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Abstract Time-domain representation of the original
Smith predictor is presented for systems with feedback delay.
Sensitivity to parameter uncertainties is analyzed for a mar-
ginally stable, for an asymptotically stable and for an unsta-
ble second-order plant. A series of stability diagrams are
constructed using the D-subdivision method and Stepan’s
formulas. Transition to the stability diagrams subjected to
delayed state feedback is established. It is demonstrated that
the Smith predictor is sensitive to infinitesimal parameter
mismatches for the marginally stable plant. It is shown that
the Smith predictor can stabilize unstable plants for some
extremely detuned internal model parameters.

Keywords Feedback delay - Smith predictor -
Time-domain representation - Parameter mismatch - Stability

1 Introduction

Control of unstable systems with feedback delay is a chal-
lenging problem in engineering and science [1-4]. Time
delay in the feedback loop itself can cause instabilities and
oscillations; examples include car following traffic models
[5], crane payload stabilization [6], flutter instability [7] and
consensus protocols [8]. Compensation of feedback delay is
therefore a highly important task in engineering.

The Smith predictor [9] is probably the best known tech-
nique to overcome the destabilizing effect of feedback delays
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in control systems. It is known that state prediction is a fun-
damental concept for systems with feedback delay [10]. The
main idea behind predictive controllers is that the feedback
delay is eliminated from the control loop by using a pre-
diction of the actual state based on an internal model of the
plant. Since its publication, several types of modifications of
the Smith predictor have been developed [10-16], most of
them are related to the so-called finite spectrum assignment
[17-19].

The Smith predictor is usually represented in frequency
domain either by its block diagram or by its transfer func-
tion [15,20,21]. In the current paper, the time-domain rep-
resentation of the Smith predictor is also given. We assume
throughout the paper that the delayed state is fully available
and thus there is no need for an observer.

A main concern about prediction-based controllers is that
they require knowledge about the plant and the feedback
delay. The slightest mismatch between the internal model
used for the prediction and the actual system may destabilize
the closed-loop system. The conditions for practical stability
(i.e. the preservation of stability for infinitesimal modeling
mismatches) for the Smith predictor was given in [22] and
for some special cases in [23-25]. The effect of delay mis-
matches was investigated in [20]. It is known that in case of
a proper but not strictly proper delay-free transfer function,
the sensitivity to infinitesimal parameter mismatches can be
explained by the discontinuity of the associated difference
equation [20,26]. In this paper, we consider a system with a
strictly proper delay-free transfer function and show that sen-
sitivity to infinitesimal parameter mismatches can still occur
for a marginally stable plant. Note that this sensitivity is of
different nature from those analyzed in [20,26]. The sensitiv-
ity presented here is due to the preservation of the robustness
of the plant to parameter uncertainties. Here, we visualize the
sensitivity of the Smith predictor to parameter mismatches by
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constructing stability diagrams for a marginally stable, for an
asymptotically stable and for an unstable second-order plant.
These diagrams are the counterpart of the stability diagrams
of second-order systems (such as the inverted pendulum) sub-
jected to delayed state feedback, which serve as a reference
for stabilizing unstable systems [27-29]. Transition between
the Smith predictor and delayed state feedback is illustrated
by a series of stability diagrams.

It is a general view that the original Smith predictor can
be applied only to stable open-loop systems. In this paper,
we show that this statement is not true if the internal model
does not match the actual system. We use the above second-
order plant to demonstrate that an unstable open-loop sys-
tem can be stabilized by the Smith predictor in case of large
parameter mismatches. It should be emphasized that the pro-
posed stabilization of unstable systems by the original Smith
predictor has limited practical relevance. There are different
modifications of the Smith predictor, which are designed to
stabilize unstable systems, such as the modified Smith pre-
dictor [11,15], the unified Smith predictor [16] or the finite
spectrum assignment [18,19].

The structure of the article is as follows. In Sect. 2,
frequency-domain and time-domain representations of the
Smith predictor are given. Stability analysis of a second-
order system subjected to the Smith predictor is presented in
Sect. 3. Then the effect of parameter uncertainties on the sta-
bility is analyzed for a marginally stable plant in Sect. 4, for
an asymptotically stable plant in Sect. 5 and for an unstable
plant in Sects. 6 and 7 discusses some properties of the mod-
ifications of the Smith predictor. The results are concluded
in Sect. 8.

2 The Smith predictor

The Smith predictor was developed in the frequency domain
[9]. Time-domain representations are rarely discussed in the
literature (see Eq. (2.45) in the book [10] for an exception). In
this section, the time-domain equations of the Smith predictor
are presented based on its block diagram.

2.1 Frequency-domain representation

The block diagram of the Smith predictor is shown in Fig. 1.
As mentioned in the Introduction, the point of the Smith
predictor is that the feedback delay is eliminated from the
control loop using a prediction of the actual state based on an
internal model of the plant. Let us denote the transfer function
of the plant by P (s), the transfer function of the plant used
by the internal model by P(s), the transfer function of the
primary controller by C(s), the actual feedback delay by t
and the delay used by the internal model by 7. In practice,
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Fig. 1 The block diagram of the Smith predictor

the internal model is not perfectly accurate, therefore P (s) #
P(s)and 7 # 7.

The transfer function from the plant input disturbance d
to the output x can be given as

P(s)(1+ C(s)P(s) — C(s)P(s)e™ ™)

Wax (s) = = S 2 s
1+C(s)P(s)—C(s)P(s)e ™ + C(s)P(s)e™ "
ey
If the plant and the controller are factorized as
Bi(s) .. _ Bi() Ba(s)
P(s) = , P(s)=—= , C(s)= , 2
= Fe "0 YThne @

then the transfer function reads

War(s) = (A1) 42)B15) + BB (5) Ba()(1 = ™))
x (416)426) A1) + A1) Ba(5) Bi()(1 =™

~ -1
+A1(0)B1) Ba()e™™) 3)

Clearly, if A;(s) = Aj(s), then the poles of the open-loop
system [which are the zeros of Aj(s)] are the poles of the
closed-loop system, too. This deduction is often used to con-
clude that the Smith predictor cannot stabilize an unstable
plant. However, if Al(s) # Aj(s) then this conclusion is
not valid. Actually, while the original Smith predictor can
stabilize stable or unstable plants in case of perfect match-
ing of the internal model and the plant, it has been shown
that it can be very sensitive to infinitesimal variations for
unstable plants [14]. In Sect. 6 we show that in case of para-
meter mismatches, the Smith predictor can actually stabilize
an unstable plant.

2.2 Time-domain representation

Time-domain representation of the Smith predictor in case
of a state feedback primary controller can be written as
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x(t) = Ax(t) + Bu(t), “4)
X(1) = AX(1) + Bu(?), 6))
u() = K(x(t — 1) — X(t — T) +X(1)), (6)

where x € R” is the vector of actual state variables, X € R”
is the auxiliary vector of predicted state variables, A and A
are the actual and the model state matrices, B and B are the
actual and the model input matrices and matrix K contains
the control gains. Without loss of generality it can be assumed
that the reference input r is zero [if 7 is not zero then the vari-
ational system around the reference input r has the form of
Egs. (4)-(6)]. Equation (4) describes the actual system while
Eq. (5) corresponds to the internal model. The corresponding
control law can be given in integral form as

1—T
() =K [ x( — 1) — / A0 Bu(9)do
0
t
+ / eA=DBu@)do |. @)

0

Thus, the control law involves integrals of the control input
over the interval [0, 7]. The closed-loop system can be
described by a system of retarded functional differential
equations (RFDEs) with two delays (t and 7) as

X(1) = Ax(1) + BK(x(t — 1) — X(r — T) + X()), (8)
X(1) = A¥(1) + BK(x(r — 1) — X(1 — 7) + X(1)). 9)

The characteristic equation is

(sI — A —BKe™™
det

—BK(1 —e™ ™) _o
_EKe—rs —fS) -

sI—A—BK(l —e

(10)
It can be seen that the closed-loop system subjected to the
Smith predictor is equivalent to a delayed state feedback sys-

tem with an augmented state vector of dimension double that
of the open-loop system.

3 Stability analysis for a second-order system
We consider the system (4)—(6) with
0 1 ~ 0 1 ~ 0
(0 A ) sene(9)
(11)

and K = (p d), where a is a system parameter, a is the
estimated system parameter used by the internal model, p and

d are the control gains. This system describes the behavior of
a second-order system with p and d being the proportional
and the derivative control gains. If a > 0 then the open-loop
system is marginally stable, if @ < O then it is unstable.

3.1 Special case: delayed state feedback

If A = 0 and B = 0 then the predicted state is constant in
time and Eq. (8) gives the delayed state feedback

x(t) = Ax(t) + BKx(r — 7). (12)
The associated characteristic function is
D(s) =s>+a+ (p+sde . (13)

The stability diagram of this special case can be constructed
by the D-subdivision method [30]. The D-curves, which are
associated with pure imaginary characteristic exponents of
the form s = iw, can be given in the parametric form

ifo=0: p=—a, deR, (14)
. p= (a)2 —a) cos(wT)

f 0: 15
ifoz {d:“’zw—_“sin(wr) (1%

The number of unstable characteristic exponents in the
domains separated by the D-curves can be determined using
Stepan’s formulas (see Egs. (2.17) and (2.19) in [30]). The
corresponding stability diagrams are shown in Fig. 2 for a
stable and for an unstable open-loop system with t = 1. It
is known that the system cannot be stabilized if a < acit =
—2/12 (see e.g., [29] or [30]).

3.2 General case: the Smith predictor

The stability diagram for a Smith predictor can be determined
with the same procedure as used for delayed state feedback.
Based on Eq. (10), the characteristic function of the system
described by Egs. (4)—(6) is

D(s) = (s> + @)(* +a) + (p +sd) ((s* + a)
+(P+ae™ — (s +ae ). (16)

Application of the D-subdivision method gives the D-curves
in the following form. If @ = 0, then

p=—a, delR. (17)
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Fig. 2 Stability diagrams with the number of the unstable character-
istic exponents for a marginally stable open-loop system with a = 0.5
(top) and for an unstable open-loop system witha = —0.5 (bottom) sub-
jected to delayed state feedback with feedback delay T = 1. Regions of
asymptotic stability are indicated by gray shading

This result is similar to that obtained for a delayed state feed-
back controller. If w # 0, then

p= ((a — a)z)(fz — a)z) ((—El + a)z) cos (wt)

ta—-o)(—1+ cos(wf))))/(Za2 + &2 — daw?
—24w” + 30" + 2(a — w?) (@ — @) cos(wT)

+2(a — 0?)(—a + @*) cos (w(r — 7)) — 2a* cos(w?)
+ 4aw? cos(w?) — 2w* cos(wi)), (18)

d= ((a — 0?)(@ — o) (i + ) sin(wr)

+ (a — »?) sin(a)f)))/(a)(Za2 +a? — 4aw?

— 200 + 30" + 2(a — ©*)(a — w?) cos(wt)

+2(a — &*)(—a + w?) cos (0(x —7)) — 24 cos(w?)

+4aw? cos(@F) — 20" cos(@7))). (19)

Again, the number of unstable characteristic exponents can
be determined using Stepan’s formulas [30].

A sample stability diagram is shown in Fig. 3 for two dif-
ferent cases: when the system parameter a is underestimated
by the internal model (@ < a, top panels) and when the sys-
tem parameter a is overestimated (@ > a, bottom panels).
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Fig. 3 Stability diagrams with the number of the unstable character-
istic exponents for a marginally stable open-loop system subjected to
the Smith predictor witha = 0.5, = 1, T = 0.5t for a = 0.8a (top)
and a = 1.2a (bottom). Regions of asymptotic stability are indicated
by gray shading

It can be seen that the stability diagram for the two cases
are completely different. In the case of system parameter
overestimation, the stable domain is reduced to a small loop
attached to the origin (p, d) = (0, 0).

4 Sensitivity analysis for a marginally stable plant

Here we investigate the sensitivity to parameter mismatches
for a marginally stable plant (@ > 0). A series of stability
diagrams with the number of unstable characteristic expo-
nents are presented in Fig. 4 for different mismatches of the
system parameter and the feedback delay. These diagrams
can be considered projections of the 4-dimensional stability
chart in the parameter space (p, d, a, 7). For the ideal case,
when a = a and T = , the stability boundaries are given by
p > —aandd > 0, which corresponds to the stability condi-
tion for the delay-free system. In case of @ = a, the rightmost
characteristic exponents are purely imaginary, consequently,
the system is marginally stable (see striped gray regions in
Fig. 4). This property is inherited from the open-loop system
[31]. However, if @ # a then the system becomes asymp-
totically stable (see gray shading regions in Fig. 4). It can
be seen that stability properties change radically if a > a.
Even the slightest overestimation of the system parameter can
destabilize the system. Slight underestimation of the system
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Fig. 4 Stability diagrams with the number of the unstable character-
istic exponents for small parameter mismatches (@ = 0.5,7 = 1).
Regions of asymptotic stability and marginal stability are indicated by
solid gray shading and by striped gray shading, respectively

parameter, however, does not affect the stability picture. The
effect of the uncertainty in the time delay is smaller than that
of the system parameter. In general, mismatches in the delay
cause a slight reduction of the stable domains. Note that the
D-curve p = —a does not change for any system parameter
mismatch.

Figure 5 shows the transition of the stability diagram for
small mismatches of the estimated system parameter a, when
a,t and T are kept constant. For a = 0.9a there is a loop
attached to the origin associated with 4 unstable characteristic
exponents. As @ — a, the loop gets smaller and smaller and
disappears ata = a.If a is just larger than a, then the stability
diagram turns inside out, the small loop becomes stable and
the domain which was stable for a < a becomes unstable.

infinitesimal parameter uncertainties for marginally stable
plants.

Figure 6 shows the transition of the stability diagram for
a wide range of choices for the estimated system parame-
ter a. Arrows show how the D-curves change as a function
of a difference between a and a. If @ > a then the stable
domain suddenly reduces to a tiny loop: the size of the loop
becomes larger for increasing parameter mismatch. For the
extreme case a = 50a, the stable domain is close to that
of the delayed state feedback controller (denoted by dashed
line). The reason for this is that if a > a, then the value
of the predicted state X(¢) can be neglected compared to the
actual state x(¢). In this case the Smith predictor is prac-
tically equivalent to a delayed state feedback controller. In
other words, as the ratio a/a becomes larger, the dynam-
ics of the Smith predictor become those of a delayed state
feedback controller. If a < a then the stable domain gets
smaller. If a < 0 then there are no stable domains. Note that
for a = —50a, the D-curves approximates the D-curves of
the delayed state feedback controller similarly to the case
a = 50a, but in this case the bounded area is associated with
one unstable characteristic exponent.

5 Sensitivity analysis for an asymptotically stable plant

In the previous section, it was demonstrated that the Smith
predictor is sensitive to infinitesimal parameter mismatches
for a marginally stable plant. Dynamic systems in engineer-
ing applications often involve damping terms, which results
in an asymptotically stable plant. In this section we analyze
the same second-order plant with a slight damping term. We
consider the system (4)—(6) with

This demonstrates that the Smith predictor is sensitive to (20)
a=0.9a a=0.99q a=a a=10la a=1.1a
0.05 ;
|
0 0 7/ 2 2 0
y |
2 (marginally stable) | 0
- e 22 . e
4
4 2 2 4 A
-0.05 :
-0.05 0 0.05 -0.05 0 0.05 -0.05 0 0.05 -0.05 0 0.05 -0.05 0 0.05
p p p p p

Fig. 5 Transition of the stable domain in case of small parameter mismatch (a = 0.5, ¢ = 7 = 1). Regions of asymptotic stability and marginal
stability are indicated by solid gray shading and by striped gray shading, respectively
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Fig. 6 Stability diagrams with the number of the unstable characteris-
tic exponents for the marginally stable open-loop system with different
parameter mismatches (¢ = 0.5, t = 7 = 1, DSF delayed state feed-
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Fig. 7 Stability diagrams with the number of the unstable characteris-
tic exponents for the damped system with small parameter mismatches
(a =0.5,b =0.057 =7 = 1). Regions of asymptotic stability are
indicated by solid gray shading

where b is a damping parameter while b is its estimation used
by the internal model. Sensitivity of this system is investi-
gated using the same concept as before.

A series of stability diagrams are presented in Fig. 7 for
different mismatches of the system parameter and the damp-
ing parameter. The damping parameter is b = 0.05, which
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back, SP Smith predictor). Regions of asymptotic stability and marginal
stability are indicated by solid gray shading and by striped gray shad-
ing, respectively

gives the damping ratio of about 3.5 %. As opposed to the
marginally stable plant, the damped system is not sensitive
to infinitesimal parameter mismatches. Still, it is sensitive to
finite parameter mismatches: the stable domain shrinks sig-
nificantly for finite overestimation of the system parameter.

Figure 8 shows the transition of the stability diagram as
the estimated system parameter changes. It can be seen that
the stable domains shrinks radically while a changes from
1.1a to 1.12a. Similarly to the marginally stable plant, the
stability diagram tends to that of the delayed state feedback
controller (denoted by dashed line) if the system parameter
is strongly overestimated.

6 Stabilization of the unstable plant

It is a general view that the original Smith predictor (as
opposed to its modifications) is capable of compensating the
feedback delay for stable plants only. This is true if the plant
used by the internal model perfectly matches the real plant,
since in this case the poles of the closed-loop system con-
tain the poles of the open-loop system as shown by Eq. (3).
However, this argument is not valid for system parameter
mismatches.

Figure 9 shows the transition of the stability diagrams for
the original Smith predictor described by Egs. (4)—(6) with
(11) for different estimated system parameters in case of an
unstable plant with a = —0.5 and t = 7 = 1. This figure is
the counterpart of Fig. 6 for the unstable plant. The wander-
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Fig. 8 Stability diagrams with the number of the unstable characteristic exponents for the damped system with different system parameter
mismatches (a = 0.5,b = b = 0.05, 7 = T = 1, DSF delayed state feedback, SP Smith predictor). Regions of asymptotic stability are indicated
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Fig. 9 Stability diagrams with the number of the unstable characteristic exponents for the unstable open-loop system with different parameter
mismatches (¢ — 0.5, 7 = 7 = 1, DSF delayed state feedback, SP Smith predictor). Regions of asymptotic stability are indicated by gray shading

ing of the D-curves for increasing parameter mismatch can
be followed by the arrows in each panel. The number of the
unstable characteristic exponents is also presented. For the
two extreme cases ¢ = =+50a, the D-curves for the corre-
sponding delayed state feedback controller are presented by
dashed lines.

As it can be seen, a stable parameter region arises if the
system parameter of the internal model is tuned to negative
multiples of the actual system parameter (see panels a
—2a, a —5a, a = —10a and a = —50qa in Fig. 9). In
these cases, the unstable plant (¢ < 0) is modeled by a stable
system (a > 0). If a — oo then the stable domain tends
to that of the conventional delayed state feedback controller,

because, in this case, the predicted state X(¢) can be neglected
compared to the actual state x(¢) and the controller behaves
like a delayed state-feedback controller. If a gets closer to the
actual system parameter then the stable domain disappears
and the system cannot be stabilized.

The stable parameter region appears if the tangent of the
parametric curve given by Egs. (18) and (19) at = 0 is
vertical. This implies that stabilization is possible if @ > dcyit
and a > agit, Where

t(a(dt — 7) — /—16a + a>(8t2 — 877 + 72) )
4 4+ 2art?

Acrit = d

’

21
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Fig. 10 Stabilizability diagram fort =7 =1

is the critical estimated system parameter and ajy = —2/ 72
is the critical system parameter in case of delayed state feed-
back (see Sect. 3.1). Figure 10 presents the limit of stabiliz-
ability by the Smith predictor.

Although it can be seen that an extreme tuning of the Smith
predictor may stabilize an unstable plant, the real mechanism
behind this stabilization is in fact a delayed state feedback.
Therefore the practical relevance of this stabilization is lim-
ited. Still, this example points out that the general concept
that the Smith predictor is not capable to stabilize unstable
systems is literally not true.

7 On the modifications of the Smith predictor

Since the publication of the original Smith predictor in 1957,
several types of its modifications have been developed such
as the modified Smith predictor [11,15], the unified Smith
predictor [16], the finite spectrum assignment [18,19], the
predictive pole placement [12] and the backstepping-based
predictor design [10], just to mention a few. These modifi-
cations can stabilize unstable systems. It is known that the
Smith predictor and the finite spectrum assignment are the
predictor-observer and the observer-predictor representation
of all stabilizing controllers, respectively [32,33].

Here, we consider the finite spectrum assignment, where
prediction is obtained by solving the system equations over
the delay period using x(¢r — 7) as initial condition for the
prediction. The corresponding control law reads

0
ut) =K [ ATx(r — 1) + / e MBu@+ndo |. (22

—T
Here, tilde refers to the estimated parameters in the internal
model. It can be seen that the control laws of both the Smith
predictor given by Eq. (7) and the finite spectrum assignment
given by Eq. (22) involve terms of integrals with respect
to the past. There is still a significant difference: while the
control law of the Smith predictor involves integral terms over
the entire past [0, 7], the control law of the finite spectrum
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assignment employs an integral over the delay period [ —7, 7]
(see also [10]).

Itis known that the finite spectrum assignment technique is
sensitive to infinitesimal implementation inaccuracies if the
integral in the control law (22) is approximated by numerical
quadrature rules [34,35]. The reason behind this sensitivity
is that such an approximation of the integral term results in a
neutral functional differential equation, whose strong stabil-
ity requires the stability of the associated difference equation
even if the transfer function of the system is strictly proper.
A stabilizability analysis of unstable second-order systems
using the finite spectrum assignment in case of parameter
mismatches and implementation inaccuracies was presented
in [36].

8 Conclusions

The Smith predictor was analyzed in the time domain for
the second-order system given by Eqgs. (4)—(6). It was shown
that the closed-loop system can be described by the system
of RFDEs (8) and (9). The dimension of the corresponding
augmented state vector is double of that of the open-loop sys-
tem and the equation involves two point delays if the internal
model is not perfectly accurate. The corresponding control
law involves terms of integrals with respect to the past sim-
ilarly to the finite spectrum assignment control technique.
However, while finite spectrum assignment employs an inte-
gral over the delay period [t — T, ¢], the Smith predictor uses
an integral over the entire past [0, ¢].

Sensitivity to parameter mismatches was analyzed for
a second-order plant using the D-subdivision method and
Stepan’s formulas [30]. Particularly, a marginally stable, an
asymptotically stable and an unstable plants were consid-
ered. It was shown that in case of a marginally stable plant,
the closed-loop system is sensitive to the sign of the mod-
eling error. Underestimation of the system parameter does
not significantly affect the stability properties, while even
the slightest overestimation radically changes the stability
diagram. Note that this sensitivity is due to the preservation
of the robustness of the plant to parameter uncertainties and
not due to the properness of the delay-free transfer function,
which was the case in [20,26]. A transition between the con-
ventional delayed state feedback and the Smith predictor was
illustrated by a series of stability diagrams for a wide range
of parameter uncertainties. The same analysis was performed
for an asymptotically stable plant. It was shown that he sta-
bility of the system was sensitive only to finite parameter
mismatches, but not to infinitesimal mismatches.

A stabilizability analysis was performed for an unstable
plant. In this case, the system describes the inverted pen-
dulum with feedback delay, which is a paradigm in control
theory [28,29], but this model also has a high importance
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in understanding human balancing and human motor con-
trol [37-39]. It was shown that the Smith predictor with
extremely detuned internal model parameters may stabilize
an unstable plant. In this case the predicted state can be
neglected compared to the actual state and the stabilization
mechanism is practically equivalent to a delayed state feed-
back.
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