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Robust design of connected cruise control among
human-driven vehicles

Dávid Hajdu, Jin I. Ge, Tamás Insperger, and Gábor Orosz

Abstract—This paper presents the robustness analysis for the
head-to-tail string stability of connected cruise controllers that
utilize motion information of human-driven vehicles ahead. In
particular, we consider uncertainties arising from the feedback
gains and reaction time delays of the human drivers. We utilize
the linear fractional transformation and the M-∆ uncertain
interconnection structure to represent the uncertainties in the
block-diagonal matrix ∆. The uncertain gains are directly
incorporated in the uncertain interconnection structure, while the
uncertain time delays are taken into account using the Rekasius
substitution that preserves the tightness of the robustness bounds.
This modeling framework scales well for large-size connected
vehicle systems. We demonstrate through two case studies how
parameters in the connected cruise controller can be selected to
ensure robust string stability. Theoretical results are supported
by experiments that highlight the advantage of robust control
designs.

Index Terms—Connected vehicles, Robustness, Structured sin-
gular values.
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I. INTRODUCTION

OVER the past few decades, passenger vehicles are
equipped with more and more automation features in

order to improve active safety, passenger comfort, and traffic
efficiency of the road transportation system. In particular,
adaptive cruise control (ACC) was invented to automate the
longitudinal dynamics and alleviate human drivers from the
constant burden of speed control [1]. While the influence
of ACC is yet to be observed in real traffic due to its low
penetration rate, theoretical studies have found that automated
vehicles may have limited benefits on traffic flow [2], [3].
In particular, ACC vehicles may not be able to effectively
suppress the speed fluctuations propagating through the ve-
hicle string, as each vehicle only responds to its immediate
predecessor [4].

In order to overcome such limitations in an automated
vehicle platoon, cooperative adaptive cruise control (CACC)
was proposed using vehicle-to-vehicle (V2V) communication
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[5], [6], [7], [8]. CACC has been shown to improve fuel econ-
omy and traffic efficiency in both theoretical and experimental
studies [9], [10], [11], [12]. However, the application of CACC
in the early stages of driving automation may be significantly
limited by the requirement that all vehicles in a CACC platoon
must be automated aside from being equipped with vehicle-
to-everything (V2X) communication devices [13], [14]. In
particular, as mentioned in [15], “at low market penetrations,
... the probability of consecutive vehicles being equipped is
negligible”. Given the relatively low cost of V2X devices
compared with ACC and other driving automation systems,
it is desirable to exploit the benefits of V2X without being
restricted by the penetration rate of automation. Thus, we need
to consider a connected automated vehicle design that is able
to utilize V2X information sent from human-driven vehicles
ahead.

For the longitudinal control of such a connected automated
vehicle design, we proposed a class of connected cruise
controllers (CCC) that exploit ad-hoc V2X communication
with multiple human-driven vehicles ahead [16]. By utilizing
motion information from multiple vehicles ahead, connected
cruise control is able to gain “phase lead” as it responds to
speed fluctuations propagating along the vehicle chain [17].
Several theoretical studies have shown that connected cruise
control is able to significantly improve active safety, fuel
economy, and traffic efficiency of the connected automated
vehicle, especially by providing head-to-tail string stability
[18], [19], [20], [21].

Safety, stability and efficiency are important requirements
that the automated vehicle must meet even in case of partially
known vehicle parameters and external disturbances. Since
connected automated vehicle design relies on models, uncer-
tainties need to be considered to guarantee robust performance
of the connected vehicle system. In order to guarantee robust
performance, H∞ framework was often used to synthesize
controllers. For example, an H∞-controller for a discrete time
system with Markovian jumping parameters was introduced by
[22], a centralized controller design using a mixed H2/H∞
method was used in [23], while a decentralized solution
without a designated platoon leader was presented in [10].
A distributed H∞-controller was investigated in [24], [25],
and a similar approach with a heterogeneous vehicular platoon
was studied in [26]. Some other methods were also used
in [27], [28], [29], [30], [31], [32] in order to discuss the
effects of unmodeled dynamics, stochastic communication
delay, measurement noise, and external disturbances.

However, the H∞ approach typically gives conservative
results as pointed out in [26]. Consequently, this approach
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Fig. 1. A connected vehicle network arising from the V2V-based controller of a connected automated vehicle.

may be feasible for scenarios of limited uncertainty where
all vehicles are automated and the connectivity topology is
set by the designer. On the other hand, such conservativeness
cannot be tolerated when a connected automated vehicle
needs to respond to multiple human drivers using ad-hoc
communication. There is a need for a systematic method to
guarantee robust string stability against human drivers ahead
with uncertain reaction time delay and feedback gains. In
particular, uncertainties in the time delay must be taken into
account without using conservative approximations. Moreover,
the control design should allow flexible connectivity topology
and scale well as the number of vehicles connected by V2X
communication increases. Therefore, in this paper, we adopt
structured singular value analysis [33], [34], in order to provide
tight bounds for connected cruise controllers to be robustly
head-to-tail string stable, despite uncertainties in human car-
following behavior. We demonstrate through experimental
results how this robust string stability may improve the perfor-
mance of a connected automated vehicle among human-driven
vehicles.

The paper is structured as follows. Sec. II introduces con-
nected vehicle networks including the car-following models of
human drivers and the structure of the controller for connected
automated vehicles. Sec. III gives the detailed derivation of the
uncertain model, introduces the structured singular values, and
presents the results for a simple vehicle configuration. Sec. IV
extends the results for large connected vehicles networks,
and uses a four-vehicle system for demonstration purposes.
This four-vehicle system is implemented in an experiment and
the measurement results are discussed in Sec. V. Finally, in
Sec. VI we reach the conclusions and provide some future
research directions.

II. CONNECTED VEHICLE SYSTEMS

In this section we describe the longitudinal dynamics of a
connected vehicle system. We consider a heterogeneous chain
of vehicles where all vehicles are equipped with V2V commu-
nication devices and some are capable of automated driving, as
shown in Fig. 1. When an automated vehicle receives motion
information broadcasted from several vehicles ahead, it may
choose to use the information in its motion control (see the
dashed arrows), and thus, it becomes a connected automated
vehicle. Such a V2V-based controller then defines a connected
vehicle network consisting of the connected automated vehicle
and the preceding vehicles whose motion signals are used by
the connected automated vehicle.

Inside this connected vehicle network, we denote the con-
nected automated vehicle as vehicle 0, and the preceding
vehicles as vehicles 1, . . . , n. Note that we assume a connected
automated vehicle does not “look beyond” another connected
automated vehicle. For example, in Fig. 1, if vehicle 2 was also
a connected automated vehicle, vehicle 0 would not include
the V2V signals from vehicles farther ahead than vehicle 2 in
its controller. This assumption greatly simplifies the topology
of connected vehicle networks and eliminates intersections of
links that are typically detrimental for the performance of the
system [18], [35].

Time delays naturally arise in connected vehicle systems
due to powertrain dynamics, reaction time delays of human
drivers, communication delays or packet losses. The different
sources of delays and effects on stability have been widely
studied in the literature and have also been verified experimen-
tally [10], [16], [25], [36], [37], [38], [39]. Stability and control
of platooning in the presence of time-varying delays was also
investigated in [38], [40], and predictor based designs were
introduced in [41], [42] in order to overcome the destabilizing
effects of delays.

The longitudinal dynamics of vehicle i can be described by

ḣi(t) = vi+1(t)− vi(t) ,
v̇i(t) = ui(t− ξi), (1)

for i = 0, . . . , n, where hi, vi and ui are the headway, speed
and acceleration command of vehicle i, and ξi denotes the
actuator delay. Since vehicles 1, . . . , n only use motion infor-
mation from their immediate predecessor, their acceleration
command can be described by

ui(t) = αi
(
Vi
(
hi(t− τ̂i)

)
− vi(t− τ̂i)

)
+ βi

(
vi+1(t− τ̂i)− vi(t− τ̂i)

)
, (2)

where τ̂i is the reaction time delay of a human driver or the
sensor delay of an automated car, while αi and βi are the
control gains. Furthermore, Vi(hi) is the range policy function
that describes the desired velocity based on headway. Here we
consider

Vi(hi) =


0 if hi ≤ hst,i ,
κi(hi − hst,i) if hst,i < hi < hgo,i ,

vmax if hi ≥ hgo,i ,
(3)

where κi = vmax/(hgo,i − hst,i). That is, the desired velocity
is zero for small headways (hi ≤ hst,i) and equal to the speed
limit vmax for large headways (hi ≥ hgo,i). Between these,
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the desired velocity increases with the headway linearly, with
gradient κi. Note that when hst,i = 0 [m], 1/κi is often
referred to as the time headway. Many other range policies
may be chosen, but the qualitative dynamics remain similar if
the above characteristics are kept.

Unlike many cooperative adaptive cruise control algorithms,
the preceding vehicles 1, . . . , n in the connected network
shown in Fig. 1 are not required to cooperate with the
connected automated vehicle. That is, aside from broadcasting
their motion information through V2V communication, no
automation of these vehicles is required. Consequently, the
feedback gains, the range policy and time delay in (2) cannot
be tuned for the connected automated vehicle design. However,
the connected automated vehicle 0 may fully exploit V2V
signals from vehicles 1, . . . , n with no constraint on the
connectivity topology.

Here we consider the longitudinal controller for the con-
nected automated vehicle in the form of

u0(t) = a1,0
(
V0
(
h0(t− σ̂1,0)

)
− v0(t− σ̂1,0)

)
+

n∑
j=1

bj,0
(
vj(t− σ̂j,0)− v0(t− σ̂j,0)

)
, (4)

where the control gains aj,0 and bj,0 and communication
delay σ̂j,0 correspond to the links between vehicle j and the
connected automated vehicle 0. Note that the delay σ̂j,0 arises
from communication intermittency and possible packet losses.
Here the range policy function V0(h0) is defined as in (3) with
gradient κ0 for hst,0 ≤ h0 ≤ hgo,0 that can be tuned by the
designer together with the feedback gains aj,0 and bj,0.

Note that when n = 1, the connected automated vehicle
only uses motion information from its immediate predecessor,
and (4) gracefully degrades to the same control structure as
human-driven vehicles [43] or automated vehicles without
connectivity [4].

We consider the stability of the connected vehicle system
(1,2,4) around the uniform traffic flow, where vehicles travel
with the same speed vi(t) = v∗ and their corresponding head-
ways are hi(t) = h∗i such that Vi(h∗i ) = v∗ for i = 0, . . . , n.
We define the perturbations about the equilibrium (h∗i , v

∗) as

h̃i(t) = hi(t)− h∗, ṽi(t) = vi(t)− v∗ . (5)

Since we are interested in how the speed perturbations ṽi prop-
agate through the connected vehicle system, especially how a
connected automated vehicle attenuates such perturbations, we
linearize (1,2,4) around the equilibrium (h∗i , v

∗) and obtain

˙̃
h0(t) = ṽ1(t)− ṽ0(t) ,

˙̃v0(t) = a1,0
(
κ0h̃0(t− σ1,0)− ṽ0(t− σ1,0)

)
+

n∑
j=1

bj,0
(
ṽj(t− σj,0)− ṽ0(t− σj,0)

)
,

˙̃
hi(t) = ṽi+1(t)− ṽi(t) ,
˙̃vi(t) = αi

(
κih̃i(t− τi)− ṽi(t− τi)

)
+ βi

(
ṽi+1(t− τi)− ṽi(t− τi)

)
, i = 1, . . . , n, (6)

where the aggregated delays are σ1,0 = ξ0 + σ̂1,0 and τi =
ξi + τ̂i.

We assume that the connected vehicle system (6) is plant
stable, that is, when the input perturbation ṽn+1(t) ≡ 0, the
perturbations h̃i, ṽi of the preceding vehicles and h̃0, ṽ0 of
the connected automated vehicle tend to zero regardless of
the initial conditions. Then, we focus on how the connected
automated vehicle responds to speed fluctuations propagating
through the system. When the speed perturbation ṽ0 of the
connected automated vehicle has smaller amplitude than the
input ṽn, we call the connected automated vehicle design head-
to-tail string stable. Note, that while plant stability of vehicles
can be guaranteed by their own parameters, head-to-tail string
stability relies on the entire connected topology, and therefore
it is a more severe requirement.

The notion of string stability between two consecutive vehi-
cles was previously used to explain the amplification of speed
perturbations along a chain of vehicles without connectivity
[44]. However, by considering head-to-tail string stability we
allow speed perturbations to be amplified among the uncon-
trollable vehicles 1, . . . , n, and we focus on how the connected
automated vehicle attenuates the perturbations. Being head-
to-tail string stable not only enables a connected automated
vehicle to enjoy better active safety, energy efficiency, and
passenger comfort, it can also help to attenuate traffic waves
[18].

We assume zero initial conditions for (6) and obtain

Ṽ0(s) =

n∑
i=1

Ti,0(s)Ṽi(s),

Ṽi(s) = Ti+1,i(s)Ṽi+1(s) ,

(7)

where Ṽ0(s) and Ṽi(s) denote the Laplace transform of ṽ0(t)
and ṽi(t) for i = 1, . . . , n, and the link transfer functions are

T1,0(s) =
(a1,0κ0 + b1,0s)e

−sσ1,0

s2 + a1,0(κ0 + s)e−sσ1,0 +
∑n
l=1 bl,0se

−sσl,0
,

Ti,0(s) =
bi,0se

−sσi,0

s2 + a1,0(κ0 + s)e−sσ1,0 +
∑n
l=1 bl,0se

−sσl,0
,

Ti+1,i(s) =
(αiκi + βis)e

−sτi

s2 + (αiκi + (αi + βi)s)e−sτi
.

(8)

Thus, the head-to-tail transfer function of the connected vehi-
cle system is

Gn,0(s) =
Ṽ0(s)

Ṽn(s)
= det

(
T(s)

)
, (9)

where the transfer function matrix is

T(s) =
T1,0(s) −1 0 · · · 0
T2,0(s) T2,1(s) −1 · · · 0

...
...

...
. . .

...
Tn−1,0(s) Tn−1,1(s) Tn−1,2(s) · · · −1
Tn,0(s) Tn,1(s) Tn,2(s) · · · Tn,n−1(s)

 ,
(10)

see [18] for the proof. Note that the minors of (10) can be
used to track the propagation of perturbations between any two
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vehicles in the system, that is, the transfer function between
vehicle i and a preceding vehicle j is

Gj,i(s) =
Ṽi(s)

Ṽj(s)
= det

(
Tj,i(s)

)
, (11)

where j > i and

Tj,i(s) =


Ti+1,i(s) −1 · · · 0

...
...

. . .
...

Tj−1,i(s) Tj−1,i+1(s) · · · −1
Tj,i(s) Tj,i+1(s) · · · Tj,j−1(s)

 .
(12)

The criterion for head-to-tail string stability at the linear
level is guaranteed if the perturbations are attenuated for any
frequency, that is,∣∣det

(
T(iω)

)∣∣ < 1, ∀ ω > 0 , (13)

where we substituted s = iω. In order to facilitate robustness
analysis we rewrite (13) as

1− det
(
T(iω)

)
δc 6= 0, ∀ ω > 0 , (14)

where δc is an arbitrary complex number inside the unit
circle in the complex plane, that is, δc ∈ C and |δc| < 1.
Since (13, 14) only require speed fluctuations to be attenuated
between the head vehicle and the automated vehicle, the
human-driven vehicles in between can be string unstable.
While the human drivers may amplify speed fluctuations, we
assume they behave rationally, that is, they are plant stable.

To illustrate the head-to-tail string stability, here we consider
a connected automated vehicle using motion information from
three vehicles ahead, as shown in Fig. 2(a). The transfer
function matrix for this connected vehicle system is

T(s) =

T1,0(s) −1 0
T2,0(s) T2,1(s) −1
T3,0(s) 0 T3,2(s)

 , (15)

where the elements T1,0(s), T2,0(s), T3,0(s), T2,1(s) and
T3,2(s) are given by (8), while (10) results in the head-to-tail
transfer function

G3,0(s) = det
(
T(s)

)
= T3,0(s) + T3,2(s)T2,0(s)+

T3,2(s)T2,1(s)T1,0(s). (16)

The flow of information is illustrated on a schematic block
diagram in Fig. 2(b).

We consider the case when the preceding vehicles i = 1, 2
have the parameters αi = 0.2 [1/s], βi = 0.4 [1/s],
κi = 0.6 [1/s], τi = 0.9 [s], and we set the design parameters
to a1,0 = 0.4 [1/s], b1,0 = 0.2 [1/s], b2,0 = 0.3 [1/s],
b3,0 = 0.3 [1/s], κ0 = 0.6 [1/s] while having the delays
σ1,0 = σ2,0 = σ3,0 = σ = 0.6 [s] for the connected automated
vehicle. Human driver parameters are experimentally identified
by [37], which results string unstable link transfer functions
T2,1(iω) and T3,2(iω).

In Fig. 3(a) we plot the head-to-tail transfer function
|G3,0(iω)| of the connected automated vehicle (solid blue
curve) and the link transfer function |T3,2(iω)| that describes
how vehicle 2 responds to the motion of vehicle 3 (dotted

T3,0

T2,0

T1,0

3. 2. 1. 0.

zw
T2,1T3,2

(a)

(b)
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V3

~
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~
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~
V0

~
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= zw =

Fig. 2. A four-vehicle configuration: (a) Connected vehicle network with
the information flow indicated by the dashed arrows. (b) The corresponding
block diagram showing the propagation of speed perturbations Ṽi(s), for i =
3, 2, 1, 0.
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Fig. 3. (a) Example transfer functions |T3,2(iω)| = |T2,1(iω)|, |G3,0(iω)|
and (b) corresponding simulations with v∗ = 15 [m/s], vamp

3 = 5 [m/s],
and ω = 0.5 [rad/s].

green curve). Here this is equal to |T2,1(iω)| (point-dotted
purple curve) as vehicles 2 and 1 have the same parameters.
While the magnitude of the head-to-tail transfer function stays
below 1, the link transfer functions of vehicles 2 and 1
reach beyond 1 for low frequencies. This indicates that speed
perturbations at low frequency are amplified by vehicles 2 and
1 but eventually are suppressed by the connected automated
vehicle 0. This observation is supported by a simulation shown
in Fig. 3(b), where the speed input v3(t) = v∗+ vamp

3 sin(ωt)
with v∗ = 15 [m/s], vamp

3 = 5 [m/s], ω = 0.5 [rad/s] is
plotted as a dashed red curve. The time profiles for vehicles
2 and 1 are plotted by dotted green and point-dotted purple
curves, respectively. The color code corresponds to the vehicle
colors in Fig. 2(a).

Note that the results shown in Fig. 3 strongly depend on
the parameters of the preceding vehicles. The same control
parameters used in Fig. 3 may behave poorly with a different
set of parameters κi, αi, βi and τi. In the forthcoming sections,
we will assume additive perturbation in these parameters
denoted by κ̃i, α̃i, β̃i and τ̃i, and apply robust control design
to ensure good performance under these parameter changes.

III. ROBUST STRING STABILITY

Since a connected automated vehicle may not know the
dynamics of the preceding vehicles 1, . . . , n accurately, the
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V2V-based controller should be robust against their param-
eter uncertainties aside from the model uncertainties of the
connected automated vehicle itself. Based on the theory of
robust control, we represent the system uncertainty in the
M-∆ uncertain interconnection structure, as shown in Fig. 4.

Here, M(s) represents the interconnection transfer function
matrix (generalized plant) with scalar input w and scalar
output z, while ∆(s) contains bounded perturbations with
y and u as the uncertainty input and output. The uncertain
interconnection structure can represent parametric and non-
parametric uncertainties of the linearized system that are all
contained in the matrix ∆(s). While in general the structure of
∆(s) might be arbitrary, in this work we restrict ourselves to
scalar parametric uncertainties. That is, we limit the structure
of the uncertainty matrix to

∆(s) = diag [ρ1(s)δ1, . . . , ρl(s)δl] , (17)

where |δk| < 1 for k = 1, . . . , l, and l is the number of
uncertain parameters. Note, that δk can be real (δrk ∈ R) or
complex (δck ∈ C), depending on the parameter it represents.
For an introductory course in robust analysis and control, see
[34], [45], or for similar studies, see [24], [25], [26].

Let us introduce the weight matrix

R(s) = diag [ρ1(s), . . . , ρl(s)] , (18)

which scales the uncertainties δk. In general the weights ρk(s)
depend on s (or later simply on ω). However, we will see
that in case of parametric uncertainties they often become
simple constants. Therefore, the linear model of the system
with uncertainty is given by[

y
z

]
= M(s)

[
u
w

]
, (19)

u = ∆(s)y, (20)

with the interconnection transfer function matrix being parti-
tioned as

M(s) =

[
M1,1(s) M1,2(s)
M2,1(s) M2,2(s)

]
. (21)

Here M2,2(s) is the nominal transfer function. If ∆(s) is zero,
then the uncertainty drops out of the equation and only the
nominal system remains.

Let w = Ṽn(s) and z = Ṽ0(s) denote the velocity pertur-
bations of the vehicles at the head and the tail, respectively.
This yields that the transfer function between z and w equals to
the head-to-tail transfer function including uncertainties. This
transfer function can be expressed using upper linear fractional
transformation as

Fu

(
M(s),∆(s)

)
:= (22)

M2,2(s) + M2,1(s)∆(s)
(
I−M1,1(s)∆(s)

)−1
M1,2(s)

z

yu

w
M(s)

(s)

Fig. 4. M-∆ uncertain interconnection structure.

under the condition that

det
(
I−M1,1(s)∆(s)

)
6= 0 . (23)

Observe, that if there is no uncertainty present in the system
(∆(s) = 0), then upper linear fractional transformation gives
that M2,2(s) = Gn,0(s). We also note that (23) is related to the
plant stability boundaries under parametric uncertainty. Since
plant stability can be guaranteed by most human drivers and
automated vehicle designs, we assume that the connected auto-
mated vehicle design remains plant stable for the investigated
model uncertainties.

Recall the string stability criterion (14). Similarly, the
perturbed head-to-tail transfer function (22) needs to satisfy

1−Fu

(
M(iω),∆(iω)

)
δc 6= 0 , ∀ω > 0 (24)

for any complex number |δc| < 1. Using the Schur formula
(see [46]), we rewrite (23) and (24) for s = iω as

det

([
I 0
0 1

]
−
[
M1,1(iω) M1,2(iω)
M2,1(iω) M2,2(iω)

] [
∆(iω) 0

0 δc

])
6= 0 .

(25)

Using the weight matrix R(iω), (25) can be rewritten in the
compact form

det
(
I− M̂(iω)∆̂

)
6= 0 , (26)

where

M̂(iω) =

[
M1,1(iω)R(iω) M1,2(iω)
M2,1(iω)R(iω) M2,2(iω)

]
, (27)

∆̂ = diag [δ1, . . . , δl, δ
c] . (28)

Note, that while δk, k = 1, . . . , l represent parametric uncer-
tainty, δc is required to fulfill robust string stability (robust
performance).

A. Robust string stable example

In order to quantify the robustness of the system, we use
the structured singular value analysis introduced in [33]. We

i+1.

(a)

(b)

i.

1
s

1
s

~

~

~
e-s s

, , ,

y1 u1

y2 u2

y3 u3

y4 u4~
w =Vi+1

~
z =Vi

~

Fig. 5. (a) Predecessor-follower model; (b) Block diagram of the uncertain
transfer function.
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define the µ-value of M̂(iω) as the inverse of the smallest
σ̄(∆̂) when (26) fails at frequency ω, i.e.,

µ(ω) =

(
min
∆̂

{
σ̄(∆̂) : det

(
I− M̂(iω)∆̂

)
= 0
})−1

, (29)

where σ̄(∆̂) denotes the largest singular value of ∆̂. As
µ(ω) increases, a smaller perturbation value in ∆̂ may lead
to a singular

(
I − M̂(iω)∆̂

)
and results in string instability.

When singularity holds for arbitrarily small perturbations, then
µ(ω) → ∞ and robustness cannot be guaranteed, however,
if det

(
I − M̂(iω)∆̂

)
6= 0 for any perturbation ∆̂, then

µ(ω) = 0. Therefore, the condition for robust string stability
against bounded parameter variation is

µ(ω) < 1, ∀ω > 0 , (30)

otherwise there exists a perturbation matrix ∆̂, σ̄(∆̂) < 1
such that det

(
I− M̂(iω)∆̂

)
= 0.

The definition of µ according to (29) does not yield directly
any tractable way to compute it, since the optimization prob-
lem is not convex in general, therefore multiple local extrema
might exist [47]. Instead, we are interested in computing upper
(µ(ω) ≤ µ(ω)) and/or lower bounds (µ(ω) ≤ µ(ω)), for which
several alternative formulations have been developed, see [33],
[47], [48], [49]. In this paper, we use the mussv function
in MATLAB µ-Analysis and Synthesis Toolbox [50], which
implements these algorithms, and we only focus on the results,
not on the numerical issues.

As an illustration of the robust string stability, we consider
vehicle i that only uses information from one vehicle ahead;
see Fig. 5(a). In this case the input of the nominal system is
ṽi+1(t) while the output is ṽi(t). The nominal link transfer
function is given by

Ti+1,i(s) =
(ακ+ βs)e−sτ

s2 + (ακ+ (α+ β)s)e−sτ
, (31)

where, for the sake of brevity, we dropped the subscripts of
the parameters κ, α, β, and τ ; cf. (8).

While the additive uncertainties α̃, β̃, and κ̃ result in
additive uncertainty terms, an additive delay uncertainty τ̃ will
result in a multiplicative exponential term e−sτ̃ in (31), that
is,

Ti+1,i(s) + T̃i+1,i(s) =(
(κ+ κ̃)(α+ α̃) + (β + β̃)s

)
e−s(τ+τ̃)

s2 +
(
(κ+ κ̃)(α+ α̃) + (α+ α̃+ β + β̃)s

)
e−s(τ+τ̃)

, (32)

where T̃i+1,i(s) represents the uncertainty while the nominal
part Ti+1,i(s) is given by (31). In order to clearly separate
the model of the single vehicle from the connected vehicle
structure, we introduce the notation m-δ and use lower case
letters for the single car scenario. In case of multiple vehicles,
M(s) and ∆(s) can be built up systematically from the link
transfer functions Tj,i(s), matrices m(s) and uncertainties
δ(s) of individual vehicles (see Sec. IV).

To formulate the uncertainties in a way that can be repre-
sented by the m-δ interconnection structure (19-20), and make
the robust analysis feasible, we use the Rekasius substitution

e−sτ̃ =
1− sϑ̃(s)

1 + sϑ̃(s)
, (33)

where we restrict ourselves to s = iω and therefore we have

ϑ̃(iω) =
1

ω
tan

ωτ̃

2
, (34)

see [51]. This substitution is exact in the region 0 ≤ ω <
π/τ̃ , since it covers the same domain on the complex plane
as e−iωτ̃ .

By taking into account the uncertain parameters (and the
Rekasius substitution), the block diagram in Fig. 5(b) can
be drawn. This illustrates how uncertainties affect the system
and allows us to construct the m-δ uncertain interconnection
structure by solving a number of algebraic equations. In par-
ticular, we define the interconnection transfer function matrix
m(s) for a single vehicle by (35-36), where the matrix of
uncertainties read

δ(s) = diag
[
κ̃, α̃, β̃, ϑ̃(s)

]
, (37)

cf. (17). Therefore using (22), the perturbed link transfer
function can be written as

Fu

(
m(s), δ(s)

)
= Ti+1,i(s) + T̃i+1,i(s) (38)

= m2,2(s)︸ ︷︷ ︸
Ti+1,i(s)

+ m2,1(s)δ(s)
(
I−m1,1(s)δ(s)

)−1
m1,2(s)︸ ︷︷ ︸

T̃i+1,i(s)

=

(
(κ+ κ̃)(α+ α̃) + (β + β̃)s

)
e−sτ

1− sϑ̃(s)

1 + sϑ̃(s)

s2 +
(
(κ+ κ̃)(α+ α̃) + (α+ α̃+ β + β̃)s

)
e−sτ

1− sϑ̃(s)

1 + sϑ̃(s)

.

The only difference compared to (32) is the Rekasius sub-
stitution, which is still exact for s = iω. Note that there
exist other ways to approximate the uncertainty in the time-
delay, for instance by replacing e−sτ̃ with a complex term

m(s) =
1

D(s)


−αe−sτ −e−sτ −e−sτ −2 s+ αe−sτ

s2 + βse−sτ −(κ+ s)e−sτ −(κ+ s)e−sτ 2(κ+ s) κs− βse−sτ
−αse−sτ −se−sτ −se−sτ 2s s2 + αse−sτ

αs3e−sτ s3e−sτ s3e−sτ −s3 + s
(
κα+ s(α+ β)

)
e−sτ (καs2 + βs3)e−sτ

αse−sτ se−sτ se−sτ −2s (κα+ βs)e−sτ

 ,
(35)

D(s) = s2 +
(
κα+ s(α+ β)

)
e−sτ , (36)
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g(s) directly, see [52]. However, this typically leads to a
conservative solution.

In order to utilize the robust calculation and µ-analysis, we
introduce the weight matrix

r(s) = diag [ρ1, ρ2, ρ3, ρ4(s)] , (39)

where

κ̃ = ρ1δ
r
1, α̃ = ρ2δ

r
2, β̃ = ρ3δ

r
3, ϑ̃(s) = ρ4(s)δr4 , (40)

cf. (18). Thus, the rescaled matrix (28) reads

δ̂ = diag [δr1, δ
r
2, δ

r
3, δ

r
4, δ

c] , (41)

where upper index indicates whether the uncertainty is real
(δrk ∈ R) or complex (δck ∈ C), and

m̂(iω) =

[
m1,1(iω)r(iω) m1,2(iω)
m2,1(iω)r(iω) m2,2(iω)

]
, (42)

cf. (27) and (28). The list of the uncertain parameters and their
representations are given in Table I. Then with the use of the
MATLAB command mussv [50], the structured singular value
of m̂(iω) can be calculated for different values of ω.

The parameter κ may be increased/decreased depending
on the driver/passenger preferences and the value of τ is
influenced by the powertrain and the automated driving system
(or the human driver reaction time). Thus, we assume nonzero
parameter uncertainties κ̃ and τ̃ , set α̃ = 0, β̃ = 0, and plot the
robust string stable regions in the (β, α)-plane. In particular,
we quantify κ̃ and τ̃ using nominal values with variations. For
example, 10% in κ indicates that the parameter has maximum
10% uncertainty in its nominal value (ρ1 = 0.1κ in (39)).
For simplicity, we assume the same relative uncertainty for
κ and τ . In order to speed up the calculations, the bisection
algorithm developed in [53] is utilized, and only the boundary
is searched.

For parameter values κ = 0.6 [1/s], τ = 0.7 [s], the
nominal (black) and robust (gray) string stability boundaries
are shown in Fig. 6(a). In this case string stable domain exists
when τ < 1/(2κ) ≈ 0.833 [s]. As the uncertainty in κ and
τ increases, the robust string stable area shrinks. Note that
when uncertainty goes above 8%, the robust stable domain
completely disappears.

We pick the point A (α = 0.1 [1/s], β = 0.65 [1/s])
in Fig. 6(a), and plot the corresponding µ(ω) and nominal
|Ti+1,i(iω)| curves in Fig. 6(b-c). The absolute value of the

TABLE I
UNCERTAINTIES IN THE PREDECESSOR-FOLLOWER VEHICLE MODEL.

Parameter/
Performance Uncertainty and representation Weight Type

Gradient κ κ+ κ̃ = κ+ ρ1δr1 ρ1 δr1 ∈ R
Gain α α+ α̃ = α+ ρ2δr2 ρ2 δr2 ∈ R
Gain β β + β̃ = β + ρ3δr3 ρ3 δr3 ∈ R

Time delay
τ

e−s
(
τ+τ̃

)
= e−sτ

1−sρ4(s)δr4
1+sρ4(s)δ

r
4

ρ4(s) δr4 ∈ R

Robust
performance 1−Fu

(
m(iω), δ(iω)

)
δc 6= 0 1 δc ∈ C

[1/s]

[1
/s

]

0

0.2

0.4

0.6

0.4 0.5 0.6 0.7 0.80.3

0.5 1.0 1.5 2.0 2.50 3.0

( 
 )
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0.8
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[rad/s]

0.975

1.00

1.025
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0.950
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0 2

(c)

(  )
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Fig. 6. (a) Robust stability charts in the (β,α)-plane for κ = 0.6 [1/s],
τ = 0.7 [s] with uncertainties 0, 2, 4, 6, 8%, where black curve indicates the
nominal string stability boundary and gray curves indicate the robust string
stability boundaries. (b) The nominal transfer function |Ti+1,i(iω)| (black)
and µ(ω) curves (gray) for point A (α = 0.1 [1/s], β = 0.65 [1/s]). (c)
Zoom in of the critical region, where µ(ω) > 1.

link transfer function is shown by black curve, while the gray
curves correspond to the µ(ω) curves for different uncertain-
ties. Recall that the real µ-values cannot be determined exactly,
so rather upper bounds (µ - solid gray) and lower bounds (µ -
dashed gray) are computed. Details in the critical region can
be seen in Fig. 6(c), where only a slight difference between
the upper and lower bounds can be observed. This results very
small conservativeness, and therefore for a safer approximation
we assume that µ(ω) ≈ µ(ω). If µ(ω) remains below 1, then
robustness is guaranteed for that perturbation level. Otherwise,
the system can lose string stability around the frequency where
µ(ω) is above 1. For example, the α, β combination at point A
is robust against 4% uncertainty, and leads to string unstable
behavior at 6%.

IV. ROBUST STRING STABLE DESIGN FOR CONNECTED
AUTOMATED VEHICLES

In this section, we first introduce a systematic method to
extend the robust head-to-tail string stability analysis to gen-
eral connected vehicle systems. This yields a linear fractional
transformation model, which can be formulated for arbitrary
connected vehicle networks with various topology and un-
certainty. Then, we demonstrate the method in a connected
automated vehicle design where motion information from
three vehicles ahead is used.

A. Scaling up the generalized plant matrix

Recall that for the robustness analysis in Sec. III-A, we
deduced the interconnection transfer function matrix m(s)
graphically using the block diagram in Fig. 5(b). However,
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as the number of vehicles in a connected vehicle system in-
creases, it is desirable to obtain such matrices algebraically in
a systematic manner. Specifically, we treat each vehicle in the
connected vehicle system as a subsystem whose uncertainty
is described by an m-δ structure as in Sec. III-A. Then we
exploit the topology of the connected vehicle system and
assemble the M-∆ structure. Note that this formalism allows
us to incorporate the uncertainty for an arbitrary number
of human drivers, making this method scaleable for large
connected vehicle systems.

Again we consider a connected automated vehicle using
motion information from n human-driven vehicles ahead,
as shown in Fig. 1. Consider the set D of vehicles with
uncertainties (not necessarily all of the vehicles in the system
are uncertain), where D ⊆ {1, . . . , n}. Based on (19-20), the
uncertainty model for vehicle i ∈ D with respect to vehicle
i+ 1 is

yi = m
(i+1,i)
1,1 (s)ui + m

(i+1,i)
1,2 (s)wi,

zi = m
(i+1,i)
2,1 (s)ui +m

(i+1,i)
2,2 (s)wi, (43)

where superscript (i+1, i) denotes the uncertain link between
vehicles i + 1 and i, see Fig. 7. Note that m(i+1,i)

2,2 (s) =
Ti+1,i(s), as in Sec. III-A.

Now we can exploit the cascading topology of the system,
as vehicles only respond to perturbations from their immediate
predecessor, i.e., the input wi of vehicle i is the output zi+1

of vehicle i + 1. Therefore, we define w = Ṽn, z = Ṽ0, and
expand the model (43) by including uncertainties up from all
preceding vehicle p ∈ D ∩ {i+ 1, . . . , n}, that is,

yi = m
(i+1,i)
1,1 (s)ui + m

(i+1,i)
1,2 (s)Gn,i+1(s)w

+

n∑
p=i+1

m
(i+1,i)
1,2 (s)m

(p+1,p)
2,1 (s)Gp,i+1(s)up, (44)

where summation only includes the uncertain vehicles, Gj,i(s)
is defined in (11) and Gi,i(s) = 1.

This way, we construct the uncertain M-∆ interconnection
structure as

...
yi
...
z

 =


...

...
· · · [M1,1(s)]i,j · · · [M1,2(s)]i

...
...

· · · [M2,1(s)]j · · · M2,2(s)


︸ ︷︷ ︸

M(s)


...

uj
...
w

 ,

(45)

where the elements in M(s) can be obtained systematically:

[M1,1(s)]i,j =


m

(i+1,i)
1,2 (s)m

(j+1,j)
2,1 (s)Gj,i+1(s) , if j > i ,

m
(i+1,i)
1,1 (s) , if j = i ,

0 , if j < i ,

(46)

[M1,2(s)]i = m
(i+1,i)
1,2 (s)Gn,i+1(s) , (47)

[M2,1(s)]j = m
(j+1,j)
2,1 (s)Gj,0(s) , (48)

M2,2(s) = Gn,0(s) , (49)

for i, j ∈ D.
Meanwhile, the uncertainty matrix is formulated as

...
ui
...

 =


. . .

δ(i+1,i)(s)
. . .


︸ ︷︷ ︸

∆(s)


...

yi
...

 , (50)

and weight matrix is constructed as

R(s) = diag
[
. . . , r(i+1,i)(s), . . .

]
, (51)

where δ(i+1,i)(s) and r(i+1,i)(s) are the uncertainty matrix
and weight matrix corresponding to vehicle i (cf. (37) and
(39)). Finally, robustness is guaranteed if

det
(
I− M̂(iω)∆̂

)
6= 0, (52)

where

M̂(iω) =

[
M1,1(iω)R(iω) M1,2(iω)
M2,1(iω)R(iω) M2,2(iω)

]
, (53)

∆̂ = diag [δr1, . . . , δ
r
l , δ

c] . (54)

B. Robust string stability in a four-vehicle system

In order to demonstrate the applicability of the algorithm,
we present a case study for a connected vehicle system
consisting of a connected automated vehicle and three human-
driven cars with uncertainty, i.e., n = 3 in (6). The sketch of
the system is displayed in Fig. 8(a) while the block diagram
with uncertainties is presented in Fig. 8(b), cf. Fig. 2(b).
While the nominal transfer function matrix is given in (15),
we assume each parameter in vehicles 2 and 1 has uncertainty
and compute the robust string stable regions in the (b2,0, b3,0)-
plane for different values of a1,0 and b1,0.

The uncertain interconnection structure is given as

M(s) = m
(2,1)
1,1 m

(2,1)
1,2 m

(3,2)
2,1 m

(2,1)
12 T3,2

0 m
(3,2)
1,1 m

(3,2)
1,2

m
(2,1)
2,1 T1,0 m

(3,2)
2,1 (T2,0 + T1,0T2,1) G3,0

 ,
(55)

(j+1,j)

m
(j+1,j)

uj

Tj+1,j+Tj+1,j
~

wj =Vj+1

~

(a)

n j+1 j i+1 i 0

(b)

yj

w =Vn

~
zj =Vj

~

(i+1,i)

m
(i+1,i)

ui

Ti+1,i+Ti+1,i
~

wi =Vi+1

~

yi

zi =Vi

~
z =V0

~

Tj+1,j+Tj+1,j
~

Ti+1,i+Ti+1,i
~

Fig. 7. (a) Chain of connected vehicles with uncertain dynamics. (b)
Corresponding block diagram.
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T3,0

T2,0

T1,0

3. 2. 1. 0.

T3,2+T3,2
~

T2,1+T2,1
~

(a)

(b)

(3,2)

m
(3,2)

T3,2+T3,2
~

(2,1)

m
(2,1)

T2,1+T2,1
~

T1,0

T2,0

T3,0

V3

~
V2

~
V1

~
V0

~

Fig. 8. Four-vehicle configuration with uncertainties: (a) Connectivity topol-
ogy; (b) Block diagram.

where the dependence on s is not spelled out for conciseness,
while the weight matrix reads

R(s) =

[
r(2,1)(s) 0

0 r(3,2)(s)

]
. (56)

The robust performance is given by (52-54), where l = 8
corresponds to the 4 + 4 independent parameters of vehicles
1 and 2.

The computation of µ-values are performed by the MAT-
LAB toolbox using the mussv function. The results are
presented in Fig. 9 and Fig. 10, where we assumed that each
parameter of each vehicle is perturbed by the same percentage
of their nominal value, i.e., αi, βi, κi and τi have identical
relative uncertainties. The nominal human driver parameters
are κi = 0.6 [1/s], αi = 0.2 [1/s], βi = 0.4 [1/s] and
τi = 0.9 [s] (same for both vehicles for simplicity), while
the fixed parameters of the connected automated vehicle are
κ0 = 0.6 [1/s] and σ = 0.6 [s]. In this configuration, human-
driven vehicles are string unstable, but head-to-tail string
stability can be guaranteed by appropriate selection of the
gains of the connected automated vehicle. Fig 9. shows how
the uncertain parameters (eight in total) affect the robust stable
domain of control parameters (a1,0, b1,0, b2,0, b3,0). While
the nominal system (black curve) provides a relatively large
string stable domain, uncertainty significantly reduces it (gray
curves) and having uncertainty greater than 30% eliminates
the robust boundaries in most of the cases.

In order to further illustrate the effects of uncertainty, we
choose three different control gain pairs in Fig. 10(a) and plot
the corresponding µ(ω) curves in Fig. 10(b-d) for different
uncertainty levels. Point A (gray) is inside the 20% robustness
region and corresponds to b2,0 = 0.3 [1/s], b3,0 = 0.3 [1/s],
point B (light red) is inside the 10% robustness region and
denotes b2,0 = 0.6 [1/s], b3,0 = 0.0 [1/s], while point C
(brown) is outside the 10% robust region, but still inside the
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Fig. 9. Robust stability charts in the (b2,0, b3,0)-plane for different values
of a1,0 and b1,0. The nominal human driver parameters are κi = 0.6 [1/s],
αi = 0.2 [1/s], βi = 0.4 [1/s] and τi = 0.9 [s] for i = 1, 2, and the
connected automated vehicle has κ0 = 0.6 [1/s] and σ = 0.6 [s]. Robust
string stable boundaries are indicated by gray curves in case of 0, 10, 20, 30%
uncertainty.

string stable domain and its parameters are b2,0 = 0.2 [1/s],
b3,0 = 0.1 [1/s]. Colored thick curves indicate the value of
|G3,0(iω)|, while colored thin curves indicate µ(ω) at 10%
and 20% uncertainty levels. In each case the continuous curve
is the upper bound µ, while dashed curve is the lower bound
µ. The color code used in panel (a) matches the colors on
panels (b-d). Similarly to the example shown in Sec. III-A,
the shape of µ-plots are similar to the absolute values of the
transfer functions. Where the µ(ω) goes above 1, the system
loses string stability around that frequency. If µ(ω) remains
below 1, then robustness is guaranteed for the corresponding
perturbation level.

V. EXPERIMENTAL VALIDATION OF ROBUST
STRING-STABLE DESIGN

In this section we experimentally evaluate the performance
of connected cruise control designs with different levels of
robustness. We demonstrate that robust string stable design is
able to ensure less harsh maneuvers for a connected automated
vehicle operating among human-driven vehicles.

We consider the scenario shown in Fig. 8(a), where one
connected automated vehicle drives behind three human-
driven vehicles. The connected automated vehicle and two
human-driven vehicles used in the experiments are shown
in Fig. 11(a). The speed and position data of each vehicle
are recorded and transmitted with 10 Hz update rate through
dedicated short range communication (DSRC) using V2V
devices shown in Fig. 11(b) [54]. We note that while all
vehicles are equipped with V2V communication devices, only
one vehicle (right) is automated using the connected cruise
controller (4). Further details about the setup and experimental
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Fig. 10. (a) Robust stability charts for a1,0 = 0.4 [1/s] and b1,0 = 0.2 [1/s]. (b)-(d) |G3,0(iω)| and µ(ω) curves for points (A,B,C) and uncertainty levels
0, 10, 20%.

Fig. 11. (a) Two human-driven vehicles and one connected automated
vehicle used in the experiments. The two vehicles on the left are only
equipped with V2V communication devices, while the vehicle on the right is
capable of automated driving as well as V2V communication. (b) The V2V
communication on-board unit: 1© upper-level computer, 2© ethernet cable, 3©
electronic control unit, 4© power cable, 5© V2V/GPS antennae.

results are given in [36]. In this paper, we present two sets of
experiments for demonstration purposes.

Test drives are conducted on a segment of single-lane
public road where vehicles experience a series of braking
events due to dense traffic. The results from the first ex-
periment set are shown in Fig. 12, where the connected
automated vehicle adopts a 20%-robust string-stable design
(a1,0, b1,0, b2,0, b3,0) = (0.4, 0.2, 0.3, 0.3) [1/s], i.e., case A in
Fig 10(a). The results from the second experiment set are plot-
ted in Fig. 13, where the connected automated vehicle adopts
a 10%-robust string-stable design (a1,0, b1,0, b2,0, b3,0) =
(0.4, 0.2, 0.6, 0.0) [1/s], i.e., case B in Fig 10(a). We note that
while both cases ensure head-to-tail string stability when the
human car-following parameters deviate from their nominal
values by up to 10%, case B loses string stability as the
uncertainty level reaches 20%; see Fig. 10(b-c).

For 20%-robust string stable case A, the speed profiles of
human-driven vehicles 3 (red), 2 (green), 1 (purple) and the
connected automated vehicle 0 (blue) are plotted in Fig. 12(a).
While all vehicles have an average speed of about 22 [m/s], the
severity of slow-downs for each vehicle can differ. Fig. 12(b)
shows the response of human-driven and connected automated
vehicles during one slow-down. While the minimum speed
decreases from vehicle 3 to vehicle 1, indicating amplified
speed perturbations, the connected automated vehicle is able

to attenuate such a disturbance and maintains its speed well
above 10 [m/s]. The amplification of speed variations by
human drivers and attenuation by the connected automated
vehicle can be further illustrated by the corresponding accel-
eration profiles. In Fig. 12(c), the peak deceleration of vehicle
1 (purple) reaches −8 [m/s2], while the deceleration of its
predecessors (red and green) is no more than −6 [m/s2] and
−5 [m/s2], respectively. Fig. 12(d) highlights such increas-
ingly heavier deceleration from vehicle 3 to vehicle 1, while
the connected automated vehicle maintains milder deceleration
than the lead vehicle 3.

To further evaluate the acceleration/deceleration intensity of
this 20%-robust string-stable design, we plot the normalized
histograms (distributions) for the human-driven and connected
automated cars in Fig. 12(e-h). The occurrences of decelera-
tion below −4 [m/s2] can be observed to increase significantly
from vehicle 3 to vehicle 1, which is corroborated by the stan-
dard deviation of the acceleration (std(v̇3) = 1.286 [m/s2],
std(v̇2) = 1.235 [m/s2], std(v̇1) = 1.592 [m/s2]). Based on
this measure vehicle 2 slightly attenuates fluctuations, which
could be an indicator for better driving skills. On the other
hand, the least intense acceleration/deceleration is achieved
by the connected automated vehicle, where the deceleration
stays above −4 [m/s2] and std(v̇0) = 0.929 [m/s2]. The ratio
std(v̇0)/std(v̇3) ≈ 0.722 indicates that the 20%-robust string-
stable CCC design significantly attenuates perturbations from
the human-driven vehicles ahead.

However, a CCC design with less robustness may not be
able to achieve the same level of attenuation. For case B,
the velocity profiles are shown in Fig. 13(a-b), acceleration
profiles in panels (c-d), and normalized acceleration distri-
butions in panels (e-h). Similar observations can be made
regarding the amplification of speed perturbations among
human-driven vehicles. In order to compare the attenuation
by the connected automated vehicle between cases A and B,
we again compute the standard deviation of the accelerations,
and obtain std(v̇3) = 1.109 [m/s2], std(v̇2) = 1.093 [m/s2],
std(v̇1) = 1.421 [m/s2], and std(v̇0) = 0.906 [m/s2]. In this
case the ratio std(v̇0)/std(v̇3) ≈ 0.817, which is considerably
larger than in case A. Furthermore, a direct comparison
between Fig. 12(g,h) and Fig. 13(g,h) shows that the connected
automated vehicle in case B is unable to maintain its deceler-
ation above −4 [m/s2] despite less frequent heavy braking of
its immediate predecessor (v̇1 < −6 [m/s2]).
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Fig. 12. Measurement at point A in Fig. 10(a): (a-b) Measured speed profiles of three human-driven vehicles and automated vehicle; (c-d) Acceleration
profiles; (e-h) Normalized histograms showing the distributions of accelerations. The graphs are colored corresponding to the color of vehicles in Fig. 8(a).

Through the real-car experiments, we demonstrate that when
exploiting motion data from multiple human-driven vehicles,
a CCC design with higher levels of robustness performs better
than a less robust design, even though both CCC designs
perform significantly better than human drivers.

VI. CONCLUSION

In this paper, we applied structured singular value analysis
to investigate the influences of uncertain human car-following
parameters on string stability of connected cruise controllers.
In particular, the uncertain time delays were considered using
the Rekasius substitution, so that the robust bounds on head-
to-tail string stability remained tight. We demonstrated through
case studies that these robustness results could be used to
design connected automated vehicles that reject traffic pertur-
bations well despite uncertain human car-following behavior
ahead.

Theoretical contributions were verified by experiments, that
showed the advantage of robust control designs over classical
methods. In measurements the robustly tuned control parame-
ters were performing better under human-driver uncertainties
than less robust control parameters.

Future research may include the robust stability analysis of
parameter-varying and nonlinear systems in the presence of
uncertainty.
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