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Abstract

Chatter detection is usually based on the analysis of measured signals cap-
tured during cutting processes. These techniques, however, often give ambiguous
results close to the stability boundaries, which is a major limitation in indus-
trial applications. In this paper, an experimental chatter detection method is
proposed based on the system’s response for perturbations during the machin-
ing process, and no system parameter identification is required. The proposed
method identifies the dominant characteristic multiplier of the periodic dynami-
cal system that models the milling process. The variation of the modulus of the
largest characteristic multiplier can also be monitored, the stability boundary
can precisely be extrapolated, while the manufacturing parameters are still kept
in the chatter-free region. The method is derived in details, and also verified
experimentally in laboratory environment.
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1 Introduction

There are many factors that influence the productivity of a cutting process in man-
ufacturing. The material removal rate (MRR), which depends on the spindle speed,
feed rate and axial/radial immersion of the machining operation, is one of those im-
portant quantities. The MRR, however, cannot be increased arbitrarily due to the
undesired vibration that may arise during the cutting process. This undesired phe-
nomenon is called chatter, which leads to unacceptable surface quality, extensive noise,
toolwear and possible damage in the machine components. By limiting the technolog-
ical parameters on an ad hoc basis, these vibrations can be avoided, but at the same
time the industrial competitiveness also reduces. Therefore, the optimal tuning of the
machining parameters is a highly important task for professional manufacturers, not
only to increase productivity, but also to reduce financial costs.
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Since the pioneering work of Tobias [1] and Tlusty [2] in the 1950s and 1960s, the
so-called regenerative effect has become the most commonly accepted explanation for
machine tool chatter. The vibrations of the tool are copied onto the surface of the
workpiece, which modifies the chip thickness and induces variation in the cutting-force
one revolution later. From dynamical systems’ point of view, chatter is associated
with the loss of stability of the stationary (chatter-free) machining process followed
by a large amplitude self-excited vibration between the tool and the workpiece. The
stability properties of machining processes are visualized usually by the so-called sta-
bility lobe diagrams on the plane of the depth of cut and spindle speed parameters. By
evaluating these diagrams, the machinists can select optimal technological parameters
in order to achieve maximum material removal rate without chatter.

There exist several mathematical methods to analyze the stability properties of
milling operations governed by time-periodic delay-differential equations. Some of
them apply the measured frequency response functions (FRFs) directly, such as the
zero-order approximation (ZOA) [3], the multi-frequency solution (MFS) [4] or the
extended multi-frequency solution (EMFS) [5]. Other techniques, such as the semi-
discretization method [6], the full-discretization method [7], the integration method
[8] and their extension by the implicit subspace iteration method [9], the Chebyshev
collocation method [10, 11], the spectral element method [12] and the temporal finite
element analysis [13, 14], require fitted modal parameters as input.

Although the most highly developed numerical methods construct the stability
lobe diagrams within seconds, the practical applications still face many problems due
to the deviation between the predictions and measurements. One of the most critical
part in the calculation is the reliable identification of the system dynamics [15] and
the correct modeling of cutting process mechanics [16]. Note that pure predictive
approaches are not commonly applied in industry due to their enormous complexity,
to the huge amount of required measurements (implying high additional times and
costs), and also to the uncertainties affecting model coefficients causing unreliable and
inaccurate predictions.

Uncertainties in the measurements, model simplifications and other assumptions
lead to an impaired representation of the real dynamical system. This is the reason
why experimental verifications often do not match the expected dynamic behavior.

In the recent decades, several numerical methods have been developed for exper-
imental chatter identification, which often do not require stability lobe calculations
(see, for instance, [17, 18]). The detection method is usually based on some measured
quantities that separate stable and unstable parameter domains [19]. The measure-
ment processes from the sensing point of view might be classified as direct and indirect
methods (see [20]). Since chatter corresponds to the variation of the cutting force,
dynamometers, strain gauges or accelerometers are examples for direct instruments,
while optical and sonic sensors are listed as indirect devices. Based on the evaluation
process of the recorded signals, we can also distinguish off-line and on-line identifica-
tion methods.

Off-line identification does not allow the machinists to prevent the occurrence of
chatter. In most of the cases, the signals collected by dynamometers, accelerometers
and industrial microphones [21, 22] are evaluated, together with the observation of
the surface quality [23], after the cutting process is finished.

On-line chatter detection techniques are essential elements of active chatter sup-

2



pression methods, which are based on real-time signal processing. In the last decades,
several techniques have been proposed to avoid unstable cutting operations. In most
of the cases, the spectra of some signals are investigated which are typically obtained
from industrial microphones and/or accelerometers (see [21, 24, 25, 26]). Other tech-
niques utilize directly the measured signals in time domain based on considerations
of the periodic behavior of the system [22, 27, 28]. A more detailed study on chatter
suppression methods is given by [29], and for a review on chatter detection, see [30]
and all the reference therein.

In almost all of the cases mentioned above, the separation of stable and unstable
operations is based on a so-called ‘chatter indicator’, which can be different for each
method and the critical level of the indicator is usually empirically defined. These
indicators are often not reliable close to the stability boundaries; this is while the
accurate comparison between the predicted and measured stability lobe diagrams is
a challenging task.

The aim of this research is not only to distinguish stable and unstable opera-
tions in a reliable way, but also to identify the transition between them and quantify
the robustness of the applied cutting parameters [31]. In this paper, an experimental
method is proposed, which can be used as an alternative chatter prediction technique.
The main idea is to approximate only the largest Floquet multiplier of the periodic
dynamical system based on operational impact tests [32, 33]. This characterization
of the dynamical behaviour makes unnecessary to identify any additional system pa-
rameter, and requires no exact stability lobe calculations. Like in case of autonomous
systems, where the stability property is associated with the rightmost characteristic
exponent, the fitted Floquet multiplier can give a measure for the ”distance” from
instability.

From engineering view-point, it is enough to decide whether the process is stable
or not, that is the largest modulus of characteristic multipliers is greater or smaller
than 1, respectively. The existing chatter detection techniques try to satisfy this
’yes/no’ requirement.

However, the precise knowledge of the modulus of the critical multiplier makes
it possible to identify the stability boundary by means of interpolation based on
the stable and unstable measurement points. With the proposed method, it is also
possible to predict the stability boundary by extrapolating the multipliers based on
measurement points in the domain of stable machining parameters, only. In addition,
by continuous the on-line monitoring of the Floquet multiplier, the cutting parameters
can be adapted by ’smart machines’ and a desired robustness can be guaranteed by
keeping the modulus of the critical characteristic multiplier under a specific value.

The structure of the paper is as follows. First, the conventional stability calcula-
tion process is presented for a single-degree-of-freedom system (see Sec. 2). Then, the
basic ideas of the semi-discretization method can be found, which is used to determine
the stability lobe diagrams [6]. This section give the mathematical background for the
identification of the largest modulus of Floquet multipliers. Then, the experimental
method is introduced, which is the main contribution of the paper (see Sec. 3). The
efficiency of the method is presented through a real case study, and the results are
compared to those of the conventional chatter identification methods.
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Figure 1: Dynamical model of milling.

2 Dynamical model of milling

The reliable prediction of the stability limit of a milling process requires the accurate
modeling of tool geometry, cutting force characteristics, precise measurement of the
dynamics of the machine-tool-workpiece system and the cutter workpiece engagement
[5]. The dynamical model presented in this section is based on the experimental setup
to be discussed later in Sec. 3. It is assumed that the machine tool is completely rigid
and the workpiece vibrates perpendicular to the feed direction. The model is presented
in Fig. 1. The equation of motion for such a single-degree-of-freedom system is

mÿ(t) + cẏ(t) + ky(t) = Fy(t), (1)

where m is the modal mass of the workpiece, c is the modal damping, k is the modal
stiffness, y(t) is the position of the workpiece at time t and Fy(t) is the cutting force
component in y direction. It is common to divide both sides by the modal mass m
leading to the equation

ÿ(t) + 2ζωnẏ(t) + ω2
ny(t) =

1

m
Fy(t), (2)

where ζ is the relative damping ratio and ωn is the natural angular frequency.
We present the calculation of the cutting force for simple helical milling tools,

only. The most commonly used milling tools have N cutting teeth with uniform helix
angle β. Note that models for general milling tools can also be found in [34].

According to [6], the tool is divided into elementary segments along the axial
direction z. The relation between the helix angle β and the helix pitch lp is tanβ =
Dπ/(Nlp), where D is the diameter of the tool. Thus, the angular position of the jth

cutting edge along the axial direction reads

ϕj(t, z) = Ωt+ j
2π

N
− z 2π

Nlp
, (3)

where Ω is the spindle speed given in rad/s (n = 60Ω/(2π)). The elementary cutting-
force components in tangential and radial directions acting on tooth j at a segment
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of width dz are given as

dFj,t(t, z) = gj(t, z)Kt hj(t, z) dz, (4)

dFj,r(t, z) = gj(t, z)Kr hj(t, z) dz, (5)

where hj(t, z) is the chip thickness cut by tooth j at axial immersion z, Kt and Kr are
the tangential and radial cutting coefficients, respectively [16]. The screen function
gj(t, z) which shows whether the elementary segment of the tool is inside or outside
the material is given as

gj(t, z) =

{
1, if ϕen < (ϕj(t, z) mod 2π) < ϕex,

0, otherwise,
(6)

where ϕen is the angle position where the cutting starts and ϕex is the angular position
where the edge leaves the workpiece. Then, according to [6], the actual chip thickness
at tooth j can be calculated approximately as

hj(t, z) ≈fz sinϕj(t, z) + (y(t)− y(t− τ)) cosϕj(t, z), (7)

where fz is the feed per tooth in the feed direction x, and τ = 2π/(NΩ) is the tooth-
passing period in case of constant pitch angle. Note that the workpiece is assumed
to be rigid in the x direction, then the chip thickness depends only on vibrations
in y direction. The resultant cutting force in the direction of the vibration is then
calculated as

Fy(t) = −
N∑
j=1

∫ ap

0

(
−Kt sinϕj(t, z) +Kr(t, z) cosϕj(t, z)

)
gj(t, z)hj(t, z)dz, (8)

where ap is the axial depth of cut. The solution of (2) can be written in the form [6]

y(t) = yp(t) + η(t), (9)

where yp(t) is a τ -periodic steady state motion, and η(t) is a small perturbation
around this periodic orbit. After the substitution of (8) into (2) and simplification,
the variational system around the periodic motion is finally formed as

η̈(t) + 2ζωnη̇(t) + ω2
nη(t) = −G(t)

m
(η(t)− η(t− τ)), (10)

where the directional factor (or directional dynamic cutting-force coefficient) reads

G(t) =

N∑
j=1

∫ ap

0

(
−Kt sinϕj(t, z) +Kr cosϕj(t, z)

)
cosϕj(t, z)gj(t, z)dz. (11)

Note that G(t) = G(t+ τ) is a τ -periodic function.
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Figure 2: Schematic figure and experimental setup for milling with single-degree-of-
freedom experimental system.

2.1 Stability criterion

Based on the semi-discretization method presented in [6], the system stability is ap-
proximated by means of the finite-dimensional transition matrix Φ. The detailed
construction of Φ can be found in the Appendix. The eigenvalues of Φ, which are
called characteristic multipliers (or Floquet multipliers), are calculated from the char-
acteristic equation det(µI−Φ) = 0. The system is stable if all the multipliers µi are
located inside the unit circle of the complex plane, that is |µi| < 1 for all i.

3 System identification

In this section, we present an improved validation method, which provides not only
qualitative results (stable/unstable), but also a quantitative measure of stability. The
key idea is to approximate the modulus of the largest Floquet multiplier based on the
measurement data. In this case, the experimental results can be compared directly
to the theoretical predictions obtained by the semi-discretization method.

The experimental procedure is presented for a milling operation of a flexible struc-
ture. The workpiece is clamped onto the top of a flexure, which was designed to mimic
the dynamics of a single-degree-of-freedom system (SDoF). The sketch and the photo
of the experimental setup are presented in Fig. 2a and 2b, respectively. The structure
is flexible only along y direction and can be considered to be rigid in the feed direction
x, as it is presented in Fig. 1. The measured FRF and the fitted FRF can be seen in
Fig. 3, which shows that the single-degree-of-freedom approximation is satisfactory
for the demonstration (data corresponding to the fitted model can be found in Sec.
4).

To be able to analyse the perturbed vibration component η(t) in Eq. (9), it is
necessary to excite the system during the milling operation [32]. The flexure is per-
turbed with an impact (hammer blow) in y direction and the response is measured by
means of a piezoelectric accelerometer. To analyse the displacement and the velocity
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Figure 3: Measured and fitted frequency response functions

signals, double and single integration in frequency domain are used together with an
appropriate high-pass filter.

3.1 Comb filter

According to the theory, the stability properties and the characteristic multiplier can
be determined from the perturbed term η(t), which is superimposed to the periodic
forced vibration yp(t), in Eq. (9). For this purpose, the measured signal has to be
separated into two parts, too.

To obtain the perturbed term, the periodic vibration has to be subtracted from the
measured signal. The separation is based on the so-called comb filter, which is a widely
used method to eliminate the periodic components from a signal [35]. If a periodic
vibration with period τ was a purely harmonic function, then it would be presented as
a single peak in the frequency domain, which is located at the tooth passing frequency
ftp = 1/τ . Since the theoretical cutting force is not a continuous function due to the
tool engagement, therefore the corresponding periodic forced vibration contains the
tooth passing frequency and its integer multiples (higher harmonics, see Fig. 4.a). In
order to separate or subtract the periodic vibration, the tooth passing frequency and
its higher harmonics have to be filtered out from the original signal. It can easily be
done by means of the comb filter, which is usually described in the following form

H(ω) = 1− β exp
( iπωn

fb

)
, (12)

where β is a positive scaling factor, n is the filter order or the number of notches
minus 1 and fb is the filtered base frequency (see Fig. 5.a). Note that in this study,
the DSP System Toolbox of MATLAB and the infinite impulse response (IIR) comb
filter were applied.

In this paper, the base frequency fb is the tooth passing frequency ftp, which can
be identified from the pre-set spindle speed Ω (see black square in Fig. 4) as

ftp =
Ω

2π
N. (13)

However, this frequency would not be accurate enough, since in practice, there is
usually a small deviation (∼ 0.1%) between the pre-set and the realized spindle speeds.
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Figure 4: Accurate detection of the spindle speed. Black square: pre-set spindle speed,
red triangle: first dominant harmonic of the measured signal, green circle: adequate
accurate spindle speed. Panel (b) and (c) represent small error in the detected spindle
speed, which can be magnified significantly for the higher harmonics

Consequently, the precise identification of the realized tooth passing frequency f̂tp (or

the realized spindle speed Ω̂) is required for appropriate filtering (see [19]). An initial
estimation for the realized spindle speed can be calculated from the first dominant
harmonic of the measured signal in frequency domain (see red triangles in Fig. 4.ab).
Even if the frequency resolution is sufficiently accurate and the detected tooth passing
frequency seems to be close to the exact one (see the green circle and red triangle
in Fig. 4.b), the comb filter usually does not work properly, since even a small error
can be magnified significantly at the higher harmonics (Fig. 4.c). It is therefore
advisable to detect a peak at a selected mth higher harmonic of the tooth passing
frequency mftp. In practice, m = 50 was found to be an appropriate choice, because
the accuracy of ftp is 1/m = 2% of the frequency resolution.

Important to note that if run-out occurs in the cutting process, which means that
the cutting edges of a multi-edge milling tool cut different chip thickness during one
revolution, then the first peak in the spectrum of the resulting vibration is not the
tooth passing frequency (ftp = NΩ/(2π)), but the spindle frequency (fs = Ω/(2π)).
In these situations, the principal period of the system is 1/fs and the base frequency
fb for the comb filter is the spindle frequency fs

fb =
Ω

2π
. (14)

The effect of the comb filter is visualized in Fig. 5. The blue curve is the spectrum
of the original signal, and the red one is the filtered signal. It can be seen on the filtered

8



Figure 5: (a) Transfer function of the applied comb filter and (b) the filterred spectrum
of the measured signal. Parameters for the filtering: base frequency fb = 261.7379
Hz, Shelving Filter Order SFO=5, Bandwith BW=5 Hz, Bandwith Gain GBW=−4

signal, that the amplitude of the tooth passing frequency and its higher harmonics are
eliminated and the remaining peaks corresponding to the perturbed term, only. The
time function of the perturbed term can be obtained by means of applying inverse
Fourier Transformation of the filtered spectrum (see, for instance, Fig. 6.c).

Note that the periodic term can be obtained in two different ways. One of them
is to subtract the perturbed term from the original signal, as follows

yp(t) = y(t)− η(t). (15)

The other one is to apply directly the so-called notch filter, which is the counterpart
of the comb filter, therefore it eliminates every frequency component except the base
frequency and its higher harmonics. To summarize briefly, the measured signal of the
system is separated into periodic and perturbed terms according to Eq. (9), as it is
shown in Fig. 6. On the top figures, the original measured signal y(t) is visualized,
where there is a hammer blow after 1 second on the left panel. On the middle figures,
blue curve represents the original signal y(t) and grey plot shows the periodic vibration
yp(t) obtained by the notch filter. The bottom figures represent only the perturbed
term η(t), obtained by the comb filter.

3.2 Determination of the dominant multiplier

In this subsection, the exponential decay of the perturbed term is analysed. Accord-
ing to the theory of linear time-periodic delay-differential equations, the system has
infinitely many characteristic multipliers (µi), each defines a decay ratio. This decay
ratio is proportional to the logarithm of the multipliers (µi), which is proved [36] to
tend to zero as i tends to infinity, similar to the decay ratios of the vibration modes
of continuous beams.

In case of an impulse excitation (hammer blow) all the modes are excited in the
time delayed system, similarly to a continuous beam. Although the system has infinite
number of characteristic multipliers, at the stability boundary usually there is only
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Figure 6: Measurement representation for stable (left panel) and unstable (right
panel) cases. On plot (a): blue is the measured displacement signal. On plot (b):
gray is the forced periodic vibration component of the signal obtained by means of
notch filter. On plot (c): red is the perturbed motion of the measurement obtained
by means of comb filter. Parameters for the stable case (left panel): n = 8100 rpm,
ap = 0.75 mm, ae = 1 mm, fz = 0.05 mm; Parameters for the unstable case (right
panel): n = 8425 rpm, ap = 1 mm, ae = 1 mm, fz = 0.05 mm

one critical real multiplier (or a critical complex conjugate pair of multipliers) on
the unit circle at a time in a generic case, which refers to a single undamped mode.
Based on the above statements, it can be assumed, that the transient vibrations of
the non-critical modes decay relatively fast. Therefore the envelopes of the transient
vibrations are well-approximated by an exponential function corresponding to the
dominant mode only.

3.3 Poincare section

The exponential envelope characterized by the decay ratio of the dominant mode can
be attained by tracking the local maximum of the perturbed displacement signal,
which can be found at time instants where the perturbed velocity is zero (see blue
dots in Fig. 7, which are the counterparts of panel c) in Fig. 6). This method realises a
Poincare section, which is a standard tool in the analysis of nonlinear dynamical sys-
tems [37]. Note that this leads to a well-conditioned point set, because the perturbed
displacement and velocity are calculated from the original measured acceleration by
means of numerical integration in frequency domain.

The determination of the dominant multiplier is based on an exponential curve-
fitting technique. To solve the least-squares optimal curve-fitting problem, it can be
given for the sampled data in a discrete form as

min
γ

∑
i

(F (γ, ti)i − η(ti))
2, (16)

where the subscript i stands for the discrete representation form according to the
Poincare data set, η(t) is the perturbed term, γ is the fitted parameter and F (γ) is
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the trial exponential function given as

F (γ, ti) = η0eγti , (17)

where η0 is the initial amplitude of the perturbed term for the curve-fitting technique.
After a successful fitting of η0 and γ (see fitted exponential curves in Fig. 7), the
modulus of the dominant multiplier is the largest, and it can be calculated as

max |µ| = abs(eγτ ). (18)

Close to the stability boundary (in other words, near to the case in which the
critical multiplier almost crosses the unit circle), the amplitude of the solution segment
decreases very slowly. If the critical multiplier just passes the stability boundary, then
the amplitude of the response is increasing very slowly till the cutting edges leave the
material. This is the so-called fly-over effect, which saturates the vibration amplitude
and ends up in an often chaotic (chatter) vibration [38] (see the right panel of Fig.
9). In this case, there is no need to excite the system by hammer blow to trace
the perturbed term. The slowly increasing amplitude gives an opportunity to fit an
exponential curve to its envelope, (see Fig. 7.b). This phenomenon is visualized in
the right panel of Fig. 6c, where a slight increase in the amplitude of vibration can
be observed (0.75-2.2 s).

After this, a hammer blow is initiated at around 2.2 s (see Fig. 8), and an expo-
nentially decreasing vibration amplitude can be recognized. In fact, it is also visible
in Fig. 8 (after the periodic vibration is subtracted by means of comb filter) that
the amplitude is increasing before the hammer blow, which refers to the presence of
an unstable mode with |µ| > 1. Thus, there is no need to impact to determine the
magnitude of the (unstable) Floquet multiplier.

After the hammer blow, however, an exponentially decreasing vibration amplitude
can be bserved. This decreasing characteristic does not mean that the small amplitude
periodic forced vibration of the machining process is stable; it is still linearly unstable.
The decreasing amplitude does not converge to the periodic forced vibration, but
it converges to a chatter vibration [38, 39], which corresponds to a stable chaotic
attractor (see Fig. 9). By looking only at the initial converging behaviour of the
vibration signal after the impact, there is a risk that a slightly unstable condition is
classified as stable, which would be incorrect. In order to avoid this problem, first,
the signal range before the impact should be analysed, and if this section already
shows unstable behaviour, then the signal after the hammer hit must be omitted.
In some special cases, if we cannot realise the slightly unstable motion before the
hammer hit, we can still recognise the attracting chatter vibration if the filtered
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Figure 8: Unstable measurement case where the periodic vibration is subtracted
by means of comb filter. At the beginning: increasing amplitude of the linearly
unstable machining process; after hammer blow: stable chaotic attractor (chatter).
Parameters: n = 8425 rpm, ap = 1 mm, ae = 1 mm, fz = 0.05 mm
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Figure 9: Envelope of the unstable measurement case (left panel), and schematic
figure of the solution (right panel). Parameters: n = 8425 rpm, ap = 1 mm, ae = 1
mm, fz = 0.05 mm

signal amplitude does not converge to 0. In this special case, we cannot estimate
Floquet multiplier neither before the hammer hit nor after it, but we still can identify
the chatter vibration. With the above described procedure, an unmanned expert
monitoring system can still be established.

If a parameter point selected far from the stability boundary in the unstable
domain, then the increasing vibration reaches the chaotic attractor (chatter motion)
within a very short time, which is insufficient to extract the dominant characteristic
multiplier. However, it is usually not necessary to determine the exact quantitative
value of the multiplier, because this range is far away from the area of interest (the
stability boundary).
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4 Case study

The above described measurement technique is applied in a case study, where the
dominant characteristic multiplier is determined for a set of different spindle speeds.
During one peripheral milling test along straight path, multiple excitations (hammer
blows) were performed. The curve-fitting method is applied with several different
time ranges of the perturbed term to eliminate the influence of the subjective human
time selection. In this way, the deviation of the fitted values are also determined.

The measured multipliers are compared to the theoretically calculated ones, de-
scribed in Sec. 2. For the cutting tests, Aluminum 2024-T351 material was selected.
In order to fit cutting parameters, cutting tests were performed with radial immersion
ae = 2 mm, feed per tooth fz = 0.02, 0.04 and 0.06 mm/tooth and axial immersion
ap = 1 and 2 mm. The TIVOLY P615H endmill had diameter D = 16 mm, num-
ber of flutes N = 2, helix angle β = 30◦ and rake angle κ = 90◦. Since, it nearly
matches the cutting conditions of the experiments, the resulted cutting parameters
are expected to provide reasonably good approximation for the cutting force. Note
that due to the softening nonlinear cutting force characteristics against chip thick-
ness (see [40]), the fitted linear cutting coefficients are somewhat larger than their
expected standard values for the relatively low radial immersion and feed per tooth
rate. During the measurement, the workpiece was mounted on a Kistler dynamometer
plate [41]. The resultant tangential and radial force coefficients are Kt = 2.203 · 109

N/m2 and Kr = 1.723 · 109 N/m2, respectively. The frequency response function of
the flexure is measured by means of impact tests. The fitted modal parameters of the
single-degree-of-freedom system are m = 2.701 kg, ζ = 0.71 % and ωn = 259.96 Hz.

During the experiment, the tool was attached to a spindle adapter BT30 ER16 on a
three axis NCT EMR-610MS machine tool. The experiments were carried out at radial
immersion ae = 1 mm, axial immersion ap = 2 mm, with a down-milling operation
in the spindle speed range [7900, 8100] rpm. The response of the SDoF flexure was
acquired by NI cDAQ-9178 Chassis with NI 9234 Module at 52kHz sampling rate and
PCB 352C23 type acceleration sensor. The multipliers were calculated at least 5 times
for each spindle speed with different time segments, as it is shown with different curves
in Fig. 7. It was necessary, because all measurement data are loaded with uncertainty
and inaccuracy coming from the data acquisition system and the fitted cutting force
coefficients. Furthermore, the selected ranges for the curve fitting in Sec. 3.3 have
some influence on the fitted modulus of the characteristic multipliers.

The actual value of the detected multipliers are approximated by the average
for every spindle speeds and they are presented together with their 95% confidence
level in Table 1. The results are also shown in Fig. 10. The theoretically predicted
variation of the dominant multiplier (based on the semi-discretization method and the
fitted FRF function in Fig. 3) is visualized with thick red curve, and the measured
multipliers are plotted with black dots together with the error bars at 95% confidence
level. Note that these deviations are negligible compared to the variation along the
curve. However, close to the stability boundary, the deviations are much larger and
the data points are off of the visible tendency. These data points (denoted by gray
dots in right panel of Fig. 10) should have been neglected due to the insufficient fitting
as described in the end of Sec. 3.3.

In order to explain the source of this error, the schematic bifurcation diagram in
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Figure 11: Schematic figure of the bistable zone. Gray arrowfield shows the attraction
zone. Green and red horizontal lines represents the stable and unstable stationary
motion, respectively. Red dashed line is an unstable periodic motion which separates
two stable solution (stationary motion and chatter vibration).

Fig. 11 represents the behaviour of the vibration near the linear stability boundary.
The horizontal parameter axis can be divided into 3 parts. At the left and right side,
where the periodic motion is linearly stable or linearly unstable, respectively, the
Floquet multipliers can be identified by means of the proposed method. The param-
eter domain in between is called unsafe or bistable zone since two attractive motions
coexist: stable cutting and (mathematically stable) chatter, which are separated by
an unstable periodic motion [39, 38]. In this range, the vibration can jump from
the linear attraction zone to the chatter motion due to a large-enough perturbation.
Unfortunately, in practise, a really small impact can cause this type of switch and the
linear attraction zone cannot be analysed through the curve fitting method here.

Therefore the source of the error near the stability boundary could be the existence
of the unmodelled unsafe (bistable) zone. Neglecting these unsuitable data points,
there are good correlations between the measured data and the theoretically predicted
multipliers.

Moreover, if a curve fits to the data, the stability boundary can be predicted with
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Figure 12: Top panel: measurement representation for period doubling vibration
with significant run-out effect. Blue is the measured displacement signal and red is
the perturbed motion of the measurement obtained by means of comb filter. Bottom
panel: envelope of the perturbed term from the Poincare sections.

very high accuracy. In this case study, a second order polynomial was fitted to the
measured data points in the form f(n) = a0 + a1n+ a2n

2. The stability boundary ñ
can be given by f(ñ) = 1. The fitted coefficients ai and the coefficient of determination
R2 are presented in Table 2. The measured stability boundary is ñ = 7995 rpm with
deviance n2σ = 14 rpm, which is less then 0.2%, while the theoretically predicted
value is n = 8000 rpm.

Note that the theoretically predicted multipliers are in the confidence interval on
the stable side, however, at the unstable part, the calculated data underestimate the
theoretical ones. One explanation for this can be, that the stable chaotic attractor
and its attraction zone effect the growth ratio near to the unstable periodic orbit [38].

An important advantage of the proposed method is that it is not required to
reach spindle speed ranges corresponding to chatter vibration to detect the stability
boundary. If there are measured points and detected multipliers sufficiently close to
the stability boundary still in the stable domain, then the stability boundary can be
predicted by means of extrapolation.

However, the proposed method has some disadvantages: at the peaks of the sta-
bility boundaries (where two lobes intersect each other), 2 different multipliers cross
the unit circle, therefore, it is not sufficient to approximate the transient vibration
with 1 critical mode only.

In some cases of Hopf bifurcation close to the asymptote of the stability lobe (see
the Hopf lobe in Fig. 10), the time period of the arising self-excited vibration is close to
the tooth passing period, that is, the chatter frequency is approximately equal to the
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Realized spindle speed Characteristic multiplier
Mean value 95% confidence interval

n̂ |µ| 2σ
(rpm) (1) (1)

7902.39 0.9820 3.120×10−3

7927.13 0.9887 2.616×10−3

7952.20 0.9917 2.756×10−3

7962.34 0.9961 0.310×10−3

7972.14 0.9986 0.834×10−3

7977.05 0.9970 2.086×10−3

7982.35 0.9981 0.798×10−3

8012.01 1.0025 1.526×10−3

8022.02 1.0015 2.260×10−3

8027.28 1.0037 1.450×10−3

8032.19 1.0029 0.980×10−3

8052.34 1.0055 2.924×10−3

8077.02 1.0073 2.488×10−3

7992.18 1.0132 8.018×10−3

8002.04 1.0080 8.862×10−3

8001.94 1.0063 6.176×10−3

Table 1: Mean value and standard deviation (at the level of confidence of 95%) of the
measured data. Note that the last 3 measurement points are dropped out.

tooth passing frequency: fch−ftp < BW . Since the applied comb filter eliminates the
tooth passing frequency, and all of its higher harmonics and neighbouring frequency
components within bandwith BW, the useful information is filtered out from the
original measurement signal, too.

Additional cons of the proposed method can be evolved for stability boundary
identification at flip (period-doubling) bifurcation (see the flip lobe in Fig. 10) in case
when the run-out effect is significant and endmill with even number of flutes is used.
Flip bifurcation results that the time period of the arising self excited vibration is
double of the tooth passing period, that is, the chatter frequency is approximately
equal to fch = ftp(j + 1/2), j ∈ N0. Due to the presence of the run-out effect, the
base frequency of the comb filter is the spindle frequency (see Eq. 14), therefore,
its higher harmonics match with the chatter frequency, and the relevant information
for the fitting of the Floquet multipliers is fallen out through the filtering. A flip-
type measurement case is presented in Fig. 12, where the run-out effect cannot be
neglected during the measurement. In this situation, the periodic term can sufficiently
be subtracted with the comb filter, but the perturbed part is inadequate for the
curve fitting algorithm, therefore the multiplier identification is unsuccessful. Further
research is needed to resolve this problem.
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a2 a1 a0 R2 ñ
(rpm−2) (rpm−1) (1) (1) (rpm)

−6.15247× 10−7 9.96882×10−3 −39.3741 ±1.8578×10−3 0.9653 7995± 14

Table 2: Coefficients of the fitted curve with 95% confidence level. Coefficient of
determination R2 and the stability boundary.

5 Conclusion

In this paper, a new method is introduced to identify the stability boundaries of
cutting operations directly from vibration measurements. The standard methods
known from the literature determine the stability properties for a given combination
of manufacturing parameters with great uncertainty that is usually unacceptable in
industry. In this paper, an improved prediction was proposed to estimate the stability
lobe diagram by means of the modulus of the dominant Floquet multiplier. The
method is based on the investigation of the transient vibrations, which are generated
by operational impact tests. The response of the system is captured by acceleration
signals, from which the perturbation about the periodic orbit can be separated by the
use of a comb filter.

With this quantitative measure of the machining process, the variation of the sta-
bility limit can also be traced without switching between stable and unstable cutting
operations. The stability boundary can be determined precisely by means of interpo-
lation between measurement points, furthermore, extrapolation can also be used to
predict the distance from the stability boundary based on stable measurement points
only.

The efficiency and accuracy of the proposed methodology were validated by means
of peripheral milling tests. These results support the technology design to identify
those parameters where the milling process is stable.

Note that all these steps can be obtained from other signals, but the signal/noise
ratio are out of the scope of this work, which can be a significant question for different
type of measurements (e.g.: microphone, acceleration measurement on the spindle
house).

It is still left for future research to improve the method in order to be capable
to detect the dominant Floquet multiplier at certain stability lobe boundaries, where
the arising chatter frequency and the tooth passing frequency are almost equal. This
problem can also appear typically when the stability boundary is related to a period
doubling vibration and even fluted tool is applied with run-out. An automatized
impact excitation is also to be developed to improve industrial applicability.
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Appendix: Semi-discretization

The state-space form of the governing equation (10) with the state vector v(t) =
(η(t) η̇(t))> reads

v̇(t) = A(t)v(t) + B(t)u(t),

u(t) = Dv(t− τ), (19)

where

A(t) =

(
0 1

−(ω2
n + G(t)

m ) −2ζωn

)
, B(t) =

(
0
G(t)
m

)
, D =

(
1 0

)
. (20)

Note that the principal period of the coefficient matrices A(t), B(t) is the same τ as
the time delay. Based on the semi-discretization method presented in [6], the periodic
coefficients are approximated by piece-wise constant terms, i.e.

Ak =
1

h

∫ tk+1

tk

A(t)dt, Bk =
1

h

∫ tk+1

tk

B(t)dt, (21)

where k = 1, 2 . . . p, tk = kh, τ = ph, h is the discretization step and p is the number of
the discretization steps over the principal period τ . Based on the discretized solution
of (19), assuming piecewise constant coefficient matrices, the linear mapping which
projects the solution to the next time step can be formulated as

zk+1 = Gkzk, (22)

where zk = (v(tk)> u(tk−1) · · · u(tk−p))
> and the construction of Gk is detailed in

[6]:

Gk =


Pk 0 · · · 0 Qk

D 0 · · · 0 0
0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0

 , Pk = eAkh, Qk =

∫ h

0

eAk(h−s)Bkds, (23)

where I denotes the 1-dimensional identity matrix. Finally, the system stability is
approximated by means of the finite-dimensional transition matrix Φ as

zk+p = Φzk = Gk+p−1Gk+p−2 · · ·Gkzk. (24)
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