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Abstract

Reliable prediction of machine tool chatter is an essential problem in efficiency-oriented machine tool centers, since it requires the
precise characterization of the dynamics of the machine-tool-workpiece system and the cutting force characteristics. Due to imper-
fect measurements, noise, uncertain and varying operational conditions, the mathematical models provide a deficient representation
of the system. This leads to the need for the adaptation of robust stability analysis methods, which guarantee stability against
bounded uncertainties and perturbations. In this paper, a frequency-domain approach is presented to calculate the robust stability
boundaries of chatter-free machining parameters for milling operations. The idea is based on the concept of the stability radius and
structured singular values, which is combined with the extended multi frequency solution. The proposed method is tested in a real
case study.
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1. Introduction

Industrial manufacturing experiences an increasing competi-
tion due to the recent development of powerful machining cen-
ters equipped with high-speed spindles and robust slide ways.
Optimization of machining processes is an indispensable ob-
jective of the efficiency oriented industry. One of the strongest
limitation in the industrial utilization of these high-performance
machines is the undesired and harmful self-excited vibration,
called machine tool chatter, that spoils the surface quality, in-
creases the toolwear and reduces the life-time of the machine
components. Reliable prediction of these vibrations is there-
fore an important task for manufacturing engineers.

The first mathematical models dealing with the self-excited
vibrations in machining operations appeared in the work of To-
bias [1] and Tlusty [2] in the 1950s and 1960s. After their pi-
oneering research, the so-called regenerative effect became the
most commonly accepted explanation for machine tool chatter.
During the manufacturing process the vibrating tool leaves a
wavy surface behind, which affects the chip thickness and in-
duces variation in the cutting-force one revolution later. From
the dynamic system’s point of view, chatter is associated with
the loss of stability of the stationary (chatter-free) machining
process followed by a large amplitude self-excited vibration be-
tween the tool and the workpiece.
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The stability properties of machining processes are depicted
by the so-called stability lobe diagrams, which plot stable
(chatter-free) domains in the plane of technological parameters
(usually the spindle speed and the depth of cut). These diagrams
provide a guide to the machinists to select optimal machining
parameters and to avoid undesired vibrations.

There exist several mathematical methods to analyze the sta-
bility properties of machining operations and to construct sta-
bility lobe diagrams. Some of them apply the measured fre-
quency response functions (FRFs) directly, such as the single-
frequency solution or zero-order approximation (ZOA), the
multi-frequency solution (MFS) [3, 4] or the extended multi-
frequency solution (EMFS) [5]. Other time-domain based tech-
niques, such as the semi-discretization method [6, 7], the full-
discretization method [8], the integration method [9] and their
extension by the implicit subspace iteration method [10], the
Chebyshev collocation method [11, 12] and the spectral ele-
ment method [13], require fitted modal parameters as input. In
spite of the large number of available numerical methods, ap-
plication of stability lobe diagrams is still not considered to be
an essential element of machining. The primary reason for this
is that the prediction of chatter-free technological parameters
is not reliable enough to convince decision-makers. The input
data used for the stability analysis, namely, the dynamics of
the machine tool center and the parameters of the chip removal
process model, contain many uncertainties and are loaded with
measurement noise. These uncertainties together with model
reductions and simplifications lead to an impaired representa-
tion of the real dynamical system.

Due to its simplicity, impact test is one of the most commonly
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used method to characterize the dynamics of the machine tool
system and to obtain the frequency response functions. Dy-
namic measurements by impact tests are, however, affected by
several uncertain factors: statistical variations, imperfect cali-
bration coefficients for the hammer and transducer or misalign-
ment between the intended and actual force direction during
impact. For a detailed uncertainty analysis of measured FRFs
see [14, 15].

Despite the need for a reliable method to predict robust sta-
bility lobe diagrams, only a few work have been published in
this topic. The edge theorem combined with the zero exclusion
method is presented in [16, 17] and compared to the results ob-
tained by linear matrix inequalities in [18]. A robust chatter pre-
diction method (RCPM) is introduced in [19], which applies a
probabilistic approach and considers the parameters as random
variables. A different concept based on fuzzy stability analy-
sis is detailed in [20]. The above mentioned techniques require
fitted modal parameters (and cutting parameters) as input vari-
ables, and the calculation time significantly increases with the
number of uncertainties, therefore most of them are limited to
systems with few uncertain parameters. In [21], an approximat-
ing numerical method is proposed, which provides confidence
levels of stability boundaries for higher number of uncertain
parameters. Robust stability analysis of turning processes is
presented in [22] by means of envelope fitting around the mea-
sured FRFs combined with the single-frequency method. This
method, however, cannot be applied to time-periodic processes,
such as milling operations.

This paper presents a completely frequency-based solution
for the robust stability analysis of milling processes, which
utilizes directly the uncertainty of the measured frequency re-
sponse functions and requires no fitted modal parameters. The
stability analysis for milling operations is based on the extended
multi-frequency solution [4, 5], while the robust stability anal-
ysis is applied according to the concept of structured singular
values (µ-values) [23, 24]. The presented algorithm is able
to generate robust stability lobe diagrams in reasonable time,
which is an advantage in industrial applications.

The structure of the paper is as follows. In Section 2 the
dynamical model of milling is introduced. Section 3 gives a de-
tailed description on the stability analysis in frequency domain
in a form, which is suitable for the robust stability analysis of
the system. The structured singular value calculation is pre-
sented in Section 4. The combination of these two concepts
gives the new results in Section 5, which also highlights several
numerical issues to solve the problem efficiently. The method
is tested in a real case study in Section 6. The results are con-
cluded in Section 7.

2. Dynamical model of milling

In this section, cutting force model is presented for conven-
tional helical milling tools with uniform helix angle, which are
the most often used type of tools in the industry. Note, however,
that the methods introduced in this paper can be extended to
tools with nonuniform helix angles [25], variable pitch [26, 27],
serrated cutter and distributed delay models [28], too.
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Figure 1: Dynamical model of milling with rigid workpiece and compliant tool.

The helical tool shown in Figure 1 has N teeth of uniform he-
lix angle β. According to [7], the tool is divided into elementary
disks along the axial direction. The relation between the helix
angle β, diameter d and the helix pitch lp is tan β = dπ/(Nlp),
thus the angular position of the cutting edges along the axial
direction reads

ϕ j(t, z) =
2πΩs

60
t + j

2π
N
− z

2π
Nlp

, (1)

where z is the coordinate along the axial immersion and Ωs is
the spindle speed given in rpm. The elementary cutting-force
components in tangential and radial directions acting on tooth j
at a disk element of width dz are

dF j,t(t, z) = g j(t, z)
(
Kt,e + Kt,ch j(t, z))

)
dz, (2)

dF j,r(t, z) = g j(t, z)
(
Kr,e + Kr,ch j(t, z))

)
dz, (3)

where h j(t, z) is the chip thickness cut by tooth j at axial im-
mersion z, Kt,e and Kr,e are the tangential and radial edge force
coefficients, Kt,c and Kr,c are cutting force coefficients [29].
The screen function g j(t, z), which indicates whether the cut-
ting edge is in contact with the material or not, reads

g j(t, z) =

1, if ϕen < (ϕ j(t, z) mod 2π) < ϕex,

0, otherwise,
(4)

where ϕen and ϕex are the entry and the exit immersion angles.
The position vector of the center of the tool-tip at time t is

denoted by r(t) = (x(t) y(t))>. The actual chip thickness at
tooth j then can be calculated approximately as

h j(t, z) ≈ (fz + r(t) − r(t − τ))>
(
sinϕ j(t, z)
cosϕ j(t, z)

)
, (5)

where vector fz = ( fz 0)> describes the feed per tooth in direc-
tion x, and the tooth-passing period in case of constant pitch
angle is τ = 60/(NΩs). The resultant cutting force vector
F(t) = (Fx(t) Fy(t))> can be calculated as

F(t) = −

N∑
j=1

∫ ap

0
T j(t, z)

(
Kt,e + Kt,ch j(t, z)
Kr,e + Kr,ch j(t, z)

)
g j(t, z)dz, (6)
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where the transformation matrix is

T j(t, z) =

(
cosϕ j(t, z) sinϕ j(t, z)
− sinϕ j(t, z) cosϕ j(t, z)

)
. (7)

Assuming small perturbation ε(t) about the periodic motion
rp(t) = rp(t + τ) of the stationary cutting, i.e. r(t) = rp(t) + ε(t),
the cutting force can be expanded as

F(t) = F(t)
∣∣∣
rp(t) + Dr(t)F(t)

∣∣∣
rp(t)(ε(t) − ε(t − τ)), (8)

where Dr(t) is the gradient w.r.t. r(t) [25]. Derivation for non-
linear cutting force characteristics and generalized milling tools
are presented in [25, 28]. In order to simplify the notation, the
directional matrix is introduced as

G(t) := Dr(t)F(t)
∣∣∣
rp(t), (9)

which is time-periodic with period τ [7].

3. Extended multi-frequency solution

Stability analysis of milling operations in frequency do-
main is an elegant approach, since no modal parameter fitting
is required and direct application of measured frequency re-
sponse functions is possible. One of the first frequency-domain
method was the zero-order approximation (ZOA) proposed in
[3], which approximates the periodic coefficients with constant
averaged terms. This approximation, however, leads to im-
perfect stability charts for highly interrupted cutting such as
low immersion milling. The ZOA method was improved to
the multi-frequency solution (MFS) in [4], where the higher
Fourier harmonics in the periodic terms were also considered.
In order to reduce the computational effort, the extended multi-
frequency solution (EMFS) was presented in [5]. In this sec-
tion, the EMFS technique is presented briefly for single point
delay, which is then extended to robust stability analysis in the
subsequent sections.

The dynamic behavior of the system in the frequency domain
is represented by

r(ω) = H(ω)F(ω), (10)

where r(ω) is the Fourier transform F of the position vector
r(t), F(ω) is the Fourier transform of the force vector F(t),
while H(ω) is the frequency response function matrix of the
tool [30]. During the stability analysis, the periodic motion
can be separated, and only the stability of the perturbed motion
ε(t) = r(t) − rp(t) about the periodic orbit has to be considered.
The Fourier transform of (8) with the use of (10) and after sim-
plification with the stationary part yield

ε(ω) = H(ω)G(ω) ∗
(
ε (ω)

(
1 − e−iωτ

))
, (11)

where ∗ denotes the convolution and G(ω) is the Fourier trans-
form of G(t). According to the Floquet theory [31], the solution
at the stability limit has the trial form

ε(t) = p(t)eiωct, p(t) = p(t + τ), (12)

where ωc is the chatter frequency. The periodic functions can
be expanded to Fourier series and can be represented by Dirac
delta functions δ(ω) in the frequency domain as

p(ω) =

∞∑
k=−∞

pkδ(ω − kΩ), (13)

F (eiωct) = δ(ω − ωc), (14)

G(ω) =

∞∑
l=−∞

Glδ(ω − lΩ), (15)

where indices k and l refer to the corresponding Fourier com-
ponents and Ω = 2π/τ. Then (11) can be reformulated as

∞∑
k=−∞

pkδ(ω − kΩ − ωc) = H(ω)
∞∑

l=−∞

Glδ(ω − lΩ)

∗

∞∑
k=−∞

pkδ(ω − kΩ − ωc)
(
1 − e−iωτ

)
. (16)

Using the shifting theorem in the form

δ(ω − lΩ) ∗ δ(ω − kΩ − ωc) = δ(ω − (l + k)Ω − ωc), (17)

the convolution of two discrete series can be rearranged as a
Cauchy product and (16), after simplification with the indices,
can be written as

∞∑
k=−∞

pkδ(ω − kΩ − ωc) = H(ω)
∞∑

l=−∞

∞∑
k=−∞

Gl−k

×pkδ (ω − lΩ − ωc)
(
1 − e−iωτ

)
. (18)

The sampling effect of the Dirac delta functions on H(ω) and
e−iωτ leads to

∞∑
k=−∞

pkδ(ω − kΩ − ωc) =

∞∑
l=−∞

∞∑
k=−∞

H(lΩ + ωc)Gl−k

×pkδ (ω − lΩ − ωc)
(
1 − e−i(lΩ+ωc)τ

)
. (19)

The equality holds for all Dirac delta functions. This results an
infinite-dimensional system in the form

...
p−1
p0
p1
...


=



. . .

A−1,0 A−1,−1 A−1,−2
A0,1 A0,0 A0,−1
A1,2 A1,1 A1,0

. . .

︸                                         ︷︷                                         ︸
=: Q∞



...
p−1
p0
p1
...

︸︷︷︸
=: u∞

, (20)

where

Am,n = H(mΩ + ωc)Gn

(
1 − e−i(mΩ+ωc)τ

)
. (21)

The infinite dimensional matrix Q∞ is a variation of Hill’s in-
finite matrix [32], which can be approximated by truncation to
the first ±r frequency components to get the truncated matrix
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Q ∈ C2(2r+1)×2(2r+1) and vector u ∈ C2(2r+1). The existence of
a periodic solution about the stationary motion at some ωc re-
quires that

(I −Q) u = 0, (22)

that is,
det (I −Q) = 0, (23)

where I is the identity matrix with the appropriate dimensions.
Note, that Q is a function of ωc, which is omitted in order to
simplify the notation. The chatter frequency therefore has to be
analyzed over a given interval to check whether (23) is satisfied
or not. In this form, the solution can be applied for any tool ge-
ometry and any tool dynamics described by the formulas above,
see [5, 25].

Note, that the truncated Hill’s matrix can be represented as a
product of matrices as

Q = UEW, (24)

where the decomposed matrices separate the dynamics, the re-
generative delay and the force model. The structures are

U = ⊕r
m=−r H(mΩ + ωc),

E = ⊕r
m=−r I

(
1 − e−i(mΩ+ωc)τ

)
,

Wm,n = Gm−n, m, n ∈ [−r, r] (25)

where W is a Toeplitz matrix with elements G j, and ⊕ denotes
the matrix direct sum, i.e.

⊕r
j=−rA j = diag(A−r, . . . ,Ar). (26)

Similarly to Q, matrices U and E also depend on the chatter
frequency ωc, although the notation is omitted for the sake of
simplicity. The stability boundaries for the system with deter-
ministic parameters can be determined using equation (23). In
the next sections, the robust stability analysis in case of uncer-
tain frequency response functions is described.

4. Robust analysis

Analysis of robustness of systems with respect to parametric
uncertainties is typically a time-consuming process and eval-
uation time significantly depends on the number of uncertain
variables. Methods such as the edge theorem combined with
zero exclusion [16, 17] or the RCPM [19] are efficient tools for
low number of parameters only. Let us use the notation δ for
the perturbations. For instance, perturbation of the FRF matrix
H(ω) is δH(ω) and the perturbed FRF matrix is H(ω) + δH(ω).
Then the truncated Hill’s matrix can be written as

Q + δQ = (U + δU) EW, (27)

where

δQ = δUEW, (28)
δU = ⊕r

m=−r δH(mΩ + ωc). (29)

Note, that the structure of δU is constrained to block-diagonal
matrices. Inserting the perturbation (27) into (23) yields

det (I − (U + δU) EW) = 0. (30)

Robustness of the system can be measured by finding the small-
est δU from the possible perturbations such that (30) holds. For
this analysis, the concept of structured singular values is used,
which is introduced briefly in the next subsection.

4.1. Introduction of structured singular values

The original concept of structured singular values (µ-values)
was introduced in [23] to analyze the effect of block-diagonal
perturbations of matrices. Since its first application, the method
was found to be an effective tool in the analysis of robustness of
dynamic systems subjected to perturbations or in the control de-
sign for systems with structured and unstructured uncertainties
[24].

Let us consider a general matrix M ∈ Cm×n, a perturbation set
∆s ∈ Cn×m and a given norm ‖ · ‖. Then the µ-value of M is the
inverse of the smallest ‖∆‖, ∆ ∈ ∆s, such that 1 is an element
of the spectrum of the matrix product ∆M (see [24, 33]). An
equivalent definition, which is more meaningful in our context,
says that the µ-value of matrix M is the inverse of the smallest
perturbation such that det(I − ∆M) = 0, i.e.

µ(M) =

(
inf

{
‖∆‖, ∆ ∈ ∆s, det (I − ∆M) = 0

})−1
. (31)

Note, that the larger the µ-value is, the less robust the system is.
The definition of µ, however, does not provide any calcula-

tion method. Formulas for the determination of µ in case of
complex perturbations are presented in [33, 34], and for real
cases in [33, 35], just to mention a few.

Precise calculation of structured singular values, however, is
based on the solution of a convex optimization problem solved
in the form of linear matrix inequalities [34], therefore it can be
extremely time-consuming for large dimensions.

Unfortunately, it is also shown that the exact µ-values cannot
be determined exactly for arbitrary perturbation structures [23].
Instead, an upper and a lower bounds can calculated, which
might also be suitable for practical applications.

In order to provide an efficient formula for the characteri-
zation of the robustness of milling operations, a fast and effi-
cient technique is required. In the forthcoming part the concept
introduced in [24] is presented briefly, then its application for
milling operations is detailed in Section 5.

Let us introduce a real-valued weight matrix R = [R j,k],
R j,k ≥ 0, ∀ j, k (a non-negative matrix) and a weighted maxi-
mum norm defined as

‖∆‖m := max
j,k

R−1
j,k |∆ j,k |, (32)

where subscript m refers to the maximum norm. In this case the
following equivalence holds for ∆

‖∆‖m ≤ 1 ⇔ |∆ j,k | ≤ R j,k, ∀ j, k. (33)
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Consequently, if ‖∆‖m = 1, then there exists at least (but not
necessarily) one element in matrix R such that |∆ j,k | = R j,k.
Then an upper bound on µ-values can be given by the relations

µ(M) = max
‖∆‖m=1

ρ (∆M) ≤ ρ
(
RM̃

)
= ρ

(
M̃R

)
, (34)

where ρ denotes the spectral radius, and M̃ is a non-negative
matrix with M̃ j,k = |M j,k | (see [24]). It is also shown in [24],
that the µ-value and the so-called stability radius rC of a char-
acteristic matrix P(ω) have the connection

rC =

(
sup
ω≥0

µ (P (ω))
)−1

, (35)

where the stability radius gives a measure from the distance of
instability. If rC = 0, then the system is on the boundary of sta-
bility, while as rC → ∞, the system guarantees stability against
infinitely large uncertainties defined by the perturbation struc-
ture ∆s. It is important to note, that at rC = 1 there exists a
perturbation matrix, which just drifts the system to the bound-
ary of stability, in other words, the system is on the boundary
of robust stability.

Detailed derivations, theorems and proofs related to the topic
for general cases can be found in [24]. An important note is that
the inequality in (34) is actually an equality if M is a diagonal
matrix (see [24]).

5. Application of structured singular values in milling

Analysis of robustness of milling operations requires the rep-
resentation of the governing equation in the ∆M structure, and
the determination of bounds for the uncertainty denoted by ma-
trix R.

If the perturbation of the frequency response functions is
bounded along the frequency, then there exists δH̃(ω) matrix,
such that

0 ≤ |δH j,k(ω)| ≤ δH̃ j,k(ω), j = 1, 2, k = 1, 2, ω ≥ 0, (36)

where indices represent the elements of the frequency response
function matrix. Note, that H j,k(ω) is a complex, while δH̃ j,k(ω)
is a positive real function. Therefore, the perturbations δH j,k(ω)
can be represented by disks with varying radius δH̃ j,k(ω) around
the graph of H j,k(ω) along the frequency ω.

The perturbed governing equation (see (30)) implies

(I − (U + δU) EW) u = 0, (37)

then some algebraic manipulation gives

u = (I − UEW)−1 δUEWu. (38)

Multiplication of both sides by EW, introducing new variable
v = EWu and simplification by (24) gives

v = EW (I −Q)−1 δUv, (39)

from which a standard form is obtained after bringing all the
terms to the left-hand side(

I − EW (I −Q)−1 δU
)

v = 0. (40)

The nontrivial solution of the equation implies that

det
(
I − EW (I −Q)−1 δU

)
= 0. (41)

Clearly, this is identical to the ∆M structure, where ∆ = δU and
M = EW (I −Q)−1. Note that the opposite order of the multi-
plication of the terms M and ∆ does not affect the determinant
and the spectrum due to Sylvester’s determinant identity. Ac-
cording to [24], an upper estimation on µ can be given by (34),
where

M̃ j,k = |EW (I −Q)−1
j,k |, (42)

and |δU j,k | ≤ R j,k ∀ j, k. Since the perturbation of the FRF ma-
trix is bounded, the weight matrix R can be calculated as

R = ⊕r
m=−r δH̃(mΩ + ωc). (43)

Note again, that similarly to matrices Q, U and E, the weight
matrix R and M̃ are also functions of ωc, therefore µ has to
be evaluated along the chatter frequency. Finally the relation
between the stability radius and µ-values gives

rC > r̃ :=
(
sup
ωc≥0

ρ(M̃R)
)−1

, (44)

where r̃ is a lower estimation of the stability radius, therefore it
gives conservative estimation. The robust stability boundary is
given by the level curve r̃ = 1.

Note, that the conservatism of the stability radius can be
reduced, if the µ-values are calculated with conventional al-
gorithms (see. [34]), however, it might lead to extremely long
computational time. A numerical study is given in the Ap-
pendix, comparing the proposed algorithm to the conventional
method. Another way to reduce the difference between the cal-
culated stability radius and real robust bound is to separate the
real and imaginary parts of the frequency response function,
and define the real-µ problem, see [36]. Again, an important
drawback is the significant calculation effort required to obtain
the robust stability boundaries even for the simplest models. In
order to keep the computational effort at low cost, these exten-
sions are omitted in this study and only the bound defined by
Eq. (34) is used.

5.1. Efficient calculation

The computation of the robust stability boundary is always
time-consuming compared to the stability analysis of the deter-
ministic system. Therefore optimization of the numerical tech-
niques is of high importance. In this subsection a few numerical
issues are discussed.

The EMFS is an efficient method for the stability analysis
of the deterministic system [5]. The stability boundaries in the
plane of spindle speed and depth of cut can be determined if
the chatter frequency ωc is considered as an extra third param-
eter of the stability chart. The sweeping range of the chatter
frequency can be restricted to ωc ∈ [0, Ω/2], since Q is Ω-
periodic, that is, Q(ωc) = Q(ωc + Ω), and has the symmetry
Q(ωc) = Q̄(−ωc). An effective tool to find the roots of (23)
is the so-called multi-dimensional bisection method (MDBM)
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Figure 2: Measured frequency response functions.

[37]. Multiple boundary lines, closed curves of stable and un-
stable islands in the stability charts can all be found automat-
ically using the MDBM. The efficiency of the method can be
further increased if the required number of harmonics are lim-
ited according to the formula r = ceil(ωmax

n τ/π), where ωmax
n is

the highest relevant natural angular frequency of the system [5].
The computation time of the robust stability boundary can be

reduced using the above mentioned solutions; however, some
important changes have to be made. One of the most important
advantages of the EMFS is that it requires the computation of
a determinant of a matrix, which is usually much faster than
eigenvalue computations. According to (34), robust stability
boundaries can be determined via computing the largest eigen-
value of the matrix product M̃R. Since both matrices have non-
negative entries only, their product is a nonnegative matrix, too,
therefore the Perron-Frobenius theorem can be applied. Ac-
cording to [38], a matrix A with entries a j,k > 0 always has
a positive real eigenvalue γ (called Perron root or the Perron-
Frobenius eigenvalue) which is larger in magnitude than any
other eigenvalue. At the robust stability boundary it is known,
that r̃ = ρ(M̃R)−1 = 1 at some ωc, which condition can be
reformulated as

det(M̃R − I) = 0. (45)

Note that this determinant is now a real number, therefore (45)
gives a single scalar equation, as opposed to the MFS, where a
complex valued determinant gives two independent scalar equa-
tions. The final condition, which has to be evaluated along the
plane of the machining parameters (Ωs, ap) to find the robust
boundary is

min
ωc∈[0,Ω/2]

(
det

(
M̃R − I

))
= 0, (46)

where both M̃ and R are non-negative real matrices and are
functions of ωc.

Since the extremum is sought along the chatter frequency
ωc, the function (45) should be numerically differentiated. This
leads to noisy results when applied to measured FRFs directly.
Therefore the chatter frequency should be swept numerically
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Figure 3: Envelope calculated from the variance of Hxx(ω).

with a sufficiently small frequency step dω from 0 to Ω/2 in
order to find the minimum. The parameter space (Ωs, ap), how-
ever, can be iterated by the bisection method [37].

Another problem with the evaluation of the robust stability
boundary is that, similarly to the EMFS, it does not distinguish
the stable and unstable parameter domains. In order to avoid
unnecessary computations in unstable regions, first the stability
of the parameter point should be determined. Unstable param-
eter points can be excluded from the iteration using the Cauchy
Argument Principle, similarly to the Nyquist criterion [5, 39].
Since the frequency is already swept with a fixed resolution, the
number of unstable multipliers can be calculated. The determi-
nant in (23) forms a closed parametric curve in the complex
plane as a function of ωc ∈ [−Ω/2,Ω/2]. If this curve has a
positive number of clockwise encirclements of the origin then
the system is unstable [5]. The number P of poles along the
interval ωc ∈ [−Ω/2,Ω/2] can be calculated as

P =
1
πi

∫ Ω/2

0

D′(ωc)
D(ωc)

dωc, (47)

where
D(ωc) = det (I −Q(ωc)) , (48)

(·)′ denotes differentiation with respect to ωc and i2 = −1.
A flowchart is presented in the appendix in Figure 5, which

gives the necessary steps to calculate the robustness of a single
parameter point (Ωs, ap). In order to calculate the whole stabil-
ity lobe diagram, the same process has to be evaluated along the
points of the diagram.

6. Experiment

An experiment is carried out in an NCT EmR-610Ms type
milling machine with a Tivoly P615H tool. Modal experiments
are performed at the tool-tip using a National Instruments data

Table 1: Parameters for the milling tests.
Tool Tivoly P615H

N = 2, d = 16 mm, β = 35◦

Workpiece Aluminum 2024-T351
Kt,e = 13.9 N/mm, Kt,c = 1336 N/mm2

Kr,e = 22.3 N/mm, Kr,c = 593 N/mm2

Process Up-milling, ae = 1 mm, fz = 0.05 mm/tooth
(ϕen = acos(2ae/d − 1), ϕex = π)
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acquisition device, a Brüel&Kjær 2302-10 impact hammer and
a PCB acceleration sensor. The cutting parameters are fitted
onto cutting experiments measured by a Kistler dynamometer.
The measured material was an aluminum alloy 2024-T351. The
theoretical parameters are listed in Table 1.

During the modal analysis, the tool was measured five times
both in the main- and in the cross directions. Then it was de-
tached from the spindle, and then remounted to simulate the
tool change procedure. The whole process was repeated six
times. Note, that in order to emphasize the measurement un-
certainty, each individual frequency response function was cal-
culated from a single impact test without any additional aver-
aging. The resulting transfer functions (30 in each case) and
the average of those can be seen in Fig. 2. The actual dynami-
cal properties of the complete machining system may vary with
the spindle speed, ambient temperature, spindle temperature,
etc. It is also observed that removing and replacing the tool
modify slightly the tool-tip-dynamics as the micro contact area
between the tool holder and the spindle changes. The dynamic
stiffness may also vary slowly in time due to the uncertain con-
tact area. All of these effects are not taken into account in the
conventional mechanical models and averaging does not solve
this issue since FRFs are measured typically before the cutting
tests. Instead of considering the complex contact phenomena,
we assume that the FRF is loaded by some static uncertainty.
This is also relevant in the industry, since the tool cannot be
continuously measured during machining operations.

If the uncertainties of the measured FRFs are known, then
the weight matrix R can be constructed. Here we describe the
uncertainties by the variance only (similarly to a normal distri-
bution). The variance of the complex function is then calculated
as

σ(u(ω) + iv(ω)) =
√
σ(u(ω))2 + σ(v(ω))2. (49)

An example is presented in Fig. 3, which shows the boundaries
corresponding to 1σ, 2σ and 3σ. This figure also highlights the
drawback of the method. During the calculation of the µ-values,
only a circular uncertainty can be considered, while the covari-
ance between the real and imaginary values is omitted (for a re-
lated study, see [14]). Therefore the fitted envelope can be con-
sidered as a conservative estimation, which may unnecessarily
overestimate uncertainty. If the distribution of the frequency
response functions is normal, moreover the real and imaginary
values are independent, then the boundary 1σ includes approx-
imately 68% of the points. This is, however, not true, in our
case: the real and imaginary values are not independent but are
distributed mainly along a line in the complex plane as it can
be seen in Fig. 3. Therefore the application of 1σ already gives
a more conservative estimation than it would give for an ideal
normal distribution with independent real and imaginary parts.

In order to compare the different scenarios, the robust sta-
bility lobe diagrams were calculated for uncertainty level 1σ,
2σ and 3σ, respectively. The results of the computation can be
seen in Fig. 4 a), where the nominal boundary is indicated by
solid black line, the corresponding domain of stable machining
parameters is denoted by gray shaded area, while the differ-
ent robust stability boundaries corresponding to different levels

D
ep

th
 o

f 
cu

t 
(a

p
 )
 [
m

m
]

Spindle speed (Ω
s
) [rpm]

Chatter

Stable

a)

0

30

25

20

15

10

5

10 11 12 13 14 15 16 17 18 19 20
×103

1σ
2σ

3σ

Robust stability lobe diagram

D
ep

th
 o

f 
cu

t 
(a

p
 )
 [
m

m
]

Spindle speed (Ω
s
) [rpm]

Stable

b)

0

30

25

20

15

10

5

10 11 12 13 14 15 16 17 18 19 20
×103

1σ

Validation by random FRFs

D
ep

th
 o

f 
cu

t 
(a

p
 )
 [
m

m
]

Spindle speed (Ω
s
) [rpm]

Stable

c)

0

30

25

20

15

10

5

10 11 12 13 14 15 16 17 18 19 20
×103

Validation by measured FRFs

1σ
2σ

Figure 4: Case study: a) Conventional and robust stability boundary b) Val-
idation of robust stability boundary c) Comparison with measured frequency
response functions.

of uncertainties are indicated by dashed black lines. It can be
seen that the sensitivity along the spindle speed is not uniform,
some boundaries can change drastically if the FRF matrix is
perturbed.

The calculations were carried out in MATLAB environment,
simulation were run on a personal computer with Intel Core i7-
4510U 2.00 GHz CPU and 8 GB RAM.

In order to validate the accuracy of the numerical method,
100 random FRF matrices were generated numerically from the
uncertain domain bounded by 1σ, and the corresponding sta-
bility lobe diagrams were calculated. The results are presented
in Fig. 4 b), where the solid gray lines indicate the boundaries
corresponding to the perturbed FRF matrices. The predicted ro-
bust stability lobe diagram bounds the perturbed curves, while
the mismatch between them is not significant.

In Fig. 4 c) the effect of the real measured FRF matrices are
compared to the predicted robust stability lobe diagrams. Since
the frequency response functions were measured 30 times in
each direction, the possible combination of the FRF matrix is
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304 = 810 000. Clearly, all of those cannot be evaluated within
reasonable time, therefore only 100 random combinations were
selected.

The calculation of the corresponding 100 stability lobe di-
agrams took 28 912 sec (approx. 8 hours in total, 289 sec
for each), while the robust stability boundary was determined
within 295 seconds (4.9 min).

The perturbed stability lobe diagrams, similarly to the pre-
vious case, are indicated by solid gray lines. It was found that
the 1σ level curve characterizes well the robustness of the mea-
sured system. There are only two FRF combinations, which re-
sults stability boundaries below the predicted robust boundary,
these cases however have very small probability. Therefore in
98% of the calculations the predicted robust stability boundary
with 1σ uncertainty was found to be sufficient. The reason for
this high percentage is that the circular bounds generally over-
estimate the actual uncertainty, while 1σ underestimates it, as
shown by Fig. 3. In case of more rigorous conditions, the level
curve 2σ might be considered.

7. Conclusion

The extended multi-frequency solution and the method of µ-
analysis were combined to determine robust stability bound-
aries for milling operations with uncertain dynamics. The mea-
sured FRFs can directly be applied, and no modal parameter
fitting is required, which is an essential aspect for industrial ap-
plications [5].

Several numerical issues were discussed in order to speed up
the computation significantly. Based on a series of numerical
tests, it can be stated that under optimized resolutions and set-
tings, the computational time of the robust stability boundaries
is approximately 2-5 times longer than the calculation of the
conventional stability lobe diagram.

The definition of stability radius in terms of the µ-values was
found to be an effective method in the analysis of sensitivity
of milling operations with respect to FRF-based uncertainties.
When the measured frequency response functions are loaded
with significant noise, then uncertainty can be characterized by
the variance of the measurements. The proposed concept uti-
lizes directly the uncertainty of the transfer function matrix,
which can be calculated during the sequentially repeated modal
experiments.

The results were tested in a real case study and recommen-
dations are given on the evaluation of the uncertainty envelope.
The frequency response functions were measured at the tool tip
30 times in each direction, and the variance of the measure-
ments was calculated. The robust stability lobe diagrams were
determined for uncertainty levels 1σ, 2σ and 3σ. The results
were validated from two aspects. First, numerically generated
FRFs were tested in order to validate the conservativeness of
the mathematical method. It was found that the predicted and
real robust boundaries show good agreement. Second, the real
measured FRFs were considered and the stability lobe diagrams
were obtained for 100 different combinations. The case study
revealed that the uncertainty level 1σ gives a reasonable ap-

proximation of the true robustness. In case of even more rigor-
ous conditions, the 2σ level is recommended, however, it might
be unnecessarily conservative.
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Appendix

Computational algorithm
If the input data are known, then the robustness of a single

parameter point (Ωs, ap) can be evaluated. The flow chart cor-
responding to the evaluation process is presented in Fig. 5. In
order to calculate the whole stability lobe diagram, the same
process has to be repeated. To refine the boundaries, a bisection
method can be utilized according to [37].

Comparison with conventional method
The µ-analysis introduced by [23] bounds the exact µ-value

from above and below by the limits

max
U∈U

ρ(UM) ≤ µ(M) ≤ inf
D∈D

σ̄(DMD−1), (50)

where

U ={U ∈ ∆ : U∗U = I}, (51)
D ={0 < D = D∗ : D∆ = ∆D}. (52)

The corresponding computational algorithms are included in
the Matlab µ-Analysis and Synthesis Toolbox [40]. The bounds
can be computed by the built-in mussv function.

The comparison of the two approaches is not straightforward,
since the structure of the uncertainty is not arbitrary. Here, we
perform a comparison for the case when the variations in the
cross frequency response functions are neglected. In this case,
matrix ∆ becomes purely diagonal, and therefore ||∆||m = σ̄(∆),
while the dimension of the problem and matrix M are the same
in (34) and (50). This way, the conservativeness and compu-
tational times can be compared. For the comparison, the same
experimental data were used as in Sec. 6, with the uncertainty in
the cross frequency response functions being set to zero. Note,
that if it is not the case, then the dimension has to be increased
and matrix M has to be constructed in a different way.

The results are presented for three different points in Fig. 6,
see point A, B and C. The results are listed in Table 2, where
index ’Tb’ refers to the Matlab Toolbox and ’K’ refers to the
solution given by (34), according to [24]. The results show that
the computational time is much smaller in the proposed method,
while the accuracy is still remarkably good.
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Determine tool geometry,
Measure tool dynamics H(ω),

Measure force characteristics F(t),
Select machining parameters: ap, Ωs

Calculate uncertainty bound δH̃(ω),
Calculate coefficient matrices W and E, see (25),

Define initial grid ωc = linspace(0,Ω/2, n)

Calculate and store U(i) at ωc(i),
D(i) = det(I − U(i)EW)

i
?
< n

Calculate number of poles P, see (47)

P
?
> 0 Unstable

Calculate R(i), M̃(i) at ωc(i) (see (42)-(43)),
C(i) = det(M̃(i)R(i) − I)

i
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min C
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< 0

Not
robust
stable

Robust
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Figure 5: Flowchart for the calculation of robustness.
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