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Abstract: Stability prediction of machining operations is often not reliable due to the inaccurate
mechanical modeling. A major source of this inaccuracy is the uncertainties in the dynamic
parameters of the machining center at different spindle speeds. The measured frequency response
functions of the tool are usually loaded by noise and identification of the operational modal
behavior based on static measurements is not straightforward. In this paper, the effect of small
changes of the frequency response function on the stability of turning processes is analyzed using
the semi-discretization method and the single-frequency solution.
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1. INTRODUCTION

Material removal by means of cutting is one of the most
important components of manufacturing systems. Machine
tool centers nowadays are capable of spindle speeds ex-
ceeding 50 000 rpm while simultaneously delivering tens of
kilowatts of power to the cutting zone. Still, these features
are often not utilized due to limitation caused by machine
tool chatter. Prediction of the stability of a machining
operation is therefore highly important for manufacturing
systems.

In the 1960s, after the extensive work of Tobias (1965),
Tlusty and Spacek (1954), the so-called regenerative effect
became the most commonly accepted explanation for
machine tool chatter. The phenomenon can be described
by involving time delay in the model equations. The
vibrations of the tool are copied onto the surface of
the workpiece, which modifies the chip thickness and
induces variation in the cutting-force acting on the tool
one revolution later. This phenomenon can be described
by delay-differential equations (DDEs).

Stability properties of the machining processes are de-
picted by the so-called stability lobe diagrams, which plot
the maximum stable depths of cut versus the spindle
speed. These diagrams provide a guide to the machinist
to select the optimal technological parameters in order to
achieve maximum material removal rate without chatter.

There are several limitations in the modeling of machine
tool chatter. Most models in the literature consider linear
systems, although nonlinear effects may also influence the
stability properties (Dombovari et al., 2008). According to
Munoa et al. (2013), the number of modes to be modeled
is also an important factor. The approximation of the
measured frequency response function (FRF) plays also
an important role (Zhang et al., 2012). In this paper,

parameter sensitivity of the stability chart is analyzed for
different modeling inaccuracies, such as mode omission or
mode merging.

The structure of the article is as follows. In Section 2,
the formulation of the frequency response function matrix
in case of non-proportional damping is introduced. The
stability analysis both in time domain (using the modal
representation) and in frequency domain (using directly
the measured FRF) are presented in Section 3. This pro-
vides two efficient ways to construct the stability charts.
Some typical fitting inaccuracies are discussed in Section 5.
First, the effect of neglected and merged modes is analyzed
based on a two-degrees-of-freedom model. Then, the sen-
sitivity of a stable island with respect to modal parameter
inaccuracies are demonstrated. Finally, a case study is
presented for different degrees-of-freedom approximation
of a measured FRF. The results are concluded in Section 6.

2. DETERMINATION OF MODAL PARAMETERS

The modal behavior of the machine is usually determined
from impact or shaking tests. Let us have the matrix
differential equation of motion for a multiple-degrees-of-
freedom system in the form

Mẍ(t) + Cẋ(t) + Kx(t) = f(t), (1)

where x(t) ∈ Rn is the general coordinate vector, M ∈
Rn×n is the mass matrix, C ∈ Rn×n is the damping
matrix, K ∈ Rn×n is the stiffness matrix, f(t) ∈ Rn
is the excitation vector and n is the number of degrees
of freedom. Matrices M, C, and K usually cannot be
determined, but the modal parameters of the system
can be approximated by different methods. Therefore the
equations are defined in the modal space.

The system is proportionally damped if the damping
matrix can be written as

C = αMM + αKK, (2)



where αM ∈ R and αK ∈ R are the proportional factors
(Ewins, 2000). If the damping matrix can be represented
in such a way, it guarantees that the mode shapes are real
valued and identical to the eigenvectors of the undamped
system. It is known that if a system is proportionally
damped, then the frequency response function matrix
H(ω) can be defined as

Hij(ω) =
Xi(ω)

Fj(ω)
=

n∑
k=1

φikφjk
−ω2 + 2ζkωn,kωi + ω2

n,k

, (3)

where ij represents the rows and columns of matrix H(ω)
respectively, Xi(ω) = F (xi(t)), Fi(ω) = F (fi(t)), and F
is the Fourier transform, furthermore ωn,k is the natural

angular frequency, ζk is the damping factor, i =
√
−1 is

the complex unit, φikφjk = 1/mk, and mk is the the modal
mass.

A system is called non-proportionally damped if (2) does
not hold. In this case, the frequency response functions
cannot be expressed according to (3), furthermore the
mode shapes are complex and not identical to the eigen-
vectors of the undamped system. The equation of motion
can be written in a first-order form

Âv̇(t) + B̂v(t) = fv(t), (4)

where the state vector is v(t) = (x(t) ẋ(t))T and

Â =

(
C M
M 0

)
, B̂ =

(
K 0
0 −M

)
, fv(t) =

(
f(t)
0

)
, (5)

furthermore Â = ÂT and B̂ = B̂T (Ewins, 2000; Dom-
bovari et al., 2012). The homogeneous part states an
eigenvalue-eigenvector problem in the form

(Âλ+ B̂)U = 0, (6)

where U ∈ C2n is the unnormalized (right) eigenvector.
The eigenvalues can be determined from the frequency
equation

det(Âλ+ B̂) = 0, (7)

where λk = −ζkωn,k +
√

1− ζ2
kωn,ki. The eigenvalues and

eigenvectors form complex conjugate pairs if ζk < 1.

Equation (4) can be transformed into the 2n-dimensional
modal space by the transformation q(t) = Ψv(t), where
q(t) ∈ C2n is the modal coordinate vector and Ψ ∈
C2n×2n is the modal transformation matrix. If the complex
eigenvectors Uk are normalized according to the criteria

ψk =
Uk√

UT
k ÂUk

, (8)

then the modal transformation matrix can be written as

Ψ =
(
ψ1 ψ̄1 · · · ψn ψ̄n

)
. (9)

Since ΨTÂΨ = I and ΨTB̂Ψ = −diag(λk) = −Λ, the
equation finally forms

q̇(t)−Λq(t) = ΨTfv(t). (10)

From the Fourier transform of (10), the elements of the
FRF matrix H(ω) consistently to (3) can be given as

Hij(ω) =
Xi(ω)

Fj(ω)
=

n∑
k=1

(
ψikψjk
ωi− λk

+
ψ̄ikψ̄jk
ωi− λ̄k

)
. (11)

Equations (11) and (3) are identical if the damping is
proportional, then Re{ψikψjk} = 0. Using curve-fitting
techniques, the modal parameters ωn,k, ζk, ψik and ψjk can
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Fig. 1. Surface regeneration in an orthogonal process.

be fitted on the measured FRF. A well-known technique is
the rational fraction polynomial method of Richardson and
Formenti (1982), which can efficiently be used for high-
degrees-of-freedom approximations, but there are many
other linear or nonlinear fitting algorithms. In this paper, a
nonlinear least squares method was used which is suitable
for the fit of low-degrees-of-freedom models.

3. DYNAMICAL MODEL OF TURNING

The dynamical model of an orthogonal turning operation
considering multiple modes in direction x is presented
in Fig. 1. Note that vibrations in the y-direction does
not affect the linear stability properties (Insperger et al.,
2007). The cutting-force can be given as

Fx(t) = Kxwh
q(t), (12)

where Kx is the cutting-force coefficient in the tangential
direction x, w is the depth of cut, h(t) is the instantaneous
chip thickness and q is the cutting-force exponent. Due to
the vibrations of the tool, the chip thickness is determined
by the feed motion, the current tool position and the
previous position of the tool one revolution ago. For
constant spindle speeds, the time delay can be given
explicitly as τ = 60/Ω, where Ω is the workpiece revolution
given in rpm. The instantaneous chip thickness can be
calculated as

h(t) = vfτ + x1(t− τ)− x1(t), (13)

where vf is the feed velocity. Therefore the excitation
vector f(t) can be given as

f(t) =


Kxw (vfτ + x1(t− τ)− x1(t))

q

0
...
0

 . (14)

The stability of the system can be analyzed by considering
only the linearized system. The general solution can be
given as x(t) = xp + ξ(t), where xp is related to the static
deformation and ξ(t) is a small perturbation around the
equilibrium x ≡ xp. After the linearization, the variational
system is given by

Mξ̈(t) + Cξ̇(t) + Kξ(t) = κ (ξ(t− τ)− ξ(t)) , (15)

and

κ =


κ 0 . . . 0
0 0 . . . 0
...

...
...

0 0 . . . 0

 , κ = Kxwq (vfτ)
q−1

, (16)



where κ is the specific cutting-force coefficient. Note that
κ is linearly proportional to the depth of cut w, which is
an important machining parameter.

4. STABILITY ANALYSIS

Stability of machining processes can be analyzed either
in frequency domain using directly the measured FRF
or in time domain using the fitted modal parameters.
The dynamic behavior of the tool tip determines the
chip thickness, therefore the frequency response function
associated with the tool tip is required, which can be
expressed as

H11(ω) =

n∑
k=1

(
ψ2

1k

ωi− λk
+

ψ̄2
1k

ωi− λ̄k

)
. (17)

Consequently, only the parameters ωn,k, ζk and ψ1k have
to be fitted for the stability analysis.

4.1 Semi-discretization

If the modal parameters are fitted, the stable domains on
the parameter space of the spindle speed Ω and the specific
cutting-force coefficient κ can be determined by the semi-
discretization method. According to the non-proportional
formulation, equation (15) can be transformed into the
modal space of the modal coordinates q(t) using the modal
transformation ξ(t) = Ψq(t), i.e.

q̇(t)−Λq(t) = ΨTκ̃Ψ (q(t− τ)− q(t)) , (18)

and

κ̃ =

(
κ 0
0 0

)
. (19)

The state space equations can be introduced in the form

q̇(t) = Aq(t) + Bu(t− τ), (20)

u(t) = Dq(t), (21)

where A = Λ − ΨTκ̃Ψ. From a tip-to-tip measurement
of the tool, only one row of matrix Ψ can be fitted. The
matrices B and D can be reduced to vectors

B =
(
ψ11 ψ̄11 · · · ψ1n ψ̄1n

)T
κ, (22)

D =
(
ψ11 ψ̄11 · · · ψ1n ψ̄1n

)
. (23)

This shows that the frequency response function of the tool
tip and the corresponding modal parameters are sufficient
for the time-domain representation.

Stability of the system defined by (20)-(21) can be an-
alyzed by the semi-discretization method according to
Insperger and Stepan (2011). Note that here matrices A,
B and D have complex elements.

4.2 Frequency solution

The stability analysis can be performed directly in fre-
quency domain using the measured FRF. This method can
be applied directly to measured data without fitting.

The definition of the FRF matrix gives

H(ω)F(ω) = ξ(ω). (24)

The Fourier transform of the parametric forcing f(t),
which is the right hand side of (15) is

F(ω) = κ(e−iωτ − 1)ξ(ω). (25)

Substitution of (24) into (25), and simplification yields(
I− (e−iωτ − 1)κH(ω)

)
F(ω) = 0. (26)

The existence of the nontrivial solution implies

det
(
I− (e−iωτ − 1)κH(ω)

)
= 0, (27)

which can be expressed as

1− (e−iωτ − 1)κH11(ω) = 0 (28)

if only the first coordinate x1(t) is forced. If the inverse
FRF is written as H−1

11 (ω) = ΛRe +iΛIm, then the analytic
solution for all of the possible bifurcation curves can be
given as

Ω =
30ω

arctg
(

ΛRe

ΛIm

)
+ jπ

, κ = −Λ2
Re + Λ2

Im

2ΛRe
, (29)

where j = 0, 1, 2 . . . and ω ∈ [0, ∞). Note that the solution
gives only the the bifurcation curves, not directly the
stable domains.

5. SENSITIVITY ANALYSIS

The real measured structure theoretically can only be
described by an infinite dimensional (continuum) system.
During curve fitting, however, only finite number of modes
are fitted. In this section, the effect of imperfect mode
fitting is analyzed.

5.1 Effect of neglected modes

In this subsection, the effect of neglected modes are ana-
lyzed. First an artificial FRF with proportional damping is
generated and the stability charts are calculated using the
frequency solution. The corresponding stability boundaries
are denoted by black solid line and the stable domain is
indicated by gray shading. Using a curve fitting technique,
the original FRF was approximated by the FRF associated
with a single-degree-of-freedom system, which is now also a
proportionally damped model. These stability boundaries
are denoted by red solid line.

Table 1 lists the original and approximated modal pa-
rameters while Fig. 2 presents the difference between the
stability charts for four different cases. In each case, one
mode is neglected during the fitting. For case a), the
second mode at higher frequency with smaller amplitude
is neglected. The estimated and exact boundaries show
significant differences for high spindle speeds. It can be
seen that the difference can go up to 100% near to 10 000
rpm, which means that the maximum stable depth of cut
is doubled. For lower speeds, the stability chart is almost
accurate. For case b), the neglected mode is larger, the
difference is more significant.

Surprisingly, the chart is not that sensitive if the non-
dominant mode is neglected at a lower frequency compared
to the dominant mode. For cases c) and d), even if
the neglected mode is apparently significant, the stable
domain is practically the same for case c) and shows only a
small change for case d). The reason is the following, when
the neglected mode is located at lower frequency compared
to the dominant mode then the corresponding bifurcation
curves are likely to be located at negative cutting-force
coefficients. In other words, based on (29), if ΛRe > 0 then
κ < 0 or w < 0 which is not relevant from the practical



Table 1. Modal parameters corresponding to
the neglected modes (•̃ are the fitted results).

ωn ξ ψ2 ω̃n ξ̃ ψ̃2

Case [ rad
s
] [%] [10−5 rad·s

kg
] [ rad

s
] [%] [10−5 rad·s

kg
]

a) 1000 5 -5i 1000.1 5.05 -5.046i
2000 10 -1i × × ×

b) 1000 5 -5i 1000.2 5.17 -5.142i
2000 10 -3i × × ×

c) 500 20 -1i × × ×
1000 5 -5i 999.88 5.15 -5.124i

d) 500 20 -5i × × ×
1000 5 -5i 999.25 5.96 -5.734i

point of view. This phenomenon can be seen in Fig. 3,
whose subfigures correspond to Fig. 2 cases a) and c).

5.2 Effect of merged modes

In practice, the measured FRF contains many modes
which are difficult to approximate properly. In many cases,
some modes are so close to each other that they cannot be
distinguished. In Fig. 4 some typical cases are listed, when
two adjacent modes are approximated by only one mode.
The exact and fitted modal parameters are given in table 2.
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Table 2. Modal parameters corresponding to
the merged modes (•̃ are the fitted results).

ωn ξ ψ2 ω̃n ξ̃ ψ̃2

Case [ rad
s
] [%] [105 rad·s

kg
] [ rad

s
] [%] [105 rad·s

kg
]

a) 850 10 -2i 993.5 7.02 -6.757i
1000 5 -5i × × ×

b) 1000 5 -4i 1042.6 7.46 -8.926i
1080 4.5 -4i × × ×

c) 1000 5 -4.5i 1024.3 9.39 -8.516i
1150 10 -4i × × ×

For case a), the neglected mode is located at lower fre-
quency. The fitted mode does not describe properly the
dominant mode, however, the chart practically does not
change at higher spindle speeds. On the other hand, a
larger shift in the stability boundaries can be seen at lower
speeds. The effect of the neglected mode appears at the
negative half plane, similarly as it is presented in Fig. 3.

When the two modes are very close and none of them is
more dominant than the other (case b)), then the fitted
stable domain slightly differs from the exact one. For high
speeds, the wandering of the boundary is not significant,
however a larger shift can be observed in the domains for
lower spindle speeds.

Case c) is similar to case a), but here the non-dominant
mode follows the dominant one. The change of the stability
chart is more significant than in case a). As it can be seen,
the boundaries are shifted at lower speeds too, and the
difference is qualitatively larger for high speeds than in the
other cases. The neglected mode has effect on the stability
chart.

5.3 Stable islands in turning

The required time of the manufacturing process depends
on the material removal rate, which linearly depends on
the cutting speed, the feed rate and the depth of cut.
The manufacturing time can be reduced, if any of those
parameters are increased. The maximum revolution is
limited by the capabilities of the machine tool, on the other
hand, the depth of cut cannot be increased arbitrarily.

In some special cases, only for multiple-degrees-of-freedom
systems, it can happen that a stable domain gets separated
from a larger stable area (Sellmeier and Denkena, 2011;

�
 [N

/μ
m

]

0
2�

 [N
/μ

m
]

4

8
6

0

0.4

0.8

1.2

|F
RF

| [
μ
m

/N
]

0
2�

 [N
/μ

m
]

4

8
6

0

0.4

0.8

1.2

|F
RF

| [
μ
m

/N
]

0
2

4

8
6

0

0.4

0.8

1.2

|F
RF

| [
μ
m

/N
]

Stable

Chatter

a)

Stable

Chatter

b)

Stable

Chatter

c)

0.6 0.7
0.8
1.3

0.6 0.7
0.7
1.2

0.6 0.7
1.2
1.8

Frequency [rad/s]
0  0.5   1  1.5   2

103
5 101
Spindle speed Ω [rpm]

15 20 25
. 103.

Fig. 4. Effect of merged modes.



0

1

2

3

4

 

 

Frequency [rad/s]
0 2   4 6

|F
RF

| [
μ
m

/N
]

Chatter

Stable0
1
2
3
4

 6
 5

5 10 15 200
Spindle speed Ω [rpm]

3-DoF
2-DoF

0

1

2

3

4

 

 

Frequency [rad/s]
0 2   4 6

|F
RF

| [
μ
m

/N
]

Chatter

Stable

�
 [N

/μ
m

]

0
1
2
3
4

 6
 5

5 10 15 200
Spindle speed Ω [rpm]

3-DoF
3-DoF 

Peninsula

Stable island

a)

b)

neglected

increased
damping

103.

103.

103.

103.

Fig. 5. Sensitivity of a stable island.

Table 3. Modal parameters for the three-
degrees-of-freedom example (stable island).

ωn ξ ψ2

Mode [ rad
s
] [%] [105 rad·s

kg
]

1 870 6.14 -51.60-169.24i
2 1150 10.60 60.66-118.14i
3 3200 21.06 -18.56-75.96i

Zatarain and Dombovari, 2014). An example and its modal
parameters are given in table 3 and the stability charts can
be seen in Fig. 5.

The identification of these stable islands is a difficult task.
Usually the islands are quite small and located at high
spindle speeds, furthermore they can be really sensitive
to the modal parameters. In Fig. 5 a), the third mode is
neglected, since it does not seem to be significant compared
to the others. Grey domains with black boundary indicates
the originally stable chart, while red curve indicates the
solution of the approximated system. The results show
that the stable island disappears if the third mode is
neglected, however the boundary of the stable domain does
not change significantly.

In Fig. 5 b), the damping coefficient of the second mode
was increased to 12.6% from 10.6%, and the third mode
was not neglected. The stable island increases until it gets
connected to the stable area and forms a peninsula. In real
cases the fitted modal parameters always loaded by noise
and error and the stable islands can easily get lost as it is
demonstrated in Fig. 5.

5.4 A case study

In this subsection, a measured FRF obtained by an impact
test for a milling tool is studied. In Fig. 6, the fitted
model consists of 7-, 9-, 11- and 20 degrees of freedom
respectively, where the non-proportional equations were
used. For the 7-DoF model, the most dominant modes were
approximated only. On the stability chart the grey domain
indicates the theoretically exact stable domain obtained
directly from the measured FRF using the frequency so-
lution, while red curves indicate the result of the fitted
functions. Stability boundaries for the fitted FRFs were
also determined by the semi-discretization method in order
to validate the results. As it can be seen for the lowest-
degrees-of-freedom approximation, the stability chart for
10 000− 25 000 rpm approximates the exact solution. For
higher spindle speeds (Ω > 25 000 rpm), the difference in-

creases, but the approximation is still acceptable, and does
not contain significant error. A stable island also appears
if the chart is calculated using directly the measured FRF,
but the first approximation does not show it.

The number of degrees of freedom was increased to im-
prove the precision of fitting, and the FRF was approx-
imated more accurately over the region 700-1200 Hz by
taking into account two more modes. For lower speeds, the
precision was improved, although for higher speeds, the
error is much larger than in the case of the 7-DoF model,
though the estimation of the FRF seems to be better.

The 11-Dof model provides a better result, although only
two more modes were taken into account near to 882 Hz
and 1318 Hz. Including new modes slightly change the
modal parameters of the already fitted modes, but the
approximation of the stability chart gets better. The stable
island is still not discovered.

A 20-DoF approximation was prepared, where most of
the non-dominant modes are taken into account. The
measured FRF is very well covered by the fitted one,
the difference is practically within line thickness. For
low spindle speeds, the difference is negligible. The error
between the stability boundaries slightly increases with the
spindle speed. Overall, the 20-DoF model gives highly the
best approximation and the stable island is also discovered.

6. CONCLUSION

Prediction of the stability of a machining operation re-
quires information about the modal behavior of the ma-
chining center. The frequency response functions can only
be determined by experiments, which is usually noisy and
uncertain. Although there exists method which applies to
measured FRFs directly, such as the single frequency solu-
tion or the multi-frequency solution (Altintas and Budak,
1995; Budak and Altintas, 1998; Bachrathy and Stepan,
2013), in many other techniques, fitted modal parameters
shall be used. Though a fitted function is smoother and
bases on a mechanical model, the results does not guaran-
tee that the prediction of the stability chart is also better.
When non-dominant modes are neglected or incorrectly
fitted, the stability charts can significantly change. In this
work, some typical fitting errors are considered and their
effect is analyzed for a turning model.

It was shown, that if the neglected mode is located at
lower frequency compared to the dominant mode, then
the effect of the estimation is not significant. On the
other hand, when the neglected mode is located at higher
frequency compared to the dominant mode, then the
estimated stability chart can qualitatively differ from the
exact solution. It was also shown that the stability chart is
also sensitive at higher spindle speeds, which is important
in high speed machining. Even the estimation of the least
significant modes can qualitatively change the stability
boundaries.

The difference between the exact stability charts obtained
by the frequency solution and the charts obtained using
fitted models was demonstrated for a case study. In order
to approximate properly the exact stability chart obtained
directly from the measured FRF, high number of degrees of
freedom must be considered, which can lead to difficulties.
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Fig. 6. The stability charts of the measured FRF. Solid black line indicates the direct solution obtained by the frequency
solution, while solid red line shows the results of the fitted models.

For low spindle speeds, usually the precise approximation
of the dominant modes is sufficient, however, for higher
speeds, large variations can be observed which can hardly
be predicted. The theoretically exact boundaries can be
approximated sufficiently as more and more modes are
taken into account. Still, even for the most precise fitting,
the charts show slight sensitivity for high spindle speeds.
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