during the

experiments (the third remained hidden, but the fourth

does not even exist), see Fig. 8ij.

In order to get an even deeper insight into the dy-

namics in the multistable regions, the effect of runout

was investigated in Fig. 10. The other technological pa-

rameters (Tab. 2) and modal parameters (M3 in Tab. 3)

were kept the same. Once a high-amplitude solution

was found, the search of the next periodic orbit was
initiated from a phase-shifted solution (2π/Z). If the

initial guess was close enough, then the closest point

on the isolated solution branch could be found. Re-

peating this iteration for different runout values, the

branches in Fig. 10 could be computed. First, it is rec-

ommended to start with a higher runout value (r =

15 µm in Fig. 10a), as at least one high-amplitude solu-

tion exists on the connected branch and one additional

was found by phase-shifted iterations. Then, the iter-

ated solutions were kept, the runout was reduced and

the modified solutions were determined (the isola was

shrinking). It can be seen that at r = 5 µm (Fig. 10b),

the elongated curve is already detached, and two isole

are formed. Reducing the runout further, at around r =

0.5 µm (Fig. 10c), the third missing branch can also be

found, yielding three unique, but very similar solutions.

To see the complete picture, the last panel shows again

the runout-free scenario (r = 0 µm in Fig. 10d), where

the three isole overlap, and the periodic solutions differ

only by a symmetric phase shift 2π/Z (Fig. 9b).
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Fig. 10 Effect of runout on the topology of multiple so-
lutions. (d) r = 15 µm, (c) r = 5 µm, (b) r = 0.5 µm,
(a) r = 0 µm.

Note again that on one hand, the technical issues

related to the highly distorted CWEs may reduce the

practical importance of these periodic motions. On the

other hand, it is possible that the uncertainties lead to

the collapse of these solutions, or stochastic resonance

effect [49] can also lead to instability even if the deter-

ministic system is stable. Therefore most of these solu-
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tions are either just theoretical, unreachable, or should

rather be avoided for practical reasons. Still, as it was

showed in this study, we cannot always guarantee that

unfavorable situations do not arise, and we can uninten-

tionally select technological parameters, where bistabil-

ity occurs. Even transient effects (start of the cutting)

can trigger high-amplitude oscillations, which survives

until the end of the operation.

4 Conclusion

The presence of runout introduces significant complex-

ity in the mathematical treatment of milling dynamics.

The stability charts cannot be computed accurately in

the regular ways due to the involvement of multiple

solutions. Instead, advanced techniques (such as path-

following methods) must be utilized to capture all pos-

sible periodic orbits located on a connected branch.

The detailed analysis of the nonlinear dynamical

system revealed that multistabe regions can exist even

without runout, which was not addressed before. The

newly discovered isolated solutions correspond to high-

amplitude periodic motions, where the actual cutter-

workpiece engagements (CWE) are significantly distorted

compared to the ideal runout-free scenario. These be-

haviors are usually unfavorable from the technical point

of view due to the unequal chip load and vibrations, but

they cannot be surely avoided in real applications.

With increasing the runout, the edge engagements

become more interrupted, but a richer dynamics can

be observed. Runout may account for many of the mea-

surement discrepancies reported in the past, which could

not be explained by other means. Bistability observed

in experiments is one example, where stability classi-

fication methods can be uncertain. Depending on the

initial conditions (transients), the trajectories may con-

verge to alternative orbits, which raises new technical

problems, too. It is often viewed as post-bifurcation

motion (such as period-n chatter), but mathematically

there is no regular bifurcation at all (e.g., from primary

to secondary solutions), which makes evaluations diffi-

cult.

Distinguishing between different periodic motions is

essential, yet it remains challenging to separate math-

ematically stable stationary solutions from those that

are practically unfavorable, despite their theoretical sta-

bility.

s0

e1

e0

Fig. 11 Illustration of the pseudo-arclength method.

Author contributions

David Hajdu performed the experiments, analyzed the

data, developed the programming code, generated the

figures, and wrote the manuscript.

Funding

The research reported in this paper and carried out at

BME has been supported by the Hungarian National

Research, Development and Innovation Office (NKFI-

KKP-133846).

This paper was supported by the János Bolyai Re-

search Scholarship of the Hungarian Academy of Sci-

ences.

A Continuation of periodic solutions using the

pseudo-arclength method

In this work, the favored pseudo-arclength method presented
by Keller [41] is applied (see Fig. 11), which is well-known and
technical issues are widely studied in textbooks [37,38] and in
scientific papers [50,51], too. This paper aims to present the
new typologies and structures of milling stability charts, and
therefore the continuation method is only introduced briefly,
at the level of understanding the basic concept. The reader
is encouraged to bridge the gap by either utilizing exist-
ing commercial software—such as MATCONT [52], PDDE-
CONT [53], or DDE-Biftool [54]—or by developing and im-
plementing more advanced techniques.

The most important step is to trace the solution u of the
nonlinear equation G(u, λ) = 0 along one of the technological
parameters denoted by λ (such as the spindle speed n or depth
of cut a). The technique illustrated in Fig. 11 shows how the
solution curve G is followed even beyond the turning point
(limit point or fold point). First, a prediction step is made
from a starting point x0 = col(u0, λ0) along the tangent e0 =
col(e0,u, e0,λ) with initial stepsize s0, then corrections are
made on a hyperplane p normal to it using Newton’s method.
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The defining system of equations are formulated as

G(u, λ) = 0,

p(u, λ) := e⊤0,u(u− u0) + e⊤0,λ(λ− λ0)− s0 = 0. (26)

To ease the notation, the compact form is written as

H(x) :=

[
G(x)

e⊤0 (x− x0)− s0

]
= 0, x :=

[
u
λ

]
. (27)

Using the last known solution x0 along the curve (starting

point), the next prediction x
(0)
1 is given as

x
(0)
1 = x0 + s0e0, |e0| = 1, (28)

where the upper index 0 indicates the initial guess used for
Newton’s method. The corresponding iteration scheme is gen-
erally formulated as

x
(i+1)
1 = x

(i)
1 −

(
J(x

(i)
1 )

)−1
H(x

(i)
1 ), (29)

where the Jacobian J is shortly written as

J(x
(i)
1 ) := H′

x(x
(i)
1 ) =

∂H(x)

∂x

∣∣∣∣∣
x=x

(i)
1

. (30)

The Jacobian associated with the continuation of the periodic
orbit in one parameter is given as

J(x) =

[
G′

u(u, λ) G′
λ(u, λ)

e⊤0,u e0,λ

]
. (31)

In the formula above, the partial derivatives based on (23)
can be expressed as

G′
u(u, λ) = D−B(u) (32)

and

G′
n(u, n) =

∂D(∆t)

∂∆t

∂∆t

∂n
, or (33)

G′
a(u, a) =

∂Q(u, a)

∂a
, (34)

depending on the bifurcation parameter to be followed. On
the one hand, in (33) the dependence on the spindle speed
appears only in the spindle period T = 60/n, and it is pos-
sible to express explicitly the derivatives using the chain rule
(∆t = T/N , etc). On the other hand, in (34) the expres-
sion of the forces F include only the dependence on a, and
hence the derivatives can again be constructed in a long, but
straightforward manner.

Note that the technical implementation of the method re-
quires adaptive step size and error checking in order to make
sure that none of solutions are lost especially close to the turn-
ing points. One of the major numerical issue is the normaliza-
tion of the parameters, since n ∼ 103, a ∼ 10−3, u ∼ 10−6 are
in different magnitudes (and units) and the continuation can
easily break down if the step size is not small enough. This
issue can be handled by introducing proper scaling factors wi

(e.g., u = w1ũ and λ = w2λ̃) for the variables with different

scales, and use the normalized variables (ũ,λ̃) for continu-
ation instead. The norm of the new tangent e0 is therefore
not dominated by one of the parameters; the numerical solver
can use adaptive step size and turn around smooth fold points
easily. The initial step size can be set to s0 = 10−4 and in-
crease it if the solver converges quickly (e.g., s0 → 1.2s0 until
a maximum step size is reached) and reduce it if the local it-
erations fail to converge within a given number of iteration
steps (e.g., s0 → 0.5s0 and repeat the step). More technical
issues and some recommended strategies can be found in [37].

B Stability of the periodic solutions

Since an equidistant spacing is used for the discretization,
it is beneficial to combine the results with a corresponding
method, such as the semi-discretization [9], since the required
matrices are already computed during the iteration. For this
purpose, the linearized equation (17) is reformulated. Let us
introduce a small perturbation v(t) around the periodic mo-
tion q(t) in the form

q(t) = q(t) + v(t). (35)

After substituting (35) into (17), one can separate the equa-
tions as

q̈(t) + Ĉq̇(t) + K̂q(t) = U⊤F
(
t,Uqt

)
, (36)

and

v̈(t) + Ĉv̇(t) + K̂v(t) =

Nτ∑
l=0

Bl(t)v(t− τl), (37)

where (36) includes the forced vibration, while (37) is the
linearized equation around the periodic solution. Let us de-
fine the state corresponding to the variational equations as
w(t) := col(v(t), v̇(t)). The solution of the TPDDE is given
in the operator form as

wt+T = M(t, t+ T )wt, (38)

where M(t, t+T ) is the monodromy operator of the infinite-
dimensional problem. The periodic solution is stable if all
characteristic multipliers µ (eigenvalues) of the monodromy
operator have modulus less than one. Since the monodromy
operator is also infinite-dimensional, the stability of the sys-
tem is analyzed by the discretized version of it, called mon-
odromy matrix Φ or (state) transition matrix. The transition
matrix constructed by the semi-discretization method maps
the discretized state vector W0 := colNk=0w(−k∆t) to one
period later, that is, WN = ΦW0, where N is the resolution
of the discretization and ∆t = T/N . Finally, the monodromy
matrix is computed as

Φ = SN−1SN−2 · · ·S0, (39)

where Sks are the step matrices of the approximated dis-
crete system for one numerical step. The multipliers µ are
the eigenvalues of Φ. The details of the numerical method
and the construction of the step matrices Sk are presented in
the book of Insperger and Stepan [9].
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