NNSYS
 RELEASE I 3.0

ANSYS Mechanical APDL Command Reference

(T) 724-746-3304
(F) 724-514-9494

Copyright and Trademark Information

© 2010 SAS IP, Inc. All rights reserved. Unauthorized use, distribution or duplication is prohibited.
ANSYS, ANSYS Workbench, Ansoft, AUTODYN, EKM, Engineering Knowledge Manager, CFX, FLUENT, HFSS and any and all ANSYS, Inc. brand, product, service and feature names, logos and slogans are registered trademarks or trademarks of ANSYS, Inc. or its subsidiaries in the United States or other countries. ICEM CFD is a trademark used by ANSYS, Inc. under license. CFX is a trademark of Sony Corporation in Japan. All other brand, product, service and feature names or trademarks are the property of their respective owners.

Disclaimer Notice

THIS ANSYS SOFTWARE PRODUCT AND PROGRAM DOCUMENTATION INCLUDE TRADE SECRETS AND ARE CONFIDENTIAL AND PROPRIETARY PRODUCTS OF ANSYS, INC., ITS SUBSIDIARIES, OR LICENSORS. The software products and documentation are furnished by ANSYS, Inc., its subsidiaries, or affiliates under a software license agreement that contains provisions concerning non-disclosure, copying, length and nature of use, compliance with exporting laws, warranties, disclaimers, limitations of liability, and remedies, and other provisions. The software products and documentation may be used, disclosed, transferred, or copied only in accordance with the terms and conditions of that software license agreement.
ANSYS, Inc. is certified to ISO 9001:2008.

U.S. Government Rights

For U.S. Government users, except as specifically granted by the ANSYS, Inc. software license agreement, the use, duplication, or disclosure by the United States Government is subject to restrictions stated in the ANSYS, Inc. software license agreement and FAR 12.212 (for non-DOD licenses).

Third-Party Software

See the legal information in the product help files for the complete Legal Notice for ANSYS proprietary software and third-party software. If you are unable to access the Legal Notice, please contact ANSYS, Inc.

Published in the U.S.A.

Table of Contents

1. About This Manual 1
1.1. Conventions Used in this Manual 1
1.1.1. Product Codes 2
1.1.2. Applicable ANSYS Products 3
1.2. ANSYS Product Capabilities 3
1.3. Terminology 3
1.4. ANSYS Command Characteristics 5
1.4.1. Data Input 5
1.4.2. Free-Format Input 5
1.4.3. Nonrestrictive Data Input 5
1.4.4. Condensed Data Input 6
1.4.5. Units 6
1.4.6. Defaults 6
1.4.7. File Names 7
1.4.8. Star and Slash Commands 8
2. Command Groupings 9
2.1. SESSION Commands 9
2.2. DATABASE Commands 11
2.3. GRAPHICS Commands 14
2.4. APDL Commands 17
2.5. PREP7 Commands 20
2.6. SOLUTION Commands 40
2.7. POST1 Commands 54
2.8. POST26 Commands 63
2.9. AUX2 Commands 65
2.10. AUX3 Commands 66
2.11. AUX12 Commands 66
2.12. AUX15 Commands 67
2.13. OPTIMIZATION Commands 67
2.14. VARIATIONAL TECHNOLOGY Commands 69
2.15. PROBABILISTIC Design Commands 70
2.16. DISPLAY Program Commands 72
2.17. REDUCED Order Modeling Commands 72
2.18. Menu-Inaccessible Commands 73
3. Command Dictionary 79
I. Connection Commands 83
II. A Commands 91
III. B Commands 181
IV. C Commands 233
V. D Commands 349
VI. E Commands 427
VII. F Commands 591
VIII. G Commands 713
IX. H Commands 799
X.I Commands 829
XI. J Commands 859
XII. K Commands 861
XIII. L Commands 891
XIV. M Commands 965
XV. N Commands 1077
XVI. O Commands 1147
XVII. P Commands 1189
XVIII. Q Commands 1385
XIX. R Commands 1391
XX. S Commands 1461
XXI.T Commands 1659
XXII.U Commands 1765
XXIII.V Commands 1791
XXIV.W Commands 1887
XXV. X Commands 1901
XXVI.Y Commands 1905
XXVII. Z Commands 1907
Index 1909
List of Tables
2.1. Run Controls 9
2.2. Processor Entry 10
2.3.Files 11
2.4. List Controls 11
2.5. Set Up 11
2.6. Selecting 12
2.7.Components 12
2.8. Working Plane 13
2.9. Coordinate System 13
2.10. Picking 14
2.11. Set Up 14
2.12.Views 15
2.13. Scaling 15
2.14. Style 15
2.15. Labeling 16
2.16. Graphs 16
2.17. Annotation 17
2.18. Parameter Definition 17
2.19. Macro Files 18
2.20. Abbreviations 18
2.21. Array Parameters 18
2.22. Process Controls 19
2.23. Matrix Operations (APDL Math) 20
2.24. Database 20
2.25. Element Type 21
2.26. Real Constants 21
2.27.Materials 21
2.28. Material Data Tables 22
2.29. Primitives 22
2.30. Keypoints 23
2.31. Hard Points 24
2.32. Lines 24
2.33. Areas 25
2.34.Volumes 26
2.35.Booleans 26
2.36. Meshing 27
2.37. Nodes 29
2.38. Elements 30
2.39. Superelements 31
2.40. Digitizing 31
2.41. Coupled Degrees of Freedom 31
2.42. Constraint Equations 32
2.43. Element Reordering 32
2.44. FLOTRAN Options 32
2.45. FLOTRAN Property 33
2.46. FLOTRAN Operating 33
2.47. FLOTRAN Solver 33
2.48. FLOTRAN Turbulence 34
2.49. FLOTRAN Stability 34
2.50. FLOTRAN Miscellaneous 34
2.51. FLOTRAN Multiple Species 35
2.52. Status 35
2.53. Explicit Dynamics 36
2.54. Sections 37
2.55. Ocean 38
2.56. Morphing 39
2.57. Trefftz Domain 39
2.58. Perfectly Matched Layers 39
2.59. Special Purpose 39
2.60. Analysis Options 40
2.61. Nonlinear Options 42
2.62. Dynamic Options 42
2.63. Spectrum Options 43
2.64. Load Step Options 44
2.65. Solid Constraints 45
2.66. Solid Forces 45
2.67. Solid Surface Loads 45
2.68. Solid Body Loads 46
2.69. Inertia 46
2.70. Miscellaneous Loads 47
2.71. Load Step Operations 47
2.72. Master Degrees of Freedom 48
2.73. Gap Conditions 48
2.74. Rezoning 48
2.75. Birth and Death 48
2.76. FE Constraints 48
2.77. FE Forces 49
2.78. FE Surface Loads 49
2.79. FE Body Loads 50
2.80. Status 50
2.81. Explicit Dynamics 51
2.82. FLOTRAN Checkout 52
2.83. Radiosity 52
2.84. ANSYS Multi-field solver Definition Commands 53
2.85. ANSYS Multi-field solver Global Controls 53
2.86. ANSYS Multi-field solver Time Controls 53
2.87. ANSYS Multi-field solver Load Transfer 54
2.88. ANSYS Multi-field solver Convergence Controls 54
2.89. ANSYS Multi-field solver Interface Mapping 54
2.90. Setup 54
2.91. Controls 55
2.92. Results 55
2.93. Element Table 56
2.94. Listing 56
2.95. Animation 57
2.96. Path Operations 57
2.97. Surface Operations 58
2.98. Load Case Calculations 58
2.99. Magnetics Calculations 59
2.100. Fatigue 59
2.101. Trace Points 60
2.102. FLOTRAN Processing 60
2.103. Special Purpose 60
2.104. Status 62
2.105. Failure Criteria 62
2.106. Set Up 63
2.107. Controls 63
2.108. Operations 64
2.109. Display 64
2.110. Listing 64
2.111. Special Purpose 65
2.112. Status 65
2.113. Binary Files 65
2.114. Results Files 66
2.115. General Radiation 66
2.116. Radiation Matrix Method 66
2.117. Radiosity Solver 66
2.118. IGES 67
2.119. Specifications 67
2.120. Operations 68
2.121. Files 68
2.122. Run 68
2.123. Display 68
2.124. DesignXplorer 69
2.125. Harmonic Sweep using VT Accelerator 70
2.126. Deterministic Model 70
2.127.Probabilistic Preprocessing 70
2.128. Probabilistic Methods 70
2.129. Run Probabilistic Analysis 71
2.130. Probabilistic Postprocessing 71
2.131. Probabilistic Database 71
2.132. Response Surface 71
2.133. Auxiliary Commands and Information 71
2.134. Setup 72
2.135. Driver Options 72
2.136. Action 72
2.137. Set Up 72
2.138. Preparation 72
2.139. Generation Pass 73
2.140. Use Pass73

Chapter 1: About This Manual

Welcome to the Command Reference. This manual contains a complete dictionary of detailed ANSYS command descriptions, arranged in alphabetical order for ease of access. It is the definitive reference for correct command usage, providing comprehensive specifications for every argument of every ANSYS command.

The Command Reference is intended to give you information on individual ANSYS commands. Although this manual also contains lists of commands arranged by functional grouping, this manual is not intended to be your primary source of procedural information -- look in the appropriate analysis guides for introductory and procedural guidelines concerning when and where to use commands.

Command references given in the various analysis guides refer to the command descriptions given in Command Dictionary (p.79) of this manual. These descriptions are organized in dictionary form to allow you to look up the commands conveniently. The alphabetical ordering of commands that begin with a star (*) or a slash (/) ignores those symbols for ordering purposes.

Once you have reviewed a command in the Command Reference, you should also read the theoretical description of the command as given in the Theory Reference for the Mechanical APDL and Mechanical Applications, if indicated.

The following Command Reference topics are available:
1.1. Conventions Used in this Manual
1.2. ANSYS Product Capabilities
1.3. Terminology
1.4. ANSYS Command Characteristics

1.1. Conventions Used in this Manual

ANSYS documentation uses the following conventions to help you identify various types of information:

Type style or text	Indicates
BOLD	Uppercase, bold text indicates command names (such as K, DDELE) or elements (LINK180).
BoId>Bold	Bold text in mixed case indicates a GUI menu path, a series of menu choices for accessing a command from the GUI. One or more angle brackets (>) separate menu items in a menu path. Frequently in text, an ANSYS command is followed by its GUI equivalent in parentheses, as shown in this example:*GET command (Utility Menu Paramet- ers> Get Scalar Data)
ITALICS	Uppercase italic letters indicate command arguments for numeric values (such as VALUE, INC, TIME). On some commands, non-numeric convenience labels (for example, ALL and P) can also be entered for these arguments.

Type style or text	Indicates
Italics	Mixed case italic letters indicate command arguments for alphanumer- ic values (for example, Lab or Fname). The documentation also uses italic text for emphasis.
TYPEWRITER	A typewriter font indicates command input listings and ANSYS output listings.

Note

Any mention of a command or element name in this volume implies a reference to the appropriate command or element description (in the Command Reference or Element Reference manuals, respectively) for more detailed information.

Often it is necessary to refer to another command within a text description. Interpret the string [CMD] as "see the CMD command." For example, " ... the element coordinate system [ESYS] should be used to ...," means you can refer to the ESYS command for information related to the element coordinate system. Where several commands are referenced, the form [CMD1, CMD2, etc.] is used. In some cases only the primary command of a related group may be referenced.

1.1.1. Product Codes

Below and to the right of the short description of each command, you will see a list of product codes. These codes represent the products in the ANSYS Family of Products. The command is valid only for those products whose symbols are listed. A command that is valid in the entire set of products would have the following list of products:

MP ME ST PR PRN DS DSS FL EM EH DY PP VT EME MFS
The codes represent each of the products in the ANSYS suite of products:

Code	Product
MP	ANSYS Multiphysics
ME	ANSYS Mechanical
ST	ANSYS Structural
PR	ANSYS Professional - Nonlinear Thermal
PRN	ANSYS Professional - Nonlinear Structural
DS	ANSYS DesignSpace
DSS	ANSYS DesignSpace - Structural
FL	ANSYS FLOTRAN
EM	ANSYS Emag - Low Frequency
EH	ANSYS Emag - High Frequency
DY	ANSYS LS-DYNA
PP	ANSYS PrepPost
VT	ANSYS DesignXplorer
EME	ANSYS Mechanical/ANSYS Emag

Code	Product
MFS	ANSYS Mechanical/CFX-Flo

For a list of the features included in each product, see ANSYS Product Capabilities (p. 3).
If the symbol for a product does not appear, then that command is either not valid or not applicable in the corresponding product, and should not be issued when using that product. For example, if the PR and FL symbols are not listed, the pertinent command is not valid in the ANSYS Professional or ANSYS FLOTRAN products, but is valid in each of the remaining ANSYS products.

In most cases, commands and elements that are valid in ANSYS Multiphysics are also valid in the ANSYS ED and ANSYS Multiphysics 1,2 , and 3 products. Exceptions are noted under Product Restrictions for the applicable command or element. ANSYS ED and ANSYS Multiphysics 1,2 , and 3 are not listed as separate product codes.

1.1.2. Applicable ANSYS Products

This document applies to the following ANSYS products:

```
ANSYS Multiphysics (includes all structural, thermal, electromagnetics, and computational fluid dynamics
(CFD) capabilities, excludes explicit dynamics)
ANSYS Mechanical (includes all structural and thermal capabilities; excludes electromagnetics, CFD, and
explicit dynamics capabilities)
ANSYS Structural (includes all structural linear and nonlinear capabilities)
ANSYS Professional (Nonlinear Thermal and Nonlinear Structural)
ANSYS Emag (Low Frequency and High Frequency)
ANSYS FLOTRAN
ANSYS LS-DYNA
ANSYS PrepPost
ANSYS ED
ANSYS Mechanical/ANSYS Emag (combination of All Mechanical and Emag capabilities)
ANSYS Mechanical/CFX-Flo (combination of All Mechanical and CFX-Flo capabilities)
```

Some command arguments and element key option (KEYOPT) settings have defaults in the derived products that are different from those in ANSYS Multiphysics. These cases are clearly documented under the Product Restrictions section of the affected commands and elements. If you intend to use your derived product input file in ANSYS Multiphysics, you should explicitly input these settings in the derived product, rather than letting them default; otherwise, behavior in ANSYS Multiphysics will be different.

While ANSYS connection capabilities and High Performance Computing are included as part of the ANSYS release distribution, they are separately-licensed products. Consult your ASD if you want to install and run any of the separately-licensed products at your site.

1.2. ANSYS Product Capabilities

A complete list of engineering capabilities available in the various ANSYS products can be found on our website at http://www.ansys.com/assets/brochures/capabilities-brochure.pdf.

1.3.Terminology

Various terms are used in the command descriptions throughout this manual. These terms are defined as follows:

Analysis - The set of input lines relating to a single problem. An analysis basically consists of three phases: the Preprocessing Phase, the Solution Phase, and the Postprocessing Phase.

Command - An instruction to supply data, or control, to the program. Commands usually begin with a prescribed name, followed by alphanumeric data. For example, the command ET, ITYPE, Ename, ... may be input as ET,1,PIPE288 stating that element type 1 is defined as the PIPE288 element. The uppercase argument name indicates that a numerical value is typically entered in that field, whereas an upper-lower case data label indicates that an alphanumeric value is typically entered in that field. Another command, for example, /PREP7, instructs the program to enter the PREP7 portion of the program. All valid commands are alphabetically listed in the Command Dictionary (p.79) of this document. Unrecognized commands are further processed in a macro search (*USE) before being ignored. Commands may be indented on a line for clarity.

Data - Data may be numeric (real or integer), alphabetic, or alphanumeric (containing letters and numbers). Nonnumeric data should not contain special characters such as

Numeric data may be input in a variety of ways as described in Data Input (p. 5). Some commands are switches of the form Commandname,Key where Key can be 0, NO or OFF to toggle the switch off; or 1, YES or ON to toggle the switch on.

Degree of Freedom - The degrees of freedom are the primary nodal unknowns determined by the analysis. They may be displacements, rotations, temperatures, pressures, voltages, etc. A degree of freedom is defined by a node number and a label, for example, 1 UX, 87 ROTZ, 4 TEMP, etc. Derived results, such as stresses, heat flows, etc. are computed from the degree of freedom results and are considered secondary unknowns.

Element types with unequal sets of degrees of freedom can be combined in a single structure. For example, a 2-D structure composed of 2-D solid elements having two degrees of freedom (UX, UY) at each node and a 2-D beam element having three degrees of freedom ($U X, U Y, R O T Z$) at each node will have the latter three degrees of freedom at the common nodes. Nodes which do not have a beam element attached will have only two degrees of freedom with ROTZ eliminated from the solution printout.

Field - The command name and data items entered on a command are separated into consecutive fields. A field is assumed to be as "wide" as the number of characters specified. A comma is used to end one field and begin the next.

Line - A line of input is a physical record read by the computer. Input lines are limited to 640 characters (including preceding blanks, commas, and any special characters). For file input, a line is represented by one 640 column data record. For interactive input, a line is the string of characters (640 maximum) entered before the RETURN key is pressed. Several commands may be put on one line as described in Data Input (p.5). Blank lines are permitted for clarity.

Command name - Only the first four characters of any alphabetic (or alphanumeric) command name are interpreted by the program (except as noted for certain commands, such as /POSTN, /AUXN. *ENDDO, etc.). The remaining characters of the field are ignored. Names shown with fewer than four characters are assumed to have blanks up through the fourth character as part of the name. For example, this sample ET command may be input as $\mathbf{E T}, 1,42$ or $\mathbf{E T}, 1,42$ or $\mathbf{E T}, 1,42$, but not as ETABCD, 1,42 . Names may not contain special characters (as described in Data Input (p. 5)). If the command name is omitted, the name defaults to the name of the previous command, unless it was a slash (/) or star (*) command.

Postprocessing Phase - The set of ANSYS commands causing further processing of the solution output. These commands consist of commands from the POST1 and POST26 processors. The postprocessing phase may consist of input for several postprocessing sessions (in series).

Preprocessing Phase - The set of ANSYS commands related to defining the model. The preprocessing phase consists of input from the PREP7 processor.

Program - The collection of all processors (preprocessing, postprocessing, auxiliary, etc.) is called the ANSYS program.

Processor - A group of related functions, such as model definition (PREP7) or results examination (POST1).
Run - The collection of all ANSYS commands between the system level commands is called an ANSYS run (or session). A session may also consist of several analyses in series (separated by a /CLEAR command).

Solution Phase - The set of ANSYS commands which apply boundary conditions to the model created in preprocessing, then performs a solution for that set of boundary conditions. The solution phase may consist of several solutions in series, such as a static solution, followed by a modal solution, etc.

1.4. ANSYS Command Characteristics

1.4.1. Data Input

The data input for each command is described in this manual. Data should not be input in any undocumented field, nor should other than documented values be input in any field. Also, the data input described in this manual should not be used with any earlier version of the ANSYS program. Some features that allow easy input of data are free-format, nonrestrictive, and condensed input.

1.4.2. Free-Format Input

Free-format capability allows the user to input data in consecutive fields without having to space to each field. The comma (,) character effectively ends the field so that the next character will be input in the beginning of the next field. A blank field is skipped by having no data item between the commas. Fields are assumed to be as wide as the number of characters specified. Input is converted to formatted fields when coded files are written (of width large enough (16 characters maximum) to minimize loss of accuracy).

Significant figures of output should not be expected to match that of input. Machine precision, rounding of numbers when writing internal scratch files, etc., tend to lower the precision during the analysis.

1.4.3. Nonrestrictive Data Input

Nonrestrictive data input allows the user to enter any form of data in a field and the ANSYS program will interpret it as required (integer, real, or alphabetic) or ignore it. Double precision is used throughout the program for all real numbers. Alphabetic data may be entered in upper or lower case. Lower case is internally converted to upper case within the program (except for case-sensitive applications, such as in comments, (text preceded by a !) titles, and file names.)

The following features are available with the nonrestrictive data input.

- No distinction is necessary between real and integer data.
- Data may be placed anywhere within the field.
- Real data input without a decimal point has the decimal point assumed after the right-most digit.
- Real number values input to integer data fields will be rounded to the nearest integer. The absolute value of integer data must fall between zero and 2,000,000,000.
- Element and node numbers (IDs) should be between 1 and 99,999,999. Element type, material reference, real constant, section, and coordinate system IDs should be between 1 and 9,999,999. IDs large than
these may not be written out correctly in listings (xLIST commands), CDWRITE files, LSWRITE files, and other text-based output files.
- Exponents may be input in the field after the number. The E (or D) character must be used (upper or lower case). The sign after the E character is assumed to be the sign associated with the exponent (the absence of a sign is assumed to be +). The absolute value of real data must either be zero, or between $1.0 \mathrm{E}-60$ and $1.0 \mathrm{E}+60$.
- A nonnumeric character in the numeric field (other than a valid convenience label, a parameter name, or an E or D exponent character) will be ignored and will cause the remainder of the field to be ignored. When the program can accept an alphanumeric label in a field, it will interpret any alphanumeric input that matches a valid label as the appropriate label. In other words, the program will not interpret a valid label as an identically named parameter. If you truly want to use a parameter in place of a valid label, you can use forced parametric substitution (using \% signs). A non-alphanumeric character in a label field is taken as part of the label. Non-alphanumeric characters (such as CONTROL-characters, TABcharacters, and other terminal editing characters) should be avoided since they may be used directly instead of being interpreted by the terminal.

1.4.4. Condensed Data Input

An option for condensing the data input is available with the $\$$ character. This character effectively ends a command and allows the next command to begin on the same line (at the next column). The line must not extend beyond 640 characters (including all commas and $\$$ signs). If a command cannot be completed on the line, it should begin on the next line. Blank commands are ignored. The $\$$ character should not be used following any command that causes a file switch to read additional commands (such as the /INPUT, *USE, OPEXE, CDREAD, etc. commands, any "unknown command" macro, or any do-loops or if-then-else constructs). The $\$$ character should not be used between a command and its required following format line (such as *VREAD, *VWRITE, *MSG, etc.). The \$ character should not be used after the ALLSEL command. Using the \$ character in interactive mode may result in unexpected output behavior.

1.4.5. Units

The ANSYS program permits the use of any consistent set of units for length, force, time, temperature, etc. Care must be taken to ensure that all input data are in the same set of units. The /UNITS command may be used to note the system of units being used. Temperatures may be absolute or relative in most cases. For problems requiring absolute temperatures, such as those involving creep, swelling, or radiation, temperatures may be input as Celsius or Fahrenheit, for convenience, with a temperature shift from absolute zero [TOFFST].

1.4.6. Defaults

ANSYS commands are of two types:

- specification commands
- action commands

Specifications define how an action is to be performed. If a specification is not defined before the action, the default specification is used. If some specifications are changed after the action, these changed specifications (and the remaining previous specifications, if any) will be used for the next action. If the same specification is defined more than once before the action, the last specification is used. Note, since specification settings are easily forgotten, reset the specification to the desired value before the action command.

To minimize the data input requirements, ANSYS commands operate on a "default" principle. That is, unless otherwise stated, default specifications are used whenever needed. Two types of default are used:

- the command default
- the argument default

The command default is defined as the action taken, or the argument values used, if the entire command is omitted. For action commands, the command default is "no action" unless otherwise stated. A description of the command default, when applicable, appears at the end of the Argument section of the command description. The argument default is the value the argument takes on if the command is included, but the argument on the command is left blank. The latter case is often used when only some arguments on a command are to be specified or to restore a default specification after it has been changed. The argument default is documented as part of each argument's description.

A default specification is invoked whenever no value (or a blank field) is input for the argument. If the argument accepts a numeric value and no default is specified, a blank field defaults to a zero value. Where a default is specified, a blank or a zero value will produce the default value (unless otherwise specified). If a zero value is desired where a zero input produces a nonzero default, input a small number (such as $1 \mathrm{E}-10$) instead of zero. Specifications are initialized to their default values. Defaults which are not obvious are described, for the most part, with each command. For cases where defaults are not obvious and are not described, enter the desired value. Such cases may occur where no default is favored or where a default is purposely not documented (so that it may change in the future).

1.4.7. File Names

Various files are used during an ANSYS session for reading, writing, and storing data. ANSYS-generated files are identified by a name, a system-dependent separator, and an extension (as in the form fname.ext).

The name is obtained from the Jobname (250 characters maximum, including the directory name) as defined with the ANSYS execution command.

Note

Windows cannot create directory names longer than 245 characters.
Unless otherwise specified (see the Operations Guide), the Jobname defaults to a system dependent name (usually FILE). The extension is a 2 to 4 -character identifier (see Files that ANSYS Writes in the Basic Analysis Guide). For example, the ANSYS error message file (which has the identifier ERR) with a Jobname of FILE and separator (.) would be generated as FILE. ERR. If the Jobname is JOB1, the file would be named JOB1.ERR. ANSYS documentation generically refers to ANSYS files as Jobname.identifier, such as Jobname. ERR for the error message file. Note, the extension may be shown upper case in the documentation but may actually be lower case on some operating systems (such as UNIX). Unless otherwise indicated, ANSYS files are written in the current working directory.

Some commands (such as /INPUT and /OUTPUT) allow you to specify a file name other than Jobname, and an extension other than the default extension. Such user-written files use a naming convention similar to the ANSYS-generated files except that the name (248 characters maximum, including the directory name) is user defined, and the extension (8 characters maximum) is optional. The file name can include the directory path, but it is not necessary if you want to use the default directory. File names containing directory paths must reference existing directories. File and directory names may contain blank spaces, but strings containing blank spaces must be enclosed in single quotes.

A system dependent separator is automatically written between file name and extension (if the extension exists) input on commands.

File name fields are usually restricted to 248 characters on ANSYS commands, including the directory name. If you do not specify a directory path, it will default to your working directory and you can use all 248 characters for the file name.

To help ensure portability of input files across systems, the ANSYS program has certain requirements for file names. File names specified by the user should be valid both per ANSYS criteria (ASCII alpha-numeric), and per the operating system. Avoid using special characters ($+,-,{ }^{*}, /, \$,!$, etc.) in file names unless meaningful, and begin file names with a letter. Some system-dependent special characters (such as ~) are not interpreted the same as they are at the operating system level when used in pathnames. Parameter substitution may be forced within the name, extension, or directory fields by enclosing the parameter within percent (\%) signs. For example, if $\mathrm{l}=5$, the name TEST\% 1% becomes TEST5. Only one forced substitution may be made per field.

1.4.8. Star and Slash Commands

The slash (/) and star (${ }^{*}$) commands are usually used for supplying general control instructions to the ANSYS program. The slash commands are used, for example, for entering a processor (/PREP7, /POST1, etc.). Printout controls, display controls, and file controls are available within the slash command set. Repeat, looping and macro controls are available within the star command set. Many star and slash commands are global and apply to all processors. For example, the /TITLE command may be used to change the title in any processor (PREP7, POST1, etc.). The star commands can be input anywhere. Most slash commands can be input anywhere, however, some can only be input at a Begin level. The latter commands are specifically noted in the command explanation section. Graphics displays are controlled with the graphics display slash commands. The graphics display slash commands can be input anywhere.

Chapter 2: Command Groupings

Following are tables of related commands. The documentation for each command also references these tables, providing convenient access to related commands.

Example: To define material types in the PREP7 general preprocessor, see PREP7 Commands (p. 20) and examine the commands available under Table 2.27: Materials (p. 21).

While this document is useful as a reference, you should first look at the appropriate analysis guide to learn which commands are available for a particular type of analysis or operation. The analysis guides contain more detailed information about which commands to use for each step of a given analysis type.

Command Grouping Table Title
SESSION Commands
DATABASE Commands
GRAPHICS Commands
APDL Commands
PREP7 Commands
SOLUTION Commands
POST1 Commands
POST26 Commands
AUX2 Commands
AUX3 Commands
AUX12 Commands
AUX15 Commands
OPTIMIZATION Commands
VARIATIONAL TECHNOLOGY Commands
PROBABILISTIC Design Commands
DISPLAY Program Commands
REDUCED Order Modeling Commands
Menu-Inaccessible Commands

2.1.SESSION Commands

These commands provide general control to the ANSYS session. The commands are grouped by functionality.

Table 2.1 Run Controls

These SESSION commands control the overall characteristics of the ANSYS session, including the jobname, Graphical User Interface behavior, and file switching.
/BATCH Sets the program mode to "batch."

These SESSION commands control the overall characteristics of the ANSYS session, including the jobname, Graphical User Interface behavior, and file switching.

/CONFIG	Assigns values to ANSYS configuration parameters.
/CWD	Changes the current working directory.
/EOF	Exits the file being read.
/EXIT	Stops the run and returns control to the system.
/FILNAME	Changes the jobname for the analysis.
HELP	Displays help information on ANSYS commands and element types.
/INPUT	Switches the input file for the commands that follow.
KEYW	Sets a keyword used by the GUI for context filtering (GUI).
MEMM	Allows the current session to keep allocated memory
/MENU	Activates the Graphical User Interface (GUI).
/MSTART	Controls the initial GUI components.
/NERR	Limits the number of warning and error messages displayed.
/OUTPUT	Redirects text output to a file or to the screen.
PAUSE	Temporarily releases (pauses) the currently used product license
so that another application can use it.	
/STATUS	Lists the status of items for the run.
/SYP	Passes a command string and arguments to the operating system.
/SYS	Passes a command string to the operating system.
/UI	Activates specified GUI dialog boxes.
/UIS	Controls the GUI behavior.
UNPAUSE	Restores use of a temporarily released (paused) product license.

Table 2.2 Processor Entry

These SESSION commands are used to enter and exit the various processors in the program.

/AUX2	Enters the binary file dumping processor.
/AUX3	Enters the results file editing processor.
/AUX12	Enters the radiation matrix generation processor.
/AUX15	Enters the IGES file transfer processor.
FINISH	Exits normally from a processor.
/OPT	Enters the design optimizer.
/POST1	Enters the database results postprocessor.
/POST26	Enters the time-history results postprocessor.
/PREP7	Enters the model creation preprocessor.
/QUIT	Exits a processor.

These SESSION commands are used to enter and exit the various processors in the program.
/SOLU Enters the solution processor.
Table 2.3 Files
These SESSION commands are for file operations, such as deleting, copying, and listing.

ANSTOAQWA	Creates an AQWA-LINE input file from the current ANSYS model.
ANSTOASAS	Creates an ASAS input file from the current ANSYS model.
/ASSIGN	Reassigns a file name to an ANSYS file identifier.
/CLOG	Copies the session log file to a named file.
/COPY	Copies a file.
/DELETE	Deletes a file.
/FDELE	Deletes a binary file after it is used.
LGWRITE	Writes the database command log to a file.
*LIST	Displays the contents of an external, coded file.
/RENAME	Renames a file.

Table 2.4 List Controls
These SESSION commands are used to control listings and printed program output.
C*** Places a comment in the output.
/COM Places a comment in the output.
/GO Reactivates suppressed printout.
/GOLIST Reactivates the suppressed data input listing.
/GOPR Reactivates suppressed printout.
/NOLIST Suppresses the data input listing.
/NOPR Suppresses the expanded interpreted input data listing.

2.2. DATABASE Commands

These commands are used to operate on the database in a global sense. The commands are grouped by functionality.

Table 2.5 Set Up

These DATABASE commands can be used to initialize the database, save it to a file, or annotate it with titles and systems of units.
/CLEAR Clears the database.
RESUME Resumes the database from the database file.
SAVE Saves all current database information.
/SMBC Controls the display of solid model boundary condition symbols and labels.
STAT Displays the status of database settings.
/STITLE Defines subtitles.

These DATABASE commands can be used to initialize the database, save it to a file, or annotate it with titles and systems of units.
/TITLE
UNDO
/UNITS

Defines a main title.
Allows the user to modify or save commands issued since the last RESUME or SAVE command.
Annotates the database with the system of units used.

Table 2.6 Selecting

These DATABASE commands are used to select subsets of database entities for further operations.

ALLSEL Selects all entities with a single command.

ASLL
ASEL
ASLV
DOFSEL

ESEL
ESLA
ESLL
ESLN
ESLV
KSEL
KSLL
KSLN
LSEL
LSLA
LSLK
NSEL
NSLA
NSLE
NSLK
NSLL
NSLV
PARTSEL
VSEL
VSLA

Selects those areas containing the selected lines.
Selects a subset of areas.
Selects those areas contained in the selected volumes.
Selects a degree-of-freedom label set for reference by other commands.

Selects a subset of elements.
Selects those elements associated with the selected areas.
Selects those elements associated with the selected lines.
Selects those elements attached to the selected nodes.
Selects elements associated with the selected volumes.
Selects a subset of keypoints or hard points.
Selects those keypoints contained in the selected lines.
Selects those keypoints associated with the selected nodes.
Selects a subset of lines.
Selects those lines contained in the selected areas.
Selects those lines containing the selected keypoints.
Selects a subset of nodes.
Selects those nodes associated with the selected areas.
Selects those nodes attached to the selected elements.
Selects those nodes associated with the selected keypoints.
Selects those nodes associated with the selected lines.
Selects those nodes associated with the selected volumes.
Selects a subset of parts in an explicit dynamic analysis.
Selects a subset of volumes.
Selects those volumes containing the selected areas.

Table 2.7 Components

These DATABASE commands allow selected subsets of entities to be named as components for easy selection later on.
CM Groups geometry items into a component.

These DATABASE commands allow selected subsets of entities to be named as components for easy selection later on.

CMDELE	Deletes a component or assembly definition.
CMEDIT	Edits an existing component or assembly.
CMGRP	Groups components and assemblies into an assembly.
CMLIST	Lists the entities contained in a component or assembly.
CMMOD	Modifies the specification of a component.
CMPLOT	Plots the entities contained in a component or assembly.
CMSEL	Selects a subset of components and assemblies.
CMWRITE	Writes components and assemblies to a file.

Table 2.8 Working Plane

These DATABASE commands turn on, move, rotate, and modify the working plane, which is used for picking operations.

KWPAVE	Moves the working plane origin to the average location of keypo-
ints.	
KWPLAN	Defines the working plane using three keypoints.
LWPLAN	Defines the working plane normal to a location on a line.
NWPAVE	Moves the working plane origin to the average location of nodes.
NWPLAN	Defines the working plane using three nodes.
WPAVE	Moves the working plane origin to the average of specified points.
WPCSYS	Defines the working plane location based on a coordinate system.
WPLANE	Defines a working plane to assist in picking operations.
WPOFFS	Offsets the working plane.
WPROTA	Rotates the working plane.
WPSTYL	Controls the display and style of the working plane.

Table 2.9 Coordinate System
These DATABASE commands define and manipulate coordinate systems.
CLOCAL Defines a local coordinate system relative to the active coordinate system.
CS Defines a local coordinate system by three node locations.
CSCIR Locates the singularity for non-Cartesian local coordinate systems.
CSDELE Deletes local coordinate systems.
CSKP Defines a local coordinate system by three keypoint locations.
CSLIST Lists coordinate systems.
CSWPLA Defines a local coordinate system at the origin of the working plane.
CSYS Activates a previously defined coordinate system.

These DATABASE commands define and manipulate coordinate systems. LOCAL

Defines a local coordinate system by a location and orientation.

Table 2.10 Picking

These DATABASE commands are generated by the GUI when picking operations are performed.
FITEM Identifies items chosen by a picking operation (GUI).
FLST
Specifies data required for a picking operation (GUI).

2.3. GRAPHICS Commands

These commands are used to control the graphics of the ANSYS program. The commands are grouped by functionality.

Table 2.11 Set Up

These GRAPHICS commands are used for general graphics control, such as window set up, color settings, specifications saving, etc.
/CMAP Changes an existing or creates a new color mapping table.
/COLOR Specifies the color mapping for various items.
/DEVICE Controls graphics device options.
DSYS Activates a display coordinate system for geometry listings and plots.
/DV3D Sets 3-D device option modes.
/ERASE Specifies that the screen is to be erased before each display.
ERASE Explicitly erases the current display.
/GCMD Controls the type of element or graph display used for the GPLOT command.
/GCOLUMN Allows the user to apply a label to a specified curve.
/GFILE
GPLOT
/GRAPHICS
Specifies the pixel resolution on Z-buffered graphics files.
Controls general plotting.
Defines type of graphics display to be used for element plots.
/GRESUME Sets graphics settings to the settings on a file.
/GSAVE
Saves graphics settings to a file for later use.
/GTYPE Controls the entities that the GPLOT command displays.
HPGL Specifies various HP options.
IIMAGE Allows graphics data to be captured and saved.
IMMED Allows immediate display of a model as it is generated.
JPEG Provides JPEG File Export for ANSYS Displays.
/MREP Enables you to reissue the graphics command macro "name" during a replot or zoom operation.
/NOERASE Prevents the screen erase between displays.
/PCOPY Generates hard copies automatically (device dependent).

These GRAPHICS commands are used for general graphics control, such as window set up, color settings, specifications saving, etc.

PNGR
PSCR
/PSTATUS
/REPLOT
/RESET
/SEG
/SHOW
TIFF
/WINDOW

Sets file options for PNGR graphics export for ANSYS displays.
Specifies various PostScript options.
Displays the global or window display specifications.
Automatically reissues the last display command for convenience.
Resets display specifications to their initial defaults.
Allows graphics data to be stored in the local terminal memory.
Specifies the device and other parameters for graphics displays.

Table 2.12 Views
These GRAPHICS commands are used to control the view of the model.

/ANGLE	Rotates the display about an axis. /AUTO
Resets the focus and distance specifications to "automatically cal- culated."	
/DIST	Specifies the viewing distance for magnifications and perspective.
/FOCUS	Specifies the focus point (center of the window).
/USER	Conveniently resets /FOCUS and /DIST to USER.
/VCONE	Defines the view cone angle for perspective displays.
/VIEW	Defines the viewing direction for the display. /VUP
Specifies the global Cartesian coordinate system reference orienta-	
tion.	

Table 2.13 Scaling
These GRAPHICS commands are used to scale various parts of the display.
/DSCALE Sets the displacement multiplier for displacement displays.
/ICLWID Scales the line width of circuit builder icons.
/ICSCALE Scales the icon size for elements supported in the circuit builder.
/RATIO Distorts the object geometry.
/SHRINK
/SSCALE
/TXTRE
/VSCALE
Provides TIFF file Export for ANSYS Displays.
Defines the window size on the screen.

Table 2.14 Style

These GRAPHICS commands are used to change the way a model is displayed.
/CPLANE Specifies the cutting plane for section and capped displays.

These GRAPHICS commands are used to change the way a model is displayed.
/CTYPE /EDGE
/ESHAPE
/FACET
/GLINE
/GMARKER
GMFACE
/LIGHT /NORMAL /SHADE
/TRLCY
/TYPE

Specifies the type of contour display.
Displays only the "edges" of an object.
Displays elements with shapes determined from the real constants.
Specifies the facet representation used to form solid model displays.
Specifies the element outline style.
Specifies the curve marking style.
Specifies the facet representation used to form solid models.
Specifies the light direction for the display window.
Allows displaying area elements by top or bottom faces.
Defines the type of surface shading used with Z-buffering.
Specifies the level of translucency.
Defines the type of display.

Table 2.15 Labeling

These GRAPHICS commands are used to add helpful labels and symbols to displays.
/CFORMAT
/CLABEL
/CONTOUR
/CVAL
/GFORMAT
/HBC
/NUMBER
/PBC
/PBF
PGSELE
/PICE
/PLOPTS
/PNUM
/PSF
/PSYMB
/TRIAD
/UDOC

Controls the graphical display of alpha character strings for parameters, components, assemblies, and tables.

Specifies contour labeling.
Specifies the uniform contour values on stress displays.
Specifies nonuniform contour values on stress displays. Specifies the format for the graphical display of numbers.
Determines how boundary conditions are displayed in a display window.
Specifies whether numbers, colors, or both are used for displays. Shows boundary condition symbols and values on displays. Shows body force loads as contours on displays.
Select a subset of elements for display with the PGR viewer. Shows initial conditions on elements as contours on displays.
Controls graphics options on subsequent displays.
Controls entity numbering/coloring on plots.
Shows surface load symbols on model displays.
Shows various symbols on displays.
Shows the global XYZ coordinate triad on displays.
Determines position and content for the multi-legend options.

Table 2.16 Graphs
These GRAPHICS commands are used to control the way line graphs are displayed.
/AXLAB Labels the X and Y axes on graph displays.
/GROPT
Selects the type of grid on graph displays.
Sets various line graph display options.

These GRAPHICS commands are used to control the way line graphs are displayed.
/GRTYP \quad Selects single or multiple Y-axes graph displays.
/GTHK
/XRANGE
/YRANGE

Sets line thicknesses for graph lines.
Specifies a linear abscissa (X) scale range.
Specifies a linear ordinate (Y) scale range.

Table 2.17 Annotation

These GRAPHICS commands are used to annotate a display with notes and symbols.	
/AN3D	Specifies 3-D annotation functions
/ANNOT	Activates graphics for annotating displays (GUI).
/ANUM	Specifies the annotation number, type, and hot spot (GUI).
/LARC	Creates annotation arcs (GUI).
/LINE	Creates annotation lines (GUI).
/LSPEC	Specifies annotation line attributes (GUI).
/LSYMBOL	Creates annotation symbols (GUI).
/PCIRCLE	Creates an annotation circle (GUI).
/PMORE	Creates an annotation polygon (GUI).
/POLYGON	Creates annotation polygons (GUI).
/PSPEC	Creates annotation polygon attributes (GUI).
/PWEDGE	Creates an annotation wedge (GUI).
/TLABEL	Creates annotation text (GUI).
/TSPEC	Creates annotation text attributes (GUI).

2.4. APDL Commands

These commands make up the ANSYS Parametric Design Language (APDL). The commands are grouped by functionality.

Table 2.18 Parameter Definition

These APDL commands are used to define parameters and their values.	
*AFUN	Specifies units for angular functions in parameter expressions.
*ASK	Prompts the user to input a parameter value.
*DEL	Deletes a parameter (GUI).
*DIM	Defines an array parameter and its dimensions.
*GET	Retrieves a value and stores it as a user-named parameter.
/INQUIRE	Returns system information to a parameter.
PARRES	Reads parameters from a file.
PARSAV	Writes parameters to a file.
*SET	Assigns values to user-named parameters.
*STATUS	Lists the current parameters and abbreviations.
*TAXIS	Defines table index numbers.

These APDL commands are used to define parameters and their values.
*TREAD Reads data from an external file into a table array parameter.
*VFILL Fills an array parameter.
*VGET Retrieves values into an array parameter.
*VREAD Reads data and produces an array parameter vector or matrix.

Table 2.19 Macro Files

These APDL commands are used to build and execute command macros.

*CFCLOS	Closes the "command" file.
*CFOPEN	Opens a "command" file.
*CFWRITE	Writes an ANSYS command (or similar string) to a "command" file.
*CREATE	Opens (creates) a macro file.
/DFLAB	Changes degree of freedom labels for user custom elements.
*END	Closes a macro file.
/MAIL	Mails file to specifed address.
/MKDIR	Creates a directory.
*MSG	Writes an output message via the ANSYS message subroutine.
/PMACRO	Specifies that macro contents be written to the session log file. /PSEARCH
	Specifies a directory to be searched for "unknown command" macro files.
/RMDIR	Removes (deletes) a directory.
/TEE	Writes a list of commands to a specified file at the same time that the commands are being executed.
*ULIB	Identifies a macro library file.
*USE	Executes a macro file.

Table 2.20 Abbreviations

These APDL commands can be used to define abbreviations for longer commands, and to create user-defined commands.

*ABBR	Defines an abbreviation.
ABBRES	Reads abbreviations from a coded file.
ABBSAV	Writes the current abbreviation set to a coded file.
IUCMD	Assigns a user-defined command name.

Table 2.21 Array Parameters

These APDL commands are used to operate on parameter arrays (i.e., vectors and matrices).
/DIRECTORY Put the file names in the current directory into a string parameter array.
*MFOURI Calculates the coefficients for, or evaluates, a Fourier series.
*MFUN Copies or transposes an array parameter matrix.

These APDL commands are used to operate on parameter arrays (i.e., vectors and
matrices).

*MOPER	Performs matrix operations on array parameter matrices.
*MWRITE	Writes a matrix to a file in a formatted sequence.
*SREAD	Reads a file into a string array parameter.
*TOPER	Operates on table parameters.
*VABS	Applies the absolute value function to array parameters.
*VCOL	Specifies the number of columns in matrix operations.
*VCUM	Allows array parameter results to add to existing results.
*VEDIT	Allows numerical array parameters to be graphically edited.
*VFACT	Applies a scale factor to array parameters.
*VFUN	Performs a function on a single array parameter.
*VITRP	Forms an array parameter by interpolation of a table.
*VLEN	Specifies the number of rows to be used in array parameter opera- tions.
*VMASK	Specifies an array parameter as a masking vector.
*VOPER	Operates on two array parameters.
*VPLOT	Graphs columns (vectors) of array parameters.
*VPUT	Restores array parameter values into the ANSYS database.
*VSCFUN	Determines properties of an array parameter.
*VSTAT	Lists the current specifications for the array parameters.
*VWRITE	Writes data to a file in a formatted sequence.

Table 2.22 Process Controls

These APDL commands can be used to control the order in which other commands are processed.

*CYCLE	Bypasses commands within a do-loop.
*DO	Defines the beginning of a do-loop.
*DOWHILE	Loops repeatedly through the next *ENDDO command.
*ELSE	Separates the final if-then-else block.
*ELSEIF	Separates an intermediate if-then-else block.
*ENDDO	Ends a do-loop and starts the looping action.
*ENDIF	Ends an if-then-else.
*EXIT	Exits a do-loop.
*GO	Causes a specified line on the input file to be read next.
*IF	Conditionally causes commands to be read.
*REPEAT	Repeats the previous command.
*RETURN	Returns input stream to a higher level.

These APDL commands can be used to control the order in which other commands are processed.
/WAIT Introduces a delay before reading the next command.

Table 2.23 Matrix Operations (APDL Math)

These APDL Math commands can be used to create, manipulate, and solve matrices.

AXPY	Performs the matrix operation $M 2=v^{} M 1+w^{*} M 2$.
*COMP	Compresses the columns of a matrix using a specified algorithm.
*DMAT	Creates a dense matrix.
*EIGEN	Performs a modal solution with unsymmetric or damping matrices.
*EXPORT	Exports a matrix to a file in the specified format.
*FREE	Deletes a matrix or a solver object and frees its memory allocation.
*ITENGINE	Performs a solution using an iterative solver.
*LSBAC	Performs the solve (forward/backward substitution) of a factorized
	linear system.
*LSENGINE	Creates a linear solver engine.
*LSFACTOR	Performs the numerical factorization of a linear solver system.
*MULT	Performs the matrix multiplication M3 = M1(T1)*M2(T2).
*NRM	Computes the norm of the specified matrix or vector.
*PRINT	Prints the matrix values to a file.
*SMAT	Creates a sparse matrix.
*VEC	Creates a vector.

2.5. PREP7 Commands

These commands are used to create and set up the model. The commands are grouped by functionality.

Table 2.24 Database

These PREP7 commands are used to read model data into the database, list out the database, and control the numbering of entities in the database.

AFLIST	Lists the current data in the database.
CDREAD	Reads a file of solid model and database information into the database.
CDWRITE	Writes geometry and load database items to a file.
CDOPT	Specifies format to be used for archiving geometry.
CECHECK	Check constraint equations and couplings for rigid body motions.
CHECK	Checks current database items for completeness.
CNCHECK	Provides and/or adjusts the initial status of contact pairs.
FC	Provides failure criteria information and activates a data table to input temperature-dependent stress and strain limits.
FCCHECK	Checks both the strain and stress input criteria for all materials.

These PREP7 commands are used to read model data into the database, list out the database, and control the numbering of entities in the database.

FCDELE	Deletes previously defined failure criterion data for the given ma- terial.
FCLIST	To list what the failure criteria is that you have input.
IGESOUT	Writes solid model data to a file in IGES Version 5.1 format.
MFIMPORT	Imports a new field into a current ANSYS Multi-field solver analysis. NOOFFSET
	Prevents the CDREAD command from offsetting specified data items.
NUMCMP	Compresses the numbering of defined items.
NUMMRG	Merges coincident or equivalently defined items.
NUMOFF	Adds a number offset to defined items.
NUMSTR	Establishes starting numbers for automatically numbered items.
/PREP7	Enters the model creation preprocessor.

Table 2.25 Element Type

DOF	Adds degrees of freedom to the current degree-of-freedom set.
ELBOW	Specifies degrees of freedom to be coupled for end release and applies section constraints to elbow elements.
ET	Defines a local element type from the element library.
ETCHG	Changes element types to their corresponding types.
ETCONTROL	Controls the element technologies used in element formulation (for applicable elements).
ETDELE	Deletes element types.
ETLIST	Lists currently defined element types.
KEYOPT	Sets element key options.
NSVR	Defines the number of variables for user-programmable element options.

Table 2.26 Real Constants

These PREP7 commands define the model real constants.

R Defines the element real constants.
RDELE Deletes real constant sets.
RLIST Lists the real constant sets.
RMODIF Modifies real constant sets.
RMORE Adds real constants to a set.
SETFGAP Updates real constant table for squeeze film elements.
Table 2.27 Materials
These PREP7 commands are used to define the linear material properties.
EMUNIT Specifies the system of units for magnetic field problems.

These PREP7 commands are used to define the linear material properties.

MP	Defines a linear material property.
MPAMOD	Modifies temperature-dependent coefficients of thermal expansion.
MPCHG	Changes the material number attribute of an element.
MPCOPY	Copies material model data from one material reference number to another.
MPDATA	Defines property data to be associated with the temperature table.
MPDELE	Deletes linear material properties.
MPDRES	Reassembles existing material data with the temperature table.
/MPLIB	Sets the default material library read and write paths.
MPLIST	Lists linear material properties.
MPPLOT	Plots linear material properties as a function of temperature.
MPREAD	Reads a file containing material properties.
MPTEMP	Defines a temperature table for material properties.
MPTGEN	Adds temperatures to the temperature table by generation.
MPTRES	Restores a temperature table previously defined.
MPWRITE	Writes linear material properties in the database to a file (if the Lib option is not specified) or writes both linear and nonlinear material
	properties (if Lib is specified) from the database to a file.

Table 2.28 Material Data Tables

These PREP7 commands create and modify the data tables, used to define nonlinear materials, for example.

TB

TBCOPY
TBDATA
TBDELE
TBEO
TBFIELD
TBLIST
TBMODIF
TBPLOT
TBPT
TBTEMP

Activates a material data table.
Copies a data table from one material to another.
Defines data for the material data table.
Deletes previously defined material data tables.
Sets special options or parameters for material data tables.
Defines values of field variables for the material data tables.
Lists the material data tables.
Modifies data for the material data table (GUI).
Displays the material data table.
Defines a point on a stress-strain or B-H curve.
Defines a temperature for the material data table.

Table 2.29 Primitives

These PREP7 commands are used to create primitive shapes for modeling.
BLC4 Creates a rectangular area or block volume by corner points.

These PREP7 commands are used to create primitive shapes for modeling.

BLC5	Creates a rectangular area or block volume by center and corner points.
BLOCK	Creates a block volume based on working plane coordinates.
CON4	Creates a conical volume anywhere on the working plane.
CONE	Creates a conical volume centered about the working plane origin.
CYL4	Creates a circular area or cylindrical volume anywhere on the working plane.
CYL5	Creates a circular area or cylindrical volume by end points.
CYLIND	Creates a cylindrical volume centered about the working plane origin.
PCIRC	Creates a circular area centered about the working plane origin.
POLY	Creates a polygonal area based on working plane coordinate pairs.
PRI2	Creates a polygonal area or a prism volume by vertices (GUI).
PRISM	Creates a prism volume based on working plane coordinate pairs.
PTXY	Defines coordinate pairs for use in polygons and prisms.
RECTNG	Creates a rectangular area anywhere on the working plane.
RPOLY	Creates a regular polygonal area centered about the working plane origin.
RPR4	Creates a regular polygonal area or prism volume anywhere on the working plane.
RPRISM	Creates a regular prism volume centered about the working plane origin.
SPH4	Creates a spherical volume anywhere on the working plane.
SPH5	Creates a spherical volume by diameter end points.
SPHERE	Creates a spherical volume centered about the working plane origin.
TORUS	Creates a toroidal volume.

Table 2.30 Keypoints

These PREP7 commands are used to create, modify, list, etc., keypoints.
GSUM Calculates and prints geometry items.
K Defines a keypoint.
KBETW Creates a keypoint between two existing keypoints.
KCENTER Creates a keypoint at the center of a circular arc defined by three locations.
KDELE Deletes unmeshed keypoints.
KDIST Calculates and lists the distance between two keypoints.
KFILL Generates keypoints between two keypoints.
KGEN Generates additional keypoints from a pattern of keypoints.
KL Generates a keypoint at a specified location on an existing line.
KLIST Lists the defined keypoints or hard points.
KMODIF Modifies an existing keypoint.

These PREP7 commands are used to create, modify, list, etc., keypoints.

KMOVE	Calculates and moves a keypoint to an intersection.
KNODE	Defines a keypoint at an existing node location.
KPLOT	Displays the selected keypoints.
KPSCALE	Generates a scaled set of (meshed) keypoints from a pattern of keypoints.
KSCALE	Generates a scaled pattern of keypoints from a given keypoint pattern.
KSUM	Calculates and prints geometry statistics of the selected keypoints.
KSYMM	Generates a reflected set of keypoints.
KTRAN	Transfers a pattern of keypoints to another coordinate system.
SOURCE	Defines a default location for undefined nodes or keypoints.

Table 2.31 Hard Points

These PREP7 commands are used to create, modify, list, etc., hard points.
HPTCREATE Defines a hard point.
HPTDELETE Deletes selected hard points.

Table 2.32 Lines

These PREP7 commands are used to create, modify, list, etc., lines.
BSPLIN Generates a single line from a spline fit to a series of keypoints.
CIRCLE Generates circular arc lines.
GSUM Calculates and prints geometry items.
L Defines a line between two keypoints.
L2ANG Generates a line at angle with two existing lines.
L2TAN Generates a line tangent to two lines.
LANG Generates a straight line at an angle with a line.
LARC Defines a circular arc.
LAREA Generates the shortest line between two keypoints on an area.
LCOMB Combines adjacent lines into one line.
LDELE Deletes unmeshed lines.
LDIV Divides a single line into two or more lines.
LDRAG Generates lines by sweeping a keypoint pattern along path.
LEXTND Extends a line at one end by using its slope.
LFILLT Generates a fillet line between two intersecting lines.
LGEN Generates additional lines from a pattern of lines.
LLIST Lists the defined lines.
LPLOT Displays the selected lines.
LREVERSE Reverses the normal of a line, regardless of its connectivity or mesh status.

These PREP7 commands are used to create, modify, list, etc., lines.

LROTAT	Generates circular lines by rotating a keypoint pattern about an axis.
LSSCALE	Generates a scaled set of lines from a pattern of lines.
LSTR	Defines a straight line irrespective of the active coordinate system.
LSUM	Calculates and prints geometry statistics of the selected lines.
LSYMM	Generates lines from a line pattern by symmetry reflection.
LTAN	Generates a line at the end of, and tangent to, an existing line.
LTRAN	Transfers a pattern of lines to another coordinate system.
SPLINE	Generates a segmented spline through a series of keypoints.
SSLN	Selects and displays small lines in the model.

Table 2.33 Areas
These PREP7 commands are used to create, modify, list, etc., areas.

A	Defines an area by connecting keypoints.
AATT	Associates element attributes with the selected, unmeshed areas.
ADELE	Deletes unmeshed areas.
ADGL	Lists keypoints of an area that lie on a parametric degeneracy.
ADRAG	Generates areas by dragging a line pattern along a path.
AFILLT	Generates a fillet at the intersection of two areas.
AGEN	Generates additional areas from a pattern of areas.
AL	Generates an area bounded by previously defined lines.
ALIST	Lists the defined areas.
ANORM	Reorients area normals.
AOFFST	Generates an area, offset from a given area.
APLOT	Displays the selected areas.
AREVERSE	Reverses the normal of an area, regardless of its connectivity or
mesh status.	
AROTAT	Generates cylindrical areas by rotating a line pattern about an axis.
ARSCALE	Generates a scaled set of areas from a pattern of areas.
ARSYM	Generates areas from an area pattern by symmetry reflection.
ASKIN	Generates an area by "skinning" a surface through guiding lines.
ASUB	Generates an area using the shape of an existing area.
ASUM	Calculates and prints geometry statistics of the selected areas.
ATRAN	Transfers a pattern of areas to another coordinate system.
GSUM	Calculates and prints geometry items.

These PREP7 commands are used to create, modify, list, etc., areas.

SPLOT \quad| Displays the selected areas and a faceted view of their underlying |
| :--- |
| surfaces |

Table 2.34 Volumes

These PREP7 commands are used to create, modify, list, etc., volumes.

EXTOPT	Controls options relating to the generation of volume elements
from area elements.	
GSUM	Calculates and prints geometry items.
V	Defines a volume through keypoints.
VA	Generates a volume bounded by existing areas.
VDELE	Deletes unmeshed volumes.
VDGL	Lists keypoints of a volume that lie on a parametric degeneracy.
VDRAG	Generates volumes by dragging an area pattern along a path.
VEXT	Generates additional volumes by extruding areas.
VGEN	Generates additional volumes from a pattern of volumes.
VLIST	Lists the defined volumes.
VLSCALE	Generates a scaled set of volumes from a pattern of volumes.
VOFFST	Generates a volume, offset from a given area.
VPLOT	Displays the selected volumes.
VROTAT	Generates cylindrical volumes by rotating an area pattern about
VSUM	Can axis.
VSYMM	Generates volumes from a volume pattern by symmetry reflection.
VTRAN	Transfers a pattern of volumes to another coordinate system.

Table 2.35 Booleans

AADD	Adds separate areas to create a single area.
AGLUE	Generates new areas by "gluing" areas.
AINA	Finds the intersection of areas.
AINP	Finds the pairwise intersection of areas.
AINV	Finds the intersection of an area with a volume.
AOVLAP	Overlaps areas.
APTN	Partitions areas.
ASBA	Subtracts areas from areas.
ASBL	Subtracts lines from areas.
ASBV	Subtracts volumes from areas.
ASBW	Subtracts the intersection of the working plane from areas (divides areas).
BOPTN	Specifies Boolean operation options.

These PREP7 commands are used to perform Boolean operations on solid model entities.
BTOL Specifies the Boolean operation tolerances.
LCSL Divides intersecting lines at their point(s) of intersection.
LGLUE Generates new lines by "gluing" lines.
LINA Finds the intersection of a line with an area.
LINL Finds the common intersection of lines.
LINP Finds the pairwise intersection of lines.
LINV Finds the intersection of a line with a volume.
LOVLAP Overlaps lines.
LPTN Partitions lines.
LSBA Subtracts areas from lines.
LSBL Subtracts lines from lines.
LSBV Subtracts volumes from lines.
LSBW Subtracts the intersection of the working plane from lines (divides lines).
VADD Adds separate volumes to create a single volume.
VGLUE Generates new volumes by "gluing" volumes.
VINP Finds the pairwise intersection of volumes.
VINV Finds the intersection of volumes.
VOVLAP Overlaps volumes.
VPTN Partitions volumes.
VSBA Subtracts areas from volumes.
VSBV Subtracts volumes from volumes.
VSBW Subtracts intersection of the working plane from volumes (divides volumes).

Table 2.36 Meshing
These PREP7 commands are used to mesh solid models with nodes and elements.
ACCAT Concatenates multiple areas in preparation for mapped meshing.
ACLEAR Deletes nodes and area elements associated with selected areas.
AESIZE Specifies the element size to be meshed onto areas.
AMAP Generates a 2-D mapped mesh based on specified area corners.
AMESH Generates nodes and area elements within areas.
AREFINE Refines the mesh around specified areas.
CHKMSH Checks area and volume entities for previous meshes.
CLRMSHLN Clears meshed entities.
CPCYC Couples the two side faces of a cyclically symmetric model for loadings that are the same on every segment.
CZDEL Edits or clears cohesive zone sections.
CZMESH Creates and meshes a cohesive zone group of elements.
DESIZE Controls default element sizes.

EORIENT	Reorients solid element normals.
EREFINE	Refines the mesh around specified elements.
ESIZE	Specifies the default number of line divisions.
ESYS	Sets the element coordinate system attribute pointer.
FVMESH	Generates nodes and tetrahedral volume elements from detached exterior area elements (facets).
GSGDATA	Specifies the reference point and defines the geometry in the fiber direction for the generalized plane strain element option.
IMESH	Generates nodes and interface elements along lines or areas.
KATT	Associates attributes with the selected, unmeshed keypoints.
KCLEAR	Deletes nodes and point elements associated with selected keypoints.
KESIZE	Specifies the edge lengths of the elements nearest a keypoint.
KMESH	Generates nodes and point elements at keypoints.
KREFINE	Refines the mesh around specified keypoints.
KSCON	Specifies a keypoint about which an area mesh will be skewed.
LATT	Associates element attributes with the selected, unmeshed lines.
LCCAT	Concatenates multiple lines into one line for mapped meshing.
LCLEAR	Deletes nodes and line elements associated with selected lines.
LESIZE	Specifies the divisions and spacing ratio on unmeshed lines.
LMESH	Generates nodes and line elements along lines.
LREFINE	Refines the mesh around specified lines.
MAT	Sets the element material attribute pointer.
MCHECK	Checks mesh connectivity.
MODMSH	Controls the relationship of the solid model and the FE model.
MOPT	Specifies meshing options.
MSHAPE	For elements that support multiple shapes, specifies the element shape to be used for meshing.
MSHCOPY	Simplifies the generation of meshes that have matching node element patterns on two different line groups (in 2-D) or area groups (3-D).
MSHKEY	Specifies whether free meshing or mapped meshing should be used to mesh a model.
MSHMID	Specifies placement of midside nodes.
MSHPATTERN	Specifies pattern to be used for mapped triangle meshing.
NREFINE	Refines the mesh around specified nodes.
PSMESH	Splits an initially continuous group of beam, shell, plane, or solid elements into two unconnected groups, tied together with PRETS179 pretension elements.
REAL	Sets the element real constant set attribute pointer.
RTHICK	Defines variable thickness at nodes for shell elements.

SHPP	Controls element shape checking.
SMRTSIZE	Specifies meshing parameters for automatic (smart) element sizing.
TCHG	Converts 20-node degenerate tetrahedral elements to their 10-node non-degenerate counterparts.
TIMP	Improves the quality of tetrahedral elements that are not associated with a volume.
TYPE	Sets the element type attribute pointer.
VATT	Associates element attributes with the selected, unmeshed volumes.
VCLEAR	Deletes nodes and volume elements associated with selected volumes.
VIMP	Improves the quality of the tetrahedral elements in the selected volume(s).
VMESH	Generates nodes and volume elements within volumes.
VEORIENT	Specifies brick element orientation for volume mapped (hexahedron) meshing.
VSWEEP	Fills an existing unmeshed volume with elements by sweeping the mesh from an adjacent area throughout the volume.

Table 2.37 Nodes

These PREP7 commands are used to create, modify, list, etc., nodes.	
CENTER	Defines a node at the center of curvature of 2 or 3 nodes.
FILL	Generates a line of nodes between two existing nodes.
MOVE	Calculates and moves a node to an intersection.
N	Defines a node. Generates or clears nodes for general axisymmetric element sec- tions.
NAXIS	Rotates a nodal coordinate system by direction cosines.
	Deletes nodes.
NANG	Calculates and lists the distance between two nodes.
NDELE	Generates additional nodes from a pattern of nodes.
NDIST	Defines a node at an existing keypoint location.
NGEN	Lists nodes.
NKPT	Modifies an existing node.
NLIST	Rotates nodal coordinate systems to surface normal.
NMODIF	Displays nodes.
NORA	Reads nodes from a file.
NPLOT	Rotates nodal coordinate systems into the active system.
NREAD	Specifies the range of nodes to be read from the node file.
NROTAT	Generates a scaled set of nodes from a pattern of nodes.
NRRANG	Smooths selected nodes among selected elements.
NSCALE	Generates a reflected set of nodes.
NSMOOTH	

These PREP7 commands are used to create, modify, list, etc., nodes.

NWRITE	Writes nodes to a file.
QUAD	Generates a quadratic line of nodes from three nodes.
SOURCE	Defines a default location for undefined nodes or keypoints.
TRANSFER	Transfers a pattern of nodes to another coordinate system.

Table 2.38 Elements

These PREP7 commands are used to create, modify, list, etc., elements.

AFSURF	Generates surface elements overlaid on the surface of existing solid elements and assigns the extra node as the closes fluid ele- ment node.
E	Defines an element by node connectivity.
EDELE	Deletes selected elements from the model.
EGEN	Generates elements from an existing pattern.
EINTF	Defines two-node elements between coincident nodes.
ELIST	Lists the elements.
EMID	Adds or removes midside nodes.
EMODIF	Modifies a previously defined element.
EMORE	Adds more nodes to the just-defined element.
EMTGEN	Generates a set of TRANS126 elements
EN	Defines an element by its number and node connectivity.
ENDRELEASE	Specifies degrees of freedom to be decoupled for end release.
ENGEN	Generates elements from an existing pattern.
ENORM	Reorients shell element normals or line element node connectivity.
ENSYM	Generates elements by symmetry reflection.
EORIENT	Reorients solid element normals.
EPLOT	Produces an element display.
EREAD	Reads elements from a file.
EREINF	Generates reinforcing elements from selected existing (base) ele-
ERRANG	ments.
Specifies the element range to be read from a file.	

These PREP7 commands are used to create, modify, list, etc., elements.	
LFSURF	Generates surface elements overlaid on the edge of existing solid elements and assigns the extra node as the closest fluid element node.
MAT	Sets the element material attribute pointer. Generates surface elements overlaid on the edge of existing ele- ments and assigns the extra node as the closest fluid element node.
NDSURF	Sets the element real constant set attribute pointer.
REAL	Adds more surfaces to an existing spot weld set.

Table 2.39 Superelements
These PREP7 commands are used to create and modify superelements.
SE
SEDLIST
Defines a superelement.

Table 2.40 Digitizing

These PREP7 commands are used to define nodes by tablet digitizing.
DIG Digitizes nodes to a surface.
DMOVE Digitizes nodes on surfaces and along intersections.
DSET Sets the scale and drawing plane orientation for a digitizing tablet.
DSURF Defines the surface upon which digitized nodes lie.

Table 2.41 Coupled Degrees of Freedom

These PREP7 commands are used to define, modify, list, etc., coupled degrees of freedom.
CP Defines (or modifies) a set of coupled degrees of freedom.
CPDELE Deletes coupled degree of freedom sets.

These PREP7 commands are used to define, modify, list, etc., coupled degrees of freedom.
CPINTF Defines coupled degrees of freedom at an interface.
CPLGEN Generates sets of coupled nodes from an existing set.
CPLIST Lists the coupled degree of freedom sets.
CPNGEN Defines, modifies, or adds to a set of coupled degrees of freedom.
CPSGEN Generates sets of coupled nodes from existing sets.

Table 2.42 Constraint Equations

These PREP7 commands are used to define, modify, list, etc., constraint equations.
CE Defines a constraint equation relating degrees of freedom.

CECYC Generates the constraint equations for a cyclic symmetry analysis.

CEDELE	Deletes constraint equations.
CEINTF	Generates constraint equations at an interface.
CELIST	Lists the constraint equations.
CERIG	Defines a rigid region.
CESGEN	Generates a set of constraint equations from existing sets. RBE3
Distributes the force/moment applied at the master node to a set of slave nodes, taking into account the geometry of the slave nodes as well as weighting factors.	

Table 2.43 Element Reordering

These PREP7 commands are used to reorder the model wavefront.

NOORDER	Re-establishes the original element ordering.
WAVES	Initiates reordering.
WERASE	Erases all reordering wave lists.
WFRONT	Estimates wavefront statistics.
WMID	Specifies reordering options for the WAVES command.
WMORE	Adds more nodes to the starting wave list.
WSORT	Initiates element reordering based upon a geometric sort.
WSTART	Defines a starting wave list.

Table 2.44 FLOTRAN Options

These PREP7 commands are used to specify the options and output controls for a FLOTRAN CFD analysis.
FLDATA Sets up a FLOTRAN analysis.
FLDATA1 Controls which features of the solution algorithm are activated.
FLDATA2
FLDATA3
FLDATA4
Sets iteration and output controls for steady state analyses.
Sets the convergence monitors for the degree of freedom set.
Sets controls for transient analyses based on transient time and convergence monitors or sets time integration method.

These PREP7 commands are used to specify the options and output controls for a FLOTRAN CFD analysis.

FLDATA4A	Sets controls for transient analyses based on the number of time steps.
FLDATA5	Sets output and storage controls.
FLDATA6	Controls the output of the convergence monitor.

Table 2.45 FLOTRAN Property
These PREP7 commands are used to specify the fluid properties for a FLOTRAN CFD analysis.
FLDATA7 Specifies the type of fluid property.
FLDATA8 Specifies the NOMI coefficient of the fluid property equation.
FLDATA9 Specifies the COF1 coefficient of the fluid property equation.
FLDATA10 Specifies the COF2 coefficient of the fluid property equation.
FLDATA11 Specifies the COF3 coefficient of the fluid property equation.
FLDATA12 Sets the property update frequency flag.
FLDATA13 Sets the property variation flag.

Table 2.46 FLOTRAN Operating

These PREP7 commands are used to specify the operating conditions for a FLOTRAN
CFD analysis.

FLDATA14	Specifies the reference temperature.

| FLDATA15 |
| :--- |\quad| Specifies the reference pressure. |
| :--- |

FLDATA16	Specifies the bulk modulus parameter.
FLDATA17	Specifies the specific heat ratio.

Table 2.47 FLOTRAN Solver
These PREP7 commands are used to control the solver for a FLOTRAN CFD analysis.
FLDATA18 Selects the algebraic solver.
FLDATA19 Specifies the number of TDMA sweeps.
FLDATA20 Specifies the number of conjugate direction search vectors.
FLDATA20A Specifies the amount of fill-in when preconditioning the coefficient matrix.
FLDATA20B Specifies the number of fill-ins for the ILU preconditioner.
FLDATA21 Specifies the convergence monitor.
FLDATA22 Specifies the maximum number of semi-direct iterations.

These PREP7 commands are used to control the solver for a FLOTRAN CFD analysis.
FLDATA23 Specifies the solver minimum normalized rate of change.

Table 2.48 FLOTRAN Turbulence

These PREP7 commands are used to control the turbulence setting for a FLOTRAN CFD analysis.
FLDATA24 Sets the turbulence model and the constants used in the Standard $\mathrm{k}-\varepsilon$ Model and the Zero Equation Turbulence Model.
FLDATA24A Sets constants for the Re-Normalized Group Turbulence Model (RNG).
FLDATA24B Sets constants for the New $k-\varepsilon$ Model due to Shih (NKE).
FLDATA24C Sets constants for the Nonlinear Model of Girimaji (GIR).
FLDATA24D Sets constants for the Shih, Zhu, Lumley Model (SZL).
FLDATA24E
Sets constants for the k- ω Model.
FLDATA24F Sets the turbulent production clip factor for the Shear Stress Transport (SST) model.
FLDATA24G Sets constants in the $k-\omega$ regime for the Shear Stress Transport (SST) model.
FLDATA24H Sets constants in the k - ε regime for the Shear Stress Transport (SST) model.

FLDATA40 Controls activation of thermal stabilization near walls.
Table 2.49 FLOTRAN Stability
These PREP7 commands are used to control the stability settings for a FLOTRAN CFD analysis.
FLDATA25 Sets solution and property relaxation factors.
FLDATA26 Sets stability controls.
FLDATA34 Sets modified inertial relaxation factors.

Table 2.50 FLOTRAN Miscellaneous

These PREP7 commands are used to control miscellaneous settings for a FLOTRAN CFD analysis.
FLDATA27 Controls dependent variable printing.
FLDATA28 Specifies that variable results are to be replaced.
FLDATA29 Re-initializes a results variable.
FLDATA30 Controls the quadrature orders.
FLDATA31 Specifies dependent variable caps.
FLDATA32 Controls restart options.
FLDATA33 Specifies the approach to discretize the advection term.
FLDATA35 Specifies tolerances for the lower and upper bound of the volume fraction.

FLDATA36 Specifies ambient reference values outside of the fluid for the volume of fluid (VOF) method.

FLDATA37	Specifies the segregated solution algorithm.
FLDATA38	Specifies the mass type for a fluid transient analysis.
FLDATA39	Specifies remeshing parameters for transient fluid flow and fluidsolid interaction analyses.
ICVFRC	Sets the initial volume fraction field for a geometry.
PERI	Specifies periodic boundary conditions in an incompressible flow analysis.
PLVFRC	Displays volume fractions in a volume of fluid (VOF) analysis.

Table 2.51 FLOTRAN Multiple Species

These PREP7 commands are used for multiple species transport in a FLOTRAN CFD ana-

| lysis. |
| :--- | :--- |

MSADV	Specifies the approach to discretize the advection term in a species
transport equation.	

MSCAP

MSDATA \quad| Activates and controls mass fraction capping for a species. |
| :--- |

Table 2.52 Status

These PREP7 commands are for use with the STAT command.

AREAS Specifies "Areas" as the subsequent status topic.
BOOL Specifies "Booleans" as the subsequent status topic.
CEQN Specifies "Constraint equations" as the subsequent status topic.
COUPLE Specifies "Node coupling" as the subsequent status topic.
DIGIT Specifies "Node digitizing" as the subsequent status topic.
ELEM Specifies "Elements" as the subsequent status topic.
ETYPE Specifies "Element types" as the subsequent status topic.
FATIGUE Specifies "Fatigue data status" as the subsequent status topic.
FEBODY Specifies "Body loads on elements" as the subsequent status topic.

These PREP7 commands are for use with the STAT command.

FECONS	Specifies "Constraints on nodes" as the subsequent status topic.
FEFOR	Specifies "Forces on nodes" as the subsequent status topic.
FESURF	Specifies "Surface loads on elements" as the subsequent status topic.
FLOTRAN	Specifies "FLOTRAN data settings" as the subsequent status topic.
GEOMETRY	Specifies "Geometry" as the subsequent status topic.
KEYPTS	Specifies "Keypoints" as the subsequent status topic.
LINE	Specifies "Lines" as the subsequent status topic.
MATER	Specifies "Material properties" as the subsequent status topic.
MESHING	Specifies "Meshing" as the subsequent status topic.
NODES	Specifies "Nodes" as the subsequent status topic.
PRIM	Specifies "Solid model primitives" as the subsequent status topic.
RCON	Specifies "Real constants" as the subsequent status topic.
REORDER	Specifies "Model reordering" as the subsequent status topic.
SELM	Specifies "Superelements" as the subsequent status topic.
TBLE	Specifies "Data table properties" as the subsequent status topic.
VOLUMES	Specifies "Volumes" as the subsequent status topic.

Table 2.53 Explicit Dynamics

These PREP7 commands are used for an explicit dynamic analysis.

EDASMP	Creates a part assembly to be used in an explicit dynamic analysis.		
EDBOUND	Defines a boundary plane for sliding or cyclic symmetry.		
EDBX	Creates a box shaped volume to be used in a contact definition.		
EDCGEN	Specifies contact parameters for an explicit dynamic analysis.		
EDCLIST	Lists all contact entity specifications in an explicit dynamic analysis.		
EDCMORE	Specifies additional contact parameters for a given contact defini- tion in an explicit dynamic analysis.		
EDCNSTR	Defines various types of constraints for an explicit dynamic analysis.		
EDCONTACT	Specifies contact surface controls for an explicit dynamic analysis. EDCRB		
Constrains two rigid bodies to act as one in an explicit dynamic			
analysis.		\quad	Specifies data curves for an explicit dynamic analysis.
:---			
EDCURVE			
EDDBL		Sets the single or double precision version of LS-DYNA into effect.	
:---			
EDDC	\quad	Deletes or deactivates/reactivates contact entity specifications in	
:---			
an explicit dynamic analysis.			

\(\left.\begin{array}{l}These PREP7 commands are used for an explicit dynamic analysis.

EDNDTSD

EDNROT

Allows smoothing of noisy data for explicit dynamic analyses and

provides a graphical representation of the data.\end{array}\right\}\)| Applies a rotated coordinate nodal constraint in an explicit dynamic |
| :--- |
| analysis. |

Table 2.54 Sections

These PREP7 commands manage sections.

BSAX Specifies axial strain and force for a nonlinear general beam section.
BSM1 Specifies bending moment and curvature in plane XZ for a nonlinear general beam section.
BSM2 Specifies bending moment and curvature in plane XY for a nonlinear general beam section.
BSMD Specifies mass density for a nonlinear general beam section.
BSS1 Specifies transverse shear force and strain in plane XZ for a nonlinear general beam section.
BSS2 Specifies transverse shear force and strain in plane XY for a nonlinear general beam section.
BSTE Specifies a thermal expansion coefficient for a nonlinear general beam section.
BSTQ Specifies cross section torque and twist for a nonlinear general beam section.
CBMD Specifies preintegrated mass-density matrix for composite-beam sections.
CBMX Specifies preintegrated cross-section stiffness for composite-beam sections.
CBTE Specifies a thermal expansion coefficient for a composite-beam section.
CBTMP Specifies a temperature for the composite-beam section matrix.
SDELETE Deletes sections from the database.
SECCONTROLS Supplements or overrides default section properties.
SECDATA Describes the geometry of a section.
SECJOINT Defines local coordinate systems at joint element nodes and other data for joint elements.
/SECLIB Sets the default section library path for the SECREAD command.
SECLOCK
SECNUM Specifies locks on the element degrees of freedom. Sets the element section attribute pointer.

These PREP7 commands manage sections.

SECOFFSET Defines the section offset for cross sections.

SECPLOT
SECREAD

SECSTOP
SECTYPE
SECWRITE
SFLEX
SLIST

SOCEAN

SSBT

SSPA

SSPB

SSPD

SSPE

SSPM

SSMT Specifies the membrane thermal effects quantity for a preintegrated shell section.
Plots the geometry of a section to scale.
Reads a custom section library or a user-defined section mesh into ANSYS.

Specifies stops on the element degrees of freedom.
Associates section type information with a section ID number.
Creates an ASCII file containing user mesh section information. Sets section flexibility factors for pipe elements.

Summarizes the section properties for all defined sections in the current session of ANSYS.

Associates an ocean environment with the most recently defined element section. Used with the ocean family of commands.
Specifies the bending thermal effects quantity for a preintegrated shell section.

Specifies the membrane stiffness quantity for a preintegrated shell section.
Specifies the coupling stiffness quantity for a preintegrated shell section.

Specifies the bending stiffness quantity for a preintegrated shell section.

Specifies the transverse shear stiffness quantity for a preintegrated shell section.

Specifies the mass density and stress-free initial temperature for a preintegrated shell section.

Table 2.55 Ocean

These PREP7 commands define ocean environment data.
To associate your ocean environment with an element section, issue the SOCEAN command.

OCDATA Defines an ocean environment using non-table data.
OCDELETE

OCLIST
OCTABLE
Deletes all ocean environment data associated with the specified ocean ID number (OCID) from the ANSYS database.

Summarizes all currently defined ocean environments.
Defines an ocean environment using table data.

These PREP7 commands define ocean environment data.
To associate your ocean environment with an element section, issue the SOCEAN command.
OCTYPE Specifies the type of ocean environment data to follow (basic, current, or wave).

Table 2.56 Morphing

These PREP7 commands are used to adjust the finite element mesh in the non-structural regions to coincide with the deflections of the structural regions.
MORPH Specifies morphing and remeshing controls.
DAMORPH Move nodes in selected areas to conform to structural displacements.
DEMORPH Move nodes in selected elements to conform to structural displacements.
DVMORPH Move nodes in selected volumes to conform to structural displacements.

Table 2.57 Trefftz Domain
These PREP7 commands are used in the Trefftz method for modeling the open domain.

TZAMESH	Meshes the areas of a volume to create Trefftz nodes.
TZDELE	Deletes the Trefftz superelement, associated constraint equations and all supporting Trefftz files.
TZEGEN	Generates a Trefftz domain substructure and defines a Trefftz su- perelement for use in electrostatic analysis.

Table 2.58 Perfectly Matched Layers
This PREP7 command is used to create perfectly matched layers (PMLs) designed to absorb high frequency waves.

PMLOPT	Defines perfectly matched layers (PMLs) for a high-frequency ana- lysis.
PMLSIZE	Determines number of PML layers.

Table 2.59 Special Purpose

These PREP7 commands are used for special-purpose operations.

/CYCEXPAND Verifies a cyclically symmetric model by graphically expanding it partially or into the full 360 degrees.
CYCLIC Specifies a cyclic symmetry analysis.
CYCOPT Specifies solution options for a cyclic symmetry analysis.
EMSYM Specifies circular symmetry for electromagnetic sources.
HFEREFINE Automatically refines high-frequency tetrahedral elements (HF119) or lists high-frequency brick elements (HF120) with the largest error.
MSTOLE Adds two extra nodes from FLUID116 elements to SURF152 elements for convection analyses.

These PREP7 commands are used for special-purpose operations.

PERBC2D	Generates periodic constraints for 2-D planar magnetic field ana- lyses.
PHYSICS	Writes, reads, or lists all element information.
RACE	Defines a "racetrack" current source.

2.6. SOLUTION Commands

These commands are used to load and solve the model. The commands are grouped by functionality.

Table 2.60 Analysis Options

These SOLUTION commands are used to set general analysis options.

ABEXTRACT Extracts the alpha-beta damping multipliers for Rayleigh damping.
ACCOPTION ADAMS

ADAPT	Adaptively meshes and solves a model.
ANTYPE	Specifies the analysis type and restart status.
BCSOPTION	Sets memory option for the sparse solver.
CECHECK	Check constraint equations and couplings for rigid body motions.
CHECK	Checks current database items for completeness.
CINT	Defines parameters associated with contour integral calculations.
CMATRIX	Performs electrostatic field solutions and calculates the self and mutual capacitances between multiple conductors.
CMSOPT	Specifies component mode synthesis (CMS) analysis options.
CNCHECK	Provides and/or adjusts the initial status of contact pairs.
CNKMOD	Modifies contact element key options.
CUTCONTROL	Controls time-step cutback during a nonlinear solution.
CYCOPT	Specifies the harmonic index solution for a cyclic symmetry analysis.
DDOPTION	Sets domain decomposer option for Distributed ANSYS.
DMPEXT	Extracts modal damping coefficients in a specified frequency range.
DSPOPTION	Sets the memory option for the distributed sparse solver.
EMATWRITE	Forces the writing of all the element matrices to File.EMAT.
EQSLV	Specifies the type of equation solver.
ERESX	Specifies extrapolation of integration point results.
ESCHECK	Perform element shape checking for a selected element set.
ESSOLV	Performs a coupled electrostatic-structural analysis.
EXPASS	Specifies an expansion pass of an analysis.
GAUGE	Gauges the problem domain for an edge-element formulation.
GMATRIX	Performs electric field solutions and calculates the self and mutual
conductances between multiple conductors.	

HFEIGOPT	Specifies high frequency electromagnetic modal analysis options.
HFMODPRT	Calculates electromagnetic field distribution for a modal port.
HFPA	Specifies a radiation scan angle for a phased array antenna analysis.
HFPCSWP	Calculates the propagating constants of a transmission line or waveguide over a frequency range.
HFSCAT	Specifies a high-frequency scattering analysis.
LMATRIX	Calculates the differential inductance matrix and the total flux linkage in each coil for an N -winding system.
LPRT	Defines impedance and calibration lines for excitation eigenfield.
LUMPM	Specifies a lumped mass matrix formulation.
MADAPT	Adaptively meshes and solves an edge-based model.
MONITOR	Controls contents of three variable fields in nonlinear solution monitor file.
MSAVE	Sets the memory saving feature for the PCG and DPCG solvers.
OPNCONTROL	Sets decision parameter for automatically increasing the time step interval.
PCGOPT	Controls PCG solver options.
PERTURB	Sets linear perturbation analysis options.
PSCONTROL	Turns off shared-memory parallel operations during solution.
PSOLVE	Directs the program to perform a partial solution.
RATE	Specifies whether the effect of creep strain rate will be used in the solution of a load step.
RESVEC	Calculates residual vectors in a modal analysis, or includes residual vectors in a modal superposition transient/harmonic analysis.
RSTOFF	Offsets node or element IDs in the FE geometry record.
SEEXP	Specifies options for the substructure expansion pass.
SEGEN	Automatically generate superelements.
SEOPT	Specifies substructure analysis options.
SNOPTION	Specifies Supernode (SNODE) eigensolver options.
SOLCONTROL	Specifies whether to use optimized nonlinear solution defaults and some enhanced internal solution algorithms.
/SOLU	Enters the solution processor.
SOLVE	Starts a solution.
SPADP	Automatically refines a HF119 tetrahedral element mesh based on S-parameter convergence.
SPFSS	Performs frequency sweep or angle sweep calculations to determine reflection and transmission parameters of a frequency selective surface.
SPSCAN	Performs a harmonic analysis of a unit cell over a range of angles and extracts the S-parameter.
SPSWP	Computes S-parameters over a frequency range and writes them to a file.

These SOLUTION commands are used to set general analysis options.
STABILIZE Activates stabilization for all elements that support nonlinear stabilization.
STAOPT Specifies static analysis options.
TOFFST
Specifies the temperature offset from absolute zero to zero.

Table 2.61 Nonlinear Options

These SOLUTION commands are used to define options for nonlinear analyses.

ARCLEN	Activates the arc-length method.
ARCTRM	Controls termination of the solution when the arc-length method (ARCLEN,ON) is used.
BUCOPT	Specifies buckling analysis options.
CNVTOL	Sets convergence values for nonlinear analyses.
CRPLIM	Specifies the creep criterion for automatic time stepping.
/GST	Turns Graphical Solution Tracking (GST) on or off.
LNSRCH	Activates a line search to be used with Newton-Raphson.
MXPAND	Specifies the number of modes to expand and write for a modal or buckling analysis.
NCNV	Sets the key to terminate an analysis.
NEQIT	Specifies the maximum number of equilibrium iterations for nonlinear analyses.
NLDIAG	Sets nonlinear diagnostics functionality.
NLGEOM	Includes large deformation effects in a static or full transient analysis.
NLHIST	Specify result items to track during solution.
NROPT	Specifies the Newton-Raphson options in a static or full transient analysis.
PRED	Activates a predictor in a nonlinear analysis.
PSTRES	Specifies whether prestress effects are calculated or included.
SSTIF	Activates stress stiffness effects in a nonlinear analysis.

Table 2.62 Dynamic Options

These SOLUTION commands are used to define options for dynamic analyses.

ALPHAD	Defines the mass matrix multiplier for damping.
BETAD	Defines the stiffness matrix multiplier for damping.
DMPRAT	Sets a constant damping ratio.
FRQSCL	Turns on automatic scaling of the entire mass matrix and frequency range for modal analyses using the Block Lanczos, PCG Lanczos, or Supernode mode extraction method.
	Defines the frequency range in the harmonic response analysis.
HARFRQ	Specifies the phase angle for the harmonic analysis expansion pass.
HREXP	Specifies harmonic analysis options.

These SOLUTION commands are used to define options for dynamic analyses.	
HROUT	Specifies the harmonic analysis output options.
LVSCALE	Scales the load vector for mode superposition analyses.
MDAMP	Defines the damping ratios as a function of mode.
MDPLOT	Plots frequency-dependent modal damping coefficients.
MIDTOL	Sets middle step residual criterion values for structural transient analysis.
	Creates multiple load vectors in a modal analysis.
MODCONT	Specifies modal analysis options.
MODOPT	Specifies the number of modes to expand and write for a modal or buckling analysis.
MXPAND	Specifies additional QRDAMP modal analysis option.
QRDOPT	Specifies known rigid body modes (if any) of the model.
RIGID	Turns on transient effects.
TIMINT	Defines transient integration parameters.
TINTP	Specifies transient analysis options.

Table 2.63 Spectrum Options

ADDAM	Specifies the acceleration spectrum computation constants for the analysis of shock resistance of shipboard structures.
COVAL	Defines PSD cospectral values.
CQC	Specifies the complete quadratic mode combination method.
DSUM	Specifies the double sum mode combination method.
FREQ	Defines the frequency points for the SV vs. FREQ tables.
GRP	Specifies the grouping mode combination method.
MMASS	Specifies the missing mass response calculation.
NRLSUM	Specifies the Naval Research Laboratory (NRL) sum mode combination method.
PFACT	Calculates participation factors for the PSD or multi-point response spectrum table.
PSDCOM	Specifies the power spectral density mode combination method.
PSDFRQ	Defines the frequency points for the input spectrum vs. FREQ tables of PSD and multi-point spectrum analyses.
PSDGRAPH	Displays input PSD curves
PSDRES	Controls solution output written to the results file from a PSD analysis.
PSDSPL	Defines a partially correlated excitation in a PSD analysis.
PSDUNIT	Defines the type of PSD or multi-point response spectrum.
PSDVAL	Defines PSD or multi-point response spectrum values.
PSDWAV	Defines a wave propagation excitation in a PSD analysis.
QDVAL	Defines PSD quadspectral values.

ROCK	Specifies a rocking response spectrum.
ROSE	Specifies the Rosenblueth mode combination method.
RIGRESP	Selects the spectrum type and other spectrum options.
SED	Defines the excitation direction for a single-point response spectrum.
SPDAMP	Defines input spectrum damping in a multi-point response spectrum analysis.
SPFREQ	Defines the frequency points for the input spectrum tables SPVAL vs. SPFREQ for multi-point spectrum analyses.
SPGRAPH	Displays input spectrum curves for MPRS analysis.
SPOPT	Selects the spectrum type and other spectrum options.
SPUNIT	Defines the type of multi-point response spectrum.
SPVAL	Defines multi-point response spectrum values.
SRSS	Specifies the square root of sum of squares mode combination method.
SV	Defines spectrum values to be associated with frequency points.
SVPLOT	Displays input spectrum curves.
SVTYP	Defines the type of single-point response spectrum.
VDDAM	Specifies the velocity spectrum computation constants for the analysis of shock resistance of shipboard structures.

Table 2.64 Load Step Options

These SOLUTION commands are used to define options for individual load steps.

AUTOTS	e stepping or load stepping.
CAMPBELL	Campbell diagramPrepares the result file for a subsequent analysis.
CECMOD	Modifies the constant term of a constraint equation during solution.
DELTIM	Specifies the time step sizes to be used for this load step.
EXPSOL	Specifies the solution to be expanded for reduced analyses.
HMAGSOLV	Specifies 2-D or axisymmetric harmonic magnetic solution options and initiates the solution.
KBC	Specifies stepped or ramped loading within a load step.
KUSE	Specifies whether or not to reuse the factorized matrix.
MAGOPT	Specifies options for a 3-D magnetostatic field analysis.
MAGSOLV	Specifies magnetic solution options and initiates the solution.
MODE	Specifies the harmonic loading term for this load step.
NSUBST	Specifies the number of substeps to be taken this load step.
NUMEXP	Specifies solutions to be expanded from reduced analyses.
TIME	Sets the time for a load step.
TREF	Defines the reference temperature for the thermal strain calcula-

These SOLUTION commands are used to define options for individual load steps.

TSRES

UPCOORD

USRCAL
WRFULL

Defines an array of key times at which the time-stepping strategy changes.

Table 2.65 Solid Constraints

These SOLUTION commands are used to define constraints on the solid model.
DA Defines symmetry or antisymmetry degree-of-freedom constraints on areas.
DADELE \quad Deletes degree-of-freedom constraints on an area.
Modifies the coordinates of the active set of nodes, based on the current displacements.

DALIST
DK
DKDELE
DKLIST
DL

DLDELE
DLLIST
DTRAN

Allows user-solution subroutines to be activated or deactivated.
Stops solution after assembling global matrices.

Lists the degree-of-freedom constraints on an area.
Defines degree-of-freedom constraints at keypoints.
Deletes degree-of-freedom constraints at a keypoint.
Lists the degree-of-freedom constraints at keypoints.
Defines symmetry or antisymmetry degree-of-freedom constraints on lines.
Deletes degree-of-freedom constraints on a line.
Lists degree-of-freedom constraints on a line.
Transfers solid model degree-of-freedom constraints to the finite element model.

Table 2.66 Solid Forces
These SOLUTION commands are used to define forces on the solid model.
FK Defines force loads at keypoints.
FKDELE Deletes force loads at a keypoint.
FKLIST Lists the forces at keypoints.
FTRAN Transfers solid model forces to the finite element model.
Table 2.67 Solid Surface Loads
These SOLUTION commands are used to define surface loads on the solid model.
SFA Specifies surface loads on the selected areas.
SFADELE Deletes surface loads from areas.
SFALIST Lists the surface loads for the specified area.
SFL Specifies surface loads on lines of an area.
SFLDELE Deletes surface loads from lines.
SFLLIST Lists the surface loads for lines.

These SOLUTION commands are used to define surface loads on the solid model.
SFTRAN
Transfer the solid model surface loads to the finite element model.

Table 2.68 Solid Body Loads

These SOLUTION commands are used to define body loads on the solid model.

BFA	Defines a body force load on an area.
BFADELE	Deletes body force loads on an area.
BFALIST	Lists the body force loads on an area.
BFK	Defines a body force load at a keypoint.
BFKDELE	Deletes body force loads at a keypoint.
BFKLIST	Lists the body force loads at keypoints.
BFL	Defines a body force load on a line.
BFLDELE	Deletes body force loads on a line.
BFLLIST	Lists the body force loads on a line.
BFTRAN	Transfers solid model body force loads to the finite element model.
BFV	Defines a body force load on a volume.
BFVDELE	Deletes body force loads on a volume.
BFVLIST	Lists the body force loads on a volume.

Table 2.69 Inertia

These SOLUTION commands are used to define inertial loads on the model.

ACEL
CGLOC
CGOMGA
CMACEL
CMDOMEGA
CMOMEGA Specifies the rotational velocity of an element component about
CMROTATE

CORIOLIS Applies the Coriolis effect to a rotating structure.
DCGOMG
DOMEGA
IRLF
OMEGA
Specifies the linear acceleration of the structure.
Specifies the origin location of the acceleration coordinate system. Specifies the rotational velocity of the global origin.
Specifies the translational acceleration of an element component.
Specifies the rotational acceleration of an element component about a user-defined rotational axis. a user-defined rotational axis.
Specifies the rotational velocity of an element component about a user-defined rotational axis Specifies the rotational acceleration of the global origin. Specifies the rotational acceleration of the structure. Specifies that inertia relief calculations are to be performed. Specifies the rotational velocity of the structure.

These SOLUTION commands are used to define inertial loads on the model.
SYNCHRO Specifies whether the excitation frequency is synchronous or asynchronous with the rotational velocity of the structure.

Table 2.70 Miscellaneous Loads
These SOLUTION commands are for miscellaneous load definition and control.
BIOT Calculates the Biot-Savart source magnetic field intensity.
FMAGBC Applies force and torque boundary conditions to an element component.
HFPORT Specifies input data for waveguide or transmission line ports or an
IC Specifies initial conditions at nodes.
ICDELE Deletes initial conditions at nodes.
ICE Specifies initial conditions on elements.
ICEDELE Deletes initial conditions on elements.
ICELIST Lists initial conditions on elements.
ICLIST Lists the initial conditions.
INISTATE Applies initial state data to an element or a selection of elements.
MPCHG Changes the material number attribute of an element.
OUTPR Controls the solution printout.
OUTRES Controls the solution data written to the database.
PGRAPH Specifies the location from which graphics data will be retrieved for viewing.
PGSAVE Creates a PowerGraphics (PGR) file from results data.
PGWRITE Writes selected solution data to the PGR file for faster postprocessing access.
PLWAVE Specifies a free-space time-harmonic incident plane electromagnetic wave in the global Cartesian coordinate system.
RESCONTROL Controls file writing for multiframe restarts.
SBCLIST Lists solid model boundary conditions.
SBCTRAN Transfers solid model loads and boundary conditions to the FE model.
WSPRINGS Creates weak springs on corner nodes of a bounding box of the currently selected elements.

Table 2.71 Load Step Operations

These SOLUTION commands are used to write and solve multiple load steps.
LSCLEAR Clears loads and load step options from the database.
LSDELE Deletes load step files.
LSREAD Reads load and load step option data into the database.
LSSOLVE Reads and solves multiple load steps.

These SOLUTION commands are used to write and solve multiple load steps.
LSWRITE
Writes load and load step option data to a file.

Table 2.72 Master Degrees of Freedom

These SOLUTION commands are used to define master degrees of freedom.
M Defines master degrees of freedom for reduced and superelement generation analyses.
MDELE \quad Deletes master degrees of freedom.
MGEN Generates additional master degrees of freedom from a previously defined set.
MLIST Lists the master degrees of freedom.
TOTAL Specifies automatic master degree-of-freedom generation.

Table 2.73 Gap Conditions

These SOLUTION commands are used to define gaps for transient dynamic analyses.

GP
GPDELE
GPLIST

Defines a gap condition for transient analyses.
Deletes gap conditions.
Lists the gap conditions.
Table 2.74 Rezoning
These SOLUTION commands are used in analyses that employ rezoning.
REZONE Initiates a rezoning operation, sets rezoning options, and rebuilds the database.
MAPSOLVE Maps the solved node and element solutions from an original mesh to a new mesh.
REMESH Specifies the starting and ending remeshing points.
AREMESH Generates an area for creating a new mesh for rezoning.

Table 2.75 Birth and Death

These SOLUTION commands are used for the birth and death option for elements.
EALIVE Reactivates an element (for the birth and death capability).
EKILL Deactivates an element (for the birth and death capability).
ESTIF Specifies the matrix multiplier for deactivated elements.

Table 2.76 FE Constraints

These SOLUTION commands are used to define constraints on the finite element model.

D
DCUM

DDELE
DJ

Defines degree-of-freedom constraints at nodes.
Specifies that degree-of-freedom constraint values are to be accumulated.
Deletes degree-of-freedom constraints.
Specify boundary conditions on the components of relative motion of a joint element.

These SOLUTION commands are used to define constraints on the finite element model.

DJDELE	Deletes boundary conditions on the components of relative motion of a joint element.
DJLIST	Lists boundary conditions applied to joint elements.
DLIST	Lists degree-of-freedom constraints.
DSCALE	Scales degree-of-freedom constraint values. Specifies symmetry or antisymmetry degree-of-freedom constraints on nodes.
DSYM	Defines values at enforced group.
DVAL	Specifies the constraints or applies the load at the ending point for the generalized plane strain element option.
GSBDATA	When using generalized plane strain, lists the input data or solu- tions.
GSLIST	Reads results from the results file and applies them as loads.

Table 2.77 FE Forces

These SOLUTION commands are used to define nodal loads on the finite element model.

F
FCUM
FDELE
FJ

FJDELE Deletes forces (or moments) on the components of the relative motion of a joint element.

FJLIST Lists forces and moments applied on joint elements.
FLIST
FSCALE
Specifies force loads at nodes.
Specifies that force loads are to be accumulated.
Deletes force loads on nodes.
Specify forces or moments on the components of the relative motion of a joint element.

Lists force loads on the nodes. Scales force load values in the database.

Table 2.78 FE Surface Loads

These SOLUTION commands are used to define surface loads on the finite element

 model.SF
SFBEAM
SFCUM
SFDELE
SFE
SFEDELE
SFELIST
SFFUN
SFGRAD SFLIST

Specifies surface loads on nodes.
Specifies surface loads on beam elements.
Specifies that surface loads are to be accumulated.
Deletes surface loads.
Specifies surface loads on elements.
Deletes surface loads from elements.
Lists the surface loads for elements.
Specifies a varying surface load.
Specifies a gradient (slope) for surface loads.
Lists surface loads.

These SOLUTION commands are used to define surface loads on the finite element model.
SFSCALE Scales surface loads on elements.

Table 2.79 FE Body Loads

These SOLUTION commands are used to define body loads on the finite element model.

BF
BFCUM
BFDELE
BFE
BFECUM
BFEDELE
BFELIST
BFESCAL
BFLIST
BFSCALE
BFUNIF
LDREAD
RIMPORT
TUNIF

Defines a nodal body force load.
Specifies that nodal body force loads are to be accumulated.
Deletes nodal body force loads.
Defines an element body force load.
Specifies whether to ignore subsequent element body force loads.
Deletes element body force loads.
Lists the element body force loads.
Scales element body force loads.
Lists the body force loads on nodes.
Scales body force loads at nodes.
Assigns a uniform body force load to all nodes.
Reads results from the results file and applies them as loads.
Imports initial stresses from an explicit run into ANSYS.
Assigns a uniform temperature to all nodes.

Table 2.80 Status

These SOLUTION commands are for use with the STAT command.

ATYPE	Specifies "Analysis types" as the subsequent status topic.
BIOOPT	Specifies "Biot-Savart options" as the subsequent status topic.
DEACT	Specifies "Element birth and death" as the subsequent status topic. Specifies "Dynamic analysis options" as the subsequent status topic.
DYNOPT	Specifies "Reduced transient gap conditions" as the subsequent status topic.
GAP	Specifies "General options" as the subsequent status topic.
GENOPT	Specifies "Inertial loads" as the subsequent status topic. Specifies "Load step operations" as the subsequent status topic.
INRTIA	Specifies "Master DOF" as the subsequent status topic.
LSOPER	Specifies "Nonlinear analysis options" as the subsequent status topic.
MASTER	Specifies "Output options" as the subsequent status topic. Specifies "Body loads on the solid model" as the subsequent status
OUTOPT	SMBODP topic.
SMCONS	Specifies "Constraints on the solid model" as the subsequent status topic.

These SOLUTION commands are for use with the STAT command.

SMFOR | Specifies "Forces on the solid model" as the subsequent status |
| :--- |
| topic. |

Table 2.81 Explicit Dynamics
These SOLUTION commands are used for an explicit dynamic analysis.

EDADAPT	Activates adaptive meshing in an explicit dynamic analysis.
EDALE	Assigns mesh smoothing to explicit dynamic elements that use the ALE formulation.
EDBVIS	Specifies global bulk viscosity coefficients for an explicit dynamic analysis.
EDCADAPT	Specifies adaptive meshing controls for an explicit dynamic analysis.
EDCPU	Specifies CPU time limit for an explicit dynamic analysis.
EDCSC	Specifies whether to use subcycling in an explicit dynamic analysis.
EDCTS	Specifies mass scaling and scale factor of computed time step for an explicit dynamic analysis.
EDDAMP	Defines mass weighted (Alpha) or stiffness weighted (Beta) damping for an explicit dynamics model.
EDDRELAX	Activates initialization to a prescribed geometry or dynamic relaxation for the explicit analysis.
EDDUMP	Specifies output frequency for the explicit dynamic restart file (d3dump).
EDENERGY	Specifies energy dissipation controls for an explicit dynamic analy
EDFPLOT	Allows plotting of explicit dynamics forces.
EDGCALE	Defines global ALE controls for an explicit dynamic analysis.
EDHGLS	Specifies the hourglass coefficient for an explicit dynamic analysis.
EDHIST	Specifies time-history output for an explicit dynamic analysis.
EDHTIME	Specifies the time-history output interval for an explicit dynamic analysis.
EDINT	Specifies number of integration points for explicit shell and beam output.
EDIS	Specifies stress initialization in an explicit dynamic full restart analysis.
EDLOAD	Specifies loads for an explicit dynamic analysis.
EDOPT	Specifies the type of output for an explicit dynamic analysis.
EDOUT	Specifies time-history output (ASCII format) for an explicit dynamic analysis.
EDPL	Plots a time dependent load curve in an explicit dynamic analysis.

These SOLUTION commands are used for an explicit dynamic analysis.

EDPVEL	Applies initial velocities to parts or part assemblies in an explicit dynamic analysis.
EDRC	Specifies rigid/deformable switch controls in an explicit dynamic analysis.
EDRD	Switches a part from deformable to rigid or from rigid to deformable in an explicit dynamic analysis.
EDRI	Defines inertia properties for a new rigid body that is created when a deformable part is switched to rigid in an explicit dynamic analysis.
EDRST	Specifies the output interval for an explicit dynamic analysis.
EDRUN	Specifies serial or parallel processing for an explicit dynamic analysis.
EDSHELL	Specifies shell computation controls for an explicit dynamic analysis.
EDSOLV	Specifies "explicit dynamics solution" as the subsequent status topic.
EDSTART	Specifies status (new or restart) of an explicit dynamic analysis.
EDTERM	Specifies termination criteria for an explicit dynamic analysis.
EDTP	Plots explicit elements based on their time step size.
EDVEL	Applies initial velocities to nodes or node components in an explicit dynamic analysis.
EDWRITE	Writes explicit dynamics input to an LS-DYNA input file.
REXPORT	Exports displacements from an implicit run to ANSYS LS-DYNA.

Table 2.82 FLOTRAN Checkout

These SOLUTION commands are used for a FLOTRAN analysis.
FLOCHECK Sets up and runs a zero-iteration FLOTRAN analysis.

Table 2.83 Radiosity

These SOLUTION commands are used to calculate the radiation view factors and to specify the solution parameters for the Radiosity solver method.

HEMIOPT	Specifies options for Hemicube view factor calculation.
RADOPT	Specifies Gauss-Seidel Radiosity Solver options.
RDEC	Defines the decimation parameters.
RSOPT	Creates or loads the radiosity mapping data file for SURF251 or SURF252 element types.
RSURF	Generates the radiosity surface elements and stores them in the database.
RSYMM	Defines the plane of symmetry or center of rotation for the radiosity method.

SPCNOD Defines a space node for radiation using the Radiosity method.

SPCTEMP Defines a free-space ambient temperature for radiation using the Radiosity method.

STEF Specifies Stefan-Boltzmann radiation constant.

These SOLUTION commands are used to calculate the radiation view factors and to specify the solution parameters for the Radiosity solver method.
V2DOPT Specifies 2-D/axisymmetric view factor calculation options.
VFOPT
Specifies options for view factor file.
QSOPT Specifies quasi static radiation options.
Table 2.84 ANSYS Multi-field solver Definition Commands

These SOLUTION commands are used to define the fields for an ANSYS Multi-field solver analysis.

MFCMMAND	Captures field solution options in a command file.
MFELEM	Defines a field by grouping element types.
MFEM	Adds more element types to a previously defined field number.
MFEXTER	Defines external fields for an ANSYS Multi-field solver analysis.
MFFNAME	Specifies a file name for a field in an ANSYS Multi-field solver ana- lysis.

Table 2.85 ANSYS Multi-field solver Global Controls
\(\left.$$
\begin{array}{l}\text { These SOLUTION commands set global controls for an ANSYS Multi-field solver analysis. } \\
\begin{array}{ll}\text { MFANALYSIS } & \text { Turns an ANSYS Multi-field solver analysis on or off. }\end{array} \\
\hline \text { MFCLEAR }\end{array}
$$ \quad $$
\begin{array}{l}\text { Deletes ANSYS Multi-field solver analysis settings. } \\
\text { MFFR }\end{array}
$$ \quad $$
\begin{array}{l}\text { Sets up Multi-Field relaxation factors for field solutions. } \\
\text { MFINTER }\end{array}
$$ \quad \begin{array}{l}Specifies the interface load transfer interpolation option for an

ANSYS Multi-field solver analysis.\end{array}\right]\)	Lists the settings for an ANSYS Multi-field solver analysis.

Table 2.86 ANSYS Multi-field solver Time Controls
These SOLUTION commands set time controls for an ANSYS Multi-field solver analysis.
MFCALC Specifies a calculation frequency for a field in an ANSYS Multi-field solver analysis.
MFDTIME Sets time step increment for an ANSYS Multi-field solver analysis.
MFOUTPUT Specifies results file output frequency for an ANSYS Multi-field solver analysis.

MFRSTART Specifies a restart time for an ANSYS Multi-field solver analysis.

These SOLUTION commands set time controls for an ANSYS Multi-field solver analysis. MFTIME Sets end time for an ANSYS Multi-field solver analysis.

Table 2.87 ANSYS Multi-field solver Load Transfer

These SOLUTION commands are used to define load transfer for an ANSYS Multi-field solver analysis.
MFLCOMM Defines a load transfer for code coupling analyses.
MFSURFACE Defines a surface load transfer for an ANSYS Multi-field solver analysis.
MFVOLUME Defines volume load transfer across interface for an ANSYS Multifield solver analysis.

Table 2.88 ANSYS Multi-field solver Convergence Controls

These SOLUTION commands are used to define convergence controls for an ANSYS Multifield solver analysis.

MFCONV	Sets convergence values for an ANSYS Multi-field solver analysis.
MFITER	Sets the maximum number of stagger iterations for an ANSYS Multi- field solver analysis.
MFRELAX	Sets relaxation values for an ANSYS Multi-field solver analysis.

Table 2.89 ANSYS Multi-field solver Interface Mapping
These SOLUTION commands are used to define mapping details for an ANSYS Multi-field solver analysis.
MFBUCKET Turns a bucket search on or off.

MFCI
MFMAP

MFTOL

Sets the pixel resolution used by the CPP interpolation scheme.
Calculates, saves, resumes, or deletes mapping data in an ANSYS Multi-field solver analysis.
Turns normal distance checking on for surface mapping in an ANSYS Multi-field solver analysis.

2.7. POST1 Commands

These commands are used to postprocess the results with the database processor. The commands are grouped by functionality.

Table 2.90 Setup

These POST1 commands are used to put data into the database for postprocessing.

APPEND	Reads data from the results file and appends it to the database.
DESOL	Defines or modifies solution results at a node of an element.
DNSOL	Defines or modifies solution results at a node.
FILE	Specifies the data file where results are to be found.
HRCPLX	Computes and stores in the database the time-harmonic solution at a prescribed phase angle.

These POST1 commands are used to put data into the database for postprocessing.
PGRSET Defines the data set to be read from the PGR file.
/POST1 Enters the database results postprocessor.
RESET Resets all POST1 or POST26 specifications to initial defaults.
SET Defines the data set to be read from the results file.
SUBSET Reads results for the selected portions of the model.

Table 2.91 Controls

These POST1 commands are used to control the calculations done for other commands.
AVPRIN Specifies how principal and vector sums are to be calculated.
AVRES Specifies how results data will be averaged when PowerGraphics is enabled.

/EFACET	Specifies the number of facets per element edge for PowerGraphics displays.
ERNORM	Controls error estimation calculations.
FORCE	Selects the element nodal force type for output.
INRES	Identifies the data to be retrieved from the results file.
LAYER	Specifies the element layer for which data are to be processed.
RSYS	Activates a coordinate system for printout or display of results.
SHELL	Selects a shell element or shell layer location for results output.

Table 2.92 Results

NSORT	Sorts nodal data.
NUSORT	Restores original order for nodal data.
PLCINT	Plots the contour integral (CINT) result data.
PLDISP	Displays the displaced structure.
PLESOL	Displays the solution results as discontinuous element contours.
PLNSOL	Displays results as continuous contours.
PLORB	Displays the orbital motion of a rotating structure undergoing vibration.
PRENERGY	Prints the total energies of a model.
PRORB	Prints the orbital motion characteristics of a rotating structure undergoing vibration.
PLVECT	Displays results as vectors.
PRCINT	Lists the contour integral (CINT) result data.
PRESOL	Prints the solution results for elements.
PRJSOL	Print joint element output.
PRNLD	Prints the summed element nodal loads.
PRNSOL	Prints the nodal solution results.

These POST1 commands are used to process results, such as degree-of-freedom results, nodal stresses, and element summable and nonsummable miscellaneous data.

PRRFOR Used with the FORCE command. Prints the constrained node reaction solution.
PRRSOL Prints the constrained node reaction solution.
PRVECT Prints results as vector magnitude and direction cosines.
SUMTYPE
Sets the type of summation to be used in the following load case operations.

Table 2.93 Element Table

These POST1 commands are used to operate with the element table, which in turn is used to process results stored for each element, such as average stresses, heat fluxes, etc.
DETAB Modifies element table results in the database.
ESORT Sorts the element table.
ETABLE
Fills a table of element values for further processing.

EUSORT
PLETAB
PLLS
PLVECT
PRETAB
PRVECT
SABS
SADD
SALLOW
SEXP
SFACT
SFCALC
SMAX

SMULT
SSUM
TALLOW
vCROSS
VDOT

SMIN Forms an element table item from the minimum of two other items.
Restores original order of the element table.
Displays element table items.
Displays element table items as contoured areas along elements.
Displays results as vectors.
Prints the element table items.
Prints results as vector magnitude and direction cosines.
Specifies absolute values for element table operations.
Forms an element table item by adding two existing items.
Defines the allowable stress table for safety factor calculations.
Forms an element table item by exponentiating and multiplying.
Allows safety factor or margin of safety calculations to be made.
Calculates the safety factor or margin of safety.
Forms an element table item from the maximum of two other items.

Forms an element table item by multiplying two other items.
Calculates and prints the sum of element table items.
Defines the temperature table for safety factor calculations.
Forms element table items from the cross product of two vectors.
Forms an element table item from the dot product of two vectors.

Table 2.94 Listing

These POST1 commands are used to control printed listings of results.
/FORMAT Specifies format controls for tables.
/HEADER Sets page and table heading print controls.
IRLIST Prints inertia relief summary table.

These POST1 commands are used to control printed listings of results.
/PAGE Defines the printout and screen page size.
PRERR Prints SEPC and TEPC.
PRITER Prints solution summary data.
Table 2.95 Animation

These POST1 commands are used to animate results.	
ANCNTR	Produces an animated sequence of a contoured deformed shape.
ANCUT	Produces an animated sequence of Q-slices.
ANDATA	Produces a sequential contour animation over a range of results data.
ANDSCL	Produces an animated sequence of a deformed shape.
ANCYC	Applies a traveling wave animation to graphics data in a modal cyclic symmetry analysis.
ANDYNA	Produces an animated sequence of contour values through sub- steps.
/ANFILE	Saves or resumes an animation sequence to or from a file.
ANFLOW	Produces an animated sequence of particle flow in a flowing fluid or a charged particle traveling in an electric or magnetic field.
ANHARM	Produces a time-transient animated sequence of time-harmonic results (ANTYPE,HARMIC) or complex mode shapes (ANTYPE,MOD-
AL).	Displays graphics data in animated form.
ANIM	Produces an animated sequence of an isosurface.
ANISOS	Produces an animated sequence of a mode shape.
ANMODE	Performs animation of results over multiple results files in an explicit dynamic structural analysis or fluid flow analysis with remeshing.
ANMRES	Produces a sequential contour animation over a range of time.
Defines the options used for the PLTRAC (particle flow or charged	
particle trace) command.	

Table 2.96 Path Operations

These POST1 commands are used for path operations.

PADELE Deletes a defined path.

PAGET Writes current path information into an array variable.
PAPUT Retrieves path information from an array variable.
PARESU Restores previously saved paths from a file.
PASAVE Saves selected paths to an external file.
PATH Defines a path name and establishes parameters for the path.
PCALC Forms additional labeled path items by operating on existing path items.
PCROSS Calculates the cross product of two path vectors along the current path.

These POST1 commands are used for path operations.	
PDEF	Interpolates an item onto a path.
PDOT	Calculates the dot product of two path vectors along the current path.
PLPAGM	Displays path items along the path geometry.
PLPATH	Displays path items on a graph.
PLSECT	Displays membrane and membrane-plus-bending linearized stresses.
PMAP	Creates mapping of the path geometry by defining path interpola- tion division points.
PPATH	Defines a path by picking or defining nodes, or locations on the
	currently active working plane, or by entering specific coordinate locations.
PRANGE	Determines the path range.
PRPATH	Prints path items along a geometry path.
PRSECT	Calculates and prints linearized stresses along a section path.
PSEL	Selects a path or paths.
PVECT	Interpolates a set of items onto a path.

Table 2.97 Surface Operations

These POST1 commands are used to define an arbitrary surface and to develop results information for that surface.
SUCALC Create new result data by operating on two existing result datasets on a given surface.

SUCR
SUDEL

SUEVAL

SUGET

SUMAP
SUPL

SUPR
SURESU
SUSAVE
SUSEL
SUVECT

Create a surface.
Delete geometry information as well as any mapped results for specified surface or for all selected surfaces.
Perform operations on a mapped item and store result in a scalar parameter.
Create and dimension an NPT row array parameter named PARM, where NPT is the number of geometry points in SurfName.
Map results onto selected surface(s).
Plot specified SetName result data on all selected surfaces or on the specified surface.
Print surface information.
Resume surface definitions from a specified file.
Save surface definitions and result items to a file.
Selects a subset of surfaces
Operate between two mapped result vectors.

Table 2.98 Load Case Calculations
These POST1 commands are used for combining results from different load steps.
LCABS Specifies absolute values for load case operations.
LCASE Reads a load case into the database.

These POST1 commands are used for combining results from different load steps.

LCDEF	Creates a load case from a set of results on a results file.
LCFACT	Defines scale factors for load case operations.
LCFILE	Creates a load case from an existing load case file.
LCOPER	Performs load case operations.
LCSEL	Selects a subset of load cases. LCSUM
Specifies whether to process nonsummable items in load case op- erations.	
LCWRITE	Creates a load case by writing results to a load case file.
LCZERO	Zeroes the results portion of the database.
RAPPND	Appends results data from the database to the results file.

Table 2.99 Magnetics Calculations

These POST1 commands are used for special purpose magnetics postprocessing.

CURR2D	Calculates current flow in a 2-D conductor.
EMAGERR	Calculates the relative error in an electrostatic or electromagnetic field analysis.
EMF	Calculates the electromotive force (emf), or voltage drop along a predefined path.
EMFT	Summarizes electromagnetic forces and torques on a selected set of nodes.
FLUXV	Calculates the flux passing through a closed contour. Summarizes electromagnetic force calculations on element com- ponents.
FMAGSUM	Calculates magnetic forces on a body.
IMPD	Calculates the impedance of a conductor at a reference plane.
MMF	Calculates the magnetomotive force along a path.
PLF2D	Generates a contour line plot of equipotentials.
POWERH	Calculates the rms power loss in a conductor or lossy dielectric. Calculates the quality factor for high-frequency electromagnetic
QFACT	resonators.
SENERGY	Determines the stored magnetic energy or co-energy. Calculates scattering (S) parameters between ports of a waveguide.
SPARM	Calculates torque on a body in a magnetic field.
TORQ2D	Calculates torque on a body in a magnetic field based on a circular
parh.	

Table 2.100 Fatigue

These POST1 commands are used for fatigue analyses.
FE Defines a set of fatigue event parameters.

These POST1 commands are used for fatigue analyses.

FELIST	Lists the fatigue event parameters.
FL	Defines a set of fatigue location parameters.
FLLIST	Lists the fatigue location parameters.
FP	Defines the fatigue S vs. N and Sm vs. T tables.
FPLIST	Lists the property table stored for fatigue evaluation.
FS	Stores fatigue stress components at a node.
FSDELE	Deletes a stress condition for a fatigue location, event, and loading.
FSLIST	Lists the stresses stored for fatigue evaluation.
FSNODE	Calculates and stores the stress components at a node for fatigue.
FSPLOT	Displays a fatigue stress item for a fatigue location and event.
FSSECT	Calculates and stores total linearized stress components.
FTCALC	Performs fatigue calculations for a particular node location.
FTSIZE	Defines the fatigue data storage array.
FTWRITE	Writes all currently stored fatigue data on a file.

Table 2.101 Trace Points

These POST1 commands are used to trace particle motions in a flow stream.

PLTRAC	Displays a particle flow or charged particle trace on an element display.
TRPDEL	Deletes particle flow or charged particle trace points.
TRPLIS	Lists the particle flow or charged particle trace points.
TRPOIN	Defines a point through which a particle flow or charged particle trace will travel.

Table 2.102 FLOTRAN Processing
These POST1 commands are used to postprocess the FLOTRAN CFD results.
FLREAD Reads the residual file written by the FLOTRAN CFD option.

Table 2.103 Special Purpose

These POST1 commands are used for various special purposes.
BFINT Activates the body force interpolation operation.
CBDOF Activates cut boundary interpolation (for submodeling).
CMSFILE Specifies the component mode synthesis (CMS) results files to include when plotting the mode shape of an assembly.
/CYCEXPAND Graphically expands displacements, stresses and strains of a cyclically symmetric model partially or though the full 360 degrees by combining the real (original nodes and elements) and imaginary (duplicate nodes and elements) parts of the solution.
CYCPHASE Provides tools for determining minimum and maximum possible result values from frequency couplets produced in a modal cyclic symmetry analysis.

These POST1 commands are used for various special purposes.			
/EXPAND	Allows the creation of a larger graphic display than that which is represented by the actual finite element analysis model.		
EXPAND	Displays the results of a modal cyclic symmetry analysis.		
EXPROFILE	Exports ANSY interface loads to a CFX Profile file.		
Indicates units assumed for an interface load for ANSYS to CFX			
transfer.			
EXUNIT		\quad	Calculates reflection and transmission properties of a frequency
:---			
selective surface.			

These POST1 commands are used for various special purposes.

PRSYZ	Converts and lists scattering, admittance, or impedance parameters. Appends results data from the database to a results file in a top- down substructured analysis.
RESWRITE	Writes eigenvectors of fluid nodes to a file for use in damping parameter extraction.
RMFLVEC	Creates one or more results file(s) from the current results file based on subsets of elements. Generates a SPICE subcircuit model using S-parameters from a
RSPLIT	Touchstone file.
SPICE	Calculates state-space matrices and writes them to the SPM file.
SPMWRITE	Defines a point for moment summations.

Table 2.104 Status

These POST1 commands are for use with the STAT command.

CALC	Specifies "Calculation settings" as the subsequent status topic. DATADEF
Specifies "Directly defined data status" as the subsequent status topic.	
DEFINE	Specifies "Data definition settings" as the subsequent status topic.
DISPLAY	Specifies "Display settings" as the subsequent status topic.
LCCALC	Specifies "Load case settings" as the subsequent status topic. POINT
Specifies "Point flow tracing settings" as the subsequent status topic.	
PRINT	Specifies "Print settings" as the subsequent status topic.
SORT	Specifies "Sort settings" as the subsequent status topic. Specifies "Miscellaneous specifications" as the subsequent status topic.

Table 2.105 Failure Criteria

These POST1 commands are for use with the failure criteria.

FC	Provides failure criteria information and activates a data table to input temperature-dependent stress and strain limits.
FCCHECK	Checks both the strain and stress input criteria for all materials.
FCDELE	Deletes previously defined failure criterion data for the given ma- terial.
FCLIST	Lists the failure criteria that has been input.
FCTYP	Activates or removes failure-criteria types for postprocessing.

2.8. POST26 Commands

These commands are used to postprocess the results with the time-history processor. The commands are grouped by functionality.

Table 2.106 Set Up
These POST26 commands are used to store data for processing.

ANSOL	Specifies averaged nodal data to be stored from the results file in the solution coordinate system.
CISOL	Stores J-integral information in a variable.
DATA	Reads data records from a file into a variable.
EDREAD	Reads explicit dynamics output into variables for time-history postprocessing.
ENERSOL	Specifies the total energies to be stored.
ESOL	Specifies element data to be stored from the results file.
FILE	Specifies the data file where results are to be found.
GAPF	Defines the gap force data to be stored in a variable.
GSSOL	Specifies which results to store from the results file when using generalized plane strain.
JSOL	Specifies result items to be stored for the joint element.
NSOL	Specifies nodal data to be stored from the results file.
NSTORE	Defines which time points are to be stored.
NUMVAR	Specifies the number of variables allowed in POST26.
/POST26	Enters the time-history results postprocessor.
RESET	Resets all POST1 or POST26 specifications to initial defaults.
RFORCE	Specifies the total reaction force data to be stored.
/RGB	Specifies the RGB color values for indices and contours.
SOLU	Specifies solution summary data per substep to be stored.
STORE	Stores data in the database for the defined variables.
TIMERANGE	Specifies the time range for which data are to be stored.
VARDEL	Deletes a variable (GUI).
VARNAM	Names (or renames) a variable.

Table 2.107 Controls
These POST26 commands are used to control the calculations of other commands.

CFACT	Defines complex scaling factors to be used with operations.
FORCE	Selects the element nodal force type for output.
LAYERP26	Specifies the element layer for which data are to be stored.
SHELL	Selects a shell element or shell layer location for results output.

These POST26 commands are used to control the calculations of other commands.
TVAR
Changes time to the cumulative iteration number.

Table 2.108 Operations

These POST26 commands are used to perform operations on the stored variables.

ABS	Forms the absolute value of a variable.
ADD	Adds variables.
ATAN	Forms the arctangent of a complex variable.
CLOG	Forms the common log of a variable
CONJUG	Forms the complex conjugate of a variable.
DERIV	Differentiates a variable.
EXP	Forms the exponential of a variable.
FILLDATA	Fills a variable by a ramp function.
IMAGIN	Forms an imaginary variable from a complex variable.
INT1	Integrates a variable.
LARGE	Finds the largest (the envelope) of three variables.
NLOG	Forms the natural log of a variable.
PROD	Multiplies variables.
QUOT	Divides two variables.
REALVAR	Forms a variable using only the real part of a complex variable.
SMALL	Finds the smallest of three variables.
SQRT	Forms the square root of a variable.

Table 2.109 Display

These POST26 commands are used to display the results.
KEEP Stores POST26 definitions and data during active session.
PLCPLX Specifies the part of a complex variable to display.
PLTIME Defines the time range for which data are to be displayed.
PLVAR Displays up to ten variables in the form of a graph.
SPREAD Turns on a dashed tolerance curve for the subsequent curve plots.
XVAR Specifies the X variable to be displayed.
Certain graphics commands also apply, such as /AXLAB, /XRANGE, and /YRANGE.
Table 2.110 Listing
These POST26 commands are used to produce tabular listings of the results.

EXTREM	Lists the extreme values for variables.
LINES	Specifies the length of a printed page.
NPRINT	Defines which time points stored are to be listed.
PRCPLX	Defines the output form for complex variables.
PRTIME	Defines the time range for which data are to be listed.

These POST26 commands are used to produce tabular listings of the results.

PRVAR Lists variables vs. time (or frequency).

Table 2.111 Special Purpose

These POST26 commands are used for various special purposes.
CVAR Computes covariance between two quantities.
PMGTRAN Summarizes electromagnetic results from a transient analysis.
RESP Generates a response spectrum.
RPSD Computes response power spectral density (PSD).
SMOOTH Allows smoothing of noisy data and provides a graphical representation of the data.
VGET Moves a variable into an array parameter vector.
VPUT Moves an array parameter vector into a variable.

Table 2.112 Status

These POST26 commands are for use with the STAT command.

DEFINE Specifies "Data definition settings" as the subsequent status topic.
OPERATE Specifies "Operation data" as the subsequent status topic.
PLOTTING Specifies "Plotting settings" as the subsequent status topic.
PRINT Specifies "Print settings" as the subsequent status topic.

2.9. AUX2 Commands

These commands are used to examine the contents of binary files produced by the program. The commands are grouped by functionality.

Table 2.113 Binary Files

These AUX2 commands are used to dump the contents of binary files.

/AUX2 Enters the binary file dumping processor.
DUMP Dumps the contents of a binary file.
FILEAUX2 Specifies the binary file to be dumped.
FORM Specifies the format of the file dump.
HBMAT Writes an assembled global matrix in Harwell-Boeing format.
PSMAT Writes an assembled global matrix to a postscript format that graphically displays nonzero matrix values.
PTR Dumps the record of a binary file.

2.10. AUX3 Commands

The auxiliary processor /AUX3 allows you to operate on results files by deleting sets or by changing values.

Table 2.114 Results Files

These commands are related to the /AUX3 command.
/AUX3 Enters the results file editing processor.
COMPRESS Deletes all specified sets.
DELETE
Specifies sets in the results file to be deleted before postprocessing.
FILEAUX3
Specifies the results file to be edited.
LIST Lists out the sets in the results file.
MODIFY Changes the listed values of the data in a set.
UNDELETE Removes results sets from the group of sets selected for editing.

2.11. AUX12 Commands

These commands are used to define radiation options for use in thermal analyses. The commands are grouped by functionality.

Table 2.115 General Radiation

These AUX12 commands are used to specify general radiation parameters.
/AUX12 Enters the radiation matrix generation processor.

STEF Specifies Stefan-Boltzmann radiation constant.
TOFFST Specifies the temperature offset from absolute zero to zero.

Table 2.116 Radiation Matrix Method

These AUX12 commands are used to calculate radiation view factors and to create a radiation substructure for the Radiation Matrix method.
EMIS Specifies the emissivity as a material property.
GEOM Defines the geometry specifications for the radiation matrix calculation.
MPRINT Specifies that radiation matrices are to be printed.
SPACE Defines a space node for radiation.
VTYPE
Specifies the viewing procedure used to determine the form factors.
WRITE
Writes the radiation matrix file.

Table 2.117 Radiosity Solver

These AUX12 commands are used to calculate the radiation view factors and to specify
the solution parameters for the Radiosity solver method.

HEMIOPT	Specifies options for Hemicube view factor calculation.
RADOPT	Specifies Gauss-Seidel Radiosity Solver options.
SPCNOD	Defines a space node for radiation using the Radiosity method.

These AUX12 commands are used to calculate the radiation view factors and to specify the solution parameters for the Radiosity solver method.

SPCTEMP	Defines a free-space ambient temperature for radiation using the Radiosity method.
V2DOPT	Specifies 2-D/axisymmetric view factor calculation options.
VFOPT	Specifies options for view factor file.
VFQUERY	Queries and prints element Hemicube view factors and average view factor.

2.12. AUX15 Commands

These commands are used to read in an IGES file for analysis in ANSYS. The commands are grouped by functionality.

Table 2.118 IGES

These AUX15 commands read an IGES format file into PREP7 data.

/AUX15 Enters the IGES file transfer processor.
IGESIN Transfers IGES data from a file into ANSYS.
IOPTN Controls options relating to importing a model.

2.13. OPTIMIZATION Commands

These commands are used for design optimization analyses. The commands are grouped by functionality.
Table 2.119 Specifications
These OPTIMIZATION commands set up the design optimization variables.
OPEQN Controls curve fitting for the subproblem approximation method.
OPFACT Defines the type of factorial evaluation to be performed.
OPFRST Defines specifications for the first order optimization method.

OPGRAD
OPKEEP
OPLOOP
OPPRNT
OPRAND
OPSUBP Defines number of iterations for subproblem approximation method.

OPSWEEP Specifies the reference point and number of evaluation points for a sweep generation.
/OPT Enters the design optimizer.
OPTYPE OPUSER
OPVAR
TOCOMP Defines single or multiple compliance as the topological optimization function.

These OPTIMIZATION commands set up the design optimization variables.

TODEF
TOFREQ

TOTYPE
TOVAR

Defines parameters for and initializes topological optimization.
Defines single or mean frequency formulation as the topological optimization function.
Specifies solution method for topological optimization. Specifies the objective and constraints for the topological optimization problem.

Table 2.120 Operations

These OPTIMIZATION commands operate on the design optimization variables.
OPADD Forms a set of optimization parameters by adding two sets.
OPCLR Clears the optimization database.
OPDEL Deletes optimization design sets.
OPMAKE Creates a design set using active scalar parameter values.
OPSEL Selects design sets for subsequent optimization looping.

Table 2.121 Files

These OPTIMIZATION commands operate on the design optimization files.	
OPANL	Defines the analysis file to be used for optimization looping.
OPDATA	Identifies the file where optimization data is to be saved.
OPRESU	Reads optimization data into the optimization database.
OPSAVE	Writes all optimization data to a file.

Table $\mathbf{2 . 1 2 2}$ Run

These OPTIMIZATION commands perform the design optimization analysis.
OPEXE Initiates optimization looping.
TOEXE Executes one topological optimization iteration.
TOLOOP Execute several topological optimizations iterations.

Table 2.123 Display

These OPTIMIZATION commands are used to display the optimization results as plots.
OPLFA Displays the results of a factorial evaluation.
OPLGR Graphs the results of a gradient evaluation.
OPLIST Displays the parameters for design sets.
OPLSW Graphs the results of a global sweep generation.
OPRFA Prints the results of a factorial evaluation.
OPRGR Prints the results of a gradient evaluation.
OPRSW Prints the results of a global sweep generation.
PLVAROPT Displays up to ten parameters in the form of a graph.
PRVAROPT Lists up to ten optimization parameters.
TOGRAPH Plots iteration solution of topological optimization.

These OPTIMIZATION commands are used to display the optimization results as plots.	
TOLIST	Lists all topological optimization functions currently defined.
TOPLOT	Plot current topological density distribution.
TOPRINT	Print iteration solution history of topological optimization.
TOSTAT	Displays topological optimization status and results information.
XVAROPT	Specifies the parameter to be used as the X-axis variable.

2.14. VARIATIONAL TECHNOLOGY Commands

These commands are used for the Variational Technology products.

Table 2.124 DesignXplorer

These Variational Technology commands are part of the ANSYS DesignXplorer.	
/VT	Enters the Variational Technology preprocessor. VTCLR
Specifies the part of the Variational Technology database to be	
cleared.	

These Variational Technology commands are part of the ANSYS DesignXplorer.
VTVMOD Modifies the status or current value of an input variable for the DesignXplorer.

Table 2.125 Harmonic Sweep using VT Accelerator

These Variational Technology commands are part of the harmonic sweep functionality of VT Accelerator.

VTFREQ Defines the frequency as input variable for the harmonic sweep capability of VT Accelerator or the DesignXplorer.

2.15. PROBABILISTIC Design Commands

These commands are used for probabilistic design analyses. The commands are grouped by functionality.

Table 2.126 Deterministic Model

The following PDS commands allow the specification of the deterministic model.
PDANL Defines the analysis file to be used for probabilistic looping.
Table 2.127 Probabilistic Preprocessing
The following PDS commands allow the specification and visualization of the probabilistic model.
PDCORR Specifies the correlation between two random input variables.
PDINQR Retrieves a value and stores it as a user-parameter.
PDPLOT Plots the distribution curves of a defined random input variable.
PDVAR Specifies the parameters to be treated as probabilistic design variables.

Table 2.128 Probabilistic Methods

The following PDS commands allow the specification of the probabilistic methods and their options used in a probabilistic analysis.

PDDOEL	Defines design of experiment levels for an individual random input variable.
PDDMCS	Specifies options for Monte Carlo Simulations.
PDMETH	Specifies the probabilistic analysis method.

The following PDS commands allow the specification of the probabilistic methods and their options used in a probabilistic analysis.
PDUSER Specifies options for user-specified sampling methods.
Table 2.129 Run Probabilistic Analysis
The following PDS commands allow the execution of a probabilistic analysis.
PDEXE Executes the probabilistic analysis.
Table 2.130 Probabilistic Postprocessing
The following PDS commands allow the probabilistic postprocessing and the visualization of the probabilistic results

PDCDF	Plots the cumulative distribution function.
PDCMAT	Prints the correlation coefficient matrix.
PDHIST	Plots the frequency histogram.
PDPINV	Prints the result of the inversion of a probability.
PDPROB	Prints a probability result.
PDROPT	Specifies the options for an HTML report.
PDSCAT	Plots a scatter graph.
PDSENS	Plots the probabilistic sensitivities.
PDSHIS	Plots sample history values.
PDWRITE	Generates an HTML report for the probabilistic analysis.

Table 2.131 Probabilistic Database

The following PDS commands provide access to the probabilistic database.
PDCLR Clears the probabilistic design database.
PDRESU Reads the probabilistic model data and stores it in the database.
PDSAVE Writes the probabilistic model data to a file.

Table 2.132 Response Surface

The following PDS commands allow the evaluation, visualization, and use of the response surfaces.
RSFIT Fit a response surface for an output parameter in a solution set.
RSPLOT Plot a response surface.
RSPRNT Print a response surface.
RSSIMS Performs Monte Carlo simulations on response surface(s).
Table 2.133 Auxiliary Commands and Information
The following commands are helpful for using the PDS.
/PDS Enters the probabilistic design system.

2.16. DISPLAY Program Commands

These commands are used for the DISPLAY program. The DISPLAY program is a companion program to ANSYS, used for recovering graphics displays produced within ANSYS. The commands are grouped by functionality.

Table 2.134 Setup

These DISPLAY commands are used to set up the DISPLAY program.

/CMAP	Changes an existing or creates a new color mapping table.
/DEVDISP	Controls graphics device options.
FILEDISP	Specifies the file containing the graphics data.
HELPDISP	Displays help information on DISPLAY program commands.
/INPUT	Switches the input file for the commands that follow.
NOCOLOR	Removes color from graphics displays.
/SEG	Allows graphics data to be stored in the local terminal memory.
/SHOWDISP	Defines the display driver name.
TRANS	Reformats File.GRPH for improved performance with plotters.

Table 2.135 Driver Options

These DISPLAY commands are used to specify the graphics driver and options for subsequent plots.

TERM

Specifies various terminal driver options.

Table 2.136 Action

These DISPLAY commands are used to produce the plots and exit the program.
FINISH Exits normally from a processor.
PLOT
Forms a display.
STAT
Displays the status of database settings.

2.17. REDUCED Order Modeling Commands

These commands are used for reduced order modeling analyses. The commands are grouped by functionality.

Table 2.137 Set Up

These commands are used to save or resume the ROM database.
RMRESUME Resumes ROM data from a file.
RMSAVE Saves ROM data to file.
Table 2.138 Preparation
These commands are used to create the input files for the ROM Generation Pass.
RMNDISP Extracts neutral plane displacements from a test load or element
load solution for the ROM method.

These commands are used to create the input files for the ROM Generation Pass.
RMNEVEC Extracts neutral plane eigenvectors from a modal analysis for the ROM method.

Table 2.139 Generation Pass

RMALIST	Lists all defined master nodes for a ROM method.
RMANL	Assigns model database, dimensionality, and operating direction for the ROM method.
RMASTER	Defines master nodes for the ROM method.
RMCAP	Defines lumped capacitance pairs between conductors C1 and C2 for a ROM method.
RMCLIST	Lists all lumped capacitances defined.
RMMLIST	Lists all mode specifications for the ROM method.
RMMRANGE	Defines and edits various modal parameters for the ROM method.
RMMSELECT	Selects modes for the ROM method.
RMPORDER	Defines polynomial orders for ROM functions.
RMRGENERATE	Performs fitting procedure for all ROM functions to generate response surfaces.
RMROPTIONS	Defines options for ROM response surface fitting.
RMRPLOT	Plots response surface of ROM function or its derivatives with respect to the dominant mode(s).
RMRSTATUS	Prints status of response surface for ROM function.
RMSMPLE	Runs finite element solutions and obtains sample points for the ROM method.
RMXPORT	Exports ROM model to external VHDL-AMS simulator.

Table 2.140 Use Pass
These commands use the reduced order model in an analysis.
DCVSWP Performs a DC voltage sweep on a ROM element.
RMLVSCALE Defines element load vector scaling for a ROM use pass.
RMUSE
Activates ROM use pass for ROM elements.

2.18. Menu-Inaccessible Commands

These command operations are available via the command input area or batch file input only and are inaccessible from menus within the ANSYS GUI:

ACCOPTION Specifies GPU accelerator capability options.
ANSTOAQWA Creates an AQWA-LINE input file from the current ANSYS model.
ANSTOASAS Creates an ASAS input file from the current ANSYS model.
AREAS Specifies "Areas" as the subsequent status topic.
/AUX3 Enters the results file editing processor.

AXPY	Performs the matrix operation $\mathrm{M} 2=\mathrm{v}^{} \mathrm{M} 1+\mathrm{w}^{*} \mathrm{M} 2$
/BATCH	Sets the program mode to "batch."
BCSOPTION	Sets memory options for the sparse solver.
C***	Places a comment in the output.
CAMPBELL	Prepares the result file for a subsequent Campbell diagram analysis.
CECHECK	Checks constraint equations and couplings for rigid body motions.
CECYC	Generates the constraint equations for a cyclic symmetry analysis.
CHKMSH	Checks area and volume entities for previous meshes.
CINT	Defines parameters associated with contour integral calculations.
CISOL	Stores J-integral information in a variable.
CLOCAL	Defines a local coordinate system relative to the active coordinate system.
/CLOG	Copies the session log file to a named file.
CLRMSHLN	Clears meshed entities.
CMROTATE	Specifies the rotational velocity of an element component about a user-defined rotational axis
CMWRITE	Writes components and assemblies to a file.
CNKMOD	Modifies contact element key options.
*COMP	Compresses the columns of a matrix using a specified algorithm.
CORIOLIS	Applies the Coriolis effect to a rotating structure.
CZDEL	Edits or clears cohesive zone sections.
CZMESH	Creates and meshes a cohesive zone group of elements.
DDOPTION	Sets domain decomposer option for Distributed ANSYS.
DELETE	Specifies sets in the results file to be deleted before postprocessing.
*DMAT	Creates a dense matrix.
*EIGEN	Performs a modal solution with unsymmetric or damping matrices.
EMATWRITE	Forces the writing of all the element matrices to File.EMAT.
EMORE	Adds more nodes to the just-defined element.
ENERSOL	Specifies the total energies to be stored.
/EOF	Exits the file being read.
*EXPORT	Exports a matrix to a file in the specified format.
EXPROFILE	Exports ANSYS interface loads to a CFX Profile file.
EXUNIT	Specifies units of an interface load for ANSYS to CFX transfer.
FILEAUX3	Specifies the results file to be edited.
FITEM	Identifies items chosen by a picking operation (GUI).
FLDATA27	Controls dependent variable printing.
FLST	Specifies data required for a picking operation (GUI).
/FORMAT	Specifies format controls for tables.
*FREE	Deletes a matrix or a solver object and frees its memory allocation.
/GOLIST	Reactivates the suppressed data input listing.
/HEADER	Sets page and table heading print controls.

HELP	Displays help information on ANSYS commands and element types.
HFADP	Turns a high-frequency adaptive error calculation on or off.
HFDEEM	Calibrates S-parameter phase shift.
HFMODPRT	Species a working frequency for a modal port.
HRCPLX	Computes and stores in the database the time-harmonic solution at a prescribed phase angle.
/IMAGE	Allows graphics data to be captured and saved.
INISTATE	Defines initial state data and parameters.
IRLIST	Prints inertia relief summary table.
*ITENGINE	Performs a solution using an iterative solver.
JSOL	Specifies result items to be stored for the joint element.
LINE	Specifies "Lines" as the subsequent status topic.
LIST	Lists out the sets in the results file.
*LIST	Displays the contents of an external, coded file.
LPRT	Defines impedance and calibration lines for excitation eigenfield.
*LSBAC	Performs the solve (forward/backward substitution) of a factorized linear system.
*LSENGINE	Creates a linear solver engine.
*LSFACTOR	Performs the numerical factorization of a linear solver system.
MEMM	Allows the current session to keep allocated memory.
/MENU	Activates the Graphical User Interface (GUI).
/MKDIR	Creates a directory.
/MREP	Enables you to reissue the graphics command macro "name" during a replot or zoom operation.
/MSTART	Controls the initial GUI components.
MSTOLE	Adds two extra nodes from FLUID116 elements to SURF152 elements for convection analyses.
MULT	Performs the matrix multiplication $\mathrm{M} 3=\mathrm{M} 1(\mathrm{~T} 1)^{} \mathrm{M} 2$ (22).
/NOLIST	Suppresses the data input listing.
NOOFFSET	Prevents the CDREAD command from offsetting specified data items.
*NRM	Computes the norm of the specified matrix or vector.
NSMOOTH	Smooths selected nodes among selected elements.
NSVR	Defines the number of variables for user-programmable element options.
OPERATE	Specifies "Operation data" as the subsequent status topic.
/PAGE	Defines the printout and screen page size.
PAUSE	Temporarily releases (pauses) the currently used product license so that another application can use it.
PCGOPT	Controls PCG solver options.
/PCOPY	Automatically generates hard copies for HP UNIX work stations.
PERI	Specifies periodic boundary conditions in an incompressible flow analysis.

PERTURB	Sets linear perturbation analysis options.
PLCAMP	Plots Campbell diagram data for rotordynamics applications.
PLCINT	Plots the contour integral (CINT) result data.
PLFAR	Plots electric far fields and far field parameters.
PLFSS	Plots reflection and transmission parameters of a frequency selective surface solution.
PLNEAR	Prints the electric field in the near zone exterior to the equivalent source surface (flagged with the Maxwell surface flag in the preprocessor).
PLORB	Displays the orbital motion of a rotating structure undergoing vibration.
PLTD	Displays TDR/TDT waveforms, an impedance profile, or a total waveform.
PLTLINE	Plots port transmission line data generated by the HFPCSWP or SPSWP macros.
PRCAMP	Prints Campbell diagram data for rotordynamics applications.
PRCINT	Lists the J-integral result data.
PRENERGY	Prints the total energies of a model.
PRFAR	Prints electric far fields and far field parameters.
*PRINT	Prints the matrix values to a file.
PRISM	Creates a prism volume based on working plane coordinate pairs.
PRJSOL	Prints joint element output.
PRNEAR	Prints the electric field in the near zone exterior to the equivalent source surface (flagged with the Maxwell surface flag in the preprocessor).
PRORB	Prints the orbital motion characteristics of a rotating structure undergoing vibration.
PRRFOR	Used with the FORCE command.Prints the constrained node reaction solution.
PSCONTROL	Activate or deactivate shared-memory parallel operations during solution.
PSMAT	Writes an assembled global matrix to a postscript format that graphically displays nonzero matrix values.
RESVEC	Calculates residual vectors in a modal analysis, or includes residual vectors in a modal superposition transient/harmonic analysis.
RESWRITE	Appends results data from the database to a results file in a top-down substructured analysis.
/RMDIR	Removes (deletes) a directory.
RSOPT	Creates or loads the radiosity mapping data file for SURF251 or SURF252 element types.
RSPLIT	Creates one or more results files from the current results file based on subsets of elements.
RSTOFF	Offsets node or element IDs in the FE geometry record.
SELTOL	Sets the tolerance for subsequent select operations.

*SMAT	Creates a sparse matrix.
/SMBC	Controls the display of solid model boundary condition symbols and labels.
SNOPTION	Specifies Supernode (SNODE) eigensolver options.
SOURCE	Defines a default location for undefined nodes or keypoints.
SPADP	Automatically refines a HF119 tetrahedral element mesh based on Sparameter convergence.
SPFSS	Performs frequency sweep or angle sweep calculations to determine reflection and transmission parameters of a frequency selective surface.
SPICE	Generates a SPICE subcircuit model using S-parameters from a Touchstone file.
SPLOT	Displays the selected areas and a faceted view of their underlying surfaces.
/STITLE	Defines subtitles.
SYNCHRO	Specifies whether the excitation frequency is synchronous or asynchronous with the rotational velocity of the structure.
/SYP	Passes a command string and arguments to the operating system.
/SYS	Passes a command string to the operating system.
TBEO	Sets special options or parameters for material data tables.
TBFIELD	Defines values of field variables for the material data tables.
TERM	Specifies various terminal driver options.
TOEXE	Executes one topological optimization iteration.
/UNITS	Annotates the database with the system of units used.
UNDELETE	Removes results sets from the group of sets selected for editing.
UNPAUSE	Restores use of a temporarily released (paused) product license. (Applicable only after a previously issued PAUSE command.)
USRDOF	Specifies the degrees of freedom for the user-defined element USER300.
USRELEM	Specifies the characteristics of the user-defined element USER300.
*VEC	Creates a vector.
VOLUMES	Specifies "Volumes" as the subsequent status topic.
VTIN	Defines an inertial load as an input variable for DesignXplorer
VTOP	Defines options value for the DesignXplorer.
VTSFE	Defines a surface load as an input variable for the DesignXplorer.
WMID	Specifies reordering options for the WAVES command.

Chapter 3: Command Dictionary

This chapter contains a dictionary of the ANSYS commands, listed in alphabetical order. The star (*) and slash (/) of the star and slash commands are ignored for alphabetization (for example, the /SHOW command appears between the SHELL and SHPP commands). As in a dictionary, keywords are located at the top of each page (in the printed version only) indicating the first and last commands contained on that page.

The following section documents the components of a command description.

Components of a Command Description

SAMPLECMD, Key

Specifies whether to use automatic time stepping or load stepping.
SOLUTION: Load Step Options
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS

Argument Descriptions

Key
Automatic time stepping key:
OFF --
Do not use automatic time stepping
ON --
Use automatic time stepping.
Default: No automatic time stepping.

Notes

Specifies whether to use automatic time stepping (or load stepping) over this load step. If Key $=\mathbf{O N}$, both time step prediction and time step bisection will be used. Used only if DTIME (specified on the DELTIM command) is less than the time span or conversely, if NSBSTP (on the NSUBST command) is greater than one.

This command is also valid in PREP7.

Product Restrictions

In ANSYS Professional, Key is automatically set to ON and cannot be changed.

Menu Paths

Main Menu> Preprocessor >Loads> Load Step Opts> Time/Frequenc> Freq and Substps

Main Menu> Preprocessor> Loads> Load Step Opts> Time/Frequenc> Time - Time Step
Main Menu> Solution> Load Step Opts> Time/Frequenc> Freq and Substps
Main Menu> Solution> Load Step Opts> Time/Frequenc> Time - Time Step

Features Documented in ANSYS Commands

The first line of the command description shows the command name followed by the argument names (if any). The second line summarizes the command function. The summary is not intended to be all inclusive:

SAMPLECMD, Key

Specifies whether to use automatic time stepping or load stepping.
Listed on the next line are codes that will help you find other commands in the program with related functionality.

SOLUTION: Load Step Options
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS
"SOLUTION: Load Step Options" is the code in the example above. There is at least one group code for each command. The first portion of the code before the colon (:) tells which of the tables in Command Groupings (p. 9) the command can be found in. These are major groupings, such as PREP7 or APDL commands. In the example above, SOLUTION commands are found in SOLUTION Commands (p. 40). Most of these major groupings are processors, and in those cases it is implied that the command can be entered only when in that processor. Any exceptions are noted under "Notes" later in the description.

The second portion of the code, after the colon, is the subtable in Command Groupings (p. 9) containing the command. The subtables list commands that relate to each other in function. In the example, the code "Load Step Options" means that other commands related to load step options can be found in that subtable of SOLUTION Commands (p. 40) (Table 2.64: Load Step Options (p. 44)).

If you are viewing this manual in the ANSYS Help System, just click on the code to follow the link to the corresponding table. Then click on any of the commands in the table, to follow the link to its description.

If you are reading the printed version, simply turn to the appropriate table in Command Groupings (p. 9). The table lists the page number where the command is documented.

The next line displays a series of product codes, which may contain all of the ANSYS product codes:
MP ME ST PR PRN DS DSS FL EM EH DY PP VT EME MFS
or a subset of them:
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS
For more information on product codes, see Product Codes (p. 2).
Following this "product code" line is the description of all arguments, if any, of the command:

Key

Automatic time stepping key:
OFF --
Do not use automatic time stepping (default).

ON --

Use automatic time stepping.
The argument is described and, where necessary, valid choices for the argument are described. Many arguments list defaults, which are the values assumed for that argument if you enter the command but leave the argument blank. On the other hand, shown after the argument descriptions is often another default:

Command Default

No automatic time stepping.
This is the command default. This is the specification assumed by the program if you do not enter the command at all. Only commands that set specifications (specification commands) have defaults listed. Commands that cause some action, such as performing some calculation, are called action commands and simply do not perform the action if the command is not entered. Defaults are not listed for action commands.

Following the default listing are any notes about the command. These notes expand on the summary description given up near the command format, and describe any other behavior, restrictions, suggestions, etc. of that command:

Notes

Specifies whether to use automatic time stepping (or load stepping) over this load step. If Key $=\mathrm{ON}$, both time step prediction and time step bisection will be used. Used only if DTIME (specified on the DELTIM command) is less than the time span or conversely, if NSBSTP (on the NSUBST command) is greater than one.

This command is also valid in PREP7.
If the command behaves differently, or has restrictions, in any of the various ANSYS products, those differences are described in the Product Restrictions section:

In ANSYS Professional, Key is automatically set to ON and cannot be changed.

Product Restrictions

In ANSYS Professional, Key is automatically set to ON and cannot be changed.

Menu Paths

Main Menu >Preprocessor> Loads> Load Step Opts> Time/Frequenc> Freq and Substps
Main Menu >Preprocessor> Loads> Load Step Opts> Time/Frequenc> Time - Time Step
Main Menu> Solution> Load Step Opts> Time/Frequenc >Freq and Substps
Main Menu> Solution> Load Step Opts> Time/Frequenc> Time - Time Step

These menu paths are intended as guides to help you find the commands in the GUI. Be aware, however, that often the paths are valid only if some other command has been previously issued. For example, you won't be able to follow a path to transient analysis options if you have not selected a transient analysis in the first place.

Not all commands are directly accessible through the menu (although some of them may be generated indirectly by some menu function). Such cases are indicated by the following statement in the menu path listing:

Menu Paths

This command cannot be accessed directly in the menu.

Connection Commands

~CAT5IN, Name, Extension, Path, Entity, FMT, NOCL, NOAN

Transfers a . CATPart file into the ANSYS program.

CAD Import
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Name

The name of a valid . CATPart file, created with CATIA Version 5.0. The first character of the file name must be an alphanumeric.

Extension

The extension for the file. The default extension is .CATPart.
Path
The path name of the directory in which the file resides enclosed in single quotes. The default path name is the current working directory.

Entity

Entity to be imported.

SOLIDS

Solids only, imported as ANSYS volumes (default).

SURFACES

Surfaces only, imported as ANSYS areas.

ALL

All entities. Use this option when the file contains different types of entities.

FMT

The format in which ANSYS will store the model.
0
Neutral format (default). Defeaturing after import is restricted.
1
Solid format; this allows defeaturing after import.
NOCL
Remove tiny objects.
0
Remove tiny objects without checking model validity (default).

1

Do not remove tiny objects.
NOAN
Perform an analysis of the model.
0
Analyze the model (default).

Do not analyze the model.

Notes

If defeaturing is specified ($F M T=1$), this command must be the last line of any file, script, or other interactive input.

More information on importing CATIA Version 5 parts is available in CATIA V5 in the ANSYS Connection User's Guide.

Menu Paths

File> Import> CATIA5
~CATIAIN, Name, Extension, Path, --, --, BLANK, --

Transfers a CATIA model into the ANSYS program.

CAD Import
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Name

The name of a valid CATIA model, created with CATIA 4.x or lower. The first character of the file name must be an alphanumeric.

Extension

The extension for the file. The default extension is .model.

Path

The path name of the directory in which the file resides, enclosed in single quotes. The default path name is the current working directory.

Unused field.

Unused field.

BLANK

Sets whether to import "blanked" entities.
0
Does not import "blanked" (suppressed) CATIA entities (default).
1
Imports "blanked" entities. The portions of CATIA data that were suppressed will be included in the import.

Unused field.
Notes
More information on importing CATIA parts is available in CATIA V4 in the ANSYS Connection User's Guide.

Menu Paths

File> Import> CATIA

~PARAIN, Name, Extension, Path, Entity, FMT, Scale

Transfers a Parasolid file into the ANSYS program.

CAD Import
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Name

The name of a valid Parasolid file. The first character of the file name must be an alphanumeric.

Extension

The extension for the file. The default extension is . x_{-}t on a PC or . xmt_t xt on a Unix system. Parasolid files are compatible across systems, and do not need to be renamed to be used on another platform.

Path

The path name of the directory in which the file resides, enclosed in single quotes. The default path name is the current working directory.

Entity

Entity to be imported:

SOLIDS

Solids only, imported as ANSYS volumes (default)

SURFACES

Surfaces only, imported as ANSYS areas.

WIREFRAME

Wireframe only, imported as ANSYS lines.

ALL

All entities. Use this option when the file contains more than one type of entity.
FMT
Sets the format in which ANSYS will store the model
0
Neutral format (default). Defeaturing after import is restricted. Use this option if you need to scale a model to a specific unit of measure (other than meters).

1

Solid format; this allows defeaturing after import.

Scale

Allows scaling for the model
0
Do not rescale the model; retain the default Parasolid setting of meters (default).
1
Scale the model if warranted by the model size.
Very small models will be scaled by the factor of 10 or 100 to increase the chance of successful import; the scaling factor used is displayed in the output window and in the .para_log file. Because scaling
changes the dimensions of the model, you must apply loads and material properties appropriately. If the model cannot be properly scaled, the analysis may fail.

If you need to scale your model to a specific set of measurements, set $\mathrm{FMT}=0$, then use either the VLSCALE, ARSCALE or LSSCALE command to select a different unit of measure.

Notes

More information on importing Parasolid parts is available in Parasolid in the ANSYS Connection User's Guide.

Menu Paths

File> Import> PARA
~PROEIN, Name, Extension, Path, Proecomm, FMT
Transfers a Pro/ENGINEER part into the ANSYS program.
CAD Import
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Name

The name of the Pro/ENGINEER part to be imported, which cannot exceed 64 characters in length and must begin with an alphanumeric character. Special characters such as \& - and * and spaces are not permitted in the part name.

Extension

The general Pro/ENGINEER extension format is prt. The assembly extension format is asm

Path

Full path name to the directory containing the part. The default is the current working directory. Neither the path name nor the file name should contain a space.

Proecomm

The start command for the version of Pro/ENGINEER you are using. proe 1 is the default command. Note that the full path name to the Pro/ENGINEER command need not be used here if the path had been included in the PATH variable. The Pro/ENGINEER command name is set by the PROE_START_CMD130 environment variable.

FMT

The format in which ANSYS will store the model.
0
Neutral format (default). Defeaturing after import is restricted.
1
Solid format; this allows defeaturing after import.

Notes

More information on importing Pro/ENGINEER parts is available in Pro/ENGINEER in the ANSYS Connection User's Guide.

Menu Paths

File> Import> Pro/E

~SATIN, Name, Extension, Path, Entity, FMT, NOCL, NOAN

Transfers a . SAT file into the ANSYS program.

CAD Import
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Name

The name of a valid . SAT file, created with a supported version of ACIS. The first character of the file name must be an alphanumeric. See File Names in the Command Reference for more information about ANSYS file naming conventions.

Extension

The extension for the file. The default extension is . sat.

Path

The path name of the directory in which the file resides enclosed in single quotes. The default path name is the current working directory.

Entity

Entity to be imported.

SOLIDS

Solids only, imported as ANSYS volumes (default).

SURFACES

Surfaces only, imported as ANSYS areas.

WIREFRAME

Wireframe only, imported as ANSYS lines.

ALL

All entities. Use this option when the file contains different types of entities.

FMT

The format in which ANSYS will store the model.
0
Neutral format (default). Defeaturing after import is restricted.
1
Solid format; this allows defeaturing after import.
NOCL
Remove tiny objects.
0
Remove tiny objects without checking model validity (default).
1
Do not remove tiny objects.
NOAN
Perform an ACIS analysis of the model.

0
Analyze the model (default).
1
Do not analyze the model.

Note

NOCL and NOAN are not supported in the ANSYS GUI.

Notes

More information on importing SAT parts is available in ACIS/SAT in the ANSYS Connection User's Guide.

Menu Paths

File> Import> SAT
~UGIN, Name, Extension, Path, Entity, LAYER, FMT

Transfers a NX part into the ANSYS program.

MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Name

The file name of the NX part to be imported, which cannot exceed 64 characters in length. The path name must begin with an alphanumeric character. Special characters such as $\&,-$, and * are not permitted in the part name.

Extension

The NX part file extension. The default is .prt.

Path

The full path name to the directory containing the part, enclosed in single quotes; for example, '/ug_parts'. The default is the current working directory.

Entity

Entity to be imported.

0 or Solid

Solids only, imported as ANSYS volumes (the default).
1 or Surface
Surfaces only, imported as ANSYS areas.
2 or Wireframe
Wireframe only, imported as ANSYS lines.
3 or All
All entities. Use this option when the part contains entities that may not be attached to each other, such as a solid in one location and a surface in another.

LAYER

The number(s) assigned to the layer(s) to be imported. You can import one layer or a range of layers (designated by hyphens). Defaults to 1-256 (all layers).

FMT

The format in which ANSYS will store the model.
0
Neutral format (default). Defeaturing after import is restricted.
1
Solid format; this allows defeaturing after import.

Notes

More information on importing NX parts is available in UG/NX in the ANSYS Connection User's Guide.

Menu Paths

File> Import> UG

A Commands

> A, P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12, P13, P14, P15, P16, P17, P18

Defines an area by connecting keypoints.

PREP 7: Areas
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

P1, P2, P3, ... , P18

List of keypoints defining the area (18 maximum if using keyboard entry). At least 3 keypoints must be entered. If $P 1=\mathrm{P}$, graphical picking is enabled and all remaining arguments are ignored (valid only in the GUI).

Notes

Keypoints (P1 through P18) must be input in a clockwise or counterclockwise order around the area. This order also determines the positive normal direction of the area according to the right-hand rule. Existing lines between adjacent keypoints will be used; missing lines are generated "straight" in the active coordinate system and assigned the lowest available numbers [NUMSTR]. If more than one line exists between two keypoints, the shorter one will be chosen. If the area is to be defined with more than four keypoints, the required keypoints and lines must lie on a constant coordinate value in the active coordinate system (such as a plane or a cylinder). Areas may be redefined only if not yet attached to a volume. Solid modeling in a toroidal coordinate system is not recommended.

Menu Paths

Main Menu>Preprocessor>Modeling>Create>Areas>Arbitrary>Through KPs

AADD, NA1, NA2, NA3, NA4, NA5, NA6, NA7, NA8, NA9

Adds separate areas to create a single area.

PREP 7:Booleans
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

NA1, NA2, NA3, . . . NA9

Numbers of areas to be added. If NA1 = ALL, add all selected areas and ignore NA2 to NA9. If NA1 = P, graphical picking is enabled and all remaining arguments are ignored (valid only in the GUI). A component name may also be substituted for NA1.

Notes

The areas must be coplanar. The original areas (and their corresponding lines and keypoints) will be deleted by default. See the BOPTN command for the options available to Boolean operations. Element attributes
and solid model boundary conditions assigned to the original entities will not be transferred to the new entities generated. Concatenated entities are not valid with this command.

Menu Paths

Main Menu>Preprocessor>Modeling>Operate>Booleans>Add>Areas

AATT, MAT, REAL, TYPE, ESYS, SECN
Associates element attributes with the selected, unmeshed areas.
PREP 7: Meshing
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

MAT

The material number to be associated with selected, unmeshed areas.

REAL

The real constant set number to be associated with selected, unmeshed areas.

TYPE

The type number to be associated with selected, unmeshed areas.

ESYS

The coordinate system number to be associated with selected, unmeshed areas.

SECN

The section number to be associated with selected unmeshed areas.

Notes

Areas subsequently generated from the areas will also have these attributes. These element attributes will be used when the areas are meshed. If an area does not have attributes associated with it (by this command) at the time it is meshed, the attributes are obtained from the then current MAT, REAL, TYPE, ESYS, and SECNUM command settings. Reissue the AATT command (before areas are meshed) to change the attributes. A zero (or blank) argument removes the corresponding association. If any of the arguments MAT, REAL, TYPE, ESYS, or SECN are defined as -1 , then that value will be left unchanged in the selected set.

In some cases, ANSYS can proceed with an area meshing operation even when no logical element type has been assigned via AATT,,,TYPE or TYPE. For more information, see the discussion on setting element attributes in Meshing Your Solid Model in the Modeling and Meshing Guide.

Menu Paths

Main Menu $>$ Preprocessor $>$ Meshing $>$ Mesh Attributes $>$ All Areas Main Menu>Preprocessor>Meshing>Mesh Attributes>Picked Areas

ABEXTRACT, MODE1,MODE2

Extracts the alpha-beta damping multipliers for Rayleigh damping.

SOLUTION: Analysis Options
MP ME <> <> <> <> <> <> <> <> <> PP <> EME MFS

MODE1

First mode number.
MODE2
Second mode number.

Notes

ABEXTRACT calls the command macro DMPEXT to extract the damping ratio of MODE1 and MODE2 and then computes the Alpha and Beta damping multipliers for use in a subsequent structural harmonic or transient analysis. See Damping in the Structural Analysis Guide for more information on the alpha and beta damping multipliers. The damping multipliers are stored in parameters ALPHADMP and BETADMP and can be applied using the ALPHAD and BETAD commands. Before calling ABEXTRACT, you must issue RMFLVEC to extract the modal displacements. In addition, a node component FLUN must exist from all FLUID136 nodes. See "Thin Film Analysis" for more information on thin film analyses.

This command is also valid in PREP7.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Solution>ThinFilm>RayleighDamp

*ABBR, Abbr, String

Defines an abbreviation.

APDL: Abbreviations
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Argument Descriptions

Abbr

The abbreviation (up to 8 alphanumeric characters) used to represent the string String. If Abbr is the same as an existing ANSYS command, the abbreviation overrides. Avoid using an Abbr which is the same as an ANSYS command.

String

String of characters (60 maximum) represented by Abbr. Cannot include a $\$$ or any of the commands C***, /COM, /GOPR, /NOPR, /QUIT, /UI, or *END. Parameter names and commands of the *DO and Use the *IF groups may not be abbreviated. If String is blank, the abbreviation is deleted. To abbreviate multiple commands, create an "unknown command" macro or define String to execute a macro file [*USE] containing the desired commands.

Notes

Once the abbreviation Abbr is defined, you can issue it at the beginning of a command line and follow it with a blank (or with a comma and appended data), and the program will substitute the string String for $A b b r$ as the line is executed. Up to 100 abbreviations may exist at any time and are available throughout the program. Abbreviations may be redefined or deleted at any time.

Use *STATUS to display the current list of abbreviations. For abbreviations repeated with *REPEAT, substitution occurs before the repeat increments are applied. There are a number of abbreviations that are predefined by the program (these can be deleted by using the blank String option described above). Note that String will be written to the File.LOG.

This command is valid in any processor.

Menu Paths

Utility Menu>Macro>Edit Abbreviations
 Utility Menu>MenuCtrls>Edit Toolbar

ABBRES, Lab, Fname, Ext,--

Reads abbreviations from a coded file.

APDL: Abbreviations
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Argument Descriptions

Lab

Label that specifies the read operation:
NEW --
Replace current abbreviation set with these abbreviations (default).

CHANGE --

Extend current abbreviation set with these abbreviations, replacing any of the same name that already exist.

Fname

File name and directory path (248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

The file name defaults to Jobname.

Ext

Filename extension (8 character maximum).
The extension defaults to ABBR if Fname is blank.

Unused field.

Notes

The abbreviation file may have been written with the ABBSAV command. Do not issue ABBRES,NEW while inside an executing abbreviation. Doing so will cause all data for the executing abbreviation to be deleted.

This command is valid in any processor.

Menu Paths

Utility Menu>Macro>Restore Abbr

 Utility Menu>MenuCtrls>Restore ToolbarABBSAV, Lab, Fname, Ext,--
Writes the current abbreviation set to a coded file.
APDL:Abbreviations
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Argument Descriptions

Lab

Label that specifies the write operation:

ALL --

Write all abbreviations (default).

Fname

File name and directory path (248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

The file name defaults to Jobname.

Ext

Filename extension (8 character maximum).
The extension defaults to ABBR if Fname is blank.

Unused field.

Notes

Existing abbreviations on this file, if any, will be overwritten. The abbreviation file may be read with the ABBRES command.

This command is valid in any processor.

Menu Paths

```
Utility Menu>Macro>Save Abbr
Utility Menu>MenuCtrls>Save Toolbar
```

ABS, IR, IA, --, --, Name, --, --, FACTA

Forms the absolute value of a variable.

> POST2 6: Operations
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

IR
Arbitrary reference number assigned to the resulting variable (2 to NV [NUMVAR]). If this number is the same as for a previously defined variable, the previously defined variable will be overwritten with this result.

IA
Reference number of the variable to be operated on.
--, --
Unused fields.

Name

Thirty-two character name for identifying the variable on the printout and displays. Embedded blanks are compressed upon output.
--, --
Unused fields.

FACTA

Scaling factor (positive or negative) applied to variable IA (defaults to 1.0).

Notes

The new variable is calculated as:

$$
\mathrm{IR}=|\mathrm{FACTA} \times I \mathrm{~A}|
$$

For a complex number $(a+i b)$, the absolute value is the magnitude, where the $I A$ values are obtained from:
$\sqrt{a^{2}+b^{2}}$
See POST26 - Data Operations in the Theory Reference for the Mechanical APDL and Mechanical Applications for details.

Menu Paths

Main Menu>TimeHist Postpro>Math Operations>Absolute Value

ACCAT, NA1,NA2

Concatenates multiple areas in preparation for mapped meshing.

PREP 7: Meshing
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

NA1, NA2

Areas to be concatenated. If NA1 $=$ ALL, NA 2 will be ignored and all selected areas [ASEL] will be concatenated. If NA1 $=\mathrm{P}$, graphical picking is enabled and all remaining arguments are ignored (valid only in the GUI). A component name may also be substituted for NA1 (NA2 is ignored).

Notes

Concatenates multiple, adjacent areas (the input areas) into one area (the output area) in preparation for mapped meshing. A volume that contains too many areas for mapped meshing can still be mapped meshed if some of the areas in that volume are first concatenated (see Meshing Your Solid Model in the Modeling and Meshing Guide for details on mapped meshing restrictions).

Because of modeling restrictions that result from its use, ACCAT is meant to be used solely for meshing. Specifically, (a) the output area and any volumes that have the output area on their area list [VLIST] cannot be used as input to any other solid modeling operation (not even another ACCAT command); and (b) the output area cannot accept solid model boundary conditions [DA, SFA].

The output area (or volumes which contain it) will be meshed [AMESH, VMESH] by meshing the input areas, which themselves must be meshable. The output area from the ACCAT operation will be coincident with the input areas and the input areas will be retained. Consider the AADD command instead of ACCAT if you wish to delete the input areas. When an ACCAT command is issued, volume area lists [VLIST] that contain all of the input areas will be updated so that the volume area lists refer to the output area instead of the input area. Deletion of the output area [ADELE] effectively reverses the ACCAT operation and restores volume area lists to their original condition. ACCAT operations on pairs of adjacent four-sided areas automatically concatenate appropriate lines [LCCAT]; in all other situations, line concatenations must be addressed by the user.

You can use the ASEL command to select areas that were created by concatenation, and then follow it with an ADELE,ALL command to delete them. See Meshing Your Solid Model in the Modeling and Meshing Guide for a discussion on how to easily select and delete concatenated areas in one step.

Menu Paths

Main Menu>Preprocessor>Meshing>Mesh>Volumes>Mapped>Concatenate>Areas

ACCOPTION, Activate, MinSzThresh, ---, --, SPkey
Specifies GPU accelerator capability options.
SOLUTION: Analysis Options
MP ME ST PR <> <> <> <> EM <> <> PP <> EME MFS

Argument Descriptions

Activate

Activates the GPU accelerator capability within the equation solvers.
OFF --
Do not use GPU accelerator.
ON --
Use GPU accelerator.

MinSzThresh

Threshold used to control the minimum size of data in the equation solver to be sent to the GPU accelerator (units are in MB). Does not apply to the JCG solver or PCG solver (including PCG Lanczos).
--, --
Unused fields.

SPkey

Single precision key that controls whether computations on the GPU accelerator device use double precision or single precision. Does not apply to the JCG solver or PCG solver (including PCG Lanczos). OFF --

Use double precision (default).
ON --
Use single precision.

Command Default

Activate is set to ON when the GPU acceleration command line option (-acc) is specified upon launching ANSYS; otherwise it is OFF. MinSz Thresh is computed automatically within the sparse direct solver based on the specific GPU device in use and the number of CPU cores specified (-np command line option). SPkey is set to OFF by default so that double precision accuracy is maintained when using the GPU accelerator capability.

Notes

The GPU accelerator capability requires specific hardware to be installed on the machine. See the appropriate ANSYS, Inc. Installation Guide (Windows or UNIX/Linux) for a list of supported GPU hardware. Use of this capability also requires HPC licensing. For more information, see "GPU Accelerator Capability" in the Advanced Analysis Techniques Guide.

The GPU accelerator capability is available for the sparse direct solver and the PCG and JCG iterative solvers. Static, buckling, modal, full harmonic, and full transient analyses are supported. For buckling analyses, only the Block Lanczos eigensolver is supported. For modal analyses, only the Block Lanczos and PCG Lanczos eigensolvers are supported. Activating this capability when using other equation solvers or other analysis types has no effect.

The minimum threshold value (MinSzThresh) is only recommended for users who want to tune the GPU capability for their specific hardware. A static decision is currently made for this threshold, whereas the optimal value is a dynamic decision based on the relative performance of the GPU and CPU cores available for the ANSYS simulation. When using older, slower CPU cores (or newer, faster GPUs), this threshold could be decreased to see if the overall solution time also decreases. When using newer, faster CPU cores (or older, slower GPUs), this threshold should typically be increased. Also, using more CPU cores generally leads to higher threshold values. Recommended values are generally in the range of 0.5 MB to 20 MB .

Use of the single precision key (SPkey) is generally not recommended. Activating this key should further accelerate the time to solution; however, it will also cause a loss of accuracy which could significantly alter the final results. For linear static analyses with high quality meshes, this key may be used to generate a relatively accurate solution. Also, when using the GPU capability for modal analyses with the Block Lanczos eigensolver, this key may be used to generate relatively accurate eigenvalue solutions.

The GPU accelerator capability is supported only on the Windows 64-bit and Linux 64-bit platforms.
Distributed ANSYS Restriction The GPU accelerator capability is not currently supported with Distributed ANSYS.

Menu Paths

This command cannot be accessed from a menu.

ACEL, ACEL_X, ACEL_Y, ACEL_Z

Specifies the linear acceleration of the global Cartesian reference frame for the analysis.

SOLUTION: Inertia
 MP ME ST PR PRN DS DSS FL <> <> DY PP <> EME MFS

ACEL_X, ACEL_Y, ACEL_Z

Linear acceleration of the reference frame along global Cartesian X, Y, and Z axes, respectively.

Notes

In the absence of any other loads or supports, the acceleration of the structure in each of the global Cartesian (X, Y, and Z) axes would be equal in magnitude but opposite in sign to that applied in the ACEL command. Thus, to simulate gravity (by using inertial effects), accelerate the reference frame with an ACEL command in the direction opposite to gravity.

You can define the acceleration for the following analyses types:

- Static (ANTYPE,STATIC)
- Harmonic (ANTYPE,HARMIC), full or mode superposition method
- Transient (ANTYPE,TRANS)
- Substructure (ANTYPE,SUBSTR).

For all but the reduced transient dynamic (ANTYPE,TRANS) analysis, accelerations are combined with the element mass matrices to form a body force load vector term. The element mass matrix may be formed from a mass input constant or from a nonzero density (DENS) property, depending upon the element type. For ANTYPE,TRANS (reduced), the acceleration is applied to the reduced mass matrix.

For analysis type ANTYPE,HARMIC, the acceleration is assumed to be the real component with a zero imaginary component.

Units of acceleration and mass must be consistent to give a product of force units.
The ACEL command supports tabular boundary conditions (\% TABNAME_X\%, \%TABNAME_Y\%, and \%TABNAME_Z\%) for ACEL_X, ACEL_Y, and ACEL_Z input values (*DIM) as a function of both time and frequency for full transient and harmonic analyses.

Related commands for rotational effects are CMACEL, CGLOC, CGOMGA, DCGOMG, DOMEGA, OMEGA, CMOMEGA, and CMDOMEGA.

This command is also valid in /PREP7.

Menu Paths

Main Menu>Preprocessor>FLOTRAN Set Up>Flow Environment>Gravity
Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Inertia>Gravity>Global
Main Menu>Preprocessor>Loads>Define Loads $>$ Delete $>$ Structural $>$ Inertia $>$ Gravity
Main Menu>Solution>Define Loads>Apply>Structural>Inertia>Gravity>Global
Main Menu>Solution>Define Loads>Delete>Structural>Inertia>Gravity Main Menu>Solution>FLOTRAN Set Up>Flow Environment>Gravity

ACLEAR, NA1,NA2,NINC
Deletes nodes and area elements associated with selected areas.
PREP 7: Meshing
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

NA1, NA2, NINC

Delete mesh for areas NA1 to NA2 (defaults to NA1) in steps of NINC (defaults to 1). If NA1 = ALL, NA2 and NINC are ignored and the mesh for all selected areas [ASEL] is deleted. If NA1 = P, graphical picking is enabled and all remaining arguments are ignored (valid only in the GUI). A component name may also be substituted for NA1 (NA2 and NINC are ignored).

Notes

Deletes all nodes and area elements associated with selected areas (regardless of whether the nodes or elements are selected). Nodes shared by adjacent meshed areas and nodes associated with non-area elements will not be deleted. Attributes assigned as a result of AATT are maintained. In the program's response to the command, if an area, line, or keypoint is tallied as "cleared," it means either its node or element reference was deleted.

This command is also valid for rezoning. When issued during rezoning (after the REMESH,START command and before the REMESH,FINISH command), ACLEAR clears only the area generated by the AREMESH command.

Menu Paths

Main Menu>Preprocessor>Meshing>Clear>Areas

Performs solutions and writes flexible body information to a modal neutral file (Jobname . MNF) for use in an ADAMS analysis.

SOLUTION: Analysis Options
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS

NMODES

Number of normal modes to be written to Jobname. MNF file (no default).

KSTRESS

Specifies whether to write stress or strain results:
0
Do not write stress or strain results (default).
1
Write stress results.
2
Write strain results.
3
Write both stress and strain results.
KSHELL
Shell element output location. This option is valid only for shell elements.
0, 1
Shell top surface (default).
2
Shell middle surface.
3
Shell bottom surface.

Notes

ADAMS invokes a predefined ANSYS macro that solves a series of analyses and then writes the modal neutral file, Jobname. MNF. This file can be imported into the ADAMS program in order to perform a rigid body dynamics simulation. For detailed information on how to use the ADAMS command macro to create a modal neutral file, see Rigid Body Dynamics and the ANSYS-ADAMS Interface in the Advanced Analysis Techniques Guide.

Before running the ADAMS command macro, you must specify the units with the /UNITS command. The interface points should be the only selected nodes when the command macro is initiated. (Interface points are nodes where constraints may be applied in ADAMS.) Only selected elements will be considered in the calculations.

By default, stress and strain data is transferred to the ADAMS program for all nodes, as specified by the KSTRESS value. If you want to transfer stress/strain data for only a subset of nodes, select the desired subset and create a node component named "STRESS" before running the ADAMS command macro. For example, you may want to select exterior nodes for the purpose of visualization in the ADAMS program.

The default filename for the modal neutral file is Jobname. MNF. In interactive (GUI) mode, you can specify a filename other than Jobname. MNF. In batch mode, there is no option to change the filename, and the modal neutral file is always written to Jobname. MNF.

Menu Paths

Main Menu>Solution>ADAMS Connection>Export to ADAMS

ADAPT, NSOLN, STARGT, TTARGT, FACMN, FACMX, KYKPS, KYMAC

Adaptively meshes and solves a model.

SOLUTION: Analysis Options
MP ME ST PR PRN <> <> FL <> <> <> PP <> EME MFS

NSOLN

Number of solutions allowed (1 or more) (defaults to 5).

STARGT

Target percentage for structural percent error in energy norm (SEPC) (defaults to 5). If -1 , no target value is used.

TTARGT

Target percentage for thermal percent error in energy norm (TEPC) (defaults to 1). If -1 , no target value is used.

FACMN

Minimum factor for the keypoint element size changes (defaults to 0.25).

FACMX

Maximum factor for the keypoint element size changes (defaults to 2.0).

KYKPS

Specifies whether element size is to be modified at selected keypoints:
0
Modify element size regardless of selected keypoint set (default).
1
Modify element size only at selected keypoints.

KYMAC

Specifies which user-written auxiliary macro files are to be used:
0
Ignore user-written auxiliary macro files, if any (default).
1
Use user-written auxiliary macro files (if they exist) as follows: Use ADAPTMSH.MAC instead of the default meshing command sequence. Use ADAPTSOL.MAC instead of the default solution command sequence (/SOLU ... SOLVE ... FINISH).

Notes

ADAPT invokes a predefined ANSYS macro for adaptive meshing and solution. The macro causes repeated runs of the PREP7, SOLUTION, and POST1 phases of the ANSYS program with mesh density refinements
based upon the percentage error in energy norm. See the Advanced Analysis Techniques Guide for additional details. After the adaptive meshing process is complete, the ADAPT macro automatically turns element shape checking on (SHPP,ON).

A copy of the macro, called UADAPT.MAC, is available on the ANSYS distribution medium (system dependent), and may be copied and modified by the user to suit a particular need. The modified file should be given a suitable name (cmd.MAC) and run as described above with the ADAPT command name replaced by your "cmd" name.

This command is also valid at the Begin level.

Menu Paths

Main Menu>Solution>Solve>Adaptive Mesh

ADD, IR, IA, IB, IC, Name, --,--, FACTA, FACTB, FACTC

Adds (sums) variables.

POST26:Operations
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
IR
Arbitrary reference number assigned to the resulting variable (2 to NV [NUMVAR]). If this number is the same as for a previously defined variable, the previously defined variable will be overwritten with this result.

IA, IB, IC
Reference numbers of the three variables to be operated on. If only two variables, leave IC blank. If only one, leave IB and IC blank.

Name

Thirty-two character name for identifying the variable on the printout and displays. Embedded blanks are compressed upon output.

--, --

Unused fields.
FACTA, FACTB, FACTC
Scaling factors (positive or negative) applied to the corresponding variables (default to 1.0).

Notes

Adds variables (up to three at once) according to the operation:

$$
I R=(F A C T A \times I A)+(F A C T B \times I B)+(F A C T C \times I C)
$$

Menu Paths

Main Menu>Drop Test>Time History>Graph Variables
Main Menu>Drop Test>Time History>List Variables
Main Menu>TimeHist Postpro>Math Operations>Add

ADDAM, $A F, A A, A B, A C, A D, A M I N$

Specifies the acceleration spectrum computation constants for the analysis of shock resistance of shipboard structures.

SOLUTION:Spectrum Options
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS

$A F$

Direction-dependent acceleration coefficient for elastic or elastic-plastic analysis option (default = 0).

$A A, A B, A C, A D$

Coefficients for the DDAM acceleration spectrum equations. Default for these coefficients is zero.

AMIN

The minimum acceleration value in inch $/ \mathrm{sec}^{2}$. It defaults to $2316 \mathrm{inch} / \mathrm{sec}^{2}$ which equals 6 g , where g is acceleration due to gravity ($g=386 \mathrm{inch} / \mathrm{sec}^{2}$).

Notes

This command specifies acceleration coefficients to analyze shock resistance of shipboard equipment. These coefficients are used to compute mode coefficients according to the equations given in Dynamic Design Analysis Method in the Theory Reference for the Mechanical APDL and Mechanical Applications. The form of these equations is based on the Naval NRL Dynamic Design Analysis Method. This command, along with the VDDAM and SED commands, is used with the spectrum (ANTYPE,SPECTR) analysis as a special purpose alternative to the SV, FREQ, and SVTYP commands. The mass and length units of the model must be in pounds and inches, respectively.

This command is also valid in PREP7.

Menu Paths

Main Menu>Preprocessor>Loads>Load Step Opts>Spectrum>DDAM Options
Main Menu>Solution>Load Step Opts>Spectrum>DDAM Options

ADELE, NA1, NA2, NINC, KSWP

Deletes unmeshed areas.

PREP 7: Areas
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

NA1, NA2, NINC

Delete areas from NA1 to NA2 (defaults to NA1) in steps of NINC (defaults to 1). If NA1 = ALL, NA2 and NINC are ignored and all selected areas [ASEL] are deleted. If NA1 $=\mathrm{P}$, graphical picking is enabled and all remaining arguments are ignored (valid only in the GUI). A component name may also be substituted for NA1 (NA2 and NINC are ignored).

KSWP

Specifies whether keypoints and lines are also to be deleted:
0
Delete areas only (default).

1

Delete areas, as well as keypoints and lines attached to specified areas but not shared by other areas.

Notes

An area attached to a volume cannot be deleted unless the volume is first deleted.

Menu Paths

Main Menu>Preprocessor>Modeling>Delete>Area and Below Main Menu>Preprocessor>Modeling>Delete>Areas Only

ADGL, NA1,NA2,NINC

Lists keypoints of an area that lie on a parametric degeneracy.

PREP 7:Areas
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

NA1, NA2, NINC

List keypoints that lie on a parametric degeneracy on areas from NA1 to NA2 (defaults to NA1) in steps of NINC (defaults to 1). If NA1 = ALL (default), NA 2 and NINC will be ignored and keypoints on all selected areas [ASEL] will be listed. If NAI $=P$, graphical picking is enabled and all remaining arguments are ignored (valid only in the GUI). A component name may be substituted in NA1 (NA2 and NINC will be ignored).

Notes

See the Modeling and Meshing Guide for details on parametric degeneracies.
This command is valid in any processor.

Menu Paths

> Main Menu>Preprocessor>Modeling>Check Geom>Show Degeneracy>List Degen Areas Main Menu $>$ Preprocessor $>$ Modeling $>$ Operate $>$ Booleans $>$ Show Degeneracy $>$ List Degen Areas

ADRAG, NL1,NL2,NL3,NL4,NL5,NL6,NLP1,NLP2,NLP3,NLP4, NLP5, NLP6
Generates areas by dragging a line pattern along a path.
PREP 7: Areas
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
NL1, NL2, NL3, . . . , NL 6
List of lines in the pattern to be dragged (6 maximum if using keyboard entry). Lines should form a continuous pattern (no more than two lines connected to any one keypoint. If $N L 1=P$, graphical picking is enabled and all remaining arguments are ignored (valid only in the GUI). If $N L 1=A L L$, all selected lines (except those that define the drag path) will be swept along the path. A component name may also be substituted for NL1.

NLP1, NLP2, NLP3, . . . , NLP 6

List of lines defining the path along which the pattern is to be dragged (6 maximum if using keyboard entry). Must be a continuous set of lines.

Notes

Generates areas (and their corresponding keypoints and lines) by sweeping a given line pattern along a characteristic drag path. If the drag path consists of multiple lines, the drag direction is determined by the sequence in which the path lines are input ($N L P 1, N L P 2$, etc.). If the drag path is a single line ($N L P 1$), the drag direction is from the keypoint on the drag line that is closest to the first keypoint of the given line pattern to the other end of the drag line.

The magnitude of the vector between the keypoints of the given pattern and the first path keypoint remains constant for all generated keypoint patterns and the path keypoints. The direction of the vector relative to the path slope also remains constant so that patterns may be swept around curves.

Keypoint, line, and area numbers are automatically assigned (beginning with the lowest available values [NUMSTR]). Adjacent lines use a common keypoint. Adjacent areas use a common line. For best results, the entities to be dragged should be orthogonal to the start of the drag path. Drag operations that produce an error message may create some of the desired entities prior to terminating.

Menu Paths

Main Menu>Preprocessor>Modeling>Operate>Extrude>Lines>Along Lines

AESIZE, ANUM, SIZE,

Specifies the element size to be meshed onto areas.

PREP 7: Meshing
MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS

ANUM

Area number of the area to which this element size specification applies. If $A N U M=A L L$, size applies to all selected areas. If $A N U M=P$, graphical picking is enabled. A component name may also be substituted for ANUM.

SIZE

Desired element size.

Notes

AESIZE allows control over the element sizing inside any area or on the face(s) of a volume.
SIZE controls element size on the interior of the area. For any line on the area not having its own size assignment and not controlled by keypoint size assignments, it specifies the element size along the line as well, so long as no adjacent area has a smaller size, which would take precedence. If the AESIZE governs the boundary and SmartSizing is on, the boundary size can be refined for curvature or proximity.

This command is also valid for rezoning.

Menu Paths

Main Menu>Preprocessor>Meshing>Size Cntrls>ManualSize>Areas>All Areas
Main Menu>Preprocessor>Meshing>Size Cntrls>ManualSize>Areas>CIr Size Main Menu>Preprocessor>Meshing>Size Cntrls>ManualSize>Areas>Picked Areas

AFILLT, NA1, NA2, RAD

Generates a fillet at the intersection of two areas.
PREP 7: Areas
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

NA1

Number of the first intersecting area. If NA1 = P, graphical picking is enabled and all remaining arguments are ignored (valid only in the GUI).

NA2

Number of the second intersecting area.

RAD

Radius of fillet to be generated.

Notes

Generates an area of constant fillet radius at the intersection of two areas using a series of Boolean operations. Corresponding lines and keypoints are also generated. See BOPTN command for an explanation of the options available to Boolean operations. If areas do not initially intersect at a common line, use the AINA command.

Menu Paths

Main Menu $>$ Preprocessor $>$ Modeling $>$ Create $>$ Areas $>$ Area Fillet

AFLIST

Lists the current data in the database.
PREP 7: Database
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Notes

Lists the current data and specifications in the database. If batch, lists all appropriate data. If interactive, lists only summaries.

Menu Paths

Utility Menu>List>Other>Database Summary

AFSURF, SAREA, TLINE

Generates surface elements overlaid on the surface of existing solid elements and assigns the extra node as the closest fluid element node.

PREP 7:Elements
MP ME <> PR PRN <> <> <> <> <> <> PP <> EME MFS

SAREA

Component name for the surface areas of the meshed solid volumes.

TLINE

Component name for the target lines meshed with fluid elements.

Notes

This command macro is used to generate surface effect elements overlaid on the surface of existing solid elements and, based on proximity, to determine and assign the extra node for each surface element. The underlying volumes of the solid region and the fluid lines must be meshed prior to calling this command macro. The active element type must be SURF152 with appropriate settings for KEYOPT(4), KEYOPT(5), KEYOPT(6), and KEYOPT(8).

The surface areas of the solid and the target lines of the fluid are grouped into components and named using the CM command. The names must be enclosed in single quotes (e.g., 'SAREA') when the AFSURF command is manually typed in.

When using the GUI method, node and element components are created through the picking dialog boxes associated with this command.

The macro is applicable for the SURF152 and FLUID116 element types.

Menu Paths

Main Menu>Preprocessor>Modeling>Create>Elements>Surf / Contact>Surf Effect>Attch to Fluid $>$ Area to Fluid
Main Menu>Preprocessor>Modeling>Create>Elements>Surf / Contact>Surf Effect>Attch to Fluid>Line to Fluid
Main Menu>Preprocessor>Modeling>Create>Elements>Surf / Contact>Surf Effect>Attch to Fluid $>$ Node to Fluid

*AFUN, Lab

Specifies units for angular functions in parameter expressions.
APDL: Parameters
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Argument Descriptions

Lab

Specifies the units to be used:

RAD --

Use radians for input and output of parameter angular functions (default).

DEG --

Use degrees for input and output of parameter angular functions.

STAT --

Show current setting (DEG or RAD) for this command.

Command Default

Use radians for input or output of parameter angular functions.

Notes

Only the SIN, COS, TAN, ASIN, ACOS, ATAN, ATAN2, ANGLEK, and ANGLEN functions [*SET, *VFUN] are affected by this command.

Menu Paths

Utility Menu>Parameters>Angular Units

AGEN, ITIME, NA1, NA2, NINC, DX, DY, DZ, KINC, NOELEM, IMOVE

Generates additional areas from a pattern of areas.

PREP 7: Areas
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

ITIME

Do this generation operation a total of ITIMES, incrementing all keypoints in the given pattern automatically (or by KINC) each time after the first. ITIME must be more than 1 for generation to occur.

NA1, NA2, NINC

Generate areas from the pattern of areas NA1 to NA2 (defaults to NA1) in steps of NINC (defaults to 1). If NA1 = ALL, NA 2 and NINC are ignored and the pattern is all selected areas [ASEL]. If NA1 = P, graphical picking is enabled and all remaining arguments are ignored (valid only in the GUI). A component name may also be substituted for NA1 (NA2 and NINC are ignored).

$D X, D Y, D Z$

Keypoint location increments in the active coordinate system (--, D θ, DZ for cylindrical; --, D θ, -- for spherical).

KINC
Keypoint number increment between generated sets. If zero, the lowest available keypoint numbers are assigned [NUMSTR].

NOELEM

Specifies if elements and nodes are also to be generated:
0
Generate nodes and elements associated with the original areas, if they exist.
1
Do not generate nodes and elements.

IMOVE

Specifies whether to redefine the existing areas:
0
Generate new areas as requested with the ITIME argument.
1
Move original areas to new position, retaining the same keypoint numbers (ITIME, KINC, and NOELEM are ignored). If the original areas are needed in the original position (e.g., they may be attached to a volume), they are not moved, and new areas are generated instead. Meshed items corresponding to moved areas are also moved if not needed at their original position.

Notes

Generates additional areas (and their corresponding keypoints, lines and mesh) from a given area pattern. The MAT, TYPE, REAL, ESYS, and SECNUM attributes of the new areas are based upon the areas in the pattern and not upon the current settings of the pointers. End slopes of the generated lines remain the same (in the active coordinate system) as those of the given pattern. For example, radial slopes remain radial. Generations which produce areas of a size or shape different from the pattern (i.e., radial generations in cylindrical systems, radial and phi generations in spherical systems, and theta generations in elliptical systems) are not allowed. Solid modeling in a toroidal coordinate system is not recommended. Area and line numbers are automatically assigned, beginning with the lowest available values [NUMSTR].

Menu Paths

Main Menu>Preprocessor>Modeling>Copy>Areas
Main Menu>Preprocessor>Modeling>Move / Modify>Areas>Areas

AGLUE, NA1, NA2, NA3, NA4, NA5, NA6, NA7, NA8, NA9
Generates new areas by "gluing" areas.
PREP 7:Booleans
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

NA1, NA2, NA3, . . . NA 9

Numbers of the areas to be glued. If NA1 = ALL, all selected areas will be glued (NA2 to NA9 will be ignored). If NA1 $=P$, graphical picking is enabled and all remaining arguments are ignored (valid only in the GUI). A component name may also be substituted for NA1.

Notes

Use of the AGLUE command generates new areas by "gluing" input areas. The glue operation redefines the input areas so that they share lines along their common boundaries. The new areas encompass the same geometry as the original areas. This operation is only valid if the intersection of the input areas are lines along the boundaries of those areas. See the Modeling and Meshing Guide for an illustration. See the BOPTN command for an explanation of the options available to Boolean operations. Element attributes and solid model boundary conditions assigned to the original entities will not be transferred to new entities generated.

The AGLUE command results in the merging of lines and keypoints at the common area boundaries. The lines and keypoints of the lower numbered area will be kept. This means one must be aware of area numbering when multiple AGLUE commands are applied to avoid any "ungluing" of geometry.

Menu Paths

Main Menu>Preprocessor>Modeling>Operate>Booleans>Glue>Areas

AINA, NA1, NA2, NA3, NA4, NA5, NA6, NA7, NA8, NA9
Finds the intersection of areas.
PREP 7: Booleans
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

NA1, NA2, NA3, . . . , NA9

Numbers of areas to be intersected. If NA1 = ALL, NA 2 to NA 9 are ignored and the intersection of all selected areas is found. If NAI $=\mathrm{P}$, graphical picking is enabled and all remaining arguments are ignored (valid only in the GUI). A component name may also be substituted for NA1.

Notes

Finds the common (not pairwise) intersection of areas. The common intersection is defined as the regions shared (in common) by all areas listed on this command. New areas will be generated where the original areas intersect. If the regions of intersection are only lines, new lines will be generated instead. See the Modeling and Meshing Guide for an illustration. See the BOPTN command for the options available to Boolean operations. Element attributes and solid model boundary conditions assigned to the original entities will not be transferred to the new entities generated.

Menu Paths

Main Menu>Preprocessor>Modeling>Operate>Booleans>Intersect>Common>Areas

AINP, NA1, NA2, NA3, NA4, NA5, NA6, NA7, NA8, NA9
Finds the pairwise intersection of areas.
PREP 7: Booleans
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

NA1, NA2, NA3, . . . , NA9

Numbers of areas to be intersected pairwise. If NA1 = ALL, NA 2 to NA 9 are ignored and the pairwise intersection of all selected areas is found. If NA1 $=\mathrm{P}$, graphical picking is enabled and all remaining arguments are ignored (valid only in the GUI). A component name may be substituted for NA1.

Notes

Finds the pairwise intersection of areas. The pairwise intersection is defined as all regions shared by any two or more areas listed on this command. New areas will be generated where the original areas intersect pairwise. If the regions of pairwise intersection are only lines, new lines will be generated. See the Modeling and Meshing Guide for an illustration. See the BOPTN command for the options available to Boolean operations. Element attributes and solid model boundary conditions assigned to the original entities will not be transferred to the new entities generated.

Menu Paths

Main Menu>Preprocessor>Modeling>Operate>Booleans>Intersect>Pairwise>Areas

AINV,NA,NV
Finds the intersection of an area with a volume.
PREP 7: Booleans
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

NA

Number of area to be intersected. If P, graphical picking is enabled and all remaining arguments are ignored (valid only in the GUI).

NV

Number of volume to be intersected.

Notes

New areas will be generated where the areas intersect the volumes. If the regions of intersection are only lines, new lines will be generated instead. See the Modeling and Meshing Guide for an illustration. See the BOPTN command for the options available to Boolean operations. Element attributes and solid model boundary conditions assigned to the original entities will not be transferred to the new entities generated.

Menu Paths

Main Menu>Preprocessor>Modeling>Operate>Booleans>Intersect>Area with Volume

AL, L1, L2, L3, L4, L5, L6, L7, L8, L9, L10

Generates an area bounded by previously defined lines.

PREP 7:Areas
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

L1, L2, L3, . . . L10

List of lines defining area. The minimum number of lines is 3 . The positive normal of the area is controlled by the direction of $L 1$ using the right-hand rule. A negative value of $L 1$ reverses the normal direction. If $L 1=A L L$, use all selected lines with $L 2$ defining the normal ($L 3$ to $L 10$ are ignored and $L 2$ defaults to the lowest numbered selected line). If $L 1=P$, graphical picking is enabled and all remaining arguments are ignored (valid only in the GUI). A component name may also be substituted for L1.

Notes

Lines may be input (once each) in any order and must form a simply connected closed curve. If the area is defined with more than four lines, the lines must also lie in the same plane or on a constant coordinate value in the active coordinate system (such as a plane or a cylinder).

Note

Solid modeling in a toroidal coordinate system is not recommended. Areas may be redefined only if not yet attached to a volume.

This command is valid in any processor.

Menu Paths

Main Menu>Preprocessor>Modeling>Create>Areas>Arbitrary>By Lines

ALIST, NA1, NA2, NINC, Lab
Lists the defined areas.
PREP 7: Areas
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

NA1, NA2, NINC

List areas from NA1 to NA2 (defaults to NA1) in steps of NINC (defaults to 1). If NA1 = ALL (default), NA2 and NINC are ignored and all selected areas [ASEL] are listed. If NAI = P, graphical picking is enabled and all remaining arguments are ignored (valid only in the GUI). A component name may also be substituted for NA1 (NA2 and NINC are ignored).

Lab

Determines what type of listing is used (one of the following):
(blank)
Prints information about all areas in the specified range.
HPT
Prints information about only those areas that contain hard points.

Notes

An attribute (TYPE, MAT, REAL, or ESYS) listed as a zero is unassigned; one listed as a positive value indicates that the attribute was assigned with the AATT command (and will not be reset to zero if the mesh is cleared); one listed as a negative value indicates that the attribute was assigned using the attribute pointer [TYPE, MAT, REAL, or ESYS] that was active during meshing (and will be reset to zero if the mesh is cleared). A "1 " in the "nodes" column indicates that the area has been meshed but there are no interior nodes. The area size is listed only if an ASUM command has been performed on the area.

Menu Paths

Utility Menu>List>Areas

ALLSEL, LabT, Entity
Selects all entities with a single command.

> DATABASE: Selecting
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

LabT

Type of selection to be made:
ALL
Selects all items of the specified entity type and all items of lower entity types (default).

BELOW

Selects all items directly associated with and below the selected items of the specified entity type.

Entity

Entity type on which selection is based:
ALL
All entity types (default).

VOLU

Volumes.

AREA

Areas.

LINE

Lines.

KP

Keypoints.

ELEM

Elements.

NODE

Nodes.

Notes

ALLSEL is a convenience command that allows the user to select all items of a specified entity type or to select items associated with the selected items of a higher entity.

An entity hierarchy is used to decide what entities will be available in the selection process. This hierarchy from top to bottom is as follows: volumes, areas, lines, keypoints, elements, and nodes. The hierarchy may also be divided into two branches: the solid model and the finite element model. The label ALL selects items based on one branch only, while BELOW uses the entire entity hierarchy. For example, ALLSEL,ALL,VOLU selects all volumes, areas, lines, and keypoints in the data base. ALLSEL,BELOW,AREA selects all lines belonging to the selected areas; all keypoints belonging to those lines; all elements belonging to those areas, lines, and keypoints; and all nodes belonging to those elements.

The \$ character should not be used after the ALLSEL command.
This command is valid in any processor.

Menu Paths

Main Menu>Preprocessor>Modeling>CMS>CMS Superelements>By Picking
Utility Menu>Select>Everything
Utility Menu>Select>Everything Below>Selected Areas
Utility Menu>Select>Everything Below>Selected Elements
Utility Menu>Select>Everything Below>Selected Keypoints
Utility Menu>Select>Everything Below>Selected Lines
Utility Menu>Select>Everything Below>Selected Volumes

ALPHAD, value

Defines the mass matrix multiplier for damping.
SOLUTION:Dynamic Options
MP ME ST <> <> <> <> <> <> <> DY PP <> EME MFS

VALUE

Mass matrix multiplier for damping.

Notes

Defines the mass matrix multiplier, α, for damping. One form of the viscous damping matrix [C] is given by $\alpha[M]+\beta[K]$, where $[M]$ is the mass matrix and $[K]$ is the stiffness matrix. Damping is not used in the static (ANTYPE,STATIC) or buckling (ANTYPE,BUCKLE) analyses.

This command is also valid in PREP7.

Menu Paths

Main Menu>Preprocessor>Loads>Analysis Type>Sol'n Controls>Transient
Main Menu>Preprocessor>Loads>Load Step Opts>Time/Frequenc>Damping
Main Menu>Solution>Analysis Type>Sol'n Controls>Transient Main Menu>Solution>Load Step Opts>Time/Frequenc>Damping

AMAP, AREA, KP1, KP2, KP3, KP4
Generates a 2-D mapped mesh based on specified area corners.
PREP 7: Meshing
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

AREA

Area number of area to be meshed. If $A R E A=P$, graphical picking is enabled and all remaining arguments are ignored (valid only in the GUI).

KP1, KP2, KP3, KP4

Keypoints defining corners of the mapped mesh. Three or four corners may be specified, and may be input in any order.

Notes

Only one area at a time can be meshed with this command. The program internally concatenates all lines between the specified keypoints, then meshes the area with all quadrilateral elements. If line divisions are set, the mesh will follow the rules for mapped meshing (see Meshing Your Solid Model in the Modeling and Meshing Guide).

If the area being meshed has concatenated lines, the program will ask if those concatenations should be removed (in batch, the concatenations will automatically be removed). Nodes required for the generated elements are created and assigned the lowest available node numbers. If a mapped mesh is not possible due to mismatched line divisions or poor element shapes, the meshing operation is aborted.

Menu Paths

Main Menu>Preprocessor>Meshing>Mesh>Areas>Mapped>By Corners

AMESH, NA1,NA2,NINC

Generates nodes and area elements within areas.

PREP 7: Meshing
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

NA1, NA2, NINC

Mesh areas from NA1 to NA2 (defaults to NA1) in steps of NINC (defaults to 1). If NA1 = ALL, NA2 and NINC are ignored and all selected areas [ASEL] are meshed. If NA1 $=\mathrm{P}$, graphical picking is enabled and all remaining arguments are ignored (valid only in the GUI). A component name may also be substituted for NA1 (NA2 and NINC are ignored).

Notes

Any undefined nodes required for the generated elements are created and assigned the lowest available numbers.

This command is also valid for rezoning.

Menu Paths

Main Menu>Preprocessor>Meshing>Mesh>Areas>Free
Main Menu>Preprocessor>Meshing>Mesh $>$ Areas $>$ Mapped >3 or 4 sided
Main Menu>Preprocessor>Meshing $>$ Mesh $>$ Areas $>$ Target Surf

/AN3D, Kywrd, KEY

Specifies 3-D annotation functions

If Kywrd = ANUM, the type of annotation is defined, along with its location. The command format is
/AN3D,ANUM,NUM,TYPE,ХHOT,YHOT,ZНOT.
NUM
Unique number assigned as each annotation is applied to a model. These numbers are applied sequentially, although when an annotation entity is deleted, its number is reassigned.

TYPE

Annotation internal type number (101 = text, $102=$ line, $103=$ point, $104=$ area, $105=$ arrow, $106=$ symbol, $108=$ bitmap).

ХнОт, צнOT, ZНОт

X, Y, Z coordinates for hot spot location.
If Kywrd = BITM, the annotation is a bitmap. The command format is /AN3D,BITM,TYPE,X,Y,Z.

TYPE
An integer value between 1 and 99, indicating a texture or bitmap. Numbers 1 through 40 correspond to existing ANSYS textures (see /TXTRE). Numbers 51 through 99 correspond to textures defined using the File option of the /TXTRE command. You can use this capability to override the predefined logo, clamp and arrow files available from the GUI dialog box (numbers 51 through 57). Numbers 41 through 50 are reserved.

$\boldsymbol{X}, \mathbf{Y}, \mathbf{Z}$

$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ coordinates for the lower left corner of the bitmap.
If Kywrd $=$ TEXT, an annotation text string is created. The command format is
/AN3D,TEXT, X, Y, Z, Text_String.
$\boldsymbol{X}, \mathbf{Y}, \boldsymbol{Z}$
X, Y, Z coordinate location for text string.
Text_String
Text string to be applied as annotation.
If Kywrd = LINE, an annotation line is created. The command format is /AN3D,LINE,X1,Y1,Z1,X2,Y2,Z2.

X1, Y1, Z1

X, Y, Z coordinates for beginning of line.
X2, Y2, Z2
X, Y, Z coordinates for end of line.
If Kywrd = POINT, a dot will be drawn in space (this option is not available from the GUI). The command format is /AN3D,POINT, X, Y, Z.
X, Y, Z
X, Y, Z coordinates for point.

If Kywrd $=$ AREA, a polygonal area with n vertices will be drawn. The command format is
/AN3D,AREA,NVERT,Xn,Yn,Zn.

nVERT

The number of vertices (n) for the polygon. Your Polygon can have between 3 and 9 vertices.

$\mathrm{Xn}, \mathrm{Yn}, \mathrm{Zn}$

X, Y, Z coordinate location for vertex n.
If Kywrd = ARROW, an annotation arrow is created. The command format is /AN3D,AR-
ROW,SIZE,X1,Y1,Z1,X2,Y2,Z2.

SIZE

Symbol size multiplier (0.1 to 20.0, default $=1.0$) for the head of the arrow.

$\mathrm{X} 1, \mathrm{Y} 1, \mathrm{Z} 1$

X, Y, Z coordinates for the location of the tail.

X2, Y2, Z2

X, Y, Z coordinate for the location of the tip.
If Kywrd = SYMBOL, an annotation symbol is created. The command format is /AN3D,SYM-
BOL,TYPE,X,Y,Z,SIZE.

TYPE

The symbol type ($1=$ CAP, $2=$ TEE, $3=$ CIRCLE, $4=$ TRIANGLE, $5=$ STAR $)$.

X, Y, Z

$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ coordinate location for the symbol.

SIZE

Size multiplier for the symbol (0.1 to 20.0 , default $=1.0$)

Notes

Because 3-D annotation is applied in relation to the XYZ coordinates of the anchor, you can transform your model, and the annotation will maintain the spatial relationship with the model. This works within reason, and there are instances where changing the perspective or the size of the model will change the apparent relationship between the annotation and the model.

The overall 3-D dimensions of your model are defined by a bounding box. If portions of your model's bounding box lie outside of the visible area of your graphics window (if you are zoomed in on a specific area of your model), it can affect the placement of your 3-D annotations. Zooming out will usually overcome this problem.

3-D annotation is valid for the Cartesian (CSYS,0) coordinate system only. If you want to annotate a model you created in another coordinate system, use 2-D annotation (note that 2-D annotations do not remain anchored for dynamic rotations or transformations).

When you apply user defined bitmaps, the size of the annotation can vary. Use the options menu of the 3D annotation widget to adjust the size and placement of your bitmaps.

You cannot use the "!" and "\$" characters in ANSYS text annotation.

The GUI generates this command during 3-D annotation operations and inserts the command into the log file (Jobname.LOG). You should NOT type this command directly during an ANSYS session (although the command can be included in an input file for batch input or for use with the /INPUT command).

Menu Paths

Utilty Menu>PlotCtrls>Annotate>Create 3D Annotation

ANCNTR, NFRAM, DELAY,NCYCL

Produces an animated sequence of a contoured deformed shape.

POST1:Animation
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

NFRAM

Number of frames captures (defaults to 5).

DELAY

Time delay during animation (defaults to 0.1 seconds).
NCYCL
Number of animation cycles (defaults to 5). Available in non-UI mode only.

Notes

ANCNTR involves an ANSYS macro which produces an animation of a contoured deformed shape of the last plot action command. This command operates only on graphic display platforms supporting the /SEG command. After executing ANCNTR, you can replay the animated sequence by issuing the ANIM command.

The command functions only in the postprocessor.

Menu Paths

Utility Menu>PlotCtrls>Animate>Deformed Results

ANCUT, NFRAM, DELAY, NCYCL, QOFF, KTOP, TOPOFF, NODE1, NODE2, NODE3

Produces an animated sequence of \mathbf{Q}-slices.

POST1:Animation
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

NFRAM

Number of frames captures (defaults to 5).
DELAY
Time delay during animation (defaults to 0.1 seconds).
NCYCL
Number of animation cycles (defaults to 5). Available in non-UI mode only.

QOFF

Q-slice working plane increment (defaults to 1 half screens).

KTOP

Topological effect on or off (YES or NO; default is NO).

TOPOFF

Topological offset (default is .1 half screens).

NODE1

Node 1 for start of the Q-slice.

NODE2

Node 2 for direction of the Q-slice.

NODE3

Node 3 for plane of the Q-slice.

Notes

ANCUT involves an ANSYS macro which produces an animation of Q-slices of the last plot action command. This command operates only on graphic display platforms supporting the /SEG command. After executing ANCUT, you can replay the animated sequence by issuing the ANIM command.

The command functions only in the postprocessor.

Menu Paths

Utility Menu>PlotCtrls>Animate>Q-Slice Contours
 Utility Menu>PlotCtrls>Animate>Q-Slice Vectors

ANCYC, NUMFRAMES, KCYCL, DELAY

Applies a traveling wave animation to graphics data in a modal cyclic symmetry analysis.
POST1:Animation
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

NUMFRAMES

The number of plot frames for the animation. Valid values range from 5 through 36 . The default is 18 . A low value (because it specifies fewer graphical frames) produces a rougher animation but loads faster. A high value produces a smoother animation but requires more time to load.

KCYCL

The animation mode:
0
Discontinuous animation cycle (forward-reset-forward). This option is the default.
1
Continuous animation cycle (forward-reverse-forward).

DELAY

The time delay (in seconds) between animation frames. Valid values range from 0.1 through 1.0. The default is 0.1 seconds, which produces a seemingly real-time animation. A higher value produces a slower animation.

Command Default

The default ANCYC command (issuing the command with no arguments) specifies these implicit argument values: ANCYC, 18, $0,0.1$

Notes

The ANCYC command is valid in a modal cyclic symmetry analysis only.
The command animates the cyclic symmetry mode shape plot in the General Post Processor (/POST1). When you issue a nodal- or element-results plot command (for example, PLNSOL, PLESOL, or PLDISP) and then issue the ANCYC command, ANSYS applies a traveling wave animation to the mode shape plot.

Each frame of the animation is created by expanding the cyclic symmetry mode shape at increasing phase angles (via the /CYCEXPAND command) starting at zero in equal increments over 360°. The phase-angle increment is 360 / NUMFRAMES.

The animation display shows the traveling wave of the result quantity being plotted. The traveling wave animation is applicable only to nodal diameters (harmonic indices) greater than 0 and less than $N / 2$ (where N is the number of cyclic sectors in the model).

For more information, see Applying a Traveling Wave Animation to the Cyclic Model in the Advanced Analysis Techniques Guide.

Menu Paths

Utility Menu> PlotCtrls> Animate> Cyc Traveling Wave

ANDATA, DELAY, NCYCL, RSLTDAT, MIN, MAX, INCR, FRCLST, AUTOCONT, ---, AUTOCNTR

Produces a sequential contour animation over a range of results data.

POST1:Animation
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

DELAY

Time delay during animation (defaults to 0.5 seconds).

NCYCL

Number of animation cycles (defaults to 5). Available in non-Ul mode only.

RSLTDAT

The type of results data to be used for the animation sequence. This can be:
0 Current load step data (default).

1
Range of load step data.
2
Range of results data.
MIN
The range minimum value. If left blank or 0 , defaults to the first data point.

MAX

The range maximum value. If left blank or 0 , defaults to the last data point.

INCR

The increment between result data (defaults to 1).

FRCLST

Key to force the last sub step in a selected load step to be included in the animation (defaults to 0).
AUTOCONT
A value of 1 enables automatic scaling of contour values based on the overall subset range of values.
The default value is 0 (no automatic scaling).
--
Unused field.

AUTOCNTR

A value of 1 disables automatic centering of displaced plots. The default value is 0 (allow automatic centering).

Notes

The ANDATA command operates only on graphic display platforms supporting the /SEG command. It uses an ANSYS macro to produce an animation based on the last plot action command (for example, PLDISP).

The results file must have more than one set of results.

The ANDATA command implicitly issues /DSCALE, 1 for default displacement scaling. Large displacements may not give good results.

This command functions only in the postprocessor.

Menu Paths

```
Main Menu>Drop Test>Animate Results
Utility Menu>PlotCtrls>Animate>Animate Over Results
```

ANDSCL, NFRAM, DELAY, NCYCL
Produces an animated sequence of a deformed shape.
POST1:Animation
MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS
NFRAM
Number of frames captured (defaults to 5).
DELAY
Time delay during animation (defaults to 0.1 seconds).

NCYCL

Number of animation cycles (defaults to 5). Available in non-Ul mode only.

Notes

ANDSCL involves an ANSYS macro which produces an animation of displacement of the last plot action command (for example, PLDISP). This command operates only on graphic display platforms supporting the /SEG command. After executing ANDSCL, you can replay the animated sequence by issuing the ANIM command.

The command functions only in the postprocessor.

Menu Paths

Utility Menu>PlotCtrls>Animate>Deformed Shape

ANDYNA, DELAY, NCYCL, START, END, INC, AUTOCONTOURKEY

Produces an animated sequence of contour values through substeps.

POST1:Animation
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

DELAY

Time delay during animation (defaults to 0.1 seconds).

NCYCL

Number of animation cycles (defaults to 5). Available in non-UI mode only.
START
Number of the starting substep (defaults to 1).

END

Number of the ending substep (defaults to the maximum substep).

INC

Increment between substeps (defaults to 1).

AUTOCONTOURKEY

Auto-scales contour values, based on the overall subset range of values (defaults to 0 , no auto-scaling).

Notes

ANDYNA involves an ANSYS macro which produces an animation of contour values through all the substeps of the last plot action command. This command operates only on graphic display platforms supporting the /SEG command. After executing ANDYNA, you can replay the animated sequence by issuing the ANIM command.

The command functions only in the postprocessor.

Menu Paths

Utility Menu>PlotCtrls>Animate>Dynamic Results

/ANFILE, $\angle A B$, Fname, Ext, --
Saves or resumes an animation sequence to or from a file.
POST1:Animation
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

$L A B$

Label type.
SAVE
Save the current animation to a file.

RESUME

Resume an animation from a file.

Fname

File name and directory path (248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

The file name defaults to Jobname.

Ext

Filename extension (8 character maximum).
The extension defaults to ANIM if Fname is blank.
--
Unused field.

Notes

This command saves an animation to a file from local terminal segments or resumes an animation from a file to local terminal segments. See the /SEG command for details on segment storage. See the ANCNTR macro for a convenient method of storing graphics frames in terminal memory segments. This command is device dependent and is valid in any processor.

Menu Paths

Utility Menu>PlotCtrls>Animate $>$ Restore Animation
Utility Menu>PlotCtrls>Animate>Save Animation

ANFLOW, NFRAM, DELAY, NCYCL, TIME, SPACING, SIZE, LENGTH
Produces an animated sequence of particle flow in a flowing fluid or a charged particle traveling in an electric or magnetic field.

> POST1: Animation
> $\mathrm{MP}<><><><><><>$ FL EM $<><>\mathrm{PP}<>$ EME <>

NFRAM

Number of frames captured (defaults to 5).

DELAY

Time delay during animation (defaults to 0.1 seconds).

NCYCL

Number of animation cycles (defaults to 5). Non-Ul mode only.

TIME

Total Trace Time (seconds) (defaults to 0, which is the full flow trace).

SPACING

Particle spacing in seconds (defaults to 0).

SIZE

Particle size (defaults to 0 , which is a line).

LENGTH

Particle length fraction (defaults to .1).

Notes

ANFLOW invokes an ANSYS macro which produces an animation of particle flow in a flowing fluid or charged particle motion in an electric or magnetic field by the last plot action command (i.e., PLTRAC). This command is only operational on graphic display platforms supporting the /SEG command. After executing ANFLOW, you can replay the animated sequence by issuing the ANIM command. This command is functional only in the Postprocessor.

The TIME option lets you set the time interval of forward travel for the trace. The SPACING option is used to define the particle spacing in seconds from adjacent particles in the stream line. The SIZE variable sets the radius of the particle. The $L E N G T H$ variable is used to define the particle length fraction. By default, the LENGTH is set to . 1 , which means the particle occupies 10% of the flow region and the other 90% is a colorcode line. The SPACING and LENGTH variables only make sense when the SIZE variable is nonzero (i.e., the particle is bigger than the line).

Menu Paths

Utility Menu>PlotCtrls>Animate>Particle Flow

/ANGLE, wn, THETA, Axis, KINCR

Rotates the display about an axis.

GRAPHICS:Views
MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS

WN

Window number (or ALL) to which command applies (defaults to 1).
THETA
Angle (degrees) for changing display orientation (positive, counterclockwise about specified axis).
Axis
Rotation axis: XS, YS, or ZS (default) for the screen axes; XM, YM, or ZM for the global Cartesian model axes. $Z S$ is normal to the screen; all axes pass through the focus point.

KINCR

Cumulative rotation key:
0
Do not use cumulative successive rotations.
1
Use cumulative rotations. Rotations are relative to the previous rotation. View settings (/VIEW) are recalculated.

Notes

Default orientation is YS vertical. When the /XFRM command is set for rotation about two points, or for entities, the /ANGLE command is functional only for Axis $=\mathrm{ZS}$ or ZM and $K I N C R=1$.

This command is valid in any processor.

Menu Paths

Utility Menu>PlotCtrls>Pan, Zoom, Rotate
Utility Menu>PlotCtrls>View Settings>Angle of Rotation

ANHARM, NFRAM, DELAY, NCYCL, NPERIOD

Produces a time-transient animated sequence of time-harmonic results or complex mode shapes.

> POST1: Animation
> MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS

NFRAM

Number of frame captures per cycle. Defaults to 12.

DELAY

Time delay during animation. Defaults to 0.1 seconds.

NCYCL

Number of animation cycles. Defaults to 5 . Not available in the GUI.
NDECAY
Controls the style of complex mode animation. Complex modal solutions can exhibit oscillation decay or amplification. Defaults to 1 , animating the decay or growth of only the first period. Issue -1 to cause the animation to be performed without decay or growth. Animation is displayed as a typical modal result.

Notes

ANHARM invokes an ANSYS macro which produces a time-transient animation of:

- Time-harmonic results in the case of a harmonic analysis (ANTYPE,HARMIC)
- Complex mode shapes in the case of a modal analysis (ANTYPE,MODAL).

In both cases, the results are those of the last plot action (for example, PLNSOL,B,SUM).

The animation converts the complex solution variables (real and imaginary sets) into time varying results over one period. For example, if $N F R A M=12$, then the frame captures are in increments of 30 degree phase angles.

A second set of NFRAM frames will be generated for damped eigenmodes from complex eigensolvers to visualize any exponential decay or growth of the oscillations. The second set generated will display frames from the period number specified by NPERIOD.

Menu Paths

Utility Menu $>$ PlotCtrls $>$ Animate $>$ Animate Over Time
 Utility Menu>PlotCtrls>Animate $>$ Time-harmonic

ANIM, NCYCL, KCYCL, DELAY

Displays graphics data in animated form.

> POST1: Animation
> MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS

NCYCL

Number of cycles associated with the animation (defaults to 5 in non-GUI mode only)

KCYCL

Animation mode:
0
Continuous animation cycle (forward-reverse-forward-etc.) (default).
1
Discontinuous animation cycle (forward-reset-forward-etc.).

DELAY

Time delay (seconds) between animation frames (defaults to 0.1 seconds).

Notes

Displays graphics data stored in local terminal segments in animated form. See the /SEG command for details on segment storage. See the ANCNTR macro for a convenient method of storing graphics frames in terminal memory segments. This command is device-dependent. You should not resize the graphic while animation is in progress; doing so can result in distorted plots.

This command is valid in any processor.

Menu Paths

Utility Menu $>$ PlotCtrls $>$ Animate $>$ Replay Animation
 Utility Menu>PlotCtrIs>Animate>Restore Animation

ANISOS, NFRAM, DELAY,NCYCL
Produces an animated sequence of an isosurface.
POST1:Animation
MP ME ST PR PRN <> <> FL EM EH DY PP $<>$ EME MFS

NFRAM

Number of frames captures (defaults to 9).

DELAY

Time delay during animation (defaults to 0.1 seconds).

NCYCL

Number of animation cycles (defaults to 5). Available in non-Ul mode only.

Notes

ANISOS involves an ANSYS macro which produces an animation of an isosurface of the last plot action command (for example, PLNSOL,S,EQV). The ANISOS command operates only on graphic display platforms supporting the /SEG command. After executing ANISOS, you can replay the animated sequence by issuing the ANIM command.

This command functions only in the postprocessor.

Menu Paths

Utility Menu>PlotCtrIs>Animate>Isosurfaces

ANMODE, NFRAM, DELAY,NCYCL, KACCEL

Produces an animated sequence of a mode shape.

POST1:Animation
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

NFRAM

Number of frames captures (defaults to 5).

DELAY

Time delay during animation (defaults to 0.1 seconds).

NCYCL

Number of animation cycles (defaults to 5). Available in non-Ul mode only.

KACCEL

Acceleration type:
0
Linear acceleration.
1
Sinusoidal acceleration.

Notes

ANMODE involves an ANSYS macro which produces an animation of mode shape of the last plot action command (for example, PLDISP). The ANMODE command operates only on graphic display platforms supporting the /SEG command. After executing ANMODE, you can replay the animated sequence by issuing the ANIM command.

This command functions only in the postprocessor.

Menu Paths

Utility Menu>PlotCtrls>Animate>Mode Shape

ANMRES, DELAY, MIN, MAX, INC, AUTOCNTRKY, FREQ, EXT

Performs animation of results over multiple results files in an explicit dynamic structural analysis or fluid flow analysis with remeshing.

POST1:Animation
MP ME ST <> <> <> <> FL <> <> DY PP <> EME MFS

DELAY

Time delay during animation (default $=0.5$ seconds).
MIN
Minimum results file number to animate. Default $=1$ (for Jobname.RS01).

MAX

Maximum results file number to animate. Defaults to the highest numbered results file, Jobname. RSnn.
INC
Increment between results file numbers. Default $=1$.

AUTOCNTRKY

Automatic contour scaling option.
0
No auto-scaling (default).
1
Auto-scaling on.
If you activate automatic contour scaling, ANSYS considers only the minimum and maximum value of the result item from the first results file.

FREQ
Results frequency key.

0 or 1

Animate every results set in each Jobname. EXT file (default).
2
Animate every other results set in each Jobname.EXT file.
n
Animate every nth results set in each Jobname. EXT file.

EXT

Extension of result files

```
    'rfl'
```

 Animate Jobname.rflnn
 'rs'
 Animate Jobname. rsnn. Default = 'rs'.

Notes

ANMRES invokes an ANSYS macro that performs animation across multiple results files (Jobname.EXT, Jobname. EXT, etc.) produced by an explicit dynamic structural analysis or fluid flow analysis with remeshing. Multiple results files typically occur when adaptive meshing is used in an explicit dynamic structural analysis or fluid flow analysis with remeshing. Each results file must have more than one set of results. ANMRES cannot be used for multiple results files that are caused by file splitting.

ANMRES animates results from files having the currently specified jobname (Jobname.EXT - Jobname.EXT). To change the current jobname, use the /FILNAME command. The animation is based on the last plot command (e.g., PLDISP).

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Drop Test>Animate Results
 Utility Menu>PlotCtrls>Animate>Animate Over Results

/ANNOT, Lab, VAL1, VAL2

Activates graphics for annotating displays (GUI).

GRAPHICS: Annotation
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Lab

Annotation control key:
OFF
Turns off annotation for each subsequent display (default).
ON
Turns on annotation for each subsequent display.
DELE
Deletes all annotation.
SAVE
Saves annotation on a file. Use VAL1 for file name (defaults to Jobname) and VAL2 for the extension (defaults to ANO).

SCALE
Sets annotation scale factor (direct input only). Use VALI for value (0.1 to 10.0) (defaults to 1.0).

XORIG

Sets the annotation x origin (direct input only). Use VAL1 for value (-3.0 to 3.0).

YORIG

Sets annotation y origin (direct input only). Use VAL1 for value (-3.0 to 3.0).

SNAP

Sets annotation snap (menu button input only). Use VAL1 for value (0.002 to 0.2) (defaults to 0.002).

STAT

Displays current annotation status.
DEFA
Sets annotation specifications to the default values.

REFR

Redisplays annotation graphics.
TMOD
Sets the annotation text mode. If $V A L 1=1$, annotation text will be drawn in scalable bitmap fonts (default). If VAL1 $=0$, annotation text will be drawn with stroke text.

VAL1

Value (or file name) as noted with label above.

VAL2

Value (or file name extension) as noted with label above.

Notes

This is a command generated by the GUI and will appear in the log file (Jobname. LOG) if annotation is used. This command is not intended to be typed in directly in an ANSYS session (although it can be included in an input file for batch input or for use with the /INPUT command).

You cannot use the "!" and "\$" characters in ANSYS text annotation.
/ANNOT activates annotation graphics for adding annotation to displays. Commands representing the annotation instructions are automatically created by the annotation functions in the GUI and written to Jobname. LOG. The annotation commands are /ANNOT, /ANUM, /TLABEL, /LINE, /LARC, /LSYMBOL, /POLYGON, /PMORE, /PCIRCLE, /PWEDGE, /TSPEC, /LSPEC, and /PSPEC. Annotation graphics are relative to the full Graphics Window and are not affected by ANSYS window-specific commands (/WINDOW, /VIEW, etc.).

This command is valid in any processor.

Menu Paths

Utility Menu>PlotCtrls>Annotation>Create Annotation

ANORM, ANUM, NOEFLIP
Reorients area normals.
PREP 7: Areas
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
ANUM
Area number having the normal direction that the reoriented areas are to match.

NOEFLIP

Indicates whether you want to change the normal direction of the existing elements on the reoriented area(s) so that they are consistent with each area's new normal direction.

0
Make the normal direction of existing elements on the reoriented area(s) consistent with each area's new normal direction (default).

1
Do not change the normal direction of existing elements on the reoriented area(s).

Notes

Reorients areas so that their normals are consistent with that of a specified area.
If any of the areas have inner loops, the ANORM command will consider the inner loops when it reorients the area normals.

You cannot use the ANORM command to change the normal direction of any element that has a body or surface load. We recommend that you apply all of your loads only after ensuring that the element normal directions are acceptable.

Real constants (such as nonuniform shell thickness and tapered beam constants) may be invalidated by an element reversal.

See Revising Your Model of the Modeling and Meshing Guide for more information.

Menu Paths

Main Menu>Preprocessor>Modeling>Move / Modify>Areas>Area Normals

ANSOL, NVAR, NODE, Item, Comp, Name, Mat, Real, Ename
Specifies averaged nodal data to be stored from the results file in the solution coordinate system.
POST26:Set Up
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

NVAR

Arbitrary reference number assigned to this variable (2 to $N V$ [NUMVAR]). Overwrites any existing results for this variable.

NODE

Node number for which data are to be stored.

Item

Label identifying the item. General item labels are shown in Table 141: ANSOL - General Item and Component Labels (p.134) below. Some items also require a component label.

Comp

Component of the item (if required). General component labels are shown in Table 141: ANSOL - General Item and Component Labels (p. 134) below.

Name

Thirty-two character name for identifying the item on the printout and displays. Defaults to an eight character label formed by concatenating the first four characters of the It em and Comp labels.

Mat

The material number. Average will be computed based on the subset of elements with the specified material number. DEFAULT: Use all elements in the active set unless Real and/or Ename is specified.

Real

The real number. Average will be computed based on the subset of elements with the specified real number. DEFAULT: Use all elements in the active set unless Mat and/or Ename is specified.

Ename

The element type name. Average will be computed based on the subset of elements with the specified element type name. DEFAULT: Use all elements in the active set unless Mat and/or Real is specified.

Notes

Valid item and component labels for averaged nodal results are listed in Table 141: ANSOL - General Item and Component Labels (p. 134), below.

All element nodal quantities are obtained in RSYS, Solu and then averaged.
The ANSOL command defines averaged nodal results data to be stored from a results file [FILE]. Not all items are valid for all nodes. See the input and output summary tables of the Element Reference of each element that is attached to the node for the available items.

COORDINATE SYSTEMS: All element nodal results used by ANSOL for averaging are in the element coordinate system, except for layered elements. Layered element results are in the layer coordinate system. You can further specify the element nodal results, for some elements, with the SHELL, LAYERP26, and FORCE commands.

ANSOL does not transform results from RSYS, SOLU to other coordinate systems. Verify that all elements attached to the subject node have the same coordinate system before using ANSOL.

SHELL ELEMENTS: The default shell element coordinate system is based on node ordering. For shell elements the adjacent elements could have a different RSYS,SOLU, making the resultant averaged data inconsistent. A note to this effect is issued when ANSOL is used in models containing shell elements. Ensure that consistent coordinate systems are active for all associated elements used by the ANSOL command.

DERIVED QUANTITIES: Some of the result items supported by ANSOL (see Table 141: ANSOL - General Item and Component Labels (p. 134)) are derived from the component quantities. Use AVPRIN to specify the principal and vector sum quantity averaging methods.

DEFAULT: If Mat, Real , and Ename are not specified, all of the elements attached to the node will be considered. When a material ID, real constant ID, or element type discontinuity is detected at a node, a note
is issued. For example, in a FSI analysis, a FLUID30 element at the structure interface would be considered. But since it contains no $S X$ result, it will not be used during STORE operations.

Table 141 ANSOL - General Item and Component Labels
General Item and Component Labels ANSOL,
NVAR, ELEM, NODE, Item, Comp, Name, Mat, Real, Ename
Item Comp Description
S

EPEL
"
"

EPPL
"
"
EPCR

" \quad| $1,2,3$ |
| :--- |

1,2,3
INT
EQV
EPTH
"
"
"
NL SEPL
SRAT
HPRES
EPEQ
CREQ
PSV
PLWK
CONT STAT1
" PENE
" PRES
" SFRIC
" STOT
" SLIDE

Component stress.
Principal stress.
Stress intensity.
Equivalent stress.
Component elastic strain.
Principal elastic strain.
Elastic strain intensity.
Elastic equivalent strain.
Component plastic strain.
Principal plastic strain.
Plastic strain intensity.
Plastic equivalent strain.
Component creep strain.
Principal creep strain.
Creep strain intensity.
Creep equivalent strain.
Component thermal strain.
Principal thermal strain.
Thermal strain intensity.
Thermal equivalent strain.
Equivalent stress (from stress-strain curve).
Stress state ratio.
Hydrostatic pressure.
Accumulated equivalent plastic strain.
Accumulated equivalent creep strain.
Plastic state variable.
Plastic work/volume.
Contact status.
Contact penetration.
Contact pressure.
Contact friction stress
Contact total stress (pressure plus friction)
Contact sliding distance

General Item and Component Labels ANSOL, NVAR, ELEM, NODE, Item, Comp, Name, Mat, Real, Ename		
Item	Comp	Description
"	GAP	Contact gap distance
"	FLUX	Total heat flux at contact surface
"	CNOS	Total number of contact status changes during substep.
"	FPRS	Fluid penetration pressure
TG	X, Y, Z, SUM	Component thermal gradient or vector sum.
TF	X, Y, Z, SUM	Component thermal flux or vector sum.
PG	$X, Y, Z, S U M$	Component pressure gradient or vector sum.
EF	X, Y, Z, SUM	Component electric field or vector sum.
D	$X, Y, Z, S U M$	Component electric flux density or vector sum.
H	$X, Y, Z, S U M$	Component magnetic field intensity or vector sum.
B	$X, Y, Z, S U M$	Component magnetic flux density or vector sum.
JC	$X, Y, Z, S U M$	Conduction current density for elements that support conduction current calculation. Components ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$) and vector sum (SUM).

1. For more information on the meaning of contact status and its possible values, see Reviewing Results in POST1 in the Contact Technology Guide.

Menu Paths

Main Menu>TimeHist Postpro>Variable Viewer

ANSTOAQWA, Fname, VertAxis, Gc, Rho, HWL, DiffKey, SymxKey, SymyKey

Creates an AQWA-LINE input file from the current ANSYS model.

SESSION:Files
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

Fname

AQWA file name. Defaults to Jobname.

VertAxis

Axis in the vertical direction:
Y (or 2)
Global Y axis.
Z (or 3)
Global Z axis (default).
Gc
Gravitational acceleration. Defaults to 9.81 .
Rho
Density of water. Defaults to 1025.0.

HWL

Waterline height in model coordinates. Defaults to 0.0.

DiffKey

Diffracting model key:

0

Create a non-diffracting AQWA model.
1
Create a diffracting AQWA model (default).

SymxKey

Key indicating if model is symmetric about the global XZ plane:
0
No symmetry about XZ plane (default).
1
Use symmetry about XZ plane. Only include (or select) half the model.

SymyKey

Key indicating if model is symmetric about the global $Y Z$ plane:
0
No symmetry about YZ plane (default).
1
Use symmetry about YZ plane. Only include (or select) half the model.

Notes

This command creates the input file Fname.aqwa for the ANSYS AQWA Multi-Body Hydrodynamics System for diffraction analysis in AQWA-LINE from the model currently in the database, based on the currently selected set of elements. The selected set must only include the hull envelope; no internal structure should be selected.

There should be a line of nodes defined at the waterline. Only those elements that are entirely below the waterline will be specified as diffracting. If there are no waterline nodes, there will be no diffracting elements at the waterline, which will severely reduce the accuracy of the diffraction analysis.

The translator maps PLANE42, SHELL41, SHELL63, and SHELL181 elements to PANELs, and maps PIPE16 and PIPE59 elements to TUBEs. It does not recognize any other element types. Any material or geometric properties can be used for the shell elements, as AQWA does not need any properties at all and the command does not use them. All the shell elements below the water must have their normals pointing outward.

TUBE elements in AQWA have material density, outside diameter, wall thickness, added mass, and drag coefficients, so appropriate properties should be used in the ANSYS model. PIPE59 elements can have added mass and damping coefficients; these will be written to the file. The ANSYS program uses the inertia coefficient C_{M}, whereas AQWA uses the added mass coefficient C_{A}, where $C_{M}=\left(1+C_{A}\right)$. This correction is made automatically.

Documentation for legacy elements PIPE16, PLANE42, PIPE59, and SHELL63 appears in the Feature Archive.
In AQWA the vertical axis is always the Z -axis. The command can convert a model built with either the Y or Z-axis vertical, but the X-axis must be horizontal and should preferably be along the fore/aft axis of the vessel. If the structure is symmetric and you wish to use the symmetry options, you must only select one
half or one quarter of the model, as appropriate. If you model a complete vessel and specify X symmetry, the AQWA model will contain two sets of coincident elements.

If you are working from a model created for a structural analysis, it will probably be necessary to remesh the model as the structural mesh is most likely finer than needed for a diffraction analysis.

If you enter this command interactively (with the GUI active) and no data is provided for the command options, you will be prompted for their values.

You must verify the completeness and accuracy of the data written.

AQWA-LINE Notes

The file will specify restart stages 1-2 only. It has no options except REST, so AQWA may fail if any of the elements are badly shaped.

The total mass is obtained by integrating over the wetted surface area and adding the TUBE masses, so it should be reasonably accurate. However, the integration used is not as accurate as that in AQWA, so there may be a small difference between the weight and buoyancy, particularly if tubes represent a large portion of the model.

The position of the CG is unknown. A point mass is placed at the water-line above the CB, but you should change this to the correct position.

The moments of inertia are estimated based on the overall dimensions of the model and using standard formulae for a ship. You should change these to the correct values.

The maximum frequency is calculated from the maximum side length of the underwater elements. The range of frequencies runs from $0.1 \mathrm{rad} / \mathrm{s}$ to the calculated maximum, in steps of $0.1 \mathrm{rad} / \mathrm{s}$.

The directions are in steps of 15° over a range that is determined by the symmetry you have specified, in accordance with the requirements of AQWA.

Menu Paths

This command cannot be accessed from a menu.

ANSTOASAS, Fname, KEY

Creates an ASAS input file from the current ANSYS model.

SESSION:Files
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

Fname

ASAS file name. Defaults to Jobname.

KEY

Key indicating type of file to produce:
0
ASAS file for use by ANSYS AQWA (no loads written). Creates the file Fname.asas.

1
ASAS file (all data written, including loads). Creates the file Fname.asas.
2
ASAS(NL) file. Creates the file Fname.asnl.

Notes

This command creates an input file for the ANSYS ASAS Finite Element Analysis System from the model and loads currently in the database, based on the currently selected set of elements. Most common structural element types are written, as well as sections (or real constants), materials, boundary conditions and loads, and solution and load step options.

Data Written

The following data is written:

- Solution control options
- Nodes
- Elements
- Material data
- Geometry data
- Section data
- ANSYS element components (ASAS sets)
- Boundary conditions
- Loads
- Added mass (via MASS21 element)

Details are provided in the following sections.
Not all data is written. You must verify the completeness and accuracy of the data. Only loading at the current step is transferred; hence, no load step history is captured.

Solution Control Options

The ASAS project name is defined as "ANSYS".
The solution control options are converted as follows:

ANSYS Analysis Type	ASAS(L) / AQWA-WAVE Op- tion	ASAS(NL) Option
Static (0)	JOB NEW LINE	JOB STAT
Buckling (1)	Not applicable	JOB STAT SPIT KGEOM
Modal (2)	JOB NEW FREQ	JOB STAT SPIT KGEOM

ANSYS Analysis Type	ASAS(L) / AQWA-WAVE Op- tion	ASAS(NL) Option
Transient (4)	Not applicable	JOB TRAN
Remaining analysis types	JOB NEW LINE	JOB STAT

For conversion to $\operatorname{ASAS}(\mathrm{NL})$, the large displacement option is set based on NLGEOM, final load solution time is set based on TIME, and sub-step times are set based on DELTIM or NSUBST (assuming constant step size).

Element Data

If you intend to use the data only with AQWA-WAVE, only the elements that form the wetted surface are required. Selecting these elements before invoking the ANSTOASAS command will improve performance. In order for AQWA-WAVE to identify the direction of the wave loading, all elements must be defined by nodes in a clockwise direction. For further information, refer to the AQWA-WAVE manual.

The element types are converted as follows:

Element Type	Supported Facilities	Notes
COMBIN14 - Spring-Damper	SPR1 SPR2 if rotational spring FLA2 (ASAS(L) only) if nodes are not coincident and longitudinal spring	ASAS(L) does not support spring elements with non- coincident nodes. In this case, COMBIN14 is converted to FLA2.
MASS21 - Structural Mass	N/A	In ASAS, additional mass is not added as an element. Hence, if this element is in- cluded, equivalent ASAS lumped added mass informa- tion is written.
PLANE42-2-D Structural Sol- id [1]	QUM4 TRM3 - if Triangular	-
SOLID45-3-D Structural Solid [1]	BRK8 TET4 - if Tetrahedral BRK6 - if Prism	TET4 elements are only avail- able in ASAS(L).Element is not converted if Pyramidal.
SHELL61 - Axisymmetric-Har- monic Structural Shell	ASH2	ASH2 elements are only available in ASAS(L).
SHELL63 - Elastic Shell [1]	QUS4 TBC3 - if Triangular	TBC3 elements are only available in ASAS(L).
PLANE82 - 2-D 8-Node Struc- tural Solid [1]	QUM8 TRM6 - if Triangular	- -
SOLID92 - 3-D 10-Node Tetra- hedral Structural Solid [1]	TE10	-

Element Type	Supported Facilities	Notes
SOLID95-3-D 20-Node Structural Solid [1]	BR20 TE10 - if Tetrahedral BR15 - if Prism	TE10 elements are only available in ASAS(L). Element is not converted if Pyramidal.
LINK180-3-D Finite Strain Spar (or Truss)	FLA2	-
SHELL181 - 4-Node Finite Strain Shell	QUS4 TBC3 - if Triangular	TBC3 elements are only available in ASAS(L).
PLANE182-2-D 4-Node Structural Solid	QUM4 TRM3 - if Triangular	-
PLANE183-2-D 8-Node or 6Node Structural Solid	QUM8 TRM6 - if Triangular	-
SOLID185-3-D 8-Node Structural Solid or Layered Solid	BRK8 TET4 - if Tetrahedral BRK6 - if Prism	TET4 elements are only available in ASAS(L). Element is not converted if Pyramidal.
SOLID186-3-D 20-Node Structural Solid or Layered Solid	BR20 TE10 - if Tetrahedral BR15 - if Prism	TE10 elements are only available in ASAS(L). Element is not converted if Pyramidal.
SOLID187-3-D 10-Node Tetrahedral Structural Solid	TE10	TE10 elements are only available in ASAS(L).
BEAM188-3-D Linear Finite Strain Beam	BM3D	-
BEAM189-3-D Quadratic Finite Strain Beam	TCBM - if ASAS(L) STF4 - if ASAS(NL)	Refer to geometry details for limitations for TCBM elements. An orientation node is needed for STF4 and must be specified.
SHELL208-2-Node Finite Strain Axisymmetric Shell	ASH2	ASH2 elements are only available in ASAS(L).
SHELL281-8-Node Finite Strain Shell	TCS8	-
PIPE288-3-D Linear Finite Strain Pipe	TUBE	-
PIPE289-3-D Quadratic Finite Strain Pipe	CURB	-
ELBOW290 - 3-D Quadratic Finite Strain Elbow	$\begin{aligned} & \text { CURB - if ASAS(L) } \\ & \text { STF4 - if ASAS(NL) } \end{aligned}$	-

1. Documentation for this legacy element type appears in the Feature Archive.

Material Data

Linear isotropic material conversion is supported for ASAS and ASAS(NL).

Geometry Data

The following ASAS element geometry data is supported:

ASAS Element Type	Support Facilities	Notes
BM3D	Sections, orientation by 3rd node position.	Sections are always defined separately.
TUBE	Thickness and diameter defined, orientation by 3rd node or default local axes.	Using the default local axes will result in BETA being set to 90 (to ensure that the AS- AS local axes are the same as those in ANSYS).
BM2D	A, IZ \& AY properties defined.	Uniform section properties supported.
TCBM	TCBM does not support gen- eral local axis orientations. Hence, elements will only be correct if they lie in the global XY plane.	
STF4	CTUB,RECT, and HREC ANSYS subtypes supported.	STF4 elements are only sup- ported in ASAS(NL). Local y and z are 90 definition. the ANSYS
FLA2	Uniform cross sectional area.	Stiffness (and also linear damping if ASAS(NL)) in- cluded.
SPR1 / SPR2	Constant element thickness.	
All non-beam elements		

Section Data

No user sections are generated if AQWA-WAVE data is selected.
The following sections are converted for ASAS and ASAS(NL):

ANSYS Section Type	ASAS Section Type	Notes
CTUB	TUB	Tubular section
I	FBI	Fabricated I beam
HREC	BOX	Fabricated box
All others	PRI	Prismatic section, only flexur- al properties defined.

Boundary Conditions

The following boundary conditions are converted for ASAS and ASAS(NL):

ANSYS Boundary Condition	ASAS Boundary Condition	Notes
Nodal U* and ROT* con- straints	SUPPressed freedoms: X, Y, $\mathrm{Z}, \mathrm{RX}, \mathrm{RY}, \mathrm{RZ}$	Skewed systems are not sup- ported.
Nodal U* and ROT* imposed non-zero values	DISPlaced freedoms: $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$, $\mathrm{RX}, \mathrm{RY}, \mathrm{RZ}$	Skewed systems are not sup- ported.
CP and CE constraint equa- tions	CONStraint equation data	Skewed systems are not sup- ported.

Loads

No user loading is generated if AQWA-WAVE data is selected. However, a load case (number 1000) is automatically defined to identify the wetted surface of the elements for use by AQWA-WAVE based on the normal surface loads applied to the solid or shell elements.

Pressure loads from SURF154 elements are converted to equivalent nodal loads for ASAS. For AQWA-WAVE, the SURF154 pressures are used to identify the wetted surface of the underlying elements. The following loads are converted for ASAS:

ANSYS Load Type	ASAS Load Type	Notes
SFE (PRES)	PRESSURE (no sub-types)	Element families supported: Solids, shells (excluding edge pressures), planes (edge pressures only), and axisym- metric shells.
SFE (PRES)	DISTRIBUted loading Shells - ML2 Beams - BL1 / BL2 Tubes - GL1 Curved beams - CB1	Element families supported: Shells (edge pressures only), Beams (includes tubes and curved beams).
F (F* and M*)	NODAL Load, in X,Y,Z,RX, RY, RZ	Skewed systems are not sup- ported.
D (U* and ROT*)	PRESCRIBed displacements	
ACEL	BODY FORce	

Menu Paths

This command cannot be accessed from a menu.

ANTIME, NFRAM, DELAY, NCYCL, AUTOCNTRKY, RSLTDAT, MIN, MAX
Produces a sequential contour animation over a range of time.
POST1:Animation
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

NFRAM

Number of frame captures (defaults to 5).

DELAY

Time delay during animation (defaults to 0.1 seconds).

NCYCL

Number of animation cycles (defaults to 5). Available in non-Ul mode only.

AUTOCNTRKY

Auto-scales contour values, based on the overall subset range of values. The auto-scaling option defaults to 0 , no auto-scaling.

RSLTDAT

The results data to be used for the animation sequence. This can be:
0 Current load step data (default).

1
Range of load step data.
2
Range of time data.
MIN
The range minimum value. If left blank defaults to the first data point.

MAX

The range maximum value. If left blank defaults to the last data point.

Notes

The ANTIME command operates only on graphic display platforms supporting the /SEG command. It uses an ANSYS macro to produce an animation of contour values for the last plot action command (for example, PLDISP). After executing ANTIME, the ANIM command will replay the animated sequence.

This command functions only in the postprocessor.

Menu Paths

Utility Menu>PlotCtrls>Animate>Animate Over Time Utility Menu>PlotCtrls>Animate>Time-harmonic

ANTYPE, Antype, Status, LDSTEP, SUBSTEP, Action

Specifies the analysis type and restart status.

SOLUTION: Analysis Options
MP ME ST PR PRN DS DSS FL EM EH <> PP <> EME MFS
Product Restrictions

Antype

Analysis type (defaults to the previously specified analysis type, or to STATIC if none specified):
STATIC or 0
Perform a static analysis. Valid for all degrees of freedom.

BUCKLE or 1

Perform a buckling analysis. Implies that a previous static solution was performed with prestress effects calculated [PSTRES,ON]. Valid for structural degrees of freedom only.

MODAL or 2

Perform a modal analysis. Valid for structural and fluid degrees of freedom.

HARMIC or 3

Perform a harmonic analysis. Valid for structural, fluid, magnetic, and electrical degrees of freedom.

TRANS or 4

Perform a transient analysis. Valid for all degrees of freedom.

SUBSTR or 7

Perform a substructure analysis. Valid for all degrees of freedom.

SPECTR or 8

Perform a spectrum analysis. Implies that a previous modal analysis was performed. Valid for structural degrees of freedom only.

Status

Specifies the status of the analysis (new or restart):

NEW

Specifies a new analysis (default). If NEW, the remaining fields on this command are ignored.

RESTART

Specifies a restart of a previous analysis. Valid only for structural static, structural transient (full or mode-superposition methods), and thermal analyses. For modal and substructure (backsubstitution method only) analyses, reuse the previous .MODE and .SUB files, respectively.

This option resumes the .rdb file created at the start of solution. If boundary conditions are deleted in solution (for example, after being used to create an initial velocity or to establish initial contact), they will need to be deleted again after issuing this command.

For modal analysis, reuses the existing modes extracted from the previous modal analysis. Valid only with Antype = MODAL with Block Lanczos, PCG Lanczos, or Supernode modal solver. The load vectors, residual vectors, and enforced motion vectors will be recalculated and stored.

VTREST

Specifies the restart of a previous VT Accelerator analysis. Valid only with Antype = STATIC, HARMIC, or TRANS.

LDSTEP

Specifies the load step at which a multiframe restart will begin.
For full transient and nonlinear static structural or thermal analyses, the default is the highest load step number found in the Jobname. Rnnn files for the current jobname in the current directory.

For mode-superposition transient analyses, the default is none.

SUBSTEP

Specifies the substep at which a multiframe restart will begin.
For full transient and nonlinear static structural or thermal analyses, the default is the highest substep number found for the specified LDSTEP in the Jobname. Rnnn files in the current directory.

For mode-superposition transient analyses, the default is none.

Action

Specifies the manner of a multiframe restart. Not used for traditional restarts.

CONTINUE

ANSYS will continue the analysis based on the specified LDSTEP and SUBSTEP (default). The current load step will be continued. If the end of the load step is encountered in the . Rnnn file, a new load step will be started. ANSYS will delete all . Rnnn files, or .Mnnn files for mode-superposition transient analyses, beyond the point of restart and will update the . LDHI file if a new load step is encountered.

ENDSTEP

At restart, force the specified load step (LDSTEP) to end at the specified substep (SUBSTEP), even though the end of the current load step has not been reached. At the end of the specified substep, all loadings will be scaled to the level of the current ending and stored in the . LDHI file. A run following this ENDSTEP will start a new load step. This feature allows you to change the load level in the middle of a load step. ANSYS will update the . LDHI file and delete all . Rnnn files, or .Mnnn files for mode-superposition transient analyses, beyond the point of ENDSTEP. The .Rnnn or .Mnnn file at the point of ENDSTEP will be rewritten to record the rescaled load level.

RSTCREATE

At restart, retrieve information to be written to the results file for the specified load step (LDSTEP) and substep (SUBSTEP). Be sure to use OUTRES to write the results to the results file. This action does not affect the .LDHI or .Rnnn files. Previous items stored in the results file at and beyond the point of RSTCREATE will be deleted. This option is not available for restart of a mode-superposition transient analysis.

PERTURB

At restart, a linear perturbation analysis (MODAL) will be performed for the specified load step (LD$S T E P$) and substep (SUBSTEP). This action does not affect the .LDHI, .Rnnn, or .RST files.

Note

For a linear perturbation analysis, you must set Action = PERTURB; otherwise, the existing restart files, such as the . LDHI, .Rnnn, or .RST file, may be modified by the linear perturbation analysis. Use the PERTURB command to indicate the desired analysis type (MODAL or BUCKLING).

Command Default

New static analysis.

Notes

The analysis type Antype cannot be changed if it is a restart run. Always save parameters before doing a restart. You can perform a multiframe restart only for structural static, structural transient (full or mode-superposition methods), and thermal analyses.

If you use ANTYPE to change your analysis type in the same SOLVE session, ANSYS issues the following note:"Some analysis options have been reset to their defaults. Please verify current settings or respecify as required." Typically, ANSYS resets commands such as NLGEOM, SSTIF, and EQSLV to their default values.

This command is also valid in PREP7.

Product Restrictions

Command Option Antype	Available Products
STATIC	MP ME ST PR PRN DS DSS FL EM <> <> PP <> EME MFS
BUCKLE	MP ME ST PR PRN DS DSS <> <> <> <> PP <> EME MFS
MODAL	MP ME ST PR PRN DS DSS <> <> EH <> PP <> EME MFS
HARMONIC	MP ME ST PR PRN <> <> <> EM EH <> PP <> EME MFS
TRANS	MP ME ST PR <> <> <> FL EM <> <> PP <> EME MFS
SUBSTR	MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS
SPECTR	MP ME ST PR PRN <> <> <> <>> <> <> PP <> EME MFS

Menu Paths

Main Menu>Preprocessor>Loads>Analysis Type>New Analysis
Main Menu>Preprocessor>Loads>Analysis Type>Restart
Main Menu>Preprocessor>Loads>Analysis Type>Sol'n Controls>Basic
Main Menu>Solution>Analysis Type>New Analysis
Main Menu>Solution>Analysis Type>Restart
Main Menu>Solution>Analysis Type>Sol'n Controls>Basic
/ANUM, NUM, TYPE, ХHOT, YHOT
Specifies the annotation number, type, and hot spot (GUI).
GRAPHICS: Annotation
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
NUM
Annotation number. ANSYS automatically assigns the lowest available number. You cannot assign a higher number if a lower number is available; ANSYS will substitute the lowest available number in place of any user-specified higher number.

TYPE
Annotation internal type number. If $T Y P E=$ DELE, delete annotation NUM.
1
Text
2
Block text (not available in GUI)
3
Dimensions
4
Lines
5
Rectangles

6

Circles
7
Polygons
8
Arcs
9
Wedges, pies
11
Symbols
12
Arrows
13
Bitmap
Хнот
X hot spot ($-1.0<X<2.0$). Used for menu button item delete.
чнот
Y hot spot ($-1.0<Y<1.0$). Used for menu button item delete.

Command Default

Number, type, and hot spot are automatically determined.

Notes

This is a command generated by the GUI and will appear in the log file (Jobname. LOG) if annotation is used. This command is not intended to be typed in directly in an ANSYS session (although it can be included in an input file for batch input or for use with the /INPUT command).

Type 13 (bitmap) annotation applies user defined bitmaps defined using the FILE option of the /TXTRE command.

This command is valid in any processor.

Menu Paths

Utility Menu>PlotCtrls>Annotation>Create Annotation

AOFFST, NAREA, DIST, KINC

Generates an area, offset from a given area.

PREP 7: Areas
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

NAREA

Area from which generated area is to be offset. If NAREA = ALL, offset from all selected areas [ASEL]. If $N A R E A=P$, graphical picking is enabled and all remaining arguments are ignored (valid only in the GUI).

DIST

Distance normal to given area at which keypoints for generated area are to be located. Positive normal is determined from the right-hand-rule keypoint order.

KINC

Keypoint increment between areas. If zero, the lowest available keypoint numbers are assigned [NUMSTR].

Notes

Generates an area (and its corresponding keypoints and lines) offset from a given area. The direction of the offset varies with the given area normal. End slopes of the generated lines remain the same as those of the given pattern. Area and line numbers are automatically assigned, beginning with the lowest available values [NUMSTR].

Menu Paths

Main Menu>Preprocessor>Modeling>Create>Areas>Arbitrary>By Offset

AOVLAP, NA1, NA2, NA3, NA4, NA5, NA6, NA7, NA8, NA9

Overlaps areas.

PREP 7:Booleans
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

NA1, NA2, NA3, . . . , NA9

Numbers of areas to be operated on. If NA1 = ALL, use all selected areas and ignore NA2 to NA9. If NA1 $=P$, graphical picking is enabled and all remaining arguments are ignored (valid only in the GUI). A component name may also be substituted for NA1.

Notes

Generates new areas which encompass the geometry of all the input areas. The new areas are defined by the regions of intersection of the input areas, and by the complementary (non-intersecting) regions. See Solid Modeling in the Modeling and Meshing Guide for an illustration. This operation is only valid when the region of intersection is an area. See the BOPTN command for an explanation of the options available to Boolean operations. Element attributes and solid model boundary conditions assigned to the original entities will not be transferred to the new entities generated.

Menu Paths

Main Menu>Preprocessor>Modeling>Operate>Booleans>Overlap>Areas

APLOT, NA1, NA2, NINC, DEGEN, SCALE

Displays the selected areas.

PREP 7: Areas
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

NA1, NA2, NINC

Displays areas from NA1 to NA2 (defaults to NA1) in steps of NINC (defaults to 1). If NA1 = ALL (default), NA2 2 and NINC are ignored and all selected areas [ASEL] are displayed.

DEGEN

Degeneracy marker:
(blank)
No degeneracy marker is used (default).
DEGE
A red star is placed on keypoints at degeneracies (see the Modeling and Meshing Guide). Not available if /FACET,WIRE is set.

SCALE

Scale factor for the size of the degeneracy-marker star. The scale is the size in window space (-1 to 1 in both directions) (defaults to .075).

Notes

This command is valid in any processor. The degree of tessellation used to plot the selected areas is set through the /FACET command.

Menu Paths

Main Menu>Preprocessor>Modeling>Check Geom>Show Degeneracy>Plot Degen Areas Main Menu>Preprocessor>Modeling>Operate>Booleans>Show Degeneracy>Plot Degen Areas Utility Menu>Plot>Areas Utility Menu>Plot>Specified Entities>Areas

APPEND, LSTEP, SBSTEP, FACT, KIMG, TIME, ANGLE, NSET
Reads data from the results file and appends it to the database.
POST1:Set Up
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

LSTEP

Load step number of the data set to be read. Defaults to 1 . If FIRST, ignore SBSTEP and TIME and read the first data set. If LAST, ignore SBSTEP and TIME and read the last data set. If NEXT, ignore SBSTEP and TIME and read the next data set. If already at the last data set, the next set is the first data set. If NEAR, ignore SBSTEP and read the data set nearest to TIME. If TIME is blank, read the first data set. If LIST, scan the results file to produce a summary of each load step (FACT, KIMG, TIME and ANGLE are ignored).

SBSTEP

Substep number (within LSTEP) (defaults to last substep of load step). For the Buckling (ANTYPE,BUCKLE) or Modal (ANTYPE,MODAL) analysis, the substep corresponds to the mode number (defaults to first mode). If LSTEP $=$ LIST, $S B S T E P=0$ or 1 will list the basic load step information; $S B S T E P=2$ will also list the load step title, and label the imaginary data sets if they exist.

FACT

Scale factor applied to data read from the file. If zero (or blank), a value of 1.0 is used. Harmonic velocities or accelerations may be calculated from the displacement results from a Modal or Harmonic Response (ANTYPE,HARMIC) analyses. If $F A C T=$ VELO, the harmonic velocities (v) are calculated from the displacements (d) at a particular frequency (f) according to the relationship $\mathrm{v}=2 \pi \mathrm{fd}$. Similarly, if $F A C T=$ ACEL, the harmonic accelerations (a) are calculated as $a=(2 \pi f)^{2} d$.

KIMG

Used only with results from complex analyses:
0
Store real part of complex solution.
1
Store imaginary part.

TIME

Time-point identifying the data set to be read. For the harmonic response analyses, time corresponds to the frequency. For the buckling analysis, time corresponds to the load factor. Used only in the following cases: If LSTEP is NEAR, read the data set nearest to TIME. If both LSTEP and SBSTEP are zero (or blank), read data set at time = TIME. If TIME is between two solution time points on the results file, a linear interpolation is done between the two data sets. Solution items not written to the results file [OUTRES] for either data set will result in a null item after data set interpolation. If TIME is beyond the last time point on the file, the last time point is used.

ANGLE

Circumferential location $\left(0^{\circ}\right.$ to $\left.360^{\circ}\right)$. Defines the circumferential location for the harmonic calculations used when reading from the results file. The harmonic factor (based on the circumferential angle) is applied to the harmonic elements (PLANE25, PLANE75, PLANE78, FLUID81, PLANE83, and SHELL61) of the load case. See the Theory Reference for the Mechanical APDL and Mechanical Applications for details. Note that factored values of applied constraints and loads will overwrite any values existing in the database.

NSET

Data set number of the data set to be read. If a positive value for NSET is entered, LSTEP, SBSTEP, KIMG, and TIME are ignored. Available set numbers can be determined by APPEND,LIST. To determine if data sets are real or imaginary, issue APPEND,LIST,2 which labels imaginary data sets.

Notes

Reads a data set from the results file and appends it to the existing data in the database for the selected model only. The existing database is not cleared (or overwritten in total), allowing the requested results data to be merged into the database. Various operations may also be performed during the read operation. The database must have the model geometry available (or used the RESUME command before the APPEND command to restore the geometry from File.DB).

Menu Paths

Main Menu>General Postproc>Read Results>By Load Step

Main Menu>General Postproc>Read Results>By Set Number Main Menu>General Postproc>Read Results>By Time/Freq

APTN, NA1, NA2, NA3, NA4, NA5, NA6, NA7, NA8, NA9

Partitions areas.

PREP 7:Booleans
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

NA1, NA2, NA3, . . . NA9

Numbers of areas to be operated on. If NA1 = ALL, NA2 to NA 9 are ignored and all selected areas are used. If NA1 $=\mathrm{P}$, graphical picking is enabled and all remaining arguments are ignored (valid only in the GUI). A component name may be substituted for NA1.

Notes

Partitions areas that intersect. This command is similar to the combined functionality of the ASBA and AOVLAP commands. If the intersection of two or more areas is an area (i.e., planar), new areas will be created with boundaries that conform to the area of intersection and to the boundaries of the non-intersecting portions of the input areas [AOVLAP]. If the intersection is a line (i.e., not planar), the areas will be subtracted, or divided, along the line(s) of intersection [ASBA]. Both types of intersection can occur during a single APTN operation. Areas that do not intersect will not be modified. See the Modeling and Meshing Guide for an illustration. See the BOPTN command for an explanation of the options available to Boolean operations. Element attributes and solid model boundary conditions assigned to the original entities will not be transferred to the new entities generated.

Menu Paths

Main Menu>Preprocessor>Modeling>Operate>Booleans>Partition>Areas

ARCLEN, Key, MAXARC, MINARC

Activates the arc-length method.

SOLUTION: Nonlinear Options
MP ME ST <> PRN <> <> <> <> <> <> PP <> EME MFS
Key
Arc-length key:
OFF
Do not use the arc-length method (default).
ON
Use the arc-length method.

MAXARC

Maximum multiplier of the reference arc-length radius (default $=25$).

MINARC

Minimum multiplier of the reference arc-length radius (default $=1 / 1000$).

Notes

Activates the arc-length method and sets the minimum and maximum multipliers for the arc-length radius. The reference arc-length radius is calculated from the load or displacement increment of the first iteration of the first substep. This increment is determined by the following formula:

Reference Arc-Length Radius $=$ Total Load (or Displacement) $/$ NSBSTP
where $N S B S T P$ is the number of substeps specified on the NSUBST command.
The factors MAXARC and MINARC are used to define the limits of the arc-length radius by using the following formulas:
lower limit $=$ MINARC * (Reference Arc-Length Radius)
upper limit $=$ MAXARC * (Reference Arc-Length Radius)
In each subsequent substep, a new arc-length radius is first calculated based on the arc-length radius of the previous substep and the solution behavior. Next, the newly calculated arc-length radius is further modified so that it falls between the range of the upper limit and lower limit. If the solution does not converge even when using the lower limit of the arc-length radius, the solution will terminate.

These values, together with the reference arc-length radius, define the limit for the new arc-length radius.
ARCLEN must be turned OFF for any load step without an applied load or displacement.
You cannot use the arc-length method with the following controls: automatic time stepping [AUTOTS], line search [LNSRCH], and the DOF solution predictor [PRED]. If you activate the arc-length method after you set any of these controls, a warning message appears. If you choose to proceed with the arc-length method activation, ANSYS disables your automatic time stepping, line search, and DOF predictor settings.

You cannot use the arc-length method with tabular loads.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>Loads>Analysis Type>Sol'n Controls>Advanced NL
Main Menu>Preprocessor>Loads>Load Step Opts>Nonlinear>Arc-Length Opts
Main Menu>Solution>Analysis Type>Sol'n Controls>Advanced NL
Main Menu>Solution>Load Step Opts>Nonlinear>Arc-Length Opts

ARCTRM, Lab, VAL, NODE, DOF
Controls termination of the solution when the arc-length method is used.
SOLUTION:Nonlinear Options
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS

Lab

Specifies the basis of solution termination:

OFF

Does not use ARCTRM to terminate analysis (default).
L
Terminates the analysis if the first limit point has been reached. The first limit point is that point in the response history when the tangent stiffness matrix becomes singular (i.e., the point at which the structure becomes unstable). If $L a b=\mathrm{L}$, arguments $V A L, N O D E, D O F$ are ignored.

U
Terminates the analysis when the displacement first equals or exceeds the maximum desired value.

VAL

Maximum desired displacement (absolute value). Valid only if $L a b=U$. The analysis terminates whenever the calculated displacement first equals or exceeds this value. For rotational degrees of freedom, VAL must be in radians (not degrees).

NODE

Node number corresponding to displacement used to compare with displacement specified by VAL. If blank, the maximum displacement will be used. Valid only if $L a b=U$.

DOF
Valid degree of freedom label for nodal displacement specified by NODE. Valid labels are UX, UY, UZ, ROTX, ROTY, ROTZ. Valid only if NODE>0 and $L a b=U$.

Notes

The ARCTRM command is valid only when the arc-length method (ARCLEN,ON) is used.
It can be convenient to use this command to terminate the analysis when the first limit point is reached. In addition, the NCNV command should be used to limit the maximum number of iterations. If the ARCTRM command is not used, and the applied load is so large that the solution path can never reach that load, the arc-length solution will continue to run until a CPU time limit or a "maximum number of iterations" is reached.

Menu Paths

Main Menu>Preprocessor>Loads>Analysis Type>Sol'n Controls>Advanced NL
Main Menu>Preprocessor>Loads>Load Step Opts>Nonlinear>Arc-Length Opts
Main Menu>Solution>Analysis Type>Sol'n Controls>Advanced NL
Main Menu>Solution>Load Step Opts>Nonlinear>Arc-Length Opts

AREAS

Specifies "Areas" as the subsequent status topic.

PREP 7:Status
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Notes

This is a status [STAT] topic command. Status topic commands are generated by the GUI and will appear in the log file (Jobname. LOG) if status is requested for some items under Utility Menu> List> Status. This command will be immediately followed by a STAT command, which will report the status for the specified topic.

If entered directly into the program, the STAT command should immediately follow this command.

Menu Paths

This command cannot be accessed from a menu.

AREFINE, NA1, NA2, NINC, LEVEL, DEPTH, POST, RETAIN

Refines the mesh around specified areas.

PREP 7: Meshing
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

NA1, NA2, NINC

Areas (NA1 to NA2 in increments of NINC) around which the mesh is to be refined. NA2 defaults to NA1, and NINC defaults to 1 . If NAI = ALL, NA2 and NINC are ignored and all selected areas are used for refinement. If NAI $=P$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NA1 (NA2 and NINC are ignored).

LEVEL

Amount of refinement to be done. Specify the value of $L E V E L$ as an integer from 1 to 5 , where a value of 1 provides minimal refinement, and a value of 5 provides maximum refinement (defaults to 1).

DEPTH

Depth of mesh refinement in terms of the number of elements outward from the indicated areas (defaults to 1).

POST

Type of postprocessing to be done after element splitting, in order to improve element quality:
OFF
No postprocessing will be done.

SMOOTH

Smoothing will be done. Node locations may change.

CLEAN

Smoothing and cleanup will be done. Existing elements may be deleted, and node locations may change (default).

RETAIN

Flag indicating whether quadrilateral elements must be retained in the refinement of an all-quadrilateral mesh. (The ANSYS program ignores the RETAIN argument when you are refining anything other than a quadrilateral mesh.)

ON

The final mesh will be composed entirely of quadrilateral elements, regardless of the element quality (default).

OFF

The final mesh may include some triangular elements in order to maintain element quality and provide transitioning.

Notes

AREFINE performs local mesh refinement around the specified areas. By default, the indicated elements are split to create new elements with $1 / 2$ the edge length of the original elements ($L E V E L=1$).

AREFINE refines all area elements and tetrahedral volume elements that are adjacent to the specified areas. Any volume elements that are adjacent to the specified areas, but are not tetrahedra (for example, hexahedra, wedges, and pyramids), are not refined.

You cannot use mesh refinement on a solid model that contains initial conditions at nodes [IC], coupled nodes [CP family of commands], constraint equations [CE family of commands], or boundary conditions or loads applied directly to any of its nodes or elements. This applies to nodes and elements anywhere in the model, not just in the region where you want to request mesh refinement. See Revising Your Model in the Modeling and Meshing Guide for additional restrictions on mesh refinement.

This command is also valid for rezoning.

Menu Paths

Main Menu>Preprocessor>Meshing>Modify Mesh>Refine At>Areas

AREMESH, $\angle C O M B$, ANGLE

Generates an area in which to create a new mesh for rezoning.

SOLUTION: Rezoning
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS

LCOMB

Specifies how to combine adjacent line segments:
0
Line segments combined by connecting ends to ends. This value is the default.
-1
No line segments combined.

ANGLE

The maximum angle (in degrees) allowed for connecting two line segments together. The default value is 30 . This value is valid only when $L C O M B=0$.

Notes

Issue the AREMESH command after issuing a REMESH,START command and before issuing a REMESH,FINISH command.

The AREMESH command cannot account for an open area (or "hole") inside a completely enclosed region. Instead, try meshing around an open area by selecting two adjoining regions; for more information, see Hints for Remeshing Multiple Regions .

Menu Paths

Main Menu>Solution>Manual Rezoning>Create Remesh Zone(s)>Create Rezone Area

AREVERSE, ANUM, NOEFLIP

Reverses the normal of an area, regardless of its connectivity or mesh status.
PREP 7:Areas
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

ANUM

Area number of the area whose normal is to be reversed. If $A N U M=A L L$, the normals of all selected areas will be reversed. If $A N U M=P$, graphical picking is enabled. A component name may also be substituted for ANUM.

NOEFLIP

Indicates whether you want to change the normal direction of the existing elements on the reversed area(s) so that they are consistent with each area's new normal direction.
0
Make the normal direction of existing elements on the reversed area(s) consistent with each area's new normal direction (default).
1
Do not change the normal direction of existing elements on the reversed area(s).

Notes

You cannot use the AREVERSE command to change the normal direction of any element that has a body or surface load. We recommend that you apply all of your loads only after ensuring that the element normal directions are acceptable. Also, you cannot use this command to change the normal direction for areas attached to volumes because IGES data is unchanged by reversal. Reversed areas that are attached to volumes need to be reversed again when imported.

Real constants (such as nonuniform shell thickness and tapered beam constants) may be invalidated by an element reversal.

See Revising Your Model in the Modeling and Meshing Guide for more information.

Menu Paths

Main Menu>Preprocessor>Modeling>Move / Modify>Reverse Normals>of Areas

AROTAT, NL1, NL2, NL3, NL4, NL5, NL6, PAX1, PAX2, ARC, NSEG
Generates cylindrical areas by rotating a line pattern about an axis.
PREP 7:Areas
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

NL1, NL2, NL3, . . . , NL 6

List of lines in the pattern to be rotated (6 maximum if using keyboard entry of NL1 to NL6). The lines must lie in the plane of the axis of rotation. If $N L 1=P$, graphical picking is enabled and all remaining arguments are ignored (valid only in the GUI). If NLI = ALL, all selected lines will define the pattern to be rotated. A component name may also be substituted for NLI.

PAX1, PAX2

Keypoints defining the axis about which the line pattern is to be rotated.

ARC

Arc length (in degrees). Positive follows right-hand rule about PAX1-PAX2 vector. Defaults to 360°.

NSEG

Number of areas (8 maximum) around circumference. Defaults to minimum number required for 90° maximum arcs, i.e., 4 for $360^{\circ}, 3$ for 270°, etc.

Notes

Generates cylindrical areas (and their corresponding keypoints and lines) by rotating a line pattern (and its associated keypoint pattern) about an axis. Keypoint patterns are generated at regular angular locations, based on a maximum spacing of 90°. Line patterns are generated at the keypoint patterns. Arc lines are also generated to connect the keypoints circumferentially. Keypoint, line, and area numbers are automatically assigned, beginning with the lowest available values [NUMSTR]. Adjacent lines use a common keypoint. Adjacent areas use a common line.

Menu Paths

Main Menu>Preprocessor>Modeling>Operate>Extrude>Lines>About Axis

ARSCALE, NA1, NA2, NINC, RX, RY, RZ, KINC, NOELEM, IMOVE

Generates a scaled set of areas from a pattern of areas.

PREP 7:Areas
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

NA1, NA2, NINC

Set of areas, NA1 to NA2 in steps of NINC, that defines the pattern to be scaled. NA2 defaults to NA1, NINC defaults to 1 . If NA1 = ALL, NA2 and NINC are ignored and the pattern is defined by all selected areas. If NA1 $=P$, graphical picking is enabled and all remaining arguments are ignored (valid only in the GUI). A component name may also be substituted for NA1 (NA2 and NINC are ignored).

RX, RY, RZ

Scale factors to be applied to the X, Y, and Z keypoint coordinates in the active coordinate system. (RR, $R \theta, R Z$ for cylindrical; $R R, R \theta, R \Phi$ for spherical). Note that the $R \theta$ and $R \Phi$ scale factors are interpreted as angular offsets. For example, if CSYS $=1, R X, \quad R Y, \quad R Z$ input of $(1.5,10,3)$ would scale the specified keypoints 1.5 times in the radial and 3 times in the Z direction, while adding an offset of 10 degrees to the keypoints. Zero, blank, or negative scale factor values are assumed to be 1.0. Zero or blank angular offsets have no effect.

KINC

Increment to be applied to keypoint numbers for generated set. If zero, the lowest available keypoint numbers will be assigned [NUMSTR].

NOELEM

Specifies whether nodes and elements are also to be generated:
0
Nodes and elements associated with the original areas will be generated (scaled) if they exist.

1
Nodes and elements will not be generated.

IMOVE

Specifies whether areas will be moved or newly defined:
0
Additional areas will be generated.
1
Original areas will be moved to new position (KINC and NOELEM are ignored). Use only if the old areas are no longer needed at their original positions. Corresponding meshed items are also moved if not needed at their original position.

Notes

Generates a scaled set of areas (and their corresponding keypoints, lines, and mesh) from a pattern of areas. The MAT, TYPE, REAL, and ESYS attributes are based on the areas in the pattern and not the current settings. Scaling is done in the active coordinate system. Areas in the pattern could have been generated in any coordinate system. However, solid modeling in a toroidal coordinate system is not recommended.

Menu Paths

Main Menu>Preprocessor>Modeling>Operate>Scale>Areas

ARSYM, Ncomp, NA1, NA2, NINC, KINC, NOELEM, IMOVE

Generates areas from an area pattern by symmetry reflection.

PREP 7: Areas
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

```
Ncomp
    Symmetry key:
    X
        X symmetry (default).
    Y
    Y symmetry.
    Z
    Z symmetry.
```


NA1, NA2, NINC

Reflect areas from pattern beginning with NA1 to NA2 (defaults to NA1) in steps of NINC (defaults to 1). If $N A 1=A L L, N A 2$ and NINC are ignored and the pattern is all selected areas [ASEL]. If $N c o m p=P$, use graphical picking to specify areas and ignore NL2 and NINC. A component name may also be substituted for NA1 (NA2 and NINC are ignored).

KINC

Keypoint increment between sets. If zero, the lowest available keypoint numbers are assigned [NUMSTR].

NOELEM

Specifies whether nodes and elements are also to be generated:

0

Generate nodes and elements associated with the original areas, if they exist.

1

Do not generate nodes and elements.

IMOVE

Specifies whether areas will be moved or newly defined:
0
Generate additional areas.
1
Move original areas to new position retaining the same keypoint numbers (KINC and NOELEM are ignored). Valid only if the old areas are no longer needed at their original positions. Corresponding meshed items are also moved if not needed at their original position.

Notes

Generates a reflected set of areas (and their corresponding keypoints, lines and mesh) from a given area pattern by a symmetry reflection (see analogous node symmetry command, NSYM). The MAT, TYPE, REAL, ESYS, and SECNUM attributes are based upon the areas in the pattern and not upon the current settings. Reflection is done in the active coordinate system by changing a particular coordinate sign. The active coordinate system must be a Cartesian system. Areas in the pattern may have been generated in any coordinate system. However, solid modeling in a toroidal coordinate system is not recommended. Areas are generated as described in the AGEN command.

See the ESYM command for additional information about symmetry elements.

Menu Paths

Main Menu>Preprocessor>Modeling>Reflect>Areas

ASBA, NA1, NA2, SEPO, KEEP1, KEEP2

Subtracts areas from areas.

PREP7:Booleans
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

NA1

Area (or areas, if picking is used) to be subtracted from. If ALL, use all selected areas. Areas specified in this argument are not available for use in the NA2 argument. If P, graphical picking is enabled (valid only in the GUI) and remaining fields are ignored. A component name may also be substituted for NA1.

NA2

Area (or areas, if picking is used) to subtract. If ALL, use all selected areas (except those included in the NA1 argument). A component name may also be substituted for NA2.

SEPO

Behavior if the intersection of the NA1 areas and the NA2 areas is a line or lines:
(blank)
The resulting areas will share line(s) where they touch.

SEPO

The resulting areas will have separate, but coincident line(s) where they touch.

KEEP1

Specifies whether NA1 areas are to be deleted:

(blank)

Use the setting of KEEP on the BOPTN command.

DELETE

Delete NA1 areas after ASBA operation (override BOPTN command settings).

KEEP

Keep NA1 areas after ASBA operation (override BOPTN command settings).

KEEP2

Specifies whether NA2 areas are to be deleted:

(blank)

Use the setting of KEEP on the BOPTN command.

DELETE

Delete NA2 areas after ASBA operation (override BOPTN command settings).

KEEP

Keep NA2 areas after ASBA operation (override BOPTN command settings).

Notes

Generates new areas by subtracting the regions common to both NA1 and NA2 areas (the intersection) from the NA1 areas. The intersection can be an area(s) or line(s). If the intersection is a line and SEPO is blank, the NA1 area is divided at the line and the resulting areas will be connected, sharing a common line where they touch. If SEPO is set to SEPO, NA1 is divided into two unconnected areas with separate lines where they touch. See Solid Modeling in the Modeling and Meshing Guide for an illustration. See the BOPTN command for an explanation of the options available to Boolean operations. Element attributes and solid model boundary conditions assigned to the original entities will not be transferred to the new entities generated. ASBA,ALL,ALL will have no effect since all the areas (in NA1) will be unavailable as NA2 areas.

Menu Paths

Main Menu>Preprocessor>Modeling>Operate>Booleans>Divide>Area by Area Main Menu $>$ Preprocessor $>$ Modeling $>$ Operate $>$ Booleans $>$ Divide $>$ With Options $>$ Area by Area
Main Menu $>$ Preprocessor $>$ Modeling $>$ Operate $>$ Booleans $>$ Subtract $>$ Areas
Main Menu>Preprocessor>Modeling>Operate>Booleans>Subtract>With Options>Areas

ASBL, NA, NL, --, KEEPA, KEEPL

Subtracts lines from areas.

MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

NA
Area (or areas, if picking is used) to be subtracted from. If ALL, use all selected areas. If P, graphical picking is enabled (valid only in the GUI) and remaining fields are ignored. A component name may also be substituted for $N A$.

NL
Line (or lines, if picking is used) to subtract. If ALL, use all selected lines. A component name may also be substituted for $N L$.

Unused field.

KEEPA

Specifies whether NA areas are to be deleted:
(blank)
Use the setting of KEEP on the BOPTN command.
DELETE
Delete NA areas after ASBL operation (override BOPTN command settings).
KEEP
Keep NA areas after ASBL operation (override BOPTN command settings).
KEEPL
Specifies whether $N L$ lines are to be deleted:
(blank)
Use the setting of KEEP on the BOPTN command.
DELETE
Delete $N L$ lines after ASBL operation (override BOPTN command settings).
KEEP
Keep $N L$ lines after ASBL operation (override BOPTN command settings).

Notes

Generates new areas by subtracting the regions common to both the areas and lines (the intersection) from the NA areas. The intersection will be a line(s). See Solid Modeling in the Modeling and Meshing Guide for an illustration. See the BOPTN command for an explanation of the options available to Boolean operations.
Element attributes and solid model boundary conditions assigned to the original entities will not be transferred to the new entities generated.

Menu Paths

> Main Menu $>$ Preprocessor $>$ Modeling $>$ Operate $>$ Booleans $>$ Divide $>$ Area by Line Main Menu $>$ Preprocessor $>$ Modeling $>$ Operate $>$ Booleans $>$ Divide $>$ With Options $>$ Area by Line

ASBV, NA, NV, SEPO, KEEPA, KEEPV

Subtracts volumes from areas.

PREP 7:Booleans
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
NA
Area (or areas, if picking is used) to be subtracted from. If ALL, use all selected areas. If P, graphical picking is enabled (valid only in the GUI) and remaining fields are ignored. A component name may also be substituted for $N A$.

NV
Volume (or volumes, if picking is used) to subtract. If ALL, use all selected volumes. A component name may also be substituted for $N V$.

SEPO

Behavior if the intersection of the areas and the volumes is a line or lines:

(blank)

The resulting areas will share line(s) where they touch.

SEPO

The resulting areas will have separate, but coincident line(s) where they touch.

KEEPA

Specifies whether NA areas are to be deleted:

(blank)

Use the setting of KEEP on the BOPTN command.

DELETE

Delete NA areas after ASBV operation (override BOPTN command settings).
KEEP
Keep NA areas after ASBV operation (override BOPTN command settings).

KEEPV

Specifies whether $N V$ volumes are to be deleted:

(blank)

Use the setting of KEEP on the BOPTN command.

DELETE

Delete volumes after ASBV operation (override BOPTN command settings).

KEEP

Keep volumes after ASBV operation (override BOPTN command settings).

Notes

Generates new areas by subtracting the regions common to both $N A$ areas and $N V$ volumes (the intersection) from the NA areas. The intersection can be an area(s) or line(s). If the intersection is a line and SEPO is blank, the $N A$ area is divided at the line and the resulting areas will be connected, sharing a common line where they touch. If SEPO is set to SEPO, NA is divided into two unconnected areas with separate lines where they touch. See Solid Modeling in the Modeling and Meshing Guide for an illustration. See the BOPTN command for an explanation of the options available to Boolean operations. Element attributes and solid model boundary conditions assigned to the original entities will not be transferred to the new entities generated.

Menu Paths

Main Menu>Preprocessor>Modeling>Operate>Booleans>Divide>Area by Volume Main Menu>Preprocessor>Modeling>Operate>Booleans $>$ Divide $>$ With Options $>$ Area by Volume Main Menu $>$ Preprocessor>Modeling>Operate $>$ Divide $>$ Area by Volu

ASBW, NA, SEPO, KEEP

Subtracts the intersection of the working plane from areas (divides areas).

PREP 7: Booleans
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

NA

Area (or areas, if picking is used) to be subtracted from. If $N A=A L L$, use all selected areas. If $N A=P$, graphical picking is enabled (valid only in the GUI). A component name may also be input for NA.

SEPO

Behavior of the created boundary.
(blank)
The resulting areas will share line(s) where they touch.

SEPO

The resulting areas will have separate, but coincident line(s).
KEEP
Specifies whether NA areas are to be deleted.
(blank)
Use the setting of KEEP on the BOPTN command.
DELETE
Delete NA areas after ASBW operation (override BOPTN command settings).
KEEP
Keep NA areas after ASBW operation (override BOPTN command settings).

Notes

Generates new areas by subtracting the intersection of the working plane from the NA areas. The intersection will be a line(s). The working plane must not be in the same plane as the $N A$ areas(s). If SEPO is blank, the $N A$ area is divided at the line and the resulting areas will be connected, sharing a common line where they touch. If SEPO is set to SEPO, NA is divided into two unconnected areas with separate lines. The SEPO option may cause unintended consequences if any keypoints exist along the cut plane. See Solid Modeling in the Modeling and Meshing Guide for an illustration. See the BOPTN command for an explanation of the options available to Boolean operations. Element attributes and solid model boundary conditions assigned to the original entities will not be transferred to the new entities generated.

Issuing the ASBW command under certain conditions may generate a topological degeneracy error. Do not issue the command if:

- A sphere or cylinder has been scaled. (A cylinder must be scaled unevenly in the XY plane.)
- A sphere or cylinder has not been scaled but the work plane has been rotated.

Menu Paths

Main Menu>Preprocessor>Modeling>Operate>Booleans>Divide>Area by WrkPlane
Main Menu>Preprocessor>Modeling>Operate>Booleans>Divide>With Options>Area by WrkPlane Main Menu>Preprocessor>Modeling>Operate>Divide>Area by WrkPlane

ASEL, Type, Item, Comp, VMIN, VMAX, VINC, KSWP

Selects a subset of areas.

DATABASE:Selecting
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Type

Label identifying the type of select:
s
Select a new set (default)
R
Reselect a set from the current set.
A
Additionally select a set and extend the current set.
U
Unselect a set from the current set.
ALL
Restore the full set.

NONE

Unselect the full set.

INVE

Invert the current set (selected becomes unselected and vice versa).
STAT
Display the current select status.
The following fields are used only with Type $=\mathrm{S}, \mathrm{R}, \mathrm{A}$, or U :

Item

Label identifying data. Valid item labels are shown in Table 142: ASEL - Valid Item and Component Labels (p. 165). Some items also require a component label. If It em = PICK (or simply "P"), graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). Defaults to AREA.

Comp

Component of the item (if required). Valid component labels are shown in Table 142: ASEL - Valid Item and Component Labels (p. 165).

VMIN

Minimum value of item range. Ranges are area numbers, coordinate values, attribute numbers, etc., as appropriate for the item. A component name (as specified on the CM command) may also be substituted for VMIN (VMAX and VINC are ignored). If Item = MAT, TYPE, REAL, or ESYS and if VMIN is positive, the absolute value of Item is compared against the range for selection; if VMIN is negative, the signed value of Item is compared. See the ALIST command for a discussion of signed attributes.

VMAX

Maximum value of item range. VMAX defaults to VMIN.
VINC
Value increment within range. Used only with integer ranges (such as for area numbers). Defaults to 1. VINC cannot be negative.

KSWP
Specifies whether only areas are to be selected:
0
Select areas only.
1
Select areas, as well as keypoints, lines, nodes, and elements associated with selected areas. Valid only with Type $=\mathrm{S}$.

Command Default

All areas are selected.

Notes

Selects a subset of areas. For example, to select those areas with area numbers 1 through 7, use ASEL,S,AREA, 1,7 . The selected subset is then used when the ALL label is entered (or implied) on other commands, such as ALIST,ALL. Only data identified by area number are selected. Data are flagged as selected and unselected; no data are actually deleted from the database.

If Item = ACCA, the command selects only those areas that were created by concatenation. The KSWP field is processed, but the Comp, VMIN, VMAX, and VINC fields are ignored.

This command is valid in any processor.
For Selects based on non-integer numbers (coordinates, results, etc.), items that are within the range VMIN-Toler and VMAX+Toler are selected. The default tolerance Toler is based on the relative values of VMIN and VMAX as follows:

- If VMIN $=$ VMAX, Toler $=0.005 \times$ VMIN.
- If $\mathrm{VMIN}=\mathrm{VMAX}=0.0$, Toler $=1.0 \mathrm{E}-6$.
- If VMAX $\neq \mathrm{VMIN}$, Toler $=1.0 \mathrm{E}-8 \mathrm{x}$ (VMAX-VMIN).

Use the SELTOL command to override this default and specify Toler explicitly.
Table 142 ASEL - Valid Item and Component Labels
Valid Item and Component Labels ASEL, Type Item, Comp, VMIN, VMAX, VINC, KSWP

Item Comp
AREA
EXT

LOC $\quad X, Y, Z$

Description
Area number.
Area numbers on exterior of selected volumes (ignore remaining fields).
X, Y, or Z center (picking "hot spot" location in the active coordinate system).

Valid Item and Component Labels ASEL, Type Item Comp	Item, Comp, VMIN, VMAX, VINC, KSWP Description
HPT	Area number (selects only areas with associated hard points).
MAT	Material number associated with the area.
TYPE	Element type number associated with the area.
REAL	Real constant set number associated with the area.
ESYS	Element coordinate system associated with the area.
SECN	Section number associated with the area. ACCA
	Concatenated areas (selects only areas that were created by area concatenation [ACCAT]).

Menu Paths

Utility Menu>Select>Entities
*ASK, Par, Query, DVAL
Prompts the user to input a parameter value.
APDL: Parameters
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Argument Descriptions

Par

An alphanumeric name used to identify the scalar parameter. See *SET for name restrictions.

Query

Text string to be displayed on the next line as the query (32 characters maximum). Characters having special meaning (such as \$!,) should not be included.

DVAL
Default value assigned to the parameter if the user issues a blank response. May be a number or character string (up to 8 characters enclosed in single quotes). If a default is not assigned, a blank response will delete the parameter.

Notes

Intended primarily for use in macros, the command prints the query (after the word ENTER) on the next line and waits for a response. The response is read from the keyboard, except in batch mode [/BATCH], when the response(s) must be the next-read input line(s). The response may be a number, a character string (up to 8 characters enclosed in single quotes), a parameter (numeric or character) or an expression that evaluates to a number. The scalar parameter is then set to the response value. For example,
*ASK,NN,PARAMETER NN will set NN to the value entered on the next line (after the prompt ENTER PARAMETER NN).

The *ASK command is not written to File. LOG, but the responses are written there as follows: If *ASK is contained in a macro, the response(s) (only) is written to File. LOG on the line(s) following the macro
name. If not contained in a macro, the response is written to File. LOG as a parameter assignment (i.e., Par = "user-response").

If used within a do-loop that is executed interactively, *ASK should be contained in a macro. If not contained in a macro, *ASK will still query the user as intended, but the resulting log file will not reproduce the effects of the original run.

This command is valid in any processor.

Menu Paths

This command cannot be accessed from a menu.

ASKIN,NL1,NL2,NL3, NL4, NL5, NL6, NLT, NL8, NL9
Generates an area by "skinning" a surface through guiding lines.
PREP 7: Areas
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

NL1

The first guiding line forming the skinned area. If $N L 1=P$, graphical picking is enabled and all remaining arguments are ignored (valid only in the GUI). A component name may also be substituted for NLI. If NL1 is negative, the line beginnings and ends will be used to direct the skinning of the remaining lines (see "Changing the ASKIN Algorithm" (p. 167) below).

NL2, NL3, NL4, . . . NL9

The additional guiding lines for the skinned area (up to 9 total lines, including NL1, if using keyboard entry). If negative (and NL1 is negative), the line beginning and end will be temporarily interchanged for the skinning operation (see "Changing the ASKIN Algorithm" (p. 167) below).

Notes

Generates an area by "skinning" a surface through specified guiding lines. The lines act as a set of "ribs" over which a surface is "stretched." Two opposite edges of the area are framed by the first (NL1) and last (NLn) guiding lines specified. The other two edges of the area are framed by splines-fit lines which the program automatically generates through the ends of all guiding lines. The interior of the area is shaped by the interior guiding lines. Once the area has been created, only the four edge lines will be attached to it. In rare cases, it may be necessary to change the default algorithm used by the ASKIN command (see "Changing the ASKIN Algorithm" (p.167) below).

Changing the ASKIN Algorithm

When skinning from one guiding line to the next, the program can create the transition area in one of two ways: one more spiraled and one less spiraled ("flatter"). By default, the program attempts to produce the flatter transition, instead of the more spiraled transition. This algorithm can be changed by inputting NL1 as a negative number, in which case the program connects all the keypoints at the line "beginnings" (/PSYMB,LDIR command) as one edge of the area, and all the line "ends" as the opposite edge, irrespective of the amount of spiraling produced in each transition area.

To further control the geometry of the area (if NLI is negative), the beginning and end of any specified line (other than NL1) can be temporarily interchanged (for the skinning operation only) by inputting that line number as negative. See Solid Modeling in the Modeling and Meshing Guide for an illustration.

Menu Paths

Main Menu>Preprocessor>Modeling>Create>Areas>Arbitrary>By Skinning

ASLL, Type, ARKEY

Selects those areas containing the selected lines.

DATABASE:Selecting
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Type

Label identifying the type of area select:
s
Select a new set (default).
R
Reselect a set from the current set.
A
Additionally select a set and extend the current set.
U
Unselect a set from the current set.

ARKEY

Specifies whether all contained area lines must be selected [LSEL]:
0
Select area if any of its lines are in the selected line set.
1
Select area only if all of its lines are in the selected line set.

Notes

This command is valid in any processor.

Menu Paths

Utility Menu>Select>Entities

ASLV, Type

Selects those areas contained in the selected volumes.

DATABASE:Selecting
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Type

Label identifying the type of area select:
S
Select a new set (default).
R
Reselect a set from the current set.
A
Additionally select a set and extend the current set.
U
Unselect a set from the current set.

Notes

This command is valid in any processor.

Menu Paths

Utility Menu>Select>Entities

/ASSIGN, Ident, Fname, Ext, --

Reassigns a file name to an ANSYS file identifier.

SESSION:Files
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Ident

ANSYS file name identifier. Valid identifiers are: CMS, EMAT, EROT, ESAV, FULL, LN07, LN09, LN11, LN20, LN21, LN22, LN25, LN31, LN32, MODE, OSAV, RDSP, REDM, RFL, RFRQ, RMG,RST, RSTP, RTH, SELD, SSCR, and TRI. See "File Management and Files" for file descriptions. If blank, list currently reassigned files.

Fname

File name and directory path (248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

Ext

Filename extension (8 character maximum).

Unused field.

Notes

The reassignment of file names is valid only if it is done before the file is used. All file reassignments are retained (not cleared) even if the database is cleared [/CLEAR] or the Jobname is changed [/FILNAME]. Assigned files may be overwritten. If file name arguments (Fname, Ext, --) are blank, the default ANSYS assignment is restored. Use SEOPT for SUB files and SEEXP for DSUB files.

This command is valid only at the Begin Level.
This command also checks to ensure that the path/file is valid and can be written by the user. If it is not valid, an error message will be returned. Ensure that the directory exists prior to using /ASSIGN command.

Menu Paths

Utility Menu>File>ANSYS File Options

ASUB, NA1, P1, P2, P3, P4

Generates an area using the shape of an existing area.

PREP 7: Areas
MP ME ST PR PRN <> <> FLEM EH DY PP <> EME MFS

NA1

Existing area number whose shape is to be used. If $P 1=\mathrm{P}$, graphical picking is enabled and all remaining arguments are ignored (valid only in the GUI).

P1

Keypoint defining starting corner of area.
P2
Keypoint defining second corner of area.
P3
Keypoint defining third corner of area.
P4
Keypoint defining fourth corner of area (defaults to $P 3$).

Notes

The new area will overlay the old area. Often used when the area to be subdivided consists of a complex shape that was not generated in a single coordinate system. Keypoints and any corresponding lines must lie on the existing area. Missing lines are generated to lie on the given area. The active coordinate system is ignored.

Menu Paths

Main Menu>Preprocessor>Modeling>Create>Areas>Arbitrary>Overlaid on Area

ASUM, $\angle A B$
Calculates and prints geometry statistics of the selected areas.
PREP 7: Areas
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
$L A B$
Controls the degree of tessellation used in the calculation of area properties. If $L A B=$ DEFAULT, area calculations will use the degree of tessellation set through the /FACET command. If $L A B=$ FINE, area calculations are based on a finer tessellation.

Notes

Calculates and prints geometry statistics (area, centroid location, moments of inertia, volume, etc.) associated with the selected areas. ASUM should only be used on perfectly flat areas.

Geometry items are reported in the global Cartesian coordinate system. A unit density (and thickness) is assumed unless the areas have a material (and real constant) association via the AATT command. The command always uses a unit density and a unit thickness for layered shell elements (such as SHELL131, SHELL163, SHELL181, and SHELL281).

Items calculated by ASUM and later retrieved via a *GET or *VGET command are valid only if the model is not modified after issuing the ASUM command.

Setting a finer degree of tessellation will provide area calculations with greater accuracy, especially for thin, hollow models. However, using a finer degree of tessellation requires longer processing.

For very narrow (sliver) areas, such that the ratio of the minimum to the maximum dimension is less than 0.01, the ASUM command can provide erroneous area information. To ensure that such calculations are accurate, make certain that you subdivide such areas so that the ratio of the minimum to the maximum is at least 0.05 .

Menu Paths

Main Menu>Preprocessor>Modeling>Operate>Calc Geom Items>Of Areas

ATAN, IR, IA, --, --, Name,,,---- FACTA

Forms the arctangent of a complex variable.

POST26:Operations
MP ME ST PR PRN <> <> <> EM EH DY PP <> EME MFS
IR
Arbitrary reference number assigned to the resulting variable (2 to NV [NUMVAR]). If this number is the same as for a previously defined variable, the previously defined variable will be overwritten with this result.

IA
Reference number of the complex variable to be operated on.

--, --

Unused fields.

Name

Thirty-two character name for identifying the variable on the printout and displays. Embedded blanks are compressed upon output.

--, --

Unused fields.

FACTA

Scaling factor (positive or negative) applied to variable IA (defaults to 1.0). Usually FACTA should be set to 1. FACTA may affect the position of the angle by a multiple of π, resulting in a quadrant change.

Notes

Forms the arctangent of a complex variable according to the operation:

$$
I R=\operatorname{ATAN}(F A C T A X b / a)
$$

where a and b are the real and imaginary parts, respectively, of the complex variable $I A$ (which is of the form $a+i b$). The arctangent represents the phase angle (in radians), and is valid only for a harmonic analysis (ANTYPE,HARMIC).

Since the scaling factor is applied uniformly to b / a, applying any positive or negative scaling factor will not affect the size of the phase angle, with the exception that a negative scaling factor will change the results quadrant by π. The magnitude of a complex number is still obtained through the ABS command. See POST26 - Data Operations in the Theory Reference for the Mechanical APDL and Mechanical Applications for details.

Menu Paths

Main Menu>TimeHist Postpro>Math Operations>Arctangent

ATRAN, KCNTO, NA1, NA2, NINC, KINC, NOELEM, IMOVE

Transfers a pattern of areas to another coordinate system.

MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

KCNTO

Reference number of coordinate system where the pattern is to be transferred. Transfer occurs from the active coordinate system. The coordinate system type and parameters of KCNTO must be the same as the active system.

NA1, NA2, NINC

Transfer area pattern beginning with NA1 to NA2 (defaults to NA1) in steps of NINC (defaults to 1). If $N A 1=A L L, N A 2$ and NINC are ignored and the pattern is all selected areas [ASEL]. If NA1 = P, graphical picking is enabled and all remaining arguments are ignored (valid only in the GUI). A component name may also be substituted for NA1 (NA2 and NINC are ignored).

KINC

Keypoint increment between sets. If zero, the lowest available keypoint numbers are assigned [NUMSTR].

NOELEM

Specifies whether elements and nodes are also to be generated:
0
Generate nodes and elements associated with the original areas, if they exist.
1
Do not generate nodes and elements.

IMOVE

Specifies whether to redefine the existing areas:
0
Generate additional areas.
1
Move original areas to new position retaining the same keypoint numbers (KINC and NOELEM are ignored). Valid only if the old areas are no longer needed at their original positions. Corresponding meshed items are also moved if not needed at their original position.

Notes

Transfers a pattern of areas (and their corresponding lines, keypoints and mesh) from one coordinate system to another (see analogous node TRANSFER command). The MAT, TYPE, REAL, and ESYS attributes are based upon the areas in the pattern and not upon the current settings. Coordinate systems may be translated and rotated relative to each other. Initial pattern may be generated in any coordinate system. However, solid modeling in a toroidal coordinate system is not recommended. Coordinate and slope values are interpreted in the active coordinate system and are transferred directly. Areas are generated as described in the AGEN command.

Menu Paths

Main Menu>Preprocessor>Modeling>Move / Modify>Transfer Coord>Areas

ATYPE

Specifies "Analysis types" as the subsequent status topic.

SOLUTION: Status
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Notes

This is a status [STAT] topic command. Status topic commands are generated by the GUI and will appear in the log file (Jobname. LOG) if status is requested for some items under Utility Menu> List> Status. This command will be immediately followed by a STAT command, which will report the status for the specified topic.

If entered directly into the program, the STAT command should immediately follow this command.

Menu Paths

Utility Menu>List>Status>Solution>Analysis Type
/AUTO, wn
Resets the focus and distance specifications to "automatically calculated."
GRAPHICS:Views
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

WN
Window number (or ALL) to which command applies (defaults to 1).

Notes

Focus point and distance will be automatically calculated during next display. Settings may still be changed with the /FOCUS and /DIST commands after this command has been issued. See also the /USER command.

This command is valid in any processor.

Menu Paths

Utility Menu>PlotCtrls $>$ Pan, Zoom, Rotate
Utility Menu>PlotCtrls>View Settings>Automatic Fit Mode

AUTOTS, Key

Specifies whether to use automatic time stepping or load stepping.
SOLUTION:Load Step Options
MP ME ST PR PRN <> <> <> EM EH <> PP <> EME MFS

Key

Automatic time stepping key:
OFF
Do not use automatic time stepping.
ON
Use automatic time stepping.

Command Default

ANSYS determined time stepping when SOLCONTROL,ON. No automatic time stepping when SOLCONTROL,OFF.

Notes

Specifies whether to use automatic time stepping (or load stepping) over this load step. If Key $=\mathbf{O N}$, both time step prediction and time step bisection will be used. Used only if DTIME (specified on the DELTIM command) is less than the time span or conversely, if NSBSTP (on the NSUBST command) is greater than one.

If you run an analysis with SOLCONTROL,ON, but do not issue the AUTOTS command, ANSYS will choose whether or not to use automatic time stepping. The program-chosen option will be recorded on the log file as AUTOTS,-1.

You cannot use automatic time stepping [AUTOTS], line search [LNSRCH], or the DOF solution predictor [PRED] with the arc-length method [ARCLEN, ARCTRM]. If you activate the arc-length method after you set AUTOTS, LNSRCH, or PRED, a warning message appears. If you choose to proceed with the arc-length method activation, ANSYS disables your automatic time stepping, line search, and DOF predictor settings.

This command is also valid in PREP7.

Menu Paths

```
Main Menu>Preprocessor>Loads>Analysis Type>Sol'n Controls>Basic Main Menu>Preprocessor>Loads>Load Step Opts>Time/Frequenc>Time - Time Step Main Menu>Preprocessor>Loads>Load Step Opts>Time/Frequenc>Time and Substps Main Menu>Solution>Analysis Type>Sol'n Controls>Basic Main Menu>Solution>Load Step Opts>Time/Frequenc>Time - Time Step Main Menu>Solution>Load Step Opts>Time/Frequenc>Time and Substps
```


/AUX2

Enters the binary file dumping processor.

> AUX2: Binary Files
> SESSION: Processor Entry
> MP ME ST PR PRN <><> FL EM EH DY PP <> EME MFS

Notes

Enters the binary file dumping processor (ANSYS auxiliary processor AUX2). This processor is used to dump the contents of certain ANSYS binary files for visual examination.

This command is valid only at the Begin Level.

Menu Paths

Utility Menu>File>List>Binary Files
Utility Menu>List>Files>Binary Files

/AUX3

Enters the results file editing processor.

> AUX3: Results Files
> SESS ION: Processor Entry
> MP ME ST PR PRN <><> FL EM EH DY PP <> EME MFS

Notes

Enters the results file editing processor (ANSYS auxiliary processor AUX3). This processor is used to edit ANSYS results files.

This command is valid only at the Begin Level.

Menu Paths

This command cannot be accessed from a menu.

/AUX12

Enters the radiation processor.

> AUX12: General Radiation SESSION: Processor Entry
> MP ME <> PR <> <> <> <> <> <> <> PP <> EME MFS

Notes

Enters the radiation processor (ANSYS auxiliary processor AUX12). This processor supports the Radiation Matrix and the Radiosity Solver methods.

This command is valid only at the Begin Level.

Menu Paths

Main Menu>Radiation Matrix

/AUX15

Enters the IGES file transfer processor.

AUX15:IGES
POST1:Controls
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Notes

Enters the IGES file transfer processor (ANSYS auxiliary processor AUX15), used to read an IGES data file into the ANSYS program.

This command is valid only at the Begin Level.

Menu Paths

Utility Menu>File>Import

AVPRIN, $K E Y$, EFFNU

Specifies how principal and vector sums are to be calculated.

> POST1: Controls
> MP ME ST PR PRN <> <> <> EM EH DY PP <> EME MFS

KEY

Averaging key:
0
Average the component values from the elements at a common node, then calculate the principal or vector sum from the averaged components (default).

1
Calculate the principal or vector sum values on a per element basis, then average these values from the elements at a common node.

EFFNU

Effective Poisson's ratio used for computing the von Mises equivalent strain (EQV). This command option is intended for use with line elements or in load case operations (LCOPER) only; ANSYS automatically selects the most appropriate effective Poisson's ratio, as discussed below.

Command Default

Average components at common node before principal or vector sum calculation except for the von Mises equivalent strain (EQV), see below.

Notes

Selects the method of combining components for certain derived nodal results when two or more elements connect to a common node. The methods apply to the calculations of derived nodal principal stresses, principal strains, and vector sums for selects, sorts, and output [NSEL, NSORT, PRNSOL, PLNSOL, etc.].

This command also defines the effective Poisson's ratio (EFFNU) used for equivalent strain calculations. If you use EFFNU, the default effective Poisson's ratios shown below will be overridden for all elements by the EFFNU value. To return to the default settings, issue the RESET command. The default value for EFFNU is:

- Poisson's ratio as defined on the MP commands for EPEL and EPTH
- 0.5 for EPPL and EPCR
- 0.5 if the referenced material is hyperelastic
- 0.0 for line elements (includes beam, link, and pipe elements, as well as discrete elements), cyclic symmetry analysis, and load case operations (LCOPER).

For the von Mises equivalent strain (EQV), it is always computed using the average of the equivalent strains from the elements at a common node irrespective of the value of the averaging KEY. If EFFNU is input, though, the calculation will be performed according to the KEY setting.

For a random vibration (PSD) analysis, issuing either AVPRIN,0 or AVPRIN,1 calculates the principal stresses using the appropriate averaging method. They are then used to determine SEQV. The output will have nonzero values for the principal stresses.

If AVPRIN is not issued, the Segalman-Fulcher method is used to calculate SEQV. This method does not calculate principal stresses, but directly calculates SEQV from the component stresses; therefore, the output will have zero values for the principal stresses.

This command is also valid in POST26, where applicable.
See Combined Stresses and Strains in the Theory Reference for the Mechanical APDL and Mechanical Applications for more information.

Menu Paths

Main Menu>General Postproc>Element Table>Define Table
Main Menu>General Postproc>List Results>Nodal Solution
Main Menu>General Postproc>Options for Outp
Main Menu>General Postproc>Path Operations>Map onto Path
Main Menu>General Postproc>Path Operations>Map onto Path>FE Results
Main Menu>General Postproc>Plot Results>Contour Plot>Element Solu
Main Menu>General Postproc>Plot Results>Contour Plot>Nodal Solu
Utility Menu>List>Results>Nodal Solution
Utility Menu>List>Results>Options
Utility Menu>Plot>Results>Contour Plot>Elem Solution
Utility Menu>Plot>Results>Contour Plot>Nodal Solution
Utility Menu>PlotCtrls>Multi-Plot Contrls

AVRES, $K E Y$, Opt
Specifies how results data will be averaged when PowerGraphics is enabled.
POST1:Controls
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
KEY
Averaging key.
1
Average results at all common subgrid locations.
2
Average results at all common subgrid locations except where material type [MAT] discontinuities exist. This option is the default.

3
Average results at all common subgrid locations except where real constant [REAL] discontinuities exist.

4
Average results at all common subgrid locations except where material type [MAT] or real constant
[REAL] discontinuities exist.

opt

Option to determine how results data are averaged.

(blank)

Average surface results data using only the exterior element faces (default).

FULL

Average surface results data using the exterior face and interior element data.

Notes

The AVRES command specifies how results data will be averaged at subgrid locations that are common to 2 or more elements. The command is valid only when PowerGraphics is enabled (via the /GRAPHICS,POWER command).

With PowerGraphics active (/GRAPHICS,POWER), the averaging scheme for surface data with interior element data included (AVRES,,FULL) and multiple facets per edge (/EFACET, 2 or /EFACET,4) will yield differing minimum and maximum contour values depending on the Z-Buffering options (/TYPE,,6 or /TYPE,,7). When the Section data is not included in the averaging schemes (/TYPE,,7), the resulting absolute value for the midside node is significantly smaller.

PowerGraphics does not average your stresses across discontinuous surfaces. The normals for various planes and facets are compared to a tolerance to determine continuity. The ANGLE value you specify in the /EDGE command is the tolerance for classifying surfaces as continuous or "coplanar."

The command affects nodal solution contour plots (PLNSOL), nodal solution printout (PRNSOL), and subgrid solution results accessed through the Query Results function (under General Postprocessing) in the GUI.

The command has no effect on the nodal degree of freedom solution values (UX, UY, UZ, TEMP, etc.).
The command is also available in /SOLU.

Menu Paths

Main Menu>General Postproc>Options for Outp Utility Menu>List>Results>Options

/AXLAB, Axis, Lab

Labels the X and Y axes on graph displays.

GRAPHICS: Graphs
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Axis

Axis specifier:
X
Apply label to X axis.
Y
Apply label to Y axis.

Lab

Axis label (user defined text up to 30 characters long). Leave blank to reestablish the default for Axis axis.

Command Default

Labels are determined by the program.

Notes

This command is valid in any processor.

Menu Paths

Main Menu>Drop Test>Time History>Graph Variables
Main Menu>Drop Test>Time History>List Variables
Utility Menu>PlotCtrls>Style>Graphs>Modify Axes
*AXPY, vr, vi, M1, wr, wi, M2
Performs the matrix operation M2= $\mathbf{v}^{\mathbf{*}} \mathbf{M 1} \mathbf{+ w *} \mathbf{~} \mathbf{~} 2$.

> APDL: Matrix Operations
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Argument Descriptions

vr, vi
The real and imaginary parts of the scalar v. Default value is 0 .
M1
Name of matrix M1. If not specified, the operation $M 2=w^{*} M 2$ will be performed.
wr, wi
The real and imaginary parts of the scalar w. Default value is 0 .
M2
Name of matrix M2. Must be specified.

Notes

The matrices M1 and M2 must have the same dimensions and same type (dense or sparse). If $M 2$ is real, $v i$ and wi are ignored.

Menu Paths

This command cannot be accessed from a menu.

B Commands

/BATCH, Lab

Sets the program mode to "batch."

SESSION: Run Controls

MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Lab

Specifies listing mode during a batch run:
LIST
The batch output will include a listing of the input file.
(blank)
Suppress input data listing.

Command Default

Interactive mode.

Notes

Sets the program mode to "batch" when included as the first line on an input file of ANSYS commands. For convenience, this command is automatically recorded on the log file (Jobname.LOG) at the beginning of an interactive ANSYS session so that the log file can be reused later for batch input.

Caution

This command should not be entered directly in an interactive ANSYS session since all subsequent keyboard input is simply copied to a file, without further processing or prompts from the program (use the "system break" to exit the ANSYS program if this occurs).

The recommended method for choosing batch mode, rather than using the /BATCH command, is to select the Batch simulation environment from the ANSYS Product Launcher task in the ANSYS launcher, or the batch mode entry option on the ANSYS execution command when entering the program.

This command is valid only at the Begin Level.

Menu Paths

This command cannot be accessed from a menu.

BCSOPTION, --, Memory_Option, Memory_Size,-----, Solve_Info

Sets memory option for the sparse solver.

SOLUTION: Analysis Options
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Unused field

Memory_Option

DEFAULT

Use the default memory allocation strategy for the sparse solver. The default strategy attempts to run in the INCORE memory mode. If there is not enough available physical memory when the solver starts to run in the INCORE memory mode, the solver will then attempt to run in the OPTIMAL memory mode.

INCORE

Use a memory allocation strategy in the sparse solver that will attempt to obtain enough memory to run with the entire factorized matrix in memory. This option uses the most amount of memory and should avoid doing any I/O. By avoiding I/O, this option often achieves the best performance of all the memory modes. However, a significant amount of memory is required to run in this mode, and it is only recommended on machines with a large amount of memory. If the allocation for incore memory fails, ANSYS will automatically revert to OPTIMAL out-of-core mode.

OPTIMAL

Use a memory allocation strategy in the sparse solver that will attempt to allocate enough work space to keep the largest front matrix in memory during factorization. As a result, this memory mode often achieves an optimal balance between I/O and memory usage.

MINIMUM

Use a memory allocation strategy in the sparse solver that will attempt to allocate the least amount of memory needed to run through the solver. By using the least amount of memory, this memory mode will often perform excessive amounts of I/O, which results in decreased performance. Consequently, this option is only recommended as a last resort when trying to run a relatively large analysis on a machine with limited memory resources.

FORCE

This option, when used in conjunction with the Memory_Size option, allows you to force the sparse solver to run with a specific amount of memory. This option is only recommended for the advanced user who understands sparse solver memory requirements for the problem being solved, understands the physical memory on the system, and wants to control the sparse solver memory usage.

Memory_Size

Sets the initial memory size allocation for the sparse solver in MB. This option allows you to tune the sparse solver memory and is not generally required. Although there is no upper limit for Memory_Size, the Memory_Size setting should always be well within the physical memory available, but not so small as to cause the sparse solver to run out of memory. Warnings and/or errors from the sparse solver will appear if this value is set too low. If the FORCE memory option is used, this value is the amount of memory allocated for the entire duration of the sparse solver solution.

--, --

Unused fields

Solve_Info
 OFF

Turns off additional output printing from the sparse solver (default).

PERFORMANCE

Turns on additional output printing from the sparse solver, including a performance summary and a summary of file I/O for the sparse solver. Information on memory usage during assembly of the global matrix (that is, creation of the Jobname. FULL file) is also printed with this option.

Command Default

Automatic memory allocation is used.

Notes

This command controls options related to the sparse solver in all analysis types where the sparse solver can be used. It also controls the Block Lanczos eigensolver in a modal or buckling analysis.

The sparse solver runs from one large work space (that is, one large memory allocation). The amount of memory required for the sparse solver is unknown until the matrix structure is preprocessed, including equation reordering. The amount allocated for the sparse solver is then dynamically adjusted using the ANSYS memory manager.

If you have a very large memory system, you may want to try selecting the INCORE memory mode for larger jobs to improve performance. If you have a very small memory system, you may need to run in the MINIMUM memory mode, in which the program will most likely use the least amount of memory but do the most amount of I/O, often leading to the least efficient performance.

Running with the INCORE memory mode is best for jobs which comfortably fit within the limits of the physical memory on a given system. If the sparse solver work space exceeds physical memory size, the system will be forced to use virtual memory (or the system page/swap file). In this case, it is typically more efficient to run with the OPTIMAL memory mode (BCSOPTION,,OPTIMAL). Assuming the job fits comfortably within the limits of the machine, running with the INCORE memory mode is often ideal for jobs where repeated solves are performed for a single matrix factorization. This occurs in a modal or buckling analysis or when doing multiple load steps in a linear, static analysis.

For repeated runs with the sparse solver, you may set the initial sparse solver memory allocation to the amount required for factorization. This strategy reduces the frequency of allocation and reallocation in the run to make the INCORE option fully effective. If you have a very large memory system, you may use the Memory_Size argument to increase the maximum size attempted for in-core runs.

Menu Paths

This command cannot be accessed from a menu.

BETAD, value

Defines the stiffness matrix multiplier for damping.
SOLUTION: Dynamic Options
MP ME ST <> <> <> <> <> <> <> DY PP <> EME MFS

VALUE

Stiffness matrix multiplier for damping.

Notes

This command defines the stiffness matrix multiplier, β, in the damping expression given in the ALPHAD command. Values of β may also be input as a material property (use the DAMP label on the MP command). If DAMP is included, the DAMP value is added to the BETAD value as appropriate (see Damping Matrices in the Theory Reference for the Mechanical APDL and Mechanical Applications). Damping is not used in the static (ANTYPE,STATIC) or buckling (ANTYPE,BUCKLE) analyses.

This command is also valid in PREP7.

Menu Paths

Main Menu>Preprocessor>Loads>Analysis Type>Sol'n Controls>Transient
Main Menu>Preprocessor>Loads>Load Step Opts>Time/Frequenc>Damping
Main Menu>Solution>Analysis Type>Sol'n Controls>Transient
Main Menu>Solution>Load Step Opts>Time/Frequenc>Damping

BF, NODE, Lab, VAL1, VAL2, VAL3, VAL4
Defines a nodal body force load.
SOLUTION: FE Body Loads
MP ME ST PR PRN <> <> FL EM EH <> PP <> EME MFS

NODE

Node to which body load applies. If $N O D E=$ ALL, apply to all selected nodes [NSEL]. A component name may also be substituted for NODE.

Lab

Valid body load label. Load labels are listed under "Body Loads" in the input table for each element type in the Element Reference.

Discipline	Body Load Label	Label Description
Structural	TEMP	temperature
	FREQ	frequency (harmonic ana- lyses only)
	FLUE	fluence
Thermal	HGEN	heat generation rate

Discipline	Body Load Label	Label Description
Magnetic	TEMP	temperature
	MVDI	magnetic virtual displace- ments flags
Electric	TEMP	temperature
	CHRGD	charge density
High-frequency electromagnet- ic	JS	current density
	H	magnetic field
	EF	electric field
	PORT	number 1-50 for interior waveguide or transmission line port
	CHRGD	inner conductor flag
	IMPD	impedance sheet
FLOTRAN	HGEN	shunt RCL lumped circuit
	FORC	nodal body force densities in momentum equation

VAL1, VAL2, VAL3, VAL4

Value associated with the Lab item or table name reference for tabular boundary conditions. To specify a table, enclose the table name in percent signs (\%) (e.g., BF,NODE,TEMP,\%tabname\%). Use the *DIM command to define a table. Use only VAL1 for TEMP, FLUE, HGEN, MVDI, CHRGD, and PORT. If Lab = PORT, VAL1 is a port number representing an interior waveguide or transmission line port. If $L a b=$ CHRGD for a high-frequency inner conductor flag, VAL1 is the inner conductor number (no default).

If $L a b=J S$:
VAL1
X-Component.
VAL2
Y-Component.
VAL3
Z-Component.
VAL4
Phase angle in degrees or a negative port number for a driven port.
If $L a b=H$ or $E F:$
VAL1
X-Component.

VAL2

Y-Component.

VAL3

Z-Component.

VAL4

Phase angle in degrees.
If $L a b=F O R C:$

VAL1

X-Component.
VAL2
Y-Component.

VAL3

Z-Component.

VAL4

Not used.
If $L a b=$ IMPD:
VAL1
Resistance in ohms/square

VAL2

Reactance in ohms/square

VAL3

Not used.

VAL4

Not used.

If Lab = LUMP:

VAL1

Resistance (ohm) of shunt RCL lumped circuit.

VAL2

Capacitance (F) of shunt RCL lumped circuit.

VAL3

Inductance (H) of shunt RCL lumped circuit.
VAL4
As shown in the following figure, ratio of length (L) to width (W) of a shunt RCL lumped circuit with uniform current (I). VAL4 defaults to 1.0.

Figure 1 RCL Lumped Circuit

Notes

Defines a nodal body force load (such as temperature in a structural analysis, heat generation rate in a thermal analysis, etc.). Nodal body loads default to the BFUNIF values, if they were previously specified.

You can specify a table name (VAL = \%tabname\%) only for temperature (TEMP), heat generation rate (HGEN), and nodal body force density (FORC) body load labels.

The heat generation rate loads specified with the BF command are multiplied by the weighted nodal volume of each element adjacent to that node. This yields the total heat generation at that node.

Graphical picking is available only via the listed menu paths.
This command is also valid in PREP7.

Menu Paths

> Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Boundary>Temperature>On Nodes Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Excitation>AppCharDens>On Nodes Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Excitation>AppElecField>On Nodes Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Excitation>EMPorts>Interior Port>On Nodes
> Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid $/$ ANSYS>Heat Generat>On Nodes Main Menu>Preprocessor>Loads>Define Loads>Apply>Magnetic>Boundary>Temperature>On Nodes
> Main Menu>Preprocessor>Loads>Define Loads>Apply>Magnetic>Excitation>AppCurrDens>On Nodes
> Main Menu>Preprocessor>Loads>Define Loads>Apply>Magnetic>Excitation>AppMagField>On Nodes
> Main Menu>Preprocessor>Loads>Define Loads>Apply>Magnetic>Other>AppVirtDisp>On Nodes Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Other>Fluence>On Nodes Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Heat Generat>On Nodes Main Menu>Solution>Define Loads>Apply>Electric>Boundary>Temperature>On Nodes Main Menu>Solution>Define Loads>Apply>Electric>Excitation>AppCharDens>On Nodes Main Menu>Solution>Define Loads>Apply>Electric>Excitation>AppElecField>On Nodes Main Menu>Solution>Define Loads>Apply>Electric>Excitation>EMPorts>Interior Port>On Nodes Main Menu>Solution>Define Loads>Apply>Fluid/ANSYS>Heat Generat>On Nodes

Main Menu>Solution>Define Loads>Apply>Magnetic>Boundary>Temperature>On Nodes Main Menu>Solution>Define Loads>Apply>Magnetic>Excitation>AppCurrDens>On Nodes Main Menu>Solution>Define Loads>Apply>Magnetic>Excitation>AppMagField>On Nodes Main Menu>Solution>Define Loads>Apply>Magnetic>Other>AppVirtDisp>On Nodes Main Menu>Solution>Define Loads>Apply>Structural>Other>Fluence>On Nodes Main Menu>Solution>Define Loads>Apply>Thermal>Heat Generat>On Nodes

BFA, AREA, Lab, VAL1, VAL2, VAL3, VAL4

Defines a body force load on an area.

SOLUTION: Solid Body Loads
MP ME ST PR PRN <> <> <> EM EH <> PP <> EME MFS

AREA

Area to which body load applies. If ALL, apply to all selected areas [ASEL]. A component name may also be substituted for $A R E A$.

Lab

Valid body load label. Load labels are listed under "Body Loads" in the input table for each element type in the Element Reference.

Discipline	Body Load Label	Label Description
Structural	TEMP	temperature
	FLUE	fluence
Thermal	HGEN	heat generation rate
Magnetic	TEMP	temperature
	JS	current densities
	VLTG	voltage drop
Electric	TEMP	temperature
	CHRGD	charge density
High-frequency electromagnet- ic	JS	current density
	H	magnetic field
	EF	electric field
	PORT	number 1-50 for interior waveguide or transmission line port
	CHRGD	inner conductor flag
	IMPD	impedance sheet
	LUMP	shunt RCL lumped circuit
FLOTRAN	HGEN	heat generation rate

VAL1, VAL2, VAL3
Value associated with the Lab item or a table name for specifying tabular boundary conditions. Use only VAL1 for TEMP, FLUE, HGEN, CHRGD, and PORT. If Lab = PORT, VAL1 is a port number representing an interior waveguide or transmission line port. If $L a b=$ CHRGD for a high-frequency inner conductor flag, VAL1 is the inner conductor number (no default). Use VAL1, VAL2, and VAL3 for the X, Y, and Z components of JS, H, and EF . For $L a b=$ VLTG, VAL1 is the voltage drop and VAL2 is the phase angle. If $L a b=I M P D, V A L 1$ is the resistance and VAL2 is the reactance in ohms/square. If Lab = LUMP, VAL1 is the resistance, VAL2 is the capacitance, and VAL3 is the inductance of the shunt RCL lumped circuit. When specifying a table name, you must enclose the table name in percent signs (\%), e.g., BFA,AREA,Lab,\%tabname\%. Use the *DIM command to define a table.

VAL4
If $L a b=\mathrm{H}$ or $\mathrm{EF}, V A L 4$ is the phase angle in degrees. If $L a b=J S, V A L 4$ is the phase angle in degrees. If $L a b=L U M P, V A L 4$ is the ratio of length (L) to width (W) of a shunt RCL lumped circuit with uniform current (I).

Figure 2 RCL Lumped Circuit

Notes

Defines a body force load (such as temperature in a structural analysis, heat generation rate in a thermal analysis, etc.) on an area. Body loads may be transferred from areas to area elements (or to nodes if area elements do not exist) with the BFTRAN or SBCTRAN commands. Body loads default to the value specified on the BFUNIF command, if it was previously specified.

You can specify a table name only when using temperature (TEMP) and heat generation rate (HGEN) body load labels.

Body loads specified by the BFA command can conflict with other specified body loads. See Resolution of Conflicting Body Load Specifications in the Basic Analysis Guide for details.

Graphical picking is available only via the listed menu paths.
This command is also valid in PREP7.

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads $>$ Apply $>$ Electric>Boundary $>$ Temperature $>$ On Areas Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Excitation>AppCharDens>On Areas Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Excitation>AppElecField>On Areas

Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Excitation>EMPorts>Interior Port>On Areas
Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/ANSYS>Normal Velo>On Areas Main Menu>Preprocessor>Loads>Define Loads>Apply>Magnetic>Boundary>Temperature>On Areas
Main Menu>Preprocessor>Loads>Define Loads>Apply>Magnetic>Excitation>AppCurrDens>On Areas
Main Menu>Preprocessor>Loads>Define Loads>Apply>Magnetic>Excitation>AppMagField>On Areas
Main Menu>Preprocessor>Loads>Define Loads>Apply>Magnetic>Excitation>AppVoltDrop>On Areas
Main Menu $>$ Preprocessor $>$ Loads $>$ Define Loads $>$ Apply $>$ Structural $>$ Other $>$ Fluence $>$ On Areas Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Heat Generat>On Areas Main Menu>Solution>Define Loads>Apply>Electric>Boundary>Temperature>On Areas Main Menu>Solution>Define Loads>Apply>Electric>Excitation>AppCharDens>On Areas Main Menu>Solution>Define Loads>Apply>Electric>Excitation>AppElecField>On Areas Main Menu>Solution>Define Loads>Apply>Electric>Excitation>EMPorts>Interior Port>On Areas Main Menu>Solution>Define Loads>Apply>Fluid/ANSYS>Normal Velo>On Areas Main Menu>Solution>Define Loads>Apply>Magnetic>Boundary>Temperature>On Areas Main Menu>Solution>Define Loads>Apply>Magnetic>Excitation>AppCurrDens>On Areas Main Menu>Solution>Define Loads>Apply>Magnetic>Excitation>AppMagField>On Areas Main Menu>Solution>Define Loads>Apply>Magnetic>Excitation>AppVoltDrop>On Areas Main Menu>Solution>Define Loads>Apply>Structural>Other>Fluence>On Areas Main Menu>Solution>Define Loads>Apply>Thermal>Heat Generat>On Areas

BFADELE, AREA, Lab
Deletes body force loads on an area.
SOLUTION: Solid Body Loads
MP ME ST PR PRN <> <> <> EM EH <> PP <> EME MFS

AREA

Area at which body load is to be deleted. If ALL, delete for all selected areas [ASEL]. A component name may also be substituted for $A R E A$.

Lab
Valid body load label. If ALL, use all appropriate labels. Load labels are listed under "Body Loads" in the input table for each element type in the Element Reference. See the BFA command for labels.

Notes

Deletes body force loads (and all corresponding finite element loads) for a specified area and label. Body loads may be defined on an area with the BFA command.

Graphical picking is available only via the listed menu paths.
This command is also valid in PREP7.

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Delete>All Load Data>All Body Loads>On All Areas

Main Menu $>$ Preprocessor>Loads $>$ Define Loads $>$ Delete $>$ Electric $>$ Boundary $>$ Temperature $>$ On Areas Main Menu>Preprocessor>Loads>Define Loads>Delete>Electric>Excitation>AppCharDens>On Areas
Main Menu>Preprocessor>Loads>Define Loads $>$ Delete $>$ Electric $>$ Excitation $>$ DelElecFieId $>$ On Areas Main Menu>Preprocessor>Loads>Define Loads>Delete>Electric>Excitation>DelIntPort>On Areas Main Menu>Preprocessor>Loads>Define Loads>Delete>Fluid/ANSYS>Normal Velo>On Areas Main Menu>Preprocessor>Loads>Define Loads>Delete>Magnetic>Boundary>Temperature>On Areas
Main Menu>Preprocessor>Loads>Define Loads>Delete>Magnetic>Excitation>AppVoltDrop>On Areas
Main Menu>Preprocessor>Loads>Define Loads>Delete>Magnetic>Excitation>DelCurrDens>On Areas
Main Menu>Preprocessor>Loads>Define Loads>Delete>Magnetic>Excitation>DelMagField>On Areas
Main Menu>Preprocessor>Loads>Define Loads>Delete>Structural>Other>Fluence>On Areas Main Menu>Preprocessor>Loads $>$ Define Loads $>$ Delete $>$ Structural $>$ Temperature $>$ On Areas Main Menu>Preprocessor>Loads>Define Loads>Delete>Thermal>Heat Generat>On Areas Main Menu>Solution>Define Loads>Delete $>$ All Load Data $>$ All Body Loads $>$ On All Areas Main Menu>Solution>Define Loads>Delete>Electric>Boundary>Temperature>On Areas
Main Menu>Solution>Define Loads>Delete>Electric>Excitation>AppCharDens>On Areas Main Menu>Solution>Define Loads>Delete>Electric>Excitation>DelElecField>On Areas Main Menu>Solution>Define Loads>Delete>Electric>Excitation>DelIntPort>On Areas Main Menu>Solution>Define Loads>Delete>Fluid/ANSYS>Normal Velo>On Areas Main Menu $>$ Solution $>$ Define Loads $>$ Delete $>$ Magnetic $>$ Boundary $>$ Temperature $>$ On Areas Main Menu>Solution>Define Loads>Delete>Magnetic>Excitation>AppVoltDrop>On Areas Main Menu>Solution>Define Loads>Delete>Magnetic>Excitation>DelCurrDens>On Areas Main Menu>Solution>Define Loads>Delete>Magnetic>Excitation>DelMagField>On Areas Main Menu>Solution>Define Loads>Delete>Structural>Other>Fluence>On Areas Main Menu>Solution>Define Loads>Delete>Structural>Temperature $>$ On Areas
Main Menu>Solution>Define Loads>Delete>Thermal>Heat Generat>On Areas

BFALIST, AREA, Lab

Lists the body force loads on an area.
SOLUTION: Solid Body Loads
MP ME ST PR PRN <> <> <> EM EH <> PP <> EME MFS
AREA
Area at which body load is to be listed. If ALL (or blank), list for all selected areas [ASEL]. If AREA = P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for AREA.

Lab
Valid body load label. If ALL, use all appropriate labels. Load labels are listed under "Body Loads" in the input table for each element type in the Element Reference. See the BFA command for labels.

Notes

Lists the body force loads for the specified area and label. Body loads may be defined on an area with the BFA command.

This command is valid in any processor.

Menu Paths

Utility Menu>List>Loads>Body Loads>On All Areas
Utility Menu>List>Loads>Body Loads>On Picked Areas

BFCUM, Lab, Oper, FACT, TBASE

Specifies that nodal body force loads are to be accumulated.

SOLUTION:FE Body Loads
MP ME ST PR PRN <> <> FL EM EH <> PP <> EME MFS

Lab

Valid body load label. If ALL, use all appropriate labels.

Discipline	Body Load Label	Label Description
Structural	TEMP	temperature
	FLUE	fluence
Thermal	HGEN	heat generation rate
Magnetic	TEMP	temperature
	JS	current densities
	MVDI	magnetic virtual displace- ments flag
Electric	TEMP	temperature
	CHRGD	charge density

Oper
Accumulation key:
REPL
Subsequent values replace the previous values (default).
ADD
Subsequent values are added to the previous values.
IGNO
Subsequent values are ignored.

FACT

Scale factor for the nodal body load values. Zero (or blank) defaults to 1.0. Use a small number for a zero scale factor. The scale factor is not applied to body load phase angles.

TBASE

Used (only with $L a b=T E M P$) to calculate the temperature used in the add or replace operation (see Oper) as:

$$
\text { Temperature }=T B A S E+F A C T^{*}(T-T B A S E)
$$

where T is the temperature specified on subsequent BF commands. TBASE defaults to zero.

Command Default

Replace previous values.

Notes

Allows repeated nodal body force loads to be replaced, added, or ignored. Nodal body loads are applied with the BF command. Issue the BFLIST command to list the nodal body loads. The operations occur when the next body loads are defined. For example, issuing the BF command with a temperature of 250 after a previous BF command with a temperature of 200 causes the new value of the temperature to be 450 with the add operation, 250 with the replace operation, or 200 with the ignore operation. A scale factor is also available to multiply the next value before the add or replace operation. A scale factor of 2.0 with the previous "add" example results in a temperature of 700 . The scale factor is applied even if no previous values exist. Issue BFCUM,STAT to show the current label, operation, and scale factors. Solid model boundary conditions are not affected by this command, but boundary conditions on the FE model are affected.

Note

FE boundary conditions may still be overwritten by existing solid model boundary conditions if a subsequent boundary condition transfer occurs.

BFCUM does not work for tabular boundary conditions.
This command is also valid in PREP7.

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Settings>Replace vs Add>Nodal Body Ld Main Menu>Solution>Define Loads>Settings>Replace vs Add>Nodal Body Ld

BFDELE, NODE, Lab

Deletes nodal body force loads.

> SOLUTION: FE Body Loads
> MP ME ST PR PRN <> <> FL EM EH <> PP <> EME MFS

NODE

Node at which body load is to be deleted. If ALL, delete for all selected nodes [NSEL]. If NODE $=\mathrm{P}$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NODE.

Lab

Valid body load label. If ALL, use all appropriate labels. See the BF command for labels. In an explicit dynamic analysis, the only valid body load label is TEMP.

Notes

Deletes nodal body force loads for a specified node and label. Nodal body loads may be defined with the BF command (except in an explicit dynamic analysis).

The command BFDELE,TEMP can be used in an explicit dynamic analysis to delete temperature loads that are read in by the LDREAD command. BFDELE cannot be used to delete temperature loads defined by the EDLOAD command (use EDLOAD,DELE to delete this type of load).

This command is also valid in PREP7.

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Delete>All Load Data>All Body Loads>On All Nodes Main Menu>Preprocessor>Loads>Define Loads>Delete>Electric>Boundary $>$ Temperature $>$ On Nodes Main Menu>Preprocessor>Loads>Define Loads>Delete>Electric>Excitation>AppCharDens>On Nodes
Main Menu>Preprocessor>Loads>Define Loads>Delete>Electric>Excitation>DelElecField>On Nodes Main Menu>Preprocessor>Loads>Define Loads>Delete>Electric>Excitation>DelIntPort>On Nodes Main Menu>Preprocessor>Loads>Define Loads>Delete>Fluid/ANSYS>Heat Generat>On Nodes Main Menu $>$ Preprocessor>Loads>Define Loads>Delete>Fluid/CFD>Body Forces Main Menu>Preprocessor>Loads>Define Loads>Delete>Magnetic>Boundary>Temperature>On Nodes
Main Menu>Preprocessor>Loads>Define Loads>Delete>Magnetic>Excitation>DelCurrDens>On Nodes
Main Menu>Preprocessor>Loads>Define Loads>Delete>Magnetic>Excitation>DelMagField>On Nodes
Main Menu>Preprocessor>Loads>Define Loads>Delete>Magnetic>Other>AppVirtDisp>On Nodes Main Menu $>$ Preprocessor>Loads $>$ Define Loads $>$ Delete $>$ Structural $>$ Other $>$ Fluence $>$ On Nodes Main Menu>Preprocessor>Loads>Define Loads>Delete>Structural>Temperature>On Node Components
Main Menu $>$ Preprocessor>Loads>Define Loads $>$ Delete $>$ Structural $>$ Temperature $>$ On Nodes Main Menu>Preprocessor>Loads>Define Loads>Delete>Thermal>Heat Generat>On Nodes Main Menu>Preprocessor>LS-DYNA Options>Loading Options>Delete Temps Main Menu>Solution>Define Loads>Delete>All Load Data>All Body Loads>On All Nodes Main Menu>Solution>Define Loads>Delete>Electric>Boundary>Temperature>On Nodes Main Menu>Solution>Define Loads>Delete>Electric>Excitation>AppCharDens>On Nodes Main Menu>Solution>Define Loads>Delete>Electric>Excitation>DelElecField>On Nodes Main Menu>Solution>Define Loads>Delete>Electric>Excitation>DelIntPort>On Nodes Main Menu>Solution>Define Loads>Delete>Fluid/ANSYS>Heat Generat>On Nodes Main Menu>Solution>Define Loads>Delete $>$ Fluid/CFD $>$ Body Forces Main Menu>Solution>Define Loads>Delete>Magnetic>Boundary>Temperature>On Nodes Main Menu>Solution $>$ Define Loads $>$ Delete $>$ Magnetic $>$ Excitation $>$ DelCurrDens $>$ On Nodes Main Menu>Solution>Define Loads>Delete>Magnetic>Excitation>DelMagFieId>On Nodes Main Menu>Solution>Define Loads>Delete>Magnetic>Other>AppVirtDisp>On Nodes Main Menu>Solution>Define Loads $>$ Delete $>$ Structural $>$ Other $>$ Fluence $>$ On Nodes Main Menu $>$ Solution $>$ Define Loads $>$ Delete $>$ Structural $>$ Temperature $>$ On Node Components Main Menu $>$ Solution $>$ Define Loads $>$ Delete $>$ Structural $>$ Temperature $>$ On Nodes Main Menu>Solution>Define Loads>Delete>Thermal>Heat Generat>On Nodes Main Menu>Solution>Loading Options>Delete Temps

BFE, ELEM, Lab, STLOC, VAL1, VAL2, VAL3, VAL4

Defines an element body force load.

SOLUTION:FE Body Loads
MP ME ST PR PRN <> <> FL EM EH <> PP <> EME MFS
ELEM
Element to which body load applies. If ALL, apply to all selected elements (ESEL). A component name may also be substituted for ELEM.

Lab
Valid body load label. Valid labels are also listed for each element type in the Element Reference under "Body Loads" in the input table.

Discipline	Body Load Label	Label Description
	TEMP	Temperature
	FREQ	Frequency (harmonic ana- lyses only)
	FLUE	Fluence
	FORC	Body force density in mo- mentum equation
Thermal	HGEN	Heat generation rate
Magnetic	EF	Electric field
	TEMP	Temperature
	JS	Current density
	VLTG	Voltage drop
	MVDI	Magnetic virtual displace- ments flag
Electric	TEMP	Temperature
	CHRGD	Charge density
High-frequency electromagnet- ic	JS	Current density
Field volume interface	FVIN	Field volume interface flag

STLOC

Starting location for entering VAL data, below. For example, if $S T L O C=1$, data input in the VAL1 field applies to the first element body load item available for the element type, VAL2 applies to the second element item, etc. If STLOC $=5$, data input in the VAL1 field applies to the fifth element item, etc. Defaults to 1 .

VAL1, VAL2, VAL3, VAL4

For Lab = TEMP, FLUE, HGEN, and CHRGD, VAL1--VAL4 represent body load values at the starting location and subsequent locations (usually nodes) in the element. VAL1 can also represent a table name for use with tabular boundary conditions. Enter only VAL1 for a uniform body load across the element.

For nonuniform loads, the values must be input in the same order as shown in the input table for the element type. Values initially default to the BFUNIF value (except for CHRGD which defaults to zero). For subsequent specifications, a blank leaves a previously specified value unchanged; if the value was not previously specified, the default value as described in the Element Reference is used.

For $L a b=J S$ and $S T L O C=1$, VAL1, VAL2 and VAL3 are the X, Y, and Z components of current density (in the element coordinate system), and VAL4 is the phase angle.

For $L a b=E F$ and $S T L O C=1, V A L 1, V A L 2$, and VAL3 are the X, Y, and Z components of electric field (in the global Cartesian coordinate system).

For $L a b=$ VLTG and $S T L O C=1$, VAL1 is the voltage drop and VAL2 2 is the phase angle.
If $L a b=$ FVIN in a Multi-field solver (single or multiple code coupling) analysis, VAL1 is the volume interface number. If $L a b=$ FVIN in a unidirectional ANSYS to CFX analysis, VAL2 is the volume interface number (not available from within the GUI) and VAL1 is not used unless the ANSYS analysis is performed using the Multi-field solver. VALS and VAL4 are not used.

For $L a b=F O R C$ and $S T L O C=1, V A L 1, V A L 2$, and VAL3 3 are the X, Y, and Z components of force density (in the global Cartesian coordinate system).

Notes

Defines an element body force load (such as temperature in a structural analysis, heat generation rate in a thermal analysis, etc.). Body loads and element specific defaults are described for each element type in the Element Reference. If both the BF and BFE commands are used to apply a body load to an element, the BFE command takes precedence.

Specifying a Table

You can specify a table name (VAL1) only when using temperature (TEMP), heat generation rate (HGEN), and current density (JS) body load labels.

Enclose the table name (tabname) in percent signs (\%), as shown:
BFE,ELEM, Lab,STLOC,\%tabname\%
Use the *DIM command to define a table.
For Lab $=$ TEMP, each table defines NTEMP temperatures, as follows:

- For layered elements, $N T E M P$ is the number of layer interface corners that allow temperature input.
- Beam and pipe elements are not supported.
- For non-layered elements, NTEMP is the number of corner nodes.

The temperatures apply to element items with a starting location of (STLOC $+n$), where n is the value field location (VALn) of the table name input.

For layered elements, a single BFE command returns temperatures for one layer interface. Multiple BFE commands are necessary for defining all layered temperatures.

When a tabular function load is applied to an element, the load will not vary according to the positioning of the element in space.

Graphical picking is available only via the listed menu paths.
This command is also valid in PREP7.

Menu Paths

> Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Boundary>Temperature>On Elements Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Excitation>AppCharDens>On Elements
> Main Menu>Preprocessor>Loads>Define Loads>Apply>Field Volume Intr>On Elements Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/ANSYS>Heat Generat>On Elements Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/ANSYS>Normal Velo>On Elements Main Menu $>$ Preprocessor>Loads>Define Loads>Apply>Magnetic>Boundary>Temperature>On Elements
> Main Menu>Preprocessor>Loads>Define Loads>Apply>Magnetic>Excitation>AppCurrDens>On Elements
> Main Menu>Preprocessor>Loads>Define Loads>Apply>Magnetic>Excitation>AppVoltDrop>On Elements
> Main Menu>Preprocessor>Loads>Define Loads>Apply>Magnetic>Other>Electric Field>On Elements Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Other>Fluence>On Elements Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Heat Generat>On Elements Main Menu>Solution>Define Loads>Apply>Electric>Boundary>Temperature>On Elements Main Menu>Solution>Define Loads>Apply>Electric>Excitation>AppCharDens>On Elements Main Menu>Solution>Define Loads>Apply>Field Volume Intr>On Elements Main Menu>Solution>Define Loads>Apply>Fluid/ANSYS>Heat Generat>On Elements Main Menu>Solution>Define Loads>Apply>Fluid/ANSYS>Normal Velo>On Elements Main Menu>Solution>Define Loads>Apply>Magnetic>Boundary>Temperature>On Elements Main Menu>Solution>Define Loads>Apply>Magnetic>Excitation>AppCurrDens>On Elements Main Menu>Solution>Define Loads>Apply>Magnetic>Excitation>AppVoltDrop>On Elements Main Menu>Solution>Define Loads>Apply>Magnetic>Other>Electric Field>On Elements Main Menu>Solution>Define Loads>Apply>Structural>Other>Fluence>On Elements Main Menu>Solution>Define Loads>Apply>Thermal>Heat Generat>On Elements

BFECUM, Lab, Oper, FACT, TBASE

Specifies whether to ignore subsequent element body force loads.
SOLUTION:FE Body Loads
MP ME ST PR PRN <> <> FL EM EH <> PP <> EME MFS
Lab
Valid body load label. If ALL, use all appropriate labels.

Discipline	Body Load Label	Label Description
Structural	TEMP	temperature

Discipline	Body Load Label	Label Description
	FLUE	fluence
Thermal	HGEN	heat generation rate
Magnetic	TEMP	temperature
	JS	current densities
	VLTG	voltage drop
	MVDI	magnetic virtual displace- ments flag
Electric	TEMP	temperature
	CHRGD	charge density

Oper

Replace or ignore key:

REPL

Subsequent values replace the previous values (default).

IGNO

Subsequent values are ignored.

FACT

Scale factor for the element body load values. Zero (or blank) defaults to 1.0. Use a small number for a zero scale factor. The scale factor is not applied to body load phase angles.

TBASE

Used (only with Lab $=$ TEMP) to calculate the temperature used in the add or replace operation (see Oper) as:

$$
\text { Temperature }=T B A S E+F A C T^{*}(T-T B A S E)
$$

where T is the temperature specified on subsequent BFE commands. TBASE defaults to zero.

Command Default

Replace previous values.

Notes

Allows repeated element body force loads to be replaced or ignored. Element body loads are applied with the BFE command. Issue the BFELIST command to list the element body loads. The operations occur when the next body loads are defined. For example, issuing the BFE command with a temperature value of 25 after a previous BFE command with a temperature value of 20 causes the new value of that temperature to be 25 with the replace operation, or 20 with the ignore operation. A scale factor is also available to multiply the next value before the replace operation. A scale factor of 2.0 with the previous "replace" example results in a temperature of 50 . The scale factor is applied even if no previous values exist. Issue BFECUM,STAT to show the current label, operation, and scale factors.

BFECUM does not work for tabular boundary conditions.

This command is also valid in PREP7.

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Settings>Replace vs Add>Elem Body Lds Main Menu>Solution>Define Loads>Settings>Replace vs Add>Elem Body Lds

BFEDELE, , LEM, Lab

Deletes element body force loads.
SOLUTION: FE Body Loads
MP ME ST PR PRN <> <> FL EM EH <> PP <> EME MFS

ELEM

Element at which body load is to be deleted. If ALL, delete for all selected elements [A component name may also be substituted for ELEM.

Lab
Valid body load label. If ALL, use all appropriate labels. See BFE command for labels.

Notes

Deletes element body force loads for a specified element and label. Element body loads may be defined with the BFE commands.

Graphical picking is available only via the listed menu paths.
This command is also valid in PREP7.

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Delete>All Load Data>All Body Loads>On All Elems Main Menu>Preprocessor>Loads>Define Loads>Delete>Electric>Boundary>Temperature>On Elements
Main Menu>Preprocessor>Loads>Define Loads>Delete>Electric>Excitation>AppCharDens>On Elements
Main Menu>Preprocessor>Loads>Define Loads>Delete>Fluid/ANSYS>Heat Generat>On Elements Main Menu>Preprocessor>Loads>Define Loads>Delete>Fluid/ANSYS>Normal Velo>On Elements Main Menu>Preprocessor>Loads>Define Loads>Delete>Magnetic>Boundary>Temperature>On Elements
Main Menu>Preprocessor>Loads>Define Loads>Delete>Magnetic>Excitation>AppVoltDrop>On Elements
Main Menu>Preprocessor>Loads>Define Loads>Delete>Magnetic>Excitation>DelCurrDens>On Elements
Main Menu>Preprocessor>Loads>Define Loads $>$ Delete $>$ Structural $>$ Other $>$ Fluence $>$ On Elements Main Menu>Preprocessor>Loads>Define Loads>Delete>Structural>Temperature>On Element Components
Main Menu $>$ Preprocessor>Loads $>$ Define Loads $>$ Delete $>$ Structural $>$ Temperature $>$ On Elements Main Menu>Preprocessor>Loads>Define Loads>Delete>Thermal>Heat Generat>On Elements Main Menu>Solution>Define Loads>Delete>All Load Data>All Body Loads>On All Elems Main Menu>Solution>Define Loads>Delete>Electric>Boundary>Temperature>On Elements

Main Menu>Solution>Define Loads>Delete>Electric>Excitation>AppCharDens>On Elements Main Menu>Solution>Define Loads>Delete>Fluid/ANSYS>Heat Generat>On Elements Main Menu>Solution>Define Loads>Delete>Fluid/ANSYS>Normal Velo>On Elements Main Menu>Solution $>$ Define Loads $>$ Delete $>$ Magnetic $>$ Boundary $>$ Temperature $>$ On Elements Main Menu>Solution>Define Loads>Delete>Magnetic>Excitation>AppVoltDrop>On Elements Main Menu>Solution>Define Loads>Delete>Magnetic>Excitation>DelCurrDens>On Elements Main Menu $>$ Solution $>$ Define Loads $>$ Delete $>$ Structural $>$ Other $>$ Fluence $>$ On Elements Main Menu>Solution>Define Loads>Delete>Structural>Temperature>On Element Components Main Menu>Solution>Define Loads>Delete>Structural>Temperature>On Elements Main Menu>Solution>Define Loads>Delete>Thermal>Heat Generat>On Elements

BFELIST, eLem, Lab

Lists the element body force loads.

> SOLUTION: FE Body Loads
> MP ME ST PR PRN <> <> FL EM EH <> PP <> EME MFS

ELEM

Element at which body load is to be listed. If ALL (or blank), list for all selected elements [ESEL]. If $E L E M$ = P , graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for ELEM.

Lab

Valid body load label. If ALL (or blank), use all appropriate labels. See BFE command for labels.

Notes

Lists the element body force loads for the specified element and label. Element body loads may be defined with the BFE command.

This command is valid in any processor.

Menu Paths

Utility Menu>List>Loads>Body Loads>On All Elements
Utility Menu>List>Loads>Body Loads>On Picked Elems

BFESCAL, Lab, FACT, TBASE
Scales element body force loads.
SOLUTION: FE Body Loads
MP ME ST PR PRN <> <> FL EM EH <> PP <> EME MFS

Lab

Valid body load label. If ALL, use all appropriate labels.

Discipline	Body Load Label	Label Description
Structural	TEMP	temperature
	FLUE	fluence
Thermal	HGEN	heat generation rate
Magnetic	TEMP	temperature
	JS	current densities
	VLTG	voltage drop
	MVDI	magnetic virtual displace- ments flag
Electric	TEMP	temperature
	CHRGD	charge density

FACT

Scale factor for the element body load values. Zero (or blank) defaults to 1.0. Use a small number for a "zero" scale factor. The scale factor is not applied to body load phase angles.

TBASE

Base temperature for temperature difference. Used only with Lab = TEMP. Scale factor is applied to the temperature difference ($T-T B A S E$) and then added to TBASE. T is the current temperature.

Notes

Scales element body force loads on the selected elements in the database. Issue the BFELIST command to list the element body loads. Solid model boundary conditions are not scaled by this command, but boundary conditions on the FE model are scaled. (Note that such scaled FE boundary conditions may still be overwritten by unscaled solid model boundary conditions if a subsequent boundary condition transfer occurs.)

BFESCAL does not work for tabular boundary conditions.
This command is also valid in PREP7.

Menu Paths

> Main Menu>Preprocessor>Loads>Define Loads>Operate>Scale FE Loads>Elem Body Lds Main Menu>Solution>Define Loads>Operate>Scale FE Loads>Elem Body Lds

BFINT, Fname 1, Ext1, --, Fname2, Ext2,--, KPOS, Clab, KSHS, TOLOUT, TOLHGT

Activates the body force interpolation operation.

> POST1: Special Purpose
> MP ME ST PR PRN <> <> FL EM EH <> PP <> EME MFS

Fname1

File name and directory path (248 characters maximum, including directory) from which to read data for interpolation. If you do not specify a directory path, it will default to your working directory and you can use all 248 characters for the file name.

The file name defaults to Jobname.

Ext1

Filename extension (8 character maximum).
The extension defaults to NODE if Fname1 is blank.

Unused field.

Fname2

File name and directory path (248 characters maximum, including directory) to which BF commands are written. If you do not specify a directory path, it will default to your working directory and you can use all 248 characters for the file name.

The file name defaults to Jobname.

Ext2

Filename extension (8 character maximum).
The extension defaults to BFIN if Fname2 is blank.

Unused field.

KPOS

Position on Fname 2 to write block of BF commands:
0
Beginning of file (overwrite existing file).
1
End of file (append to existing file).

Clab

Label (8 characters maximum, including the colon) for this block of BF commands in Fname2. This label is appended to the colon (:). Defaults to $B F n$, where n is the cumulative iteration number for the data set currently in the database.

KSHS

Shell-to-solid submodeling key:
0
Solid-to-solid or shell-to-shell submodel.
1
Shell-to-solid submodel.

TOLOUT

Extrapolation tolerance about elements, based on a fraction of the element dimension. Submodel nodes outside the element by more than TOLOUT are not accepted as candidates for DOF extrapolation. Defaults to 0.5 (50\%).

TOLHGT

Height tolerance above or below shell elements, in units of length. Used only for shell-to-shell submodeling ($K S H S=0$). Submodel nodes off of the element surface by more than TOLHGT are not accepted as candidates for DOF interpolation or extrapolation. Defaults to 0.0001 times the maximum element dimension.

Caution

Relaxing this tolerance to allow submodel nodes to be "found" could produce poor submodel results.

Notes

File Fname1 should contain a node list for which body forces are to be interpolated [NWRITE]. File Fname2 is created, and contains interpolated body forces written as a block of nodal BF commands.

Body forces are interpolated from elements having TEMP as a valid body force or degree of freedom, and only the label TEMP is written on the nodal BF commands. Interpolation is performed for all nodes on file Fname1 using the results data currently in the database. For layered elements, use the LAYER command to select the locations of the temperatures to be used for interpolation. Default locations are the bottom of the bottom layer and the top of the top layer.

The block of BF commands begins with an identifying colon label command and ends with a /EOF command. The colon label command is of the form :Clab, where $C l a b$ is described above. Interpolation from multiple results sets can be performed by looping through the results file in a user-defined macro. Additional blocks can be appended to Fname2 by using KPOS and unique colon labels. A /INPUT command, with the appropriate colon label, may be used to read the block of commands.

Menu Paths

Main Menu>General Postproc>Submodeling>Interp Body Forc

BFK, KPOI, Lab, VAL1, VAL2, VAL3, PHASE

Defines a body force load at a keypoint.

SOLUTION:Solid Body Loads
MP ME ST PR PRN <> <> <> EM EH <> PP <> EME MFS

KPOI

Keypoint to which body load applies. If ALL, apply to all selected keypoints [KSEL]. A component name may also be substituted for KPOI.

Lab

Valid body load label. Load labels are listed under "Body Loads" in the input table for each element type in the Element Reference.

Discipline	Body Load Label	Label Description
Structural	TEMP	temperature
	FLUE	fluence
Thermal	HGEN	heat generation rate
Magnetic	TEMP	temperature
	JS	current densities
	MVDI	magnetic virtual displace- ments flag
Electric	TEMP	temperature
	CHRGD	charge density
High-frequency electromagnet- ic	JS	current density

All keypoints on a given area (or volume) must have the same BFK table name for the tables to be transferred to interior nodes.

VAL1, VAL2, VAL3

Value associated with the Lab item or a table name for specifying tabular boundary conditions. Use only VALI for TEMP, FLUE, HGEN, MVDI and CHRGD. Use VAL1, VAL2, and VAL3 for the X, Y, and Z components of JS. When specifying a table name, you must enclose the table name in percent signs (\%), e.g., BFK,KPOI,Lab,\%tabname\%. Use the *DIM command to define a table.

PHASE

Phase angle in degrees associated with the JS label.

Notes

Defines a body force load (such as temperature in a structural analysis, heat generation rate in a thermal analysis, etc.) at a keypoint. Body loads may be transferred from keypoints to nodes with the BFTRAN or SBCTRAN commands. Interpolation will be used to apply loads to the nodes on the lines between keypoints. All keypoints on a given area (or volume) must have the same BFK specification, with the same values, for the loads to be transferred to interior nodes in the area (or volume). If only one keypoint on a line has a BFK specification, the other keypoint defaults to the value specified on the BFUNIF command.

You can specify a table name only when using temperature (TEMP) and heat generation rate (HGEN) body load labels.

Body loads specified by the BFK command can conflict with other specified body loads. See Resolution of Conflicting Body Load Specifications in the Basic Analysis Guide for details.

Graphical picking is available only via the listed menu paths.
This command is also valid in PREP7.

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Boundary>Temperature>On Keypoints
Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Excitation>AppCharDens>On Keypoints
Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/ANSYS>Heat Generat>On Keypoints Main Menu>Preprocessor>Loads>Define Loads>Apply>Magnetic>Boundary>Temperature>On Keypoints
Main Menu>Preprocessor>Loads>Define Loads>Apply>Magnetic>Excitation>AppCurrDens>On Keypoints
Main Menu>Preprocessor>Loads>Define Loads>Apply>Magnetic>Other>AppVirtDisp>On Keypoints
Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Other>Fluence>On Keypoints Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Heat Generat>On Keypoints Main Menu>Solution>Define Loads>Apply>Electric>Boundary>Temperature>On Keypoints Main Menu>Solution>Define Loads>Apply>Electric>Excitation>AppCharDens>On Keypoints Main Menu>Solution>Define Loads>Apply>Fluid/ANSYS>Heat Generat>On Keypoints Main Menu>Solution>Define Loads>Apply>Magnetic>Boundary>Temperature>On Keypoints Main Menu>Solution>Define Loads>Apply>Magnetic>Excitation>AppCurrDens>On Keypoints Main Menu>Solution>Define Loads>Apply>Magnetic>Other>AppVirtDisp>On Keypoints Main Menu>Solution>Define Loads>Apply>Structural>Other>Fluence>On Keypoints Main Menu>Solution>Define Loads>Apply>Thermal>Heat Generat>On Keypoints

BFKDELE, KPOI, Lab

Deletes body force loads at a keypoint.
SOLUT ION: Solid Body Loads
MP ME ST PR PRN <> <> <> EM EH <> PP <> EME MFS
KPOI
Keypoint at which body load is to be deleted. If ALL, delete for all selected keypoints [KSEL]. A component name may also be substituted for KPOI.

Lab
Valid body load label. If ALL, use all appropriate labels. Load labels are listed under "Body Loads" in the input table for each element type in the Element Reference. See the BFK command for labels.

Notes

Deletes body force loads (and all corresponding finite element loads) for a specified keypoint and label. Body loads may be defined at a keypoint with the BFK command.

Graphical picking is available only via the listed menu paths.
This command is also valid in PREP7.

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Delete>All Load Data>All Body Loads>On All KPs

Main Menu>Preprocessor>Loads>Define Loads>Delete>Electric>Boundary>Temperature>On Keypoints
Main Menu>Preprocessor>Loads>Define Loads>Delete>Electric>Excitation>AppCharDens>On Keypoints
Main Menu>Preprocessor>Loads>Define Loads>Delete>Fluid/ANSYS>Heat Generat>On Keypoints Main Menu>Preprocessor>Loads>Define Loads>Delete>Magnetic>Boundary>Temperature>On Keypoints
Main Menu>Preprocessor>Loads>Define Loads>Delete>Magnetic>Excitation>DelCurrDens>On Keypoints
Main Menu>Preprocessor>Loads>Define Loads>Delete>Magnetic>Other>AppVirtDisp>On Keypoints Main Menu>Preprocessor>Loads>Define Loads>Delete>Structural>Other>Fluence>On Keypoints Main Menu>Preprocessor>Loads>Define Loads>Delete>Structural>Temperature>On Keypoints Main Menu>Preprocessor>Loads>Define Loads>Delete>Thermal>Heat Generat>On Keypoints Main Menu>Solution>Define Loads>Delete>All Load Data>All Body Loads>On All KPs Main Menu>Solution>Define Loads>Delete>Electric>Boundary>Temperature>On Keypoints Main Menu>Solution>Define Loads>Delete>Electric>Excitation>AppCharDens>On Keypoints Main Menu>Solution>Define Loads>Delete>Fluid/ANSYS>Heat Generat>On Keypoints Main Menu>Solution>Define Loads>Delete>Magnetic>Boundary>Temperature>On Keypoints Main Menu>Solution>Define Loads>Delete>Magnetic>Excitation>DelCurrDens>On Keypoints Main Menu>Solution>Define Loads>Delete>Magnetic>Other>AppVirtDisp>On Keypoints Main Menu>Solution>Define Loads>Delete>Structural>Other>Fluence>On Keypoints Main Menu>Solution>Define Loads>Delete>Structural>Temperature>On Keypoints Main Menu>Solution>Define Loads>Delete>Thermal>Heat Generat>On Keypoints

BFKLIST, KPOI, Lab
Lists the body force loads at keypoints.
SOLUTION: Solid Body Loads
MP ME ST PR PRN <> <> <> EM EH <> PP <> EME MFS
KPOI
Keypoint at which body load is to be listed. If ALL (or blank), list for all selected keypoints [KSEL]. If KPOI = P , graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for KPOI

Lab

Valid body load label. If ALL, use all appropriate labels. Load labels are listed under "Body Loads" in the input table for each element type in the Element Reference. See the BFK command for labels.

Notes

Lists the body force loads for the specified keypoint and label. Keypoint body loads may be defined with the BFK command.

This command is valid in any processor.

Menu Paths

Utility Menu>List>Loads>Body Loads>On All Keypoints
Utility Menu>List>Loads>Body Loads>On Picked KPs

BFL, LINE, Lab, VAL1, VAL2, VAL3, VAL4

Defines a body force load on a line.

SOLUTION:Solid Body Loads
MP ME ST PR PRN <> <> <> EM EH <> PP <> EME MFS
LINE
Line to which body load applies. If ALL, apply to all selected lines [LSEL]. A component name may also be substituted for LINE.

Lab
Valid body load label. Load labels are listed under "Body loads" in the input table for each element type in the Element Reference.

Discipline	Body Load Label	Label Description
Structural	TEMP	temperature
	FLUE	fluence
Thermal	HGEN	heat generation rate
Magnetic	TEMP	temperature
Electric	TEMP	temperature
	CHRGD	charge density
High-frequency electromagnet- ic	JS	current density
	EF	electric field
	CHRGD	inner conductor flag
	IMPD	impedance sheet
	LUMP	shunt RCL lumped circuit
FLOTRAN	HGEN	heat generation rate
	FORC	body force density

VAL1, VAL2, VAL3

Value associated with the Lab item or a table name for specifying tabular boundary conditions. Use only VAL1 for TEMP, FLUE, HGEN, and CHRGD. If $L a b=$ CHRGD for a high-frequency inner conductor flag, VAL1 is the inner conductor number (no default). If $L a b=$ IMPD, VAL1 is the resistance and VAL2 is the reactance in ohms/square. If $L a b=L U M P, V A L 1$ is the resistance, VAL2 is the capacitance, and VALS 3 is the inductance of the shunt RCL lumped circuit. Use VAL1, VAL2, and VAL3 for the X, Y, and Z components of JS, EF, and FORC. When specifying a table name, you must enclose the table name in percent signs (\%), e.g., BFL,LINE,Lab,\%tabname\%. Use the *DIM command to define a table.
VAL4
If $L a b=E F, V A L 4$ is the phase angle in degrees. If $L a b=J S, V A L 4$ is the phase angle in degrees or a negative port number for a driven port. If Lab = LUMP, VAL4 is the length (L) of a shunt RCL lumped circuit with uniform current (I). W =1.

Figure 3 RCL Lumped Circuit

Notes

Defines a body force load (such as temperature in a structural analysis, heat generation rate in a thermal analysis, etc.) on a line. Body loads may be transferred from lines to line elements (or to nodes if line elements do not exist) with the BFTRAN or SBCTRAN commands.

You can specify a table name only when using temperature (TEMP) and heat generation rate (HGEN) body load labels.

Body loads specified by the BFL command can conflict with other specified body loads. See Resolution of Conflicting Body Load Specifications in the Basic Analysis Guide for details.

Graphical picking is available only via the listed menu paths.
This command is also valid in PREP7.

Menu Paths

Main Menu $>$ Preprocessor>Loads $>$ Define Loads $>$ Apply $>$ Electric $>$ Boundary $>$ Temperature $>$ On Lines Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Excitation>AppCharDens>On Lines Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Excitation>AppElecField>On Lines Main Menu>Preprocessor>Loads $>$ Define Loads $>$ Apply $>$ Magnetic $>$ Boundary $>$ Temperature $>$ On Lines
Main Menu>Preprocessor>Loads>Define Loads>Apply>Magnetic>Excitation>AppCurrDens>On Lines
Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Other>Fluence>On Lines Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Heat Generat>On Lines Main Menu>Solution>Define Loads>Apply>Electric>Boundary>Temperature>On Lines Main Menu>Solution>Define Loads>Apply>Electric>Excitation>AppCharDens>On Lines Main Menu>Solution>Define Loads>Apply>Electric>Excitation>AppElecField>On Lines Main Menu>Solution>Define Loads>Apply>Magnetic>Boundary>Temperature>On Lines Main Menu>Solution>Define Loads>Apply>Magnetic>Excitation>AppCurrDens>On Lines Main Menu>Solution>Define Loads>Apply>Structural>Other>Fluence>On Lines Main Menu>Solution>Define Loads>Apply>Thermal>Heat Generat>On Lines

BFLDELE, LINE, Lab

Deletes body force loads on a line.
SOLUTION:Solid Body Loads
MP ME ST PR PRN <> <> <> EM EH <> PP <> EME MFS
LINE
Line at which body load is to be deleted. If ALL, delete for all selected lines [LSEL]. A component name may also be substituted for LINE.

Lab
Valid body load label. If ALL, use all appropriate labels. Load labels are listed under "Body Loads" in the input table for each element type in the Element Reference. See the BFL command for labels.

Notes

Deletes body force loads (and all corresponding finite element loads) for a specified line and label. Body loads may be defined on a line with the BFL command.

Graphical picking is available only via the listed menu paths.
This command is also valid in PREP7.

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Delete>All Load Data>All Body Loads>On All Lines Main Menu $>$ Preprocessor $>$ Loads $>$ Define Loads $>$ Delete $>$ Electric $>$ Boundary $>$ Temperature $>$ On Lines Main Menu>Preprocessor>Loads>Define Loads>Delete>Electric>Excitation>AppCharDens>On Lines Main Menu>Preprocessor>Loads>Define Loads>Delete>Electric>Excitation>DelElecField>On Lines Main Menu>Preprocessor>Loads>Define Loads>Delete>Magnetic>Boundary>Temperature>On Lines Main Menu>Preprocessor>Loads>Define Loads>Delete>Magnetic>Excitation>DelCurrDens>On Lines
Main Menu>Preprocessor>Loads>Define Loads $>$ Delete $>$ Structural $>$ Other>Fluence $>$ On Lines Main Menu $>$ Preprocessor>Loads $>$ Define Loads $>$ Delete $>$ Structural $>$ Temperature $>$ On Lines Main Menu>Preprocessor>Loads>Define Loads>Delete>Thermal>Heat Generat>On Lines Main Menu>Solution>Define Loads>Delete>All Load Data>All Body Loads>On All Lines Main Menu>Solution>Define Loads>Delete>Electric>Boundary>Temperature>On Lines Main Menu $>$ Solution $>$ Define Loads $>$ Delete $>$ Electric $>$ Excitation $>$ AppCharDens $>$ On Lines Main Menu>Solution>Define Loads>Delete>Electric>Excitation>DeIElecField>On Lines Main Menu>Solution>Define Loads>Delete>Magnetic>Boundary>Temperature>On Lines Main Menu $>$ Solution $>$ Define Loads $>$ Delete $>$ Magnetic>Excitation $>$ DelCurrDens $>$ On Lines Main Menu $>$ Solution $>$ Define Loads $>$ Delete $>$ Structural $>$ Other $>$ Fluence $>$ On Lines Main Menu>Solution>Define Loads>Delete>Structural $>$ Temperature $>$ On Lines Main Menu>Solution>Define Loads>Delete>Thermal>Heat Generat>On Lines

BFLIST, NODE, Lab

Lists the body force loads on nodes.

> SOLUT ION: FE Body Loads
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

NODE

Node at which body load is to be listed. If ALL (or blank), list for all selected nodes [NSEL]. If NODE $=\mathrm{P}$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NODE.

Lab

Valid body load label. If ALL (or blank), use all appropriate labels. See the BF command for labels. In an explicit dynamic analysis, the only valid body load label is TEMP.

Notes

Lists the body force loads for the specified node and label. Nodal body loads may be defined with the BF command (except in an explicit dynamic analysis).

The command BFLIST,TEMP can be used in an explicit dynamic analysis to list temperature loads that are read in by the LDREAD command. BFLIST cannot be used to list temperature loads defined by the EDLOAD command (use EDLOAD,LIST to list this type of load).

This command is valid in any processor.

Menu Paths

Main Menu>Preprocessor>LS-DYNA Options>Loading Options>List Temps
Main Menu>Solution>Loading Options>List Temps
Utility Menu>List>Loads>Body Loads>On All Nodes
Utility Menu>List>Loads>Body Loads>On Picked Nodes

BFLLIST, LINE, Lab

Lists the body force loads on a line.

$$
\begin{aligned}
& \text { SOLUTION: Solid Body Loads } \\
& \text { MP ME ST PR PRN <> <> <> EM EH <> PP <> EME MFS }
\end{aligned}
$$

LINE

Line at which body load is to be listed. If ALL (or blank), list for all selected lines [LSEL]. If $L I N E=P$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for LINE.

Lab

Valid body load label. If ALL, use all appropriate labels. Load labels are listed under "Body Loads" in the input table for each element type in the Element Reference. See the BFL command for labels.

Notes

Lists the body force loads for the specified line and label. Body loads may be defined on a line with the BFL command.

This command is valid in any processor.

Menu Paths

Utility Menu>List>Loads>Body Loads>On All Lines

 Utility Menu>List>Loads>Body Loads>On Picked Lines
BFSCALE, Lab, FACT, TBASE

Scales body force loads at nodes.

SOLUTION:FE Body Loads
MP ME ST PR PRN <> <> FL EM EH <> PP <> EME MFS
Lab
Valid body load label. If ALL, use all appropriate labels.

Discipline	Body Load Label	Label Description
Structural	TEMP	temperature
	FLUE	fluence
Thermal	HGEN	heat generation rate
Magnetic	TEMP	temperature
	JS	current densities
	MVDI	magnetic virtual displace- ments flag
Electric	TEMP	temperature
	CHRGD	charge density

FACT
Scale factor for the nodal body load values. Zero (or blank) defaults to 1.0 . Use a small number for a zero scale factor. The scale factor is not applied to body load phase angles.
tBASE
Base temperature for temperature difference. Used only with Lab = TEMP. Scale factor is applied to the temperature difference ($T-T B A S E$) and then added to TBASE. T is the current temperature.

Notes

Scales body force loads in the database on the selected nodes. Issue the BFLIST command to list the nodal body loads. Solid model boundary conditions are not scaled by this command, but boundary conditions on the FE model are scaled.

Note

Such scaled FE boundary conditions may still be overwritten by unscaled solid model boundary conditions if a subsequent boundary condition transfer occurs.

BFSCALE does not work for tabular boundary conditions.
This command is also valid in PREP7.

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Operate>Scale FE Loads>Nodal Body Ld Main Menu>Solution>Define Loads>Operate>Scale FE Loads>Nodal Body Ld

BFTRAN

Transfers solid model body force loads to the finite element model.
SOLUTION:Solid Body Loads
MP ME ST PR PRN <> <> <> EM EH <> PP <> EME MFS

Notes

Body loads are transferred from selected keypoints and lines to selected nodes and from selected areas and volumes to selected elements. The BFTRAN operation is also done if the SBCTRAN command is either explicitly issued or automatically issued upon initiation of the solution calculations [SOLVE].

This command is also valid in PREP7.

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Operate>Transfer to FE>Body Loads Main Menu>Solution>Define Loads>Operate>Transfer to FE>Body Loads

BFUNIF, Lab, value

Assigns a uniform body force load to all nodes.
SOLUTION: FE Body Loads
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Lab

Valid body load label. If ALL, use all appropriate labels.

Discipline	Body Load Label	Label Description
Structural	TEMP	temperature
	FLUE	fluence

Discipline	Body Load Label	Label Description
Explicit dynam- ics	TEMP	temperature
Thermal	HGEN	heat generation rate
	TEMP	initial temperature

VALUE

Uniform value associated with Lab item, or table name when specifying tabular boundary conditions. To specify a table, enclose the table name in percent signs (\%), e.g., BFUNIF,Lab,\%tabname\%.

Command Default

Set TEMP to the reference temperature ([TREF] but not MP,REFT), and FLUE and HGEN to zero.

Notes

In a transient or nonlinear thermal analysis, the uniform temperature is used during the first iteration of a solution as follows: (a) as the starting nodal temperature (except where temperatures are explicitly specified [D, DK]), and (b) to evaluate temperature-dependent material properties. In a structural analysis or explicit dynamic analysis, the uniform temperature is used as the default temperature for thermal strain calculations and material property evaluation (except where body load temperatures are specified [BF, BFE, BFK, LDREAD]). In other scalar field analyses, the uniform temperature is used for material property evaluation.

When the command BFUNIF,TEMP is used in an explicit dynamic analysis, you cannot use the EDLOAD,TEMP command to apply temperature loading. Furthermore, any temperature loading defined by BFUNIF cannot be listed or deleted by the EDLOAD command.

An alternate command, TUNIF, may be used to set the uniform temperature instead of BFUNIF,TEMP. Since TUNIF (or BFUNIF,TEMP) is step-applied in the first iteration, you should use BF, ALL, TEMP, Value to ramp on a uniform temperature load.

You can specify a table name only when using temperature (TEMP) and heat generation rate (HGEN) body load labels. When using TEMP, you can define a one-dimensional table that varies with respect to time (TIME) only. When defining this table, enter TIME as the primary variable. No other primary variables are valid. Tabular boundary conditions cannot be used in an explicit dynamic analysis.

This command is also valid in PREP7.

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/ANSYS>Heat Generat>Uniform Heat Gen
Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Other>Fluence>Uniform Fluen Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Heat Generat>Uniform Heat Gen Main Menu>Solution>Define Loads>Apply>Fluid/ANSYS>Heat Generat>Uniform Heat Gen Main Menu>Solution>Define Loads>Apply>Structural>Other>Fluence>Uniform Fluen Main Menu>Solution>Define Loads>Apply>Thermal>Heat Generat>Uniform Heat Gen

BFV, VOLU, Lab, VAL1, VAL2, VAL3, PHASE

Defines a body force load on a volume.

SOLUTION:Solid Body Loads
MP ME ST PR PRN <> <> <> EM EH <> PP <> EME MFS
VOLU
Volume to which body load applies. If ALL, apply to all selected volumes [VSEL]. A component name may also be substituted for VOLU.

Lab

Valid body load label. Load labels are listed under "Body Loads" in the input table for each element type in the Element Reference.

Discipline	Body Load Label	Label Description
Structural	TEMP	temperature
	FLUE	fluence
Thermal	HGEN	heat generation rate
Magnetic	TEMP	temperature
	JS	current densities
	VLTG	voltage drop
Electric	TEMP	temperature
	CHRGD	charge density
High-frequency electromagnet- ic	JS	current density
FLOTRAN	HGEN	heat generation rate

VAL1, VAL2, VAL3

Value associated with the Lab item or a table name for specifying tabular boundary conditions. Use only VAL1 for TEMP, FLUE, HGEN, and CHRGD. Use VAL1, VAL2, and VAL3 for the X, Y, and Z components of JS. For Lab = VLTG, VAL1 is the voltage drop and VAL2 is the phase angle. When specifying a table name, you must enclose the table name in percent signs (\%), e.g., BFV,VOLU,Lab,\% tabname\%. Use the *DIM command to define a table.

PHASE

Phase angle in degrees associated with the JS label.

Notes

Defines a body force load (such as temperature in a structural analysis, heat generation rate in a thermal analysis, etc.) on a volume. Body loads may be transferred from volumes to volume elements (or to nodes if volume elements do not exist) with the BFTRAN or SBCTRAN commands. Body loads default to the value specified on the BFUNIF command, if it was previously specified.

You can specify a table name only when using temperature (TEMP) and heat generation rate (HGEN) body load labels.

Body loads specified by the BFV command can conflict with other specified body loads. See Resolution of Conflicting Body Load Specifications in the Basic Analysis Guide for details.

Graphical picking is available only via the listed menu paths.
This command is also valid in PREP7.

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Boundary>Temperature>On Volumes
Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Excitation>AppCharDens>On Volumes
Main Menu>Preprocessor>Loads>Define Loads>Apply>Magnetic>Boundary>Temperature>On
Volumes
Main Menu>Preprocessor>Loads>Define Loads>Apply>Magnetic>Excitation>AppCurrDens>On Volumes
Main Menu>Preprocessor>Loads>Define Loads>Apply>Magnetic>Excitation>AppVoltDrop>On Volumes
Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Other>Fluence>On Volumes Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Heat Generat>On Volumes Main Menu>Solution>Define Loads>Apply>Electric>Boundary>Temperature>On Volumes Main Menu>Solution>Define Loads>Apply>Electric>Excitation>AppCharDens>On Volumes Main Menu>Solution>Define Loads>Apply>Magnetic>Boundary>Temperature>On Volumes Main Menu>Solution>Define Loads>Apply>Magnetic>Excitation>AppCurrDens>On Volumes Main Menu>Solution>Define Loads>Apply>Magnetic>Excitation>AppVoltDrop>On Volumes Main Menu>Solution>Define Loads>Apply>Structural>Other>Fluence>On Volumes Main Menu>Solution>Define Loads>Apply>Thermal>Heat Generat>On Volumes

BFVDELE, volu, Lab

Deletes body force loads on a volume.
SOLUTION: Solid Body Loads
MP ME ST PR PRN <> <> <> EM EH <> PP <> EME MFS
VOLU
Volume at which body load is to be deleted. If ALL, delete for all selected volumes [VSEL]. A component name may also be substituted for VOLU.

Lab
Valid body load label. If ALL, use all appropriate labels. Load labels are listed under "Body Loads" in the input table for each element type in the Element Reference. See the BFV command for labels.

Notes

Deletes body force loads (and all corresponding finite element loads) for a specified volume and label. Body loads may be defined on a volume with the BFV command.

Graphical picking is available only via the listed menu paths.
This command is also valid in PREP7.

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Delete>All Load Data>All Body Loads>On All Volms Main Menu>Preprocessor>Loads>Define Loads>Delete>Electric>Boundary>Temperature>On Volumes
Main Menu>Preprocessor>Loads>Define Loads>Delete>Electric>Excitation>AppCharDens>On Volumes
Main Menu>Preprocessor>Loads>Define Loads>Delete>Magnetic>Boundary>Temperature>On Volumes
Main Menu>Preprocessor>Loads>Define Loads>Delete>Magnetic>Excitation>AppVoltDrop>On Volumes
Main Menu>Preprocessor>Loads>Define Loads>Delete>Magnetic>Excitation>DelCurrDens>On Volumes
Main Menu>Preprocessor>Loads>Define Loads>Delete>Structural>Other>Fluence>On Volumes Main Menu>Preprocessor>Loads>Define Loads>Delete>Structural>Temperature>On Volumes Main Menu>Preprocessor>Loads>Define Loads>Delete>Thermal>Heat Generat>On Volumes Main Menu>Solution>Define Loads>Delete>All Load Data>All Body Loads>On All Volms Main Menu $>$ Solution $>$ Define Loads $>$ Delete $>$ Electric $>$ Boundary $>$ Temperature $>$ On Volumes Main Menu>Solution>Define Loads>Delete>Electric>Excitation>AppCharDens>On Volumes Main Menu>Solution>Define Loads>Delete>Magnetic>Boundary>Temperature>On Volumes Main Menu>Solution>Define Loads>Delete>Magnetic>Excitation>AppVoltDrop>On Volumes Main Menu>Solution>Define Loads>Delete>Magnetic>Excitation>DeICurrDens>On Volumes Main Menu>Solution>Define Loads>Delete>Structural>Other>Fluence>On Volumes Main Menu $>$ Solution $>$ Define Loads $>$ Delete $>$ Structural $>$ Temperature $>$ On Volumes Main Menu>Solution>Define Loads>Delete>Thermal>Heat Generat>On Volumes

BFVLIST, VOLU, Lab
Lists the body force loads on a volume.

$$
\text { SOLUTION: Solid Body Loads }
$$

MP ME ST PR PRN <> <> <> EM EH <> PP <> EME MFS

VOLU
Volume at which body load is to be listed. If ALL (or blank), list for all selected volumes [VSEL]. If VOLU = P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI).
A component name may also be substituted for VOLU.

Lab

Valid body load label. If ALL, use all appropriate labels. Load labels are listed under "Body Loads" in the input table for each element type in the Element Reference. See the BFV command for labels.

Notes

Lists the body force loads for the specified volume and label. Body loads may be defined on a volume with the BFV command.

This command is valid in any processor.

Menu Paths

Utility Menu>List>Loads>Body Loads>On All Volumes Utility Menu>List>Loads>Body Loads>On Picked Volumes

BIOOPT

Specifies "Biot-Savart options" as the subsequent status topic.

SOLUTION: Status
MP <> <> <> <> <> <> <> EM <> DY PP <> EME <>

Notes

This is a status [STAT] topic command. Status topic commands are generated by the GUI and will appear in the \log file (Jobname. LOG) if status is requested for some items under Utility Menu> List> Status. This command will be immediately followed by a STAT command, which will report the status for the specified topic.

If entered directly into the program, the STAT command should immediately follow this command.

Menu Paths

Utility Menu>List>Status>Solution>Biot Savart Options

BIOT, Label

Calculates the Biot-Savart source magnetic field intensity.

SOLUTION: Misc Loads
MP <> <> <> <> <> <> <> EM <> <> PP <> EME <>

Label

Controls the Biot-Savart calculation:
NEW
Calculate the magnetic source field intensity $\left(\mathrm{H}_{5}\right)$ from the selected set of source elements to the selected set of nodes. Overwrite any existing H_{s} field values.

SUM
Calculate the H_{s} field from the selected set of source elements to the selected set of nodes. Accumulate with any existing H_{s} field values.

Command Default

Calculate the H_{s} field upon encountering the first SOLVE command to produce a source field.

Notes

Calculates the Biot-Savart source magnetic field intensity $\left(\mathrm{H}_{5}\right)$ at the selected nodes from the selected source elements. The calculation is done at the time the BIOT command is issued.

Source elements include primitives described by element SOURC36, and coupled-field elements SOLID5, LINK68, and SOLID98. Current conduction elements do not have a solved-for current distribution from which to calculate a source field until after the first substep. Inclusion of a current conduction element H_{s} field will require a subsequent BIOT,SUM command (with SOURC36 elements unselected) and a SOLVE command.

The units of H_{s} are as specified by the current EMUNIT command setting.
This command is also valid in PREP7.

Menu Paths

Main Menu>Preprocessor>Loads>Load Step Opts>Magnetics>Options Only>Biot-Savart Main Menu>Solution>Load Step Opts>Magnetics>Options Only>Biot-Savart

BLC4, XCORNER, YCORNER, WIDTH, HEIGHT, DEPTH

Creates a rectangular area or block volume by corner points.
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

XCORNER, YCORNER

Working plane X and Y coordinates of one corner of the rectangle or block face.

WIDTH

The distance from XCORNER on or parallel to the working plane X-axis that, together with YCORNER, defines a second corner of the rectangle or block face.

HEIGHT

The distance from YCORNER on or parallel to the working plane Y-axis that, together with XCORNER, defines a third corner of the rectangle or block face.

DEPTH

The perpendicular distance (either positive or negative based on the working plane Z direction) from the working plane representing the depth of the block. If $D E P T H=0$ (default), a rectangular area is created on the working plane.

Notes

Defines a rectangular area anywhere on the working plane or a hexahedral volume with one face anywhere on the working plane. A rectangle will be defined with four keypoints and four lines. A volume will be defined with eight keypoints, twelve lines, and six areas, with the top and bottom faces parallel to the working plane. See the BLC5, RECTNG, and BLOCK commands for alternate ways to create rectangles and blocks.

Menu Paths

Main Menu>Preprocessor>Modeling>Create>Areas>Rectangle>By 2 Corners

```
Main Menu>Preprocessor>Modeling>Create>Volumes>Block>By 2 Corners \& Z Main Menu>Preprocessor>Trefftz Domain>TZ Geometry>Create>Volume>Block>By 2 Corners \& Z
```


BLC5, XCENTER, YCENTER, WIDTH, HEIGHT, DEPTH

Creates a rectangular area or block volume by center and corner points.

PREP7:Primitives
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

XCENTER, YCENTER

Working plane X and Y coordinates of the center of the rectangle or block face.

WIDTH

The total distance on or parallel to the working plane X-axis defining the width of the rectangle or block face.

HEIGHT

The total distance on or parallel to the working plane Y -axis defining the height of the rectangle or block face.

DEPTH

The perpendicular distance (either positive or negative based on the working plane Z direction) from the working plane representing the depth of the block. If $D E P T H=0$ (default), a rectangular area is created on the working plane.

Note

If you are working with a model imported from an IGES file (import option set to DEFAULT), you must supply a value for DEPTH or the command is ignored.

Notes

Defines a rectangular area anywhere on the working plane or a hexahedral volume with one face anywhere on the working plane by specifying the center and corner points. A rectangle will be defined with four keypoints and four lines. A volume will be defined with eight keypoints, twelve lines, and six areas, with the top and bottom faces parallel to the working plane. See the BLC4, RECTNG, and BLOCK commands for alternate ways to create rectangles and blocks.

Menu Paths

Main Menu>Preprocessor>Modeling>Create>Areas>Rectangle>By Centr \& Cornr Main Menu $>$ Preprocessor $>$ Modeling $>$ Create $>$ Primitives $>$ Block
Main Menu>Preprocessor>Modeling>Create>Volumes>Block>By Centr,Cornr,Z
Main Menu>Preprocessor>Trefftz Domain>TZ Geometry>Create>Volume>Block>By Centr,Cornr,Z

BLOCK, $x 1, x 2, y 1, y 2, z 1, z 2$

Creates a block volume based on working plane coordinates.

PREP 7:Primitives
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

x1, X2

Working plane X coordinates of the block.

Y1, Y2

Working plane Y coordinates of the block.
z1, $z 2$
Working plane Z coordinates of the block.

Notes

Defines a hexahedral volume based on the working plane. The block must have a spatial volume greater than zero (i.e., this volume primitive command cannot be used to create a degenerate volume as a means of creating an area.) The volume will be defined with eight keypoints, twelve lines, and six areas, with the top and bottom faces parallel to the working plane. See the BLC4 and BLC5 commands for alternate ways to create blocks.

Menu Paths

> Main Menu $>$ Preprocessor $>$ Modeling $>$ Create $>$ Volumes $>$ Block $>$ By Dimensions Main Menu $>$ Preprocessor $>$ Trefftz Domain $>$ TZ Geometry $>$ Create $>$ Volume $>$ Block $>$ By Dimensions

BOOL

Specifies "Booleans" as the subsequent status topic.
PREP 7: Status
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Notes

This is a status [STAT] topic command. Status topic commands are generated by the GUI and will appear in the log file (Jobname. LOG) if status is requested for some items under Utility Menu> List> Status. This command will be immediately followed by a STAT command, which will report the status for the specified topic.

If entered directly into the program, the STAT command should immediately follow this command.

Menu Paths

Utility Menu>List>Status>Preprocessor>Solid Model

BOPTN, Lab, Value

Specifies Boolean operation options.

PREP 7:Booleans
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Lab

Default/status key:

DEFA

Resets settings to default values.

STAT

Lists status of present settings.
Option to be controlled:

KEEP

Delete or keep input entity option.

NUMB

Output numbering warning message option.

NWARN

No effect warning message option.

VERSION

Boolean compatibility option.

Value

Option settings if $L a b=$ KEEP:

NO

Delete entities used as input with a Boolean operation (default). Entities will not be deleted if meshed or if attached to a higher entity.

YES

Keep input solid modeling entities.
Option settings if $L a b=$ NUMB:
0
No warning message will be produced if the output entities of a Boolean operation are numbered based on geometry (default).

1
A warning message will be produced if the output entities of a Boolean operation are numbered based on geometry. (With geometric numbering, re-use of the input with altered dimensions (as in design optimization) may not produce the same numbering, and later operations in the input may fail or produce unexpected results.)

Option settings if $L a b=$ NWARN:
0
A warning message will be produced if a Boolean operation has no effect (default).
1
No warning or error messages will be generated if a Boolean operation has no effect.
-1
An error message will be produced if a Boolean operation has no effect.
Option settings if $L a b=$ VERSION:

RV52

Activate the Revision 5.2 compatibility option (default). The 5.2 option can produce different numbering of the entities produced by Boolean operations than the 5.1 option. See Notes below.

RV51

Activate the Revision 5.1 compatibility option. The 5.1 option can produce different numbering of the entities produced by Boolean operations than the 5.2 option. See "Notes" (p. 222) below.

Command Default

Input entities will be deleted, and operations with no effect (i.e., operations which are valid but which do not cause a change in the input entities, such as adding two non-touching areas) will produce a warning message. The Revision 5.2 Boolean compatibility option will be used.

Notes

Boolean operations at Revision 5.2 may produce a different number of entities than previous revisions of ANSYS. When running input files created at earlier revisions of ANSYS, match the Boolean compatibility option (VERSION) to the revision originally used. For instance, if you are running Revision 5.2 and are reading an input file (/INPUT) created at Revision 5.1, it is recommended that you set VERSION to RV51 before reading the input.

See the Modeling and Meshing Guide for further details on the functions of the RV51 and RV52 labels.
This command is valid in any processor.

Menu Paths

Main Menu>Preprocessor>Modeling>Operate>Booleans>Settings

BSAX, VAL1, VAL2, T
Specifies the axial strain and axial force relationship for beam sections.
PREP 7: Cross Sections
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

VAL1
Axial strain component (ε).
VAL2
Axial force component (N).
T
Temperature.

Notes

The behavior of beam elements is governed by the generalized-stress/generalized-strain relationship of the form:

The BSAX command, one of several nonlinear general beam section commands, specifies the relationship of axial strain and axial force for a beam section. The section data defined is associated with the section most recently defined (via the SECTYPE command).

Unspecified values default to zero.
Related commands are BSM1, BSM2, BSTQ, BSS1, BSS2, BSMD, and BSTE.
For complete information, see Using Nonlinear General Beam Sections.

Menu Paths

Main Menu>Preprocessor>Sections>Beam>NL Generalized

BSMD, DENS, T

Specifies mass density for a nonlinear general beam section.

PREP 7:Cross Sections
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

DENS

Mass density.

T

Temperature.

Notes

The BSMD command, one of several nonlinear general beam section commands, specifies the mass density (assuming a unit area) for a beam section. The value specified is associated with the section most recently defined (via the SECTYPE command).

Related commands are BSAX, BSM1, BSM2, BSTQ, BSS1, BSS2, and BSTE.
For complete information, see Using Nonlinear General Beam Sections.

Menu Paths

Main Menu>Preprocessor>Sections>Beam>NL Generalized

BSM1, VAL1, VAL2, T
Specifies the bending curvature and moment relationship in plane XZ for beam sections.

PREP7:Cross Sections
 MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

VAL1
Curvature component (k_{1}).

VAL2

Bending moment component $\left(M_{1}\right)$.
T
Temperature.

Notes

The behavior of beam elements is governed by the generalized-stress/generalized-strain relationship of the form:
$\left[\begin{array}{c}N \\ M_{1} \\ M_{2} \\ \tau \\ S_{1} \\ S_{2}\end{array}\right]=\left[\begin{array}{ccccc}A E(\varepsilon, T) & & & & \\ & \mu_{1} E\left(\kappa_{1}, T\right) & & & \\ & & I_{2} E\left(\kappa_{2}, T\right) & & \\ & & & J G(\chi, T) & \\ & & & & A_{1} G\left(\gamma_{1}, T\right) \\ & & & A_{2} G\left(\gamma_{2}, T\right)\end{array}\right]\left[\begin{array}{c}\varepsilon \\ \\ \\ \\ \\ \\ \\ \\ \\ \kappa_{1} \\ \kappa_{2} \\ \chi \\ \gamma_{1} \\ \gamma_{2}\end{array}\right]$
The BSM1 command, one of several nonlinear general beam section commands, specifies the bending curvature and moment for plane XZ of a beam section. The section data defined is associated with the section most recently defined (via the SECTYPE command).

Unspecified values default to zero.
Related commands are BSAX, BSM2, BSTQ, BSS1, BSS2, BSMD, and BSTE.
For complete information, see Using Nonlinear General Beam Sections.

Menu Paths

Main Menu>Preprocessor>Sections>Beam>NL Generalized

BSM2, VAL1, VAL2, T
Specifies the bending curvature and moment relationship in plane XY for beam sections.
PREP 7:Cross Sections
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

VAL1

Curvature component (κ_{2}).

VAL2

Bending moment component $\left(M_{2}\right)$.
T
Temperature.

Notes

The behavior of beam elements is governed by the generalized-stress/generalized-strain relationship of the form:

The BSM2 command, one of several nonlinear general beam section commands, specifies the bending curvature and moment relationship for plane XY of a beam section. The section data defined is associated with the section most recently defined (via the SECTYPE command).

Unspecified values default to zero.
Related commands are BSAX, BSM1, BSTQ, BSS1, BSS2, BSMD, and BSTE.
For complete information, see Using Nonlinear General Beam Sections.

Menu Paths

Main Menu>Preprocessor>Sections>Beam>NL Generalized

BSPLIN, P1, P2, P3, P4, P5, P6, XV1, YV1, ZV1, XV6, YV6, ZV6
Generates a single line from a spline fit to a series of keypoints.

MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

P1, P2, P3, ..., P6

Keypoints through which a spline is fit. At least two keypoints must be defined. If $P 1=P$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI).

The following fields are used only if specified end slopes are desired; otherwise, zero curvature end slopes will be automatically calculated. The slope vector is parallel to a vector pointing from the origin of the active coordinate system [CSYS] to the position in space that $\mathrm{XV}, \mathrm{YV}, \mathrm{ZV}$ represents in that system.

XV1, YV1, ZV1

Orientation point of an outward vector tangent to line at $P 1$. Vector coordinate system has its origin at the keypoint. Coordinate interpretation corresponds to the active coordinate system type, i.e., X is R for cylindrical, etc. Defaults to zero curvature slope.

XV6, YV6, ZV6

Orientation point of an outward vector tangent to a line at $P 6$ (or the last keypoint specified if fewer than six specified). Defaults to zero curvature slope.

Notes

One line is generated between keypoint $P 1$ and the last keypoint entered. The line will pass through each entered keypoint. Solid modeling in a toroidal coordinate system is not recommended.

Menu Paths

Main Menu>Preprocessor>Modeling>Create>Lines $>$ Splines $>$ Spline thru KPs
Main Menu $>$ Preprocessor $>$ Modeling $>$ Create $>$ Lines $>$ Splines $>$ Spline thru Locs
Main Menu $>$ Preprocessor $>$ Modeling $>$ Create $>$ Lines $>$ Splines $>$ With Options $>$ Spline thru KPs
Main Menu>Preprocessor>Modeling>Create>Lines>Splines>With Options>Spline thru Locs

BSS1, VAL1, VAL2, T
Specifies the transverse shear strain and force relationship in plane XZ for beam sections.
PREP 7: Cross Sections
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

VAL1
Transverse shear strain component $\left(\gamma_{1}\right)$.
VAL2
Transverse shear force component $\left(S_{1}\right)$.
T
Temperature.

Notes

The behavior of beam elements is governed by the generalized-stress/generalized-strain relationship of the form:

The BSS1 command, one of several nonlinear general beam section commands, specifies the transverse shear strain and transverse shear force relationship for plane XZ of a beam section. The section data defined is associated with the section most recently defined (via the SECTYPE command).

Unspecified values default to zero.
Related commands are BSAX, BSM1, BSM2, BSTQ, BSS2, BSMD, and BSTE.
For complete information, see Using Nonlinear General Beam Sections.

Menu Paths

Main Menu>Preprocessor>Sections>Beam>NL Generalized

BSS2, VAL1, VAL2, T

Specifies the transverse shear strain and force relationship in plane XY for beam sections.

PREP 7:Cross Sections
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

VAL1

Transverse shear strain component $\left(\gamma_{2}\right)$.
VAL2
Transverse shear force component $\left(S_{2}\right)$.
T
Temperature.

Notes

The behavior of beam elements is governed by the generalized-stress/generalized-strain relationship of the form:

$$
\left[\begin{array}{c}
N \\
M_{1} \\
M_{2} \\
\tau \\
S_{1} \\
S_{2}
\end{array}\right]=\left[\begin{array}{ccccc}
A E(\varepsilon, T) & & & & \\
& I_{1} E\left(\kappa_{1}, T\right) & & 0 & \\
& & I_{2} E\left(\kappa_{2}, T\right) & & \\
& & & J G(\chi, T) & \\
& 0 & & A_{1} G\left(\gamma_{1}, T\right) & \\
& & & & A_{2} G\left(\gamma_{2}, T\right)
\end{array}\right]\left[\begin{array}{c}
\varepsilon \\
\kappa_{1} \\
\kappa_{2} \\
\chi \\
\gamma_{1} \\
\gamma_{2}
\end{array}\right]
$$

The BSS1 command, one of several nonlinear general beam section commands, specifies the transverse shear strain and transverse shear force relationship for plane XY of a beam section. The section data defined is associated with the section most recently defined (via the SECTYPE command).

Unspecified values default to zero.
Related commands are BSAX, BSM1, BSM2, BSTQ, BSS1, BSMD, and BSTE.
For complete information, see Using Nonlinear General Beam Sections.

Menu Paths

Main Menu>Preprocessor>Sections>Beam>NL Generalized

BSTE, ALPHA, T

Specifies a thermal expansion coefficient for a nonlinear general beam section.
PREP 7:Cross Sections
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

ALPHA

Coefficient of thermal expansion for the cross section.
T
Temperature.

Notes

The BSTE command, one of several nonlinear general beam section commands, specifies a thermal expansion coefficient for a beam section. The value specified is associated with the section most recently defined (via the SECTYPE command).

Related commands are BSAX, BSM1, BSM2, BSTQ, BSS1, BSS2, and BSMD.
For complete information, see Using Nonlinear General Beam Sections.

Menu Paths

Main Menu>Preprocessor>Sections>Beam>NL Generalized

BSTQ, VAL1, VAL2,T
Specifies the cross section twist and torque relationship for beam sections.
PREP 7:Cross Sections
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

VAL1

Twist component (χ).

VAL2

Torque component (τ).

T

Temperature.

Notes

The behavior of beam elements is governed by the generalized-stress/generalized-strain relationship of the form:
$\left[\begin{array}{c}N \\ M_{1} \\ M_{2} \\ \tau \\ S_{1} \\ S_{2}\end{array}\right]=\left[\begin{array}{ccccc}A E(\varepsilon, T) & & & & \\ & I_{1} E\left(\kappa_{1}, T\right) & & & \\ & & I_{2} E\left(\kappa_{2}, T\right) & & \\ & & & J G(\chi, T) & \\ & 0 & & & A_{1} G\left(\gamma_{1}, T\right) \\ & & & & A_{2} G\left(\gamma_{2}, T\right)\end{array}\right]\left[\begin{array}{c}\varepsilon \\ \kappa_{1} \\ \kappa_{2} \\ \chi \\ \gamma_{1} \\ \gamma_{2}\end{array}\right]$

The BSTQ command, one of several nonlinear general beam section commands, specifies the cross section twist and torque relationship for a beam section. The section data defined is associated with the section most recently defined (via the SECTYPE command).

Unspecified values default to zero.
Related commands are BSAX, BSM1, BSM2, BSS1, BSS2, BSMD, and BSTE.
For complete information, see Using Nonlinear General Beam Sections.

Menu Paths

Main Menu>Preprocessor>Sections>Beam>NL Generalized

BTOL, PTOL

Specifies the Boolean operation tolerances.

PREP 7: Booleans
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

PTOL
Point coincidence tolerance. Points within this distance to each other will be assumed to be coincident during Boolean operations. Loosening the tolerance will increase the run time and storage requirements, but will allow more Boolean intersections to succeed. Defaults to 0.10E-4.

Command Default

$P T O L=0.10 \mathrm{E}-4$.

Notes

Use BTOL,DEFA to reset the setting to its default value. Use BTOL,STAT to list the status of the present setting.

Menu Paths

Main Menu>Preprocessor>Modeling>Operate>Booleans>Settings

BUCOPT, Method, NMODE, SHIFT, LDMULTE

Specifies buckling analysis options.

SOLUTION: Nonlinear Options
MP ME ST PR PRN DS DSS <> <> <> <> PP <> EME MFS

Method

Mode extraction method to be used (no default; you must specify the method). Currently, Block Lanczos is the only available method:

LANB

Block Lanczos.
NMODE
Number of modes to extract (defaults to 1).

SHIFT

Lower end of the load multiplier range of interest. This value also acts as the initial shift point about which eigenvalues are calculated (defaults to 0.0).

When LDMULTE = CENTER, the SHIFT value will determine the center value about which the modes will be extracted. A blank value yields a center value equal to zero (default).

LDMULTE

Upper end of the load multiplier range of interest (defaults to $+^{\infty}$). By default, the program calculates buckling modes from 0.0 to positive infinity.

If LDMULTE $=$ CENTER, NMODE modes will be extracted about the center value on both the left and right ends.

Notes

This command is also valid in PREP7. If used in SOLUTION, this command is valid only within the first load step. The PCG Lanczos method is NOT available for buckling analyses.

We recommend that you request an additional few modes beyond what is needed in order to enhance the accuracy of the final solution. We also recommend that you input a non zero SHIFT value and a reasonable LDMULTE value when numerical problems are encountered.

Menu Paths

Main Menu>Preprocessor>Loads>Analysis Type>Analysis Options
Main Menu>Solution>Analysis Type $>$ Analysis Options

C Commands

C***, Comment

Places a comment in the output.

SESSION: List Controls
MP ME ST PR PRN DS DSS FL EM EH DY PP <> EME MFS

Comment

Comment string, up to 75 characters.

Notes

The output from this command consists of two lines -- a blank line followed by a line containing $C^{* * *}$ and the comment. This command is similar to /COM except that the comment produced by $\mathbf{C}^{* * *}$ is more easily identified in the output.

Another way to include a comment is to precede it with a ! character (on the same line). The ! may be placed anywhere on the line, and any input following it is ignored as a comment. No output is produced by such a comment, but the comment line is included on the log file. This is a convenient way to annotate the log file.

This command is valid anywhere.

Menu Paths

This command cannot be accessed from a menu.

CALC

Specifies "Calculation settings" as the subsequent status topic.

POST1:Status
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Notes

This is a status [STAT] topic command. Status topic commands are generated by the GUI and will appear in the log file (Jobname. LOG) if status is requested for some items under Utility Menu> List> Status. This command will be immediately followed by a STAT command, which will report the status for the specified topic.

If entered directly into the program, the STAT command should immediately follow this command.

Menu Paths

Utility Menu>List>Status>General Postproc>Calculations

CAMPBELL, Key, NSOLVE

Prepares the result file for a subsequent Campbell diagram of a prestressed structure.

SOLUTION:Load Step Options
MP ME ST PR PRN <> <> <> EM EH <> PP <> EME MFS

Key

Campbell key:
OFF
Do not prepare the result file. This option is the default behavior.

ON

Prepare the result file for a subsequent Campbell diagram of a prestressed structure.

NSOLVE

Number of modal analyses to be performed. The same number of static analyses is expected.

Notes

For an analysis involving a prestressed structure, the CAMPBELL command specifies whether or not to prepare the result file to support a Campbell diagram analysis (PRCAMP or PLCAMP).

To prestress a structure, ANSYS performs a static solution before the modal solution. In such an analysis, the default result file is unusable for a subsequent Campbell diagram analysis. To use the result file in this case, issue a CAMPBELL,ON command in the first static analysis. The command forces the result file to keep load steps from the modal analyses only (and discards results from the static analyses).

The CAMPBELL command requires that modal and static analyses be performed alternately. It works only when the number of static analyses is the same as the number of modal analyses. Any number of analyses can be performed, but the same number of each (static and modal) is expected.

For an example of PLCAMP command usage, see Sample Campbell Diagram Analysis.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

This command cannot be accessed from a menu.

CBDOF, Fname1, Ext1, --, Fname2, Ext2, --, KPOS, Clab, KSHS, TOLOUT, TOLHGT, TOLTHK

Activates cut boundary interpolation (for submodeling).

POST1:Special Purpose
MP ME ST PR PRN <> <> FL EM EH <> PP <> EME MFS

Fname1

File name and directory path (248 characters maximum, including directory) from which to read boundary node data. If you do not specify a directory path, it will default to your working directory and you can use all 248 characters for the file name.

The file name defaults to Jobname.

Ext1

Filename extension (8 character maximum).
The extension defaults to NODE if Fname1 is blank.

Unused field.

Fname2

File name and directory path (248 characters maximum, including directory) to which cut boundary D commands are written. If you do not specify a directory path, it will default to your working directory and you can use all 248 characters for the file name.

The file name defaults to Jobname.

Ext2

Filename extension (8 character maximum).
The extension defaults to CBDO if Fname2 is blank.
--
Unused field.
KPOS
Position on Fname 2 to write block of \mathbf{D} commands:
0
Beginning of file (overwrite existing file).
1
End of file (append to existing file).

Clab

Label (8 characters maximum, including the colon) for this block of \mathbf{D} commands on Fname2. This label is appended to the colon (:). Defaults to CBn, where n is the cumulative iteration number for the data set currently in the database. For imaginary data (see KIMG on the *SET command), Clab defaults to CIn.

KSHS

Shell-to-solid submodeling key:
0
Solid-to-solid or shell-to-shell submodel.

1

Shell-to-solid submodel.

TOLOUT

Extrapolation tolerance about elements, based on a fraction of the element dimension. Submodel nodes outside the element by more than TOLOUT are not accepted as candidates for DOF extrapolation. Defaults to 0.5 (50\%).

TOLHGT

Height tolerance above or below shell elements, in units of length. Used only for shell-to-shell submodeling ($K S H S=0$). Submodel nodes off of the element surface by more than TOLHGT are not accepted as candidates for DOF interpolation or extrapolation. Defaults to 0.0001 times the maximum element dimension.

Caution

Relaxing this tolerance to allow submodel nodes to be "found" could produce poor submodel results.

TOLTHK

Height tolerance above or below shell elements, based on a fraction of the shell element thickness. Used only for shell-to-solid submodeling ($\mathrm{KSHS}=1$). Submodel nodes off of the element surface by more than TOLTHK are not accepted as candidates for DOF interpolation or extrapolation. Defaults to 0.1 times the average shell thickness.

Caution

Relaxing this tolerance to allow submodel nodes to be "found" could produce poor submodel results.

Notes

File Fname1 should contain a node list for which boundary conditions are to be interpolated [NWRITE]. File Fname 2 is created which contains interpolated boundary conditions written as a block of \mathbf{D} commands. Boundary conditions are written for the active degree of freedom set for the element from which interpolation is performed. Interpolation is performed on the selected set of elements. The block of \mathbf{D} commands begins with an identifying colon label and ends with a /EOF command. The colon label is of the form :Clab, where $C l a b$ is described above. Interpolation from multiple results sets can be performed by looping through the results file in a user-defined macro. Additional blocks can be appended to Fname 2 by using KPOS and unique colon labels. A /INPUT command, with the appropriate colon label, may be used to read the block of commands.

Menu Paths

Main Menu>General Postproc>Submodeling>Interpolate DOF

CBMD,ROW, $C_{(R /(R)}, C_{(R)(R+1)}, C_{(R)(R+2),} C_{(R)(R+3),} C_{(R /(R+4),} C_{(R)(R+5)}$

Specifies preintegrated section mass matrix for composite-beam sections.

MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS
ROW
Row number of the matrix.
$C_{(R)(R)}, \ldots, C_{(R)(R+5)}$
Upper triangle of the cross-section mass matrix [C].

Notes

With a unit beam length, the section mass matrix relates the resultant forces and torques to accelerations and angular accelerations as follows (applicable to the local element coordinate system):

$$
\left[\begin{array}{l}
\mathrm{N}_{\mathrm{x}} \\
\mathrm{~N}_{\mathrm{y}} \\
\mathrm{~N}_{\mathrm{z}} \\
\mathrm{M}_{\mathrm{x}} \\
\mathrm{M}_{\mathrm{y}} \\
\mathrm{M}_{\mathrm{z}}
\end{array}\right]=\left[\begin{array}{llllll}
\mathrm{C}_{11}(\mathrm{~T}) & \mathrm{C}_{12}(\mathrm{~T}) & \mathrm{C}_{13}(\mathrm{~T}) & \mathrm{C}_{14}(\mathrm{~T}) & \mathrm{C}_{15}(\mathrm{~T}) & \mathrm{C}_{16}(\mathrm{~T}) \\
& \mathrm{C}_{22}(\mathrm{~T}) & \mathrm{C}_{23}(\mathrm{~T}) & \mathrm{C}_{24}(\mathrm{~T}) & \mathrm{C}_{25}(\mathrm{~T}) & \mathrm{C}_{26}(\mathrm{~T}) \\
& & \mathrm{C}_{33}(\mathrm{~T}) & \mathrm{C}_{34}(\mathrm{~T}) & \mathrm{C}_{35}(\mathrm{~T}) & \mathrm{C}_{36}(\mathrm{~T}) \\
& & & \mathrm{C}_{44}(\mathrm{~T}) & \mathrm{C}_{45}(\mathrm{~T}) & \mathrm{C}_{46}(\mathrm{~T}) \\
& & & & \mathrm{C}_{55}(\mathrm{~T}) & \mathrm{C}_{56}(\mathrm{~T}) \\
& & & & & \mathrm{C}_{66}(\mathrm{~T})
\end{array}\right]\left[\begin{array}{l}
\mathrm{A}_{\mathrm{x}} \\
\mathrm{~A}_{\mathrm{y}} \\
\mathrm{~A}_{\mathrm{z}} \\
\mathrm{R}_{\mathrm{x}} \\
\mathrm{R}_{\mathrm{y}} \\
\mathrm{R}_{\mathrm{z}}
\end{array}\right]
$$

The CBMD command, one of several composite beam section commands, specifies the section mass matrix (submatrix [C] data) for a composite beam section. The section data defined is associated with the section most recently defined (SECTYPE) at the specified temperature (CBTMP).

Unspecified values default to zero.
Related commands are CBTMP, CBTE, and CBMX.
For complete information, see Using Preintegrated Composite Beam Sections.

Menu Paths

Main Menu>Preprocessor>Sections>Beam>Composite Sections

CBMX, ROW, $S_{(R)(R))} S_{(R)(R+1)}, S_{(R)(R+2)}, S_{(R)(R+3)} S_{(R)(R+4))} S_{(R)(R+5)}, S_{(R)(R+6)}$

Specifies preintegrated cross-section stiffness for composite beam sections.

PREP 7: Cross Sections
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

ROW

Row number of the matrix.
$S_{(R)(R)}, \ldots, S_{(R)(R+6)}$
Upper triangle of the cross-section stiffness matrix [S].

Notes

The behavior of beam elements is governed by the generalized-stress/generalized-strain relationship of the form:

$$
\left[\begin{array}{l}
N \\
M_{1} \\
M_{2} \\
\tau \\
S_{1} \\
S_{2} \\
B_{m}
\end{array}\right]=\left[\begin{array}{lllllll}
\mathrm{S}_{11}(\mathrm{~T}) & \mathrm{S}_{12}(\mathrm{~T}) & \mathrm{S}_{13}(\mathrm{~T}) & \mathrm{S}_{14}(\mathrm{~T}) & \mathrm{S}_{15}(\mathrm{~T}) & \mathrm{S}_{16}(\mathrm{~T}) & \mathrm{S}_{17}(\mathrm{~T}) \\
& \mathrm{S}_{22}(\mathrm{~T}) & \mathrm{S}_{23}(\mathrm{~T}) & \mathrm{S}_{24}(\mathrm{~T}) & \mathrm{S}_{25}(\mathrm{~T}) & \mathrm{S}_{26}(\mathrm{~T}) & \mathrm{S}_{27}(\mathrm{~T}) \\
& & \mathrm{S}_{33}(\mathrm{~T}) & \mathrm{S}_{34}(\mathrm{~T}) & \mathrm{S}_{35}(\mathrm{~T}) & \mathrm{S}_{36}(\mathrm{~T}) & \mathrm{S}_{37}(\mathrm{~T}) \\
& & & \mathrm{S}_{44}(\mathrm{~T}) & \mathrm{S}_{45}(\mathrm{~T}) & \mathrm{S}_{46}(\mathrm{~T}) & \mathrm{S}_{47}(\mathrm{~T}) \\
& & & & \mathrm{S}_{55}(\mathrm{~T}) & \mathrm{S}_{56}(\mathrm{~T}) & \mathrm{S}_{57}(\mathrm{~T}) \\
& & & & & \mathrm{S}_{66}(\mathrm{~T}) & \mathrm{S}_{67}(\mathrm{~T}) \\
& & & & & & \mathrm{S}_{77}(\mathrm{~T})
\end{array}\right]\left[\begin{array}{l}
\varepsilon \\
\kappa_{1} \\
\kappa_{2} \\
\chi \\
\gamma_{1} \\
\gamma_{2} \\
\mathrm{~B}_{\mathrm{k}}
\end{array}\right]
$$

Notes

The CBMX command, one of several composite beam section commands, specifies the cross-section stiffness matrix (submatrix [\mathcal{S}] data) for a composite beam section. The section data defined is associated with the section most recently defined (SECTYPE) at the specified temperature (CBTMP).

Unspecified values default to zero.
Related commands are CBTMP, CBTE, and CBMD.
For complete information, see Using Preintegrated Composite Beam Sections.

Menu Paths

Main Menu>Preprocessor>Sections>Beam>Composite Sections

CBTE, ALPHA
Specifies a thermal expansion coefficient for a composite beam section.
PREP 7:Cross Sections
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

ALPHA

Coefficient of thermal expansion for the cross section.

Notes

The CBTE command, one of several composite beam section commands, specifies a thermal expansion coefficient for a beam section. The value specified is associated with the section most recently defined (SECTYPE) at the specified temperature (CBTMP).

Unspecified values default to zero.
Related commands are CBTMP, CBMX, and CBMD.

For complete information, see Using Preintegrated Composite Beam Sections.

Menu Paths

Main Menu>Preprocessor>Sections>Beam>Composite Sections

CBTMP, TEMP

Specifies a temperature for composite-beam input.

PREP 7: Data Tables
MP ME ST PR PRN <> <> <> EM <> DY PP <> EME MFS

TEMP

Temperature value.

Notes

The CBTMP command, one of several composite beam-section commands, specifies a temperature to be associated with the data input via subsequent CBMX (preintegrated cross-section stiffness), CBMD (preintegrated section mass), or CBTE (thermal-expansion) commands.

The specified temperature remains active until the next CBTMP command is issued.
An unspecified temperature value defaults to zero.
For complete information, see Using Preintegrated Composite Beam Sections.

Menu Paths

Main Menu>Preprocessor>Sections>Beam>Composite Sections

CDOPT, Option

Specifies format to be used for archiving geometry.

PREP 7: Database
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Option

IGES
Write solid model geometry information using IGES format (default).
ANF
Write solid model geometry information using ANSYS Neutral File format.
STAT
Print out the current format setting.

Notes

This command controls your solid model geometry format for CDWRITE operations. The ANF option affects only the COMB and SOLID options of the CDWRITE command. All other options remain unaffected.

This option setting is saved in the database.

Menu Paths

Main Menu>Preprocessor>Archive Model>Read

Main Menu>Preprocessor>Archive Model>Write

CDREAD, Option, Fname, Ext, --, Fnamei, Exti

Reads a file of solid model and database information into the database.

PREP 7: Database
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Option

Selects which data to read:
ALL
Read all geometry, material property, load, and component data (default). Solid model geometry and loads will be read from the file Fnamei. Exti. All other data will be read from the file Fname.Ext.

DB
Read all database information contained in file Fname. Ext. This file should contain all information mentioned above except the solid model loads. If reading a . CDB file written with the GEOM option of the CDWRITE command, element types [ET] compatible with the connectivity of the elements on the file must be defined prior to reading.

SOLID

Read the solid model geometry and solid model loads from the file Fnamei.Exti. This file could have been written by the CDWRITE or IGESOUT command.

COMB
Read the combined solid model and database information from the file Fname.Ext .

Fname

File name and directory path (248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

The file name defaults to Jobname.

Ext

Filename extension (8 character maximum).
The extension defaults to CDB if Fname is blank.

Unused field.

Fnamei

Name of the IGES file and its directory path (248 characters maximum, including directory). If you do not specify a directory path, it will default to your working directory and you can use all 248 characters for the file name.

The file name defaults to Fname. Used only if Option = ALL or SOLID.

Exti

Filename extension (8 character maximum).

Defaults to IGES if Fnamei is blank.

Notes

This command causes coded files of solid model (in IGES format) and database (in command format) information to be read. These files are normally written by the CDWRITE or IGESOUT command. Note that the active coordinate system in these files has been reset to Cartesian (CSYS,0).

If a set of data exists prior to the CDREAD operation, that data set is offset upward to allow the new data to fit without overlap. The NOOFFSET command allows this offset to be ignored on a set-by-set basis, causing the existing data set to be overwritten with the new data set.

When you write the geometry data using the CDWRITE,GEOM option, you use the CDREAD,DB option to read the geometry information.

Using the CDREAD,COMB option will not write NUMOFF commands to offset entity ID numbers if there is no solid model in the database.

Multiple CDB file imports cannot have elements with real constants in one file and section definitions in another. The section attributes will override the real constant attributes. If you use CDREAD to import multiple CDB files, define all of the elements using only real constants, or using only section definitions. Combining real constants and section definitions is not recommended.

This command is valid in any processor.

Menu Paths

Main Menu>Preprocessor>Archive Model>Read

CDWRITE, Option, Fname, Ext, --, Fnamei, Exti, Fmat

Writes geometry and load database items to a file.

> PREP 7: Database
> MP ME ST PR PRN <><> FL EM EH DY PP <> EME MFS
> Product Restrictions

Option

Selects which data to write:
ALL
Write all appropriate geometry, material property, load, and component data (default). Two files will be produced. Fname. Ext will contain all data items mentioned in "Notes" (p. 243), except the solid
model data. Fnamei.Exti will contain the solid model geometry and solid model loads data in the form of IGES commands. This option is not valid when CDOPT, ANF is active.

COMB

Write all data mentioned, but to a single file, Fname.Ext. Solid model geometry data will be written in either IGES or ANF format as specified in the CDOPTcommand, followed by the remainder of the data in the form of ANSYS commands. More information on these (IGES/ANF) file formats is provided below.

DB
Write all database information except the solid model and solid model loads to Fname.Ext in the form of ANSYS commands. This option is not valid when CDOPT, ANF is active.

SOLID

Write only the solid model geometry and solid model load data. This output will be in IGES or ANF format, as specified in the CDOPTcommand. More information on these (IGES/ANF) file formats is provided below.

GEOM

Write only element and nodal geometry data. Neither solid model geometry nor element attribute data will be written. One file, Fname.Ext, will be produced. Use CDREAD,DB to read in a file written with this option. Element types [ET] compatible with the connectivity of the elements on the file must first be defined before reading the file in with CDREAD,DB.

CM

Write only node and element component and geometry data to Fname.Ext.

MAT

Write only material property data (both linear and nonlinear) to Fname.Ext.

LOAD

Write only loads for current load step to Fname.Ext.

SECT

Write only section data to Fname.Ext. Pretension sections are not included.

Fname

File name and directory path (248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

Ext

Filename extension (8 character maximum).
The extension defaults to CDB if Fname is blank.

Unused field.

Fnamei

Name of the IGES file and its directory path (248 characters maximum, including directory). If you do not specify a directory path, it will default to your working directory and you can use all 248 characters for the file name.

The file name defaults to Fname. Used only if Option = ALL or SOLID. Previous data on this file, if any, is overwritten.

Exti

Filename extension (8 character maximum).

The extension defaults to IGES in all cases, except when CDOPT, ANF is active and your CDWRITE, Option $=$ SOLID. In this case Ext $i=$ ANF.

Fmat
Format of the output file (defaults to BLOCKED).

BLOCKED

Blocked format. This format allows faster reading of the output file. The time savings is most significant when BLOCKED is used to read .cdb files associated with very large models.

UNBLOCKED

Unblocked format.

Command Default

When SOLCONTROL,ON, does not write default values for most of the relevant solution control commands or options. When SOLCONTROL,OFF, writes all default values for solution control commands.

Default output format is determined by your CDOPT settings.

Notes

- IGES option to write solid model information:

CDOPT, IGS (default)
Before you write your solid model entities, you must select all corresponding lower level entities (use ALLSEL, BELOW, ALL).

Section properties assigned to areas, lines and other solid model entities will not be maintained when the model is exported from ANSYS using CDWRITE with the IGES option.

If you issue CDWRITE after generating a beam mesh with orientation nodes, the database file will contain all of the nodes for every beam element, including the orientation nodes. However, the orientation keypoints that were specified for the line (LATT) are no longer associated with the line and won't be written out to the geometry file. All associativity between the line and the orientation keypoints is lost. The CDWRITE command with IGES format does not support (for beam meshing) any line operation that relies on solid model associativity. For example, meshing the areas adjacent to the meshed line, plotting the line that contains the orientation nodes, or clearing the mesh from the line that contains orientation nodes may not work as expected. Concatenated lines are not written. In IGES option, the line segments that make up the concatenated lines are written. However, if you encounter an area that contains a concatenated line, the write operation halts (that area can't be recreated during the read operation). If your model has areas that contain concatenated lines, you must first list these and then unconcatenate them before issuing the CDWRITE command. Similarly, hardpoint information cannot be written.

- ANF option to write solid model information:

```
CDOPT, ANF
```

All model information in the database (regardless of select status) is written to the archive file. However, when you restore the database using this archived file, the select status of entities will also be restored. This option restores all line attributes, including orientation keypoints. It also writes out any components (not assemblies) comprised of solid model entities. The ANF option halts CDWRITE when a concatenated
line or an area that contains a concatenated line is detected. You must delete the concatenated lines before issuing CDWRITE. Similarly, hardpoint information cannot be written.

Load data includes the current load step only. Loads applied to the solid model (if any) are automatically transferred to the finite element model when this command is issued. CDWRITE writes out solid model loads for meshed models only. If the model is not meshed, ANSYS cannot save the solid model loads. Component data include component definitions, but not assembly definitions. Appropriate NUMOFF commands are included at the beginning of the file; this is to avoid overlap of an existing database when the file is read in.

Element order information (resulting from a WAVES command) is not written. The data in the database remain untouched.

CDWRITE does not support the GSBDATA and GSGDATA commands, and these commands will not be written to the file. CDWRITE does not support the FiberSIM-ANSYS interface.

The data may be reread (on a different machine, for example) with the CDREAD command. Caution: When the file is read in, the NUMOFF,MAT command may cause a mismatch between material definitions and material numbers referenced by certain loads and element real constants. See NUMOFF for details. Also, be aware that the files created by the CDWRITE command explicitly set the active coordinate system to Cartesian (CSYS,0).

You should generally use the blocked format (F mat $=$ BLOCKED) when writing out model data with CDWRITE. This is a compressed data format that greatly reduces the time required to read large models through the CDREAD command. The blocked and unblocked formats are described in Chapter 3 of the Guide to Interfacing with ANSYS.

If you use CDWRITE in any of the derived products (ANSYS Emag, ANSYS Professional), then before reading the file, you must edit the Jobname. cdb file to remove commands that are not available in the respective component product.

The CDWRITE command writes the PART information for any ANSYS LS-DYNA input file to the Jobname. cdb file using the EDPREAD command. (EDPREAD is not an ANSYS documented command, it is written only when the CDWRITE command is issued.) The PART information can be automatically read into ANSYS with the CDREAD command. However, if more than one Jobname. cdb file is read, the PART list from the last Jobname. cdb file overwrites the existing PART list of the total model. This will affect all PART-related commands contained in the Jobname. cdb file. That means the user can join models, but not PART-related inputs, which the user must modify using the newly-created PART numbers. In limited cases, an update of the PART list (EDWRITE,PUPDATE) is possible. This requires that no used combination of MAT/TYPE/REAL appears more than once in the list. However, partial changes to the PART-related commands may be necessary.

Caution

The CDWRITE command does not support (for beam meshing) any line operation that relies on solid model associativity. For example, meshing the areas adjacent to the meshed line, plotting the line that contains the orientation nodes, or clearing the mesh from the line that contains orientation nodes may not work as expected. For more information about beam meshing, see Meshing Your Solid Model in the Modeling and Meshing Guide.

This command is also valid in SOLUTION.

Product Restrictions

In ANSYS ED, option = ALL, COMB, or SOLID is not allowed, and the default is Option = DB.

Menu Paths

Main Menu>Preprocessor>Archive Model>Write

CE, NEQN, CONST, NODE1, Lab1, C1, NODE2, Lab2, C2, NODE3, Lab3, C3

Defines a constraint equation relating degrees of freedom.

PREP 7:Constraint Equations
MP ME ST PR PRN <> <> <> EM EH DY PP <> EME MFS

NEQN

Set equation reference number:
n
Arbitrary set number.
HIGH
The highest defined constraint equation number. This option is especially useful when adding nodes to an existing set.
NEXT
The highest defined constraint equation number plus one. This option automatically numbers coupled sets so that existing sets are not modified.
The default value is HIGH.

CONST

Constant term of equation.
NODE1
Node for first term of equation. If -NODE1, this term is deleted from the equation.

Lab1

Degree of freedom label for first term of equation. Structural labels: UX, UY, or UZ (displacements); ROTX, ROTY, or ROTZ (rotations, in radians). Thermal labels: TEMP, TBOT, TE2, TE3, ..., TTOP (temperature).
Electric labels: VOLT (voltage). Magnetic labels: MAG (scalar magnetic potential); AX, AY, or AZ (vector magnetic potentials).

C1

Coefficient for first node term of equation. If zero, this term is ignored.

NODE2, Lab2, C2

Node, label, and coefficient for second term.

NODE3, Lab3, C3

Node, label, and coefficient for third term.

Notes

Repeat the CE command to add additional terms to the same equation. To change only the constant term, repeat the command with no node terms specified. Only the constant term can be changed during solution, and only with the CECMOD command.

Linear constraint equations may be used to relate the degrees of freedom of selected nodes in a more general manner than described for nodal coupling [CP]. The constraint equation is of the form:

Constant $=\sum_{I=1}^{N}($ Coefficient $(I) * U(I))$
where $\mathrm{U}(\mathrm{I})$ is the degree of freedom (displacement, temperature, etc.) of term (I). The following example is a set of two constraint equations, each containing three terms:

$$
\begin{aligned}
& 0.0=3.0^{*}(1 \mathrm{UX})+3.0^{*}(4 \mathrm{UX})+(-2.0)^{*}(4 \text { ROTY }) \\
& 2.0=6.0^{*}(2 \mathrm{UX})+10.0^{*}(4 \mathrm{UY})+1.0^{*}(3 \mathrm{UZ})
\end{aligned}
$$

The first unique degree of freedom in the equation is eliminated in terms of all other degrees of freedom in the equation. A unique degree of freedom is one which is not specified in any other constraint equation, coupled node set, specified displacement set, or master degree of freedom set. It is recommended that the first term of the equation be the degree of freedom to be eliminated. The first term of the equation cannot contain a master degree of freedom, and no term can contain coupled degrees of freedom. The same degree of freedom may be specified in more than one equation but care must be taken to avoid over-specification (over-constraint).

The degrees of freedom specified in the equation (i.e., UX, UY, ROTZ, etc.) must also be included in the model (as determined from the element types [ET]). Also, each node in the equation must be defined on an element (any element type containing that degree of freedom will do).

For buckling and modal analyses, the constant term of the equation will not be taken into account (that is, CONST is always zero).

Menu Paths

Main Menu>Preprocessor>Coupling / Ceqn>Constraint Eqn

CECHECK, ItemLab, Tolerance, DOF

Check constraint equations and couplings for rigid body motions.

PREP 7:Database
SOLUTION: Analysis Options
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

ItemLab

Item indicating what is to be checked:
CE
Check constraint equations only
CP
Check couplings only
ALL
Check both CE and CP

Tolerance

Allowed amount of out-of-balance for any constraint equation or coupled set. The default value of $1.0 \mathrm{e}-$ 6 is usually good.

DOF
Specifies which DOF is to be checked. Default is RIGID, the usual option. Other choices are individual DOF such as UX, ROTZ, etc. or THERM. The THERM option will check the constraint equations or coupled sets for free thermal expansions, whereas the individual DOFs check under rigid body motions. ALL is RIGID and THERM.

Notes

This command imposes a rigid body motion on the nodes attached to the constraint equation or coupled set and makes sure that no internal forces are generated for such rigid body motions. Generation of internal forces by rigid body motions usually indicates an error in the equation specification (possibly due to nodal coordinate rotations). The THERM option does a similar check to see that no internal forces are created by the equations if the body does a free thermal expansion (this check assumes a single isotropic coefficient of expansion).

Menu Paths

This command cannot be accessed from a menu.

CECMOD, NEQN, CONST

Modifies the constant term of a constraint equation during solution.

SOLUTION:Load Step Options
MP ME ST PR PRN <> <> <> EM EH <> PP <> EME MFS

NEQN
 Reference number of constraint equation.
 CONST
 New value of the constant term of equation.

Notes

Other terms of the constraint equation cannot be changed during the solution phase, but must be defined or changed within PREP7 prior to the solution. See the CE command for details.

This command is also valid in PREP7.

Menu Paths

Main Menu>Preprocessor>Coupling / Ceqn>Modify ConstrEqn
Main Menu>Preprocessor>Loads>Load Step Opts>Other>Modify ConstrEqn
Main Menu>Solution>Load Step Opts>Other>Modify ConstrEqn

CECYC, Lowname, Highname, Nsector, HIndex, Tolerance, Kmove, Kpairs

Generates the constraint equations for a cyclic symmetry analysis

PREP 7:Constraint Equations
 MP ME ST PR PRN <> <> <> EM EH DY PP <> EME MFS

Lowname

Name of a component for the nodes on the low angle edge of the sector. Enclosed in single quotes.

Highname

Name of a component for the nodes on the high angle edge of the sector. Enclosed in single quotes.

Nsector

Number of sectors in the complete 360 degrees.

HIndex

Harmonic index to be represented by this set of constraint equations. If Hindex is -1 , generate constraint equations for static cyclic symmetry. If HIndex is -2 , generate constraint equations for static cyclic asymmetry.

Tolerance

A positive tolerance is an absolute tolerance (length units), and a negative tolerance is a tolerance relative to the local element size.

Kmove

0
Nodes are not moved.
1
HIGHNAME component nodes are moved to match LOWNAME component nodes exactly.

Kpairs

0
Do not print paired nodes
1
Print table of paired nodes

Notes

The analysis can be either modal cyclic symmetry or static cyclic symmetry.
The pair of nodes for which constraint equations are written are rotated into CSYS,1.

Menu Paths

This command cannot be accessed from a menu.

CEDELE, NEQN1, NEQN2, NINC, Nsel

Deletes constraint equations.

> MP ME ST PR PRN <> <> <> EM EH DY PP <> EME MFS

NEQN1, NEQN2, NINC

Delete constraint equations from $N E Q N 1$ to $N E Q N 2$ (defaults to $N E Q N 1$) in steps of $N I N C$ (defaults to 1). If $N E Q N 1$ = ALL, NEQN2 and NINC will be ignored all constraint equations will be deleted.

Nsel

Additional node selection control:
ANY
Delete equation set if any of the selected nodes are in the set (default).
ALL
Delete equation set only if all of the selected nodes are in the set.

Menu Paths

Main Menu>Preprocessor>Coupling / Ceqn>Del Constr Eqn

CEINTF, TOLER, DOF1, DOF2, DOF3, DOF4, DOF5, DOF6, MoveTol

Generates constraint equations at an interface.

PREP 7: Constraint Equations
MP ME ST PR PRN <> <> <> EM EH DY PP <> EME MFS

TOLER
Tolerance about selected elements, based on a fraction of the element dimension (defaults to 0.25 (25\%)). Nodes outside the element by more than the tolerance are not accepted as being on the interface.

DOF1, DOF2, DOF3, . . . , DOF6

Degrees of freedom for which constraint equations are written. Defaults to all applicable DOFs. DOF1 accepts ALL as a valid label, in which case the rest are ignored (all DOFs are applied).

Movetol

The allowed "motion" of a node (see Note below). This distance is in terms of the element coordinates (-1.0 to 1.0). A typical value is 0.05 . Defaults to 0 (do not move). MoveTol must be less than or equal to TOLER.

Notes

This command can be used to "tie" together two regions with dissimilar mesh patterns by generating constraint equations that connect the selected nodes of one region to the selected elements of the other region. At the interface between regions, nodes should be selected from the more dense mesh region, A, and the elements selected from the less dense mesh region, B. The degrees of freedom of region A nodes are interpolated with the corresponding degrees of freedom of the nodes on the region B elements, using the shape functions of the region B elements. Constraint equations are then written that relate region A and B nodes at the interface.

The Movetol field lets the nodes in the previously mentioned region A change coordinates when slightly inside or outside the elements of region B. The change in coordinates causes the nodes of region A to assume the same surface as the nodes associated with the elements of region B. The constraint equations that relate the nodes at both regions of the interface are then written.

Solid elements with six degrees of freedom should only be interfaced with other six degree-of-freedom elements. The region A nodes should be near the region B elements. A location tolerance based on the smallest region B element length may be input. Stresses across the interface are not necessarily continuous. Nodes in the interface region should not have specified constraints.

Use the CPINTF command to connect nodes by coupling instead of constraint equations. Use the EINTF command to connect nodes by line elements. See also the NSEL and ESEL commands for selecting nodes and elements. See the Theory Reference for the Mechanical APDL and Mechanical Applications for a description of 3-D space used to determine if a node will be considered by this command.

As an alternative to the CEINTF command, you can use contact elements and the internal multipoint constraint (MPC) algorithm to tie together two regions having dissimilar meshes. See Solid-Solid and Shell-Shell Assemblies for more information.

Menu Paths

Main Menu>Preprocessor>Coupling / Ceqn>Adjacent Regions

CELIST, NEQN1, NEQN2, NINC, Option

Lists the constraint equations.

PREP 7:Constraint Equations
MP ME ST PR PRN <> <> <> EM EH DY PP <> EME MFS

NEQN1, NEQN2, NINC

List constraint equations from NEQN1 to NEQN2 (defaults to NEQN1) in steps of NINC (defaults to 1). If $N E Q N 1$ = ALL (default), NEQN2 and NINC are ignored and all constraint equations are listed.

option

Options for listing constraint equations:

ANY

List equation set if any of the selected nodes are in the set (default). Only externally-generated constraint equations are listed.
ALL
List equation set only if all of the selected nodes are in the set. Only externally-generated constraint equations are listed.

INTE

List internally-generated constraint equations that are associated with MPC-based contact. Constraint equations are listed only if all the nodes in the set are selected.

CONV
Convert internal constraint equations to external constraint equations. Internal constraint equations are converted only if all of the nodes in the set are selected.

Notes

This command is valid in any processor. However, the INTE and CONV options are only valid in the Solution processor after a SOLVE command has been issued.

Menu Paths

Utility Menu>List>Other>Constraint Eqns>All CE nodes selected Utility Menu>List>Other>Constraint Eqns>Any CE node selected

CENTER, NODE, NODE1, NODE2, NODE3, RADIUS

Defines a node at the center of curvature of $\mathbf{2}$ or $\mathbf{3}$ nodes.

PREP7:Nodes
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

NODE

Number to be assigned to the node generated at the center of curvature.

NODE1, NODE2, NODE3

Three nodes used to calculated the center of curvature, as described under RADIUS.

RADIUS

Used to control the interpretation of NODE1, NODE2 and NODE3:
0
NODE1, NODE 2 and NODE3 lie on a circular arc. The program will calculate the center of curvature (and radius) (default).
$\neq 0$
NODE1 and NODE2 are the endpoints of an arc, and RADIUS is the radius of curvature. The program will locate the center of curvature on the NODE3 side of the NODE1-NODE2 line if RADIUS >0, and opposite to NODE3 if RADIUS <0.

Menu Paths

Main Menu>Preprocessor>Modeling>Create>Nodes>At Curvature Ctr

CEQN

Specifies "Constraint equations" as the subsequent status topic.

PREP 7: Status
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Notes

This is a status [STAT] topic command. Status topic commands are generated by the GUI and will appear in the log file (Jobname. LOG) if status is requested for some items under Utility Menu> List> Status. This command will be immediately followed by a STAT command, which will report the status for the specified topic.

If entered directly into the program, the STAT command should immediately follow this command.

Menu Paths

Utility Menu>List>Status>Preprocessor>Constraint Eqns

CERIG, MASTE, SLAVE, Ldof, Ldof2, Ldof3, Ldof4, Ldof5

Defines a rigid region.

PREP 7:Constraint Equations
MP ME ST PR PRN <> <> <> <> <> DY PP <> EME MFS

MASTE

Retained (or master) node for this rigid region. If $M A S T E=P$, then graphical picking of the master and slave nodes is enabled (first node picked will be the master node, and subsequent nodes picked will be slave nodes), and subsequent fields are ignored (valid only in GUI).

SLAVE

Removed (or slave) node for this rigid region. If ALL, slave nodes are all selected nodes.

Ldof

Degrees of freedom associated with equations:
ALL
All applicable degrees of freedom (default). If 3-D, generate 6 equations based on UX, UY, UZ, ROTX, ROTY, ROTZ; if 2-D, generate 3 equations based on UX, UY, ROTZ.

UXYZ

Translational degrees of freedom. If 3-D, generate 3 equations based on the slave nodes' UX, UY, and UZ DOFs and the master node's UX, UY, UZ, ROTX, ROTY, and ROTZ DOFs; if 2-D, generate 2 equations based on the slave nodes UX and UY DOFs and the master nodes UX, UY, and ROTZ DOFs. No equations are generated for the rotational coupling.

RXYZ

Rotational degrees of freedom. If 3-D, generate 3 equations based on ROTX, ROTY, ROTZ; if 2-D, generate 1 equation based on ROTZ. No equations are generated for the translational coupling.

UX

Slave translational UX degree of freedom only.
UY
Slave translational UY degree of freedom only.
UZ
Slave translational UZ degree of freedom only.

ROTX

Slave rotational ROTX degree of freedom only.

ROTY

Slave rotational ROTY degree of freedom only.

ROTZ

Slave rotational ROTZ degree of freedom only.

Ldof2, Ldof3, Ldof4, Ldof5

Additional degrees of freedom. Used only if more than one degree of freedom required and Ldof is not ALL, UXYZ, or RXYZ.

Notes

Defines a rigid region (link, area or volume) by automatically generating constraint equations to relate nodes in the region. Nodes in the rigid region must be assigned a geometric location before this command is used. Also, nodes must be connected to elements having the required degree of freedom set (see Ldof above). Generated constraint equations are based on small deflection theory. Generated constraint equations are numbered beginning from the highest previously defined equation number ($N E Q N$) plus 1. Equations, once generated, may be listed [CELIST] or modified [CE] as desired. Repeat CERIG command for additional rigid region equations.

This command will generate the constraint equations needed for defining rigid lines in 2-D or 3-D space. Multiple rigid lines relative to a common point are used to define a rigid area or a rigid volume. In 2-D space, with Ldof $=$ ALL, three equations are generated for each pair of constrained nodes. These equations define the three rigid body motions in global Cartesian space, i.e., two in-plane translations and one in-plane rotation. These equations assume the $X-Y$ plane to be the active plane with $U X, U Y$, and ROTZ degrees of freedom available at each node. Other types of equations can be generated with the appropriate Ldof labels.

Six equations are generated for each pair of constrained nodes in 3-D space (with Ldof =ALL).These equations define the six rigid body motions in global Cartesian space. These equations assume that UX, UY, UZ, ROTX, ROTY, and ROTZ degrees of freedom are available at each node.

The UXYZ label allows generating a partial set of rigid region equations. This option is useful for transmitting the bending moment between elements having different degrees of freedom at a node. With this option only two of the three equations are generated for each pair of constrained nodes in 2-D space. In 3-D space, only three of the six equations are generated. In each case the rotational coupling equations are not generated. Similarly, the RXYZ label allows generating a partial set of equations with the translational coupling equations omitted.

Applying this command to a large number of slave nodes may result in constraint equations with a large number of coefficients. This may significantly increase the peak memory required during the process of element assembly. If real memory or virtual memory is not available, consider reducing the number of slave nodes.

As an alternative to the CERIG command, you can define a similar type of rigid region using contact elements and the internal multipoint constraint (MPC) algorithm. See Surface-Based Constraints for more information.

CERIG cannot be deleted using CEDELE,ALL and then regenerated in the second or higher load steps if the LSWRITE and LSSOLVE procedure is used. CERIG writes constraint equations directly into load step files. Deleting constraint equations (CEDELE,ALL) cannot always maintain the consistency among load steps.

Menu Paths

Main Menu>Preprocessor>Coupling / Ceqn>Rigid Region

CESGEN, ITIME, INC, NSET1, NSET2, NINC

Generates a set of constraint equations from existing sets.

PREP 7: Constraint Equations
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

ITIME, INC

Do this generation operation a total of ITIMEs, incrementing all nodes in the existing sets by INC each time after the first. ITIME must be >1 for generation to occur.

NSET1, NSET2, NINC

Generate sets from sets beginning with NSET1 to NSET2 (defaults to NSET1) in steps of NINC (defaults to 1). If NSET1 is negative, NSET2 and NINC are ignored and the last |NSET1| sets (in sequence from maximum set number) are used as the sets to be repeated.

Notes

Generates additional sets of constraint equations (with same labels) from existing sets. Node numbers between sets may be uniformly incremented.

Menu Paths

Main Menu>Preprocessor>Coupling / Ceqn>Gen w/Same DOF

CFACT, RFACTA, IFACTA, RFACTB, IFACTB, RFACTC, IFACTC

Defines complex scaling factors to be used with operations.

POST26:Controls
MP ME ST PR PRN <> <> <> EM EH DY PP <> EME MFS

RFACTA

Real portion of the complex scale factor used in place of $F A C T A$.

IFACTA

Imaginary portion of the complex scale factor used in place of FACTA.

RFACTB

Real portion of the complex scale factor used in place of FACTB.

IFACTB

Imaginary portion of the complex scale factor used in place of FACTB.

RFACTC

Real portion of the complex scale factor used in place of FACTC.

IFACTC

Imaginary portion of the complex scale factor used in place of FACTC.

Command Default

Use the real factors as described with the operation command.

Notes

Defines complex scale factors to be used with the operations [ADD, PROD, etc.]. If this command is supplied, these complex factors override any real factors ($F A C T A, F A C T B, F A C T C$) supplied on the operation commands. Factors are typically involved in scaling a specified variable, such as in the term FACTA x IA of the ADD command to scale variable IA before the ADD operation.

When the CFACT command is active, defaults are as follows: 1) if the complex factor is not specified, but the variable upon which it acts (such as IA) is specified, the factor defaults to $1.0+i 0.0 ; 2$) if the variable upon which the factor operates is not specified, but the factor is specified, the variable defaults to 1.0 so that the term in the operation becomes the complex factor itself; 3) if neither the factor nor the variable number is supplied, the term is omitted from the operation. Once the operation (such as the ADD command) has been processed, the CFACT command becomes inactive and must be specified again if it is to be used.

Menu Paths

Main Menu>TimeHist Postpro>Math Operations>Complx ScaleFact

*CFCLOS

Closes the "command" file.

> APDL: Macro Files
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Notes

This command is valid in any processor.

Menu Paths

This command cannot be accessed from a menu.

*CFOPEN, Fname, Ext, --, Loc

Opens a "command" file.

> APDL: Macro Files
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Argument Descriptions

Fname

File name and directory path (248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

The file name defaults to Jobname.

Ext

Filename extension (8 character maximum).
The extension defaults to CMD if Fname is blank.

Unused field.
LOC
Determines whether existing file will be overwritten or appended:
(blank) --
The existing file will be overwritten.
APPEND --
The file will be appended to the existing file.

Notes

Data processed with the *VWRITE command will also be written to this file if the file is open when the *VWRITE command is issued.

This command is valid in any processor.

Menu Paths

This command cannot be accessed from a menu.

*CFWRITE, Command

Writes an ANSYS command (or similar string) to a "command" file.

APDL:Macro Files
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Argument Descriptions

Command

Command or string to be written. The standard command form of a label followed by arguments separated by commas is assumed. Command may be a parameter assignment (e.g., *CFWRITE, A = 5).

Notes

Writes an ANSYS command (or similar string) to the file opened with *CFOPEN. The Command string is not executed (except that numeric and character parameter substitution and operations (with imbedded *, /, >, etc. characters) are performed before writing). When used with *GET results and parameter substitution, an ANSYS command can be created from results and then read back into the ANSYS program (or used elsewhere). For example, if the command *CFWRITE,BF,NNUM,TEMP,TVAL is used in a do-loop, where TVAL is a parameter value returned from the *GET operation and NNUM is a specified or returned parameter value, a series of BF commands, with numerical values substituted for the two parameters, will be written. To create a file without parameter substitution, use *CREATE.

This command is valid in any processor.

Menu Paths

This command cannot be accessed from a menu.

/CFORMAT, NFIRST, NLAST

Controls the graphical display of alphanumeric character strings for parameters, components, assemblies, and tables.

GRAPHICS:Labeling
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

NFIRST

Display the first n characters of the parameter, component, assembly, or table name, up to 32 . Defaults to 32.

NLAST

Display the last n characters of the parameter, component, assembly, or table name, up to 32 . Defaults to 0 .

Notes

Use this command to control the length of the character string that is shown in the graphics window for a parameter, component, assembly, or table name.

The total number of characters ($N F I R S T+N L A S T+3$) cannot exceed 32.
If $N F I R S T$ is greater than zero and $N L A S T=0$, only the $N F I R S T$ characters are displayed, followed by an ellipsis.

If NFIRST $=0$ and NLAST is greater than zero, only the NLAST characters are displayed, preceded by an ellipsis (...).

If both NFIRST and NLAST are greater than zero, the name will be shown as NFIRST, followed by an ellipsis (...), followed by NLAST, up to a maximum of 32 characters.

For example, if $N F I R S T=6$ and $N L A S T=3$, and the character string is LENGTHOFSIDEONE, then it will appear in the graphics window as LENGTH...ONE.

If the actual length of the character string is less than the specified combination of NFIRST $+N L A S T+3$, then the actual string will be used.

This command is valid in any processor.

Menu Paths

Utility Menu>PlotCtrls>Style>Size and Shape

CGLOC, XLOC, YLOC, ZLOC
Specifies the origin location of the acceleration coordinate system.
SOLUTION: Inertia
MP ME ST PR PRN DS DSS FL EM EH DY PP <> EME MFS
XLOC, YLOC, ZLOC
Global Cartesian X, Y, and Z coordinates of the acceleration coordinate system origin.

Notes

Specifies the origin location of the acceleration coordinate system with respect to the global Cartesian system. The axes of this acceleration coordinate system are parallel to the global Cartesian axes.

A structure may be rotating about the global Cartesian origin [OMEGA, DOMEGA], which may in turn be rotating about another point (the origin of the acceleration coordinate system), introducing Coriolis effects. The location of this point (relative to the global Cartesian origin) is specified with this CGLOC command. For example, if Y is vertical and the global system origin is at the surface of the earth while the acceleration system origin is at the center of the earth, YLOC should be -4000 miles (or equivalent) if the rotational effects of the earth are to be included. The rotational velocity of the global Cartesian system about this point is specified with the CGOMGA command, and the rotational acceleration is specified with the DCGOMG command.

The rotational velocities and accelerations are mainly intended to include mass effects in a static (ANTYPE,STATIC) analysis. If used in dynamic analyses, no coupling exists between the user input terms and the time history response of the structure. See Acceleration Effect in the Theory Reference for the Mechanical APDL and Mechanical Applications for details. Related commands are ACEL, CGOMGA, DCGOMG, DOMEGA, and OMEGA.

This command is also valid in PREP7.

Menu Paths

Main Menu>Preprocessor>FLOTRAN Set Up>Flow Environment>Rotating Coords
Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Inertia>Coriolis Effects
Main Menu>Preprocessor>Loads>Define Loads>Delete>Structural>Inertia>Coriolis Effects
Main Menu>Preprocessor>LS-DYNA Options>Loading Options>Acceleration CS>Delete Accel CS
Main Menu>Preprocessor>LS-DYNA Options>Loading Options>Acceleration CS>Set Accel CS
Main Menu>Solution>Define Loads>Apply>Structural>Inertia>Coriolis Effects
Main Menu>Solution>Define Loads>Delete>Structural>Inertia>Coriolis Effects
Main Menu>Solution>FLOTRAN Set Up>Flow Environment>Rotating Coords
Main Menu $>$ Solution $>$ Loading Options $>$ Acceleration CS>Delete Accel CS
Main Menu>Solution>Loading Options>Acceleration CS>Set Accel CS

CGOMGA, CGOMX, CGOMY, CGOMZ
Specifies the rotational velocity of the global origin.
SOLUTION: Inertia
MP ME ST PR PRN DS DSS FL <> <> DY PP <> EME MFS

CGOMX, CGOMY, CGOMZ
Rotational velocity of the global origin about the acceleration system X, Y, and Z axes.

Notes

Specifies the rotational velocity of the global origin about each of the acceleration coordinate system axes. The location of the acceleration coordinate system is defined with the CGLOC command. Rotational velocities may be defined in analysis types ANTYPE,STATIC, HARMIC (full or mode superposition), TRANS (full or mode superposition), and SUBSTR. See Acceleration Effect in the Theory Reference for the Mechanical APDL and Mechanical Applications for details. Units are radians/time. Related commands are ACEL, CGLOC, DCGOMG, DOMEGA, and OMEGA.

The CGOMGA command supports tabular boundary conditions (\%TABNAME_X\%, \%TABNAME_Y\%, and \%TABNAME_Z\%) for CGOMGA_X, CGOMGA_Y, and CGOMGA_Z input values (*DIM) for full transient and harmonic analyses.

This command is also valid in PREP7.

Menu Paths

Main Menu>Preprocessor>FLOTRAN Set Up>Flow Environment>Rotating Coords
 Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Inertia>Coriolis Effects
 Main Menu>Preprocessor>Loads>Define Loads>Delete>Structural>Inertia>Coriolis Effects
 Main Menu>Solution>Define Loads>Apply>Structural>Inertia>Coriolis Effects
 Main Menu>Solution>Define Loads>Delete>Structural>Inertia>Coriolis Effects
 Main Menu>Solution>FLOTRAN Set Up>Flow Environment>Rotating Coords

CHECK, Sele, Levl
Checks current database items for completeness.

> PREP 7:Database
> SOLUTION: Analysis Options
> MP ME ST PR PRN <> <> FL EM EH $<>$ PP <> EME MFS

Sele

Specifies which elements are to be checked:
(blank)
Check all data.
ESEL
Check only elements in the selected set and unselect any elements not producing geometry check messages. The remaining elements (those producing check messages) can then be displayed and corrected. A null set results if no elements produce a message. Issue ESEL,ALL to select all elements before proceeding.

Levl

Used only with Sele = ESEL:
WARN
Select elements producing warning and error messages.
ERR
Select only elements producing error messages (default).

Notes

This command will not work if SHPP,OFF has been set. A similar, automatic check of all data is done before the solution begins.

If the "Check Elements" option is invoked through the GUI (menu path Main Menu> Preprocessor> Meshing> Check Elems), the CHECK,ESEL logic is used to highlight elements in the following way: good elements are blue, elements having warnings are yellow, and bad (error) elements are red.

Note

The currently selected set of elements is not changed by this GUI function.

This command is also valid in PREP7.

Menu Paths

Main Menu>Preprocessor>Meshing>Check Mesh>Individual Elm>Select Warning/Error Elements

CHKMSH, comp

Checks area and volume entities for previous meshes.

PREP 7:Meshing
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Comp

Name of component containing areas or volumes.

Notes

CHKMSH invokes a predefined ANSYS macro that checks areas and volumes to find out if they were previously meshed. This macro name will appear in the log file (Jobname. LOG) prior to area and volume meshing operations initiated through the GUI. This command is not intended to be typed in directly in an ANSYS session (although it can be included in an input file for use with the /INPUT command).

Menu Paths

This command cannot be accessed from a menu.

CINT, Action, Par1, Par2, Par3, Par4, Par5, Par6, Par7

Defines parameters associated with fracture parameter calculations

PREP 7: Data Tables
SOLUTION: Analysis Options
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

Action

Specifies action for defining or manipulating initial crack data:
NEW
Initiate a new calculation and assign an ID.
CTNC
Define the crack tip node component.
CENC
Define the crack extension node component, the crack tip node, and the crack extension direction.
TYPE
Define the type of calculation to perform.
DELE
Delete the CINT object associated with the specified ID.
NCON
Define the number of contours to be calculated in the contour-integral calculation.

SYMM

Indicate whether the crack is on a symmetrical line or plane.

NORM

Define the crack plane normal.

Command Specification for Action = NEW

CINT, NEW, Par1

Par1 --

CINT ID number.

Command Specifications for Action = CTNC

CINT, CTNC, Par1, Par2, Par3
Par1 --
Crack tip node component name.

Par2 --

Crack-extension direction calculation-assist node. Any node on the open side of the crack.
Par3 --
Crack front's end-node crack-extension direction override flag:
0 --
Align the extension direction with the edges attached at the two end nodes of the crack front (default).

1 --
Align the extension direction to be perpendicular to the crack front.

Command Specifications for Action = CENC

CINT, CENC, Par1, Par2, Par3, Par4, Par5, Par6, Par7

Par1 --

Crack extension node component name (CM).

Par2 --

Crack tip node. The crack tip node defaults to the first node of the crack extension node component.

Par3, Par4 --

Coordinate system number ($\operatorname{Par} 3$) and the number of the axis that is coincident with the crack direction (Par4). When these parameters are defined, Par5, Par6 and Par 7 are ignored.

Par5, Par6, Par7 --

Global x, y, and z components of the crack extension direction vector. (Par3 and Par4 must be blank.)

Command Specifications for Action = TYPE

CINT, TYPE, Par1

Par1 --

Type of calculation to perform:
JINT --
Calculate J-integral (default).
SIFS --
Calculate stress-intensity factors.
VCCT --
Calculate energy-release rate parameters using the VCCT method.

Command Specifications for Action = DELE

CINT, DELE, Par1

Par1 --

CINT ID (default = ALL).

Command Specifications for Action $=$ NCON

CINT, NCON, Par1

Par1 --

Number of contours to be calculated.

Command Specifications for Action = SYMM

CINT, SYMM, Par1

Par1 --

OFF, 0, or NO --
No symmetry (default).
ON, 1, or YES --
Symmetric about the crack line/plane.

Command Specifications for Action = NORM

CINT, NORM, Par1, Par2

Par1 --
Coordinate system number (default $=0$, global Cartesian).

Par2 --

Axis of coordinate system (default $=2$, global Cartesian Y-axis).

Notes

Initiate a new calculation via the Action = NEW parameter. Subsequent CINT commands (with parameters other than NEW) define the input required for the fracture parameter calculations.

The simplest method is to define crack information using Act ion = CTNC; however, this method limits you to only one node for a given location along the crack front.

To define crack information at multiple locations along the crack front, use Action = CENC. You can issue CINT,CENC, Par1, etc. multiple times to define the crack extension node component, the crack tip, and the crack extension directions at multiple locations along the crack front.

Although you can vary the sequence of your definitions, all of the crack tip nodes specified must be at the crack front, and no crack tip node can be omitted

You can define your crack extension direction directly using either Action $=$ CENC or Action $=$ NORM.
The stress-intensity factors calculation (CINT,TYPE,SIFS) applies only to isotropic linear elasticity. Use only one material type for the crack tip elements that are used for the calculations.

For more information about using the CINT command, including supported element types and material behavior, see Numerical Evaluation of Fracture Mechanics Parameters in the Structural Analysis Guide.

Menu Paths

This command cannot be accessed from a menu.

CIRCLE, PCENT, RAD, PAXIS, PZERO, ARC, NSEG

Generates circular arc lines.

PREP 7:Lines
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

PCENT

Keypoint defining the center of the circle (in the plane of the circle). If $P C E N T=\mathrm{P}$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI).

RAD

Radius of the circle. If RAD is blank and PCENT $=\mathrm{P}$, the radius is the distance from PCENT to PZERO.

PAXIS

Keypoint defining axis of circle (along with PCENT). If $P C E N T=\mathrm{P}$ and PAXIS is omitted, the axis is normal to the working plane.

PZERO

Keypoint defining the plane normal to circle (along with PCENT and PAXIS) and the zero degree location. Need not be in the plane of the circle. This value is not required if PAXIS is defined along the Y axis (that is, a circle in the XZ plane).

ARC

Arc length (in degrees). Positive follows right-hand rule about PCENT-PAXIS vector. Defaults to 360°.

NSEG

Number of lines around circumference (defaults to minimum required for 90°-maximum arcs, i.e., 4 for 360°). Number of keypoints generated is NSEG for 360° or $N S E G+1$ for less than 360°.

Notes

Generates circular arc lines (and their corresponding keypoints). Keypoints are generated at regular angular locations (based on a maximum spacing of 90°). Arc lines are generated connecting the keypoints. Keypoint and line numbers are automatically assigned, beginning with the lowest available values [NUMSTR]. Adjacent lines use a common keypoint. Line shapes are generated as arcs, regardless of the active coordinate system. Line shapes are invariant with coordinate system after they are generated.

Menu Paths

Main Menu>Preprocessor>Modeling>Create>Lines>Arcs>By Cent \& Radius
 Main Menu>Preprocessor>Modeling>Create>Lines>Arcs>Full Circle

CISOL, n, ID, node, Cont, Dtype
Stores fracture parameter information in a variable.
POST26:Set Up
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS
n
Arbitrary reference number or name assigned to this variable. Number must be >1 but </= NUMVAR.
ID
Crack ID number.
node
Crack tip node number.

Cont

Contour number.
Dtype
Data type to output:
JINT
J-integral
IIN1
Interaction integral 1
IIN2
Interaction integral 2
IIN3
Interaction integral 3
K1
Mode 1 stress-intensity factor
K2
Mode 2 stress-intensity factor
K3
Mode 3 stress-intensity factor
G1
Mode 1 energy release rate
G2
Mode 2 energy release rate
G3
Mode 3 energy release rate
GT
Total energy release rate

Menu Paths

This command cannot be accessed from a menu.
/CLABEL, $W N, K E Y$

Specifies contour labeling.

GRAPHICS:Labeling
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
wN
Window number (or ALL) to which command applies (defaults to 1).
KEY
Labeling key:

0 or 1

Label contours with legend or color (default).
-1
No contour labeling.
N
Same as 1 except show alphabetic legend only on every Nth element.

Command Default

Show contour line labels.

Notes

Labels contours for identification with alphabetic legend for vector displays and color for raster displays. Number of contours is automatically reduced to 9 (or fewer) for clarity. Use /CONTOUR command to increase (24 maximum for alphabetic labeling; no limit for color labeling).

This command is valid in any processor.

Menu Paths

Utility Menu>PlotCtrls>Style>Contours>Contour Labeling

/CLEAR, Read

Clears the database.

DATABASE: Set Up
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Read

File read option:

START

Reread start130.ans file (default).

NOSTART

Do not reread start130.ans file.

Notes

Resets the ANSYS database to the conditions at the beginning of the problem. Sets the import and Boolean options back to the ANSYS default. All items are deleted from the database and memory values are set to zero for items derived from database information. All files are left intact. This command is useful between multiple analyses in the same run, or between passes of a multipass analysis (such as between the substructure generation, use, and expansion passes). Should not be used in a do-loop since loop counters will be reset. The start130.ans file will be reread (by default) after the database is cleared, unless Read is set to NOSTART. Additional commands cannot be stacked (using the \$ separator) on the same line as the /CLEAR command.

Use care when placing the /CLEAR command within branching constructs (for example, those employing *DO or *IF commands). The command deletes all parameters including the looping parameter for do-loops. (You can preserve your iteration parameter by issuing a PARSAV command prior to the /CLEAR command, then following the /CLEAR command with a PARRES command.)
/CLEAR resets the jobname to match the currently open session . LOG and .ERR files. This will return the jobname to its original value, or to the most recent value specified on /FILNAME with $K E Y=1$.

This command is valid only at the Begin level.

Menu Paths

Utility Menu>File>Clear \& Start New

CLOCAL, KCN, KCS, XL, YL, ZL, THXY, THYZ, THZX, PAR1, PAR2

Defines a local coordinate system relative to the active coordinate system.

KCN
Arbitrary reference number assigned to this coordinate system. Must be greater than 10. A coordinate system previously defined with this number will be redefined.

KCS

Coordinate system type:

0 or CART

Cartesian
1 or CYLIN
Cylindrical (circular or elliptical)
2 or SPHE
Spherical (or spheroidal)
3 or TORO
Toroidal

$X L, Y L, Z L$

Location (in the active coordinate system) of the origin of the new coordinate system ($\mathrm{R}, \theta, \mathrm{Z}$ for cylindrical, R, θ, Φ for spherical or toroidal).

THXY

First rotation about local Z (positive X toward Y).
THYZ
Second rotation about local X (positive Y toward Z).
THZX
Third rotation about local Y (positive Z toward X).
PAR1
Used for elliptical, spheroidal, or toroidal systems. If $K C S=1$ or $2, P A R 1$ is the ratio of the ellipse Y -axis radius to X -axis radius (defaults to 1.0 (circle)). If $K C S=3, P A R 1$ is the major radius of the torus.

PAR2

Used for spheroidal systems. If $K C S=2, P A R 2=$ ratio of ellipse Z -axis radius to X -axis radius (defaults to 1.0 (circle)).

Notes

Defines and activates a local coordinate system by origin location and orientation angles relative to the active coordinate system. This local system becomes the active coordinate system, and is automatically aligned with the active system (i.e., x is radial if a cylindrical system is active, etc.). Nonzero rotation angles (degrees) are relative to this automatic rotation. See the CS, CSKP, CSWPLA, and LOCAL commands for alternate definitions. Local coordinate systems may be displayed with the /PSYMB command.

This command is valid in any processor.

Menu Paths

This command cannot be accessed from a menu.

CLOG, IR, IA, --- --, Name, --, --, FACTA, FACTB

Forms the common log of a variable

> POST2 6: Operations
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

IR
Arbitrary reference number assigned to the resulting variable (2 to NV [NUMVAR]). If this number is the same as for a previously defined variable, the previously defined variable will be overwritten with this result.

IA
Reference number of the variable to be operated on.

Unused fields.

Name

Thirty-two character name for identifying the variable on printouts and displays. Embedded blanks are compressed for output.
--, --
Unused fields.

FACTA

Scaling factor applied to variable IA (defaults to 1.0).

FACTB

Scaling factor (positive or negative) applied to the operation (defaults to 1.0).

Notes

Forms the common log of a variable according to the operation:

$$
I R=F A C T B^{*} \mathrm{LOG}(F A C T A \times I A)
$$

Menu Paths

/CLOG, Fname, Ext, --

Copies the session log file to a named file.

SESSION:Files
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Fname

File name and directory path to which the log file is to be copied (248 characters maximum, including directory). If you do not specify a directory path, it will default to your working directory and you can use all 248 characters for the file name.

Ext

Filename extension (8 character maximum).

Unused field.

Notes

This command is valid in any processor, but only during an interactive run.

Menu Paths

This command cannot be accessed from a menu.

CLRMSHLN

Clears meshed entities.

PREP 7: Meshing
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Notes

When you use the GUI method to set the number of elements on specified lines, and any of those lines is connected to one or more meshed lines, areas, or volumes, ANSYS gives you the option to clear the meshed entities. (This occurs only when you perform this operation via the GUI; ANSYS does not provide such an option when you use the command method [LESIZE].)

If you activate the mesh clearing option, the program invokes an ANSYS macro, CLRMSHLN, that clears the meshed entities. This macro name will appear in the log file (Jobname. LOG). This macro is for the ANSYS program's internal use only. This command is not intended to be typed in directly in an ANSYS session, although it can be included in an input file for batch input or for use with the /INPUT command.

Menu Paths

This command cannot be accessed from a menu.

CM, Cname, Entity

Groups geometry items into a component.

DATABASE:Components
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Cname

An alphanumeric name used to identify this component. Cname may be up to 32 characters, beginning with a letter and containing only letters, numbers, and underscores. Component names beginning with an underscore (e.g., _LOOP) are reserved for use by ANSYS and should be avoided. Components named "ALL," "STAT," and "DEFA" are not permitted. Overwrites a previously defined name.

Entity

Label identifying the type of geometry items to be grouped:

VOLU

Volumes.
AREA
Areas.

LINE

Lines.
KP
Keypoints.
ELEM
Elements.
NODE
Nodes.

Notes

Components may be further grouped into assemblies [CMGRP]. The selected items of the specified entity type will be stored as the component. Use of this component in the select command [CMSEL] causes all these items to be selected at once, for convenience.

A component is a grouping of some geometric entity that can then be conveniently selected or unselected. A component may be redefined by reusing a previous component name. The following entity types may belong to a component: nodes, elements, keypoints, lines, areas, and volumes. A component may contain only 1 entity type, but an individual item of any entity may belong to any number of components. Once defined, the items contained in a component may then be easily selected or unselected [CMSEL]. Components may be listed [CMLIST], modified [CMMOD] and deleted [CMDELE]. Components may also be further grouped into assemblies [CMGRP]. Other entities associated with the entities in a component (e.g., the lines and keypoints associated with areas) may be selected by the ALLSEL command.

An item will be deleted from a component if it has been deleted by another operation (see the KMODIF command for an example). Components are automatically updated to reflect deletions of one more of
their items. Components are automatically deleted and a warning message is issued if all their items are deleted. Assemblies are also automatically updated to reflect deletions of one or more of their components or subassemblies, but are not deleted if all their components and subassemblies are deleted.

This command is valid in any processor.

Menu Paths

Utility Menu>Select>Comp/Assembly>Create Component

CMACEL, CM_NAME, CMACEL_X, CMACEL_Y, CMACEL_Z

Specifies the translational acceleration of an element component

SOLUTION: Inertia
MP ME ST PR PRN DS DSS <> <> <> <> PP <> EME MFS

CM_NAME

The name of the element component (8-character maximum).
CMACEL_X, CMACEL_Y, CMACEL_Z
Acceleration of the element component CM_NAME in the global Cartesian X, Y, and Z axis directions, respectively.

Notes

The CMACEL command specifies the translational acceleration of the element component in each of the global Cartesian (X, Y, and Z) axis directions.

You can use the CMACEL command to specify translational, acceleration-based loading on up to 100 element components.

Components for which you want to specify acceleration loading must consist of elements only. The elements you use cannot be part of more than one component, and elements that share nodes cannot exist in different element components. You cannot apply the loading to an assembly of element components.

To simulate gravity (by using inertial effects), accelerate the structure in the direction opposite to gravity. For example, apply a positive CMACELY to simulate gravity acting in the negative Y direction. Units are length/time ${ }^{2}$.

You can define the acceleration for the following analyses types:

- Static (ANTYPE,STATIC)
- Harmonic (ANTYPE,HARMIC), full or mode superposition method
- Transient (ANTYPE,TRANS), full or mode superposition method
- Substructure (ANTYPE,SUBSTR)

Accelerations are combined with the element mass matrices to form a body force load vector term. Units of acceleration and mass must be consistent to give a product of force units.

In a modal harmonic or transient analysis, you must apply the load in the modal portion of the analysis. ANSYS calculates a load vector and writes it to the mode shape file, which you can apply via the LVSCALE command.

The CMACEL command does not support these elements: FLUID79, FLUID80, and FLUID81.
The CMACEL command supports tabular boundary conditions (\%TABNAME_X\%, \%TABNAME_Y\%, and \%TABNAME_Z\%) for CMACEL_X, CMACEL_Y, and CMACEL_Z input values (*DIM) as a function of both time and frequency for full transient and harmonic analyses.

Related commands for inertia loads are ACEL, CGLOC, CGOMGA, DCGOMG, DOMEGA, OMEGA, CMOMEGA, and CMDOMEGA.

This command is also valid in /PREP7.

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Inertia>Gravity>On Components Main Menu>Solution>Define Loads>Apply>Structural>Inertia>Gravity>On Components

/CMAP, Fname, Ext, --, Kywrd, NCNTR

Changes an existing or creates a new color mapping table.
GRAPHICS: Set Up
DISPLAY: Set Up
MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS

Fname

File name and directory path (248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

If blank, restore color map.

Ext

Filename extension (8 character maximum).

Unused field.

Kywrd

Keyword indicating the disposition of the color map file.
(blank)
Loads existing color map file.

CREATE

Starts CMAP utility and modifies or creates the specified file.

SAVE

Writes the active color map to the specified file, which can be imported into future ANSYS sessions.

NCNTR

Number of contours to be defined by the /CMAP command ($\max =128$). If no value is specified, CMAP defaults to 9 , even if an existing file is being modified.

Command Default

Use predefined ANSYS color map table.

Notes

Reads the color map file (RGB index specifications) to change from current specifications. Only one color map may be active at a time.

For 2-D drivers (especially Win32c), modifying the color map can produce anomalies, including legend/contour disagreement.

Changing the color map in ANSYS with the /CMAP command will change the meaning of the color labels on the /COLOR command. See /COLOR for other color controls.

This command is valid anywhere.

Menu Paths

> Utility Menu $>$ PlotCtrls $>$ Redirect Plots $>$ To GRPH File Utility Menu $>$ PlotCtrls $>$ Redirect Plots $>$ To HPGL File Utility Menu $>$ PlotCtrls $>$ Redirect Plots $>$ To HPGL2 File Utility Menu $>$ PlotCtrls $>$ Redirect Plots $>$ To PSCR File Utility Menu $>$ PlotCtrls $>$ Style>Colors $>$ Default Color Map

CMATRIX, SYMFAC, Condname, NUMCOND, GRNDKEY, Capname

Performs electrostatic field solutions and calculates the self and mutual capacitances between multiple conductors.

SOLUTION: Analysis Options
MP <> <> <> <> <> <> <> EM <> <> PP <> EME <>

SYMFAC

Geometric symmetry factor. Capacitance values are scaled by this factor which represents the fraction of the total device modeled. Defaults to 1.

Condname

Alpha-numeric prefix identifier used in defining named conductor components.

NUMCOND

Total Number of Components. If a ground is modeled, it is to be included as a component. If a ground is not modeled, but infinite elements are used to model the far-field ground, a named component for the far-field ground is not required.

GRNDKEY

Ground key:
0
Ground is one of the components, which is not at infinity.
1
Ground is at infinity (modeled by infinite elements or a Trefftz domain).

Capname

Array name for computed capacitance matrix. Defaults to CMATRIX.

Notes

To invoke the CMATRIX macro, the exterior nodes of each conductor must be grouped into individual components using the CM command. Each set of independent components is assigned a component name with a common prefix followed by the conductor number. A conductor system with a ground must also include the ground nodes as a component. The ground component is numbered last in the component name sequence.

A Ground Capacitance matrix is a matrix relating charge to a voltage vector. A ground matrix can not be applied to a circuit modeler such as SPICE. The Lumped Capacitance matrix is a matrix formed by a combination of lumped "arrangements" of voltage differences between conductors. You can use the lumped capacitance terms in a circuit modeler to represent capacitances between conductors.

You must enclose all name-strings in single quotes in the CMATRIX command line.
See the Theory Reference for the Mechanical APDL and Mechanical Applications and HMAGSOLV in the LowFrequency Electromagnetic Analysis Guide for details.

Menu Paths

Main Menu>Solution>Solve>Electromagnet>Static Analysis>Capac Matrix

CMDELE, Name

Deletes a component or assembly definition.

> DATABASE: Components
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Name

Name of the component or assembly whose definition is to be removed.

Notes

Entities contained in the component, or the components within the assembly, are unaffected. Only the grouping relationships are deleted. Assemblies are automatically updated to reflect deletion of their components or subassemblies, but they are not automatically deleted when all their components or subassemblies are deleted.

This command is valid in any processor.

Menu Paths

Main Menu>Preprocessor>Meshing>Size Cntrls>ManualSize>Layers>Picked Lines
Main Menu>Preprocessor>Modeling>Create>Circuit>Delete Elements
Utility Menu>Select>Comp/Assembly>Delete Comp/Assembly

CMDOMEGA, CM_NAME, DOMEGAX, DOMEGAY, DOMEGAZ, X1, Y1, Z1, X2, Y2, Z2

Specifies the rotational acceleration of an element component about a user-defined rotational axis.
SOLUTION: Inertia
MP ME ST PR PRN DS DSS <> <> <>>>> PP <> EME MFS

CM_NAME,

The name of the element component (8 character maximum).
DOMEGAX, DOMEGAY, DOMEGAZ
If the $X 2, Y 2, Z 2$ fields are not defined, $D O M E G A X, D O M E G A Y$, and $D O M E G A Z$ specify the components of the rotational acceleration vector in the global Cartesian X, Y, Z directions.

If the $X 2, Y 2, Z 2$ fields are defined, only $D O M E G A X$ is required. DOMEGAX specifies the scalar rotational acceleration about the rotational axis. The rotational direction of DOMEGAXis designated either positive or negative, and is determined by the "right hand rule."

X1, Y1, Z1

If the $X 2, Y 2, Z 2$ fields are defined, $X 1, Y 1$, and $Z 1$ define the coordinates of the beginning point of the rotational axis vector. Otherwise, $X 1, Y 1$, and $Z 1$ are the coordinates of a point through which the rotational axis passes.

X2, Y2, Z2

The coordinates of the end point of the rotational axis vector.

Notes

Specifies the rotational acceleration components DOMEGAX, DOMEGAY, and DOMEGAZ of an element component CM_NAME about a user-defined rotational axis. The rotational axis can be defined either as a vector passing through a single point, or a vector connecting two points.

You can use the CMDOMEGA command to specify acceleration based loading on up to 100 rotational element components.

You can define rotational acceleration and rotational axis with the CMDOMEGA command for STATIC, HARMIC (full), TRANS (full), and SUBSTR analyses. Rotational velocities are combined with the element mass matrices to form a body force load vector term. Units are radians/time ${ }^{2}$.

The CMDOMEGA command supports tabular boundary conditions (\%TABNAME_X\%, \%TABNAME_Y\%, and \%TABNAME_Z\%) for CMDOMEGA_X, CMDOMEGA_Y, and CMDOMEGA_Z input values (*DIM) for full transient and harmonic analyses.

Related commands are ACEL, CGLOC, CGLOC, OMEGA, CMOMEGA, DCGOMG, DOMEGA.

You can use the CMDOMEGA command in conjunction with any one of the following two groups of commands, but not with both groups simultaneously:

GROUP ONE: OMEGA, DOMEGA.

GROUP TWO: CGOMGA, DCGOMG, CGLOC.
Components for which you want to specify rotational loading must consist of elements only. The elements you use cannot be part of more than one component, and elements that share nodes cannot exist in different element components. You cannot apply the loading to an assembly of element components.

In a modal harmonic or transient analysis, you must apply the load in the modal portion of the analysis. ANSYS calculates a load vector and writes it to the mode shape file, which you can apply via the LVSCALE command.

See Acceleration Effect in the Theory Reference for the Mechanical APDL and Mechanical Applications for more information.

This command is also valid in PREP7.

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Inertia>Angular Accel>On Components>By Axis
Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Inertia>Angular Accel>On Components>By origin
Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Inertia>Angular Accel>On Components>Pick Kpt Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Inertia>Angular Accel>On Components>Pick Kpts
Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Inertia>Angular Accel>On Components>Pick Node
Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Inertia>Angular Accel>On Components>Pick Nodes
Main Menu>Preprocessor>Loads>Define Loads>Delete>Structural>Inertia>Angular Accel>On Component
Main Menu>Solution>Define Loads>Apply>Structural>Inertia>Angular Accel>On Components>By Axis
Main Menu>Solution>Define Loads>Apply>Structural>Inertia>Angular Accel>On Components>By origin
Main Menu>Solution>Define Loads>Apply>Structural>Inertia>Angular Accel>On Components>Pick Kpt
Main Menu>Solution>Define Loads>Apply>Structural>Inertia>Angular Accel>On Components>Pick Kpts
Main Menu>Solution>Define Loads>Apply>Structural>Inertia>Angular Accel>On Components>Pick Node
Main Menu>Solution>Define Loads>Apply>Structural>Inertia>Angular Accel>On Components>Pick Nodes
Main Menu>Solution>Define Loads>Delete>Structural>Inertia>Angular Accel>On Component

CMEDIT, Aname, Oper, Cnam1, Cnam2, Cnam3, Cnam4, Cnam5, Cnam6, Cnam7
Edits an existing assembly.
DATABASE: Components
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
Aname
Name of the assembly to be edited.
Oper
Operation label:

ADD

To add more components. The level of any assembly to be added must be lower than that of the assembly Aname (see CMGRP command).

DELE

To remove components.

Cnam1, Cnam2, Cnam3, Cnam7

Names of components and assemblies to be added to or deleted from the assembly.

Notes

This command is valid in any processor.

Menu Paths

Utility Menu>Select>Comp/Assembly>Edit Assembly

CMGRP, Aname, Cnam1, Cnam2, Cnam3, Cnam4, Cnam5, Cnam6, Cnam7, Cnam8

Groups components and assemblies into an assembly.

DATABASE:Components
 MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Abstract

Aname An alphanumeric name used to identify this assembly. Aname may be up to 32 characters, beginning with a letter and containing only letters, numbers, and underscores. Overwrites a previously defined Aname (and removes it from higher level assemblies, if any).

Cnam1, Cnam2, Cnam3, . . . , Cnam8
Names of existing components or other assemblies to be included in this assembly.

Notes

Groups components and other assemblies into an assembly identified by a name. CMGRP is used for the initial definition of an assembly. An assembly is used in the same manner as a component. Up to 5 levels of assemblies within assemblies may be used.

An assembly is a convenient grouping of previously defined components and other assemblies. Assemblies may contain components only, other assemblies, or any combination. A component may belong to any number of assemblies. Up to 5 levels of nested assemblies may be defined. Components and assemblies may be added to or deleted from an existing assembly by the CMEDIT command. Once defined, an assembly may be listed, deleted, selected, or unselected using the same commands as for a component. Assemblies are automatically updated to reflect deletions of one or more of their components or lower-level assemblies. Assemblies are not automatically deleted when all their components or subassemblies are deleted.

This command is valid in any processor.

Menu Paths

Utility Menu>Select>Comp/Assembly>Create Assembly

CMLIST, Name, Key, Entity

Lists the contents of a component or assembly.

DATABASE:Components
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Name

Name of the component or assembly to be listed (if blank, list all selected components and assemblies).
If Name is specified, then Entity is ignored.

Key

Expansion key:
0
Do not list individual entities in the component.
1 or EXPA
List individual entities in the component.

Entity

If Name is blank, then the following entity types can be specified:

VOLU

List the volume components only.

AREA

List the area components only.

LINE

List the line components only.
KP
List the keypoint components only

ELEM

List the element components only.

NODE

List the node components only.

Notes

This command is valid in any processor. For components, it lists the type of geometric entity. For assemblies, it lists the components and/or assemblies that make up the assembly.

Examples of possible usage:
CMLIST - List all selected components.
CMLIST, , EXPA - List all selected components and for each component list the underlying entity ID's.
CMLIST,Name - List the specified component.
CMLIST,Name,EXPA - List specified component along with all underlying entity ID's.
CMLIST, , EXPA,Entity - List all selected components of specified entity type. For each component also list the underlying entity ID's.

Menu Paths

Utility Menu>List>Components

Utility Menu>List>Other>Components

Utility Menu>Select>Comp/Assembly>List Comp/Assembly

CMMOD, Cname, Keyword, Value

Modifies the specification of a component.

DATABASE:Components
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Cname

Name of the existing component or assembly to be modified.

Keyword

The label identifying the type of value to be modified.
NAME - Modify the NAME of the component

Value

If Keyword is NAME, then the value is the alphanumeric label to be applied. See the CM command for naming convention details. If a component named Value already exists, the command will be ignored and an error message will be generated.

Notes

The naming conventions for components, as specified in the CM command, apply for CMMOD (32 characters, "ALL","STAT" and "DEFA" are not allowed, etc.). However, if you choose a component name that is already designated for another component, an error message will be issued and the command will be ignored.

This command is valid in any processor.

Menu Paths

This command cannot be accessed from a menu.

CMOMEGA, CM_NAME, OMEGAX, OMEGAY, OMEGAZ, X1, Y1, Z1, X2, Y2, Z2

Specifies the rotational velocity of an element component about a user-defined rotational axis.

SOLUTION:Inertia
MP ME ST PR PRN DS DSS <> <> <> <> PP <> EME MFS

CM_NAME

The name of the element component (eight-character maximum).

OMEGAX, OMEGAY, OMEGAZ

If the $X 2, Y 2, Z 2$ fields are not defined, $O M E G A X, O M E G A Y$, and $O M E G A Z$ specify the components of the rotational velocity vector in the global Cartesian $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ directions.

If the $X 2, Y 2, Z 2$ fields are defined, only $O M E G A X$ is required. OMEGAX specifies the scalar rotational velocity about the rotational axis. The rotational direction of OMEGAX is designated either positive or negative, and is determined by the "right hand rule."

X1, Y1, $\mathbf{z 1}$

If the $X 2, Y 2, Z 2$ fields are defined, $X 1, Y 1$, and $Z 1$ define the coordinates of the beginning point of the rotational axis vector. Otherwise, $X 1, Y 1$, and $Z 1$ are the coordinates of a point through which the rotational axis passes.

X2, Y2, $\mathbf{Z 2}$

The coordinates of the end point of the rotational axis vector.

Notes

Specifies the rotational velocity components OMEGAX, OMEGAY, and OMEGAZ of an element component CM_NAME about a user-defined rotational axis. The rotational axis can be defined either as a vector passing through a single point or a vector connecting two points.

You can use the CMOMEGA command to specify velocity-based loading on up to 100 rotational element components.

You can define rotational velocity and rotational axis for these analysis types:

- Static (ANTYPE,STATIC)
- Harmonic (ANTYPE,HARMIC) -- Full or modal superposition
- Transient (ANTYPE,TRANS) -- Full or modal superposition
- Substructuring (ANTYPE,SUBSTR)
- Modal (ANTYPE,MODAL)

Rotational velocities are combined with the element mass matrices to form a body force load vector term. Units are radians/time. Related commands are ACEL, CGLOC, CGLOC, CGOMGA, CMDOMEGA, DCGOMG, DOMEGA.

You can use the CMOMEGA command in conjunction with either one of the following two groups of commands, but not with both groups simultaneously:

GROUP ONE: OMEGA, DOMEGA.
 GROUP TWO: CGOMGA, DCGOMG, CGLOC.

Components for which you want to specify rotational loading must consist of elements only. The elements you use cannot be part of more than one component, and elements that share nodes cannot exist in different element components. You cannot apply the loading to an assembly of element components.

If you have applied the Coriolis effect (CORIOLIS) using a stationary reference frame, the CMOMEGA command takes the gyroscopic damping matrix into account for the elements listed under "Stationary Reference Frame" in the notes section of the CORIOLIS command. ANSYS verifies that the rotation vector axis is parallel to the axis of the element; if not, the gyroscopic effect is not applied. If you issue a CMOMEGA command when the Coriolis or gyroscopic effect is present, a subsequently issued OMEGA command has no effect.

The CMOMEGA command supports tabular boundary conditions (\% TABNAME_X\%, \%TABNAME_Y\%, and \%TABNAME_Z\%) for CMOMEGA_X, CMOMEGA_Y, and CMOMEGA_Z input values (*DIM) for full transient and harmonic analyses.

In a mod-superposition harmonic or transient analysis, you must apply the load in the modal portion of the analysis. ANSYS calculates a load vector and writes it to the MODE file, which you can apply via the LVSCALE command.

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Inertia>Angular Veloc>On Components>By Axis
Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Inertia>Angular Veloc>On Components>By origin
Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Inertia>Angular Veloc>On Components>Pick Kpt Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Inertia>Angular Veloc>On Components>Pick Kpts
Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Inertia>Angular Veloc>On Components>Pick Node Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Inertia>Angular Veloc>On Components>Pick Nodes
Main Menu>Preprocessor>Loads>Define Loads>Delete>Structural>Inertia>Angular Veloc>On Component
Main Menu>Solution>Define Loads>Apply>Structural>Inertia>Angular Veloc>On Components>By Axis
Main Menu>Solution>Define Loads>Apply>Structural>Inertia>Angular Veloc>On Components>By origin
Main Menu>Solution>Define Loads>Apply>Structural>Inertia>Angular Veloc>On Components>Pick Kpt
Main Menu>Solution>Define Loads>Apply>Structural>Inertia>Angular Veloc>On Components>Pick Kpts
Main Menu>Solution>Define Loads>Apply>Structural>Inertia>Angular Veloc>On Components>Pick Node
Main Menu>Solution>Define Loads>Apply>Structural>Inertia>Angular Veloc>On Components>Pick Nodes
Main Menu>Solution>Define Loads>Delete>Structural>Inertia>Angular Veloc>On Component

CMPLOT, Label, Entity, Keyword

Plots the entities contained in a component or assembly.
DATABASE:Components
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Label

Name of the component or assembly to be plotted.
(blank)
All selected components and assemblies are plotted (default). If fewer than 11 components are selected, then all are plotted. If more than 11 components are selected, then only the first 11 are plotted.

ALL
All selected components are plotted. If number of selected components is greater than 11 , then the legend showing component names will not be shown.

N
Next set of defined components and assemblies is plotted.

P

Previous set of defined components and assemblies is plotted.

Cname

The specified component or assembly is plotted.

SetNo.

The specified set number is plotted.

Entity

If Label is BLANK or ALL, then the following entity types can be specified:

VOLU

Plot the volume components only.

AREA

Plot the area components only.

LINE

Plot the line components only.

KP

Plot the keypoint components only.

ELEM

Plot the element components only.

NODE

Plot the node components only.

Keyword

For Keyword = ALL, plot the specified component name in the Label field in the context of all entities of the same type. Not valid if Label field is BLANK or ALL.

Notes

Components are plotted with their native entities. For assemblies, all native entities for the underlying component types are plotted simultaneously. Although more components can be plotted, the legend displays only 11 at a time. When more than eleven are plotted, the legend is not displayed.

Possible usage:
CMPLOT, CNAME - Plots the specified component (if selected).
CMPLOT, CNAME, ALL - Plot component in the context of all other selected entity components of the same type as the component.
CMPLOT - Plot the first eleven selected components.
CMPLOT,ALL - Plot all selected components.
CMPLOT,N or CMPLOT,P - Plot next or previous set of eleven components.
CMPLOT,ALL,Entity - Plot all selected components of type specified in Entity.
CMPLOT, ,Entity - Plot components of type specified in Entity, from the first eleven components.
CMPLOT,N,Entity - Plot components of type specified in Entity, if any, from the next set of eleven components (substitute P for N to plot from previous set).

This command is valid in any processor.

Menu Paths

Utility Menu>Plot>Components>By Name / Set Number Utility Menu>Plot>Components>Next Set Utility Menu>Plot>Components>Previous Set Utility Menu>Plot>Components>Selected Components

CMROTATE, CM_NAME, ROTATX, ROTATY, ROTATZ, X1, Y1, Z1, X2, Y2, Z2
Specifies the rotational velocity of an element component about a user-defined rotational axis
SOLUTION: Inertia
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS

CM NAME

The name of the element component (eight-character maximum).

ROTATX, ROTATY, ROTATZ

If the $X 2, Y 2, Z 2$ fields are not defined, ROTATX, ROTATY, and ROTATZ specify the components of the rotational angle vector in the global Cartesian X, Y, Z directions.

If the $X 2, Y 2, Z 2$ fields are defined, only ROTATX is required. ROTATX specifies the scalar rotational velocity about the rotational axis. The rotational direction of ROTATX is designated either positive or negative, and is determined by the "right hand rule."

X1, Y1, $Z 1$
If the $X 2, Y 2, Z 2$ fields are defined, $X 1, Y 1$, and $Z 1$ define the coordinates of the beginning point of the rotational axis vector. Otherwise, $X 1, Y 1$, and $Z 1$ are the coordinates of a point through which the rotational axis passes.

X2, Y2, Z2

The coordinates of the end point of the rotational axis vector.

Notes

The CMROTATE command specifies the rotational motion velocity components ROTATX, ROTATY, and ROTATZ of an element component CM_NAME about a user-defined rotational axis. The rotational axis can be defined either as a vector passing through a single point or a vector connecting two points.

You can use the CMROTATE command to specify angular rotation-based displacement or angular velocity on up to 100 rotational element components.

You can define rotational velocity and rotational axis for static analyses (ANTYPE,STATIC) only.

The command sets the constant rotational velocity on the nodes of the element component despite any deformation at the nodes. This feature is primarily useful for generating sliding contact at frictional contact interfaces in a brake squeal analysis.

A brake squeal analysis generally involves a linear perturbation modal analysis subsequent to a large-deformation static analysis with the Newton Raphson option set as NROPT,UNSYM. Therefore, CMROTATE is not applicable for multiple load step solves using the LSSOLVE command.

The CMROTATE command typically applies to brake squeal modeling where surface-to-surface contact occurs between the brake pad and the rotating disk. The applicable contact elements, therefore, are CONTA173, CONTA174, and CONTA175.

This command is also valid in PREP7.

Menu Paths

This command cannot be accessed from a menu.

CMSEL, Type, Name, Entity

Selects a subset of components and assemblies.

DATABASE:Components
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Type

Label identifying the type of select:
S
Select a new set (default).
R
Reselect a set from the current set.
A
Additionally select a set and extend the current set.
U
Unselect a set from the current set.

ALL

Also select all components.

NONE

Unselect all components.

Name

Name of component or assembly whose items are to be selected (valid only if Type = S, R, A, or U).
Graphical picking is enabled if Type is blank and Name $=$ PICK (or simply "P").

Entity

If Name is blank, then the following entity types can be specified:

VOLU

Select the volume components only.

AREA

Select the area components only.
LINE
Select the line components only.
KP
Select the keypoint components only.

ELEM

Select the element components only.
NODE
Select the node components only.

Notes

Selecting by component is a convenient adjunct to individual item selection (e.g., VSEL, ESEL, etc.). CMSEL, ALL allows you to select components in addition to other items you have already selected.

If Type $=\mathrm{R}$ for an assembly selection [CMSEL, $\mathrm{R},<a s s e m b l y$-name>], the reselect operation is performed on each component in the assembly in the order in which the components make up the assembly. Thus, if one reselect operation results in an empty set, subsequent operations will also result in empty sets. For example, if the first reselect operation tries to reselect node 1 from the selected set of nodes 3,4 , and 5 , the operation results in an empty set (that is, no nodes are selected). Since the current set is now an empty set, if the second reselect operation tries to reselect any nodes, the second operation also results in an empty set, and so on. This is equivalent to repeating the command CMSEL, $\mathrm{R},<$ component-name> once for each component making up the assembly.

This command is valid in any processor.

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Displacement>On Joint Elems Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Force/Moment>On Joint Elems Main Menu>Preprocessor>Loads>Define Loads>Delete>Structural>Displacement>On Joint Elems Main Menu>Preprocessor>Loads>Define Loads>Delete>Structural>Force/Moment>On Joint Elems Main Menu>Preprocessor>Modeling>Create>Circuit>Delete Elements Main Menu>Solution>Define Loads>Apply>Structural>Displacement>On Joint Elems Main Menu>Solution>Define Loads>Apply>Structural>Force/Moment>On Joint Elems Main Menu>Solution>Define Loads>Delete>Structural>Displacement>On Joint Elems Main Menu>Solution>Define Loads>Delete>Structural>Force/Moment>On Joint Elems Utility Menu>Select>Comp/Assembly>Select Comp/Assembly

CMSFILE, Option, Fname, Ext, CmsKey

Specifies a list of component mode synthesis (CMS) results files for plotting results on the assembly.
POST1:Special Purpose
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS

Option

Specifies the command operation:
ADD
Add the specified component results file (Fname) to the list of files to plot. This option is the default.

DELETE

Remove the specified component results file (Fname) from the list of files to plot.

LIST

List all specified component results files.

CLEAR

Clear all previous files added.
ALL
Add all component results (.rst) files from the working directory to the list of files to plot.

Fname

The file name (with full directory path) of the component results file. The default file name is the Jobname (specified via the /FILNAME command).

Ext

The file name (Fname) extension. The default extension is .rst.

CmsKey

Valid only when adding a results file (Option = ADD or ALL), this key specifies whether or not to check the specified .rst file to determine if it was created via a CMS expansion pass:

ON

Check (default).
OFF
Do not check.

Command Default

If issued with no arguments, the CMSFILE command uses these defaults:
CMSFILE,ADD, Jobname,rst,ON
The command adds the component results file Jobname.rst.

Notes

The CMSFILE command specifies the list of component mode synthesis (CMS) results files to include when plotting the mode shape of an assembly.

During postprocessing (/POST1) of a CMS analysis, issue the CMSFILE command to point to component results files of interest. (You can issue the command as often as needed to include all or some of the component results files.) Issue the SET command to acquire the frequencies and mode shapes from substeps for all specified results files. Execute a plot (PLNSOL) or print (PRNSOL) operation to display the mode shape of the entire assembly.

When you specify a results file to add to the plot list, the default behavior of the command (CmsKey = ON) is to first verify that the file is from a CMS analysis and that the frequencies of the result sets on the file match the frequencies on the first file in the list. If CmsKey = OFF, you can add any .rst file to the list of files to plot, even if the file was not expanded via a CMS expansion pass.

If CmsKey $=$ ON (default), output from the command appears as: ADD CMS FILE = filename.rst. If CmsKey = OFF, output from the command appears as: ADD FILE = filename.rst.

If Option = DELETE or CLEAR, you must clear the database (/CLEAR), then re-enter the postprocessor (/POST1) and issue a SET command for the change to take effect on subsequent plots.

Clearing the database does not clear the list of files specified via the CMSFILE command. Specify Option $=$ CLEAR to clear the list of files.

Menu Paths

Main Menu>General Postproc>Data \& File Opts

CMSOPT, CMSMETH, NMODE, FREQB, FREQE, FBDDEF, FBDVAL, IOKEY

Specifies component mode synthesis (CMS) analysis options.

SOLUTION: Analysis Options
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS

CMSMETH

The component mode synthesis method to use. This value is required.
FIX
Fixed-interface method.

FREE

Free-interface method.

RFFB

Residual-flexible free-interface method.

NMODE

The number of normal modes extracted and used in superelement generation. This value is required and the minimum is 1 .

FREQB

Beginning, or lower end, of frequency range of interest. This value is optional.
ANSYS sets this value to zero if the residual-flexible free-interface method ($C M S M E T H=$ RFFB $)$ is specified.

FREQE

Ending, or upper end, of frequency range of interest. This value is optional.

FBDDEF

In a free-interface $(C M S M E T H=$ FREE $)$ or residual-flexible free-interface $(C M S M E T H=$ RFFB $)$ CMS analysis, the method to use for defining free body modes:

FNUM

The number (FDBVAL) of rigid body modes in the calculation.
FTOL
Employ a specified tolerance ($F D B V A L$) to determine rigid body modes in the calculation.

FAUTO

Automatically determine rigid body modes in the calculation. This method is the default.

RIGID

If no rigid body modes exist, define your own via the RIGID command.
FBDVAL
In a free-interface CMS analysis ($C M S M E T H=$ FREE $)$, the number of rigid body modes if $F B D D E F=F N U M$ (where the value is an integer from 0 through 6), or the tolerance to employ if $F B D D E F=$ FTOL (where the value is a positive real number representing rad/sec). This value is required only when $F B D D E F=$ FNUM or $F B D D E F=\mathrm{FTOL}$; otherwise, any specified value is ignored.

IOKEY

The key to output transformation matrix for FIX/FREE interface method.
TCMS
Write transformation matrix of the nodal component defined by OUTPR command to .tcms file. Please refer to TCMS File Format in the Programmer's Manual for more information on the .tcms file format.

Command Default

Issuing the CMSOPT command with no arguments is invalid. You must specify at least the CMS method (CMSMETH) and the number of modes (NMODE). In a free-interface (C SSMETH $=$ FREE) or residual-flexible free-interface (CMSMETH = RFFB) CMS analysis, the default method for determining rigid body modes is FAUTO (automatic).

Notes

CMS employs the Block Lanczos eigensolution method in the generation pass.
CMS does not yet support damping matrix reduction. ANSYS sets the matrix generation key to 2 automatically (SEOPT,SEMATR).

CMS does not support the SEOPT,,,,,RESOLVE command. Instead, ANSYS sets the expansion method for the expansion pass (EXPMTH) to BACKSUB.

This command is also valid in /PREP7.
For more information about performing a CMS analysis, see "Component Mode Synthesis" in the Advanced Analysis Techniques Guide.

If $\operatorname{IOKEY}=$ TCMS is used to output the transformation matrix, then only ITEM $=$ NSOL is valid in the OUTPR command. In the interactive sessions, the transformation matrix will not be output if the model has more than 10 elements.

Menu Paths

Main Menu>Preprocessor>Loads>Analysis Type>Analysis Options
Main Menu>Solution>Analysis Type>Analysis Options

CMWRITE, Fname, Ext, --, --, Fmat

Writes components and assemblies to a file.

DATABASE:Components
MP ME ST PR PRN <> <> <> <> <> DY PP <> EME MFS

Fname

File name and directory path (248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

The file name defaults to Jobname.

Ext

Filename extension (8 character maximum).
The extension defaults to CM if Fname is blank.

Unused field.
Fmat
Format of the output file (defaults to BLOCKED).

BLOCKED

Blocked format. This format allows faster reading of the file.
UNBLOCKED
Unblocked format.

Menu Paths

This command cannot be accessed from a menu.

CNCHECK, Option, RID1, RID2, RINC, PairType, TRlevel

Provides and/or adjusts the initial status of contact pairs.

PREP7:Database
SOLUTION: Analysis Options
MP ME ST PR PRN <> <> FL EM EH <> PP <> EME MFS

Option

Option to be performed:
DETAIL
List all contact pair properties (default).
SUMMARY
List only the open/closed status for each contact pair.
POST
Execute a partial solution to write the initial contact configuration to a results file, Jobname. RCN.
ADJUST
Physically move contact nodes to target to close gap or reduce penetration.

RESET

Reset target element and contact element key options and real constants to their default values.
AUTO
Automatically sets certain real constants and key options to recommended values or settings in order to achieve better convergence based on overall contact pair behaviors.

TRIM

Trim contact pair (remove certain contact and target elements).

UNSE

Unselect certain contact and target elements.

RID1, RID2, RINC

The range of real constant pair ID's for which Option will be performed. If RID2 is not specified, it defaults to RID1. If no value is specified, all contact pairs in the selected set of elements are considered.

PairType

Type of contact pairs to be trimmed/unselected/auto-set (used only when Option = TRIM, UNSE, or AUTO):

ANY

All types (default).

MPC

MPC-based contact pairs $(\operatorname{KEYOPT}(2)=2)$.

BOND

Bonded contact pairs ($\operatorname{KEYOPT}(12)=3,5,6)$.

NOSP

No separation contact pairs (KEYOPT(12) = 2, 4).

INAC

Inactive contact pairs (symmetric contact pairs for MPC contact or $\operatorname{KEYOPT}(8)=2$).

TRlevel

Trimming level (used only when Option = TRIM or UNSE):

(blank)

Normal trimming (default): remove/unselect contact and target elements which are in far-field.

AGGRE

Aggressive trimming: remove/unselect contact and target elements which are in far-field, and certain elements in near-field.

Notes

The CNCHECK command provides information for surface-to-surface, node-to-surface, and line-to-line contact pairs (element types TARGE169, TARGE170, CONTA171, CONTA172, CONTA173, CONTA174, CONTA175, CONTA176, CONTA177). All contact and target elements of interest, along with the solid elements and nodes attached to them, must be selected for the command to function properly.

CNCHECK is available in both the PREP7 and SOLUTION processors, but only before the first solve operation (that is, only before the first load step or the first substep).

The following additional notes are available:

```
Option = POST
Option = ADJUST
Option = RESET
Option = AUTO
Removing or Unselecting Contact and Target Elements
```


Option = POST

The command CNCHECK,POST solves the initial contact configuration in one substep. After issuing this command, you can postprocess the contact result items as you would for any other converged load step; however, only the contact status, contact penetration or gap, and contact pressure will have meaningful values. Other contact quantities (friction stress, sliding distance, chattering) will be available but are not useful.

Because Option = POST forces a solve operation, the PrepPost (PP) license does not work with CNCHECK,POST.

If CNCHECK,POST is issued within the solution processor, the SOLVE command that solves the first load step of your analysis should appear in a different step, as shown in the following example:

```
/ SOLU
CNCHECK,POST
FINISH
. . .
/SOLU
SOLVE
FINISH
```

CNCHECK,POST writes initial contact results to a results file named Jobname. RCN. When postprocessing the initial contact state, you need to explicitly read results from this file using the FILE and SET,FIRST commands in POST1 to properly read the corresponding contact data. Otherwise, the results file may be read improperly. The following example shows a valid command sequence for plotting the initial contact gap:

```
/SOLU
CNCHECK,POST
FINISH
/POST1
FILE, Jobname, RCN
SET,FIRST
PLNSOL, CONT,GAP,0,1
FINISH
```


Option = ADJUST

You can issue CNCHECK,ADJUST to physically move contact nodes to the target surface. See Physically Moving Contact Nodes Towards the Target Surface in the Contact Technology Guide for more information. Similar to the POST option, if CNCHECK,ADJUST is issued within the solution processor, the SOLVE command that solves the first load step of your analysis should appear in a different step:

```
/ SOLU
CNCHECK,ADJUST
FINISH
. . .
/SOLU
SOLVE
FINISH
```

```
Option \(=\) RESET
```

```
Option \(=\) RESET
```

The command CNCHECK,RESET allows you to reset all but a few key options and real constants associated with the specified contact pairs (RID1, RID2, RINC) to their default values.

The following key options and real constants remain unchanged when this command is issued:

Element type	Key options not affected by RE- SET	Real constants not affected by RESET
TARGE169, TARGE170	KEYOPT(2), KEYOPT(3)	R1,R2
CONTA171, CONTA172	KEYOPT(1), KEYOPT(3)	R1,R2

CONTA173, CONTA174, CON-	KEYOPT(1)	R1, R2
TA175, CONTA176, CONTA177		

Option = AUTO

The command CNCHECK,AUTO automatically changes certain default or undefined key options and real constants to optimized settings or values. The changes are based on overall contact pair behaviors. In general, this command improves convergence for nonlinear contact analysis.

The tables below list typical KEYOPT and real constant settings implemented by CNCHECK,AUTO. The actually settings implemented for your specific model may vary from what is described here. You should always verify the modified settings by issuing CNCHECK,DETAIL to list current contact pair properties.

KEY- OPT	Description	Default (0 or blank)	CNCHECK,AUTO
1	Selects DOF set	Structural DOFs	Automatic selection based on DOFs of underlying elements.
2	Contact algorithm	Augmented Lagrange	1- Penalty for rigid-rigid contact [1].
4	Location of contact detec- tion point	Gauss point	2- Normal to target surface if KEYOPT(2) > 1.
5	CNOF/ICONT adjustment	No adjust- ment	1-Auto CNOF if tiny gap exists.
6	Contact stiffness vari- ation	Use default range	1 - Nominal refinement for opening contact or underlying elements having TB plasticity. or $2-$ Aggressive refinement for opening contact and underlying elements having TB plasticity.
7	Element level time incre- ment control	No control	1 - Automatic bisection for self contact. 8
Assymetric contact selec- tion	No action	2-Auto selection if KEYOPT(2) > 1.	
9	Effect of initial penetra- tion or gap	Include all	1 - Exclude if KEYOPT(5) = 1, or if ICONT was previ- ously specified.
10	Contact stiffness update	Between load steps	2 - Between iterations except when underlying ele- ments are superelements. [2]

1. Set to 0 if $\operatorname{KEYOPT}(2)>1$ for debonding.
2. Set to 0 if underlying elements are superelements, or if $\operatorname{KEYOPT}(9)=2$ was previously specified.

Real Constants		Description	Default	CNCHECK,AUTO
No.	Name			
3	FKN	Normal penalty stiffness factor	1	Set to 5 if $\operatorname{KEYOPT}(9)=2$ (ramp initial penetration) and KEYOPT $(10)>0$.

6	PINB	Pinball region	see [1]	Cut in half if spurious contact is detected or contact searching is slow.
14	TCC	Thermal contact conductance	0	Calculated as a function of highest conductivity of underlying element and overall model size.
19	ECC	Electric contact con- ductance	0	Calculated as a function of highest permitivity or lowest res- istivity of underlying element and overall model size.
26	MCC	Magnetic contact permeance	0	Calculated as a function of highest emissivity of underlying element and overall model size.

1. PINB default depends on contact behavior (rigid vs. flexible target), NLGEOM,ON or OFF, KEYOPT(9) setting, KEYOPT(12) setting, and the value of real constant CNOF (see Using PINB).

CNCHECK,AUTO also sets PRED,OFF for the case of a force-distributed constraint defined via MPC contact.

Removing or Unselecting Contact and Target Elements

For performance reasons, the program uses a subset of nodes and elements based on the specified contact regions (RID1, RID2, RINC) when executing CNCHECK,POST or CNCHECK,ADJUST.

You can issue CNCHECK,TRIM or CNCHECK,UNSEL to remove or unselect contact and target elements which are in far-field (that is, open and not near contact), or even in near field if aggressive trimming logic is used (TRlevel = AGGRE).

Menu Paths

Main Menu> Preprocessor> Modeling> Create> Contact Pair

CNKMOD, ITYPE, KNUM, VALUE

Modifies contact element key options.

SOLUTION: Analysis Options
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

ITYPE

Contact element type number as defined on the ET command.
KNUM
Number of the KEYOPT to be modified (KEYOPT(KNUM)).

VALUE

Value to be assigned to the KEYOPT.

Notes

The CNKMOD command has the same syntax as the KEYOPT command. However, it is valid only in the SOLUTION processor. This command is intended primarily for modifying contact interface behavior between load steps in a linear perturbation analysis (see the PERTURB command); it allows the user to control the contact status locally per contact pair. Therefore, this command is limited to changing the contact interface behavior key option: $\operatorname{KEYOPT}(12)$ of CONTA171, CONTA172, CONTA173, CONTA174, CONTA175, CONTA176, and CONTA177; and KEYOPT(10) of CONTA178.

In the linear perturbation analysis procedure, contact status can also be controlled or modified by the PERTURB command. The contact status always follows local controls defined by the CNKMOD command first, and is then adjusted by the global sticking or bonded setting (ContKey STICKING or BONDED) on the PERTURB command.

Menu Paths

This command cannot be accessed from a menu.

CNVTOL, Lab, VALUE, TOLER, NORM, MINREF

Sets convergence values for nonlinear analyses.

SOLUTION: Nonlinear Options
MP ME ST PR PRN <> <> <> EM EH <> PP <> EME MFS

Lab

Valid convergence labels. If STAT, list the status of the currently specified criteria.

Discipline	Displacement Convergence		Force Convergence	
	Label	Label Description	Label	Label Description
Structural	U	Displacements	F	Forces
	ROT	Rotations	M	Moments
	HDSP	Hydrostatic Pressure	DVOL	Volume
Thermal	TEMP	Temperature	HEAT	Heat Flow
Fluid	PRES	Pressures	FLOW	Fluid Flow
	V	Velocity	VF	Fluid Force
Electric	VOLT	Voltage	AMPS	Current Flow
	EMF	Electromotive Force	CURT	Current Flow
	CURR	Current Flow	VLTG	Voltage Drop
Magnetic	MAG	Scalar Potential	FLUX	Scalar Flux
	A	Vector Potential	CSG	Current Segments

VALUE

Typical reference value for the above label for this analysis. If negative, and if this convergence label was previously specified explicitly, then convergence based on this label is removed. (A negative VALUE will not remove a default convergence label.) Defaults to the maximum of a program calculated reference or MINREF. For degrees of freedom, the reference is based upon the selected NORM and the current total DOF value. For forcing quantities, the reference is based upon the selected NORM and the applied loads.

TOLER

When SOLCONTROL,ON, tolerance about VALUE defaults to 0.005 (0.5%) for force and moment, $1.0 \mathrm{E}-4$ (0.01%) for DVOL, 0.05 (5\%) for displacement when rotational DOFs are not present, and 0.05 (5\%) for HDSP. When SOLCONTROL,OFF, the defaults are 0.001 (0.1%) for force and moment, and 1.0E-5 (0.001\%) for DVOL.

NORM

Specifies norm selection:
2
L2 norm (check SRSS value) (default).
1
L1 norm (check absolute value sum).

0
Infinite norm (check each DOF separately).

MINREF

The minimum value allowed for the program calculated reference value. If negative, no minimum is enforced. Used only if VALUE is blank. Defaults to 0.01 for force, moment, and volume convergence, $1.0 \mathrm{E}-6$ for heat flow, 1.0E-12 for VOLT and AMPS, 1.0E-6 for HDSP, and 0.0 otherwise. When SOLCONTROL,OFF, defaults to 1.0 for force, moment, and volume convergence. The default for heat flow ($1.0 \mathrm{E}-$ 6), VOLT and AMPS (1.0E-12), and others are independent of the SOLCONTROL setting.

Command Default

For static or transient analysis, check the out-of-balance load for any active DOF using the default VALUE, TOLER, NORM, and MINREF. Also check the displacement convergence for some problems. For analyses that include CONTA17x contact elements, displacement/rotation convergence checking is off by default. For harmonic magnetic analysis, check the out-of-balance of the degrees of freedom.

Notes

The default values given for this command assume SOLCONTROL,ON (the default). See the description of SOLCONTROL for a complete listing of the defaults set by SOLCONTROL,ON and SOLCONTROL,OFF.

Values may be set for the degrees of freedom (DOF) and/or the out-of-balance load for the corresponding forcing quantities. When the GUI is on, if a "Delete" operation in a Nonlinear Convergence Criteria dialog box writes this command to a log file (Jobname. LOG or Jobname. LGW), you will observe that Lab is blank, VALUE $=-1$, and TOLER is an integer number. In this case, the GUI has assigned a value of TOLER that corresponds to the location of a chosen convergence label in the dialog box's list. It is not intended that you type in such a location value for TOLER in an ANSYS session. However, a file that contains a GUIgenerated CNVTOL command of this form can be used for batch input or with the /INPUT command.

If you have multiple DOF types, issue CNVTOL for each DOF, because the default will be reset for the other DOFs the first time CNVTOL is issued.

This command is also valid in PREP7.
Convergence norms specified with CNVTOL may be graphically tracked while the solution is in process using the ANSYS program's Graphical Solution Tracking (GST) feature. Use the /GST command to turn GST on or off. By default, GST is ON for interactive sessions and OFF for batch runs.

Menu Paths

> Main Menu>Preprocessor>Loads>Analysis Type>Sol'n Controls>Nonlinear Main Menu>Preprocessor>Loads>Load Step Opts>Nonlinear>Convergence Crit Main Menu>Preprocessor>Loads>Load Step Opts>Nonlinear>Harmonic Main Menu>Preprocessor>Loads>Load Step Opts>Nonlinear>Static

Main Menu>Preprocessor>Loads>Load Step Opts>Nonlinear>Transient
Main Menu>Solution>Analysis Type>Sol'n Controls>Nonlinear
Main Menu>Solution>Load Step Opts>Nonlinear>Convergence Crit
Main Menu>Solution>Load Step Opts $>$ Nonlinear $>$ Harmonic
Main Menu>Solution>Load Step Opts>Nonlinear>Static
Main Menu>Solution>Load Step Opts>Nonlinear>Transient

/COLOR, Lab, Clab, N1,N2, NINC
Specifies the color mapping for various items.
GRAPHICS: Set Up
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Lab

Apply color to the items specified by the following labels:
AXES
Determines the color (specified in next argument, $C l a b$) that the axes of a graph will be plotted in.

AXNUM

Determines the color (specified in next argument, $C l a b$) that the numbering on the axes of a graph will be plotted in.

NUM

Discretely numbered items (such as element types, element materials, etc., as shown on the /PNUM command). Also specify number (1 to 11) in the $N 1$ field. For example, /COLOR,NUM,RED,3 will assign the color red to all items having the discrete number 3 (material displays would show elements having material 3 as red).

OUTL

Outline of elements, areas, and volumes. Ex: /COLOR,OUTL,BLUE.

ELEM

Elements. Use N1, N2, NINC fields for element numbers.

LINE

Solid model lines. Use N1, N2, NINC fields for line numbers.

AREA

Solid model areas. Use $N 1, N 2, N I N C$ fields for area numbers.

VOLU

Solid model volumes. Use N1, N2, NINC fields for volume numbers.

ISURF

Isosurfaces (surfaces of constant stress, etc.). This option is particularly useful when capturing frames for animating a single isosurface value.

WBAK

Window background. Use N1, N2, NINC fields for window numbers. The options that you select using $L a b=$ PBAK will supersede those applied using Lab $=$ WBAK.

b. c. label

Boundary condition label. Enter U, ROT, TEMP, PRES, V, ENKE, ENDS, SP01 through SP06 or their userdefined names, VOLT, MAG, A, EMF, CURR, F, M, HEAT, FLOW, VF, AMPS, FLUX, CSG, CURT, VLTG,

MAST, CP, CE, NFOR, NMOM, RFOR, RMOM, PATH. See the /PBC command for boundary condition label definitions.

GRBAK

Graph background.

GRID

Graph grid lines.

AXLAB

Graph X and Y axis labels.

CURVE

Graph curves (identify curve numbers (1-10) in N1, N2, NINC fields).
CM
Component group. Use N1 field for component name, ignore N2 and NINC.

CNTR

ANSYS contour stress colors. The maximum number of contours available is 128 . The number of colors that can be specified interactively (GUI) is 9. (/CONTOUR, , 9). Any other setting will yield inconsistent results.

SMAX

Specifies that all stress values above the maximum value entered in /CONTOUR will be displayed in the color designated in the Clab field. Defaults to dark grey.

SMIN
Specifies that all stress values below the minimum value entered in /CONTOUR will be displayed in the color designated in the Clab field. Defaults to dark grey.

PBAK
Activates background shading options (see command syntax at end of argument descriptions below).
The options that you select using $L a b=$ PBAK will supersede those applied using $L a b=$ WBAK.

Clab

Valid color labels are:

BLAC (0)

Black
MRED (1)
Magenta-Red
MAGE (2)
Magenta
BMAG (3)
Blue-Magenta

BLUE (4)

Blue
CBLU (5)
Cyan-Blue
CYAN (6)
Cyan
GCYA (${ }^{(7)}$
Green-Cyan

GREE (8)

Green

YGRE (9)

Yellow-Green

YELL (10)

Yellow

ORAN (11)

Orange

RED (12)

Red

DGRA (13)

Dark Gray

LGRA (14)

Light Gray
WHIT (15)
White

N1, N2, NINC

Apply color to Lab items numbered N1 to $N 2$ (defaults to $N 1$) in steps of NINC (defaults to 1). If $N 1$ is blank, apply color to entire selected range. If Lab is CM, use component name for N1 and ignore N2 and NINC. If N1 = P, graphical picking of elements, lines, areas and volumes is enabled; your can assign colors to the entities via the picker. When picking is enabled, the Lab and Clab fields are ignored.

If $L a b=$ PBAK, the command format is /COLOR, PBAK,Key_On_Off, KEY_TYPE, KEY_INDEX.
The options that you select using $L a b=$ PBAK will supersede those applied using $L a b=$ WBAK.

Key_On_Off

Turns the background colors on and off. Acceptable values are ON (1) and OFF (0).

KEY_TYPE

Determines the type of background. Acceptable values are 0 (smooth shading left to right), 1 (smooth shading top to bottom), 2 (smooth shading right to left), 3 (smooth shading bottom to top), and -1 (textured image background)

KEY_INDEX

An integer value that corresponds to a background color or texture. If Key_Type is -1, the background will correspond to values specified in the /TXTRE command. If Key_Type is any other acceptable value, the background will correspond to the color values listed above under Clab.

Command Default

Use the default color mapping.

Notes

Issue /COLOR,STAT to display the current color mapping. Issue /COLOR,DEFA to reset the default color mapping.

Note

Color labels may also be reassigned any "color" with the /CMAP command.

This command is valid anywhere.

Menu Paths

Utility Menu>PlotCtrls $>$ Style $>$ Colors $>$ BC Colors
Utility Menu>PlotCtrls>Style>Colors>Component Colors
Utility Menu>PlotCtrls>Style>Colors>Entity Colors
Utility Menu>PlotCtrls>Style>Colors>Graph Colors
Utility Menu $>$ PlotCtrls $>$ Style>Colors $>$ Numbered Item Colors
Utility Menu>PlotCtrls>Style>Colors>Window Colors

/COM, Comment
Places a comment in the output.
SESSION:List Controls
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Comment

Comment string, up to 75 characters.

Notes

The output from this command consists of the comment string. This command is similar to $\mathbf{C} * * *$ except that the comment produced by $\mathbf{C}^{* * *}$ is more easily identified in the output. Parameter substitution within the comment occurs for every valid expression delimited by percent (\%) signs. Enclosing such an expression in single quotes prevents parameter substitution.

Another way to include a comment is to precede it with a ! character (on the same line). The ! may be placed anywhere on the line, and any input following it is ignored as a comment. No output is produced by such a comment, but the comment line is included on the log file. This is a convenient way to annotate the log file.

This command is valid anywhere.

Menu Paths

This command cannot be accessed from a menu.

*COMP, Matrix, Algorithm, Threshold

Compresses the columns of a matrix using a specified algorithm.

APDL:Matrix Operations
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Argument Descriptions

Matrix

Name of the matrix to compress.

Algorithm

Algorithm to use:
SVD --
Singular value decomposition algorithm (default).
MGS --
Modified Gram-Schmidt algorithm.

Threshold

Numerical threshold value used to manage the compression. Default value for SVD is $1 \mathrm{E}-7$; default value for MGS is $1 \mathrm{E}-14$.

Notes

The algorithms available through this command are only applicable to dense matrices that were created using the *DMAT command.

Columns which are linearly dependent on others are removed, leaving the independent or basis vectors. The matrix is resized according to the new size determined by the algorithm.

Menu Paths

This command cannot be accessed from a menu.

COMPRESS

Deletes all specified sets.
AUX3: Results Files
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
Notes
Issue this command to delete all sets specified with the DELETE command.

Menu Paths

This command cannot be accessed from a menu.

CON4, XCENTER, YCENTER, RAD1, RAD2, DEPTH

Creates a conical volume anywhere on the working plane.

PREP 7: Primitives
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

XCENTER, YCENTER

Working plane X and Y coordinates of the center axis of the cone.

RAD1, RAD2

Radii of the faces of the cone. RAD1 defines the bottom face and will be located on the working plane. $R A D 2$ defines the top face and is parallel to the working plane. A value of zero or blank for either RAD1 or RAD2 defines a degenerate face at the center axis (i.e., the vertex of the cone). The same value for both RAD1 and RAD2 defines a cylinder instead of a cone.

DEPTH

The perpendicular distance (either positive or negative based on the working plane Z direction) from the working plane representing the depth of the cone. DEPTH cannot be zero (see "Notes" (p. 301) below).

Notes

Defines a solid conical volume with either the vertex or a face anywhere on the working plane. The cone must have a spatial volume greater than zero. (i.e., this volume primitive command cannot be used to create a degenerate volume as a means of creating an area.) The face or faces will be circular (each area defined with four lines), and they will be connected with two areas (each spanning 180°). See the CONE command for an alternate way to create cones.

Menu Paths

Main Menu>Preprocessor>Modeling>Create>Primitives>Cone Main Menu>Preprocessor>Modeling>Create>Volumes>Cone>By Picking

CONE, RBOT, RTOP, Z1, Z2, THETA1, THETA2

Creates a conical volume centered about the working plane origin.

PREP 7: Primitives
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

RBOT, RTOP

Radii of the bottom and top faces of the cone. A value of zero or blank for either RBOT or RTOP defines a degenerate face at the center axis (i.e., the vertex of the cone). The same value for both RBOT and RTOP defines a cylinder instead of a cone.

Z1, Z2

Working plane Z coordinates of the cone. The smaller value is always associated with the bottom face.

THETA1, THETA2

Starting and ending angles (either order) of the cone. Used for creating a conical sector. The sector begins at the algebraically smaller angle, extends in a positive angular direction, and ends at the larger angle. The starting angle defaults to 0° and the ending angle defaults to 360°. See the Modeling and Meshing Guide for an illustration.

Notes

Defines a solid conical volume centered about the working plane origin. The non-degenerate face (top or bottom) is parallel to the working plane but not necessarily coplanar with (i.e., "on") the working plane. The cone must have a spatial volume greater than zero. (i.e., this volume primitive command cannot be used to create a degenerate volume as a means of creating an area.) For a cone of 360°, top and bottom faces will be circular (each area defined with four lines), and they will be connected with two areas (each spanning 180°). See the CON4 command for an alternate way to create cones.

Menu Paths

Main Menu>Preprocessor>Modeling>Create>Volumes>Cone>By Dimensions

/CONFIG, Lab, Value

Assigns values to ANSYS configuration parameters.

SESSION: Run Controls
MP ME ST PR PRN DS DSS FL EM EH DY PP <> EME MFS

Lab

Configuration parameter to be changed:

NRES

VALUE is maximum number of results sets (substeps) allowed on the result file. Defaults to 1000. For MFX analyses, defaults to 5000 . Minimum is 10 .

NORSTGM

Option to write or not write geometry data to the results file. VALUE is either 0 (write geometry data) or 1 (do not write geometry data). Useful when complex analyses will create abnormally large files. Default is 0 .

NBUF
VALUE is the number of buffers (1 to 32) per file in the solver. Defaults to 4.

LOCFL

File open and close actions. For VALUE use: 0 for global (default); 1 for local. Applicable to File.EROT, File.ESAV, and File.EMAT. Typically used for large problems where locally closed files may be deleted earlier in the run with the /FDELE command.

SZBIO

VALUE is the record size (1024 to 4194304) of binary files (in integer words). Defaults to 16384 (system dependent).

ORDER

Automatic reordering scheme. For VALUE use: 0 for WSORT,ALL; 1 for WAVES; 2 for both WSORT,ALL and WAVES (default).

FSPLIT

Defines split points for binary files. VALUE is the file split point in megawords and defaults to the maximum file size for the system.

MXND

Maximum number of nodes. If not specified, defaults to 100 at first encounter. Dynamically expanded by doubling, even at first encounter, when maximum is exceeded.

MXEL

Maximum number of elements. Default and expansion as for MXND.

MXKP

Maximum number of keypoints. Default and expansion as for MXND.

MXLS

Maximum number of lines. Default and expansion as for MXND.

MXAR

Maximum number of areas. Default and expansion as for MXND.

MXVL

Maximum number of volumes. Default and expansion as for MXND.

MXRL

Maximum number of sets of real constants (element attributes). Default and expansion as for MXND.

MXCP

Maximum number of sets of coupled degrees of freedom. Default and expansion as for MXND.

MXCE

Maximum number of constraint equations. Default and expansion as for MXND.

NOELDB

Option to write or not write results into the database after a solution. When VALUE $=0$ (default), write results into the database. When $V A L U E=1$, do not write results into the database.

DYNA_DBL

Option to invoke the double precision version of the explicit dynamics solver LS-DYNA. When VALUE $=0$ (default), the single precision version is used. When $V A L U E=1$, the double precision version is used.

STAT

Displays current values set by the /CONFIG command.

VALUE

Value (an integer number) assigned to the configuration parameter.

Notes

All configuration parameters have initial defaults, which in most cases do not need to be changed. Where a specially configured version of the ANSYS program is desired, the parameters may be changed with this command. Issue /CONFIG,STAT to display current values. Changes must be defined before the parameter is required. These changes (and others) may also be incorporated into the config130.ans file which is read upon execution of the program (see The Configuration File in the Basic Analysis Guide). If the same configuration parameter appears in both the configuration file and this command, this command overrides.

Distributed ANSYS uses the default FSPLIT value, and forces NOELDB $=1$ and NORSTGM $=0$ for all results files except the local results files (for example, Jobnamen.RST) written for each process during a distributed solution. For local results files, no geometry is written (NORSTGM = 1). The FSPLIT, NOELDB, and NORSTGM options cannot be changed when using Distributed ANSYS.

The /CONFIG command is not valid for the ANSYS Multiphysics 1, 2, or 3 products.
The ANSYS Multi-field solver (MFS and MFX) does not support /CONFIG,NOELDB,1. The ANSYS Multi-field solver needs the updated ANSYS database.

Product Restrictions

Command Option Lab	Available Products
MXND	MP ME ST PR PRN $<><>$ FL EM EH DY PP <> EME MFS
MXEL	MP ME ST PR PRN $<><>$ FL EM EH DY PP <> EME MFS

Menu Paths

Utility Menu>List>Status>Configuration

CONJUG, IR, IA, --, --, Name, --, --, FACTA
Forms the complex conjugate of a variable.

> POST2 6: Operations
> MP ME ST PR PRN <> <> <> EM EH DY PP <> EME MFS

IR
Arbitrary reference number assigned to the resulting variable (2 to NV [NUMVAR]). If this number is the same as for a previously defined variable, the previously defined variable will be overwritten with this result.

IA
Reference number of the variable to be operated on.
--, --
Unused fields.

Name

Thirty-two character name for identifying the variable on printouts and displays. Embedded blanks are compressed for output.
--, --
Unused fields.
FACTA
Scaling factor (positive or negative) applied to variable (default to 1.0).

Notes

Used only with harmonic analyses (ANTYPE,HARMIC).

Menu Paths

Main Menu>TimeHist Postpro>Math Operations>Complex Conjugat

/CONTOUR, wn, NCONT, VMIN, VINC, vMAX

Specifies the uniform contour values on stress displays.

> GRAP HICS: Labeling
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

WN
Window number (or ALL) to which command applies (defaults to 1).

NCONT

Number of contour values. NCONT defaults to 9 for X11 or WIN32 and to 128 for X11c or WIN32C. The default graphics window display for 3-D devices is a smooth continuous shading effect that spans the maximum of 128 contours available. Use the /DV3D command to create defined banding for your contour values (values of 9 and 128 are displayed in smooth shading only). The legend, however, will display only nine color boxes, which span the full range of colors displayed in the graphics window.

VMIN

Minimum contour value. If $V M I N=$ AUTO, automatically calculate contour values based upon NCONT uniformly spaced values over the min-max extreme range. Or, if VMIN = USER, set contour values to those of the last display (useful when last display automatically calculated contours).

VINC

Value increment (positive) between contour values. Defaults to (VMAX-VMIN)/NCONT.

VMAX

Maximum contour value. Ignored if both VMIN and VINC are specified.

Command Default

Nine contour values uniformly spaced between the extreme values, or no contours if the ratio of range to minimum value (or range to maximum if minimum $=0$) is less than 0.001 .

Notes

See the /CVAL command for alternate specifications. Values represent contour lines in vector mode, and the algebraic maximum of contour bands in raster mode.

Abstract

Note

No matter how many contours (NCONT) are specified by /CONTOUR, the actual number of contours that appear on your display depends also on the device name, whether the display is directed to the screen or to a file, the display mode (vector or raster), and the number of color planes. (All these items are controlled by /SHOW settings.) In any case, regardless of whether they are smoothed or banded, only 128 contours can be displayed. See Creating Geometric Results Displays in the Basic Analysis Guide for more information on changing the number of contours.

If the current ANSYS graphics are not displayed as Multi-Plots, then the following is true: If the current device is a 3-D device [/SHOW,3D], the model contours in all active windows will be the same, even if separate /CONTOUR commands are issued for each active window. For efficiency, ANSYS 3-D graphics logic maintains a single data structure (segment), which contains precisely one set of contours. The program displays the same segment in all windows. The view settings of each window constitute the only differences in the contour plots in the active windows.

This command is valid in any processor.

Menu Paths

Utility Menu>PlotCtrls>Style>Contours>Uniform Contours

/COPY, Fname1, Ext1, --, Fname2, Ext2, --

Copies a file.

MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Fname1

File name to be copied and its directory path (248 characters maximum for both file name and directory). If you do not specify a directory path, it will default to your working directory and you can use all 248 characters for the file name.

The file name defaults to the current Jobname.

Ext1

Filename extension (8 character maximum).

Unused field.

Fname2

File name to be created and its directory path (248 characters maximum for both file name and directory). If you do not specify a directory path, it will default to your working directory and you can use all 248 characters for the file name.

Fname2 defaults to Fname1.

Ext2

Filename extension (8 character maximum).
Ext 2 defaults to Ext 1 .

Unused field.

Notes

The original file is untouched. Ex: /COPY, $A_{,, \prime,}$ B copies file A to B in the same directory. /COPY,A,DAT,,INP copies the file A. DAT to A. INP. See the Operations Guide for details. ANSYS binary and ASCII files can be copied.

Menu Paths

Utility Menu>File>File Operations>Copy

CORIOLIS, Option, --,--, Refframe, RotDamp

Applies the Coriolis effect to a rotating structure.

SOLUTION: Inertia
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS

Option

Flag to activate or deactivate the Coriolis effect:
1 (ON or YES)
Activate. This value is the default.
0 (OFF or NO)
Deactivate.
--, --
Unused fields.

RefFrame

Flag to activate or deactivate a stationary reference frame.

1 (ON or YES)

Activate.
0 (OFF or NO)
Deactivate. This value is the default.

RotDamp

Flag to activate or deactivate rotating damping effect.
1 (ON or YES)
Activate.
0 (OFF or NO)
Deactivate. This value is the default.

Notes

The CORIOLIS command is used for analyses in either a rotating or a stationary reference frame, and performs differently according to the designated RefFrame value. Specific restrictions and elements apply to each case, as follows:

Rotating Reference Frame (RefFrame = OFF):
The command applies the Coriolis effect in the following structural element types: MASS21, SHELL181, PLANE182, PLANE183, SOLID185, SOLID186, SOLID187, BEAM188, BEAM189, SOLSH190, SHELL281, PIPE288 and PIPE289. It also applies this effect in the PLANE223, SOLID226, and SOLID227 analyses with structural degrees of freedom.

In a rotating reference frame, both the coriolis and spin-softening effects contribute to the gyroscopic moment. Therefore, ANSYS applies spin-softening by default for dynamic analyses. If a rotational velocity is specified (or), centrifugal forces will be included.

To include coriolis effects in a large deflection prestressed analysis (NLGEOM, ON), issue both the CORIOLIS and the OMEGA (or CMOMEGA) commands in the static prestress portion of the analysis.

In a nonlinear transient analysis (ANTYPE,TRANS and NLGEOM, ON), any spinning motion applied through either the IC of the D commands will include the coriolis effect without having to issue the CORIOLIS command. Refer to Rotating Structure Analysis in the Advanced Analysis Techniques Guide for more information.

Stationary Reference Frame (RefFrame = ON):
The command activates the gyroscopic damping matrix in the following structural elements: MASS21, BEAM188, SHELL181, BEAM189, SOLID185, SOLID186, SOLID187, SOLID272, SOLID273, SHELL281, PIPE288, and PIPE289.

The rotating structure must be axisymmetric about the axis of rotation.
Static analysis (ANTYPE, STATIC) does not support Coriolis effects with a stationary reference frame. However, you can include the gyroscopic effects in a small deflection prestresses analysis (NLGEOM, OFF and PSTRES, ON) by issuing the CORIOLIS command in the static prestressed dynamic analysis.

Rotating damping effect (RotDamp $=\mathrm{ON}$) applies only for the stationary reference frame. Therefore, this effect is supported only by the elements listed above that generate a gyroscopic damping matrix. Proportional damping must be present in the element (MP,DAMP or BETAD). It is also supported by element COMBI214 with non zero and axisymmetric damping characteristics (non zero real constants C11=C22 and C21=C12=0).

For more information about using the CORIOLIS command, see Rotating Structure Analysis in the Advanced Analysis Techniques Guide and also in the Rotordynamic Analysis Guide. For details about the Coriolis and gyroscopic effects, see the Theory Reference for the Mechanical APDL and Mechanical Applications.

This command is also valid in PREP7.

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Inertia>Angular Veloc>Coriolis Main Menu>Solution>Define Loads>Apply>Structural>Inertia>Angular Veloc>Coriolis

COUPLE

Specifies "Node coupling" as the subsequent status topic.

PREP 7:Status
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Notes

This is a status [STAT] topic command. Status topic commands are generated by the GUI and will appear in the log file (Jobname. LOG) if status is requested for some items under Utility Menu> List> Status. This command will be immediately followed by a STAT command, which will report the status for the specified topic.

If entered directly into the program, the STAT command should immediately follow this command.

Menu Paths

Utility Menu>List>Status>Preprocessor>Coupled Sets

COVAL, TBLNO1, TBLNO2, SV1, SV2, SV3, SV4, SV5, SV6, SV7

Defines PSD cospectral values.

SOLUTION:Spectrum Options
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS

TBLNO1

First input PSD table number associated with this spectrum.

TBLNO2

Second input PSD table number associated with this spectrum.
SV1, SV2, SV3, . . . , SV7
PSD cospectral values corresponding to the frequency points [PSDFRQ].

Notes

Defines PSD cospectral values to be associated with the previously defined frequency points. Two table references are required since values are off-diagonal terms. Unlike autospectra [PSDVAL], the cospectra can be positive or negative. The cospectral curve segment where there is a sign change is interpolated linearly (the rest of the curve segments use log-log interpolation). For better accuracy, choose as small a curve segment as possible wherever a sign change occurs.

Repeat COVAL command using the same table numbers for additional points. This command is valid for SPOPT,PSD only.

This command is also valid in PREP7.

Menu Paths

Main Menu>Preprocessor>Loads>Load Step Opts>Spectrum $>$ PSD $>$ Correlation $>$ Cospectral Main Menu>Solution>Load Step Opts>Spectrum>PSD>Correlation>Cospectral

```
CP, NSET, Lab, NODE1, NODE2, NODE3, NODE4, NODE5, NODE6, NODE7, NODE8, NODE9, NODE10, NODE11, NODE12, NODE13, NODE14, NODE15, NODE16, NODE17
```


Defines (or modifies) a set of coupled degrees of freedom.

PREP 7: Coupled DOF
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

NSET

Set reference number:
n
Arbitrary set number.
HIGH
The highest defined coupled set number will be used (default, unless Lab = ALL). This option is useful when adding nodes to an existing set.

NEXT

The highest defined coupled set number plus one will be used (default if $L a b=A L L$). This option automatically numbers coupled sets so that existing sets are not modified.

Lab

Degree of freedom label for coupled nodes (in the nodal coordinate system). Defaults to label previously defined with NSET if set NSET already exists. A different label redefines the previous label associated with NSET. Valid labels are: Structural labels: UX, UY, or UZ (displacements); ROTX, ROTY, or ROTZ (rotations) (in radians); HDSP (hydrostatic pressure). Thermal labels: TEMP, TBOT, TE2, TE3, ..., TTOP (temperature). Fluid labels: PRES (pressure); VX, VY, or VZ (velocities). Electric labels: VOLT (voltage); EMF (electromotive force drop); CURR (current). Magnetic labels: MAG (scalar magnetic potential); AX, AY, or AZ (vector magnetic potentials); CURR (current). Explicit analysis labels: UX, UY, or UZ (displacements).

When $L a b=$ ALL:

- Sets are generated for each active degree of freedom (that is, one set for the UX degree of freedom, another set for UY, etc.), and NSET is incremented automatically to prevent overwriting existing sets.
- Existing sets are not modified. NSET must be a new set number n or NEXT.
- The degree of freedom set is determined according to all element types defined and the DOF command, if used.
- Hydrostatic pressure (HDSP) is not included.

ALL is the only label applicable to FLOTRAN.

NODE1, NODE2, NODE3, . . . , NODE1 7

List of nodes to be included in set. Duplicate nodes are ignored. If a node number is input as negative, the node is deleted from the coupled set. The first node in the list is the primary (retained) node. If NODE1 = ALL, NODE2 through NODE17 are ignored and all selected nodes (NSEL) are included in the set. If $N O D E 1=\mathrm{P}$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NODE1.

Notes

Do not include the same degree of freedom in more than one coupled set. Repeat CP command for additional nodes.

Coupling degrees of freedom into a set causes the results calculated for one member of the set to be the same for all members of the set. Coupling can be used to model various joint and hinge effects. A more general form of coupling can be done with constraint equations (CE). For structural analyses, a list of nodes is defined along with the nodal directions in which these nodes are to be coupled. As a result of this coupling, these nodes are forced to take the same displacement in the specified nodal coordinate direction. The amount of the displacement is unknown until the analysis is completed. A set of coupled nodes which are not coincident, or which are not along the line of the coupled displacement direction, may produce an applied moment which will not appear in the reaction forces. The actual degrees of freedom available for a particular node depends upon the degrees of freedom associated with element types (ET) at that node. For scalar field analysis, this command is used to couple nodal temperatures, pressures, voltages, etc.

For an explicit dynamic analysis, the only valid DOF labels for coupling are UX, UY, and UZ. Since the rotational DOF (ROTX, ROTY, ROTZ) are not allowed, The CP family of commands should not be used in an explicit analysis to model rigid body behavior that involves rotations. If $\mathbf{C P}$ is used in this manner, it could lead to nonphysical responses.

A set of coupled nodes which are not coincident, or which are not along the line of the coupled displacement direction, produce an artificial moment constraint. If the structure rotates, a moment may be produced in the coupled set in the form of a force couple. This moment is in addition to the real reaction forces and may make it appear that moment equilibrium is not satisfied by just the applied forces and the reaction forces. Note, however, that in an explicit dynamic analysis, this artificial moment will not be produced. Rather, just the applied forces and the reaction forces will satisfy the moment equilibrium in the model. Thus, in an explicit analysis, the magnitude of nodal displacements for this set of nodes will depend on the distance from each node to the center of the coupled set, and the direction of displacement will depend on the resulting moment. This may lead to a nonphysical response in some cases.

Additional sets of coupled nodes may be generated from a specified set. Degrees of freedom are coupled within a set but are not coupled between sets. No degree of freedom should appear in more than one coupled set. Such an appearance would indicate that at least two sets were in fact part of a single larger set. The first degree of freedom of the coupled set is the "prime" degree of freedom. All other degrees of freedom in the coupled sets are eliminated from the solution matrices by their relationship to the prime degree of freedom. Forces applied to coupled nodes (in the coupled degree of freedom direction) will be summed and applied to the prime degree of freedom. Output forces are also summed at the prime degree of freedom. Degrees of freedom with specified constraints (D) should not be included in a coupled set (unless the degree of freedom is prime).

If master degrees of freedom are defined for coupled nodes, only the prime degree of freedom should be so defined. The use of coupled nodes reduces the set of coupled degrees of freedom to only one degree of freedom.

In FLOTRAN, you can apply periodic boundary conditions using the CP command along with the PERI macro. Attempts to use the CP command outside the context of the PERI macro may lead to unexpected results.

Menu Paths

Main Menu>Preprocessor>Coupling / Ceqn>Couple DOFs Main Menu>Preprocessor>Coupling / Ceqn>Cupl DOFs w/Mstr

CPCYC, Lab, TOLER, KCN, DX, DY, DZ, KNONROT

Couples the two side faces of a cyclically symmetric model for loadings that are the same on every segment.

> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Lab
Degree of freedom label for coupled nodes (in the nodal coordinate system). If ALL, use all appropriate labels. Valid labels are: Structural labels: UX, UY, or UZ (displacements); ROTX, ROTY, or ROTZ (rotations, in radians).

TOLER

Tolerance for coincidence (based on maximum coordinate difference in each global Cartesian direction for node locations and on angle differences for node orientations). Defaults to 0.0001 . Only nodes within the tolerance are considered to be coincident for coupling.

KCN
In coordinate system $K C N$, node 1 of $\mathrm{CP}+\mathrm{dx} \mathrm{dy} \mathrm{dz}=$ node 2 of CP .

DX, DY, DZ

Node location increments in the active coordinate system (DR, D θ, DZ for cylindrical, DR, D $\theta, \mathrm{D} \Phi$ for spherical or toroidal).

KNONROT

When $K N O N R O T=0$, the nodes on coupled sets are rotated into coordinate system $K C N$ (see NROTAT command description). When $K N O N R O T=1$, the nodes are not rotated, and you should make sure that coupled nodal DOF directions are correct.

Notes

Cyclic coupling requires identical node and element patterns on the low and high sector boundaries. The MSHCOPY operation allows convenient generation of identical node and element patterns. See Using CPCYC and MSHCOPY Commands in the Modeling and Meshing Guide for more information.

Although developed primarily for use with cyclically symmetric models, your use of the CPCYC command is not limited to cyclic symmetry analyses.

Menu Paths

Main Menu>Preprocessor>Coupling / Ceqn>Offset Nodes

CPDELE, NSET1, NSET2, NINC, Nsel

Deletes coupled degree of freedom sets.

> PREP 7: Coupled DOF
> MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS

NSET1, NSET2, NINC

Delete coupled sets from NSET1 to NSET2 (defaults to NSET1) in steps of NINC (defaults to 1). If NSET1 = ALL, NSET2 and NINC are ignored and all coupled sets are deleted.

Nsel

Additional node selection control:
ANY
Delete coupled set if any of the selected nodes are in the set (default).
ALL
Delete coupled set only if all of the selected nodes are in the set.

Notes

See the CP command for a method to delete individual nodes from a set.

Menu Paths

Main Menu>Preprocessor>Coupling / Ceqn>Del Coupled Sets
Main Menu>Preprocessor>Modeling>Create>Circuit>Delete Elements

CPINTF, Lab, TOLER

Defines coupled degrees of freedom at an interface.

PREP 7: Coupled DOF
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Lab

Degree of freedom label for coupled nodes (in the nodal coordinate system). If ALL, use all appropriate labels except HDSP. Valid labels are: Structural labels: UX, UY, or UZ (displacements); ROTX, ROTY, or ROTZ (rotations, in radians), HDSP (hydrostatic pressure). Thermal labels: TEMP, TBOT, TE2, TE3, . . ., TTOP (temperature). Fluid labels: PRES (pressure); VX, VY, or VZ (velocities). Electric labels: VOLT (voltage); EMF (electromotive force drop); CURR (current). Magnetic labels: MAG (scalar magnetic potential); AX, AY, or AZ (vector magnetic potentials); CURR (current).

TOLER

Tolerance for coincidence (based on maximum coordinate difference in each global Cartesian direction for node locations and on angle differences for node orientations). Defaults to 0.0001 . Only nodes within the tolerance are considered to be coincident for coupling.

Notes

Defines coupled degrees of freedom between coincident nodes (within a tolerance). May be used, for example, to "button" together elements interfacing at a seam, where the seam consists of a series of node pairs. One coupled set is generated for each selected degree of freedom for each pair of coincident nodes. For more than two coincident nodes in a cluster, a coupled set is generated from the lowest numbered node to each of the other nodes in the cluster. Coupled sets are generated only within (and not between) clusters. If fewer than all nodes are to be checked for coincidence, use the NSEL command to select nodes. Coupled set reference numbers are incremented by one from the highest previous set number. Use CPLIST to display the generated sets. Only nodes having the same nodal coordinate system orientations ("coincident" within a tolerance) are included. Use the CEINTF command to connect nodes by constraint equations instead of by coupling. Use the EINTF command to connect nodes by line elements instead of by coupling.

Menu Paths

Main Menu>Preprocessor>Coupling / Ceqn>Coincident Nodes

/CPLANE, KEY

Specifies the cutting plane for section and capped displays.

GRAPHICS:Style
MP ME ST PR PRN <> <> FL EM EH DY PP $<>$ EME MFS

KEY

Specifies the cutting plane:
0
Cutting plane is normal to the viewing vector [/VIEW] and passes through the focus point [/FOCUS] (default).

1
The working plane [WPLANE] is the cutting plane.

Command Default

The cutting plane is normal to the viewing vector at the focus point.

Notes

Defines the cutting plane to be used for section and capped displays [/TYPE,,(1, 5, or 7)].
This command is valid in any processor.

Menu Paths

Utility Menu>PlotCtrls>Style>Hidden-Line Options

CPLGEN, NSETF, Lab1, Lab2, Lab3, Lab4, Lab5

Generates sets of coupled nodes from an existing set.

PREP 7:Coupled DOF
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

NSETF

Generate sets from existing set NSETF.

Lab1, Lab2, Lab3, . . . , Lab5

Generate sets with these labels (see CP command for valid labels). Sets are numbered as the highest existing set number +1 .

Notes

Generates additional sets of coupled nodes (with different labels) from an existing set [CP, CPNGEN]. The same node numbers are included in the generated sets. If all labels of nodes are to be coupled and the nodes are coincident, the NUMMRG command should be used to automatically redefine the node number (for efficiency).

Menu Paths

Main Menu>Preprocessor>Coupling / Ceqn>Gen w/Same Nodes

CPLIST, NSET1, NSET2,NINC, Nsel

Lists the coupled degree of freedom sets.

PREP 7:Coupled DOF
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

NSET1, NSET2, NINC

List coupled sets from NSET1 to NSET2 (defaults to NSET1) in steps of NINC (defaults to 1). If NSET1 = ALL (default), NSET2 and NINC are ignored and all coupled sets are listed.

Nsel

Node selection control:
ANY
List coupled set if any of the selected nodes are in the set (default).
ALL
List coupled set only if all of the selected nodes are in the set.

Notes

This command is valid in any processor.

Menu Paths

Utility Menu>List>Other>Coupled Sets>All CP nodes selected Utility Menu>List>Other>Coupled Sets>Any CP node selected

CPMERGE, $L a b$

Merges different couple sets with duplicate degrees of freedom into one couple set.
PREP 7:Coupled DOF
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Lab

Degree of freedom label for coupled nodes (in the nodal coordinate system). Valid labels are: Structural labels: UX, UY, or UZ (displacements); ROTX, ROTY, or ROTZ (rotations) (in radians). Thermal labels: TEMP, TBOT, TE2, TE3, ...,TTOP (temperature). Fluid labels: PRES (pressure); VX, VY, or VZ (velocities). Electric labels: VOLT (voltage); EMF (electromotive force drop); CURR (current). Magnetic labels: MAG (scalar magnetic potential); AX, AY, or AZ (vector magnetic potentials); CURR (current). Explicit analysis labels: UX, UY, or UZ (displacements). The degree of freedom set is determined from all element types defined and the DOF command, if used.

Menu Paths

Main Menu $>$ Preprocessor $>$ Modeling $>$ Create $>$ Circuit $>$ Builder $>$ Electric $>$ Capacitor Main Menu $>$ Preprocessor $>$ Modeling $>$ Create $>$ Circuit $>$ Builder $>$ Electric $>$ Curr Cntl CS Main Menu $>$ Preprocessor $>$ Modeling $>$ Create $>$ Circuit $>$ Builder $>$ Electric $>$ Curr Cntl VS Main Menu>Preprocessor>Modeling>Create>Circuit>Builder>Electric>Diode Main Menu>Preprocessor>Modeling>Create>Circuit>Builder>Electric>Indp Curr Src>Constant Amplitude
Main Menu>Preprocessor>Modeling>Create>Circuit>Builder>Electric>Indp Curr Src>Exponential Main Menu>Preprocessor>Modeling>Create>Circuit>Builder>Electric>Indp Curr Src>Piecewise Main Menu>Preprocessor>Modeling>Create>Circuit>Builder>Electric>Indp Curr Src>Pulse Main Menu $>$ Preprocessor $>$ Modeling>Create $>$ Circuit $>$ Builder $>$ Electric>Indp Curr Src>Sinusoidal Main Menu>Preprocessor>Modeling>Create>Circuit>Builder>Electric>Indp VItg Src>Constant Amplitude
Main Menu>Preprocessor>Modeling>Create>Circuit>Builder>Electric>Indp VItg Src>Exponential Main Menu>Preprocessor>Modeling>Create>Circuit>Builder>Electric>Indp VItg Src>Piecewise Main Menu $>$ Preprocessor $>$ Modeling $>$ Create $>$ Circuit $>$ Builder $>$ Electric $>$ Indp VItg Src>Pulse Main Menu>Preprocessor>Modeling>Create>Circuit>Builder>Electric>Indp VItg Src>Sinusoidal

Abstract

Main Menu $>$ Preprocessor $>$ Modeling $>$ Create $>$ Circuit $>$ Builder $>$ Electric $>$ Inductor Main Menu>Preprocessor>Modeling>Create>Circuit>Builder>Electric>Mass Cond 2D Main Menu>Preprocessor>Modeling>Create>Circuit>Builder>Electric>Mass Cond 3D Main Menu $>$ Preprocessor $>$ Modeling $>$ Create $>$ Circuit $>$ Builder $>$ Electric $>$ Mutual Ind Main Menu $>$ Preprocessor $>$ Modeling $>$ Create $>$ Circuit $>$ Builder $>$ Electric $>$ Resistor Main Menu $>$ Preprocessor $>$ Modeling $>$ Create $>$ Circuit $>$ Builder $>$ Electric $>$ Strnd Coil Main Menu>Preprocessor>Modeling>Create>Circuit>Builder>Electric>VItg CntI CS Main Menu>Preprocessor>Modeling>Create>Circuit>Builder>Electric>VItg CntI VS Main Menu>Preprocessor>Modeling>Create>Circuit>Builder>Electric>Wire Main Menu $>$ Preprocessor $>$ Modeling $>$ Create $>$ Circuit $>$ Builder $>$ Electric $>$ Zener Diode Main Menu>Preprocessor>Modeling>Create>Circuit>Builder>Mechanical>Damper>Linear Rotary Main Menu $>$ Preprocessor $>$ Modeling $>$ Create $>$ Circuit $>$ Builder $>$ Mechanical $>$ Damper $>$ Linear Trans Main Menu>Preprocessor>Modeling>Create>Circuit>Builder>Mechanical>Damper>Nonlin Rotary Main Menu $>$ Preprocessor $>$ Modeling $>$ Create $>$ Circuit $>$ Builder $>$ Mechanical $>$ Damper $>$ Nonlin Trans Main Menu $>$ Preprocessor $>$ Modeling $>$ Create $>$ Circuit $>$ Builder $>$ Mechanical $>$ Damper $>$ Slide Film Main Menu $>$ Preprocessor $>$ Modeling $>$ Create $>$ Circuit $>$ Builder $>$ Mechanical $>$ Mass Main Menu $>$ Preprocessor $>$ Modeling>Create>Circuit>Builder>Mechanical $>$ Spring>Linear Rotary Main Menu $>$ Preprocessor>Modeling>Create>Circuit>Builder>Mechanical>Spring>Linear Trans Main Menu $>$ Preprocessor $>$ Modeling $>$ Create $>$ Circuit $>$ Builder $>$ Mechanical $>$ Spring $>$ Nonlin Rotary Main Menu>Preprocessor>Modeling>Create>Circuit>Builder>Mechanical>Spring>Nonlin Trans Main Menu $>$ Preprocessor $>$ Modeling $>$ Create $>$ Circuit $>$ Builder $>$ Piezoelectric>Capacitor Main Menu>Preprocessor>Modeling>Create>Circuit>Builder>Piezoelectric>Indp Curr Src>Constant Amplitude Main Menu>Preprocessor>Modeling>Create>Circuit>Builder>Piezoelectric>Indp Curr Src>Exponential Main Menu>Preprocessor>Modeling>Create>Circuit>Builder>Piezoelectric>Indp Curr Src>Piecewise Main Menu $>$ Preprocessor $>$ Modeling $>$ Create $>$ Circuit $>$ Builder $>$ Piezoelectric $>$ Indp Curr Src>Pulse Main Menu $>$ Preprocessor $>$ Modeling $>$ Create $>$ Circuit $>$ Builder $>$ Piezoelectric>Indp Curr Src>Sinusoidal Main Menu>Preprocessor>Modeling>Create>Circuit>Builder>Piezoelectric>Indp VItg Src>Constant Amplitude Main Menu>Preprocessor>Modeling>Create>Circuit>Builder>Piezoelectric>Indp VItg Src>Exponential Main Menu>Preprocessor>Modeling>Create>Circuit>Builder>Piezoelectric>Indp VItg Src>Piecewise Main Menu $>$ Preprocessor $>$ Modeling $>$ Create $>$ Circuit $>$ Builder $>$ Piezoelectric $>$ Indp VItg Src>Pulse Main Menu $>$ Preprocessor $>$ Modeling $>$ Create $>$ Circuit $>$ Builder $>$ Piezoelectric $>$ Indp VItg Src>Sinusoidal Main Menu $>$ Preprocessor $>$ Modeling $>$ Create $>$ Circuit $>$ Builder $>$ Piezoelectric $>$ Inductor Main Menu $>$ Preprocessor $>$ Modeling $>$ Create $>$ Circuit $>$ Builder $>$ Piezoelectric $>$ Resistor Main Menu $>$ Preprocessor $>$ Modeling $>$ Create $>$ Circuit $>$ Builder $>$ Piezoelectric $>$ Wire Main Menu>Preprocessor>Modeling>Create>Circuit>Builder>Transducer>ElecMech Main Menu>Preprocessor>Modeling>Create>Circuit>Delete Elements

CPNGEN, NSET, Lab, NODE1, NODE2, NINC
Defines, modifies, or adds to a set of coupled degrees of freedom.
PREP 7:Coupled DOF
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

[^0]
NODE1, NODE2, NINC

Include in coupled set nodes NODE1 to NODE2 in steps of NINC (defaults to 1). If NODE1 = P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). If -NODE1, delete range of nodes from set instead of including. A component name may also be substituted for NODE1 (NODE2 and NINC are ignored).

Notes

Defines, modifies, or adds to a set of coupled degrees of freedom. May be used in combination with (or in place of) the CP command. Repeat CPNGEN command for additional nodes.

Menu Paths

This command cannot be accessed from a menu.

CPSGEN, ITIME, INC, NSET1, NSET2, NINC

Generates sets of coupled nodes from existing sets.

PREP7:Coupled DOF
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

ITIME, INC

Do this generation operation a total of ITIMEs, incrementing all nodes in the existing sets by INC each time after the first. ITIME must be >1 for generation to occur.

NSET1, NSET2, NINC

Generate sets from sets beginning with NSET1 to NSET2 (defaults to NSET1) in steps of NINC (defaults to 1). If NSET1 is negative, NSET2 and NINC are ignored and the last |NSET1| sets (in sequence from the maximum set number) are used as the sets to be repeated.

Notes

Generates additional sets of coupled nodes (with the same labels) from existing sets. Node numbers between sets may be uniformly incremented.

Menu Paths

Main Menu>Preprocessor>Coupling / Ceqn>Gen w/Same DOF

CQC, SIGNIF, Label

Specifies the complete quadratic mode combination method.

SOLUTION: Spectrum Options
MP ME ST PR PRN $<><><><><><>$ PP $<>$ EME MFS

SIGNIF

Combine only those modes whose significance level exceeds the SIGNIF threshold. For single point, multipoint, or DDAM response (SPOPT,SPRS, MPRS or DDAM), the significance level of a mode is defined as the mode coefficient of the mode, divided by the maximum mode coefficient of all modes. Any mode
whose significance level is less than SIGNIF is considered insignificant and is not contributed to the mode combinations. The higher the SIGNIF threshold, the fewer the number of modes combined. SIGNIF defaults to 0.001 . If SIGNIF is specified as 0.0 , it is taken as 0.0 . (This mode combination method is not valid for SPOPT,PSD.)

Label

Label identifying the combined mode solution output.
DISP
Displacement solution (default). Displacements, stresses, forces, etc., are available.
VELO
Velocity solution. Velocities, "stress velocities," "force velocities," etc., are available.
ACEL
Acceleration solution. Accelerations, "stress accelerations," "force accelerations," etc., are available.

Notes

Damping is required for this mode combination method. The CQC command is also valid for PREP7.

Menu Paths

Main Menu>Preprocessor>Loads>Load Step Opts>Spectrum>Mode Combine
Main Menu $>$ Preprocessor>Loads $>$ Load Step Opts $>$ Spectrum $>$ MultiPt $>$ Mode Combine
Main Menu>Preprocessor>Loads>Load Step Opts>Spectrum>SinglePt>Mode Combine
Main Menu>Solution>Load Step Opts>Spectrum $>$ Mode Combine
Main Menu>Solution>Load Step Opts>Spectrum>MultiPt>Mode Combine
Main Menu>Solution>Load Step Opts>Spectrum>SinglePt>Mode Combine

*CREATE, Fname, Ext, --

Opens (creates) a macro file.

> APDL: Macro Files MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS

Argument Descriptions

Fname

File name and directory path (248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

Do not use a directory path if file is to be read with the macro Name option of the *USE command.

Ext

Filename extension (8 character maximum).
Ext should not be used if file is to be read with the macro Name option of the *USE command.

Unused field.

Notes

See the *USE command for a discussion of macros. All commands following the *CREATE command, up to the *END command, are written to the specified file without being executed. An existing file of the same name, if any, will be overwritten. Parameter values are not substituted for parameter names in the commands when the commands are written to the file. Use *CFWRITE to create a file if this is desired. The resulting macro may be executed with a *USE command (which also allows parameters to be passed into the macro) or a /INPUT command (which does not allow parameters to be passed in). Several macros may be stacked into a library file [*ULIB]. You cannot use *CREATE within a DO loop.

This command is valid in any processor.

Menu Paths

Utility Menu>Macro>Create Macro

CRPLIM, CRCR, Option

Specifies the creep criterion for automatic time stepping.

SOLUTION: Nonlinear Options
MP ME ST <> <> <> <> <> <> <> DY PP <> EME MFS

CRCR

Value of creep criteria for the creep limit ratio control.

Option

Type of creep analysis:
1 or ON
Implicit creep analysis.
0 or OFF
Explicit creep analysis.

Notes

The creep ratio control can be used at the same time for implicit creep and explicit creep analyses. For implicit creep (Option $=1$), the default value of $C R C R$ is zero (i.e., no creep limit control), and you are allowed to specify any value. For explicit creep (Opt ion $=0$), the default value of $C R C R$ is 0.1 . The maximum value allowed is 0.25 . This command is also valid in PREP7. The CUTCONTROL command can be used for the same purpose and is the preferred command, when SOLCONTROL is ON.

Menu Paths

Main Menu>Preprocessor>Loads>Load Step Opts>Nonlinear>Creep Criterion
Main Menu>Solution>Load Step Opts>Nonlinear>Creep Criterion

CS, KCN, KCS, NORIG, NXAX, NXYPL, PAR1, PAR2

Defines a local coordinate system by three node locations.

DATABASE: Coordinate System
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
KCN
Arbitrary reference number assigned to this coordinate system. Must be greater than 10. A coordinate system previously defined with this number will be redefined.

KCS
Coordinate system type:
0 or CART
Cartesian
1 or CYLIN
Cylindrical (circular or elliptical)
2 or SPHE
Spherical (or spheroidal)
3 or TORO
Toroidal

NORIG

Node defining the origin of this coordinate system. If $N O R I G=P$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI).

NXAX
Node defining the positive x-axis orientation of this coordinate system.

NXYPL

Node defining the $x-y$ plane (with NORIG and NXAX) in the first or second quadrant of this coordinate system.

PAR1

Used for elliptical, spheroidal, or toroidal systems. If $K C S=1$ or $2, P A R 1$ is the ratio of the ellipse Y -axis radius to X -axis radius (defaults to 1.0 (circle)). If $K C S=3, P A R 1$ is the major radius of the torus.

PAR2

Used for spheroidal systems. If $K C S=2, P A R 2=$ ratio of ellipse Z-axis radius to X -axis radius (defaults to 1.0 (circle)).

Notes

Defines and activates a local right-handed coordinate system by specifying three existing nodes: to locate the origin, to locate the positive x-axis, and to define the positive x - y plane. This local system becomes the active coordinate system. See the CLOCAL, CSKP, CSWPLA, and LOCAL commands for alternate definitions. Local coordinate systems may be displayed with the /PSYMB command.

This command is valid in any processor.

Menu Paths

Utility Menu>WorkPlane>Local Coordinate Systems>Create Local CS>By 3 Nodes

CSCIR, KCN, KTHET, KPHI

Locates the singularity for non-Cartesian local coordinate systems.

DATABASE:Coordinate System
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
KCN
Number of the local coordinate system in which singularity location is to be changed. Must be greater than 10.

KTHET

Theta singularity location for cylindrical, spherical, and toroidal systems:
0
Singularity at $\pm 180^{\circ}$.
1
Singularity at $0^{\circ}\left(360^{\circ}\right)$.
KPHI
Phi singularity location for toroidal systems:
0
Singularity in phi direction at $\pm 180^{\circ}$.
1
Singularity in phi direction at $0^{\circ}\left(360^{\circ}\right)$.

Command Default

Singularities at $\pm 180^{\circ}$.

Notes

Continuous closed surfaces (circles, cylinders, spheres, etc.) have a singularity (discontinuity) at $\theta= \pm 180^{\circ}$. For local cylindrical, spherical, and toroidal coordinate systems, this singularity location may be changed to $0^{\circ}\left(360^{\circ}\right)$.

An additional, similar singularity occurs in the toroidal coordinate system at $\Phi= \pm 180^{\circ}$ and can be moved with KPHI. Additional singularities occur in the spherical coordinate system at $\Phi= \pm 90^{\circ}$, but cannot be moved.

This command is valid in any processor.

Menu Paths

Utility Menu>WorkPlane>Local Coordinate Systems>Move Singularity

CSDELE, KCN1, KCN2, KCINC

Deletes local coordinate systems.

DATABASE: Coordinate System
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

KCN1, KCN2, KCINC

Delete coordinate systems from KCN1 (must be greater than 10) to KCN2 (defaults to KCN1) in steps of KCINC (defaults to 1). If KCN1 = ALL, KCN2 and KCINC are ignored and all coordinate systems are deleted.

Notes

This command is valid in any processor.

Menu Paths

Main Menu>General Postproc>Surface Operations>Create Surface>Sphere>At Node Utility Menu>WorkPlane>Local Coordinate Systems>Delete Local CS

CSKP, KCN, KCS, PORIG, PXAXS, PXYPL, PAR1, PAR2

Defines a local coordinate system by three keypoint locations.

DATABASE:Coordinate System
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
KCN
Arbitrary reference number assigned to this coordinate system. Must be greater than 10. A coordinate system previously defined with this number will be redefined.

KCS

Coordinate system type:
0 or CART
Cartesian
1 or CYLIN
Cylindrical (circular or elliptical)
2 or SPHE
Spherical (or spheroidal)
3 or TORO
Toroidal

PORIG

Keypoint defining the origin of this coordinate system. If $P O R I G=\mathrm{P}$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI).

PXAXS

Keypoint defining the positive x-axis orientation of this coordinate system.

PXYPL

Keypoint defining the $x-y$ plane (with PORIG and PXAXS) in the first or second quadrant of this coordinate system.

PAR1
Used for elliptical, spheroidal, or toroidal systems. If $K C S=1$ or $2, P A R 1$ is the ratio of the ellipse Y -axis radius to X -axis radius (defaults to 1.0 (circle)). If $K C S=3, ~ P A R 1$ is the major radius of the torus.

PAR2

Used for spheroidal systems. If $K C S=2, P A R 2=$ ratio of ellipse Z-axis radius to X -axis radius (defaults to 1.0 (circle)).

Notes

Defines and activates a local right-handed coordinate system by specifying three existing keypoints: to locate the origin, to locate the positive x-axis, and to define the positive x - y plane. This local system becomes the active coordinate system. See the CLOCAL, CS, CSWPLA, and LOCAL commands for alternate definitions. Local coordinate systems may be displayed with the /PSYMB command.

This command is valid in any processor.

Menu Paths

Utility Menu>WorkPlane>Local Coordinate Systems>Create Local CS>By 3 Keypoints

CSLIST, KCN1, KCN2, KCINC

Lists coordinate systems.

> DATABASE: Coordinate System
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

KCN1, KCN2, KCINC

List coordinate systems from KCN1 to KCN2 (defaults to KCN1) in steps of KCINC (defaults to 1). If KCN1 = ALL (default), KCN2 and KCINC are ignored and all coordinate systems are listed.

Notes

This command is valid in any processor.

Menu Paths

Utility Menu>List>Other>Local Coord Sys

CSWPLA, KCN, KCS, PAR1, PAR2

Defines a local coordinate system at the origin of the working plane.

DATABASE: Coordinate System
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
KCN
Arbitrary reference number assigned to this coordinate system. Must be greater than 10. A coordinate system previously defined with this number will be redefined.

KCS

Coordinate system type:
0 or CART
Cartesian
1 or CYLIN
Cylindrical (circular or elliptical)
2 or SPHE
Spherical (or spheroidal)
3 or TORO
Toroidal

PAR1

Used for elliptical, spheroidal, or toroidal systems. If $K C S=1$ or $2, P A R 1$ is the ratio of the ellipse Y-axis radius to X -axis radius (defaults to 1.0 (circle)). If $K C S=3, P A R 1$ is the major radius of the torus.

PAR2

Used for spheroidal systems. If $K C S=2, P A R 2=$ ratio of ellipse Z-axis radius to X -axis radius (defaults to 1.0 (circle)).

Notes

Defines and activates a local right-handed coordinate system centered at the origin of the working plane. The coordinate system's local x-y plane (for a Cartesian system) or R- θ plane (for a cylindrical or spherical system) corresponds to the working plane. This local system becomes the active coordinate system. See the CS, LOCAL, CLOCAL, and CSKP commands for alternate ways to define a local coordinate system. Local coordinate systems may be displayed with the /PSYMB command.

This command is valid in any processor.

Menu Paths

> Main Menu>General Postproc>Path Operations>Define Path>On Working Plane Main Menu>Preprocessor>Path Operations>Define Path>On Working Plane Utility Menu>WorkPlane>Local Coordinate Systems>Create Local CS>At WP Origin

CSYS, KCN

Activates a previously defined coordinate system.

DATABASE: Coordinate System
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
KCN
Specifies the active coordinate system, as follows:
0 (default)
Cartesian
1
Cylindrical with global Cartesian Z as the axis of rotation
2
Spherical
4 or WP
Working Plane
5
Cylindrical with global Cartesian Y as the axis of rotation
11 or greater
Any previously defined local coordinate system

Notes

The CSYS command activates a previously defined coordinate system for geometry input and generation.
The LOCAL, CLOCAL, CS, CSKP, and CSWPLA commands also activate coordinate systems as they are defined.

The active coordinate system for files created via the CDWRITE command is Cartesian (CSYS,0).
This command is valid in any processor.
CSYS, 4 (or CSYS,WP) activates working plane tracking, which updates the coordinate system to follow working plane changes. To deactivate working plane tracking, activate any other coordinate system (for example, CSYS,0 or CSYS,11).

CSYS, 5 is a cylindrical coordinate system with global Cartesian Y as the axis. The local x, y and z axes are radial, θ, and axial (respectively). The R -Theta plane is the global X -Z plane, as it is for an axisymmetric model. Thus, at $\theta=0.0$, CSYS, 5 has a specific orientation: the local x is in the global +X direction, local y is in the global $-Z$ direction, and local z (the cylindrical axis) is in the global $+Y$ direction.

Menu Paths

Main Menu>General Postproc>Surface Operations>Create Surface>Sphere>At Node Utility Menu>WorkPlane>Change Active CS to>Global Cartesian Utility Menu>WorkPlane>Change Active CS to>Global Cylindrical Utility Menu>WorkPlane>Change Active CS to>Global Spherical Utility Menu>WorkPlane>Change Active CS to>Specified Coord Sys Utility Menu>WorkPlane>Change Active CS to>Working Plane Utility Menu>WorkPlane>Offset WP to>Global Origin

/CTYPE, KEY, DOTD, DOTS, DSHP, TLEN

Specifies the type of contour display.

GRAPHICS:Style
MP ME ST PR PRN <> <> FL EM EH DY PP $<>$ EME MFS
KEY
Type of display:
0
Standard contour display.
1
Isosurface display.
2
Particle gradient display.
3
Gradient triad display.
DOTD
Maximum dot density for particle gradient display ($K E Y=2$). Density is expressed as dots per screen width (defaults to 30).

DOTS
Dot size for particle gradient display $(K E Y=2)$. Size is expressed as a fraction of the screen width (defaults to 0.0 (single dot width)).

DSHP
Spherical dot shape precision for particle gradient display ($K E Y=2$). (3-D options are supported only on 3-D devices):

0
Flat 2-D circular dot.
1
Flat-sided 3-D polyhedron.
n
3-D sphere with $n(>1)$ polygon divisions per 90° of radius.

TLEN

Maximum length of triads for gradient triad display $(K E Y=3)$. Value is expressed as a fraction of the screen width (defaults to 0.067).

Command Default

Standard contour display.

Notes

Use /CTYPE,STAT to display the current settings. Only the standard contour display [/CTYPE,0) and the isosurface contour display [/CTYPE,1] are supported by PowerGraphics [/GRAPHICS,POWER].

This command is valid in any processor.

Menu Paths

Utility Menu>PlotCtrls>Style>Contours>Contour Style

CURR2D

Calculates current flow in a 2-D conductor.

POST1:Magnetics Calculations
MP ME <> <> <> <> <> <> EM <> <> PP <> EME MFS

Notes

CURR2D invokes an ANSYS macro which calculates the total current flowing in a conducting body for a 2D planar or axisymmetric magnetic field analysis. The currents may be applied source currents or induced currents (eddy currents). The elements of the conducting region must be selected before this command is issued. The total current calculated by the macro is stored in the parameter TCURR. Also, the total current and total current density are stored on a per-element basis in the element table [ETABLE] with the labels TCURR and JT, respectively. Use the PLETAB and PRETAB commands to plot and list the element table items.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>General Postproc>Elec\&Mag Calc>Element Based>Current

CUTCONTROL, Lab, VALUE, Option

Controls time-step cutback during a nonlinear solution.

> SOLUTION: Analysis Options
> MP ME ST PR PRN <> <> <> EM EH <> PP <> EME MFS

Lab

Specifies the criteria for causing a cutback. Possible arguments are
PLSLIMIT
Maximum equivalent plastic strain allowed within a time-step (substep). If the calculated value exceeds the VALUE, the program performs a cutback (bisection). VALUE defaults to 0.15 (15\%).

CRPLIMIT

Maximum equivalent creep ratio allowed within a time step (substep). If the calculated value exceeds $V A L U E$, the program performs a cutback (bisection). The default depends on whether you are performing an implicit or explicit creep analysis (see Option argument below). The creep ratio control can be used at the same time for implicit creep and explicit creep analyses. For an implicit creep analysis, VALUE defaults to zero (i.e., no creep limit control), and you are allowed to enter any value. For an explicit creep analysis, VALUE defaults to $0.1(10 \%)$ and the maximum value allowed is 0.25 .

DSPLIMIT

Maximum incremental displacement within the solution field in a time step (substep). If the maximum calculated value exceeds VALUE, the program performs a cutback (bisection). VALUE defaults to 1.0 $\times 10^{7}$.

NPOINT

Number of points in a cycle for a second order dynamic equation, used to control automatic time stepping. If the number of solution points per cycle is less than $V A L U E$, the program performs a cutback in time step size. VALUE defaults to 13.

This option works well for linear problems. For nonlinear analyses, other factors such as contact status changes and solution convergence rate can overwrite NPOINT. See Automatic Time Stepping in the Theory Reference for the Mechanical APDL and Mechanical Applications for more information on automatic time stepping.

NOITERPREDICT

If VALUE is 0 (default), an internal auto time step scheme will predict the number of iterations for nonlinear convergence and perform a cutback earlier than the number of iterations specified by the NEQIT command. This is the recommended option. If VALUE is 1 , the solution will iterate (if nonconvergent) to NEQIT number of iterations before a cutback is invoked. It is sometimes useful for poorlyconvergent problems, but rarely needed in general.

Bisection is also controlled by contact status change, plasticity or creep strain limit, and other factors. If any of these factors occur, bisection will still take place, regardless of the NOITERPREDICT setting.

CUTBACKFACTOR

Changes the cutback value for bisection. Default is 0.5 . VALUE must be greater than 0.0 and less than 1.0. This option is active only if AUTOTS,ON is set.

VALUE

Numeric value for the specified cutback criterion. For Lab $=$ CRPLIMIT, VALUE is the creep criteria for the creep limit ratio control.

Option

Type of creep analysis. Option is valid for Lab = CRPLIMIT only.
1 or ON
Implicit creep analysis.
0 or OFF
Explicit creep analysis.

Notes

The default values given for this command assume SOLCONTROL,ON (the default). See the description of SOLCONTROL for a complete listing of the defaults set by SOLCONTROL,ON and SOLCONTROL,OFF.

A cutback is a method for automatically reducing the step size when either the solution error is too large or the solution encounters convergence difficulties during a nonlinear analysis. Should a convergence failure occur, the program reduces the time step interval to a fraction of its previous size and automatically continue the solution from the last successfully converged time step. If the reduced time step again fails to converge, the program again reduces the time step size and proceed with the solution. This process continues until convergence is achieved or the minimum specified time step value is reached.

The CRPLIM command is functionally equivalent to $L a b=$ CRPLIMIT.

Menu Paths

Main Menu>Preprocessor>Loads>Analysis Type>Sol'n Controls>Nonlinear
Main Menu>Preprocessor>Loads>Load Step Opts>Nonlinear>Cutback Control
Main Menu>Solution>Analysis Type>Sol'n Controls>Nonlinear
Main Menu>Solution>Load Step Opts>Nonlinear>Cutback Control
/CVAL, WN, V1, V2, V3, V4, V5, V6, V7, V8
Specifies nonuniform contour values on stress displays.
GRAPHICS:Labeling
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

WN

Window number (or ALL) to which command applies (defaults to 1).

v1, v2, v3, ..., v8

Up to 8 contour values may be specified (in ascending order). The 0.0 value (if any) must not be the last value specified. If no values are specified, all contour specifications are erased and contours are automatically calculated.

Command Default

Nine contour values uniformly spaced between the extreme values.

Notes

This command is similar to the /CONTOUR command. With /CVAL, however, you define the upper level of each contour band instead of having the contours uniformly distributed over the range. The minimum value (including a zero value for the first band) for a contour band cannot be specified. If you use both /CONTOUR and /CVAL, the last command issued takes precedence.

This command is valid in any processor.

Menu Paths

Utility Menu>PlotCtrls>Style>Contours>Non-uniform Contours

CVAR, IR, IA, IB, ITYPE, DATUM, Name

Computes covariance between two quantities.

$$
\begin{aligned}
& \text { POST2 6: Special Purpose } \\
& \text { MP ME ST }<><><><><><><>~<>\text { PP <> EME MFS }
\end{aligned}
$$

IR
Arbitrary reference number assigned to the resulting variable (2 to $N V$ [NUMVAR]). If this number is the same as for a previous variable, the previous variable will be overwritten with this result.

IA, IB

Reference numbers of the two variables to be operated on. If only one, leave IB blank.

ITYPE

Defines the type of response PSD to be calculated:
0,1
Displacement (default).
2
Velocity.
3
Acceleration.

DATUM

Defines the reference with respect to which covariance is to be calculated:
1
Absolute value.

2
Relative to base (default).

Name

Thirty-two character name for identifying the variable on listings and displays. Embedded blanks are compressed upon output.

Notes

This command computes the covariance value for the variables referenced by the reference numbers IA and $I B$. If $D A T U M=2$, the variable referenced by $I R$ will contain the individual modal contributions (i.e., the dynamic or relative values). If $\operatorname{DATUM}=1$, the variable referenced by $I R$ will contain the modal contributions followed by the contributions of pseudo-static and covariance between dynamic and pseudo-static responses. File.PSD must be available for the calculations to occur.

Menu Paths

Main Menu>TimeHist Postpro>Calc Covariance

/CWD, DIRPATH

Changes the current working directory.

SESSION: Run Controls
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

DIRPATH

The full path name of the new working directory.

Notes

After issuing the /CWD command, all new files opened with no default directory specified (via the FILE, /COPY, or RESUME commands, for example) default to the new DIRPATH directory.

If issuing the command interactively and the specified directory does not exist, no change of directory occurs and the command generates an error message. If the command executes via a batch run and the specified directory does not exist, the batch program terminates with an error.

Menu Paths

Utility Menu>File>Change Directory

/CYCEXPAND, wN, OPTION, Value1, Value2

Graphically expands displacements, stresses and strains of a cyclically symmetric model.

PREP 7:Special Purpose POST1:Special Purpose

MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS
wn
The window number to which the expansion applies. Valid values are 1 through 5 . The default value is 1. The window number applies only to the AMOUNT argument.

OPTION

One of the following options:
ON
Activates cyclic expansion using the previous settings (if any). If no previous settings exist, this option activates the default settings.

DEFAULT

Resets cyclic expansion to the default settings.

OFF

Deactivates cyclic expansion. This option is the default.

STATUS

Lists the current cyclic expansion settings.
AMOUNT
The number of repetitions or the total angle.

Value1

NREPEAT

Value2

The number of repetitions. The default is the total number of sectors in 360 degrees.
or

Value 1

ANGLE

Value2

The total angle in degrees. The default is 360 .

WHAT

A specified portion or subset of the model to expand:

Value 1

The component name of the elements to expand. The default is all selected components.

EDGE

Sector edge display key.
1
Suppresses display of edges between sectors even if the cyclic count varies between active windows.

Caution

Plots with fewer than the maximum number of repetitions may have missing element faces at the sector boundaries.

0 or OFF

Averages stresses or strains across sector boundaries. This value is the default (although the default reverts to 1 or ON if the cyclic count varies between active windows).

1 or ON

No averaging of stresses or strains occurs and sector boundaries are shown on the plot.

PHASEANG

The phase angle shift:

Value1

The phase angle shift in degrees. The valid range is 0 through 360 . The default is 0 . Typically, this value is the phase angle obtained via the CYCPHASE command.

Command Default

The default /CYCEXPAND command (issuing the command with no arguments) deactivates cyclic expansion (OPTION = OFF). The default window number (WN) is 1.

Notes

In preprocessing, the /CYCEXPAND command verifies a cyclically symmetric model by graphically expanding it partially or through the full 360 degrees.

For the postprocessing plot nodal solution (PLNSOL) operation, the command graphically expands displacements, stresses and strains of a cyclically symmetric model partially or though the full 360 degrees by combining the real (original nodes and elements) and imaginary (duplicate nodes and elements) parts of the solution.

For the print nodal solution (PRNSOL) operation, the command expands the printed output of displacements or stresses on a sector-by-sector basis.

Use of the /CYCEXPAND command does not change the database. The command does not modify the geometry, nodal displacements or element stresses.

The command affects element and result plots only. It has no effect on operations other than plot element solution (PLESOL), plot nodal solution (PLNSOL) and print nodal solution (PRNSOL). Operations other than PLESOL, PLNSOL, or PRNSOL work on the unprocessed real and imaginary parts of a cyclic symmetry solution

If you issue a /CYCEXPAND,,,OFF command, you cannot then expand the model by simply issuing another /CYCEXPAND command (for example, to specify an NREPEAT value for the number of repetitions). In such a case, you must specify /CYCEXPAND,,ON, which activates expansion using the previous settings (if any) or the default settings.

The command requires PowerGraphics. Turn PowerGraphics on (/GRAPHICS,POWER) if not already active. (By default, PowerGraphics is active during an interactive session, but not during a batch run.) Any setting which bypasses PowerGraphics (for example, /PBF) also bypasses cyclic expansion; in such cases, the /CYCEXPAND command displays unprocessed real and imaginary results.

The CYCPHASE command uses full model graphics (/GRAPHICS,FULL) to compute peak values. Because of this, there may be slight differences between max/min values obtained with CYCPHASE, and those obtained via /CYCEXPAND, which uses power graphics (/GRAPHICS,POWER).

The /CYCEXPAND command does not work with PGR files.
The /CYCEXPAND command is incompatible with the /ESHAPE, 1 or /ESHAPE,FAC command.
The /PBC (plot boundary conditions) command is deactivated when cyclic expansion is active (/CYCEXPAND,,ON). To view BCs on the basic sector, deactivate cyclic expansion (/CYCEXPAND,,OFF) and issue this command: /PBC,ALL,,1

In cases involving non-cyclically symmetric loading, all boundary conditions (BCs) will plot when /CYCEXPAND is active. When examining the plot, however, it is not possible to distinguish between BCs that exist on every sector and those that exist (via a table referencing SECTOR) only on some sectors or which vary in value. (Only the basic sector is plotted.)

For magnetic cyclic symmetry analyses, the /CYCEXPAND command produces contour plots but not vector plots.

To learn more about analyzing a cyclically symmetric structure, see Cyclic Symmetry Analysis in the Advanced Analysis Techniques Guide.

Menu Paths

Main Menu>General Postproc>Cyclic Analysis>Cyc Expansion
Main Menu>Preprocessor>Modeling>Cyclic Sector>Cyc Expansion

*CYCLE

Bypasses commands within a do-loop.

> APDL: Process Controls
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Notes

Bypasses all commands between this command and the *ENDDO command within a do-loop. The next loop (if applicable) is initiated. The cycle option may also be conditionally executed [Use the *IF]. The *CYCLE command must appear on the same file as the *DO command.

This command is valid in any processor.

Menu Paths

This command cannot be accessed from a menu.

CYCLIC, NSECTOR, ANGLE, KCN, Name, USRCOMP, USRNMAP

Specifies a cyclic symmetry analysis.

PREP 7: Special Purpose
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

NSECTOR

The number of sectors in the full 360 degrees, or one of the following options:

STATUS

Indicates the current cyclic status.

OFF

Resets model to normal (non-cyclic) status and removes the duplicate sector if it exists. This option also deletes automatically detected edge components (generated when $U S R C O M P=0$).

UNDOUBLE

Removes the duplicate sector if it exists. The duplicate sector is created during the solution (SOLVE) stage of a modal cyclic symmetry analysis.

Note

The duplicate sector is necessary for displaying cyclic symmetry analysis results during postprocessing (/POST1).

If you specify a value of STATUS, OFF or UNDOUBLE, the command ignores all remaining arguments.
ANGLE
The sector angle in degrees.

KCN

An arbitrary reference number assigned to the cyclic coordinate system. The default value of 0 specifies automatic detection.

Name

The root name of sector low- and high-edge components (line, area, or node components). The default root name (when $U S R C O M P=0$) is "CYCLIC". A root name that you specify can contain up to 11 characters.

The naming convention for each low- and high-edge component pair is either of the following:
Name_mxxl, Name_mxxh (potentially matched node patterns)
Name_uxxl, Name_uxxh (potentially unmatched node patterns)
The Name value is the default ("CYCLIC") or specified root name and $x x$ is the component pair ID number (sequential, starting at 01).

USRCOMP

The number of pairs of user-defined low- and high-edge components on the cyclic sector (if any). The default value of 0 specifies automatic detection of sector edges; however, the automatic setting is not
valid in all cases. (For more information, see the Notes section below.) If the value is greater than 0, no verification of user-defined components occurs.

USRNMAP

The name of a user-defined array specifying the matching node pairs between the sector low and high edges. Valid only when $U S R C O M P=0$. Skips the automatic detection of sector edges. Node pairs may be input in any order, but the low edge node must be the first entry in each pair.

```
*DIM,MYMAP,ARRAY,2,14 ! specifying 14 low-high edge node pairs
*set,mymap(1, 1), 107, 108 ! low node 107 <> high node 108
*set,mymap (1, 2), 147, 211 ! low node 147 <> high node 211
*set,mymap(1, 3), 110, 109 ! low node 110 <> high node 109
    ! etc for node pairs 4 through 14...
cyclic,12,,1,,,MYMAP ! use array MYMAP to generate cyclic CE's
```


Command Default

The default CYCLIC command (issuing the command with no arguments) detects the number of sectors ($N S E C T O R$), the sector angle (ANGLE), and the coordinate system (KCN) based upon the existing solid or finiteelement model. The command also detects sector low- and high-edge components in most cases and assigns the default root name "CYCLIC" to the components.

Notes

You can input your own value for NSECTOR, ANGLE or KCN; if you do so, the command verifies argument values before executing.

When USRCOMP $=0$ and USRNMAP = blank (default), the CYCLIC command automatically detects low- and high-edge components for models comprised of any combination of line, area, or volume elements. If a solid model exists, however, the command uses only the lines, areas, and/or volumes to determine the lowand high-edge components; the elements, if any, are ignored.

If you issue a CYCOPT,TOLER command to set a tolerance for edge-component pairing before issuing the CYCLIC command, the CYCLIC command uses the specified tolerance when performing automatic edgecomponent detection.

For 2-D models, autodetection does not consider the CSYS,5 or CSYS,6 coordinate system specification. Autodetection for 180 degree (two-sector) models is not possible unless a central hole exists.

The CYCLIC command sets values and keys so that, if possible, the area-mesh (AMESH) or volume-mesh (VMESH) command meshes the sector with matching node and element face patterns on the low and high edges. (The command has no effect on any other element-creation command.)

Issue the CYCLIC command prior to the meshing command to, if possible, produce a mesh with identical node and element patterns on the low and high sector edges. Only the AMESH or VMESH commands can perform automated matching. (Other meshing operation commands such as VSWEEP cannot.) If you employ a meshing operation other than AMESH or VMESH, you should ensure that node and element face patterns match, if desired. The CYCLIC command output indicates whether each edge-component pair has or can produce a matching node pair.

A cyclic solution (via the SOLVE command) allows dissimilar mesh patterns on the extreme boundaries of a cyclically symmetric model. The allowance for dissimilar patterns is useful when you have only finite-element meshes for your model but not the geometry data necessary to remesh it to obtain identical node patterns. In such cases, it is possible to obtain solution results, although perhaps at the expense of accuracy. A warning message appears because results may be degraded near the sector edges.

The constraint equations (CEs) that tie together the low and high edges of your model are generated at the solution stage of the analysis from the low- and high-edge components (and nowhere else). You should verify that automatically detected components are in the correct locations and that you can account for all components; to do so, you can list (CMLIST) or plot (CMPLOT) the components.

If you issue the CYCLIC command after meshing and have defined element types with rotational degrees of freedom (DOFs), ANSYS generates cyclic CEs for rotational DOFs that may not exist on the sector boundaries. Issue the CYCOPT,DOF command to prevent unused rotational terms from being generated.

Modal cyclic symmetry analysis is supported by the following eigensolvers:

- Block Lanczos (MODOPT, LANB)
- PCG Lanczos (MODOPT, LANPCG)
- Super Node (MODOPT, SNODE)

To learn more about analyzing a cyclically symmetric structure, see Cyclic Symmetry Analysis in the Advanced Analysis Techniques Guide.

Menu Paths

Main Menu>Preprocessor>Modeling>Cyclic Sector>Cyclic Model>Auto Defined
Main Menu>Preprocessor>Modeling>Cyclic Sector>Cyclic Model>Status
Main Menu>Preprocessor>Modeling>Cyclic Sector>Cyclic Model>User Defined
Main Menu>Preprocessor>Modeling>Cyclic Sector>Del Dupl Sector
Main Menu>Preprocessor>Modeling>Cyclic Sector>Reset (OFF)

CYCOPT, оPтION, Value1, Value2, Value3, Value4, Value5, Value6, Value7
Specifies solution options for a cyclic symmetry analysis.
PREP 7:Special Purpose
SOLUTION:Dynamic Options
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

OPTION

One of the following options:

BCMULT

Controls whether cyclic sector array parameter names are reused or created new for multiple entities.

Value1

To reuse array parameter names, specify YES, ON, or 1.
To create new array parameter names (the default behavior), specify NO, OFF, or 0.

COMBINE

For linear static cyclic symmetry analysis with non-cyclically symmetric loading only, expands and combines all harmonic index solutions and writes them to the results file during the solution phase of the analysis.

Value1

To enable combining of harmonic index solutions, specify YES, ON, or 1.

To disable combining (the default behavior), specify NO, OFF, or 0 .

DEFAULT

Sets the default cyclic solution settings.

DOF

The degrees of freedom to couple from the nodes on the low sector boundary to nodes on the high boundary:

Value1

The component pair ID number.

Value2, Value3, Value4, ..., Value 7

The constraint-equation/-coupling degree of freedom (DOF) for this pair. Repeat the command to add other DOFs. The default is constraint-equation/-coupling all applicable DOFs.

FACETOL

Tolerance for inclusion of surface nodes into your basic sector. Autodetect defaults to 15°, accommodating most sections. Specify a new Valuel only when extreme cut angles or complex model geometry cause surface nodes to be excluded. See Notes (below) for more information.

ANSYS recommends that successful auto-detection depends more on the value of ANGTOL than the value of FACETOL. Please refer to CYCOPT Auto Detection Tolerance Adjustments for Difficult Cases for more information about auto-detection and the CYCOPT command.

Value1

The face tolerance applies only to auto detection from node/element models (already meshed and no solid model), and it defaults to 15°.

HINDEX

The harmonic index solution ranges for modal or buckling cyclic symmetry analyses. The SOLVE command initiates a cyclic symmetry solution sequence at the harmonic indices specified. (By default, the SOLVE command solves for all available harmonic indices.) Static and harmonic cyclic symmetry solutions always use all harmonic indices required for the applied loads.

EVEN / ODD

For low-frequency electromagnetic analysis only, EVEN specifies a symmetric solution and ODD specifies an antisymmetric solution.

The value you specify is based on the harmonic index: EVEN (default) indicates harmonic index $=0$, and ODD indicates harmonic index $=N / 2$ (where N is an integer representing the number of sectors in 360°). A value of ODD applies only when N is an even number.

The CYCOPT command with this HINDEX option is cumulative. To remove an option (for example, EVEN), issue this command: CYCOPT,HINDEX,EVEN,,,-1

ALL

Solve all applicable harmonic indices.

Note

Value2 must be blank.

Value1,Value2, Value3

Solve harmonic indices in range Value1 through Value2 in steps of Value3. Repeat the command to add other ranges. The default solves all applicable harmonic indices.

Value4

The only valid value is -1 . If specified, it removes Value1 through Value2 in steps of Value 3 from the set to solve.

LDSECT

Restricts subsequently defined force loads and surface loads to a specified sector. The restriction remains in effect until you change or reset it.

Value1

The sector number. A value other than 0 (default) is valid for a cyclic symmetry analysis with non-cyclically symmetric loading only. A value of 0 (or ALL) resets the default behavior for cyclic loading (where the loads are identical on all sectors).

MOVE

Flag specifying whether ANSYS should move high- or low-edge component nodes paired within the specified tolerance (TOLER) to create precisely matching pairs.

Value1

The flag value, as follows:
0 -- Do not move edge component nodes. This value is the default.
1 or HIGH -- Move the high-edge component nodes to precisely match the low-edge component nodes.
-1 or LOW -- Move the low-edge component nodes to precisely match the high-edge component nodes.

STATUS

Lists the solution option settings active for the cyclic model.

TOLER

The tolerance used to determine whether a node on the low edge is paired with a node on the high edge.

Value1

The tolerance value, as follows:
>0-- The absolute distance tolerance for automatic sector-boundary detection and low-/highedge component node pairing.
<0-- The relative tolerance for automatic sector-boundary detection and low-/high-edge component node pairing. In this case, the tolerance is Value1 * Length, where Length is the length of the diagonal of an imaginary box enclosing the model.

The default tolerance is $-1.0 \mathrm{E}-4$ (also represented by Value1 $=0$).

Value2

ANGTOL $=$ Maximum allowable angle tolerance. The default value is 0.01°
The valid range for $A N G T O L$ is model dependent.
If you input both the number of sectors and a sector angle, the angle must match 360 /(number of sectors) within ANGTOL.

If you input only a sector angle, it must divide evenly into 360° within $A N G T O L$.

If you input a sector angle, the final cyclic sector must span that angle within ANGTOL.
For auto detected sector angle, the final cyclic sector must span $360 /$ (number of sectors) within ANGTOL, everywhere along the LOW/HIGH boundaries.

If $A N G T O L$ is too small, your CAD or FEA model may not be accurate enough to allow auto detection or verification.

If $A N G T O L$ is too large, you may get an unexpected or incorrect boundary definition, or in other cases fail to detect the boundaries.

For some difficult cases from FEA models (not solid models), you may need to change the value of FACETOL to achieve auto detection. Please refer to CYCOPT Auto Detection Tolerance Adjustments for Difficult Cases for more information about auto-detection and the CYCOPT command.

USRROT

Flag specifying whether ANSYS should override automatic nodal rotations to edge components and allow you to apply nodal rotations manually.

Value1

The flag value, as follows:
0 (OFF or NO) -- Allow automatic node rotation. This behavior is the default.
1 (ON or YES) -- Suppress automatic node rotation. If you select this option, you must apply appropriate nodal rotations to all edge component nodes; otherwise, your analysis will yield incorrect solution results.

LOW -- Suppresses automatic rotation of low-edge component nodes only, allowing you to apply them manually. (Automatic rotation of high-edge component nodes occurs to produce the matching edge nodes required for a valid cyclic solution.)

HIGH -- Suppresses automatic rotation of high-edge component nodes only, allowing you to apply them manually. (Automatic rotation of low-edge component nodes occurs to produce the matching edge nodes required for a valid cyclic solution.)

VTSOL

Employ Variational Technology to accelerate your cyclic symmetry analysis.
value1
To employ Variational Technology (VT), specify YES, ON, or 1.
To process without VT (the default behavior), specify NO, OFF, or 0 .

Command Default

No defaults are available for the CYCOPT command. You must specify an argument (OPTION) when issuing the command. Other values which may be necessary depend upon which argument you specify.

Notes

ANSYS solves a cyclically symmetric model (set up via the CYCLIC command during preprocessing) at the harmonic indices specified via the CYCOPT command.

The CYCOPT,COMBINE option is an alternative to the /CYCEXPAND command and is especially useful for testing purposes. However, ANSYS recommends specifying COMBINE only when the number of sectors is relatively small. (The option expands nodes and elements into the full 360° and can slow postprocessing significantly.

If you issue a CYCOPT,TOLER command to set a tolerance for edge-component pairing before issuing the CYCLIC command, the CYCLIC command uses the specified tolerance when performing automatic edgecomponent detection.

In cases involving non-cyclically symmetric loading (that is, when LDSECT > 0), the underlying command operations create or modify the required SECTOR tabular boundary condition (BC) data to apply on the appropriate sector. Therefore, it is not necessary to manipulate tables for situations where the applied $B C$ is not a function of other tabular BC variables such as TIME, X, Y, Z, and so on.

To delete a previously applied load on a specified sector, issue an FDELE command.
Because edge nodes are rotated into the cyclic coordinate system during solution, any applied displacements or forces on sector edges will be in the cyclic coordinate system.

The CYCOPT command is valid in the preprocessing and solution stages of an analysis.
To learn more about analyzing a cyclically symmetric structure, see Cyclic Symmetry Analysis in the Advanced Analysis Techniques Guide.

Distributed ANSYS Restriction The COMBINE option is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>Modeling>Cyclic Sector>Cyclic Options Main Menu>Solution>Solve>Cyclic Options

CYCPHASE, TYPE, OPTION

Provides tools for determining minimum and maximum possible result values from frequency couplets produced in a modal cyclic symmetry analysis.

POST1:Special Purpose
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

TYPE

The type of operation requested:
DISP
Calculate the maximum and minimum possible displacement at each node in the original sector model. Store the values and the phase angle at which they occurred.

STRESS

Calculate the maximum and minimum possible stresses at each node in the original sector model. Store the values and the phase angle at which they occurred.

STRAIN

Calculate the maximum and minimum possible strains at each node in the original sector model. Store the values and the phase angle at which they occurred.

ALL

Calculate the maximum and minimum possible displacement, stress and strain at each node in the original sector model. Store the values and the phase angle at which they occurred.

GET

Places the value of a MAX or MIN item into the _CYCVALUE parameter, the node for that value in the _CYCNODE parameter, and the phase angle for the value in the _CYCPHASE parameter.

PUT

Put resulting sweep values for printing (via the PRNSOL command) or plotting (via the PLNSOL command).

LIST
List the current minimum/maximum displacement, stress and strain nodal values.

STAT

Summarize the results of the last phase sweep.

CLEAR

Clear phase-sweep information from the database.

OPTION

If TYPE = DISP, STRAIN, STRESS or ALL, controls the sweep angle increment to use in the search:

Angle

The sweep angle increment in degrees, greater than 0.1 and less than 10 . The default is 1 .
If TYPE = PUT, controls which values are placed onto the model:
MAX
Put all existing nodal maximum values onto the model. This option is the default.

MIN

Put all existing nodal minimum values onto the model.
If TYPE $=$ GET, controls the values placed into cyclic parameters:

Item

Specifies the type of values on which to operate:
U -- Displacement
S -- Stress
EPEL -- Strain
Comp
Specifies the specific component of displacement, stress or strain for which to get information:
$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$-- Basic components
XY,YZ,XZ -- Shear components
1,2,3 -- Principal values
EQV -- Equivalent value
SUM -- USUM
M×Mn
Specifies whether the requested value information is for the maximum or minimum value:
MAX -- Maximum value.
MIN -- Minimum value.

Command Default

No defaults are available for the CYCPHASE command. You must specify an argument (TYPE) when issuing the command. Other values which may be necessary (OPTION) depend upon which TYPE argument you specify.

Notes

When you expand the results of a modal cyclic symmetry analysis (via the /CYCEXPAND or EXPAND command), ANSYS combines the real and imaginary results for a given nodal diameter, assuming no phase shift between them; however, the modal response can occur at any phase shift.

CYCPHASE response results are valid only for the first cyclic sector. To obtain the response at any part of the expanded model, ANSYS recommends using cyclic symmetry results expansion at the phase angle obtained via CYCPHASE.

The phase angles returned by CYCPHASE contain the minimum and maximum values for USUM, SEQV and other scalar principal stress and strain quantities; however, they do not always return the true minimum and maximum values for directional quantities like UX or SX unless the values fall in the first sector.

CYCPHASE does not consider midside node values when evaluating maximum and minimum values, which may affect DISPLAY quantities but no others. (Typically, ANSYS ignores midside node stresses and strains during postprocessing.)

Issuing CYCPHASE,PUT clears the result values for midside nodes on high order elements; therefore, this option sets element faceting (/EFACET) to 1. The command reports that midside nodal values are set to zero and indicates that element faceting is set to 1 .

If the sweep values are available after issuing a CYCPHASE,PUT command, the PRNSOL or PLNSOL command will print or plot (respectively) the sweep values of structure displacement $U x, U y, U z$, component stress/strain $X, Y, Z, X Y, Y Z, Z X$, principal stress/strain 1, 2, 3 and equivalent stress/strain EQV. The vector sum of displacement (USUM) and stress/strain intensity (SINT) are not valid phase-sweep results.

You can specify any coordinate system via the RSYS command for displaying or printing CYCPHASE results. However, after CYCPHASE results have been extracted, you cannot then transform them via the RSYS command. If you try to do so, ANSYS issues a warning message.

The CYCPHASE command is valid in /POST1 and for cyclically symmetric models only.
To learn more about analyzing a cyclically symmetric structure, see Cyclic Symmetry Analysis in the Advanced Analysis Techniques Guide.

Menu Paths

Main Menu>General Postproc>Cyclic Analysis>Cyclic Phase>Clear
Main Menu>General Postproc>Cyclic Analysis>Cyclic Phase>Get
Main Menu>General Postproc>Cyclic Analysis>Cyclic Phase>List
Main Menu>General Postproc>Cyclic Analysis>Cyclic Phase>Phase Sweep
Main Menu>General Postproc>Cyclic Analysis>Cyclic Phase>Put Phase Results
Main Menu>General Postproc>Cyclic Analysis>Cyclic Phase>Status

CYL4, XCENTER, YCENTER, RAD1, THETA1, RAD2, THETA2, DEPTH

Creates a circular area or cylindrical volume anywhere on the working plane.

PREP 7:Primitives
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

XCENTER, YCENTER

Working plane X and Y coordinates of the center of the circle or cylinder.

RAD1, RAD2

Inner and outer radii (either order) of the circle or cylinder. A value of zero or blank for either RAD1 or $R A D 2$, or the same value for both $R A D 1$ and $R A D 2$, defines a solid circle or cylinder.

THETA1, THETA2

Starting and ending angles (either order) of the circle or faces of the cylinder. Used for creating a partial annulus or partial cylinder. The sector begins at the algebraically smaller angle, extends in a positive angular direction, and ends at the larger angle. The starting angle defaults to 0° and the ending angle defaults to 360°. See the Modeling and Meshing Guide for an illustration.

DEPTH

The perpendicular distance (either positive or negative based on the working plane Z direction) from the working plane representing the depth of the cylinder. If $D E P T H=0$ (default), a circular area is created on the working plane.

Notes

Defines a circular area anywhere on the working plane or a cylindrical volume with one face anywhere on the working plane. For a solid cylinder of 360°, the top and bottom faces will be circular (each area defined with four lines) and they will be connected with two surface areas (each spanning 180°). See the CYL5, PCIRC, and CYLIND commands for alternate ways to create circles and cylinders.

When working with a model imported from an IGES file (DEFAULT import option), you must provide a value for $D E P T H$ or the command will be ignored.

Menu Paths

Main Menu $>$ Preprocessor $>$ Modeling $>$ Create $>$ Areas $>$ Circle $>$ Annulus
Main Menu>Preprocessor>Modeling>Create>Areas>Circle>Partial Annulus
Main Menu>Preprocessor>Modeling>Create>Areas>Circle>Solid Circle
Main Menu>Preprocessor>Modeling>Create $>$ Primitives $>$ Solid Cylindr
Main Menu>Preprocessor>Modeling>Create>Volumes>Cylinder>Hollow Cylinder
Main Menu>Preprocessor>Modeling>Create>Volumes>Cylinder>Partial Cylinder
Main Menu $>$ Preprocessor>Modeling>Create>Volumes>Cylinder>Solid Cylinder
Main Menu>Preprocessor>Trefftz Domain $>$ TZ Geometry>Create>Volume>Cylinder>Solid Cylinder

Creates a circular area or cylindrical volume by end points.

PREP 7: Primitives
MP ME ST PR PRN <> <> FL EM EH DY PP $<>$ EME MFS

XEDGE1, YEDGE1

Working plane X and Y coordinates of one end of the circle or cylinder face.

XEDGE2, YEDGE2

Working plane X and Y coordinates of the other end of the circle or cylinder face.

DEPTH

The perpendicular distance (either positive or negative based on the working plane Z direction) from the working plane representing the depth of the cylinder. If $D E P T H=0$ (default), a circular area is created on the working plane.

Notes

Defines a circular area anywhere on the working plane or a cylindrical volume with one face anywhere on the working plane by specifying diameter end points. For a solid cylinder of 360°, the top and bottom faces will be circular (each area defined with four lines) and they will be connected with two surface areas (each spanning $18 \mathbf{0}^{\circ}$). See the CYL4, PCIRC, and CYLIND commands for alternate ways to create circles and cylinders.

Menu Paths

Main Menu $>$ Preprocessor $>$ Modeling $>$ Create $>$ Areas $>$ Circle $>$ By End Points
Main Menu>Preprocessor>Modeling>Create>Volumes>Cylinder>By End Pts \& Z
Main Menu>Preprocessor>Trefftz Domain>TZ Geometry>Create>Volume>Cylinder>By End Pts \& Z

CYLIND, RAD1, RAD2, Z1, Z2, THETA1, THETA2
Creates a cylindrical volume centered about the working plane origin.
PREP 7:Primitives
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

RAD1, RAD2

Inner and outer radii (either order) of the cylinder. A value of zero or blank for either RAD1 or RAD2, or the same value for both RAD1 and RAD2, defines a solid cylinder.

z1, $z 2$

Working plane Z coordinates of the cylinder. If either $Z 1$ or $Z 2$ is zero, one of the faces of the cylinder will be coplanar with the working plane.

THETA1, THETA2

Starting and ending angles (either order) of the cylinder. Used for creating a cylindrical sector. The sector begins at the algebraically smaller angle, extends in a positive angular direction, and ends at the larger angle. The starting angle defaults to 0.0° and the ending angle defaults to 360.0°. See the Modeling and Meshing Guide for an illustration.

Notes

Defines a cylindrical volume centered about the working plane origin. The top and bottom faces are parallel to the working plane but neither face need be coplanar with (i.e., "on") the working plane. The cylinder must have a spatial volume greater than zero. (i.e., this volume primitive command cannot be used to create a degenerate volume as a means of creating an area.) For a solid cylinder of 360°, the top and bottom faces will be circular (each area defined with four lines), and they will be connected with two areas (each spanning 180°.) See the CYL4 and CYL5 commands for alternate ways to create cylinders.

Menu Paths

Main Menu>Preprocessor>Modeling>Create>Volumes>Cylinder>By Dimensions Main Menu>Preprocessor>Trefftz Domain>TZ Geometry>Create>Volume>Cylinder>By Dimensions

CZDEL, grp1, grp2, grp3

Edits or clears cohesive zone sections.

```
PREP 7: Meshing
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS
```

```
grp1
```

grp1
Initial group of cohesive zone elements to be deleted.

```
```

grp2

```
grp2
Final group of cohesive zone elements to be deleted.
grp3
Increment for selected groups.
```


Notes

The CZDEL command edits or deletes the interface elements and nodes, along with the associated changes made to the underlying plane or solid elements created during a previous CZMESH operation.

Each CZMESH operation will create groups of elements and nodes with component names in the format CZME_EL01 (elements) and CZME_ND01 (nodes). The final number of this format will be the number used for grp1 and grp2. If grp1 = ALL, all nodes and elements created by the CZMESH command will be deleted. After using CZDEL, all the user-defined components will be unselected.

The CZDEL command is valid for structural analyses only.

Menu Paths

This command cannot be accessed from a menu.

CZMESH, ecomps1, ecomps2, KCN, KDIR, VALUE, CZTOL

Create and mesh an interface area composed of cohesive zone elements.

PREP 7: Meshing
MP ME ST $<><><><><><><><>$ PP $<>$ EME MFS

ecomps 1

Component name or number for the group of plane or solid structural elements adjacent to the interface being meshed.

ecomps2

Component name or number for the opposing (from ecomps1) group of plane or solid structural elements adjacent to the interface being meshed.

KCN

Coordinate system number for the separation surface and normal direction. (if ecomps1 and ecomps2 not specified)

KDIR

Direction (x, y, or z) normal to separation surface in the $K C N$ coordinate system (if ecomps 1 and ecomps2 not specified).

VALUE

Coordinate value along the $K D I R$ axis at which to locate the interface (if ecomps1 and ecomps2 not specified).

CZTOL

Optional absolute tolerance about VALUE (if ecomps 1 and ecomps2 not specified). Allows nodes occurring slightly above or below the separation to be grouped properly. The following expression represents the default value:
$\frac{\sqrt{\Delta X^{2}+\Delta Y^{2}+\Delta Z^{2}}}{1000}$

Where $\Delta \mathrm{X}, \Delta \mathrm{Y}$, and $\Delta \mathrm{Z}$ are the dimensions of the model based on nodal locations (that is, $\Delta \mathrm{X}=\mathrm{X}_{\text {max }}$ - Xmin).

Notes

CZMESH is used on a mesh with shared nodes at the interface.
If ecomps1 and ecomps2 are specified, the CZMESH command creates/meshes interface elements (INTER202, INTER203, INTER204, INTER205) along the boundary between the two components or groups of elements.

The elements in each of the components or groups of elements will share nodes with each other and also with the interface elements. This one-element thick boundary of interface elements will split the body between the two components or groups of elements.

Subsequent separation (delamination and failure) of the interface zone will result in an increasing displacement between the nodes (within the interface element) along the cohesive zone elements. Unless otherwise specified, the CZMESH command analyzes the configuration and geometry of the adjacent structural elements and provides the appropriate interface element.

The CZMESH operation copies any nodal temperatures you have defined on the split surface of the original mesh from the original nodes to the newly created coincident duplicate nodes. However, displacements, forces, and other boundary conditions are not copied.

The CZMESH command is valid for structural analyses only.

Menu Paths

This command cannot be accessed from a menu.

D Commands

D, NODE, Lab, VALUE, VALUE2, NEND, NINC, Lab2, Lab3, Lab4, Lab5, Lab6

Defines degree-of-freedom constraints at nodes.

> SOLUTION: FE Constraints
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

NODE

Node at which constraint is to be specified. If ALL, NEND and NINC are ignored and constraints are applied to all selected nodes (NSEL). If $N O D E=$ P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NODE.

Lab

Valid degree-of-freedom label. If ALL, use all appropriate labels.
Structural labels: UX, UY, or UZ (displacements); ROTX, ROTY, or ROTZ (rotations); WARP (warping). Thermal labels: TEMP, TBOT, TE2, TE3, ...,TTOP (temperature).
FLOTRAN fluid labels: PRES (pressure); VX, VY, or VZ (velocities); ENKE or ENDS (turbulent kinetic energy or turbulent kinetic energy dissipation rate); SP01 through SP06 (multiple species mass fractions) or their user-defined names (MSSPEC); UX, UY, or UZ (Arbitrary Lagrangian-Eulerian formulation mesh displacements).
Electric labels: VOLT (voltage); EMF (electromotive force).
Magnetic labels: MAG (scalar magnetic potential); AX, AY, or AZ (vector magnetic potentials).
For structural static and transient analyses, translational and rotational velocities are also valid loads. Use these labels: VELX, VELY, VELZ (translational velocities); OMGX, OMGY, OMGZ (rotational velocities).

For structural analyses, HDSP (hydrostatic pressure) is also valid. However, HDSP is not included when Lab = ALL.

For structural transient analyses, the following acceleration loads are also valid: ACCX, ACCY, ACCZ (translational accelerations); DMGX, DMGY, DMGZ (rotational accelerations). The velocity and acceleration loads are not included when Lab = ALL.

If the node is connected to an ELBOW290 element, the following pipe cross-section degree-of-freedom labels are also valid: SE, SO, SW, SRA, and SRT. (For details, see the ELBOW290 documentation.) The degrees of freedom are not included when Lab = ALL. To constrain all cross-section degrees of freedom, specify $L a b=$ SECT.

Value

Degree-of-freedom value or table name reference for tabular boundary conditions. To specify a table, enclose the table name in percent (\%) signs (for example, D,NODE,TEMP,\%tabname\%). Use the *DIM command to define a table.

If Value = SUPPORT, you can specify pseudo-constraints when using residual vectors in a modal analysis (RESVEC,ON) or CMS analysis (CMSOPT,RFFB).

If the enforced motion is active in the modal analysis (MODCONT,,on), Value is the base identification number. It should be an integer larger than 1 and less than 10000.

VALUE2

Second degree-of-freedom value (if any). If the analysis type and the degree of freedom allow a complex input, Value (above) is the real component and VALUE2 is the imaginary component.

NEND, NINC

Specifies the same values of constraint at the range of nodes from NODE to NEND (defaults to NODE), in steps of NINC (defaults to 1).

Lab2, Lab3, Lab4, Lab5, Lab6

Additional degree-of-freedom labels. The same values are applied to the nodes for these labels.

Notes

The available degrees of freedom per node are listed under "Degrees of Freedom" in the input table for each element type in the Element Reference. Degrees of freedom are defined in the nodal coordinate system. The positive directions of structural translations and rotations are along and about the positive nodal axes directions. Structural rotations should be input in radians. The node and the degree-of-freedom label must be selected (NSEL, DOFSEL).

If $L a b=$ ENKE and Value $=-1$, a FLOTRAN flag is set to indicate a moving wall.
If $L a b=$ ENDS and Value $=-1$, FLOTRAN generalized symmetry conditions are applied. Velocity components are set tangential to the symmetry surface if the ALE formulation is not activated. They are set equal to the mesh velocity if the ALE formulation is activated.

In a structural analysis, you can apply only one displacement, velocity, or acceleration load at any degree of freedom. If multiple loads are specified, the last applied load overrides the previous ones. For example, the following commands apply loads to node 100:

D,100,UX,Value
D,100,VELX,Value
In this case, the velocity load (VELX) applied in the last command will override the displacement load (UX).
For elements HF119 and HF120, used in high-frequency electromagnetic analysis, the AX degree of freedom is not an x-component of a vector potential, but rather a tangential component of E (the electric field) on the element edges and faces. To specify an Electric Wall condition, set AX to zero. For more information, see the High-Frequency Electromagnetic Analysis Guide.

For elements used in static and low frequency electromagnetic analysis (SOLID117, SOLID236 and SOLID237), the AZ degree of freedom is not a z-component of a vector potential, but rather the flux contribution on the element edge. To specify a flux-parallel condition, set $A Z=0$. For more information, see 3-D Magnetostatics and Fundamentals of Edge-based Analysis in the Low-Frequency Electromagnetic Analysis Guide.

In an explicit dynamic analysis, the D command can only be used to fix nodes in the model. The degree-offreedom value must be zero; no other values are valid. Use the EDLOAD command to apply a nonzero displacement in an explicit dynamic analysis.

For ELBOW290 cross-section degrees of freedom ($L a b=$ SE, SO, SW, SRA, SRT, or SECT), the \mathbf{D} command can only specify fixed constraints. The degree-of-freedom value must be zero; no other values are valid.

For hydrostatic fluid elements (HSFLD241 and HSFLD242), the HDSP degree-of-freedom constraint at the pressure node prescribes the pressure value for all the fluid elements sharing the pressure node.

Tabular boundary conditions (VALUE $=\%$ tabname\%) are available only for the following degree-of-freedom labels: Electric (VOLT), FLOTRAN (UX, UY, UZ, PRES, VX, VY, VZ, ENKE, ENDS, TEMP, SP01, SP02, SP03, SP04, SP05, and SP06); structural (UX, UY, UZ, ROTX, ROTY, ROTZ, and velocity and acceleration loads VELX, VELY, VELZ, OMGX, OMGY, OMGZ, ACCX, ACCY, ACCZ, DMGX, DMGY, DMGZ), and temperature (TEMP, TBOT, TE2, TE3, ...,TTOP). All labels are valid only in static (ANTYPE,STATIC) and full transient (ANTYPE,TRANS) analyses.
\%_FIX\% is an ANSYS reserved table name. When VALUE is set to \%_FIX\%, ANSYS will prescribe the degree of freedom to the "current" displacement value. Alternatively, functions UX(), UY(), etc. may be used (see *GET for a complete list of available functions). However, note that these functions are not available when multiframe restart features are invoked. In most cases, \%_FIX\% usage is efficient and recommended for all structural degrees of freedom.

When Value = SUPPORT, specify only the minimum number of displacement constraints necessary to prevent rigid body motion: three constraints (or fewer, depending on the element type) for 2-D models and six (or fewer) for 3-D models.

If constraints and initial conditions (IC) are applied at the same node, the constraint specification overrides. This combination is useful when a constraint degree-of-freedom value needs to start with a nonzero value at time $=0.0$. For example, if the constraint degree-of-freedom value is prescribed to be a cosine function, then specifying an initial condition for the same node and degree of freedom ensures that the initial value for the constraint degree of freedom at time $=0.0$ is same as the cosine function evaluated at time $=0.0$. If initial conditions are not specified, the constraint degree-of-freedom value ramps from zero in the first substep of the first loadstep.

If more than one rotational degrees of freedom are constrained with non-zero rotations (ROTX, ROTY, ROTZ), rotational velocities (OMGX, OMGY, OMGZ), or rotational accelerations (DMGX, DMGY, DMGZ), then the rotation of the constrained node from its initial configuration to its final configuration depends on the combination and the sequence in which the constraints are applied. See Rotations in a Large-Deflection Analysis in Structural Analysis Guide.

This command is also valid in PREP7.

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Boundary>PerfEC>On Nodes Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Boundary>TimeInt>J-Normal>On Nodes
Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Boundary>TimeInt>On Nodes Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Boundary>Voltage>J-Normal>On Nodes
Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Boundary>Voltage>On Nodes Main Menu>Preprocessor>Loads>Define Loads>Apply>Magnetic>Boundary>EdgeMVP>Flux Par'l>On Nodes
Main Menu>Preprocessor>Loads>Define Loads>Apply>Magnetic>Boundary>ScalarPot>Flux Normal>On Nodes
Main Menu>Preprocessor>Loads>Define Loads>Apply>Magnetic>Boundary>ScalarPot>On Nodes
Main Menu>Preprocessor>Loads>Define Loads>Apply>Magnetic>Boundary>VectorPot>Flux Par'l>On Nodes
Main Menu>Preprocessor>Loads>Define Loads>Apply>Magnetic>Boundary>VectorPot>On Nodes

Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Displacement>On Node Components
Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Displacement>On Nodes
Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Spectrum>BasePSD>On Nodes Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Spectrum>MultiPtBas>On Nodes Main Menu $>$ Preprocessor>Loads>Define Loads $>$ Apply $>$ Thermal $>$ Temperature $>$ On Nodes Main Menu>Preprocessor>Loads>Define Loads>Delete>Structural>Spectrum>BasePSD>On Nodes Main Menu>Preprocessor>Loads>Define Loads>Delete>Structural>Spectrum>MultiPtBas>On Nodes Main Menu>Preprocessor>LS-DYNA Options>Constraints>Apply>On Nodes Main Menu>Solution>Constraints>Apply>On Nodes
Main Menu>Solution>Define Loads>Apply>Electric>Boundary>PerfEC>On Nodes
Main Menu>Solution>Define Loads>Apply>Electric>Boundary>TimeInt>J-Normal>On Nodes Main Menu>Solution>Define Loads>Apply>Electric>Boundary>TimeInt>On Nodes Main Menu>Solution>Define Loads>Apply>Electric>Boundary>Voltage>J-Normal>On Nodes Main Menu>Solution>Define Loads>Apply>Electric>Boundary>Voltage>On Nodes Main Menu>Solution>Define Loads>Apply>Magnetic>Boundary>EdgeMVP>Flux Par'I>On Nodes Main Menu>Solution>Define Loads>Apply>Magnetic>Boundary>ScalarPot>Flux Normal>On Nodes Main Menu>Solution>Define Loads>Apply>Magnetic>Boundary>ScalarPot>On Nodes Main Menu>Solution>Define Loads>Apply>Magnetic>Boundary>VectorPot>Flux Par'l>On Nodes Main Menu>Solution>Define Loads>Apply>Magnetic>Boundary>VectorPot>On Nodes Main Menu>Solution>Define Loads>Apply>Structural>Displacement>On Node Components Main Menu>Solution>Define Loads>Apply>Structural>Displacement>On Nodes Main Menu>Solution>Define Loads>Apply>Structural>Spectrum>BasePSD>On Nodes Main Menu $>$ Solution $>$ Define Loads $>$ Apply $>$ Structural $>$ Spectrum $>$ MultiPtBas $>$ On Nodes Main Menu>Solution>Define Loads>Apply>Thermal>Temperature>On Nodes Main Menu $>$ Solution $>$ Define Loads $>$ Delete $>$ Structural $>$ Spectrum $>$ BasePSD $>$ On Nodes Main Menu>Solution>Define Loads>Delete>Structural>Spectrum>MultiPtBas>On Nodes

DA, AREA, Lab, Value1, Value2
Defines DOF constraints on areas.
SOLUT ION: Solid Constraints
MP ME ST PR PRN <> <> <> EM EH <> PP <> EME MFS

AREA

Area on which constraints are to be specified. If ALL, apply to all selected areas [ASEL]. If $A R E A=P$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for AREA.

Lab

Symmetry label (see 2 (p. 354) below):
SYMM
Generate symmetry constraints for non-FLOTRAN models. Requires no Value1 or Value2.
ASYM
Generate antisymmetry constraints for non-FLOTRAN models. Requires no Value1 or Value2.
ANSYS DOF labels (see 1 (p.354), 2 (p.354), and 3 (p.354) below):
UX
Displacement in X direction.

UY

Displacement in Y direction.
UZ
Displacement in Z direction.

ROTX

Rotation about X axis.

ROTY

Rotation about Y axis.

ROTZ

Rotation about Z axis.

HDSP

Hydrostatic pressure.

TEMP, TBOT, TE2, TE3, . . ., TTOP

Temperature.

MAG

Magnetic scalar potential.

VOLT

Electric scalar potential.
AX
Magnetic vector potential in X direction (see 4 (p.354)).
AY
Magnetic vector potential in Y direction.
AZ
Magnetic vector potential in Z direction (see 1 (p. 354)).

ALL

Applies all appropriate DOF labels except HDSP.
FLOTRAN Standard DOF Labels (see 7 (p. 354)): VX, VY, VZ, PRES, TEMP, ENKE, ENDS
FLOTRAN Species Labels (See 8 (p. 354)): SP01, SP02, SP03, SP04, SP05, SP06
FLOTRAN Arbitrary Lagrangian-Eulerian formulation Mesh Displacement Labels (See 9 (p. 354)): UX, UY, UZ

Value1

Value of DOF or table name reference on the area. Valid for all DOF labels. To specify a table, enclose the table name in \% signs (e.g., DA,AREA,TEMP,\%t abname\%). Use the *DIM command to define a table.

If $L a b=$ ENKE and Value1 $=-1$, a FLOTRAN flag is set to indicate a moving wall.
If Lab $=$ ENDS and Value1 $=-1$, FLOTRAN generalized symmetry conditions are applied. Velocity components are set tangential to the symmetry surface if the ALE formulation is not activated. They are set equal to the mesh velocity if the ALE formulation is activated.

Value2

For FLOTRAN DOFs:

0

Values are applied only to nodes within the area.

Values are applied to the edges of the area as well as to the internal nodes. (See 7 (p. 354).)
For MAG and VOLT DOFs:
Value of the imaginary component of the degree of freedom.

Notes

1. For elements SOLID117, SOLID236, and SOLID237, if $L a b=A Z$ and Value $1=0$, this sets the fluxparallel condition for the edge formulation. (A flux-normal condition is the natural boundary condition.) Do not use the DA command to set the edge-flux DOF, AZ to a nonzero value.
2. If $L a b=$ MAG and Value $1=0$, this sets the flux-normal condition for the magnetic scalar potential formulations (MSP) (A flux-parallel condition is the natural boundary condition for MSP.)
3. If $L a b=$ VOLT and Value $1=0$, the J -normal condition is set (current density (J) flow normal to the area). (A J-parallel condition is the natural boundary condition.)
4. For elements HF119 and HF120, used in high-frequency electromagnetic analysis, the AX DOF is not an x-component of a vector potential, but rather a tangential component of E (the electric field) on the element edges and faces. To specify an Electric Wall condition, set AX to zero. For more information, see the High-Frequency Electromagnetic Analysis Guide.
5. You can transfer constraints from areas to nodes with the DTRAN or SBCTRAN commands. See the DK command for information about generating other constraints on areas for non-FLOTRAN models.
6. Symmetry and antisymmetry constraints are generated as described for the DSYM command.
7. For the velocity DOF (VX, VY, VZ), a zero value will override a nonzero value at the intersection of two areas.
8. You can use the MSSPEC command to change FLOTRAN species labels to user-defined labels. You must define these labels with the MSSPEC command before using them on the DA command.
9. Tabular boundary conditions (VALUE $=\%$ tabname\%) are available only for the following degree of freedom labels: Electric (VOLT), FLOTRAN (UX, UY, UZ, PRES, VX, VY, VZ, ENKE, ENDS, TEMP, SP01, SP02, SP03, SP04, SP05, and SP06); Structural (UX, UY, UZ, ROTX, ROTY, ROTZ), and temperature (TEMP, TBOT, TE2, TE3, . . ., TTOP).
10. Constraints specified by the DA command can conflict with other specified constraints. See Resolution of Conflicting Constraint Specifications in the Basic Analysis Guide for details.
11. The DA command is also valid in PREP7.

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Boundary>PerfEC>On Areas Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Boundary>TimeInt>J-Normal>On Areas
Main Menu $>$ Preprocessor>Loads>Define Loads $>$ Apply $>$ Electric $>$ Boundary $>$ TimeInt $>$ On Areas Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Boundary>Voltage>J-Normal>On Areas
Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Boundary>Voltage>On Areas Main Menu>Preprocessor>Loads>Define Loads>Apply>Magnetic>Boundary>EdgeMVP>Flux Par'l>On Areas

```
Main Menu>Preprocessor>Loads>Define Loads>Apply>Magnetic>Boundary>ScalarPot>Flux Nor-
mal>On Areas
Main Menu>Preprocessor>Loads>Define Loads>Apply>Magnetic>Boundary>ScalarPot>On Areas
Main Menu>Preprocessor>Loads>Define Loads>Apply>Magnetic>Boundary>VectorPot>Flux Nor-
mal>On Areas
Main Menu>Preprocessor>Loads>Define Loads>Apply>Magnetic>Boundary>VectorPot>Flux
Par'l>On Areas
Main Menu>Preprocessor>Loads>Define Loads>Apply>Magnetic>Boundary>VectorPot>On Areas
Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Displacement>Antisymm B.C.>On
Areas
Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Displacement>On Areas
Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Displacement>Symmetry B.C.>On
Areas
Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Temperature>On Areas
Main Menu>Preprocessor>LS-DYNA Options>Constraints>Apply>On Areas
Main Menu>Solution>Constraints>Apply>On Areas
Main Menu>Solution>Define Loads>Apply>Electric>Boundary>PerfEC>On Areas
Main Menu>Solution>Define Loads>Apply>Electric>Boundary>TimeInt>J-Normal>On Areas
Main Menu>Solution>Define Loads>Apply>Electric>Boundary>TimeInt>On Areas
Main Menu>Solution>Define Loads>Apply>Electric>Boundary>Voltage>J-Normal>On Areas
Main Menu>Solution>Define Loads>Apply>Electric>Boundary>Voltage>On Areas
Main Menu>Solution>Define Loads>Apply>Magnetic>Boundary>EdgeMVP>Flux Par'l>On Areas
Main Menu>Solution>Define Loads>Apply>Magnetic>Boundary>ScalarPot>Flux Normal>On Areas
Main Menu>Solution>Define Loads>Apply>Magnetic>Boundary>ScalarPot>On Areas
Main Menu>Solution>Define Loads>Apply>Magnetic>Boundary>VectorPot>Flux Normal>On Areas
Main Menu>Solution>Define Loads>Apply>Magnetic>Boundary>VectorPot>Flux Par'l>On Areas
Main Menu>Solution>Define Loads>Apply>Magnetic>Boundary>VectorPot>On Areas
Main Menu>Solution>Define Loads>Apply>Structural>Displacement>Antisymm B.C.>On Areas
Main Menu>Solution>Define Loads>Apply>Structural>Displacement>On Areas
Main Menu>Solution>Define Loads>Apply>Structural>Displacement>Symmetry B.C.>On Areas
Main Menu>Solution>Define Loads>Apply>Thermal>Temperature>On Areas
```

DADELE, AREA, Lab
Deletes DOF constraints on an area.
SOLUTION: Solid Constraints
MP ME ST PR PRN <> <> <> EM EH <> PP <> EME MFS
AREA
Area for which constraints are to be deleted. If ALL, delete for all selected areas [ASEL]. If $A R E A=P$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). You can substitute a component name for AREA.

Lab
Valid constraint labels are:
ALL
All constraints.
SYMM
Symmetry constraints.

ASYM

Antisymmetry constraints.
UX
Displacement in X direction.
UY
Displacement in Y direction.
UZ
Displacement in Z direction.

ROTX

Rotation about X axis.

ROTY

Rotation about Y axis.
ROTZ
Rotation about Z axis.
VX
Velocity component in X direction.
VY
Velocity component in Y direction.

VZ

Velocity component in Z direction.

PRES

Pressure.
TEMP, TBOT, TE2, TE3, . . ., TTOP
Temperature.

ENKE

Turbulent Kinetic Energy.

ENDS

Energy Dissipation Rate.
MAG
Magnetic scalar potential.
VOLT
Electric scalar potential.
SP01...SP06
Multiple Species Mass Fraction.
AX
Magnetic vector potential in X direction (see notes).
AY
Magnetic vector potential in Y direction.
AZ
Magnetic vector potential in Z direction (see notes).

Notes

Deletes the degree of freedom constraints at an area (and all corresponding finite element constraints) previously specified with the DA command. See the DDELE command for delete details.

If the multiple species labels have been changed to user-defined labels via the MSSPEC command, use the user-defined labels.

See the DA or the DA commands for details on element applicability.

Warning

On previously meshed areas, all constraints on affected nodes will be deleted, whether or not they were specified by the DA command.

This command is also valid in PREP7.

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Delete>All Load Data>All Constraint>On All Areas
Main Menu>Preprocessor>Loads>Define Loads>Delete>Electric>Boundary>PerfEC>On Areas
Main Menu $>$ Preprocessor>Loads $>$ Define Loads $>$ Delete $>$ Electric $>$ Boundary $>$ TimeInt $>$ On Areas
Main Menu>Preprocessor>Loads>Define Loads>Delete>Electric>Boundary>Voltage>On Areas
Main Menu>Preprocessor>Loads $>$ Define Loads $>$ Delete $>$ Fluid/ANSYS $>$ Pressure DOF $>$ On Areas
Main Menu>Preprocessor>Loads $>$ Define Loads $>$ Delete $>$ Fluid/CFD $>$ Displacement $>$ On Areas
Main Menu>Preprocessor>Loads>Define Loads>Delete>Fluid/CFD>Pressure DOF>On Areas
Main Menu>Preprocessor>Loads>Define Loads>Delete>Fluid/CFD>Species>On Areas
Main Menu $>$ Preprocessor>Loads>Define Loads $>$ Delete $>$ Fluid/CFD $>$ Turbulence $>$ On Areas
Main Menu>Preprocessor>Loads>Define Loads>Delete>Fluid/CFD>Velocity>On Areas
Main Menu>Preprocessor>Loads>Define Loads>Delete>Magnetic>Boundary>EdgeMVP>On Areas
Main Menu $>$ Preprocessor>Loads>Define Loads $>$ Delete $>$ Magnetic $>$ Boundary $>$ ScalarPot $>$ On Areas
Main Menu>Preprocessor>Loads>Define Loads>Delete>Magnetic>Boundary>VectorPot>On Areas
Main Menu>Preprocessor>Loads>Define Loads>Delete>Structural>Displacement>On Areas
Main Menu>Preprocessor>Loads>Define Loads>Delete $>$ Thermal $>$ Temperature $>$ On Areas
Main Menu>Preprocessor>LS-DYNA Options>Constraints>Delete>On Areas
Main Menu>Solution>Constraints>Delete>On Areas
Main Menu>Solution>Define Loads>Delete>All Load Data>All Constraint>On All Areas
Main Menu>Solution>Define Loads $>$ Delete $>$ Electric>Boundary $>$ PerfEC $>$ On Areas
Main Menu>Solution>Define Loads>Delete>Electric>Boundary>TimeInt>On Areas
Main Menu>Solution $>$ Define Loads $>$ Delete $>$ Electric $>$ Boundary $>$ Voltage $>$ On Areas
Main Menu>Solution>Define Loads>Delete>Fluid/ANSYS>Pressure DOF>On Areas
Main Menu>Solution>Define Loads>Delete>Fluid/CFD>Displacement>On Areas
Main Menu>Solution>Define Loads>Delete>Fluid/CFD>Pressure DOF>On Areas
Main Menu>Solution>Define Loads>Delete>Fluid/CFD>Species>On Areas
Main Menu>Solution>Define Loads>Delete>Fluid/CFD>Turbulence>On Areas
Main Menu>Solution>Define Loads>Delete>Fluid/CFD>Velocity>On Areas
Main Menu>Solution>Define Loads>Delete>Magnetic>Boundary>EdgeMVP>On Areas
Main Menu>Solution>Define Loads>Delete>Magnetic>Boundary>ScalarPot>On Areas
Main Menu $>$ Solution $>$ Define Loads $>$ Delete $>$ Magnetic $>$ Boundary $>$ VectorPot $>$ On Areas
Main Menu>Solution>Define Loads>Delete>Structural>Displacement>On Areas
Main Menu>Solution>Define Loads>Delete>Thermal>Temperature>On Areas

DALIST, AREA

Lists the DOF constraints on an area.

SOLUTION:Solid Constraints
MP ME ST PR PRN <> <> <> EM EH <> PP <> EME MFS

AREA

List constraints for this area. If ALL (default), list for all selected areas [ASEL]. If $P 1=P$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for AREA.

Notes

Lists the degree of freedom constraints on an area previously specified with the DA command.
This command is valid in any processor.

Menu Paths

Utility Menu>List>Loads>DOF Constraints>On All Areas
Utility Menu>List>Loads>DOF Constraints>On Picked Areas

DAMORPH, AREA, XLINE, RMSHKY

Move nodes in selected areas to conform to structural displacements.

MP <> <> <> <> <> <> <> <> <> <> PP <> Morphing

AREA

Non-structural area to which mesh movement (morph) applies. If ALL, apply morphing to all selected areas [ASEL]. If $A R E A=P$, graphical picking is enabled. A component may be substituted for AREA.

XLINE

Lines to be excluded from morphing. If ALL, exclude all selected lines [LSEL] from morphing. If XLINE $=\mathrm{P}$, graphical picking is enabled. A component may be substituted for XLINE. If XLINE is blank (default), allow morphing of nodes attached to lines of the selected areas (AREA) which are not shared by unselected areas. See Notes for clarification.

RMSHKY

Remesh flag option:
0
Remesh the selected non-structural areas only if mesh morphing fails.
1
Remesh the selected non-structural areas and bypass mesh morphing.
2
Perform mesh morphing only and do not remesh.

Notes

The selected areas should include only non-structural regions adjacent to structural regions. DAMORPH will morph the non-structural areas to coincide with the deflections of the structural regions.

Nodes in the structural regions move in accordance with computed displacements. Displacements from a structural analysis must be in the database prior to issuing DAMORPH.

By default, nodes attached to lines can move along the lines, or off the lines (if a line is interior to the selected areas). You can use XLINE to restrain nodes on certain lines.

By default ($R M S H K E Y=0$), DAMORPH will remesh the selected non-structural areas entirely if a satisfactory morphed mesh cannot be provided.

If boundary conditions and loads are applied directly to nodes and elements, the DAMORPH command requires that these be removed before remeshing can take place.

Exercise care with initial conditions defined by the IC command. Before a structural analysis is performed for a sequentially coupled analysis, the DAMORPH command requires that initial conditions be removed from all null element type nodes in the non-structural regions. Use ICDELE to delete the initial conditions.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.
Menu Paths
Main Menu>Preprocessor>Meshing>Modify Mesh>Phys Morphing>Areas

DATA, IR, LSTRT, LSTOP, LINC, Name, KCPLX

Reads data records from a file into a variable.

POST26:Set Up
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
IR
Arbitrary reference number assigned to the resulting variable (2 to NV [NUMVAR]). If this number is the same as for a previously defined variable, the previously defined variable will be overwritten with this result.

LSTRT

Start at location LSTRT (defaults to 1).

LSTOP

Stop at location LSTOP (defaults to LSTRT). Maximum location available is determined from data previously stored.

LINC
Fill every LINC location between LSTRT and LSTOP (defaults to 1).

Name

Eight character name for identifying the variable on the printout and displays. Embedded blanks are
compressed upon output.

KCPLX

Complex number key:
0
Data stored as the real part of the complex number.
1
Data stored as the imaginary part of the complex number.

Notes

This command must be followed by a format statement (on the next line) and the subsequent data records, and all must be on the same file (that may then be read with the /INPUT command). The format specifies the number of fields to be read per record, the field width, and the placement of the decimal point (if one is not included in the data value). The read operation follows the available FORTRAN FORMAT conventions of the system. See the system FORTRAN manual for details. Any standard FORTRAN real format (such as (4F6.0), (F2.0,2X,F12.0), etc.) may be used. Integer (I), character (A), and list-directed (*) descriptors may not be used. The parentheses must be included in the format. Up to 80 columns per record may be read. Locations may be filled within a range. Previous data in the range will be overwritten.

Menu Paths

This command cannot be accessed from a menu.

DATADEF

Specifies "Directly defined data status" as the subsequent status topic.
POST1:Status
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Notes

This is a status [STAT] topic command. Status topic commands are generated by the GUI and will appear in the log file (Jobname. LOG) if status is requested for some items under Utility Menu> List> Status. This command will be immediately followed by a STAT command, which will report the status for the specified topic.

If entered directly into the program, the STAT command should immediately follow this command.

Menu Paths

Utility Menu>List>Status>General Postproc>Modify Results

DCGOMG, DCGOX, DCGOY, DCGOZ

Specifies the rotational acceleration of the global origin.
SOLUTION: Inertia
MP ME ST PR PRN DS DSS <> <> <> DY PP <> EME MFS

DCGOX, DCGOY, DCGOZ

Rotational acceleration of the global origin about the acceleration system X, Y, and Z axes.

Notes

Specifies the rotational acceleration of the global origin about each of the acceleration coordinate system axes [CGLOC]. Rotational accelerations may be defined in analysis types ANTYPE,STATIC, HARMIC (full or mode superposition), TRANS (full or mode superposition), and SUBSTR. See Acceleration Effect in the Theory Reference for the Mechanical APDL and Mechanical Applications for details. Units are radians/time ${ }^{2}$.

The DCGOMG command supports tabular boundary conditions (\%TABNAME_X\%, \%TABNAME_Y\%, and \%TABNAME_Z\%) for DCGOMG_X, DCGOMG_Y, and DCGOMG_Z input values (*DIM) for full transient and harmonic analyses.

Related commands are ACEL, CGLOC, CGOMGA, DOMEGA, and OMEGA.
This command is also valid in PREP7.

Menu Paths

> Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Inertia>Coriolis Effects
> Main Menu $>$ Preprocessor>Loads $>$ Define Loads $>$ Delete $>$ Structural $>$ Inertia>Coriolis Effects Main Menu $>$ Solution>Define Loads $>$ Apply $>$ Structural $>$ Inertia $>$ Coriolis Effects Main Menu>Solution>Define Loads>Delete>Structural $>$ Inertia $>$ Coriolis Effects

DCUM, Oper, RFACT, IFACT, TBASE

Specifies that DOF constraint values are to be accumulated.

SOLUTION: FE Constraints
MP ME ST PR PRN <> <> FL EM EH $<>$ PP $<>$ EME MFS
Oper
Accumulation key:
REPL
Subsequent values replace the previous values (default).
ADD
Subsequent values are added to the previous values.
IGNO
Subsequent values are ignored.
RFACT
Scale factor for the real component. Zero (or blank) defaults to 1.0. Use a small number for a zero scale factor.

IFACT

Scale factor for the imaginary component. Zero (or blank) defaults to 1.0 . Use a small number for a zero scale factor.

TBASE

Base temperature for temperature difference. Used only with temperature degree of freedom. Scale factor is applied to the temperature difference ($T-T B A S E$) and then added to TBASE. T is the current temperature.

Command Default

Replace previous values.

Notes

Allows repeated degree of freedom constraint values (displacement, temperature, etc.) to be replaced, added, or ignored. Operations apply to the selected nodes [NSEL] and the selected degree of freedom labels [DOFSEL]. This command also operates on velocity and acceleration loads applied in a structural analysis.

The operations occur when the next degree of freedom constraints are defined. For example, issuing the command $\mathbf{D}, 1, U X, .025$ after a previous $\mathbf{D}, 1, U X, .020$ causes the new value of the displacement on node 1 in the x-direction to be 0.045 with the add operation, 0.025 with the replace operation, or 0.020 with the ignore operation. Scale factors are also available to multiply the next value before the add or replace operation. A scale factor of 2.0 with the previous "add" example results in a displacement of 0.070 . Scale factors are applied even if no previous values exist. Issue DCUM,STAT to show the current label, operation, and scale factors. Solid model boundary conditions are not affected by this command, but boundary conditions on the FE model are affected.

Note

FE boundary conditions may still be overwritten by existing solid model boundary conditions if a subsequent boundary condition transfer occurs.

DCUM does not work for tabular boundary conditions.

This command is also valid in PREP7.

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Settings>Replace vs Add>Constraints Main Menu>Solution>Define Loads>Settings>Replace vs Add>Constraints

DCVSWP, Option, Elem, Cnum, Vmax, Vinc1, Vinc2, Gap

Performs a DC voltage sweep on a ROM element.

REDUCED ORDER MODELING:Use Pass
MP <> <> <> <> <> <> <> <> <> <> PP <> EME <>

Option

Sweep option:

GV

Perform voltage sweep up to given voltage Vmax.
PI
Perform a voltage sweep simulation up to the pull-in voltage.

Elem

Element number of the ROM element for the ROM use pass analysis.

Cnum

Number of sweep conductor.

Vmax

Maximum voltage. For the PI option, this voltage should be below the pull-in voltage value.

```
Vinc1
    Voltage increment for Vmax (default = Vmax/20).
```

Vinc2
Voltage increment for pull-in voltage (default = 1).

Gap

Gap elements option:
0
Create gap elements (COMBIN40) (default).
1
Do not create gap elements

Notes

Vinc1 is used to ramp the sweep conductor voltage from 0 to Vmax. Vinc2 is used to increase the sweep conductor voltage from Vmax to the pull-in value if the PI sweep option is used.

Because ramping the voltage may lead to the unstable region of an electromechanical system, DCVSWP might not converge when the sweep conductor voltage approaches the pull-in value. To avoid non-converged solutions, you should use the gap option to create a set of spring-gap elements (COMBIN40). By default, DCVSWP creates two spring-gap elements with opposite orientations for each active modal displacement DOF of the ROM element. The gap size is set to the maximum absolute values of the deflection range for the corresponding mode, as calculated by RMMSELECT or modified using the RMMRANGE command. The spring constants are set to $1 . E 5$ for all the COMBIN40 elements. Along with the spring-gap elements, DCVSWP creates a set of constraint equations relating the ROM element modal displacements DOF (EMF) and the displacement DOF (UX) of the gap elements. Constraining the modal displacements using the spring-gap elements allows DCVSWP to converge in the pull-in range. The DCVSWP macro has a limit of 900 equilibrium iterations. If this limit is not sufficient to reach convergence, try the advanced techniques given in Overcoming Convergence Problems in the Structural Analysis Guide. For more information on gap elements, see Using Gap Elements with ROM144 in the Coupled-Field Analysis Guide.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>ROM Tools>Voltage Sweep
Main Menu $>$ Solution $>$ ROM Tools $>$ Voltage Sweep

DDELE, NODE, Lab, NEND, NINC, Rkey

Deletes degree-of-freedom constraints.

> SOLUTION: FE Constraints
> MP ME ST PR PRN $<><>$ FL EM EH DY PP <> EME MFS

NODE

Node for which constraint is to be deleted. If ALL, NEND and NINC are ignored and constraints for all selected nodes [NSEL] are deleted. If NODE = P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NODE.

Lab

Valid degree of freedom label. If ALL, use all selected labels [DOFSEL]. Structural labels: UX, UY, or UZ (displacements); ROTX, ROTY, or ROTZ (rotations); WARP (warping). Thermal labels: TEMP, TBOT, TE2, TE3, ..., TTOP (temperature). FLOTRAN fluid labels: PRES (pressure); VX, VY, or VZ (velocities); ENKE or ENDS (turbulent kinetic energy or turbulent energy dissipation); SP01 through SP06 (multiple species mass fractions) or their user-defined names. Electric label: VOLT (voltage). Magnetic labels: MAG (scalar magnetic potential); AX, AY, or AZ (vector magnetic potentials). High-frequency electromagnetic label: AX (Electric Wall or Magnetic Wall boundary condition).

In structural analyses, the following velocity and acceleration load labels are also valid: VELX, VELY, VELZ (translational velocities); OMGX, OMGY, OMGZ (rotational velocities); ACCX, ACCY, ACCZ (translational accelerations); DMGX, DMGY, DMGZ (rotational accelerations).

In structural analyses, HDSP (hydrostatic pressure) is also valid.
If the node is connected to an ELBOW290 element, the following pipe cross-section degree of freedom labels are also valid: SE, SO, SW, SRA, and SRT. (For details, see the ELBOW290 documentation.) The degrees of freedom are not included when Lab = ALL. To constrain all cross-section degrees of freedom, specify $L a b=$ SECT.

NEND, NINC

Delete constraints from NODE to NEND (defaults to NODE) in steps of NINC (defaults to 1).

Rkey

Ramping key:
OFF
Loads are step-removed (default).
ON or FORCE
Forces on the specified degrees of freedom (Lab) are ramped during the next load step. The forces are ramped from the reaction forces of the previous load step to zero or currently defined force values (if any).

Notes

Deleting a constraint is not the same as setting it to zero (which "fixes" the degree of freedom to a zero value). Deleting a constraint has the same effect as deactivating, releasing, or setting the constraint "free." The node and the degree of freedom label must be selected [NSEL, DOFSEL].

For elements HF119 and HF120, used in high-frequency electromagnetic analysis, the AX DOF is not an x component of a vector potential, but rather a tangential component of E (the electric field) on the element
edges and faces. To specify an Electric Wall condition, set AX to zero. For more information, see the HighFrequency Electromagnetic Analysis Guide.

This command is also valid in PREP7.

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Delete>All Load Data $>$ All Constraint>On All Nodes Main Menu>Preprocessor>Loads $>$ Define Loads $>$ Delete $>$ Electric $>$ Boundary $>$ PerfEC $>$ On Nodes Main Menu>Preprocessor>Loads>Define Loads>Delete>Electric>Boundary>TimeInt>On Nodes Main Menu>Preprocessor>Loads>Define Loads>Delete>Electric>Boundary>Voltage>On Nodes Main Menu>Preprocessor>Loads>Define Loads>Delete>Fluid/ANSYS>Pressure DOF>On Nodes Main Menu>Preprocessor>Loads>Define Loads>Delete>Fluid/CFD>Displacement>On Nodes Main Menu>Preprocessor>Loads>Define Loads>Delete>Fluid/CFD>Pressure DOF>On Nodes Main Menu>Preprocessor>Loads>Define Loads>Delete>Fluid/CFD>Species>On Nodes Main Menu>Preprocessor>Loads>Define Loads>Delete>Fluid/CFD>Turbulence>On Nodes Main Menu>Preprocessor>Loads>Define Loads>Delete>Fluid/CFD>Velocity>On Nodes Main Menu $>$ Preprocessor>Loads>Define Loads $>$ Delete $>$ Magnetic $>$ Boundary $>$ EdgeMVP>On Nodes Main Menu $>$ Preprocessor>Loads>Define Loads $>$ Delete $>$ Magnetic $>$ Boundary $>$ ScalarPot $>$ On Nodes Main Menu>Preprocessor>Loads $>$ Define Loads $>$ Delete $>$ Magnetic>Boundary>VectorPot>On Nodes Main Menu>Preprocessor>Loads>Define Loads>Delete>Structural>Displacement>On Node Components
Main Menu>Preprocessor>Loads>Define Loads>Delete>Structural>Displacement>On Nodes Main Menu>Preprocessor>Loads>Define Loads>Delete>Thermal>Temperature>On Nodes Main Menu>Preprocessor>LS-DYNA Options>Constraints>Delete>On Nodes Main Menu>Solution>Constraints>Delete>On Nodes
Main Menu>Solution>Define Loads>Delete>All Load Data>All Constraint>On All Nodes Main Menu>Solution>Define Loads>Delete>Electric>Boundary>PerfEC>On Nodes Main Menu>Solution>Define Loads $>$ Delete $>$ Electric $>$ Boundary $>$ TimeInt $>$ On Nodes Main Menu $>$ Solution $>$ Define Loads $>$ Delete $>$ Electric $>$ Boundary $>$ Voltage $>$ On Nodes Main Menu>Solution>Define Loads>Delete>Fluid/ANSYS>Pressure DOF>On Nodes Main Menu>Solution>Define Loads>Delete>Fluid/CFD>Displacement>On Nodes Main Menu>Solution>Define Loads>Delete>Fluid/CFD>Pressure DOF>On Nodes Main Menu>Solution>Define Loads>Delete>Fluid/CFD>Species>On Nodes Main Menu>Solution>Define Loads>Delete>Fluid/CFD>Turbulence>On Nodes Main Menu>Solution>Define Loads>Delete>Fluid/CFD>Velocity>On Nodes Main Menu>Solution>Define Loads>Delete>Magnetic>Boundary>EdgeMVP>On Nodes Main Menu>Solution>Define Loads $>$ Delete $>$ Magnetic>Boundary $>$ ScalarPot>On Nodes Main Menu>Solution>Define Loads>Delete>Magnetic>Boundary>VectorPot>On Nodes Main Menu>Solution>Define Loads>Delete>Structural>Displacement>On Node Components Main Menu>Solution>Define Loads>Delete>Structural>Displacement>On Nodes Main Menu>Solution>Define Loads>Delete>Thermal>Temperature $>$ On Nodes

DDOPTION, Decomp, --, --, ContKey

Sets domain decomposer option for Distributed ANSYS.

SOLUTION: Analysis Options
MP ME ST PR PRN <> <> <> EM EH <> PP <> EME MFS

Decomp

Controls which domain decomposition algorithm to use.

AUTO

Use the default domain decomposition algorithm when splitting the model into domains for Distributed ANSYS. Currently, the default for all jobs is the GREEDY algorithm.

GREEDY

Use the "greedy" domain decomposition algorithm.

METIS

Use the METIS graph partitioning domain decomposition algorithm.

-- , --

Unused fields.

ContKey

Tells the domain decomposition algorithm how to handle contact pairs.

DEFAULT

By default, all elements belonging to a single contact pair must belong to a single CPU domain. However, each contact pair may reside on a different CPU domain unless multiple contact pairs (along with the required underlying elements) overlap, in which case the entire overlapping set must reside within a single CPU domain.

GROUP

This option forces all of the contact pairs in the model (along with the required underlying elements) to be grouped onto a single CPU domain.

Command Default

The greedy domain decomposition algorithm is used.

Notes

This command controls options relating to the domain decomposition algorithm used by Distributed ANSYS to split the original model into pieces, with each piece being solved on a different CPU.

The greedy domain decomposition algorithm starts from a single element at a corner of the model. The domain grows by taking the properly connected neighboring elements and stops after reaching the optimal size.

The METIS domain decomposition algorithm starts by creating a graph from the finite element mesh. It then uses a multilevel graph partitioning scheme which reduces the size of the original graph, creates domains using the reduced graph, and then creates the final CPU domains by expanding the smaller domains from the reduced graph back to the original mesh.

Typically, when using just a few different element types in the model, the METIS decomposer will result in less communication and better load balancing. This often leads to decreased overall run times, particularly when using higher numbers of processors (for example, 8 or more CPUs) or when using cluster configurations
with slower interconnect speeds (for example, 4 machines with 1 CPU per machine using a GigE interconnect). However, the METIS decomposition method is sometimes not as robust as the greedy algorithm and, therefore, is not the default.

Menu Paths

This command cannot be accessed from a menu.

DEACT

Specifies "Element birth and death" as the subsequent status topic.

SOLUTION: Status
MP ME ST PR PRN <> <> FL EM EH <> PP <> EME MFS

Notes

This is a status [STAT] topic command. Status topic commands are generated by the GUI and will appear in the \log file (Jobname. LOG) if status is requested for some items under Utility Menu> List> Status. This command will be immediately followed by a STAT command, which will report the status for the specified topic.

If entered directly into the program, the STAT command should immediately follow this command.

Menu Paths

Utility Menu>List>Status>Solution>Elem Birth/Death

DEFINE

Specifies "Data definition settings" as the subsequent status topic.

POST1:Status
POST26:Status
MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS

Notes

This is a status [STAT] topic command. Status topic commands are generated by the GUI and will appear in the log file (Jobname. LOG) if status is requested for some items under Utility Menu> List> Status. This command will be immediately followed by a STAT command, which will report the status for the specified topic.

If entered directly into the program, the STAT command should immediately follow this command.

Menu Paths

Utility Menu>List>Status>General Postproc>Read Options

 Utility Menu>List>Status>TimeHist Postproc>VariablesDeletes a parameter or parameters (GUI).

> APDL: Parameters
> MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS

Argument Descriptions

Val1

Vall can be:
ALL --
Indicates that you want to delete all user-defined parameters, or both all user-defined and all system parameters, as indicated by the Val2 argument.

(blank) --

Indicates that you want to delete the parameter(s) indicated by Val2.

Val2

Val2 can be:
LOC --
When Vall is (blank), use Val2 to specify the location of the parameter within the Array Parameters dialog box. The location number is based on an alphabetically ordered list of all parameters in the database. Not valid when Vall is ALL.
_PRM --
When Vall is ALL, specifying _PRM for Val2 deletes all parameters, including those named with an initial underbar ($_$) (except _STATUS and _RETURN). When Vall is (blank), specifying _PRM for Val2 deletes only those parameters named with an initial underbar ($)$ (except _STATUS and _RETURN).

PRM_ --
When Vall is (blank), specifying PRM_ for Val2 deletes only those parameters named with a trailing underbar ($_$). Not valid when Vall is ALL.
(blank) --
When Vall is ALL, specifying (blank) for Val2 causes all user-defined parameters to be deleted.

Notes

This is a command generally created by the Graphical User Interface (GUI). It will appear in the log file (Jobname. LOG) if an array parameter is deleted from within the Array Parameters dialog box.

To delete all user-defined parameters, issue the command *DEL,ALL. To delete only those user-defined parameters named with a trailing underbar, issue the command *DEL,,PRM_. To delete all user-defined and all system parameters (except for _STATUS and _RETURN), issue the command *DEL,ALL,_PRM. To delete a parameter by specifying its location within the Array Parameters dialog box, issue the command *DEL,LOC.

This command is valid in any processor.

Menu Paths

This command cannot be accessed from a menu.

DELETE, SET, Nstart, Nend

Specifies sets in the results file to be deleted before postprocessing.
AUX3: Results Files
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

SET

Specifies that sets in the results file are to be deleted.

Nstart

The first set in a results file to be deleted.

Nend

The final set in a results file to be deleted. This field is used only if deleting more than one sequential sets.

Notes

DELETE is a specification command that flags sets in the results file for deletion. It should be followed by a COMPRESS command, the corresponding action command that deletes the specified sets.

The DELETE command is valid only in the results file editing processor (ANSYS auxiliary processor AUX3).

Menu Paths

This command cannot be accessed from a menu.

/DELETE, Fname, Ext, --

Deletes a file.

SESSION:Files
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Fname

File name and directory path (248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

The file name defaults to the current Jobname.

Ext

Filename extension (8 character maximum).
\qquad
Unused field.

Notes

For Distributed ANSYS, if Fname is the current Jobname (or blank, which defaults to the current Jobname), the command will be executed on the master and all slave processors. However, if F name is anything other than the current Jobname, this command is ignored on the slave processors and is executed only on the master processor.

Menu Paths

Utility Menu>File>File Operations>Delete
Utility Menu>PlotCtrls>Redirect Plots>To GRPH File
Utility Menu>PlotCtrls>Redirect Plots $>$ To HPGL File
Utility Menu>PlotCtrls>Redirect Plots>To HPGL2 File
Utility Menu>PlotCtrls>Redirect Plots>To PSCR File

DELTIM, DTIME, DTMIN, DTMAX, Carry
Specifies the time step sizes to be used for this load step.
SOLUTION: Load Step Options
MP ME ST PR PRN <> <> <> EM EH DY PP <> EME MFS

DTIME

Time step size for this step. If automatic time stepping is being used [AUTOTS], DTIME is the starting time substep. If SOLCONTROL,ON and contact elements TARGE169, TARGE170, CONTA171, CONTA172, CONTA173, CONTA174, CONTA175, CONTA176, or CONTA177 are used, defaults to 1 or $1 / 20$ the total time span of the load step, depending on the physics of the problem. If SOLCONTROL,ON and none of these contact elements are used, defaults to 1 time span of the load step. If SOLCONTROL,OFF, defaults to the previously specified value.

DTMIN

Minimum time step (if automatic time stepping is used). If SOLCONTROL,ON, default determined by ANSYS depending on the physics of the problem. If SOLCONTROL,OFF, defaults to the previously specified value (or DTIME, if there is no previously specified value).

DTMAX

Maximum time step (if automatic time stepping is used). If SOLCONTROL,ON, default determined by ANSYS depending on the physics of the problem. If SOLCONTROL,OFF, defaults to the previously specified value (or the time span of the load step, if there is no previously specified value).

Carry

Time step carry over key:
OFF
Use DTIME as time step at start of each load step.
ON
Use final time step from previous load step as the starting time step (if automatic time stepping is used).

If SOLCONTROL,ON, default determined by ANSYS depending on the physics of the problem. If SOLCONTROL,OFF, defaults to OFF.

Notes

See NSUBST for an alternative input.
Use consistent values for DTIME and TIME (TIME). For example, using 0.9 for DTIME and 1.0 for TIME results in one time step because 1.0 (TIME) is divisible by .9 (DTIME) at most once. If your intent is to load in 10 increments over a time span of 1.0 , then use 0.1 for DTIME and 1.0 for TIME.

ANSYS calculates the initial incremental time so that (EndingTime - StartingTime) / DELTIM is an integer, which may affect the initial incremental time that you specify. For example, if the starting time is 0 , the ending time is 1 , and the initial incremental time is 0.4 , ANSYS rounds to the nearest integer and adjusts the time to 0.33333 .

For the sake of solution efficiency, ANSYS recommends specifying values for all fields of this command.
This command is also valid in PREP7.

Menu Paths

Main Menu>Preprocessor>Loads>Analysis Type>Sol'n Controls>Basic
 Main Menu>Preprocessor>Loads>Load Step Opts>Time/Frequenc>Time - Time Step
 Main Menu>Solution>Analysis Type>Sol'n Controls>Basic
 Main Menu>Solution>Load Step Opts>Time/Frequenc>Time - Time Step

DEMORPH, ELEM, DIMN, RMSHKY

Move nodes in selected elements to conform to structural displacements.
PREP 7:Morphing
MP <> <> <> <> <> <> <> <> <> <> PP <> EME <>

ELEM

Non-structural elements to which mesh movement (morph) applies. If ALL, apply morphing to all selected elements [ESEL]. If ELEM = P, graphical picking is enabled. A component may be substituted for ELEM.

DIMN

Problem dimensionality. Use "2" for a 2-D problem and "3" for a 3-D problem (no default).

RMSHKY

Remesh flag option:
0
Remesh the selected non-structural regions only if mesh morphing fails.
1
Remesh the selected non-structural regions and bypass mesh morphing.
2
Perform mesh morphing only and do not remesh.

Notes

The selected elements should include only non-structural regions adjacent to structural regions. The exterior nodes of the selected elements will usually be on the boundary of the region which will have node positions displaced. For $D I M N=2$, elements must lie on a flat plane. The DEMORPH command requires a single domain grouping of elements be provided (multiple domains of elements are not permitted). Exterior nodes will be assumed fixed (no nodes will be morphed) unless they coincide with structural nodes having nonzero displacements.

Nodes in the structural regions move in accordance with computed displacements. Displacements from a structural analysis must be in the database prior to issuing DEMORPH.

By default ($R M S H K Y=0$), DEMORPH will remesh the selected non-structural regions entirely if a satisfactory morphed mesh cannot be provided.

If boundary conditions and loads are applied directly to nodes and elements, the DEMORPH command requires that these be removed before remeshing can take place.

Exercise care with initial conditions defined by the IC command. Before a structural analysis is performed for a sequentially coupled analysis, the DEMORPH command requires that initial conditions be removed from all null element type nodes in the non-structural regions. Use ICDELE to delete the initial conditions.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>Meshing>Modify Mesh>Phys Morphing>Elements

DERIV, IR, IY, IX, --, Name, --, --, FACTA

Differentiates a variable.

> POST2 6: Operations
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

IR
Arbitrary reference number assigned to the resulting variable (2 to NV [NUMVAR]). If this number is the same as for a previously defined variable, the previously defined variable will be overwritten with this result.

$I Y, I X$

Reference numbers of variables to be operated on. $I Y$ is differentiated with respect to $I X$.

Unused field.

Name

Thirty-two character name for identifying the variable on printouts and displays. Embedded blanks are compressed for output.
--, --
Unused fields.

FACTA

Scaling factor (positive or negative) applied as shown below (defaults to 1.0).

Notes

Differentiates variables according to the operation:

$$
I R=F A C T A \times \mathrm{d}(I Y) / \mathrm{d}(I X)
$$

Menu Paths

Main Menu>TimeHist Postpro>Math Operations>Derivative

DESIZE, MINL, MINH, MXEL, ANGL, ANGH, EDGMN, EDGMX, ADJF, ADJM

Controls default element sizes.

REP 7:Meshing
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

MINL

Minimum number of elements that will be attached to a line when using lower-order elements (defaults to 3 elements per line). If MINL = DEFA, all arguments will be set back to default values. If MINL = STAT, list status of command (Including on/off status). If $M I N L=O F F$, deactivate default element sizing. If $M I N L=O N$, reactivate default element sizing.

MINH

Minimum number of elements that will be attached to a line when using higher-order elements. Defaults to 2 elements per line.

MXEL

Maximum number of elements that will be attached to a single line (lower or higher-order elements). Defaults to 15 elements per line for h-elements. To deactivate this limit, specify a large number (such as 9999).

ANGL
Maximum spanned angle per lower-order element for curved lines. Defaults to 15 degrees per element.

ANGH

Maximum spanned angle per higher-order element for curved lines. Defaults to 28 degrees per element.

EDGMN

Minimum element edge length. Defaults to no minimum edge length. The MINL or MINH argument can override this value.

EDGMX

Maximum element edge length. Defaults to no maximum edge length. The MXEL argument can override this value.

ADJF

Target aspect ratio for adjacent line. Used only when free meshing. Defaults to 1.0 , which attempts to create equal-sided h -elements.

ADJM

Target aspect ratio for adjacent line. Used only when map meshing. Defaults to 4.0, which attempts to create rectangular h-elements.

Command Default

Default settings as described for each argument are used.

Notes

DESIZE settings are usually used for mapped meshing. They are also used for free meshing if SmartSizing is turned off [SMRTSIZE,OFF], which is the default. Even when SmartSizing is on, some DESIZE settings (such as maximum and minimum element edge length) can affect free mesh density. The default settings of the DESIZE command are used only when no other element size specifications [KESIZE, LESIZE, ESIZE] exist for a certain line.

This command is also valid for rezoning.

Menu Paths

Main Menu>Preprocessor>Meshing>Size Cntrls>ManualSize>Global>Other
Main Menu>Solution>Manual Rezoning>Create Remesh Zone(s)>Mesh Controls>Default Element Sizing Options

DESOL, ELEM, NODE, Item, Comp, V1, V2, V3, V4, V5, V6

Defines or modifies solution results at a node of an element.

POST1:Set Up
MP ME ST PR PRN <> <> <> EM EH DY PP <> EME MFS

ELEM

Element number for which results are defined or modified. If ALL, apply to all selected elements [ESEL].

NODE

Node of element (actual node number, not the position) to which results are specified. If ALL, specify results for all selected nodes [NSEL] of element. If $N O D E=\mathrm{P}$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NODE.

Item

Label identifying results. Valid item labels are shown in Table 143: DESOL - Valid Item and Component Labels (p .375) below. Some items also require a component label (Comp).

Comp

Component of the item (if required); see Table 143: DESOL - Valid Item and Component Labels (p. 375).
v1
Value (in the element coordinate system) assigned to the database item (and component, if any). If zero, a zero value will be assigned. If blank, value remains unchanged.
v2, v3, v4, ..., v6
Additional values (if any) assigned to the remaining components (in the order corresponding to the Comp list shown below) for the specified Item (starting from the specified Comp label and proceeding to the right).

Notes

The DESOL command defines or modifies solution results in the database at a node of an area or volume element. For example, DESOL,35,50,S,X,1000,2000,1000 assigns values 1000, 2000, and 1000 to SX, SY, and SZ (respectively) of node 50 of element 35.

The settings of the POST1 FORCE, SHELL, and LAYER commands, if applicable, further specify which database items are affected.

For layered composite shells, specify the current element layer (LAYER) before issuing the DESOL command.
All data is stored in the solution coordinate system but is displayed in the results coordinate system (RSYS). To list the current results, use the PRESOL command.

Modified solution results are not saved automatically. To save separate records of modified results, use either the RAPPND or LCWRITE command.

Result items are available depending on element type; check the individual element for availability. Valid item and component labels for element results are:

Table 143 DESOL - Valid Item and Component Labels

Menu Paths

Main Menu>General Postproc>Define/Modify>Elem Results

DETAB, ELEM, Lab, V1, V2, V3, V4, V5, V6
Modifies element table results in the database.

> POST1:Set Up
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

ELEM

Element for which results are to be modified. If ALL, modify all selected elements [ESEL] results. If $E L E M$ = P , graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI).
A component name may also be substituted for ELEM.

Lab

Label identifying results. Valid labels are as defined with the ETABLE command. Issue ETABLE,STAT to display labels and values.
v1
Value assigned to this element table result in the database. If zero, a zero value will be assigned. If blank, value remains unchanged.

V2, V3, V4, ..., V6

Additional values (if any) assigned to consecutive element table columns.

Notes

Modifies element table [ETABLE] results in the database. For example, DETAB,35,ABC,1000,2000,1000 assigns 1000,2000 , and 1000 to the first three table columns starting with label ABC for element 35 . Use the PRETAB command to list the current results. After deleting a column of data using ETABLE, Lab,ERASE, the remaining columns of data are not shifted to compress the empty slot. Therefore, the user must allocate null (blank) values for $V 1, V 2 \ldots$...V6 for any ETABLE entries which have been deleted by issuing ETABLE,Lab,ERASE. All data are stored in the solution coordinate system but will be displayed in the results coordinate system [RSYS].

Menu Paths

Main Menu>General Postproc>Define/Modify>ElemTabl Data

/DEVDISP, Label, KEY

Controls graphics device options.

> DISP LAY: Set Up
> MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS

Label

Device function label:

BBOX

Disables display information sorting for PowerGraphics displays. When activated ($K E Y=1$ or ON), model rotations and replots are performed without recalculating edge and surface data. This will speed up the rotation (especially for 2-D displays) of large models, although the display information will not be resolved as quickly (you will see a bounding box instead of the model during dynamic rotations). The default is OFF ($K E Y=0$).

DITHER

Dithering. When turned on (default), dithering smooths transitions in color intensity. Applies only to Z-buffered displays.

FONT

Font selection for the ANSYS graphics window. When Label $=$ FONT, the command format is:
/DEVDISP,FONT,KEY,Vall,Val2,Val3,VAL4,Val5,Val6, where KEY determines the type of font being controlled, and values 1 through 6 control various font parameters. Note that these values are device specific; using the same command input file [/INPUT] on different machines may yield different results. The following $K E Y$ values determine the font information that will be supplied to the appropriate driver (e.g., Postscript, X11, Win32, JPEG, ...):

$K E Y=1$

The command controls the LEGEND (documentation column) font.

$K E Y=2$

The command controls the ENTITY (node and keypoint number) font.

$K E Y=3$

The command controls the ANNOTATION/GRAPH font.
UNIX: Values 1 through 4 are used to find a match in the X11 database of font strings. Values 1 , 2 , and 3 are character strings; value 4 is a nonzero integer:

Val1
Family name (e.g., Courier*New). Substitute an asterisk (*) for any blank character that appears in a family name. If Vall = MENU, all other values are ignored, and a font selection menu appears (GUI must be active).

Val2

Weight (e.g., medium)
Val3
Slant (e.g., r)
Val4
Pixel size (e.g., 14). Note that this value does not affect the annotation fonts ($K E Y=3$). Use the /TSPEC command to control the pixel size of your annotation fonts.

Val5
unused
Val6
unused
PC: The values are encoded in a PC logical font structure. Value 1 is a character string, and the remaining values are integers:

Val1

Family name (e.g., Courier*New) Substitute an asterisk (*) for any blank character that appears in a family name. If Vall = MENU, all other values are ignored and a font selection menu appears (GUI must be active). A value containing all blank characters causes ANSYS to use the first available resource it finds.

Val2
Weight (0-1000)
Val3
Orientation (in tenths of a degree)

Val4

Height (in logical units) Note that this value does not affect the annotation fonts ($K E Y=3$). Use the /TSPEC command to control the height of your annotation fonts.

Val5

Width (in logical units)
Val6

$$
\text { Italics (} 0=\text { OFF, } 1=\mathrm{ON} \text {) }
$$

TEXT
Text size specification for the ANSYS Graphics window. When Label = TEXT, the command format is: /DEVDISP,TEXT,KEY,PERCENT, where $K E Y$ determines the type of text being controlled (1 for LEGEND, and 2 for ENTITY), and PERCENT specifies the new text size as a percent of the default text size. If PERCENT $=100$, the new text size is precisely the default size. If $P E R C E N T=200$, the new text size is twice the default text size.

KEY

Control key:
OFF or 0
Turns specified function off.

ON or 1

Turns specified function on.

Command Default

Dithering on.

Menu Paths

It is part of the DISPLAY program.

/DEVICE, Label, KEY

Controls graphics device options.

GRAPHICS:Set Up
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Label

Device function label:

BBOX

Bounding box mode. For PowerGraphics plots involving elements with /SHOW,x11 and /SHOW,win32, ANSYS generally displays dynamic rotations faster. If KEY = 1 (ON), then a bounding box (not the elements) encompassing the model is displayed and rotated, rather than the element outlines (ON is default in preprocessing). When KEY $=0$ (OFF), then dynamic rotations may be slower (ANSYS redraws the element outlines) for plots involving elements with /SHOW, $\times 11$ and /SHOW,win32. OFF is default in postprocessing. This command is ignored if /EDGE,WN, 1 is set for any WN. This is ignored in POST1 and SOLUTION plots.

For any PowerGraphics plots involving elements, regardless of /SHOW settings, plots will generally be displayed faster.

VECTOR

Vector mode. In vector mode, areas, volumes, elements, and postprocessing display geometries are shown as outlines (wireframes). When vector mode is off (default), these entities are shown filled with color.

DITHER

When dithering is turned on (default), color intensity transitions are smoothed. This selection a applies only to smooth-shaded images, i.e., Z-buffered [/TYPE], or raster plots with Gouraud or Phong shading [/SHADE].

ANIM
Select the animation type used on 2-D devices on the PC platform. A KEY value of BMP (or 0) sets animation mode to ANSYS Animation Controller (default). A KEY value of AVI (or 2) sets animation mode to AVI movie player file.

FONT

Font selection for the ANSYS graphics window. When Label = FONT, the command format is: /DEVICE,FONT,KEY,Vall,Val2,Val3,Val4,Val5,Val 6 where KEY determines the type of font being controlled, and values 1 through 6 control various font parameters. Note that these values are device specific; using the same command input file [/INPUT] on different machines may yield different results.. The following $K E Y$ values determine the font information that will be supplied to the appropriate driver (e.g., Postscript, X11, Win32, JPEG, ...):

$K E Y=1$

The command controls the LEGEND (documentation column) font.

```
KEY=2
```

The command controls the ENTITY (node and keypoint number) font.

$K E Y=3$

The command controls the ANNOTATION/GRAPH font.
UNIX: Values 1 through 4 are used to find a match in the X11 database of font strings. Values 1 , 2 , and 3 are character strings; value 4 is a nonzero integer:

Val1

Family name (e.g., Courier). If Val1 = MENU, all other values are ignored and a font selection menu appears (GUI must be active).

Val2
Weight (e.g., medium)
Val3
Slant (e.g., r)
Val4
Pixel size (e.g., 14). Note that this value does no affect the annotation fonts ($K E Y=3$). Use the /TSPEC command for annotation font size.

Val5

unused

Val6

unused
PC: The values are encoded in a PC logical font structure. Value 1 is a character string, and the remaining values are integers:

Val1

Family name (e.g., Courier*New) Substitute an asterisk (*) for any blank character that appears in a family name. If Val1 = MENU, all other values are ignored and a font selection menu appears (GUI must be active). When this value is blank ANSYS uses the first available resource it finds.

Val2
Weight (0-1000)
Val3
Orientation (in tenths of a degree)
Val 4
Height (in logical units)
Val5
Width (in logical units)
Val 6
Italics ($0=$ OFF, $1=\mathrm{ON}$)

TEXT

Text size specification for the ANSYS Graphics window. Using this label with the /DEVICE command requires the following form: /DEVICE,TEXT, KEY, $P E R C E N T$. KEY = 1 for LEGEND fonts; $K E Y=2$ for ENTITY fonts. PERCENT specifies the new text size as a percent of the default text size. If PERCENT $=100$, the new text size is precisely the default size. If $P E R C E N T=200$, the new text size is twice the default text size.

KEY

Control key:

OFF or 0

Turns specified function off.

ON or 1

Turns specified function on or designates the LEGEND font.
2
Designates the ENTITY font.

3
Designates the ANNOTATION/GRAPH font.

Command Default

Vector mode off (i.e., raster mode); dithering on.

Notes

This command is valid in any processor.
The /DEVICE,BBOX command is ignored in POST1 and SOLUTION plots. Also, the elements are displayed and rotated if you use /DEVICE,BBOX,ON and /EDGE,WN,1,ANGLE (effectively ignoring the BBOX option).

Menu Paths

Utility Menu>PlotCtrls>Device Options
Utility Menu>PlotCtrls $>$ Font Controls $>$ Entity Font
Utility Menu>PlotCtrls $>$ Font Controls $>$ Legend Font

Utility Menu>PlotCtrls>Redirect Plots>To PSCR File

/DFLAB, DOF, DispLab, ForceLab

Changes degree-of-freedom labels for user custom elements.

Prep7:Elements
MP ME ST PR PRN <> <> FL EM EH <> PP <> EME MFS

Argument Descriptions

DOF
Number between 1 and 32 indicating which degree of freedom is to have its labels changed. For a list of these quantities, see the degree-of-freedom table in the echprm. inc file. The first few quantities follow:

$$
\begin{aligned}
& 1=U X, F X \\
& 2=U Y, F Y \\
& 3=U Z, F Z \\
& 4=\text { ROTX,MX }
\end{aligned}
$$

DispLab

New label (four-character maximum) for the displacement label. The prior label is no longer valid.

ForceLab

New label (four-character maximum) for the force label for this degree of freedom. The prior label is no longer valid.

Notes

The /DFLAB command is rarely used. Use it if you are writing a custom element and want to use degrees of freedom that are not part of the standard element set.

Menu Paths

This command cannot be accessed from a menu.

DIG, NODE1, NODE2, NINC

Digitizes nodes to a surface.

> PREP 7: Digitizing
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

NODE1, NODE2, NINC

Digitize nodes NODE1 through NODE2 in steps of NINC. NODE2 defaults to NODE1 and NINC defaults to 1 .

Command Default

No surface digitizing.

Notes

Digitizes nodes to the surface defined by the DSURF command. The nodes indicated must be digitized from the tablet after this command is given. The program must be in the interactive mode and the graphics terminal show option [/SHOW] must be active. The global Cartesian coordinates of the nodes are stored.

Menu Paths

Main Menu>Preprocessor>Create>Nodes>Digitize Nodes>Digitize Nodes

DIGIT

Specifies "Node digitizing" as the subsequent status topic.

PREP 7: Status
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Notes

This is a status [STAT] topic command. Status topic commands are generated by the GUI and will appear in the log file (Jobname. LOG) if status is requested for some items under Utility Menu> List> Status. This command will be immediately followed by a STAT command, which will report the status for the specified topic.

If entered directly into the program, the STAT command should immediately follow this command.

Menu Paths

Utilty Menu>List>Status>Preprocessor>Digitize Module

*DIM, Par, Type, IMAX, JMAX, KMAX, Var1, Var2, Var3, CSYSID

Defines an array parameter and its dimensions.

> APDL: Parameters
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Argument Descriptions

Par

Name of parameter to be dimensioned. See *SET for name restrictions.

Type

Array type:
ARRAY --
Arrays are similar to standard FORTRAN arrays (indices are integers) (default). Index numbers for the rows, columns, and planes are sequential values beginning with one. Used for 1-, 2-, or 3-D arrays.

ARR4 --

Same as ARRAY, but used to specify 4-D arrays.

ARR5 --

Same as ARRAY, but used to specify 5-D arrays.
CHAR --
Array entries are character strings (up to 8 characters each). Index numbers for rows, columns, and planes are sequential values beginning with one.

TABLE --

Array indices are real (non-integer) numbers which must be defined when filling the table. Index numbers for the rows and columns are stored in the zero column and row "array elements" and are initially assigned a near-zero value. Index numbers must be in ascending order and are used only for retrieving an array element. When retrieving an array element with a real index that does not match a specified index, linear interpolation is done among the nearest indices and the corresponding array element values [*SET]. Used for $1-, 2-$, or 3-D tables.

TAB4 --

Same as TABLE, but used to specify 4-D tables.

TAB5 --

Same as TABLE, but used to specify 5-D tables.

STRING --

Array entries are character strings (up to IMAX each). Index numbers for columns and planes are sequential values beginning with 1 . Row index is character position in string.

IMAX

Extent of first dimension (row) (For Type = STRING, IMAX is rounded up to the next multiple of eight and has a limit of 256). Defaults to 1 .

JMAX

Extent of second dimension (column). Defaults to 1.

KMAX

Extent of third dimension (plane). Defaults to 1.

Var1

Variable name corresponding to the first dimension (row) for Type = TABLE. Defaults to Row.

Var2

Variable name corresponding to the second dimension (column) for $T y p e=$ TABLE. Defaults to Column.

Var3

Variable name corresponding to the third dimension (plane) for Type $=$ TABLE. Defaults to Plane.

CSYSID

An integer corresponding to the coordinate system ID Number.

Notes

Up to three dimensions (row, column, and plane) may be defined using ARRAY and TABLE. Use ARR4, ARR5, TAB4, and TAB5 to define up to five dimensions (row, column, plane, book, and shelf). An index number is associated with each row, column, and plane. For array and table type parameters, element values are initialized to zero. For character and string parameters, element values are initialized to (blank). A defined parameter must be deleted [*SET] before its dimensions can be changed. Scalar (single valued) parameters should not be dimensioned. *DIM,A,3 defines a vector array with elements $A(1), A(2)$, and $A(3)$. *DIM,B,2,3 defines a 2×3 array with elements $B(1,1), B(2,1), B(1,2), B(2,2), B(1,3)$, and $B(2,3)$. Use *STATUS, Par to display elements of array Par. You can write formatted data files (tabular formatting) from data held in arrays through the *VWRITE command.

If you use table parameters to define boundary conditions, then Var1, Var2, and/or Var3 can either specify a primary variable (listed in Table 144: *DIM - Primary Variables (p. 384)) or can be an independent parameter. If specifying an independent parameter, then you must define an additional table for the independent parameter. The additional table must have the same name as the independent parameter and may be a function of one or more primary variables or another independent parameter. All independent parameters must relate to a primary variable.

Tabular load arrays can be defined in both global Cartesian (default) or local (see below) coordinate systems by specifying CSYSID, as defined in LOCAL. For batch operations, you must specify your coordinate system first.

The following constraints apply when you specify a local coordinate system for your tabular loads:
Only Cartesian, cylindrical and spherical coordinate systems are supported
Angle values for Y in cylindrical or spherical coordinate systems must be input in degrees and must be positive values between 0 and 360 degrees ($0 \leq \mathrm{Y} \leq 360$)
Angle values for Z in spherical coordinate system must be input in degrees and must be positive values between -90 and $+90(-90 \leq Z \leq 90)$

If you are specifying a 4- or 5-D array or table, four additional fields (LMAX, MMAX, Var4, and Var5) are available. Thus, for a 4-D table, the command syntax would be:
*DIM, Par, Type, IMAX, JMAX, KMAX, LMAX, Var1, Var2, Var3, Var4, CSYSID
For a 5-D table, the command syntax would be:
*DIM, Par, Type, IMAX, JMAX, KMAX, LMAX, MMAX, Var1, Var2, Var3, Var4, Var5, CSYSID
You cannot create or edit 4- or 5-D arrays or tables using the GUI.
See Array Parameters for a detailed discussion on and examples for using array parameters.

Table 144 *DIM - Primary Variables

Primary Variable	Label for Var1, Var2, Var3
Time	TIME
Frequency	FREQ
X-coordinate location	X
Y-coordinate location	Y
Z-coordinate location	Z
Temperature	TEMP
Velocity	VELOCITY
Pressure	PRESSURE
Cyclic sector number	SECTOR

Note

The X, Y, and Z coordinate locations listed above are valid in gobal Cartesian, or local (Cartesian, cylindrical and spherical) coordinate systems. The VELOCITY label is applicable only to the calculated fluid velocity in element FLUID116.

When using PRESSURE as a primary variable, the underlying element must have the pressure DOF associated with it. For example, if you use FLUID141 or FLUID142, apply SF,ALL,CONV,\%presh\%,20.0 to apply a tabular film coefficient that will be evaluated correctly, based on the pressure. However, if the underlying element is SURF151 or SURF152, the film coefficient will not change because there is no underlying pressure.

The frequency label (FREQ) is valid for harmonic analyses only.

If you use table parameters to define boundary conditions, the table names (Par) must not exceed 32 characters.

In thermal analyses, if you apply tabular loads as a function of temperature but the rest of the model is linear (e.g., includes no temperature-dependent material properties or radiation), you should turn on NewtonRaphson iterations (NROPT,FULL) to evaluate the temperature-dependent tabular boundary conditions correctly.

This command is valid in any processor.

Menu Paths

Utility Menu>Parameters>Array Parameters>Define/Edit

/DIRECTORY, StrArray, FileName, Ext, Dir

Put the file names in the current directory into a string parameter array.

> APDL: Array Parameters
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Argument Descriptions

StrArray

Name of the "string array" parameter which will hold the returned values. String array parameters are similar to character arrays, but each array element can be as long as 128 characters. If the string parameter does not exist, it will be created. The array will be created as: *DIM,StrArray,STRING,64,2,numFileName

FileName

File name (64 characters maximum). Only files matching this name will be returned. The FileName ALL may match any file name.

Ext

File name extension (8 characters maximum). Only files with an extension matching this name will be returned. A blank or ALL will match any extension.

Directory

The directory in which the files reside. The default is the current working directory.

Notes

The /DIRECTORY command gets the file names in the current directory and puts them into a string parameter array. Each file will be included in the array as a name-extension pair.

Menu Paths

This command cannot be accessed from a menu.

DISPLAY

Specifies "Display settings" as the subsequent status topic.

POST1:Status
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Notes

This is a status [STAT] topic command. Status topic commands are generated by the GUI and will appear in the log file (Jobname. LOG) if status is requested for some items under Utility Menu> List> Status. This command will be immediately followed by a STAT command, which will report the status for the specified topic.

If entered directly into the program, the STAT command should immediately follow this command.

Menu Paths

Utility Menu>List>Status>General Postproc>Plot Results

/DIST, wN, DVAL, KFACT

Specifies the viewing distance for magnifications and perspective.

GRAPHICS:Views
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
wn
Window number (or ALL) to which command applies (defaults to 1).
DVAL
Distance along the view line from the observer to the focus point (defaults to value producing full-window display). Distances "too close" to the object will produce excessive magnifications. If $D V A L=A U T O, z e r o$, or blank, the program will calculate the distance automatically. If $D V A L=U S E R$, the distance of last display will be used (useful when last display automatically calculated distance).

KFACT
DVAL interpretation key:

0

Interpret numerical $D V A L$ values as described above.

1

Interpret DVAL as a multiplier on the current distance (DVAL of 2 gives twice the current distance; 0.5 gives half the current distance, etc.).

Command Default

Distance is automatically calculated to produce full window magnification.

Notes

The scale factor is relative to the window shape. For example, for objects centered in a square window and with parallel projection (no perspective), a distance of $\ell / 2(+10 \%)$ produces a full window magnification, where ℓ is the largest in-plane vertical or horizontal dimension. See also /AUTO and /USER commands.

This command is valid in any processor.

Menu Paths

Utility Menu>PlotCtrls>Pan, Zoom, Rotate Utility Menu>PlotCtrls>View Settings>Magnification

DJ, ELEM, LABEL, VALUE
Specifies boundary conditions on the components of relative motion of a joint element.
SOLUTION:FE Constraints
MP ME ST PR PRN <> <> FL EM EH <> PP <> EME MFS
ELEM
Element number or ALL to be specified.

LABEL

Valid labels are:
UX
Displacement in local x direction.
UY
Displacement in local y direction.
UZ
Displacement in local z direction.
ROTX
Rotation about local x axis.
ROTY
Rotation about local y axis.
ROTZ
Rotation about local y axis.

VELX

Linear velocity in local x direction.

VELY

Linear velocity in local y direction.

VELZ

Linear velocity in local z direction.

OMGX

Angular velocity in local x direction.

OMGY

Angular velocity in local y direction.

OMGZ

Angular velocity in local z direction.

ACCX

Linear acceleration in local x direction.

ACCY

Linear acceleration in local y direction.

ACCZ

Linear acceleration in local z direction.
DMGX
Angular acceleration in local x direction.

DMGY

Angular acceleration in local y direction.

DMGZ

Angular acceleration in local z direction.

VALUE

Value of the label.

Notes

This command is valid for MPC184 joint elements. See DJDELE for information on deleting boundary conditions applied with the DJ command.

You can apply only one displacement, velocity, or acceleration load at any relative degree of freedom. If multiple loads are specified, the last applied load overrides the previous ones. For example, the following commands apply loads to element 100:

D,100,UX,Value
D,100,VELX,Value
In this case, the velocity load (VELX) applied in the last command will override the displacement load (UX).
Tabular boundary conditions (VALUE $=$ \%tabname\%) can be used.

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Displacement>On Joint Elems Main Menu>Solution>Define Loads>Apply>Structural>Displacement>On Joint Elems

DJDELE, $\operatorname{elem,~LAB~}$

Deletes boundary conditions on the components of relative motion of a joint element.

> SOLUTION: FE Constraints
> MP ME ST PR PRN <> <> FL EM EH <> PP <> EME MFS

ELEM

Element number or ALL. ALL (or leaving this field blank) will delete all joint element boundary conditions specified by LAB.

LAB

Valid labels are:
UX
Displacement in local x direction.
UY
Displacement in local y direction.
UZ
Displacement in local z direction.
ROTX
Rotation about local x axis.

ROTY

Rotation about local y axis.

ROTZ

Rotation about local z axis.

VELX

Linear velocity in local x direction.
VELY
Linear velocity in local y direction.
VELZ
Linear velocity in local z direction.
OMGX
Angular velocity in local x direction.

OMGY

Angular velocity in local y direction.

OMGZ

Angular velocity in local z direction.
ACCX
Linear acceleration in local x direction.
ACCY
Linear acceleration in local y direction.
ACCZ
Linear acceleration in local z direction.
DMGX
Angular acceleration in local x direction.

DMGY
Angular acceleration in local y direction.
DMGZ
Angular acceleration in local z direction.
ALL, or (blank)
Delete all applied boundary conditions.

Notes

This command is valid for MPC184 joint elements. See DJ for information on specifying boundary conditions on the components of relative motion of a joint element.

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Delete>All Load Data>All Constraint>On Joint Elems
Main Menu>Preprocessor>Loads>Define Loads>Delete>Structural>Displacement>On Joint Elems Main Menu>Solution>Define Loads>Delete>All Load Data>All Constraint>On Joint Elems Main Menu>Solution>Define Loads>Delete>Structural>Displacement>On Joint Elems

DJLIST, Elem

Lists boundary conditions applied to joint elements.
SOLUTION: FE Constraints
MP ME ST PR PRN <> <> <> EM EH <> PP <> EME MFS

Elem

Element number or ALL (or blank). Lists joint element boundary conditions on the specified element(s).

Notes

This command is valid for MPC184 joint elements. See DJ for information on specifying boundary conditions on joint elements.

Menu Paths

Utility Menu>List>Loads>Joint Element DOF Constraints>On Picked Element

DK, KPOI, Lab, VALUE, VALUE2, KEXPND, Lab2, Lab3, Lab4, Lab5, Lab6
Defines DOF constraints at keypoints.
SOLUTION:Solid Constraints
MP ME ST PR PRN <> <> <> EM EH <> PP <> EME MFS

KPOI

Keypoint at which constraint is to be specified. If ALL, apply to all selected keypoints [KSEL]. If $K P O I=$ P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for KPOI.

Lab

Valid degree of freedom label. If ALL, use all appropriate labels except HDSP. Structural labels: UX, UY, or UZ (displacements); ROTX, ROTY, or ROTZ (rotations); WARP (warping); HDSP (hydrostatic pressure). Thermal labels: TEMP, TBOT, TE2, TE3, . . ., TTOP (temperature). Electric labels: VOLT (voltage). Magnetic labels: MAG (scalar magnetic potential); AX, AY, or AZ (vector magnetic potentials).

VALUE

Degree of freedom value or table name reference for tabular boundary conditions. To specify a table, enclose the table name in percent signs (\%) (e.g., DK,NODE,TEMP,\%tabname\%). Use the *DIM command to define a table.

VALUE2

Second degree of freedom value (if any). If the analysis type and the degree of freedom allow a complex input, VALUE (above) is the real component and VALUE2 is the imaginary component.

KEXPND

Expansion key:
0
Constraint applies only to the node at this keypoint.
1
Flags this keypoint for constraint expansion.

Lab2, Lab3, Lab4, . . ., Lab6

Additional degree of freedom labels. The same values are applied to the keypoints for these labels.

Notes

A keypoint may be flagged using KEXPND to allow its constraints to be expanded to nodes on the attached solid model entities having similarly flagged keypoint constraints. Constraints are transferred from keypoints to nodes with the DTRAN or SBCTRAN commands. The expansion uses interpolation to apply constraints to the nodes on the lines between flagged keypoints. If all keypoints of an area or volume region are flagged and the constraints (label and values) are equal, the constraints are applied to the interior nodes of the region. See the D command for a description of nodal constraints.

Tabular boundary conditions (VALUE = \%tabname\%) are available only for the following degree of freedom labels: Electric (VOLT), structural (UX, UY, UZ, ROTX, ROTY, ROTZ), and temperature (TEMP, TBOT, TE2, TE3, . ., TTOP).

Constraints specified by the DK command can conflict with other specified constraints. See Resolution of Conflicting Constraint Specifications in the Basic Analysis Guide for details.

This command is also valid in PREP7.

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Boundary>TimeInt>On Keypoints Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Boundary>Voltage>On Keypoints Main Menu>Preprocessor>Loads>Define Loads>Apply>Magnetic>Boundary>ScalarPot>On Keypoints Main Menu>Preprocessor>Loads $>$ Define Loads $>$ Apply $>$ Magnetic $>$ Boundary $>$ VectorPot $>$ On Keypoints Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Displacement>On Keypoints Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Spectrum>BasePSD>On Keypoints Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Spectrum>MultiPtBas>On Keypoints
Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Temperature>On Keypoints Main Menu>Preprocessor>Loads>Define Loads>Delete>Structural>Spectrum>BasePSD>On Keypoints Main Menu>Preprocessor>Loads>Define Loads>Delete>Structural>Spectrum>MultiPtBas>On Keypoints Main Menu>Preprocessor>LS-DYNA Options>Constraints>Apply>On Keypoints Main Menu>Solution>Constraints>Apply>On Keypoints
Main Menu>Solution>Define Loads>Apply>Electric>Boundary>TimeInt>On Keypoints Main Menu>Solution>Define Loads>Apply>Electric>Boundary>Voltage>On Keypoints Main Menu>Solution>Define Loads>Apply>Magnetic>Boundary>ScalarPot>On Keypoints Main Menu>Solution>Define Loads>Apply>Magnetic>Boundary>VectorPot>On Keypoints Main Menu>Solution>Define Loads>Apply>Structural>Displacement>On Keypoints Main Menu>Solution>Define Loads>Apply>Structural>Spectrum>BasePSD>On Keypoints Main Menu>Solution>Define Loads>Apply>Structural>Spectrum>MultiPtBas>On Keypoints Main Menu>Solution>Define Loads>Apply>Thermal>Temperature>On Keypoints Main Menu>Solution>Define Loads>Delete>Structural>Spectrum>BasePSD>On Keypoints Main Menu>Solution>Define Loads>Delete>Structural>Spectrum>MultiPtBas>On Keypoints

DKDELE, KPOI, Lab
Deletes DOF constraints at a keypoint.

> SOLUTION: Solid Constraints
> MP ME ST PR PRN <> <> <> EM EH <> PP <> EME MFS

KPOI

Keypoint for which constraint is to be deleted. If ALL, delete for all selected keypoints [KSEL]. If KPOI = P , graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for KPOI.

Lab
Valid degree of freedom label. If ALL, use all appropriate labels. Structural labels: UX, UY, or UZ (displacements); ROTX, ROTY, or ROTZ (rotations); WARP (warping). Thermal labels: TEMP, TBOT, TE2, TE3, ..., TTOP (temperature). FLOTRAN fluid labels: PRES (pressure); VX, VY, or VZ (velocities); ENKE or ENDS (turbulent kinetic energy or turbulent energy dissipation); SP01 through SP06 (multiple species mass fractions) or their user-defined names. Electric label: VOLT (voltage). Magnetic labels: MAG (scalar magnetic potential); AX, AY, or AZ (vector magnetic potentials). High-frequency electromagnetic label: AX (Electric Wall or Magnetic Wall boundary condition).

Notes

Deletes the degree of freedom constraints (and all corresponding finite element constraints) at a keypoint. See the DDELE command for details.

This command is also valid in PREP7.

Menu Paths

> Main Menu>Preprocessor>Loads>Define Loads>Delete>All Load Data>All Constraint>On All KPs Main Menu $>$ Preprocessor>Loads>Define Loads>Delete>Electric>Boundary>TimeInt>On Keypoints Main Menu>Preprocessor>Loads>Define Loads>Delete>Electric>Boundary>Voltage>On Keypoints Main Menu>Preprocessor>Loads>Define Loads>Delete>Fluid/ANSYS>Pressure DOF>On Keypoints Main Menu>Preprocessor>Loads>Define Loads>Delete>Fluid/CFD>Displacement>On Keypoints Main Menu $>$ Preprocessor>Loads>Define Loads>Delete>Fluid/CFD>Pressure DOF>On Keypoints Main Menu>Preprocessor>Loads>Define Loads>Delete>Fluid/CFD>Velocity>On Keypoints Main Menu>Preprocessor>Loads>Define Loads>Delete>Magnetic>Boundary>ScalarPot>On Keypoints Main Menu>Preprocessor>Loads>Define Loads>Delete>Magnetic>Boundary>VectorPot>On Keypoints
> Main Menu>Preprocessor>Loads>Define Loads>Delete>Structural>Displacement>On Keypoints Main Menu>Preprocessor>Loads>Define Loads>Delete>Thermal>Temperature>On Keypoints Main Menu>Preprocessor>LS-DYNA Options>Constraints>Delete>On Keypoints Main Menu>Solution>Constraints>Delete>On Keypoints Main Menu>Solution>Define Loads>Delete>All Load Data>All Constraint>On All KPs Main Menu>Solution>Define Loads>Delete>Electric>Boundary>Timelnt>On Keypoints Main Menu>Solution>Define Loads>Delete>Electric>Boundary>Voltage>On Keypoints Main Menu>Solution>Define Loads>Delete>Fluid/ANSYS>Pressure DOF $>$ On Keypoints Main Menu>Solution>Define Loads>Delete>Fluid/CFD>Displacement>On Keypoints Main Menu>Solution>Define Loads>Delete>Fluid/CFD>Pressure DOF>On Keypoints Main Menu>Solution>Define Loads>Delete>Fluid/CFD>Velocity>On Keypoints Main Menu>Solution>Define Loads>Delete>Magnetic>Boundary>ScalarPot>On Keypoints Main Menu>Solution>Define Loads>Delete>Magnetic>Boundary>VectorPot>On Keypoints Main Menu>Solution>Define Loads>Delete>Structural>Displacement>On Keypoints Main Menu>Solution>Define Loads>Delete>Thermal>Temperature>On Keypoints

DKLIST, KPOI

Lists the DOF constraints at keypoints.
SOLUTION: Solid Constraints
MP ME ST PR PRN <> <> <> EM EH <> PP <> EME MFS

KPOI

List constraints for this keypoint. If ALL (default), list for all selected keypoints [KSEL]. If $K P O I=P$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for KPOI.

Notes

Listing applies to the selected keypoints [KSEL] and the selected degree of freedom labels [DOFSEL].

This command is valid in any processor.

Menu Paths

Utility Menu>List>Loads>DOF Constraints>On All Keypoints
Utility Menu>List>Loads>DOF Constraints>On Picked KPs

DL,
, LINE, AREA, Lab, Value1, Value 2

Defines DOF constraints on lines.

> SOLUTION: Solid Constraints
> MP ME ST PR PRN <> <> <> EM EH <> PP <> EME MFS

LINE

Line at which constraints are to be specified. If ALL, apply to all selected lines [LSEL]. If LINE $=\mathrm{P}$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for LINE

AREA
Area containing line. The normal to the symmetry or antisymmetry surface is assumed to lie on this area. Defaults to the lowest numbered selected area containing the line number.

Lab

Symmetry label (see 2 (p. 395)):

SYMM

Generate symmetry constraints for non-FLOTRAN models.
ASYM
Generate antisymmetry constraints for non-FLOTRAN models.
ANSYS DOF labels (see 3 (p. 395), 4 (p. 396), and 5 (p. 396)):
UX
Displacement in X direction.
UY
Displacement in Y direction.
UZ
Displacement in Z direction.
ROTX
Rotation about X axis.
ROTY
Rotation about Y axis.
ROTZ
Rotation about Z axis.
HDSP
Hydrostatic pressure.
WARP
Warping magnitude.

TEMP, TBOT, TE2, TE3, . . ., TTOP

Temperature

VOLT

Electric scalar potential.

AX

Magnetic vector potential in X direction.
AY
Magnetic vector potential in Y direction.
AZ
Magnetic vector potential in Z direction.
ALL
Applies all appropriate DOF labels except HDSP.
FLOTRAN standard DOF labels (see 3 (p. 395)): VX, VY, VZ, PRES, TEMP, ENKE, ENDS
FLOTRAN Species Labels (see 4 (p. 396)): SP01, SP02, SP03, SP04, SP05, SP06
FLOTRAN Arbitrary Lagrangian-Eulerian formulation Mesh Displacement Labels (see 6 (p. 396)): UX, UY, UZ

Value1

Value of DOF (real part) or table name reference on the line. Valid for all DOF labels. To specify a table, enclose the table name in \% signs (e.g., DL,LINE,AREA,TEMP,\%tabname\%). Use the *DIM command to define a table.

If $L a b=$ ENKE and Value1 $=-1$, a FLOTRAN flag is set to indicate a moving wall.
If Lab $=$ ENDS and Value1 $=-1$, FLOTRAN generalized symmetry conditions are applied. Velocity components are set tangential to the symmetry surface if the ALE formulation is not activated. They are set equal to the mesh velocity if the ALE formulation is activated.
Value2
For FLOTRAN DOFs:
0
Values are applied only to nodes within the line.
1
Values are applied to the endpoints of the line as well as to the internal nodes (see 3 (p. 395)).
For VOLT DOFs:
Actual value of the imaginary component of the degree of freedom.

Notes

1. You can transfer constraints from lines to nodes with the DTRAN or SBCTRAN commands. See the DK command for information about generating other constraints at lines.
2. Symmetry and antisymmetry constraints are generated as described on the DSYM command.
3. For the velocity DOF (VX, VY, VZ), a zero value will override a nonzero value at the intersection of two lines.
4. You can use the MSSPEC command to change FLOTRAN species labels to user-defined labels. You must define these labels with the MSSPEC command before using them on the DL command.
5. Setting Lab $=$ VOLT and Valuel $=0$ applies the J-normal boundary condition (current density vector (J) flows normal to the line). No input is required for the J-parallel condition because it is the natural boundary condition.
6. Tabular boundary conditions (VALUE $=$ \%tabname\%) are available only for the following degree of freedom labels: Electric (VOLT), FLOTRAN (UX, UY, UZ, PRES, VX, VY, VZ, ENKE, ENDS, TEMP, SP01, SP02, SP03, SP04, SP05, and SP06); Structural (UX, UY, UZ, ROTX, ROTY, ROTZ), and temperature (TEMP, TBOT, TE2, TE3, . . ., TTOP).
7. Constraints specified by the DL command can conflict with other specified constraints. See Resolution of Conflicting Constraint Specifications in the Basic Analysis Guide for details.
8. This command is also valid in PREP7.

Menu Paths

Main Menu $>$ Preprocessor>Loads $>$ Define Loads $>$ Apply $>$ Electric $>$ Boundary $>$ PerfEC $>$ On Lines Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Boundary>Voltage>J-Normal>On Lines
Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Boundary>Voltage>On Lines Main Menu $>$ Preprocessor $>$ Loads $>$ Define Loads $>$ Apply $>$ Magnetic $>$ Boundary $>$ VectorPot $>$ Flux Par'l>On Lines
Main Menu>Preprocessor>Loads>Define Loads>Apply>Magnetic>Boundary>VectorPot>On Lines Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Displacement>Antisymm B.C.>...with Area

Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Displacement>Antisymm B.C.>On Lines
Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Displacement>On Lines Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Displacement>Symmetry B.C.>...with Area

Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Displacement>Symmetry B.C.>On Lines
Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Temperature>On Lines
Main Menu>Preprocessor>LS-DYNA Options>Constraints>Apply>...with Area
Main Menu>Preprocessor>LS-DYNA Options>Constraints>Apply>On Lines
Main Menu>Solution>Constraints>Apply>...with Area
Main Menu>Solution>Constraints>Apply>On Lines
Main Menu>Solution>Define Loads $>$ Apply $>$ Electric $>$ Boundary $>$ PerfEC $>$ On Lines
Main Menu $>$ Solution $>$ Define Loads $>$ Apply $>$ Electric $>$ Boundary $>$ Voltage $>$ J-Normal $>$ On Lines
Main Menu>Solution>Define Loads $>$ Apply $>$ Electric $>$ Boundary $>$ Voltage $>$ On Lines
Main Menu>Solution>Define Loads>Apply>Magnetic>Boundary>VectorPot>Flux Par'l>On Lines
Main Menu>Solution>Define Loads $>$ Apply $>$ Magnetic $>$ Boundary $>$ VectorPot $>$ On Lines
Main Menu>Solution>Define Loads>Apply>Structural>Displacement>Antisymm B.C.>...with Area
Main Menu>Solution>Define Loads>Apply>Structural>Displacement>Antisymm B.C.>On Lines
Main Menu>Solution>Define Loads>Apply>Structural>Displacement>On Lines
Main Menu>Solution>Define Loads>Apply>Structural>Displacement>Symmetry B.C.>...with Area Main Menu>Solution>Define Loads>Apply>Structural>Displacement>Symmetry B.C.>On Lines Main Menu>Solution>Define Loads>Apply>Thermal>Temperature>On Lines

DLDELE, LINE, Lab

Deletes DOF constraints on a line.

SOLUTION:Solid Constraints
MP ME ST PR PRN <> <> <> EM EH <> PP <> EME MFS

LINE

Line for which constraints are to be deleted. If ALL, delete for all selected lines [LSEL]. If LINE = P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for LINE

Lab

Constraint label:
ALL
All constraints.

SYMM

Symmetry constraints.
ASYM
Antisymmetry constraints.
UX
Displacement in X direction.
UY
Displacement in Y direction.
UZ
Displacement in Z direction.
ROTX
Rotation about X axis.
ROTY
Rotation about Y axis.
ROTZ
Rotation about Z axis.
WARP
Warping magnitude.
VX
Velocity component in X direction.
VY
Velocity component in Y direction.
VZ
Velocity component in Z direction.
PRES
Pressure.
TEMP, TBOT, TE2, TE3, . . ., TTOP
Temperature.
ENKE
Turbulent Kinetic Energy.

ENDS

Energy Dissipation Rate.
VOLT
Electric scalar potential.

SP01SP06

Multiple Species Mass Fraction.

AX

Magnetic vector potential in X direction.
AY
Magnetic vector potential in Y direction.
AZ
Magnetic vector potential in Z direction.

Notes

Deletes the degree of freedom constraints (and all corresponding finite element constraints) on a line previously specified with the DL command. See the DDELE command for delete details.

Warning

On previously meshed lines, all constraints on affected nodes will also be deleted, whether or not they were specified by the DL command.

If the multiple species labels have been changed to user-defined labels via the MSSPEC command, use the user-defined labels.

This command is also valid in PREP7.

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Delete>All Load Data>All Constraint>On All Lines Main Menu>Preprocessor>Loads>Define Loads>Delete>Electric>Boundary>PerfEC>On Lines Main Menu>Preprocessor>Loads>Define Loads>Delete>Electric>Boundary>Voltage>On Lines Main Menu>Preprocessor>Loads>Define Loads>Delete>Fluid/ANSYS>Pressure DOF>On Lines Main Menu>Preprocessor>Loads>Define Loads>Delete>Fluid/CFD>Displacement>On Lines Main Menu>Preprocessor>Loads>Define Loads>Delete>Fluid/CFD>Pressure DOF>On Lines Main Menu>Preprocessor>Loads>Define Loads>Delete>Fluid/CFD>Species>On Lines Main Menu>Preprocessor>Loads>Define Loads>Delete>Fluid/CFD>Turbulence>On Lines Main Menu>Preprocessor>Loads>Define Loads>Delete>Fluid/CFD $>$ Velocity $>$ On Lines Main Menu>Preprocessor>Loads>Define Loads>Delete>Magnetic>Boundary>VectorPot>On Lines Main Menu>Preprocessor>Loads>Define Loads>Delete>Structural>Displacement>On Lines Main Menu>Preprocessor>Loads>Define Loads>Delete>Thermal>Temperature>On Lines Main Menu>Preprocessor>LS-DYNA Options>Constraints>Delete>On Lines Main Menu>Solution>Constraints>Delete>On Lines
Main Menu>Solution>Define Loads>Delete>All Load Data>All Constraint>On All Lines
Main Menu $>$ Solution $>$ Define Loads $>$ Delete $>$ Electric $>$ Boundary $>$ PerfEC $>$ On Lines Main Menu $>$ Solution $>$ Define Loads $>$ Delete $>$ Electric>Boundary $>$ Voltage $>$ On Lines Main Menu>Solution>Define Loads>Delete>Fluid/ANSYS>Pressure DOF>On Lines Main Menu>Solution>Define Loads>Delete>Fluid/CFD>Displacement>On Lines

Main Menu>Solution>Define Loads>Delete>Fluid/CFD>Pressure DOF>On Lines Main Menu>Solution>Define Loads>Delete>Fluid/CFD>Species>On Lines
 Main Menu>Solution>Define Loads>Delete>Fluid/CFD>Turbulence>On Lines
 Main Menu>Solution>Define Loads>Delete>Fluid/CFD>Velocity>On Lines
 Main Menu>Solution>Define Loads>Delete>Magnetic>Boundary>VectorPot>On Lines
 Main Menu>Solution>Define Loads>Delete>Structural>Displacement>On Lines
 Main Menu>Solution>Define Loads>Delete>Thermal>Temperature>On Lines

DLIST, NODE1, NODE2, NINC

Lists DOF constraints.

SOLUTION: FE Constraints
MP ME ST PR PRN <> <> FL EM EH <> PP <> EME MFS

NODE1, NODE2, NINC

List constraints for nodes NODE1 to NODE2 (defaults to NODE1) in steps of NINC (defaults to 1). If ALL (default), NODE2 and NINC are ignored and constraints for all selected nodes [NSEL] are listed. If NODE1 $=P$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NODE1(NODE2 and NINC are ignored).

Notes

Listing applies to the selected nodes [NSEL] and the selected degree of freedom labels [DOFSEL].
This command is valid in any processor.

Menu Paths

Utility Menu>List>Loads>DOF Constraints>On All Nodes Utility Menu>List>Loads>DOF Constraints>On Picked Nodes

DLLIST, LINE

Lists DOF constraints on a line.

$$
\begin{aligned}
& \text { SOLUTION: Solid Constraints } \\
& \text { MP ME ST PR PRN <> <> <> EM EH <> PP <> EME MFS }
\end{aligned}
$$

LINE

List constraints for this line. If ALL (default), list for all selected lines [LSEL]. If LINE = P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for LINE.

Notes

Lists the degree of freedom constraints on a line previously specified with the DL command.
This command is valid in any processor.

Menu Paths

Utility Menu>List>Loads>DOF Constraints>On All Lines
Utility Menu>List>Loads>DOF Constraints>On Picked Lines
*DMAT, Matrix, Type, Method, Val1, Val2, Val3, Val4

Creates a dense matrix.

APDL: Matrix Operations
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Argument Descriptions

Matrix

Name used to identify the matrix. Must be specified.

Type

Matrix type:
D --
Double precision real values (default).
Z --
Complex double precision values.
I --
Integer values.

Method

Method used to create the matrix:
ALLOC --
Allocate space for a matrix (default).
COPY --
Copy an existing matrix.
IMPORT --
Import the matrix from a file.

Val1, Val2, Val3, Val4

Additional input. The meaning of Vall through Val4 will vary depending on the specified Method.
See details below.

The following Valx fields are used with Method = ALLOC:

Val1

Number of rows in the matrix.
Val2
Number of columns in the matrix.

Val3

Memory allocation type:

INCORE --

In-core memory allocation (default).

OUTOFCORE --

Out-of-core memory allocation.
The following Valx fields are used with Method = COPY:
Val1
Name of the matrix to copy.
Val2
Memory allocation type:
INCORE --
In-core memory allocation (default).
OUTOFCORE --
Out-of-core memory allocation.
The following table describes the Valx fields used with Method = IMPORT:

Method = IMPORT				
Val1	Val2	Val3	Val4	Description
FULL	File name	Matrix type: STIFF - Stiffness (or conduct- ivity) matrix MASS - Mass (or specific heat) matrix DAMP - Damping matrix RHS - Load vector	(not used)	Import a matrix or load vector from an existing FULL file.
MDEE	File name	First mode number	Last mode number	Import a set of modes from an existing MODE file.
CMS	File name	Mode type: NOR - normal modes IRF - inertial relief modes CST - constraint modes	(not used)	Import a modal basis from an existing CMS file.
RST	File name	First data set number	Last data set number	Import degree of freedom results from an existing RST file.
SUB	File name	Matrix type: STIIFF - Stiffness (or conduct- ivity) matrix MASS - Mass (or specific heat) matrix DAMP - Damping matrix RHS - Load vector	(not used)	Import a matrix or load vector from an existing SUB file.
FB- MAT	File name	File format: ASCII BINARY	(not used)	Import a matrix from an exist- ing Harwell-Boeing format file.

EMAT	File name	Matrix type: STIFF - Stiffness (or conduct- ivity) matrix MASS - Mass (or specific heat) matrix DAMP - Damping matrix STRESS - Stress-stiffness matrix RHS - Load vector	Element number	Import an element matrix or load vector from an existing EMAT file.
MAT	File name	(not used)	(not used)	Restore from a previous *EX- PORT (FORMAT = MAT) com- mand.
AP- DL	Array para- meter name	(not used)	(not used)	Import an existing array parameter.
DMG	File name	Separator character (default = blank)	(not used)	Import a matrix from an exist- ing Nastran DMIG file.

Notes

This command allows you to create a dense matrix. To create a sparse matrix, use the *SMAT command. *SMAT is recommended for large matrices obtained from the .FULL or .HBMAT file.

Use the *VEC command to create a vector.
For very large matrices, use the OUTOFCORE option (Method = ALLOC or COPY) to keep some of the matrix on disk if there is insufficient memory.

Menu Paths

This command cannot be accessed from a menu.

DMOVE, NODE1, NODE2, NINC

Digitizes nodes on surfaces and along intersections.

PREP 7:Digitizing
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

NODE1, NODE2, NINC

Digitize nodes NODE1through NODE2 in steps of NINC. NODE2 defaults to NODE1 and NINC defaults to 1 .

Notes

Digitizes nodes on undefined surfaces, warped surfaces, and along intersection lines. Two orthogonal views showing the nodes on a plane in each view are required. No surfaces need be specified. Two coordinates are determined from the second view and the other coordinate is retained from the first view. Use the DIG command to first define nodes in one view (as determined from the DSET command). Then reset the view and use this command to move the nodes to the proper location.

Menu Paths

Main Menu>Preprocessor>Create>Nodes>Digitize Nodes>2-View Digitize

DMPEXT, SMODE, TMODE, Dmpname, Freqb, Freqe, NSTEPS

Extracts modal damping coefficients in a specified frequency range.

$$
\begin{array}{r}
\begin{array}{r}
\text { SOLUTION: Analysis Options } \\
\text { MP ME <> <> <> <> <> <> <> <> <> PP <> EME MFS }
\end{array}
\end{array}
$$

SMODE

Source mode number. There is no default for this field; you must enter an integer greater than zero.

TMODE

Target mode. Defaults to SMODE.

Dmpname

Array parameter name containing the damping results. Defaults to d_damp.

Freqb

Beginning frequency range (real number greater than zero) or 'EIG' at eigenfrequency of source mode. 'EIG' is valid only if SMODE = TMODE. Note that EIG must be enclosed in single quotes when this command is used on the command line or in an input file. There is no default for this field; you must enter a value.

Freqe

End of frequency range. Must be blank for Freqb = EIG. Default is Freqb.

NSTEPS

Number of substeps. Defaults to 1 .

Notes

DMPEXT invokes an ANSYS macro that uses modal projection techniques to compute the damping force by the modal velocity of the source mode onto the target mode. From the damping force, damping parameters are extracted. DMPEXT creates an array parameter Dmpname, with the following entries in each row:

- response frequency
- modal damping coefficient
- modal squeeze stiffness coefficient
- damping ratio
- squeeze-to-structural stiffness ratio

The macro requires the modal displacements from the file Jobname. EFL obtained from the RMFLVEC command. In addition, a node component FLUN must exist from all FLUID136 nodes. The computed damping ratio may be used to specify constant or modal damping by means of the DMPRAT or MDAMP commands. For Rayleigh damping, use the ABEXTRACT command to compute ALPHAD and BETAD damping parameters. See Thin Film Analysis for more information on thin film analyses.

The macro uses the LSSOLVE command to perform two load steps for each frequency. The first load case contains the solution of the source mode excitation and can be used for further postprocessing. Solid model boundary conditions are deleted from the model. In addition, prescribed nodal boundary conditions
are applied to the model. You should carefully check the boundary conditions of your model prior to executing a subsequent analysis.

This command is also valid in PREP7.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Solution>ThinFilm>DampExtract>Eigenfrequency Main Menu>Solution>ThinFilm>DampExtract>Frequency Range

DMPRAT, RATIO

Sets a constant damping ratio.

SOLUTION: Dynamic Options
MP ME ST PR PRN <> <> <> <> <> DY PP <> EME MFS

RATIO

Damping ratio (for example, 2\% is input as 0.02).

Command Default

Use damping as defined in the Structural Analysis Guide.

Notes

Sets a constant damping ratio for use in the mode superposition transient (ANTYPE,TRANS) analysis and the spectrum (ANTYPE,SPECTR) analysis.

Sets a constant structural damping ratio for use in the harmonic response (ANTYPE,HARMIC) analysis (full, reduced, and VT).

Note that for structures with multiple materials, MP,DMPR can be used to specify constant structural material damping coefficients for full harmonic analyses. MP,DMPR is not applicable for transient or spectrum analyses.

This command is also valid in PREP7.

Menu Paths

Main Menu>Preprocessor>Loads>Load Step Opts>Time/Frequenc>Damping Main Menu>Solution>Load Step Opts>Time/Frequenc>Damping

DNSOL, NODE, Item, Comp, V1, V2, V3, V4, V5, V6
Defines or modifies solution results at a node.
POST1:Set Up
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

NODE

Node for which results are specified. If ALL, apply to all selected nodes [NSEL]. If NODE = P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NODE.

Item

Label identifying results, see Table 145: DNSOL - Valid Item and Component Labels (p. 405). Items also require a component label.

Comp

Component of the item. Valid component labels are shown Table 145: DNSOL - Valid Item and Component Labels (p. 405) below.

v1, V2, v3, ..., v6

Value assigned to result. If zero, a zero value will be assigned. If blank, the value remains unchanged. Additional values (if any) assigned to the remaining components (in the order corresponding to the Comp list shown below for the specified Item (starting from the specified Comp label and proceeding to the right).

Notes

DNSOL can be used only with FULL graphics activated (/GRAPHICS,FULL); it will not work correctly with PowerGraphics activated.

DNSOL defines or modifies solution results in the database at a node. For example, DNSOL, $35, \mathrm{U}, \mathrm{X}, .001, .002, .001$ assigns values $0.001,0.002$, and 0.001 to UX, UY, and UZ (respectively) for node 35. All results that are changed in the database, including the nodal degree of freedom results, are available for all subsequent operations. All data is stored in the solution coordinate system, but will be displayed in the results coordinate system [RSYS]. Use the PRNSOL command to list the current results.

Data input by DNSOL is stored in temporary space and does not replace information in the database. Therefore, data input by this command may be overwritten if a change is made to the selected set of nodes.

Issuing the DNSOL command or its GUI equivalent requires you to place the data type (stress/strain) in the element nodal records. To get around this requirement, use the DESOL command or equivalent path to add a "dummy" element stress/strain record.

Result items are available depending on element type; check the individual element for availability. Valid item and component labels for element results are:

Table 145 DNSOL - Valid Item and Component Labels
Valid Item and Component Labels for Nodal DOF Results

Item	Comp	Descrip
U	X, Y, Z	X, Y, or Z structural displacement.
ROT	X, Y, Z	X, Y, or Z structural rotation.

Valid Item and Component Labels for Nodal DOF Results

Item
TEMP[1]
PRES
VOLT
MAG
V
A
X, Y, Z
X, Y, Z
ENKE
ENDS
Item

EPEL

NL
SEPL
SRAT
HPRES
EPEQ
PSV
PLWK

Comp
Description
Temperature.
Pressure.
Electric potential.
Magnetic scalar potential.
X, Y, or Z fluid velocity.
X, Y, or Z magnetic vector potential.
Turbulent kinetic energy.
Turbulent energy dissipation.

Valid Item and Component Labels for Area and Volume Element Results

Comp

Description
Component stress.
Principal stress.
Stress intensity.
Equivalent stress.
Component elastic strain.
Principal elastic strain.
Elastic strain intensity.
Elastic equivalent strain.
Component thermal strain.
Principal thermal strain.
Thermal strain intensity.
Thermal equivalent strain.
Component plastic strain.
Principal plastic strain.
Plastic strain intensity.
Plastic equivalent strain.
Component creep strain.
Principal creep strain.
Creep strain intensity.
Creep equivalent strain.
Swelling strain.
Equivalent stress (from stress-strain curve).
Stress state ratio.
Hydrostatic pressure.
Accumulated equivalent plastic strain.
Plastic state variable.
Plastic work/volume.

Valid Item and Component Labels for Area and Volume Element Results

Item	Comp	Description
SEND	ELASTIC	Elastic strain energy density.
"	PLASTIC	Plastic strain energy density.
"	CREEP	Creep strain energy density.
TG	X, Y, Z, SUM	Component thermal gradient or vector sum.
TF	X, Y, Z, SUM	Component thermal flux or vector sum.
PG	$X, Y, Z, S U M$	Component pressure gradient or vector sum.
EF	$X, Y, Z, S U M$	Component electric field or vector sum.
D	$X, Y, Z, S U M$	Component electric flux density or vector sum.
H	X,Y,Z, SUM	Component magnetic field intensity or vector sum.
B	$X, Y, Z, S U M$	Component magnetic flux density or vector sum.
FMAG	$X, Y, Z, S U M$	Component electromagnetic force or vector sum.
Valid Item Labels for FLOTRAN Nodal Results		
Item	Description	
TTOT	Total temperature.	
HFLU	Heat flux.	
HFLM	Heat transfer (film) coefficient.	
COND	Fluid laminar conductivity.	
PCOE	Pressure coefficient.	
PTOT	Total (stagnation) pressure.	
MACH	Mach number.	
STRM	Stream function. (2-D applications only.)	
DENS	Fluid density.	
VISC	Fluid laminar viscosity.	
EVIS	Fluid effective viscosity.	
CMUV	Turbulent viscosity coefficient.	
ECON	Fluid effective conductivity.	
YPLU	$\mathrm{Y}+$, a turbulent law of the wall parameter.	
TAUW	Shear stress at the wall.	

1. For SHELL131 and SHELL132 elements with $\operatorname{KEYOPT}(3)=0$ or 1 , use the labels TBOT, TE2, TE3, ..., TTOP instead of TEMP.

Menu Paths

Main Menu>General Postproc>Define/Modify>Nodal Results

*DO, Par, IVAL, FVAL, INC
Defines the beginning of a do-loop.

> APDL: Process Controls
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Argument Descriptions

Par

The name of the scalar parameter to be used as the loop index. See *SET for name restrictions. Any existing parameter of the same name will be redefined. There is no character parameter substitution for the Par field.

IVAL, FVAL, INC
Initially assign IVAL to Par. Increment IVAL by INC for each successive loop. If IVAL exceeds FVAL and INC is positive, the loop is not executed. INC defaults to 1 . Negative increments and non-integer numbers are allowed.

Notes

The block of commands following the *DO command (up to the *ENDDO command) is executed repeatedly until some loop control is satisfied. Printout is automatically suppressed on all loops after the first (include a /GOPR command to restore the printout). The command line loop control (Par,IVAL,FVAL,INC) must be input; however, a Use the *IF within the block can also be used to control looping [*EXIT, *CYCLE]. One level of internal file switching is used for each nested *DO. Twenty levels of nested do-loops are allowed.

Note

Do-loops that include /INPUT, *USE, or an "Unknown Command" macro, have less nesting available because each of these operations also uses a level of file switching. The *DO, *ENDDO, and any *CYCLE and *EXIT commands for a do-loop must all be read from the same file (or keyboard). You cannot use the MULTIPRO or *CREATE commands within a *DO-loop. Picking operations should also not be used within a *DO-loop.

This command is valid in any processor.

Menu Paths

This command cannot be accessed from a menu.

DOF, Lab1, Lab2, Lab3, Lab4, Lab5, Lab6, Lab7, Lab8, Lab9, Lab10

Adds degrees of freedom to the current DOF set.

PREP 7: Element Type
MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS
Lab1, Lab2, Lab3, . . . , Lab10
Valid labels are: UX, UY, UZ (structural displacements); ROTX, ROTY, ROTZ (structural rotations); TEMP, TBOT, TE2, TE3, . . ., TTOP (temperatures); PRES (pressure); VOLT (voltage); MAG (magnetic scalar potential); AX, AY, AZ (magnetic vector potentials); CURR (current); EMF (electromotive force drop); DELETE.

Command Default

Use degree of freedom set determined from element types.

Notes

The degree of freedom (DOF) set for the model is determined from all element types defined. This command may be used to add to the current set. The ALL label may be used on some commands to represent all labels of the current degree of freedom set for the model. Issue the DOF command with no arguments to list the current set. Use the DELETE label to delete any previously added DOFs and return to the default DOF set.

Product Restrictions

Command Option Lab	Available Products
Ux, Uy,Uz, Rx,Ry,Rz	MP ME ST PR PRN $<><>$ FL $<><>$ DY PP $<>$ EME MFS
MAG,VOLT	MP $<><><><><><><>$ EM $<><>$ PP $<>$ EME $<>$
Ax,Ay,Az	MP $<><><><><><><>$ EM EH $<>$ PP $<>$ EME $<>$
PRES	MP ME $<><><><><><><><><>$ PP $<>$ EME MFS
TEMP,TBOT,TE2,TE3	MP ME $<>$ PR PRN $<><>$ FL $<><><>$ PP $<>$ EME MFS
CURR,EMF	MP ME $<><><><><><>$ EM $<><>$ PP $<>$ EME MFS
DELETE	MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS

Menu Paths

Main Menu>Preprocessor>Element Type>Add DOF Main Menu>Preprocessor>Element Type>Remove DOFs

DOFSEL, Type, Dof1, Dof2, Dof3, Dof4, Dof5, Dof6

Selects a DOF label set for reference by other commands.

DATABASE:Selecting
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
Type
Label identifying the type of select:

S
Select a new set of labels.
A
Add labels to the current set.
U
Unselect (remove) labels from the current set.

ALL

Restore the full set of labels.

STAT

Display the current select status.

Dof1, Dof2, Dof3, ..., Dof6

Used only with Type = S, A, or U. Valid structural labels: UX, UY, or UZ (displacements); U (UX, UY, and UZ); ROTX, ROTY, or ROTZ (rotations); ROT (ROTX, ROTY, and ROTZ); DISP (U and ROT); HDSP (Hydrostatic pressure). Valid thermal labels: TEMP, TBOT, TE2, TE3, ...,TTOP (temperature). Valid fluid flow labels: PRES (pressure); VX, VY, or VZ (fluid velocities); V (VX, VY, and VZ); ENKE, ENDS (turbulent kinetic energy, turbulent energy dissipation); EN (ENKE and ENDS turbulent energies) (FLOTRAN). Valid electric labels: VOLT (voltage); EMF (electromotive force drop); CURR (current). Valid magnetic labels: MAG (scalar magnetic potential); AX, AY or AZ (vector magnetic potentials); A (AX, AY and AZ); CURR (current). Valid structural force labels: FX, FY, or FZ (forces); F (FX, FY, and FZ); MX, MY, or MZ (moments); M (MX, MY, and MZ); FORC (F and M); DVOL (fluid mass flow rate). Valid thermal force labels: HEAT, HBOT, HE2, HE3, ..., HTOP (heat flow). Valid fluid flow force labels: FLOW (fluid flow). Valid electric force labels: AMPS (current flow), CHRG (electric charge). Valid magnetic force labels: FLUX (scalar magnetic flux); CSGX, CSGY, or CSGZ (magnetic current segments); CSG (CSGX, CSGY, and CSGZ).

Command Default

Degree of freedom (and the corresponding force) labels are determined from the model.

Notes

Selects a degree of freedom label set for reference by other commands. The label set is used on certain commands where ALL is either input in the degree of freedom label field or implied. The active label set has no effect on the solution degrees of freedom. Specified labels which are not active in the model (from the ET or DOF command) are ignored. As a convenience, a set of force labels corresponding to the degree of freedom labels is also selected. For example, selecting UX also causes FX to be selected (and vice versa). The force label set is used on certain commands where ALL is input in the force label field.

This command is valid in any processor.

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Operate>Scale FE Loads>Constraints
Main Menu>Preprocessor>Loads>Define Loads>Operate>Scale FE Loads>Forces
Main Menu>Preprocessor>Loads>Define Loads>Settings>Replace vs Add>Constraints
Main Menu>Preprocessor>Loads>Define Loads>Settings>Replace vs Add>Forces
Main Menu>Solution>Define Loads>Operate>Scale FE Loads>Constraints
Main Menu>Solution>Define Loads>Operate>Scale FE Loads>Forces
Main Menu>Solution>Define Loads>Settings>Replace vs Add>Constraints
Main Menu>Solution>Define Loads>Settings>Replace vs Add>Forces

DOMEGA, DOMGX, DOMGY, DOMGZ

Specifies the rotational acceleration of the structure.
SOLUTION: Inertia
MP ME ST PR PRN <> <> <> <> <> DY PP <> EME MFS

DOMGX, DOMGY, DOMGZ
Rotational acceleration of the structure about the global Cartesian X, Y, and Z axes.

Notes

Specifies the rotational acceleration of the structure about each of the global Cartesian axes. Rotational accelerations may be defined in analysis types ANTYPE,STATIC, HARMIC (full or mode superposition), TRANS (full or mode superposition), and SUBSTR. See Acceleration Effect in the Theory Reference for the Mechanical APDL and Mechanical Applications for details. Units are radians/time ${ }^{2}$.

The DOMEGA command supports tabular boundary conditions (\% TABNAME_X\%, \%TABNAME_Y\%, and \%TABNAME_Z\%) for DOMEGA_X, DOMEGA_Y, and DOMEGA_Z input values (*DIM) for full transient and harmonic analyses.

Related commands are ACEL, CGLOC, CGOMGA, DCGOMG, and OMEGA.
In a modal harmonic or transient analysis, you must apply the load in the modal portion of the analysis. ANSYS calculates a load vector and writes it to the mode shape file, which you can apply via the LVSCALE command.

This command is also valid in PREP7.

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Inertia>Angular Accel>Global Main Menu>Preprocessor>Loads>Define Loads>Delete>Structural>Inertia>Angular Accel>Global Main Menu>Solution>Define Loads>Apply>Structural>Inertia>Angular Accel>Global Main Menu>Solution>Define Loads>Delete>Structural>Inertia>Angular Accel>Global

*DOWHILE, Par

Loops repeatedly through the next *ENDDO command.
APDL: Process Controls
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Argument Descriptions

Par
The name of the scalar parameter to be used as the loop index. There is no character parameter substitution for the Par field.

Notes

*DOWHILE loops repeatedly through the next *ENDDO command as long as Par is greater than zero. The block of commands following the *DOWHILE command (up to the *ENDDO command) is executed repeatedly until some loop control is satisfied. Printout is automatically suppressed on all loops after the first (include a /GOPR command to restore the printout). The command line loop control (Par) must be input; however, *IF within the block can also be used to control looping [*EXIT, *CYCLE]. One level of internal file switching is used for each nested *DOWHILE. Twenty levels of nested do-loops are allowed.

This command is valid in any processor.

Menu Paths

This command cannot be accessed from a menu.

DSCALE, RFACT, IFACT, TBASE

Scales DOF constraint values.

> SOLUTION: FE Constraints
> MP ME ST PR PRN $<><>$ FL EM EH $<>$ PP $<>$ EME MFS

RFACT

Scale factor for the real component. Zero (or blank) defaults to 1.0 . Use a small number for a zero scale factor.

IFACT

Scale factor for the imaginary component. Zero (or blank) defaults to 1.0 . Use a small number for a zero scale factor.

TBASE

Base temperature for temperature difference. For temperatures, the scale factor is applied to the temperature difference ($T-T B A S E$) and then added to TBASE. T is the current temperature.

Notes

Scales degree of freedom constraint values (displacement, temperature, etc.) in the database. If velocity and acceleration boundary conditions are applied in a structural analysis, they are also scaled by this command. Solid model boundary conditions are not scaled by this command, but boundary conditions on the FE model are scaled.

Note

Such scaled FE boundary conditions may still be overwritten by unscaled solid model boundary conditions if a subsequent boundary condition transfer occurs.

Scaling applies to the previously defined values for the selected nodes [NSEL] and the selected degree of freedom labels [DOFSEL]. Issue DLIST command to review results.

DSCALE does not work for tabular boundary conditions.
This command is also valid in PREP7.

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Operate>Scale FE Loads>Constraints Main Menu>Solution>Define Loads>Operate>Scale FE Loads>Constraints

/DSCALE, WN, DMULT

Sets the displacement multiplier for displacement displays.

GRAP HICS: Scaling
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
WN
Window number (or ALL) to which command applies (defaults to 1).
DMULT

AUTO or 0

Scale displacements automatically so that maximum displacement (vector amplitude) displays as 5 percent of the maximum model length, as measured in the global Cartesian X, Y, or Z directions.
1
Do not scale displacements (i.e., scale displacements by 1.0, true to geometry). Often used with large deflection results.

FACTOR

Scale displacements by numerical value input for FACTOR.
OFF
Remove displacement scaling (i.e., scale displacements by 0.0, no distortion).

USER

Set $D M U L T$ to that used for last display (useful when last $D M U L T$ value was automatically calculated).

Command Default

The default value is AUTO or 0 except when:
Large deflection effects are included (NLGEOM,ON) and it is not a modal analysis; then the default is 1 . It is a spectrum analysis (ANTYPE,SPECTR); then the default is OFF.
The amplitude of a time-harmonic solution is computed using the HRCPLX command (OMEGAT $\geq 360^{\circ}$); then the default is OFF.
The amplitude of a complex modal or harmonic solution is stored into the database using the SET command $($ KIMG $=$ AMPL); then the default is OFF.

Notes

If Multi-Plots are not being displayed, and the current device is a 3-D device [/SHOW,3D], then the displacement scale in all active windows will be the same, even if separate /DSCALE commands are issued for each active window. For efficiency, ANSYS 3-D graphics logic maintains a single data structure (segment), which contains only one displacement scale. The program displays the same segment (displacement scale) in all windows. Only the view settings will be different in each of the active windows.

This command is valid in any processor.

Menu Paths

Utility Menu>PlotCtrls>Style>Displacement Scaling

DSET, NODE1, NODE2, NODE3, DDEV

Sets the scale and drawing plane orientation for a digitizing tablet.

> PREP 7: Digitizing
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

NODE1, NODE2, NODE3

Any three (noncolinear) nodes defining a plane parallel to the drawing. Nodes and actual locations (in any coordinate system) must have been previously defined.

DDEV

Digitizing device type number (device dependent).

Notes

Sets drawing scale size and defines the drawing plane orientation for use with a digitizing tablet. Drawings must be to scale. Views must represent standard orthogonal parallel projections. The three nodes indicated must be digitized [DIG] from the tablet after this command is issued.

Menu Paths

Main Menu>Preprocessor>Create>Nodes>Digitize Nodes>Set Plane/Device

DSPOPTION, Reord_Option, Memory_Option, Memory_Size, --, --, Solve_Info

Sets memory option for the distributed sparse solver.

SOLUTION: Analysis Options
MP ME ST PR PRN <> <> <> EM EH <> PP <> EME MFS

Reord_Option

Reordering option:

DEFAULT

Use the default reordering scheme.

PARORDER

Use a distributed memory parallel equation reordering scheme within the distributed sparse solver. This option can often help the distributed sparse solver achieve greater scalability (typically, at 16 or more cores) by doing a key solver step in parallel instead of sequentially. However, the parallel reordering results can sometimes be worse than the default reordering scheme, thus having an adverse effect on the factorization times and resulting in worse overall performance. It is best to only use this option when trying to maximize performance.

Memory_Option

Memory allocation option:

DEFAULT

Use the default memory allocation strategy for the distributed sparse solver. The default strategy attempts to run in the INCORE memory mode. If there is not enough physical memory available when the solver starts to run in the INCORE memory mode, the solver will then attempt to run in the OPTIMAL memory mode.

INCORE

Use a memory allocation strategy in the distributed sparse solver that will attempt to obtain enough memory to run with the entire factorized matrix in memory. This option uses the most amount of memory and should avoid doing any I/O. By avoiding I/O, this option often achieves the best performance of all the memory modes. However, a significant amount of memory is required to run in this mode, and it is only recommended on machines with a large amount of memory. If the allocation for in-core memory fails, ANSYS will automatically revert to OPTIMAL out-of-core mode.

OPTIMAL

Use a memory allocation strategy in the distributed sparse solver that will attempt to allocate enough work space to keep the largest front matrix in memory during factorization. As a result, this memory mode often achieves an optimal balance between I/O and memory usage.

FORCE

This option, when used in conjunction with the Memory_Size option, allows you to force the distributed sparse solver to run with a specific amount of memory. This option is only recommended for the advanced user who understands distributed sparse solver memory requirements for the problem being solved, understands the physical memory on the system, and wants to control the distributed sparse solver memory usage.

Memory_Size

Initial memory size allocation for the sparse solver in MB. The Memory_Size setting should always be well within the physical memory available, but not so small as to cause the distributed sparse solver to run out of memory. Warnings and/or errors from the distributed sparse solver will appear if this value is set too low. If the FORCE memory option is used, this value is the amount of memory allocated for the entire duration of the distributed sparse solver solution.

--, --

Unused fields

Solve_Info

Solver output option:
OFF
Turns off additional output printing from the distributed sparse solver (default).

PERFORMANCE

Turns on additional output printing from the distributed sparse solver, including a performance summary and a summary of file I/O for the distributed sparse solver. Information on memory usage during assembly of the global matrix (that is, creation of the Jobname.FULL file) is also printed with this option.

Command Default

Automatic memory allocation is used.

Notes

This command controls options related to the distributed sparse solver in all analysis types where the distributed sparse solver can be used.

The amount of memory required for the distributed sparse solver is unknown until the matrix structure is preprocessed, including equation reordering. The amount allocated for the distributed sparse solver is then dynamically adjusted using the ANSYS memory manager.

If you have a large memory system, you may want to try selecting the INCORE memory mode for larger jobs to improve performance. Also, when running the distributed sparse solver with many processors on the same machine or on a machine with very slow I/O performance (e.g., slow hard drive speed), you may want to try using the INCORE memory mode to achieve better performance. However, doing so may require much more memory compared to running in the OPTIMAL memory mode.

Running with the INCORE memory mode is best for jobs which comfortably fit within the limits of the physical memory on a given system. If the distributed sparse solver workspace exceeds physical memory size, the system will be forced to use virtual memory (or the system page/swap file). In this case, it is typically more efficient to run with the OPTIMAL memory mode (DSPOPTION,,OPTIMAL).

Menu Paths

This command cannot be accessed from a menu.

DSUM, SIGNIF, Label, TD

Specifies the double sum mode combination method.

SOLUTION:Spectrum Options
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

SIGNIF

Combine only those modes whose significance level exceeds the SIGNIF threshold. For single point, multipoint, or DDAM response (SPOPT, SPRS, MPRS, or DDAM), the significance level of a mode is defined as the mode coefficient of the mode, divided by the maximum mode coefficient of all modes. Any mode whose significance level is less than SIGNIF is considered insignificant and is not contributed to the mode combinations. The higher the SIGNIF threshold, the fewer the number of modes combined. SIGNIF defaults to 0.001 . If SIGNIF is specified as 0.0 , it is taken as 0.0 . (This mode combination method is not valid for SPOPT, PSD.)

Label

Label identifying the combined mode solution output.
DISP
Displacement solution (default). Displacements, stresses, forces, etc., are available.
VELO
Velocity solution. Velocities, "stress velocities," "force velocities," etc., are available.
ACEL
Acceleration solution. Accelerations, "stress accelerations," "force accelerations," etc., are available.
TD
Time duration for earthquake or shock spectrum. TD defaults to 10 .

Notes

This command is also valid for PREP7.

Menu Paths

Main Menu>Preprocessor>Loads>Load Step Opts>Spectrum>Mode Combine Main Menu>Preprocessor>Loads>Load Step Opts>Spectrum>MultiPt>Mode Combine Main Menu>Preprocessor>Loads>Load Step Opts>Spectrum $>$ SinglePt $>$ Mode Combine Main Menu>Solution>Load Step Opts>Spectrum>Mode Combine Main Menu>Solution>Load Step Opts>Spectrum>MultiPt>Mode Combine Main Menu>Solution>Load Step Opts>Spectrum>SinglePt>Mode Combine

DSURF, KCN, XSURF, YSURF, ZSURF

Defines the surface upon which digitized nodes lie.
PREP 7: Digitizing
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

KCN

Surface is located in coordinate system KCN. KCN may be $0,1,2$ or any previously defined local coordinate system number.

XSURF, YSURF, ZSURF

Input one value to define the surface constant. Input 999 in the other two fields. Interpret fields as R, θ, Z for cylindrical or R, θ, Φ for spherical or toroidal coordinate systems. XSURF and YSURF default to 999 if $K C N=0$.

Command Default

Surface associated with DIG command is the global Cartesian X-Y plane with $Z=0$.

Notes

Defines the surface upon which the nodes to be digitized (with the DIG command) actually lie. Surfaces are defined by a coordinate system number and a coordinate constant [MOVE]. Two coordinates are determined from the drawing and converted to surface coordinates. The third coordinate is defined from the input surface constant. If nodes lie on warped or undefined surfaces, use the DMOVE command.

Menu Paths

Main Menu>Preprocessor>Create>Nodes>Digitize Nodes>Define Surface

DSYM, Lab, Normal, KCN

Specifies symmetry or antisymmetry degree-of-freedom constraints on nodes.
SOLUTION:FE Constraints
MP ME ST PR PRN <> <> <> EM EH DY PP <> EME MFS

Lab

Symmetry label:

SYMM

Generate symmetry constraints as described below (default).

ASYM

Generate antisymmetry constraints as described below.

Normal

Surface orientation label to determine the constraint set (surface is assumed to be perpendicular to this coordinate direction in coordinate system KCN):

X
Surface is normal to coordinate X direction (default). Interpreted as R direction for non-Cartesian coordinate systems.

Y
Surface is normal to coordinate Y direction. θ direction for non-Cartesian coordinate systems.
Z
Surface is normal to coordinate Z direction. Φ direction for spherical or toroidal coordinate systems.

KCN

Reference number of global or local coordinate system used to define surface orientation.

Notes

Specifies symmetry or antisymmetry degree-of-freedom constraints on the selected nodes. The nodes are first automatically rotated (any previously defined rotations on these nodes are redefined) into coordinate system $K C N$, then zero-valued constraints are generated, as described below, on the selected degree-offreedom set (limited to displacement, velocity, and magnetic degrees of freedom) [DOFSEL]. Constraints are defined in the (rotated) nodal coordinate system, as usual. See the \mathbf{D} and NROTAT commands for additional details about constraints and nodal rotations.

This command is also valid in PREP7.

Symmetry and Antisymmetry Constraints:

Symmetry or antisymmetry constraint generations are based upon the valid degrees of freedom in the model, i.e., the degrees of freedom associated with the elements attached to the nodes. The labels for degrees of freedom used in the generation depend on the Normal label.

For displacement degrees of freedom, the constraints generated are:

	SYMM		ASYM	
Normal	2-D	3-D	2-D	3-D
X	UX,ROTZ	UX, ROTZ, ROTY	UY	UY,UZ, ROTX
Y	UY,ROTZ	UY, ROTZ, ROTX	UX	UX,UZ,ROTY
Z	--	UZ, ROTX, ROTY	--	UX,UY, ROTZ

For velocity degrees of freedom, the constraints generated are:

	SYMM		ASYM	
Normal	2-D	3-D	2-D	3-D
X	VX	VX	VY	VY, VZ
Y	VY	VY	VX	VX, VZ
Z	--	VZ	--	VX, VY

For magnetic degrees of freedom, the SYMM label generates flux normal conditions (flux flows normal to the surface). Where no constraints are generated, the flux normal condition is "naturally" satisfied. The ASYM label generates flux parallel conditions (flux flows parallel to the surface).

	SYMM		ASYM	
Normal	2-D	3-D	2-D	3-D
X	--	$A X$	$A Z$	$A Y, A Z$
Y	--	$A Y$	$A Z$	$A X, A Z$
Z	--	$A Z$	--	$A X, A Y$

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Apply>Magnetic>Boundary>VectorPot>Flux Normal>On Nodes
Main Menu>Preprocessor>Loads>Define Loads>Apply>Magnetic>Boundary>VectorPot>Flux Par'l>On Nodes
Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Displacement>Antisymm B.C.>On Nodes
Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Displacement>Symmetry B.C.>On Nodes
Main Menu>Solution>Define Loads>Apply>Magnetic>Boundary>VectorPot>Flux Normal>On Nodes Main Menu>Solution>Define Loads>Apply>Magnetic>Boundary>VectorPot>Flux Par'l>On Nodes
Main Menu>Solution>Define Loads>Apply>Structural>Displacement>Antisymm B.C.>On Nodes
Main Menu>Solution>Define Loads>Apply>Structural>Displacement>Symmetry B.C.>On Nodes

DSYS, KCN
Activates a display coordinate system for geometry listings and plots.
GRAPHICS: Set Up
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
KCN
Coordinate system reference number. KCN may be $0,1,2$ or any previously defined local coordinate system number.

Note

If a cylinder is displayed in its cylindrical coordinate system (with a $1,0,0$ view), it will be unrolled (developed) into a flat plane (with theta along the Y direction).

Command Default

Global Cartesian $(K C N=0)$ display coordinate system.

Notes

Boundary condition symbols, vector arrows, and element coordinate system triads are not transformed to the display coordinate system. The display system orientation (for the default view) is X horizontal to the right, Y vertical upward, and Z out of the screen (normal).

Line directions and area directions (/PSYMB,LDIR and $/$ PSYMB,ADIR) are not plotted for DSYS >0.
When you create ANSYS 3-D annotation, the coordinates are stored to the database in the DSYS that was active at the time of creation. Changing the DSYS does not change the annotation coordinate data in the database.

This command is valid in any processor.

Menu Paths

Utility Menu>WorkPlane>Change Display CS to>Global Cartesian
Utility Menu>WorkPlane>Change Display CS to>Global Cylindrical
Utility Menu>WorkPlane>Change Display CS to>Global Spherical
Utility Menu>WorkPlane>Change Display CS to>Specified Coord Sys

DTRAN

Transfers solid model DOF constraints to the finite element model.
SOLUTION: Solid Constraints
MP ME ST PR PRN <> <> <> EM EH <> PP <> EME MFS

Notes

Constraints are transferred only from selected solid model entities to selected nodes. The DTRAN operation is also done if the SBCTRAN command is issued, and is automatically done upon initiation of the solution calculations [SOLVE].

This command is also valid in PREP7.

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Operate>Transfer to FE>Constraints Main Menu>Solution>Define Loads>Operate>Transfer to FE>Constraints

DUMP, NSTRT, NSTOP

Dumps the contents of a binary file.

> AUX2: Binary Files
> MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS

NSTRT, NSTOP

Dump file from record $N S T R T$ (defaults to 1) to $N S T O P$ (defaults to $N S T R T$). If $N S T R T=$ HEAD, dump only record 1 of the file ($N S T O P$ and the format specification are ignored). If $N S T R T=A L L$, dump the entire file.

Notes

Dumps the file named on the AUX2 FILEAUX2 command according the format specified on the FORM command.

Menu Paths

Utility Menu>File>List>Binary Files
Utility Menu>List>Files>Binary Files

/DV3D, Lab, Key

Sets 3-D device option modes.

GRAPHICS: Set Up
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Lab

Mode label:
ACCU
Allows ANSYS to use the accumulation buffer for OpenGL graphics. Activating this feature will provide faster model rotation when shaded backgrounds are in use. This feature is off by default.

ACTR

Label term to designate the cursor position as the center for automatic dynamic rotational center capability. The subsequent Ke_{y} value (see below) turns this capability on and off. This feature is on by default. (Available for OpenGL displays only)
ANIM
Animation mode. The ANIM option allows you to create animation frames in pixmap mode instead of display list mode. This may improve large model performance, but it eliminates local manipulation while animation is in progress. This feature is on by default.

ANTI
Label term to control Anti-aliasing, a smoothing technique for your graph plots. (see below) The subsequent Key value turns this capability on and off. The default for this feature is off. (Available for OpenGL displays only).

CNTR

Switches banded contours on (1) or off (0) for your 3-D contour display. The default is 1 (ON). Other contour parameters such as number of contours or the increment and range are defined using the
/CONTOUR command. When either 9 or 128 contours are specified via /CONTOUR, this command is ignored and a smooth contour is always displayed.

DGEN

Local manipulation degenerate mode. You access the DGEN option to set wire-frame local manipulation mode for 3-D devices (device dependent). This feature is off by default.

DLIST

With DLIST, you can specify whether screen updates and redraws will be performed using the ANSYS Display List (off), or the 3-D device's Display List (on). DLIST is on by default for Windows systems, but off for UNIX. .

DELS

You use DELS to suppress contour display screen overwrites when /NOERASE is active. This prevents the bleed-through that occurs when you overlay contour plots.

TRIS

Triangle strip mode. Tri-stripping provides faster 3-D display capabilities and is on by default. Some display enhancements, such as texturing, are adversely affected by tri-stripping. You can turn off tristripping in order to improve these display functions. Be sure to turn tri-stripping on after the desired output is obtained.

Key
The following key options apply to $L a b=A C C U$:
0
(OFF) The accumulation buffer is not accessed. (default)
1
(ON) Access to the buffer is enabled.
The following key options apply to $L a b=$ ACTR:
0
(OFF) The cursor position has no effect on the existing rotational center for dynamic operations.
1
(ON) The rotational center for dynamic rotations in OpenGL is determined by the position of the mouse cursor on (or within 15 pixels of) the model. Any rotations that are initiated with the cursor more than 15 pixels from the model will occur about the midpoint of the Z-axis at that point in space. If the Z-buffer has not been refreshed the Z-axis will have an infinite value, and rotations will appear to occur about an extremely long Z-axis. This behavior stops when the graphics window is refreshed or replotted. (default)

Note that when using the GUI in 3-D mode, when ACTR $=1$, the Rotational Center option is grayed out under Utility Menu> PlotCtrls> View Setting because the rotational center is determined strictly by the position of the mouse cursor.

The following key options apply to $L a b=$ ANIM:
0
Display list animation. The object can be dynamically manipulated while animating. No legend, countour or annotation items are displayed. (see Notes, below)

1
On UNIX, device-dependent pixmap animation is used. On the PC, bitmap animation is provided (default). When you animate in this mode, you cannot dynamically manipulate your model (see Notes, below)..

2
On the PC only, this option provides AVI animation which uses the AVI movie player .
Although you can create animations of multiple ANSYS window schemes, animations created with OpenGL display lists (/DV3D, ANIM, 0) do not retain the windowing scheme information. You CAN save multiple windows via the X11/WIN32 drivers, or via the OpenGL driver with /DV3D, ANIM, KEY in effect (where KEY is not zero).

The following key options apply to $L a b=$ ANTI
0 (OFF) Anti-aliasing is not active (default).

1
(ON) The anti-aliasing technique will be applied to smooth the lines in your displays (valid for OpenGL only).

The following key options apply to $L a b=$ DGEN:
0
Normal manipulation.
1
Wireframe Manipulation.
The following key options apply to Lab = DLIST:
0
(OFF) The ANSYS Display List is used for plotting and dynamic graphics manipulation (UNIX default).
1
(ON) The local (3-D Device) Display List is used for plotting and dynamic rotation (Windows default).
The following key options apply to $L a b=$ TRIS:
0
(OFF) Tri-stripping is off.
1
(ON) Tri-stripping is on (default).
This command is valid in any processor.

Notes

ANSYS uses display list animation for its 3-D models. This memory resident array method interfaces with the OpenGL model information to allow the program to efficiently pan, zoom, rotate and dynamically manipulate your model during animation. The logo, legend, contour and other annotation items are produced in 2-D and will not appear when /DV3D, ANIM, 0 is in effect. To display these items, use /DV3D, ANIM, 1. All screen data will be displayed, but manipulation of the model will not be possible.

Menu Paths

Utility Menu>PlotCtrls>Device Options

DVAL, BaseID, Lab, VALUE, VALUE2, KeyCal
Defines values at enforced base.
SOLUTION:FE Constraints
MP ME ST PR PRN <> <> FL EM <> <> PP <> EME MFS

BaseID

The identification number of the defined enforced base (from the \mathbf{D} command in the modal analysis).

Lab

U
Enforced displacement.
ACC
Enforced acceleration.

VALUE

The value or table name reference for tabular boundary conditions. To specify a table, enclose the table name in percent (\%) signs (for example: DVAL, BaseID, U , \%tablename\%). Use the *DIM command to define a table.

VALUE2

The value of the second degree of freedom (if present). If the analysis type and the degree of freedom allow a complex input, VALUE is the real component and VALUE 2 is the imaginary component.

KeyCal

Calculation Key:
ON
Automatically calculate enforced displacement or acceleration based on the input enforced acceleration or displacement (default).

OFF
Do not automatically calculate enforced displacement.

Notes

In modal superposition harmonic or transient analysis, you can apply enforced displacement or acceleration load when KeyCal is ON. If multiple loads are specified, the last applied load overrides the previous ones. For example, the following commands apply displacement to the base with identification number $=1$:

DVAL, 1, U,VALUE
DVAL, 1,ACC,VALUE
In this case, the acceleration (ACC) applied in the last command will override the displacement (U).

Menu Paths

This command cannot be accessed from a menu.

DVMORPH, VOLU, XAREA, RMSHKY
Move nodes in selected volumes to conform to structural displacements.
PREP 7: Morphing
MP <> <> <> <> <> <> <> <> <> <> PP <> EME <>
VOLU
Non-structural volume to which mesh movement (morph) applies. If ALL, apply morphing to all selected volumes [VSEL]. If $V O L U=P$, graphical picking is enabled. A component may be substituted for VOLU .

XAREA

Areas to be excluded from morphing. If ALL, exclude all selected areas [ASEL]. If XAREA $=\mathrm{P}$, graphical picking is enabled. A component may be substituted for XAREA. If XAREA is blank (default), allow morphing of nodes attached to areas of the selected volumes (VOLU) which are not shared by unselected volumes. (See Notes for clarification).

RMSHKY

Remesh flag option:
0
Remesh the selected non-structural volumes only if mesh morphing fails.
1
Remesh the selected non-structural volumes and bypass mesh morphing.
2
Perform mesh morphing only and do not remesh.

Notes

The selected volumes should include only non-structural regions adjacent to structural regions. DVMORPH will morph the non-structural volumes to coincide with the deflections of the structural regions.

Nodes in the structural regions move in accordance with computed displacements. Displacements from a structural analysis must be in the database prior to issuing DVMORPH.

By default, nodes attached to areas can move along the areas. You can use XAREA to restrain nodes on certain areas.

By default ($R M S H K Y=0$), DVMORPH will remesh the selected non-structural volumes entirely if a satisfactory morphed mesh cannot be provided.

If boundary conditions and loads are applied directly to nodes and elements, the DVMORPH command requires that these be removed before remeshing can take place.

Exercise care with initial conditions defined by the IC command. Before a structural analysis is performed for a sequentially coupled analysis, the DVMORPH command requires that initial conditions be removed from all null element type nodes in the non-structural regions. Use ICDELE to delete the initial conditions.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>Meshing>Modify Mesh>Phys Morphing>Volumes

DYNOPT

Specifies "Dynamic analysis options" as the subsequent status topic.

SOLUTION: Status
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Notes

This is a status [STAT] topic command. Status topic commands are generated by the GUI and will appear in the log file (Jobname. LOG) if status is requested for some items under Utility Menu> List> Status. This command will be immediately followed by a STAT command, which will report the status for the specified topic.

If entered directly into the program, the STAT command should immediately follow this command.

Menu Paths

Utility Menu>List>Status>Solution>Dynamics Options

E Commands

E, I, J, K, L, M, N, O, P

Defines an element by node connectivity.

> PREP 7: Elements
> MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS

I

Number of node assigned to first nodal position (node I). If $I=P$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI).
$\boldsymbol{J}, K, L, M, N, O, P$
Number assigned to second (node J) through eighth (node P) nodal position, if any.

Notes

Defines an element by its nodes and attribute values. Up to 8 nodes may be specified with the \mathbf{E} command. If more nodes are needed for the element, use the EMORE command. The number of nodes required and the order in which they should be specified are described in Chapter 4 of the Element Reference for each element type. Elements are automatically assigned a number [NUMSTR] as generated. The current (or default) MAT, TYPE, REAL, SECNUM and ESYS attribute values are also assigned to the element.

When creating elements with more than 8 nodes using this command and the EMORE command, it may be necessary to turn off shape checking using the SHPP command before issuing this command. If a valid element type can be created without using the additional nodes on the EMORE command, this command will create that element. The EMORE command will then modify the element to include the additional nodes. If shape checking is active, it will be performed before the EMORE command is issued. Therefore, if the shape checking limits are exceeded, element creation may fail before the EMORE command modifies the element into an acceptable shape.

Menu Paths

Main Menu>Preprocessor>Modeling>Create>Elements>Auto Numbered>Thru Nodes

EALIVE, elem

Reactivates an element (for the birth and death capability).

SOLUTION: Birth and Death
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS

ELEM

Element to be reactivated:
ALL
Reactivates all selected elements (ESEL).

P
Enables graphical picking of elements. All remaining command fields are ignored. (Valid only in the ANSYS GUI.)

Comp
Specifies a component name.

Notes

Reactivates the specified element when the birth and death capability is being used. An element can be reactivated only after it has been deactivated (EKILL).

Reactivated elements have a zero strain (or thermal heat storage, etc.) state.
ANSYS recommends using the element deactivation/reactivation procedure for analyses involving linear elastic materials only. Do not use element deactivation/reactivation in analyses involving time-dependent materials, such as viscoelasticity, viscoplasticity, and creep analysis.

This command is also valid in PREP7.

Menu Paths

Main Menu>Preprocessor>Loads>Load Step Opts>Other>Birth \& Death>Activate Elem Main Menu>Solution>Load Step Opts>Other>Birth \& Death>Activate Elem

EDADAPT, PART, Key

Activates adaptive meshing in an explicit dynamic analysis.
SOLUTION: Explicit Dynamics
<> <> <> <> <> <> <> <> <> <> DY <> <> <> <>

PART

Part ID (number) for which adaptive meshing is to be turned on (or off). Use PART = STAT to list the current adaptive meshing definitions.

Key

Adaptivity key:
OFF
Do not use adaptive meshing for the specified part ID (default).

ON

Use adaptive meshing for the specified part ID.

Command Default

Adaptive meshing is off for all parts in the model.

Notes

When adaptive meshing (adaptivity) is turned on, the mesh will automatically be regenerated to ensure adequate element aspect ratios. Adaptive meshing is most commonly used in the analysis of large deformation processes such as metal forming, in which the blank would need to be adaptively meshed.

Adaptive meshing is only valid for parts consisting of SHELL163 elements. By default, adaptive meshing is OFF for all parts in the model. To specify adaptive meshing for more than one part in the model, you must issue the EDADAPT command for each part ID. Use the EDPART command to create and list valid part IDs. Use the EDCADAPT command to define additional adaptive meshing parameters.

The EDADAPT command is not supported in an explicit dynamic full restart analysis (EDSTART,3). In addition, a full restart cannot be performed successfully if adaptive meshing was used in the previous analysis.

This command is also valid in PREP7.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Solution>Analysis Options>Adaptive Meshing>Apply to Part
Main Menu>Solution>Analysis Options>Adaptive Meshing>Status

EDALE, Option, --, AFAC, BFAC, --, DFAC, EFAC, START, END

Assigns mesh smoothing to explicit dynamic elements that use the ALE formulation.

SOLUTION: Explicit Dynamics
<> <> <> <> <> <> <> <> <> <> DY <> <> <> <>

Option

Label identifying the option to be performed:
ADD
Add smoothing controls (default).

DELETE

Delete smoothing controls.
LIST
List smoothing controls.

Unused field.
AFAC
Simple average smoothing weight factor (default $=0$).
BFAC
Volume weighted smoothing weight factor (default $=0$).
-
Unused field.
DFAC
Equipotential smoothing weight factor (default $=0$).
EFAC
Equilibrium smoothing weight factor (default $=0$). $E F A C$ is only applicable to PLANE162 elements.

START

Start time for ALE smoothing (default $=0$).

END
End time for ALE smoothing (default = 1e20).

Command Default

The Lagrangian formulation is used for all elements by default.

Notes

Mesh smoothing specified by the EDALE command is only applicable to PLANE162 and SOLID164 elements that are flagged to use the ALE formulation $(\operatorname{KEYOPT}(5)=1)$. To activate the ALE formulation, you must specify at least one smoothing weight factor on this command and the number of cycles between advection (NADV) on the EDGCALE command. See Arbitrary Lagrangian-Eulerian Formulation in the ANSYS LS-DYNA User's Guide for more information.

The EDALE command is also valid in PREP7.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Solution>Analysis Options>ALE Options>Define
Main Menu>Solution>Analysis Options>ALE Options>Delete All
Main Menu>Solution>Analysis Options>ALE Options>List All

EDASMP, Option, ASMID, PART1, PART2, PART3, PART4, PART5, PART6, PART7, PART8, PART9, PART10, PART11, PART12, PART13, PART14, PART15, PART16

Creates a part assembly to be used in an explicit dynamic analysis.

Option
Label identifying the part assembly option to be performed.
ADD
Adds a part assembly (default).

DELETE

Deletes a part assembly.

LIST

Lists each part assembly number, and the part numbers that make up each part assembly.

ASMID

User defined part assembly ID number. The part assembly number cannot be the same as any currently defined part ID number.

PART1, PART2, PART3, ..., PART16
Part numbers to be included in the assembly (up to 16 different parts).

Command Default

Default for Option is ADD. You must specify ASMID to avoid an error message.

Notes

Several ANSYS LS-DYNA commands (such as EDCGEN, EDPVEL, and EDIS) refer to assembly ID numbers. If you intend to use assembly ID numbers with these commands, you must first define the assembly ID numbers using EDASMP.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>LS-DYNA Options>Assembly Options

EDBOUND, Option, Lab, Cname, XC, YC, ZC, Cname2, COPT

Defines a boundary plane for sliding or cyclic symmetry.

PREP 7:Explicit Dynamics
<> <> <> <> <> <> <> <> <> <> DY <> <> <> <>

Option

Label identifying the symmetry plane option to be performed.
ADD
Define a sliding or cyclic symmetry plane.
DELE
Delete a specified sliding or cyclic symmetry plane.
LIST
List defined sliding or cyclic symmetry planes.

Lab

Valid boundary options for defining a symmetry plane. A valid label must always be specified for adding, deleting, or listing boundary planes.

SLIDE

Sliding symmetry plane.
CYCL
Cyclic symmetry plane.

Cname

Name of existing component [CM] to which boundary symmetry is to be applied or deleted. Component must consist of nodes. For Opt ion = LIST, a component is not required because all defined symmetry planes are listed for the specified Lab. For Option = DELE, use Cname $=$ ALL to delete all symmetry planes currently defined for the specified La.b.
$X C, Y C, Z C$
X, Y, and Z coordinates of the head of the vector defining normal ($L a b=S L I D E$) or axis of rotation ($L a b$ $=C Y C L)$. The tail of the vector is at the global origin.

Cname2

Name of existing nodal component [CM] for which second cyclic boundary plane is to be applied. Each node in Cname 2 component is constrained to a corresponding node in the first component set. Therefore, component Cname 2 must have the same number of nodes as the Cname component. Cname 2 is valid only for $L a b=C Y C L$.

COPT

Specified constraint option for sliding plane symmetry. $C O P T$ is valid only for $L a b=$ SLIDE. Valid $C O P T$ options are:

0
Nodes move on normal plane (default).
1
Nodes move only in vector direction.

Notes

For cyclic symmetry, the node numbers in component Cname 2 must differ from the node numbers in Cname by a constant offset value. In addition, the nodes in Cname 2 must have locations which, if given in cylindrical coordinates, all differ by the same angle from the nodes in Cname. The following figure shows how you would define components for a cyclic symmetry plane.

Conformable Interface

This command is also valid in SOLUTION.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>LS-DYNA Options>Constraints>Apply>Symm Bndry Plane
Main Menu>Preprocessor>LS-DYNA Options>Constraints>Delete>Symm Bndry Plane>Delete All
Main Menu>Preprocessor>LS-DYNA Options>Constraints>Delete>Symm Bndry Plane>Delete Individ Main Menu>Solution>Constraints>Apply>Symm Bndry Plane
Main Menu>Solution>Constraints>Delete $>$ Symm Bndry Plane $>$ Delete All Main Menu>Solution>Constraints>Delete>Symm Bndry Plane>Delete Individ

EDBX, Option, BOXID, XMIN, XMAX, YMIN, YMAX, ZMIN, ZMAX

Creates a box shaped volume to be used in a contact definition for explicit dynamics.

PREP 7: Explicit Dynamics
<> <> <> <> <> <> <> <> <> <> DY <> <> <> <>

Option

Label identifying the contact box definition option to be performed.
ADD
Adds a contact box definition (default).

DELETE

Deletes a contact box definition.
LIST
Lists each box ID number, and the coordinates that make up each box shaped volume.
BOXID
User defined list ID number.
XMIN
Minimum x-coordinate.
XMAX
Maximum x-coordinate.
YMIN
Minimum y-coordinate.

YMAX

Maximum y-coordinate.

ZMIN

Minimum z-coordinate.
ZMAX
Maximum z-coordinate.

Command Default

Default for Option is ADD. You must specify BOXID to avoid an error message.

Notes

The ANSYS LS-DYNA command EDCGEN allows you to define contact and target volumes using box ID numbers BOXID1 and BOXID2, respectively. If you use these arguments to define contact volumes, you must first define their coordinates using the EDBX command.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>LS-DYNA Options>Contact>Define Box

EDBVIS, QVCO, LVCO

Specifies global bulk viscosity coefficients for an explicit dynamics analysis.

SOLUTION: Explicit Dynamics
<> <> <> <> <> <> <> <> <> <> DY <> <> <> <>
QVCO
Quadratic viscosity coefficient (defaults to 1.5).
LVCO
Linear viscosity coefficient (defaults to 0.06).

Notes

This command is also valid in PREP7.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>Loads>Load Step Opts>Other>Change Mat Props>Bulk Viscosity Main Menu>Preprocessor>Material Props>Bulk Viscosity
Main Menu>Solution>Analysis Options>Bulk Viscosity
Main Menu>Solution>Load Step Opts>Other>Change Mat Props>Bulk Viscosity

EDCADAPT, FREQ, TOL, OPT, MAXLVL, BTIME, DTIME, LCID, ADPSIZE, ADPASS, IREFLG, ADPENE, ADPTH, MAXEL

Specifies adaptive meshing controls for an explicit dynamic analysis.

SOLUTION: Explicit Dynamics
$<\rangle<\rangle<\rangle<\rangle<\rangle\rangle\rangle\rangle\rangle\rangle$ DY <> <> <> <>

FREQ

Time interval between adaptive mesh refinements (default $=0.0$). Use $F R E Q=$ STAT to list the current adaptive meshing control settings.

TOL
Adaptive angle tolerance (in degrees) for which adaptive meshing will occur (default =1e31). If the relative angle change between elements exceeds the specified tolerance value, the elements will be refined.

OPT
Adaptivity option:
1
Angle change (in degrees) of elements is based on original mesh configuration (default).
2
Angle change (in degrees) of elements is incrementally based on previously refined mesh.
MAXLVL
Maximum number of mesh refinement levels (default = 3). This parameter controls the number of times an element can be remeshed. Values of $1,2,3,4$, etc. allow a maximum of $1,4,16,64$, etc. elements, respectively, to be created for each original element.

BTIME

Birth time to begin adaptive meshing (default $=0.0$).

DTIME

Death time to end adaptive meshing (default $=1 \mathrm{e} 31$).

LCID

Data curve number (previously defined on the EDCURVE command) identifying the interval of remeshing (no default). The abscissa of the data curve is time, and the ordinate is the varied adaptive time interval. If LCID is nonzero, the adaptive frequency ($F R E Q$) is replaced by this load curve. Note that a nonzero $F R E Q$ value is still required to initiate the first adaptive loop.

ADPSIZE

Minimum element size to be adapted based on element edge length (default $=0.0$).

ADPASS

One or two pass adaptivity option.
0
Two pass adaptivity (default).
1
One pass adaptivity.

IREFLG

Uniform refinement level flag (no default). Values of 1, 2, 3, etc. allow 4, 16, 64, etc. elements, respectively, to be created uniformly for each original element.

ADPENE

Adaptive mesh flag for starting adaptivity when approaching (positive ADPENE value) or penetrating (negative $A D P E N E$ value) the tooling surface (default $=0.0$).

ADPTH

Absolute shell thickness level below which adaptivity should begin. This option works only if the adaptive angle tolerance $(T O L)$ is nonzero. If thickness based adaptive remeshing is desired without angle change, set $T O L$ to a large angle. The default is $A D P T H=0.0$, which means this option is not used.

MAXEL

Maximum number of elements at which adaptivity will be terminated (no default). Adaptivity is stopped if this number of elements is exceeded.

Command Default

No adaptive meshing.

Notes

The EDCADAPT command globally sets the control options for all part IDs that are to be adaptively meshed (see the EDADAPT command). Because FREQ defaults to zero, you must input a nonzero value in this field in order to activate adaptive meshing. You must also specify a reasonable value for TOL since the default adaptive angle tolerance (1 e 31) will not allow adaptive meshing to occur.

The EDCADAPT command is not supported in an explicit dynamic full restart analysis (EDSTART,3).
This command is also valid in PREP7.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Solution>Analysis Options>Adaptive Meshing>Global Settings
Main Menu>Solution>Analysis Options>Adaptive Meshing>Status

EDCGEN, Option, Cont, Targ, FS, FD, DC, VC, VDC, V1, V2, V3, V4, BTIME, DTIME, BOXID1, BOXID2
Specifies contact parameters for an explicit dynamics analysis.
PREP 7: Explicit Dynamics
<> <> <> <> <> <> <> <> <> <> DY <> <> <> <>

Option

Label identifying the contact behavior (dictates the meaning of $V 1$ through $V 4$).
AG
Automatic general contact.

ANTS

Automatic nodes-to-surface contact.

ASSC

Automatic single surface contact.

ASS2D

Automatic 2-D single surface contact.

ASTS

Automatic surface-to-surface contact.

DRAWBEAD

Drawbead contact

ENTS

Eroding nodes-to-surface contact.
ESS
Eroding single surface contact.
ESTS
Eroding surface-to-surface contact.

FNTS

Forming nodes-to-surface contact.
FOSS
Forming one way surface-to-surface contact.
FSTS
Forming surface-to-surface contact.
NTS
Nodes-to-surface contact.
OSTS
One way surface-to-surface contact.
RNTR
Rigid nodes to rigid body contact.

ROTR

Rigid body to rigid body (one way) contact.
SE
Single edge contact.
SS
Single surface contact.
STS
Surface-to-surface contact.
TDNS
Tied nodes-to-surface contact.

TSES

Tied shell edge-to-surface contact.

TDSS

Tied surface-to-surface contact.
TNTS
Tiebreak nodes-to-surface contact

TSTS

Tiebreak surface-to-surface contact.

Cont

Contact surface identified by a component name [CM] , a part ID number [EDPART], or an assembly ID number [EDASMP]. If a component name is input, the component must contain nodes that represent the contact surface (assemblies are not valid for a component name). Alternatively, a part number may be input that identifies a group of elements as the contact surface, or an assembly number may be input containing a maximum of 16 parts. The assembly ID number must be greater than the highest number used for the part ID. Cont is not required for automatic general contact, single edge contact, and single surface contact options (Option = AG, SE, ASSC, ESS, and SS). For automatic 2-D single surface contact (ASS2D), Cont must be defined as a part assembly. For eroding node-to-surface contact (ENTS), Cont must be defined as a nodal component. For eroding single surface contact (ESS) and eroding surface-to-surface contact (ESTS), Cont must be defined as a part ID or part assembly.

Targ

Target surface identified by a component name [CM] , a part ID number [EDPART], or an assembly ID number [EDASMP]. If a component name is input, the component must contain nodes that represent the target surface (assemblies are not valid for a component name). Alternatively, a part number may be input that identifies a group of elements as the target surface, or an assembly number may be input containing a maximum of 16 parts. The assembly ID number must be greater than the highest number used for the part ID. Targ is not defined for automatic general contact, single edge contact, automatic single surface contact, eroding single surface contact, single surface contact, and automatic 2-D single surface contact options (Option = AG, SE, ASSC, ESS, SS, and ASS2D). For eroding node-to-surface contact (ENTS) and eroding surface-to-surface contact (ESTS), Targ must be defined as a part ID or part assembly.

Static friction coefficient (defaults to 0).

Dynamic friction coefficient (defaults to 0).
DC
Exponential decay coefficient (defaults to 0).

VC
Coefficient for viscous friction (defaults to 0).
vDC
Viscous damping coefficient in percent of critical damping (defaults to 0).
V1, V2, V3, V4
Additional input for drawbead, eroding, rigid, and tiebreak contact. The meanings of $V 1-V 4$ will vary, depending on Option. See the table below for V1-V4 definitions.

Additional input for drawbead contact (Option = DRAWBEAD):
V1
Load curve ID giving the bending component of the restraining force per unit draw bead length as a function of draw bead displacement. V1 must be specified.
V2
Load curve ID giving the normal force per unit draw bead length as a function of draw bead displacement. V2 is optional.
V3
Draw bead depth.
V4
Number of equally spaced integration points along the draw bead (default $=0$, in which case ANSYS LS-DYNA calculates this value based on the size of the elements that interact with the draw bead).

Additional input for eroding contact (Option = ENTS, ESS, or ESTS):
V1
Symmetry plane option. The purpose of this option is to retain the correct boundary conditions in a model with symmetry.

0
Off (default).
1
Do not include faces with normal boundary constraints (e.g., segments of brick elements on a symmetry plane).
V2
Erosion/interior node option.
0
Erosion occurs only at exterior boundaries.
1
Interior eroding contact can occur (default).
V3
Adjacent material treatment for solid elements.
0
Solid element faces are included only for free boundaries (default).
1
Solid element faces are included if they are on the boundary of the material subset. This option also allows erosion within a body and the consequent treatment of contact.

Additional input for rigid contact (Option = RNTR or ROTR):

V1

Data curve id for force versus deflection behavior [EDCURVE]. Also specify v2. (No default.)
V2
Force calculation method for rigid contact. (No default.)
1
Data curve gives total normal force on surface versus maximum penetration of any node (only applicable for Option = ROTR).

2
Data curve gives normal force on each node versus penetration of node through the surface (Option = RNTR or ROTR).

3
Data curve gives normal pressure versus penetration of node through the surface (only applicable for Option = RNTR).
V3
Unloading stiffness for rigid contact. This should not be larger than the maximum value used in the data curve. The default is to unload along the data curve (specified on $V 1$).

Additional input for tiebreak surface-to-surface contact (Option = TSTS). V1 and V2 are used to calculate the failure criterion:

V1
Normal failure stress. (No default.)
V2
Shear failure stress. (No default.)
Additional input for tiebreak nodes-to-surface contact (Option $=$ TNTS). V1 through V4 are used to calculate the failure criterion:

V1
Normal failure force. Only tensile failure (i.e., tensile normal forces) will be considered in the failure criterion. (No default.)

V2

Shear failure force. (No default.)
V3
Exponent for normal force. (Defaults to 2.)

V4

Exponent for shear force. (Defaults to 2.)

BTIME

Birth time for which contact definition will become active (defaults to 0.0).

DTIME

Death time for which contact definition will become inactive (defaults to 1 e 21).

BOXID1

Contact volume as defined using the EDBX command (valid only when defining contact with parts or assemblies).

BOXID2

Target volume as defined using the EDBX command (valid only when defining contact with parts or assemblies).

Command Default

No contact defined.

Notes

The frictional coefficient used for contact is determined from $F S, F D$, and $D C$, and is assumed to be dependent on the relative velocity of the surfaces in contact:

$$
\mu \mathrm{c}=\mathrm{FD}+(\mathrm{FS}-\mathrm{FD}) \mathrm{e}^{-\mathrm{DC}\left(\mathrm{v}_{\mathrm{rel}}\right)}
$$

The coefficient for viscous friction, $V C$, is necessary to limit the friction force to a maximum. A limiting force is computed:

$$
\mathrm{F}_{\text {lim }}=\mathrm{VC}\left(\mathrm{~A}_{\text {cont }}\right)
$$

where $A_{\text {cont }}$ is the area of the segment contacted by the node in contact. The suggested value for $V C$ is to use the yield stress in shear:

$$
\mathrm{VC}=\frac{\sigma_{0}}{\sqrt{3}}
$$

where σ_{o} is the yield stress of the contacted material.
If a part number is input for Cont or Targ, it must represent a valid explicit dynamics part definition. For example, an elastic material for explicit dynamics requires EX, NUXY, and DENS. If any part of the material definition is missing for the part, the EDCGEN command will be ignored.

In addition to the contact parameters on this command, you can specify penalty scale factors for the contact (slave) and target (master) surfaces by using the EDCMORE command.

Duplicate definitions of the same contact type on the same components or parts will cause only one contact to be defined (previous definitions will be ignored). Duplicate definitions of different contact types on the same components or parts will cause multiple contact types to be defined.

Use the EDCLIST and EDDC commands to list and delete contact surface specifications. Use the EDPC command to select and plot contact entities.

The EDCGEN command is not supported in an explicit dynamic full restart analysis (EDSTART,3). Thus, you cannot add new contact specifications in a full restart. You can use the EDCLIST command to list any contact specifications that were defined in the previous analysis.

EDCGEN is also valid in SOLUTION.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>LS-DYNA Options>Contact>Define Contact

EDCLIST,NUM

Lists contact entity specifications in an explicit dynamics analysis.

PREP 7: Explicit Dynamics
<> <> <> <> <> <> <> <> <> <> DY <> <> <> <>

NUM

Number identifying contact entity to be listed. Use $N U M=$ ALL to list all contact entities (ALL is the default).

Notes

Lists contact entity specifications previously defined with the EDCGEN command. The listing will include any contact parameters defined using the EDCMORE command.

This command is also valid in SOLUTION.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>LS-DYNA Options>Contact>List Entities

EDCMORE, Option, NUM, --, VAL1,VAL2

Specifies additional contact parameters for a given contact definition in an explicit dynamic analysis.

PREP 7:Explicit Dynamics

Option

Label identifying the option to be performed.
ADD
Define contact parameters for the contact entity specified by NUM (default).

DELE

Delete contact parameters (VAL1 and VAL2) for the contact entity specified by NUM. If NUM = ALL, all contact parameters previously defined by EDCMORE are deleted.

NUM
Contact entity number. This contact entity must have been previously defined with the EDCGEN command.
Use EDCLIST to obtain a list of contact entity numbers.

Unused field.
VAL1
Penalty scale factor for slave (contact) surface (SFS); default $=1$.
VAL2
Penalty scale factor for master (target) surface (SFM); default $=1$.

Command Default

For all contract definitions, SFS = 1 and SFM = 1 .

Notes

You can use the EDCMORE command to specify two additional contact parameters (SFS and SFM) for a specific contact definition. These parameters will apply only to the contact entity number entered on the NUM field. Use the EDCLIST command to obtain a list of contact definitions and their corresponding contact entity numbers. The listing produced by EDCLIST will include any contact parameters specified with the EDCMORE command.

When you use the EDDC command to delete a contact definition, any parameters you specified with EDCMORE for that contact definition will also be deleted. To delete only the parameters specified by EDCMORE for a given contact definition, use the command EDCMORE,DELE,NUM.

Note

When you delete a contact definition with the EDDC command, the contact entity numbers will be renumbered for the remaining contact definitions. Therefore, you should always issue EDCLIST to obtain a current list of contact entity numbers before adding or deleting contact parameters with the EDCMORE command.

The EDCMORE command is also valid in SOLUTION.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>LS-DYNA Options>Contact>Additional Parms

EDCNSTR, Option, Ctype, Comp1, Comp2, VAL1

Defines various types of constraints for an explicit dynamic analysis.

PREP 7:Explicit Dynamics
<> <> <> <> <> <> <> <> <> <> DY <> <> <> <>

Option

Label identifying the option to be performed.
ADD
Define a constraint (default).

DELE

Delete the constraint specified by Ctype, Comp1, and Comp2. If Ctype $=$ ALL, all constraints are deleted.

LIST

List all of the constraints previously defined by the EDCNSTR command.

Ctype

Constraint type. The command format will vary, depending on the Ctype value.

ENS

Extra node set added to an existing rigid body.

NRB

Nodal rigid body.

STS

Tie between a shell edge and solid elements.
RIVET
Massless rivet between two noncoincident nodes.
If Ctype $=$ ENS, the command format is EDCNSTR,Option,ENS,Comp1,Comp2

Comp1

Part number of the existing rigid body to which nodes will be added. The rigid body must be previously defined with the EDMP command. EDMP defines a rigid body based on material reference number (MAT). You must determine the corresponding part number (EDPART) for input in this field.

Comp2

Component name identifying extra nodes to be added to the rigid body specified by Comp1. Comp2
must be a nodal component and must not be attached to any other rigid body.
If Ctype $=$ NRB, the command format is EDCNSTR,Option,NRB,Comp1, --,VAL1

Comp1

Component name identifying a set of nodes that are to be defined as a rigid body. The component may consist of nodes from several different deformable parts.

This field is not used for Ctype $=$ NRB.

VAL1

Coordinate system ID number (CID) to be used for output of data. The coordinate system must have been previously defined with the EDLCS command.

If Ctype $=$ STS, the command format is EDCNSTR,Option,STS,Comp1,Comp2

Comp1

Node number of the shell element node that will be tied to solid element nodes that are specified by Comp2. The Comp1 node must lie along the edge of a shell element and be coincident to at least one node included in Comp2.

Comp2

Component name consisting of solid element nodes (up to nine nodes) to which the shell element node will be tied. Comp 2 must consist of nodes that are on solid elements, and the nodes must define a line that will remain linear throughout the analysis. At least one of the nodes in Comp2 must be coincident with the shell node specified in Compl.

If Ctype = RIVET, the command format is EDCNSTR,Option,RIVET,Comp1,Comp2

Comp1

Node number of the first node on the rivet.

Comp2

Node number of the second node on the rivet. This node cannot have the same coordinates as the first node specified by Comp1.

Notes

The EDCNSTR command allows you to define several types of constraints in an explicit dynamic analysis. A brief description of each constraint type is given below. See Constraints and Initial Conditions in the ANSYS LS-DYNA User's Guide for more information.

Extra Node Set Added to a Rigid Body (Ctype = ENS)

The ability to add extra nodes to an existing rigid body has many potential applications, including placing nodes where joints will be attached between rigid bodies, defining nodes where point loads will be applied, and defining a lumped mass at a specific location. The extra nodes specified by Comp 2 may be located anywhere in the model and may have coordinates outside those of the original rigid body specified by Comp1.

Nodal Rigid Body (Ctype = NRB)

Unlike typical rigid bodies that are defined with the EDMP command, nodal rigid bodies defined with the EDCNSTR command are not associated with a part number. This can be advantageous for modeling rigid (welded) joints in a model. For a rigid joint, portions of different flexible components (having different MAT IDs) act together as a rigid body. It is difficult to define this type of rigid body with a unique MAT ID (and corresponding part number). However, the rigid joint can be easily defined using a nodal rigid body.

Shell Edge to Solid Tie (Ctype $=$ STS $)$

The STS option ties regions of solid elements to regions of shell elements. A single shell node may be tied to up to nine brick element nodes that define a "fiber" vector. Solid element nodes constrained in this way remain linear throughout the analysis but can move relative to each other in the fiber direction.

Rivet between Two Nodes (Ctype = RIVET)

The RIVET option defines a massless rigid constraint between two nodes, similar to spotwelds defined with the EDWELD command. Unlike a spotweld, however, rivets contain nodes that are noncoincident, and failure cannot be specified. When a rivet is defined, the distance between the nodes is kept constant throughout any motion that occurs during a simulation. Nodes connected by a rivet cannot be part of any other constraints specified in the model.

The EDCNSTR command is also valid in SOLUTION.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>LS-DYNA Options>Constraints>Apply>Additional Nodal Main Menu>Solution>Constraints>Apply>Additional Nodal

EDCONTACT, SFSI, RWPN, IPCK, SHTK, PENO, STCC, ORIE, CSPC, PENCHK

Specifies contact surface controls for an explicit dynamics analysis.

PREP 7:Explicit Dynamics
<> <> <> <> <> <> <> <> <> <> DY <> <> <> <>

SFSI

Scale factor for sliding interface penalties. Defaults to 0.1.

RWPN

Scale factor for rigid wall penalties (defaults to 0). If $R W P N=0$, rigid bodies interacting with rigid walls are not considered. If $R W P N>0$, rigid bodies interact with fixed rigid walls. A value of 1.0 should be optimal; however, this may be problem dependent.

IPCK
Initial contact surface penetration checking option:
1
No checking.
2
Full check of initial penetration is performed (default).
SHTK
Shell thickness contact option for surface-to-surface and nodes-to-surface contact (see Notes below):
0
Thickness is not considered (default).
1
Thickness is considered, except in rigid bodies.
2
Thickness is considered, including rigid bodies.
PENO
Penalty stiffness option (options 4 and 5 are useful for metal forming calculations):
1
Minimum of master segment and slave node (default).
2
Use master segment stiffness.
3
Use slave node value.
4
Use area or mass weighted slave node value.
5
Use slave node value inversely proportional to shell thickness. (This may require special scaling and is not generally recommended.)

STCC
Shell thickness change option for single surface contact:
1
Shell thickness changes are not considered (default).

2
Shell thickness changes are included.

ORIE

Option for automatic reorientation of contact surface segments during initialization:
1
Activate for automated (part ID) input only (default).
2
Activate for manual (nodal component) and automated (part ID) input.
3
Do not activate.

CSPC

Contact surface penetration check multiplier, used if small penetration checking is on (PENCHK $=1$ or 2). Defaults to 4 .

PENCHK

Small penetration check, used only for contact types STS, NTS, OSTS, TNTS, and TSTS. If the contact surface node penetrates more than the target thickness times CSPC, the penetration is ignored and the contacting node is set free. The target thickness is the element thickness for shell elements, or $1 / 20$ of the shortest diagonal for solid elements.

0
Penetration checking is off (default).
1
Penetration checking is on.
2
Penetration checking is on, but shortest diagonal is used.

Notes

The thickness offsets are always included in single surface, automatic surface-to-surface, and automatic nodes-to-surface contact. The shell thickness change option must be used [EDSHELL,,,1] and a nonzero value must be specified for SHTK before the shell thickness changes can be included in the surface-to-surface contact type. Additionally, STCC must be set to 2 if thickness changes are to be included in the single surface contact algorithms.

To reset the contact options to default values, issue the EDCONTACT command with no fields specified.
This command is also valid in SOLUTION.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.
Menu Paths
Main Menu>Preprocessor>LS-DYNA Options>Contact>Advanced Controls

EDCPU, CPUTIME

Specifies CPU time limit for an explicit dynamics analysis.

SOLUTION: Explicit Dynamics
$<><><><><\rangle<\rangle<\rangle<\rangle<><>$ DY <> <> <> <>

CPUTIME

CPU time limit (in seconds) for the current phase of the analysis (defaults to 0). If CPUTIME $=0$, no CPU time limit is set. CPUTIME values below 0 are not allowed.

Notes

This command is also valid in PREP7.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Solution>Analysis Options>CPU Limit

EDCRB, Option, NEQN, PARTM, PARTS

Constrains two rigid bodies to act as one in an explicit dynamics analysis.

PREP 7:Explicit Dynamics
<> <> <> <> <> <> <> <> <> <> DY <> <> <> <>

Option

Label identifying the option to be performed:
ADD
Define an equation to constrain two rigid bodies (default).
DELE
Delete the equation (specified by $N E Q N$) that constrains two rigid bodies. If $N E Q N$ is blank, all equations constraining rigid bodies are deleted.

LIST
List constrained rigid bodies specified by $N E Q N$. If $N E Q N$ is blank, all constrained rigid bodies are listed.

NEQN

Equation reference number. Defaults to $P A R T S$. $N E Q N$ should be a unique number for each pair of $P A R T M$ and PARTS. If it is not unique, the equation reference number defined last will overwrite any previously defined $N E Q N$ with the same number.

PARTM

PART number [EDPART] identifying the master rigid body. This value is ignored if the DELE or LIST labels are specified. No default; you must enter a value.

PARTS

PART number [EDPART] identifying the slave rigid body. This value is ignored if the DELE or LIST labels are specified. No default; you must enter a value.

Notes

EDCRB is valid only for materials defined as rigid bodies with the EDMP,RIGID command. EDCRB automatically generates a constraint equation to force the specified rigid bodies to behave as a single rigid body. The slave rigid body takes on the material properties and loading of the master rigid body. Any loads [EDLOAD] existing on the slave rigid body are ignored.

To create a single large rigid body from several smaller bodies, use a series of EDCRB commands. With the first command, specify a master and slave to create the first combined rigid body. Then, using that body as the master, specify another slave to create a larger rigid body. Continue the process, using the expanding rigid body as the master and adding slave bodies until you have defined the desired large rigid body. All slave rigid bodies will take on the material properties and loading of the original master rigid body. Note that you will need to use different NEQN values for each pair of PARTM and PARTS. This command will be ignored if you specify the previously-defined master rigid body as a slave rigid body in the same analysis. To change the master and slave definitions, first use the DELE option to delete all master and slave definitions, and then use the ADD option to redefine them.

The equation number, $N E Q N$, is a reference number by which the constrained bodies can be identified for listing and deleting purposes on the EDCRB command. For any other reference to the constrained bodies (loading, contact definitions, etc.), use the master body part number (PARTM).

This command is also valid in SOLUTION.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>Coupling / Ceqn>Rigid Body CE

EDCSC, Key

Specifies whether to use subcycling in an explicit dynamics analysis.

SOLUTION: Explicit Dynamics
<> <> <> <> <> <> <> <> <> <> DY <> <> <> <>

Key

Subcycling key:
OFF
Do not use subcycling (default).
ON
Use subcycling.

Command Default

No subcycling.

Notes

Subcycling can be used to speed up an analysis when element sizes within a model vary significantly. Relatively small elements will result in a small time step size. When subcycling is on, the minimum time step size is increased for the smallest elements.

This command is also valid in PREP7.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Solution>Time Controls>Subcycling

EDCTS, DTMS, TSSFAC

Specifies mass scaling and scale factor of computed time step for an explicit dynamics analysis.

SOLUTION: Explicit Dynamics
<> <> <> <> <> <> <> <> <> <> DY <> <> <> <>
DTMS
Time step size for mass scaled solutions (defaults to 0).

TSSFAC

Scale factor for computed time step. Defaults to 0.9 ; if high explosives are used, the default is lowered to 0.67 .

Command Default

No mass scaling; scale factor for computed time step $=0.9$.

Notes

If $D T M S$ is positive, the same time step size will be used for all elements and mass scaling will be done for all elements. Therefore, positive values should only be used if inertial effects are insignificant.

If $D T M S$ is negative, mass scaling is applied only to elements whose calculated time step size is smaller than $D T M S$. Negative values should only be used in transient analyses if the mass increases are insignificant.

In order to use mass scaling in an explicit dynamic small restart analysis (EDSTART,2) or full restart analysis (EDSTART,3), mass scaling must have been active in the original analysis. The time step and scale factor used in the original analysis will be used by default in the restart. You can issue EDCTS in the restart analysis to change these settings.

This command is also valid in PREP7.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Solution>Time Controls $>$ Time Step Ctrls

EDCURVE, Option, LCID, Par1, Par2

Specifies data curves for an explicit dynamic analysis.

PREP 7: Explicit Dynamics

Option

Label identifying the option to be performed.
ADD
Define a data curve (default). If Option $=A D D, P a r 1$ and Par2 must be previously defined array parameters.

DELE

Delete the specified data curve (LCID). If LCID is blank, all data curves are deleted. Par1 and Par2 are ignored for this option.

LIST

List defined data curve (LCID). If LCID is blank, all data curves are listed. Par1 and Par2 are ignored for this option.

PLOT

Plot defined data curve ($L C I D$). If Option = PLOT, LCID must be previously defined with an EDCURVE command. Otherwise a warning message will report that LCID has not been defined. Parl and Par2 are ignored for this option.

LCID

Data curve ID number (no default). Must be a positive integer.

Par1

Name of user-defined array parameter that contains the abscissa values of the curve data (e.g., time, effective plastic strain, effective strain rate, displacement, etc.).

Par2

Name of user-defined array parameter that contains the ordinate values of the curve data (e.g., damping coefficients, initial yield stress, elastic modulus, force, etc.) corresponding to the abscissa values in Par1.

Note

If the length of Par1 and Par2 are different, the shortest length will be used.

Notes

EDCURVE can be used to define material data curves (e.g., stress-strain) and load data curves (force-deflection) associated with material models in an explicit dynamics analysis. Material data specified by this command is typically required to define a particular material behavior (e.g., TB,HONEY), and the LCID number is used as input on the TBDATA command.

EDCURVE can also be used to define load curves that represent time dependent loads (force, displacement, velocity, etc.). Par1 must contain the time values, and Par2 must contain the corresponding load values. The LCID number assigned to the load curve can be used as input on the EDLOAD command.

Note

You cannot update a previously defined data curve by changing the array parameters that were input as Parl and Par2. The data curve definition is written to the database at the time EDCURVE is issued. Therefore, subsequent changes to the array parameters that were used as input on EDCURVE will not affect the load curve definition. If you need to change the load curve definition, you must delete the load curve (EDCURVE,DELE, LCID) and define it again.
$L C I D$ identifies the data curve. If the value input for $L C I D$ is the same as the ID number for a data curve previously defined by EDCURVE, the previous data will be overwritten. Use EDCURVE,LIST and EDCURVE,PLOT to check existing data curves.

A starting array element number must be specified for Par1 and Par2. The input for these fields must be a single column array parameter, or a specific column from a multi-column array parameter. When using the GUI with multi-column parameters, you must specify the parameter name and starting position for Parl and Par2 by typing the EDCURVE command in the Input Window. This is because only the parameter name is available through the dialog box, which pulls in the first position of a single-column array parameter.

If you need to change a curve definition in an explicit dynamic small restart analysis, issue EDSTART, 2 first (to specify the restart), then issue the EDCURVE command. The revised curve must contain the same number of points as the curve it replaces. This limitation does not apply to a full restart analysis (EDSTART,3).

This command is also valid in SOLUTION.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>Loads>Load Step Opts>Other>Change Mat Props>Curve Options>Add Curve
Main Menu>Preprocessor>Loads>Load Step Opts>Other>Change Mat Props>Curve Options>Delete Curve
Main Menu>Preprocessor>Loads>Load Step Opts>Other>Change Mat Props>Curve Options>List Curve
Main Menu>Preprocessor>Loads>Load Step Opts>Other>Change Mat Props>Curve Options>Plot Curve
Main Menu>Preprocessor>LS-DYNA Options>Loading Options>Curve Options>Add Curve Main Menu>Preprocessor>LS-DYNA Options>Loading Options>Curve Options>Delete Curve Main Menu>Preprocessor>LS-DYNA Options>Loading Options>Curve Options>List Curve Main Menu>Preprocessor>LS-DYNA Options>Loading Options>Curve Options>Plot Curve Main Menu>Preprocessor>Material Props>Curve Options>Add Curve Main Menu>Preprocessor>Material Props>Curve Options>Delete Curve
Main Menu>Preprocessor>Material Props>Curve Options>List Curve
Main Menu>Preprocessor>Material Props>Curve Options>Plot Curve
Main Menu>Solution>Load Step Opts>Other>Change Mat Props>Curve Options>Add Curve Main Menu>Solution>Load Step Opts>Other>Change Mat Props>Curve Options>Delete Curve Main Menu>Solution>Load Step Opts>Other>Change Mat Props>Curve Options>List Curve Main Menu>Solution>Load Step Opts>Other>Change Mat Props>Curve Options>Plot Curve Main Menu>Solution>Loading Options>Curve Options>Add Curve Main Menu>Solution>Loading Options>Curve Options>Delete Curve Main Menu>Solution>Loading Options>Curve Options>List Curve

EDDAMP, PART, LCID, VALDMP

Defines mass weighted (Alpha) or stiffness weighted (Beta) damping for an explicit dynamics model.

SOLUTION: Explicit Dynamics
<> <> <> <> <> <> <>> <> <> <> DY <> <> <> <>

PART

PART number [EDPART] identifying the group of elements to which damping should be applied. If $P A R T$ $=$ ALL (default), damping is applied to the entire model.

LCID

Load curve ID (previously defined with the EDCURVE command) identifying the damping coefficient versus time curve. If time-dependent damping is defined, an LCID is required.

VALDMP

Constant system damping coefficient or a scale factor applied to the curve defining damping coefficient versus time.

Notes

Mass-weighted (Alpha) or stiffness-weighted (Beta) damping can be defined with the EDDAMP command. Generally, stiffness proportional or beta damping is effective for oscillatory motion at high frequencies. This type of damping is orthogonal to rigid body motion and so will not damp out rigid body motion. On the other hand, mass proportional or alpha damping is more effective for low frequencies and will damp out rigid body motion. The different possibilities are described below:

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Global Damping

Mass-weighted or Alpha damping

When $P A R T=(b l a n k)$ or ALL (default), mass-weighted global damping can be defined in the following two ways. In this case, the same damping is applied for the entire structure.

- When the damping coefficient versus time curve ($L C I D$) is specified using the EDCURVE command, VALDMP is ignored by LS-DYNA (although it is written in the LS-DYNA input file Jobname. K). The damping force applied to each node in the model is given by $f_{d}=d(t) m v$, where $d(t)$ is the damping coefficient as a function of time defined by the EDCURVE command, m is the mass, and v is the velocity.
- When the LCID is 0 or blank (default), a constant mass-weighted system damping coefficient can be specified using VALDMP.

The constant and time-dependent damping, described above, cannot be defined simultaneously. The last defined global damping will overwrite any previously defined global damping.

Damping defined for a PART

Mass-weighted or Alpha damping

When both a valid PART number is specified and the damping coefficient versus time curve (LCID) is specified using the EDCURVE command, mass-weighted time-dependent damping will be defined for the particular PART. In this case, VALDMP will act as a scaling factor for the damping versus time curve (if VALDMP is not specified, it will default to 1). A valid PART number must be specified to define this type of damping. For example, use $P A R T=1$ (and not blank) when the entire model consists of only one $P A R T$. Issue the command repeatedly with different PART numbers in order to specify alpha damping for different PARTS.

Stiffness-weighted or Beta damping

When a valid PART number is specified with LCID $=0$ or (blank) (default), a stiffness-weighted (Beta) constant damping coefficient for this particular PART can be defined by VALDMP. The stiffness-weighted value corresponds to the percentage of damping in the high frequency domain. For example, 0.1 roughly corresponds to 10% damping in the high frequency domain. Recommended values range from 0.01 to 0.25 . Values lower than 0.01 may have little effect. If a value larger than 0.25 is used, it may be necessary to lower the time step size significantly (see the EDCTS command). Issue the command repeatedly with different PART numbers in order to specify beta damping for different PARTS. Time-dependent stiffness-weighted damping is not available in ANSYS LS-DYNA.

The mass-weighted and stiffness-weighted damping, described above, cannot be defined simultaneously for a particular PART number. The last defined damping for the particular PART number will overwrite any previously defined mass-weighted or stiffness-weighted damping for this PART.

In order to define the mass-weighted and stiffness-weighted damping simultaneously, you can use the MP,DAMP command (instead of the EDDAMP,PART, ,VALDMP command) to define stiffness-weighted (Beta) constant damping coefficient. However, do not use both of these commands together to define stiffnessweighted (Beta) constant damping coefficient for a particular PART. If you do, duplicate stiffness-weighted (Beta) constant damping coefficients for this PART will be written to the LS-DYNA input file Jobname.K. The last defined value will be used by LS-DYNA. Also, note that the MP,DAMP command is applied on the MAT number, and not on the PART number. Since a group of elements having the same MAT ID may belong to more than one PART (the opposite is not true), you need to issue the MP,DAMP command only once for this MAT ID and the stiffness-weighted (Beta) damping coefficients will be automatically defined for all the PARTs with that MAT ID.

Mass-weighted and stiffness-weighted damping can be defined simultaneously using the EDDAMP command only when mass-weighted damping (constant or time-dependent) is defined as global damping (EDDAMP, ALL, LCID, VALDMP) and stiffness-weighted damping is defined for all necessary PARTs (EDDAMP,PART, ,VALDMP).

To remove defined global damping, reissue the EDDAMP, ALL command with LCID and VALDMP set to 0 . To remove damping defined for a particular PART, reissue EDDAMP, PART, where PART is the PART number, with LCID and VALDMP set to 0 . There is no default for the EDDAMP command, i.e., issuing the EDDAMP command with PART $=$ LCID $=$ VALDMP $=0$ will result in an error. Stiffness-weighted damping defined by the MP,DAMP command can be deleted using MPDELE, DAMP, MAT.

In an explicit dynamic small restart (EDSTART,2) or full restart analysis (EDSTART,3), you can only specify global alpha damping. This damping will overwrite any alpha damping input in the original analysis. If you do not input global alpha damping in the restart, the damping properties input in the original analysis will carry over to the restart.

Damping specified by the EDDAMP command can be listed, along with other explicit dynamics specifications, by typing the command string EDSOLV\$STAT into the ANSYS input window. Beta damping specified by the MP,DAMP command can be listed by MPLIST, MAT command.

This command is also valid in PREP7.

Menu Paths

Main Menu>Preprocessor>Loads>Load Step Opts>Other>Change Mat Props>Damping
Main Menu>Preprocessor>Material Props>Damping
Main Menu>Solution>Load Step Opts>Other>Change Mat Props>Damping

EDDBL, KEY

Selects a numerical precision type of the explicit dynamics analysis.

PREP 7: Explicit Dynamics

KEY
Number or name identifying numerical precision to be used.

0 or SINGLE

Select single precision version of LS-DYNA (default).
1 or DOUBLE
Select double precision version of LS-DYNA.

STAT

Check the status of the numerical precision in effect.

Notes

Sets the single or double precision version of LS-DYNA into effect. Please check the availability of the double precision version of LS-DYNA on your system before using the command. If it is not available, use the command default.

The double precision version may be up to 20% slower than the single precision version. The results may also vary based on problem specifications.

In addition to EDDBL,STAT, you can use the GUI dialog box to verify which precision version is currently chosen. The GUI is based on the database and is updated to reflect changes.

See Double Precision LS-DYNA for more information.
This command is also valid in SOLUTION.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Solution>Analysis Options>Double Precision

EDDC, Option, Ctype, Cont, Targ

Deletes or deactivates/reactivates contact surface specifications in an explicit dynamic analysis.

PREP 7: Explicit Dynamics

Option

Option to be performed for contact definition specified by Ctype, Cont, and Targ.
DELE
Delete the specified contact definition (default); valid only in a new analysis.

DACT

Deactivate the specified contact definition; valid only in a small restart.

RACT

Reactivate the specified contact definition (which was previously deactivated); valid only in a small restart.

Ctype

Contact behavior label (see EDCGEN command for valid labels).
Cont
Component name or part number [EDPART] identifying the contact surface.

Targ

Component name or part number [EDPART] identifying the target surface.

Notes

This command allows you to delete or deactivate/reactivate a particular contact specification that was defined by EDCGEN. The contact definition is identified by Ctype, Cont, and Targ (Note that Cont and Targ may not be required for $C t y p e=A G, S E, A S S C, E S S$, and $S S$). The delete option (option = DELE) permanently deletes the contact from the database. Any additional contact parameters defined with the EDCMORE command for the contact definition identified on this command will also be deleted or deactivated/reactivated.

You cannot delete contact specifications in an explicit dynamic small restart (EDSTART,2). However, you can use Option = DACT to deactivate a contact definition that is not needed in the small restart. That contact definition may then be reactivated in a subsequent small restart by using option $=$ RACT.

To delete or deactivate/reactivate all contact specifications for the entire model, use EDDC,option,ALL.
The EDDC command is not supported in an explicit dynamic full restart analysis (EDSTART,3). Thus, you cannot delete, deactivate, or reactivate contact specifications in a full restart that were defined in the previous analysis.

This command is also valid in SOLUTION.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

> Main Menu>Preprocessor>LS-DYNA Options>Contact>Activate Entity Main Menu>Preprocessor>LS-DYNA Options>Contact>Deactvate Entity Main Menu>Preprocessor>LS-DYNA Options>Contact>Delete Entity

EDDRELAX, Option, NRCYCK, DRTOL, DFFCTR, DRTERM, TSSFDR, IRELAL, EDTTL

Activates initialization to a prescribed geometry or dynamic relaxation for the explicit analysis.

SOLUTION: Explicit Dynamics
<> <> <> <> <> <> <> <> <> <> DY <> <> <> <>

Option

Specifies when dynamic relaxation is activated.

ANSYS

Stresses are initialized in ANSYS LS-DYNA to a prescribed geometry for small strains, according to the solution of an ANSYS (implicit) run. The explicit solution is based on the implicit X,Y,Z displacements and rotations contained in the drelax file (created with the REXPORT command).

DYNA

Dynamic relaxation is on. When you use this option, you can specify some or all of the parameters NRCYCK, DRTOL, DFFCTR, DRTERM, TSSFDR, IRELAL, and EDTTL. Any parameters that you do not specify are set to their default values.

OFF

Turn off initialization to a prescribed geometry (Option $=$ ANSYS) or dynamic relaxation (Option = DYNA).

NRCYCK

Number of iterations between convergence checks for dynamic relaxation option. Default $=250$.

DRTOL

Convergence tolerance for dynamic relaxation option. Default $=0.001$.

DFFCTR

Dynamic relaxation factor. Default $=0.995$.

DRTERM

Optional termination time for dynamic relaxation. Termination occurs at this time, or when convergence is attained, whichever comes first. Default = infinity.

TSSFDR

Scale factor for computed time step during dynamic relaxation. If zero, the value is set to TSSFAC (defined on the EDCTS command). After converging, the scale factor is reset to TSSFAC.

IRELAL

Automatic control for dynamic relaxation option based on algorithm of Papadrakakis.
0
Not active (default).
1
Active.

EDTTL

Convergence tolerance on automatic control of dynamic relaxation (default $=0.04$).

Notes

Use Option = ANSYS when running an implicit-to-explicit sequential solution to initialize the structure to a static solution performed earlier by the ANSYS implicit solver. Use Option = DYNA to perform dynamic relaxation within the LS-DYNA program. Use Option = OFF to turn off previously specified stress initialization or dynamic relaxation. You must specify the Option you want; there is no default.

In LS-DYNA, the dynamic relaxation is performed before the regular transient analysis. The convergence process of the dynamic relaxation is not written to the ANSYS history file. The ANSYS results files only include the converged result of the dynamic relaxation, which is the result at time zero in the Jobname.HIS and Jobname. RST files.

You can restart a dynamic relaxation analysis (EDSTART,2 or EDSTART,3) from a previous transient analysis or a previous dynamic relaxation analysis. In the restart, you can change or set the convergence criteria with the EDDRELAX command. Only the load curves that are flagged for dynamic relaxation (PHASE $=1$ or 2 on EDLOAD) are applied after restarting. If you restart the explicit portion of an implicit-to-explicit sequential solution, you do not need to reissue the REXPORT command because displacement information contained in the drelax file is already included in the LS-DYNA restart file. If the dynamic relaxation is activated from a regular transient analysis, LS-DYNA continues the output of data to ANSYS results files. This is unlike the dynamic relaxation phase at the beginning of the calculation for which only the converged solution is written.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Solution>Analysis Options>Dynamic Relax

EDDUMP,NUM, DT

Specifies output frequency for the explicit dynamic restart file (d3dump).

SOLUTION: Explicit Dynamics
<> <> <> <> <> <> <> <> <> <> DY <> <> <> <>

NUM

Number of d3dump (restart) files written during the analysis (defaults to 1). When you specify NUM, the time interval between restart files is TIME / NUM, where TIME is the analysis end-time specified on the TIME command.

DT

Time interval at which the d3dump (restart) files are written. If NUM is input, $D T$ is ignored.

Command Default

One restart file is written at the end of the analysis.

Notes

You can use $N U M$ or $D T$ to specify the time interval at which d3dump restart files will be written. You should not specify both quantities; if both are input, $N U M$ will be used. The restart files are written sequentially as d3dump01, d3dump02, etc.

In LS-DYNA, the restart file output is specified in terms of number of time steps. Because the total number of time steps is not known until the LS-DYNA solution finishes, ANSYS calculates an approximate number of time steps for the solution, and then uses NUM or $D T$ to calculate the required LS-DYNA input. This approximated number of time steps may be different from the total number reached in LS-DYNA after the solution finishes. Therefore, the number of restart dump files or the output interval may differ slightly from what you requested using $N U M$ or $D T$.

In an explicit dynamic small restart (EDSTART,2) or full restart analysis (EDSTART,3), the EDDUMP setting will default to the $N U M$ or $D T$ value used in the original analysis. You can issue EDDUMP in the restart to change this setting.

This command is also valid in PREP7.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Solution>Output Controls>File Output Freq>Number of Steps
Main Menu>Solution>Output Controls>File Output Freq>Time Step Size

EDELE, IEL1, IEL2, INC

Deletes selected elements from the model.

$$
\begin{aligned}
& \text { PREP 7: Elements } \\
& \text { MP ME ST PR PRN }<><>\text { FL EM EH DY PP <> EME MFS }
\end{aligned}
$$

IEL1, IEL2, INC

Delete elements from IEL1 to IEL2 (defaults to $\operatorname{IEL1}$) in steps of $I N C$ (defaults to 1). If $I E L 1=\mathrm{ALL}$, IEL2 and INC are ignored and all selected elements [ESEL] are deleted. If $I E L 1=\mathrm{P}$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for IELI (IEL2 and INC are ignored).

Notes

Deleted elements are replaced by null or "blank" elements. Null elements are used only for retaining the element numbers so that the element numbering sequence for the rest of the model is not changed by deleting elements. Null elements may be removed (although this is not necessary) with the NUMCMP command. If related element data (pressures, etc.) are also to be deleted, delete that data before deleting the elements. EDELE is for unattached elements only. You can use the XCLEAR family of commands to remove any attached elements from the database.

Menu Paths

Main Menu>Preprocessor>Modeling>Create>Circuit>Delete Elements
Main Menu>Preprocessor>Modeling>Delete>Elements
Main Menu>Preprocessor>Modeling>Delete>Pre-tens Elemnts

EDENERGY, HGEN, SWEN, SIEN, RLEN
Specifies energy dissipation controls for an explicit dynamics analysis.
SOLUTION: Explicit Dynamics
<> <> <> <> <> <> <> <> <> <> DY <> <> <> <>

HGEN

Hourglass energy control key:

OFF or 0

Hourglass energy is not computed.

ON or 1

Hourglass energy is computed and included in the energy balance (default).

SWEN

Stonewall energy dissipation control key:
OFF or 0
Stonewall energy dissipation is not computed.
ON or 1
Stonewall energy dissipation is computed and included in the energy balance (default).

SIEN

Sliding interface energy dissipation control key:
OFF or 0
Sliding interface energy dissipation is not computed.
ON or 1
Sliding interface energy dissipation is computed and included in the energy balance (default).

RLEN

Rayleigh (damping) energy dissipation control key:
OFF or 0
Rayleigh energy dissipation is not computed.
ON or 1
Rayleigh energy dissipation is computed and included in the energy balance (default).

Notes

This command is also valid in PREP7.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Solution>Analysis Options>Energy Options

EDFPLOT, Key

Allows plotting of explicit dynamics forces and other load symbols.

SOLUTION: Explicit Dynamics
<> <> <> <> <> <> <> <> <> <> DY <> <> <> <>
Key
Load symbol plotting key.
ON or 1
Turn display of load symbols on (default).
OFF or 0
Turn display of load symbols off.

Command Default

Display of load symbols on.

Notes

You must issue EDFPLOT,ON to display explicit dynamics load symbols. The explicit load symbols are erased automatically upon a subsequent plot command.

An explicit load symbol always indicates a positive load direction (e.g., positive X direction for FX load), even if the load value is negative. The load symbol does not reflect the load magnitude. You can use standard ANSYS symbol controls to control the appearance of the load symbol. No load symbol is displayed for temperature loads.

This command is also valid in PREP7.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>LS-DYNA Options>Loading Options>Show Forces
Main Menu>Solution>Loading Options>Show Forces
Utility Menu>PlotCtrls>Symbols

EDGCALE, NADV, METH

Defines global ALE controls for an explicit dynamic analysis.
SOLUTION: Explicit Dynamics
$<><><><><><><><><><>$ DY <> <> <> <>

NADV

Number of cycles between advection (default $=0$).

METH

Advection method.
0
Donor cell + Half Index Shift (first order accurate) (default).
1
Van Leer + Half Index Shift (second order accurate).

Command Default

The Lagrangian formulation is used for all elements by default.

Notes

This command sets global ALE controls in an explicit dynamic analysis. These ALE controls apply to all PLANE162 or SOLID164 elements in the model that are flagged to use the ALE formulation (KEYOPT(5) = 1). To activate the ALE formulation, you must specify the number of cycles between advection on this command
and at least one smoothing weight factor on the EDALE command. See Arbitrary Lagrangian-Eulerian Formulation in the ANSYS LS-DYNA User's Guide for more information.

To see the current EDGCALE settings, issue the command EDALE,LIST.
The EDGCALE command is also valid in PREP7.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Solution>Analysis Options>ALE Options>Define

/EDGE, WN, KEY, ANGLE

Displays only the "edges" of an object.

GRAPHICS: Style
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

WN
Window number (or ALL) to which command applies (defaults to 1).

KEY

Edge key:
Elements Plots
0
Display common lines between all adjacent element faces.
1
Display only the common lines between non-coplanar faces (that is, show only the edges).

Contour Plots

0
Display only the common lines between non-coplanar faces.
1
Display common lines between all element faces.

ANGLE

Largest angle between two faces for which the faces are considered to be coplanar (0° to 180°). Defaults to 45°. A smaller angle produces more edges, a larger angle produces fewer edges.

Command Default

For element plots, display common lines between all adjacent element faces. For contour plots, display only the common lines between non-coplanar faces.

Notes

The ANGLE field is used in PowerGraphics to determine geometric discontinuities. It is a tolerance measure for the differences between the normals of the surfaces being considered. Values within the tolerance are accepted as coplanar (geometrically continuous).

A surface can be displayed as an edge outline without interior detail. This is useful for both geometry and postprocessing displays. Element outlines are normally shown as solid lines for geometry and displacement displays. Lines common to adjacent "coplanar" element faces are removed from the display. Midside nodes of elements are ignored. The /SHRINK option is ignored with the edge option. /EDGE is not supported for PLESOL and /ESHAPE displays when in PowerGraphics mode [/GRAPHICS,POWER].

The /EDGE command is valid in any processor.

Menu Paths

Utility Menu>PlotCtrls>Style>Edge Options

EDHGLS, HGCO

Specifies the hourglass coefficient for an explicit dynamics analysis.
SOLUTION: Explicit Dynamics
<> <> <> <> <> <> <> <> <> <> DY <> <> <> <>

HGCO
Hourglass coefficient value (defaults to 0.1). Values greater than 0.15 may cause instabilities.

Notes

This command is also valid in PREP7.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>Loads>Load Step Opts>Other>Change Mat Props>Hourglass Ctrls>Global
Main Menu>Preprocessor>Material Props>Hourglass Ctrls>Global
Main Menu>Solution>Analysis Options>Hourglass Ctrls>Global
Main Menu>Solution>Load Step Opts>Other>Change Mat Props>Hourglass Ctrls>Global

EDHIST, Comp

Specifies time-history output for an explicit dynamic analysis.
SOLUTION: Explicit Dynamics
<> <> <> <> <> <> <> <> <> <> DY <> <> <> <>

Comp

Name of the component containing nodes or elements for which output is desired. Comp is required.

Command Default

No time-history output is written.

Notes

The time-history output is written to the file Jobname. HIS. Output is written only for the nodes or elements contained in Comp. The data is written at time intervals specified on the EDHTIME command. If no time interval is specified, output is written at 1000 steps over the analysis. (See also the EDOUT command which controls time-history output in ascii form for an explicit dynamics analysis.)

Use EDHIST,LIST to list the time-history output specification. (The listing will include output requested with the EDOUT command.) Use EDHIST,DELE to delete the time-history output specification.

Jobname. HIS is a binary file that is read by the ANSYS time-history postprocessor (POST26). If LS-DYNA output has been requested on the EDWRITE command [EDWRITE,LSDYNA or EDWRITE,BOTH], the file D3THDT will also be written. D3THDT is a binary file that is read by the LS-POST postprocessor.

This command is also valid in PREP7.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Solution>Output Controls>Select Component

EDHTIME, NSTEP, DT

Specifies the time-history output interval for an explicit dynamics analysis.

SOLUTION: Explicit Dynamics
<> <> <> <> <> <> <> <> <> <> DY <> <> <> <>

NSTEP

Number of steps at which output is written to the time-history file, Jobname. HIS, and the ASCII output files. Defaults to 1000 . The time increment between output is TIME / NSTEP, where TIME is the analysis end-time specified on the TIME command.

$D T$

Time interval at which output is written to the time-history file, Jobname. HIS, and the ASCII output files. If NSTEP is input, $D T$ is ignored.

Command Default

Time-history output is written at 1000 steps over the analysis.

Notes

EDHTIME controls the number of steps at which output will be written to the time-history file, Jobname. HIS (see the EDHIST command), and any ASCll files requested on the EDOUT command. You can use NSTEP or $D T$ to specify the output interval. You should not specify both quantities; if both are input, NSTEP will be used.

In an explicit dynamic small restart (EDSTART,2) or full restart analysis (EDSTART,3), the EDHTIME setting will default to the NSTEP or $D T$ value used in the original analysis. You can issue EDHTIME in the restart to change this setting.

This command is also valid in PREP7.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Solution>Output Controls>File Output Freq>Number of Steps
Main Menu>Solution>Output Controls>File Output Freq>Time Step Size

EDINT, SHELLIP, BEAMIP

Specifies number of integration points for explicit shell and beam output.

SOLUTION: Explicit Dynamics <> <> <> <> <> <> <> <> <> <> DY <> <> <> <>

SHELLIP

Number of shell integration points used for output (defaults to 3). For element SHELL163, each integration point is associated with a layer. SHELLIP must be ≥ 3. If $S H E L L I P=3$, results are written for the shell top, middle, and bottom. If $S H E L L I P>3$, then the results for the first $S H E L L I P$ layers are written.

BEAMIP

Number of beam integration points used for stress output for BEAM161 (defaults to 4).

Command Default

For SHELL163, output is available for the top, middle and bottom layers. For BEAM161, stress is available at 4 integration points (top-front, top-back, bottom-front, bottom-back). For the resultant beam formulation ($\operatorname{KEYOPT}(1)=2)$, there is no stress output.

Notes

The number of integration points is defined by the element real constant NIP for both the beam elements (in the cross section) and the shell elements (through the thickness).
 If NIP $=1$, the same results are reported at the top, middle, and bottom layers. If the NIP $=2$, the results at the bottom correspond to integration point 1 , the results at the top correspond to integration point 2 , and the results at the middle are an average of the top and bottom results.

For shell elements with 2×2 integration points in the plane, the data from the four points are averaged, and there is a single output value for each layer.

If you set $\operatorname{BEAMIP}=0$, no stress output is written for BEAM161 elements. In this case, the beams will not appear in any POST1 plots because the program assumes they are failed elements.

This command is also valid in PREP7.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Solution>Output Controls>Integ Pt Storage

EDIPART, PART, Option, Cvect, TM, IRCS, Ivect, Vvect, CID

Defines inertia for rigid parts in an explicit dynamics analysis.

PREP 7:Explicit Dynamics
<> <> <> <> <> <> <> <> <> <> DY <> <> <> <>

PART

Part number for which the inertia is defined (the part number must have been previously generated using the EDPART command). The part should be composed of a rigid material (EDMP,RIGID). For Option = ADD, you must input a value; there is no default. For Option = DELE or LIST, PART defaults to all parts.

Option

ADD
Define inertia for the specified PART (default).

DELE

Delete the inertia properties for the specified $P A R T$. The remaining fields are ignored. If $P A R T$ is blank, inertia properties previously specified using EDIPART are deleted for all rigid parts.

LIST
List the inertia properties for the specified PART. The remaining fields are ignored. If PART is blank, inertia properties are listed for all rigid parts.

Cvect

The vector containing the global Cartesian coordinates of the center of mass for the part. This vector must have been previously defined with a dimension of three (*DIM command) and filled in as shown below. If Cvect is blank, the global Cartesian origin $(0,0,0)$ is used as the center of mass.

Cvect(1) -- X-coordinate of the center of mass
Cvect(2) -- Y-coordinate of the center of mass
Cvect(3) -- Z-coordinate of the center of mass
TM
Translation mass (no default, must be defined).
IRCS
Flag for inertia tensor reference coordinate system.

0 (or blank)

Global inertia tensor (default). You must supply all six inertia tensor components (see Ivect).
1
Principal moments of inertia with orientation vectors. You must supply IXX, IYY, IZZ (see Ivect) and CID.

Ivect

The name of a vector containing the components of the inertia tensor. This vector must have been previously defined (*DIM command) with a dimension of six and filled in as shown below. Vector entries 2,3 and 5 are ignored if $I R C S=1$. There is no default for this vector; it must be specified.

```
Ivect(1) -- IXX component of the inertia tensor
Ivect(2) -- IXY (set this entry to zero if IRCS = 1)
Ivect(3) -- IXZ (set this entry to zero if IRCS = 1)
Ivect(4) -- IYY component of the inertia tensor
Ivect(5) -- IYZ (set this entry to zero if IRCS = 1)
Ivect(6) -- IZZ component of the inertia tensor
```


Vvect

The name of a vector containing the initial velocity (relative to the global Cartesian coordinate system) of the rigid part. This vector must have been previously defined (*DIM command) with a dimension of six and filled in as shown below. If Vvect is blank, the initial velocity defaults to zero.

Vvect(1) -- Initial translational velocity of rigid body in X-direction
Vvect(2) -- Initial translational velocity of rigid body in Y-direction
Vvect(3) -- Initial translational velocity of rigid body in Z-direction
Vvect(4) -- Initial rotational velocity of rigid body about the X-axis
Vvect(5) -- Initial rotational velocity of rigid body about the Y -axis
Vvect(6) -- Initial rotational velocity of rigid body about the Z-axis

CID

Local coordinate system ID. This coordinate system must have been previously defined with the EDLCS command. You must input CID if $\operatorname{IRCS}=1$ (no default).

Command Default

Inertia properties are calculated by the program for all rigid parts.

Notes

The EDIPART command applies only to rigid parts (EDMP,RIGID). It allows you to input the inertia properties for the rigid part rather than having the program calculate the properties from the finite element mesh.

This command is also valid in Solution.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>LS-DYNA Options>Inertia Options>Define Inertia
Main Menu>Preprocessor>LS-DYNA Options>Inertia Options>Delete Inertia Main Menu>Preprocessor>LS-DYNA Options>Inertia Options>List Inertia

EDIS, Option, PIDN, PIDO

Specifies stress initialization in an explicit dynamic full restart analysis.

SOLUTION: Explicit Dynamics
$<><\rangle<\rangle<\rangle<\rangle\rangle\rangle\rangle\rangle\rangle$ DY <> <> <> <>

Option

Label identifying the option to be performed.
ADD
Define stress initialization between parts (default).

DELE

Delete stress initialization between parts.

LIST

List stress initialization between parts.
PIDN
New part ID or part assembly ID in the full restart analysis (defaults to all parts in the model).

PIDO

Old part ID or part assembly ID in the previous analysis, (default to PIDN).

Command Default

No stress initialization is performed.

Notes

The EDIS command is only valid in an explicit dynamic full restart analysis (EDSTART,3). (EDIS is ignored if it is not preceded by the EDSTART,3 command.) Use EDIS to specify which parts and/or part assemblies should undergo stress initialization in the restart based on the stresses from the previous analysis. You can specify stress initialization for multiple parts (or part assemblies) by issuing EDIS multiple times. If you issue EDIS with no arguments, stress initialization is performed for all parts in the restart analysis that have a corresponding part (having the same part ID) in the previous analysis.

In a full restart analysis, the complete database is written as an LS-DYNA input file, Jobname_nn. K. When the LS-DYNA solution begins, LS-DYNA performs the stress initialization using file Jobname_nn. K and the restart dump file (d3dumpnn specified on the EDSTART command) from the previous analysis. At the end of initialization, all the parts that were specified by the EDIS commands are initialized from the data saved in the restart dump file. In order for the stress initialization to be performed successfully, the new parts in the full restart analysis and the old parts in the previous analysis must have the same number of elements, same element order, and same element topology. (The parts may have different identifying numbers.) If this is not the case, the stresses cannot be initialized. If part assemblies are used, the part assemblies must contain the same number of parts. (See A Full Restart in the ANSYS LS-DYNA User's Guide for more details).

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Solution>Analysis Options>Initial Stress

EDLCS, Option, CID, X1, Y1, Z1, X2, Y2, Z2, X3, Y3, Z3

Defines a local coordinate system for use in explicit dynamics analysis.

PREP 7: Explicit Dynamics
<> <> <> <> <> <> <> <> <> <> DY <> <> <> <>

Option

Label identifying the option to be performed:
ADD
Define a coordinate system (default).

DELE

Delete a coordinate system. If CID is blank, all coordinate systems are deleted.

LIST

List defined coordinate systems. If CID is blank, all coordinate systems are listed.
CID
Coordinate system ID.

X1, Y1, Z1

X, Y, and Z coordinates of a point on the local X-axis.

X2, Y2, Z2

X, Y, and Z coordinates of a point on the local $x-y$ plane.

X3, Y3, z3

X, Y, and Z coordinates of the origin. $X 3, Y 3$, and $Z 3$ all default to zero.

Notes

Local coordinate systems defined by this command are used in an explicit dynamic analysis. For example, a local coordinate system may be used when defining orthotropic material properties (see EDMP).

The coordinate system is defined by 2 vectors, one from the origin ($X 3, Y 3, Z 3$) to a point on the x-axis ($X 1$, $Y 1, Z 1$), and one from the origin to a point on the $x-y$ plane ($X 2, Y 2, Z 2$). The cross product of these two vectors determines the z-axis, and the cross product of the z-axis vector and x-axis vector determines the y-axis. If $X 3, Y 3$, and $z 3$ are not specified, the global origin $(0,0,0)$ is used by default (as shown in the figure below).

The x-axis vector and the $x y$ vector should be separated by a reasonable angle to avoid numerical inaccuracies.
When you use the local coordinate system (defined by the EDLCS command) to define a load (EDLOAD command), the direction of the load will depend on the load type. For force and moment loads ($L a b=F X$,

MX, etc. on EDLOAD), the load will be applied in the direction of the local coordinate system defined by EDLCS. For prescribed motion degrees of freedom ($L a b=U X, R O T X, V X, A X$, etc. on EDLOAD), the motion will act in the direction of a vector from point ($X 1, Y 1, Z 1$) to point ($X 2, Y 2, Z 2$) as input on EDLCS. See the EDLOAD command for more information.

This command is also valid in SOLUTION.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

```
Main Menu>Preprocessor>Loads>Load Step Opts>Other>Change Mat Props>Local CS>Create
Local CS
Main Menu>Preprocessor>Loads>Load Step Opts>Other>Change Mat Props>Local CS>Delete
Main Menu>Preprocessor>Loads>Load Step Opts>Other>Change Mat Props>Local CS>List
Main Menu>Preprocessor>LS-DYNA Options>Constraints>Apply>Local CS>Create Local CS
Main Menu>Preprocessor>LS-DYNA Options>Constraints>Apply>Local CS>Delete
Main Menu>Preprocessor>LS-DYNA Options>Constraints>Apply>Local CS>List
Main Menu>Preprocessor>Material Props>Local CS>Create Local CS
Main Menu>Preprocessor>Material Props>Local CS>Delete
Main Menu>Preprocessor>Material Props>Local CS>List
Main Menu>Solution>Constraints>Apply>Local CS>Create Local CS
Main Menu>Solution>Constraints>Apply>Local CS>Delete
Main Menu>Solution>Constraints>Apply>Local CS>List
Main Menu>Solution>Load Step Opts>Other>Change Mat Props>Local CS>Create Local CS
Main Menu>Solution>Load Step Opts>Other>Change Mat Props>Local CS>Delete
Main Menu>Solution>Load Step Opts>Other>Change Mat Props>Local CS>List
```


EDLOAD, Option, Lab, KEY, Cname, Par1, Par2, PHASE, LCID, SCALE, BTIME, DTIME

Specifies loads for an explicit dynamics analysis.
SOLUTION: Explicit Dynamics
<> <> <> <> <> <> <> <> <> <> DY <> <> <> <>
Option
Label identifying the load option to be performed.
ADD
Define a load (default). If Option = ADD, Cname must be a valid node or element component name (or PART number). You must also specify a load curve using Par1 and Par2 (previously defined array parameters) or LCID (a previously defined load curve).

DELE

Delete specified load. If Lab and Cname are blank, all loads are deleted. Par1, Par2, PHASE, and LCID are ignored for this option.
LIST
List specified load. If Lab and Cname are blank, all loads are listed. Par1, Par2, PHASE, and LCID are ignored for this option.

Lab
Valid load labels for loads applied to nodes:

FX, FY, FZ

Forces.

MX, MY, MZ

Moments.

UX, UY, UZ

Displacements.

ROTX, ROTY, ROTZ

Rotations.

VX, VY, VZ

Velocities.

OMGX, OMGY, OMGZ

Angular velocities.

AX, AY, AZ

Accelerations (on nodes).

ACLX, ACLY, ACLZ

Base accelerations.

TEMP

Temperature.
Valid load labels for loads applied to elements:

PRESS

Pressure (applied to an element).
Valid load labels for loads applied to rigid bodies:

RBFX, RBFY, RBFZ

Forces on rigid bodies.

RBMX, RBMY, RBMZ

Moments on rigid bodies.

RBUX, RBUY, RBUZ

Displacements on rigid bodies.

RBRX, RBRY, RBRZ

Rotations on rigid bodies.

RBVX, RBVY, RBVZ

Velocities on rigid bodies.

RBOX, RBOY, RBOZ

Angular velocities on rigid bodies.

KEY

When $L a b=$ PRESS, $K E Y=$ Load key (face number) associated with a surface pressure load. Load keys ($1,2,3$, etc.) are listed under "Surface Loads" in the input data tables for each element type in the Element Reference.

For most other values of $L a b, K E Y$ is a coordinate system identification number, CID from the EDLCS command. The CID will represent either a local coordinate system (used for loads labels FX, MX, etc.) or a direction vector (used for prescribed motion labels UX, ROTX, VX, AX, etc.). See the Notes section for more information on how the CID is used. If the load is in the global coordinate system, set $K E Y$ equal
to zero, or leave it blank. Some load types do not support the CID key; see Table 146: Birth Time, Death Time, and CID Support (p. 473) in the Notes section for more information.

For $L a b=$ PRESS, $K E Y$ defaults to 1 when $K E Y$ is blank or when $K E Y=$ zero. For all other values of $L a b$, $K E Y$ defaults to zero.

Cname

Name of existing component [CM] or PART number [EDPART] to which this load is to be applied. For all load labels except the pressure load ($L a b=$ PRESS) and the rigid body loads ($L a b=$ RBxx), the component must consist of nodes. For pressure loads, the component must consist of elements. For rigid body loads, a part number must be input instead of a component name. The part number must correspond to a set of elements that has been identified as a rigid body [EDMP,RIGID,MAT].
Par1
Name of user-defined array parameter that contains the time values of the load.

Par2

Name of user-defined array parameter that contains the "data" values of the load corresponding to the time values in Par1.

Note

If the length of Par1 and Par2 are different, the shortest length will be used.

PHASE

Phase of the analysis in which the load curve is to be used.
0
Curve is used in transient analysis only (default).
1
Curve is used in stress initialization or dynamic relaxation only.
2
Curve is used in both stress initialization (or dynamic relaxation) and transient analysis.
LCID
Data curve ID number representing the load curve to be applied. The load curve must have been previously defined using the EDCURVE command. If LCID is specified, Par1 and Par2 must be left blank (in the GUI, select "None" for Par1 and Par2).

SCALE
Load curve scale factor applied to the specified load curve. The scale value is applied to the data in Par2 or to the ordinate data in the load curve specified by LCID.

BTIME

Birth time, or time when imposed motion is activated. The default is 0.0 . Some load types do not support birth and death time; see Table 146: Birth Time, Death Time, and CID Support (p. 473) in the Notes section for more information.

DTIME

Death time, or time when imposed motion is removed. The default is 1×10^{38}. Some load types do not support birth and death time; see Table 146: Birth Time, Death Time, and CID Support (p. 473) in the Notes section for more information.

Notes

If a component name is input (Cname) and the specified component definition is changed before the SOLVE command, the last definition will be used.

You can specify the load data by inputting LCID (the ID number of a previously defined load curve) or by inputting the two array parameters Par1 and Par2 (which contain time and load values, respectively). The input for Par1 and Par2 may be a single column array parameter, or a specific column from a multi-column array parameter. A starting array element number can be specified for Par1 and Par2; if none is specified, array element 1 is used by default.

Abstract

Note You cannot update a previously defined load by changing the array parameters that were input as Par1 and Par2. The load definition is written to the database at the time EDLOAD is issued. Therefore, subsequent changes to the array parameters that were used as input on EDLOAD will not affect the load curve definition. If you need to change the load definition, you must delete the load (EDLOAD,DELE) and define it again.

EDLOAD automatically assigns a load number to each defined load. Use EDLOAD,LIST to obtain a list of loads and their corresponding load numbers. You can plot a load curve by inputting the load number on the EDPL command. The load numbers may change when loads are deleted (EDLOAD,DELE). Therefore, you should obtain a current list of load numbers (EDLOAD,LIST) before plotting a load curve.

For prescribed motion, we recommend that you specify velocity time histories instead of displacement time histories. Also, you should not specify nonzero initial displacements. A piecewise linear displacement time history may lead to discontinuous velocities and infinite accelerations.

By default, the load will be applied in the global Cartesian direction. You can define the load in a different direction by inputting a CID (coordinate system ID) value in the KEY field. The CID must be previously defined using the EDLCS command. For load labels ($L a b=F X, F Y, F Z, M X, M Y, M Z, ~ R B F X, ~ R B F Y, ~ R B F Z, ~ R B M X, ~ R B M Y, ~$ RBMZ), the load will be applied in the direction of the local coordinate system defined by EDLCS. For prescribed motion degrees of freedom labels (Lab = UX, UY, UZ, ROTX, ROTY, ROTZ, VX, VY, VZ, AX, AY, AZ, RBUX, RBUY, RBUZ, RBRX, RBRY, RBRZ, RBVX, RBVY, RBVZ, RBOX, RBOY, RBOZ), the motion will act in the direction of a vector defined by two points input on the EDLCS command. The origin and terminus ends of the vector are defined by the $X 1, Y 1, Z 1$ and $X 2, Y 2, Z 2$ fields, respectively, of EDLCS.

For $L a b=$ OMGX, OMGY, and OMGZ, you may need to specify the origin location of the acceleration coordinate system [CGLOC].

When applying a temperature load ($L a b=T E M P$), you may also need to define a reference temperature via the TREF command. The thermal loading is defined as the difference between the applied temperature and the reference temperature. Note that EDLOAD,LIST will list only the temperature values specified on EDLOAD, not the temperature difference.

When applying loads to axisymmetric PLANE162 elements, the load may be interpreted differently depending on whether you use the area weighted or volume weighted option (KEYOPT(2)). See the PLANE162 element description in the Element Reference for details.

Use PHASE $=0$ when you are using the LS-DYNA solver to conduct a transient explicit analysis only or when you are conducting a sequential implicit/explicit analysis, in which the ANSYS (implicit) resulting displacements
(stored in the `drelax' file from the REXPORT command) are used to preload the explicit model [EDDRELAX,ANSYS]

Use PHASE $=1$ or 2 when you need to use LS-DYNA to preload the model (as opposed to ANSYS) before running the transient portion of the analysis. $P H A S E=1$ applies the load initially and then immediately removes the load. As a result, the load is removed, and the structure vibrates freely. PHASE $=2$ applies the load and then continues to apply the load over the course of the transient analysis, so that the transient analysis includes the effect of the initial loading and continues to account for the initial loading.

Birth and Death times, as well as the CID key are supported only for the EDLOAD labels specified with a Yes in the following table.

Table 146 Birth Time, Death Time, and CID Support

EDLOAD Label	Birth Time	Death Time	KE $\boldsymbol{Y}=$ CID
FX, FY, FZ	No	No	Yes
MX, MY, MZ	No	No	Yes
UX, UY, UZ	Yes	Yes	Yes
ROTX, ROTY, ROTZ	Yes	Yes	Yes
VX, VY, VZ	Yes	Yes	Yes
OMGX, OMGY, OMGZ	No	No	No
AX, AY, AZ	Yes	Yes	Yes
ACLX, ACLY, ACLZ	No	No	No
TEMP	No	No	No
PRESS	Yes	No	No
RBFX, RBFY, RBFZ	No	No	Yes
RBMX, RBMY, RBMZ	No	No	Yes
RBUX, RBUY, RBUZ	Yes	Yes	Yes
RBRX, RBRY, RBRZ	Yes	Yes	Yes
RBVX, RBVY, RBVZ	Yes	Yes	Yes
RBOX, RBOY, RBOZ	Yes	Yes	Yes

This command is also valid in PREP7.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>LS-DYNA Options>Loading Options>Delete Loads>Delete All
Main Menu>Preprocessor>LS-DYNA Options>Loading Options>Delete Loads>Delete Individ
Main Menu>Preprocessor>LS-DYNA Options>Loading Options>Specify Loads
Main Menu>Solution>Loading Options $>$ Delete Loads>Delete All
Main Menu>Solution>Loading Options>Delete Loads>Delete Individ
Main Menu>Solution>Loading Options>Specify Loads

EDMP, Lab, MAT, VAL1, VAL2, VAL3, VAL4, VAL5, VAL6
Defines material properties for an explicit dynamics analysis.
PREP 7: Explicit Dynamics

Lab

Valid material property label. Applicable labels are listed under "Material Properties" in the input table for each explicit dynamics element type in the Element Reference.

HGLS

Hourglass and bulk viscosity properties (valid for PLANE162, SHELL163, SOLID164 using reduced integration, and SOLID168). VAL1 through VAL 6 are also used. For those elements using full integration, HGLS is not applicable and the input has no effect.

RIGID

Rigid body constraint (valid for LINK160, BEAM161, PLANE162, SHELL163, SOLID164, and SOLID168). $V A L 1$ and VAL2 are also used.

CABLE

Cable properties (valid for LINK167). VAL1 is optional input (see Notes).
ORTHO
Defines a material coordinate system for the orthotropic material model (valid for PLANE162, SHELL163, SOLID164, and SOLID168) or the anisotropic material model (valid for SOLID164 and SOLID168). VAL1 is also used.

FLUID
Fluid properties (valid for PLANE162, SOLID164, and SOLID168). VAL1 is optional input (see Notes).

MAT

Material reference number (defaults to the current MAT setting on MAT command).

VAL1, VAL2, VAL3, . . . , VAL6

Additional input for specified Lab material property. The meaning of VAL1 through VAL 6 will vary, depending on Lab. See the table below for VALI through VAL 6 definitions.

VAL1, VAL2, VAL3, . . . , VAL 6 Definitions

Additional input for hourglass and bulk viscosity properties ($L a b=H G L S$).

VAL1

Hourglass control type. For solid elements (PLANE162, SOLID164, and SOLID168), 5 options are available. For quadrilateral shell and membrane elements (SHELL163) with reduced integration, the hourglass control is based on the formulation of Belytschko and Tsay; i.e., options 1-3 are identical and options 4-5 are identical.

0, 1
Standard LS-DYNA viscous form (default).
2
Flanagan-Belytschko viscous form.
3
Flanagan-Belytschko viscous form with exact volume integration for solid elements.

4
Flanagan-Belytschko stiffness form.

5

Flanagan-Belytschko stiffness form with exact volume integration for solid elements.

VAL2

Hourglass coefficient. (Defaults to 0.1.) Values greater than 0.15 may cause instabilities. The recommended default applies to all options. The stiffness forms can stiffen the response (especially if deformations are large) and, therefore, should be used with care. For the shell and membrane elements, the value input for VAL1 is the membrane hourglass coefficient. VAL5 and VAL 6 can also be input, but generally VAL2 $=V A L 5=V A L 6$ is adequate.

VAL3

Quadratic bulk viscosity coefficient. (Defaults to 1.5 .)

VAL4

Linear bulk viscosity coefficient. (Defaults to 0.06.)

VAL5

Hourglass coefficient for shell bending. (Defaults to VAL2.)

VAL6

Hourglass coefficient for shell warping. (Defaults to VAL2.)
Additional input for rigid body constraint ($L a b=$ RIGID).
VAL1
Translational constraint parameter (relative to global Cartesian coordinates).
0
No constraints (default).
1
Constrained X displacement.
2
Constrained Y displacement.
3
Constrained Z displacement.
4
Constrained X and Y displacements.
5
Constrained Y and Z displacements.
6
Constrained Z and X displacements.
7
Constrained X, Y, and Z displacements.
VAL2
Rotational constraint parameter (relative to global Cartesian coordinates).
0
No constraints (default).
1
Constrained X rotation.
2
Constrained Y rotation.

3
Constrained Z rotation.
4
Constrained X and Y rotations.
5
Constrained Y and Z rotations.
6
Constrained Z and X rotations.
7
Constrained X, Y, and Z rotations.
Additional input for cable properties ($L a b=C A B L E$).
VAL1
Load curve ID defining engineering stress versus engineering strain (i.e., change in length over the initial length). If VALI and Young's modulus [MP,EX] are input, the load curve corresponding to VALI will be used and Young's modulus will be ignored.

Additional input for material coordinate system ($L a b=O R T H O$).

VAL1

Coordinate system ID number from the EDLCS command. This coordinate system will be used to orient the orthotropic or anisotropic materials associated with the material number, MAT.

Additional input for fluid material properties ($L a b=$ FLUID).

VAL1

Bulk modulus of fluid. If VAL1 is not input, the bulk modulus will be calculated from the elastic modulus (EX) and Poisson's ratio (NUXY).

Notes

For $L a b=$ RIGID, you must specify elastic modulus (EX), density (DENS), and Poisson's ratio (NUXY) [MP command]. For $L a b=$ CABLE, you must specify density (DENS) and one of the following: Young's modulus (EX) or an engineering stress-strain curve (VAL1). For Lab = FLUID, you must specify either the bulk modulus (VAL1) or both Young's modulus (EX) and Poisson's ratio (NUXY) (if all three are specified, only VAL1 will be used).

After you define a rigid body using EDMP,RIGID, you may assign inertia properties to that rigid body using the EDIPART command.

EDMP,ORTHO is required for orthotropic or anisotropic material properties that are not locally orthotropic with material axes determined by element nodes (see Orthotropic Elastic Model and Anisotropic Elastic Model in the ANSYS LS-DYNA User's Guide).

Via the GUI, Lab = RIGID, CABLE, ORTHO, and FLUID are available through the material model interface. See Defining Explicit Dynamics Material Models in the ANSYS LS-DYNA User's Guide for more information.

Use the MPLIST and MPDELE commands to list and delete materials defined by the EDMP command.
This command is also valid in SOLUTION.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>Loads>Load Step Opts>Other>Change Mat Props>Hourglass Ctrls>Local
Main Menu>Preprocessor>Material Props>Hourglass Ctrls>Local
Main Menu>Solution>Analysis Options>Hourglass Ctrls>Local
Main Menu>Solution>Load Step Opts>Other>Change Mat Props>Hourglass Ctrls>Local

EDNB, Option, Cname, AD, AS

Defines a nonreflecting boundary in an explicit dynamic analysis.

PREP 7: Explicit Dynamics
<> <> <> <>> <> <> <> <> <> <> DY <> <> <> <>

Option

Label identifying the nonreflecting boundary option to be performed.
ADD
Define a nonreflecting boundary (default).

DELE

Delete a nonreflecting boundary.
LIST
List all defined nonreflecting boundaries (remaining fields are ignored).

Cname

Name of existing nodal component to which the nonreflecting boundary is to be added or deleted. For Option $=$ DELE, use Cname $=$ ALL to delete all defined nonreflecting boundaries.
$\boldsymbol{A D}$
Activation flag for dilatational waves (dampers normal to waves).
0
Dilatational activation flag is off (default).
1
Dilatational activation flag is on.

AS

Activation flag for shear waves (dampers tangent to waves).
0
Shear activation flag is off (default).
1
Shear activation flag is on.

Notes

Nonreflecting boundaries can be defined on the external surfaces of SOLID164 and SOLID168 elements that are being used to model an infinite domain. They are typically used in geomechanical applications to limit the size of the model. For example, when a half space is being modeled with a finite geometry, the nonreflecting boundary option can be used to prevent artificial stress wave reflections generated at the boundary from reentering the model and contaminating the results.

When using nonreflecting boundaries, you should not constrain the nodes at the boundary; doing so would negate the presence of the dampers. Usually, the large mass of the finite domain is sufficient to resist motion.

This command is also valid in SOLUTION.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>LS-DYNA Options>Constraints>Apply>Non-Refl Bndry Main Menu>Preprocessor>LS-DYNA Options>Constraints>Delete>Non-Refl Bndry>Delete All Main Menu>Preprocessor>LS-DYNA Options>Constraints>Delete>Non-Refl Bndry>Delete Individ Main Menu>Solution>Constraints>Apply>Non-Refl Bndry Main Menu>Solution>Constraints>Delete>Non-Refl Bndry>Delete All Main Menu>Solution>Constraints>Delete>Non-Refl Bndry>Delete Individ

EDNDTSD, Vect1, Vect2, DATAP, FITPT, Vect3, Vect4, DISP
Allows smoothing of noisy data for explicit dynamics analyses and provides a graphical representation of the data.

PREP 7: Explicit Dynamics
$<><\rangle<\rangle<\rangle<\rangle\rangle\rangle\rangle\rangle\rangle$ DY <> <> <> <>

Vect1

Name of the first vector that contains the noisy data set (i.e., independent variable). You must create and fill this vector before issuing EDNDTSD.

Vect2

Name of the second vector that contains the dependent set of data. Must be the same length as the first vector. You must create and fill this vector before issuing EDNDTSD.

DATAP

Number of data points to be fitted, starting from the beginning of the vector. If left blank, the entire vector will be fitted. The maximum number of data points is 100,000 (or greater, depending on the memory of the computer).

FITPT

Curve fitting order to be used as a smooth representation of the data. This number should be less than or equal to the number of data points. However, because high order polynomial curve fitting can cause numerical difficulties, a polynomial order less than 7 is suggested. The default (blank) is one-half the number of data points or 7, which ever is less. The following values are available:

1
Curve is the absolute average of all of the data points.
2
Curve is the least square average of all of the data points.

3 or more

Curve is a polynomial of the order ($n-1$), where n is the number of data fitting order points.

Vect 3

Name of the vector that contains the smoothed data of the independent variable. This vector should have a length equal to or greater than the number of smoothed data points. In batch (command) mode,
you must create this vector before issuing the EDNDTSD command. In interactive mode, the GUI automatically creates this vector (if it does not exist). If you do not specify a vector name, the GUI will name the vector smth_ind.

Vect 4

Name of the vector that contains the smoothed data of the dependent variable. This vector must be the same length as Vect 3. In batch (command) mode, you must create this vector before issuing the EDNDTSD command. In interactive mode, the GUI automatically creates this vector (if it does not exist). If you do not specify a vector name, the GUI will name the vector smth_dep.

DISP

Specifies how you want to display data. No default; you must specify an option.

Unsmoothed data only
2
Smoothed data only
3
Both smoothed and unsmoothed data

Notes

You can control the attributes of the graph using standard ANSYS controls (/GRID, /GTHK, /COLOR, etc.). If working interactively, these controls appear in this dialog box for convenience, as well as in their standard dialog boxes. You must always create Vect 1 and Vect 2 (using *DIM) and fill these vectors before smoothing the data. If you're working interactively, ANSYS automatically creates Vect 3 and Vect 4, but if you're working in batch (command) mode, you must create Vect 3 and Vect 4 (using *DIM) before issuing EDNDTSD. Vect 3 and Vect 4 are then filled automatically by ANSYS. In addition, ANSYS creates an additional TABLE type array that contains the smoothed array and the unsmoothed data to allow for plotting later with *VPLOT. Column 1 in this table corresponds to Vect 1, column 2 to Vect 2 , and column 3 to Vect 4 . This array is named Vect3_SMOOTH, up to a limit of 32 characters. For example, if the array name is X 1 , the table name is $\mathrm{X} 1 _$SMOOTH.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Settings>Replace vs Add>Smooth Data Main Menu>Preprocessor>LS-DYNA Options>Loading Options>Smooth Data
 Main Menu>Solution>Define Loads>Settings>Replace vs Add>Smooth Data
 Main Menu>Solution>Loading Options>Smooth Data
 Main Menu>TimeHist Postpro>Smooth Data

EDNROT, Option, CID, Cname, DOF1, DOF2, DOF3, DOF4, DOF5, DOF6

Applies a rotated coordinate nodal constraint in an explicit dynamics analysis.

PREP 7: Explicit Dynamics
<> <> <> <> <> <> <> <> <> <> DY <> <> <> <>

Option

Label identifying the option to be performed:

ADD

Add a rotated nodal coordinate constraint (default).
DELE
Delete specified rotated nodal coordinate constraints.

LIST

List all rotated nodal coordinate constraints.
CID
Coordinate system ID for which rotated nodal constraints will be added or deleted. The CID must have been previously defined with the EDLCS command. If Option = DELE, use CID = ALL to delete all previously specified nodal constraints.

Cname

Nodal component set to which the rotated coordinate constraint will be applied. Cname must be previously specified using the CM command.
DOF1, DOF2, DOF3, . . . DOF 6
Degrees of freedom for which the rotated nodal constraint will be applied. Valid degree of freedom labels include UX, UY, UZ, ROTX, ROTY, and ROTZ. If DOF1 = ALL, rotated nodal constraints will be applied to all degrees of freedom.

Notes

Constraints applied with EDNROT are zero displacement constraints.
This command is also valid in SOLUTION.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>LS-DYNA Options>Constraints>Apply>Rotated Nodal
Main Menu>Preprocessor>LS-DYNA Options>Constraints>Delete>Rotated Nodal>Delete All
Main Menu>Preprocessor>LS-DYNA Options>Constraints>Delete>Rotated Nodal>Delete Individ
Main Menu>Solution>Constraints>Apply>Rotated Nodal
Main Menu>Solution>Constraints>Delete>Rotated Nodal>Delete All
Main Menu>Solution>Constraints>Delete>Rotated Nodal>Delete Individ

EDOPT, option, --, Value

Specifies the type of output for an explicit dynamics analysis.

> SOLUTION: Explicit Dynamics
> <> <> <> <> <> <> <> <> <> <> DY <> <> <> <>

Option

Label identifying the option to be performed:
ADD
Define an output type specification (default).
DELE
Delete an output type specification.

LIST
List the current output type specification.

Unused field.

Value

Label identifying the type of output that the LS-DYNA solver should produce:
ANSYS
Write results files for the ANSYS postprocessors (default). The files that will be written are Jobname.RST and Jobname. HIS (see "Notes" (p. 481) below).

LSDYNA

Write results files for the LS-DYNA postprocessor (LS-POST). The files that will be written are D3PLOT, and files specified by EDOUT and EDHIST (see "Notes" (p. 481) below).

BOTH

Write results files for both ANSYS and LS-DYNA postprocessors.

Command Default

Output is written for the ANSYS postprocessors only.

Notes

By default, LS-DYNA will write the ANSYS results file Jobname. RST (see the EDRST command.) If Jobname. HIS is desired, you must also issue EDHIST.

Value $=$ LSDYNA or BOTH will cause LS-DYNA to write results files for the LS-POST postprocessor. The D3PLOT file is always written for these two options. If other LS-POST files are desired, you must issue the appropriate EDHIST and EDOUT commands.

This command is also valid in PREP7.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Solution>Output Controls>Output File Types

EDOUT, Option

Specifies time-history output (ASCII format) for an explicit dynamics analysis.

SOLUTION: Explicit Dynamics
<> <> <> <> <> <> <> <> <> <> DY <> <> <> <>

Option

Output data option. Each option corresponds to a separate file that is written by the LS-DYNA solver. If Option = ALL, all files except NODOUT and ELOUT are written. Valid options are:

GLSTAT
Global data (default).

BNDOUT

Boundary condition forces and energy.

RWFORC

Wall force.

DEFORC

Discrete element data.

MATSUM

Material energies data.

NCFORC

Nodal interface forces.

RCFORC

Resultant interface force data.

DEFGEO

Deformed geometry data.

SPCFORC

SPC reaction force data.

SWFORC

Nodal constraint reaction force data (spotwelds and rivets).

RBDOUT

Rigid body data.

GCEOUT

Geometry contact entities.

SLEOUT

Sliding interface energy.

JNTFORC

Joint force data.

NODOUT

Nodal data.

ELOUT

Element data.

Command Default

None of the above output is written.

Notes

This command specifies output to be written during an explicit dynamics solution. The data corresponding to each Option is written to a separate ASCll file having the same name as the Option label. The data is written for the entire model at time intervals specified by the EDHTIME command. If no time interval is specified, output is written at 1000 steps over the analysis. (See also the EDHIST command which specifies time-history output for a portion of the model.) The data written to the MATSUM file is actually for each PART number (EDPART) at time intervals specified by the EDHTIME command, but the data is listed following the Mat no. in the file.

For Option = NODOUT and ELOUT, you must specify a component; you must issue EDHIST before issuing EDOUT,NODOUT or EDOUT,ELOUT.

Use EDOUT,LIST to list the current time-history output specifications. (The listing will include output requested with the EDHIST command.) Use EDOUT,DELE to delete all output specifications that have been defined with the EDOUT command.

In order for the specified output files to be written, you must also request that explicit dynamics results be written to an LS-DYNA output file [EDWRITE,LSDYNA or EDWRITE,BOTH].

In an explicit dynamic small restart analysis (EDSTART,2) or full restart analysis (EDSTART,3), the same ASCII files that were requested for the original analysis are written by default for the restart. You can request different files by issuing the appropriate EDOUT commands in the restart analysis.

This command is also valid in PREP7.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Solution>Output Controls>ASCII Output

EDPART, Option, PARTID, Cname

Configures parts for an explicit dynamics analysis.

PREP 7: Explicit Dynamics
<> <> <> <> <> <> <> <> <> <> DY <> <> <> <>

Option

Option used to organize parts. (No default; Option must be specified.)

CREATE

Creates new PART IDs assigned to groups of elements with unique combinations of MAT, TYPE, and REAL set numbers. If this option is issued repeatedly, the part list is overwritten, except for PART IDs created with the ADD option. Remaining fields are ignored for this option.
UPDATE
Updates the PART IDs for the element groups without changing the order of the existing part list. If elements are redefined (or new elements are created) with different MAT, TYPE, or REAL set numbers, then use this option to create an updated list of PART IDs. Remaining fields are ignored for this option.

ADD
Assigns a user-specified PART ID (PARTID) to the elements contained in the element component Cname, or to the currently selected set of elements if Cname = ALL. Use this option to assign a specific PART ID to an element group that has the same combination of MAT, TYPE, and REAL set numbers. An UPDATE operation is automatically performed on the currently selected set of elements immediately following the ADD operation.

DELE

Deletes a PART ID assigned by the ADD option. PARTID is also required. An UPDATE operation is automatically performed on the currently selected set of elements immediately following the DELE operation.

LIST

Lists the PART IDs for the element groups. The part list consists of five columns of numbers, one each for PART, MAT, TYPE, and REAL numbers, and one to indicate if the PART ID is used (including how many elements use it). The part list is based on the last CREATE or UPDATE operation. Remaining fields are ignored for this option.

PARTID

A positive integer to be used as PART ID for the elements specified by Cname (no default). The number input must not be currently used for an existing part (except when Option = DELE). Any previously defined PART IDs for the elements, whether assigned by the user or created by ANSYS LS-DYNA, will be overwritten. The user-specified PART ID will not be changed by subsequent EDPART,CREATE or EDPART,UPDATE commands.

Cname

Element component name for user-specified PART ID definition (Option = ADD). If Cname = ALL (default), all currently selected elements are considered for the part. The elements in the element component (or the currently selected set of elements if Cname = ALL or blank) must have the same combination of MAT, TYPE, and REAL set numbers, or the ADD option will be ignored.

Notes

Certain ANSYS LS-DYNA commands (such as EDCGEN, EDLOAD, EDREAD, etc.) refer to PART IDs. You must define PART IDs (EDPART,CREATE or EDPART,ADD) before using these commands.

If parts are repeatedly created using Option = CREATE, the part list is continuously overwritten. This may cause problems for previously defined commands that reference a part number that has changed. To avoid this problem, the part list should be updated (Option = UPDATE) rather than recreated to obtain the current part list.

EDPART,ADD allows you to assign a specific part number to a group of elements instead of a number generated by the ANSYS LS-DYNA program. The user-specified PART IDs will not be changed by subsequent EDPART,CREATE or EDPART,UPDATE commands. Thus, you can use EDPART,ADD to specify PART IDs for some element groups, and use EDPART,CREATE or EDPART,UPDATE to assign PART IDs for the remaining element groups. Use EDPART,DELE to delete a PART ID generated by the ADD option. In this case, ANSYS LS-DYNA will generate a new PART ID for those elements associated with the deleted PART ID.

After creating or updating the part list, use EDPART,LIST to list the PART IDs and choose the correct one for use with other ANSYS LS-DYNA commands. For a detailed discussion on PART IDs, see The Definition of Part in the ANSYS LS-DYNA User's Guide.

This command is also valid in SOLUTION.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>LS-DYNA Options>Parts Options

EDPC, MIN, MAX, INC

Selects and plots explicit dynamic contact entities.

PREP 7: Explicit Dynamics
<> <> <> <> <> <> <> <> <> <> DY <> <> <> <>

MIN
Minimum contact entity number to be selected and plotted (default $=1$).

MAX

Maximum contact entity number to be selected and plotted (default =MIN).
INC
Contact entity number increment (default $=1$).

Notes

EDPC invokes an ANSYS macro which selects and plots explicit dynamic contact entities. The plot will consist of nodes or elements, depending on the method (node components or parts) that was used to define the contact surfaces (see the EDCGEN command). For single surface contact definitions, all external surfaces within the model are plotted.

Note

EDPC changes the selected set of nodes and elements. After plotting contact entities, you must reselect all nodes and elements (NSEL and ESEL) required for subsequent operations, such as SOLVE

Use the EDCLIST command to list the contact entity numbers for all defined contact.

This command is also valid in SOLUTION.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>LS-DYNA Options>Contact>Select and Plot

EDPL, LDNUM

Plots a time dependent load curve in an explicit dynamic analysis.

SOLUTION: Explicit Dynamics
<> <> <> <> <> <> <> <> <> <> DY <> <> <> <>

LDNUM

Load number.

Notes

EDPL invokes an ANSYS macro which produces a load vs. time graph for a load defined with the EDLOAD command. Only one load curve can be plotted at a time. Use EDLOAD,LIST to obtain a list of loads and corresponding load numbers.

This command is also valid in PREP7.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>LS-DYNA Options>Loading Options>Plot Load Curve Main Menu>Solution>Loading Options>Plot Load Curve

EDPVEL, Option, PID, VX, VY, VZ, OMEGAX, OMEGAY, OMEGAZ, XC, YC, ZC, ANGX, ANGY, ANGZ

Applies initial velocities to parts or part assemblies in an explicit dynamic analysis.

SOLUTION: Explicit Dynamics
<> <> <> <> <> <> <> <> <> <> DY <> <> <> <>

Option

Label identifying the option to be performed.

VGEN

Define initial velocities for the part or part assembly based on translational velocities (relative to global Cartesian) and the rotational velocity about an arbitrary axis. For this option, use the fields $V X, V Y, V Z$ to specify the translational velocities, and use OMEGAX, XC, YC, ZC, ANGX, ANGY, ANGZ to specify the rotational velocity and the axis of rotation.

VELO

Define initial velocity for the part or part assembly based on translational velocities and nodal rotational velocities input relative to the global Cartesian axes. For this option, use the following fields to define the initial velocity: $V X, V Y, V Z, O M E G A X, O M E G A Y, O M E G A Z$.

LIST

List initial velocity for the part or part assembly specified by PID. If PID is blank, all initial velocities defined on parts and part assemblies are listed. Remaining fields are ignored for this option.

DELE

Delete initial velocity defined for the part or part assembly specified by PID. If $P I D$ is blank, all initial velocities defined on parts and part assemblies are deleted. Remaining fields are ignored for this option.

PID

Part ID or part assembly ID to which the initial velocity is to be applied. The part or assembly ID must be defined (EDPART or EDASMP) before issuing this command.
vx
Initial velocity in X direction. Defaults to 0 .
VY
Initial velocity in Y direction. Defaults to 0 .

VZ
Initial velocity in Z direction. Defaults to 0.

OMEGAX

For Option $=$ VGEN, OMEGAX is the initial rotational velocity of the part or part assembly about the specified rotational axis. For Option $=$ VELO, OMEGAX is the initial nodal rotational velocity about the X-axis. OMEGAX defaults to 0.

OMEGAY

Initial nodal rotational velocity about the Y-axis (used only if Option $=$ VELO). Defaults to 0 .

OMEGAZ

Initial nodal rotational velocity about the Z-axis (used only if Option $=$ VELO). Defaults to 0 .
The remaining fields are used only if Option $=$ VGEN.
XC
X coordinate on rotational axis. Defaults to 0 .

YC

Y coordinate on rotational axis. Defaults to 0 .
ZC
Z coordinate on rotational axis. Defaults to 0 .

ANGX

Angle (in degrees) of the rotational axis relative to the global X-axis. Defaults to 0.

ANGY

Angle (in degrees) of the rotational axis relative to the global Y-axis. Defaults to 0.

ANGZ

Angle (in degrees) of the rotational axis relative to the global Z-axis. Defaults to 0.

Notes

You cannot mix the two methods of initial velocity input (Option = VELO and Option $=$ VGEN) in the same analysis. You must use only one method for all initial velocity definitions.

The VGEN and VELO methods differ in how the rotational velocity is defined. Use Option = VGEN to input the initial velocities of a rotating part or part assembly. Use Option = VELO to apply the rotations directly to the nodes' rotation degrees of freedom. Since only shell and beam elements have rotation degrees of freedom, the rotations input with Option $=$ VELO are only applicable to SHELL163 and BEAM161 elements. The rotational velocities input with Option $=$ VELO are ignored for nodes not having rotational degrees of freedom (such as nodes attached to a SOLID164 or SOLID168 element).

It is normally acceptable to mix nodes belonging to deformable bodies and rigid bodies in the part assembly used in an initial velocity definition. However, when defining initial velocities in an implicit-to-explicit sequential solution, this is not an acceptable practice. In order for the initial velocities to be defined correctly in this type of analysis, you must define the initial velocities on the deformable body nodes separately from the initial velocities on the rigid body nodes.

Issuing the EDPVEL command again for the same part or part assembly ($P I D$) will overwrite previous initial velocities defined for that part or part assembly.

To set the initial velocities to zero, issue the EDPVEL command with only the Option (use VELO or VGEN) and PID fields specified.

In a small restart analysis (EDSTART,2), you can only use the Option = VELO method to change initial velocities. When used in a small restart, the command EDPVEL,VELO changes the velocity of the specified part or part assembly. If you don't change the velocity of the parts and assemblies, their velocity at the beginning of the restart will be the same as the velocity at the end of the previous analysis.

Except for the LIST option, the EDPVEL command is not supported in a full restart analysis (EDSTART,3). You can list initial velocities defined in the previous analysis with the command EDPVEL,LIST. However, you cannot change initial velocities for parts that existed in the previous analysis; their velocity at the beginning of the analysis will be the same as the velocity at the end of the previous analysis. In addition, you cannot define initial velocities for any parts that are added in the full restart; the velocity of new parts will be zero.

To apply initial velocities to node components or nodes, use the EDVEL command.
You can use EDPVEL and EDVEL in the same analysis. If a node or node component input on the EDVEL command shares common nodes with a part or part assembly input on the EDPVEL command, the initial velocities defined on the common nodes will be determined by the last command input.

This command is also valid in PREP7.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>LS-DYNA Options>Initial Velocity>On Parts>Delete
Main Menu>Preprocessor>LS-DYNA Options>Initial Velocity>On Parts>List
Main Menu>Preprocessor>LS-DYNA Options>Initial Velocity>On Parts>w/Axial Rotate
Main Menu>Preprocessor>LS-DYNA Options>Initial Velocity>On Parts>w/Nodal Rotate
Main Menu>Solution>Initial Velocity>On Parts>Delete
Main Menu>Solution>Initial Velocity>On Parts>List
Main Menu>Solution>Initial Velocity>On Parts>w/Axial Rotate
Main Menu>Solution>Initial Velocity>On Parts>w/Nodal Rotate

EDRC, Option, NRBF, NCSF, --, DTMAX
Specifies rigid/deformable switch controls in an explicit dynamic analysis.
SOLUTION: Explicit Dynamics
<> <> <> <> <> <> <> <> <> <> DY <> <> <> <>

Option

Label identifying option to be performed.

ADD

Define rigid/deformable controls (default).

DELE

Delete rigid/deformable controls.

LIST

List rigid/deformable controls.

NRBF

Flag to delete/activate nodal rigid bodies. If nodal rigid bodies or generalized weld definitions are active in the deformable bodies that are switched to rigid, then the definitions should be deleted to avoid instabilities.

0
No change from previous status (default).
1
Delete.
2
Activate.

NCSF

Flag to delete/activate nodal constraint set. If nodal constraint/spotweld definitions are active in the deformable bodies that are switched to rigid, then the definitions should be deleted to avoid instabilities.

0

No change from previous status (default).

1

Delete.
2
Activate.

Unused field.

TDMAX

Maximum allowed time step after restart (no default).

Command Default

No rigid/deformable controls are defined.

Notes

This command is only valid in an explicit dynamic small restart analysis (EDSTART,2). Use this command when you do a rigid/deformable switch (EDRD command) and you want to control constraints defined by other means for the deformable body (such as nodal constraints or a weld). For example, if a deformable body has nodal constraints defined and it is switched to a rigid body, the nodal constraints should be deleted since they are invalid for the rigid body. Later on, if you want to switch the rigid body to deformable again and retain the nodal constraints, you can use EDRC to activate the constraints previously defined for the deformable body. Otherwise, the nodal constraints remain deactivated.

This command is also valid in PREP7.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.
Menu Paths
Main Menu>Solution>Rigid-Deformable>Controls

EDRD, Option, PART, MRB

Switches a part from deformable to rigid or from rigid to deformable in an explicit dynamic analysis.

SOLUTION: Explicit Dynamics
<> <> <> <> <> <> <> <> <> <> DY <> <> <> <>

Option

Label identifying the option to be performed.

D2R

Change specified part from deformable to rigid (default).
R2D
Change specified part from rigid to deformable. Use this option to switch a part back to a deformable state after it has been changed to rigid using EDRD,D2R.

LIST

List parts that are flagged to change from deformable to rigid or rigid to deformable.

PART

Part number for part to be changed (no default).

MRB

Part number of the master rigid body to which the part is merged. $M R B$ is used only if $O p t$ ion $=\mathrm{D} 2 \mathrm{R}$. If $M R B=0$ (which is the default), the part becomes an independent rigid body.

Command Default

No parts are switched.

Notes

This command is valid in a new explicit dynamic analysis or in a restart. It is only possible to switch parts (D2R or R2D) in a restart if part switching is first activated in the original analysis. If part switching is not required in the original analysis but will be used in the restart, you must issue EDRD,D2R with no further arguments in the original analysis. You can use the EDRI command to define inertia properties for newly created rigid bodies (D2R).

Parts that are defined as rigid using EDMP,RIGID are permanently rigid and cannot be changed to deformable.
This command is also valid in PREP7.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.
Menu Paths
Main Menu>Solution>Rigid-Deformable>Switch

EDREAD, NSTART, Label, NUM, STEP1, STEP2

Reads explicit dynamics output into variables for time-history postprocessing.

POST26:Set Up

NSTART

Starting reference number assigned to the first variable. Allowed range is 2 (the default) to NV [NUMVAR].
(NV defaults to 30 for an explicit dynamics analysis.)

Label

Label identifying the output file to be read. No default.

GLSTAT

Read data from the GLSTAT file.

MATSUM

Read data from the MATSUM file.

SPCFORC

Read data from the SPCFORC file.

RCFORC

Read data from the RCFORC file.

SLEOUT

Read data from the SLEOUT file.

NODOUT

Read data from the NODOUT file.

RBDOUT

Read data from the RBDOUT file.
NUM
Number identifying the data set to be read in (defaults to 1). If Label = GLSTAT, NUM is ignored. If Label $=$ MATSUM or RBDOUT, NUM is the PART number [EDPART] for which output is desired. If Label = SPCFORC or NODOUT, NUM is the node number for which output is desired. If Label = SLEOUT or RCFORC, NUM is the number of the contact entity for which output is desired.

STEP1, STEP2

Load step range of data to be read in. If $S T E P 1$ and $S T E P 2$ are blank, all load steps are read in.

Notes

EDREAD reads data from the specified ascii output file so that it may be used during postprocessing. After EDREAD, you must issue the STORE command to store the data in time history variables. Once stored, the variables can be viewed as plots of output item versus time.

The number of variables stored depends on the file specified. The following table shows the items in each file and the order in which they are stored. If data items were previously stored in variables NSTART to $N S T A R T+15$, they will be overwritten. If more variables are needed, change NV on the NUMVAR command. (Note that hourglass energy will not be available if it was not specified for the model [EDENERGY,1].)

The following items under MATSUM are listed in the MATSUM ASCll file (in the Mat no. field) for each part number at time intervals specified by the EDHTIME command. Use EDREAD,,MATSUM,NUM to specify the part number that corresponds to the mat number in the MATSUM file.

Resultant contact forces and sliding interface energies are available from the RCFORC and SLEOUT files, respectively. The RCFORC file is written for surface based contact types that include target and contact (master and slave) definitions. You should ensure that this file contains valid force results before issuing EDREAD,,RCFORC. Only the resultant contact forces on the master surface are available for time-history postprocessing.

Variable Number	GLStat	MATSUM	SPCFORC	RCFORC	SLEOUT
NSTART	Time step	Internal energy	X force	X force	Slave energy
NSTART+1	Kinetic energy	Kinetic energy	Y force	Y force	Master energy
NSTART+2	Internal energy	X-momentum	Z force	Z force	Total slave energy
NSTART+3	Spring and damper energy	Y-momentum	X moment	--	Total master energy
NSTART+4	System damping energy	Z-momentum	Y moment	--	Total energy
NSTART+5	Sliding interface energy	X-rigid-body-velocity	Z moment	--	--
NSTART+6	External work	Y-rigid-body-velocity	--	--	--
NSTART+7	Eroded kinetic energy	Z-rigid-body-velocity	--	--	--
NSTART+8	Eroded internal energy	Hourglass energy	--	--	--
NSTART+9	Total energy	--	--	--	--
NSTART+10	Total energy/initial energy	--	--	--	--
NSTART+11	Energy ratio w/o eroded energy	--	--	--	--
NSTART+12	Global X velocity	--	--	--	--
NSTART+13	Global Y velocity	--	--	--	--
NSTART+14	Global Z velocity	--	--	--	--
NSTART+15	Hourglass energy	--	--	--	--

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>TimeHist Postpro>Read LSDYNA Data>GLSTAT file Main Menu>TimeHist Postpro>Read LSDYNA Data>MATSUM file Main Menu>TimeHist Postpro>Read LSDYNA Data>NODOUT file Main Menu>TimeHist Postpro>Read LSDYNA Data>RBDOUT file Main Menu>TimeHist Postpro>Read LSDYNA Data>RCFORC file Main Menu>TimeHist Postpro>Read LSDYNA Data>SLEOUT file Main Menu>TimeHist Postpro>Read LSDYNA Data>SPCFORC file

EDRI, Option, PART, XC, YC, ZC, TM, IXX, IYY, IZZ, IXY, IYZ, IXZ

Defines inertia properties for a new rigid body that is created when a deformable part is switched to rigid in an explicit dynamic analysis.

SOLUTION: Explicit Dynamics
<> <> <> <> <> <> <> <> <> <> DY <> <> <> <>

Option

Label identifying the option to be performed.
ADD
Define inertia for specified part (default).
DELE
Delete inertia definition for specified part.

LIST

List inertia definitions.
PART
Part number for which inertia is defined (no default).

$X C, Y C, Z C$

X, Y, and Z-coordinates of the center of mass (no defaults).

TM

Translational mass (no default).

IXX, IYY, IZZ, IXY, IYZ, IXZ

Components (xx, yy, etc.) of inertia tensor. IXX, IYY, and IZZ must be input (no defaults). IXY, IYZ, and IXZ default to zero.

Command Default

Inertia properties are calculated by the program for all parts switched from deformable to rigid.

Notes

Use this command to define inertia properties for a rigid body that is created when a deformable part is switched to rigid (using the EDRD,D2R command) in an explicit dynamic analysis. If these properties are not defined, LS-DYNA will compute the new rigid body properties from the finite element mesh (which requires an accurate mesh representation of the body). When rigid bodies are merged to a master rigid body, the inertia properties defined for the master rigid body apply to all members of the merged set.

EDRI can only be issued in a new analysis. Therefore, if you are going to use inertia properties in a subsequent restart analysis, you must issue EDRI in the original analysis for the part that will later be switched to rigid in the restart.

This command is also valid in PREP7.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Solution>Rigid-Deformable>Inertia Property

EDRST, NSTEP, DT

Specifies the output interval for an explicit dynamic analysis.

SOLUTION: Explicit Dynamics
<> <> <> <> <> <> <> <> <> <> DY <> <> <> <>

NSTEP
Number of steps at which output is written to the results file (Jobname. RST). Defaults to 100. When you specify NSTEP, NSTEP+2 results are written to the Jobname. RST file. The time interval between output is TIME / NSTEP, where TIME is the analysis end-time specified on the TIME command. Do not specify a value of $N S T E P=0$.

DT
Time interval at which output is written to the results file (Jobname. RST). If NSTEP is input, $D T$ is ignored.

Command Default

Output will be written to Jobname. RST at 100 steps over the analysis.

Notes

You can use NSTEP or DT to specify the output interval to be used for Jobname. RST. You should not specify both quantities; if both are input, NSTEP will be used.

In an explicit dynamic small restart (EDSTART,2) or full restart analysis (EDSTART,3), the EDRST setting will default to the NSTEP or $D T$ value used in the original analysis. You can issue EDRST in the restart to change this setting.

This command is also valid in PREP7.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Solution>Output Controls>File Output Freq>Number of Steps
Main Menu>Solution>Output Controls>File Output Freq>Time Step Size

EDRUN, Option, Cons, Nсpu

Specify LS-DYNA serial or parallel processing.
SOLUTION: Explicit Dynamics
<> <> <> <> <> <> <> <> <> <> DY <> <> <> <>

Option

LS-DYNA processing option
SERIAL
Use serial processing (default)
SMP
Use Shared Memory Parallel processing

CONS
Consistency setting (only applicable when Option = SMP)
0
Result consistency is not required (default)

1
Result consistency is required
NCPU
Number of processors to use (applicable only with Option = SMP)

Command Default

The command default is serial processing.

Notes

The EDRUN command specifies either serial (one CPU) processing or shared (multiple CPU) memory parallel processing (SMP). When using SMP, the calculations may be executed in a different order, depending on CPU availability and the load on each CPU. You may therefore see slight differences in the results when running the same job multiple times, either with the same number or a different number of processors. Comparing nodal accelerations often shows wider discrepancies. To avoid such differences, you can specify that consistency be maintained by setting CONS = 1. Maintaining consistency can result in an increase of up to 15 percent in CPU time.

The parallel processing setting is only effective when you have multiple CPUs and licenses for the appropriate number of ANSYS LS-DYNA SMP tasks. If your site does not meet both requirements, the EDRUN command sets serial processing, regardless of command settings.

For more information on using SMP, see Solution Features in the ANSYS LS-DYNA User's Guide.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Solution>Analysis Options>Parallel Option

EDSHELL, WPAN, SHNU, SHTC, WPBT, SHPL, ITRST

Specifies shell computation controls for an explicit dynamics analysis.

SOLUTION: Explicit Dynamics
<> <> <> <> <> <> <> <> <> <> DY <> <> <> <>
WPAN
Maximum shell element warpage angle in degrees. Defaults to 20.

SHNU

Hughes-Liu shell normal update option:
-2
Unique nodal fibers. This option is required for $\operatorname{SHELL} 163(\operatorname{KEYOPT}(1)=1,6$, or 7$)$ if the real constant NLOC = 1 or -1 .
-1
Compute normals each cycle (default). This option is recommended.
1
Compute on restarts.
n
Compute every nth substep.
SHTC
Shell thickness change option:
0
No change.
1
Membrane straining causes thickness change. Important in sheet metal forming (default).

WPBT

Warping stiffness option for Belytschko-Tsay shells:
1
Belytschko-Wong-Chiang warping stiffness added. This option is recommended.
2
Belytschko-Tsay warping stiffness (default).
SHPL
Shell plasticity option. This option is only valid for these material models: strain rate independent plastic kinematic, strain rate dependent plasticity, power law plasticity, and piecewise linear plasticity.
1
Iterative plasticity with 3 secant iterations (default).
2
Full iterative plasticity.
3
Radial return noniterative plasticity. (Use this option with caution; it may lead to inaccurate results.)

ITRST

Triangular shell sorting option. If sorting is on, degenerate quadrilateral shell elements are treated as triangular shells.
1
Full sorting (default).
2
No sorting.

Notes

This command is also valid in PREP7.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>Shell Elem Ctrls

EDSOLV

Specifies "explicit dynamics solution" as the subsequent status topic.

SOLUTION: Explicit Dynamics
$<><\rangle<\rangle<\rangle<\rangle\rangle\rangle\rangle\rangle\rangle$ DY <> <> <> <>

Notes

This is a status [STAT] topic command. Status topic commands are generated by the GUI and will appear in the log file (Jobname. LOG) if status is requested for some items under Utility Menu> List> Status. This command will be immediately followed by a STAT command, which will report the status for the specified topic.

If entered directly into the program, the STAT command should immediately follow this command.
This command is also valid in PREP7.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Utility Menu>List>Status>LS-DYNA

EDSP, Option, MIN, MAX, INC

Specifies small penetration checking for contact entities in an explicit dynamic analysis.

PREP 7: Explicit Dynamics
<> <> <> <> <> <> <> <> <> <> DY <> <> <> <>

Option

Label identifying the option to be performed (no default).
ON
Turn small penetration checking on for specified contact entities.
OFF
Turn small penetration checking off for specified contact entities.

LIST

List current setting for penetration checking.

MIN

Minimum contact entity number for which to turn on/off small penetration check (default $=1$).

MAX

Maximum contact entity number for which to turn on/off small penetration check (defaults to MIN).
INC
Contact entity number increment (default = 1).

Command Default

Penetration checking is determined by PENCHK on the EDCONTACT command.

Notes

This command controls small penetration checking in an explicit dynamic analysis. EDSP is applicable only to the following contact types: STS, NTS, OSTS, TNTS, and TSTS. The penetration checking specified by EDSP is similar to PENCHK on the EDCONTACT command. However, EDSP controls penetration checking for individual contact entities whereas $P E N C H K$ is a global control that applies to all defined contact (of the types mentioned above). EDSP can be used in a new analysis, or in a small restart (EDSTART,2).

Use the EDCLIST command to list the contact entity numbers for all defined contact.
This command is also valid in SOLUTION.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>LS-DYNA Options>Contact>Advanced Controls

EDSTART, RESTART, MEMORY, FSIZE, Dumpfile

Specifies status (new or restart) of an explicit dynamics analysis.

SOLUTION: Explicit Dynamics
<> <> <> <> <> <> <> <> <> <> DY <> <> <> <>

RESTART

Status of the analysis (new or restart).
0
New analysis (default).
1
Simple restart.
2
Small restart.
3
Full restart.

MEMORY

Memory to be used (in words). If blank, LS-DYNA assigns a value (default). If more or less memory is needed, specify the number of words (a word is usually 32 bits on a workstation).

FSIZE

Scale factor for binary file sizes. Defaults to 7, which is $(7 \times 262144)=1835008$ words.

Dumpfile

Name of dump file to use during a restart (for example, d3dumpnn, where $n n=01,02,03, \ldots, 99$ and defaults to 01). Leave this field blank when running a new analysis $(R E S T A R T=0)$ so that the default dump file d3dump01 will be created.

Command Default

A new analysis is assumed.

Notes

EDSTART can be issued before the SOLVE command to specify a new analysis, a simple restart, a small restart, or a full restart as described below.

New analysis: For a new analysis, you do not need to issue EDSTART unless you want to change the MEMORY or FSIZE option. If you do not specify the dump file name, d3dump01 will be created by default.

Simple restart: This option assumes that the database has not been altered. Upon restarting, results will be appended to the existing results files. Issue EDSTART, 1 ,,,d3dumpnn to indicate which restart file to use as a starting point. The dump file to be used must have been created in an earlier run and must be available at the time this command is issued. You would typically use a simple restart when you interrupt the LSDYNA run via CTRL-C and terminate the run prematurely by issuing the "sense switch control" key SW1 (see Solution Control and Monitoring in the ANSYS LS-DYNA User's Guide). At this point you should be able to view the partial solution using ANSYS postprocessors. After you are done viewing the partial solution, you can reenter the solution processor and issue EDSTART, 1, ,, d3dump nn, followed by SOLVE to continue with the analysis. The results will be appended to the results files Jobname. RST and Jobname. HIS. You can perform multiple simple restarts by issuing EDSTART, 1 ,,,d3dumpnn multiple times, as needed. The solutions in the Jobname. RST file will all be in load step number 1.

Small restart: This option can be used when minor changes in the database are necessary. For example, you can reset the termination time, reset the output interval, add displacement constraints, change initial velocities, switch parts from a deformable to rigid state, etc. (See A Small Restart in theANSYS LS-DYNA User's Guide for a complete description of database items that can be changed.) Issue EDSTART,2,,,d3dumpnn followed by the commands required to change the database, then issue SOLVE. The results will be appended to the results files Jobname. RST and Jobname. HIS. You can perform multiple restarts by issuing EDSTART, 2, ,,d3dumpnn multiple times, as needed. The additional restart solutions will be stored in Jobname. RST as load step numbers 2,3 , etc.

Full restart: A full restart is appropriate when many modifications to the database are required. For example, you can change the model geometry, apply different loading conditions, etc. Issue EDSTART,3,,,d3dumpnn to denote a full restart analysis. The Jobname will automatically be changed to Jobname_nn, ($n n=01$ initially, and will be incremented each time EDSTART, 3 is issued for subsequent full restarts). After the EDSTART command, you can input any commands needed to change the database. (Most commands which are applicable to an ANSYS LS-DYNA new analysis are also applicable to full restart analysis. A few commands related to contact specifications, initial velocity definitions, and adaptive meshing are not supported.) Then issue the EDIS command to specify which portions of the model should be initialized in the full restart using results data from the d3dumpnn file. Finally, issue the SOLVE command. At this point, new results files, Jobname_nn.RST and Jobname_nn. HIS, will be created. Time and output intervals in the new results files are continuous from the previous results files; the time is not reset to zero. (See A Full Restart in the ANSYS LS-DYNA User's Guide for a complete description of a full restart analysis.)

This command is also valid in PREP7.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Solution>Analysis Options>Restart Option

EDTERM, Option, Lab, NUM, STOP, MAXC, MINC

Specifies termination criteria for an explicit dynamic analysis.

SOLUTION: Explicit Dynamics
<> <> <> <> <> <> <> <> <> <> DY <> <> <> <>

Option

Label identifying the option to be performed.

ADD

Define termination criteria (default).

DELE

Delete termination criteria.

LIST

List termination criteria.

Lab

Label identifying the type of termination (no default).

NODE

Terminate solution based on nodal point coordinates. The analysis terminates when the current position of the specified node reaches either the maximum or minimum coordinate value ($S T O P=1$, 2 , or 3), or when the node picks up force from any contact surface ($S T O P=4$).

PART

Terminate solution based on rigid body (part) displacements. The analysis terminates when the displacement of the center of mass of the specified rigid body reaches either the maximum or minimum value ($S T O P=1,2$, or 3), or when the displacement magnitude of the center of mass is exceeded (STOP = 4).

NUM
Node number (if $L a b=$ NODE) or rigid body Part ID (if $L a b=$ PART). (No default.)

STOP

Criterion for stopping the solution (no default).
1
Global X-direction.
2
Global Y-direction.
3
Global Z-direction.
4
For $L a b=$ NODE, stop the solution if contact occurs. For $L a b=$ PART, stop the solution if the displacement magnitude is exceeded for the specified rigid body (use MAXC to define the displacement magnitude).

MAXC

Maximum (most positive) coordinate value ($L a b=$ NODE) or displacement ($L a b=$ PART). MAXC defaults to 1.0 e 21

MINC

Minimum (most negative) coordinate value ($L a b=$ NODE) or displacement ($L a b=$ PART). MINC defaults to -1.0 e 21 .

Command Default

No termination criteria are defined other than the termination time set on the TIME command.

Notes

You may specify multiple termination criteria using EDTERM; the solution will terminate when any one of the criteria is satisfied, or when the solution end time (specified on the TIME command) is reached.

In an explicit dynamic small restart analysis (EDSTART,2) or full restart analysis (EDSTART,3), the termination criteria set in the previous analysis (the original analysis or the previous restart) are carried over to the restart. If the previous analysis terminated due to one of these criteria, that specific criterion must be modified so that it will not cause the restart to terminate prematurely. In particular, if a termination condition based on nodal contact ($L a b=$ NODE, $S T O P=4$) is satisfied, this condition must be deleted and replaced with a condition based on nodal coordinates for that same node. (If a condition based on nodal coordinates already exists for that node, the replacement is not necessary.) In the restart, the number of termination criteria specified using EDTERM cannot exceed a maximum of 10 or the number specified in the original analysis.

Note that the termination criteria set by EDTERM are not active during dynamic relaxation (EDDRELAX).
This command is also valid in PREP7.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Solution>Analysis Options>Criteria to Stop>List
Main Menu>Solution $>$ Analysis Options>Criteria to Stop>On a Node Main Menu>Solution>Analysis Options>Criteria to Stop>On a Part

EDTP, OPTION, VALUE1, VALUE2

Plots explicit elements based on their time step size.

SOLUTION: Explicit Dynamics
<> <> <> <> <> <> <> <> <> <> DY <> <> <> <>

OPTION

Plotting option (default = 1).

Plots the elements with the smallest time step sizes. The number of elements plotted and listed is equal to VALUE1 (which defaults to 100). Each element is shaded red or yellow based on its time step value (see "Notes" (p. 502) for details).

2
Produces the same plot as for $O P T I O N=1$, and also produces a list of the plotted elements and their corresponding time step values.

3
Produces a plot similar to $O P T I O N=1$, except that all selected elements are plotted. Elements beyond the first VALUE1 elements are blue and translucent. The amount of translucency is specified by

VALUE2. This option also produces a list of the first VALUE1 elements with their corresponding time step values.

VALUE1

Number of elements to be plotted and listed (default = 100). For example, if VALUE1 = 10, only the elements with the 10 smallest time step sizes are plotted and listed.

VALUE2

Translucency level ranging from 0 to 1 (default = 0.9). VALUE 2 is only used when $O P T I O N=3$, and only for the elements plotted in blue. To plot these elements as non-translucent, set VALUE $2=0$.

Notes

EDTP invokes an ANSYS macro that plots and lists explicit elements based on their time step size. For OPTION $=1$ or 2 , the number of elements plotted is equal to VALUE1 (default = 100). For $O P T I O N=3$, all selected elements are plotted.

The elements are shaded red, yellow, or blue based on their time step size. Red represents the smallest time step sizes, yellow represents the intermediate time step sizes, and blue represents the largest time step sizes. For example, if you specify VALUE1 = 30, and if T1 is the smallest critical time step of all elements and T30 is the time step of the 30th smallest element, then the elements are shaded as follows:

Red - time step range is T 1 to $\mathrm{T} 1+\left[0.05^{*}(\mathrm{~T} 30-\mathrm{T} 1)\right]$
Yellow - time step range is $\mathrm{T} 1+\left[0.05^{*}(\mathrm{~T} 30-\mathrm{T} 1)\right]$ to T 30
Blue (translucent) - time step range is $>$ T30
Translucent blue elements only appear when OPTION $=3$.
This command is also valid in PREP7.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Solution>Time Controls>Time Step Prediction

EDVEL, Option, Cname, VX, VY, VZ, OMEGAX, OMEGAY, OMEGAZ, XC, YC, ZC, ANGX, ANGY, ANGZ
Applies initial velocities to nodes or node components in an explicit dynamic analysis.
SOLUTION: Explicit Dynamics
<> <> <> <> <> <> <> <> <> <> DY <> <> <> <>

Option

Label identifying the option to be performed.
VGEN
Define initial velocities based on translational velocities (relative to global Cartesian) and the rotational velocity about an arbitrary axis. For this option, use the fields $V X, V Y, V Z$ to specify the translational velocities, and use $O M E G A X, X C, Y C, Z C, A N G X, A N G Y, A N G Z$ to specify the rotational velocity and the axis of rotation.

VELO

Define initial velocity based on translational velocities and nodal rotational velocities input relative to the global Cartesian axes. For this option, use the following fields to define the initial velocity: $V X, V Y, V Z, O M E G A X, ~ O M E G A Y, ~ O M E G A Z$.

LIST

List initial velocity for the component or node specified by Cname. If Cname is blank, all initial velocities defined on nodes and node components are listed. Remaining fields are ignored for this option.

DELE

Delete initial velocity defined for the component or node specified by Cname. If Cname is blank, all initial velocities defined on nodes and node components are deleted. Remaining fields are ignored for this option.

Cname

Name of existing component [CM] or node number to which the initial velocity is to be applied. If a component is used, it must consist of nodes.

vx

Initial velocity in X direction. Defaults to 0 .
VY
Initial velocity in Y direction. Defaults to 0 .
VZ
Initial velocity in Z direction. Defaults to 0 .

OMEGAX

For Option = VGEN, OMEGAX is the initial rotational velocity of the component (or node) about the specified rotational axis. For Option = VELO, OMEGAX is the initial nodal rotational velocity about the X-axis. OMEGAX defaults to 0 .

OMEGAY

Initial nodal rotational velocity about the Y -axis (used only if $O p t$ ion $=\mathrm{VELO}$). Defaults to 0 .

OMEGAZ

Initial nodal rotational velocity about the Z-axis (used only if Option = VELO). Defaults to 0 .
The remaining fields are used only if Option $=$ VGEN.
XC
X coordinate on rotational axis. Defaults to 0 .
YC
Y coordinate on rotational axis. Defaults to 0 .
ZC
Z coordinate on rotational axis. Defaults to 0 .

ANGX

Angle (in degrees) of the rotational axis relative to the global X-axis. Defaults to 0 .

ANGY

Angle (in degrees) of the rotational axis relative to the global Y -axis. Defaults to 0 .

ANGZ

Angle (in degrees) of the rotational axis relative to the global Z-axis. Defaults to 0 .

Notes

You cannot mix the two methods of initial velocity input (Option = VELO and Option = VGEN) in the same analysis. You must use only one method for all initial velocity definitions.

The VGEN and VELO methods differ in how the rotational velocity is defined. Use Option = VGEN to input the initial velocities of a rotating component. Use Option = VELO to apply the rotations directly to the nodes' rotation degrees of freedom. Since only shell and beam elements have rotation degrees of freedom, the rotations input with Option $=$ VELO are only applicable to SHELL163 and BEAM161 elements. The rotational velocities input with Option = VELO are ignored for nodes not having rotational degrees of freedom (such as nodes attached to a SOLID164 or SOLID168 element).

It is normally acceptable to mix nodes belonging to deformable bodies and rigid bodies in the nodal component used in an initial velocity definition. However, when defining initial velocities in an implicit-to-explicit sequential solution, this is not an acceptable practice. In order for the initial velocities to be defined correctly in this type of analysis, you must define the initial velocities on the deformable body nodes separately from the initial velocities on the rigid body nodes.

Issuing the EDVEL command again for the same component or node (Cname) will overwrite previous initial velocities defined for that component or node.

To set the initial velocities to zero, issue the EDVEL command with only the Option (use VELO or VGEN) and Cname fields specified.

In a small restart analysis (EDSTART,2), you can only use the Option = VELO method to change initial velocities. When used in a small restart, the command EDVEL,VELO changes the velocity of the specified nodes. If you don't change the velocity of the nodes, their velocity at the beginning of the restart will be the same as the velocity at the end of the previous analysis.

Except for the LIST option, the EDVEL command is not supported in a full restart analysis (EDSTART,3). You can list initial velocities defined in the previous analysis with the command EDVEL,LIST. However, you cannot change initial velocities for nodes or node components that existed in the previous analysis; their velocity at the beginning of the analysis will be the same as the velocity at the end of the previous analysis. In addition, you cannot define initial velocities for any nodes that are added in the full restart; the velocity of new nodes will be zero.

To apply initial velocities to parts or part assemblies, use the EDPVEL command.
You can use EDPVEL and EDVEL in the same analysis. If a node or node component input on the EDVEL command shares common nodes with a part or part assembly input on the EDPVEL command, the initial velocities defined on the common nodes will be determined by the last command input.

This command is also valid in PREP7.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>LS-DYNA Options>Initial Velocity>On Nodes>Delete Main Menu>Preprocessor>LS-DYNA Options>Initial Velocity>On Nodes>List Main Menu>Preprocessor>LS-DYNA Options>Initial Velocity>On Nodes>w/Axial Rotate Main Menu>Preprocessor>LS-DYNA Options>Initial Velocity>On Nodes>w/Nodal Rotate Main Menu>Solution>Initial Velocity>On Nodes>Delete

Main Menu>Solution $>$ Initial Velocity $>$ On Nodes $>$ List
Main Menu>Solution>Initial Velocity>On Nodes>w/Axial Rotate
Main Menu>Solution>Initial Velocity>On Nodes>w/Nodal Rotate

EDWELD, Option, NWELD, N1,N2, SN, SS, EXPN, EXPS, EPSF, TFAIL, NSW, CID

Defines a massless spotweld or generalized weld for use in an explicit dynamic analysis.

PREP 7:Explicit Dynamics
<> <> <> <> <> <> <> <> <> <> DY <> <> <> <>

Option

Label identifying the option to be performed:
ADD
Define a weld (default). This weld may be a spotweld between two nodes or a generalized weld. A massless spotweld will be defined if valid node numbers are specified in fields N1 and N2. A generalized weld will be defined if a node component is specified in field $N 1$.

DELE

Delete specified weld. If NWELD is blank, all welds are deleted.

LIST

List specified weld. If $N W E L D$ is blank, all welds are listed.

NWELD

Reference number identifying the spotweld or generalized weld.

N1, N2

For a spotweld, $N 1$ and $N 2$ are the nodes which are connected by the spotweld. For a generalized weld, input a nodal component name in $N 1$ and leave $N 2$ blank. The nodal component should contain all nodes that are to be included in the generalized weld.

SN
Normal force at spotweld failure.
$\boldsymbol{S S}$
Shear force at spotweld failure.

EXPN

Exponent for normal spotweld force.

EXPS

Exponent for shear spotweld force.
EPSF
Effective plastic strain at ductile failure (used only for a generalized weld).
TFAIL
Failure time for constraint set (used only for a generalized weld); default $=1.0 \mathrm{e} 20$.

NSW

Number of spot welds for the generalized weld.

CID

Coordinate system ID number (CID) to be used for output data (used only for a generalized weld). The coordinate system must be previously defined with the EDLCS command.

Notes

This command can be used to define a massless spotweld between two nodes or a generalized weld for a group of nodes. For a spotweld, the nodes specified by $N 1$ and $N 2$ must not be coincident. For a generalized weld, coincident nodes are permitted, but CID must be specified when using coincident nodes. EDWELD is not updated after a node merge operation; therefore, node merging [NUMMRG,NODE] should be done before any EDWELD definitions. Nodes connected by a spotweld or generalized weld cannot be constrained in any other way.

Failure of the weld occurs when:
$\left(\frac{\left|f_{n}\right|}{S_{n}}\right)^{\exp n}+\left(\frac{\left|f_{s}\right|}{S_{s}}\right)^{\exp s} \geq 1$
where f_{n} and f_{s} are normal and shear interface forces. Normal interface force f_{n} is nonzero for tensile values only.

You can graphically display spotwelds by issuing the command /PBC,WELD,,1.
This command is also valid in SOLUTION.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>LS-DYNA Options>Spotweld $>$ Delete
Main Menu>Preprocessor>LS-DYNA Options>Spotweld>Genrlizd Spotwld
Main Menu>Preprocessor>LS-DYNA Options>Spotweld>List
Main Menu>Preprocessor>LS-DYNA Options>Spotweld>Massless Spotwld

EDWRITE, Option, Fname, Ext, --
Writes explicit dynamics input to an LS-DYNA input file.
SOLUTION: Explicit Dynamics
<> <> <> <> <> <> <> <> <> <> DY <> <> <> <>

Option

Sets a flag in the LS-DYNA input file (Fname.Ext) to produce desired output.

ANSYS

Set a flag to write results files for the ANSYS postprocessors (default). The files that will be written are Jobname.RST and Jobname. HIS (see Notes below).

LSDYNA

Set a flag to write results files for the LS-DYNA postprocessor (LS-POST). The files that will be written are D3PLOT, and files specified by EDOUT and EDHIST (see Notes below).

BOTH

Set a flag to write results files for both ANSYS and LS-DYNA postprocessors.

Fname

File name and directory path (80 characters maximum, including directory; this limit is due to an LSDYNA program limitation). If you do not specify a directory path, it will default to your working directory. The file name defaults to Jobname. Previous data on this file, if any, are overwritten.

Ext

Filename extension (8 character maximum).
The extension defaults to K in a new analysis and in a full restart analysis, and to R in a small restart analysis.

Unused field.

Notes

This command writes an LS-DYNA input file for the LS-DYNA solver. EDWRITE is only valid if explicit dynamic elements have been specified. This command is not necessary if the LS-DYNA solver is invoked from within ANSYS, in which case Jobname. K (or Jobname.R) is written automatically when the solution is initiated. (If LS-DYNA is invoked from within ANSYS, use EDOPT to specify desired output.)

If the analysis is a small restart (EDSTART,2), the file that is written will have the name Jobname. R (by default) and will only contain changes from the original analysis.

If the analysis is a full restart (EDSTART,3), the file that is written will have the name Jobname_nn. K (by default) and will contain all the information from the database. In a full restart, the jobname is changed to Jobname_nn ($n n=01$ initially, and is incremented for each subsequent full restart.)

A command is included in the LS-DYNA input file to instruct the LS-DYNA solver to write the results files indicated by Option. By default, LS-DYNA will write the ANSYS results file Jobname.RST (see the EDRST command). If Jobname. HIS is desired, you must also issue EDHIST.

Option = LSDYNA or BOTH will cause LS-DYNA to write results files for the LS-POST postprocessor. The D3PLOT file is always written for these two options. If other LS-POST files are desired, you must issue the appropriate EDHIST and EDOUT commands.

This command is also valid in PREP7.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.
Menu Paths
Main Menu>Solution>Write Jobname.k

/EFACET, num

Specifies the number of facets per element edge for PowerGraphics displays.

POST1:Controls
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

NUM

Number of facets per element edge for element plots.

1
Use 1 facet per edge (default for h-elements).
2
Use 2 facets per edge.
4
Use 4 facets per edge.

Command Default

As stated above.

Notes

/EFACET is valid only when PowerGraphics is enabled [/GRAPHICS,POWER], except that it can be used in FULL graphics mode for element CONTA174. (See the /GRAPHICS command and element CONTA174 in the Element Reference for more information.) The /EFACET command is only applicable to element type displays.
/EFACET controls the fineness of the subgrid that is used for element plots. The element is subdivided into smaller portions called facets. Facets are piecewise linear surface approximations of the actual element face. In their most general form, facets are warped planes in 3-D space. A greater number of facets will result in a smoother representation of the element surface for element plots. /EFACET may affect results averaging. See Contour Displays in the Basic Analysis Guide for more information.

For midside node elements, use $N U M=2$; if $N U M=1$, no midside node information is output. For non-midside node elements, NUM should be set to 1 . See the PLNSOL and PRNSOL commands for more information.

With PowerGraphics active (/GRAPHICS,POWER), the averaging scheme for surface data with interior element data included (AVRES,,FULL) and multiple facets per edge (/EFACET, 2 or /EFACET,4) will yield differing minimum and maximum contour values depending on the Z-Buffering options (/TYPE,,6 or /TYPE,,7). When the Section data is not included in the averaging schemes (/TYPE,,7), the resulting absolute value for the midside node is significantly smaller.

Caution

If you specify /EFACET,1, PowerGraphics does not plot midside nodes. You must use /EFACET,2 to make the nodes visible.

This command is valid in any processor.

Menu Paths

Main Menu>General Postproc>Options for Outp
Main Menu>General Postproc>Plot Results>Contour Plot>Nodal Solu
Utility Menu>List>Results>Options
Utility Menu>Plot>Results>Contour Plot>Nodal Solution
Utility Menu>PlotCtrls>Multi-Plot Contrls
Utility Menu>PlotCtrls>Style>Size and Shape

EGEN, ITIME, NINC, IEL1, IEL2, IEINC, MINC, TINC, RINC, CINC, SINC, DX, DY, DZ

Generates elements from an existing pattern.

> PREP 7: Elements
> MP ME ST PR PRN $<><>$ FL EM EH DY PP <> EME MFS

ITIME, NINC

Do this generation operation a total of ITIMEs, incrementing all nodes in the given pattern by NINC each time after the first. ITIME must be >1 if generation is to occur. NINC may be positive, zero, or negative. If $D X, D Y$, and/or $D Z$ is specified, NINC should be set so any existing nodes (as on NGEN) are not overwritten.

IEL1, IEL2, IEINC

Generate elements from selected pattern beginning with IEL1 to IEL2 (defaults to IEL1) in steps of IEINC (defaults to 1). If IEL1 is negative, IEL2 and IEINC are ignored and the last |IEL1| elements (in sequence backward from the maximum element number) are used as the pattern to be repeated. If IEL1 = ALL, IEL2 and IEINC are ignored and use all selected elements [ESEL] as pattern to be repeated. If $P 1=\mathrm{P}$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for IEL1 (IEL2 and INC are ignored).

MINC

Increment material number of all elements in the given pattern by MINC each time after the first.

TINC

Increment type number by TINC.

RINC

Increment real constant table number by RINC.
CINC
Increment element coordinate system number by CINC.

SINC

Increment section ID number by SINC.

DX, DY, DZ

Define nodes that do not already exist but are needed by generated elements (as though the NGEN, ITIME, INC, NODE1, , $D X, D Y, D Z$ were issued before EGEN). Zero is a valid value. If blank, $D X$, $D Y$, and $D Z$ are ignored.

Notes

A pattern may consist of any number of previously defined elements. The MAT, TYPE, REAL, ESYS, and SECNUM numbers of the new elements are based upon the elements in the pattern and not upon the current specification settings.

You can use the EGEN command to generate interface elements (INTER192, INTER193, INTER194, and INTER195) directly. However, because interface elements require that the element connectivity be started from the bottom surface, you must make sure that you use the correct element node connectivity. See the element descriptions for INTER192, INTER193, INTER194, and INTER195 for the correct element node definition.

Menu Paths

Main Menu>Preprocessor>Modeling>Copy>Elements>Auto Numbered
*EIGEN, Kmatrix, Mmatrix, Cmatrix, Evals, Evects

Performs a modal solution with unsymmetric or damping matrices.

> APDL: Matrix Operations
> MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS

Argument Descriptions

Kmatrix

Name of the stiffness matrix. May be a real or complex-valued matrix.

Mmatrix

Name of the mass matrix.

Cmatrix

Name of the damping matrix (used only for MODOPT,DAMP).

Evals

Name of the output eigenvalues vector. It will be an m-long *VEC vector of complex values, where m is the number of eigenvalues requested (MODOPT).

Evects

Name of the output eigenvector matrix. It will be a $n \times m$ *DMAT (dense) matrix of complex values, where n is the size of the matrix and m is the number of eigenvalues requested (MODOPT).

Notes

Use the command ANTYPE,MODAL and the MODOPT command to specify the modal solution options. Only MODOPT,DAMP and MODOPT,UNSYM are supported.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

This command cannot be accessed from a menu.

EINTF, TOLER, $K, T L A B, K C N, D X, D Y, D Z, K N O N R O T$
Defines two-node elements between coincident or offset nodes.
PREP 7: Elements
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

TOLER

Tolerance for coincidence (based on maximum Cartesian coordinate difference for node locations and on angle differences for node orientations). Defaults to 0.0001 . Only nodes within the tolerance are considered to be coincident.
\boldsymbol{K}
Only used when the type of the elements to be generated is PRETS179. K is the pretension node that is common to the pretension section that is being created. If K is not specified, it will be created by ANSYS automatically and will have an ANSYS-assigned node number. If K is specified but does not already
exist, it will be created automatically but will have the user-specified node number. K cannot be connected to any existing element.

tLAB

Nodal number ordering. Allowable values are:
LOW
The 2-node elements are generated from the lowest numbered node to the highest numbered node.

HIGH

The 2-node elements are generated from the highest numbered node to the lowest numbered node.

REVE

Reverses the orientation of the selected 2-node element.
KCN
In coordinate system $K C N$, elements are created between node 1 and node 2 (= node $1+\mathrm{dx} \mathrm{dy} \mathrm{dz}$)..

DX, DY, DZ

Node location increments that define the node offset in the active coordinate system (DR, D θ, DZ for cylindrical and DR, D $\theta, \mathrm{D} \Phi$ for spherical or toroidal).

KNONROT

When $K N O N R O T=0$, the nodes coordinate system is not rotated. When $K N O N R O T=1$, the nodes belonging to the elements created are rotated into coordinate system KCN (see NROTAT command description).

Notes

Defines 2-node elements (such as gap elements) between coincident or offset nodes (within a tolerance). May be used, for example, to "hook" together elements interfacing at a seam, where the seam consists of a series of node pairs. One element is generated for each set of two coincident nodes. For more than two coincident or offset nodes in a cluster, an element is generated from the lowest numbered node to each of the other nodes in the cluster. If fewer than all nodes are to be checked for coincidence, use the NSEL command to select the nodes. Element numbers are incremented by one from the highest previous element number. The element type must be set [ET] to a 2-node element before issuing this command. Use the CPINTF command to connect nodes by coupling instead of by elements. Use the CEINTF command to connect the nodes by constraint equations instead of by elements.

For contact element CONTA178, the tolerance is based on the maximum Cartesian coordinate difference for node locations only. The angle differences for node orientations are not checked.

Menu Paths

> Main Menu>Preprocessor>Modeling>Create>Elements>Auto Numbered>At Coincid Nd Main Menu>Preprocessor>Modeling>Create>Elements $>$ Auto Numbered>Offset Nodes

EKILL, ELEM

Deactivates an element (for the birth and death capability).

SOLUTION: Birth and Death
MP ME ST $<><><><><><><><>$ PP $<>$ EME MFS
ELEM
Element to be deactivated. If ALL, deactivate all selected elements [ESEL]. If $E L E M=P$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for ELEM.

Notes

Deactivates the specified element when the birth and death capability is being used. A deactivated element remains in the model but contributes a near-zero stiffness (or conductivity, etc.) value (ESTIF) to the overall matrix. Any solution-dependent state variables (such as stress, plastic strain, creep strain, etc.) are set to zero. Deactivated elements contribute nothing to the overall mass (or capacitance, etc.) matrix.

The element can be reactivated with the EALIVE command.

ANSYS recommends using element deactivation/reactivation (EKILL/EALIVE) for linear elastic materials only. For all other materials, validate the results carefully before using them.

This command is also valid in PREP7.

Menu Paths

Main Menu>Preprocessor>Loads>Load Step Opts>Other>Birth \& Death>Kill Elements Main Menu>Solution>Load Step Opts>Other>Birth \& Death>Kill Elements

ELBOW, Transkey, TOL, Dof, Cons1, Cons2, Cons3, Cons4
Specifies degrees of freedom to be coupled for end release and applies section constraints to elbow elements.

PREP 7: Elements
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Transkey

Pipe-to-elbow transition flag:
OFF
Do not automatically transition pipes to elbows. (This behavior is the default.)
ON
Automatically convert straight PIPE289 elements to ELBOW290 elements where it is beneficial. The program converts elements in transition regions where curved ELBOW290 elements are connected to straight PIPE289 elements.

TOL
Angle tolerance (in degrees) between adjacent ELBOW290 elements. The default value is 20. A value of
-1 specifies all selected ELBOW290 elements.

Dof

Degrees of freedom to couple:

ALL

Couple all nodal degrees of freedom (UX, UY, UZ, ROTX, ROTY, and ROTZ). This behavior is the default.

BALL

Create ball joints (equivalent to releasing ROTX, ROTY, and ROTZ).

Cons1, Cons2, Cons3, Cons4

Section degrees of freedoms to constrain. If Cons1 through Cons 4 are unspecified, no section constraints are applied:

SECT

All section deformation
SE
Section radial expansion
so
Section ovalization

SW

Section warping
SRA
Local shell normal rotation about cylindrical axis t2
SRT
Local shell normal rotation about cylindrical axis t1

Notes

The ELBOW command specifies end releases and section constraints for ELBOW290 elements and converts straight PIPE289 elements to ELBOW290 elements. The command works on currently selected nodes and elements. It creates end releases on any two connected elbow elements whose angle at connection exceeds the specified tolerance. From within the ANSYS GUI, the Picked node option generates an end release and section constraints at the selected node regardless of the angle of connection (that is, the angle tolerance [TOL] is set to -1).

Elbow and pipe elements must share the same section ID in order for the pipe-to-elbow transition to occur.
To list the elements altered by the ELBOW command, issue an ELIST command.
To list the coupled sets generated by the ELBOW command, issue a CPLIST command.
To list the section constraints generated by the ELBOW command, issue a DLIST command.

Menu Paths

> Main Menu>Preprocessor>Loads>Load Step Opts>Other>End Releases>Elbows>On Selected set Main Menu>Solution>Load Step Opts>Other>End Releases>Elbows>On Selected set

ELEM

Specifies "Elements" as the subsequent status topic.

PREP 7: Status
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Notes

This is a status [STAT] topic command. Status topic commands are generated by the GUI and will appear in the log file (Jobname. LOG) if status is requested for some items under Utility Menu> List> Status. This command will be immediately followed by a STAT command, which will report the status for the specified topic.

If entered directly into the program, the STAT command should immediately follow this command.

Menu Paths

Utility Menu>List>Status>Preprocessor>Elements

ELIST, IEL1, IEL2, INC, NNKEY, RKEY, PTKEY

Lists the elements and their attributes.

PREP 7: Elements
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

IEL1, IEL2, INC

Lists elements from IEL1 to IEL2 (defaults to IEL1) in steps of INC (defaults to 1). If IEL1 = ALL (default), IEL2 and INC are ignored and all selected elements [ESEL] are listed. If IEL1 = P , graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for IEL1 (IEL2 and INC are ignored).

NNKEY

Node listing key:
0
List attribute references and nodes.
1
List attribute references but not nodes.

RKEY

Real constant listing key:
0
Do not show real constants for each element.
1
Show real constants for each element. This includes default values chosen for the element.

PTKEY

LS-DYNA part number listing key (applicable to ANSYS LS-DYNA only):
0
Do not show part ID number for each element.

1

Show part ID number for each element.

Notes

Lists the elements with their nodes and attributes (MAT, TYPE, REAL, ESYS, SECNUM, PART). See also the LAYLIST command for listing layered elements.

This command is valid in any processor.

Menu Paths

```
Utility Menu>List>Elements>Attributes + RealConst
Utility Menu>List>Elements>Attributes Only
Utility Menu>List>Elements>Nodes + Attributes
Utility Menu>List>Elements>Nodes + Attributes + RealConst
```


*ELSE

Separates the final if-then-else block.
APDL: Process Controls
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Notes

Optional final block separator within an if-then-else construct. See the *IF for details. If a batch input stream hits an end-of-file during a false *IF condition, the ANSYS run will not terminate normally. You will need to terminate it externally (use either the UNIX "kill" function or the Windows task manager). The *ELSE command must appear on the same file as the *IF command, and all five characters must be input.

This command is valid in any processor.

Menu Paths

This command cannot be accessed from a menu.
*ELSEIF, VAL1, Oper1, VAL2, Conj, VAL3, Oper2, VAL4
Separates an intermediate if-then-else block.

> APDL: Process Controls
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Argument Descriptions

VAL1

First numerical value (or parameter which evaluates to numerical value) in the conditional comparison operation. VAL1, VAL2, VAL3, and VAL4 can also be character strings (enclosed in quotes) or parameters for Oper = EQ and NE only.

Oper1

Operation label. A tolerance of $1.0 \mathrm{E}-10$ is used for comparisons between real numbers:

```
EQ --
    Equal (for VAL1 = VAL2).
```

 NE --
 Not equal (for VAL1 \(\neq V A L 2\)).
 LT --
 Less than (for VAL1<VAL2).
 GT --
 Greater than (for VAL1>VAL2).
 LE --
 Less than or equal (for VALI \(\leq\) VAL2).
 GE --
 Greater than or equal (for VALI \(\geq\) VAL2).

ABLT --

Absolute values of VAL1 and VAL2 before < operation.

ABGT --

Absolute values of VAL1 and VAL2 before > operation.

VAL2

Second numerical value (or parameter which evaluates to numerical value) in the conditional comparison operation.

Conj

(Optional) Connection between two logical clauses.

AND -

True if both clauses (Oper1 and Oper2) are true.

OR -

True if either clause is true.

XOR -

True if either (but not both) clause is true.

VAL3

(Optional) Third numerical value (or parameter which evaluates to numerical value).

Oper2

(Optional) Operation label. This will have the same labels as Oper1, except it uses Val3 and Val4.A tolerance of $1.0 \mathrm{E}-10$ is used for comparisons between real numbers.

VAL4
(Optional) Fourth numerical value (or parameter value which evaluates to a numerical value).

Notes

Optional intermediate block separator within an if-then-else construct. All seven characters of the command name (*ELSEIF) must be input. This command is similar to the *IF command except that the Base field is not used. The *IF, *ELSEIF, *ELSE, and *ENDIF commands for each if-then-else construct must all be read from the same file (or keyboard).

This command is valid in any processor.

Menu Paths

This command cannot be accessed from a menu.

EMAGERR

Calculates the relative error in an electrostatic or electromagnetic field analysis.

POST1:Magnetics Calculations
MP <> <> <> <> <> <> <> EM <> <> PP <> EME <>

Notes

The relative error is an approximation of the mesh discretization error associated with a solution. It is based on the discrepancy between the unaveraged, element-nodal field values and the averaged, nodal field values. The calculation is valid within a material boundary and does not consider the error in continuity of fields across dissimilar materials.

For electrostatics, the field values evaluated are the electric field strength (EFSUM) and the electric flux density (DSUM). A relative error norm of each is calculated on a per-element basis and stored in the element table [ETABLE] with the labels EF_ERR and D_ERR. Normalized error values EFN_ERR and DN_ERR are also calculated and stored in the element table. Corresponding quantities for electromagnetics are H_ERR, B_ERR, HN_ERR, and BN_ERR, which are calculated from the magnetic field intensity (HSUM) and the magnetic flux density (BSUM). The normalized error value is the relative error norm value divided by the peak elementnodal field value for the currently selected elements.

Use the PLETAB and PRETAB commands to plot and list the error norms and normalized error values.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>General Postproc>Elec\&Mag Calc>Element Based>Error Eval

EMATWRITE, Кеу

Forces the writing of all the element matrices to File.EMAT.

SOLUTION: Analysis Options
MP ME ST PR PRN DS DSS <> <> <> <> PP <> EME MFS

Key

Write key:
YES
Forces the writing of the element matrices to File. EMAT even if not normally done.
NO
Element matrices are written only if required. This value is the default.

Notes

The EMATWRITE command forces ANSYS to write the File. EMAT file. The file is necessary if you intend to perform a subsequent partial solution (PSOLVE) requiring File. EMAT data as a prerequisite, or if you intend to follow the initial load step with a subsequent inertia relief calculation (IRLF). If used in the solution processor (/SOLU), this command is only valid within the first load step.

File. EMAT is also required in these cases:

- For the static solution of a prestressed modal analysis when you use stress-stiffening energy to obtain better strain energy calculation accuracy.
- When you perform a QR damp eigensolution with a constant material damping coefficient (MP,DMPR).

This command is also valid in PREP7.

Menu Paths

This command cannot be accessed from a menu.

EMF

Calculates the electromotive force (emf), or voltage drop along a predefined path.

> POST1:Magnetics Calculations
> MP ME <> <> <> <> <> <> EM <> <> PP <> EME MFS

Notes

EMF invokes an ANSYS macro which calculates the electromotive force (emf), or voltage drop along a predefined path (specified with the PATH command). It is valid for both 2-D and 3-D electric field analysis or high-frequency electromagnetic field analysis. The calculated emf value is stored in the parameter EMF.

You must define a line path (via the PATH command) before issuing the EMF command macro. The macro uses calculated values of the electric field (EF), and uses path operations for the calculations. All path items are cleared when the macro finishes executing.

The EMF macro sets the "ACCURATE" mapping method and "MAT" discontinuity option on the PMAP command. The ANSYS program retains these settings after executing the macro.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>General Postproc>Elec\&Mag Calc>Path Based>EMF

EMFT

Summarizes electromagnetic forces and torques.

POST1:Magnetics Calculations
MP <> <> <> <> <> <> <> EM <> <> PP <> EME <>

Notes

Use this command to summarize electromagnetic force and torque in both static electric and magnetic problems. To use this command, select the nodes in the region of interest and make sure that all elements are selected. If RSYS $=0$, the force is reported in the global Cartesian coordinate system. If RSYS $\neq 0$, force is reported in the specified coordinate system. However, for torque, if RSYS $\neq 0$, this command will account for the shift and rotation as specified by RSYS, but will report only the Cartesian components.

Forces are stored as items _FXSUM,_FYSUM,_FZSUM, and _FSSUM. Torque is stored as items _TXSUM, _TYSUM, _TZSUM, and _TSSUM.

This command is valid only with SOLID117, PLANE121, SOLID122, SOLID123, PLANE233, SOLID236 and SOLID237 elements. For any other elements, you must use FMAGSUM.

Menu Paths

Main Menu> General Postprocessor> Elec\&Mag Calc> Summarize Force/Torque

EMID, Key, Edges

Adds or removes midside nodes.

PREP 7:Elements
MP ME ST PR PRN <> <> FL EM <> DY PP <> EME MFS

Key

Add or remove key:
ADD
Add midside node to elements (default).

REMOVE

Remove midside nodes from elements.

Edges

ALL
Add (or remove) midside nodes to (from) all edges of all selected elements, independent of which nodes are selected (default).

EITHER

Add (or remove) midside nodes only to (from) element edges which have either corner node selected.

BOTH

Add (or remove) midside nodes only to (from) element edges which have both corner nodes selected.

Notes

This command adds midside nodes to (or removes midside nodes from) the selected elements. For this to occur, the selected elements must be midside node capable, the active element type [TYPE] must allow midside node capability, and the relationship between the finite element model and the solid model (if any) must first be disassociated [MODMSH].

By default, EMID generates a midside node wherever a zero (or missing) midside node occurs for that element. You can control this and add (or remove) midside nodes selectively by using the Edges argument. Nodes are located midway between the two appropriate corner nodes based on a linear Cartesian interpolation. Nodal coordinate system rotation angles are also linearly interpolated. Connected elements share the same midside node. Node numbers are generated sequentially from the maximum node number.

The EMID command is useful for transforming linear element types to quadratic element types having the same corner node connectivity.

EMID is also useful for transforming elements created outside of the program.

Menu Paths

Main Menu>Preprocessor>Modeling>Move / Modify>Elements>Add Mid Nodes
Main Menu>Preprocessor>Modeling>Move / Modify>Elements>Remove Mid Nd

EMIS, MAT, EVALU

Specifies emissivity as a material property for the Radiation Matrix method.

AUX12: Radiation Matrix Method
MP ME <> PR <> <> <> <> <> <> <> PP <> EME MFS

MAT

Material number associated with this emissivity (500 maximum). Defaults to 1.
EVALU
Emissivity for this material ($0.0<E V A L U \leq 1.0$). Enter a very small number for zero.

Command Default

Emissivity value of 1.0 is associated with all materials.

Notes

Specifies emissivity as a material property for the Radiation Matrix method. This material property can then be associated with each element.

Menu Paths

Main Menu>Radiation Opt>Matrix Method>Emissivities

EMODIF, IEL, STLOC, $11,12,13,14,15,16,17,18$

Modifies a previously defined element.

> PREP 7: Elements
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

IEL

Modify nodes and/or attributes for element number IEL. If ALL, modify all selected elements [ESEL]. If $I E L=P$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for IEL.

STLOC

Starting location (n) of first node to be modified or the attribute label. If n, modify element node positions $n, n+1$, etc. ($n=1$ to 20). For example, if $S T L O C=1$, I1 refers to the first node, $I 2$, the second, etc. If $S T L O C=9$, I1 refers to the ninth node, $I 2$, the tenth, etc. Attributes are also modified to the currently specified values (use $-n$ to modify only nodes and not attributes). If zero, modify only the attributes to the currently specified values. If MAT, TYPE, REAL, ESYS, or SECNUM, modify only that attribute to the II value.

I1, I2, I3,..., I8

Replace the previous node numbers assigned to this element with these corresponding values. A (blank) retains the previous value (except in the II field, which resets the STLOC node number to zero). For attributes, replace the existing value with the $I 1$ value (or the default if $I 1$ is zero or blank).

Notes

The nodes and/or attributes (MAT, TYPE, REAL, ESYS, and SECNUM values) of an existing element may be changed with this command.

Menu Paths

Main Menu>Preprocessor>Modeling>Move / Modify>Elements>Modify Attrib
Main Menu>Preprocessor>Modeling>Move / Modify>Elements>Modify Nodes

EMORE, Q, R, S, T, U, V, W, X

Adds more nodes to the just-defined element.

> PREP 7: Elements
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Q, R, S, T, U, V, W, X

Numbers of nodes typically assigned to ninth (node Q) through sixteenth (node X) nodal positions, if any. If $Q=P$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI).

Notes

Repeat EMORE command for up to 4 additional nodes (20 maximum). Nodes are added after the last nonzero node of the element. Node numbers defined with this command may be zeroes.

Menu Paths

This command cannot be accessed from a menu.

EMSYM, NSECT

Specifies circular symmetry for electromagnetic sources.

> PREP 7:Special Purpose
> MP ME ST <> <> <> <> <> EM EH DY PP <> EME MFS

NSECT

The number of circular symmetry sections (defaults to 1).

Notes

Specifies the number of times to repeat electromagnetic sources for circular symmetry. Applies to SOURC36 elements and to coupled-field elements with electric current conduction results in the database. Sources are assumed to be equally spaced over 360° about the global Cartesian Z axis.

This command is also valid in SOLUTION.

Menu Paths

Main Menu>Preprocessor>Loads>Load Step Opts>Magnetics>Options Only>Copy Sources Main Menu>Solution>Load Step Opts>Magnetics>Options Only>Copy Sources

EMTGEN, Ncomp, Ecomp, PNcomp, DOF, GAP, GAPMIN, FKN, EPZERO

Generates a set of TRANS126 elements.

PREP 7:Elements
MP <> <> <> <> <> <> <> <> <> <> PP <> EME <>

Ncomp

Component name of the surface nodes of a structure which attach to the TRANS126 elements. You must enclose name-strings in single quotes in the EMTGEN command line.

Ecomp

Component name of the TRANS126 elements generated. You must enclose name-strings in single quotes in the EMTGEN command line. Defaults to EMTELM.

PNcomp

Component name of the plane nodes generated by the command at an offset (GAP) from the surface nodes. You must enclose name-strings in single quotes in the EMTGEN command line. Defaults to EMTPNO.

DOF
Active structural degree of freedom (DOF) for TRANS126 elements (UX, UY, or UZ) in the Cartesian coordinate system. You must enclose the DOF in single quotes.

GAP

Initial gap distance from the surface nodes to the plane. Be sure to use the correct sign with respect to Ncomp node location.

GAPMIN

Minimum gap distance allowed (GAPMIN real constant) for TRANS126 elements. Defaults to the absolute value of $(G A P)^{*} 0.05$.

FKN
Contact stiffness factor used as a multiplier for a contact stiffness appropriate for bulk deformation. Defaults to 0.1.

EPZERO

Free-space permittivity. Defaults to $8.854 \mathrm{e}-6$ ($\mu \mathrm{MKS}$ units).

Notes

The EMTGEN command generates a set of TRANS126 elements between the surface nodes of a moveable structure and a plane of nodes, typically representing a ground plane. The plane of nodes are created by the command at a specified offset (GAP). Each element attaches to a surface node and to a corresponding node representing the plane. The created elements are set to the augmented stiffness method (KEYOPT(6) $=1$), which can help convergence. The generated plane nodes should be constrained appropriately for the analysis.

You can use TRANS126 elements for simulating fully coupled electrostatic structural coupling between a MEMS device and a plane, if the gap distance between the device and the plane is small compared to the overall surface area dimensions of the device. This assumption allows for a point-wise closed-form solution of capacitance between the surface nodes and the plane; i.e. CAP = EPZERO*AREA/GAP, where EPZERO if the free-space permittivity, AREA is the area associated with the node, and GAP is the gap between the node and the plane. The area for each node is computed using the ARNODE function in ANSYS. See the *GET command description for more information on the ARNODE function.

With a distributed set of TRANS126 elements attached directly to the structure and a plane (such as a ground plane), you can perform a full range of coupled electrostatic-structural simulations, including:

- Static analysis (due to a DC voltage or a mechanical load)
- Prestressed modal analysis (eigenfrequencies, including frequency-shift effects of a DC bias voltage)
- Prestressed harmonic analysis (system response to a small-signal AC excitation with a DC bias voltage or mechanical load)
- Large signal transient analysis (time-transient solution due to an arbitrary time-varying voltage or mechanical excitation)

The TRANS126 element also employs a node-to-node gap feature so you can perform contact-type simulations where the structure contacts a plane (such as a ground plane). The contact stiffness factor, FKN, is used to control contact penetration once contact is initiated. A smaller value provides for easier convergence, but with more penetration.

Menu Paths

Main Menu>Preprocessor>Modeling>Create>Transducers>Electromechanic>Node to Plane

EMUNIT, Lab, VALUE

Specifies the system of units for magnetic field problems.

PREP 7: Materials
MP ME <> <> <> <> <> <> EM EH <> PP <> EME MFS

Lab

Label specifying the type of units:

MKS

Rationalized MKS system of units (meters, amperes, henries, webers, etc.). Free-space permeability is set to $4 \pi \mathrm{e}-7$ henries/meter. Free-space permittivity is set to $8.85 \mathrm{e}-12 \mathrm{~F} / \mathrm{m}$.

MUZRO

User defined system of units. Free-space permeability is set to the value input for VALUE. Other units must correspond to the permeability units. Relative permeability may be altered to absolute values.

EPZRO

User defined system of units. Free-space permittivity is set to the value input for VALUE. Other units must correspond to the permittivity units.

VALUE

User value of free-space permeability (defaults to 1) if $L a b=$ MUZRO, or free-space permittivity (defaults to 1) if $L a b=$ EPZRO.

Command Default

Rationalized MKS system of units (meters, amperes, henries, webers, etc.). Free-space permeability is set to $4 \pi \mathrm{e}-7$ Henries/meter, free-space permittivity is set to $8.85 \mathrm{e}-12$ Farads/meter.

Notes

Specifies the system of units to be used for electric and magnetic field problems. The free-space permeability and permittivity values may be set as desired. These values are used with the relative property values [MP] to establish absolute property values.

Note

If the magnetic source field strength $\left(H_{s}\right)$ has already been calculated [BIOT], switching EMUNIT will not change the values.

For micro-electromechanical systems (MEMS), where dimensions are on the order of microns, see the conversion factors in System of Units in the Coupled-Field Analysis Guide.

This command is also valid in SOLUTION.

Menu Paths

Main Menu>Preprocessor>Loads>Load Step Opts>Other>Change Mat Props>Electromag Units Main Menu>Preprocessor>Material Props>Electromag Units Main Menu>Solution>Load Step Opts>Other>Change Mat Props>Electromag Units

EN, IEL, I, J, K, L, M, N, O, P

Defines an element by its number and node connectivity.

> PREP 7: Elements
> MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS

IEL
Number assigned to element being defined. If $I E L=P$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI).

I

Number of node assigned to first nodal position (node I).

$\boldsymbol{J}, \mathrm{K}, \mathrm{L}, \mathrm{M}, \mathrm{N}, \mathrm{O}, \mathrm{P}$

Number assigned to second (node J) through eighth (node P) nodal position, if any.

Notes

Defines an element by its nodes and attribute values. Similar to the E command except it allows the element number (IEL) to be defined explicitly. Element numbers need not be consecutive. Any existing element already having this number will be redefined.

Up to 8 nodes may be specified with the EN command. If more nodes are needed for the element, use the EMORE command. The number of nodes required and the order in which they should be specified are described in the Element Reference for each element type. The current (or default) MAT, TYPE, REAL, SECNUM, and ESYS attribute values are also assigned to the element.

When creating elements with more than 8 nodes using this command and the EMORE command, it may be necessary to turn off shape checking using the SHPP command before issuing this command. If a valid element type can be created without using the additional nodes on the EMORE command, this command will create that element. The EMORE command will then modify the element to include the additional nodes. If shape checking is active, it will be performed before the EMORE command is issued. Therefore, if the shape checking limits are exceeded, element creation may fail before the EMORE command modifies the element into an acceptable shape.

Menu Paths

Main Menu>Preprocessor>Modeling>Create>Elements>User Numbered>Thru Nodes

*END

Closes a macro file.

> APDL:Macro Files
> MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS

Notes

Closes a file opened with *CREATE. The *END command is an 8-character command (to differentiate it from *ENDIF). If you add commented text on that same line but do not allow enough spaces between *END and the "!" that indicates the comment text, the *END will attempt to interpret the "!" as the 8th character and will fail.

This command is valid in any processor.

Menu Paths

This command cannot be accessed from a menu.

*ENDDO

Ends a do-loop and starts the looping action.

> APDL: Process Controls
> MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS

Notes

One *ENDDO is required for each nested do-loop. The *ENDDO command must appear on the same file as the *DO command, and all six characters must be input.

This command is valid in any processor.

Menu Paths

This command cannot be accessed from a menu.

*ENDIF

Ends an if-then-else.

APDL: Process Controls
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Notes

Required terminator for the if-then-else construct. See the *IF for details. If a batch input stream hits an end-of-file during a false *IF condition, the ANSYS run will not terminate normally. You will need to terminate it externally (use either the UNIX "kill" function or the Windows task manager). The *ENDIF command must appear on the same file as the *IF command, and all six characters must be input.

This command is valid in any processor.

Menu Paths

This command cannot be accessed from a menu.

ENDRELEASE,---, TOLERANCE, Dof1, Dof2, Dof3, Dof4
Specifies degrees of freedom to be decoupled for end release.
PREP 7:Elements
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Unused field.
tolerance
Angle tolerance (in degrees) between adjacent elements. Defaults to 20°. Set TOLERANCE to -1 to indicate all selected elements.
Dof1, Dof2, Dof3, Dof4
Degrees of freedom to release. If $D \circ f 1$ is blank, WARP is assumed and $D \circ f 2, D \circ f 3$, and $D \circ f 4$ are ignored.

WARP

Release the warping degree of freedom (default).

ROTX

Release rotations in the X direction.

ROTY

Release rotations in the Y direction.

ROTZ

Release rotations in the Z direction.

UX

Release displacements in the X direction.

UY

Release displacements in the Y direction.

UZ

Release displacements in the Z direction.

BALL

Create ball joints (equivalent to releasing WARP, ROTX, ROTY, and ROTZ).

Notes

This command specifies end releases for the BEAM188, BEAM189, PIPE288, and PIPE289 elements. The command works on currently selected nodes and elements. It creates end releases on any two connected beam elements whose angle at connection exceeds the specified tolerance. From within the GUI, the Picked node option generates an end release at the selected node regardless of the angle of connection (angle tolerance is set to -1).

Use the CPLIST command to list the coupled sets generated by the ENDRELEASE command.

Note

You should exercise due engineering judgement when using this command, as improper use may result in mechanics that render a solution impossible.

Menu Paths

Main Menu>Preprocessor>Loads>Load Step Opts>Other>End Releases>Beams>On Selected set Main Menu>Solution>Load Step Opts>Other>End Releases>Beams>On Selected set

ENERSOL, NVAR, Item, --, Name
Specifies the total energies to be stored.

> MP ME ST PR PRN <><><><><><> PP <> EME MFS

NVAR
Arbitrary reference number assigned to this variable (2 to NV).

Item

SENE
Stiffness energy
KENE
Kinetic energy
AENE
Artificial energy due to hourglass control/drill stiffness
STEN
Artificial energy due to nonlinear stabilization

Unused field.
NAME
A 32-character name identifying the item on printouts and displays. Defaults to a 4-character label formed by the four characters of the Item value.

Menu Paths

This command cannot be accessed from a menu.

ENGEN, IINC, ITIME, NINC, IEL1, IEL2, IEINC, MINC, TINC, RINC, CINC, SINC, DX, DY, DZ
Generates elements from an existing pattern.
PREP 7: Elements
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

IINC

Increment to be added to element numbers in pattern.

ITIME, NINC

Do this generation operation a total of ITIMEs, incrementing all nodes in the given pattern by NINC each time after the first. ITIME must be > 1 if generation is to occur. NINC may be positive, zero, or negative.

IEL1, IEL2, IEINC

Generate elements from the pattern that begins with IEL1 to IEL2 (defaults to IEL1) in steps of IEINC (defaults to 1). If IELI is negative, IEL2 and IEINC are ignored and use the last |IEL1| elements (in sequence backward from the maximum element number) as the pattern to be repeated. If $I E L 1=A L L$, IEL2 and IEINC are ignored and all selected elements [ESEL] are used as the pattern to be repeated. If $I E L 1=P$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for IEL1 (IEL2 and IEINC are ignored).

MINC

Increment material number of all elements in the given pattern by MINC each time after the first.

TINC

Increment type number by TINC.

RINC

Increment real constant table number by RINC.
CINC
Increment element coordinate system number by CINC.

SINC

Increment section ID number by SINC.

$D X, D Y, D Z$

Define nodes that do not already exist but are needed by generated elements
(NGEN, ITIME, INC, NODE1, , DX, DY, DZ). Zero is a valid value. If blank, $D X, D Y$, and $D Z$ are ignored.

Notes

Same as the EGEN command except it allows element numbers to be explicitly incremented (IINC) from the generated set. Any existing elements already having these numbers will be redefined.

Menu Paths

Main Menu>Preprocessor>Modeling>Copy>Elements>User Numbered

ENORM, ENUM

Reorients shell element normals or line element node connectivity.

$$
\begin{array}{r}
\text { PREP 7: Elements } \\
\text { MP ME ST PR PRN <> <> <> <> <> DY PP <> EME MFS }
\end{array}
$$

ENUM

Element number having the normal direction that the reoriented elements are to match. If $E N U M=P$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI).

Notes

Reorients shell elements so that their outward normals are consistent with that of a specified element. ENORM can also be used to reorder nodal connectivity of line elements so that their nodal ordering is consistent with that of a specified element.

For shell elements, the operation reorients the element by reversing and shifting the node connectivity pattern. For example, for a 4-node shell element, the nodes in positions I, J, K and L of the original element are placed in positions $\mathrm{J}, \mathrm{I}, \mathrm{L}$ and K of the reoriented element. All 3-D shell elements in the selected set are considered for reorientation, and no element is reoriented more than once during the operation. Only shell elements adjacent to the lateral (side) faces are considered.

The command reorients the shell element normals on the same panel as the specified shell element. A panel is the geometry defined by a subset of shell elements bounded by free edges or T-junctions (anywhere three or more shell edges share common nodes).

Reorientation progresses within the selected set until either of the following conditions is true:

- The edge of the model is reached.
- More than two elements (whether selected or unselected) are adjacent to a lateral face.

In situations where unselected elements might undesirably cause case b to control, consider using ENSYM, $0,0,0, A L L$ instead of ENORM. It is recommended that reoriented elements be displayed and graphically reviewed.

You cannot use the ENORM command to change the normal direction of any element that has a body or surface load. We recommend that you apply all of your loads only after ensuring that the element normal directions are acceptable.

Real constant values are not reoriented and may be invalidated by an element reversal.

Menu Paths

Main Menu>Preprocessor>Modeling>Move / Modify>Elements>Shell Normals

ENSYM, IINC, --, NINC, IELT, IELL IEINC

Generates elements by symmetry reflection.

> PREP 7: Elements
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

IINC

Increment to be added to element numbers in existing set.
--
Unused field.

NINC

Increment nodes in the given pattern by NINC.

IEL1, IEL2, IEINC

Reflect elements from pattern beginning with IEL1 to IEL2 (defaults to IEL1) in steps of IEINC (defaults to 1). If IEL1 = ALL, IEL2 and IEINC are ignored and pattern is all selected elements [ESEL]. If IELI $=\mathrm{P}$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for IEL1 (IEL2 and IEINC are ignored).

Notes

This command is the same as the ESYM command except it allows explicitly assigning element numbers to the generated set (in terms of an increment IINC). Any existing elements already having these numbers will be redefined.

The operation generates a new element by incrementing the nodes on the original element, and reversing and shifting the node connectivity pattern. For example, for a 4-node 2-D element, the nodes in positions $\mathrm{I}, \mathrm{J}, \mathrm{K}$ and L of the original element are placed in positions $\mathrm{J}, \mathrm{I}, \mathrm{L}$ and K of the reflected element.

Similar permutations occur for all other element types. For line elements, the nodes in positions I and J of the original element are placed in positions J and I of the reflected element. In releases prior to ANSYS 5.5, no node pattern reversing and shifting occurred for line elements generated by ENSYM. To achieve the same results as you did in releases prior to ANSYS 5.5, use the ENGEN command instead.

See the ESYM command for additional information about symmetry elements.
The ENSYM command also provides a convenient way to reverse shell element normals. If the IINC and NINC argument fields are left blank, the effect of the reflection is to reverse the direction of the outward normal of the specified elements. You cannot use the ENSYM command to change the normal direction of any element that has a body or surface load. We recommend that you apply all of your loads only after ensuring that the element normal directions are acceptable. Also note that real constants (such as nonuniform shell thickness and tapered beam constants) may be invalidated by an element reversal. See Revising Your Model in the Modeling and Meshing Guide for more information about controlling element normals.

Menu Paths

> Main Menu $>$ Preprocessor $>$ Modeling $>$ Move / Modify $>$ Reverse Normals $>$ of Shell Elems Main Menu $>$ Preprocessor $>$ Modeling $>$ Reflect $>$ Elements $>$ User Numbered

/EOF

Exits the file being read.

SESSION: Run Controls
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Notes

Causes an end-of-file exit when encountered on a switched file (see /INPUT, *USE, etc.). Commands are then read continuing from the file that contained the file switching command (or from the terminal if the switch was made from the terminal). Use the /EXIT command to terminate an ANSYS run. This command cannot be used in a do-loop or if-then-else construct.

This command is valid in any processor.

Menu Paths

This command cannot be accessed from a menu.

EORIENT, Etype, Dir, TOLER

Reorients solid element normals.

PREP 7: Meshing
PREP 7: Elements
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Etype

Specifies which elements to orient.
LYSL
Specifies that certain solid elements (such as SOLID185 with KEYOPT(3) = 1, SOLID186 with KEYOPT(3) $=1$, and SOLSH190) will be oriented. This value is the default.

Dir

The axis and direction for orientation, or an element number. If Dir is set to a positive number (n), then all eligible elements are oriented as similarly as possible to element n.

NEGX

The element face with the outward normal most nearly parallel to the element coordinate system's negative x-axis is designated (reoriented) as face 1.

POSX

The element face with the outward normal most nearly parallel to the element coordinate system's positive x-axis is designated (reoriented) as face 1.

NEGY

The element face with the outward normal most nearly parallel to the element coordinate system's negative y-axis is designated (reoriented) as face 1..

POSY

The element face with the outward normal most nearly parallel to the element coordinate system's positive y-axis is designated (reoriented) as face 1.

NEGZ

(Default) The element face with the outward normal most nearly parallel to the element coordinate system's negative z-axis is designated (reoriented) as face 1.

POSZ
The element face with the outward normal most nearly parallel to the element coordinate system's positive z-axis is designated (reoriented) as face 1.

TOLER

The maximum angle (in degrees) between the outward normal face and the target axis. Default is 90.0. Lower TOLER values will reduce the number of faces that are considered as the basis of element reorientation.

Notes

EORIENT renumbers the element faces, designating the face most parallel to the XY plane of the element coordinate system (set with ESYS) as face 1 (nodes I-J-K-L, parallel to the layers in layered elements). It calculates the outward normal of each face and changes the node designation of the elements so the face with a normal most nearly parallel with and in the same general direction as the target axis becomes face 1.

The target axis, defined by $D i r$, is either the negative or positive indicated axis or the outward normal of face 1 of that element.

All SOLID185 Layered Structural Solid, SOLID186 Layered Structural Solid, and SOLSH190 solid shell elements in the selected set are considered for reorientation.

After reorienting elements, you should always display and graphically review results using the /ESHAPE command. When plotting models with many or symmetric layers, it may be useful to temporarily reduce the number of layers to two, with one layer being much thicker than the other.

You cannot use EORIENT to change the normal direction of any element that has a body or surface load. We recommend that you apply all of your loads only after ensuring that the element normal directions are acceptable.

Prisms and tetrahedrals are also supported, within the current limitations of the SOLID185, SOLID186, and SOLSH190 elements. (Layers parallel to the four-node face of the prism are not supported.)

Menu Paths

Main Menu>Preprocessor>Modeling>Move / Modify>Elements>Orient Normal

EPLOT

Produces an element display.

PREP 7: Elements
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Notes

Produces an element display of the selected elements. In full graphics, only those elements faces with all of their corresponding nodes selected are plotted. In PowerGraphics, all element faces of the selected element set are plotted irrespective of the nodes selected. However, for both full graphics and PowerGraphics, adjacent or otherwise duplicated faces of 3-D solid elements will not be displayed in an attempt to eliminate plotting of interior facets. See the DSYS command for display coordinate system issues.

This command will display curvature in midside node elements when PowerGraphics is activated [/GRAPHICS,POWER] and /EFACET, 2 or /EFACET,4 are enabled. (To display curvature, two facets per edge is recommended [/EFACET,2]). When you specify /EFACET,1, PowerGraphics does not display midside nodes. /EFACET has no effect on EPLOT for non-midside node elements.

This command is valid in any processor.

Menu Paths

Main Menu>Preprocessor>Modeling>CMS>CMS Superelements>By Picking Main Menu>Solution>Time Controls>Time Step Prediction Utility Menu>Plot>Elements

EQSLV, Lab, TOLER, MULT, --, KeepFile

Specifies the type of equation solver.

SOLUTION: Analysis Options
MP ME ST PR PRN DS DSS <> EM EH <> PP <> EME MFS

Lab

Equation solver type:

SPARSE

Sparse direct equation solver. Applicable to real-value or complex-value symmetric and unsymmetric matrices. Available only for STATIC, HARMIC (full method only), TRANS (full method only), SUBSTR, and PSD spectrum analysis types [ANTYPE]. Can be used for nonlinear and linear analyses, especially nonlinear analysis where indefinite matrices are frequently encountered. Well suited for contact analysis where contact status alters the mesh topology. Other typical well-suited applications are: (a) models consisting of shell/beam or shell/beam and solid elements (b) models with a multi-branch structure, such as an automobile exhaust or a turbine fan. This is an alternative to iterative solvers since it combines both speed and robustness. Generally, it requires considerably more memory ($\sim 10 \mathrm{x}$) than the PCG solver to obtain optimal performance (running totally in-core). When memory is limited, the solver works partly in-core and out-of-core, which can noticeably slow down the performance of the solver. See the BCSOPTION command for more details on the various modes of operation for this solver.

This solver can be run in shared memory parallel or distributed memory parallel (Distributed ANSYS) mode. When used in Distributed ANSYS, this solver preserves all of the merits of the classic or shared memory sparse solver. The total sum of memory (summed for all processes) is usually higher than the shared memory sparse solver. System configuration also affects the performance of the distributed memory parallel solver. If enough physical memory is available, running this solver in the in-core memory mode achieves optimal performance. The ideal configuration when using the out-of-core memory mode is to use one processor per machine on multiple machines (a cluster), spreading the I/O across the hard drives of each machine, assuming that you are using a high-speed network such as Infiniband to efficiently support all communication across the multiple machines.

This solver supports use of the GPU accelerator capability.

JCG

Jacobi Conjugate Gradient iterative equation solver, in-memory option. Available only for STATIC, HARMIC (full method only), and TRANS (full method only) analysis types [ANTYPE]. Can be used for structural and multiphysics applications. Applicable for symmetric, unsymmetric, complex, definite, and indefinite matrices. Recommended for 3-D harmonic analyses in structural and multiphysics applications. Efficient for heat transfer, electromagnetics, piezoelectrics, and acoustic field problems.

This solver can be run in shared memory parallel or distributed memory parallel (Distributed ANSYS) mode. When used in Distributed ANSYS, in addition to the limitations listed above, this solver is available only for STATIC and TRANS (full method) analyses where the stiffness is symmetric, and does not support the fast thermal option (THOPT).

This solver supports use of the GPU accelerator capability. When using the GPU accelerator capability, in addition to the limitations listed above, this solver is available only for STATIC and TRANS (full method) analyses where the stiffness is symmetric, and does not support the fast thermal option (THOPT).

ICCG

Incomplete Cholesky Conjugate Gradient iterative equation solver. Available for STATIC, HARMIC (full method only), and TRANS (full method only) analysis types [ANTYPE]. Can be used for structural and multiphysics applications, and for symmetric, unsymmetric, complex, definite, and indefinite matrices. The ICCG solver requires more memory than the JCG solver, but is more robust than the JCG solver for ill-conditioned matrices.

QMR

Quasi-Minimal Residual iterative equation solver. Available for the HARMIC (full method only) analysis type [ANTYPE]. Can be used for high-frequency electromagnetic applications, and for symmetric, complex, definite, and indefinite matrices. The QMR solver is more stable than the ICCG solver.

PCG

Preconditioned Conjugate Gradient iterative equation solver (licensed from Computational Applications and Systems Integration, Inc.). Requires less disk file space than SPARSE and is faster for large models. Useful for plates, shells, 3-D models, large 2-D models, p-method analyses, and other problems having symmetric, sparse, definite or indefinite matrices for nonlinear analysis. Requires twice as much memory as JCG. Available only for analysis types [ANTYPE] STATIC, TRANS (full method only), or MODAL (with PCG Lanczos option only). Also available for the use pass of substructure analyses (MATRIX50). The PCG solver can robustly solve equations with constraint equations (CE, CEINTF, CPINTF, and CERIG). With this solver, you can use the MSAVE command to obtain a considerable memory savings.

The PCG solver can handle ill-conditioned problems by using a higher level of difficulty (see PCGOPT). III-conditioning arises from elements with high aspect ratios, contact, and plasticity.

This solver can be run in shared memory parallel or distributed memory parallel (Distributed ANSYS) mode. When used in Distributed ANSYS, this solver preserves all of the merits of the classic or shared memory PCG solver. The total sum of memory (summed for all processes) is about 30% more than the shared memory PCG solver.

This solver supports use of the GPU accelerator capability.

AMG

Algebraic Multigrid iterative equation solver. Available for STATIC analyses and TRANS (full method only) analyses. The AMG solver is applicable to symmetric matrices. This solver is not available for substructure analyses, either generation or use pass. It is very efficient for single-field structural analyses (where the solution DOFs are combinations of UX, UY, UZ, ROTX, ROTY, and ROTZ). For applications such as single-field thermal analyses (where the solution DOF is TEMP), the AMG solver is less efficient. Recommended for ill-conditioned problems in which the ICCG solver would have difficulty converging; applicable in both single- and multiprocessor environments. In terms of CPU time when used in a single-processor environment, the AMG solver performs better than the ICCG solver for illconditioned problems, and it delivers about the same level of performance for ordinary problems. In a multiprocessor environment, the AMG solver scales better than the ICCG solver on shared memory parallel machines. Also handles indefinite matrix problems for nonlinear analyses. The AMG solver is part of ANSYS' High Performance Computing, which is a separately-licensed product. For detailed information on multiprocessor solvers, see Improving ANSYS Performance and High Performance Computing in the ANSYS Advanced Analysis Techniques Guide. See Starting an ANSYS Session from Command Level in the Operations Guide for information on how to specify the HPCHPC add-on at ANSYS start-up.

TOLER

Iterative solver tolerance value. Used only with the Jacobi Conjugate Gradient, Incomplete Cholesky Conjugate Gradient, Pre-conditioned Conjugate Gradient, Quasi-Minimal Residual, and Algebraic Multigrid
equation solvers. For the PCG solver, the default is $1.0 \mathrm{E}-8$. The value $1.0 \mathrm{E}-5$ may be acceptable in many situations. When using the PCG Lanczos mode extraction method, the default solver tolerance value is $1.0 \mathrm{E}-4$. For the JCG and ICCG solvers with symmetric matrices, and for the AMG solver, the default is $1.0 \mathrm{E}-8$. For the JCG and ICCG solvers with unsymmetric matrices, and for the QMR solver, the default is 1.0E-6. Iterations continue until the SRSS norm of the residual is less than TOLER times the norm of the applied load vector. For the PCG solver in the linear static analysis case, 3 error norms are used. If one of the error norms is smaller than TOLER, and the SRSS norm of the residual is smaller than $1.0 \mathrm{E}-2$, convergence is assumed to have been reached. See Iterative Solver in the Theory Reference for the Mechanical APDL and Mechanical Applications for details.

Note

When used with the Pre-conditioned Conjugate Gradient equation solver, TOLER can be modified between load steps (this is typically useful for nonlinear analysis).

If a Lev_Diff value of 5 is specified on the PCGOPT command (either program- or user-specified), TOLER has no effect on the accuracy of the obtained solution from the PCG solver; a direct solver is used when Lev_Diff $=5$.

MULT

Multiplier (defaults to 2.5 for nonlinear analyses; 1.0 for linear analyses) used to control the maximum number of iterations performed during convergence calculations. Used only with the Pre-conditioned Conjugate Gradient equation solver (PCG). The maximum number of iterations is equal to the multiplier (MULT) times the number of degrees of freedom (DOF). If MULT is input as a negative value, then the maximum number of iterations is equal to abs (MULT). Iterations continue until either the maximum number of iterations or solution convergence has been reached. In general, the default value for MULT is adequate for reaching convergence. However, for ill-conditioned matrices (that is, models containing elements with high aspect ratios or material type discontinuities) the multiplier may be used to increase the maximum number of iterations used to achieve convergence. The recommended range for the multiplier is $1.0 \leq M U L T \leq 3.0$. Normally, a value greater than 3.0 adds no further benefit toward convergence, and merely increases time requirements. If the solution does not converge with $1.0 \leq M U L T \leq 3.0$, or in less than 10,000 iterations, then convergence is highly unlikely and further examination of the model is recommended. Rather than increasing the default value of MULT, consider increasing the level of difficulty (Lev_Diff) on the PCGOPT command.

Unused field.

KeepFile

Determines whether files from a SPARSE solver run should be deleted or retained. Applies only to Lab = SPARSE for static and full transient analyses.

DELE

Deletes all files from the SPARSE solver run, including the factorized file, . LN22, upon FINISH or /EXIT (default).

KEEP

Retains all necessary files from the SPARSE solver run, including the . LN22 file, in the working directory.

Command Default

The sparse direct solver is the default solver for all analyses, with the exception of modal/buckling analyses.

For modal/buckling analyses, there is no default solver. You must specify a solver with the MODOPT or BUCOPT command.

Notes

The selection of a solver can affect the speed and accuracy of a solution. For a more detailed discussion of the merits of each solver, see Solution in the Basic Analysis Guide.

If you use MODOPT,LANB or BUCOPT,LANB, the internal solver used is EQSLV,SPARSE. If you use MODOPT,LANPCG, the internal solver used is EQSLV, PCG.

You may only specify the solver type in the first load step. You may, however, modify the solver tolerance in subsequent load steps for the iterative solvers.

Some solvers are not supported in Distributed ANSYS. For details, see the description of each solver given above and the Distributed ANSYS restrictions listed below. Distributed ANSYS requires HPC licenses. The GPU accelerator capability also requires HPC licenses. For more information, see the Distributed ANSYS Guide.

This command is also valid in PREP7.
Distributed ANSYS Restriction The SPARSE and PCG solvers are fully supported in Distributed ANSYS and run a fully distributed solution. The JCG and AMG solvers are partially supported in Distributed ANSYS. The ICCG and QMR solvers are not supported.

Product Restrictions

Command Option Lab	Available Products
SPARSE	MP ME ST PR PRN DS DSS $<>$ EM EH $<>$ PP $<>$ EME MFS [1]
JCG	MP ME ST PR PRN $<><><>$ EM EH $<>$ PP $<>$ EME MFS
ICCG	MP ME ST PR PRN $<><><>$ EM EH $<>$ PP $<>$ EME MFS
QMR	MP ME ST PR PRN $<><><>$ EM EH $<>$ PP $<>$ EME MFS
PCG	MP ME ST PR PRN DS DSS $<>$ EM EH $<>$ PP $<>$ EME MFS [1]
AMG	MP ME ST PR PRN $<><><>$ EM EH $<>$ PP $<>$ EME MFS

1. The ANSYS DesignSpace (DS) and ANSYS DesignSpace - Structural (DSS) products do not support distributed solutions (Distributed ANSYS).

Menu Paths

Main Menu>Preprocessor>Loads>Analysis Type>Analysis Options
Main Menu>Preprocessor>Loads>Analysis Type>Sol'n Controls>Sol'n Options
Main Menu>Solution>Analysis Type>Analysis Options
Main Menu>Solution>Analysis Type>Sol'n Controls>Sol'n Options

ERASE

Explicitly erases the current display.

GRAPHICS: Set Up
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Notes

Similar to a hardware screen erase key. Useful during an "immediate" display to erase the screen without a replot so that the display continues on a clean screen. This action is automatically included in commands such as NPLOT and EPLOT.

If the /NOERASE command is active, issuing the erase command will simply clear the display area. Subsequent replots will provide the display previously generated by the /NOERASE command.

This command is valid in any processor.

Menu Paths

Utility Menu>PlotCtrls>Erase Options>Erase Screen

/ERASE

Specifies that the screen is to be erased before each display.

GRAPHICS:Set Up
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Command Default

Previous /ERASE or /NOERASE setting will be used. Initially defaults to /ERASE setting.

Notes

Erase occurs with the next display request, but before the display is actually started. /NOERASE can be used to suppress the automatic screen erase.

This command is valid in any processor.

Menu Paths

Utility Menu>PlotCtrls>Erase Options>Erase Between Plots

EREAD, Fname, Ext,--

Reads elements from a file.

> PREP 7: Elements
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Fname

File name and directory path (248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

The file name defaults to Jobname.

Ext

Filename extension (8 character maximum).
The extension defaults to ELEM if Fname is blank.

Unused field.

Notes

This read operation is not necessary in a standard ANSYS run but is provided as a convenience to users wanting to read a coded element file, such as from another mesh generator or from a CAD/CAM program. Data should be formatted as produced with the EWRITE command. If issuing EREAD to acquire element information generated from ANSYS EWRITE, you must also issue NREAD before the EREAD command. The element types [ET] must be defined before the file is read so that the file may be read properly. Only elements that are specified with the ERRANG command are read from the file. Also, only elements that are fully attached to the nodes specified on the NRRANG command are read from the file. Elements are assigned numbers consecutively as read from the file, beginning with the current highest database element number plus one. The file is rewound before and after reading. Reading continues until the end of the file.

Menu Paths

Main Menu>Preprocessor>Modeling>Create>Elements>Read Elem File

EREFINE, NE1, NE2, NINC, LEVEL, DEPTH, POST, RETAIN

Refines the mesh around specified elements.

PREP 7: Meshing
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

NE1, NE2, NINC

Elements (NE1 to NE2 in increments of NINC) around which the mesh is to be refined. NE2 defaults to NE1, and NINC defaults to 1 . If NE1 = ALL, NE2 and NINC are ignored and all selected elements are used for refinement. If $N E 1=P$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NE1 (NE2 and NINC are ignored).

```
LEVEL
```

Amount of refinement to be done. Specify the value of $L E V E L$ as an integer from 1 to 5 , where a value of 1 provides minimal refinement, and a value of 5 provides maximum refinement (defaults to 1).

DEPTH

Depth of mesh refinement in terms of number of elements outward from the indicated elements, NE1 to NE2 (defaults to 0).

POST

Type of postprocessing to be done after element splitting, in order to improve element quality:
OFF
No postprocessing will be done.

SMOOTH

Smoothing will be done. Node locations may change.

CLEAN

Smoothing and cleanup will be done. Existing elements may be deleted, and node locations may change (default).

RETAIN

Flag indicating whether quadrilateral elements must be retained in the refinement of an all-quadrilateral mesh. (The ANSYS program ignores the RETAIN argument when you are refining anything other than a quadrilateral mesh.)

ON
The final mesh will be composed entirely of quadrilateral elements, regardless of the element quality (default)

OFF
The final mesh may include some triangular elements in order to maintain element quality and provide transitioning.

Notes

EREFINE performs local mesh refinement around the specified elements. By default, the surrounding elements are split to create new elements with $1 / 2$ the edge length of the original elements ($L E V E L=1$).

EREFINE refines all area elements and tetrahedral volume elements that are adjacent to the specified elements. Any volume elements that are adjacent to the specified elements, but are not tetrahedra (for example, hexahedra, wedges, and pyramids), are not refined.

You cannot use mesh refinement on a solid model that contains initial conditions at nodes [IC], coupled nodes [CP family of commands], constraint equations [CE family of commands], or boundary conditions or loads applied directly to any of its nodes or elements. This applies to nodes and elements anywhere in the model, not just in the region where you want to request mesh refinement. If you have detached the mesh from the solid model, you must disable postprocessing cleanup or smoothing (POST = OFF) after the refinement to preserve the element attributes.

For additional restrictions on mesh refinement, see Revising Your Model in the Modeling and Meshing Guide.
This command is also valid for rezoning.

Menu Paths

> Main Menu>Preprocessor>Meshing>Modify Mesh>Refine At>All Main Menu>Preprocessor>Meshing>Modify Mesh>Refine At>Elements

EREINF

Generates reinforcing elements from selected existing (base) elements.

PREP 7: Elements
MP ME ST PR PRN $<><><><><><>$ PP $<>$ EME MFS

Notes

The EREINF command generates reinforcing elements (REINF264 and REINF265) directly from selected base elements (that is, existing standard elements in your model). The command scans all selected base elements and generates (if necessary) a compatible reinforcing element type for each base element. (ANSYS allows a combination of different base element types.)

Although predefining the reinforcing element type (ET) is not required, you must define the reinforcing element section type (SECTYPE); otherwise, ANSYS cannot generate the reinforcing element.

The EREINF command does not create new nodes. The reinforcing elements and the base elements share the common nodes.

Elements generated by this command are not associated with the solid model.
After the EREINF command executes, you can issue ETLIST, ELIST, and EPLOT commands to verify the newly created reinforcing element types and elements.

Reinforcing elements do not account for any subsequent modifications made to the base elements. ANSYS recommends issuing the EREINF command only after the base elements are finalized. If you delete or modify base elements (via EDELE, EMODIF, ETCHG, EMID, EORIENT, NUMMRG, or NUMCMP commands, for example), remove all affected reinforcing elements and reissue the EREINF command to avoid inconsistencies.

Menu Paths

This command cannot be accessed from a menu.

ERESX, Кеу

Specifies extrapolation of integration point results.
SOLUTION: Analysis Options
MP ME ST PR PRN <> <> <> EM EH DY PP <> EME MFS

Key

Extrapolation key:
DEFA
If element is fully elastic (no active plasticity, creep, or swelling nonlinearities), extrapolate the integration point results to the nodes. If any portion of the element is plastic (or other active material nonlinearity), copy the integration point results to the nodes (default).

YES
Extrapolate the linear portion of the integration point results to the nodes and copy the nonlinear portion (for example, plastic strains).

NO

Copy the integration point results to the nodes.

Command Default

Extrapolate integration point results to the nodes for all elements except those with active plasticity, creep, or swelling nonlinearities (default).

Notes

Specifies whether the solution results at the element integration points are extrapolated or copied to the nodes for element and nodal postprocessing. The structural stresses, elastic and thermal strains, field gradients, and fluxes are affected. Nonlinear data (plastic, creep, and swelling strains) are always copied to the nodes, never extrapolated. For shell elements, ERESX applies only to integration point results in the in-plane directions.

This command is also valid in PREP7.

Menu Paths

Main Menu>Preprocessor>Loads>Load Step Opts>Output Ctrls>Integration Pt Main Menu>Solution>Load Step Opts>Output Ctrls>Integration Pt

ERNORM, Key

Controls error estimation calculations.

> POST1: Controls
> MP ME ST PR PRN <> <> <> <> <> DY PP <> EME MFS

Key

Control key:
ON
Perform error estimation (default). This option is not valid for PowerGraphics.
OFF
Do not perform error estimation.

Command Default

Error estimation calculations are performed by default unless PowerGraphics is enabled [/GRAPHICS,POWER].

Notes

Especially for thermal analyses, program speed increases if error estimation is suppressed. Therefore, it might be desirable to use error estimation only when needed. The value of the ERNORM key is not saved on file. db. Consequently, you need to reissue the ERNORM key after a RESUME if you wish to deactivate error estimation again.

Menu Paths

Main Menu>General Postproc>Options for Outp Utility Menu>List>Results>Options

ERRANG, EMIN, EMAX, EINC

Specifies the element range to be read from a file.

PREP 7: Elements
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

EMIN, EMAX, EINC

Elements with numbers from EMIN (defaults to 1) to EMAX (defaults to 99999999) in steps of EINC (defaults to 1) will be read.

Notes

Defines the element number range to be read [EREAD] from the element file. If a range is also implied from the NRRANG command, only those elements satisfying both ranges will be read.

Menu Paths

Main Menu>Preprocessor>Modeling>Create>Elements>Read Elem File

ESCHECK, Sele, Levl, Defkey

Perform element shape checking for a selected element set.

PREP 7:Database
SOLUTION: Analysis Options
MP ME ST PR PRN <> <> FL EM EH <> PP <> EME MFS

Sele

Specifies whether to select elements for checking:
(blank)
List all warnings/errors from element shape checking.

ESEL

Select the elements based on the .Levl criteria specified below.
Levl
WARN
Select elements producing warning and error messages.
ERR
Select only elements producing error messages (default).
Defkey
Specifies whether check should be performed on deformed element shapes. .

0
Do not update node coordinates before performing shape checks (default).
1
Update node coordinates using the current set of deformations in the database.

Notes

Shape checking will occur according to the current SHPP settings. Although ESCHECK is valid in all processors, Defkey uses the current results in the database. If no results are available a warning will be issued.

This command is also valid in PREP7, SOLUTION and POST1.

Menu Paths

Main Menu>General Postproc>Check Elem Shape>Sel Warning/Error Elements

ESEL, Type, Item, Comp, VMIN, VMAX, VINC, KABS

Selects a subset of elements.

> DATABASE: Selecting
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Type

Label identifying the type of select:
S
Select a new set (default).
R
Reselect a set from the current set.
A
Additionally select a set and extend the current set.
U
Unselect a set from the current set.

ALL

Restore the full set.
NONE
Unselect the full set.
INVE
Invert the current set (selected becomes unselected and vice versa).
STAT
Display the current select status.
The following fields are used only with Type $=\mathrm{S}, \mathrm{R}, \mathrm{A}$, or U:

Item

Label identifying data, see Table 147:ESEL - Valid Item and Component Labels (p. 546). Some items also require a component label. If Item $=$ PICK (or simply " P "), graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). Defaults to ELEM. If Item = STRA (straightened),
elements are selected whose midside nodes do not conform to the curved line or non-flat area on which they should lie. (Such elements are sometimes formed during volume meshing [VMESH] in an attempt to avoid excessive element distortion.) You should graphically examine any such elements to evaluate their possible effect on solution accuracy.

Comp

Component of the item (if required). Valid component labels are shown in Table 147:ESEL - Valid Item and Component Labels (p. 546) below.

VMIN

Minimum value of item range. Ranges are element numbers, attribute numbers, load values, or result values as appropriate for the item. A component name (as specified on the CM command) may also be substituted for VMIN (VMAX and VINC are ignored).
VMAX
Maximum value of item range. VMAX defaults to VMIN for input values.
For result values, VMAX defaults to infinity if VMIN is positive, or to zero if VMIN is negative.
VINC
Value increment within range. Used only with integer ranges (such as for element and attribute numbers). Defaults to 1. VINC cannot be negative.

KABS

Absolute value key:
0
Check sign of value during selection.
1
Use absolute value during selection (sign ignored).

Command Default

All elements are selected.

Notes

Selects elements based on values of a labeled item and component. For example, to select a new set of elements based on element numbers 1 through 7 , use ESEL,S,ELEM,1,7. The subset is used when the ALL label is entered (or implied) on other commands, such as ELIST,ALL. Only data identified by element number are selected. Selected data are internally flagged; no actual removal of data from the database occurs. Different element subsets cannot be used for different load steps [SOLVE] in a /SOLU sequence. The subset used in the first load step will be used for all subsequent load steps regardless of subsequent ESEL specifications.

This command is valid in any processor.
Elements crossing the named path (see PATH command) will be selected. This option is only available in PREP7 and POST1. If no geometry data has been mapped to the path (i.e., via PMAP and PDEF commands), the path will assume the default mapping option (PMAP,UNIFORM) to map the geometry prior to selecting the elements. If an invalid path name is given, the ESEL command is ignored (status of selected elements is unchanged). If there are no elements crossing the path, the ESEL command will return zero elements selected.

For selections based on non-integer numbers (coordinates, results, etc.), items that are within the range VMIN-Toler and VMAX + Toler are selected. The default tolerance Toler is based on the relative values of VMIN and VMAX as follows:

- If VMIN $=$ VMAX, Toler $=0.005 \times$ VMIN.
- If $V M I N=V M A X=0.0$, Toler $=1.0 \mathrm{E}-6$.
- If VMAX \neq VMIN, Toler $=1.0 \mathrm{E}-8 \times$ (VMAX - VMIN $)$.

Use the SELTOL command to override this default and specify Toler explicitly.
Table 147 ESEL - Valid Item and Component Labels

Valid Item and Component Labels ESEL, Type, Item, Comp, vmin, vmax, vinc, KABS

Item Comp Description
CENT $\quad X, Y, Z$

TYPE
ENAME
MAT
REAL
ESYS
PART
LIVE
LAYER

SEC
STRA

SFE
PRES
CONV
HFLUX
FSI
IMPD
SHLD Surface shielding properties on high-frequency elements. (Select logic works only on the value of conductivity, not relative permeability.)
MXWF Element Maxwell force flag.
CHRGS Electric surface charge density.
INF Element infinite surface flag.

/ESHAPE, SCALE, KEY

Displays elements with shapes determined from the real constants or section definition.

GRAPHICS:Style
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

SCALE

Scaling factor:
0
Use simple display of line and area elements. This value is the default.
1
Use real constants or section definition to form a solid shape display of the applicable elements.

FAC

Multiply certain real constants, such as thickness, by FAC (where FAC >0.01) and use them to form a solid shape display of elements.

KEY
Current shell thickness key:
0
Use current thickness in the displaced solid shape display of shell elements (valid for SHELL181, SHELL208, SHELL209, and SHELL281). This value is the default.

1
Use initial thickness in the displaced solid shape display of shell elements.

Command Default

Use simple display of line and area elements ($S C A L E=0$).

Notes

The /ESHAPE command allows beams, shells, current sources, and certain special-purpose elements to be displayed as solids with the shape determined from the real constants or section types. Elements are displayed via the EPLOT command. No checks for valid or complete input are made for the display.

Following are details about using this command with various element types:

- SOLID65 elements are displayed with internal lines that represent rebar sizes and orientations (requires vector mode [/DEVICE] with a basic type of display [/TYPE,,BASIC]). The rebar with the largest volume ratio in each element plots as a red line, the next largest as green, and the smallest as blue.
- COMBIN14, COMBIN39, and MASS21 are displayed with a graphics icon, with the offset determined by the real constants and KEYOPT settings.
- BEAM188, BEAM189, PIPE288, PIPE289 and ELBOW290 are displayed as solids with the shape determined via the section-definition commands (SECTYPE and SECDATA). The arbitrary section option (Subtype = ASEC) has no definite shape and appears as a thin rectangle to show orientation. The elements are displayed with internal lines representing the cross-section mesh.

SOLID272 and SOLID273 are displayed as solids with the shape determined via the section-definition commands (SECTYPE and SECDATA). The 2-D master plane is revolved around the prescribed axis of symmetry.

Contour plots are available for these elements in postprocessing for PowerGraphics only (/GRAPHICS,POWER). To view 3-D deformed shapes for the elements, issue OUTRES,MISC or OUTRES,ALL for static or transient analyses. To view 3-D mode shapes for a modal or eigenvalue buckling analysis, expand the modes with element results calculation ON (Elcalc = YES for MXPAND).

- SOURC36, CIRCU124, and TRANS126 elements always plot using /ESHAPE when PowerGraphics is activated (/GRAPHICS,POWER).

In most cases, /ESHAPE renders a thickness representation of your shell, plane and layered elements more readily in PowerGraphics (/GRAPHICS,POWER). This type of representation employs PowerGraphics to generate the enhanced representation, and will often provide no enhancement in Full Graphics (/GRAPHICS,FULL). This is especially true for POST1 results displays, where /ESHAPE is not supported for most element types with FULL graphics.

When PowerGraphics is active, /ESHAPE may degrade the image if adjacent elements have overlapping material, such as shell elements which are not co-planar. Additionally, if adjacent elements have different thicknesses, the polygons depicting the connectivity between the "thicker" and "thinner" elements along the shared element edges may not always be displayed.

For POST1 results displays (such as PLNSOL), the following limitations apply:

- Rotational displacements for beam elements are used to create a more realistic displacement display. When /ESHAPE is active, displacement plots (via PLNSOL,U,X and PLDISP, for example) may disagree with your PRNSOL listings. This discrepancy will become more noticeable when the SCALE value is not equal to one.
- When shell elements are not co-planar, the resulting PLNSOL display with /ESHAPE will actually be a PLESOL display as the non-coincident pseudo-nodes are not averaged. Additionally, /ESHAPE should not be used with coincident elements because the plot may incorrectly average the displacements of the coincident elements.
- If you want to view solution results (PLNSOL, etc.) on layered elements (such as SHELL181, SOLSH190, SOLID185 Layered Solid, SOLID186 Layered Solid, SHELL208, SHELL209, SHELL281, and ELBOW290), set $\operatorname{KEYOPT}(8)=1$ for the layer elements so that the data for all layers is stored in the results file.
- You can plot the through-thickness temperatures of elements SHELL131 and SHELL132 regardless of the thermal DOFs in use by issuing the PLNSOL,TEMP command (with PowerGraphics and /ESHAPE active).
- The /ESHAPE, 1 and /ESHAPE,FAC commands are incompatible with the /CYCEXPAND command used in cyclic symmetry analyses.

This command is valid in any processor.

Menu Paths

Utility Menu>PlotCtrls>Style>Size and Shape

ESIZE, SIZE, NDIV

Specifies the default number of line divisions.

PREP 7:Meshing
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

SIZE

Default element edge length on surface boundaries (i.e., lines). Divisions are automatically calculated (rounded upward to next integer) from line lengths. If $S I Z E$ is zero (or blank), use NDIV.

NDIV
Default number of element divisions along region boundary lines. Not used if $S I Z E$ is input.

Notes

Specifies the default number of line divisions (elements) to be generated along the region boundary lines. The number of divisions may be defined directly or automatically calculated. Divisions defined directly for any line [LESIZE, KESIZE, etc.] are retained. For adjacent regions, the divisions assigned to the common line for one region are also used for the adjacent region. See the MOPT command for additional meshing options.

For free meshing operations, if smart element sizing is being used [SMRTSIZE] and ESIZE,SIZE has been specified, $S I Z E$ will be used as a starting element size, but will be overridden (i.e., a smaller size may be used) to accommodate curvature and small features.

This command is also valid for rezoning.

Menu Paths

> Main Menu>Preprocessor>Meshing>Size Cntrls>ManualSize>Global>Size Main Menu>Preprocessor>Meshing>Size Cntrls>SmartSize>Adv Opts

ESLA, Type

Selects those elements associated with the selected areas.

DATABASE:Selecting
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Type

Label identifying the type of element select:
S
Select a new set (default).
R
Reselect a set from the current set.
A
Additionally select a set and extend the current set.
U
Unselect a set from the current set.

Notes

Selects area elements belonging to meshed [AMESH], selected [ASEL] areas.
This command is valid in any processor.

Menu Paths

Utility Menu>Select>Entities

ESLL, Type

Selects those elements associated with the selected lines.

DATABASE: Selecting
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Type

Label identifying the type of element select:
S
Select a new set (default).
R
Reselect a set from the current set.
A
Additionally select a set and extend the current set.
U
Unselect a set from the current set.

Notes

Selects line elements belonging to meshed [LMESH], selected [LSEL] lines.
This command is valid in any processor.

Menu Paths

Utility Menu>Select>Entities

ESLN, Type, EKEY, NodeType

Selects those elements attached to the selected nodes.
DATABASE:Selecting
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Type

Label identifying the type of element selected:
S
Select a new set (default).
R
Reselect a set from the current set.
A
Additionally select a set and extend the current set.
U
Unselect a set from the current set.
EKEY
Node set key:
0
Select element if any of its nodes are in the selected nodal set (default).
1
Select element only if all of its nodes are in the selected nodal set.

NodeType

Label identifying type of nodes to consider when selecting:

ALL

Select elements considering all of their nodes (default).
ACTIVE
Select elements considering only their active nodes. An active node is a node that contributes DOFs to the model.

INACTIVE

Select elements considering only their inactive nodes (such as orientation or radiation nodes).

CORNER

Select elements considering only their corner nodes.

MID

Select elements considering only their midside nodes.

Notes

ESLN selects elements which have any (or all EKEY) NodeType nodes in the currently-selected set of nodes. Only elements having nodes in the currently-selected set can be selected.

This command is valid in any processor.

Menu Paths

Main Menu>Preprocessor>Modeling>Create>Circuit>Delete Elements Main Menu>Preprocessor>Modeling>Delete>Pre-tens Elemnts Utility Menu>Select>Entities

ESLV, Type

Selects elements associated with the selected volumes.
DATABASE:Selecting
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Type

Label identifying the type of element selected:
S
Select a new set (default).
R
Reselect a set from the current set.
A
Additionally select a set and extend the current set.
U
Unselect a set from the current set.

Notes

Selects volume elements belonging to meshed [VMESH], selected [VSEL] volumes.
This command is valid in any processor.

Menu Paths

Utility Menu>Select>Entities

ESOL, NVAR, ELEM, NODE, Item, Comp, Name

Specifies element data to be stored from the results file.

POST26:Set Up
MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS
NVAR
Arbitrary reference number assigned to this variable (2 to $N V$ [NUMVAR]). Overwrites any existing results for this variable.

ELEM

Element for which data are to be stored. If $E L E M=P$, graphical picking is enabled (valid only in the GUI).

NODE

Node number on this element for which data are to be stored. If blank, store the average element value (except for $F M A G$ values, which are summed instead of averaged). If $N O D E=\mathrm{P}$, graphical picking is enabled (valid only in the GUI).

Item

Label identifying the item. General item labels are shown in Table 148:ESOL - General Item and Component Labels (p .554) below. Some items also require a component label.

Comp

Component of the item (if required). General component labels are shown in Table 148:ESOL - General Item and Component Labels (p.554) below. If Comp is a sequence number (n), the NODE field will be ignored.

Name

Thirty-two character name for identifying the item on the printout and displays. Defaults to a label formed by concatenating the first four characters of the Item and Comp labels.

Notes

See Table 148:ESOL - General Item and Component Labels (p. 554) for a list of valid item and component labels for element (except line element) results.

The ESOL command defines element results data to be stored from a results file (FILE). Not all items are valid for all elements. To see the available items for a given element, refer to the input and output summary tables in the documentation for that element.

Two methods of data access are available via the ESOL command. You can access some simply by using a generic label (component name method), while others require a label and number (sequence number method).

Use the component name method to access general element data (that is, element data generally available to most element types or groups of element types).

The sequence number method is required for data that is not averaged (such as pressures at nodes and temperatures at integration points), or data that is not easily described in a generic fashion (such as all derived data for structural line elements and contact elements, all derived data for thermal line elements, and layer data for layered elements).

Element results are in the element coordinate system, except for layered elements where results are in the layer coordinate system. Element forces and moments are in the layer coordinate system. Results are obtain-
able for an element at a specified node. Further location specifications can be made for some elements via the SHELL, LAYERP26, and FORCE commands.

Table 148 ESOL - General Item and Component Labels

Component Name Method

Item	Comp	Description
S	X, Y, Z, XY, YZ, XZ	Component stress.
"	1, 2, 3	Principal stress.
"	INT	Stress intensity.
"	EQV	Equivalent stress.
EPEL	X, Y, Z, XY, YZ, XZ	Component elastic strain.
"	1,2,3	Principal elastic strain.
"	INT	Elastic strain intensity.
"	EQV	Elastic equivalent strain.
EPTH	X, Y, Z, XY, YZ, XZ	Component thermal strain.
"	1,2,3	Principal thermal strain.
"	INT	Thermal strain intensity.
"	EQV	Thermal equivalent strain.
EPPL	X, Y, Z, XY, YZ, XZ	Component plastic strain.
"	1,2,3	Principal plastic strain.
"	INT	Plastic strain intensity.
"	EQV	Plastic equivalent strain.
EPCR	X, Y, Z, XY, YZ, XZ	Component creep strain.
"	1,2,3	Principal creep strain.
"	INT	Creep strain intensity.
"	EQV	Creep equivalent strain.
NL	SEPL	Equivalent stress (from stress-strain curve).
"	SRAT	Stress state ratio.
"	HPRES	Hydrostatic pressure.
"	EPEQ	Accumulated equivalent plastic strain.
"	CREQ	Accumulated equivalent creep strain.
"	PSV	Plastic state variable.
"	PLWK	Plastic work/volume.
SEND	ELASTIC	Elastic strain energy density.
"	PLASTIC	Plastic strain energy density.
"	CREEP	Creep strain energy density.
CDM	DMG	Damage variable
"	LM	Maximum previous strain energy for virgin material
GKS	X	Gasket component stress (also gasket pressure).
GKD	X	Gasket component total closure.

Component Name Method		
Item	Comp	Description
GKDI	X	Gasket component total inelastic closure.
GKTH	X	Gasket component thermal closure.
SS	X, XY, XZ	Interface traction (stress)
SD	X,XY, XZ	Interface Separation.
CONT	STAT1	Contact status.
"	PENE	Contact penetration
"	PRES	Contact pressure
"	SFRIC	Contact friction stress
"	STOT	Contact total stress (pressure plus friction)
"	SLIDE	Contact sliding distance
"	GAP	Contact gap distance
"	FLUX	Total heat flux at contact surface
"	CNOS	Total number of contact status changes during substep
"	FPRS	Fluid penetration pressure
TG	X, Y, Z, SUM	Component thermal gradient or vector sum
TF	$X, Y, Z, S U M$	Component thermal flux or vector sum
PG	$X, Y, Z, S U M$	Component pressure gradient or vector sum
EF	$X, Y, Z, S U M$	Component electric field or vector sum
D	X, Y, Z, SUM	Component electric flux density or vector sum
H	$X, Y, Z, S U M$	Component magnetic field intensity or vector sum
B	$X, Y, Z, S U M$	Component magnetic flux density or vector sum
FMAG	$X, Y, Z, S U M$	Component electromagnetic forces or vector sum
F	X, Y, Z	Component structural force
M	X, Y, Z	Component structural moment
HEAT[2]		Heat flow
FLOW		Fluid flow
AMPS		Current flow
FLUX		Magnetic flux
CSG	X, Y, Z	Component magnetic current segment
SENE		"Stiffness" energy
STEN		Elemental energy dissipation due to stabilization
KENE		Kinetic energy
JHEAT		Element Joule heat generation
JC	X, Y, Z, SUM	Conduction current density for elements that support conduction current calculation. Components ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$) and vector sum (SUM)
JS	X, Y, Z	Source current density for low-frequency magnetic analyses. Total current density (sum of conduction and displacement

Component Name Method		
Item	Comp	Description current densities) in low frequency electric analyses. Components ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$)
JT	X, Y, Z, SUM	Total measurable current density in low-frequency electromagnetic analyses. (Conduction current density in a lowfrequency electric analysis.) Components ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$) and vector sum (SUM)
MRE		Magnetics Reynolds number
VOLU		Volume of volume element
BFE	TEMP	Body temperatures (calculated from applied temperatures) as used in solution (area and volume elements only)
FICT	TEMP	Fictive temperature

Sequence Number Method

Item	Comp	Description
SMISC	snum	Summable items
NMISC	snum	Nonsummable items
LS	snum	Line element elastic stresses
LEPEL	snum	Line element strains
LEPTH	snum	Line element thermal strains
LEPPL	snum	Line element plastic strains
LEPCR	snum	Line element creep strains
LBFE	snum	Line element temperatures

1. For more information on the meaning of contact status and its possible values, see Reviewing Results in POST1 in the Contact Technology Guide.
2. For SHELL131 and SHELL132 elements with $\operatorname{KEYOPT}(3)=0$ or 1 , use the labels HBOT, HE2, HE3, \ldots, HTOP instead of HEAT.

Menu Paths

Main Menu>TimeHist Postpro>Define Variables
Main Menu>TimeHist Postpro>Elec\&Mag>Circuit>Define Variables

ESORT, Item, Lab, ORDER, KABS, NUMB

Sorts the element table.

POST1:Element Table
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Item

Label identifying the item:

ETAB
(currently the only Item available)

Lab

element table label:

Lab

Any user-defined label from the ETABLE command (input in the Lab field of the ETABLE command).

ORDER

Order of sort operation:
0
Sort into descending order.
1
Sort into ascending order.
KABS
Absolute value key:
0
Sort according to real value.
1
Sort according to absolute value.

NUMB

Number of elements (element table rows) to be sorted in ascending or descending order (ORDER) before sort is stopped (remainder will be in unsorted sequence) (defaults to all elements).

Command Default

Use ascending element number order.

Notes

The element table rows are sorted based on the column containing the Lab values. Use EUSORT to restore the original order. If ESORT is specified with PowerGraphics on [/GRAPHICS,POWER], then the nodal solution results listing [PRNSOL] will be the same as with the full graphics mode [/GRAPHICS,FULL].

Menu Paths

Main Menu>General Postproc>List Results>Sorted Listing>Sort Elems

ESSOLV, Electit, Strutit, DIMN, MORPHOPT, Mcomp, Xcomp, ELECTOL, STRUTOL, MXLOOP, --, RUSEKY, RESTKY, EISCOMP

Performs a coupled electrostatic-structural analysis.

SOLUTION: Analysis Options
MP <> <> <> <> <> <> <> <> <> <> <> <> EME <>

Electit

Title of the electrostatics physics file as assigned by the PHYSICS command.

Strutit

Title of the structural physics file as assigned by the PHYSICS command.

DIMN

Model dimensionality (a default is not allowed):
2
2-D model.
3
3-D model.

MORPHOPT

Morphing option:
<0
Do not perform any mesh morphing or remeshing.
0
Remesh the non-structural regions for each recursive loop only if mesh morphing fails (default).
1
Remesh the non-structural regions each recursive loop and bypass mesh morphing.
2
Perform mesh morphing only, do not remesh any non-structural regions.

Mcomp

Component name of the region to be morphed. For 2-D models, the component may be elements or areas. For 3-D models, the component may be elements or volumes. A component must be specified. You must enclose name-strings in single quotes in the ESSOLV command line.

Xcomp

Component name of entities excluded from morphing. In the 2-D case, it is the component name for the lines excluded from morphing. In the 3-D case, it is component name for the areas excluded from morphing. Defaults to exterior non-shared entities (see the DAMORPH, DVMORPH, and DEMORPH commands). You must enclose name-strings in single quotes in the ESSOLV command line.

ELECTOL

Electrostatic energy convergence tolerance. Defaults to .005 (.5\%) of the value computed from the previous iteration. If less than zero, the convergence criteria based on electrostatics results is turned off.

STRUTOL

Structural maximum displacement convergence tolerance. Defaults to $.005(.5 \%)$ of the value computed from the previous iteration. If less than zero, the convergence criteria base on structural results is turned off.

MXLOOP

Maximum number of allowable solution recursive loops. A single pass through both an electrostatics and structural analysis constitutes one loop. Defaults to 100.

Unused field.

RUSEKY

Reuse flag option:
≤ 1
Assumes initial run of ESSOLV using base geometry for the first electrostatics solution.

>1

Assumes ESSOLV run is a continuation of a previous ESSOLV run, whereby the morphed geometry is used for the initial electrostatic simulation.

RESTKY

Structural restart key.
0
Use static solution option for structural solution.
1
Use static restart solution option for structural solution.

EISCOMP

Element component name for elements containing initial stress data residing in file jobname.ist. The initial stress data must be defined prior to issuing ESSOLV (see INISTATE command).

Notes

ESSOLV invokes an ANSYS macro which automatically performs a coupled electrostatic-structural analysis.
The macro displays periodic updates of the convergence.
If non-structural regions are remeshed during the analysis, boundary conditions and loads applied to nodes and elements will be lost. Accordingly, it is better to assign boundary conditions and loads to the solid model.

Use RUSEKY > 1 for solving multiple ESSOLV simulations for different excitation levels (i.e., for running a voltage sweep). Do not issue the SAVE command to save the database between ESSOLV calls.

For nonlinear structural solutions, the structural restart option ($\operatorname{RESTKY}=1$) may improve solution time by starting from the previous converged structural solution.

For solid elements, ESSOLV automatically detects the air-structure interface and applies a Maxwell surface flag on the electrostatic elements. This flag is used to initiate the transfer for forces from the electrostatic region to the structure. When using the ESSOLV command with structural shell elements (for example, SHELL181), you must manually apply the Maxwell surface flag on all air elements surrounding the shells before writing the final electrostatic physics file. Use the SFA command to apply the Maxwell surface flag to the areas representing the shell elements; doing so ensures that the air elements next to both sides of the shells receive the Maxwell surface flag.

If lower-order structural solids or shells are used, set $\operatorname{KEYOPT}(7)=1$ for the electrostatic element types to ensure the correct transfer of forces.

Information on creating the initial stress file is documented in the "Loading" chapter in the Basic Analysis Guide.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.
Menu Paths

Main Menu>Preprocessor>Physics>Coupled Solvers>Elec/struc Main Menu>Solution>Physics>Coupled Solvers>Elec/struc

ESTIF, kmult

Specifies the matrix multiplier for deactivated elements.

SOLUTION: Birth and Death
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS

KMULT

Stiffness matrix multiplier for deactivated elements (defaults to $1.0 \mathrm{E}-6$).

Command Default

Use $1.0 \mathrm{E}-6$ as the multiplier.

Notes

Specifies the stiffness matrix multiplier for elements deactivated with the EKILL command (birth and death).
This command is also valid in PREP7.

Menu Paths

Main Menu>Preprocessor>Loads>Load Step Opts>Other>Birth \& Death>StiffnessMult Main Menu>Solution>Load Step Opts>Other>Birth \& Death>StiffnessMult

ESURF, XNODE, Tlab, Shape

Generates elements overlaid on the free faces of existing selected elements.
PREP 7: Elements
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

XNODE

Node number that is used only in the following two cases:
XNODE is a single extra node number (ID) used for generating SURF151 or SURF152 elements when KEYOPT(5)=1.
XNODE is a single pressure node number (ID) used for generating HSFLD241 or HSFLD242 elements.
There is no default. $X N O D E$ must be specified for the above cases. If $X N O D E=\mathrm{P}$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A parameter or parametric expression can be substituted for XNODE.

tlab

Generates target, contact, and hydrostatic fluid elements with correct direction of normals.
This option is valid only with TARGE169, TARGE170, CONTA171, CONTA172, CONTA173, CONTA174, CONTA176, CONTA177, HSFLD241, and HSFLD242 elements.

TOP

Generates target and contact elements over beam and shell elements, or hydrostatic fluid elements over shell elements, with the normals the same as the underlying beam and shell elements (default).

BOTTOM

Generates target and contact elements over beam and shell elements, or hydrostatic fluid elements over shell elements, with the normals opposite to the underlying beam and shell elements.

If target or contact elements and hydrostatic fluid elements are defined on the same underlying shell elements, you only need to use this option once to orient the normals opposite to the underlying shell elements.

REVERSE

Reverses the direction of the normals on existing selected target elements, contact elements, and hydrostatic fluid elements.

If target or contact elements and hydrostatic fluid elements are defined on the same underlying shell elements, you only need to use this option once to reverse the normals for all selected elements.

Shape

Used to specify the element shape for target element TARGE170 (Shape $=$ LINE or POINT) or TARGE169 elements (Shape $=$ POINT).
(blank)
The target element takes the same shape as the external surface of the underlying element (default).
LINE
Generates LINE or PARA (parabolic) segments on exterior of selected 3-D elements.

POINT

Generates POINT segments on selected nodes.

Notes

The ESURF command generates elements of the currently active element type overlaid on the free faces of existing elements. For example, surface elements (such as SURF151, SURF152, SURF153, SURF154, or SURF159) can be generated over solid elements (such as PLANE55, SOLID70, PLANE182, SOLID185, or SOLID272, respectively).

Element faces are determined from the selected node set (NSEL) and the load faces for that element type. The operation is similar to that used for generating element loads from selected nodes via the $\mathbf{S F}, \mathrm{ALL}$ command, except that elements (instead of loads) are generated. All nodes on the face must be selected for the face to be used. For shell elements, only face one of the element is available. If nodes are shared by adjacent selected element faces, the faces are not free and no element is generated.

Elements created by ESURF are oriented such that their surface load directions are consistent with those of the underlying elements. Carefully check generated elements and their orientations.

Generated elements use the existing nodes and the active MAT, TYPE, REAL, and ESYS attributes. The exception is when Tlab $=$ REVERSE. The reversed target and contact elements have the same attributes as the original elements. If the underlying elements are solid elements, $T l a b=$ TOP or BOTTOM has no effect.

When the command generates a target element, the shape is by default the same as that of the underlying element. Issue ESURF,,,LINE or ESURF,,,POINT to generate LINE, PARA, and POINT segments.

The ESURF command can also generate the 2-D or 3-D node-to-surface element CONTA175, based on the selected node components of the underlying solid elements. When used to generate CONTA175 elements, all ESURF arguments are ignored. (If CONTA175 is the active element type, the path Main Menu> Preprocessor> Modeling> Create> Elements> Node-to-Surf uses ESURF to generate elements.)

To generate SURF151 or SURF152 elements that have two extra nodes from FLUID116 elements, KEYOPT(5) for SURF151 or SURF152 is first set to 0 and ESURF is issued. Then KEYOPT(5) for SURF151 or SURF152 is set to 2 and MSTOLE is issued. For more information, see Using the Surface Effect Elements in the Thermal Analysis Guide.

For hydrostatic fluid elements HSFLD241 and HSFLD242, the ESURF command generates triangular (2-D) or pyramid-shaped (3-D) elements with bases that are overlaid on the faces of selected 2-D or 3-D solid or shell elements. The single vertex for all generated elements is at the pressure node specified as $X N O D E$. The generated elements fill the volume enclosed by the solid or shell elements. The nodes on the overlaid faces have translational degrees of freedom, while the pressure node shared by all generated elements has a single hydrostatic pressure degree of freedom, HDSP (see HSFLD241 and HSFLD242 for more information about the pressure node).

Menu Paths

Main Menu>Preprocessor>Modeling>Create>Elements>Surf / Contact>Inf Acoustic Main Menu $>$ Preprocessor>Modeling>Create>Elements>Surf / Contact>Node to Surf Main Menu>Preprocessor>Modeling>Create>Elements>Surf / Contact>Surf Effect>Generl Surface>Extra Node
Main Menu>Preprocessor>Modeling>Create>Elements>Surf / Contact>Surf Effect>Generl Surface>No extra Node
Main Menu>Preprocessor>Modeling>Create>Elements>Surf / Contact>Surf to Surf

ESYM, --, NINC, IEL1, IEL2, IEINC

Generates elements from a pattern by a symmetry reflection.

PREP 7: Elements
MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS

Unused field.

NINC

Increment nodes in the given pattern by NINC.

IEL1, IEL2, IEINC

Reflect elements from pattern beginning with IEL1 to IEL2 (defaults to IEL1) in steps of IEINC (defaults to 1). If IEL1 = ALL, IEL2 and IEINC are ignored and pattern is all selected elements [ESEL]. If $I E L 1=\mathrm{P}$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for IEL1 (IEL2 and IEINC are ignored).

Notes

Generates additional elements from a given pattern (similar to EGEN) except with a "symmetry" reflection. The operation generates a new element by incrementing the nodes on the original element, and reversing and shifting the node connectivity pattern. For example, for a 4-node 2-D element, the nodes in positions $\mathrm{I}, \mathrm{J}, \mathrm{K}$, and L of the original element are placed in positions $\mathrm{J}, \mathrm{I}, \mathrm{L}$, and K of the reflected element.

Similar permutations occur for all other element types. For line elements, the nodes in positions I and J of the original element are placed in positions J and I of the reflected element. In releases prior to ANSYS 5.5,
no node pattern reversing and shifting occurred for line elements generated by ESYM. To achieve the same results with ANSYS 5.5 as you did in prior releases, use the EGEN command instead.

It is recommended that symmetry elements be displayed and graphically reviewed.
If the nodes are also reflected (as with the NSYM command) this pattern is such that the orientation of the symmetry element remains similar to the original element (i.e., clockwise elements are generated from clockwise elements).

For a non-reflected node pattern, the reversed orientation has the effect of reversing the outward normal direction (clockwise elements are generated from counterclockwise elements).

Note

Since nodes may be defined anywhere in the model independently of this command, any orientation of the "symmetry" elements is possible. See also the ENSYM command for modifying existing elements.

Menu Paths

Main Menu>Preprocessor>Modeling>Reflect>Elements>Auto Numbered

ESYS, KCN

Sets the element coordinate system attribute pointer.

PREP 7: Meshing
PREP7:Elements
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

KCN

Coordinate system number:
0
Use element coordinate system orientation as defined (either by default or by KEYOPT setting) for the element (default).

N
Use element coordinate system orientation based on local coordinate system N (where N must be greater than 10). For global system 0 , 1, or 2, define a local system N parallel to appropriate system with the LOCAL or CS command (for example: LOCAL,11,1).

Command Default

Use element coordinate system orientation as defined (either by default or by KEYOPT setting) for the element (default).

Notes

Identifies the local coordinate system to be used to define the element coordinate system of subsequently defined elements. Used only with area and volume elements. For non-layered volume elements, the local coordinate system N is simply assigned to be the element coordinate system. For shell and layered volume
elements, the x and y axes of the local coordinate system N are projected onto the shell or layer plane to determine the element coordinate system. See Element Coordinate Systems for more details. N refers to the coordinate system reference number (KCN) defined using the LOCAL (or similar) command. Element coordinate system numbers may be displayed [/PNUM].

Menu Paths

Main Menu>Preprocessor>Meshing>Mesh Attributes>Default Attribs Main Menu>Preprocessor>Modeling>Create>Elements>Elem Attributes

ET, ITYPE, Ename, KOP1, KOP2, KOP3, KOP4, KOP5, KOP6, INOPR

Defines a local element type from the element library.

PREP 7: Element Type MP ME ST PR PRN DS DSS FL EM EH DY PP <> EME MFS

ITYPE

Arbitrary local element type number. Defaults to $1+$ current maximum.

Ename

Element name (or number) as given in the element library in Chapter 4 of the Element Reference. The name consists of a category prefix and a unique number, such as PIPE288. The category prefix of the name (PIPE for the example) may be omitted but is displayed upon output for clarity. If Ename $=0$, the element is defined as a null element.

KOP1, KOP2, KOP3, . . . , KOP 6

KEYOPT values (1 through 6) for this element, as described in the Element Reference.

INOPR

If 1 , suppress all element solution printout for this element type.

Notes

The ET command selects an element type from the element library and establishes it as a local element type for the current model. Information derived from the element type is used for subsequent commands, so the ET command(s) should be issued early. (The Element Reference describes the available elements.)

A special option, Ename $=0$, permits the specified element type to be ignored during solution without actually removing the element from the model. Ename may be set to zero only after the element type has been previously defined with a nonzero Ename. The preferred method of ignoring elements is to use the select commands (such as ESEL).

KOPn are element option keys. These keys (referred to as $\operatorname{KEYOPT}(n)$) are used to turn on certain element options for this element. These options are listed under "KEYOPT" in the input table for each element type in the Element Reference. KEYOPT values include stiffness formulation options, printout controls, and various other element options. If KEYOPT(7) or greater is needed, input their values with the KEYOPT command.

The ET command only defines an element type local to your model (from the types in the element library). The TYPE or similar [KATT, LATT, AATT, or VATT] command must be used to point to the desired local element type before meshing.

To activate the ANSYS program's LS-DYNA explicit dynamic analysis capability, use the ET command or its GUI equivalent to choose an element that works only with LS-DYNA (such as SHELL163). Choosing LS-DYNA in the Preferences dialog box does not activate LS-DYNA; it simply makes items and options related to LSDYNA accessible in the GUI.

Menu Paths

Main Menu>Preprocessor>Element Type>Add/Edit/Delete

ETABLE, Lab, Item, Comp

Fills a table of element values for further processing.

POST1:Element Table
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Lab

Any unique user defined label for use in subsequent commands and output headings (maximum of eight characters and not a General predefined Item label). Defaults to an eight character label formed by concatenating the first four characters of the It em and Comp labels. If the same as a previous user label, this result item will be included under the same label. Up to 200 different labels may be defined. The following labels are predefined and are not available for user-defined labels: REFL, STAT, and ERAS. $L a b=$ REFL refills all tables previously defined with the ETABLE commands (not the CALC module commands) according to the latest ETABLE specifications and is convenient for refilling tables after the load step [SET] has been changed. Remaining fields will be ignored if Lab is REFL. Lab = STAT displays stored table values. $L a b=$ ERAS erases the entire table.

Item

Label identifying the item. General item labels are shown in the table below. Some items also require a component label. Character parameters may be used. Item = ERAS erases a Lab column.

Comp

Component of the item (if required). General component labels are shown in the table below. Character parameters may be used.

Notes

Defines a table of values per element (the element table) for use in further processing (see POST1 Element Table commands). The element table is organized as a "worksheet," with the rows representing all selected elements, and the columns consisting of result items which have been moved into the table (Item,Comp) with ETABLE. Each column of data is identified by a user-defined label ($L a b$) for listings and displays.

After entering the data into the element table, you are not limited to merely listing or displaying your data [PLESOL, PRESOL, etc.]. You may also perform many types of operations on your data, such as adding or multiplying columns [SADD, SMULT], defining allowable stresses for safety calculations [SALLOW], or multiplying one column by another [SMULT]. See the Getting Started with ANSYS in theBasic Analysis Guide for further details.

There are different types of results data that may be stored in the element table. For example, many items for an element are inherently single-valued (i.e., there is only one value per element). The single-valued items include: SERR, SDSG, TERR, TDSG, SENE, SEDN, TENE, KENE, JHEAT, JS, VOLU, and CENT. All other items are multivalued (i.e., they vary over the element, such that there is a different value at each node). Since
only one value is stored in the element table per element, an average value (based on the number of contributing nodes) is calculated for multivalued items. Exceptions to this averaging procedure are FMAG and all element force items, which represent the sum only of the contributing nodal values.

There are two methods of data access that may be used with the ETABLE command. The method you choose will depend upon the type of data that you wish to store. Some results can be accessed just with the use of a generic label (Component Name method), while others require a label and number (Sequence Number method).

The Component Name method is used to access the General element data (that is, element data which is generally available to most element types or groups of element types). All of the single-valued items and some of the more general multivalued items are accessible with the Component Name method. Various element results depend on the calculation method and the selected results location (AVPRIN, RSYS, LAYER, SHELL, and ESEL).

Although nodal data is readily available for listings and displays [PRNSOL, PLNSOL] without using the element table, you may also use the Component Name method to enter these results into the element table for further "worksheet" manipulation (see the Getting Started with ANSYS in theBasic Analysis Guide for more details). A listing of the General Item and Comp labels for the Component Name method is shown below.

The Sequence Number method allows you to view results for data that is not averaged (such as pressures at nodes, temperatures at integration points, etc.), or data that is not easily described in a generic fashion (such as all derived data for structural line elements and contact elements, all derived data for thermal line elements, layer data for layered elements, etc.). A table illustrating the Items (such as LS, LEPEL, LEPTH, SMISC, NMISC, SURF, etc.) and corresponding sequence numbers for each element is shown in the Output Data section of each element description found in the Element Reference.

Some element table data are reported in the results coordinate system. These include all component results (for example, UX, UY, etc.; SX, SY, etc.). The solution writes component results in the database and on the results file in the solution coordinate system. When you issue the ETABLE command, these results are then transformed into the results coordinate system [RSYS] before being stored in the element table. The default results coordinate system is global Cartesian [RSYS, 0]. All other data are retrieved from the database and stored in the element table with no coordinate transformation.

Use the PRETAB, PLETAB, or ETABLE,STAT commands to display the stored table values. Issue ETABLE,ERAS to erase the entire table. Issue ETABLE, Lab,ERAS to erase a Lab column.

When the GUI is on, if a Delete operation in a Define Element Table Data dialog box writes this command to a log file (Jobname. LOG or Jobname. LGW), you will observe that Lab is blank, Item = ERASE, and Comp is an integer number. In this case, the GUI has assigned a value of Comp that corresponds to the location of a chosen variable name in the dialog box's list. It is not intended that you type in such a location value for Comp in an ANSYS session. However, a file that contains a GUI-generated ETABLE command of this form can be used for batch input or for use with the /INPUT command.

Table 149 ETABLE - General Item and Component Labels

| | General Item and Component Labels ETABLE, Lab, Item, Comp | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Item | Comp | Description |

Valid Item Labels for Degree of Freedom Results

U	X, Y, Z	X, Y, or Z structural displacement.
ROT	X, Y, Z	X, Y, or Z structural rotation.

General Item and Component Labels ETABLE, Lab, Item, Comp
 Comp

Item
TEMP[1]
PRES
VOLT
MAG
$V \quad X, Y, Z$

A $\quad X, Y, Z$
CURR
EMF
ENKE
ENDS
SPOn

Temperature.
Pressure.
Electric potential.
Magnetic scalar potential.
X, Y, or Z fluid velocity.
X, Y, or Z magnetic vector potential.

Current.

Electromotive force drop.
Turbulent kinetic energy.
Turbulent energy dissipation.
Mass fraction of species n, where $n=1$ to 6 . If a species is given a user-defined name [MSSPEC], use that name instead of SPOn.

Valid Item Labels for FLOTRAN Nodal Results

TTOT
HFLU
HFLM
COND
PCOE
PTOT
MACH
STRM
DENS
VISC
EVIS
ECON
YPLU
TAUW
LMDn

EMDn

Total temperature.
Heat flux.
Heat transfer (film) coefficient.
Fluid laminar conductivity.
Pressure coefficient.
Total (stagnation) pressure.
Mach number.
Stream function. (2-D applications only.)
Fluid density.
Fluid laminar viscosity.
Fluid effective viscosity.
Fluid effective conductivity.
$\mathrm{Y}+$, a turbulent law of the wall parameter.
Shear stress at the wall.
Laminar mass diffusion coefficient for species n, where $n=1$ to 6.

Effective mass diffusion coefficient for species n, where $n=1$ to 6.

Valid Item and Component Labels for Element Results

S		$X, Y, Z, X Y, Y Z, X Z$
$"$	$1,2,3$	
$"$	$I N T$	
$"$	$E Q V$	
EPEL	$X, Y, Z, X Y, Y Z, X Z$	
$"$	$1,2,3$	

Component stress.
Principal stress.
Stress intensity.
Equivalent stress.
Component elastic strain.
Principal elastic strain.

Item	General It Comp	onent Labels ETABLE, Lab, Item, Comp Description
"	INT	Elastic strain intensity.
"	EQV	Elastic equivalent strain.
EPTH	X, Y, Z, XY, YZ, XZ	Component thermal strain.
"	1, 2, 3	Principal thermal strain.
"	INT	Thermal strain intensity.
"	EQV	Thermal equivalent strain.
EPPL	$X, Y, Z, X Y, Y Z, X Z$	Component plastic strain.
	1, 2, 3	Principal plastic strain.
"	INT	Plastic strain intensity.
"	EQV	Plastic equivalent strain.
EPCR	X, Y, $\mathrm{Z}, \mathrm{XY}, \mathrm{YZ}, \mathrm{XZ}$	Component creep strain.
"	1, 2, 3	Principal creep strain.
"	INT	Creep strain intensity.
"	EQV	Creep equivalent strain.
EPSW		Swelling strain.
EPTO	$X, Y, Z, X Y, Y Z, X Z$	Component total mechanical strain (excluding thermal) (EPEL + EPPL + EPCR).
"	1,2,3	Principal total mechanical strain.
"	INT	Total mechanical strain intensity.
"	EQV	Total equivalent mechanical strain.
EPTT	$X, Y, Z, X Y, Y Z, X Z$	Component total strain including thermal (EPEL + EPTH + EPPL + EPCR).
"	1,2,3	Principal total strain.
"	INT	Total strain intensity.
"	EQV	Total equivalent strain.
NL	SEPL	Equivalent stress (from stress-strain curve).
"	SRAT	Stress state ratio.
"	HPRES	Hydrostatic pressure.
"	EPEQ	Accumulated equivalent plastic strain.
SEND	ELASTIC	Elastic strain energy density.
"	PLASTIC	Plastic strain energy density.
"	CREEP	Creep strain energy density.
CDM	DMG	Damage variable
"	LM	Maximum previous strain energy for virgin material
FAIL	MAX	Maximum of all active failure criteria defined at the current location (See the FCTYP command for details.) [1][3]
"	EMAX	Maximum Strain Failure Criterion. [1][3]
"	SMAX	Maximum Stress Failure Criterion. [1][3]

Item	General Item and Component Labels ETABLE, Lab, Item, Comp	
	Comp	Description
"	TWSI	Tsai-Wu Strength Index Failure Criterion. [1][3]
"	TWSR	Inverse of Tsai-Wu Strength Ratio Index Failure Criterion. [1][3]
"	HFIB	Hashin Fiber Failure Criterion. [1][3][5]
"	HMAT	Hashin Matrix Failure Criterion. [1][3][5]
"	PFIB	Puck Fiber Failure Criterion. [1][3][5]
"	PMAT	Puck Matrix Failure Criterion. [1][3][5]
"	USR1, USR2, ..., USR9	User-defined failure criteria. [1][3][4][5]
FCMX	LAY	Layer number where the maximum of all active failure criteria over the entire element occurs. [1][3]
"	FC	Number of the maximum-failure criterion over the entire element [1 (p. 571)][3 (p. 571)]:
		1 - EMAX
		2 - SMAX
		3 -TWSI
		4 - TWSR
		5 - HFIB
		6 - HMAT
		7 - PFIB
		8 - PMAT
		9~17-USR1~USR9
"	VAL	Value of the maximum failure criterion over the entire element. [1][3]
TG	X, Y, Z, SUM	Component thermal gradient or vector sum.
TF	$X, Y, Z, S U M$	Component thermal flux or vector sum.
PG	$X, Y, Z, S U M$	Component pressure gradient or vector sum.
EF	$X, Y, Z, S U M$	Component electric field or vector sum.
D	X, Y, Z, SUM	Component electric flux density or vector sum.
H	$X, Y, Z, S U M$	Component magnetic field intensity or vector sum.
B	$X, Y, Z, S U M$	Component magnetic flux density or vector sum.
FMAG[4]	X, Y, Z, SUM	Component electromagnetic forces or vector sum.
SERR[5]		Structural error energy.
SDSG5		Absolute value of maximum variation of any nodal stress component.
TERR5		Thermal error energy.
TDSG5		Absolute value of the maximum variation of any nodal thermal gradient component.
F	X, Y, Z	Component structural force. Sum of element nodal values.
M	X, Y, Z	Component structural moment. Sum of element nodal values.
HEAT		Heat flow. Sum of element nodal values.
FLOW		Fluid flow. Sum of element nodal values.

Item	General It Comp	mponent Labels ETABLE, Lab, Item, Comp Description
AMPS		Current flow. Sum of element nodal values.
FLUX		Magnetic flux. Sum of element nodal values.
CSG	X, Y, Z	Component magnetic current segment.
SENE		"Stiffness" energy or thermal heat dissipation (applies to all elements where meaningful). Same as TENE.
SEDN		Strain energy density.
AENE		Artificial energy of the element. This includes the sum of hourglass control energy and energy generated by in-plane drilling stiffness from shell elements (applies to all elements where meaningful). The energy is used for comparisons to SENE energy to predict the solution error due to artificial stiffness. See the Theory Reference for the Mechanical APDL and Mechanical Applications.
TENE		Thermal heat dissipation or "stiffness" energy (applies to all elements where meaningful). Same as SENE.
KENE		Kinetic energy (applies to all elements where meaningful).
STEN		Elemental energy dissipation due to stabilization.
JHEAT		Element Joule heat generation.
JS	X, Y, Z, SUM	Source current density for low-frequency magnetic analyses. Total current density (sum of conduction and displacement current densities) in low frequency electric analyses. Components (X, Y, Z) and vector sum (SUM).
JT	X, Y, Z, SUM	Total measureable current density in low-frequency electromagnetic analyses. (Conduction current density in a low-frequency electric analysis.) Components ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$) and vector sum (SUM).
JC	X, Y, Z, SUM	Conduction current density for elements that support conduction current calculation. Components ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$) and vector sum (SUM).
MRE		Magnetics Reynolds number
VOLU		Element volume. Based on unit thickness for 2-D plane elements (unless the thickness option is used) and on the full 360 degrees for 2-D axisymmetric elements.
CENT	X, Y, Z	Undeformed X, Y, or Z location (based on shape function) of the element centroid in the active coordinate system.
BFE	TEMP	Body temperatures (calculated from applied temperatures) as used in solution (area and volume elements only).
SMISC	snum	Element summable miscellaneous data value at sequence number snum (shown in the Output Data section of each applicable element description in the Element Reference).
NMISC	snum	Element non-summable miscellaneous data value at sequence number snum (shown in the Output Data section of each applicable element description found in the Element Reference).
SURF	snum	Element surface data value at sequence number snum (shown in Surface Solution of the Element Reference).

General Item and Component Labels ETABLE, Lab, Item, Comp		
CONT	STAT	Contact status[3]:
		3-closed and sticking 2-closed and sliding 1-open but near contact 0 -open and not near contact
"	PENE	Contact penetration (zero or positive).
"	PRES	Contact pressure.
	SFRIC	Contact friction stress.
"	STOT	Contact total stress (pressure plus friction).
"	SLIDE	Contact sliding distance.
	GAP	Contact gap distance (0 or negative).
"	FLUX	Total heat flux at contact surface.
*	CNOS	Total number of contact status changes during substep.
"	FPRS	Fluid penetration pressure
TOPO		Densities used for topological optimization.
CAP	CO,XO,KO,ZONE, DPLS,VPLS	Material cap plasticity model only: Cohesion; hydrostatic compaction yielding stress; 11 at the transition point at which the shear and compaction envelopes intersect; zone $=0$: elastic state, zone $=1$: compaction zone, zone $=2$: shear zone, zone $=3$: expansion zone; effective deviatoric plastic strain; volume plastic strain.
EDPC	CSIG,CSTR	Material EDP creep model only (not including the cap model): Equivalent creep stress; equivalent creep strain.
ESIG	$X, Y, Z, X Y, Y Z, Z X$	Components of Biot's effective stress.
"	1, 2, 3	Principal stresses of Biot's effective stress.
"	INT	Stress intensity of Biot's effective stress.
"	EQV	Equivalent stress of Biot's effective stress.
DPAR	TPOR	Total porosity (Gurson material model).
"	GPOR	Porosity due to void growth.
"	NPOR	Porosity due to void nucleation.
FFLX	X, Y, Z	Fluid flow flux in poromechanics.
FICT	TEMP	Fictive temperature.

1. For SHELL131 and SHELL132 elements with $\operatorname{KEYOPT}(3)=0$ or 1 , use labels TBOT, TE2, TE3, \ldots, TTOP instead of TEMP.
2. For the CONT items for elements CONTA171 through CONTA177, the reported data is averaged across the element.
3. For MPC-based contact definitions, the value of STAT can be negative. This indicates that one or more contact constraints were intentionally removed to prevent overconstraint. STAT $=-3$ is used for MPC bonded contact; STAT $=-2$ is used for MPC no-separation contact.
4. When using the EMFT procedure to calculate electromagnetic force (SOLID117, PLANE121, SOLID122, SOLID123, PLANE233, SOLID236 or SOLID237 elements only), the FMAG sum will be zero or near zero.
5. Some element- and material-type limitations apply. For more information, see the documentation for the PRERR command.

Menu Paths

Main Menu>General Postproc>Element Table>Define Table
Main Menu>General Postproc>Element Table>Erase Table

ETCHG, Cnv

Changes element types to their corresponding types.

PREP 7: Element Type
MP ME ST PR PRN DS DSS FL EM EH DY PP <> EME MFS

Cnv

Converts the element types to the corresponding type. Valid labels are:

ETI

Explicit to Implicit
ITE
Implicit to Explicit
TTE
Thermal to Explicit
TTS
Thermal to Structural
STT
Structural to Thermal

MTT

Magnetic to Thermal
FTS
Fluid to Structural
ETS
Electrical to Structural

Notes

Changes the currently defined element types to their corresponding types. Elements without a companion element (listed above) are not switched and should be switched with the ET command to an appropriate element type or to a null element. The KEYOPT values for the switched element types are reset to zero or to their default values. You must check these values to see if they are still meaningful. Additionally, if Cnv $=$ ETI, ITE, or TTE, all real constants are set to zero.

If $C n v=I T E$, you will need to choose a material model that corresponds to your previously-defined material properties. If working interactively, you will be prompted to do so.

Element Pairs

ETI -- Explicit to Implicit

```
163>181 165> 14
164>185 166>21
```


ITE -- Implicit to Explicit

$14>165$
$21>166$
$185>164$

TTE --Thermal to Explicit
$55>162$ $70>164$

TTS -- Thermal to Structural

$33>180$	$67>42$	$75>25$	$131>181$
$55>182$	$69>45$	$77>183$	$151>153$
	$70>185$	$78>83$	$152>154$
	$71>21$	$87>187$	$278>185$
		$90>186$	$279>186$

STT -- Structural to Thermal

$21>71$	$62>70$	$88>77$	$154>152$
$25>75$	$64>70$	$89>90$	$158>87$
$41>131$	$65>70$	$91>132$	$180>33$
$42>55$	$73>70$	$92>87$	$181>131$
$45>70$	$74>77$	$93>132$	$182>55$
$56>55$	$82>77$	$95>90$	$183>77$
$58>70$	$83>78$	$106>55$	$185>70$
	$84>55 / 77$	$107>70$	$186>90$
	$86>70$	$108>77$	$187>87$
		$153>151$	
MTT -- Magnetic to Thermal			
$53>77$	$96>70$	$117>90$	$120>90$
$62>70$	$97>70$		
FTS -- Fluid to Structural			
141>42	$142>45$		
ETS -- Electrical to Structural			
$67>42$	$121>42 / 82$	$123>92$	
$69>45$	$122>45 / 95$		

Menu Paths

Main Menu>Preprocessor>Element Type>Switch Elem Type

ETCONTROL, Eltech, Eldegene

Control the element technologies used in element formulation (for applicable elements).

PREP 7: Element Type
MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS

Eltech

Element technology control:

SUGGESTION

ANSYS makes a suggestion for the best element technology before solving. If necessary, mixed u-P (KEYOPT(6)) will also be included and reset. This behavior is the default.

SET
ANSYS informs you of the best settings and automatically resets any applicable KEYOPT settings; this will override any manual settings you provided previously.

OFF
Turns automatic selection of element technology off. No suggestions will be issued, and no automatic resetting is done

Eldegene

Element degenerated shape control:
ON
If element shapes are degenerated, the degenerated shape function is employed and enhanced strain, simplified enhanced strain, and B-bar formulations are turned off (default).

OFF

If element shapes are degenerated, regular shape functions are still used, and the specified element technologies (e.g., enhanced strain, B-bar, uniform reduced integration) are still used.

Notes

The command default is ETCONTROL,SUGGESTION,ON.
This command is valid for elements SHELL181, PLANE182, PLANE183, SOLID185, SOLID186, SOLID187, BEAM188, BEAM189, SHELL208, SHELL209, REINF264, SOLID272, SOLID273, SHELL281, SOLID285, PIPE288, PIPE289, ELBOW290.

For more information, see Automatic Selection of Element Technologies in the Element Reference.

Menu Paths

Main Menu>Preprocessor>Element Type>Elem Tech Control

ETDELE, ITYP1,ITYP2,INC

Deletes element types.

PREP 7: Element Type
MP ME ST PR PRN <> <> FL EM EH DY PP $<>$ EME MFS

ITYP1, ITYP2, INC

Deletes element types from ITYP1 to ITYP2 (defaults to ITYP1) in steps of INC (defaults to 1). If ITYP1 = ALL, ITYP2 and INC are ignored and all element types are deleted. Element types are defined with the ET command.

Menu Paths

Main Menu>Preprocessor>Element Type>Add/Edit/Delete

ETLIST, ITYP1,ITYP2,INC

Lists currently defined element types.

PREP 7:Element Type
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

ITYP1, ITYP2, INC

Lists element types from ITYP1 to ITYP2 (defaults to ITYP1) in steps of INC (defaults to 1). If ITYP1 = ALL (default), ITYP2 and INC are ignored and all element types are listed.

Notes

This command is valid in any processor.

Menu Paths

Utility Menu>List>Properties>Element Types

ETYPE

Specifies "Element types" as the subsequent status topic.

PREP 7:Status
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Notes

This is a status [STAT] topic command. Status topic commands are generated by the GUI and will appear in the log file (Jobname. LOG) if status is requested for some items under Utility Menu> List> Status. This command will be immediately followed by a STAT command, which will report the status for the specified topic.

If entered directly into the program, the STAT command should immediately follow this command.

Menu Paths

Utility Menu>List>Status>Preprocessor>Element Types

EUSORT

Restores original order of the element table.

POST1:Element Table
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Notes

Changing the selected element set [ESEL] also restores the original element order.

Menu Paths

Main Menu>General Postproc>List Results>Sorted Listing>Unsort Elems

EWRITE, Fname, Ext, --, KAPPND, Format

Writes elements to a file.

PREP 7: Elements
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Fname

File name and directory path (248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

The file name defaults to Jobname.

Ext

Filename extension (8 character maximum).

The extension defaults to ELEM if Fname is blank.

Unused field.

KAPPND

Append key:
0
Rewind file before the write operation.
1
Append data to the end of the existing file.

Format

Format key:

SHORT

16 format (the default).
LONG
18 format.

Notes

Writes the selected elements to a file. The write operation is not necessary in a standard ANSYS run but is provided as convenience to users wanting a coded element file. If issuing EWRITE from ANSYS to be used in ANSYS, you must also issue NWRITE to store nodal information for later use. Only elements having all of their nodes defined (and selected) are written. Data are written in a coded format. The data description of each record is: I, J, K, L, M, N, O, P, MAT, TYPE, REAL, SECNUM, ESYS, IEL, where MAT, TYPE, REAL, and ESYS are attribute numbers, SECNUM is the beam section number, and IEL is the element number.

The format is (1416) if Format is set to SHORT and (14I8) if the Format is set to LONG, with one element description per record for elements having eight nodes of less. For elements having more than eight nodes, nodes nine and above are written on a second record with the same format.

Menu Paths

Main Menu>Preprocessor>Modeling>Create>Elements $>$ Write Elem File

*EXIT

Exits a do-loop.

> APDL: Process Controls
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Notes

The command following the *ENDDO is executed next. The exit option may also be conditional [Use the *IF]. The *EXIT command must appear on the same file as the *DO command.

This command is valid in any processor.

Menu Paths

This command cannot be accessed from a menu.
/EXIT, Slab, Fname, Ext, --
Stops the run and returns control to the system.
SESSION: Run Controls
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
Slab
Mode for saving the database:

MODEL

Save the model data (solid model, finite element model, loadings, etc.) only (default).

SOLU

Save the model data and the solution data (nodal and element results).
ALL
Save the model data, solution data and post data (element tables, path results, etc.)

NOSAVE

Do not save any data on File.DB (an existing DB file will not be overwritten).

Fname

File name and directory path (248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

The file name, defaults to Jobname.

Ext

Filename extension (8 character maximum).
The extension defaults to DB if Fname is blank.

Unused field.

Notes

The current database information may be written on File.DB or a named file. If File.DB already exists, a backup file (File.DBB) will also be written whenever a new File.DB is written.

This command is valid in any processor. Issuing this command at any point will exit the program.

Menu Paths

Utility Menu>File>Exit

EXP, IR, IA, --, --, Name, --- --, FACTA, FACTB

Forms the exponential of a variable.

POST26:Operations
MP ME ST PR PRN <> <> FL EM EH <> PP <> EME MFS
IR
Arbitrary reference number assigned to the resulting variable (2 to NV [NUMVAR]). If this number is the same as for a previously defined variable, the previously defined variable will be overwritten with this result.

IA
Reference number of the variable to be operated on.
--, --
Unused fields.

Name

Thirty-two character name for identifying the variable on the printout and displays. Embedded blanks are compressed upon output.

--, --

Unused fields.

FACTA

Scaling factor applied to variable IA (defaults to 1.0).

FACTB

Scaling factor (positive or negative) applied to the operation (defaults to 1.0).

Notes

Forms the exponential of a variable according to the operation:

$$
I R=F A C T B^{*} \operatorname{EXP}(F A C T A \times I A)
$$

Menu Paths

Main Menu>TimeHist Postpro>Math Operations>Exponentiate

EXPAND, Nrepeat, MODAL, HIndex, Icsys, SctAng, --, Phase

Displays the results of a modal cyclic symmetry analysis.

POST1:Special Purpose
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

Nrepeat

Number of sector repetitions for expansion. The default is 0 (no expansion).

MODAL

Specifies that the expansion is for a modal cyclic symmetry analysis.

HIndex

The harmonic index ID for the results to expand.

Icsys

The coordinate system number used in the modal cyclic symmetry solution. The default is the global cylindrical coordinate system (specified via the CSYS command where $K C N=1$).

SctAng

The sector angle in degrees, equal to 360 divided by the number of cyclic sectors.

This field is reserved for future use.

Phase

The phase angle in degrees to use for the expansion. The default is 0 . Typically, the value is the peak displacement (or stress/strain) phase angle obtained via the CYCPHASE command.

Notes

Issue this command to display the results of a modal cyclic symmetry analysis.

When you issue the EXPAND,Nrepeat command, subsequent SET commands read data from the results file and expand them to Nrepeat sectors. As long as no entities have been modified, this expansion can be negated (that is, reverted to single sector) by issuing EXPAND with no arguments. If you modify entities and wish to return to the partial model, use the Session Editor (see Restoring Database Contents in the Operations Guide).

EXPAND displays the results and allows you to print them, as if for a full model. The harmonic index (automatically retrieved from the results file) appears in the legend column.

When plotting or printing element strain energy (SENE), the EXPAND command works with brick or tet models only. Element kinetic energy (KENE) plotting or printing is not supported.

EXPAND is a specification command valid only in POST1. It is significantly different from the /EXPAND command in several respects, (although you can use either command to display the results of a modal cyclic symmetry analysis):

- EXPAND has none of the limitations of the /EXPAND command.
- EXPAND changes the database by modifying the geometry, the nodal displacements, and element stresses as they are read from the results file, whereas the /EXPAND command does not change the database.
- You can print results displayed via EXPAND.

Caution

The EXPAND command creates new nodes and elements; therefore, saving (or issuing the /EXIT, ALL command) after issuing the EXPAND command can result in large databases.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>General Postproc>Cyc Expansion
/EXPAND, Nrepeat1, Type1, Method1, DX1, DY1, DZ1, Nrepeat2, Type2, Method2, DX2, DY2, DZ2, Nrepeat3, Type3, Method3, DX3, DY3, DZ3

Allows the creation of a larger graphic display than represented by the actual finite element analysis model.

POST1:Special Purpose
MP ME ST PR PRN <> <> <> <> <> DY PP <> EME MFS

Nrepeat1, Nrepeat2, Nrepeat 3

The number of repetitions required for the element pattern. The default is 0 (no expansion).

Type1, Type2, Type3

The type of expansion requested.
RECT
Causes a Cartesian transformation of DX, DY, and DZ for each pattern (default).

POLAR

Causes a polar transformation of DR, D-Theta and DZ for each pattern.

AXIS

Causes 2-D axisymmetric expansion (that is, rotates a 2-D model created in the X - Y plane about the Y axis to create a 3-D model).

LRECT

Causes a Cartesian transformation of DX, DY, and DZ for each pattern about the current local coordinate system (specified via the CSYS command).

LPOLAR

Causes a polar transformation of DR, D-Theta, and DZ for each pattern about the local coordinate system (specified via the CSYS command).

Method1, Method2, Method3

The method by which the pattern is repeated.

FULL

Causes a normal repeat of the pattern (default).

HALF

Uses a symmetry transformation for alternate repeats (to produce an image of a complete circular gear from the image of half a tooth, for example).

DX1, DY1, DZ1, DX2, DY2, DZ2, DX3, DY3, DZ3

The Cartesian or polar increments between the repeated patterns. Also determines the reflection plane. Reflection is about the plane defined by the normal vector (DX, DY, DZ). If you want no translation, specify a small nonzero value. For a half-image expansion, the increment DX, DY, or DZ is doubled so that POLAR,HALF, , 45 produces full images on 90° centers, and RECT,HALF,, 1 produces full images on 2-meter centers.

Notes

You can use the /EXPAND command to perform up to three symmetry expansions at once (that is, X, Y, and Z which is equal to going from a $1 / 8$ model to a full model). Polar expansions allow you to expand a wheel section into a half wheel, then into the half section, and then into the whole.

The command displays elements/results when you issue the EPLOT command or postprocessing commands.
The command works on all element and result displays, except as noted below. As the graphic display is created, the elements (and results) are repeated as many times as necessary, expanding the geometry and, if necessary, the displacements and stresses.

Derived results are not supported.
The /EXPAND command has the following limitations:

- It does not support solid model entities.
- POLAR, FULL or HALF operations are meaningful only in global cylindrical systems and are unaffected by the RSYS or DSYS commands. Cartesian symmetry or unsymmetric operations also occur about the global Cartesian system.
- It does not average nodal results across sector boundaries, even for averaged plots (such as those obtained via the PLNSOL command).
- Axisymmetric harmonic element results are not supported for Type = AXIS.

The /EXPAND command differs significantly from the EXPAND command in several respects:

- The uses of /EXPAND are of a more general nature, whereas the EXPAND command is intended primarily to expand modal cyclic symmetry results.
- /EXPAND does not change the database as does the EXPAND command.
- You cannot print results displayed via /EXPAND.

Menu Paths

Utility Menu $>$ PlotCtrls $>$ Style $>$ Symmetry Expansion $>$
Utility Menu>PlotCtrls>Style>Symmetry Expansion>Expansion by values
Utility Menu>PlotCtrls>Style>Symmetry Expansion>Modal Cyclic Symmetry Utility Menu>PlotCtrls>Style>Symmetry Expansion>Periodic/Cyclic Symmetry Expansion

EXPASS, кеу

Specifies an expansion pass of an analysis.

SOLUTION: Analysis Options
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS
Key
Expansion pass key:
OFF
No expansion pass will be performed (default).
ON
An expansion pass will be performed.

Notes

Specifies that an expansion pass of a modal, substructure, buckling, transient, or harmonic analysis is to be performed.

Note

This separate solution pass requires an explicit FINISH to preceding analysis and reentry into SOLUTION.

This command is also valid in PREP7.

Menu Paths

Main Menu>Preprocessor>Loads>Analysis Type>ExpansionPass Main Menu>Solution>Analysis Type>ExpansionPass

*EXPORT, Matrix, Format, Fname, Val1, Val2, Val3

Exports a matrix to a file in the specified format.

APDL:Matrix Operations
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Argument Descriptions

Matrix

Name of the matrix to export (must be a matrix previously created with *DMAT or *SMAT, or a vector previously created with *VEC).
Format
Format of the output file:
MMF --
Export the matrix in the Matrix Market Format.

SUB --

Export the matrix in the SUB file format.

HBMAT --

Export the matrix in the Harwell-Boeing file format.

MAT --

Export the matrix in a native format, to be re-imported using the *DMAT or *SMAT command.

EMAT --

Export the matrix to an existing EMAT file.
APDL --
Export the matrix to an APDL array parameter.
PS --
Export the matrix profile to a Postscript file.

Fname

Name of the file, or name of the array parameter if Format = APDL.

Val1, Val2, Val3

Additional input. The meaning of Vall through Val3 will vary depending on the specified Format. See table below for details.

Additional input for Format = SUB, HBMAT, EMAT, APDL, and PS				
Fent	Val1	Val2	Val3	Description
SUB	Matrix type: STIFF - Stiffness (or conductivity) matrix MASS - Mass (or specific heat) matrix DAMP - Damping matrix RHS - Load vector	Matrix containing the row information (see Notes). Not needed if the matrix was imported from an existing SUB or DMIG file.	WAIT DONE	Identify matrix type to write and specify when to perform the export (see Notes).

$\begin{aligned} & \hline \mathrm{HB}- \\ & \text { MAT } \end{aligned}$	File format: ASCII BINARY	(not used)	(not used)	Identify the output format.
EMW	Matrix type: STIFF - Stiffness (or conductivity) matrix MASS - Mass (or specific heat) matrix DAMP - Damping matrix STRESS - Stress-stiffness matrix	Element number	(not used)	Identify the matrix type and the element number.
$\begin{aligned} & \mathrm{AP}- \\ & \mathrm{DL} \end{aligned}$	First column	Last Column	(not used)	Block of columns to export.
PS	Color key: BW - black and white (default) COLOR - color	(not used)	(not used)	Identify the output format.

Notes

Only sparse matrices can be exported to Postscript files. This option plots the matrix profile as a series of dots.

If you want to create a . SUB file from several matrices, you need to set Val3 = WAIT for all matrices but the last, and Val3 = DONE for the last one. The export will be effective at the last *EXPORT command.

To create a . SUB file from scratch, you must supply the row information array in the Val2 field. It is an m $x 2$ array, where m is the size of the matrix. The first column is the node number and the second column is the DOF number corresponding to each row of the matrix.

Menu Paths

This command cannot be accessed from a menu.

EXPROFILE, Ldtype, Load, VALUE, Pname, Fname, Fext, Fdir

Exports ANSYS interface loads to a CFX Profile file.

POST1:Special Purpose
MP ME ST PR PRN <> <> FL EM EH <> PP <> EME MFS

Ldtype

Load type:
SURF
Surface load

VOLU

Volumetric load

Load

Surface loads:
DISP
Displacement
TEMP
Temperature
HFLU
Heat flux
Volumetric loads:
DISP
Displacement
FORC
Force
HGEN
Heat generation

VALUE

Surface or volume interface number.

Pname

Field name in CFX Profile file (32 characters maximum). Defaults to bcploadnumber for a surface load and subdloadnumber for volumetric load.

Fname

The CFX Profile filename (248 character maximum). Defaults to jobname_bcploadnumber for a surface load and jobname_subdloadnumber for a volumetric load.

Fext
The Profile file extension (8 character maximum). Defaults to csv.
Fdir
The Profile file directory (8 characters maximum). Defaults to current directory.

Notes

To transfer multiple loads across an interface, specify a unique file name and extension for each load.
Force (FORC) and heat generation (HGEN) are per unit volume.
The EXPROFILE command must be accompanied by the EXUNIT command in order to write unit information into a CFX Profile export file.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

This command cannot be accessed from a menu.

EXPSOL, LSTEP, SBSTEP, TIMFRQ, Elcalc

Specifies the solution to be expanded for reduced analyses.

SOLUTION: Load Step Options
MP ME ST PR PRN <> <> <> <> <> <> <> <> EME MFS

LSTEP, SBSTEP

Expand the solution identified as load step LSTEP and substep SBSTEP.

TIMFRQ

As an alternative to LSTEP and SBSTEP, expand the solution at, or nearest to, the time value TIMFRQ (for ANTYPE,TRANS or ANTYPE,SUBSTR) or frequency value TIMFRQ (for ANTYPE,HARMIC). LSTEP and SBSTEP should be blank.

Elcalc

Element calculation key:
YES
Calculate element results, nodal loads, and reaction loads.
NO
Do not calculate these items.

Notes

Specifies the solution to be expanded from analyses that use reduced or mode superposition methods (ANTYPE,HARMIC, TRANS, or SUBSTR). Use the NUMEXP command to expand a group of solutions.

This command is also valid in PREP7.

Menu Paths

Main Menu>Preprocessor>Loads>Load Step Opts>ExpansionPass>Single Expand>By Load Step Main Menu>Preprocessor>Loads>Load Step Opts>ExpansionPass>Single Expand>By Time/Freq Main Menu>Solution>Load Step Opts>ExpansionPass>Single Expand>By Load Step Main Menu>Solution>Load Step Opts>ExpansionPass>Single Expand>By Time/Freq

EXTOPT, Lab, Val1, Val2, Val3, Val4
Controls options relating to the generation of volume elements from area elements.
PREP7:Volumes
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
Lab
Label identifying the control option. The meanings of Val1, Val2, and Val3 will vary depending on Lab.

ON
Sets carryover of the material attributes, real constant attributes, and element coordinate system attributes of the pattern area elements to the generated volume elements. Sets the pattern area mesh to clear when volume generations are done. Vall, Val2, and Vall are ignored.

OFF

Removes all settings associated with this command. Vall, Val2, and Val3 are ignored.

STAT

Shows all settings associated with this command. Vall, Val2, Val3, and Val4 are ignored.

ATTR

Sets carryover of particular pattern area attributes (materials, real constants, and element coordinate systems) of the pattern area elements to the generated volume elements. (See 2 (p.588).) Vall can be:

0
Sets volume elements to use current MAT command settings.
1
Sets volume elements to use material attributes of the pattern area elements. Val2 can be:

0
Sets volume elements to use current REAL command settings.
1
Sets volume elements to use real constant attributes of the pattern area elements.
Val3 can be:
0
Sets volume elements to use current ESYS command settings.
1
Sets volume elements to use element coordinate system attributes of the pattern area elements. Val4 can be:

0
Sets volume elements to use current SECNUM command settings.
1
Sets volume elements to use section attributes of the pattern area elements.

ESIZE

Val1 sets the number of element divisions in the direction of volume generation or volume sweep. For VDRAG and VSWEEP, Vall is overridden by the LESIZE command NDIV setting. Val2 sets the spacing ratio (bias) in the direction of volume generation or volume sweep. If positive, Val2 is the nominal ratio of last division size to first division size (if > 1.0, sizes increase, if < 1.0, sizes decrease). If negative, Val2 is the nominal ratio of center division(s) size to end divisions size. Ratio defaults to 1.0 (uniform spacing). Val3 and Val4 are ignored.

ACLEAR

Sets clearing of pattern area mesh. (See 3 (p. 588).) Vall can be:
0
Sets pattern area to remain meshed when volume generation is done.
1
Sets pattern area mesh to clear when volume generation is done. Val2, Val3 , and Val4 are ignored.

VSWE

Indicates that volume sweeping options will be set using Vall and Val2. Settings specified with EXTOPT,VSWE will be used the next time the VSWEEP command is invoked. If Lab = VSWE, Vall becomes a label. Vall can be:

AUTO

Indicates whether you will be prompted for the source and target used by VSWEEP or if VSWE should automatically determine the source and target. If Vall = AUTO, Val2 is ON by default. VSWE will automatically determine the source and target for VSWEEP. You will be allowed to pick more than one volume for sweeping. When Val2 = OFF, the user will be prompted for the source and target for VSWEEP. You will only be allowed to pick one volume for sweeping.

TETS

Indicates whether VSWEEP will tet mesh non-sweepable volumes or leave them unmeshed. If Vall = TETS, Val2 is OFF by default. Non-sweepable volumes will be left unmeshed. When Val2 $=\mathrm{ON}$, the non-sweepable volumes will be tet meshed if the assigned element type supports tet shaped elements.

Val 3 is ignored for $L a b=$ VSWE.

Val1, Val2, Val3, Val4

Additional input values as described under each option for Lab.

Notes

1. EXTOPT controls options relating to the generation of volume elements from pattern area elements using the VEXT, VROTAT, VOFFST, VDRAG, and VSWEEP commands. (When using VSWEEP, the pattern area is referred to as the source area.)
2. Enables carryover of the attributes of the pattern area elements to the generated volume elements when you are using VEXT, VROTAT, VOFFST, or VDRAG. (When using VSWEEP, since the volume already exists, use the VATT command to assign attributes before sweeping.)
3. When you are using VEXT, VROTAT, VOFFST, or VDRAG, enables clearing of the pattern area mesh when volume generations are done. (When you are using VSWEEP, if selected, the area meshes on the pattern (source), target, and/or side areas clear when volume sweeping is done.)
4. Neither EXTOPT,VSWE,AUTO nor EXTOPT,VSWE,TETS will be affected by EXTOPT,ON or EXTOPT, OFF.

Menu Paths

Main Menu>Preprocessor>Meshing>Mesh>Volume Sweep>Sweep Opts
Main Menu>Preprocessor>Modeling>Operate>Extrude>Elem Ext Opts

EXTREM, NVAR1, NVAR2, NINC

Lists the extreme values for variables.

POST26:Listing
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

NVAR1, NVAR2, NINC

List extremes for variables NVAR1 through NVAR2 in steps of NINC. Variable range defaults to its maximum. NINC defaults to 1 .

Notes

Lists the extreme values (and the corresponding times) for stored and calculated variables. Extremes for stored variables are automatically listed as they are stored. Only the real part of a complex number is used. Extreme values may also be assigned to parameters [*GET].

Menu Paths

Main Menu>TimeHist Postpro>List Extremes

EXUNIT, Ldtype, Load, Untype, Name

Indicates units assumed for an interface load for ANSYS to CFX transfer.

Ldtype

Load type:
SURF
Surface load

VOLU

Volumetric load

Load

Surface loads:
DISP
Displacement
TEMP
Temperature
HFLU
Heat flux
Volumetric loads:

DISP

Displacement
FORC
Force
HGEN
Heat generation

Untype

Unit type:

COMM

Pre-defined unit
USER
User-specified unit

Name

Commonly used pre-defined unit name or user-specified unit name.
SI
International System of Units (meter-kilogram-second)
FT
English System of Units (feet-pound-second)
In SI units, surface loads are: DISP m, TEMP K, and HFLU $\mathrm{W} / \mathrm{m}^{2}$ and volumetric loads are: DISP m, FORC $\mathrm{N} / \mathrm{m}^{3}$, and HGEN $\mathrm{W} / \mathrm{m}^{3}$.

In English units, surface loads are: DISP ft, TEMP F, and HFLU BTU/sec- ft^{2} and volumetric loads are: DISP ft , FORC pdl/ft ${ }^{3}$, and HGEN BTU/sec-ft ${ }^{3}$.

Notes

This command only indicates the assumed units. It does not perform unit conversions.
A pdl is a poundal, and $1 \mathrm{lbf}=32.174$.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

This command cannot be accessed from a menu.

F Commands

F, NODE, Lab, VALUE, VALUE2, NEND, NINC

Specifies force loads at nodes.

> SOLUTION: FE Forces
> MP ME ST PR PRN <> <> <> EM EH <> PP <> EME MFS

NODE

Node at which force is to be specified. If ALL, NEND and NINC are ignored and forces are applied to all selected nodes [NSEL]. If $N O D E=\mathrm{P}$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NODE.

Lab

Valid force label. Structural labels: FX, FY, or FZ (forces); MX, MY, or MZ (moments). Thermal labels: HEAT, HBOT, HE2, HE3, . . . HTOP (heat flow). Fluid labels: FLOW (fluid flow). Electric labels: AMPS (current flow), CHRG (electric charge). Magnetic labels: FLUX (magnetic flux); CSGX, CSGY, or CSGZ (magnetic current segments). FLOTRAN labels: FX, FY, or FZ (forces).

For structural analyses, DVOL (fluid mass flow rate) is also a valid label. See Notes for more information.

VALUE

Force value or table name reference for specifying tabular boundary conditions. To specify a table, enclose the table name in percent signs (\%), e.g., F, NODE,HEAT,\%tabname\%). Use the *DIM command to define a table.

VALUE2

Second force value (if any). If the analysis type and the force allow a complex input, VALUE (above) is the real component and VALUE 2 is the imaginary component.

NEND, NINC

Specifies the same values of force at the nodes ranging from NODE to NEND (defaults to NODE), in steps of NINC (defaults to 1).

Notes

The available force loads per node correspond to the degrees of freedom listed under "Degrees of Freedom" in the input table for each element type in the Element Reference. If both a force and a constrained degree of freedom [D] are specified at the same node, the constraint takes precedence. Forces are defined in the nodal coordinate system. The positive directions of structural forces and moments are along and about the positive nodal axis directions. The node and the degree of freedom label corresponding to the force must be selected [NSEL, DOFSEL].

For hydrostatic fluid elements (HSFLD241 and HSFLD242), DVOL is used to specify fluid mass flow rate (with units of mass/time) at the pressure node. This allows fluid to be added or taken out of the fluid elements sharing the pressure node. A fluid density must also be specified (via the MP command or TB command) to apply a volume change corresponding to the prescribed fluid mass flow rate.

Tabular boundary conditions (VALUE $=\%$ tabname\%) are available only for the following labels: Fluid (FLOW), Electric (AMPS), Structural force (FX, FY, FZ, MX, MY, MZ), FLOTRAN (FX, FY, FZ), and Thermal (HEAT, HBOT, HE2, HE3, . . . HTOP). Tabular boundary conditions are valid only in static (ANTYPE,STATIC), full transient (ANTYPE,TRANS), and modal superposition transient analyses.

This command is also valid in PREP7.

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Excitation>AppCharge>On Nodes Main Menu $>$ Preprocessor>Loads $>$ Define Loads $>$ Apply $>$ Electric $>$ Excitation $>$ AppCurrent $>$ On Nodes Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Excitation>ImprCurr>On Nodes Main Menu>Preprocessor>Loads>Define Loads>Apply>Magnetic>Other>AppCurrSeg>On Nodes Main Menu>Preprocessor>Loads>Define Loads>Apply>Magnetic>Other>AppMagFlux>On Nodes Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Force/Moment>On Node Components
Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Force/Moment>On Nodes Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Spectrum>MultiPtNod>On Nodes Main Menu>Preprocessor>Loads $>$ Define Loads $>$ Apply $>$ Structural $>$ Spectrum $>$ NodePSD $>$ On Nodes Main Menu $>$ Preprocessor $>$ Loads $>$ Define Loads $>$ Apply $>$ Structural $>$ Spectrum $>$ SingIPtFor $>$ On Nodes Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Heat Flow>On Nodes Main Menu>Solution>Define Loads>Apply>Electric>Excitation>AppCharge>On Nodes Main Menu>Solution>Define Loads>Apply>Electric>Excitation>AppCurrent>On Nodes Main Menu $>$ Solution $>$ Define Loads $>$ Apply $>$ Electric>Excitation $>$ ImprCurr>On Nodes Main Menu>Solution>Define Loads>Apply>Magnetic>Other>AppCurrSeg>On Nodes Main Menu $>$ Solution $>$ Define Loads $>$ Apply $>$ Magnetic>Other $>$ AppMagFlux $>$ On Nodes Main Menu>Solution>Define Loads>Apply>Structural>Force/Moment>On Node Components Main Menu $>$ Solution $>$ Define Loads $>$ Apply $>$ Structural $>$ Force/Moment $>$ On Nodes Main Menu>Solution>Define Loads>Apply>Structural>Spectrum>MultiPtNod>On Nodes Main Menu>Solution>Define Loads>Apply>Structural>Spectrum>NodePSD>On Nodes Main Menu>Solution>Define Loads>Apply>Structural>Spectrum>SingIPtFor>On Nodes Main Menu>Solution>Define Loads>Apply>Thermal>Heat Flow>On Nodes

/FACET, Lab

Specifies the facet representation used to form solid model displays.
GRAPHICS: Style
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Lab

Valid labels:
FINE
Use finer tessellation to increase the number of facets for the display. Provides the best representation (but decreases speed of operation).

NORML

Use the basic number of facets for the display (default).

COAR

Use a limited number of facets for the display. This option will increase the speed of the operations, but may produce poor representations for some imported models.

WIRE

Display model with a wireframe representation (fast, but surfaces will not be shown).

Command Default

Basic number of facets.

Notes

Specifies the facet (or polygon) representation used to form solid model displays. Used only with the APLOT, ASUM, VPLOT, and VSUM commands.

This command is valid in any processor.

Menu Paths

Utility Menu>PlotCtrls>Style>Solid Model Facets

FATIGUE

Specifies "Fatigue data status" as the subsequent status topic.

PREP 7: Status
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

Notes

This is a status [STAT] topic command. Status topic commands are generated by the GUI and will appear in the log file (Jobname. LOG) if status is requested for some items under Utility Menu> List> Status. This command will be immediately followed by a STAT command, which will report the status for the specified topic.

If entered directly into the program, the STAT command should immediately follow this command.

Menu Paths

Utility Menu>List>Status>General Postproc>Fatigue Calcs

FC, MAT, Lab1, Lab2, DATA1, DATA2, DATA3, DATA4, DATA5, DATA6

Provides failure criteria information and activates a data table to input temperature-dependent stress and strain limits.

> PREP 7: Materials POST1: Failure Criteria
> MP ME ST PR PRN $<><><><><>$ DY PP $<>$ EME MFS

MAT

Material reference number. You can define failure criteria for up to 250 different materials.

Lab1

Type of data.

TEMP

Temperatures. Each of the materials you define can have a different set of temperatures to define the failure criteria.

EPEL

Strains.
S
Stresses.

Lab2

Specific criteria. Not used if LabI $=$ TEMP.
XTEN
Allowable tensile stress or strain in the x-direction. (Must be positive.)

XCMP

Allowable compressive stress or strain in the x-direction. (Defaults to negative of XTEN.)

YTEN

Allowable tensile stress or strain in the y-direction. (Must be positive.)

YCMP

Allowable compressive stress or strain in the y-direction. (Defaults to negative of YTEN.)

ZTEN

Allowable tensile stress or strain in the z-direction. (Must be positive.)
ZCMP
Allowable compressive stress or strain in the z-direction. (Defaults to negative of ZTEN.)
XY
Allowable XY stress or shear strain. (Must be positive.)
YZ
Allowable YZ stress or shear strain. (Must be positive.)
XZ
Allowable XZ stress or shear strain. (Must be positive.)
XYCP
XY coupling coefficient (Used only if $L a b 1=S$). Defaults to -1.0 .

YZCP

YZ coupling coefficient (Used only if Lab1 = S). Defaults to -1.0.

XZCP

XZ coupling coefficient (Used only if $L a b 1=S$). Defaults to -1.0 .
DATA1, DATA2, DATA3, . . . DATA6
Description of DATA1 through DATA 6 .
T1, T2, T3, T4, T5, T6
Temperature at which limit data is input. Used only when Lab1 = TEMP.
V1, V2, V3, V4, V5, V6
Value of limit stress or strain at temperature T1 through T6. Used only when Lab1 = S or EPEL.

Notes

The data table can be input in either PREP7 or POST1. This table is used only in POST1. When you postprocess failure criteria results defined via the FC command (PLESOL, PRESOL, PLNSOL, PRNSOL, PRRSOL, etc.), the active coordinate system must be the coordinate system of the material being analyzed. You do this using RSYS, SOLU. For layered applications, you also use the LAYER command. See the specific element documentation in the Element Reference for information on defining your coordinate system for layers.

Some plotting and printing functions will not support Failure Criteria for your PowerGraphics displays. This could result in minor changes to other data when Failure Criteria are applied. See the appropriate plot or print command documentation for more information.

Menu Paths

> Main Menu>General Postproc>Failure Criteria>Add/Edit
> Main Menu>General Postproc>Failure Criteria $>$ Temp Variation
> Main Menu $>$ Preprocessor $>$ Material Props $>$ Failure Criteria $>$ Add/Edit
> Main Menu>Preprocessor $>$ Material Props $>$ Failure Criteria $>$ Temp Variation

FCCHECK

Checks both the strain and stress input criteria for all materials.

> PREP 7:Materials POST1:Failure Criteria

Notes

Issue the FCCHECK command to check the completeness of the input during the input phase.

Menu Paths

Main Menu>General Postproc>Failure Criteria>Criteria Check Main Menu>Preprocessor>Material Props>Failure Criteria>Criteria Check

FCDELE, MAT

Deletes previously defined failure criterion data for the given material.

PREP 7: Materials POST1:Failure Criteria MP ME ST PR PRN <> <> <> <> <> DY PP <> EME MFS

MAT

Material number. Deletes all FC command input for this material.
A value of ALL deletes all FC command input for all materials.

Notes

This command is also valid in POST1.

Menu Paths

Main Menu>General Postproc>Failure Criteria>Delete Main Menu>Preprocessor>Material Props>Failure Criteria>Delete

FCLIST, MAT, --, TEMP

To list what the failure criteria is that you have input.
PREP 7:Materials
POST1:Failure Criteria

MAT
Material number (defaults to ALL for all materials).
--
Unused field.
TEMP
Temperature to be evaluated at (defaults to TUNIF).

Notes

This command allows you to see what you have already input for failure criteria using the FC commands.

Menu Paths

Main Menu>General Postproc>Failure Criteria>List
 Main Menu>Preprocessor>Material Props>Failure Criteria>List

FCUM, Oper, RFACT, IFACT
Specifies that force loads are to be accumulated.
SOLUTION:FE Forces
MP ME ST PR PRN <> <> <> EM EH <> PP <> EME MFS

Oper

Accumulation key:
REPL
Subsequent values replace the previous values (default).
ADD
Subsequent values are added to the previous values.
IGNO
Subsequent values are ignored.

RFACT

Scale factor for the real component. Zero (or blank) defaults to 1.0 . Use a small number for a zero scale factor.

IFACT
Scale factor for the imaginary component. Zero (or blank) defaults to 1.0. Use a small number for a zero scale factor.

Command Default

Replace previous values.

Notes

Allows repeated force load (force, heat flow, etc.) values to be replaced, added, or ignored. Operations apply to the selected nodes [NSEL]. and the force labels corresponding to the selected force labels [DOFSEL]. The operations occur when the next force specifications are defined. For example, issuing the command $\mathbf{F}, 1, \mathrm{FX}, 250$ after a previous $\mathbf{F}, 1, \mathrm{FX}, 200$ causes the current value of the force on node 1 in the x-direction to be 450 with the add operation, 250 with the replace operation, or 200 with the ignore operation. Scale factors are also available to multiply the next value before the add or replace operation. A scale factor of 2.0 with the previous "add" example results in a force of 700 . Scale factors are applied even if no previous values exist. Issue FCUM,STAT to show the current label, operation, and scale factors. Solid model boundary conditions are not affected by this command, but boundary conditions on the FE model are affected.

Note

FE boundary conditions may still be overwritten by existing solid model boundary conditions if a subsequent boundary condition transfer occurs.

FCUM does not work for tabular boundary conditions.
This command is also valid in PREP7.

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Settings $>$ Replace vs Add $>$ Forces Main Menu>Solution>Define Loads>Settings>Replace vs Add>Forces

FCTYP, Oper, Lab

Activates or removes failure-criteria types for postprocessing.

> MP ME ST PR PRN <><><><><> DY PP <> EME MFS

Oper

Operation key:
ADD
Activate failure-criteria types. This option is the default behavior.

DELE

Remove failure-criteria types.

Lab

Valid failure-criteria labels. If ALL, select all available (including user-defined) failure criteria.
EMAX
Maximum strain criterion (default)
SMAX
Maximum stress criterion (default)
TWSI
Tsai-Wu strength index (default)
TWSR
Inverse of Tsai-Wu strength ratio index (default)

HFIB

Hashin fiber failure criterion
HMAT
Hashin matrix failure criterion

PFIB

Puck fiber failure criterion
PMAT
Puck inter-fiber (matrix) failure criterion

USR1 through USR9

User-defined failure criteria

Command Default

FCTYP, ADD, EMAX, SMAX, TWSI, TWSR

Notes

The FCTYP command modifies the list of active failure criteria.
By default, active failure criteria include EMAX, SMAX, TWSI, and TWSR.
The command affects any subsequent postprocessing listing and plotting commands (such as PRESOL, PRNSOL, PLESOL, PLNSOL, and ETABLE).

A single FCTYP command allows up to six failure-criteria labels. If needed, reissue the command to activate or remove additional failure-criteria types.

Menu Paths

Menupath to be provided at release.

FDELE, NODE, Lab, NEND, NINC
Deletes force loads on nodes.
SOLUTION: FE Forces
MP ME ST PR PRN <> <> <> EM EH DY PP <> EME MFS

NODE

Node for which force is to be deleted. If ALL, NEND and NINC are ignored and forces are deleted on all selected nodes [NSEL]. If $N O D E=\mathrm{P}$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NODE.

Lab

Valid force label. If ALL, use all appropriate labels. Structural labels: FX, FY, or FZ (forces); MX, MY, or MZ (moments). Thermal labels: HEAT, HBOT, HE2, HE3, . . . HTOP (heat flow). Fluid labels: FLOW (fluid flow). Electric labels: AMPS (current flow), CHRG (electric charge). Magnetic labels: FLUX (magnetic flux); CSGX, CSGY, or CSGZ (magnetic current segments). FLOTRAN labels: FX, FY, or FZ (forces).

NEND, NINC
Delete forces from NODE to NEND (defaults to NODE) in steps of NINC (defaults to 1).

Notes

The node and the degree of freedom label corresponding to the force must be selected [NSEL, DOFSEL].
This command is also valid in PREP7.

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Delete>All Load Data>All Forces>On All Nodes Main Menu>Preprocessor>Loads>Define Loads>Delete>Electric>Excitation>AppCharge>On Nodes Main Menu $>$ Preprocessor>Loads $>$ Define Loads $>$ Delete $>$ Electric $>$ Excitation $>$ AppCurrent $>$ On Nodes Main Menu>Preprocessor>Loads>Define Loads>Delete>Electric>Excitation>ImprCurr>On Nodes Main Menu>Preprocessor>Loads>Define Loads>Delete>Fluid/ANSYS>Flow>On Nodes Main Menu>Preprocessor>Loads>Define Loads>Delete>Magnetic>Other>AppCurrSeg>On Nodes Main Menu>Preprocessor>Loads>Define Loads $>$ Delete $>$ Magnetic $>$ Other $>$ AppMagFlux $>$ On Nodes Main Menu>Preprocessor>Loads>Define Loads>Delete>Structural>Force/Moment>On Node Components
Main Menu>Preprocessor>Loads>Define Loads>Delete>Structural>Force/Moment>On Nodes Main Menu>Preprocessor>Loads>Define Loads>Delete>Structural>Spectrum>MultiPtNod>On Nodes
Main Menu>Preprocessor>Loads>Define Loads>Delete>Structural>Spectrum>NodePSD>On Nodes Main Menu>Preprocessor>Loads>Define Loads>Delete>Structural>Spectrum>SingIPtFor>On Nodes Main Menu>Preprocessor>Loads>Define Loads>Delete>Thermal>Heat Flow>On Nodes Main Menu>Solution>Define Loads>Delete>All Load Data>All Forces>On All Nodes Main Menu>Solution>Define Loads>Delete>Electric>Excitation>AppCharge>On Nodes Main Menu>Solution>Define Loads>Delete>Electric>Excitation>AppCurrent>On Nodes Main Menu>Solution>Define Loads>Delete>Electric>Excitation>ImprCurr>On Nodes Main Menu>Solution>Define Loads>Delete>Fluid/ANSYS>Flow>On Nodes Main Menu>Solution>Define Loads>Delete>Magnetic>Other>AppCurrSeg>On Nodes Main Menu>Solution>Define Loads>Delete>Magnetic>Other>AppMagFlux>On Nodes Main Menu>Solution>Define Loads>Delete>Structural>Force/Moment>On Node Components Main Menu>Solution>Define Loads>Delete>Structural>Force/Moment>On Nodes

Main Menu>Solution>Define Loads>Delete>Structural>Spectrum>MultiPtNod>On Nodes Main Menu>Solution>Define Loads>Delete>Structural>Spectrum>NodePSD>On Nodes Main Menu>Solution>Define Loads>Delete>Structural>Spectrum $>$ SingIPtFor>On Nodes Main Menu>Solution>Define Loads>Delete>Thermal>Heat Flow>On Nodes

/FDELE, Ident, Stat

Deletes a binary file after it is used.

SESSION:Files
MP ME ST PR PRN <> <> <> EM EH <> PP <> EME MFS

Ident

ANSYS file name identifier. Valid identifiers are: EMAT, ESAV, FULL, SUB, MODE, TRI, DSUB, USUB, OSAV, and SELD. See the Basic Analysis Guide for file descriptions.

Stat
Keep or delete key:
KEEP
Keep this file.
DELE
Delete (or do not write, if not necessary) this file.

Command Default

Keep all files.

Notes

Deletes as soon as possible (or prevents writing) a binary file created by the ANSYS program to save space.

Caution

Deleting files that are necessary for the next substep, load step, or analysis will prevent continuation of the run.

This command is valid only at the Begin Level.

Menu Paths

Utility Menu>File>ANSYS File Options

FE, NEV, CYCLE, FACT, Title

Defines a set of fatigue event parameters.

POST1:Fatigue
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

NEV

Reference number for this event (within MXEV).

CYCLE

Number of required cycles (defaults to 1). If -1 , erase all parameters and fatigue stresses for this event.
FACT
Scale factor to be applied to all loadings in this event (defaults to 1.0).

Title

User defined identification title for this event (up to 20 characters).

Command Default

Event assigned one cycle, unity scale factor, and no title.

Notes

Repeat FE command to define additional sets of event parameters (MXEV limit), to redefine event parameters, or to delete event stress conditions.

The set of fatigue event parameters is associated with all loadings and all locations. See the FTSIZE command for the maximum set of events (MXEV) allowed.

Menu Paths

Main Menu>General Postproc>Fatigue $>$ Assign Events
Main Menu>General Postproc>Fatigue>Erase Event Data

FEBODY

Specifies "Body loads on elements" as the subsequent status topic.

PREP 7: Status
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Notes

This is a status [STAT] topic command. Status topic commands are generated by the GUI and will appear in the log file (Jobname. LOG) if status is requested for some items under Utility Menu> List> Status. This command will be immediately followed by a STAT command, which will report the status for the specified topic.

If entered directly into the program, the STAT command should immediately follow this command.

Menu Paths

Utility Menu>List>Status>Solution>Body Loads

FECONS

Specifies "Constraints on nodes" as the subsequent status topic.

PREP7:Status
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Notes

This is a status [STAT] topic command. Status topic commands are generated by the GUI and will appear in the log file (Jobname. LOG) if status is requested for some items under Utility Menu> List> Status. This command will be immediately followed by a STAT command, which will report the status for the specified topic.

If entered directly into the program, the STAT command should immediately follow this command.

Menu Paths

Utility Menu>List>Status>Solution>DOF Constraints

FEFOR

Specifies "Forces on nodes" as the subsequent status topic.

PREP 7: Status
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Notes

This is a status [STAT] topic command. Status topic commands are generated by the GUI and will appear in the log file (Jobname. LOG) if status is requested for some items under Utility Menu> List> Status. This command will be immediately followed by a STAT command, which will report the status for the specified topic.

If entered directly into the program, the STAT command should immediately follow this command.

Menu Paths

Utility Menu>List>Status>Solution>Forces

FELIST, NEV1,NEV2,NINC

Lists the fatigue event parameters.

POST1:Fatigue
MP ME ST PR PRN <> <> <> <> <> DY PP <> EME MFS

NEV1, NEV2, NINC

List event parameters from NEV1 (defaults to 1) to NEV2 (defaults to NEV1) in steps of NINC (defaults to 1). If NEV1 = ALL, NEV2 and NINC are ignored and all events are listed. Fatigue event parameters are defined with the FE command.

Menu Paths

Main Menu>General Postproc>Fatigue>List Event Data

FESURF

Specifies "Surface loads on elements" as the subsequent status topic.

PREP 7:Status
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Notes

This is a status [STAT] topic command. Status topic commands are generated by the GUI and will appear in the log file (Jobname. LOG) if status is requested for some items under Utility Menu> List> Status. This command will be immediately followed by a STAT command, which will report the status for the specified topic.

If entered directly into the program, the STAT command should immediately follow this command.

Menu Paths

Utility Menu>List>Status>Solution>Surface Loads

FILE, Fname, Ext, --

Specifies the data file where results are to be found.

POST1:Set Up
POST26:Set Up

Fname

File name and directory path (248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

The file name defaults to Jobname.

Ext

Filename extension (8 character maximum).
If Fname is blank, the extension defaults to RST (for structural, fluid, or coupled-field analyses), to RTH (for thermal or electrical analyses), to RMG (for magnetic analyses), or to RFL (for FLOTRAN analyses). For postprocessing reduced structural analyses in POST26, use the RDSP extension for displacements from transient dynamic analyses or the RFRQ extension from harmonic response analyses. For postprocessing contact results corresponding to the initial contact state in POST1, use the RCN extension.
-
Unused field.

Command Default

Use the result file with the Jobname as Fname and with the extension corresponding to the analysis type.

Notes

Specifies the ANSYS data file where the results are to be found for postprocessing.

Menu Paths

Main Menu>General Postproc>Data \& File Opts
Main Menu>TimeHist Postpro>Settings>File
Utility Menu>File>List>Binary Files
Utility Menu>List>Files>Binary Files

FILEAUX2, Fname, Ident, --

Specifies the binary file to be dumped.

AUX2: Binary Files
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Fname

File name and directory path (248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

The file name defaults to the current Jobname if Ident is specified.

Ident

ANSYS filename identifier. See the Basic Analysis Guide for file descriptions and identifiers. If not an ANSYS identifier, Ident will be used as the filename extension.

Unused field.

Notes

Specifies the binary file to be dumped with the DUMP command.

Menu Paths

Utility Menu>File>List>Binary Files
Utility Menu>List>Files>Binary Files

FILEAUX3, Fname, Ext,--

Specifies the results file to be edited.

> AUX3: Results Files
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Fname

File name and directory path (248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

The file name defaults to the current Jobname if Ext is specified.

Ext

Filename extension (8 character maximum).

Unused field.

Notes

Specifies the results file to be edited.

Menu Paths

This command cannot be accessed from a menu.

FILEDISP, Fname, Ext

Specifies the file containing the graphics data.

> DISPLAY: Set Up
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Fname

File name and directory path (248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

Ext
Filename extension (8 character maximum).

Notes

Specifies the input file containing the graphics data (defaults to File. GRPH).

Menu Paths

It is part of the DISPLAY program.

FILL, NODE1, NODE2, NFILL, NSTRT, NINC, ITIME, INC, SPACE

Generates a line of nodes between two existing nodes.

PREP 7: Nodes
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

NODE1, NODE2

Beginning and ending nodes for fill-in. NODE1 defaults to next to last node specified, NODE2 defaults to last node specified. If NODE1 = P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI).

NFILL

Fill NFILL nodes between NODE1 and NODE2 (defaults to |NODE2-NODE1|-1). NFILL must be positive.

NSTRT

Node number assigned to first filled-in node (defaults to NODE1 + NINC).

NINC

Add this increment to each of the remaining filled-in node numbers (may be positive or negative). Defaults to the integer result of (NODE2-NODE1)/(NFILL + 1), i.e., linear interpolation. If the default evaluates to zero, or if zero is input, NINC is set to 1 .

ITIME, INC

Do fill-in operation a total of ITIMES, incrementing NODE1, NODE 2 and NSTRT by INC each time after the first. ITIME and INC both default to 1 .

SPACE
Spacing ratio. Ratio of last division size to first division size. If > 1.0, divisions increase. If < 1.0, divisions decrease. Ratio defaults to 1.0 (uniform spacing).

Notes

Generates a line of nodes (in the active coordinate system) between two existing nodes. The two nodes may have been defined in any coordinate system. Nodal locations and rotation angles are determined by interpolation. Any number of nodes may be filled-in and any node number sequence may be assigned. See the CSCIR command when filling across the 180° singularity line in a non-Cartesian system.

Menu Paths

Main Menu>Preprocessor>Modeling>Create>Nodes>Fill between Nds

FILLDATA, IR, LSTRT, LSTOP, LINC, VALUE, DVAL
Fills a variable by a ramp function.
POST26:Operations
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
IR
Define data table as variable $I R$ (2 to $N V$ [NUMVAR]).

LSTRT

Start at location LSTRT (defaults to 1).

LSTOP

Stop at location LSTOP (defaults to maximum location as determined from data previously stored.

LINC

Fill every LINC location between LSTRT and LSTOP (defaults to 1).

value

Value assigned to location LSTRT.
DVAL
Increment value of previous filled location by DVAL and assign sum to next location to be filled (may be positive or negative.)

Notes

Locations may be filled continuously or at regular intervals (LINC). Previously defined data at a location will be overwritten.

Menu Paths

Main Menu>TimeHist Postpro>Table Operations>Fill Data

/FILNAME, Fname, Key

Changes the Jobname for the analysis.

> SESSION: Run Controls
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Fname

Name (32 characters maximum) to be used as the Jobname. Defaults to the initial Jobname as specified on the ANSYS execution command, or to file if none specified.
Key
Specify whether to use the existing log, error, lock, and page files or start new files.
0, OFF
Continue using current log, error, lock, and page files.
1, ON
Start new log, error, lock, and page files (old log and error files are closed and saved, but old lock and page files are deleted). Existing log and error files are appended.

Notes

All subsequently created files will be named with this Jobname if Key $=0$. Use Key $=1$ to start new log, error, lock, and page files. The previous Jobname is typically defined on the ANSYS program execution line (see the Operations Guide). This command is useful when different groups of files created throughout the run are to have different names. For example, the command may be used before each substructure pass to avoid overwriting files or having to rename each file individually.

This command is valid only at the Begin level.

Menu Paths

Utility Menu>File>Change Jobname

FINISH

Exits normally from a processor.

> SESSION: Processor Entry
> DISP LAY:Action
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Notes

Exits any of the ANSYS processors or the DISPLAY program. For the ANSYS processors, data will remain intact in the database but the database is not automatically written to a file (use the SAVE command to write the database to a file). See also the /QUIT command for an alternate processor exit command. If exiting POST1, POST26, or OPT, see additional notes below.

POST1: Data in the database will remain intact, including the POST1 element table data, the path table data, the fatigue table data, and the load case pointers.

POST26: Data in the database will remain intact, except that POST26 variables are erased and specification commands (such as FILE, PRTIME, NPRINT, etc.) are reset. Use the /QUIT command to exit the processor and bypass these exceptions.

OPT: Current optimization data are written to File. OPT for possible resume later [OPRESU]. See also the OPSAVE command to write optimization data.

This command is valid in any processor. This command is not valid at the Begin level.

Menu Paths

Main Menu>DesignXplorer>Solution>Solve
Main Menu>Finish

FIPLOT, Option, Filename, Ext, Dir, REQLAYER, FSPRINT

Plots a FiberSIM model.
MP ME ST PR PRN <> <> <> <> <> <> PP $<>$ EME MFS

Option

One of the following options:

FIBER

Displays a FiberSIM model with graphic settings.

ORIENT

Displays orientation lines on a FiberSIM model, as follows:
/DEVICE,VECTOR -- Activates vector mode.
/PSYMB,LAYR, N-- Activates layer plotting, where N indicates the requested layer number.
BOTH
Displays both FiberSIM and ANSYS models. To activate translucency, issue /TRLCY,TLEVEL, where TLEVEL represents the translucency level ($0.0=$ opaque to $1.0=$ transparent $)$. The recommended value is 0.9 .

NOTHIC

Displays elements that include no FiberSIM layers. This option changes the currently selected set of elements.

RESTORE

After issuing this command with Option = NOTHIC, this option restores the previously selected element set.

Filename

Name of the file containing the FiberSIM information.

Ext

Extension of the name of the file containing the FiberSIM information. The default is xml.

Dir

Directory where the file is located.

REQLAYER

The layer number being requested.

FSPRIN

Debug switch:
0
No debug. This value is the default.
1
Debug output. Use the debugging option for very small files only.

Notes

The FIPLOT command plots FiberSIM models, and the interaction of those models with ANSYS models. The FIBER, ORIENT, and BOTH options plot the FiberSIM facets as SHELL181 elements.

If Option $=$ NOTHIC, all other arguments are ignored.
For more information, see The FiberSIM-ANSYS Interface in the Structural Analysis Guide.

Menu Paths

This command cannot be accessed from a menu.

FITEM, NFIELD, ITEM, ITEMY, ITEMZ
Identifies items chosen by a picking operation (GUI).
DATABASE: Picking
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

NFIELD

Field number on the command which uses the picking data. (Count the command name as a field, so that a 2 indicates the first command argument, 3 the second command argument, etc.) The corresponding field on the command will have a P51X label.

ITEM

Entity number of the entity picked. Negative entity numbers are used to indicate a range of entities. If the item picked is a coordinate location, then this field represents the X-coordinate. See also the FLST command.

ITEMY, ITEMZ
Y and Z coordinates of a picked coordinate location. ITEM represents the X coordinate. See also the FLST command.

Notes

This is a command generated by the GUI and will appear in the log file (Jobname. LOG) if graphical picking is used. This command is not intended to be typed in directly in an ANSYS session (although it can be included in an input file for batch input or for use with the /INPUT command).

On the log file, a set of FITEM commands is preceded by one FLST command which defines the picking specifications for that pick operation. The data listed in the FITEM commands are used by the first subsequent command containing a P51X label in one of its fields.

Caution

For a given entity type, a list containing an ITEM that is larger than the maximum defined entity, could deplete the system memory and produce unpredictable results.

This command is valid in any processor.

Menu Paths

This command cannot be accessed from a menu.

FJ, ELEM, LABEL, VALUE

Specify forces or moments on the components of the relative motion of a joint element.

SOLUTION:FE Forces
MP ME ST PR PRN <> <> <> <> <> DY PP <> EME MFS

ELEM

Element number or ALL to specify all joint elements.

LABEL

Valid labels:
FX
Force in local x direction.
FY
Force in local y direction.
FZ
Force in local z direction.
MX
Moment about local x axis.
MY
Moment about local y axis.
MZ
Moment about local z axis.

VALUE

Value of the label.

Notes

Valid for MPC184 (joint options in KEYOPT(1)).
See FJDELE for information on deleting forces and moments.

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Force/Moment>On Joint Elems Main Menu>Solution>Define Loads>Apply>Structural>Force/Moment>On Joint Elems

FJDELE, $E L E M, L A B$

Deletes forces (or moments) on the components of the relative motion of a joint element.
SOLUTION:FE Forces
MP ME ST PR PRN <> <> <> <> <> DY PP <> EME MFS

ELEM

Element number, or ALL. (leaving this blank defaults to ALL)

LAB

Valid labels are:

FX
Force in local x direction.
FY
Force in local y direction.
FZ
Force in local z direction.
MX
Moment about local x axis.
MY
Moment about local y axis.
MZ
Moment about local z axis.
ALL, or (blank)
Delete all valid forces or moments.

Notes

Valid for MPC184 (joint options in KEYOPT(1)).
See FJ for information on specifying forces (or moments).

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Delete>All Load Data>All Forces>On Joint Elems Main Menu>Preprocessor>Loads>Define Loads>Delete>Structural>Force/Moment>On Joint Elems Main Menu>Solution>Define Loads>Delete>All Load Data>All Forces>On Joint Elems
Main Menu>Solution>Define Loads $>$ Delete $>$ Structural $>$ Force/Moment>On Joint Elems

FJLIST, Elem

Lists forces and moments applied on joint elements.
SOLUTION:FE Forces
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS
Elem
Element number or ALL (or blank). Lists joint element forces and moments on the specified element(s).

Notes

Valid for MPC184 joint elements. See FJ for information on specifying forces and moments.

Menu Paths

Utility Menu>List>Loads>Joint Element Forces>On Picked Element

FK, KPOI, Lab, VALUE, VALUE2
Defines force loads at keypoints.

> SOLUTION: Solid Forces
> MP ME ST PR PRN <> <> <> EM EH <> PP <> EME MFS

KPOI

Keypoint at which force is to be specified. If ALL, apply to all selected keypoints [KSEL]. If KPOI = P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for KPOI.

Lab

Valid force label. Structural labels: FX, FY, or FZ (forces); MX, MY, or MZ (moments). Thermal labels: HEAT, HBOT, HE2, HE3, . . . HTOP (heat flow). Fluid labels: FLOW (fluid flow). Electric labels: AMPS (current flow), CHRG (electric charge). Magnetic labels: FLUX (magnetic flux); CSGX, CSGY, or CSGZ (magnetic current segments).

VALUE

Force value or table name reference for specifying tabular boundary conditions. To specify a table, enclose the table name in percent signs (\%), e.g., FK, KPOI, HEAT,\%t abname\%). Use the *DIM command to define a table.

VALUE2

Second force value (if any). If the analysis type and the force allow a complex input, VALUE (above) is the real component and VALUE2 is the imaginary component.

Notes

Forces may be transferred from keypoints to nodes with the FTRAN or SBCTRAN commands. See the F command for a description of force loads.

Tabular boundary conditions (VALUE $=\%$ tabname\%) are available only for the following labels: Fluid (FLOW), Electric (AMPS), Structural force (FX, FY, FZ, MX, MY, MZ), and Thermal (HEAT, HBOT, HE2, HE3, . . ., HTOP).

This command is also valid in PREP7.

Menu Paths

> Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Excitation>AppCharge>On Keypoints
> Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Excitation>AppCurrent>On Keypoints Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Excitation>ImprCurr>On Keypoints Main Menu>Preprocessor>Loads>Define Loads>Apply>Magnetic>Other>AppCurrSeg>On Keypoints Main Menu>Preprocessor>Loads>Define Loads>Apply>Magnetic>Other>AppMagFlux>On Keypoints Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Force/Moment>On Keypoints Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Spectrum>MultiPtNod>On Keypoints
> Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Spectrum>NodePSD>On Keypoints Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Spectrum>SingIPtFor>On Keypoints
> Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Heat Flow>On Keypoints
> Main Menu>Solution>Define Loads>Apply>Electric>Excitation>AppCharge>On Keypoints
> Main Menu>Solution>Define Loads>Apply>Electric>Excitation>AppCurrent>On Keypoints

Main Menu>Solution>Define Loads>Apply>Electric>Excitation>ImprCurr>On Keypoints Main Menu>Solution>Define Loads>Apply>Magnetic>Other>AppCurrSeg>On Keypoints Main Menu>Solution>Define Loads>Apply>Magnetic>Other>AppMagFlux>On Keypoints Main Menu>Solution>Define Loads>Apply>Structural>Force/Moment>On Keypoints Main Menu>Solution>Define Loads>Apply>Structural>Spectrum>MultiPtNod>On Keypoints Main Menu>Solution>Define Loads>Apply>Structural>Spectrum>NodePSD>On Keypoints Main Menu>Solution>Define Loads>Apply>Structural>Spectrum>SingIPtFor>On Keypoints Main Menu>Solution>Define Loads>Apply>Thermal>Heat Flow>On Keypoints

FKDELE, KPOI, Lab
Deletes force loads at a keypoint.
SOLUTION: Solid Forces
MP ME ST PR PRN <> <> <> EM EH <> PP <> EME MFS

KPOI

Keypoint at which force is to be deleted. If ALL, delete forces at all selected keypoints [KSEL]. If KPOI
= P , graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI).
A component name may also be substituted for KPOI.

Lab

Valid force label. If ALL, use all appropriate labels. See the FDELE command for labels.

Notes

Deletes force loads (and all corresponding finite element loads) at a keypoint. See the FDELE command for details.

This command is also valid in PREP7.

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Delete>All Load Data>All Forces>On All KPs Main Menu>Preprocessor>Loads>Define Loads>Delete>Electric>Excitation>AppCharge>On Keypoints Main Menu>Preprocessor>Loads>Define Loads>Delete>Electric>Excitation>AppCurrent>On Keypoints
Main Menu>Preprocessor>Loads>Define Loads>Delete>Electric>Excitation>ImprCurr>On Keypoints Main Menu>Preprocessor>Loads>Define Loads>Delete>Fluid/ANSYS>Flow>On Keypoints Main Menu>Preprocessor>Loads>Define Loads>Delete>Magnetic>Other>AppCurrSeg>On Keypoints Main Menu>Preprocessor>Loads>Define Loads>Delete>Magnetic>Other>AppMagFlux>On Keypoints Main Menu>Preprocessor>Loads>Define Loads>Delete>Structural>Force/Moment>On Keypoints Main Menu>Preprocessor>Loads>Define Loads>Delete>Structural>Spectrum>MultiPtNod>On Keypoints
Main Menu>Preprocessor>Loads>Define Loads>Delete>Structural>Spectrum>NodePSD>On Keypoints
Main Menu>Preprocessor>Loads>Define Loads>Delete>Structural>Spectrum>SingIPtFor>On Keypoints
Main Menu>Preprocessor>Loads>Define Loads>Delete>Thermal>Heat Flow>On Keypoints Main Menu>Solution>Define Loads>Delete>All Load Data>All Forces>On All KPs
Main Menu>Solution>Define Loads>Delete>Electric>Excitation>AppCharge>On Keypoints

Main Menu>Solution>Define Loads>Delete>Electric>Excitation>AppCurrent>On Keypoints Main Menu>Solution>Define Loads>Delete>Electric>Excitation>ImprCurr>On Keypoints Main Menu>Solution>Define Loads>Delete>Fluid/ANSYS>Flow>On Keypoints Main Menu>Solution>Define Loads>Delete>Magnetic>Other>AppCurrSeg>On Keypoints Main Menu>Solution>Define Loads>Delete>Magnetic>Other>AppMagFlux>On Keypoints Main Menu>Solution>Define Loads>Delete>Structural>Force/Moment>On Keypoints Main Menu>Solution>Define Loads>Delete>Structural>Spectrum>MultiPtNod>On Keypoints Main Menu>Solution>Define Loads>Delete>Structural>Spectrum>NodePSD>On Keypoints Main Menu>Solution>Define Loads>Delete>Structural>Spectrum>SingIPtFor>On Keypoints Main Menu>Solution>Define Loads>Delete>Thermal>Heat Flow>On Keypoints

FKLIST, KPOI, Lab
Lists the forces at keypoints.
SOLUTION: Solid Forces
MP ME ST PR PRN <> <> <> EM EH <> PP <> EME MFS
KPOI
List forces at this keypoint. If ALL (default), list for all selected keypoints [KSEL]. If KPOI = P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for KPOI.

Lab
Force label to be listed (defaults to ALL). See the DOFSEL command for labels.

Notes

Listing applies to the selected keypoints [KSEL] and the selected force labels [DOFSEL].
This command is valid in any processor.

Menu Paths

Utility Menu>List>Loads>Forces>On All Keypoints Utility Menu>List>Loads>Forces>On Picked KPs

FL, NLOC, NODE, SCFX, SCFY, SCFZ, Title
Defines a set of fatigue location parameters.

> POST1:Fatigue
> MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

NLOC

Reference number for this location (within MXLOC). When defining a new location, defaults to lowest unused location. If the specified $N O D E$ is already associated with a location, $N L O C$ defaults to that existing location.

NODE

Node number corresponding to this location (must be unique). Used only to associate a node with a new location or to find an existing location (if $N L O C$ is not input). If $N O D E=-1$ (or redefined), erase all parameters and fatigue stresses for this location.

SCFX, SCFY, SCFZ

Stress concentration factors applied to the total stresses. Factors are applied in the global X, Y, and Z directions unless the axisymmetric option of the FSSECT is used (i.e., RHO is nonzero), in which case the factors are applied in the section x, y, and z (radial, axial, and hoop) directions.

Title

User-defined title for this location (up to 20 characters).

Notes

Repeat FL command to define additional sets of location parameters (MXLOC limit), to redefine location parameters, or to delete location stress conditions.

One location must be defined for each node of interest and only one node can be associated with each location. See the FTSIZE command for the maximum locations (MXLOC) allowed. A location will be automatically defined for a node not having a location when the FSSECT, FSNODE, or FS command is issued. Automatically defined locations are assigned the lowest available location number, unity stress concentration factors, and no title.

Menu Paths

Main Menu>General Postproc>Fatigue>Stress Locations

FLDATA, Name, Label, Value

Sets up a FLOTRAN analysis.

MP <> <> <> <> <> <> FL <> <> <> PP <> <> <>

Name

The name identifying the group of FLOTRAN parameters being defined or controlled on this command.

Label

The label of the specific FLOTRAN parameter being input or controlled. Label determines the meaning of the Value argument.

Value

The numeric value of an input item, the logical value of a switch (T or F, for example), or an alphanumeric label, depending on the Label argument.

Notes

The FLDATA command is used to define FLOTRAN-specific input data, solution controls, and output controls. It is valid only with the FLOTRAN CFD option.

The FLDATA command controls groups of FLOTRAN parameters, and the group name is input as the first argument, Name.

To give you the ability to link directly to the documentation on any of these groups, we have documented each group under its own name--from FLDATA1 through FLDATA36. For example, documentation on FLDATA with the first argument set to SOLU is documented as the FLDATA1 command. You may enter the command with either name--FLDATA or FLDATA1, and you must remember to input the appropriate first argument, as shown in the list below.

Option and Output Control Commands

FLDATA1,SOLU	Controls which features of the solution algorithm are activated. FLDATA2,ITER
FLDATA3,TERM	Sets iteration and output controls for steady state analyses. Sets the convergence monitors for the pressure and temperature equations.
FLDATA4,TIME	Sets controls for transient analyses based on transient time and con- vergence monitors or sets time integration method.
FLDATA4A,STEP	Sets output controls for transient analyses based on number of time steps.
FLDATA5,OUTP	Sets output and storage controls.
FLDATA6,CONV	Controls the output of the convergence monitor.

Property Definition Commands

FLDATA7,PROT Specifies the type of fluid property.
FLDATA8,NOMI Specifies the NOMI coefficient of the fluid property equation.
FLDATA9,COF1 Specifies the COF1 coefficient of the fluid property equation.
FLDATA10,COF2 Specifies the COF2 coefficient of the fluid property equation.
FLDATA11,COF3
Specifies the COF3 coefficient of the fluid property equation.
FLDATA12,PROP Sets the property update frequency flag.
FLDATA13,VARY Sets the property variation flag.

Operating Condition Commands

FLDATA14,TEMP Specifies the reference temperature.
FLDATA15,PRES Specifies the reference pressure.
FLDATA16,BULK Specifies the bulk modulus parameter.
FLDATA17, GAMM Specifies the specific heat ratio.

Algebraic Solver Commands

FLDATA18, METH Selects the algebraic solver.
FLDATA19,TDMA
FLDATA20,SRCH
FLDATA20A,PGMR Specifies the amount of fill-in when preconditioning the coefficient matrix.

FLDATA20B,PBCGM
FLDATA21,CONV
Specifies the number of fill-ins for the ILU preconditioner.
Specifies the solver convergence criterion.
FLDATA22,MAX
Maximum number of semi-direct iterations.
FLDATA23,DELT Specifies the solver minimum normalized rate of change.

Turbulence Commands

FLDATA24,TURB	Sets the turbulence model and the constants used in the Standard kε Model and the Zero Equation Turbulence Model.
FLDATA24A,RNGT	Sets constants for the Re-Normalized Group Turbulence Model (RNG).
FLDATA24B,NKET	Sets constants for the $k-\varepsilon$ Turbulence Model due to Shih (NKE).
FLDATA24C, GIRT	Sets constants for the Nonlinear Turbulence Model of Girimaji (GIR).
FLDATA24D, SZLT	Sets constants for the Shih, Zhu, Lumley Turbulence Model (SZL).
FLDATA24E, SKWT	Sets constants for the k-w turbulence model.
FLDATA24F, SST1	Sets the turbulent production clip factor for the Shear Stress Transport (SST) turbulence model.
FLDATA24G, SST1	Sets constants in the k-w regime for the Shear Stress Transport (SST) turbulence model.
FLDATA24H, SST2	Sets constants in the $k-\varepsilon$ regime for the Shear Stress Transport (SST) turbulence model.
Stability Control Commands	
FLDATA25, RELX	Sets solution and property relaxation factors.
FLDATA26,STAB	Sets stability controls.
Miscellaneous Commands	
FLDATA27,PRIN	Controls printing flags.
FLDATA28,MODR	Specifies that variable results are to be replaced.
FLDATA29,MODV	Re-initializes a results variable.
FLDATA30,QUAD	Controls the quadrature orders.
FLDATA31,CAPP	Specifies dependent variable caps.
FLDATA32,REST	Controls restart options.
FLDATA33,ADVM	Specifies the approach to discretize the advection term.
FLDATA34,MIR	Sets modified inertial relaxation factors.
FLDATA35,VFTOL	Specifies tolerances for the lower and upper bound of the volume fraction.
FLDATA36,AMBV	Specifies ambient reference values outside of the fluid for the volume of fluid (VOF) method.
FLDATA37,ALGR	Specifies segregated solution or film coefficient algorithms.
FLDATA38,MASS	Specifies the mass type for a fluid transient analysis.
FLDATA39,REMESH	Specifies remeshing parameters for transient fluid flow and fluid-solid interaction analyses.
FLDATA40,WADV	Controls activation of thermal stabilization near walls.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.	
Menu Paths	
Main Menu>Pre Main Menu>Pre Main Menu>Pre Main Menu>Sol	rocessor>FLOTRAN Set Up>Advection rocessor>FLOTRAN Set Up>Algorithm Ctrl rocessor>FLOTRAN Set Up>Execution Ctrl ion>FLOTRAN Set Up>Advection

```
Main Menu>Solution>FLOTRAN Set Up>Algorithm Ctrl
Main Menu>Solution>FLOTRAN Set Up>Execution Ctrl
```


FLDATA1, SOLU, Label, Value

Controls which features of the solution algorithm are activated.

PREP 7:FLOTRAN Options
MP <> <> <> <> <> <> FL <> <> <> PP <> <> <>
SOLU
Enter the word SOLU in this field.
FLDATA1,SOLU is the FLDATA command with its first argument set to SOLU. It can be entered into the program as either FLDATA1,SOLU,Label,Value or FLDATA,SOLU,Label,Value where Label and Value are as described below. See the FLDATA command for other FLOTRAN CFD input choices.

Label

Solution algorithm choices:
FLOW
Solves the momentum and pressure equations. Defaults to TRUE (on).

TURB

Activates the turbulence model. Defaults to FALSE (off).
TEMP
Solves the temperature equation. Defaults to FALSE (off).

COMP

Uses the compressible algorithm. Defaults to FALSE (off).
SWRL
Activates the swirl option. Defaults to FALSE (off).
TRAN
Activates the transient solution algorithm. Defaults to FALSE (off).

SPEC

Activates multiple species transport. Defaults to FALSE (off).
IVSH
Activates viscous heating for incompressible flow. Defaults to FALSE (off).
VOF
Activates volume of fluid method. Defaults to FALSE (off).
SFTS
Activates surface tension. Defaults to FALSE (off).
ALE
Activates Arbitrary Lagrangian-Eulerian formulation. Defaults to FALSE (off).
RDSF
Activates the surface-to-surface radiation solution. Defaults to TRUE (on).

Value

Value controlling Label:

TRUE or T

Turn this feature on.

FALSE or F

Turn this feature off.

Notes

Repeat command to set each Label as required.
The analyst must choose the appropriate features, as FLOTRAN will not determine, for example, whether or not the case is turbulent or whether or not the compressible algorithm is appropriate.

SWRL should only be activated for axisymmetric cases when there is a velocity component normal to the axisymmetric plane.

Generally, the use of the compressible algorithm (COMP) is not warranted for Mach numbers less than 0.3 . Density may be assumed to vary via the ideal gas law without activating the compressible option.

If fluid properties are not a function of temperature in non-adiabatic flow problems, it is not necessary to activate the flow (FLOW) and temperature (TEMP) solutions together. First solve the flow problem and then restart to solve the temperature equation.

For compressible flow, FLOTRAN automatically includes viscous heating.
When the Arbitrary Lagrangian-Eulerian (ALE) formulation is on , FLOTRAN allows the fluid nodes to move in a manner that satisfies the displacement boundary conditions.

See also the FLDATA2,ITER, FLDATA3,TERM, FLDATA4,TIME, FLDATA4A,STEP, FLDATA5,OUTP, and FLDATA6,CONV commands for other Solution and Output Controls.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>FLOTRAN Set Up>Solution Options
 Main Menu>Solution>FLOTRAN Set Up>Solution Options

FLDATA2, ITER, Label, Value

Sets iteration and output controls for steady state analyses.

PREP 7: FLOTRAN Options
MP <> <> <> <> <> <> FL <> <> <> PP <> <> <>
ITER
Enter the word ITER in this field.
FLDATA2,ITER is the FLDATA command with its first argument set to ITER. It can be entered into the program as either FLDATA2,ITER,Label,Value or FLDATA,ITER,Label,Value where Label and Value are as described below. See the FLDATA command for other FLOTRAN CFD input choices.

Label

Type of iteration control (dictates the meaning of Value):

EXEC

Value is the number of global iterations, defined as the sequential solution of the governing equations of all the features activated, to be performed during this execution of FLOTRAN if the case is steady state. Defaults to Value $=10$.

APPE
Value is the number of steady state global iterations between appends to the results file (Jobname. RFL). This feature is used to ensure that restarts can be made from earlier points if unforeseen difficulties occur before the end of the analysis. The default value implies that results will be saved only for the initial $\left(0^{\text {th }}\right)$ iteration and the final global iteration. Saving many intermediate results can produce a large results file. Defaults to Value $=0$ (implies FLDATA2,ITER,EXEC).

If you are creating domain files (jobname. pv_0000n) for use by ICEM CFD's PV3 postprocessing visualization tool, this sets the frequency with which domain files are written. See FLDATA5 for more details.

OVER
Value is the number of steady state global iterations between overwrites of a temporary set of results in the results file (Jobname. RFL). (This temporary set of results will itself be overwritten by the set stored for Label = APPE or at the end of the run.) OVER enables the user to retain the most up-to-date set of results without having the results file continue to grow in size. Defaults to Value $=0$ (no overwrites will be made).

Value

Number of iterations for Label above.

Notes

Repeat command to set each Label as required.
Sets the number of global iterations to control the length of execution for steady state analyses, the frequency with which results are added to the results file (Jobname. RFL), and the frequency with which results are overwritten in the results file. Also sets the frequency with which the domain files, used by the ICEM PV3 postprocessing visualization tool, are written. For more information about domain files, see the FLDATA5,OUTP,DOMA command.

See also the FLDATA1,SOLU, FLDATA3,TERM, FLDATA4,TIME, FLDATA4A,STEP, FLDATA5,OUTP, and FLDATA6,CONV commands for other Solution and Output Controls.

This command is accessible in the menu if FLDATA1,SOLU,TRAN,FALSE has been issued (default).
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>FLOTRAN Set Up>Execution Ctrl Main Menu>Solution>FLOTRAN Set Up>Execution Ctrl

FLDATA3, TERM, Label, Value
Sets the convergence monitors for the degree of freedom set.
PREP 7: FLOTRAN Options
$\mathrm{MP}<><><><><\rangle<\rangle \mathrm{FL}\rangle\rangle\rangle \mathrm{PP}\rangle<\rangle<\rangle$
TERM
Enter the word TERM in this field.
FLDATA3,TERM is the FLDATA command with its first argument set to TERM. It can be entered into the program as either FLDATA3,TERM,Label,Val ue or FLDATA,TERM,Label,Value where Label and Value are as described below. See the FLDATA command for other FLOTRAN CFD input choices.

Label
Type of convergence monitor:

PRES

Steady-state run will not terminate until the convergence monitor for pressure falls below Value, unless the specified number of global iterations has been executed. Defaults to Value $=1.0 \times 10^{-8}$.

TEMP
Steady-state run (with the temperature equation solution activated) will not terminate until the convergence monitor for temperature falls below Value, unless the specified number of global iterations has been executed. Defaults to Value $=1.0 \times 10^{-8}$.

VX
Steady-state run will not terminate until the convergence monitor for X velocity component falls below Value, unless the specified number of global iterations has been executed. Defaults to Value $=1.0 \times 10^{-2}$.

VY
Steady-state run will not terminate until the convergence monitor for Y velocity component falls below Value, unless the specified number of global iterations has been executed. Defaults to Value $=1.0 \times 10^{-2}$.

VZ
Steady-state run will not terminate until the convergence monitor for Z velocity component falls below Value, unless the specified number of global iterations has been executed. Defaults to Value $=1.0 \times 10^{-2}$.

ENKE

Steady-state run will not terminate until the convergence monitor for turbulent kinetic energy falls below Value, unless the specified number of global iterations has been executed. Defaults to Value $=1.0 \times 10^{-2}$.

ENDS

Steady-state run will not terminate until the convergence monitor for turbulence dissipation falls below Value, unless the specified number of global iterations has been executed. Defaults to Value $=1.0 \times 10^{-2}$.

Value

Value of convergence monitor criterion, above.

Notes

Repeat command to set each Label as required.
The convergence monitors appear as output for each degree of freedom for each global iteration. The value is calculated for each degree of freedom individually by summing the absolute value of the change in solution between global iterations for all the nodes and dividing it by the sum of the absolute values of the solution for all the nodes. It is an approximation of the normalized rate of change of the solution between global iterations.

All specified criteria must be met before the case is terminated.
If a termination criterion for a specific label is set negative, the termination check is ignored for that particular DOF.

See also the FLDATA1,SOLU, FLDATA2,ITER,FLDATA4,TIME, FLDATA4A,STEP, FLDATA5,OUTP, and FLDATA6,CONV commands for other Solution and Output Controls.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>FLOTRAN Set Up>Execution Ctrl Main Menu>Solution>FLOTRAN Set Up>Execution Ctrl

FLDATA4, TIME, Label, Value

Sets controls for transient analyses based on transient time and convergence monitors or sets time integration method.

PREP 7: FLOTRAN Options
MP <> <> <> <> <> <> FL <> <> <> PP <> <> <>
TIME
Enter the word TIME in this field.

FLDATA4,TIME is the FLDATA command with its first argument set to TIME. It can be entered into the program as either FLDATA4,TIME,Label,Value or FLDATA,TIME,Label,Val ue where Label and Value are as described below. See the FLDATA command for other FLOTRAN CFD input choices.

Label

Type of transient analysis control or time integration method (dictates the meaning of Value):

STEP

Value controls the time step size. If Value is greater than zero, Value is the time step size. If Value is less than zero, the program chooses the time step, according to the following (Value defaults to -1):

1
The resulting time step will be small enough to prevent the passage of an arbitrarily small fluid parcel through more than one element length in a single time step.

2
This choice is only applicable for compressible analyses, and is equivalent to the Courant limit. The time step is small enough to prevent a pressure signal from propagating through more than one element during a single time step.
3
This choice is only applicable for compressible analyses. The smaller of the two time steps computed for options -1 and -2 is used.

4
This choice is applicable to "conduction only" cases (FLDATA1,SOLU,FLOW,F). The resulting time step prevents an arbitrarily small "parcel of heat" from diffusing or conducting through more than one element within a time step.

ISTEP

Value is the time step size for the first time step in an analysis using a FLOTRAN-calculated time step size (STEP = -1 through -4).

BC

Value is a flag indicating whether a transient boundary condition should be applied as a step change (when Value $=0$) or as a linear ramp (Value $=1$). This label is analogous to the ANSYS command KBC, except that the default for FLOTRAN is a step change. Tabular boundary conditions do not support ramping and instead apply their full value regardless of the KBC setting.

NUMB

Value is the number of time steps which will be executed unless the transient end time has been encountered first.

GLOB

Value is the number of global iterations per time step. The user may elect to set this to a high value (typically between 30 and 50), and expect the time step to converge to the convergence criterion set by the FLDATA3,TERM command before completing Value iterations. Default to Value $=10$.

TEND

Value is the transient end time. This time is used for the calculation of ramped transient boundary conditions. The case will execute until this end time if the number of time steps specified is large enough. Defaults to Value $=1.0 \times 10^{+6}$.

APPE

Value is the results output frequency based on transient time. Every Value seconds in the transient, results are written to the Jobname.RFL file. If you are creating domain files (jobname.pv_0000n) for use by ICEM CFD's PV3 postprocessing visualization tool, this sets the frequency with which domain files are written. See FLDATA5 for more details. Defaults to Value $=1.0 \times 10^{+6}$.

SUMF
Value is the output summary frequency based on transient time. Every Value seconds in the transient, a results summary is written to the Jobname. PFL file.

Note

A summary will always be written when a set of results is written to the Jobname. RFL file. Defaults to Value $=1.0 \times 10^{+6}$.

OVER

Value is the time interval between overwrites of the temporary set of results in the results file (Jobname. RFL). This feature enables the user to retain the most up-to-date set of results without having the results file continue to grow in size. Defaults to Value $=0$ (no overwrites will be made).

PRES

If the maximum number of global iterations per time step has not been reached, the time step will terminate if the convergence monitor for pressure falls below Value. Defaults to Value $=1.0 \mathrm{x}$ 10^{-6}.

TEMP
If the maximum number of global iterations per time step has not been reached, the time step will terminate if the convergence monitor for temperature falls below Value. Defaults to Value $=1.0$ $\times 10^{-6}$.
vx
If the maximum number of global iterations per time step has not been reached, the time step will terminate if the convergence monitor for X velocity component falls below Value. Defaults to Value $=1.0 \times 10^{-2}$.
VY
If the maximum number of global iterations per time step has not been reached, the time step will terminate if the convergence monitor for Y velocity component falls below Value. Defaults to Value $=1.0 \times 10^{-2}$.
VZ
If the maximum number of global iterations per time step has not been reached, the time step will terminate if the convergence monitor for Z velocity component falls below Value. Defaults to Value $=1.0 \times 10^{-2}$.
ENKE
If the maximum number of global iterations per time step has not been reached, the time step will terminate if the convergence monitor for turbulent kinetic energy falls below Value. Defaults to Value $=1.0 \times 10^{-2}$.

ENDS

If the maximum number of global iterations per time step has not been reached, the time step will terminate if the convergence monitor for turbulence dissipation falls below Value. Defaults to Value $=1.0 \times 10^{-2}$.

NTVF

Value controls the time stepping strategy for Volume of Fluid (VOF) Advection. The value gives the number of time steps used in the VOF Advection for each time step in the FLOTRAN solution. Defaults to 1 .

METH
Value specifies the time integration method. Allowable choices for Value are:

BACK

Backward method (default).
NEWM
Newmark time integration method.

DELT

Newmark parameter to control integration accuracy and stability. It must be ≥ 0.5. Defaults to 0.5 (2nd order accuracy). If it is larger than 0.5 , numerical damping is introduced and the calculation is more stable. The recommended maximum value is 0.6 .

Value

Value as described for Label above.

Notes

Repeat command to set each Label as required.
All specified criteria must be met before the time step is terminated.
If a termination criterion for a specific label is set negative, the termination check is ignored for that particular DOF.

See the FLDATA4A,STEP command to specify output controls based on the number of time steps.
See also the FLDATA1,SOLU, FLDATA2,ITER, FLDATA3,TERM, FLDATA5,OUTP, and FLDATA6,CONV commands for other Solution and Output Controls.

This command is accessible in the menu if FLDATA1,SOLU,TRAN,TRUE has been issued.
For ramped loading (FLDATA4,TIME,BC,1), when a load is applied for the first time, it is interpolated from zero to the value of the current load step, and not from the initial condition or value of the DOF from the previous load step.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>FLOTRAN Set Up>Execution CtrI
Main Menu>Preprocessor>FLOTRAN Set Up>Transient Ctrl>Time Integration Meth
Main Menu>Preprocessor>FLOTRAN Set Up>VOF Environment>Time Stepping
Main Menu>Solution>FLOTRAN Set Up>Execution Ctrl
Main Menu>Solution>FLOTRAN Set Up>Transient Ctrl>Time Integration Meth
Main Menu>Solution>FLOTRAN Set Up>VOF Environment>Time Stepping

FLDATA4A, STEP, Label, Value

Sets controls for transient analyses based on the number of time steps.

> PREP 7: FLOTRAN Options
> MP <> <> <> <> <> <> FL <> <> <> PP <> <> <>

STEP
Enter the word STEP in this field.
FLDATA4A,STEP is the FLDATA command with its first argument set to STEP. It can be entered into the program as either FLDATA4A,STEP,Label,Value or FLDATA,STEP,Label,Value where Label and Value are as described below. See the FLDATA command for other FLOTRAN CFD input choices.

Label

Type of transient analysis control (dictates the meaning of Value):

APPE

Value is the results output frequency based on the number of time steps. Every Value time steps (substeps), results are written to the Jobname. RFL file. If you are creating domain files (jobname.pv_0000n) for use by ICEM CFD's PV3 postprocessing visualization tool, this sets the frequency with which domain files are written. See FLDATA5 for more details. Defaults to Value $=10$.

SUMF

Value is the output summary frequency based on the number of time steps. Every Value time steps (substeps), a results summary is written to the Jobname. PFL file.

Note

A results summary will be produced automatically when the results of a time step are written to the Jobname. RFL file. Defaults to Value $=10$.

OVER

Value is the number of time steps between overwrites of the temporary set of results in the results file (Jobname. RFL). This feature enables the user to retain the most up-to-date set of results without having the results file continue to grow in size. Defaults to Value $=0$ (no overwrites will be made).

Notes

Repeat command to set each Label as required.
See the FLDATA4,TIME command to specify output controls based on transient time.
See also the FLDATA1,SOLU, FLDATA2,ITER, FLDATA3,TERM, FLDATA5,OUTP, and FLDATA6,CONV commands for other solution and output controls.

This command is accessible in the menu if FLDATA1,SOLU,TRAN,TRUE has been issued.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>FLOTRAN Set Up>Execution Ctrl Main Menu>Solution>FLOTRAN Set Up>Execution Ctrl

FLDATA5, OUTP, Label, Value

Sets output and storage controls.

PREP 7: FLOTRAN Options
MP <> <> <> <> <> <> FL <> <> <> PP <> <> <>

OUTP

Enter the word OUTP in this field.

FLDATA5, OUTP is the FLDATA command with its first argument set to OUTP. It can be entered into the program as either FLDATA5,OUTP,Label,Value or FLDATA,OUTP,Label,Value where Label and Value are as described below. See the FLDATA command for other FLOTRAN CFD input choices.

Label

Output and storage controls (dictates the meaning of Value):

SUMF

Value is the number of global iterations between output of results summaries. The results summary, output to the file Jobname. PFL, contains a tabulation of the maximum, minimum and average values of each degree of freedom. It also contains the flow rates, pressures, and temperatures at all the inlets and outlets. Defaults to Value $=10$.

DEBG

Value sets the debug file printout level. The debug file Jobname. DBG contains information on the behavior of the semi-direct solvers used in the solution of the equations. Allowable choices for Value are (defaults to 1):

0
No information.
1
Initial and final information for each global iteration.
2
Complete information for each global iteration.
3
Produces printout of global coefficient matrices (not recommended, since the files will become very large).
4
Produces printout of matrices and additional values at every global iteration (not recommended, because files are usually very large).

RESI

Value is a flag controlling whether or not the nodal residual file Jobname. RDF is written. The nodal residual file contains the nodal residuals corresponding to the current solution (n -1st global iteration), and the new coefficient matrices and forcing function (nth global iteration). It indicates whether or not the solution is oscillating between global iterations on a nodal basis. The file produced is a text file (Jobname. RDF) that is read with the FLREAD command and that contains the residuals for the degrees of freedom (VX, VY, VZ, PRES, ENKE, ENDS and TEMP) for each node. Allowable values for Value are T (writes the file) or F (does not write the file). Defaults to Value $=\mathrm{F}$.

DENS

Value controls the storage of the laminar density. This and the following labels are provided to control the size of the Jobname. RFL file (see notes below). The choices are Value $=\mathrm{T}$ (stores this component) or Value $=\mathrm{F}$ (does not store this component). Defaults to Value $=\mathrm{T}$.

VISC Value controls the storage of the laminar viscosity. Defaults to Value $=\mathrm{T}$.

COND
Value controls the storage of the laminar conductivity. Defaults to Value $=\mathrm{T}$.
EVIS
Value controls the storage of the effective viscosity. Defaults to Value $=\mathrm{T}$.

ECON

Value controls the storage of the effective conductivity. Defaults to Value = T.
TTOT
Value controls the storage of the total temperature. Defaults to Value $=\mathrm{T}$.
HFLU
Value controls the storage of the heat flux. Defaults to Value $=\mathrm{T}$.

HFLM

Value controls the storage of the heat transfer (film) coefficient. Defaults to Value = T.

SPHT

Value controls the storage of the specific heat. Defaults to Value $=\mathrm{F}$.

STRM

Value controls the storage of the stream function (2-D). Defaults to Value = T.

MACH

Value controls the storage of the Mach number. Defaults to Value $=\mathrm{T}$.

PTOT

Value controls the storage of the total (stagnation) pressure. Defaults to Value = T.

PCOE

Value controls the storage of the pressure coefficient. Defaults to Value $=\mathrm{T}$.
YPLU
Value controls the storage of the $\mathrm{Y}+$ turbulence quantity. Defaults to Value $=\mathrm{F}$.
TAUW
Value controls the storage of the shear stress at the wall. Defaults to Value $=\mathrm{F}$.
SFTS
Value controls the storage of the surface tension coefficient. Defaults to Value $=\mathrm{F}$.

RDFL

Value controls the storage of the radiation heat flux. Defaults to Value $=\mathrm{F}$.
LMDn
Laminar mass diffusion coefficient for species n, where $n=1$ to 6 .

EMDn

Effective mass diffusion coefficient for species n, where $n=1$ to 6 .

DOMA

Value controls whether domain files are written. For transient analysis, if Value= T, domain files are written at the time frequency specified by the FLDATA4 command or the step frequency set by the FLDATA4A command. For steady state analysis, the files are written as specified by the FLDATA2 command. Files are named jobname.pv_00001, jobname.pv_00002, etc., corresponding to the first time increment, second time increment, and so forth. Result set numbers (First, Last, Next, Max, etc.) are preserved to ensure that any domain files created during a previous analysis are either deleted or preserved appropriately.

Setting Value= F turns domain file writing off (the default state).

DRAD

VALUE controls debug level of convergence monitor for surface-to-surface radiation method. Allowable choices for value are (defaults to 0):

0
No information (default).
1
Final convergence information.
2
Complete information for each global iteration.

Value

Value as described above.

Notes

Repeat command to set each Label as required.
SUMF, DEBG, and RESI control output to files other than the nodal results file (Jobname. RFL). DOMA controls output to domain files (Jobname. pv0000n), which are for use with the ICEM CFD PV3 postprocessing visualization tool.

The remaining Label labels are provided in the event the user needs to control the size of the Jobname. RFL file. This may be the case when the results of many load steps or time steps are being stored for large models. The choices are T (stores this component) or F (does not store this component). Since the controls should only be set to F if the file size is a problem, most default values are T , and values of listed parameters are stored for every node.

FLOTRAN only allows non-storage of variables which it can calculate from some other means. If the value is not stored, it is replaced by calculations identical to those of the normal solution algorithm. The difference is that the new properties calculated in the absence of storage have not been relaxed as those in storage would have been. See FLDATA25,RELX for a description of relaxation.

Laminar properties such as density, viscosity, and thermal conductivity are either constant or a function of temperature. In the former case, the constant value can be obtained from the input. In the case of temperature dependent properties, the correct values are obtained from the temperature field (always stored if the temperature equation solution was activated [FLDATA1,SOLU,TEMP,TRUE]). The newly calculated value is stored as calculated at the initialization of the load step, whereas the value obtained from storage would have undergone relaxation.

If the effective viscosity and effective thermal conductivity are not stored, upon restart they will be calculated from the existing field of turbulent kinetic energy, turbulent kinetic energy dissipation rate, and the density. Again, this is similar to the usual calculation.

See also the FLDATA1,SOLU, FLDATA2,ITER, FLDATA3,TERM, FLDATA4,TIME, FLDATA4A,STEP, and FLDATA6,CONV commands for other Solution and Output Controls.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>FLOTRAN Set Up>Additional Out>Print Controls
Main Menu>Preprocessor>FLOTRAN Set Up>Additional Out>Residual File Main Menu>Preprocessor>FLOTRAN Set Up>Additional Out>RFL Out Derived Main Menu>Preprocessor>FLOTRAN Set Up>Additional Out>RFL Prop Based Main Menu>Preprocessor>FLOTRAN Set Up>Execution Ctrl

Main Menu>Solution>FLOTRAN Set Up>Additional Out>Print Controls
Main Menu>Solution>FLOTRAN Set Up>Additional Out>Residual File
Main Menu>Solution>FLOTRAN Set Up>Additional Out>RFL Out Derived
Main Menu>Solution>FLOTRAN Set Up>Additional Out>RFL Prop Based
Main Menu>Solution>FLOTRAN Set Up>Execution CtrI

FLDATA6, CONV, Label, Value

Controls the output of the convergence monitor.

PREP 7:FLOTRAN Options
MP <> <> <> <> <> <> FL <> <> <> PP <> <> <>
CONV
Enter the word CONV in this field.
FLDATA6,CONV is the FLDATA command with its first argument set to CONV. It can be entered into the program as either FLDATA6,CONV,Label,Value or FLDATA,CONV,Label,Value where Label and Value are as described below. See the FLDATA command for other FLOTRAN CFD input choices.

Label

Format and frequency controls (dictates the meaning of Value):

OUTP

Value controls which display format is used. Value can be LAND, BLOC, or BNOW, as described below (defaults to BNOW).

ITER

If OUTP Value is LAND or BLOC, Value is the number of iterations for which the convergence monitor information is stored in memory before being printed. Defaults to Value $=1$.

Value

Value as described for Label above:
LAND
All DOF are output in landscape mode (valid only if Label = OUTP).

BLOC

All DOF are output in block mode (valid only if Label = OUTP).

BNOW

All DOF are presented in block format immediately as iterations are completed (valid only if Label = OUTP).
n
Number of iterations (valid only if Label = ITER).

Notes

The convergence monitor output will appear on the screen during an interactive FLOTRAN analysis as well as in the printed output. OUTP controls what display format is used, and ITER controls how many iterations are stored and displayed.

See also the FLDATA1,SOLU, FLDATA2,ITER, FLDATA3,TERM, FLDATA4,TIME, FLDATA4A,STEP, and FLDATA5,OUTP commands for other Solution and Output Controls.

The choices for OUTP are LANDscape mode, BLOCk mode, or the "block now" mode, BNOW. If OUTP is set to BNOW, convergence monitor information is not stored in the memory, but is presented immediately as it is calculated. If OUTP is set to either LAND or BLOC, information is first stored for n (ITER) iterations before being printed.

In the following illustrations, "x" denotes convergence monitor numbers greater than zero:
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Landscape Mode

Iter<	1	2	3	4	5	6
VX	x	x	x	x	x	x
VY	x	x	x	x	x	x
VZ	x	x	x	x	x	x
PRES	x	x	x	x	x	x
ENKE	x	x	x	x	x	x
ENDS	x	x	x	x	x	x
TEMP	x	x	x	x	x	x

Block Mode

Iter	VX	VY	VZ	PRES	ENKE	ENDS	TEMP
1							
1	x	x	x	x	x	x	X
2	x	x	x	x	x	x	X
3	x	x	x	x	x	x	X
4	x	x	x	x	x	x	X
5	x	x	x	x	x	x	X
6	x	x	x	x	x	x	X

Menu Paths

Main Menu>Preprocessor>FLOTRAN Set Up>Additional Out>Print Controls Main Menu>Solution>FLOTRAN Set Up>Additional Out>Print Controls

FLDATA7, PROT, Label, Value

Specifies the type of fluid property.

PREP 7: FLOTRAN Property
MP <> <> <> <> <> <> FL <> <> <> PP <> <> <>

PROT

Enter the word PROT in this field.
FLDATA7,PROT is the FLDATA command with its first argument set to PROT. It can be entered into the program as either FLDATA7,PROT,Label,Value or FLDATA,PROT,Label,Value where Label and Value are as described below. See the FLDATA command for other FLOTRAN CFD input choices.

Label

Fluid property being typed:
DENS
Density (Value defaults to CONSTANT).

VISC

Viscosity (Value defaults to CONSTANT).
COND
Thermal conductivity (Value defaults to CONSTANT).

SPHT

Specific heat (Value defaults to CONSTANT).

SFTS

Surface tension coefficient (Value defaults to CONSTANT).

WSCA

Wall static contact angle. (Value defaults to CONSTANT).

Value

Fluid property type.
You can enter one of the values shown below, or if your fluid properties can be expressed as a table, you can enter a table name. To enter a table name, you must first define a TABLE type array parameter using the *DIM command. Note that you must enclose the table name in \% symbols in the FLDATA7 command line (e.g., FLDATA7,PROT,DENS,\%tabname\%). For more information on defining tables, see TABLE Type Array Parameters in the ANSYS Parametric Design Language Guide.

CONSTANT

Constant properties. The FLDATA8,NOMI command must be used to specify nominal properties.
GAS
Gas properties. The FLDATA8,NOMI command must be used to specify nominal properties.
FLDATA9,COF1, FLDATA10,COF2, and possibly FLDATA11,COF3, must also be used.
LIQUID
Liquid properties. The FLDATA8,NOMI command must be used to specify nominal properties. FLDATA9,COF1, FLDATA10,COF2, and possibly FLDATA11,COF3 must be used.

TABLE
Indicates that a table of property values and corresponding temperature values are input using the MPDATA and MPTEMP commands. You cannot use this option with the \%table\% method described above.

POWL

This choice for viscosity type activates the Power Law viscosity model, which is non-Newtonian. (For a description of the model see Viscosity in the Theory Reference for the Mechanical APDL and Mechanical Applications. The Fluids Analysis Guide explains how to use the model.) The Power Law model requires you to specify four coefficients via the FLDATA8,NOMI,VISC command, the
FLDATA9,COF1,VISC command, the FLDATA10,COF2,VISC command, and the FLDATA11,COF3,VISC command.

CARR

This choice for viscosity type activates the Carreau viscosity model, which in non-Newtonian. (For a description of this model, see Viscosity in the Theory Reference for the Mechanical APDL and Mechanical Applications. The Fluids Analysis Guide explains how to use the non-Newtonian viscosity models.) The Carreau model requires you to specify four coefficients via the FLDATA8, NOMI,VISC command, the FLDATA9,COF1,VISC command, the FLDATA10,COF2,VISC command and the FLDATA11,COF3,VISC command.

BING

This choice for viscosity type activates the Bingham viscosity model, which is non-Newtonian. (For a description of this model, see Viscosity in the Theory Reference for the Mechanical APDL and Mechanical Applications. The Fluids Analysis Guide explains how to use the non-Newtonian viscosity models.) The Bingham model requires you to specify three coefficients, using the FLDATA8,NOMI,VISC command, the FLDATA9,COF1,VISC command, and the FLDATA10,COF2,VISC command.

USRV

This choice for viscosity activates the user-programmable subroutine, UserVisLaw. In this routine, you can define your own constitutive relationship between viscosity and other variables such as position, time, temperature, pressure, velocity, velocity gradients, etc. For details, see Viscosity in the Theory Reference for the Mechanical APDL and Mechanical Applications, the Fluids Analysis Guide, and the Guide to ANSYS User Programmable Features.

The UserVisLaw subroutine uses the four coefficients you specify via the FLDATA8,NOMI,VISC command, the FLDATA9,COF1,VISC command, the FLDATA10,COF2,VISC command, and the FLDATA11,COF3,VISC command.

AIR

Air properties in units of meter-kg-sec.
AIR_B
Air properties in units of meter-kg-sec, and the pressure is set to the reference pressure for the evaluation of density.

AIR-SI

Air properties in units of meter-kg-sec.

AIR-SI_B

Air properties in units of meter-kg-sec, and the pressure is set to the reference pressure for the evaluation of density.

AIR-CM

Air properties in units of $\mathrm{cm}-\mathrm{g}-\mathrm{sec}$.

AIR-CM_B

Air properties in units of $\mathrm{cm}-\mathrm{g}-\mathrm{sec}$, and the pressure is set to the reference pressure for the evaluation of density.

AIR-MM

Air properties in units of mm-g-sec.

AIR-MM_B

Air properties in units of $\mathrm{mm}-\mathrm{g}-\mathrm{sec}$, and the pressure is set to the reference pressure for the evaluation of density.

AIR-FT

Air properties in units of ft-slug-sec.

AIR-FT_B

Air properties in units of ft -slug-sec, and the pressure is set to the reference pressure for the evaluation of density.

AIR-IN

Air properties in units of in-(lbf-s**2/in)-sec (results in units of psi for pressure).

AIR-IN_B

Air properties in units of in-(lbf-s** $2 / \mathrm{in}$)-sec (results in units of psi for pressure), and the pressure is set to the reference pressure for the evaluation of density.

CMIX

The property is the mass fraction average of the individual species property. You can use this option only if the species are defined.

USER

Use one of the following user-programmable subroutines to define the property: UserDens to define density, UserVisLaw to define viscosity, UserSpht to define specific heat, UserCond to define conductivity, or UserSfts to define surface tension.

CGAS

Available only for density. The density is calculated using the ideal gas law, with the molecular weight calculated from the mass fraction average of the individual species molecular weights. You can only use this option if species are defined.

Notes

This command is used to specify the fluid property type (constant, gas, liquid, air) for the density, viscosity, and (if required) thermal conductivity and specific heat properties. Repeat the FLDATA7 command for each property as required.

The choice of fluid property type implies the use of one of the following equations. In all cases the program assumes that consistent units are being used. The value of unity for the gravitational constant g_{c} implies a consistent set of units.

If the property type is CONSTANT, then the equations used are as follows:

$$
\begin{aligned}
& \text { DENS = NOMI } \\
& \text { VISC = NOMI } \\
& \text { COND = NOMI } \\
& \text { SPHT = NOMI }
\end{aligned}
$$

If the property type is LIQUID, then Sutherland's liquid law is used for the viscosity and conductivity and a second order polynomial as a function of temperature is used for density:

$$
\begin{aligned}
& \text { DENS }=\text { NOMI }+ \text { COF2 }^{*}(\mathrm{~T}-\mathrm{COF} 1)+\text { COF3 }^{*}(\mathrm{~T}-\mathrm{COF} 1)^{2} \\
& \text { VISC }=\text { NOMI }^{*} \operatorname{EXP}\left[\left(\text { COF2 }{ }^{*}(1 / \mathrm{T}-1 / \mathrm{COF} 1)+\text { COF3 }^{*}(1 / \mathrm{T}-1 / \mathrm{COF} 1)^{2}\right]\right. \\
& \text { COND }=\text { NOMI }^{*} \operatorname{EXP[}\left[\left(C O F 2 *(1 / \mathrm{T}-1 / \mathrm{COF} 1)+\text { COF3 }^{*}(1 / \mathrm{T}-1 / \mathrm{COF} 1)^{2}\right]\right.
\end{aligned}
$$

If the type is GAS, Sutherland's law for gases is used for conductivity and viscosity and the ideal gas law is used for the density:

$$
\begin{aligned}
& \text { DENS }=\text { NOMI } *(\mathrm{P} / \mathrm{COF} 2) /(\mathrm{T} / \mathrm{COF} 1) \\
& \mathrm{VISC}=\text { NOMI } *(\mathrm{~T} / \mathrm{COF} 1)^{1.5} *(\text { COF1 }+ \text { COF2 }) /(\mathrm{T}+\mathrm{COF} 2) \\
& \text { COND }=\text { NOMI }^{*}(\mathrm{~T} / \mathrm{COF} 1)^{1.5} *(\mathrm{COF} 1+\text { COF2 }) /(\mathrm{T}+\mathrm{COF} 2)
\end{aligned}
$$

For Label = SFTS, CONSTANT, LIQUID, and USER are the only valid property types. If the property type is CONSTANT, the equation is:
SFTS = NOMI

If the property type is LIQUID, the equation is:

$$
\mathrm{SFTS}=\mathrm{NOMI}+\mathrm{COF}^{*}(\mathrm{~T}-\mathrm{COF} 1)+\mathrm{COF}^{*}(\mathrm{~T}-\mathrm{COF} 1)^{2}
$$

For Label = WSCA, CONSTANT is the only valid property type and the equation is:
WSCA = NOMI

In each case, the value of NOMI is input with the FLDATA8,NOMI command, COF1 with FLDATA9,COF1, COF2 with FLDATA10,COF2, and COF3 with FLDATA11,COF3. No defaults are assumed.

For types other than GAS, LIQUID, CONSTANT, AIR or AIR_B, the values of constants in the evaluation of properties will be obtained from the file FLOPRP.ANS, where the data for AIR resides. See the Fluids Analysis Guide for information on how to put data into the FLOPRP.ANS file.

See also the FLDATA8,NOMI, FLDATA9,COF1, FLDATA10,COF2, FLDATA11,COF3, FLDATA12,PROP, and FLDATA13,VARY commands for other Fluid Property Definition commands.

This command is accessed in the menu as FLDATA12,PROP.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>FLOTRAN Set Up>Fluid Properties
Main Menu>Preprocessor>FLOTRAN Set Up>Table Props
Main Menu>Solution>FLOTRAN Set Up>Fluid Properties
Main Menu>Solution>FLOTRAN Set Up>Table Props

FLDATA8, NOMI, Label, Value

Specifies the NOMI coefficient of the fluid property equation.
PREP 7: FLOTRAN Property
$\mathrm{MP}<><><><><><>\mathrm{FL}<><><>\mathrm{PP}<><><>$
NOMI
Enter the word NOMI in this field.
FLDATA8,NOMI is the FLDATA command with its first argument set to NOMI. It can be entered into the program as either FLDATA8,NOMI,Label,Value or FLDATA,NOMI,Label,Value where Label and Value are as described below. See the FLDATA command for other FLOTRAN CFD input choices.

Label

Fluid property NOMI is being defined for:
DENS
Density.
VISC
Viscosity.
COND
Thermal conductivity.

SPHT

Specific heat.

SFTS

Surface tension coefficient.

WSCA

Wall static contact angle (Value defaults to 90).

Value

Enter the value for NOMI.

Notes

Specifies the value NOMI as described on the FLDATA7,PROT command. NOMI is the constant fluid property value, or is the value of the property at the specified temperature COF1 (or simply the value of a coefficient). NOMI is only valid for property types GAS, LIQUID, and CONSTANT [FLDATA7,PROT]. If the property is a gas or liquid, FLDATA9,COF1, FLDATA10,COF2, and possibly FLDATA11,COF3, must also be used.

If the label is VISC, the FLDATA7,PROT command you enter determines what NOMI is. For example, if you issue the FLDATA7,PROT,VISC,POWL command, NOMI is the nominal viscosity for the Power Law model. If you issue the FLDATA7,PROT,VISC,BING command, the NOMI is the plastic viscosity for the Bingham model. If you issue the FLDATA7,PROT,VISC,CARR command, the NOMI is the zero shear rate viscosity for the Carreau model. If you issue the FLDATA7,PROT,USRV command, the NOMI is a coefficient available in UserVisLaw, the user-programmable subroutine for viscosity models.

See also the FLDATA12,PROP and FLDATA13,VARY commands for other Fluid Property Definition commands.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>FLOTRAN Set Up>Fluid Properties
 Main Menu>Solution>FLOTRAN Set Up>Fluid Properties

FLDATA9, COF 1, Label, Value

Specifies the COF1 coefficient of the fluid property equation.

PREP 7:FLOTRAN Property

$$
\mathrm{MP}<><><><><><>\mathrm{FL}<><><>\mathrm{PP}<><><>
$$

COF1
Enter the word COF1 in this field.

FLDATA9,COF1 is the FLDATA command with its first argument set to COF1. It can be entered into the program as either FLDATA9,COF1,Label,Value or FLDATA,COF1,Label,Value where Label and Value are as described below. See the FLDATA command for other FLOTRAN CFD input choices.

Label

Fluid property being described:
DENS
Density.

VISC

Viscosity.
COND
Thermal conductivity.

SPHT

Specific heat.
SFTS
Surface tension coefficient.

Value

Absolute temperature at which the Label property has the value NOMI (defaults to 0.0) or simply a coefficient.

Notes

Specifies the value of absolute temperature associated with the property value set be FLDATA8,NOMI, as described on the FLDATA7,PROT command, or simply a coefficient. Setting the value of COF1 to zero results in a constant property for liquids or gas. If the property is a gas or liquid, FLDATA8,NOMI, FLDATA10,COF2, and possibly FLDATA11,COF3, must also be used.

If the label is VISC and you issue the FLDATA7,PROT,VISC,POWL command, the COF1 value is the cutoff shear rate for the Power Law Model. If you issue the FLDATA7,PROT,VISC,BING command, COF1 is the plastic stress value for the Bingham model. If you issue the FLDATA7,PROT,VISC,CARR command, the COF1 value is the infinite shear rate viscosity for the Carreau model. If you issue the FLDATA7,PROT,VISC,USRV command, COF1 is a coefficient available in the UserVisLaw subroutine.

If the label is SPHT, the COF1 value is available in the user-programmable subroutine UserSpht.
See also the FLDATA12,PROP, and FLDATA13,VARY commands for other Fluid Property Definition commands.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>FLOTRAN Set Up>Fluid Properties
 Main Menu>Solution>FLOTRAN Set Up>Fluid Properties

FLDATA 10, COF 2, Label, Value

Specifies the COF2 coefficient of the fluid property equation.
PREP 7:FLOTRAN Property
MP <> <> <> <> <> <> FL <> <> <> PP <> <> <>
COF2
Enter the word COF2 in this field.
FLDATA10,COF2 is the FLDATA command with its first argument set to COF2. It can be entered into the program as either FLDATA10,COF2,Label,Value or FLDATA,COF2,Label,Value where Label and Value are as described below. See the FLDATA command for other FLOTRAN CFD input choices.

Label

Fluid property being described:
DENS
Density.
VISC
Viscosity.
COND
Thermal conductivity.
SPHT
Specific heat.

SFTS

Surface tension coefficient.

Value

Coefficient COF2 (defaults to 0.0).

Notes

Specifies the value COF2 as described on the FLDATA7,PROT command.
If the label is VISC and you issue the FLDATA7,PROT,VISC,POWL command, the COF2 value is the consistency coefficient for the Power Law Model. If you issue the FLDATA7,PROT,VISC,BING command, COF2 is the Newtonian viscosity for the Bingham model. If you issue the FLDATA7,PROT,VISC,CARR command, the COF2 value is the time constant for the Carreau model. If you issue the FLDATA7,PROT,VISC,USRV command, COF2 is a coefficient available in the UserVisLaw subroutine.

For viscosity, liquid, gas, or thermal conductivity, COF2 is a Sutherland's law constant. For liquid density, it is a polynomial coefficient. For gas density, it is the pressure in the nominal ideal gas law constant evaluation. If the property is a gas or liquid, FLDATA8,NOMI, FLDATA9,COF1, and possibly FLDATA11,COF3, must also be used.

See also the FLDATA12,PROP, and FLDATA13,VARY commands for other Fluid Property Definition commands.
If the label is SPHT, the COF2 value is available in the user-programmable subroutine UserSpht.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>FLOTRAN Set Up>Fluid Properties
 Main Menu>Solution>FLOTRAN Set Up>Fluid Properties

FLDATA 1 1, COF 3, Label, Value

Specifies the COF3 coefficient of the fluid property equation.

PREP 7: FLOTRAN Property
$\mathrm{MP}<><><><><\rangle<\rangle \mathrm{FL}\rangle\rangle\rangle \mathrm{PP}\rangle\rangle<\rangle$
COF3
Enter the word COF3 in this field.

FLDATA11,COF3 is the FLDATA command with its first argument set to COF3. It can be entered into the program as either FLDATA11,COF3,Label,Value or FLDATA,COF3,Label,Value where Label and Value are as described below. See the FLDATA command for other FLOTRAN CFD input choices.

Label

Fluid property being described:
DENS
Density.
VISC
Viscosity.
COND
Thermal conductivity.

SPHT

Specific heat.

SFTS

Surface tension coefficient.

Value

Coefficient COF3 (defaults to 0.0).

Notes

Specifies the value COF3 as described on the FLDATA7,PROT command.
If the label is VISC and you issue the FLDATA7,PROT,VISC,POWL command, the COF3 value is the power for the Power Law Model. COF3 is not used in the Bingham model. If you issue the FLDATA7,PROT,VISC,CARR command, the COF3 value is the power for the Carreau model. If you issue the FLDATA7,PROT,VISC,USRV command, COF3 is a coefficient available in the UserVisLaw subroutine.

For the viscosity or thermal conductivity of a liquid, COF3 is a Sutherland's law constant. For the density of a liquid, it is a polynomial coefficient. It is not used for gases. FLDATA8,NOMI, FLDATA9,COF1, and FLDATA10,COF2, must also be used.

If the label is SPHT, the COF3 value is available in the user-programmable subroutine UserSpht.
See also the FLDATA12,PROP, and FLDATA13,VARY commands for other Fluid Property Definition commands.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>FLOTRAN Set Up>Fluid Properties

Main Menu>Solution>FLOTRAN Set Up>Fluid Properties

FLDATA12, PROP, Label, Value

Sets the property update frequency flag.

PREP 7:FLOTRAN Property
MP <> <> <> <> <> <> FL <> <> <> PP <> <> <>
PROP
Enter the word PROP in this field.
FLDATA12,PROP is the FLDATA command with its first argument set to PROP. It can be entered into the program as either FLDATA12,PROP,Label,Val ue or FLDATA,PROP,Label,Val ue where Label and Value are as described below. See the FLDATA command for other FLOTRAN CFD input choices.

Label
Updating label (dictates the meaning of Value):
IVIS
Value is the initial guess for viscosity. If you do not specify any value, the nominal viscosity issued via the FLDATA8,NOMI,VISC command is the initial viscosity. For information on using this label, see the Fluids Analysis Guide.

UFRQ
Value is the number of global iterations (frequency of updating) between the update of the properties.

Value

Number of iterations as described above (defaults to 1).

Notes

Properties will not be updated if the all the property types are set to CONSTANT with the FLDATA7 command.
See also the FLDATA7,PROT, FLDATA8,NOMI, FLDATA9,COF1, FLDATA10,COF2, FLDATA11,COF3, and FLDATA13,VARY commands for other Fluid Property Definition commands.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>FLOTRAN Set Up>Fluid Properties
 Main Menu>Solution>FLOTRAN Set Up>Fluid Properties

FLDATA13, VARY, Label, Value

Sets the property variation flag.

PREP 7: FLOTRAN Property
MP <> <> <> <> <> <> FL <> <> <> PP <> <> <>

VARY

Enter the word VARY in this field.
FLDATA13,VARY is the FLDATA command with its first argument set to VARY. It can be entered into the program as either FLDATA13,VARY,Label,Value or FLDATA,VARY,Label,Value where Label and Value are as described below. See the FLDATA command for other FLOTRAN CFD input choices.

Label

Fluid property being described:
DENS
Density.
VISC
Viscosity.
COND
Thermal conductivity.

SPHT

Specific heat.

SFTS

Surface tension coefficient.

Value

Flag value for property variation:
T
To turn property variation on.
F
To turn property variation off (default).

Notes

For nonconstant fluid properties [FLDATA7,PROT], the appropriate flags must be set to T to allow property variation between global iterations.

See also the FLDATA7,PROT, FLDATA8,NOMI, FLDATA9,COF1, FLDATA10,COF2, FLDATA11,COF3, and FLDATA12,PROP commands for other Fluid Property Definition commands.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>FLOTRAN Set Up>Fluid Properties
 Main Menu>Solution>FLOTRAN Set Up>Fluid Properties

FLDATA14, TEMP, Label, Value

Specifies the reference temperature.

PREP 7:FLOTRAN Operating
$\mathrm{MP}<><><><\rangle<\rangle<\rangle \mathrm{FL}\rangle\rangle\rangle \mathrm{PP}\rangle\rangle<\rangle$
TEMP
Enter the word TEMP in this field.
FLDATA14,TEMP is the FLDATA command with its first argument set to TEMP. It can be entered into the program as either FLDATA14,TEMP,Label,Value or FLDATA,TEMP,Label,Value where Label and Value are as described below. See the FLDATA command for other FLOTRAN CFD input choices.
Label
Type of temperature specification (dictates the meaning of Value):

NOMI

Value is the initial temperature if a boundary condition or transient initial condition has not been set. Value defaults to 293.0.

BULK
Value is the temperature used to evaluate heat transfer coefficients given a heat flux or temperature at a boundary. Value defaults to 293.0.

TTOT
Value is the total (stagnation) temperature used in compressible adiabatic flow. The static temperature is calculated from the kinetic energy evaluated in terms of the velocity magnitude, specific heat, and gravitational constant:
$T_{\text {static }}=T_{\text {total }}-\frac{V^{2}}{2 g_{c} C_{p}}$

Value
Temperature as described above.

Notes

See also the FLDATA15,PRES, FLDATA16,BULK, and FLDATA17,GAMM commands for other Operating Condition commands.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>FLOTRAN Set Up>Flow Environment>Ref Conditions Main Menu>Solution>FLOTRAN Set Up>Flow Environment>Ref Conditions

FLDATA15, P RES, Label, Value

Specifies the reference pressure.

PREP 7:FLOTRAN Operating
$\mathrm{MP}<><><><><\rangle<\rangle \mathrm{FL}\rangle\rangle\rangle \mathrm{PP}<\rangle<\rangle<\rangle$
PRES
Enter the word PRES in this field.
FLDATA15,PRES is the FLDATA command with its first argument set to PRES. It can be entered into the program as either FLDATA15,PRES,Label,Value or FLDATA,PRES,Label,Value where Label and Value are as described below. See the FLDATA command for other FLOTRAN CFD input choices.

Label

Reference label (dictates the meaning of Value):

REFE

Value is the reference pressure. The absolute pressure results from adding the pressure components from rotating terms, the static pressure head, the FLOTRAN pressure, and the reference pressure.
Value defaults to $1.0135 \times 10^{+5}$.
Value
Reference pressure as described above.

Notes

See also the FLDATA14,TEMP, FLDATA16,BULK, and FLDATA17,GAMM commands for other Operating Condition commands.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>FLOTRAN Set Up>Flow Environment>Ref Conditions
Main Menu>Solution>FLOTRAN Set Up>Flow Environment>Ref Conditions

FLDATA16, BULK, Label, Value

Specifies the bulk modulus parameter.

$$
\begin{array}{r}
\text { PREP 7:FLOTRAN Operating } \\
\text { MP <><><><><><>FL <><><> PP <><><> }
\end{array}
$$

BULK

Enter the word BULK in this field.
FLDATA16,BULK is the FLDATA command with its first argument set to BULK. It can be entered into the program as either FLDATA16,BULK,Label,Value or FLDATA,BULK,Label,Val ue where Label and Value are as described below. See the FLDATA command for other FLOTRAN CFD input choices.

Label

Label (dictates the meaning of Value):

BETA

Value is the bulk modulus parameter.

Value

Value of bulk modulus parameter (defaults to 10^{15}).

Notes

The bulk modulus parameter, $\beta_{\mathrm{p},}$ is used in the transient algorithm for incompressible flows:
$\beta_{p}=\frac{\partial p}{\partial p}$
The default value corresponds to that of a constant density fluid.
See also the FLDATA14,TEMP, FLDATA15,PRES, and FLDATA17,GAMM commands for other Operating Condition commands.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>FLOTRAN Set Up>Flow Environment>Ref Conditions Main Menu>Solution>FLOTRAN Set Up>Flow Environment>Ref Conditions

FLDATA17, GAMM, Label, Value

Specifies the specific heat ratio.

> PREP 7:FLOTRAN Operating MP <> <> <> <> <> <> FL <> <> <> PP <> <> <>

GAMM
Enter the word GAMM in this field.
FLDATA17,GAMM is the FLDATA command with its first argument set to GAMM. It can be entered into the program as either FLDATA17,GAMM,Label,Value or FLDATA,GAMM,Label,Value where Label and Value are as described below. See the FLDATA command for other FLOTRAN CFD input choices.

Label

Label (dictates the meaning of Value):
COMP
Value is the ratio of specific heats.

Value

Value of the ratio (defaults to 1.4).

Notes

Specifies the ratio of specific heat at constant pressure to the specific heat at constant volume, $\mathrm{Cp} / \mathrm{Cv}$. It is used in compressible analyses.

See also the FLDATA14,TEMP, FLDATA15,PRES, and FLDATA16,BULK commands for other Operating Condition commands.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>FLOTRAN Set Up>Flow Environment>Ref Conditions Main Menu>Solution>FLOTRAN Set Up>Flow Environment>Ref Conditions

FLDATA18, ME TH, Label, Value

Selects the algebraic solver.

PREP 7:FLOTRAN Solver
MP <> <> <> <> <> <> FL <> <> <> PP <> <> <>

METH

Enter the word METH in this field.
FLDATA18,METH is the FLDATA command with its first argument set to METH. It can be entered into the program as either FLDATA18,METH,Label,Value or FLDATA,METH,Label,Value where Label and Value are as described below. See the FLDATA command for other FLOTRAN CFD input choices.

Label

Degree of freedom set for which solver is being specified:

PRES

Pressure equation.
TEMP
Energy equation.
vx
U velocity.
VY
V velocity.
VZ
W velocity.
ENKE
Turbulent kinetic energy.

ENDS

Turbulent kinetic energy dissipation rate.

Value

Solver to be used for the degree of freedom set:
0
Do not solve the equation set.
1
Use the Tri-Diagonal Matrix Algorithm (TDMA) (default for all DOF sets except PRES and TEMP). Also see the FLDATA19,TDMA command.

Use the Conjugate Residual method. See also the FLDATA20,SRCH, FLDATA21,CONV, FLDATA22,MAXI, and FLDATA23,DELT commands.

Use the Preconditioned Conjugate Residual method (default for PRES DOF set). See also the FLDATA20,SRCH, FLDATA21,CONV, FLDATA22,MAXI, and FLDATA23,DELT commands.

Use the Preconditioned Generalized Minimum Residual (PGMR) solution method (default for TEMP DOF set). See FLOTRAN Thermal Analyses in the Fluids Analysis Guide for more information on conjugate heat transfer.

5

Use the Sparse Direct method.
6
Use the Preconditioned BiCGStab method (PBCGM).

Notes

A solver can be specified for each degree of freedom set. Repeat the FLDATA18 command as needed.
The Tri-Diagonal Matrix Algorithm (TDMA) is a special case of the standard Gauss-Seidel iterative method for the solution of sets of algebraic equations. It is the preferred method for providing approximate solutions for the momentum and turbulence equations since exact solutions are not required. A convergence criterion is not specified for the TDMA method, merely the number of iterations (sweeps) to be performed [FLDATA19,TDMA].

Three methods are semi-direct solution methods based on search directions. The Conjugate Residual method requires the least memory, but stalls when solving ill-conditioned problems. (In an ill-conditioned problem, the thermal properties of fluid and non-fluid materials are different by several orders of magnitude). The Preconditioned Conjugate Residual method requires much more memory but performs better for illconditioned matrix problems which can arise when you are solving conjugate heat transfer problems. The Preconditioned Generalized Minimum Residual (PGMR) method is memory-intensive; by necessity, it incorporates a tight convergence criterion. The PGMR method is recommended for solving the energy equation for ill-conditioned conjugate transfer problems. In general, the Preconditioned BiCGStab method (PBCGM) requires less memory than the PGMR method. It is also recommended for extremely ill-conditioned conjugate heat transfer problems.

The Sparse Direct method is based on Gaussian elimination to factorize the matrix. This method is memory intensive and creates temporary files on the hard disk. It is robust and can be used for symmetric as well as non-symmetric equation systems. The Sparse solver is not recommended for use with Label $=$ PRES. If you do use the Sparse solver with Label = PRES, you will need to save and then resume your database prior to solving.

For incompressible flow problems that involve the solution for the pressure degree of freedom, if you set Value equal to 2 or 3 , the Preconditioned Conjugate Gradient method solver is used instead of the Conjugate Residual or Preconditioned Conjugate Residual method solvers.

The Theory Reference for the Mechanical APDL and Mechanical Applications contains more detail on these methods.

See also the FLDATA19,TDMA, FLDATA20,SRCH, FLDATA21,CONV, FLDATA22,MAXI, and FLDATA23,DELT commands for other Algebraic Solver controls.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>FLOTRAN Set Up>CFD Solver Controls>ENDS Solver CFD Main Menu>Preprocessor>FLOTRAN Set Up>CFD Solver Controls>ENKE Solver CFD Main Menu>Preprocessor>FLOTRAN Set Up>CFD Solver Controls>PRES Solver CFD Main Menu>Preprocessor>FLOTRAN Set Up>CFD Solver Controls>TEMP Solver CFD Main Menu>Preprocessor>FLOTRAN Set Up>CFD Solver Controls>VX Solver CFD Main Menu>Preprocessor>FLOTRAN Set Up>CFD Solver Controls>VY Solver CFD Main Menu>Preprocessor>FLOTRAN Set Up>CFD Solver Controls>VZ Solver CFD Main Menu>Solution>FLOTRAN Set Up>CFD Solver Controls>ENDS Solver CFD Main Menu>Solution>FLOTRAN Set Up>CFD Solver Controls>ENKE Solver CFD Main Menu>Solution>FLOTRAN Set Up>CFD Solver Controls>PRES Solver CFD Main Menu>Solution>FLOTRAN Set Up>CFD Solver Controls>TEMP Solver CFD Main Menu>Solution>FLOTRAN Set Up>CFD Solver Controls>VX Solver CFD Main Menu>Solution>FLOTRAN Set Up>CFD Solver Controls>VY Solver CFD Main Menu>Solution>FLOTRAN Set Up>CFD Solver Controls>VZ Solver CFD

FLDATA19, TDMA, Label, Value
Specifies the number of TDMA sweeps.
PREP 7:FLOTRAN Solver
MP <> <> <> <> <> <> FL <> <> <> PP <> <> <>
TDMA
Enter the word TDMA in this field.
FLDATA19,TDMA is the FLDATA command with its first argument set to TDMA. It can be entered into the program as either FLDATA19,TDMA, Label,Value or FLDATA,TDMA,Label,Value where Label and Value are as described below. See the FLDATA command for other FLOTRAN CFD input choices.

Label

Degree of freedom set for which the TDMA solver is being used:

PRES

Pressure equation (Value defaults to 100).
TEMP
Energy equation (Value defaults to 100).
VX
U velocity (Value defaults to 1).
VY
V velocity (Value defaults to 1).
VZ
W velocity (Value defaults to 1).

ENKE

Turbulent kinetic energy (Value defaults to 10).
ENDS
Turbulent kinetic energy dissipation rate (Value defaults to 10).
Value
Number of iterations (sweeps) for this degree of freedom set.

Notes

Specifies the number of iterations (sweeps) the Tri-Diagonal Matrix Algorithm [FLDATA18,METH] will perform during the solution. A different number of sweeps may be specified for each degree of freedom set the TDMA solver is used for. Increasing the number for the velocity DOF may cause instability.

See also the FLDATA18,METH command for other Algebraic Solver controls.
This command is accessible in the menu if FLDATA18,METH,Label,1 has been issued for the PRES, TEMP, ENKE, or ENDS labels.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

> Main Menu>Preprocessor>FLOTRAN Set Up>CFD Solver Controls>ENDS Solver CFD
> Main Menu>Preprocessor>FLOTRAN Set Up>CFD Solver Controls>ENKE Solver CFD
> Main Menu>Preprocessor>FLOTRAN Set Up>CFD Solver Controls>PRES Solver CFD
> Main Menu>Preprocessor>FLOTRAN Set Up>CFD Solver Controls>TEMP Solver CFD
> Main Menu>Solution>FLOTRAN Set Up>CFD Solver Controls>ENDS Solver CFD
> Main Menu>Solution>FLOTRAN Set Up>CFD Solver Controls>ENKE Solver CFD
> Main Menu>Solution>FLOTRAN Set Up>CFD Solver Controls>PRES Solver CFD
> Main Menu>Solution>FLOTRAN Set Up>CFD Solver Controls>TEMP Solver CFD

FLDATA20, SRCH, Label, Value

Specifies the number of conjugate direction search vectors.

> PREP 7:FLOTRAN Solver
> MP <> <> <> <> <> <> FL <> <> <> PP <> <> <>

SRCH

Enter the word SRCH in this field.
FLDATA20,SRCH is the FLDATA command with its first argument set to SRCH. It can be entered into the program as either FLDATA20,SRCH,Label,Value or FLDATA,SRCH,Label,Value where Label and Value are as described below. See the FLDATA command for other FLOTRAN CFD input choices.

Label

Degree of freedom set for which the solver is being used:
PRES
Pressure equation.

TEMP

Energy equation.

```
VX
```

U velocity.
VY
V velocity.
VZ
W velocity.
ENKE
Turbulent kinetic energy.

ENDS

Turbulent kinetic energy dissipation rate.

Value

Number of search directions (defaults to 2). If you are using the PGMR solver, the default is to use 12 search vectors. You cannot use fewer than 12 for the PGMR solver. If you are using the PBCGM solver, the number of search directions is 1 to 8 , with 2 as the default.

Notes

The conjugate direction iterative techniques (methods 2 and 3 on the FLDATA18,METH command) develop a solution as a linear combination of search directions. In the solution with methods 2 and 3 , new search vectors are made orthogonal toValue previous vectors in the solution of the non-symmetric matrix systems. See the Fluids Analysis Guide for details on when to change these values.

Note

The parameter is not applicable to the incompressible pressure equation since the new search vector is automatically orthogonal to all the previous ones.

See also the FLDATA18,METH,TDMA, FLDATA21,CONV, FLDATA22,MAXI, and FLDATA23,DELT commands for other Algebraic Solver controls.

This command is accessible in the menu if FLDATA18,METH,Label,(2 or 3) has been issued for the relevant labels.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>FLOTRAN Set Up>CFD Solver Controls>ENDS Solver CFD Main Menu>Preprocessor>FLOTRAN Set Up>CFD Solver Controls>ENKE Solver CFD Main Menu>Preprocessor>FLOTRAN Set Up>CFD Solver Controls>PRES Solver CFD Main Menu>Preprocessor>FLOTRAN Set Up>CFD Solver Controls>TEMP Solver CFD Main Menu>Preprocessor>FLOTRAN Set Up>CFD Solver Controls>VX Solver CFD Main Menu>Preprocessor>FLOTRAN Set Up>CFD Solver Controls>VY Solver CFD Main Menu>Preprocessor>FLOTRAN Set Up>CFD Solver Controls>VZ Solver CFD Main Menu>Solution>FLOTRAN Set Up>CFD Solver Controls>ENDS Solver CFD Main Menu>Solution>FLOTRAN Set Up>CFD Solver Controls>ENKE Solver CFD

Main Menu>Solution>FLOTRAN Set Up>CFD Solver Controls>PRES Solver CFD
Main Menu>Solution>FLOTRAN Set Up>CFD Solver Controls>TEMP Solver CFD
Main Menu>Solution>FLOTRAN Set Up>CFD Solver Controls>VX Solver CFD
Main Menu>Solution>FLOTRAN Set Up>CFD Solver Controls>VY Solver CFD
Main Menu>Solution>FLOTRAN Set Up>CFD Solver Controls>VZ Solver CFD

FLDATA20A, PGMR, Label, Value
Specifies the amount of fill-in when preconditioning the coefficient matrix.

> PREP 7: FLOTRAN Solver
> $\mathrm{MP}<><><><><><>\mathrm{FL}<><><>\mathrm{PP}<><><>$

PGMR
Enter the word PGMR in this field.
FLDATA20A,PGMR is the FLDATA command with its first argument set to PGMR. It can be entered into the program as either FLDATA20A,PGMR,Label,Value or FLDATA,PGMR,Label,Value where Label and Value are as described below. See the FLDATA command for other FLOTRAN CFD input choices.

Label

Label (dictates the meaning of Value):
FILL
Value represents the number of extra elements allowed in each row of the L and U decomposition matrices. An extra element is defined as being in addition to the number of nonzero elements in the row of the original matrix. The allowable range for the fill parameter is 1 to 10 (defaults to 6).

MODP

Value represents the number of global iterations performed using the TDMA method between global iterations performed using the PGMR method for the temperature DOF. The first global iteration always uses the PGMR method. The global iteration count is based on the total number, not the number for a restart. Value defaults to 0 (PGMR always used).

Value
Value as described above.

Notes

The fill parameter specifies the amount of fill-in when constructing the L and U decomposition of the coefficient matrix.

Use of FILL requires selection of the PGMR solver for the PRES or TEMP degree of freedom. Use of MODP requires selection of the PGMR solver for the temperature DOF.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>FLOTRAN Set Up>CFD Solver Controls>ENDS Solver CFD Main Menu>Preprocessor>FLOTRAN Set Up>CFD Solver Controls>ENKE Solver CFD Main Menu>Preprocessor>FLOTRAN Set Up>CFD Solver Controls>PRES Solver CFD Main Menu>Preprocessor>FLOTRAN Set Up>CFD Solver Controls>TEMP Solver CFD

Main Menu>Preprocessor>FLOTRAN Set Up>CFD Solver Controls>VX Solver CFD Main Menu>Preprocessor>FLOTRAN Set Up>CFD Solver Controls>VY Solver CFD Main Menu>Preprocessor>FLOTRAN Set Up>CFD Solver Controls>VZ Solver CFD Main Menu>Solution>FLOTRAN Set Up>CFD Solver Controls>ENDS Solver CFD Main Menu>Solution>FLOTRAN Set Up>CFD Solver Controls>ENKE Solver CFD Main Menu>Solution>FLOTRAN Set Up>CFD Solver Controls>PRES Solver CFD Main Menu>Solution>FLOTRAN Set Up>CFD Solver Controls>TEMP Solver CFD Main Menu>Solution>FLOTRAN Set Up>CFD Solver Controls>VX Solver CFD Main Menu>Solution>FLOTRAN Set Up>CFD Solver Controls>VY Solver CFD Main Menu>Solution>FLOTRAN Set Up>CFD Solver Controls>VZ Solver CFD

FLDATA20B, P BCGM, Label, Value

Specifies the number of fill-ins for the ILU preconditioner.
PREP 7:FLOTRAN Solver
MP <> <> <> <> <> <> FL <> <> <> PP <> <> <>

PBCGM

Enter the word PBCGM in this field.
FLDATA20B,PBCGM is the FLDATA command with its first argument set to PBCGM. It can be entered into the program as either FLDATA20B,PBCGM,Label,Value or FLDATA,PBCGM,Label,Value where Label and Value are as described below. See the FLDATA command for other FLOTRAN CFD input choices.

Label

Label (dictates the meaning of Value):
FILL
Value represents the number of extra elements allowed in each row of the L and U decomposition matrices. An extra element is defined as being in addition to the number of nonzero elements in the row of the original matrix. The allowable range for the fill parameter is 0 to 10 (defaults to 6).

Value

Value as described above.

Notes

The fill parameter specifies the amount of fill-in when constructing the L and U decomposition of the coefficient matrix.

A single constant for FILL is used for the PBCGM solver, and it will be applied to all degrees of freedom that use this solver.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>FLOTRAN Set Up>CFD Solver Controls>ENDS Solver CFD Main Menu>Preprocessor>FLOTRAN Set Up>CFD Solver Controls>ENKE Solver CFD Main Menu>Preprocessor>FLOTRAN Set Up>CFD Solver Controls>PRES Solver CFD Main Menu>Preprocessor>FLOTRAN Set Up>CFD Solver Controls>TEMP Solver CFD

> Main Menu>Preprocessor>FLOTRAN Set Up>CFD Solver Controls>VX Solver CFD
> Main Menu>Preprocessor>FLOTRAN Set Up>CFD Solver Controls>VY Solver CFD
> Main Menu>Preprocessor>FLOTRAN Set Up>CFD Solver Controls>VZ Solver CFD
> Main Menu>Solution>FLOTRAN Set Up>CFD Solver Controls>ENDS Solver CFD
> Main Menu>Solution>FLOTRAN Set Up>CFD Solver Controls>ENKE Solver CFD
> Main Menu>Solution>FLOTRAN Set Up>CFD Solver Controls>PRES Solver CFD
> Main Menu>Solution>FLOTRAN Set Up>CFD Solver Controls>TEMP Solver CFD
> Main Menu>Solution>FLOTRAN Set Up>CFD Solver Controls>VX Solver CFD
> Main Menu>Solution>FLOTRAN Set Up>CFD Solver Controls>VY Solver CFD
> Main Menu>Solution>FLOTRAN Set Up>CFD Solver Controls>VZ Solver CFD

FLDATA21, CONV, Label, Value
Specifies the convergence criterion for FLOTRAN algebraic solvers.
PREP 7:FLOTRAN Solver
MP <> <> <> <> <> <> FL <> <> <> PP <> <> <>
CONV
Enter the word CONV in this field.
FLDATA21,CONV is the FLDATA command with its first argument set to CONV. It can be entered into the program as either FLDATA21,CONV,Label,Value or FLDATA,CONV,Label,Value where Label and Value are as described below. See the FLDATA command for other FLOTRAN CFD input choices.

Label

Degree of freedom set for which the solver is being used:

PRES

Pressure equation (Value defaults to 1.0×10^{-12}).
TEMP
Energy equation (Value defaults to 1.0×10^{-12}).
vx
U velocity (Value defaults to 1.0×10^{-5}).
VY
V velocity (Value defaults to 1.0×10^{-5}).
VZ
W velocity (Value defaults to 1.0×10^{-5}).
ENKE
Turbulent kinetic energy (Value defaults to 1.0×10^{-5}).
ENDS
Turbulent kinetic energy dissipation rate (Value defaults to 1.0×10^{-5}).
Value
Convergence criterion factor.

Notes

The convergence monitor (for methods 2 or 3 on the FLDATA18,METH command) represents the factor by which the inner product of the residual vector is to be reduced during the solution of the equations at any global iteration.

If you are using the Preconditioned Generalized Minimum Residual (PGMR) solver, the least restrictive convergence criterion allowed is $1 . \mathrm{E}-10$. If you try to use a less restrictive convergence criterion, FLOTRAN will change it to $1 . \mathrm{E}-10$. A convergence criterion as low as $1 . \mathrm{E}-20$ may be necessary for some problems.

Less restrictive values are specified for the velocities and turbulence parameters because the iterative nature of the segregated solution algorithm in FLOTRAN does not require exact solutions to these equations at any global iteration. The default solution method for these degrees of freedom is the Tri-Diagonal Matrix Algorithm (TDMA) method.

See also the FLDATA18,METH, FLDATA20,SRCH, FLDATA22,MAXI, and FLDATA23,DELT commands for other Algebraic Solver controls.

This command is accessible in the menu if FLDATA18,METH,Label,(2 or 3) has been issued for the relevant labels.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>FLOTRAN Set Up>CFD Solver Controls>ENDS Solver CFD Main Menu>Preprocessor>FLOTRAN Set Up>CFD Solver Controls>ENKE Solver CFD Main Menu>Preprocessor>FLOTRAN Set Up>CFD Solver Controls>PRES Solver CFD Main Menu>Preprocessor>FLOTRAN Set Up>CFD Solver Controls>TEMP Solver CFD Main Menu>Preprocessor>FLOTRAN Set Up>CFD Solver Controls>VX Solver CFD Main Menu>Preprocessor>FLOTRAN Set Up>CFD Solver Controls>VY Solver CFD Main Menu>Preprocessor>FLOTRAN Set Up>CFD Solver Controls>VZ Solver CFD Main Menu>Solution>FLOTRAN Set Up>CFD Solver Controls>ENDS Solver CFD Main Menu>Solution>FLOTRAN Set Up>CFD Solver Controls>ENKE Solver CFD Main Menu>Solution>FLOTRAN Set Up>CFD Solver Controls>PRES Solver CFD Main Menu>Solution>FLOTRAN Set Up>CFD Solver Controls>TEMP Solver CFD Main Menu>Solution>FLOTRAN Set Up>CFD Solver Controls>VX Solver CFD Main Menu>Solution>FLOTRAN Set Up>CFD Solver Controls>VY Solver CFD Main Menu>Solution>FLOTRAN Set Up>CFD Solver Controls>VZ Solver CFD

FLDATA22, MAX I, Label, Value
Specifies the maximum number of semi-direct iterations.
PREP 7:FLOTRAN Solver
MP <> <> <> <> <> <> FL <> <> <> PP <> <> <>
MAXI
Enter the word MAXI in this field.

FLDATA22,MAXI is the FLDATA command with its first argument set to MAXI. It can be entered into the program as either FLDATA22,MAXI,Label,Value or FLDATA,MAXI,Label,Value where Label and Value are as described below. See the FLDATA command for other FLOTRAN CFD input choices.

Label

Degree of freedom set for which the solver is being used:

PRES

Pressure equation (Value defaults to 1000).

TEMP

Energy equation (Value defaults to 1000).
VX
U velocity (Value defaults to 100).
VY
V velocity (Value defaults to 100).
VZ
W velocity (Value defaults to 100).

ENKE

Turbulent kinetic energy (Value defaults to 100).
ENDS
Turbulent kinetic energy dissipation (Value defaults to 100).
Value
Limit on the number of iterations.

Notes

These limits apply to the semi-direct solution methods (method 2 or 3 on the FLDATA18,METH command). If this number of iterations is reached before the convergence criterion is met, the solution is accepted, a warning message is printed, and the program continues normally. However if the pressure equation is not solved to the precision desired three times during a load step, execution will terminate.

See also the FLDATA18,METH, FLDATA20,SRCH, FLDATA21,CONV, and FLDATA23,DELT commands for other Algebraic Solver controls.

This command is accessible in the menu if FLDATA18,METH,Label,(2 or 3) has been issued for the relevant labels.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>FLOTRAN Set Up>CFD Solver Controls>ENDS Solver CFD
Main Menu>Preprocessor>FLOTRAN Set Up>CFD Solver Controls>ENKE Solver CFD
Main Menu>Preprocessor>FLOTRAN Set Up>CFD Solver Controls>PRES Solver CFD
Main Menu>Preprocessor>FLOTRAN Set Up>CFD Solver Controls>TEMP Solver CFD
Main Menu>Preprocessor>FLOTRAN Set Up>CFD Solver Controls>VX Solver CFD
Main Menu>Preprocessor>FLOTRAN Set Up>CFD Solver Controls>VY Solver CFD
Main Menu>Preprocessor>FLOTRAN Set Up>CFD Solver Controls>VZ Solver CFD
Main Menu>Solution>FLOTRAN Set Up>CFD Solver Controls>ENDS Solver CFD
Main Menu>Solution>FLOTRAN Set Up>CFD Solver Controls>ENKE Solver CFD

FLDATA23, DELT, Label, Value

Specifies the solver minimum normalized rate of change.
PREP 7:FLOTRAN Solver
MP <> <> <> <> <> <> FL <> <> <> PP <> <> <>

DELT

Enter the word DELT in this field.
FLDATA23,DELT is the FLDATA command with its first argument set to DELT. It can be entered into the program as either FLDATA23,DELT,Label,Value or FLDATA,DELT,Label,Value where Label and Value are as described below. See the FLDATA command for other FLOTRAN CFD input choices.

Label

Degree of freedom set for which the solver is being used:

PRES

Pressure equation (Value defaults to 1.0×10^{-10}).

TEMP

Energy equation (Value defaults to 1.0×10^{-10}).
vx
U velocity (Value defaults to 1.0×10^{-10}).
VY
V velocity (Value defaults to 1.0×10^{-10}).

VZ

W velocity (Value defaults to 1.0×10^{-10}).

ENKE

Turbulent kinetic energy (Value defaults to 1.0×10^{-10}).

ENDS

Turbulent kinetic energy dissipation (Value defaults to 1.0×10^{-10}).

Value

Minimum normalized rate of change (delta).

Notes

Delta is the minimum normalized rate of change which will permit the semi-direct solution methods (method 2 or 3 on the FLDATA18,METH command) to continue.

Delta is used to terminate the semi-direct solvers in the event that stall occurs. If the methods stall, the solver increments the solution only a very small amount despite the fact that the correct solution has not
been achieved. The maximum nodal difference between the solutions, normalized to the value of the variable, is compared to delta.

Termination of the algebraic solver due to the small rate of change is considered a normal function and no warning message is printed. Execution of FLOTRAN continues normally.

See also the FLDATA18,METH, FLDATA20,SRCH, FLDATA21,CONV, and FLDATA22,MAXI commands for other Algebraic Solver controls.

This command is accessible in the menu if FLDATA18,METH,Label,(2 or 3) has been issued for the relevant labels.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

> Main Menu>Preprocessor>FLOTRAN Set Up>CFD Solver Controls>ENDS Solver CFD
> Main Menu>Preprocessor>FLOTRAN Set Up>CFD Solver Controls>ENKE Solver CFD
> Main Menu>Preprocessor>FLOTRAN Set Up>CFD Solver Controls>PRES Solver CFD
> Main Menu>Preprocessor>FLOTRAN Set Up>CFD Solver Controls>TEMP Solver CFD
> Main Menu>Preprocessor>FLOTRAN Set Up>CFD Solver Controls>VX Solver CFD
> Main Menu>Preprocessor>FLOTRAN Set Up>CFD Solver Controls>VY Solver CFD
> Main Menu>Preprocessor>FLOTRAN Set Up>CFD Solver Controls>VZ Solver CFD
> Main Menu>Solution>FLOTRAN Set Up>CFD Solver Controls>ENDS Solver CFD
> Main Menu>Solution>FLOTRAN Set Up>CFD Solver Controls>ENKE Solver CFD
> Main Menu>Solution>FLOTRAN Set Up>CFD Solver Controls>PRES Solver CFD
> Main Menu>Solution>FLOTRAN Set Up>CFD Solver Controls>TEMP Solver CFD
> Main Menu>Solution>FLOTRAN Set Up>CFD Solver Controls>VX Solver CFD
> Main Menu>Solution>FLOTRAN Set Up>CFD Solver Controls>VY Solver CFD
> Main Menu>Solution>FLOTRAN Set Up>CFD Solver Controls>VZ Solver CFD

FLDATA24, TURB, Label, Value

Sets the turbulence model and the constants used in the Standard $\mathbf{k}-\varepsilon$ Model and the Zero Equation Turbulence Model.

PREP 7:FLOTRAN Turbulence
MP <> <> <> <> <> <> FL <> <> <> PP <> <> <>
TURB
Enter the word TURB in this field.
FLDATA24,TURB is the FLDATA command with its first argument set to TURB. It can be entered into the program as either FLDATA24,TURB,Label,Value or FLDATA,TURB,Label,Value where Label and Value are as described below. See the FLDATA command for other FLOTRAN CFD input choices.

Label

Turbulence model parameter label (dictates the meaning of Value):
MODL
Value sets the turbulence model used. Valid values are the integers 0 through 8 as follows:

0,1

Standard k- ε Model (default).
2
Zero Equation Turbulence Model.
3
Re-Normalized Group Turbulence Model (RNG).
4
New k- ε Model due to Shih (NKE).

5
Nonlinear Model of Girimaji (GIR).
6
Shih, Zhu, Lumley Model (SZL).
7
k- ω Turbulence Model
8
Shear-Stress Transport Turbulence Model (SST)

RATI

Value is the turbulence ratio. The initial turbulent viscosity is equal to the laminar value times the turbulence ratio. Value defaults to 1000.

ININ

Value is the inlet intensity. The fluctuating velocity component at the inlet is assumed to be the magnitude of the inlet velocity times the inlet intensity. Val ue defaults to 0.01 .

INSF

Value is the inlet scale factor. This factor is used to provide a length scale inlet region of the problem. The hydraulic diameter of the inlet is multiplied by the inlet scale factor. If a negative value is input, the absolute value is used as direct input of the hydraulic diameter. Value defaults to 0.01.

SCTK

Value is the Schmidt number for the turbulent kinetic energy. The diffusion term in the turbulent kinetic energy equation is divided by this factor. Val ue defaults to 1.0.

SCTD

Value is the Schmidt number for the kinetic energy dissipation rate. The diffusion term in the dissipation rate equation is divided by this factor. Value defaults to 1.3.

SCTM

Value is the Schmidt number for the momentum equation. The turbulent contribution to the diffusion term of the momentum equation is divided by this factor. Value defaults to 1.

SCTT

Value is the Schmidt number for the energy (temperature) equation. The turbulent contribution to the diffusion term of the energy equation is divided by this factor. The Prandtl number is equal to the Schmidt number. Value defaults to 0.85 .

CMU

Value is the $\mathrm{k}-\varepsilon$ turbulence model constant
$\mu_{t}=C_{\mu} \frac{\rho k^{2}}{\varepsilon}$
which is used in the update of the turbulent viscosity. Value defaults to 0.09 .

C1

Value is the $\mathrm{k}-\varepsilon$ turbulence model C 1 constant. It is the multiplier of the shear rate generation term of the turbulent kinetic energy dissipation rate equation. Value defaults to 1.44.

C2
Value is the $\mathrm{k}-\varepsilon$ turbulence model C2 constant. It is the multiplier of the dissipation source term in the turbulent kinetic energy dissipation rate equation. Value defaults to 1.92 .

BUC3

Value is the $k-\varepsilon$ buoyancy model constant. A value of zero means that there is no contribution to the turbulent kinetic energy dissipation rate equation. The default value of one is appropriate for stable thermally stratified flows. A value of zero is appropriate for unstable thermally stratified flows

BUC4

Value is the k - ε multiplier applied to the buoyancy term of the turbulent kinetic energy equation. A value of 1.0 is appropriate for the calculation of stable thermally stratified flows. Value defaults to 0.0 .

BETA

Value is β, the coefficient of thermal expansion
$\beta=\frac{1}{\rho} \frac{\partial \rho}{\partial T}$
This term is used in the buoyancy terms of the $\mathrm{k}-\varepsilon$ model.

KAPP

Value is the slope parameter of the law of the wall constant. It is the slope of the plot of normalized shear velocity (u^{+}) versus the nondimensionalized distance from the wall (${ }^{+}$). See Theory Reference for the Mechanical APDL and Mechanical Applications for details. Value defaults to 0.4.
EWLL
Value is the law of the wall constant. It is related to the y intercept value for a plot of normalized shear velocity (u^{+}) versus the nondimensionalized distance from the wall (y^{+}). See the Theory Reference for the Mechanical APDL and Mechanical Applications for more details. Val ue defaults to 9.0.

WALL

Value is the choice of wall conductivity model. The default model is the Van Driest model (Value = VAND), used most often for high Prandtl number fluids. The second choice is the Spalding model (Value = SPAL), applicable to low Prandtl number fluids. The third choice is the Equilibrium model (Value = EQLB). The equilibrium model is also automatically invoked for the wall viscosity by this command.

VAND

Value is the constant in the Van Driest wall conductivity model. See the Theory Reference for the Mechanical APDL and Mechanical Applications for details. Value defaults to 26.0.

TRAN

Value is the magnitude of y^{+}marking the outer boundary of the laminar sublayer. Used only for the Equilibrium Wall model. Value defaults to 11.5 .

ZELS

Value is the Zero Equation Model length scale (defaults to -1). A negative value means that FLOTRAN will calculate the value internally.

KS
Value is the local uniform wall roughness in length units. The default value of 0.0 implies a smooth wall.

CKS
Value is an empirical dimensionless factor between 0.5 and 1.0 that specifies the degree of nonuniformity of the surface. The default value of 0.5 means that the roughness signified by KS is uniformly distributed. Higher values increase the roughness losses without changing the flow regime implied by the value of KS.

Value

Turbulence model parameters values as explained above.

Notes

Sets the turbulence model and constants used in the Standard $k-\varepsilon$ Model and the Zero Equation Turbulence Model. The other turbulence models are an extension of the Standard $k-\varepsilon$ Model and different values are applied to some of the Standard $k-\varepsilon$ Model constants and some additional constants are added.

Applicable only if the turbulence model is activated [FLDATA1,SOLU,TURB, TRUE]. The default values are used most often. See the Theory Reference for the Mechanical APDL and Mechanical Applications for more information on the turbulence models.

See also the FLDATA24A,RNGT, FLDATA24B,NKET, FLDATA24C,GIRT, and FLDATA24D,SZLT commands for other turbulence model constants.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>FLOTRAN Set Up $>$ Turbulence $>$ Buoyancy Terms
Main Menu>Preprocessor>FLOTRAN Set Up $>$ Turbulence $>$ Turbulence Model
Main Menu>Preprocessor>FLOTRAN Set Up>Turbulence>Turbulence Parameters
Main Menu>Preprocessor>FLOTRAN Set Up>Turbulence>Wall Parameters
Main Menu $>$ Solution $>$ FLOTRAN Set Up $>$ Turbulence $>$ Buoyancy Terms
Main Menu>Solution>FLOTRAN Set Up>Turbulence $>$ Turbulence Model
Main Menu>Solution>FLOTRAN Set Up>Turbulence $>$ Turbulence Parameters
Main Menu>Solution>FLOTRAN Set Up>Turbulence>Wall Parameters

FLDATA24A, RNGT, Label, Value

Sets constants for the Re-Normalized Group Turbulence Model (RNG).
PREP 7:FLOTRAN Turbulence
MP <> <> <> <> <> <> FL <> <> <> PP <> <> <>
RNGT
Enter the word RNGT in this field.
FLDATA24A,RNGT is the FLDATA command with its first argument set to RNGT. It can be entered into the program as either FLDATA24A, RNGT, Label,Value or FLDATA,RNGT,Label,Value where Label and Value are as described below.

Label

Turbulence model parameter label (dictates the meaning of Value):

SCTK

Value is the Schmidt number for the turbulent kinetic energy. The diffusion term in the turbulent kinetic energy equation is divided by this factor. Value defaults to 0.72 .

SCTD

Value is the Schmidt number for the kinetic energy dissipation rate. The diffusion term in the dissipation rate equation is divided by this factor. Value defaults to 0.72 .
CMU
Value is the turbulence model constant
$\mu_{t}=C_{\mu} \frac{\rho k^{2}}{\varepsilon}$
which is used in the update of the turbulent viscosity. Value defaults to 0.085 .
C1
Value is the multiplier of the shear rate generation term of the turbulent kinetic energy dissipation rate equation. Value defaults to 1.42 .

C2
Value is the multiplier of the dissipation source term in the turbulent kinetic energy dissipation rate equation. Value defaults to 1.68 .
BETA
Value is the RNG model constant,
β_{∞}

Value defaults to 0.012 , which corresponds to a value of 0.4 for the von Karman constant.

ETAI

Value is the asymptotic value of the strain rate parameter eta. Value defaults to 4.38.

Value

Turbulence model parameters values as explained above.

Notes

The Re-Normalized Group Turbulence Model (RNG) is an extension of the Standard $k-\varepsilon$ Model. Different values are applied to five of the Standard $k-\varepsilon$ Model constants and two additional constants are added. The values for the RNG Model are applied with the FLDATA24A,RNGT command and are separate from the Standard k- ε Model constants.

Applicable only if the Re-Normalized Group Turbulence Model (RNG) is activated [FLDATA24,TURB,MODL,3]. The default values are used most often. See RNG Turbulence Model in the Theory Reference for the Mechanical APDL and Mechanical Applications for more information on the turbulence models.

See also the FLDATA24,TURB command.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>FLOTRAN Set Up>Turbulence>Turbulence Model
Main Menu>Solution>FLOTRAN Set Up>Turbulence $>$ Turbulence Model

FLDATA24B, NKET, Label, Value

Sets constants for the $\mathbf{k}-\varepsilon$ Turbulence Model due to Shih (NKE).

$$
\begin{array}{r}
\text { PREP 7:FLOTRAN Turbulence } \\
\text { MP <> <> <> <> <> <> FL <> <> <> PP <> <> <> }
\end{array}
$$

NKET

Enter the word NKET in this field.
FLDATA24B,NKET is the FLDATA command with its first argument set to NKET. It can be entered into the program as either FLDATA24B,NKET, Label,Value or FLDATA,NKET,Label,Value where Label and Value are as described below.

Label

Turbulence model parameter label (dictates the meaning of Value):

SCTK

Value is the Schmidt number for the turbulent kinetic energy. The diffusion term in the turbulent kinetic energy equation is divided by this factor. It is the σ_{k} constant. Value defaults to 1.0.

SCTD

Value is the Schmidt number for the kinetic energy dissipation rate. The diffusion term in the dissipation rate equation is divided by this factor. It is the σ_{ε} constant. Value defaults to 1.2.

C2
Value is the multiplier of the dissipation source term in the turbulent kinetic energy dissipation rate equation. Value defaults to 1.90 .

C1MX
Value is the maximum allowed value of the C1 constant in the turbulent kinetic energy dissipation rate equation. Value defaults to 0.43 .

Value

Turbulence model parameters values as explained above.

Notes

The $k-\varepsilon$ Turbulence Model due to Shih (NKE) is an extension of the Standard $k-\varepsilon$ Model. Different values are applied to three of the Standard $k-\varepsilon$ Model constants and an additional constant is added. The values for the NKE Model are applied with the FLDATA24B,NKET command and are separate from the Standard $k-\varepsilon$ Model constants.

Applicable only if the $k-\varepsilon$ Model due to Shih (NKE) is activated [FLDATA24,TURB,MODL,4]. The default values are used most often. See Standard k-epsilon Model in the Theory Reference for the Mechanical APDL and Mechanical Applications for more information on the turbulence models.

See also the FLDATA24,TURB command.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>FLOTRAN Set Up>Turbulence>Turbulence Model Main Menu>Solution>FLOTRAN Set Up>Turbulence>Turbulence Model

FLDATA24C, GIRT, Label, Value

Sets constants for the Nonlinear Turbulence Model of Girimaji (GIR).

PREP 7:FLOTRAN Turbulence
MP <> <> <> <> <> <> FL <> <> <> PP <> <> <>

GIRT
Enter the word GIRT in this field.
FLDATA24C,GIRT is the FLDATA command with its first argument set to GIRT. It can be entered into the program as either FLDATA24C,GIRT,Label,Value or FLDATA,GIRT,Label,Value where Label and Value are as described below.

Label
Turbulence model parameter label (dictates the meaning of Value):

SCTK

Value is the Schmidt number for the turbulent kinetic energy. The diffusion term in the turbulent kinetic energy equation is divided by this factor. Value defaults to 1.0 .
SCTD
Value is the Schmidt number for the kinetic energy dissipation rate. The diffusion term in the dissipation rate equation is divided by this factor. Value defaults to 1.3.

G0
Value is the C_{1}^{0} constant. Value defaults to 3.6.
G1
Value is the C_{1}^{1} constant. Value defaults to 0.0 .
G2
Value is the C_{2} constant. Value defaults to 0.8 .
G3
Value is the C_{3} constant. Value defaults to 1.94 .
G4
Value is the C_{4} constant. Value defaults to 1.16 .

Value

Turbulence model parameters values as explained above.

Notes

Sets constants for the Nonlinear Turbulence Model of Girimaji (GIR), which is an extension of the Standard $\mathrm{k}-\varepsilon$ Model. Different values are applied to two of the Standard $\mathrm{k}-\varepsilon$ Model constants and five additional con-
stants are added. The values for the GIR Model are applied with the FLDATA24C,GIRT command and are separate from the Standard $k-\varepsilon$ Model constants.

Applicable only if the Nonlinear Model of Girimaji (GIR) is activated [FLDATA24,TURB,MODL,5]. The default values are used most often. See GIR Turbulence Model in the Theory Reference for the Mechanical APDL and Mechanical Applications for more information on the turbulence models.

See also the FLDATA24,TURB command.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>FLOTRAN Set Up>Turbulence>Turbulence Model Main Menu>Solution>FLOTRAN Set Up>Turbulence>Turbulence Model

FLDATA24D, S ZLT, Label, Value

Sets constants for the Shih, Zhu, Lumley Turbulence Model (SZL).

PREP 7:FLOTRAN Turbulence
MP <> <> <> <> <> <> FL <> <> <> PP <> <> <>

SZLT
Enter the word SZLT in this field.

FLDATA24D,SZLT is the FLDATA command with its first argument set to SZLT. It can be entered into the program as either FLDATA24D,SZLT,Label,Value or FLDATA,SZLT,Label,Value where Label and Value are as described below.

Label

Turbulence model parameter label (dictates the meaning of Value):

SCTK

Value is the Schmidt number for the turbulent kinetic energy. The diffusion term in the turbulent kinetic energy equation is divided by this factor. Value defaults to 1.0.

SCTD
Value is the Schmidt number for the kinetic energy dissipation rate. The diffusion term in the dissipation rate equation is divided by this factor. Value defaults to 1.3.

SZL1

Value is the numerator constant used in the calculation of C_{μ}. It is the $A_{s z l 1}$ constant. Value defaults to 0.666 .

SZL2
Value is the denominator constant used in the calculation of C_{μ}. It is the $A_{\text {szl2 }}$ constant. Value defaults to 1.25 .

SZL3
Value is the strain rate multiplier. It is the $\mathrm{A}_{\text {szl3 }}$ constant. Value defaults to 0.90 .

Value

Turbulence model parameters values as explained above.

Notes

Sets constants for the Shih, Zhu, Lumley Turbulence Model (SZL), which is an extension of the Standard $\mathrm{k}-\varepsilon$ Model. Different values are applied to two of the Standard $k-\varepsilon$ Model constants and three additional constants are added. The values for the SZL Model are applied with the FLDATA24D,SZLT command and are separate from the Standard $k-\varepsilon$ Model constants.

Applicable only if the Shih, Zhu, Lumley Model (SZL) is activated [FLDATA24,TURB,MODL,6]. The default values are used most often. See SZL Turbulence Model in the Theory Reference for the Mechanical APDL and Mechanical Applications for more information on the turbulence models.

See also the FLDATA24,TURB command.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.
Menu Paths
Main Menu>Preprocessor>FLOTRAN Set Up>Turbulence>Turbulence Model Main Menu>Solution>FLOTRAN Set Up>Turbulence>Turbulence Model

FLDATA24E, SKWT, Label, Value

Sets constants for the $\mathbf{k}-\omega$ turbulence model.

PREP 7:FLOTRAN Turbulence
MP <> <> <> <> <> <> FL <> <> <> PP <> <> <>

SKWT

Enter the word SKWT in this field.
FLDATA24E,SKWT is the FLDATA command with its first argument set to SKWT. It can be entered into the program as either FLDATA24E,SKWT,Label,Value or FLDATA,SKWT,Label,Value where Label and Value are as described below.

Label

Turbulence model parameter label (dictates the meaning of Value):
SCTK
Value is the Schmidt number for the turbulent kinetic energy. The diffusion term in the turbulent kinetic energy equation is divided by this factor. Value defaults to 2.0 .

SCTW

Value is the Schmidt number for the specific dissipation rate. The diffusion term in the dissipation rate equation is divided by this factor. Value defaults to 2.0.
GAMA
Value is the GAMMA factor. Value defaults to 0.5555 .
BETA
Value is the BETA factor. Value defaults to 0.075 .
Value
Turbulence model parameters values as explained above.

Notes

Sets constants for the $\mathrm{k}-\omega$ Turbulence Model. Values for the $\mathrm{k}-\omega$ model are applied with the FLDATA24E,SKWT command.

Applicable only if the $k-\omega$ model is activated [FLDATA24,TURB,MODL,7]. The default values are used most often. See Standard k-omega Model in the Theory Reference for the Mechanical APDL and Mechanical Applications for more information on the turbulence models.

See also the FLDATA24,TURB command.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>FLOTRAN Set Up>Turbulence>Turbulence Model Main Menu>Solution>FLOTRAN Set Up>Turbulence>Turbulence Model

FLDATA24F, SS T1, Label, Value

Sets the turbulent production clip factor for the Shear Stress Transport (SST) turbulence model.

> PREP 7: FLOTRAN Turbulence
> MP <> <> <> <> <> <> FL <> <> <> PP <> <> <>

SST1
Enter the word SST1 in this field.
FLDATA24F,SST1 is the FLDATA command with its first argument set to SST1. It can be entered into the program as either FLDATA24F,SST1,Label,Value or FLDATA,SST1,Label,Value where Label and Value are as described below.

Label

Enter the word CLMT in this field.

Value

Turbulent production clip factor. Defaults to 1.0 e 15 (no clipping).

Notes

Sets the turbulent production clip factor for the Shear Stress Transport (SST) turbulence model. Values for the $\mathrm{k}-\omega$ regime are applied with the FLDATA24F,SST1,CLMT command.

Applicable only if the Shear Stress Transport model is activated [FLDATA24,TURB,MODL,8]. The default values are used most often. See SST Turbulence Model in the Theory Reference for the Mechanical APDL and Mechanical Applications for more information on the turbulence models.

See also the FLDATA24,TURB command.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>FLOTRAN Set Up>Turbulence>Turbulence Model Main Menu>Solution>FLOTRAN Set Up>Turbulence $>$ Turbulence Model

FLDATA24G, SST1, Label, Value

Sets constants in the $\mathbf{k}-\omega$ regime for the Shear Stress Transport (SST) turbulence model.

PREP 7:FLOTRAN Turbulence
MP <> <> <> <> <> <> FL <> <> <> PP <> <> <>
SST1
Enter the word SST1 in this field.
FLDATA24G,SST1 is the FLDATA command with its first argument set to SST1. It can be entered into the program as either FLDATA24G,SST1,Label,Value or FLDATA,SST1,Label,Value where Label and Value are as described below.

Label

Turbulence model parameter label (dictates the meaning of Value):

SCTK

Value is the Schmidt number for the turbulent kinetic energy. The diffusion term in the turbulent kinetic energy equation is divided by this factor. Value defaults to 1.176 .

SCTW
Value is the Schmidt number for the specific dissipation rate. The diffusion term in the dissipation rate equation is divided by this factor. Value defaults to 2.0 .

GAMA
Value is the GAMMA factor.Value defaults to 0.5532 .
BETA
Value is the BETA factor. Value defaults to 0.075 .
Value
Turbulence model parameter values as explained above.

Notes

Sets constants in the $k-\omega$ regime for the Shear Stress Transport (SST) turbulence model. Values for the $k-\omega$ regime are applied with the FLDATA24G,SST1 command.

Applicable only if the Shear Stress Transport model is activated [FLDATA24,TURB,MODL,8]. The default values are used most often. See SST Turbulence Model in the Theory Reference for the Mechanical APDL and Mechanical Applications for more information on the turbulence models.

See also the FLDATA24,TURB command.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>FLOTRAN Set Up>Turbulence>Turbulence Model

FLDATA24H, SST2, Label, Value

Sets constants in the $k-\varepsilon$ regime for the Shear Stress Transport (SST) turbulence model.

PREP 7: FLOTRAN Turbulence
MP <> <> <> <> <> <> FL <> <> <> PP <> <> <>

SST2

Enter the word SST2 in this field.

FLDATA24H,SST2 is the FLDATA command with its first argument set to SST2. It can be entered into the program as either FLDATA24H,SST2,Label,Value or FLDATA,SST2,Label,Value where Label and Value are as described below.

Label

Turbulence model parameter label (dictates the meaning of Value):

SCTK

Value is the Schmidt number for the turbulent kinetic energy. The diffusion term in the turbulent kinetic energy equation is divided by this factor. Value defaults to 1.0.

SCTW

Value is the Schmidt number for the specific dissipation rate. The diffusion term in the dissipation rate equation is divided by this factor. Value defaults to 1.168.

GAMA

Value is the GAMMA factor. Value defaults to 0.4403.

BETA

Value is the BETA factor. Value defaults to 0.0828 .

Value

Turbulence model parameter values as explained above.

Notes

Sets constants in the $k-\varepsilon$ regime for the Shear Stress Transport (SST) turbulence model. Values for the $k-\varepsilon$ regime are applied with the FLDATA24H,SST2 command.

Applicable only if the Shear Stress Transport model is activated [FLDATA24,TURB,MODL,8]. The default values are used most often. See the Theory Reference for the Mechanical APDL and Mechanical Applications for more information on the turbulence models.

See also the FLDATA24,TURB command.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu $>$ Preprocessor>FLOTRAN Set Up $>$ Turbulence $>$ Turbulence Model
Main Menu $>$ Solution $>$ FLOTRAN Set Up $>$ Turbulence $>$ Turbulence Model

FLDATA25, RELX, Label, Value

Sets solution and property relaxation factors.

PREP 7: FLOTRAN Stability
$\mathrm{MP}<><><><><\rangle<\rangle \mathrm{FL}\rangle\rangle\rangle \mathrm{PP}\rangle\rangle<\rangle$

RELX

Enter the word RELX in this field.
FLDATA25,RELX is the FLDATA command with its first argument set to RELX. It can be entered into the program as either FLDATA25,RELX,Label,Val ue or FLDATA,RELX,Label,Value where Label and Value are as described below. See the FLDATA command for other FLOTRAN CFD input choices.

Label

Solution and property relaxation factor labels:
VX
Value is the U Velocity relaxation factor.
VY
Value is the V Velocity relaxation factor.
VZ
Value is the W Velocity relaxation factor.

PRES

Value is the pressure relaxation factor.

TEMP

Value is the temperature relaxation factor.
ENKE
Value is the kinetic energy relaxation factor.
ENDS
Value is the dissipation rate relaxation factor.
EVIS
Value is the effective viscosity relaxation factor.
ECON
Value is the effective conductivity relaxation factor.

DENS

Value is the density update relaxation factor.
VISC
Value is the viscosity update relaxation factor.
COND
Value is the conductivity update relaxation factor.
SPHT
Value is the specific heat relaxation factor.

Value

Value of relaxation parameter as explained above (defaults to 0.5). Defaults to 1.0 for SPHT.

Notes

For stability purposes the solution in FLOTRAN is under-relaxed between global iterations. When the solution of the equations for a given degree of freedom is completed, the actual set of values used is related to the calculated set and the previous values as follows (where RELX is the relaxation factor):

$$
\Phi_{\text {new }}=(1-\text { RELX }) \Phi_{\text {previous }}+\operatorname{RELX} \Phi_{\text {calculated }}
$$

See also the FLDATA18,METH, FLDATA19,TDMA, FLDATA20,SRCH, FLDATA21,CONV, FLDATA22,MAXI, and FLDATA23,DELT commands for other Solver Stability controls.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>FLOTRAN Set Up>Relax/Stab/Cap>DOF Relaxation
Main Menu>Preprocessor>FLOTRAN Set Up>Relax/Stab/Cap>Prop Relaxation
Main Menu>Solution>FLOTRAN Set Up>Relax/Stab/Cap>DOF Relaxation
Main Menu>Solution>FLOTRAN Set Up>Relax/Stab/Cap>Prop Relaxation

FLDATA26, STAB, Label, Value

Sets stability controls.

> PREP 7: FLOTRAN Stability
> $\mathrm{MP}<><><><><><>$ FL <> <> <> PP <> <> <>

STAB

Enter the word STAB in this field.

FLDATA26,STAB is the FLDATA command with its first argument set to STAB. It can be entered into the program as either FLDATA26,STAB,Label,Value or FLDATA,STAB,Label,Value where Label and Value are as described below. See the FLDATA command for other FLOTRAN CFD input choices.

Label

Control label (dictates the meaning of Value):
TURB
Turbulence inertial relaxation (Value defaults to 1.0×10^{15}).

MOME

Momentum inertial relaxation (Value defaults to 1.0×10^{15}).
PRES
Pressure inertial relaxation (Value defaults to 1.0×10^{15}).
TEMP
Energy inertial relaxation (Value defaults to 1.0×10^{20}).
VISC
Artificial viscosity (Value defaults to 0.0).

Value

Inertial relaxation factor.

Notes

These controls are used to make the sets of equations diagonally dominant through inertial relaxation. Making the matrix equations more diagonally dominant makes them easier to solve. More global iterations are required for convergence if inertial relaxation is used. See Inertial Relaxation in the Theory Reference for the Mechanical APDL and Mechanical Applications for details.

Artificial viscosity can be activated to enhance stability in difficult compressible problems as well as in some incompressible problems. The artificial viscosity is added to the main diagonal and the forcing function of the momentum equations. The equations become more diagonally dominant locally in regions with high velocity gradients.

In compressible analyses, the artificial viscosity should be gradually removed as convergence is achieved since a nonzero value will affect the final solution. This is not necessary for incompressible analyses as the divergence of velocity should be zero. In practice, values of artificial viscosity should not exceed 1000 times the effective viscosity.

See also the FLDATA18,METH, FLDATA19,TDMA, FLDATA20,SRCH, FLDATA21,CONV, FLDATA22,MAXI, FLDATA23,DELT, FLDATA24,TURB, and FLDATA25,RELX commands for other Solver Stability controls.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>FLOTRAN Set Up>Relax/Stab/Cap>Stability Parms Main Menu>Solution>FLOTRAN Set Up>Relax/Stab/Cap>Stability Parms

FLDATA27, PRIN, Label, Value

Controls dependent variable printing.

PREP 7:FLOTRAN Miscellaneous

$\mathrm{MP}<><><><><><>\mathrm{FL}<><><>\mathrm{PP}<><><>$

PRIN

Enter the word PRIN in this field.

FLDATA27,PRIN is the FLDATA command with its first argument set to PRIN. It can be entered into the program as either FLDATA27,PRIN,Label,Value or FLDATA,PRIN,Label,Value where Label and Value are as described below. See the FLDATA command for other FLOTRAN CFD input choices.

```
Label
    Dependent variable tabulation is being specified for:
    VX
        U velocity.
    VY
        V velocity.
    VZ
        W velocity.
```


PRES

Pressure.

TEMP

Temperature.

ENKE

Kinetic energy.
ENDS
Turbulent kinetic energy dissipation rate.
DENS
Density.
VISC
Viscosity.

COND

Conductivity.
SPHT
Specific heat.

EVIS

Effective viscosity.

ECON

Effective conductivity.

SFTS

Surface tension coefficient.

Value

Tabulation key:
T
Turn tabulation on.
F
Turn tabulation off (default).

Notes

When set to T, this control produces a tabulation of the values of the particular dependent variable at every node. It is set at the beginning of a load step. The printout can be large and is contained in the file Jobname. PFL.

To observe the values of a dependent variable at selected nodes during postprocessing, see the PRNSOL command.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

This command cannot be accessed from a menu.

FLDATA28, MODR, Label, Value

Specifies that variable results are to be replaced.

PREP7:FLOTRAN Miscellaneous
MP <> <> <> <> <> <> FL <> <> <> PP <> <> <>
MODR
Enter the word MODR in this field.
FLDATA28,MODR is the FLDATA command with its first argument set to MODR. It can be entered into the program as either FLDATA28,MODR,Label,Value or FLDATA,MODR,Label,Value where Label and Value are as described below. See the FLDATA command for other FLOTRAN CFD input choices.

Label

Dependent variables to be replaced:
VX
U velocity.
VY
V velocity.
VZ
W velocity.

PRES

Pressure.

TEMP

Temperature.

ENKE

Kinetic energy.
ENDS
Turbulent kinetic energy dissipation rate.
DENS
Density.
VISC
Viscosity.
COND
Conductivity.
SPHT
Specific heat.
EVIS
Effective viscosity.
ECON
Effective conductivity.
TTOT
Total temperature.

SFTS

Surface tension coefficient.

Value

Variable replace flag:

T

Allow this variable to be re-initialized.
F
Do not allow this variable to be re-initialized (default).

Notes

Results for any of the dependent variables available can be replaced with new values for the next load step. Only a single value may be specified for the entire solution domain. This is used for re-initialization of a variable such as temperature, which has diverged while other temperature independent calculations have been successful.

To re-initialize a variable, first use this command to set the replacement flag to T for the desired variable. Then use the FLDATA29,MODV command to put in the new variable value. Note that the flag(s) will be automatically reset to F after the new value has been inserted.

See also the FLDATA29,MODV command.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>FLOTRAN Set Up>Mod Res/Quad Ord>Modify Results Main Menu>Solution>FLOTRAN Set Up>Mod Res/Quad Ord>Modify Results

FLDATA29, MODV, Label, Value

Re-initializes a results variable.

PREP 7:FLOTRAN Miscellaneous
MP <> <> <> <> <> <> FL <> <> <> PP <> <> <>

MODV

Enter the word MODV in this field.
FLDATA29,MODV is the FLDATA command with its first argument set to MODV. It can be entered into the program as either FLDATA29,MODV,Label,Value or FLDATA,MODV,Label,Val ue where Label and Value are as described below. See the FLDATA command for other FLOTRAN CFD input choices.

Label

Dependent variables to be replaced:

VX

U velocity.
VY
V velocity.
VZ
W velocity.

SPOn

Mass fraction of species n, where $n=1$ to 6 (FLOTRAN). If a species is given a user-defined name [MSSPEC], use that name instead of SP0n.

PRES

Pressure.
TEMP
Temperature.

ENKE

Kinetic energy.

ENDS

Turbulent kinetic energy dissipation rate.

DENS

Density.

VISC

Viscosity.

COND

Conductivity.

SPHT

Specific heat.

EVIS

Effective viscosity.
ECON
Effective conductivity.
TTOT
Total temperature.
SFTS
Surface tension coefficient.
LMDn
Laminar mass diffusion coefficient for species n, where $n=1$ to 6 .

EMDm

Effective mass diffusion coefficient for species n, where $\mathrm{n}=1$ to 6 .

Value

New value of variable (defaults to 0.0). Specifying FLDATA29,MODV,Label,Value modifies the entire field variable to a constant value.

Notes

Results for any of the dependent variables available can be replaced with new values for the next load step. Only a single value may be specified for the entire solution domain. This is used for re-initialization of a variable such as temperature, which has diverged while other temperature independent calculations have been successful. Boundary conditions are reapplied upon restart.

Quantities which are not allowed to vary (e.g., CONSTANT properties) should not be modified. Also, modifying results should not be attempted on the initial run.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>FLOTRAN Set Up>Mod Res/Quad Ord>Modify Results Main Menu>Solution>FLOTRAN Set Up>Mod Res/Quad Ord>Modify Results

FLDATA30, QUAD, Label, Value

Controls the quadrature orders.

PREP 7:FLOTRAN Miscellaneous
MP <> <> <> <> <> <> FL <> <> <> PP <> <> <>
qUAD
Enter the word QUAD in this field.
FLDATA30,QUAD is the FLDATA command with its first argument set to QUAD. It can be entered into the program as either FLDATA30,QUAD,Label,Value or FLDATA,QUAD,Label,Value where Label and Value are as described below. See the FLDATA command for other FLOTRAN CFD input choices.

Label

Element integral to change quadrature for:

MOMD

Momentum diffusion term (defaults to 0 integration points).

MOMS

Momentum source term (defaults to 0 integration points).
PRSD
Pressure diffusion term (defaults to 1 integration point).
PRSS
Pressure source term (defaults to 1 integration point).
THRD
Thermal diffusion term (defaults to 0 integration points).
THRS
Thermal source term (defaults to 0 integration points).

TRBD

Turbulent diffusion terms (defaults to 0 integration points).
TRBS
Turbulent source terms (defaults to 2 integration points).

Value

Number of integration points.

Notes

Controls the number of integration points used in the evaluation of element integrals. They are set at the optimum values by default. Values of 0 and 1 correspond to 1 point quadrature, but 0 means an average value of the diffusion coefficient has been used in the integrals. Values are automatically set to 2 for
axisymmetric and polar analyses. Using a value of 2 will improve the accuracy for analyses using distorted elements. Repeat the FLDATA30 command as required.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>FLOTRAN Set Up>Mod Res/Quad Ord>CFD Quad Orders Main Menu>Solution>FLOTRAN Set Up>Mod Res/Quad Ord>CFD Quad Orders

FLDATA31, CAP P, Label, Value

Specifies dependent variable caps.

PREP 7:FLOTRAN Miscellaneous
MP <> <> <> <> <> <> FL <> <> <> PP <> <> <>

CAPP
Enter the word CAPP in this field.

FLDATA31,CAPP is the FLDATA command with its first argument set to CAPP. It can be entered into the program as either FLDATA31,CAPP,Label,Value or FLDATA,CAPP,Label,Val ue where Label and Value are as described below. See the FLDATA command for other FLOTRAN CFD input choices.

Label

Capping parameters. The first three are used to set the flags, and the rest are used to specify the cap values after the flag is set to T :

VELO

Value is the velocity capping flag (Value defaults to F).

TEMP

Value is the temperature capping flag (Value defaults to F).
PRES
Value is the pressure capping flag (Value defaults to F).
UMIN
Value is the minimum value of U velocity allowed (Value defaults to -1.E20).

UMAX

Value is the maximum value of U velocity allowed (Value defaults to +1.E20).

VMIN

Value is the minimum value of V velocity allowed (Value defaults to -1.E20).

VMAX

Value is the maximum value of V velocity allowed (Value defaults to +1.E20).
WMIN
Value is the minimum value of Welocity allowed (Value defaults to -1.E20).

WMAX

Value is the maximum value of W velocity allowed (Value defaults to +1.E20).
TMIN
Value is the minimum value of temperature allowed (Value defaults to 0.0).

TMAX
Value is the maximum value of temperature allowed (Value defaults to $+1 . \mathrm{E} 20$).
PMIN
Value is the minimum value of pressure allowed (Value defaults to -1.E20).

PMAX

Value is the maximum value of pressure allowed (Value defaults to $+1 . \mathrm{E} 20$).

Value

Capping flag (T or F) or capping parameter value.

Notes

These parameters are used to limit arbitrarily the values of the dependent variables. Capping helps prevent divergence in the early stages of analyses. Be careful when using caps to ensure that they have no impact on the final answers. You should remove capping as convergence is approached.

To use capping, you must first set the flag to T and then set the maximum and minimum caps.
The pressure value calculated by the solution of the pressure equation is capped, not the relaxed value. Therefore, if you introduce pressure capping upon restarting an analysis, pressure values may still be outside the caps.

Capping applies to relative values of pressure and absolute values of temperature.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>FLOTRAN Set Up>Relax/Stab/Cap>Results Capping
Main Menu>Solution>FLOTRAN Set Up>Relax/Stab/Cap>Results Capping

FLDATA32, REST, Label, Value, Value2, Fname, Ext, --

Controls restart options.

PREP 7:FLOTRAN Miscellaneous
MP <> <> <> <> <> <> FL <> <> <> PP <> <> <>

REST

Enter the word REST in this field.
FLDATA32,REST is the FLDATA command with its first argument set to REST. It can be entered into the program as either FLDATA32,REST,Label,Value,Value2 or FLDATA,REST,Label,Value,Value2 where Label, Value, and Value 2 are as described below. See the FLDATA command for other FLOTRAN CFD input choices.

Label

Restart option (dictates the meaning of Value and Value2):
NSET
Identifies the restart point by results set number. Value is the results set number in the results file (Jobname.RFL) from which the analysis will be restarted. Value $=0$ or blank indicates that the
restart will be from the last results set. Value will be reset to zero if the label ITER, LSTP, or TIME is subsequently set. Value2 is not used.
ITER
Identifies the restart point by cumulative iteration number. Value is the cumulative iteration number in the results file (Jobname.RFL) from which the analysis will be restarted. If there are no results stored for this cumulative iteration, the results set with the next lowest cumulative iteration number will be used. Value $=0$ or blank indicates that the restart will be from the last results set. Value will be reset to zero if the label NSET, LSTP, or TIME is subsequently set. Value2 is not used.
LSTP
Identifies the restart point by load step and substep numbers. Value and Value2 are the load step number and substep number in the results file (Jobname. RFL) from which the analysis will be restarted. Value $=0$ or blank indicates that the restart will be from the last results set. Value and Value2 will be reset to zero if the label ITER, NSET, or TIME is subsequently set.

TIME

Identifies the restart point by transient time. Value is the time point in the results file (Jobname. RFL) from which the analysis will be restarted. If there are no results stored for this time point, the results set with the next lowest time point will be used. Value $=0$ or blank indicates that the restart will be from the last results set. Value will be reset to zero if the label NSET, LSTP, or ITER is subsequently set. Value 2 is not used.

RFIL

Specifies whether the CFD data structure restart file (Jobname. CFD) is to be read for the restart. Useful for large models where the creation of the data structures may take a long time. Value may be T (true) or F (false) and defaults to F. If the Jobname. CFD file does not exist, it will be created (if RFIL is set to true). Setting RFIL to true will toggle WFIL to false, and setting WFIL to true will toggle RFIL to false.
WFIL
Specifies whether the CFD data structure restart file (Jobname. CFD) is to be written. Useful for overwriting an existing restart file when changes in the model or boundary conditions have occurred. Value may be T (true) or F (false) and defaults to F. Setting WFIL to true will toggle RFIL to false, and setting RFIL to true will toggle WFIL to false.
OVER
Specifies whether to overwrite the set of results from which the restart occurs. Value may be $-1,0$, or 1 (defaults to 0). If Value is -1 , the previous set of results are overwritten. If Value is 1 , the previous set of results is saved. If Value is 0 (default), the previous results are saved only if the results were written as a saved (converged) set of results. When this flag is used to change the status of the previous set of results, ANSYS sets it to 0 so that future sets of results are not affected.

CLEAR

Specifies whether to eliminate from the results file (Jobname.RFL) all results sets stored before and after the set used for the restart. Value may be T (true) or F (false) and defaults to F. The restart set is the last set or the set specified with another FLDATA32,REST command. Use a positive value of NSET, ITER, LSTP, or TIME to create a backup of the results file and use a negative value of NSET, ITER, LSTP or TIME if you do not desire a backup of the results file (see Notes below).

Value, Value2

Restart point or restart file flag (T or F) as described above.

Fname

File name and directory path of a results file to be used for the restart (248 characters maximum, including directory). If you do not specify a directory path, it will default to your working directory and you can use all 248 characters for the file name.

The file name defaults to Jobname. This field is valid only with Label = NSET, ITER, LSTP, or TIME.

Ext

Filename extension (8 character maximum).
The extension defaults to RFL, and is valid only with Label = NSET, ITER, LSTP, or TIME.

Unused field.

Notes

If both RFIL and WFIL are set to true through the GUI, the state of WFIL will prevail and a new Jobname. CFD file will be written.

If the value of NSET, ITER, LSTP, or TIME is positive, the original results file (Jobname. RFL) is moved to Jobname. RFO, and a new Jobname. RFL is created containing all the results sets stored prior to the restart point as well as new results. If the value is negative, the Jobname. RFL file will contain the prior results and the new results but the old file will be destroyed. This latter option is used if the results sets currently stored beyond the desired restart point are not worth saving.

If restarting from an existing file other than Jobname. RFL, no backup file (Jobname. RFO) is created because the existing file is not affected.

If a results file name (Fname) is entered for a restart, FLOTRAN interpolates those results onto the current mesh in the database, regardless of whether or not the mesh has changed. This causes the convergence monitors to start again from zero. This restart is different than a restart without a file name specification. However, the results quickly converge to the original solution.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>FLOTRAN Set Up>Restart Options>CFD Restart File Main Menu>Preprocessor>FLOTRAN Set Up>Restart Options>Restart/Clear Main Menu>Preprocessor>FLOTRAN Set Up>Restart Options>Restart/Iteration Main Menu>Preprocessor>FLOTRAN Set Up>Restart Options>Restart/Load step Main Menu>Preprocessor>FLOTRAN Set Up>Restart Options>Restart/Set Main Menu>Preprocessor>FLOTRAN Set Up>Restart Options>Restart/Time Main Menu $>$ Preprocessor $>$ FLOTRAN Set Up $>$ Restart Options $>$ Tag set status Main Menu>Solution>FLOTRAN Set Up>Restart Options>CFD Restart File Main Menu>Solution>FLOTRAN Set Up>Restart Options>Restart/Clear Main Menu>Solution>FLOTRAN Set Up>Restart Options>Restart/Iteration Main Menu>Solution>FLOTRAN Set Up>Restart Options>Restart/Load step Main Menu>Solution>FLOTRAN Set Up>Restart Options>Restart/Set Main Menu>Solution>FLOTRAN Set Up>Restart Options>Restart/Time Main Menu>Solution>FLOTRAN Set Up>Restart Options>Tag set status

FLDATA33, ADVM, Label, Value
Specifies the approach to discretize the advection term.
PREP 7:FLOTRAN Miscellaneous
$\mathrm{MP}<><><><\rangle<\rangle<\rangle \mathrm{FL}\rangle\rangle\rangle \mathrm{PP}\rangle\rangle<\rangle$

ADVM

Enter the word ADVM in this field.

FLDATA33,ADVM is the FLDATA command with its first argument set to ADVM. It can be entered into the program as either FLDATA33,ADVM,Label,Value or FLDATA,ADVM,Label,Value where Label and Value are as described below. See the FLDATA command for other FLOTRAN CFD input choices.

Label

Specifies the transport equation.

MOME

Momentum equations.

TURB

Turbulence equations.
PRES
Compressible pressure equation.
TEMP
Energy equation.
Value
Choice of approach to discretize the advection term:
MSU
Monotone Streamline Upwind approach (default for PRES).
SUPG
Streamline Upwind / Petrov-Galerkin approach (default for MOME, TURB, and TEMP).
COLG
Collocated Galerkin (COLG) approach.

Notes

See Using SUPG in the Fluids Analysis Guide for more information on the SUPG approach.
See Derivation of Fluid Flow Matrices in the Theory Reference for the Mechanical APDL and Mechanical Applications for more information on the advection term.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.
Menu Paths

Main Menu>Preprocessor>FLOTRAN Set Up>Advection
Main Menu>Solution>FLOTRAN Set Up>Advection

FLDATA34, MIR, Label, Value

Sets modified inertial relaxation factors.

PREP 7: FLOTRAN Stability
$\mathrm{MP}\rangle\rangle<\rangle<\rangle<\rangle<\rangle \mathrm{FL}\rangle\rangle\rangle \mathrm{PP}\rangle\rangle\rangle$

MIR

Enter the word MIR in this field.
FLDATA34,MIR is the FLDATA command with its first argument set to MIR. It can be entered into the program as either FLDATA34,MIR,Label,Value or FLDATA,MIR,Label,Val ue where Label and Value are as described below. See the FLDATA command for other FLOTRAN CFD input choices.

Label

Modified relaxation factor labels:
MOME
Momentum modified inertial relaxation.
TURB
Turbulence modified inertial relaxation.
TEMP
Energy modified inertial relaxation.

Value

Modified inertial relaxation factor. Value defaults to 0 (modified inertial relaxation off).

Notes

Value must be a positive real number. A Value between 0.1 and 1.0 is recommended. A larger Value provides a more robust scheme, but it may yield a slower convergence.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>FLOTRAN Set Up>Relax/Stab/Cap>MIR Stabilization Main Menu>Solution>FLOTRAN Set Up>Relax/Stab/Cap>MIR Stabilization

FLDATA35, VF TOL, Label, Value

Specifies tolerances for the lower and upper bound of the volume fraction.

PREP 7:FLOTRAN Miscellaneous
MP <> <> <> <> <> <> FL <> <> <> PP <> <> <>
VFTOL
Enter the word VFTOL in this field.

FLDATA35,VFTOL is the FLDATA command with its first argument set to VFTOL. It can be entered into the program as either FLDATA35,VFTOL,Label,Value or FLDATA,VFTOL,Label,Value where Label and Value are as described below. See the FLDATA command for other FLOTRAN CFD input choices.

Label

Tolerance choices:

VOFL

Lower bound tolerance in the VOF advection algorithm (Value defaults to 1.0e-6).
VOFU
Upper bound tolerance in the VOF advection algorithm (Value defaults to 1.0e-6).
LAML
Lower bound tolerance in the solver for laminar flows (Value defaults to 1.0e-2).
LAMU
Upper bound tolerance in the solver for laminar flows (Value defaults to $1.0 \mathrm{e}-2$).
TRBL
Lower bound tolerance in the solver for turbulent flows (Value defaults to $1.0 \mathrm{e}-1$).
TRBU
Upper bound tolerance in the solver for turbulent flows (Value defaults to $1.0 \mathrm{e}-1$).
Value
Tolerance value for Label above.

Notes

Volume fractions less than the lower bound tolerance are treated as 0 . Volume fractions greater than 1 minus the upper bound tolerance are treated as 1.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

> Main Menu>Preprocessor>FLOTRAN Set Up>VOF Environment>VFRC Tolerance Main Menu>Solution>FLOTRAN Set Up>VOF Environment>VFRC Tolerance

FLDATA36, AMBV, Label, Value
Specifies ambient reference values outside of the fluid for the volume of fluid (VOF) method.
PREP7:FLOTRAN Miscellaneous
MP <> <> <> <> <> <> FL <> <> <> PP <> <> <>

AMBV

Enter the word AMBV in this field.
FLDATA36,AMBV is the FLDATA command with its first argument set to AMBV. It can be entered into the program as either FLDATA36,AMBV,Label,Value or FLDATA,AMBV,Label,Value where Label and Value are as described below. See the FLDATA command for other FLOTRAN CFD input choices.

Label

Ambient Reference for which value is being specified:
VX
U velocity.

VY

V velocity.

VZ

W velocity.

TEMP

Temperature.

ENKE

Turbulent Kinetic Energy.

ENDS

Turbulent Dissipation Rate.

Value

Value for the ambient reference as described above.

Notes

PRES is used as a boundary condition at the free surface and for plotting purposes. $\mathrm{VX}, \mathrm{VY}, \mathrm{VZ}, \mathrm{TEMP}, \mathrm{ENKE}$ and ENDS are only used for plotting purposes.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>FLOTRAN Set Up>VOF Environment>Ambient Condit'n Main Menu>Solution>FLOTRAN Set Up>VOF Environment>Ambient Condit'n

FLDATA37, ALGR, Label, Value

Specifies segregated solution or film coefficient algorithms.
PREP 7:FLOTRAN Miscellaneous
MP <> <> <> <> <> <> FL <> <> <> PP <> <> <>

ALGR

Enter the word ALGR in this field.
FLDATA37,ALGR is the FLDATA command with its first argument set to ALGR. It can be entered into the program as either FLDATA37,ALGR,Label,Value or FLDATA,ALGR,Label,Value where Label and Value are as described below. See the FLDATA command for other FLOTRAN CFD input choices.

Label

Algorithm label:
SEGR
Segregated
HFLM
Film Coefficient

Value

If Label $=$ SEGR, Value specifies the segregated solution algorithm:

SIMPLEF

Original segregated algorithm (default)

SIMPLEN

Enhanced segregated algorithm
If Label $=$ HFLM, Value specifies the film coefficient algorithm:
MATX
Conductivity matrix algorithm (default)
TEMP
Temperature field algorithm

Notes

Settings automatically changed when SIMPLEN is chosen are not automatically reset if SIMPLEF is reselected. See Coupling Algorithms in the Fluids Analysis Guide for the settings.

The conductivity matrix algorithm uses the thermal conductivity matrix to calculate heat fluxes and film coefficients. The temperature field algorithm calculates film coefficients directly from thermal gradients.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.
Menu Paths
Main Menu>Preprocessor>FLOTRAN Set Up>Algorithm Control Main Menu>Solution>FLOTRAN Set Up>Algorithm Control

FLDATA38, MASS, Label, Value

Specifies the mass type for a fluid transient analysis.

PREP 7:FLOTRAN Miscellaneous
MP <> <> <> <> <> <> FL <> <> <> PP <> <> <>
MASS
Enter the word MASS in this field.

FLDATA38,MASS is the FLDATA command with its first argument set to MASS. It can be entered into the program as either FLDATA38,MASS,Label,Value or FLDATA,MASS,Label,Value where Label and Value are as described below. See the FLDATA command for other FLOTRAN CFD input choices.

Label

Degree of freedom set for which mass type is being specified:
MOME
Momentum equation.
PRES
Pressure equation.
TURB
Turbulent equation.

TEMP

Energy equation.

ALL

Momentum, pressure, turbulent, and energy equations.

Value

Mass type for fluid transient analysis:
LUMP
Lumped mass matrix (default).
CONS
Consistent mass matrix.

Notes

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>FLOTRAN Set Up>Transient Ctrl>Mass Type
Main Menu>Solution>FLOTRAN Set Up>Transient Ctrl>Mass Type

FLDATA39, REMESH, Label, Value

Specifies remeshing parameters for transient fluid flow and fluid-solid interaction analyses.

$$
\begin{array}{r}
\text { PREP 7:FLOTRAN Miscellaneous } \\
\text { MP <> <> <> <> <> <> FL <> <> <> PP <> <> <> }
\end{array}
$$

REMESH

Enter the word REMESH in this field.
FLDATA39,REMESH is the FLDATA command with its first argument set to REMESH. It can be entered into the program as either FLDATA39,REMESH,Label,Value or FLDATA,REMESH,Label,Value where Label and Value are as described below. See the FLDATA command for other FLOTRAN CFD input choices.

Label

Remeshing fluid element label (dictates the meaning of Value):
ELEM
Value specifies the fluid elements included in remeshing. The following are valid values:
NON
Do not remesh (default).
ALL
Remesh all defined fluid elements if the quality of the worst defined element falls below any quality requirement. Required element qualities are specified by Label $=A R M A X, V O C H$, or ARCH as explained below.

PAR

Remesh defined fluid elements that have a quality below any quality requirement.

A component name may be specified for Value. All elements grouped into a component name are remeshed if the quality of the worst element falls below any quality requirement. The component name length is up to 8 characters.

XBNE

Value specifies the elements connected to the boundary nodes excluded from remeshing. The following are valid values:

NON

Do not exclude any elements connected to the boundary nodes (default).

ALL

Exclude all elements connected to the boundary nodes.

FSI

Exclude elements connected to fluid-solid interaction interfaces.

RESIZ

Value is the element size used for remeshing. Value defaults to 0 (the element size at the nearest boundary is used for remeshing).

REXPN

Value is the area expansion (or contraction) option for remeshing. (This option is the same as SMRTSIZE,,,EXPND.) This option is used to size internal elements in an area based on the size of the elements on the area's boundaries. Value is the expansion (or contraction) factor. For example, issuing FLDATA39,REMESH,EXPND, 2 before meshing an area will allow a mesh with elements that are approximately twice as large in the interior of an area as they are on the boundary. If Value is less than 1 , a mesh with smaller elements on the interior of the area will be allowed. Value for this option should be greater than 0.5 but less than 4 . Value defaults to 1 , which does not allow expansion or contraction of internal element sizes. If Value $=0$, the default value of 1 will be used. The actual size of the internal elements will also depend on RESIZ sizing, if used.

ARMA

Value is the maximum allowable element generalized aspect ratio. Value defaults to 10 .

VOCH

Value is the maximum allowable change of element size (area or volume). Value defaults to 3 .

ARCH

Value is the maximum allowable element aspect ratio change.Value defaults to 3 .

STEP

Value is the element quality checking frequency based on time steps. Every Value time steps, a quality check takes place. Value defaults to 1 (a quality check at every step).

TIME

Value is the only element quality checking time. A quality check takes place at a time specified by Value. Value defaults to -1 (a quality check at every time point).

Value

Value as described for Label above.

Notes

See Table 7.2: "Element Qualities" in the Fluids Analysis Guide for definitions of element qualities.
Repeat command to set each Label as required.

This command is also valid in SOLUTION.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>FLOTRAN Set Up>Remesh Ctrl>Element size ctrI Main Menu>Preprocessor>FLOTRAN Set Up>Remesh Ctrl>Elements for remesh Main Menu>Preprocessor>FLOTRAN Set Up>Remesh Ctrl>Mesh qualities Main Menu>Preprocessor>FLOTRAN Set Up>Remesh Ctrl>Remesh frequency Main Menu>Solution>FLOTRAN Set Up>Remesh Ctrl>Element size ctrl Main Menu>Solution>FLOTRAN Set Up>Remesh Ctrl>Elements for remesh Main Menu>Solution>FLOTRAN Set Up>Remesh Ctrl>Mesh qualities Main Menu>Solution>FLOTRAN Set Up>Remesh Ctrl>Remesh frequency

FLDATA40, WADV, Label, Value

Controls activation of thermal stabilization near walls.
PREP 7:FLOTRAN Turbulence
$\mathrm{MP}<><><><><><>\mathrm{FL}\langle \rangle<\rangle<>\mathrm{PP}<><><>$
WADV
Enter the word WADV in this field.

FLDATA40,WADV is the FLDATA command with its first argument set to WADV. It can be entered into the program as either FLDATA40,WADV,Label,Value or FLDATA,WADV,Label,Value where Label and Value are as described below.

Label

Enter the word TEMP in this field.

Value

Value controlling Label:
TRUE or T
Turn this feature on.

FALSE or F

Turn this feature off.

Notes

Thermal oscillations may occur for turbulent heat transfers in near-wall regions when using the SUPG or the COLG advection scheme with a coarse mesh. Use this command to minimize such spatial oscillations.

For the nodes that lie at the intersection of the wall or solid surface and the inlet, the thermal boundary conditions for those nodes must be the same as the wall or solid surface, not the inlet.

See the FLDATA33,ADVM command to see various advection discretization schemes.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>FLOTRAN Set Up>Relax/Stab/Cap>Thermal Stabilization Main Menu>Solution>FLOTRAN Set Up>Relax/Stab/Cap>Thermal Stabilization

FLIST, NODE1, NODE2, NINC

Lists force loads on the nodes.

SOLUTION: FE Forces
MP ME ST PR PRN <> <> <> EM EH <> PP <> EME MFS

NODE1, NODE2, NINC

List forces for nodes NODE1 to NODE2 (defaults to NODE1) in steps of NINC (defaults to 1). If ALL, list for all selected nodes [NSEL] and NODE2 and NINC are ignored (default). If NODE1 = P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NODE1.

Notes

Listing applies to the selected nodes [NSEL] and the selected force labels [DOFSEL].

Caution

A list containing a node number that is larger than the maximum defined node (NODE2), could deplete the system memory and produce unpredictable results.

This command is valid in any processor.

Menu Paths

Utility Menu>List>Loads>Forces>On All Nodes
Utility Menu>List>Loads>Forces>On Picked Nodes

FLLIST, NLOC1,NLOC2, NINC

Lists the fatigue location parameters.

MP ME ST PR PRN <> <> <> <> <> DY PP <> EME MFS

NLOC1, NLOC2, NINC

List location parameters from NLOC1 (defaults to 1) to NLOC2 (defaults to NLOC1) in steps of NINC (defaults to 1). If NLOC1 = ALL, NLOC2 and NINC are ignored and all locations are listed.

Menu Paths

FLOCHECK, Key

Sets up and runs a zero-iteration FLOTRAN analysis.

SOLUTION:FLOTRAN Checkout
MP <> <> <> <> <> <> FL <> <> <> < $><><><>$

Key

Determines whether the FLOTRAN analysis is initialized and whether boundary condition status now becomes "old."

0
(Default) Initialization is not performed.
1
Initialization is performed
2
No initialization performed, boundary condition status now becomes "old."

Notes

The FLOCHECK command will provide a results summary for the Zeroth iteration ($K E Y=1$) or the current iteration $(K E Y=0)$. The results summary provides max/min/average values for each property and DOF. Also, mass flow boundaries are identified and all thermal energy transfer information is summarized. All input information is summarized in the Jobname. PFL file (i.e., print file). If you are running the ANSYS program from the GUI, the FLOTRAN print file is echoed to the output window. The FLOCHECK command aids verification of boundary condition and property specification.

Initialization [FLOCHECK,1] deletes any existing Jobname. PFL and Jobname.RFL files. Run FLOCHECK initialization only when you are sure you no longer need the existing results files.

The FLOCHECK,2 command changes boundary conditions to the "old" state. It has no effect on the Jobname. RFL file. For information on changing fluid boundary conditions, see Applying Transient Boundary Conditions in Fluids Analysis Guide.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>FLOTRAN Set Up>Flocheck
Main Menu>Solution>FLOTRAN Set Up>Flocheck

FLOTRAN

Specifies "FLOTRAN data settings" as the subsequent status topic.

PREP 7: Status
MP ME ST PR PRN $<><>$ FL $<><>$ DY PP $<>$ EME MFS

Notes

This is a status [STAT] topic command. Status topic commands are generated by the GUI and will appear in the log file (Jobname. LOG) if status is requested for some items under Utility Menu> List> Status. This command will be immediately followed by a STAT command, which will report the status for the specified topic.

If entered directly into the program, the STAT command should immediately follow this command.

Menu Paths

Utility Menu>List>Status>General Postproc>FLOTRAN Module

FLREAD, Fname, Ext, --

Reads the residual file written by the FLOTRAN CFD option.

> POST1:FLOTRAN Processing MP <> <> <> <> <> <> FL <> <> <> PP <> <> <>

Fname

File name and directory path (248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

The file name defaults to Jobname.

Ext

Filename extension (8 character maximum).
The extension defaults to RDF (residual file) if Fname is blank.

Unused field.

Notes

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

> Main Menu>General Postproc>Read Results>FLOTRAN 2.1A

FLST, NFIELD, NARG, TYPE, Otype, LENG

Specifies data required for a picking operation (GUI).

NFIELD

Field number on the command which uses the picking data. (Count the command name as a field, so that a 2 indicates the first command argument, 3 for the second command argument, etc.) The corresponding field on the command will have a P51X label.

NARG

Number of items in the picked list.

TYPE

Type of items picked:
1
Node numbers
2
Element numbers
3
Keypoint numbers
4
Line numbers
5
Area numbers
6
Volume numbers
7
Trace points
8
Coordinate locations (in Global Cartesian coordinates)
9
Screen picks (in X,Y screen coordinates (-1 to 1))

Otype

Data order:

NOOR

Data is not ordered (default).

ORDER

Data is in an ordered list (such as for the E,P51X and A,P51X commands, in which the order of the data items is significant for the picking operation).

LENG

Length of number of items describing the list (should equal NARG if Otype $=$ NOOR; default).

Notes

Specifies data required for the FITEM command during a picking operation. This is a command generated by the GUI and will appear in the log file (Jobname. LOG) if graphical picking is used. This command is not intended to be typed in directly in an ANSYS session (although it can be included in an input file for batch input or for use with the /INPUT command).

On the log file, FLST will always be followed by one or more FITEM commands which in turn are followed by the ANSYS command that contains a P51X label in one of its fields. This set of commands should not be edited.

This command is valid in any processor.

Menu Paths

This command cannot be accessed from a menu.

FLUXV

Calculates the flux passing through a closed contour.

POST1:Magnetics Calculations
MP <> <> <> <> <> <> <> EM <> <> PP <> EME <>

Notes

FLUXV invokes an ANSYS macro which calculates the flux passing through a closed contour (path) predefined by PATH. The calculated flux is stored in the parameter FLUX. In a 2-D analysis, at least two nodes must be defined on the path. In 3-D, a path of nodes describing a closed contour must be specified (i.e., the first and last node in the path specification must be the same). A counterclockwise ordering of nodes on the PPATH command will give the correct sign on flux. Path operations are used for the calculations, and all path items are cleared upon completion. This macro is only available for vector potential formulations.

Menu Paths

Main Menu>General Postproc>Elec\&Mag Calc>Path Based>Path Flux

FMAGBC, Cnam1, Cnam2, Cnam3, Cnam4, Cnam5, Cnam6, Cnam7, Cnam8, Cnam9

Applies force and torque boundary conditions to an element component.

SOLUTION: Misc Loads
MP <> <> <> <> <> <> <> EM <> <> PP <> EME <>

Cnam1, Cnam2, Cnam3, ... , Cnam9

Names of existing element components (CM command). Must be enclosed in single quotes (e.g., 'Cnam1') when the command is manually typed in.

Notes

FMAGBC invokes a predefined ANSYS macro to apply Maxwell and virtual work force and torque boundary conditions to an element component. These boundary conditions are used for subsequent force and torque calculations during solution. Magnetic virtual displacements (MVDI $=1$) are applied to nodes of elements in the components, and Maxwell surface flags (MXWF) are applied to air elements adjoining the element components. Incorrect force and torque calculations will occur for components sharing adjacent air elements. Companion macros FMAGSUM and TORQSUM can be used in POST1 to summarize the force and torque calculations, respectively. Torque calculations are valid for 2-D planar analysis only. For 2-D harmonic analysis, force and torque represent time-average values.

If using elements SOLID117, PLANE121, SOLID122, SOLID123, PLANE233, SOLID236 and SOLID237 (static analyses only), use EMFT to summarize electromagnetic force and torque. If you do use FMAGSUM, you do not need to first set either the Maxwell or the virtual work force flags via FMAGBC.

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Flag>Comp. Force Main Menu>Preprocessor>Loads>Define Loads>Apply>Magnetic>Flag>Comp. Force/Torque Main Menu $>$ Solution $>$ Define Loads $>$ Apply $>$ Electric>Flag>Comp. Force Main Menu>Solution>Define Loads>Apply>Magnetic>Flag>Comp. Force/Torque

FMAGSUM, Cnam1, Cnam2, Cnam3, Cnam4, Cnam5, Cnam6, Cnam7, Cnam8, Cnam9
Summarizes electromagnetic force calculations on element components.
POST1:Magnetics Calculations
MP <> <> <> <> <> <> <> EM <> <> PP <> EME <>

Cnam1, Cnam2, Cnam3, Cnam9

Names of existing element components for which Maxwell or virtual work boundary conditions were applied in the preprocessor. Must be enclosed in single quotes (e.g., 'Cnam1') when the command is manually typed in.

Notes

FMAGSUM invokes an ANSYS macro that summarizes the Maxwell and virtual work forces. The element components must have had appropriate Maxwell or virtual work boundary conditions established in the preprocessor prior to solution in order to retrieve forces (see FMAGBC, SF, BF commands). The forces are also stored on a per-element basis for the adjacent air layer surrounding the components in the element table [ETABLE]. Maxwell forces are stored as items FMX_X, FMX_Y, and FMX_Z, and virtual work forces are stored as items FVW_X, FVW_Y, and FVW_Z. Use the PLETAB and PRETAB commands to plot and list the element table items.

If using elements SOLID117, PLANE121, SOLID122, SOLID123, PLANE233, SOLID236, and SOLID237, use EMFT to summarize electromagnetic force and torque.

FMAGSUM can also be used to summarize time-average forces from a 2-D harmonic analysis.

Menu Paths

Main Menu>General Postproc>Elec\&Mag Calc>Component Based>Force
/FOCUS, WN, XF, YF, ZF, KTRANS

Specifies the focus point (center of the window).

GRAPHICS:Views
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
WN
Window number (or ALL) to which command applies (defaults to 1).

XF, YF, ZF

Location of the object to be at the focus point (center of the window) in the global Cartesian coordinate system. If $X F=$ AUTO, allow automatic location calculation. If $X F=$ USER, use focus location of last display (useful when last display had auto focus).

KTRANS

Translate key:
0
Interpret numerical $X F, Y F, Z F$ values as described above.
1
Interpret $X F, Y F, Z F$ values as multiples of half-screens to translate from the current position in the screen coordinate system. Example: XF of 2.4 translates the display approximately 2.4 half-screens to the left in the screen X (horizontal) direction.

2
Interpret $X F, Y F, Z F$ values as multiples of half-screens to translate from the current position in the global Cartesian coordinate system. Example: XF of 1.5 translates the display approximately 1.5 halfscreens in the global Cartesian X direction of the model.

Command Default

Focus location is automatically calculated to be at the geometric center of the object (modified for centering within the window, depending upon the view).

Notes

Specifies the location on (or off) the model which is to be located at the focus point (center of the window). For section and capped displays, the cutting plane is also assumed to pass through this location (unless the working plane is used via /CPLANE). See also /AUTO and /USER commands.

This command is valid in any processor.

Menu Paths

Utility Menu>PlotCtrls $>$ Pan, Zoom, Rotate
Utility Menu>PlotCtrls>View Settings>Focus Point

FOR2D

Calculates magnetic forces on a body.

POST1: Magnetics Calculations
$\mathrm{MP}<><><><><><><>\mathrm{EM}<><>\mathrm{PP}<>\mathrm{EME}<>$

Notes

FOR2D invokes an ANSYS macro which calculates magnetic forces on a body that is completely surrounded by air (symmetry permitted). The calculated forces are stored in the parameters FX and FY. In interactive mode, a node plot is produced with the integration path highlighted. A predefined closed path [PATH], passing through the air elements surrounding the body, must be available for this calculation. A counterclockwise ordering of nodes on the PPATH command will give the correct sign on the forces. Forces are calculated using a Maxwell stress tensor approach. The macro is valid for 2-D planar or axisymmetric analysis. Path operations are used for the calculations, and all path items are cleared upon completion.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>General Postproc>Elec\&Mag Calc>Path Based>Mag Forces

FORCE, $L a b$

Selects the element nodal force type for output.

> POST1: Controls POST2 6: Controls MP ME ST PR PRN $<><><>$ EM EH $<>$ PP $<>$ EME MFS

Lab

Type of force to be associated with the force items:

TOTAL

Total forces (static, damping, and inertia).

STATIC

Static forces.

DAMP

Damping forces.

INERT

Inertia forces.

Command Default

Use the total forces.

Notes

FORCE selects the element nodal force type for output with the POST1 PRESOL, PLESOL, PRRFOR, NFORCE, FSUM, etc. commands, the POST26 ESOL command, and reaction force plotting [/PBC]. For example,

FORCE,STATIC causes item F of the PRESOL command to be the static forces for the elements processed. Element member forces (such as those available for beams and shells, which are processed by Item and Sequence number) are not affected by this command. Damping and inertia forces are only available for full transient and harmonic analyses.

The PRRSOL command is not valid with FORCE. Use the PRRFOR command, which provides the same functionality as PRRSOL, instead.

In POST26, the ESOL data stored is based on the active FORCE specification at the time the data is stored. To store data at various specifications (for example, static and inertia forces), issue a STORE command before each new specification.

The FORCE command cannot be used to extract static, damping, and inertial forces for MPC184 joint elements.

Menu Paths

Main Menu>General Postproc>Options for Outp
 Main Menu>TimeHist Postpro>Define Variables
 Main Menu>TimeHist Postpro>Elec\&Mag>Circuit>Define Variables
 Utility Menu>List>Results>Options

FORM, Lab

Specifies the format of the file dump.

> AUX2: Binary Files
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Lab

Format:

RECO

Basic record description only (minimum output) (default).
TEN
Same as RECO plus the first ten words of each record.
LONG
Same as RECO plus all words of each record.

Command Default

Basic record description (RECO).

Notes

Specifies the format of the file dump (from the DUMP command).

Menu Paths

Utility Menu>File>List>Binary Files Utility Menu>List>Files>Binary Files

/FORMAT, NDIGIT, Ftype, NWIDTH, DSIGNF, LINE, CHAR

Specifies format controls for tables.

POST1:Listing
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

NDIGIT

Number of digits (3 to 32) in first table column (usually the node or element number). Initially defaults to 7.

Ftype

FORTRAN format types (initially defaults to G):
G
Gxx.yy. xx and yy are described below.
F
Fxx.yy
E
Exx.yy

NWIDTH

Total width (9 to 32) of the field (the $x x$ in Ftype). Initially defaults to 12 .

DSIGNF

Number of digits after the decimal point (yy in F or E format) or number of significant digits in G format. Range is 2 to $x x-7$ for Ftype $=G$ or E ; and 0 to $x x-4$ for $F t y p e=F$. Initially defaults to 5 .

LINE

Number of lines (11 minimum) per page. Defaults to ILINE or BLINE from the /PAGE command.

CHAR

Number of characters (41 to 240, system-dependent) per line before wraparound. Defaults to ICHAR or $B C H A R$ from the /PAGE command.

Command Default

Program determines format for the data.

Notes

Specifies various format controls for tables printed with the POST1 PRNSOL, PRESOL, PRETAB, PRRSOL, and PRPATH commands. A blank (or out-of-range) field on the command retains the current setting. Issue /FORMAT,STAT to display the current settings. Issue /FORMAT,DEFA to reestablish the initial default specifications.

For the POST26 PRVAR command, the Ftype, NWIDTH, and DSIGNF fields control the time output format.
This command is valid in any processor.

Menu Paths

This command cannot be accessed from a menu.

FP, STITM, C1, C2, C3, C4, C5, C6

Defines the fatigue S vs. N and Sm vs. T tables.

POST1:Fatigue
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

STITM

Starting item number for entering properties (defaults to 1). If 1, data input in field C1 of this command is entered as the first item in the list; if 7, data input in field $C 1$ of this command is entered as the seventh item in the list; etc. If the item number is negative, C1-C6 are ignored and the item is deleted. If -ALL, the table is erased. Items are as follows (items 41-62 are required only if simplified elastic-plastic code calculations are to be performed):

1,2,... 20
N1, N2, ... N20
21,22,... 40
S1, S2, ... S20
41,42,... 50
T1, T2, ... T10
51,52,... 60
Sm1, Sm2, ... Sm10
61
M (first elastic-plastic material parameter)
62
N (second elastic-plastic material parameter)
C1, C2, C3, ... , C6
Data inserted into six locations starting with STITM. If a value is already in one of these locations, it will be redefined. A blank retains the previous value.

Notes

Defines the fatigue alternating stress (S) vs. cycles (N) table and the design stress-intensity value (Sm) vs. temperature (T) table. May also be used to modify any previously stored property tables. Log-log interpolation is used in the S vs. N table and linear interpolation is used in the Sm vs. T table. Cycles and temperatures must be input in ascending order; S and $S m$ values in descending order. Table values must be supplied in pairs, i.e., every N entry must have a corresponding S entry, etc. Not all property pairs per curve need be used. If no S vs. N table is defined, the fatigue evaluation will not produce usage factor results. See the Structural Analysis Guide for details.

Menu Paths

> Main Menu>General Postproc>Fatigue>Property Table>Elas-plas Par Main Menu>General Postproc>Fatigue>Property Table>Erase Tables
> Main Menu>General Postproc>Fatigue>Property Table>S-N Table
> Main Menu>General Postproc>Fatigue>Property Table>Sm_T Table

FPLIST

Lists the property table stored for fatigue evaluation.

POST1:Fatigue
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

Menu Paths

Main Menu>General Postproc>Fatigue>Property Table>List Tables
*FREE, Name,
Deletes a matrix or a solver object and frees its memory allocation.

> APDL: Matrix Operations
> MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS

Argument Descriptions

Name

Name of the matrix or solver object to delete. Use Name $=$ ALL to delete all APDL Math matrices and solver objects.

Notes

A /CLEAR command will automatically delete all the current APDL Math objects.

Menu Paths

This command cannot be accessed from a menu.

FREQ, FREQ1, FREQ2, FREQ3, FREQ4, FREQ5, FREQ6, FREQ7, FREQ8, FREQ9

Defines the frequency points for the SV vs. FREQ tables.

SOLUTION: Spectrum Options
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

FREQ1, FREQ2, FREQ3, . . . FREQ9

Frequency points for SV vs. FREQ tables. Values must be in ascending order. FREQ1 should be greater than zero. Units are cycles/time.

Command Default

No frequency table.

Notes

Repeat the FREQ command for additional frequency points (100 maximum). Values are added after the last nonzero frequency. If all fields ($F R E Q 1$-- $F R E Q 9$) are blank, erase SV vs. FREQ tables.

Frequencies must be in ascending order.
Spectral values are input with the SV command and interpreted according to the SVTYP command. Applies only to the SPRS (single-point) option of the SPOPT command. See the SPFREQ command for frequency input in MPRS (multi-point) analysis.

Use the STAT command to list current frequency points.
This command is also valid in PREP7.

Menu Paths

Main Menu>Preprocessor>Loads>Load Step Opts>Spectrum $>$ SinglePt $>$ Erase Table Main Menu>Preprocessor>Loads>Load Step Opts>Spectrum>SinglePt>Freq Table Main Menu>Solution>Load Step Opts>Spectrum>SinglePt>Erase Table Main Menu>Solution>Load Step Opts>Spectrum $>$ SinglePt>Freq Table

FRQSCL, Scaling

Turns on automatic scaling of the entire mass matrix and frequency range for modal analyses using the Block Lanczos, PCG Lanczos, or Supernode mode extraction method.

SOLUTION: Dynamic Options
MP ME ST PR PRN <> <> <> <> EH <> PP <> EME MFS

Scaling

Off
Do not use automatic scaling of the mass matrix and frequency range.
On
Use automatic scaling of the mass matrix and frequency range.

Command Default

ANSYS will use automatic scaling if appropriate.

Notes

Use this command to deactivate or force activation of automatic scaling of the entire mass matrix and frequency range for modal analyses where the entire mass matrix is significantly different (i.e., orders of magnitude difference) than the entire stiffness matrix (for example, due to the particular unit system being used). Where the mass matrix is significantly smaller compared to the stiffness matrix, the eigenvalues will tend to approach very large numbers (>10e12), making the Block Lanczos, PCG Lanczos, or Supernode mode extraction method less efficient and more likely to miss modes.

ANSYS uses scaling (if appropriate) by default. However, you can issue FRQSCL,ON to force the entire mass matrix and frequency range to be scaled to bring the stiffness and mass matrices closer together in terms of orders of magnitude, improving efficiency and reducing the likelihood of missed modes. The resulting eigenvalues are then automatically scaled back to the original system. If you are using micro MKS units, where the density is typically very small compared to the stiffness, you may want to issue FRQSCL,ON to force scaling on.

If the stiffness and mass are on the same scale, FRQSCL,ON has no effect.
This command is available only for modal analyses using the Block Lanczos, PCG Lanczos, or Supernode mode extraction method (MODOPT,LANB, LANPCG, or SNODE).

This command is not valid and has no effect when used in conjunction with the MSAVE,ON command in a modal analysis with the PCG Lanczos mode extraction method.

Menu Paths

This command cannot be accessed from a menu.

FS, NODE, NEV, NLOD, STITM, C1, C2, C3, C4, C5, C6
Stores fatigue stress components at a node.

$$
\begin{aligned}
& \text { POST1:Fatigue } \\
& \text { MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS }
\end{aligned}
$$

NODE

Node number corresponding to this location. Used only to associate a node with a new location or to find an existing location.

NEV
Event number to be associated with these stresses (defaults to 1).

NLOD

Loading number to be associated with these stresses (defaults to 1).

STITM

Starting item number for entering stresses (defaults to 1). If 1, data input in field C1 of this command is entered as the first item in the list; if 7, data input in field C1 of this command is entered as the seventh item in the list; etc. Items are as follows:

1-6
 SX, SY, SZ, SXY, SYZ, SXZ total stress components

7
Temperature
8-13
SX, SY, SZ, SXY, SYZ, SXZ membrane-plus-bending stress components.

C1, C2, C3, $c 6$

Stresses assigned to six locations starting with STITM. If a value is already in one of these locations, it will be redefined. A blank retains the previous value (except in the C1 field, which resets the STITM item to zero).

Notes

Stores fatigue stress components at a node as input on this command instead of from the current data in the database. Stresses are stored according to the event number and loading number specified. The location is associated with that previously defined for this node [FL] or else it is automatically defined. May also be used to modify any previously stored stress components. Stresses input with this command should be consistent with the global coordinate system for any FSNODE or FSSECT stresses used at the same location.

Menu Paths

Main Menu>General Postproc>Fatigue>Store Stresses>Specified Val

FSCALE, RFACT, IFACT

Scales force load values in the database.

SOLUTION:FE Forces
MP ME ST PR PRN <> <> <> EM EH <> PP <> EME MFS

RFACT

Scale factor for the real component. Zero (or blank) defaults to 1.0 . Use a small number for a zero scale factor.

IFACT

Scale factor for the imaginary component. Zero (or blank) defaults to 1.0. Use a small number for a zero scale factor.

Notes

Scales force load (force, heat flow, etc.) values in the database. Scaling applies to the previously defined values for the selected nodes [NSEL] and the selected force labels [DOFSEL]. Issue FLIST command to review results. Solid model boundary conditions are not scaled by this command, but boundary conditions on the FE model are scaled.

Note

Such scaled FE boundary conditions may still be overwritten by unscaled solid model boundary conditions if a subsequent boundary condition transfer occurs.

FSCALE does not work for tabular boundary conditions.
This command is also valid in PREP7.

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Operate>Scale FE Loads>Forces Main Menu>Solution>Define Loads>Operate>Scale FE Loads>Forces

FSDELE, NLOC, NEV, NLOD

Deletes a stress condition for a fatigue location, event, and loading.

> MP ME ST PR PRN <> <> <> POST1:Fatigue

NLOC

Delete stresses associated with location NLOC. Defaults to zero.

NEV
Delete stresses associated with event $N E V$. Defaults to zero.

NLOD

Delete stresses associated with loading NLOD. Defaults to zero.

Notes

Deletes a stress condition stored for a particular fatigue location, event, and loading. Use FE command to delete all stresses for a particular event or FL command to delete all stresses for a particular location.

Menu Paths

Main Menu>General Postproc>Fatigue>Store Stresses>Dele Stresses

FSLIST, NLOC1, NLOC2, NINC, NEV, NLOD

Lists the stresses stored for fatigue evaluation.

POST1:Fatigue
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

NLOC1, NLOC2, NINC

List stresses from NLOC1 (defaults to 1) to NLOC2 (defaults to NLOC1) in steps of NINC (defaults to 1). If NLOC1 = ALL, NLOC2 and NINC are ignored and stresses for all locations are listed.

NEV

Event number for stress listing (defaults to ALL).

NLOD

Loading number for stress listing (defaults to ALL).

Notes

Stresses may be listed per location, per event, per loading, or per stress condition. Use FELIST and FLLIST if only event and location parameters (no stresses) are to be listed.

Menu Paths

Main Menu>General Postproc>Fatigue>Store Stresses>List Stresses

FSNODE, NODE, NEV, NLOD

Calculates and stores the stress components at a node for fatigue.

> POST1:Fatigue
> MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

NODE

Node number for which stress components are stored.

NEV

Event number to be associated with these stresses (defaults to 1).

NLOD

Loading number to be associated with these stresses (defaults to 1).

Notes

Calculates and stores the total stress components at a specified node for fatigue. Stresses are stored according to the event number and loading number specified. The location is associated with that previously defined for this node [FL] or else it is automatically defined. Stresses are stored as six total components (SX through SYZ). Temperature is also stored along with the total stress components. Calculations are made from the stresses currently in the database (last *SET or LCASE command). Stresses stored are in global Cartesian coordinates, regardless of the active results coordinate system [RSYS]. The FSLIST command may be used to list stresses. The FS command can be used to modify stored stresses.

Menu Paths

Main Menu>General Postproc>Fatigue $>$ Store Stresses $>$ From rst File

FSPLOT, NLOC, NEV, ITEM

Displays a fatigue stress item for a fatigue location and event.

POST1:Fatigue
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

NLOC

Display stresses associated with location NLOC.

NEV

Display stresses associated with event $N E V$.

ITEM

Display stresses associated with item number ITEM. Items are as follows:
16
SX, SY, SZ, SXY, SYZ, SXZ total stress components
7
Temperature
813
SX, SY, SZ, SXY, SYZ, SXZ membrane-plus-bending stress components.

Notes

Displays a fatigue stress item as a function of loading number for a particular fatigue location and event.

Menu Paths

Main Menu>General Postproc>Fatigue $>$ Store Stresses $>$ Plot Stresses

FSSECT, RHO, NEV, NLOD, KBR

Calculates and stores total linearized stress components.

RHO

In-plane (X-Y) average radius of curvature of the inside and outside surfaces of an axisymmetric section. If zero (or blank), a plane or 3-D structure is assumed. If nonzero, an axisymmetric structure is assumed. Use a suitably large number (see the Theory Reference for the Mechanical APDL and Mechanical Applications) or use -1 for an axisymmetric straight section.

NEV

Event number to be associated with these stresses (defaults to 1).
NLOD
Loading number to be associated with these stresses (defaults to 1).

KBR

For an axisymmetric analysis ($R H O \neq 0$):
0
Include the thickness-direction bending stresses
1
Ignore the thickness-direction bending stresses
2
Include the thickness-direction bending stress using the same formula as the Y (axial direction) bending stress. Also use the same formula for the shear stress.

Notes

Calculates and stores the total linearized stress components at the ends of a section path [PATH] (as defined by the first two nodes with the PPATH command). The path must be entirely within the selected elements (that is, there must not be any element gaps along the path). Stresses are stored according to the fatigue event number and loading number specified. Locations (one for each node) are associated with those previously defined for these nodes [FL] or else they are automatically defined. Stresses are separated into six total components (SX through SXZ) and six membrane-plus-bending (SX through SXZ) components. The temperature at each end point is also stored along with the total stress components. Calculations are made from the stresses currently in the database (last *SET or LCASE command). Stresses are stored as section coordinate components if axisymmetric or as global Cartesian coordinate components otherwise, regardless of the active results coordinate system [RSYS]. The FSLIST command may be used to list stresses. The FS command can be used to modify stored stresses. See also the PRSECT and PLSECT commands for similar calculations.

Menu Paths

Main Menu>General Postproc>Fatigue>Store Stresses>At Cross Sect

FSSPARM, PORT1, PORT2

Calculates reflection and transmission properties of a frequency selective surface.

POST1:Special Purpose
MP <> <> <> <> <> <> <> <> EH <> PP <> <> <>

PORT1

Port number of input port. Defaults to 1.
PORT2
Port number of output port. Defaults to 1 .

Notes

FSSPARM calculates reflection and transmission coefficients, power reflection and transmission coefficients, and return and insertion losses of a frequency selective surface.

Menu Paths

Main Menu>General Postproc>Elec\&Mag Calc>Port>FSS Parameters

FSUM, LAB, ITEM

Sums the nodal force and moment contributions of elements.

POST1:Special Purpose
MP ME ST PR PRN <> <> <> EM EH <> PP <> EME MFS

LAB

Coordinate system in which to perform summation.
(blank)
Sum all nodal forces in global Cartesian coordinate system (default).

RSYS

Sum all nodal forces in the currently active RSYS coordinate system.

ITEM

Selected set of nodes.
(blank)
Sum all nodal forces for all selected nodes (default), excluding contact elements.
CONT
Sum all nodal forces for contact nodes only.
BOTH
Sum all nodal forces for all selected nodes, including contact elements.

Notes

Sums and prints, in each component direction for the total selected node set, the nodal force and moment contributions of the selected elements attached to the node set. Selecting a subset of nodes [NSEL] and then issuing this command will give the total force acting on that set of nodes (default), excluding surface-to-surface, node-to-surface, line-to-line, and line-to-surface contact elements (TARGE169, TARGE170, CONTA171,

CONTA172, CONTA173, CONTA174, CONTA175, CONTA176, and CONTA177). Setting ITEM = CONT sums the nodal forces and moment contributions of the selected contact elements (CONTA171, CONTA172, CONTA173, CONTA174, CONTA175, CONTA176, and CONTA177). Setting ITEM = BOTH sums the nodal forces for all selected nodes, including contact elements. Nodal forces associated with surface loads are not included. The effects of nodal coupling and constraint equations are ignored. Moment summations are about the global origin unless another point is specified with the SPOINT command. This vector sum is printed in the global Cartesian system unless it is transformed [RSYS] and a point is specified with the SPOINT command. By default, the sum is done in global Cartesian, and the resulting vector is transformed to the requested system.

The $L A B=$ RSYS option transforms each of the nodal forces into the active coordinate system before summing and printing. The FORCE command can be used to specify which component (static, damping, inertia, or total) of the nodal load is to be used. This command output is included in the NFORCE command.

The FSUM command should not be used with axisymmetric elements because it might calculate a moment where none exists. Consider, for example, the axial load on a pipe modeled with an axisymmetric shell element. The reaction force on the end of the pipe is the total force (for the full 360 degrees) at that location. The net moment about the centerline of the pipe would be zero, but the program would incorrectly calculate a moment at the end of the element as the force multiplied by the radius.

The FSUM command should also not be used with the SOLID117 element.

Using FSUM with the NLGEOM Command

If you have activated large deflection (via the NLGEOM,ON command), the FSUM command generates the following message:

Summations based on final geometry and
will not agree with solution reactions.
The message warns that the moment reactions are incorrect. When computing moment reactions, the command assumes that the summation of rotations applies; however, it does not apply for large rotations, which require pseudovector representation to sum the rotations.

In contrast, the results for force reactions will be correct because they depend upon linear displacement vectors (which can be added).

Using FSUM in a Spectrum or PSD Analysis (ANTYPE, SPECTR)

When using FSUM in a spectrum analysis after the combination file has been input (/INPUT,,MCOM), or in a PSD analysis when postprocessing 1 -sigma results (loadstep 3, 4, or 5), the following message will display in the printout header:
(Spectrum analysis summation is used)
This message means that the summation of the element nodal forces is performed prior to the combination of those forces. In this case, RSYS does not apply. The forces are in the nodal coordinate systems, and the vector sum is always printed in the global coordinate system.

Because modal displacements cannot be used to calculate contact element nodal forces, ITEM does not apply to spectrum and PSD analyses.

Menu Paths

Main Menu>General Postproc>Nodal Calcs>Total Force Sum

FTCALC, NLOC, NODE

Performs fatigue calculations for a particular node location.

POST1:Fatigue
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

NLOC

Location number of stress conditions to be used for fatigue calculation.
NODE
Node number (used only for convenience if $N L O C$ is not input).

Menu Paths

Main Menu>General Postproc>Fatigue>Calculate Fatig

FTRAN

Transfers solid model forces to the finite element model.
SOLUTION: Solid Forces
MP ME ST PR PRN <> <> <> EM EH <> PP <> EME MFS

Notes

Forces are transferred only from selected keypoints to selected nodes. The FTRAN operation is also done if the SBCTRAN command is issued or automatically done upon initiation of the solution calculations [SOLVE].

This command is also valid in PREP7.

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Operate>Transfer to FE>Forces Main Menu>Solution>Define Loads>Operate>Transfer to FE>Forces

FTSIZE, MXLOC, MXEV, MXLOD
Defines the fatigue data storage array.
POST1:Fatigue
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

MXLOC

Maximum number of fatigue locations (defaults to 5).

MXEV
Maximum number of fatigue events (defaults to 10).

MXLOD

Maximum number of loadings in each event (defaults to 3).

Command Default

5 locations, 10 events, 3 loadings.

Notes

Defines the size and erases the stress conditions for the fatigue data storage array. A stress condition is a loading (stresses) at a particular location (node) for a particular event. Size is defined in terms of the maximum number of locations, events, and loadings. The array size cannot be changed once data storage has begun (without erasing all previously stored data). If a size change is necessary, see the FTWRITE command.

Menu Paths

Main Menu>General Postproc>Fatigue>Size Settings

FTWRITE, Fname, Ext, --

Writes all currently stored fatigue data on a file.

> POST1:Fatigue
> MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

Fname

File name and directory path (248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

The file name defaults to Jobname.

Ext

Filename extension (8 character maximum).
The extension defaults to FATG if Fname is blank.

Unused field.

Notes

- Data are written in terms of the equivalent POST1 fatigue commands [FTSIZE, FL, FS, etc.] which you can then edit and resubmit to POST1 (with a /INPUT command).
- Once you have created a fatigue data file, each subsequent use of the FTWRITE command overwrites the contents of that file.

Menu Paths

FVMESH, KEEP

Generates nodes and tetrahedral volume elements from detached exterior area elements (facets).

PREP 7: Meshing
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

KEEP
Specifies whether to keep the area elements after the tetrahedral meshing operation is complete.
0
Delete area elements (default).
1
Keep area elements.

Notes

The FVMESH command generates a tetrahedral volume mesh from a selected set of detached exterior area elements (facets). (Detached elements have no solid model associativity.) The area elements can be triangularshaped, quadrilateral-shaped, or a mixture of the two.

The FVMESH command is in contrast to the VMESH command, which requires a volume to be input.

The main tetrahedra mesher [MOPT,VMESH,MAIN] is the only tetrahedra mesher that supports the FVMESH command. The alternate tetrahedra mesher [MOPT,VMESH,ALTERNATE] does not support FVMESH. MESH200 elements do not support FVMESH.

Tetrahedral mesh expansion [MOPT,TETEXPND,Value] is supported for both the FVMESH and VMESH commands. Tet-mesh expansion is the only mesh control supported by FVMESH.

Triangle- or quadrilateral-shaped elements may be used as input to the FVMESH command. Where quadrilaterals are used, the default behavior is for the pyramid-shaped elements to be formed at the boundary when the appropriate element type is specified. See the MOPT,PYRA command for details.

The FVMESH command does not support multiple "volumes." If you have multiple volumes in your model, select the surface elements for one "volume," while making sure that the surface elements for the other volumes are deselected. Then use FVMESH to generate a mesh for the first volume. Continue this procedure by selecting one volume at a time and meshing it, until all of the volumes in the model have been meshed.

If an error occurs during the meshing operation, the area elements are kept even if $K E E P=0$.

Menu Paths

Main Menu>Preprocessor>Meshing>Mesh>Tet Mesh From>Area Elements

G Commands

GAP

Specifies "Reduced transient gap conditions" as the subsequent status topic.
SOLUTION:Status
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Notes

This is a status [STAT] topic command. Status topic commands are generated by the GUI and will appear in the log file (Jobname. LOG) if status is requested for some items under Utility Menu> List> Status. This command will be immediately followed by a STAT command, which will report the status for the specified topic.

If entered directly into the program, the STAT command should immediately follow this command.

Menu Paths

Utility Menu>List>Status>Solution>Gap Conditions

GAPF, NVAR, NUM, Name

Defines the gap force data to be stored in a variable.

POST26:Set Up
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS
NVAR
Arbitrary reference number assigned to this variable (2 to NV [NUMVAR]). Overwrites any existing results for this variable.

NUM

Number identifying gap number for which the gap force is to be stored. Issue the GPLIST command to display gap numbers.

Name

Thirty-two character name for identifying the item on the printout and displays (defaults to the name GAPF).

Notes

Defines the gap force data to be stored in a variable. Applicable only to the expansion pass of the reduced or mode superposition linear transient dynamic (ANTYPE,TRANS) analysis. The data usually on Fname. RDSP.

Menu Paths

Main Menu>TimeHist Postpro>Define Variables
Main Menu>TimeHist Postpro>Elec\&Mag>Circuit>Define Variables

GAUGE, Opt, FREQ

Gauges the problem domain for a magnetic edge-element formulation.

SOLUTION: Analysis Options
MP ME <> <> <> <> <> <> EM <> <> PP <> EME MFS
Opt
Type of gauging to be performed:

ON

Perform tree gauging of the edge values (default).

OFF

Gauging is off. (You must specify custom gauging via APDL specifications.)

STAT

Gauging status (returns the current Opt and $F R E Q$ values)

FREQ

The following options are valid when Opt $=\mathrm{ON}$:
0
Generate tree-gauging information once, at the first load step. Gauging data is retained for subsequent load steps. (This behavior is the default.)

1
Repeat gauging for each load step. Rewrites the gauging information at each load step to accommodate changing boundary conditions on the AZ degree of freedom (for example, adding or deleting AZ constraints via the \mathbf{D} or $\mathbf{C E}$ commands).

Notes

The GAUGE command controls the tree-gauging procedure required for electromagnetic analyses using an edge-based magnetic formulation (elements SOLID117, SOLID236 and SOLID237).

Gauging occurs at the solver level for each solution (SOLVE). It sets additional zero constraints on the edgeflux degrees of freedom AZ to produce a unique solution; the additional constraints are removed after solution.

Use the $F R E Q$ option to specify how the command generates gauging information for multiple load steps.
Access the gauging information via the _TGAUGE component of gauged nodes. The program creates and uses this component internally to remove and reapply the $A Z$ constraints required by gauging. If $F R E Q=$ 0 , the _TGAUGE component is created at the first load step and is used to reapply the tree gauge constraints at subsequent load steps. If $F R E Q=1$, the tree-gauging information and the _TGAUGE component are generated at every load step

If gauging is turned off (GAUGE,OFF), you must specify your own gauging at the APDL level.

This command is also valid in PREP7.

Menu Paths

Main Menu $>$ Preprocessor>Loads>Load Step Opts>Magnetics>Options Only>Gauging
Main Menu $>$ Solution $>$ Load Step Opts $>$ Magnetics $>$ Options Only $>$ Gauging
/GCMD, WN, Lab1, Lab2, Lab3, Lab4, Lab5, Lab6, Lab7, Lab8, Lab9, Lab10, Lab11, Lab12
Controls the type of element or graph display used for the GPLOT command.
GRAPHICS:Set Up
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
wn
Window number (or ALL) to which this command applies (defaults to 1)
Lab1, Lab2, Lab3, . . . , Lab12
Command labels (for example, PLNSOL,S,X)

Notes

This command controls the type of element or graph display that appears when you issue the GPLOT command when the /GTYPE,(ELEM or GRPH) entity type is active. If you have multiple plotting windows enabled, you can also use /GCMD to select one window when you wish to edit its contents.

For related information, see the descriptions of the GPLOT and /GTYPE commands in this manual.
This command is valid in any processor.

Menu Paths

Utility Menu>PlotCtrls>Multi-Plot Contrls

/GCOLUMN, CURVE, STRING

Allows the user to apply a label to a specified curve.

GRAPHICS: Set Up
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

CURVE

Curve number on which label will be applied (integer value between 1 and 10).

STRING

Name or designation that will be applied to the curve (8 characters max).

Notes

This command is used for an array parameter plot (a plot created by the *VPLOT command). Normally the label for curve 1 is "COL 1 ", the label for curve 2 is "COL 2 " and so on; the column number is the field con-
taining the dependent variables for that particular curve. Issuing /GCOLUMN, CURVE, with no string value specified resets the label to the original value.

Menu Paths

Utility Menu>PlotCtrls>Style>Graphs>Modify Curve

GENOPT

Specifies "General options" as the subsequent status topic.

SOLUTION: Status
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Notes

This is a status [STAT] topic command. Status topic commands are generated by the GUI and will appear in the log file (Jobname. LOG) if status is requested for some items under Utility Menu> List> Status. This command will be immediately followed by a STAT command, which will report the status for the specified topic.

If entered directly into the program, the STAT command should immediately follow this command.

Menu Paths

Utility Menu>List>Status>Solution>General Options

GEOM, K2D, NDIV
Defines the geometry specifications for the radiation matrix calculation.
AUX12: Radiation Matrix Method
MP ME ST PR <> <> <> <> <> <> <> PP <> EME MFS

K2D
Dimensionality key:
0
3-D geometry
1
2-D geometry (plane or axisymmetric)
NDIV
Number of divisions in an axisymmetric model. Used only with $K 2 D=1$. Defaults to 0 (2-D plane). The 2-D model is internally expanded to a 3-D model based on the number of divisions specified ($6 \leq$ NDIV ≤ 90). For example, NDIV of 6 is internally represented by six 60° sections.

Command Default

3-D geometry.

Menu Paths

GEOMETRY

Specifies "Geometry" as the subsequent status topic.

PREP 7: Status
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Notes

This is a status [STAT] topic command. Status topic commands are generated by the GUI and will appear in the log file (Jobname. LOG) if status is requested for some items under Utility Menu> List> Status. This command will be immediately followed by a STAT command, which will report the status for the specified topic.

If entered directly into the program, the STAT command should immediately follow this command.

Menu Paths

Utility Menu>List>Status>Preprocessor>Solid Model

*GET, Par, Entity, ENTNUM, Item1, IT1NUM, Item2, IT2NUM

Retrieves a value and stores it as a scalar parameter or part of an array parameter.
APDL: Parameters
MP ME ST PR PRN DS DSS FL EM EH DY PP <> EME MFS

Argument Descriptions

Par

The name of the resulting parameter. See *SET for name restrictions.

Entity

Entity keyword. Valid keywords are NODE, ELEM, KP, LINE, AREA, VOLU, PDS, etc., as shown for Ent ity = in the tables below.

ENTNUM

The number or label for the entity (as shown for $E N T N U M=$ in the tables below). In some cases, a zero (or blank) ENTNUM represents all entities of the set.

Item1

The name of a particular item for the given entity. Valid items are as shown in the Item 1 columns of the tables below.

IT1NUM

The number (or label) for the specified Item1 (if any). Valid IT1NUM values are as shown in the IT1NUM columns of the tables below. Some Item1 labels do not require an IT1NUM value.

Item2, IT2NUM

A second set of item labels and numbers to further qualify the item for which data are to be retrieved. Most items do not require this level of information.

Notes

*GET retrieves a value for a specified item and stores the value as a scalar parameter, or as a value in a usernamed array parameter. An item is identified by various keyword, label, and number combinations. Usage is similar to the *SET command except that the parameter values are retrieved from previously input or calculated results. For example, , A, ELEM, 5, CENT, X returns the centroid x-location of element 5 and stores the result as parameter A. *GET command operations, along with the associated Get functions return values in the active coordinate system unless stated otherwise. A Get function is an alternative in-line function that can be used to retrieve a value instead of the *GET command (see Using In-line Get Functions for more information).

Both *GET and *VGET retrieve information from the active data stored in memory. The database is often the source, and sometimes the information is retrieved from common memory blocks that ANSYS uses to manipulate information. Although POST1 and POST26 operations use a *. rst file, *GET data is accessed from the database or from the common blocks. Get operations do not access the *. rst file directly. For repeated gets of sequential items, such as from a series of elements, see the *VGET command.

Most items are stored in the database after they are calculated and are available anytime thereafter. Items are grouped according to where they are usually first defined or calculated. Preprocessing data will often not reflect the calculated values generated from section data. You should not use *GET to obtain data from elements that use calculated section data, such as beams or shells. Most of the GENERAL items listed below are available from all modules. Each of the sections for accessing *GET parameters are shown in the following order:

- *GET General Entity Items (p. 718)
- *GET Preprocessing Entity Items (p. 722)
- *GET Solution Entity Items (p. 748)
- *GET Postprocessing Entity Items (p. 750)
- *GET Optimization and Probabilistic Design Entity Items (p. 764)

The *GET command is valid in any processor.

General Items

*GET General Entity Items

- Table 150: *GET General Items, Entity = ACTIVE (p. 719)
- Table 151: *GET General Items, Entity = CMD (p.720)
- Table 152: *GET General Items, Entity = COMP (p. 720)
- Table 153: *GET General Items, Entity = GRAPH (p. 721)
- Table 154: *GET General Items, Entity = PARM (p. 722)

Table 150 *GET General Items, Entity = ACTIVE

Entity = ACTIVE, ENTNUM $=0$ (or blank)		
*GET, Par, ACTIVE, 0, Item1, IT1NUM, Item2, IT2NUM		
Item 1	IT1NUM	Description
INT		Current interactive key: 0=off, 2=on.
IMME		Current immediate key: $0=$ off, $1=$ on.
MENU		Current menu key: $0=0$ ff, $1=0$.
PRKEY		Printout suppression status: $0=/$ NOPR, $1=/$ GOPR or /GO
UNITS		Units specified by /UNITS command: $0=$ USER, $1=\mathrm{SI}, 2=\mathrm{CGS}, 3$ $=\mathrm{BFT}, 4=\mathrm{BIN}, 5=\mathrm{MKS}, 6=\mathrm{MPA}, 7=u M K S$.
ROUT		Current routine: $0=$ Begin level, $17=$ PREP7, $21=$ SOLUTION, $31=$ POST1, 36 = POST26, 41 = OPT, 52 = AUX2, 62 = AUX12, 65 = AUX15, 71 = RUNSTAT.
TIME	WALL,CPU	Current wall clock or CPU time. Current wall clock will continue to accumulate during an ANSYS run and is NOT reset to zero at midnight.
DBASE	LDATE	Date of first modification of any database quantity required for POST1 operation. The parameter returned is Par $=$ YEAR $^{*} 10000+$ MONTH* 100 + DAY.
DBASE	LTIME	Time of last modification of any database quantity required for POST1 operation. The parameter returned is Par = HOURS*10000 + MINUTES*100 + SECONDS.
REV		ANSYS minor revision number (5.6, 5.7, 6.0 etc.). Letter notation (e.g., 5.0A) is not included.
TITLE	0,1,2,3,4	Item2: START IT2NUM: N Current title string of the main title (IT1NUM $=0$ or blank) or subtitle $1,2,3$, or 4 (IT1NUM $=1,2,3$, or 4). A character parameter of up to 8 characters, starting at position N, is returned.
JOBNAM		Item2: START IT2NUM: N Current Jobname. A character parameter of up to 8 characters, starting at position N, is returned. Use *DIM and *DO to get all 32 characters.
PLATFORM		The current platform.
NPROC	CURR, MAX	The number of processors being used for the current session, or the maximum number of processors available on the machine. This only applies to shared memory parallelism.

Entity $=$ ACTIVE, ENTNUM $=\mathbf{0}$ (or blank)		
*GET, Par, ACTIVE, 0, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
NUMCPU		Number of Distributed ANSYS processes being used (distributed memory parallel).

Table 151 *GET General Items, Entity = CMD

| Entity $=$ CMD, ENTNUM $=\mathbf{0}$ (or blank)
 The following items are valid for all commands except star (*) commands and non-graphics
 slash (/) commands. |
| :--- | :--- |
| *GET, Par, CMD, 0, Item1, IT1NUM, Item2, IT2NUM.
 Item1 IT1NUM
 STAT Status of previous command: $0=$ found, $1=$ not found (unknown).
 NARGS Field number of last nonblank field on the previous command.
 FIELD $2,3 \ldots N$ Numerical value of the N th field on the previous command. Field
 1 is the command name (not available) |

Table 152 *GET General Items, Entity = COMP

Entity = COMP, ENTNUM $=0$ (or blank)		
*GET, Par, COMP, 0, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
NCOMP	P, ENTNUM	Total number of components and assemblies currently defined. n (nth component)
*GET, Par, COMP, n, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
NAME Entity	P, ENTNUM	Name of the N th item (component or assembly) in the list of components and assemblies. A character parameter is returned. Cname (component or assembly name)
*GET, Par, COMP, Cname, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
TYPE		Type of component Cname: 1=Nodes, 2=Elements, 6=Keypoints, 7=Lines, $8=$ Areas, $9=$ Volumes, 11-15=Subcomponents (11=subcomponent at level 1, 12=subcomponent at level 2, etc.).
NSCOMP		Number of subcomponents (for assemblies).

\mid Entity $=$ COMP, ENTNUM = Cname (component or assembly name)			
*GET, Par, COMP, Cname, Item1, IT1NUM, Item2, IT2NUM			
Item1	IT1NUM	\quad	Description
:---			
SNAME	N \quad	Name of Nth subcomponent of assembly Cname. A character	
:---			
parameter is returned.	.		

Table 153 *GET General Items, Entity = GRAPH

Entity =GRAPH, ENTNUM = N (window number)		
*GET, Par, GRAPH, N, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
ACTIVE		/WINDOW status: $0=0$ ff, $1=0$.
ANGLE		/ANGLE THETA angle.
CONTOUR	Name	/CONTOUR value for Name, where Name = VMIN, VINC, or NCONT.
DIST		/DIST DVAL value.
DSCALE	DMULT	/DSCALE DMULT value.
EDGE		/EDGE $K E Y$ value.
FOCUS	X, Y, Z	/FOCUS $X F$, YF, or $Z F$ value.
GLINE		/GLINE STYLE value.
MODE		/USER or /AUTO setting: $0=$ user, $1=$ auto
NORMAL		/NORMAL KEY value.
RANGE	XMIN, XMAX, YMIN, YMAX	/WINDOW XMIN, XMAX, YMIN , or YMAX screen coordinates.
RATIO	X, Y	/RATIO RATOX or RATOYvalue.
SSCALE	SMULT	/SSCALE SMULT value.
TYPE		/TYPE Type value.
VCONE	ANGLE	/VCONE PHI angle.
VIEW	X, Y, Z	/VIEW $X V$, YV, or $Z V$ value.
VSCALE	VRATIO	/VSCALE VRATIO value.
Entity $=$ GRAPH, ENTNUM $=0$ (or blank)		
*GET, Par, GRAPH, 0, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
DISPLAY		/SHOW VECT setting: $0=$ raster, $1=$ vector.
ERASE		/ERASE or /NOERASE setting: $0=$ no erase, $1=$ erase.
NDIST		Largest nodal range for current model (DX, DY, or DZ of the model).
NUMBER		/NUMBER NKEY value.
PLOPTS	Name	/PLOPTS setting of Name, where Name=LEG1, LEG2, LEG3, INFO, FRAM, TITL, MINM, or VERS.
SEG		Segment capability of graphics driver: $0=$ no segments available, 1 =erasable segments available, $2=$ non-erasable segments available.

$\|$Entit $\mathbf{y}=$ GRAPH, ENTNUM $=\mathbf{0}$ (or blank) *GET, Par, GRAPH, 0, Item1, IT1NUM, Item2, IT2NUM Item1 IT1NUM	Description		
SHRINK			

Table 154 *GET General Items, Entity = PARM

Entity, $=$ PARMENTNUM = 0 (or blank)		
*GET, Par, PARM, 0, Item1, IT1NUM, Item2, IT2NUM		
Item 1	IT1NUM	Description
MAX		Total number of parameters currently defined.
BASIC		Number of scalar parameters (excluding parameters beginning with an underscore _, array parameters, and character parameters).
LOC		Name of the parameter at the Num location in the parameter table. A character parameter is returned.
Entity = PARM, ENTNUM = Name (parameter name)		
*GET, Par, PARM, Name, Item1, IT1NUM, Item2, IT2NUM		
Item 1	IT1NUM	Description
TYPE		Parameter type: 0 = scalar, 1 = array, 2 = table, 3 = character scalar, 4 = character array, $-1=$ undefined
DIM	$\begin{aligned} & X(1), Y(2), \\ & Z(3),(4),(5) \end{aligned}$	Row (X or 1), Column (Y or 2), Plane (Z or 3), Book (4), or Shelf (5) dimension of array parameter.
CSYS		Local coordinate system number
VAR	1, 2, 3, 4, 5	Name of primary variables 1-5. Primary variable names are character strings.
If Item1 = DIM and ITNUM refers to a dimension that does not exist, ANSYS assigns a value of to Par. If Item1 = CSYS and no local coordinate system number was assigned to the array parameter (Name), ANSYS assigns a value of ZERO to Par. If Item1 = VAR and if IT1NUM refers to a primary variable that does not exist, ANSYS assigns a value of BLANK to Par.		

Preprocessing Items

*GET Preprocessing Entity Items

- Table 155: *GET Preprocessing Items, Entity = ACTIVE (p. 724)
- Table 156: *GET Preprocessing items, Entity = AREA (p. 724)
- Table 157: *GET Preprocessing Items, Entity = AXIS (p. 725)
- Table 158: *GET Preprocessing Items, Entity = CDSY (p. 726)
- Table 159: *GET Preprocessing Items, Entity = CE (p. 726)
- Table 160: *GET Preprocessing Items, Entity = CMPB (p. 727)
- Table 161: *GET Preprocessing Items, Entity = CP (p. 727)
- Table 162: *GET Preprocessing Items, Entity = CSEC (p. 728)
- Table 163: *GET Preprocessing Items, Entity = EDCC (p. 728)
- Table 164: *GET Preprocessing Items, Entity = ELEM (p. 729)
- Table 165: *GET Preprocessing Items, Entity = ETYP (p.730)
- Table 166: *GET Preprocessing Items, Entity = FLDATA (p. 731)
- Table 167: *GET Preprocessing Items, Entity = GENB (p. 731)
- Table 168: *GET Preprocessing Items, Entity = GENS (p. 732)
- Table 169: *GET Preprocessing Items, Entity = KP (p. 733)
- Table 170: *GET Preprocessing Items, Entity = LINE (p. 734)
- Table 171: *GET Preprocessing Items, Entity = MAT (p. 735)
- Table 172: *GET Preprocessing Items, Entity = MPLAB (p. 736)
- Table 173: *GET Preprocessing Items, Entity = MSCAP (p. 736)
- Table 174: *GET Preprocessing Items, Entity = MSDATA (p. 736)
- Table 175: *GET Preprocessing Items, Entity = MSMETH (p. 737)
- Table 176: *GET Preprocessing Items, Entity = MSNOMF (p. 737)
- Table 177: *GET Preprocessing Items, Entity = MSPROP (p. 737)
- Table 178: *GET Preprocessing Items, Entity = MSRELAX (p. 737)
- Table 179: *GET Preprocessing Items, Entity = MSSOLU (p. 738)
- Table 180: *GET Preprocessing Items, Entity = MSSPEC (p. 738)
- Table 181: *GET Preprocessing Items, Entity = MSVARY (p. 738)
- Table 182: *GET Preprocessing Items, Entity = NODE (p. 738)
- Table 185: *GET Preprocessing Items, Entity = PART (p. 741)
- Table 184: *GET Preprocessing Items, Entity = PIPE (p. 740)
- Table 186: *GET Preprocessing Items, Entity = RCON (p. 741)
- Table 187: *GET Preprocessing Items, Entity = REIN (p. 742)
- Table 188: *GET Preprocessing Items, Entity = SCTN (p. 742)
- Table 189: *GET Preprocessing Items, Entity = SECP (p. 743)
- Table 190: *GET Preprocessing Items, Entity = SHEL (p. 744)
- Table 191: *GET Preprocessing Items, Entity = TBFT (p. 745)
- Table 192: *GET Preprocessing Items, Entity $=\operatorname{TBLAB}$ (p. 746)
- Table 193: *GET Preprocessing Items, Entity = VOLU (p. 746)
- Table 194: *GET Preprocessing Items, Entity = WELD (p. 747)

Table 155 *GET Preprocessing Items, Entity = ACTIVE

Entity $=$ ACTIVE, ENTNUM $=\mathbf{0}$ (or blank)		
*GET, Par, ACTIVE, 0, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	
SEG		Segment capability of graphics driver: $0=$ no segments available, 1=erasable segments available, $2=$ non-erasable segments available.
CSYS		Active coordinate system.
DSYS		Active display coordinate system.
MAT		Active material.
TYPE		Active element type.
REAL		Active real constant set.
ESYS		Active element coordinate system.
SECT		Maximum coupled node set number in the model (includes merged and deleted sets until compressed out).
CP		Maximum constraint equation set number in the model (includes merged and deleted sets until compressed out).
CE		Current maximum or RMS wavefront. Zero if no reordering done.

Table 156 *GET Preprocessing items, Entity = AREA

Entity = AREA, ENTNUM = N (area number)		
*GET, Par, AREA, N, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
ATTR	Name	Number assigned to the attribute, Name, where Name=MAT, TYPE, REAL, ESYS, KB,KE,SECN, NNOD, NELM, or ESIZ. (NNOD=number of nodes, NELM=number of elements, ESIZ=element size.)
ASEL		Select status of area N : $-1=$ unselected, $0=$ undefined, $1=$ selected. Alternative get function: $\operatorname{ASEL}(N)$.
NXTH		Next higher area number above N in selected set (or zero if none found).
NXTL		Next lower area number below N in selected set (or zero if none found).
AREA		Area of area N. (ASUM or GSUM must have been performed sometime previously with at least this area N selected).
LOOP	1,2,...I	Item2: LINE, IT2NUM: 1,2,...,p Line number of position p of loop I

*GET, Par, AREA, 0, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
NUM	MAX, MIN	Highest or lowest area number in the selected set.
NUM	MAXD, MIND	Highest or lowest area number defined.
COUNT		Number of areas in the selected set.
AREA		Combined areas (from last ASUM or GSUM).
VOLU		Combined volume of areas (from last ASUM or GSUM. For 3-D area elements, thickness is determined from area attributes [AATT]. For 2-D elements, area attributes are ignored and unit thickness is assumed.
CENT	X, Y, Z	Centroid X, Y, or Z location of areas (from last ASUM or GSUM).
IOR	$\begin{aligned} & X, Y, Z, X Y, \\ & Y Z, Z X \end{aligned}$	Moments of inertia about origin (from last ASUM or GSUM).
IMC	$\begin{aligned} & X, Y, Z, X Y, \\ & Y Z, Z X \end{aligned}$	Moments of inertia about mass centroid (from last ASUM or GSUM)
IPR	X, Y, Z	Principal moments of inertia (from last ASUM or GSUM).
IXV	X, Y, Z	Principal orientation X vector components (from last ASUM or GSUM).
IYV	X, Y, Z	Principal orientation Y vector components (from last ASUM or GSUM).
IZV	X, Y, Z	Principal orientation Z vector components (from last ASUM or GSUM).

Table 157 *GET Preprocessing Items, Entity = AXIS

Entity = AXIS, ENTNUM = 0 (or blank)		
*GET, Par, AXIS, 0, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
COUNT	--	Number of defined sections.
NUM	MAX	Largest section number defined.
Entity $=$ AXIS, ENTNUM $=$ ID (axis section identifier)		
*GET, Par, AXIS, ID, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
TYPE	--	Section type, for ID -- SECTYPE command (always AXIS for axis sections).
NAME	--	Name defined for the given section ID number.

$\|$Entity = AXIS, ENTNUM $=$ ID (axis section identifier)	
*GET, Par, AXIS, ID, Item1, IT1NUM, Item2, IT2NUM	
Item1	IT1NUM
DATA	$n n n$
Where $n n n$ is the location in the SECDATA command for the given section ID number.	

Table 158 *GET Preprocessing Items, Entity = CDSY

Entity $=$ CDSY, ENTNUM $=\boldsymbol{N}$ (coordinate system number)		
*GET, Par, CDSY, \mathbf{N}, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
LOC	$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$	X, Y, or Z origin location in global Cartesian system.
ANG	$\mathrm{XY}, \mathrm{YZ}, \mathrm{ZX}$	THXY, THYZ, or THZX rotation angle (in degrees) relative to the global Cartesian coordinate system.
ATTR	Name	Number assigned to Name, where Name=KCS, KTHET, KPHI, PAR1, or PAR2. The value -1.0 is returned for KCS if the coordinate system is undefined.
NUM	MAX	The maximum coordinate system number

Table 159 *GET Preprocessing Items, Entity = CE

Entity $=$ CE, ENTNUM = N (constraint equation set)		
*GET, Par, CE, N, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
If $\mathrm{N}=0$, then		
MAX		Maximum constraint equation number
NUM		Number of constraint equations
If $\mathrm{N}>0$, then		
NTERM		Number of terms in this constraint equation
CONST		Constant term for this constraint equation
TERM	number	Item2 = NODE: Gives the node for this position in the constraint equation. Item2 $=$ DOF: Gives the DOF number for this position in the constraint equation. (1-UX, 2-UY, 3-UZ, 4-ROTX, etc.)

Entity = CE, ENTNUM = N (constraint equation set)
*GET, Par, CE, N, Item1, IT1NUM, Item2, IT2NUM

Item1	IT1NUM	Description
		Item2 = COEF: Gives the coefficient for this position in the constraint equation.

Table 160 *GET Preprocessing Items, Entity = CMPB

Entity = CMPB, ENTNUM = \boldsymbol{N} (composite beam section identification number)		
*GET, Par, CMPB, N, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
COUNT		Number of defined sections. If Item1 = COUNT, then N is blank.
NUM	MAX	Largest section number defined. If IT1NUM = MAX, then N is blank.
EXIS		Returns a 1 if the section exists and if it is a CMPB section.
NAME		The 8-character section name defined via the SECTYPE command.
One of the following: CBMX CBTE CBMD		Item2 = NTEM (the number of temperatures for CBMX, CBTE, or CBMD data).
One of the following: CBMX CBTE CBMD		Item2 = TVAL; IT2NUM = nnn where $n n n$ is the temperature value ($<=$ NTEM).
One of the following: CBMX CBTE CBMD	nnn	Item2 = TEMP; IT2NUM = tval Where $n n n$ is the location in the CBMX, CBTE, or CBMD command for the given coefficient number, and t val is the temperature value.

Table 161 *GET Preprocessing Items, Entity = CP

Entity $=$ CP, ENTNUM $=\boldsymbol{N}$ (coupled node set)		
*GET, Par, CP, N, Item 1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
If $\mathrm{N}=0$, then		
MAX		Maximum coupled set number
NUM		Number of coupled sets
If $\mathrm{N}>0$, then		
DOF		The degree of freedom for this set (1-UX, 2-UY, 3-UZ, 4-ROTX, etc.)

Entity $=$ CP, ENTNUM $=\boldsymbol{N}$ (coupled node set)	
*GET, Par, CP, \boldsymbol{N}, Item1, IT1NUM, Item2, IT2NUM	
Item1	IT1NUM
NTERM	
TERM	number of nodes in this set.

Table 162 *GET Preprocessing Items, Entity = CSEC

Entity = CSEC, ENTNUM $=0$ (or blank)		
*GET, Par, CSEC, 0, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
COUNT	--	Number of defined sections.
NUM	MAX	Largest section number defined.
Entity = CSEC, ENTNUM = ID (contact section identifier)		
*GET, Par, CSEC, ID, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
TYPE	--	Section type, for ID -- SECTYPE command (always CONT for contact sections).
NAME	--	Name defined for the given section ID number.
DATA	$n n n$	Where $n n n$ is the location in the SECDATA command for the given section ID number.

Table 163 *GET Preprocessing Items, Entity = EDCC

$|$| Entity $=$ EDCC, ENTNUM $=\boldsymbol{N}$ (contact entity number, obtained by issuing the EDCLIST |
| :--- |
| Command) |

*GET, Par, EDCC, \boldsymbol{N}, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
COMP	1,2	Component name for the contact (1) or target (2) surface of contact entity N. A character parameter is returned.
PART	1,2	PART number for contact (1) or target (2) surface of contact entity N.

| Entity $=$ EDCC, ENTNUM $=\mathbf{0}$ (or blank)
 *GET, Par, EDCC, 0, Item1, IT1NUM, Item2, IT2NUM
 Item1 IT1NUM
 COUNT |
| :--- | :--- |

Table 164 *GET Preprocessing Items, Entity = ELEM

Entity = ELEM, ENTNUM = N (element number)		
*GET, Par, ELEM, N, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
NODE	1, 2, .. 20	Node number at position $1,2, \ldots$ or 20 of elementN. Alternative get function: NELEM($n, n p o s$), where npos is $1,2, \ldots 20$.
CENT	X, Y, Z	Centroid X, Y, or Z location (based on shape function) in the active coordinate system. The original locations is used even if large deflections are active. Alternative get functions: $\operatorname{CENTRX}(N), \operatorname{CENTRY}(N)$, and CENTRZ (N) always retrieve the element centroid in global Cartesian coordinates, and are determined from the selected nodes on the elements.
ADJ	1, 2, ... 6	Element number adjacent to face $1,2, \ldots .6$. Alternative get function: ELADJ ($N, f a c e$). Only elements (of the same dimensionality) adjacen to lateral faces are considered.
ATTR	Name	Number assigned to the attribute Name, where Name = MAT, TYPE, REAL, ESYS, PSTAT, LIVE, or SECN. Returns a zero if the element is unselected. If Name $=$ LIVE, returns a 1 if the element is selected and active, and a -1 if it is selected and inactive. Name $=$ SECN returns the section number of the selected beam element.
LENG		Length of line element (straight line between ends).
LPROJ	X, Y, Z	Projected line element length (in the active coordinate system). X is x-projection onto y - z plane, Y is y projection onto $z-x$ plane, and Z is z-projection onto $x-y$ plane.
AREA		Area of area element.
APROJ	X, Y, Z	Projected area of area element area (in the active coordinate system). X is x -projection onto $\mathrm{y}-\mathrm{z}$ plane, Y is y projection onto $\mathrm{z}-\mathrm{x}$ plane, and Z is z-projection onto $x-y$ plane.
VOLU		Element volume. Based on unit thickness for 2-D plane elements (unless the thickness option is used) and on the full 360 degrees for 2-D axisymmetric elements. Note If results data are in the database, the volume returned is the volume calculated during solution.
ESEL		Select status of element N : - $1=$ unselected, $0=$ undefined, $1=$ selected. Alternative get function: $\operatorname{ESEL}(N)$.

Entity = ELEM, ENTNUM = N (element number)		
*GET, Par, ELEM, \boldsymbol{N}, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
NXTH		Next higher element number above N in selected set (or zero if none found). Alternative get function: ELNEXT(N)
NXTL		Next lower element number below N in selected set (or zero if none found).
HGEN		Heat generation on selected element N.
HCOE	face	Heat coefficient for selected element N on specified face. Returns the value at the first node that forms the face.
TBULK	face	Bulk temperature for selected element N on specified face. Returns the value at the first node that forms the face.
PRES	face	Pressure on selected element, N on specified face. Returns the value at the first node that forms the face.
SHPAR	Test	Element shape test result for selected element N, where Test $=$ ANGD (SHELL28 corner angle deviation), ASPE (aspect ratio), JACR (Jacobian ratio), MAXA (maximum corner angle), PARA (deviation from parallelism of opposite edges), or WARP (warping factor).
Entity = ELEM, ENTNUM $=0$ (or blank)		
*GET, Par, ELEM, 0, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
NUM	MAX,MIN	Highest or lowest element number in the selected set.
NUM	MAXD, MIND	Highest or lowest element number defined.
COUNT		Number of elements in the selected set.

Table 165 *GET Preprocessing Items, Entity = ETYP

Entity $=$ ETYP, ENTNUM $=\boldsymbol{N}$ (element type number)		
*GET, Par, ETYP, \boldsymbol{N}, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	
ATTR	Name	

$\|$Entity $=$ ETYP, ENTNUM $=\mathbf{0}$ * (or blank) *GET,Par,ETYP,0, Item1, IT1NUM, Item2, IT2NUM Item1	IT1NUM	
NUM	MAX	Maximum element type.

Table 166 *GET Preprocessing Items, Entity = FLDATA
Entity = FLDATA, ENTNUM = Name (Name is a valid label on the Name field of the FLDATA command.)

The value returned is the numerical value for numeric items, $\mathbf{0}$ or 1 for logical items (off/on or false/true), and a character parameter for items that require a character string. For example, *GET,X,FLDATA,TERM,PRES returns X=convergence monitor value for pressure [FLDATA3], *GET,X,FLDATA,SOLU,TURB returns $X=1$ if the turbulence model is ON [FLDATA1], and *GET,X,FLDATA,PROT,DENS returns $X=$ 'CONSTANT' if density is specified as a constant property type [FLDATA7].
*GET, Par, FLDATA, Name, Item1, IT1NUM, Item2, IT2NUM

Item1	IT1NUM	Description
Lab	(Blank)	Value of Lab, where Lab is a valid label from the Label field of the FLDATA command.

Table 167 *GET Preprocessing Items, Entity = GENB

Entity $=$ GENB, ENTNUM $=\mathbf{N}$ (nonlinear beam general section identification number)		
*GET, Par, GENB, N, Item1, IT1NUM, Item2, IT2NUM		
Item 1	IT1NUM	Description
COUNT	(Blank)	Number of defined sections. If Item1 = COUNT, then N is blank.
NUM	MAX	Largest section number defined. If IT1NUM = MAX, then N is blank.
EXIS	(Blank)	Returns a 1 if the section exists and if it is a GENB section.
SUBTYPE	(Blank)	Section subtype for the section ID specified via the SECTYPE command.
NAME	(Blank)	The 8-character section name defined via the SECTYPE command.
One of the following: BSAX BSM1 BSM2 BSTQ BSS1 BSS2 BSMD BSTE	(Blank)	Item2 = NTEM, the number of temperatures for BSAX, BSM1, BSM2, BSTQ, BSS1, BSS2, BSMD, or BSTE data.
One of the following: BSAX	(Blank)	$\text { Item2 = TVAL; IT2NUM }=n n n$ Where $n n n$ is the temperature value ($<=$ NTEM).

Entity = GENB, ENTNUM =N (nonlinear beam general section identification number)		
*GET, Par, GENB, N, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
BSM1 BSM2 BSTQ BSS1 BSS2 BSMD BSTE		
One of the following: BSAX BSM1 BSM2 BSTQ BSS1 BSS2 BSMD BSTE	nnn	Item2 = TEMP; IT2NUM = tval Where $n n n$ is the location in the BSAX, BSM1, BSM2, BSTQ, BSS1, BSS2, BSMD, or BSTE command for the given coefficient number, and tval is the temperature value. Examples for nnn: $\begin{aligned} & n n n=1 \text { for } \operatorname{STRAIN}(1) \\ & n n n=2 \text { for } \operatorname{STRESS}(1) \\ & n n n=3 \text { for } \operatorname{STRAIN(2)} \\ & n n n=4 \text { for } \operatorname{STRESS}(2) \\ & n n n=5 \text { for } \operatorname{STRAIN}(3) \end{aligned}$
One of the following: BSAX BSM1 BSM2 BSTQ BSS1 BSS2 BSMD BSTE	(Blank)	Item2 = TEMP; IT2NUM = tval; Item3 = NCONST The number of constants at tval.

Table 168 *GET Preprocessing Items, Entity = GENS

Entity = GENS, ENTNUM $=\mathbf{N}$ (preintegrated shell general section identification number)		
*GET, Par, GENS, N, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
COUNT	(Blank)	Number of defined sections. If It em1 = COUNT, then N is blank.
NUM	MAX	Largest section number defined. If IT1NUM = MAX, then N is blank.
EXIS	(Blank)	Returns a 1 if the section exists and if it is a GENS section.
NAME	(Blank)	The 8-character section name defined via the SECTYPE command.
One of the following:	(Blank)	Item2 = NTEM, the number of temperatures for SSPA, SSPB, SSPD, SSPE, SSMT, SSBT, or SSPM data.

Entity = GENS, ENTNUM $=N$ (preintegrated shell general section identification number)		
*GET, Par, GENS, N, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
$\begin{aligned} & \text { SSPA } \\ & \text { SSPB } \\ & \text { SSPD } \\ & \text { SSPE } \\ & \text { SSMT } \\ & \text { SSBT } \\ & \text { SSPM } \end{aligned}$		
One of the following: SSPA SSPB SSPD SSPE SSMT SSBT SSPM	(Blank)	$\text { Item2 = TVAL; IT2NUM }=n n n$ Where $n n n$ is the temperature value ($<=$ NTEM).
One of the following: SSPA SSPB SSPD SSPE SSMT SSBT SSPM	nnn	Item2 = TEMP; IT2NUM = tval Where $n n n$ is the location in the SSPA, SSPB, SSPD, SSPE, SSMT, SSBT, or SSPM command for the given coefficient number, and t val is the temperature value.

Table 169 *GET Preprocessing Items, Entity = KP

Entity $=$ KP, ENTNUM $=\boldsymbol{N}$ (keypoint number)		
*GET, Par, KP, N, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
LOC	X, Y, Z	X, Y, or Z location in the active coordinate system. Alternative get functions: $\operatorname{KX}(N), K Y(N), K Z(N)$. Inverse get function: $K P(x, y, z)$ returns the number of the selected keypoint nearest the x, y, z location (in the active coordinate system, lowest number for coincident keypoints).
ATTR	Name	Number assigned to the attribute Name, where Name = MAT, TYPE, REAL, ESYS, NODE, or ELEM.
KSEL		Select status of keypoint N : $-1=$ unselected, $0=$ undefined, $1=$ selected. Alternative get function: KSEL(N).
NXTH		Next higher keypoint number above N in selected set (or zero if none found). Alternative get function: KPNEXT(N).

Entity = KP, ENTNUM = N (keypoint number)		
*GET, Par, KP, N, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
NXTL		Next lower keypoint number below N in selected set (or zero if none found).
DIV		Divisions (element size setting) from KESIZE command.
Entity $=$ KP, ENTNUM $=0$ (or blank)		
*GET, Par, KP, 0, Item 1, IT1 NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
NUM	MAX, MIN	Highest or lowest keypoint number in the selected set.
NUM	MAXD, MIND	Highest or lowest keypoint number defined
COUNT		Number of keypoints in the selected set.
CENT	X, Y, Z	Centroid X, Y, or Z location of keypoints (from last KSUM or GSUM).
IOR	$\begin{aligned} & \mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{XY}, \\ & \mathrm{YZ}, \mathrm{ZX} \end{aligned}$	Moments of inertia about origin (from last KSUM or GSUM).
IMC	$\begin{aligned} & \mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{XY}, \\ & \mathrm{YZ}, \mathrm{ZX} \end{aligned}$	Moments of inertia about mass centroid (from last KSUM or GSUM)
IPR	X, Y, Z	Principal moments of inertia (from last KSUM or GSUM).
IXV	X, Y, Z	Principal orientation X vector components (from last KSUM or GSUM).
IYV	X, Y, Z	Principal orientation Y vector components (from last KSUM or GSUM).
IZV	X, Y, Z	Principal orientation Z vector components (from last KSUM or GSUM).
MXLOC	X, Y, Z	Maximum X, Y, or Z keypoint coordinate in the selected set (in the active coordinate system).
MNLOC	X, Y, Z	Minimum X, Y, or Z keypoint coordinate in the selected set (in the active coordinate system).
NRELM	m	Keypoint number of meshed region nearest centroid of element m.

Table 170 *GET Preprocessing Items, Entity = LINE

Entity $=$ LINE, ENTNUM $=\boldsymbol{N}$ (line number)		
*GET, Par, LINE, \boldsymbol{N}, Item1, IT1 NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
KP	1,2	Keypoint number at position 1 or 2.
ATTR	Name	Number assigned to the attribute, Name, where Name=MAT, TYPE, REAL, ESYS, NNOD, NELM, NDIV, NDNX, SPAC, SPNX, KYND, KYSP, LAY1, or LAY2. (NNOD=number of nodes, returns --1 for meshed line with no internal nodes, NELM=number of elements, NDIV=number of divisions in an existing mesh, NDNX=number of

Entity = LINE, ENTNUM = N (line number)		
*GET, Par, LINE, \mathbf{N}, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
		divisions assigned for next mesh, SPAC=spacing ratio in an existing mesh, SPNX=spacing ratio for next mesh, KYND=soft key for NDNX, KYSP=soft key for SPNX, LAY1=LAYER1 setting, LAY2=LAYER2 setting.)
LSEL		Select status of line $N:-1=$ unselected, $0=$ undefined, $1=$ selected. Alternative get function: LSEL (N).
NXTH		Next higher line number above N in the selected set (or zero if none found). Alternative get function: LSNEXT(N)
NXTL		Next lower line number below N in selected set (or zero if none found).
LENG		Length. A get function $\operatorname{LX}(n, I f r a c)$ also exists to return the X coordinate location of line N at the length fraction lfrac (0.0 to 1.0). Similar LY and LZ functions exist.
Entity = LINE, ENTNUM $=0$ (or blank)		
*GET, Par, LINE, 0, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
NUM	MAX, MIN	Highest or lowest line number in the selected set.
NUM	MIND, MAXD	Highest or lowest line number defined.
COUNT		Number of lines in the selected set.
LENG		Combined length of lines (from last LSUM or GSUM).
CENT	X, Y, Z	Centroid X, Y, or Z location of lines (from last LSUM or GSUM).
IOR	$\begin{aligned} & \mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{XY}, \\ & \mathrm{YZ}, \mathrm{ZX} \end{aligned}$	Moments of inertia about origin (from last LSUM or GSUM).
IMC	$\begin{aligned} & \mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{XY}, \\ & \mathrm{YZ}, \mathrm{ZX} \end{aligned}$	Moments of inertia about mass centroid (from last LSUM or GSUM)
IPR	X, Y, Z	Principal moments of inertia (from last LSUM or GSUM).
IXV	X, Y, Z	Principal orientation X vector components (from last LSUM or GSUM).
IYV	X, Y, Z	Principal orientation Y vector components (from last LSUM or GSUM).
IZV	X, Y, Z	Principal orientation Z vector components (from last LSUM or GSUM).

Table 171 *GET Preprocessing Items, Entity = MAT

Entity $=$ MAT, ENTNUM $=\mathbf{0}$ (or BLANK)			
*GET, Par, MAT, 0, Item1, IT1NUM, Item2, IT2NUM			
Item1	IT1NUM		Description
COUNT		Number of materials.	

Entity $=$ MAT, ENTNUM $=\mathbf{0}$ (or BLANK)		
*GET, Par, MAT, 0, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	
NUM	MAX	Largest material number defined.

Table 172 *GET Preprocessing Items, Entity = MPLAB

Entity $=$ MPlab, ENTNUM $=\boldsymbol{N}$ (MPlab $=$ material property label from MP command; $\boldsymbol{N}=$ material number.)	
*GET, Par, MPlab, \boldsymbol{N}, Item1, IT1NUM, Item2, IT2NUM	
Item1	IT1NUM
TEMP	val

Table 173 *GET Preprocessing Items, Entity = MSCAP

Entity $=$ MSCAP, ENTNUM $=\boldsymbol{n}$ (species number)		
*GET, Par, MSCAP, \boldsymbol{n}, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	\quad Description
KEY		Status of mass fraction capping for species $n: 0=$ off, $1=$ on.
UPP		Upper bound of mass fraction.
LOW		Lower bound of mass fraction.

Table 174 *GET Preprocessing Items, Entity = MSDATA

Entity $=$ MSDATA, ENTNUM $=\mathbf{0}$		
*GET, Par, MSDATA, 0, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
SPEC		The algebraic species number.

Entity = MSDATA, ENTNUM $=0$
*GET, Par, MSDATA, 0, Item1, IT1NUM, Item2, IT2NUM

Item1	IT1NUM	Description
UGAS		Value of the universal gas constant.

Table 175 *GET Preprocessing Items, Entity = MSMETH

Entity $=$ MSMETH, ENTNUM $=\boldsymbol{n}$ (species number)	
*GET, Par, MSMETH, \boldsymbol{n}, Item1, IT1 NUM, Item2, IT2NUM	
(Blank)	(Blank)
Solution method for species $n: ~ 0=$ no solution, $1=$ TDMA method, $2=$ conjugate residual method, $3=$ preconditioned conjugate residual method.	

Table 176 *GET Preprocessing Items, Entity = MSNOMF

Entity $=$ MSNOMF, ENTNUM $=\boldsymbol{n}$ (species number)	
*GET, Par, MSNOMF, \boldsymbol{n}, Item1, IT1 NUM, Item2, IT2NUM	
(Blank)	(Blank)

Table 177 *GET Preprocessing Items, Entity = MSPROP

Entity $=$ MSPROP, ENTNUM $=\boldsymbol{n}$ (species number)		
*GET, Par, MSPROP, \boldsymbol{n}, Item1, IT1 NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
Lab	TYPE	The type of fluid property variation being used for Lab, where Lab is a valid property label as described on the MSPROP command (DENS, VISC, COND, etc.). A character parameter is returned: CON- STANT, GAS, LIQUID, or a property name from the floprp.ans file.
"	NOMI	Value of property Lab : nominal value for a CONSTANT fluid property, value at temperature given by COF1 for other property types.
"	COF1, COF2, COF3	Coefficients in the equation of state for property Lab.

Table 178 *GET Preprocessing Items, Entity = MSRELAX

Entity $=$ MSRELAX, ENTNUM $=\boldsymbol{n}$ (species number)		
*GET, Par, MSRELAX, \boldsymbol{n}, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
CONC		Mass fraction concentration relaxation factor.
MDIF		Mass diffusion coefficient relaxation factor.
EMDI		Effective mass diffusion coefficient relaxation factor.

Entity $=$ MSRELAX, ENTNUM $=\boldsymbol{n}$ (species number)		
*GET, Par, MSRELAX, \boldsymbol{n}, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	
STAB		Transport equation inertial relaxation factor.

Table 179 *GET Preprocessing Items, Entity = MSSOLU

Entity $=$ MSSOLU, ENTNUM $=\boldsymbol{n}$ (species number)		
*GET, Par, MSSOLU, \boldsymbol{n}, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
NSWE		Number of TDMA sweeps.
MAXI		Maximum number of iterations allowed for semi-direct methods.
NSRC		Number of search vectors used for semi-direct methods.
CONV		Convergence criterion for semi-direct methods.
DELT		Maximum normalized rate of change which will permit the semi- direct solution to continue.

Table 180 *GET Preprocessing Items, Entity = MSSPEC

Entity $=$ MSSPEC, ENTNUM $=\boldsymbol{n}$ (species number)		
*GET, Par, MSSPC, \boldsymbol{n}, Item1, IT1NUM, Item2, IT2NUM		
NAME		Name of species n. A character parameter is returned.
MOLW		Molecular weight of species n.
SCHM		Turbulent Schmidt number of species n.

Table 181 *GET Preprocessing Items, Entity = MSVARY

Entity $=$ MSVARY, ENTNUM $=n$ (species number)		
*GET, Par, MSVARY, n, Item1, IT1 NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
Lab		Variability status of property Lab (where Lab =DENS, VISC, COND, or MDIF): $0=o f f, 1=o n$.

Table 182 *GET Preprocessing Items, Entity = NODE

Entity = NODE, ENTNUM = N (node number)		
*GET, Par, NODE, N, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
LOC	X, Y, Z	$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ location in the active coordinate system. Alternative get functions: $\operatorname{NX}(N), N Y(N), N Z(N)$. Inverse get function. $\operatorname{NODE}(x, y, z)$ returns the number of the selected node nearest the x, y, z location (in the active coordinate system, lowest number for coincident nodes).
ANG	XY, YZ, ZX	THXY, THYZ, THZX rotation angle.

Entity = NODE, ENTNUM = N (node number)		
*GET, Par, NODE, N, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
NSEL		Select status of node $N:-1=$ unselected, $0=$ undefined, $1=$ selected. Alternative get function: NSEL(N).
NXTH		Next higher node number above N in selected set (or zero if none found). Alternative get function: NDNEXT(N).
NXTL		Next lower node number below N in selected set (or zero if none found).
F	FX, MX, ...	Applied force at selected node N in direction IT1NUM (returns 0.0 if no force is defined, if node is unselected, or if the DOF is inactive). If ITEM2 is IMAG, return the imaginary part.
D	UX, ROTX, ...	Applied constraint force at selected node N in direction IT1NUM (returns a large number, such as 2 e 100 , if no constraint is specified, if the node is unselected, or if the DOF is inactive). If ITEM2 is IMAG, return the imaginary part.
HGEN		Heat generation on selected node N (returns 0.0 if node is unselected, or if the DOF is inactive).
NTEMP		Temperature on selected node N (returns 0.0 if node is unselected)
CPS	Lab	Couple set number with direction Lab = any active DOF, which contains the node N.
Entity = NODE, ENTNUM = 0 (or blank)		
*GET, Par, NODE, 0, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
NUM	MAX, MIN	Highest or lowest node number in the selected set.
NUM	MAXD, MIND	Highest or lowest node number defined.
COUNT		Number of nodes in the selected set.
MXLOC	X, Y, Z	Maximum X, Y, or Z node coordinate in the selected set (in the active coordinate system).
MNLOC	X, Y, Z	Minimum X, Y, or Z node coordinate in the selected set (in the active coordinate system).
Note: If ANSYS creates internal nodes during solution, the internal nodes will not be included. You can include them by using KINTERNAL, a seventh *GET command argument specific to Entity = NODE. The command syntax is:		

| Entity $=$ NODE, ENTNUM $=\mathbf{0}$ (or blank)
 *GET, Par, NODE, 0, Item1, IT1NUM, Item2, IT2NUM
 Item1 IT1NUM\quad Description |
| :--- | :--- |
| The options for the KINTERNAL key are (blank), - count only external nodes, and INTERNAL, -
 count all nodes, including internal nodes. |

Table 183 *GET Preprocessing Items, Entity = OCEAN

Entity = OCEAN, ENTNUM $=\boldsymbol{N}$ (ocean identification number)		
*GET, Par, OCEAN, N, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
SUBTYPE		Subtype for ID (OCTYPE command)
NAME		Name defined for a given id number.
DATA	1	Depth when Subtype = BASI
	2	Material ID when Subtype = BASI
	3	Ocean current ID when Subtype = BASI
	4	Ocean wave ID when Subtype = BASI
	8	KFLOOD when Subtype = BASI
	9	Ci when Subtype = BASI
	10	Cb when Subtype = BASI
	1	KWAVE when Subtype = WAVE
	2	THETA when Subtype = WAVE
	3	WAVELOC when Subtype = WAVE
	4	KCRC when Subtype = WAVE
	5	KMF when Subtype = WAVE
	6	PRKEY when Subtype = WAVE
PROP	NROW	Number of rows defined by OCTABLE command
TABL	i	Data in table defined by OCTABLE command $i=$ row number; Item2 = column number

Table 184 *GET Preprocessing Items, Entity = PIPE

Entity $=$ PIPE, ENTNUM $=\mathbf{0}$ (or BLANK)		
*GET, Par, PIPE, NUM, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
COUNT		Number of defined sections
NUM	MAX	Largest section number defined

*GET, Par, PIPE, id, Item1, IT1NUM, Item2, IT2NUM		
Item 1	IT1NUM	Description
TYPE		Section type, for id - SECTYPE command (always PIPE for pipe sections)
SUBTYPE		Section type for id - SECTYPE command
NAME		Name defined for the given section id number
DATA	nnn	Where $n n n$ is the location in the SECDATA command for the given section id number
SOCEAN	nnn	The ID number of the ocean environment surrounding the given section ID number
SFLEX	nnn	Where $n n n$ is the location in the SFLEX command for the given section ID number
PROP	AREA	Area value
	IYY, IYZ, IZZ	Moments of inertia
	TORS	Torsion constant
	$\begin{aligned} & \text { SCYY, SCYZ, } \\ & \text { SCZZ } \end{aligned}$	Shear correction factors
	OFFY	Section offset in the Y-direction.
	OFFZ	Section offset in the Z-direction.
	ADDMAS	Added mass per unit length

Table 185 *GET Preprocessing Items, Entity = PART

Entity = PART, ENTNUM = N (PART number)		
*GET, Par, PART, N, Item 1, IT1 NUM, Item2, IT2NUM		
Item 1	IT1NUM	Description
TYPE		Element type number assigned to PART N.
MAT		Material number assigned to PART N.
REAL		Real constant number assigned to PART N.
Entity = PART, ENTNUM = 0 (or blank)		
*GET, Par, PART, 0, Item1, IT1 NUM, Item2, IT2NUM		
NUMP		Total number of parts in the model.

Table 186 *GET Preprocessing Items, Entity = RCON

Entity $=$ RCON, ENTNUM $=\boldsymbol{N}$ (real constant set number)	
*GET, Par, RCON, \boldsymbol{N}, Item1, IT1NUM, Item2, IT2NUM	
CONST	$1,2, \ldots, m$
*GET, Par, RCON, 0, Item1, IT1NUM, Item2, IT2NUM	

Entity $=$ RCON, ENTNUM $=\boldsymbol{N}$ (real constant set number)	
*GET, Par, RCON, \boldsymbol{N}, Item1, IT1 NUM, Item2, IT2NUM	
NUM	MAX

Table 187 *GET Preprocessing Items, Entity = REIN

Entity $=$ REIN, ENTNUM $=\boldsymbol{N}$ (reinforcing section identification number)		
*GET, Par, REIN, \boldsymbol{N}, Item 1, IT1 NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
TYPE		Section type, for ID -- SECTYPE command (always REIN for reinfor- cing sections).
SUBTYPE		Section subtype for ID -- SECTYPE command.
NAME		Name defined for a given ID number.
NREIN		Number of reinforcing fibers.
TABL	ReinfNum- ber, I	Reinforcing fiber data, as defined by the SECDATA command.

Table 188 *GET Preprocessing Items, Entity = SCTN

Entity = SCTN, ENTNUM $=\boldsymbol{N}$ (pretension section ID number)		
*GET, Par, SCTN, N, Item1, IT1 NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
1		Section ID number.
2		Section type (always 5 for pretension section).
3		Pretension node number.
4	Coordinate system number.	Section normal NX.
5	Coordinate system number.	Section normal NY.
6	Coordinate system number.	Section normal NZ.
7 or 8		Eight character section name.
9		Initial action key. Returns 0 or 1 for lock, 2 for "free-to-slide," or 3 for tiny.
10		Force displacement key. Returns 0 or 1 for force, or 2 for displacement.
11		First preload value.
12		Load step in which first preload value is to be applied.
13		Load step in which first preload value is to be locked.

Entity = SCTN, ENTNUM $=\boldsymbol{N}$ (pretension section ID number)
*GET, Par, SCTN, N, Item1, IT1NUM, Item2, IT2NUM

Item1	IT1NUM	Description
14...	14 through 17 is a repeat of 10 through 13, but for the second preload value; 18 through 21 is for the third preload value; and so forth.	

Table 189 *GET Preprocessing Items, Entity = SECP

Entity = SECP, ENTNUM = 0 (or BLANK)		
*GET, Par, SECP, NUM, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
COUNT		Number of defined sections
NUM	MAX	Largest section number defined
Entity = SECP, ENTNUM = id (beam section identification number)		
*GET, Par, SECP, id, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
TYPE		Section type, for id - SECTYPE command (always BEAM for beam sections)
SUBTYPE		Section type for id - SECTYPE command
NAME		Name defined for the given section id number
DATA	nnn	Where $n n n$ is the location in the SECDATA command for the given section id number
PROP	AREA	Area value
	IYY, IYZ, IZZ	Moments of inertia
	WARP	Warping constant
	TORS	Torsion constant
	CGY, CGZ	Y or Z coordinate center of gravity
	SHCY, SHCZ	Y or Z coordinate shear center
	$\begin{aligned} & \hline \text { SCYY, SCYZ, } \\ & \text { SCZZ } \end{aligned}$	Shear correction factors
	OFFSET	Offset location: $\begin{aligned} & 1=\text { Centroid } \\ & 2=\text { Shear Center } \\ & 3=\text { Origin } \\ & 0=\text { User Defined } \end{aligned}$
	OFFY	Section offset in the Y-direction.

\mid Entity $=$ SECP, ENTNUM $=$ id (beam section identification number)	
*GET, Par, SECP, id, Item1, IT1NUM, Item2, IT2NUM	
Item1	IT1NUM
	OFFZ

Table 190 *GET Preprocessing Items, Entity = SHEL

Entity = SHEL, ENTNUM = \boldsymbol{N} (shell section identification number)		
*GET, Par, SHEL, N, Item1, IT1NUM, Item2, IT2NUM		
Item 1	IT1NUM	Description
TYPE		Section type, for id — SECTYPE command. (always SHEL for shell sections)
NAME		Name defined for a given id number.
PROP	TTHK	Total thickness.
"	NLAY	Number of layers.
"	NSP	Number of section integration points.
"	POS	Node position (as defined by SECOFFSET).
"	"	0 = User Defined.
"	"	1 = Middle.
"	"	2 = Top.
"	"	3 = Bottom.
"	OFFZ	User-defined section offset (POS = 0).
"	TS11	Transverse shear stiffness factors.
"	TS22	Transverse shear stiffness factors.
"	TS12	Transverse shear stiffness factors.
"	HORC	Homogeneous or complete section flag.
"	"	0 = Homogeneous.
"	"	1 = Composite.
"	FUNC	Tabular function name for total thickness.
"	UT11	User transverse shear stiffness 11.
"	UT22	User transverse shear stiffness 22.
"	UT12	User transverse shear stiffness 12.
"	AMAS	Added mass.
"	MSCF	Hourglass control membrane scale factor.
"	BSCF	Hourglass control bending scale factor.
"	DSTF	Drill stiffness scale factor.
"	LDEN	Laminate density.
"	FKCN	KCN field value from the SECFUNCTION command, in which the array or table is interpreted.
LAYD	LayerNumber,THIC	Layer thickness.

Entit $\boldsymbol{y}=$ SHEL, ENTNUM $\boldsymbol{=} \boldsymbol{N}$ (shell section identification number)		
*GET, Par, SHEL, N, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
"	LayerNumber,MAT	Layer material.
"	LayerNumber,ANGL	Layer orientation angle.
"	LayerNumber,NINT	Number of layer integration points.

Table 191 *GET Preprocessing Items, Entity = TBFT

Entity = TBFT, ENTNUM = BLANK		
*GET, Par, TBFT, , Item1, IT1 NUM, Item2, IT2NUM		
Item 1	IT1NUM	Description
nmat		Number of defined material models.
matnum	index	Material number in array (index varies for 1 to num materials).
Ent ity $=$ TBFT, ENTNUM $=$ mat id (For getting names of constitutive function, matid $=$ the material ID number)		
*GET, Par, TBFT, matid, nfun, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
nfun		Number of constitutive functions for this material.
Entity $=$ TBFT, ENTNUM $=$ matid (To query constitutive function data, matid $=$ the material ID number)		
*GET, P ar, TBFT, matid, func, fname, Item2, IT2NUM		
Item1	IT1NUM	Description
func	index	if Item2 = fname, the name of the constitutive function is returned.
func	function name	If Item2 $=$ ncon, the number of constants is returned for the function specified in IT1NUM by the constitutive function name.
"	"	If Item2 = cons, set Item2num to index to return the value of the constant.
"	"	If Item2 = fixe, set Item2num to index to return the fix flag status.
"	"	If Item2 = RESI, returns the residual error while fitting the data.
"	"	If Item2 = type, returns the category of the constitutive model (moon, poly, etc.)
"	"	If Item2 = sord, returns the shear order of the prony visco model.
"	"	If Item2 = bord, returns the bulk order of the prony visco model.
"	"	If Item2 = shif, returns the shift function name of the prony visco model.
Entity = TBFT, ENTNUM = matid (To query experimental data, matid $=$ the material ID number		
*GET, Par, TBFT, matid, func, fname, Item2, IT2NUM		
Item1	IT1NUM	Description
expe	(blank)	If Item2 = nexp, returns number of experiments in a material model.

Entity $=$ TBFT, ENTNUM $=$ BLANK		
*GET, Par, TBFT, , Item1, IT1 NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
"	expindex	If Item2 = type, returns index of experiment.
"	"	If Item2 = numrow, returns number of rows in the data.
"	"	If Item2 = numcol, returns the number of cols in a row (set Intem2num = Row index)
"	"	If Item2 = data, returns the value of the data in row, col of exp expindex (set item2Num = row index and item3 = column index. All indices vary from 1 to the maximum value.
"	"	If Item2 = natt, returns the number of attributes.
"	"	If Item2 = attname, returns the attribute name (set Item2Num = Attr index).
"	"	If Item2 = attvald, returns double value of attribute (set Item2Num = Attr index).
"	"	If Item2 = attvali, returns integer valud of attribute (set Item2Num = Attr index).
"	"	If Item2 = attvals, returns the string value of the attribute (set Item2Num = Attr index).

Table 192 *GET Preprocessing Items, Entity = TBLAB

Entity = TBlab, ENTNUM = N..(TBlab = data table label from the TB command; $N=$ material number.)		
*GET, Par, TBlab, N, Item1, IT1NUM, Item2, IT2NUM, TBOPT		
Item1	IT1NUM	Description
TEMP	T	Item2: CONST IT2NUM: Num Value of constant number Num in the datatable at temperature T (see Data Tables - Implicit Analysis in the Element Reference). For constants input a X, Y point, the constant numbers are consecutive with the X constants being the odd numbers, beginning with one.

Table 193 *GET Preprocessing Items, Entity = VOLU

Entity $=$ VOLU, ENTNUM $=\boldsymbol{N}$ (volume number)		
*GET, Par, VOLU, \boldsymbol{N}, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
ATTR	Name	Number assigned to the attribute Name, where Name=MAT, TYPE, REAL, ESYS, NNOD, or NELM. (NNOD=number of nodes, NELM=number of elements.)
VSEL	Select status of volume $N:-1=$ unselected, $0=$ undefined, $1=$ selected. Alternative get function: VSEL (N).	
NXTH	Next higher volume number above N in selected set (or zero if none found). Alternative get function: VLNEXT($N)$.	

Entity = VOLU, ENTNUM = N (volume number)		
*GET, Par, VOLU, N, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
NXTL		Next lower volume number below N in selected set (or zero if none found).
VOLU		Volume of volume N. (VSUM or GSUM must have been performed sometime previously with at least this volume N selected).
SHELL	$1,2, \ldots, m$	Item2: AREA IT2NUM: $1,2, \ldots, p$ Line number of position p of shell m
Entity = VOLU, ENTNUM $=0$ (or blank)		
*GET, Par, VOLU, 0, Item1, IT1NUM, Item2, IT2NUM		
NUM	MAX, MIN	Highest or lowest volume number in the selected set.
NUM	MAXD, MIND	Highest or lowest volume number defined.
COUNT		Number of volumes in the selected set.
VOLU		Combined volumes (from last VSUM or GSUM).
CENT	X, Y, Z	Centroid X, Y, or Z location of volumes (from last VSUM or GSUM).
IOR	$\begin{aligned} & X, Y, Z, X Y, \\ & Y Z, Z X \end{aligned}$	Moments of inertia about origin (from last VSUM or GSUM).
IMC	$\begin{aligned} & X, Y, Z, X Y, \\ & Y Z, Z X \end{aligned}$	Moments of inertia about mass centroid (from last VSUM or GSUM)
IPR	X, Y, Z	Principal moments of inertia (from last VSUM or GSUM).
IXV	X, Y, Z	Principal orientation X vector components (from last VSUM or GSUM).
IYV	X, Y, Z	Principal orientation Y vector components (from last VSUM or GSUM).
IZV	X, Y, Z	Principal orientation Z vector components (from last VSUM or GSUM).

Table 194 *GET Preprocessing Items, Entity = WELD

Entity = WELD, ENTNUM = N (weld number)		
*GET, Par, WELD, N, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
NODE	1,2	First or second node number for spot weld N.
NXTH		Next higher spotweld number above N (or 0 if none found).
Entity = WELD, ENTNUM $=0$ (or blank)		
*GET, Par, WELD, 0, Item1, IT1 NUM, Item2, IT2NUM		
Item 1	IT1NUM	Description
NUM	MAX, MIN	Highest or lowest spotweld number.
COUNT		Total number of spotwelds in model.

Solution Items

*GET Solution Entity Items

- Table 195: *GET Solution Items, Entity = ACTIVE (p. 748)
- Table 196: *GET Solution Items, Entity = ELEM (p. 749)
- Table 197: *GET Solution Items, Entity = MODE (p. 749)

Table 195 *GET Solution Items, Entity = ACTIVE

Entity = ACTIVE, ENTNUM = 0 (or blank)		
*GET, Par, ACTIVE, 0, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
ANTY		Current analysis type.
SOLU	DTIME	Time step size.
"	NCMLS	Cumulative number of load steps.
"	NCMSS	Number of substeps. NOTE: Used only for static and transient analyses.
"	EQIT	Number of equilibrium iterations.
"	NCMIT	Cumulative number of iterations.
"	CNVG	Convergence indicator: $0=$ not converged, $1=$ converged.
"	MXDVL	Maximum degree of freedom value.
"	RESFRQ	Response frequency for 2nd order systems.
"	RESEIG	Response eigenvalue for 1st order systems.
"	DSPRM	Descent parameter.
"	FOCV	Force convergence value.
"	MOCV	Moment convergence value.
"	HFCV	Heat flow convergence value.
"	MFCV	Magnetic flux convergence value.
"	CSCV	Current segment convergence value.
"	CUCV	Current convergence value.
"	FFCV	Fluid flow convergence value.
"	DICV	Displacement convergence value.
"	ROCV	Rotation convergence value.
"	TECV	Temperature convergence value.
"	VMCV	Vector magnetic potential convergence value.
"	SMCV	Scalar magnetic potential convergence value.
"	VOCV	Voltage convergence value.
"	PRCV	Pressure convergence value.
"	VECV	Velocity convergence value.
"	CRPRAT	Maximum creep ratio.

Entity = ACTIVE, ENTNUM $=0$ (or blank)
*GET, Par, ACTIVE, 0, Item1, IT1NUM, Item2, IT2NUM

Item1	IT1NUM	Description
$" n$	PSINC	Maximum plastic strain increment.
$"$	CGITER	Number of iterations in the PCG and symmetric JCG (non-complex version) solvers.

Table 196 *GET Solution Items, Entity = ELEM

Entity = ELEM, ENTNUM = 0 (or blank) (Available only after inertia relief solution [IRLF,1] or pre-calculation of masses [IRLF,-1])		
*GET, Par, ELEM, 0, Item1, IT1 NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
MTOT	X, Y, Z	Total mass components.
MC	X, Y, Z	Mass centroid components.
IOR	$\begin{aligned} & \mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{XY}, \\ & \mathrm{YZ}, \mathrm{ZX} \end{aligned}$	Moment of inertia about origin.
IMC	$\begin{aligned} & X, Y, Z, X Y, \\ & Y Z, Z X \end{aligned}$	Moment of inertia about mass centroid.
IPRIN	X, Y, Z	Principal centroidal moments of inertia.
IANG	XY, YZ, ZX	Angles of the principal axes.
FMC	X, Y, Z	Force components at mass centroid.
MMOR	X, Y, Z	Moment components at origin.
MMMC	X, Y, Z	Moment components at mass centroid.

Table 197 *GET Solution Items, Entity = MODE

Entity $=$ MODE, ENTNUM $=\boldsymbol{N}$ (mode number)		
*GET, Par, MODE, \boldsymbol{N}, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
FREQ	(IMAG)	Frequency of mode N. For modal solutions that create complex frequencies, the real part (for DAMP and QRDAMP eigensolves), or the imaginary part (for UNSYM eigensolver) of the frequencies is returned unless IT1NUM = IMAG.
PFACT	Participation factor of mode N. If retrieved after a modal analysis, the real part of the participa- tion factor is returned unless IT1NUM = IMAG. The direction is specified using Item2 = DIREC and IT2NUM = X, Y, Z, ROTX, ROTY, or ROTZ If retrieved after a spectrum analysis, the spectrum number M is specified using Item2 = SPECT and IT2NUM = M.	

Entity $=$ MODE, ENTNUM $=\boldsymbol{N}$ (mode number)		
*GET, Par, MODE, N, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
		For a PSD analysis with spatial correlation or wave excitation, the retrieved participation factors will correspond to the first degree of freedom that is excited.
MCOEF	Mode coefficient of mode N. Returned values are valid only after a spectrum analysis has been solved. The spectrum number M is specified using Item2 = SPECT and IT2NUM = M. In a SPRS analysis, the values returned are based on the curve with the lowest damping.	
DAMP	After a PSD analysis, the diagonal of the dynamic modal covariance matrix is retrieved for the displacement solution.	
	Damping ratio of mode N. If retrieved after a modal analysis that creates complex solutions (DAMP, QRDAMP, or UNSYM eigensolvers) returned value is calculated from the complex frequencies.	

For all items except PFACT and MCOEF (as noted above), only the first 10000 values corresponding to significant modes will be returned.

The MODE file must be available to retrieve items PFACT and MCOEF with specified Item2. If Item2 is not specified, the last calculated value will be returned.

Postprocessing Items

*GET Postprocessing Entity Items

- Table 198: *GET Postprocessing Items, Entity = ACTIVE (p. 751)
- Table 199: *GET Postprocessing Items, Entity = CAMP (p.751)
- Table 200: *GET Postprocessing Items, Entity = CINT(p. 752)
- Table 201: *GET Postprocessing Items, Entity = ELEM (p. 752)
- Table 202: *GET Postprocessing Items, Entity = ETAB (p. 753)
- Table 203: *GET Postprocessing Items, Entity = FSUM (p. 754)
- Table 204: *GET Postprocessing Items, Entity = GSRESULT (p. 754)
- Table 205: *GET Postprocessing Items, Entity = INTSRF (p. 754)
- Table 206: *GET Postprocessing Items, Entity = KCALC (p. 755)
- Table 207: *GET Postprocessing Items, Entity = NODE (p. 755)
- Table 208: *GET Postprocessing Items, Entity = PATH (p. 758)
- Table 209: *GET Postprocessing Items, Entity = PLNSOL (p. 759)
- Table 210: *GET Postprocessing Items, Entity = PRERR (p.760)
- Table 211: *GET Postprocessing Items, Entity = RAD (p. 760)
- Table 212: *GET Postprocessing Items, Entity = SECR (p. 760)
- Table 213: *GET Postprocessing Items, Entity = SECTION (p. 762)
- Table 214: *GET Postprocessing Items, Entity = SORT (p. 763)
- Table 215: *GET Postprocessing Items, Entity = SSUM (p. 763)
- Table 216: *GET Postprocessing Items, Entity = TREF (p. 763)
- Table 217: *GET Postprocessing Items, Entity = VARI (p. 764)

Table 198 *GET Postprocessing Items, Entity = ACTIVE

Entity = ACTIVE, ENTNUM $=0$ (or blank)		
*GET,Par, ACTIVE, 0, Item1, IT1NUM, Item2, IT2NUM		
Item 1	IT1NUM	Description
SET	LSTP	Current load step number.
"	SBST	Current substep number.
"	TIME	Time associated with current results in the database.
"	FREQ	Frequency (for ANTYPE=MODAL, HARMIC, SPECTR; load factor for ANTYPE=BUCKLE).
"	NSET	If Item2 is blank, number of data sets on result file. If Item2 $=$ FIRST, IT2NUM $=$ Loadstep, get set number of first substep of loadstep If Item2 = LAST, IT2NUM = Loadstep, get set number of last substep of loadstep
RSYS		Active results coordinate system.

Table 199 *GET Postprocessing Items, Entity = CAMP

| Note
 Available after PLCAMP or PRCAMP command is issued. |
| :--- | :--- |
| Entity = CAMP, ENTNUM = \boldsymbol{N} (mode number) |

Note

Available after PLCAMP or PRCAMP command is issued.

Entity $=$ CAMP, $E N T N U M=N$ (mode number)
*GET,Par, CAMP, N, Item1, IT1NUM, Item2, IT2NUM

Item1	IT1NUM	Description
WHRL		Whirl of mode $N:-1$ is backward whirl, 1 is forward whirl, and 0 is undetermined.
VCRI	Critical speed for mode N. This value is available if an excitation is defined via the PLCAMP or PRCAMP command's SLOPE argument. (The unit of speed depends upon the UNIT value specified in those commands.)	
FREQ	M	Natural frequency of mode N at step M.

Note

Only the first 200 modes (NBMO) and the first 100 steps (NBST) are available.

Table 200 *GET Postprocessing Items, Entity = CINT

Entity = CINT ENTNUM = CrackId (Crack ID number)		
*GET,Par, CINT, CrackId, Item1, IT1NUM, Item2, IT2NUM, Item3, IT3NUM		
Item1	IT1NUM	Description
CTIP	CTNUM	```Item1 = Label identifying crack tip node. IT1Num = Crack tip node number for fracture parameter data. Item2 = Label identifying contour information. IT2NUM = Contour number. Item3 = Label identifying data type. IT3NUM = Data type (JINT,IIN1,IIN2,IIN3,K1,K2,K3,G1,G2,G3,GT).```

Depending on how the crack is defined, some fields are not be used. In all cases, however, the following values are required: the crack ID number and the crack tip node number.

Table 201 *GET Postprocessing Items, Entity = ELEM

Entity $=$ ELEM, ENTNUM $=\boldsymbol{N}$ (element number)			
*GET,Par, ELEM, \boldsymbol{N}, Item1, IT1NUM, Item2, IT2NUM			
Item1	IT1NUM		
SERR[1]			
SDSG[1]			

Entity = ELEM, ENTNUM = N (element number)		
*GET,Par, ELEM, n, Item 1, IT1NUM, Item2, IT2NUM		
Item 1	IT1NUM	Description
TERR[1]		Thermal error energy.
TDSG[1]		Absolute value of the maximum variation of any nodal thermal gradient component.
SENE		"Stiffness" energy or thermal heat dissipation. Same as TENE.
TENE		Thermal heat dissipation or "stiffness" energy. Same as SENE.
KENE		Kinetic energy.
JHEAT		Element Joule heat generation (coupled-field calculation).
JS	X, Y, Z	Source current density (coupled-field calculation) in the global Cartesian coordinate system.
HS	X, Y, Z	Average element magnetic field intensity from current sources.
VOLU		Element volume, as calculated during solution.
ETAB	Lab	Value of element table item Lab for element N (see ETABLE command).
SMISC	Snum	Value of element summable miscellaneous data at sequence number Snum (as used on ETABLE command).
NMISC	Snum	Value of element non-summable miscellaneous data at sequence number Snum (as used on ETABLE command).

1. Some element- and material-type limitations apply. For more information, see the documentation for the PRERR command.

Table 202 *GET Postprocessing Items, Entity = ETAB

Entity = ETAB, ENTNUM $=N$ (column number)		
*GET,Par, ETAB, \boldsymbol{N}, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
LAB		Label for column N of the element table [ETABLE]. Returns a character parameter.
ELEM	E	Value in ETABLE column N for element number E.
Entity $=$ ETAB, ENTNUM $=0$ (or blank)		
*GET,Par,ETAB,0, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
NCOL	MAX	Total number of ETABLE columns.

$\|$Entity $=$ ETAB, ENTNUM $=\mathbf{0}$ (or blank) *GET,Par,ETAB,0, Item1, IT1NUM, Item2, IT2NUM Item1 IT1NUM NLENG MAX	Largest element number defined.

Table 203 *GET Postprocessing Items, Entity = FSUM

Entity $=$ FSUM, ENTNUM $=\mathbf{0}$ (or blank)			
*GET, Par, FSUM, 0, Item1, IT1NUM, Item2, IT2NUM			
Item1	IT1NUM	Description	
ITEM	Lab	Value of item Lab from last FSUM command. Valid labels are FX, FY, FZ, MX, MY, MZ, FLOW, HEAT, FLUX, etc.	

Table 204 *GET Postprocessing Items, Entity = GSRESULT

Entity = GSRESULT, ENTNUM = 0 (or blank) for generalized plane strain results in fiber direction		
*GET, Par, GSRESULT, 0, Item1, IT1NUM		
Item1	IT1NUM	Description
LFIBER		Fiber length change at ending point.
ROT	X, Y	Rotation angle of end plane about X or Y axis.
F		Reaction force at ending point.
M	X, Y	Reaction moment on ending plane.

Table 205 *GET Postprocessing Items, Entity = INTSRF

Entity $=$ INTSRF, ENTNUM $=\mathbf{0}$ (or blank)		
*GET, Par, INTSRF, 0, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
PRES	Lab	Value of item Lab from last INTSRF,PRES command. Valid labels are FX, FY, FZ, MX, MY, and MZ.

Entity $=$ INTSRF, ENTNUM $=\mathbf{0}$ (or blank)		
*GET, Par, INTSRF, 0, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	
TAUW	Lab	

Table 206 *GET Postprocessing Items, Entity = KCALC

Entity $=$ KCALC, ENTNUM $=\mathbf{0}$ (or blank)		
*GET, Par, KCALC, 0, Item1, IT1 NUM, Item2, IT2NUM		
Item1	IT1 NUM	
K	$1,2,3$	
Value of KI, KII, or KIII stress intensity factor from last KCALC com- mand.		

Table 207 *GET Postprocessing Items, Entity = NODE

Entity = NODE, ENTNUM = N (node number) for nodal degree of freedom results:		
*GET, Par, NODE, N, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
U	X, Y, Z, SUM	X, Y, or Z structural displacement or vector sum. Alternative get functions: $\operatorname{UX}(N), \mathrm{UY}(N), \mathrm{UZ}(N)$.
ROT	X, Y, Z, SUM	X, Y, or Z structural rotation or vector sum. Alternative get functions: ROTX(N), ROTY(N), ROTZ(N).
TEMP		Temperature. For SHELL131 and SHELL132 elements with KEYOPT(3) $=0$ or 1 , use TBOT, TE2, TE3, \ldots, TTOP instead of TEMP. Alternative get functions: $\operatorname{TEMP}(N), \operatorname{TBOT}(N), \operatorname{TE2}(N)$, etc.
PRES		Pressure. Alternative get function: PRES(N).
VOLT		Electric potential. Alternative get function: $\operatorname{VOLT}(N)$.
MAG		Magnetic scalar potential. Alternative get function: MAG(N).
V	X, Y, Z, SUM	X, Y, or Z fluid velocity or vector sum in a fluid analysis. X, Y, or Z nodal velocity or vector sum in a structural transient analysis (LSDYNA analysis or ANSYS analysis with ANTYPE,TRANS). Alternative get functions: $\mathrm{VX}(N), \mathrm{VY}(N), \mathrm{VZ}(N)$.
A	X, Y, Z, SUM	X, Y, or Z magnetic vector potential or vector sum in an electromagnetic analysis. X, Y, or Z nodal acceleration or vector sum in a structural transient analysis (LS-DYNA analysis or ANSYS analysis with ANTYPE,TRANS). Alternative get functions: $\operatorname{AX}(N), \operatorname{AY}(N), \operatorname{AZ}(N)$.
CURR		Current.
EMF		Electromotive force drop.
ENKE		Turbulent kinetic energy (FLOTRAN). Alternative get function: ENKE(N).
ENDS		Turbulent energy dissipation (FLOTRAN). Alternative get function: ENDS(N).

Entity = NODE, ENTNUM = N (node number) for nodal degree of freedom results:		
*GET, Par, NODE, N, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
RF	$\begin{aligned} & \mathrm{FX}, \mathrm{FY}, \mathrm{FZ}, \\ & \mathrm{MX}, \mathrm{MY}, \mathrm{MZ} \end{aligned}$	Nodal reaction forces in the nodal coordinate system.
ORBT	$\begin{aligned} & \text { A, B, PSI, } \\ & \text { PHI, YMAX, } \\ & \text { ZMAX } \end{aligned}$	Whirl orbit characteristics: A is the semi-major axis. B is the semi-minor axis. PSI is the angle between the local axis y and the major axis Y . PHI is the angle between initial position ($\mathrm{t}=0$) and major axis. YMAX is the maximum displacement along local y axis. ZMAX is the maximum displacement along local z axis. Angles PSI and PHI are in degrees and within the range of -180 through +180. Orbits are available only after issuing a PRORB command.
Note		
This caus Entity $=$ elements	mand should nodal DOFs DE, ENTNUM	used very carefully when N represents an internal node beay have different physical meanings. \mathbf{N} (node number) for averaged nodal results based on selected
*GET, Par, NODE, N, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
S	$\begin{aligned} & \mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{XY}, \\ & \mathrm{YZ}, \mathrm{XZ} \end{aligned}$	Component stress.
"	1, 2, 3	Principal stress.
"	INT, EQV	Stress intensity or equivalent stress.
"	MAXF	Maximum stress failure criterion.
"	TWSI	Tsai-Wu strength failure criterion.
"	TWSR	Inverse of Tsai-Wu strength ratio index failure criterion.
EPTO	$\begin{aligned} & X, Y, Z, X Y, \\ & Y Z, X Z, \end{aligned}$	Component total strain (EPEL + EPPL + EPCR).
"	1, 2, 3	Principal total strain.
"	INT, EQV	Total strain intensity or total equivalent strain.
EPEL	$\begin{aligned} & X, Y, Z, X Y, \\ & Y Z, X Z \end{aligned}$	Component elastic strain.
"	1, 2, 3	Principal elastic strain.
"	INT, EQV	Elastic strain intensity or elastic equivalent strain.
"	MAXF	Maximum strain failure criterion.

*GET, Par, NODE, N, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
EPPL	$\begin{aligned} & X, Y, Z, X Y, \\ & Y Z, X Z \end{aligned}$	Component plastic strain.
"	1, 2, 3	Principal plastic strain.
"	INT, EQV	Plastic strain intensity or plastic equivalent strain.
EPCR	$\begin{aligned} & X, Y, Z, X Y, \\ & Y Z, X Z \end{aligned}$	Component creep strain.
"	1, 2, 3	Principal creep strain.
"	INT, EQV	Creep strain intensity or creep equivalent strain.
CDM	$\begin{aligned} & \text { DMG } \\ & \text { LM } \\ & \mathrm{X}, \mathrm{XY}, \mathrm{XZ} \end{aligned}$	Damage variable Maximum previous strain energy for virgin material Gasket component stress.
GKD	X, XY, XZ	Gasket component total closure.
GKDI	X, XY, XZ	Gasket component total inelastic closure.
GKTH	X, XY, XZ	Gasket component thermal closure.
EPTH	$\begin{aligned} & X, Y, Z, X Y, \\ & Y Z, X Z \end{aligned}$	Component thermal strain.
"	1, 2, 3	Principal thermal strain.
"	INT, EQV	Thermal strain intensity or thermal equivalent strain.
EPSW		Swelling strain.
FAIL	MAX	Maximum of all failure criterion defined for this node.
"	EMAX	Maximum Strain failure criterion.
"	SMAX	Maximum Stress failure criterion.
"	TWSI	Tsai-Wu Failure Criterion Strength Index failure criterion.
"	TWSR	Inverse of Tsai-Wu Strength Ratio Index failure criterion.
"	USR1, USR2, ...,	Us\$86-defined failure criteria.
NL	SEPL	Equivalent stress (from stress-strain curve).
"	SRAT	Stress state ratio.
"	HPRES	Hydrostatic pressure.
"	EPEQ	Accumulated equivalent plastic strain.
"	PSV	Plastic state variable or plastic work/volume.
"	PLWK	Plastic work/volume.
TG	X, Y, Z, SUM	Component thermal gradient and sum.
TF	X, Y, Z, SUM	Component thermal flux and sum.
PG	X, Y, Z, SUM	Component pressure gradient and sum.
EF	X, Y, Z, SUM	Component electric field and sum.
D	X, Y, Z, SUM	Component electric flux density and sum.

*GET, Par, NODE, N, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
H	X, Y, Z, SUM	Component magnetic field intensity and sum.
B	X, Y, Z, SUM	Component magnetic flux density and sum.
FMAG	X, Y, Z, SUM	Component electromagnetic force and sum.
HS	X, Y, Z	Component magnetic field intensity from current sources (in the global Cartesian coordinate system).
BFE	TEMP	Body temperatures (calculated from applied temperatures) as used in solution.
FICT	TEMP	Fictive temperature.
Element nodal results are the average nodal value of the selected elements. Entity = NODE, ENTNUM = N (node number) for FLOTRAN results:		
*GET, Par, NODE, N, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
TTOT		Total temperature.
HFLU		Heat flux.
HFLM		Heat transfer (film) coefficient.
COND		Fluid laminar conductivity.
PCOE		Pressure coefficient.
PTOT		Total (stagnation) pressure.
MACH		Mach number.
STRM		Stream function (2-D applications only).
DENS		Fluid density.
VISC		Fluid laminar viscosity.
EVIS		Fluid effective viscosity.
CMUV		Turbulent viscosity coefficient.
ECON		Fluid effective conductivity.
YPLU		$\mathrm{Y}+$, a turbulent law of the wall parameter.
TAUW		Shear stress at the wall.

Table 208 *GET Postprocessing Items, Entity = PATH

Entity $\boldsymbol{=}$ PATH, ENTNUM $=\mathbf{0}$ (or blank)		
*GET, Par, PATH, 0, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
MAX	Lab	Maximum value of path item Lab from last path operation. Valid labels are the user-defined labels on the PDEF or PCALC command.
MAXPATH		Returns the maximum path number defined.

Entity = PATH, ENTNUM $=0$ (or blank)		
*GET, Par, PATH, 0, Item 1, IT1 NUM, Item2, IT2NUM		
Item 1	IT1NUM	Description
MIN	Lab	Minimum value of path item Lab from last path operation. Valid labels are the user-defined labels on the PDEF or PCALC command.
LAST	Lab	Last value of path item Lab from last path operation. Valid labels are the user-defined labels on the PDEF or PCALC command.
NODE		Value providing the number of nodes defining the path referenced in the last path operation.
ITEM	Lab	Item2 $=$ PATHPT, $\boldsymbol{I T 2 N U M}=n$ The value of $L a b$ at the nth data point from the last path operation.
POINT	n	Item2 $=X, Y, Z$, or CSYS. Returns information about the nth point on the current path.
NVAL		The number of path data points (the length of the data table) from the last path operation.
SET	n	Item2 $=$ NAME. Returns the name of the nth data set on the current path.
NUMPATH		Returns the number of paths defined.
Entity $=$ PATH, ENTNUM $=\mathrm{n}$ (path number)		
Item1	IT1NUM	Description
NAME		Returns the name of the nth path.
Entity = PATH, ENTNUM = 0 (or blank)		
*GET,Par,KCALC,0,...		
K	1, 2, 3	Value of KI, KII, or KIII stress intensity factor from last KCALC command.

Table 209 *GET Postprocessing Items, Entity = PLNSOL

Entity $=$ PLNSOL, ENTNUM $=\mathbf{0}$ (or blank)		
*GET, Par, PLNSOL, 0, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
MAX		Maximum value of item in last contour display [PLNSOL, PLESOL].
MIN		Minimum value of item in last contour display [PLNSOL, PLESOL].
BMAX		Maximum bound value of item in last contour display [PLNSOL, PLESOL].

Entity = PLNSOL, ENTNUM = 0 (or blank)		
*GET, Par, PLNSOL, 0, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
BMIN		Minimum bound value of item in last contour display [PLNSOL, PLESOL].

Table 210 *GET Postprocessing Items, Entity = PRERR

Entity $=$ PRERR, ENTNUM $=\mathbf{0}$ (or blank)		
*GET, Par, PRERR, 0, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
SEPC[1]		Structural percent error in energy norm [PRERR].
TEPC[1]		Thermal percent error in energy norm [PRERR].
SERSM[1]		Structural error energy summation [PRERR].
TERSM[1]		Thermal error energy summation [PRERR].
SENSM[1]		Structural energy summation [PRERR].
TENSM[1]		Thermal energy summation [PRERR].

1. Some element- and material-type limitations apply. For more information, see the documentation for the PRERR command.

Table 211 *GET Postprocessing Items, Entity = RAD

Entity = RAD, ENTNUM = 0 (or blank)		
*GET, Par, RAD, 0, Item1, IT1 NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
VFAVG		Value of the average view factor computed from the previous VFQUERY command.
Entity = RAD, ENTNUM $=\mathbf{n}$ (enclosure number)		
*GET, Par, RAD, n, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
NETHF		Value of the net heat rate lost by an enclosure.

Table 212 *GET Postprocessing Items, Entity = SECR

Entity $=$ SECR, ENTNUM $=n$ (element number) For beam and pipe (including elbow) section results, return values for all elements if the element number (n) is blank or ALL.				
*GET, Par, SECR, n, Item1, IT1NUM, Item2, IT2NUM				
Item1	IT1NUM	Description	Item2	IT2NUM
S	$\begin{aligned} & \mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{XY}, \\ & \mathrm{YZ}, \mathrm{XZ} \end{aligned}$	Component total stress	MAX - Returns maximum	These values are applicable only when

Entity $=$ SECR, ENTNUM $=n$ (element number) For beam and pipe (including elbow) section results, return values for all elements if the element number (n) is blank or ALL.				
*GET, Par, SECR, n, Item 1, IT1NUM, Item2, IT2NUM				
Item1	IT1NUM	Description	Item2	IT2NUM
	1,2,3	Principal stress value	MIN - Returns minimum MAXY - Returns section Y location of maximum MAXZ - Returns section Z location of maximum	$\begin{aligned} & \text { Item2 = IVAL, } \\ & \text { JVAL, or KV- } \\ & \text { AL: } \end{aligned}$
	INT	Stress intensity value		
	EQV	Equivalent stress value		
EPTO	$\begin{aligned} & X, Y, Z, X Y, \\ & Y Z, X Z \end{aligned}$	Component total strain		When KEY$\mathrm{OPT}(15)=0$, this value is the section node number.
	1, 2, 3	Principal total strain value		
	INT	Total strain intensity value		
	EQV	Equivalent total strain value		
EPEL	$\begin{aligned} & \mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{XY}, \\ & \mathrm{YZ}, \mathrm{XZ} \end{aligned}$	Component elastic strain	MINY - Returns section Y location of minimum MINZ - Returns section Z location of minimum	When KEYOPT(15) = 1 (or when using elbow elements), this value is the integration point number.
	1, 2, 3	Principal elastic strain value		
	INT	Elastic strain intensity value		
	EQV	Equivalent elastic strain value		
EPTH	$\begin{aligned} & X, Y, Z, X Y, \\ & Y Z, X Z \end{aligned}$	Component thermal strain	IVAL - Returns value at node or integration point at element I node JVAL - Returns value at node or integration point at element J node	
	1, 2, 3	Principal thermal strain value		
	INT	Thermal strain intensity value		
	EQV	Equivalent thermal strain value		
EPPL	$\begin{aligned} & X, Y, Z, X Y, \\ & Y Z, X Z \end{aligned}$	Component plastic strain		
	1, 2, 3	Principal plastic strain value	KVAL - Returns value at node or integration point at element K node (ELBOW290)	
	INT	Plastic strain intensity value		
	EQV	Equivalent plastic strain value		
EPCR	$\begin{aligned} & X, Y, Z, X Y, \\ & Y Z, X Z \end{aligned}$	Component creep strain	For IVAL, JVAL, and KVAL: The ALL (or blank) option for the element number is not valid. You must specify an element (\mathbf{n}).	
	1, 2, 3	Principal component creep strain value		
	INT	Component creep strain intensity value		
	EQV	Equivalent component creep strain value		
EPTT	$\begin{aligned} & X, Y, Z, X Y, \\ & Y Z, X Z \end{aligned}$	Component total mechanical and thermal strain		

Entity $=$ SECR, ENTNUM = n (element number)
For beam and pipe (including elbow) section results, return values for all elements
if the element number (n) is blank or ALL.

Item 1	IT1NUM	Description	Item2	IT2NUM
	1, 2, 3	Principal total mechanical and thermal strain value		
	INT	Total mechanical and thermal strain intensity value		
	EQV	Equivalent total mechanical and thermal strain value		

Table 213 *GET Postprocessing Items, Entity = SECTION
Entity = SECTION,ENTNUM = component (listed below).

Generate data for section stress results, using PRSECT before retrieving these items. Valid labels for ENTNUM are MEMBRANE, BENDING, SUM (Membrane+Bending) , PEAK, and TOTAL. (The following items are not stored in the database and the values returned reflect the last quantities generated by PRSECT or PLSECT.) Only MEMBRANE, BENDING, and SUM data are available after a PLSECT command. The MEMBRANE label is only valid with Item1 = INSIDE.
*GET, Par, SECTION, component, Item1, IT1NUM, Item2, IT2NUM

Item1	IT1NUM	Item2	Description
INSIDE	S	$\begin{aligned} & \mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{XY}, \\ & \mathrm{YZ}, \mathrm{XZ} \end{aligned}$	Stress component at beginning of path.
"	"	1, 2, 3	Principal stress at beginning of path.
"	"	INT, EQV	Stress intensity or equivalent stress at beginning of path.
CENTER	S	$\begin{aligned} & X, Y, Z, X Y, \\ & Y Z, X Z \end{aligned}$	Stress component at midpoint of path.
"	"	1, 2, 3	Principal stress at midpoint of path.
"	"	INT, EQV	Stress intensity or equivalent stress at midpoint of path.
OUTSIDE	S	$\begin{aligned} & X, Y, Z, X Y, \\ & Y Z, X Z \end{aligned}$	Stress component at end of path.
"	"	1, 2, 3	Principal stress at end of path.

Entity = SECTION,ENTNUM = component (listed below).
Generate data for section stress results, using PRSECT before retrieving these items. Valid labels for ENTNUM are MEMBRANE, BENDING, SUM (Membrane+Bending) , PEAK, and TOTAL. (The following items are not stored in the database and the values returned reflect the last quantities generated by PRSECT or PLSECT.) Only MEMBRANE, BENDING, and SUM data are available after a PLSECT command. The MEMBRANE label is only valid with Item1 = INSIDE. *GET, Par, SECTION, component, Item1, IT1NUM, Item2, IT2NUM

Item1	IT1NUM	Item2	Description
$"$	$"$	INT, EQV	Stress intensity or equivalent stress at end of path.

Table 214 *GET Postprocessing Items, Entity = SORT

Entity $=$ SORT, ENTNUM = $\mathbf{0}$ (or blank)		
*GET, Par, SORT, 0, Item1, IT1 NUM, Item2, IT2NUM		
Item1	IT1 NUM	
MAX		Maximum value of last sorted item (NSORT or ESORT command).
MIN		Minimum value of last sorted item (NSORT or ESORT command).
IMAX		Node/Element number where maximum value occurs.
IMIN		Node/Element number where minimum value occurs.

Table 215 *GET Postprocessing Items, Entity = SSUM

Entity $=$ SSUM, ENTNUM = $\mathbf{0}$ (or blank)		
*GET, Par, SSUM, 0, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
ITEM	Lab	Value of item Lab from last SSUM command. Valid labels are the user-defined labels on the ETABLE command.

Table 216 *GET Postprocessing Items, Entity = TREF

Entity $=$ TREF, ENTNUM $=\mathbf{0}$ (or blank)		
*GET, Par, TREF, $\mathbf{0}$ Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	
ENER		Stored energy.
ENUM		Trefftz element number.
CEMIN		First (or minimum) constraint equation number associated with the Trefftz domain.
CEMAX		Last (or maximum) constraint equation number associated with the Trefftz domain.
NTZN		Number of Trefftz DOFs.
NSFN		Number of nodes on exterior surface.

Entity $=$ TREF, ENTNUM $=0$ (or blank)	
*GET, Par, TREF, 0, Item1, IT1NUM, Item2, IT2NUM	
Item1	IT1NUM
NSFE	

Table 217 *GET Postprocessing Items, Entity = VARI

Entity = VARI, ENTNUM = N (variable number after POST26 data storage) (for complex values, only the real portion is returned)		
*GET,Par, VARI, N, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
EXTREM	VMAX	Maximum extreme value
"	TMAX	Time corresponding to VMAX.
"	VMIN	Minimum extreme value (after POST26 data storage).
"	TMIN	Time corresponding to VMIN.
"	VLAST	Last value (after POST26 data storage).
"	TLAST	Time corresponding to VLAST.
"	CVAR	Covariance
RTIME	t	Real value of variable N at time $=t$.
ITIME	t	Imaginary value of variable N at time $=t$.
RSET	Snum	Real value of variable N at location Snum.
ISET	Snum	Imaginary value of variable N at location Snum.
Entity = VARI, ENTNUM $=0$ (or blank) (after POST26 data storage)		
*GET,Par,VARI,0, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
NSETS		Number of data sets stored (after POST26 data storage).

Optimization and Probabilistic Design

*GET Optimization and Probabilistic Design Entity Items

- Table 218: *GET Optimization and Probabilistic Design Items, Entity = OPT (p. 764)
- Table 219: *GET Optimization and Probabilistic Design Items, Entity = TOPO (p. 765)
- Table 220: *GET Optimization and Probabilistic Design Items, Entity = PDS (pre) (p. 766)
- Table 221: *GET Optimization and Probabilistic Design Items, Entity = PDS (post) (p. 768)

Table 218 *GET Optimization and Probabilistic Design Items, Entity = OPT

Entity $=$ OPT, ENTNUM $=\mathbf{0}$ (or blank)		
*GET, Par, OPT, 0, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	
TOTAL		Total number of analysis loops that have been executed.

Entity $=\mathbf{O P T}$, ENTNUM $=\mathbf{0}$ (or blank)		
*GET, Par, OPT, 0, Item1, IT1 NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
ITER		Total number of iterations for the optimization method or tool (i.e., per OPEXE command).
FEAS	N	Feasibility of design set $N: 0=$ infeasible, $1=$ feasible.
TERM		Termination condition. For first order [OPTYPE,FIRST] or subproblem approximation [OPTYPE,SUBP] optimization: $-1=$ not converged or not finished (still looping), $0=$ converged, $1=$ not converged due to too many sequential infeasible designs; $2=$ not converged due to too many iterations. For all other optimization methods: $-1=$ not finished (still looping), $3=$ optimization complete.
BEST		Best design set. If design is feasible, best design is the one with the lowest value of the objective function. If infeasible, the best design is the one that is closest to being feasible.

Table 219 *GET Optimization and Probabilistic Design Items, Entity = TOPO

Entity = TOPO, ENTNUM = 0 (or blank)		
*GET, Par, TOPO, 0, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
ACT		Status of topological optimization: $0=0$ ff, $1=o n$
TOELEM		Total number of elements used for topological optimization.
LOADS		Number of load cases specified in the TOCOMP command.
ITER		Current number of iterations performed. The iteration counter retrieved is always one greater than the actual iterations performed because the densities are also one iteration ahead (more current than those you are seeing).
MXIT		Maximum number of topological optimization iterations allowed.
CONV		Termination/convergence indicator: $0=$ not converged, $1=$ converged.
DIM		Dimensionality of the topological optimization problem: $0=2 \mathrm{D}$, $1=3 \mathrm{D}, 2=$ Shell.
KAXI		Axisymmetric option within 2-D topological optimization: 0=off, $1=o n$.
POWP		Power of power law within axisymmetric option.
NEV		Total number of eigenvalues considered in topological optimization.
TOAC		Termination/convergence accuracy.
LOWD		Lower bound for element densities.
NTOC		Total number of constraints defined for topological optimization problem.
SFLAG		Solution approach active: $0=0 C, 1=S C P$.
COMP		Compliance value for current iteration.
PORV		Porous volume value for current iteration.

*GET, Par, TOPO, n, Item1, IT1 NUM, Item2, IT2NUM		
Item 1	IT1NUM	Description
DENS		Element density used for topological optimization: low value (near 0)=material to be removed, high value (near 1)=material to keep.n = element number
FRQI		Individual frequencies for current topological optimization iteration. n =frequency ID
TCBO	FLAG	Constraint bounds for topological optimization: FLAG=1 - Lower bound. FLAG=2 - Upper bound. $n=$ constraint ID
TCBF		Indicate whether bound should be treated as percentage of initial design or as an absolute value: $0=$ percentage, $1=$ absolute. $n=$ constraint ID
TOHO		Value of topological objective for specified iteration. $n=$ iteration counter
TOHC	CID	Value of topological constraint CID for specified iteration. $n=$ iteration counter

Table 220 *GET Optimization and Probabilistic Design Items, Entity = PDS (pre)

Entity = PDS, ENTNUM = 0 (or blank)		
*GET, Par, PDS, 0, Item1, IT1 NUM, Item2, IT2NUM.		
Item1	IT1NUM	Description
ANLN		Item2 = START; IT2NUM $=$ N; Name of the analysis file containing the deterministic model. A character parameter of up to 8 characters, starting at position N, is returned. Use *DIM and *DO to get all 32 characters.
ANLX		Extension of the analysis file containing the deterministic model. A character parameter of up to 8 characters is returned.
ANLD		Item2 $=$ START; IT2NUM $=N$; Name of the directory of the analysis file containing the deterministic model. A character parameter of up to 8 characters, starting at position N, is returned. Use *DIM and *DO to get all 64 characters.
ASTP	1	Current setting for Autostop option (0 = disabled, 1 = enabled).
"	2	Current Autostop mean value accuracy.
"	3	Current Autostop standard deviation accuracy.
"	4	Current Autostop convergence checking frequency.
CORR	i	Item2 $=0$ or blank; IT2NUM $=j$; Correlation coefficient specified by the user between the i-th and the j-th random input variable. If no correlation has been specified between these two random variables a value of 0.0 is returned.
METH		Name of the current analysis method as specified in the PDMETH command (MCS or RSM). A character parameter of up to 8 characters is returned.

Entity = PDS, ENTNUM = 0 (or blank)		
*GET, Par, PDS, 0, Item1, IT1NUM, Item2, IT2NUM.		
Item1	IT1NUM	Description
NSIM		Number of simulation loops requested, as specified in the PDMETH and PDDMCS, PDLHS, PDDOEL, or PDUSER commands.
NTRP		Current total number of defined random output parameters.
NTRV		Current total number of defined random input variables
PAR1	i	First distribution parameter of the i-th defined random input variable.
PAR2	i	Second distribution parameter of the i-th defined random input variable.
PAR3	i	Third distribution parameter of the i-th defined random input variable.
PAR4	i	Fourth distribution parameter of the i-th defined random input variable.
RNAM	i	Item2 $=$ START; IT2NUM $=N$; Name of the i-th defined random output parameter. A character parameter of up to 8 characters, starting at position N, is returned. Use *DIM and *DO to get all characters.
SAMP		Name of the current sampling technique as specified in the PDMETH command (LHS, DIR, USER for MCS, or CCD, BBM, USER for RSM). A character parameter of up to 8 characters is returned.
VDIS	i	Label of the distribution type of the i-th defined random input variable (BETA, EXPO, ..., WEIB). A character parameter of up to 8 characters is returned.
VNAM	i	Item2 $=$ START; IT2NUM $=N$; Name of the i-th defined random input variable. A character parameter of up to 8 characters, starting at position N, is returned. Use *DIM and *DO to get all characters.
CCDL		Item2 = DEFA; IT2NUM = j; Default value for the probabilities of the j-th design-of-experiment level for a central composite design as used in the by the PDDOELcommand.
CCDL	i	Item2 = VTYP; IT2NUM=0 (or blank); Type of the level values of the design-of-experiment for a central composite design of the i-th defined random input variable as specified by the PDDOELcommand (PROB, PHYS). A character parameter of up to 8 characters is returned.
CCDL	i	Item2 = LOPT; IT2NUM=0 (or blank); Type of the level definition of the design-of-experiment for a central composite design of the i-th defined random input variable as specified by the PDDOELcommand (BND, ALL). A character parameter of up to 8 characters is returned.
CCDL	i	Item2 = LDEF; IT2NUM=j; Flag indicating if the j-th design-of-experiment level for a central composite design of the i-th defined random input variable has been defined with the PDDOELcommand. ($0=\mathrm{NO}, 1=\mathrm{YES}$).

Entity = PDS, ENTNUM = 0 (or blank)		
*GET, Par, PDS, 0, Item1, IT1NUM, Item2, IT2NUM.		
Item1	IT1NUM	Description
CCDL	i	Item2 = LVAL; IT2NUM=j; Level value for the j-th design-of-experiment level for a central composite design of the i-th defined random input variable as specified by the PDDOELcommand. If the PDDOELcommand has not been used for the i-th defined random input variable or if the user has not specified the j-th design-ofexperiment level, then the default probability level will be returned.
BBML		Item2 = DEFA; IT2NUM = j; Default value for the probabilities of the j-th design-of-experiment level for a Box-Behnken Matrix design as used in the by the PDDOELcommand.
BBML	i	Item2 = VTYP; IT2NUM=0 (or blank); Type of the level values of the design-of-experiment level for a Box-Behnken Matrix design of the i-th defined random input variable as specified by the PDDOELcommand. (PROB, PHYS). A character parameter of up to 8 characters is returned.
BBML	i	Item2 = LOPT; IT2NUM=0 (or blank); Type of the level definition of the design-of-experiment level for a Box-Behnken Matrix design of the i-th defined random input variable as specified by the PDDOELcommand (BND, ALL). A character parameter of up to 8 characters is returned.
BBML	i	Item2 $=$ LDEF; IT2NUM $=j$; Flag indicating if the j-th design-of-experiment level for a Box-Behnken Matrix design of the i-th defined random input variable has been defined with the PDDOELcommand. ($0=\mathrm{NO}, 1=\mathrm{YES}$).
BBML	i	Item2 = LVAL; IT2NUM=j; Level value for the j-th design-of-experiment level for a Box-Behnken Matrix design of the i-th defined random input variable as specified by the PDDOELcommand. If the PDDOELcommand has not been used for the i-th defined random input variable or if the user has not specified the j-th design-of-experiment level, then the default probability level will be returned.

Table 221 *GET Optimization and Probabilistic Design Items, Entity = PDS (post)

Entity $=$ PDS, ENTNUM $=\mathbf{0}$ (or blank)		
*GET, Par, PDS, 0, Item1, IT1NUM, Item2, IT2NUM		
Item1	IT1NUM	Description
NRSS		Number of response surface sets that are currently available.
NSOL	Number of probabilistic solution sets that are currently available. This coincides with the number of probabilistic analyses that are currently done.	

Entity = PDS, ENTNUM = \boldsymbol{n} (\boldsymbol{n}-th result set).
The numbering or ordering of the result sets is used as follows: If NSOL is the number of solution sets and NRSS is the number response surface sets then the solution sets are indexed from 1 to NSOL and the response surface sets are indexed from NSOL+1 to NSOL+NRSS.
Note that some options listed below apply only to solution sets (i.e., where $1 \leq \boldsymbol{n} \leq$ NSOL) and some apply only to response surface sets (i.e., where NSOL+1 $\leq \boldsymbol{n} \leq$ NSOL+NRSS).
*GET,Par, PDS, n, Item1, IT1NUM, Item2, IT2NUM

Item1	IT1NUM	Description
METH		Name of the analysis method used in the n-th solution set (MCS, RSM). A character parameter of up to 8 characters is returned. This applies only to solution sets (i.e., " n " ranges from 1 to NSOL).
NSIM		Number of simulation samples that are available for postprocessing in the n-th result set. If the n-th result set is a solution set (i.e., 1 $\leq n \leq N S O L$) then this is equal to the number of successful (no error occurred) finite element analysis loops regardless of the probabilistic method used for the solution set. If n points to a response surface set, then this is equal to the number of simulation samples that were performed on the response surfaces included in this response surface set.
SAMP		Name of the sampling technique used in the n-th solution set (LHS, DIR, USER for MCS or CCD, BBM, USER for RSM). A character parameter of up to 8 characters is returned. This applies only to solution sets (i.e., n ranges from 1 to NSOL).
RLAB		Item2 = START; IT2NUM $=N$; Name of the n-th defined result set. A character parameter of up to 8 characters, starting at position N, is returned. Use *DIM and *DO to get all characters.
MEAN		Item2 $=$ RV; IT2NUM $=j$; The mean value of the j-th defined random input variable in the n-th result set.
MEAN		Item2 = RP; IT2NUM $=j$; The mean value of the j-th defined random output parameter in the n-th result set.
STDV		Item2 = RV; IT2NUM=j; The standard deviation of the j-th defined random input variable in the n-th result set.
STDV		Item2 = RP; IT2NUM=j; The standard deviation of the j-th defined random output parameter in the n-th result set.
KURT		Item2 $=\mathrm{RV}$; IT2NUM $=j$; The coefficient of kurtosis of the j-th defined random input variable in the n-th result set.
KURT		Item2 = RP; IT2NUM $=j$; The coefficient of kurtosis of the j-th defined random output parameter in the n-th result set.
SKEW		Item2 = RV; IT2NUM $=j$; The coefficient of skewness of the j-th definec random input variable in the n-th result set.
SKEW		Item2 $=$ RP; IT2NUM $=j$; The coefficient of skewness of the j-th defined random output parameter in the n-th result set.
MIN		Item2 = RV; IT2NUM $=j$; The minimum sampled value of the j-th defined random input variable in the n-th result set.

Entity $=$ PDS, ENTNUM $=n$ (n-th result set).
The numbering or ordering of the result sets is used as follows: If NSOL is the number of solution sets and NRSS is the number response surface sets then the solution sets are indexed from 1 to NSOL and the response surface sets are indexed from NSOL+1 to NSOL+NRSS.
Note that some options listed below apply only to solution sets (i.e., where $1 \leq \boldsymbol{n} \leq$ NSOL) and some apply only to response surface sets (i.e., where NSOL+1 $\leq \boldsymbol{n} \leq$ NSOL+NRSS).
*GET,Par, PDS, n, Item1, IT1NUM, Item2, IT2NUM

Item1	IT1NUM	Description
MIN		Item2 = RP; IT2NUM $=j$; The minimum sampled value of the j-th defined random output parameter in the n-th result set.
MAX		Item2 = RV; IT2NUM=j; The minimum sampled value of the j-th defined random input variable in the n-th result set.
MAX		Item2 $=$ RP; IT2NUM $=j$; The minimum sampled value of the j-th defined random output parameter in the n-th result set.
CCDL	i	Item2 = VTYP; Type of the level values of the design-of-experiment for a central composite design of the i-th defined random input variable that has been used during the execution of the n-th solution set (PROB, PHYS). A character parameter of up to 8 characters is returned. This applies only to solution sets (i.e., n ranges from 1 to NSOL).
CCDL	i	Item2 = LOPT; Type of the level definition of the design-of-experiment for a central composite design of the i-th defined random input variable that has been used during the execution of the n-th solution set (BND, ALL). A character parameter of up to 8 characters is returned. This applies only to solution sets (i.e., n ranges from 1 to NSOL).
CCDL	i	Item2 = LDEF; IT2NUM=j; Flag indicating if the j-th design-of-experiment level for a central composite design of the i-th defined random input variable has been specified for the n-th solution set. ($0=$ NO, $1=$ YES). This applies only to solution sets (i.e., n ranges from 1 to NSOL).
CCDL	i	Item2 = LVAL; IT2NUM=j; Level value for the j-th design-of-experiment level for a central composite design of the i-th defined random input variable that has been used during the execution of the n-th solution set. This applies only to solution sets (i.e., n ranges from 1 to NSOL).
BBML	i	Item2 = VTYP; Type of the level values of the design-of-experiment level for a Box-Behnken Matrix design of the i-th defined random input variable that has been used during the execution of the n-th solution set. (PROB, PHYS). A character parameter of up to 8 characters is returned. This applies only to solution sets (i.e., n ranges from 1 to NSOL).
BBML	i	Item2 = LOPT; Type of the level definition of the design-of-experiment level for a Box-Behnken Matrix design of the i-th defined random input variable that has been used during the execution of the n-th solution set (BND, ALL). A character parameter of up to 8

Entity $=$ PDS, ENTNUM $=\boldsymbol{n}$ (n-th result set).
The numbering or ordering of the result sets is used as follows: If NSOL is the number of solution sets and NRSS is the number response surface sets then the solution sets are indexed from 1 to NSOL and the response surface sets are indexed from NSOL+1 to NSOL+NRSS.
Note that some options listed below apply only to solution sets (i.e., where $1 \leq \boldsymbol{n} \leq$ NSOL) and some apply only to response surface sets (i.e., where NSOL+1 $\leq \boldsymbol{n} \leq$ NSOL+NRSS).
*GET,Par, PDS, n, Item1, IT1NUM, Item2, IT2NUM

Item1	IT1NUM	Description
		characters is returned. This applies only to solution sets (i.e., n ranges from 1 to NSOL).
BBML	i	Item2 $=$ LDEF; IT2NUM $=j$; Flag indicating if the j-th design-of-experiment level for a Box-Behnken Matrix design of the i-th defined random input variable specified for the n-th solution set. ($0=\mathrm{NO}$, $1=\mathrm{YES}$).
BBML	i	Item2 $=$ LVAL; IT2NUM $=j$; Level value for the j-th design-of-experiment level for a Box-Behnken Matrix design of the i-th defined random input variable that has been used during the execution of the n-th solution set. This applies only to solution sets (i.e., n ranges from 1 to NSOL).
RSST		Item2 = XSOL; Index of the solution set the response surface set identified by the n-th result set is associated with. This applies only to response surface sets (i.e., n ranges from NSOL+1 to NSOL+NRSS)
RSST		Item2 $=$ NFRP; Number of fitted random output parameters in the response surface set identified by the n-th result set is associated with. This applies only to response surface sets (i.e., n ranges from NSOL+1 to NSOL+NRSS).
RSUR	i	Item2 = XFRP; Index of the random output parameter that has been fitted with the RSFITcommand to fit the i-th response surface in the response surface set identified by the n-th result set. IT1NUM=i ranges from 1 to NFRP (see Item1=RSST, Item2=NFRP). This applies only to response surface sets (i.e., n ranges from NSOL+1 to NSOL+NRSS).
RSUR	i	Item2 = RMOD; Label for the response surface model that has been used in the RSFITcommand to fit the i-th response surface in the response surface set identified by the n-th result set. IT1NUM=i ranges from 1 to NFRP (see Item1=RSST, Item2=NFRP). A character parameter of up to 8 characters is returned. This applies only to response surface sets (i.e., n ranges from NSOL+1 to NSOL+NRSS).
RSUR	i	Item2 = YTRT; Label of the type of transformation that has been used in the RSFITcommand to fit the random output parameter of i-th response surface in the response surface set identified by the n-th result set. IT1NUM=i ranges from 1 to NFRP (see Item1=RSST, Item2=NFRP). A character parameter of up to 8 characters is returned. This applies only to response surface sets (i.e., n ranges from NSOL+1 to NSOL+NRSS).

Entity = PDS, ENTNUM = \boldsymbol{n} (\boldsymbol{n}-th result set).
The numbering or ordering of the result sets is used as follows: If NSOL is the number of solution sets and NRSS is the number response surface sets then the solution sets are indexed from 1 to NSOL and the response surface sets are indexed from NSOL+1 to NSOL+NRSS.
Note that some options listed below apply only to solution sets (i.e., where $1 \leq \boldsymbol{n} \leq$ NSOL) and some apply only to response surface sets (i.e., where NSOL+1 $\leq \boldsymbol{n} \leq$ NSOL+NRSS).
*GET,Par, PDS, n, Item1, IT1NUM, Item2, IT2NUM

Item1	IT1NUM	Description
RSUR	i	Item2 = YTRV; Transformation value of the transformation that has been used in the RSFITcommand to fit the random output parameter of i-th response surface in the response surface set identified by the n-th result set. IT1NUM=i ranges from 1 to NFRP (see Item1=RSST, Item2=NFRP). This applies only to response surface sets (i.e., n ranges from NSOL+1 to NSOL+NRSS).
RSUR	i	Item2 = FILT; Label of the filtering type of the regression terms that has been used in the RSFITcommand to fit the random output parameter of i-th response surface in the response surface set identified by the n-th result set. IT1NUM=i ranges from 1 to NFRP (see Item1=RSST, Item2=NFRP). A character parameter of up to 8 characters is returned. This applies only to response surface sets (i.e., n ranges from NSOL+1 to NSOL+NRSS).
RSUR	i	Item2 = CONF; Confidence level value of the regression term filtering that has been used in the RSFITcommand to fit the random output parameter of i-th response surface in the response surface set identified by the n-th result set. IT1NUM=i ranges from 1 to NFRP (see Item1=RSST, Item2=NFRP). This applies only to response surface sets (i.e., n ranges from NSOL+1 to NSOL+NRSS).
RSEQ	i	Item2 = YBOX; Box-Cox transformation value "lambda" of the response surface equation for the i-th fitted random output paramete in the n-th result set. IT1NUM=i ranges from 1 to NFRP (see Item1=RSST, Item2=NFRP). This applies only to response surface sets (i.e., n ranges from NSOL+1 to NSOL+NRSS).
RSEQ	i	Item2 $=$ NTRM; Number of regression terms of the response surface equation for the i-th fitted random output parameter in the n-th result set. IT1NUM=i ranges from 1 to NFRP (see Item1=RSST, Item2=NFRP). This applies only to response surface sets (i.e., n ranges from NSOL+1 to NSOL+NRSS).
RSEQ	i	Item2 $=$ TTYP; IT2NUM $=j$; Type of the j-th regression term of the response surface equation for the i-th fitted random output parameter in the n-th result set. IT1NUM=i ranges from 1 to NFRP (see Item1=RSST, Item2=NFRP). IT2NUM=j ranges from 1 to NTRM (see Item $1=$ RSEQ, Item2=NTRM). This applies only to response surface sets (i.e., n ranges from NSOL+1 to NSOL+NRSS). Possible return values are: $1=$ term is a constant (this term does not involve any random input variables)

Entity $=$ PDS, ENTNUM $=\boldsymbol{n}$ (n-th result set).
The numbering or ordering of the result sets is used as follows: If NSOL is the number of solution sets and NRSS is the number response surface sets then the solution sets are indexed from 1 to NSOL and the response surface sets are indexed from NSOL+1 to NSOL+NRSS.
Note that some options listed below apply only to solution sets (i.e., where $1 \leq \boldsymbol{n} \leq$ NSOL) and some apply only to response surface sets (i.e., where NSOL+1 $\leq \boldsymbol{n} \leq$ NSOL+NRSS).
*GET,Par, PDS, n, Item1, IT1NUM, Item2, IT2NUM

Item1	IT1NUM	Description
		2 = term is a linear term (this term involves only one random input variable) $3=$ term is a purely quadratic term involving only one random inpu variable (this term involves only one random input variable) $4=$ term is a mixed quadratic term involving two random input variables (this term involves two random input variables)
RSEQ	i	Item2 = XRV1; IT2NUM $=j$; Index of the first random input variable involved in the j-th regression term of the response surface equatio for the i-th fitted random output parameter in the n-th result set. IT1NUM=i ranges from 1 to NFRP (see Item1=RSST, Item2=NFRP). This applies only to response surface sets (i.e., n ranges from NSOL+1 to NSOL+NRSS). An error appears if the term does not involve a random input variable, i.e. if the term is a constant.
RSEQ	i	Item2 = XRV2; IT2NUM $=j$; Index of the second random input variable involved in the j-th regression term of the response surface equation for the i-th fitted random output parameter in the n-th result set. IT1NUM=i ranges from 1 to NFRP (see Item1=RSST, Item2=NFRP). This applies only to response surface sets (i.e., n ranges from NSOL+1 to NSOL+NRSS). An error appears if the term does not involve a second random input variable, i.e. if the term is not a mixed quadratic term.
RSEQ	i	Item2 = COEF; IT2NUM $=j$; Regression coefficient of the j-th regression term of the response surface equation for the i-th fitted random output parameter in the n-th result set. IT1NUM=i ranges from 1 to NFRP (see Item1=RSST, Item2=NFRP). This applies only to response surface sets (i.e., n ranges from NSOL+1 to NSOL+NRSS).
RSEQ	i	Item2 = SLOP; IT2NUM=j; Scaling slope of the j-th random input variable of the response surface equation for the i-th fitted random output parameter in the n-th result set. IT1NUM=i ranges from 1 to NFRP (see Item1=RSST, Item2=NFRP). This applies only to response surface sets (i.e., n ranges from NSOL+1 to NSOL+NRSS).
RSEQ	i	Item2 $=$ ICPT; IT2NUM $=j$; Scaling intercept of the j-th random input variable of the response surface equation for the i-th fitted random output parameter in the n-th result set. IT1NUM=i ranges from 1 to NFRP (see Item1=RSST, Item2=NFRP). This applies only to response surface sets (i.e., n ranges from NSOL+1 to NSOL+NRSS).

Menu Paths

Main Menu>Prob Design>Prob Method>Response Surface
Utility Menu>Parameters>Get Scalar Data

/GFILE, SIZE

Specifies the pixel resolution on Z-buffered graphics files.
GRAPHICS: Set Up
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

SIZE

Pixel resolution. Defaults to a pixel resolution of 800 . Valid values are from 256 to 2400 .

Command Default

800 pixels

Notes

Defines the pixel resolution on subsequently written graphics files (Jobname. GRPH) for software Z-buffered displays [/TYPE]. Lowering the pixel resolution produces a "fuzzier" image; increasing the resolution produces a "sharper" image but takes a little longer.

This command is valid in any processor.

Menu Paths

Utility Menu>PlotCtrls>Redirect Plots $>$ To GRPH File
Utility Menu>PlotCtrls>Redirect Plots>To PSCR File
/GFORMAT, Ftype, NWIDTH, DSIGNF
Specifies the format for the graphical display of numbers.

> GRAP HICS: Labeling
> MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS

Ftype

FORTRAN format types (G is the default if this field is left blank.)
G
Gxx.yy. $x x$ and yy are described below.
F
Fxx.yy
E
Exx.yy
NWIDTH
Total width (12 maximum) of the field (the $x x$ in Ftype). Defaults to 12.

DSIGNF

Number of digits after the decimal point (yy in F or E format) or number of significant digits in G format. Range is 1 to $x x-6$ for Ftype $=G$ or E ; and 0 to $x x-3$ for Ftype $=\mathrm{F}$. The default is a function of Ftype and NWIDTH.

Notes

Lets you control the format of the graphical display of floating point numbers. Issue /GFORMAT,STAT to display the current settings; issue /GFORMAT,DEFA to let ANSYS choose the format for the graphical display of floating numbers.

This command is valid in any processor.

Menu Paths

Utility Menu>PlotCtrls>Style>Floating Point Format

/GLINE, $W N$, STYLE

Specifies the element outline style.

> GRAPHICS: Style
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

wN

Window number (or ALL) to which command applies (defaults to 1).
Style
Outline key:
0
Solid element outlines (default)
1
Dashed element outlines
-1
No element outlines

Command Default

Solid element outlines

Notes

Determines the element outline style. Often used when node numbers are displayed to prevent element lines from overwriting node numbers.

Unless you are using an OpenGL or Starbase driver, the dashed element outline option (/GLINE,WN,1) is not available in the following situations:

- Z-buffered displays (/TYPE,WN,6).
- Capped Z-buffered displays (/TYPE,WN,7).
- Qslice Z-buffered displays (/TYPE,WN,8).

This command is valid in any processor.

Menu Paths

Utility Menu>PlotCtrls>Style>Edge Options
/GMARKER, CURVE, KEY, INCR

Specifies the curve marking style.

MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

CURVE

Curve number markers will be applied on (integer value between 1 and 10).

KEY

Marker key:
0
No markers will be applied (default).
1
TRIANGLES will be applied.
2
SQUARES will be applied.
3
DIAMONDS will be applied.
4
CROSSES will be applied.

INCR

Determines the curve marking frequency. (a whole number value between 1 and 255). If $\operatorname{INCR}=1$, markers are displayed at every data point on the curve. If $I N C R=2$ then markers are displayed at every second data point. If $I N C R=3$ then they are displayed at every third data point.

Command Default

No markers will be applied.

Notes

The user-specified markers will not be drawn when the area under the curve is color-filled (/GROPT, FILL).

Menu Paths

Utility Menu>PlotCtrls>Style>Graphs>Modify Curve

GMATRIX, SYMFAC, Condname, NUMCOND, --, Matrixname

Performs electric field solutions and calculates the self and mutual conductance between multiple conductors.

> SOLUTION: Analysis Options
> MP <> <> <> <> <> <> <> EM <> <> PP <> EME <>

SYMFAC

Geometric symmetry factor. Conductance values are scaled by this factor which represents the fraction of the total device modeled. Defaults to 1 .

Condname

Alphanumeric prefix identifier used in defining named conductor components.

NUMCOND

Total number of components. If a ground is modeled, it is to be included as a component.

```
--
```

Unused field.

Matrixname

Array name for computed conductance matrix. Defaults to GMATRIX.

Notes

To invoke the GMATRIX macro, the exterior nodes of each conductor must be grouped into individual components using the CM command. Each set of independent components is assigned a component name with a common prefix followed by the conductor number. A conductor system with a ground must also include the ground nodes as a component. The ground component is numbered last in the component name sequence.

A ground conductance matrix is a matrix relating current to a voltage vector. A ground matrix cannot be applied to a circuit modeler such as SPICE. The lumped conductance matrix is a matrix formed by a combination of lumped "arrangements" of voltage differences between conductors. You can use the lumped conductance terms in a circuit modeler such as SPICE to represent conductances between conductors.

You must enclose all name-strings in single quotes in the GMATRIX command line.
GMATRIX works with the following elements:

- SOLID5 (KEYOPT(1) = 9)
- SOLID98 (KEYOPT(1) = 9)
- LINK68
- PLANE230
- SOLID231
- SOLID232

This command is available from the menu path shown below only if existing results are available.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>General Postproc>Elec\&Mag Calc>Component Based>Self/Mutual conductance

GMFACE, Lab, N
Specifies the facet representation used to form solid models.
GRAP HICS: Style
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Lab

Valid Labels:
FINE
Value that determines how coarse the facets will be.
N
An integer value between one (small) and ten (large) that determines the tolerances that will be applied to the creation of arcs and surfaces. Ten will create many facets, which may in turn cause ANSYS to run very slowly. One will create fewer facets, which may in turn cause larger tolerance errors.

Menu Paths

Utility Menu>PlotCtrls>Style>Solid Model Facets

*GO, Base

Causes a specified line on the input file to be read next.

> APDL: Process Controls
> MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS

Argument Descriptions

Base

"Go to" action:
:label --
A user-defined label (beginning with a colon (:), 8 characters maximum). The command reader will skip (and wrap to the beginning of the file, if necessary) to the first line that begins with the matching: label.

Caution

This label option may not be mixed with do-loop or if-then-else constructs.

STOP --
This action will cause an exit from the ANSYS program at this line.

Command Default

Read lines sequentially.

Notes

Causes the next read to be from a specified line on the input file. Lines may be skipped or reread. The *GO command will not be executed unless it is part of a macro, user file (processed by *USE), an alternate input file (processed by /INPUT), or unless it is used in a batch-mode input stream. Jumping into, out of, or within a do-loop or an if-then-else construct to a :label line is not allowed.

This command is valid in any processor.

Menu Paths

This command cannot be accessed from a menu.

/GO

Reactivates suppressed printout.
SESSION: List Controls
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Notes

Reactivates printout suppressed with the /NOPR command without producing any output. The /GOPR command has the same function except that it also produces a command response from the program.

This command is valid in any processor.

Menu Paths

Main Menu>Preprocessor>Coupling / Ceqn>Rigid Region
Main Menu>Preprocessor>Modeling>Delete>Pre-tens Elemnts

/GOLIST

Reactivates the suppressed data input listing.

SESSION:List Controls
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Notes

Reactivates printout of the data input listing suppressed with /NOLIST.
This command is valid in any processor, but only within a batch run [/BATCH].

Menu Paths

This command cannot be accessed from a menu.

/GOPR

Reactivates suppressed printout.

SESSION:List Controls
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Notes

Reactivates printout suppressed with the /NOPR command. The /GO command has the same function except that it does not produce a command response from the program.

This command is valid in any processor.

Menu Paths

Main Menu>Solution>Time Controls>Time Step Prediction

GP, NODE1, NODE2, Lab, STIF, GAP, DAMP
Defines a gap condition for transient analyses.

> SOLUTION: Gap Conditions
> MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

NODE1

Node I of gap. If NODE1 = P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI).

NODE2

Node J of gap (must be different from NODE1). Non-grounded gap nodes must be defined as master degrees of freedom or be unconstrained, active DOF in a full analysis type. Grounded gap nodes (those not defined as MDOF) need not appear elsewhere in the model.

Lab

Direction of gap action in the nodal coordinate system (implied from the following force labels): FX, FY, FZ, MX, MY, MZ.

STIF
Stiffness (Force/Length) of closed gap (may be positive or negative).

Note

High stiffness requires a small integration time step for numerical stability.

GAP

Initial size of gap. A zero (or positive) value assumes an initially open gap. A negative value defines an interference condition. For a rotational gap, GAP should be in radians.

DAMP
Damping coefficient (Force*Time/Length) of closed gap using pseudo velocity (Newmark finite difference expansion scheme).

Notes

Defines a gap condition for the reduced or mode superposition transient (ANTYPE,TRANS) analysis. If used in SOLUTION, this command is valid only within the first load step.

Repeat GP command for additional gap conditions. Gaps are numbered sequentially as input.

Note

Gaps may be renumbered by the program during the solution (see output listing)
The reduced or mode superposition transient analysis (ANTYPE,TRANS and TRNOPT,REDUC or MSUP) does not allow gap action with the standard ANSYS gap elements. Gap conditions, however, producing the same effect, may be defined. The gap condition simulates the basic gap action of the COMBIN40 element. The gap condition is treated as an explicit force (equal to the interference times contact stiffness) and affects only the load vector calculation and not the reduced stiffness matrix. The interference is calculated from the displacement extrapolated from the previous time points. A gap condition may be defined between a master degree of freedom and ground or another master degree of freedom. When a non-reduced mode extraction method is used, a master degree of freedom implies an unconstrained, active degree of freedom. Gap nodes not defined as master degrees of freedom or attached to an element are assumed to be grounded. Grounded gap nodes need not be given a spatial location nor do they need to be located on an element. Gap conditions may be defined in parallel (across the same nodes), with varying gap and stiffness values, to simulate a nonlinear (piecewise) force-deflection curve.

The gap direction is determined from the force label input on the GP command, i.e., FX defines a translational gap acting in the UX nodal degree of freedom direction, and MZ defines a rotational gap acting in the nodal ROTZ degree of freedom direction. The actual degree of freedom directions available for a particular node depends upon the degrees of freedom associated with the element types [ET] at that node.

If the coordinate systems of the nodes connecting the gap are rotated relative to each other, the same degree of freedom may be in different directions. The gap, however, assumes only a one-dimensional action. Nodes I and J may be anywhere in space (preferably coincident). No moment effects are included due to noncoincident nodes. That is, if the nodes are offset from the line of action, moment equilibrium may not be satisfied.

The contact stiffness value represents the stiffness of the closed gap. Stiffness values are related to the integration time step size and should be physically reasonable. High stiffness will require a small integration time step, otherwise, due to the displacement extrapolation, the solution may go unstable. Negative stiffness values may be used with gaps in parallel to produce a decreasing force-deflection curve.

The gap conditions, if any, should be defined in the first load step. Appearances in succeeding load steps are ignored. The order of specifying the gap nodes is important, i.e., a gap condition connecting two nodes will act differently depending upon which node is specified first on the GP command. For example, for Node 1 at $X=0.0$, Node 2 at $X=0.1$, and the gap defined from Node 1 to 2 , a displacement of Node 1 greater than Node 2 will cause the gap to close. For the gap defined from Node 2 to 1, a displacement of Node 2
greater than Node 1 will cause the gap to close (like a hook action). In general, the gap closes whenever the separation (defined as $U_{j}-U_{1}+G A P$) is negative. U_{j} is the displacement of node J, U_{l} is the displacement of node I, and GAP is the input gap value. The gap force output appears in the printout only for the time steps for which the gap is closed. A negative spring force is always associated with a closed gap (even with the hook option).

The nonlinear gap damping provided through the DAMP field runs faster than a full transient analysis using a gap element (COMBIN40). Only ANTYPE = TRANS and TRNOPT = MSUP allow the nonlinear gap damping action. Damping conditions are ignored for the reduced transient analysis method.

This command is also valid in PREP7.

Menu Paths

Main Menu>Preprocessor>Loads>Dynamic Gap Cond>Define Main Menu>Solution>Dynamic Gap Cond>Define

GPDELE, GAP1, GAP2, GINC
Deletes gap conditions.
SOLUTION: Gap Conditions
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

GAP1, GAP2, GINC

Delete gap conditions from GAP1 to GAP2 (defaults to GAP1) in steps of GINC (defaults to 1).

Notes

Deletes gap conditions defined with the GP command. Gap conditions following those deleted are automatically compressed and renumbered. If used in SOLUTION, this command is valid only within the first load step.

This command is also valid in PREP7.

Menu Paths

Main Menu>Preprocessor>Loads>Dynamic Gap Cond>Delete
Main Menu>Solution>Dynamic Gap Cond>Delete

GPLIST, GAP1, GAP2, GINC

Lists the gap conditions.

> SOLUTION: Gap Conditions
> MP ME ST PR PRN $<><><><><><>$ PP $<>$ EME MFS

GAP1, GAP2, GINC

List gap conditions from GAP1 to GAP2 (GAP2 defaults to GAP1) in steps of GINC (defaults to 1). If GAP1 = ALL (default), GAP2 and GINC are ignored and all gap conditions are listed.

Notes

This command is valid in any processor.

Menu Paths

Main Menu>Preprocessor>Loads>Dynamic Gap Cond>List All
Main Menu>Preprocessor>Loads>Dynamic Gap Cond>List Specified
Main Menu>Solution>Dynamic Gap Cond>List All
Main Menu>Solution>Dynamic Gap Cond>List Specified Utility Menu>List>Other>Gap Conditions

GPLOT

Controls general plotting.

GRAPHICS:Set Up
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Notes

This command displays all entity types as specified via the /GTYPE command. Only selected entities (NSEL, ESEL, KSEL, LSEL, ASEL, VSEL) will be displayed. See the descriptions of the /GTYPE and /GCMD commands for methods of setting the entity types displayed.

This command is valid in any processor.

Menu Paths

Utility Menu>Plot>Multi-Plots
/GRAPHICS, Key
Defines the type of graphics display.
GRAPHICS:Set Up
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Key

Graphics key:
FULL
Display all model geometry and results.

POWER

Activate PowerGraphics (default when GUI is on).

Command Default

PowerGraphics ON (Key = POWER).

Notes

The /GRAPHICS command specifies the type of graphics display. Key = POWER activates the PowerGraphics capability. PowerGraphics offers faster plotting than the Key = FULL option, and speeds up element, results, area, line, and volume displays. PowerGraphics mode (the default) is automatically invoked when the GUI is accessed. This action supersedes all prior macros or start up routines (start.ans, config.ans, etc.). Full graphics mode can be accessed only by issuing /GRAPHICS, FULL after the GUI is active.

Results values (both printed and plotted) may differ between the Key = FULL and Key = POWER options because each option specifies a different set of data for averaging and display. For Key = FULL, all element and results values (interior and surface) are included. For $K e y=$ POWER, only element and results values along the model exterior surface are processed.

Caution

If you have specified one facet per element edge for PowerGraphics displays (via the /EFACET command or via choices from the General Postproc or Utility Menus), PowerGraphics does not plot midside nodes.

The /EFACET command is only applicable to element type displays. (See the descriptions of these commands for more information.)

Maximum values shown in plots can differ from printed maximum values. This is due to different averaging schemes used for plotted and printed maximum values.

PowerGraphics displays do not average at geometric discontinuities. The printouts in PowerGraphics will, however, provide averaging information at geometric discontinuities if the models do not contain shell elements. Carefully inspect the data you obtain at geometric discontinuities.

Note

In Full Graphics mode, it is possible to deselect an individual node, select all elements (including the element that contains that node), and then perform postprocessing calculations on those elements and have that unselected node not be considered in those calculations. However, if PowerGraphics is active, postprocessing always displays based on selected elements.

PowerGraphics does not support membrane shell elements such as SHELL41, and these elements using the membrane-stiffness-only option (KEYOPT1) = 1): SHELL181, SHELL208, and SHELL209.

Commands that are not supported by PowerGraphics are listed below. These commands are executed using the Key = FULL option, regardless of whether PowerGraphics is activated. Only certain options for /CTYPE, /EDGE, /ESHAPE, *GET, /PNUM, /PSYMB, SHELL, and *VGET are not supported by PowerGraphics. (See the descriptions of these commands for more information.)

/CTYPE	ESYS	/PBF	PRETAB	/SSCALE
DNSOL	*GET	PLCRACK	PRSECT	/SHRINK
/EDGE	LAYER	PLETAB	PRVECT	TALLOW
ERNORM	/NORMAL	PLLS	/PSYMB	*VGET
ESORT	NSEL	PLSECT	SALLOW	*VPUT
	NSORT	/PNUM	SHELL	

Menu Paths

Utility Menu>PlotCtrls>Style>Hidden-Line Options
/GRESUME, Fname, Ext, --
Sets graphics settings to the settings on a file.
GRAPHICS:Set Up
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Fname

File name and directory path (248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

The file name defaults to Jobname.
Ext
Filename extension (8 character maximum).
The extension defaults to GSAV if Fname is blank.
--
Unused field.

Notes

Causes a file to be read to reset the graphics slash (/) commands as they were at the last /GSAVE command.
This command is valid in any processor.

Menu Paths

Utility Menu>PlotCtrls>Restore Plot Ctrls
/GRID, KEY
Selects the type of grid on graph displays.
GRAPHICS: Graphs
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
KEY
Grid key:
0 (OFF)
No grid.
1 (ON)
Full grid (X and Y grid lines).

2 (X)
Partial grid (X grid lines only).
3 (Y)
Partial grid (Y grid lines only)

Command Default

No grid.
Notes
Selects the type of grid on graph displays. Graphs with multiple Y -axes can have multiple grids [/GRTYP]. The grid of the first curve is also used as the background grid (above and behind the curve). Grids for other curves are limited to be under the curves. See also /GTHK and /GROPT for other grid options.

This command is valid in any processor.

Menu Paths

Utility Menu>PlotCtrls>Style>Graphs>Modify Grid

/GROPT, Lab, KEY

Sets various line graph display options.

GRAPHICS: Graphs
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Lab

Apply display style as selected from the following labels:

AXDV

Axis division (tick) marks (defaults to $K E Y=\mathrm{ON}$).

AXNM

Axis scale numbers (defaults to $K E Y=O N$, which puts numbers at the back plane of the graph). If $K E Y=$ FRONT, numbers are on the front plane of the graph.

AXNSC

Axis number size scale factor. Input the scale value for $K E Y$ (defaults to 1.0).

ASCAL

Automatic scaling of additional Y -axes for multi-curve [/GRTYP, 2 or 3] graphs (defaults to $K E Y=$ ON). If $K E Y=\mathrm{OFF}$, use base Y -axis scaling (see the /YRANGE command).

LOGX

Log X scale (defaults to $K E Y=$ OFF (linear)).

LOGY

Log Y scale (applies only to the base Y axis) (defaults to $K E Y=$ OFF (linear)).

FILL

Color fill areas under curves (defaults to $K E Y=O F F$).

CGRID

Superimpose background grid [/GRID] over areas under filled curves (defaults to $K E Y=$ OFF).

DIG1

Number of significant digits before decimal point for axis values. Input the value for $K E Y$ (defaults to 4).

DIG2
Number of significant digits after decimal point for axis values. Input the value for $K E Y$ (defaults to 3).

VIEW

View key for graph displays (defaults to $K E Y=O F F$, in which case the view is $(0,0,1)$ for 2-D graph displays or ($1,2,3$) for 3-D graph displays). If $K E Y=O N$, the view settings for graph displays are the same as the view settings for the model.

REVX

Plots the values on the X-axis in reverse order.

REVY

Plots the values on the Y -axis in reverse order.
DIVX
Determines the number of divisions (grid markers) that will be plotted on the X axis.
DIVY
Determines the number of divisions (grid markers) that will be plotted on the Y axis.
LTYP
Determines whether ANSYS generated $(K E Y=1)$ or system derived $(K E Y=0)$ fonts will be used for the axis labels.

CURL
Determines the position of the curve labels. If ($K E Y=1$), the curve label will be plotted in the legend column, and the label will be displayed in the same color as the curve. If $(K E Y=0)$ the curve labels will be plotted near the curve. (default).

XAXO

When you use this label, the subsequent $K E Y$ value will determine an offset amount from the default (along the bottom) location for the X axis. If $K E Y=1.0$, a full offset occurs (the X axis is moved to the top of the graph). If $K E Y=0.5$, the axis is offset to the midpoint of the graph, and if $K E Y=0$ the axis remains in the original position, along the bottom of the graph. For any offset, a grey copy of the original axis (containing the axis numbering) remains at the original location.

YAXO

When you use this label, the subsequent $K E Y$ value will determine an offset amount from the default (along the left side of the graph) location for the Y axis. If $K E Y=1.0$, a full offset occurs (the Y axis is moved to the right side of the graph). If $K E Y=0.5$, the axis is offset to the midpoint of the graph, and if $K E Y=0$ the axis remains in the original position, along the left side of the graph. For any offset, a gray copy of the original axis (containing the axis numbering) remains at the original location.

KEY
Option values:
OFF (0)
Do not apply selected style.
ON (1)
Apply selected style.

```
nnnn
    If Lab is DIG1 or DIG2, input the number of digits.
nn
    If Lab is AXNSC, input the scale factor.
```


FRONT

If $L a b$ is AXNM, FRONT may also be input.

Ndiv

If Lab is DIVX or DIVY, determines the number of divisions (1-99) that will be applied to the axis.

Kfont

If Lab is LTYP, Kfont is ON (1) or OFF(0). ON will use ANSYS generated fonts for the axis labels, while OFF will use SYSTEM (Windows, X-system, etc.) fonts. The default value is ON (ANSYS fonts).

Notes

Sets various line graph display options. Issue /GROPT,STAT to display the current settings. Issue /GROPT,DEFA to reset the default specifications. ANSYS informs you that graph view manipulation is inactive unless you have issued the /GROPT,VIEW,ON command. See the /AXLAB, /GRTYP, /GRID, and /GTHK commands for other graph control options.

Automatic scaling using the /XRANGE and /YRANGE commands will often yield inappropriate range values for logarithmic scales (/GROPT, LOGX or /GROPT, LOGY).

This command is valid in any processor.

Menu Paths

Utility Menu>PlotCtrls $>$ Style $>$ Graphs $>$ Modify Axes
Utility Menu>PlotCtrls>Style>Graphs>Modify Curve
Utility Menu>PlotCtrls>Style>Graphs>Modify Grid

GRP, SIGNIF, Label

Specifies the grouping mode combination method.
SOLUTION:Spectrum Options
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

SIGNIF

Combine only those modes whose significance level exceeds the SIGNIF threshold. For single point, multipoint, or DDAM response (SPOPT,SPRS, MPRS or DDAM), the significance level of a mode is defined as the mode coefficient of the mode, divided by the maximum mode coefficient of all modes. Any mode whose significance level is less than SIGNIF is considered insignificant and is not contributed to the mode combinations. The higher the SIGNIF threshold, the fewer the number of modes combined. SIGNIF defaults to 0.001 . If SIGNIF is specified as 0.0 , it is taken as 0.0 . (This mode combination method is not valid for SPOPT,PSD.)

Label

Label identifying the combined mode solution output.

DISP

Displacement solution (default). Displacements, stresses, forces, etc., are available.
VELO
Velocity solution. Velocities, "stress velocities," "force velocities," etc., are available.
ACEL
Acceleration solution. Accelerations, "stress accelerations," "force accelerations," etc., are available.

Notes

The SIGNIF value set with this command (including the default value of 0.001) overrides the SIGNIF value set with the MXPAND command.

This command is also valid for PREP7.

Menu Paths

> Main Menu $>$ Preprocessor>Loads $>$ Load Step Opts $>$ Spectrum $>$ Mode Combine Main Menu $>$ Preprocessor $>$ Loads $>$ Load Step Opts $>$ Spectrum $>$ MultiPt $>$ Mode Combine Main Menu $>$ Preprocessor $>$ Loads $>$ Load Step Opts $>$ Spectrum $>$ SinglePt $>$ Mode Combine Main Menu $>$ Solution $>$ Load Step Opts $>$ Spectrum $>$ Mode Combine Main Menu $>$ Solution $>$ Load Step Opts $>$ Spectrum $>$ MultiPt $>$ Mode Combine Main Menu $>$ Solution $>$ Load Step Opts $>$ Spectrum $>$ SinglePt $>$ Mode Combine

/GRTYP, KAXIS

Selects single or multiple Y -axes graph displays.
GRAPHICS: Graphs
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

KAXIS

Axis selection key:
0 or 1
Single Y -axis. Up to 10 curves scaled to a single Y -axis.
2
Additional Y-axes (one for each curve) (3 curves maximum). Allows better scaling of curves with widely differing numbering ranges.

3
Same as 2 but with additional Y -axis and curves projected out of the plane (6 curves maximum). Allows clearer display with an isometric view. The default view when KAXIS $=3$ is View,1,1,2,3.

Command Default

Single Y -axis graph (except as noted for selection key 3).

Notes

The basic line graph has one or more curves plotted against the same Y and X axes. Multiple curve graphs can also be plotted with individual Y axes and the same X axis. The Y axis of the first curve is referred to as
the base Y -axis and the Y axes of the other curves as additional Y axes. Curves are numbered sequentially from 1 (the base curve) in the order in which they are displayed. See the /AXLAB, /GROPT, /GRID, and /GTHK commands for other display options.

This command is valid in any processor.

Menu Paths

Utility Menu>PlotCtrls>Style>Graphs>Modify Axes
/GSAVE, Fname, Ext, --

Saves graphics settings to a file for later use.

> GRAPHICS: Set Up
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Fname

File name and directory path (248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

The file name defaults to Jobname.

Ext

Filename extension (8 character maximum).
The extension defaults to GSAV if Fname is blank.

Unused field.

Notes

This command does not save all graphics settings, but only those that may be reset by the /RESET command. The database remains untouched. Use the /GRESUME command to read the file. Repeated use of the /GSAVE command overwrites the previous data on the file. The following commands are saved by /GSAVE:

/ANGLE	/DSCALE	/GRTYP	/PSF	/VIEW
/AXLAB	/EDGE	/GTHK	/PSYMB	/VSCALE
/CLABEL	/EFACET	/GTYPE	/RATIO	/VUP
/COLOR	/ESHAPE	/LIGHT	/SHRINK	/WINDOW
/CONTOUR	/FOCUS	/NORMAL	/SSCALE	/XRANGE
/CPLANE	/GCMD	/NUMBER	/TRIAD	/YRANGE
/CTYPE	/GLINE	/PBC	/TRLCY	
/CVAL	/GRID	/PLOPTS	/TYPE	
/DIST	/GROPT	/PNUM	/VCONE	

This command is valid in any processor.

Menu Paths

Utility Menu>PlotCtrls>Save Plot Ctrls

GSBDATA, LabZ, VALUEZ, LabX, VALUEX, LabY, VALUEY

Specifies the constraints or applies the load at the ending point for generalized plane strain option.

SOLUTION:FE Constraints
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS

Labz

Constraint or load at the ending point in the fiber Z direction.
F
Apply a force in the fiber direction (default).
LFIBER
Define a length change in the fiber direction.

VALUEZ

Value for Labz. The default is zero.
LabX
Constraint or load on rotation about X.
MX
Supply a moment to cause the rotation of the ending plane about X (default).
ROTX
Define a rotation angle (in radians) of the ending plane about X .

valuex

Value for LabX. The default is zero.

Laby

Constraint or load on rotation about Y
MY
Supply a moment to cause the rotation of the ending plane about Y (default).
ROTY
Define a rotation angle (in radians) of the ending plane about Y .

VALUEY

Value for LabY. The default is zero.

Notes

All inputs are in the global Cartesian coordinate system. For more information about the generalized plane strain feature, see Generalized Plane Strain Option of Current-Technology Solid Elements in the Element Reference.

This command is also valid in PREP7.

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Gen Plane Strain
Main Menu>Solution>Define Loads>Apply>Structural>Gen Plane Strain

GSGDATA, LFIBER, XREF, YREF, ROTXO, ROTYO

Specifies the reference point and defines the geometry in the fiber direction for the generalized plane strain element option.

PREP 7: Meshing
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS

LFIBER

Fiber length from the reference point. Defaults to 1.

XREF

X coordinate of the reference point. Defaults to zero.

YREF

Y coordinate of the reference point. Defaults to zero.

ROTXO

Rotation of the ending plane about X in radians Defaults to zero.

ROTYO

Rotation of the ending plane about Y in radians Defaults to zero.

Notes

The ending point is automatically determined from the starting (reference) point and the geometry inputs. All inputs are in the global Cartesian coordinate system. For more information about the generalized plane strain feature, see Generalized Plane Strain Option of Current-Technology Solid Elements in the Element Reference.

Menu Paths

Main Menu>Preprocessor>Modeling>Genl plane strn

GSLIST, Lab

When using generalized plane strain, lists the input data or solutions.
SOLUTION: FE Constraints
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS

Lab

Specify the content to be listed.

GEOMETRY

List the data input using GSGDATA
BC
List the data input using GSBDATA.

REACTIONS

When the command is issued in POST1, list the reaction force at the ending point,
and the moment about X and Y if the corresponding constraints were applied.

RESULTS

When the command is issued in POST1, list the change of fiber length at the ending point during deformation and the rotation of the ending plane about X and Y during deformation.

ALL
List all of the above (default).

Notes

This command can be used to list the initial position of the ending plane, the applied load or displacements in the fiber direction, the resulting position of the ending plane after deformation, and the available reaction forces and moments at the ending point.

All inputs and outputs are in the global Cartesian coordinate system. For more information about the generalized plane strain feature, see Generalized Plane Strain Option of Current-Technology Solid Elements in the Element Reference.

This command is valid in any processor.

Menu Paths

Utility Menu>List>Other>Genl Plane Strn

GSSOL, NVAR, Item, Comp, Name

Specifies which results to store from the results file when using generalized plane strain.

POST26:Set Up
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS

NVAR
Arbitrary reference number or name assigned to this variable. Variable numbers can be 2 to $N V$ (NUMVAR) while the name can be an eight byte character string. Overwrites any existing results for this variable.

Item

Label identifying item to be stored.

LENGTH

Change of fiber length at the ending point.

ROT

Rotation of the ending plane during deformation.
F
Reaction force at the ending point in the fiber direction.
M
Reaction moment applied on the ending plane.

Comp

Component of the item, if Item = ROT or M .

X

The rotation angle or reaction moment of the ending plane about X .
Y
The rotation angle or reaction moment of the ending plane about Y .

Name

Thirty-two character name identifying the item on the printout and display. Defaults to the label formed by concatenating the first four characters of the It em and Comp labels.

Notes

This command stores the results (new position of the ending plane after deformation) for generalized plane strain. All outputs are in the global Cartesian coordinate system. For more information about the generalized plane strain feature, see Generalized Plane Strain Option of Current-Technology Solid Elements in the Element Reference.

Menu Paths

Main Menu>TimeHist Postpro>Variable Viewer

/GST, Lab, Lab2

Turns Graphical Solution Tracking (GST) on or off.

SOLUTION: Nonlinear Options
MP ME ST PR PRN <> <> FL EM EH $<>$ PP $<>$ EME MFS

Lab

Determines whether the Graphical Solution Tracking feature is active. Specify ON to activate GST, or OFF to deactivate the feature.

Lab2

Activates generation of interface and field convergence files (ANSYS MFX analyses only).

Notes

For interactive runs using GUI [/MENU,ON] or graphics [/MENU,GRPH] mode, ANSYS directs GST graphics to the screen. For interactive sessions not using GUI or graphics mode, or for batch sessions, GST graphics are saved in the ANSYS graphics file Jobname. GST when Lab2 is unspecified. The file Jobname. GST can be viewed with the DISPLAY program in this case. You must select All File Types to access it. For more information on the DISPLAY program see Getting Started with the DISPLAY Program in the Basic Analysis Guide. For MFX runs (when Lab2=ON), the Jobname.GST file is in XML format, and it can be viewed with the Results Tracker Utility, accessed from within the Tools menu of the Mechanical APDL Product Launcher.

The GST feature is available only for nonlinear structural, thermal, electric, magnetic, fluid, or CFD simulations. For more information about this feature and illustrations of the GST graphics for each analysis type, see the ANSYS Analysis Guide for the appropriate discipline. See also the CNVTOL command description.

The GST feature is also available for a p-method electrostatic analysis. For interactive sessions with the pmethod electrostatic preference set, ANSYS directs the GST graphics to the screen.

When running an ANSYS MFX analysis, specify /GST,ON,ON to generate both the interface (Jobname . NLH) and field convergence (Fieldname.GST) files for monitoring the analysis. This field is not available on the GUI.

Menu Paths

Main Menu $>$ Preprocessor $>$ Loads $>$ Load Step Opts $>$ Output Ctrls $>$ Grph Solu Track
Main Menu $>$ Solution $>$ Load Step Opts $>$ Output Ctrls $>$ Grph Solu Track

GSUM

Calculates and prints geometry items.

PREP 7: Keypoints
PREP 7:Lines
PREP 7:Areas
PREP 7: Volumes
MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS

Notes

Calculates and prints geometry items (centroid location, moments of inertia, length, area, volume etc.) associated with the selected keypoints, lines, areas, and volumes. Geometry items are reported in the global Cartesian coordinate system. For volumes, a unit density is assumed unless the volumes have a material association via the VATT command. For areas, a unit density (and thickness) is assumed unless the areas have a material (and real constant) association via the AATT command. For lines and keypoints, a unit density is assumed, irrespective of any material associations [LATT, KATT, MAT]. Items calculated by GSUM and later retrieved by a *GET or *VGET commands are valid only if the model is not modified after the GSUM command is issued. This command combines the functions of the KSUM, LSUM, ASUM, and VSUM commands.

Menu Paths

Main Menu>Preprocessor>Modeling>Operate>Calc Geom Items>Of Geometry
/GTHK, Label, THICK
Sets line thicknesses for graph lines.
GRAPHICS: Graphs
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Label

Apply thicknesses as selected from the following labels:
AXIS
Modify thickness of ordinate and abscissa axes on graph displays.
GRID
Modify thickness of grid lines on graph displays.

CURVE

Modify thickness of curve lines (when no area fill [/GROPT]).

THICK

Thickness ratio (whole numbers only, from -1 to 10):
-1
Do not draw the curve, but show only the markers specified by /GMARKER.
0 or 1
Thin lines.
2
The default thickness.
3
1.5 times the default thickness.
etc.
(up to 10)

Notes

Sets line thicknesses for graph lines (in raster mode only). Use /GTHK,STAT to show settings.
This command is valid in any processor.

Menu Paths

Utility Menu>PlotCtrls>Style>Graphs>Modify Axes
Utility Menu>PlotCtrls>Style $>$ Graphs $>$ Modify Curve
Utility Menu>PlotCtrls>Style>Graphs>Modify Grid

/GTYPE, $w N$, LABEL, KEY

Controls the entities that the GPLOT command displays.

GRAPHICS: Set Up
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
WN
Window number (or ALL) to which this command applies (defaults to 1)

LABEL

This represents the type of entity to display:

NODE

Nodes

ELEM

Elements
KEYP
Keypoints
LINE
Lines
AREA
Areas

VOLU

Volumes

GRPH

Graph displays

KEY

Switch:
0
Turns the entity type off.
1
Turns the entity type on.

Notes

The /GTYPE command controls which entities the GPLOT command displays. NODE, ELEM, KEYP, LINE, AREA, and VOLU are on by default. When ELEM is activated, you can control the type of element displayed via the /GCMD command (which also controls the type of graph display). When the GRPH entity type is activated, all other entity types are deactivated. Conversely, when any of the NODE, ELEM, KEYP, LINE, AREA, and VOLU entity types are active, the GRPH entity type is deactivated.

The /GTYPE command gives you several options for multi-window layout:

- One window
- Two windows (left and right or top and bottom of the screen)
- Three windows (two at the top and one at the bottom of the screen, or one top and two bottom windows
- Four windows (two at the top and two at the bottom)

Once you choose a window layout, you can choose one of the following: multiple plots, replotting, or no redisplay.

This command is valid in any processor.

Menu Paths

Utility Menu>PlotCtrls>Multi-Plot Contrls

H Commands

HARFRQ, FREQB, FREQE

Defines the frequency range in the harmonic response analysis.

SOLUTION: Dynamic Options
MP ME ST PR PRN <> <> <> EM EH <> PP <> EME MFS

FREQB

Frequency (Hz) at the beginning of the $F R E Q B$ to $F R E Q E$ range (if $F R E Q E>F R E Q B$). If $F R E Q E$ is blank, the solution is done only at frequency $F R E Q B$.

FREQE

Frequency at end of this range. Solutions are done at an interval of ($F R E Q E-F R E Q B$)/NSBSTP, ending at $F R E Q E$. No solution is done at the beginning of the frequency range. $N S B S T P$ is input on the NSUBST command. See EXPSOL for expansion pass solutions.

Notes

Defines the frequency range for loads in the harmonic response analysis (ANTYPE,HARMIC).
This command is also valid in PREP7.

Menu Paths

Main Menu>Preprocessor>Loads>Load Step Opts>Time/Frequenc>Freq and Substps Main Menu>Solution>Load Step Opts>Time/Frequenc>Freq and Substps
/HBC, WN, Key

Determines how boundary condition symbols are displayed in a display window.

GRAPHICS:Labeling
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
WN
Window reference number. This number can be any window numbered 1 to 5 , or ALL (for all active windows). Defaults to 1

Key
Key to enable/disable hidden surface boundary condition symbol display for 2-D graphics devices and to request improved pressure contour display for 2-D and 3-D devices: Key $=$ ON, YES or 1 will show your BC symbols on the hidden surfaces and use an improved pressure contour display. Key = OFF, NO or 0 (default) will hide the symbols .

Command Default

/HBC,WN,Off
For 2-D graphics devices (X11, win32, PNG, et al.), boundary condition symbols are NOT drawn to the hidden surface display. For both 2-D and 3-D graphics devices, no enhanced rendering of pressure contours occurs.

Menu Paths

Utility Menu>PlotCtrls>Style>Hidden-Line Options

HBMAT, Fname, Ext, --, Form, Matrx, Rhs, Mapping

Writes an assembled global matrix in Harwell-Boeing format.

AUX2: Binary Files
MP ME ST PR PRN <> <> <> EM EH DY PP <> EME MFS

Fname

File name and directory path (248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

Defaults to the current Jobname if left blank.

Ext

Filename extension (8 character maximum).
Defaults to .MATRIX if left blank.

Unused field.
Form
Specifies format of output matrix file:
ASCII
Write output matrix file in ASCII form.
BIN
Write output matrix file in binary form.
Matrx
Specify which matrix to write to the output matrix file:

STIFF

Write stiffness matrix to output matrix file. Valid for all types of analyses that write a .FULL file.
MASS
Write mass matrix to output matrix file. Valid for buckling, substructure, and modal analyses. If . FULL file was generated in a buckling analysis, then this label will write stress stiffening matrix to output matrix file.

DAMP
Write damping matrix to output matrix file. Only valid for damped modal analyses.

Rhs

Specifies whether to write the right-hand side vector to output matrix file:
YES
Write right-hand side vector to output matrix file
NO
Do not write right-hand side vector to output matrix file

Mapping

Specifies whether to write the mapping file. This file is always named Fname. MAPPING.

YES

Write the mapping file
NO
Do not write the mapping file (default)

Command Default

By default, assuming a proper filename and extension have been entered, writes the stiffness matrix and right-hand side vector to jobname. MATRIX in the current working directory in ASCII format.

Notes

This command is used to copy a matrix from the assembled global matrix file (. FULL file) or from the superelement matrix file (. SUB file) as specified on the FILEAUX2 command and write it in Harwell-Boeing format to a new file, named jobname. MATRIX. The Harwell-Boeing format is widely used by other applications that deal with matrices.

The assembled global matrix file is created during solution depending on the analysis type, equation solver, and other solution options. By default, the assembled global matrix file is never deleted at the end of solution. For most analysis types, the Sparse direct solver, the ICCG solver, and the AMG solver (when available) will write a .FULL file. With the exception of the reduced (MODOPT,REDUC) and Variational Technology (MODOPT,VT) options, all mode extraction methods used for buckling and modal analyses will write a properly formatted. FULL file to be used with the HBMAT command.

When dumping the stiffness matrix for transient and harmonic analyses, be aware that the element mass matrix values (and possibly element damping matrix values) are incorporated into the globally assembled stiffness matrix. Thus, the globally assembled stiffness matrix represents more than the stiffness of the model for these analysis types. Please refer to the Theory Reference for the Mechanical APDL and Mechanical Applications for more details.

When dumping a .FULL file, the rows and columns corresponding to specified constraints (e.g., D commands) are eliminated from the system of equations and therefore are not written to the .MATRIX file. Also, rows and columns corresponding to eliminated (slave) degrees of freedom from coupling and/or constraint equations (e.g., CE, CP commands) are also eliminated from the system of equations and are not written to the . MATRIX file. The DOFs that are eliminated from any coupling and/or constraint equations are determined internally by the solution code and may not match what you specified via the CE/CP (or similar) commands.

When dumping a . SUB file, the full $n \times n$ matrix will be written to the .MATRIX file for either symmetric or unsymmetric matrices, regardless of whether any of the matrix coefficients are zero-valued. When dumping a .FULL file, only the lower triangular part of the matrix will be written to the .MATRIX file if the matrix is symmetric; the full matrix is written if the matrix is unsymmetric. Only matrix coefficients that are greater than zero will be written.

The Harwell-Boeing format is column-oriented. That is, non-zero matrix values are stored with their corresponding row indices in a sequence of columns. However, since the ANSYS matrix files are stored by row and not column, when the HBMAT command is used with a non-symmetric matrix, the transpose of the matrix is, in fact, written.

The WRFULL command, in conjunction with the SOLVE command, can be used to generate the assembled global matrix file and eliminate the equation solution process and results output process.

The mapping file can be used to map the matrix equation numbers found in the .MATRIX file directly to the corresponding node numbers and degrees of freedom.

When dumping a CMS . SUB file, the last rows/columns of the matrix are non-physical degrees of freedom added internally by the CMS process and cannot be mapped directly to a node number or particular degree of freedom.

Menu Paths

Utility Menu>File>List>Binary Files
Utility Menu>List>Files>Binary Files
/HEADER, Header, Stitle, Idstmp, Notes, Colhed, Minmax
Sets page and table heading print controls.
POST1:Listing
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Header

ANSYS page header (system, date, time, version, copyright, title, etc.):
ON
Turns this item on (default for batch mode; not available for interactive mode).
OFF
Turns this item off.
(blank)
Retains the previous setting.

Stitle

Subtitles (see /STITLE command): ON, OFF, or (blank) (see above).

Idstmp

Load step information (step number, substep number, time value): ON, OFF, or (blank) (see above).

Notes

Information relative to particular table listings: ON, OFF, or (blank) (see above).

Colhed

Column header labels of table listings (currently only for single column tables): ON, OFF, or (blank) (see above).

Minmax

Minimum/maximum information or totals after table listings: ON, OFF, or (blank) (see above).

Command Default

All specifications are on (batch mode); Header $=$ OFF, all other specifications are on (interactive mode)

Notes

Sets specifications on or off for page and table heading print controls associated with the POST1 PRNSOL, PRESOL, PRETAB, PRRSOL, and PRPATH commands.

Note

If the printout caused a top-of-form (page eject to top of next page), the top-of-form is also suppressed with the printout. Issue /HEADER,STAT to display the current settings. Issue /HEADER,DEFA to reset the default specifications.

This command is valid in any processor.

Menu Paths

This command cannot be accessed from a menu.

HELP, Name

Displays help information on ANSYS commands and element types.

SESSION: Run Controls
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Name

Command name or element type. Examples are: HELP,MP or HELP,SOLID185 (or HELP,185). For a list of elements of a particular type, enter HELP,BEAM, HELP,SOLID, HELP,HYPER, etc.

Notes

If Name uniquely matches a command or element name, the description for that command or element will be displayed in the Help Window. For command help, you must type the complete command name (including the * or //). The help system cannot find partial matches. If * is used at the beginning of the string, it will be interpreted as an ANSYS * command.

For help on topics that are not ANSYS commands or element types (for example, help for the word "material"), use the index or full text search features of the ANSYS online help system.

The HELP command is valid only in GUI mode. To obtain help when not in GUI mode, you can either activate the GUI by typing /MENU,ON, or you can activate the help system directly by issuing /UI,HELP.

This command is valid in any processor.

Menu Paths

This command cannot be accessed from a menu.

HELPDISP, Commandname

Displays help information on DISPLAY program commands.

> DISP LAY: Set Up
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Commandname

Any DISPLAY command. If blank, a list of DISPLAY commands is produced.

Menu Paths

It is part of the DISPLAY command.

HEMIOPT, hRES

Specifies options for Hemicube view factor calculation.

SOLUTION: Radiosity AUX12: Radiosity Solver
MP ME <> PR PRN <> <> <> <> <> <> PP <> EME MFS

HRES

Hemicube resolution. Increase value to increase the accuracy of the view factor calculation. Defaults to 10.

Menu Paths

Main Menu>Preprocessor>Radiation Opts $>$ View Factor
Main Menu>Radiation Opt>Radiosity Meth>View Factor
Main Menu>Solution>Radiation Opts>View Factor

HFADP, Lab
Turns a high-frequency adaptive error calculation on or off.
SOLUTION: Analysis Options

$$
\mathrm{MP}<><><><><><><><>\mathrm{EH}<>\mathrm{PP}<><><>
$$

Lab

Adaptive error label:
ON
Turns on adaptive error calculation.
OFF
Turns off adaptive error calculation.

Notes

Adapative error calculation must be turned on to automatically refine the mesh with the HFEREFINE macro.

This command is also valid in PREP7.

Menu Paths

This command cannot be accessed from a menu.

HFANG, Lab, PHI1, PHI2, THETA1, THETA2

Defines or displays spatial angles of a spherical radiation surface for antenna parameter calculations.
POST1:Special Purpose
MP <> <> <> <> <> <> <> <> EH <> PP <> <> <>

Lab

Spatial angle label.
ANGLE
Define spatial angles (default).
STATE
Display spatial angles. PHI1, PHI2, THETA1, and THETA2 are ignored.

PHI1, PHI2

Starting and ending ϕ angles (degrees) in the spherical coordinate system. Defaults to 0 .

THETA1, THETA2

Starting and ending θ angles (degrees) in the spherical coordinate system. Defaults to 0 .

Notes

Defines or displays spatial angles of a spherical radiation surface. See Spherical Coordinates in the HighFrequency Electromagnetic Analysis Guide. Use this command only with PLFAR,Lab = ANT or PRFAR,Lab $=$ ANT.

Menu Paths

Main Menu>General Postproc>List Results>Field Extension>Direct Gain Main Menu>General Postproc>List Results>Field Extension>Efficiency Main Menu>General Postproc>List Results>Field Extension>Power Gain Main Menu>General Postproc>List Results>Field Extension>Rad Power Main Menu>General Postproc>Plot Results>Field Extension>Direct Gain

HFARRAY, NUMX, NUMY, PX, PY, SKEW, PHASEX, PHASEY
Defines phased array antenna characteristics.

$$
\begin{array}{r}
\text { POST1: Special Purpose } \\
\mathrm{MP}<><><><><><><><>\mathrm{EH}<>\mathrm{PP}<><><>
\end{array}
$$

NUMX
Number of array units in X-direction (defaults to 1).

NUMY

Number of array units in Y -direction (defaults to 1).

PX

Spatial periodicity in X-direction in meters.

$P Y$

Spatial periodicity in Y-direction in meters.

SKEW

Skew angle for triangular periodicity from X -axis to Y -axis in degrees (defaults to 90).

PHASEX

Initial phase angle difference between array units in X-direction in degrees (defaults to 0).

PHASEY

Initial phase angle difference between array units in Y -direction in degrees (defaults to 0).

Notes

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>General Postproc>List Results>Field Extension>Direct Gain
Main Menu>General Postproc>List Results>Field Extension>Far Field
Main Menu>General Postproc>List Results>Field Extension $>$ Pattern
Main Menu>General Postproc>Plot Results>Field Extension>Direct Gain
Main Menu>General Postproc>Plot Results>Field Extension>Far Field
Main Menu>General Postproc>Plot Results>Field Extension>Pattern

HFDEEM, Filename, Snp, PORTNUM1, L1, Filename1, Ext1, PORTNUM2, L2, Filename2, Ext2

Calibrates S-parameter phase shift.

> POST1: Special Purpose
> $\mathrm{MP}<><><><><><><><>\mathrm{EH}<>\mathrm{PP}<><><>$

Filename

A Touchstone file containing the S -parameters of a n-port system.
Snp
Extension of the n -port Touchstone file.

PORTNUM1

Port number of excitation port. Defaults to 1 .
L1
Distance from the S-parameter extraction plane to the reference plane at PORTNUM1 in meters. Defaults to 0 .

Filename1

A two-column Touchstone format file containing frequencies and propagating constants.

Ext1

Extension of the Filename1 file.

PORTNUM2

Port number of output port. Defaults to 1 .

L2

Distance from the S-parameter extraction plane to the reference plane at PORTNUM2 in meters. Defaults to 0 .

Filename2

A two-column Touchstone format file containing frequencies and propagating constants.

Ext2

Extension of the Filename2 file.

Notes

The first line of the Touchstone format files Filename1 and Filename2 is a general description of the output data and it starts with an exclamation point (!). The second line starts with a \# and it is followed by a frequency unit of $\mathrm{GHz}, \mathrm{MHz}, \mathrm{KHz}$, or Hz (for example, \#GHz). The first column of the two-column format file is the frequency. The second column is the propagating constant corresponding to the working frequency.

Menu Paths

This command cannot be accessed from a menu.

HFEIGOPT, Lab, Val1

Specifies high frequency electromagnetic modal analysis options.

SOLUTION: Analysis Options
MP <> <> <> <> <> <> <> <> EH <> PP <> <> <>
Lab
High frequency modal analysis type:
CAVITY
Perform a 3-D eigenvalue analysis (default for HF119 and HF120).

CUTOFF

Perform a 2-D cutoff frequency analysis (default for HF118).

GAMMA

Perform a 2-D propagating constant analysis.
Val1
Valid for the GAMMA option only. If $L a b=G A M M A$, Vall is the frequency in Hz .

Menu Paths

Main Menu>Preprocessor>Loads>Analysis Type>Analysis Options
Main Menu>Solution>Analysis Type>Analysis Options

HFEREFINE, FACTOR, NUMLIST

Automatically refines high-frequency tetrahedral elements (HF119) or lists high-frequency brick elements (HF120) with the largest error.

MP <> <> <> <> <> <> <> <> EH <> PP <> <> <>

FACTOR

Percentage applied in adaptive mesh refinement scheme. This percentage of the elements with local error greater that the average error will be refined. $F A C T O R$ should be in the range of 0 to 100 percent and it defaults to 10 percent. Used only with HF119 elements.

NUMLIST

Number of brick elements to be listed. Defaults to 25 . Used only with HF120 elements.

Notes

For HF119 elements, HFEREFINE automatically refines the mesh so that the measured discretization error will decrease. Execution deletes all boundary conditions and excitation sources on the finite element model.

For HF120 elements, HFEREFINE provides a list of elements with the largest error.

Menu Paths

Main Menu>Preprocessor>Meshing>Modify Mesh>HF Refine

HFMODPRT, FREQ

Calculates electromagnetic field distribution for a modal port.

SOLUTION: Analysis Options

$$
\mathrm{MP}<><><><><><><><>\mathrm{EH}<>\mathrm{PP}<><><>
$$

FREQ

Working frequency (Hz). No default.

Notes

This command automatically generates a port electromagnetic field by solving the 2-D eigenvalue problem and stores the solution as 3-D harmonic excitation and matching condition.

This command must be issued in SOLUTION when a modal port is defined and the SPSWP command is not used.

Menu Paths

This command cannot be accessed from a menu.

HFPA, Lab, Local, VAL1, VAL2
Specifies a radiation scan angle for a phased array antenna analysis.
SOLUTION: Analysis Options
MP <> <> <> <> <> <> <> <> EH <> PP <> <> <>

Lab

Enter SCAN in this field.

Local

Local coordinate system number (defaults to 0).

VAL1

Angle from x-axis towards y-axis, ϕ, in degrees (defaults to 0).

VAL2

Angle from $+z$-axis towards $-z$-axis, θ, in degrees (defaults to 0).

Notes

See Figure 4.23: "Spherical Coordinates" in the High-Frequency Electromagnetic Analysis Guide for an illustration of the coordinate system.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>Loads>Analysis Type>Analysis Options
Main Menu>Solution>Analysis Type>Analysis Options

HFPCSWP, FREQB, FREQE, FREQINC, NUMMODE, IMPDMULT, ZOPT

Calculates propagating constants and characteristic impedance of a transmission line or waveguide over a frequency range.

$$
\begin{array}{r}
\text { SOLUTION: Analysis Options } \\
\text { MP <> <> <> <> <> <> <> <> EH <> PP <> <> <> }
\end{array}
$$

FREQB

Beginning frequency of the analysis (in Hertz).

FREQE

Ending frequency of the analysis (in Hertz). If blank, $F R E Q E$ is set to $F R E Q B$ and one solution is performed.
(This is recommended for initially verifying the model setup.)

FREQINC

Frequency increment between solutions. If $F R E Q I N C$ is blank, solutions are performed at $F R E Q B$ and $F R E Q E$ only (default).

NUMMODE

Number of required modes. Defaults to 1 .

IMPDMULT

Impedance multiplier (defaults to 1). For a half symmetry model, use 2.

ZOPT

Impedance calculation inputs:
0
Power and current (PI) definition (default).
1
Power and voltage (PV) definition.
2
Voltage and current (VI) definition.

Notes

HFPCSWP calculates propagating constants and characteristic impedance for a transmission line or waveguide over a frequency range from $F R E Q B$ to $F R E Q E$, in increments of $F R E Q I N C$. The output data is written to the file HFPCSWP. OUT. Use the PLTLINE command to plot the results.

HFPCSWP can only be used with HF118 elements.

Menu Paths

Main Menu>Solution>Solve>Electromagnet>HF Emag>2D Freq Sweep

HFPOWER, ARG1, ARG2

Calculates power terms of a multi-port network.

$$
\begin{array}{r}
\text { POST1: Special Purpose } \\
\mathrm{MP} \text { <> <> <> <> <> <> <> <> EH <> PP <> <> <> }
\end{array}
$$

ARG1

Excitation source port number.

ARG2

Matched output port number.

Notes

HFPOWER calculates the input power, reflected power, return loss, and power reflection coefficient for a driven port. If a matching output port is defined, it also calculates transmitted power, insertion loss and the power transmission coefficient. For lossy materials and conducting surfaces, HFPOWER also calculates the time-averaged dissipated power. The elements must be selected to calculate the dissipated power.

If $A R G 1$ and $A R G 2$ are both blank, no ports are specified and only the dissipated power is calculated.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>General Postproc>Elec\&Mag Calc>Element Based>Power

HFPORT, Portnum, Porttype, Local, Opt1, Opt2, VAL1, VAL2, VAL3, VAL4, VAL5, VAL6, VAL7, VAL8, VAL9, VAL10,
VAL11

Specifies input data for waveguide, plane wave, lumped gap, modal, and modal lumped gap ports.

SOLUTION:Misc Loads
MP <> <> <> <> <> <> <> <> EH <> PP <> <> <>

Portnum

Port number. You specify the integer number for exterior and interior ports by the SF and BF family of commands, respectively. The number must be between 1 and 50 . If Portnum $=$ STATUS, provides the status of port option settings.

Porttype

Port type:

COAX

Cylindrical coaxial waveguide.

RECT

Rectangular waveguide.

CIRC

Circular waveguide.

PARA

Parallel plate waveguide.
PLAN
Incident plane wave.

LGAP

Lumped gap port.

MODAL

Modal port.

MGAP

Modal lumped gap port.

Local

A previously defined local Cartesian coordinate system number (>10) or 0 (global Cartesian) used to specify the geometric properties of the waveguide. Defaults to 0 . The local Z-direction must be the direction of wave propagation. The origin of the local coordinate system must be centered about the face of the waveguide port without considering symmetry. A local Cartesian coordinate system number is not necessary for Porttype $=$ MODAL and MGAP.

Opt1

For Porttype $=$ COAX, RECT, CIRC, PARA, and LGAP, Opt 1 defines the mode type:
TEM
Transverse electromagnetic wave. See note below.

TEmn

Transverse electric wave. See note below.

TMmn

Transverse magnetic wave. See note below.

Note

For Porttype $=$ COAX, only the TEM mode is available. For Porttype $=$ LGAP, Opt 1 is not used.

For Porttype $=$ PLAN, Opt 1 defines the extracted harmonic component:
ALL
No specified extraction (default).
TE
Transverse electric wave.
TM
Transverse magnetic wave.
For Porttype $=$ MODAL, Opt 1 is the required number of modes. Defaults to 1.
For Porttype $=$ MGAP, Opt 1 is equal to 1 and defaults to 1 .
Opt2
EXT
Exterior port.
INT
Interior port.
For Porttype $=$ PLAN, LGAP, and MGAP, only $O p t 2=$ INT is available.
VAL1, VAL2, VAL3, ..., VAL11
If Porttype = COAX:

VAL1

Inner radius of the coaxial waveguide.
VAL2
Outer radius of the coaxial waveguide.

VAL3

Zero-to-peak amplitude of the voltage between the inner and the outer conductors. If blank, the port will create a matching impedance.

VAL4
Phase angle of the applied voltage (in degrees). Defaults to 0 degrees.
VAL5
Input power (time-average). If power is input, it overrides the applied voltage input.

VAL 6

Distance from S-parameter extraction plane to reference plane. Defaults to 0.

VAL7-VAL11

Not used.
If Porttype = RECT:
VAL1
Width of the rectangular waveguide.

VAL2

Height of the rectangular waveguide.
VAL3
Zero-to-peak amplitude of the electric field component E_{z} for a TM wave or the magnetic field component H_{z} for a TE wave. If blank, the port will appear as a matching impedance.

VAL4
Phase angle of the applied field (in degrees). Defaults to 0 degrees.
VAL5
Input power (time-average). If power is input, it overrides the field component input.

VAL6

Distance from S-parameter extraction plane to reference plane. Defaults to 0 .

VAL 7-VAL11

Not used.
If Porttype $=$ CIRC

VAL1

Radius of the circular waveguide.
VAL2
Not used.
VAL3
Zero-to-peak amplitude of the electric field component E_{z} for a TM wave or the magnetic field component H_{z} for a TE wave. If blank, the port will appear as a matching impedance.

VAL4

Phase angle of the applied field (in degrees). Defaults to 0 degrees.
VAL5
Input power (time-average). If power is input, it overrides the field component input.
VAL6
Distance from S-parameter extraction plane to reference plane. Defaults to 0 .

VAL7-VAL11

Not used.
If Porttype = PARA:
VAL1
Width of the parallel plate waveguide (defaults to 1).

VAL2

Separation between the two plates.

VAL3

Zero-to-peak amplitude of the electric field component E_{y} for a TEM wave, electric field component E_{z} for a TM wave, or the magnetic field component H_{z} for a TE wave. If blank, the port will appear as a matching impedance.

VAL4
Phase angle of the applied field (in degrees). Defaults to 0 degrees.

VAL5

Input power (time-average). If power is input, it overrides the field component input.
VAL6
Distance from S-parameter extraction plane to reference plane. Defaults to 0 .

VAL7-VAL11

Not used.
If Porttype $=$ PLAN:
VAL1
X Component of incident planar wave $(\mathrm{V} / \mathrm{m})$ in local coordinate system. Defaults to 0 .
VAL2
Y Component of incident planar wave $(\mathrm{V} / \mathrm{m})$ in local coordinate system. Defaults to 0 .
val3
Z Component of incident planar wave $(\mathrm{V} / \mathrm{m})$ in local coordinate system. Defaults to 0 .
VAL4
Angle between incident wave vector and X -axis (ϕ).

VAL5

Angle between incident wave vector and Z -axis (θ).

VAL6

Distance from S-parameter extraction plane to reference plane. Defaults to 0 .

VAL 7

Extracted wave number in X direction (m in TEmn or TMmn). Defaults to 0 .
VAL8
Extracted wave number in Y direction (n in TEmn or TMmn). Defaults to 0 .
VAL9
Spatial periodicity in X direction in meters. It must be defined if the m value specified by VAL 7 is not equal to zero. Defaults to 0 .
VAL10
Spatial periodicity in Y direction in meters. It must be defined if the n value specified by VAL8 is not equal to zero. Defaults to 0 .

VAL11

Skew angle for triangular periodicity from X-axis to Y -axis in degrees. Defaults to 90 .
See Figure 4.19: "Spherical Coordinates" in the High-Frequency Electromagnetic Analysis Guide for an illustration of the coordinate system.

Note

VAL1, VAL2, and VAL3 $=0$ for Porttype $=$ PLAN and Opt2 $=$ INT.
If Porttype $=$ LGAP:
VAL1
Width of the lumped gap port.

VAL2

Separation between the central conductor and ground.
VAL3
Zero-to-peak amplitude of the voltage between the central conductor and ground. Defaults to 0 .
VAL4
Phase angle of the applied voltage (in degrees). Defaults to 0 degrees.
VAL5
Input power (time-average). If power is input, it overrides the field component input.

VAL6

Distance from S-parameter extraction plane to reference plane. Defaults to 0 .

VAL 7

Not used.

VAL8

Characteristic impendance of lumped gap port. Defaults to 50 ohm.

VAL9-VAL11

Not used.
If Porttype $=$ MODAL:
VAL1
Impedance multiplier (defaults to 1). For a half symmetry model, use 2.
VAL2
Impedance calculation inputs:
PI
Power and current (PI) definition (default).
PV
Power and voltage (PV) definition.
VI
Voltage and current (VC) definition.
VAL3
Zero-to-peak amplitude of the electric field. Defaults to 0 .
VAL4
Phase angle of the applied electric field (in degrees). Defaults to 0 degrees.
VAL5
Input power (time-average). If power is input, it overrides the field component input.
VAL6
Distance from S-parameter extraction plane to reference plane. Defaults to 0 .
VAL7-VAL11
Not used.
If Porttype $=$ MGAP:
VAL1
Not used.

VAL2

Not used.
VAL3
Zero-to-peak amplitude of the voltage between the central conductor and ground. Defaults to 0.

VAL4

Phase angle of the applied voltage (in degrees). Defaults to 0 degrees.

VAL5

Input power (time-average). If power is input, it overrides the field component input.
VAL 6
Distance from S-parameter extraction plane to reference plane. Defaults to 0.

VAL 7

Not used.
VAL 8
Characteristic impendance of lumped gap port. Defaults to 50 ohm.

VAL9-VAL11

Not used.

Notes

The origin of the local coordinate system must be at the center of the waveguide structure. For a rectangular waveguide, the X and Y axes of the local coordinate system must be parallel to the width and height of the waveguide, respectively. For a parallel plate waveguide or a lumped gap port, the X and Y axes of the local coordinate system must be parallel to the width and separation, respectively.

The following apply to the TEmn and TMmn mode types:

- For a rectangular waveguide, the suffix m and n mean the variation of the field along the wide side and narrow side of the waveguide, respectively.
- For a circular waveguide, the suffix m and n mean the variation of the field along the angular and radial directions, respectively.
- For a parallel plate waveguide, the suffix m is 0 and the suffix n means the variation of the field between the plates.
- For a coaxial waveguide, only the TEM mode is available.
- For a lumped gap port, only the TEM mode or blank is available.

For a lumped gap port, a uniformly distributed electromagnetic field is assumed (that is, E_{y} and H_{x} components exist in the local coordinate system).

For a modal lumped gap port, a voltage path connecting the central conductor and the ground must be defined using the LPRT command.

This command is also valid in PREP7.

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Excitation>EMPorts>Exterior Port>On Areas

```
Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Excitation>EMPorts>Exterior
Port>On Nodes
Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Excitation>EMPorts>Interior
Port>On Areas
Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Excitation>EMPorts>Interior
Port>On Nodes
Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Excitation>EMPorts>Modify Port
Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Excitation>EMPorts>Port Status
Main Menu>Solution>Define Loads>Apply>Electric>Excitation>EMPorts>Exterior Port>On Areas
Main Menu>Solution>Define Loads>Apply>Electric>Excitation>EMPorts>Exterior Port>On Nodes
Main Menu>Solution>Define Loads>Apply>Electric>Excitation>EMPorts>Interior Port>On Areas
Main Menu>Solution>Define Loads>Apply>Electric>Excitation>EMPorts>Interior Port>On Nodes
Main Menu>Solution>Define Loads>Apply>Electric>Excitation>EMPorts>Modify Port
Main Menu>Solution>Define Loads>Apply>Electric>Excitation>EMPorts>Port Status
```


HFSCAT, Lab

Specifies a high-frequency scattering analysis.
SOLUTION: Analysis Options
MP <> <> <> <> <> <> <> <> EH <> <> <> <> <>

Lab

Label identifying scattering analysis options:
OFF
Do not perform a scattering analysis.
SCAT
Perform a scattering analysis and store the scattering field (default).
TOTAL
Perform a scattering analysis and store the total field.

Notes

Specifies a high frequency scattering analysis and the type of electromagnetic field output. HFSCAT,SCAT provides a scattering field output, $\mathrm{E}^{\text {sc }}$, which is required for the calculation of Radar Cross Section (RCS). HFSCAT,TOTAL provides a sum of the incident and scattering fields, $\mathrm{E}^{\text {total }}=\mathrm{E}^{\text {inc }}+\mathrm{E}^{\text {sc }}$.

Use the PLWAVE command to specify the incident field, $\mathrm{E}^{\text {inc }}$.

Menu Paths

Main Menu>Preprocessor>Loads>Analysis Type>Analysis Options
Main Menu>Solution>Analysis Type>Analysis Options

HFSYM, KCN, Xkey, Ykey, Zkey

Indicates the presence of symmetry planes for the computation of high-frequency electromagnetic fields in the near and far field domains (beyond the finite element region).

POST1:Special Purpose
MP <> <> <> <> <> <> <> <> EH <> PP <> <> <>

KCN
Coordinate system reference number. KCN may be 0 (Cartesian), or any previously defined local Cartesian coordinate system number (>10). Defaults to 0 .

Xkey
Key for electromagnetic field boundary condition, as prescribed for the solution, corresponding to the $\mathrm{x}=$ constant plane:

None

No electric wall or magnetic wall boundary conditions (default).

PEC

Perfect electric conductor (electric wall boundary conditions).

PMC

Perfect magnetic conductor (magnetic wall boundary conditions).

Ykey

Key for electromagnetic field boundary condition, as prescribed for the solution, corresponding to the $\mathrm{y}=$ constant plane:

None

No electric wall or magnetic wall boundary conditions (default).

PEC

Perfect electric conductor (electric wall boundary conditions).

PMC

Perfect magnetic conductor (magnetic wall boundary conditions).

Zkey

Key for electromagnetic field boundary condition, as prescribed for the solution, corresponding to the z = constant plane:

None

No electric wall or magnetic wall boundary conditions (default).
PEC
Perfect electric conductor (electric wall boundary conditions).
PMC
Perfect magnetic conductor (magnetic wall boundary conditions).

Notes

HFSYM uses the image principle to indicate symmetry planes (x, y, or $z=$ constant plane) for high-frequency electromagnetic field computations outside the modeled domain. A perfect magnetic conductor (PMC) boundary condition must be indicated even though it occurs as a natural boundary condition.

Menu Paths

Main Menu>General Postproc>List Results>Field Extension>Direct Gain
Main Menu>General Postproc>List Results>Field Extension>Efficiency
Main Menu>General Postproc>List Results>Field Extension>Far Field
Main Menu>General Postproc>List Results>Field Extension>Near Field
Main Menu>General Postproc>List Results>Field Extension>Pattern
Main Menu>General Postproc>List Results>Field Extension>Power Gain
Main Menu>General Postproc>List Results>Field Extension>Rad Power
Main Menu>General Postproc>List Results>Field Extension>RCS
Main Menu>General Postproc>List Results>Field Extension>RCS Normalized
Main Menu>General Postproc>Path Operations>Map onto Path>HF Near Field
Main Menu>General Postproc>Plot Results>Field Extension>Direct Gain
Main Menu>General Postproc>Plot Results>Field Extension>Far Field
Main Menu>General Postproc>Plot Results>Field Extension>Pattern
Main Menu>General Postproc>Plot Results>Field Extension>RCS
Main Menu>General Postproc>Plot Results>Field Extension>RCS Normalized

HMAGSOLV, FREQ, NRAMP, CNVA, CNVV, CNVC, CNVE, NEQIT

Specifies 2-D or axisymmetric harmonic magnetic solution options and initiates the solution.

SOLUTION:Analysis Options
 MP <> <> <> <> <> <> <> EM <> <> PP <> EME <>

FREQ
Analysis frequency (Hz).

NRAMP

Number of ramped substeps for the first load step of a nonlinear 2-D harmonic electromagnetic solution.
Defaults to 3 . If $N R A M P=-1$, ignore the ramped load step entirely.
CNVA
Convergence tolerance on the program calculated reference value for the magnetic vector potential degree of freedom. Defaults to 0.001 .

CNVV
Convergence tolerance on the program calculated reference value for the time-integrated electric potential VOLT. Defaults to 0.001 .

CNVC
Convergence tolerance on the program calculated reference value for the current degree of freedom CURR. Defaults to 0.001 .

CNVE

Convergence tolerance on the program calculated reference value for the voltage drop degree of freedom EMF. Defaults to 0.001 .

NEQIT
Maximum number of equilibrium iterations per load step. Defaults to 50 .

Notes

HMAGSOLV invokes an ANSYS macro which specifies harmonic electromagnetic solution options and initiates the solution. The macro is applicable to any ANSYS 2-D or axisymmetric linear or nonlinear harmonic analysis. Results are only stored for the final converged solution. (In POST1, issue *SET,LIST to identify the load step of solution results.) The macro internally determines if a nonlinear analysis is required based on magnetic material properties defined in the database.

The macro performs a two-load-step solution sequence. The first load step ramps the applied loads over a prescribed number of substeps (NRAMP), and the second load step calculates the converged solution. For linear problems, only a single load step solution is performed. The ramped load step can be bypassed by setting NRAMP to -1 .

A 3-D harmonic electromagnetic analysis is available for linear solutions only and does not require this solution macro.

The following analysis options and nonlinear options are controlled by this macro: KBC, NEQIT, NSUBST, CNVTOL, OUTRES.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Solution>Solve>Electromagnet>Harmonic Analys>Opt\&Solv

HPGL, Kywrd, Opt1, Opt2

Specifies various HP options.
GRAPHICS: Set Up
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
If Kywrd = MODEL, command format is HPGL,MODEL,Pmod.

Pmod

Valid plotter model: 7475A (default), 7550A, 7580B, 7585B, 7586B, COLORPRO, DRAFTPRO, or DRAFTMASTER.

If Kywrd = PAPER, command format is HPGL,PAPER,Size,Orien.

Size

Valid paper size: A (default), B, C, D, E, A4, A3, A2, A1, A0, CARCH, DARCH, or EARCH.

Orien

Orientation: HORIZONTAL (default) or VERTICAL.
If Kywrd $=$ COLOR, command format is HPGL,COLOR,KEY.
KEY
Pen choice:
0
Single pen

1

Multiple pens
If Kywrd $=$ DIRECT, command format is HPGL,DIRECT,Port.
Used to direct plotter commands to a port. Use HPGL,FILE to redirect output from a port back to a file. This option for Kywrd is valid in the DISPLAY program only.

Port

Port name for direct connection.

Notes

This command is available in both the ANSYS and DISPLAY programs. It is valid for Hewlett Packard Graphics Language (HPGL) format files selected in the ANSYS program with /SHOW,HPGL (or HPGL2), or with /SHOWDISP,HPGL (or HPGL2) in the DISPLAY program.

An output file is generated for each plot. The ANSYS file is named JobnameNN. HPGL. In the DISPLAY program, this file is named HPGLnn. This file remains open for a subsequent /NOERASE plot, and will be incomplete until the program is closed (/EXIT), or until the next file is opened by the next /ERASE plot request.

Menu Paths

Utility Menu>PlotCtrls>Redirect Plots>To HPGL File Utility Menu>PlotCtrls>Redirect Plots>To HPGL2 File

HPTCREATE, TYPE, ENTITY, NHP, LABEL, VAL1, VAL2, VAL3

Defines a hard point.

PREP 7:Hard Points
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

TYPE

Type of entity on which the hard point will be created.

LINE

Hard point will be created on a line.

AREA

Hard point will be created within an area (not on the boundaries).

ENTITY

Number of the line or area on which the hard point will be created.

NHP

Number assigned to the hard point. Defaults to the lowest available hard point number.
LABEL
If $L A B E L=$ COORD, $V A L 1, V A L 2$, and $V A L 3$ are the respective global X, Y, and Z coordinates. If $L A B E L$
$=$ RATIO, VAL1 is the parameter value (this is available only for lines). Valid parameter values are between
0 and 1. VAL2 and VAL3 are ignored.
VAL1
If $L A B E L=$ RATIO, ratio value for line. If $L A B E L=C O O R D$, global X coordinate value.

VAL2

If $L A B E L=$ COORD, global Y coordinate value.
VAL3
If $L A B E L=$ COORD, global Z coordinate value.

Notes

The ability to enter a parameter value provides a simple way of positioning hard points on lines. For example, to place a hard point halfway along a line, one can simply specify a VAL1 value of 0.5 .

For models imported through the DEFAULT IGES filter, you can place hard points on models only by specifying coordinates (you can't place a hard point using interactive picking).

If you issue any commands that update the geometry of an entity, such as Boolean or simplification commands, any hard points associated with that entity are deleted. Therefore, you should add any hard points after completing the solid model. If you delete an entity that has associated hard points, those hard points are either

- Deleted along with the entity (if the hard point is not associated with any other entities).
- Detached from the deleted entity (if the hard point is associated with additional entities).

When archiving your model (CDWRITE), hardpoint information cannot be written to the IGES file. The Jobname. cdb file can be written with the CDWRITE,DB option.

Hard points are only applicable for area and volume meshing, not for beams.

Menu Paths

Main Menu>Preprocessor>Modeling>Create>Hard Points>Hard PT on area>Hard PT by coordinates Main Menu>Preprocessor>Modeling>Create>Hard Points>Hard PT on line>Hard PT by coordinates Main Menu>Preprocessor>Modeling>Create>Hard Points>Hard PT on line>Hard PT by ratio Main Menu>Preprocessor>Modeling>Create>Keypoints>Hard PT on area>Hard PT by coordinates Main Menu>Preprocessor>Modeling>Create>Keypoints>Hard PT on area>Hard PT by picking Main Menu>Preprocessor>Modeling>Create>Keypoints>Hard PT on line>Hard PT by coordinates Main Menu>Preprocessor>Modeling>Create>Keypoints>Hard PT on line>Hard PT by picking Main Menu>Preprocessor>Modeling>Create>Keypoints>Hard PT on line>Hard PT by ratio

HPTDELETE, NP1,NP2,NINC
Deletes selected hardpoints.

> PREP 7: Hard Points
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

NP1, NP2, NINC

Delete the pattern of hard points beginning with $N P 1$ to $N P 2$ in steps of $N I N C$ (defaults to 1). If $N P 1=$ ALL, NP 2 and NINC are ignored and the pattern is all selected hard points [KSEL]. If NPI = P, graphical picking is enabled and all remaining command fields are ignored.

Notes

Deletes all attributes attached to the designated hard points as well as the hard points themselves. If any entity is attached to a designated hard point, the command detaches the hard point from that entity (the program will alert you that this will occur).

Menu Paths

Main Menu>Preprocessor>Modeling>Delete>Hard Points

HRCPLX, LOADSTEP, SUBSTEP, OMEGAT, ISTLCASE, 2NDLCASE

Computes and stores in the database the time-harmonic solution at a prescribed phase angle.

MP ME ST PR PRN <> <> FL EM EH <> PP <> EME MFS

LOADSTEP

Load step number of the data set to be read (defaults to 1).

SUBSTEP

Substep number within LOADSTEP.

OMEGAT

Angle in degrees (Ω (angle) times T (time)).

- If $\geq 360^{\circ}$, the amplitude is supplied.
- All others supply results at that angle. For example, if the angle is set to 0.0°, the real part of the solution is supplied. If the angle is set to -90° the imaginary part of the solution is supplied.

1STLCASE

First load case number (defaults to 1).

2NDLCASE

Second load case number (defaults to 2).

Notes

HRCPLX invokes a macro which combines the real and imaginary parts of the solution. If the angle is specified, it produces the following:

$$
\{R\}=\left\{R_{R}\right\} \cos \alpha-\left\{R_{\mid}\right\} \sin \alpha
$$

Where:
R_{R} and R_{I} are, respectively, the real and imaginary parts of the results quantity (e.g. the nodal displacements, the reaction forces, ...).
α is the angle (OMEGAT).
1STLCASE and 2NDLCASE are internally generated load cases. You may want to specify these to avoid overwriting an existing load case number 1 or 2.

Not all results computed by this command are valid. See Summable, Non-Summable and Constant Data in the Basic Analysis Guide for more information.

For postprocessing amplitudes, the only appropriate coordinate system is the solution coordinate system (RSYS ,SOLU). When displaying the displacement amplitudes, use a contour display (PLNSOL command). Because a deformed shape display (PLDISP command) could lead to a non-physical shape, the displacement scaling is off by default (/DSCALE,,OFF).

For postprocessing cylindrical geometry, it is suggested that you rotate the element coordinate systems into the appropriate cylindrical system (EMODIF,,$E S Y S$) before running the solution and then view the results in this system (RSYS, SOLU) in POST1.

Since HRCPLX performs load case combinations, it alters most of the data in the database. In particular, it alters applied loads such as forces and imposed displacements. To restore the original loads in the database for a subsequent analysis, reissue the SET command in POST1 to retrieve the real and imaginary set data.

To animate the solution over one period, use the ANHARM command.
See the Theory Reference for the Mechanical APDL and Mechanical Applications for more information on harmonic analysis equations and their relationship to real and imaginary data sets.

Menu Paths

This command cannot be accessed from a menu.

HREXP, ANGLE

Specifies the phase angle for the harmonic analysis expansion pass.
SOLUTION: Dynamic Options
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

ANGLE

Phase angle (degrees) for expansion pass. If ALL (default), use both 0.0° (real) and 90.0° (imaginary) phase angles.

Notes

Specifies the phase angle where the expansion pass will be done for a harmonic reduced or harmonic mode superposition expansion pass.

For a specific angle, the following real solution is stored in the results (*.rst) file:
$\{u\}=\left\{u_{\text {max }}^{i} \cos \left(\phi^{i}-\varphi\right)\right\}$
Where:
i is the degree of freedom number.
$u_{\text {max }}^{i}$ is the amplitude of the i th degree of freedom solution
Φ^{i} is the phase shift angle of the i th degree of freedom solution
ϕ is the supplied phase shift angle (ANGLE)
If $A N G L E$ is $A L L$, both the real and imaginary parts of the solution are stored in the results file.
For more details about the solution equations, see Harmonic Response Analyses in the Theory Reference for the Mechanical APDL and Mechanical Applications.

This command is ignored if the HROPT command has been issued with Method = VT or Method = VTRU.
This command is also valid in PREP7.

Menu Paths

> Main Menu $>$ Preprocessor>Loads $>$ Load Step Opts $>$ ExpansionPass $>$ Single Expand $>$ By Load Step Main Menu $>$ Preprocessor $>$ Loads $>$ Load Step Opts $>$ ExpansionPass $>$ Single Expand $>$ By Time/Freq Main Menu $>$ Preprocessor $>$ Loads $>$ Load Step Opts $>$ ExpansionPass $>$ Single Expand $>$ Range of Solu's Main Menu $>$ Solution $>$ Load Step Opts $>$ ExpansionPass $>$ Single Expand $>$ By Load Step Main Menu $>$ Solution $>$ Load Step Opts $>$ ExpansionPass $>$ Single Expand $>$ By Time/Freq Main Menu $>$ Solution $>$ Load Step Opts $>$ ExpansionPass $>$ Single Expand $>$ Range of Solu's

HROPT, Method, MAXMODE, MINMODE, MCout, Damp

Specifies harmonic analysis options.

> SOLUTION: Dynamic Options
> MP ME ST PR PRN <> <> <> EM EH <> PP <> EME MFS
> Product Restrictions

Method

Solution method for the harmonic analysis:
AUTO
Automatically select the most efficient method. Either the FULL method or the Variational Technology method is selected depending on the model. (default method).

FULL

Full method.
REDUC
Reduced method.

MSUP

Mode superposition method.
VT
Variational Technology method (based on FULL harmonic algorithm).

VTPA

Variational Technology perfect absorber method (based on FULL harmonic algorithm)..
VTRU
Variational Technology reuse method (based on FULL harmonic algorithm)..

Note

If the solution method is not specified by the user, ANSYS automatically selects either the Full method or the Variational Technology, depending on which method is most efficient for the model.

The Variational Technology perfect absorber method (applicable to elements HF119 and HF120 only) (Method = VTPA) is about 20\% faster but slightly less accurate than the Variational Technology method (Method = VT).

The Variational Technology reuse method (Method $=$ VTRU) simply does the stress pass of a previous run using the Variational Technology method (Method $=$ VT) using the . RSX file. It can be used to refine the frequency range and sample density without needing to redo the entire analysis.

MAXMODE

Largest mode number to be used to calculate the response (for Method = MSUP only). Defaults to the highest mode calculated in the preceding modal analysis.

MINMODE

Smallest mode number to be used (for Method = MSUP only). Defaults to 1 .

MCout

Modal coordinates output key (valid only for the mode superposition method MSUP):
NO
No output of modal coordinates (default).
YES
Output modal coordinates to the text file jobname. MCF.

Note

MCout provides a singular (one-time) output of the modal coordinates. It will not provide the information for LSWRITE/LSSOLVE operations.

Damp

Damping mode for frequency-dependent material properties (valid only for the Variational Technology Method VT).

Hysteretic
Not proportional to the frequency.
Viscous
Proportional to the frequency (default).

Notes

Specifies the method of solution for a harmonic analysis (ANTYPE,HARMIC). If used in SOLUTION, this command is valid only within the first load step. See the product restrictions indicated below.

To include residual vectors in your mode-superposition harmonic analysis, specify RESVEC,ON.
This command is also valid in PREP7.

If Method $=$ FULL, this command is valid in Distributed ANSYS.

Product Restrictions

The VT, VTPA, and VTRU options are only available with a HPC license.

Command Option Method	Available Products
AUTO	MP ME ST PR PRN $<><><>$ EM EH $<>$ PP $<>$ EME MFS
FULL	MP ME ST $<><><><><>$ EM EH $<>$ PP $<>$ EME MFS
REDUC	MP ME ST $<><><><><><><><>$ PP $<>$ EME MFS
MSUP	MP ME ST PR PRN $<><><>$ EM EH $<>$ PP $<>$ EME MFS
VT / VTPA / VTRU	MP ME ST $<><><><><>$ EM EH $<>$ PP $<>$ EME MFS

Menu Paths

Main Menu>DesignXplorer>Solution>Solve
 Main Menu>Preprocessor>Loads>Analysis Type>Analysis Options
 Main Menu>Solution>Analysis Type>Analysis Options

HROUT, Reimky, Clust, Mcont

Specifies the harmonic analysis output options.

SOLUTION: Dynamic Options
MP ME ST PR PRN <> <> <> EM EH <> PP <> EME MFS

Reimky

Real/Imaginary print key:
ON
Print complex displacements as real and imaginary components (default).
OFF
Print complex displacements as amplitude and phase angle (degrees).
Clust
Cluster option (for HROPT,MSUP):
OFF
Uniform spacing of frequency solutions (default).
ON
Cluster frequency solutions about natural frequencies.

Mcont

Mode contributions key (for HROPT,MSUP):
OFF
No print of mode contributions at each frequency (default).

ON
Print mode contributions at each frequency.

Notes

Specifies the harmonic analysis (ANTYPE,HARMIC) output options. If used in SOLUTION, this command is valid only within the first load step. OUTPR,NSOL must be specified to print mode contributions at each frequency.

This command is ignored if the HROPT command has been issued with Method $=\mathrm{VT}$, VTPA, or VTRU. Displacements are not available at expanded frequencies with these solution methods.

This command is also valid in PREP7.

Menu Paths

Main Menu>Preprocessor>Loads>Analysis Type>Analysis Options Main Menu>Solution>Analysis Type>Analysis Options

I Commands

IC, NODE, Lab, VALUE, VALUE2, NEND, NINC

Specifies initial conditions at nodes.

> SOLUTION: Misc Loads
> MP ME ST PR PRN <> <> FL EM EH $<>$ PP $<>$ EME MFS

NODE

Node at which initial condition is to be specified. If ALL, apply to all selected nodes (NSEL). If NODE $=$ P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may be substituted for NODE.

Lab

Degree-of-freedom label for which the initial condition is to be specified. If ALL, use all appropriate labels.
Structural labels: UX, UY, or UZ (displacements or linear velocities); ROTX, ROTY, or ROTZ (rotations or angular velocities); HDSP (hydrostatic pressure).
Thermal labels: TEMP, TBOT, TE2, TE3, ..., TTOP (temperature).
FLOTRAN fluid labels: PRES (pressure); VX, VY, or VZ (velocities); ENKE or ENDS (turbulent kinetic energy or turbulent energy dissipation); SP01 through SP06 (multiple species mass fractions) or their user-defined names (MSSPEC). Electric label: VOLT (voltage).
Magnetic labels: MAG (scalar magnetic potential); AX, AY, or AZ (vector magnetic potentials).

VALUE

Initial value of the degree of freedom (first-order value). Defaults to the program default for that degree of freedom (0.0 for structural analysis, TUNIF for thermal analysis, etc.). Values are in the nodal coordinate system and in radians for rotational degrees of freedom.

VALUE2

Second-order degree of freedom value, mainly used to specify initial structural velocity. Defaults to the program default for that degree of freedom (0.0 for structural analysis). Values are in the nodal coordinate system and in radians/time for rotational degrees of freedom.

NEND, NINC

Specifies the same initial condition values at the range of nodes from NODE to $N E N D$ (defaults to $N O D E$), in steps of NINC (defaults to 1).

Notes

The IC command specifies initial conditions, which are the initial values of the specified degrees of freedom. It is valid only for a static analysis and full method transient analysis (TIMINT,ON and TRNOPT,FULL). For the transient, the initial value is specified at the beginning of the first load step, that is, at time $=0.0$.

Initial conditions should always be step applied (KBC,1) and not ramped. (In a transient analysis when SOLCONTROL is ON, KBC, 1 is the default as long as TIMINT is also on.)

If constraints (D, DSYM, etc.) and initial conditions are applied at the same node, the constraint specification overrides. Exercise caution when specifying constraints. The degree-of-freedom values start from zero, or
the first value given in the table when table name is specified. To match the nonzero initial condition value with the initial value for degree-of-freedom constraint, use a table for the degree-of-freedom constraint.

For thermal analyses, any TUNIF specification should be applied before the IC command; otherwise, the TUNIF specification is ignored. If the IC command is input before any TUNIF specification, use the ICDELE command and then reissue any TUNIF specification and then follow with the IC command.

Be sure to define consistent initial conditions. For example, if you define an initial velocity at a single degree of freedom, the initial velocity at every other degree of freedom will be 0.0 , potentially leading to conflicting initial conditions. In most cases, you should define initial conditions at every unconstrained degree of freedom in your model. If you define an initial condition for any degree of freedom at the pilot node of a rigid body (see Modeling Rigid Bodies in the Contact Technology Guide for the definition of rigid body), then the same initial condition must also be defined for the same degree of freedom on all other nodes of the rigid body.

After a solution has been performed, the specified initial conditions are overwritten by the actual solution and are no longer available. You must respecify them if you want to perform a subsequent analysis. You may want to keep a database file saved prior to the first solution for subsequent reuse.

If you use the CDWRITE command to archive your model, first-order values (initial displacements, temperatures, etc.) specified via the IC command are not written to the archive file; however, second-order (structural velocity) terms are written.

This command is also valid in PREP7.

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Apply>Initial Condit'n>Define Main Menu>Solution>Define Loads>Apply>Initial Condit'n>Define

ICDELE

Deletes initial conditions at nodes.
SOLUTION:Misc Loads
MP ME ST PR PRN <> <> FL EM EH <> PP <> EME MFS

Notes

Deletes all initial conditions previously specified with the IC command at all nodes.
This command is also valid in PREP7.

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Delete>Initial Condit'n
Main Menu>Solution>Define Loads>Delete>Initial Condit'n

ICE, ELEM, Lab, VALUE

Specifies initial conditions on elements.

> SOLUTION: Misc Loads
> MP ME ST PR PRN <> <> FL EM EH <> PP <> EME MFS

ELEM

Element to which initial condition applies. If All, apply initial condition to all selected elements [ESEL]. If $E L E M=\mathrm{P}$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may be substituted for ELEM.

Lab

Valid initial conditions label. FLOTRAN fluid labels: VFRC (volume fraction).

VALUE

Initial value for the volume fraction.

Notes

The ICE command specifies initial conditions on selected elements.
Once a solution has been performed, the specified initial conditions will be overwritten by the actual solution, and are no longer available. You must respecify them if you want to perform a re-analysis.

This command is also valid in PREP7.

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/CFD>Volume Fract>Init Loads>On Elements Main Menu>Solution>Define Loads>Apply>Fluid/CFD>Volume Fract>Init Loads>On Elements

ICEDELE, ELEM, Lab
Deletes initial conditions on elements.

> SOLUTION: Misc Loads
> MP ME ST PR PRN <> <> FL EM EH <> PP <> EME MFS

ELEM

Element at which initial conditions are to be deleted. If ALL, initial conditions at all selected elements [ESEL] are deleted. If ELEM $=\mathrm{P}$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may be substituted for ELEM.

Lab

Valid initial conditions label. FLOTRAN fluid labels: VFRC (volume fraction).

Notes

Deletes all initial conditions previously specified with the ICE command at all elements.
This command is also valid in PREP7.

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Delete>Fluid/CFD>Volume Fract>Init Loads>On Elements
Main Menu>Solution>Define Loads>Delete>Fluid/CFD>Volume Fract>Init Loads>On Elements

ICELIST, ELEM, Lab

Lists initial conditions on elements.

SOLUTION: Misc Loads
MP ME ST PR PRN $<><>$ FL EM EH $<>$ PP $<>$ EME MFS

ELEM

List initial condition for elements for $E L E M$ (defaults to ALL). If $E L E M=$ All, initial conditions for all selected elements [ESEL\} are listed. If $E L E M=P$, graphical picking is enabled and all remaining command fields are ignored (valid only in GUI). A component name may be substituted for ELEM.

Lab

Valid initial conditions label. FLOTRAN fluid labels: VFRC (volume fraction).

Notes

Lists the initial on elements specified by the ICE command. Listing applies to all the selected elements [ESEL].
This command is valid in any processor.

Menu Paths

Utility Menu>List>Loads>Elem Init Condit'n>On Picked Elemts

ICLIST, NODE1, NODE2, NINC, Lab

Lists the initial conditions.

SOLUTION: Misc Loads
MP ME ST PR PRN <> <> FL EM EH <> PP <> EME MFS

NODE1, NODE2, NINC

List initial conditions for nodes NODE1 to NODE2 (defaults to NODE1) in steps of NINC (defaults to 1). If NODE1 = ALL (default), NODE2 and NINC are ignored and initial conditions for all selected nodes [NSEL] are listed. If NODE1 = P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may be substituted for NODE1 (NODE2 and NINC are ignored).

Lab

Velocity key:
DISP
Specification is for first order degree of freedom value (displacements, temperature, etc.) (default).

VELO

Specification is for second order degree of freedom value (velocities).

Notes

Lists the initial conditions specified by the IC command. Listing applies to all the selected nodes [NSEL] and DOF labels. ICLIST is not the same as the DLIST command. All the initial conditions including the default conditions are listed for the selected nodes.

Initial conditions for a FLOTRAN analysis are primary (first order) degrees of freedom and are thus listed with the DISP key.

This command is valid in any processor.

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Apply>Initial Condit'n>List Picked Main Menu>Solution>Define Loads>Apply>Initial Condit'n>List Picked Utility Menu>List>Loads>Initial Conditions>On Picked Nodes

/ICLWID, FACTOR

Scales the line width of circuit builder icons.
GRAPHICS:Scaling
MP <> <> <> <> <> <> <> EM <> <> PP <> EME <>

FACTOR

Multiplication factor applied to the default line width (defaults to 1). The minimum is 1 and the maximum is 6 .

Notes

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>Modeling>Create>Circuit>Scale Icon

/ICSCALE, W, , FACTOR

Scales the icon size for elements supported in the circuit builder.
GRAP HICS: Scaling
MP <> <> <> <> <> <> <> EM <> <> PP <> EME <>

WN
Window number (or ALL) to which command applies (defaults to 1).
FACTOR
Factor applied to the default icon size (defaults to 1).

Notes

Scaling the icon size can provide better visualization of the circuit components when using the Circuit Builder (an interactive builder available in the ANSYS GUI).

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>Modeling>Create>Circuit>Scale Icon

ICVFRC, Geom, VAL1, VAL2, VAL3, VAL4

Sets the initial volume fraction field for a geometry.

PREP 7:FLOTRAN Miscellaneous
MP <> <> <> <> <> <> FL <> <> <> PP <> <> <>

Geom

Geometry:
CIRC
Circle.
ELPT
Ellipse.

VAL1, VAL2

Location of the center. VAL1 and VAL2 are the x and y coordinates, respectively.

VAL3, VAL4

If Geom = CIRC, VAL3 is the radius of the circle and VAL4 is not used. If Geom = ELPT, VAL3 and VAL4 are the x and y semiaxes of the ellipse, respectively.

Notes

The ICVFRC command sets the initial volume fraction field for a geometry. The initial VFRC is set to one for elements completely within the geometry. The initial VFRC is set equal to the fraction of element area within the geometry for elements intersected by the boundary of the geometry.

This command is also valid in SOLUTION.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/CFD>Volume Fract>Init Loads>By Geom>Circle
Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/CFD>Volume Fract>Init Loads>By Geom>Elliptic
Main Menu>Solution>Define Loads>Apply>Fluid/CFD>Volume Fract>Init Loads>By Geom>Circle Main Menu>Solution>Define Loads>Apply>Fluid/CFD>Volume Fract>Init Loads>By Geom>Elliptic
*IF, VAL1, Oper1, VAL2, Base1, VAL3, Oper2, VAL4, Base2

Conditionally causes commands to be read.

APDL: Process Controls
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Argument Descriptions

VAL1

First numerical value (or parameter which evaluates to a numerical value) in the conditional comparison operation. VAL1, VAL2, VAL3, and VAL4 can also be character strings (enclosed in quotes) or parameters for Oper = EQ and NE only.

Oper1

Operation label. A tolerance of $1.0 \mathrm{E}-10$ is used for comparisons between real numbers:
EQ --
Equal (for VAL1 = VAL2).
NE --
Not equal (for VAL1 $\neq V A L 2$).
LT --
Less than (for VAL1 < VAL2).
GT --
Greater than (for VAL1 > VAL2).
LE --
Less than or equal (for VAL1 \leq VAL2).
GE --
Greater than or equal (for VAL1 \geq VAL2).

ABLT --

Absolute values of VAL1 and VAL2 before < operation.

ABGT --

Absolute values of VAL1 and VAL2 before > operation.

VAL2

Second numerical value (or parameter which evaluates to a numerical value) in the conditional comparison operation.

Base1

Action based on the logical expression (Oper1) being true. If false, continue reading at the next line. This is conditional, except for the IF-THEN-ELSE constructs described below; any of the following constructs (through Base $1=$ THEN) cause all subsequent fields to be ignored:
:label --
A user-defined label (beginning with a colon (:), 8 characters maximum). The command reader will skip (and wrap to the beginning of the file, if necessary) to the first line that begins with the matching :label.

Caution

This label option may not be mixed with do-loop or if-then-else constructs.

STOP --

This action will cause an exit from the ANSYS program at this line, unless running in interactive mode. In interactive mode, the program will not stop.

EXIT --

Exit the current do-loop [*EXIT].

CYCLE --

Skip to the end of the current do-loop [*CYCLE].

THEN --

Make this *IF an if-then-else construct (see below).
The following optional values determine the connection between the two logical clauses Oper1 and Oper2

AND --

True if both clauses (Oper1 and Oper2) are true.

OR --

True if either clause is true.

XOR --

True if either (but not both) clause is true.

VAL3

Third numerical value (or parameter which evaluates to a numerical value).

Oper2

Operation label. This will have the same labels as Oper1, except it uses Val3 and Val4. A tolerance of $1.0 \mathrm{E}-10$ is used for comparisons between real numbers.

VAL4

Fourth numerical value (or parameter value which evaluates to a numerical value).

Base2

Action based on the logical expression (Oper1 and Oper2) being true. They will be the same values as Base1, except as noted.

Command Default

Read commands sequentially.

Notes

Conditionally causes commands to be read from a specific block or at a specific location. Twenty levels of nested *IF blocks are allowed. Jumping to a :label line is not allowed with keyboard entry. Jumping into, out of, or within a do-loop or an if-then-else construct to a :label line is not allowed. Using *IF interactively or from the command line prevents rereading the file to find a label. To do so, use batch mode or /INPUT.

The following is an example of an if-then-else construct:

[^1]```
*ELSEIF,VAL1,Oper,VAL2
```

*ELSEIF,VAL1,Oper,VAL2
*ELSE

## *ENDIF

where "----" represents a block of any number of commands. Any number of *ELSEIF clauses (or none) may be included (in the location shown). One *ELSE clause (at most) may be included (in the location shown). The *IF command is executed by evaluating its logical expression. If it is true, the block of commands following it is executed. The construct is considered to be complete and the command following the *ENDIF is executed next. If the logical expression is false, the next *ELSEIF command (if any) following the block is executed. The execution logic is the same as for *IF. The effect is that the logical expressions in the *IF and the *ELSEIF commands are sequentially tested until one is found to be true. Then the block of commands immediately following the expression is executed, which completes the execution of the if-then-else construct. If all *IF and *ELSEIF expressions are false, the block following the *ELSE command is executed, if there is one. Only one block of commands (at most) is executed within the if-then-else construct. If a batch input stream hits an end-of-file during a false *IF condition, the ANSYS run will not terminate normally. You will need to terminate it externally (use either the UNIX "kill" function or the Windows task manager). The *IF, *ELSEIF, *ELSE, and *ENDIF commands for each if-then-else construct must all be read from the same file (or keyboard).

This command is valid in any processor.

## Menu Paths

This command cannot be accessed from a menu.

## IGESIN, Fname, Ext, --

## Transfers IGES data from a file into ANSYS.

AUX15:IGES
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Fname

File name and directory path ( 248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

The file name defaults to Jobname.

## Ext

Filename extension (8 character maximum).

The extension defaults to CAD if Fname is blank.

Unused field.

## Notes

Reads a file containing IGES data and transfers it into the ANSYS database. The file transferred is the IGES Version 5.1, ASCII format file. IGES (Initial Graphics Exchange Specification) is a neutral format developed by the U.S. Dept. of Commerce, National Institute of Standards and Technology. There is no output transfer file written since the transferred data is read directly into the ANSYS database.

You can import multiple files into a single database, but you must use the same import option (set with the IOPTN command) for each file.

The IOPTN command sets the parameters for reading the file. Files read via the SMOOTH method (the only available method) use the standard database.

## Menu Paths

## Utility Menu>File>Import

## IGESOUT, Fname, Ext, --, ATT

## Writes solid model data to a file in IGES Version $\mathbf{5 . 1}$ format.

> PREP 7: Database
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Fname

File name and directory path ( 248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

The file name defaults to Jobname.

## Ext

Filename extension (8 character maximum).
The extension defaults to IGES if Fname is blank.

Unused field.

## ATT

Attribute key:
0
Do not write assigned numbers and attributes of the solid model entities to the IGES file (default).
1
Write assigned numbers and attributes of solid model entities (keypoints, lines, areas, volumes) to the IGES file. Attributes include MAT, TYPE, REAL, and ESYS specifications as well as associated solid model loads and meshing (keypoint element size, number of line divisions and spacing ratio) specifications.

## Notes

Causes the selected solid model data to be written to a coded file in the IGES Version 5.1 format. Previous data on this file, if any, are overwritten. Keypoints that are not attached to any line are written to the output file as IGES entity 116 (Point). Lines that are not attached to any area are written to the output file as either IGES Entity 100 (Circular Arc), 110 (Line), or 126 (Rational B-Spline Curve) depending upon whether the ANSYS entity was defined as an arc, straight line, or spline. Areas are written to the output file as IGES Entity 144 (Trimmed Parametric Surface). Volumes are written to the output file as IGES entity 186 (Manifold Solid BRep Object). Solid model entities to be written must have all corresponding lower level entities selected (use ALLSEL,BELOW,ALL) before issuing command. Concatenated lines and areas are not written to the IGES file; however, the entities that make up these concatenated entities are written.

## Caution

Section properties assigned to areas, lines and other solid model entities will not be maintained when the model is exported using IGESOUT.

If you issue the IGESOUT command after generating a beam mesh with orientation nodes, the orientation keypoints that were specified for the line (LATT) are no longer associated with the line and are not written out to the IGES file. The line does not recognize that orientation keypoints were ever assigned to it, and the orientation keypoints do not "know" that they are orientation keypoints. Thus the IGESOUT command does not support (for beam meshing) any line operation that relies on solid model associativity. For example, meshing the areas adjacent to the meshed line, plotting the line that contains the orientation nodes, or clearing the mesh from the line that contains orientation nodes may not work as expected. See Meshing Your Solid Model in the Modeling and Meshing Guide for more information about beam meshing.

## Menu Paths

Utility Menu>File>Export

## /IMAGE, Label, Fname, Ext, --

## Allows graphics data to be captured and saved.

GRAPHICS: Set Up<br>MP ME ST PR PRN <> <> FL EM EH DY PP $<>$ EME MFS

## Label

Label specifying the operation to be performed:

## CAPTURE

Capture the image from the graphics window to a new window.

## RESTORE

Restore the image from a file to a new window.

## SAVE

Save the contents of the graphic window to a file.

## DELETE

Delete the window that contains the file.

## Fname

File name and directory path ( 248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

## Ext

Filename extension (8 character maximum).
If no extension is specified, bmp will be used on Windows systems, and img will be used on UNIX systems.

Unused field.

## Menu Paths

This command cannot be accessed from a menu.

IMAGIN, IR, IA, --, --, Name, --,--, FACTA

## Forms an imaginary variable from a complex variable.

> POST2 6: Operations
> MP ME ST PR PRN <> <> <> EM EH DY PP <> EME MFS

IR
Arbitrary reference number assigned to the resulting variable ( 2 to $N V$ [NUMVAR]). If this number is the same as for a previously defined variable, the previously defined variable will be overwritten with this result.

IA
Reference number of the variable to be operated on.


Unused fields.

## Name

Thirty-two character name for identifying the variable on the printout and displays. Embedded blanks are compressed upon output.

```
--, --
```

Unused fields.
FACTA
Scaling factor (positive or negative) applied to variable IA (defaults to 1.0).

## Notes

This command forms a new variable from a complex variable by storing the imaginary part as the real part. The imaginary part can then be used in other operations. Used only with harmonic analyses (ANTYPE,HARMIC).

Complex variables are stored in two-column arrays with the real component stored in the first column and the imaginary component stored in the second column. This command extracts the value stored in the second column (i.e., imaginary component). However, with harmonic analyses, all variables are stored in two-column arrays as complex variables. If the variable is not complex, then the same value is stored in both
columns. This command will extract the variable in the second column of the array, even if this variable is not the imaginary component of a complex variable.

## Menu Paths

## Main Menu>TimeHist Postpro>Math Operations>Imaginary Part

IMESH, LAKY, NSLA, NTLA, KCN, DX, DY, DZ, TOL

## Generates nodes and interface elements along lines or areas.

PREP 7: Meshing
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## LAKY

Copies mesh according to the following:

## LINE or 1

Copies line mesh (default).
AREA or 2
Copies area mesh.

## NSLA

Number that identifies the source line or area. This is the line or area whose mesh will provide the pattern for the interface elements. ANSYS copies the pattern of the line or area elements through the area or volume to create the mesh of area or volume interface elements.

## NTLA

Number that identifies the target line or area. This is the line or area that is opposite the source line or area specified by NSLA. Add NTLA to obtain the copied mesh from the source line or area.

KCN
Number that identifies the particular ANSYS coordinate system.

## DX, DY, DZ

Incremental translation of node coordinates in the active coordinate system ( $D R, D, D Z$ for cylindrical, and $D R, D, D$ for spherical or toroidal). The source line or area coordinates $+D X, D Y, D Z=$ the target line or area coordinates. If left blank, ANSYS automatically estimates the incremental translation.
TOL
Tolerance for verifying topology and geometry. By default, ANSYS automatically calculates the tolerance based on associated geometries.

## Notes

Generates nodes and interface elements along lines or areas. The IMESH command requires that the target line or area exactly match the source line or area. Also, both target and source lines or areas must be in the same area or volume. The area or volume containing the source line or area must be meshed before executing IMESH, while the area or volume containing the target line or area must be meshed after executing IMESH.

For three dimensional problems where $L A K Y=$ AREA, ANSYS fills the interface layer according to the following table:

| If source mesh consists of: | ANSYS fills the interface layer with: |
| :--- | :--- |
| Quadrilateral elements | Hexahedral elements |
| Triangle elements | Degenerated wedge elements |
| Combination quadrilateral and triangle <br> elements | Combination hexahedral and degenerated wedge <br> elements |

## Menu Paths

Main Menu $>$ Preprocessor $>$ Meshing $>$ Mesh $>$ Interface Mesh $>2 D$ Interface
Main Menu $>$ Preprocessor $>$ Meshing $>$ Mesh $>$ Interface Mesh $>3 D$ Interface

IMMED, KEY
Allows immediate display of a model as it is generated.

GRAPHICS: Set Up<br>MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

KEY
Immediate mode key:
0
Display only upon request, i.e., no immediate display (default with the GUI off).
1
Display immediately as model is generated (default with the GUI on).

## Command Default

As described above.

## Notes

Allows immediate display of a model (as it is generated) without a screen erase or a display request. Available only during an interactive session at a graphics display terminal. A valid graphics device name must first be specified on the /SHOW command.

The IMMED command allows you to control whether or not the model is displayed immediately as it is generated in an interactive session. By default in the GUI, your model will immediately be displayed in the Graphics Window as you create new entities (such as areas, keypoints, nodes, elements, local coordinate systems, boundary conditions, etc.). This is called immediate mode graphics. Also note that symbols (such as boundary conditions, local coordinate system triads, etc.) are shown immediately and will be present on subsequent displays unless you "turn off" the appropriate symbol using the GUI plot controls function or the appropriate graphics specification command.

An immediate image will also be automatically scaled to fit nicely within the Graphics Window -- a feature called automatic scaling. The new scaling is usually apparent on the automatic replot associated with immediate mode. To suppress automatic replot, issue /UIS,REPLOT, 0 . (With automatic replot suppressed, the immediate image may not always be automatically scaled correctly.)

## Note

An immediate display in progress should not be aborted with the usual system "break" feature (or else the ANSYS session itself will be aborted). When you run the ANSYS program interactively without using the GUI, immediate mode is off by default.

This command is valid only in PREP7.

## Menu Paths

## Utility Menu>PlotCtrls>Erase Options>Immediate Display

## IMPD, Vpath, Ipath, Vsymm, Isymm

## Calculates the impedance of a conductor at a reference plane.

POST1:Magnetics Calculations
MP ME <> <> <> <> <> <> <> EH <> PP <> EME MFS

## Vpath

Path name for a predefined path [PATH command] for calculating the EMF (voltage drop) from the conductor to a reference point. The path should start at the outer conductor wall and end at a reference voltage point.

## Ipath

Path name for a predefined path [PATH command] for calculating the MMF (current) in a conductor. The path should traverse a closed contour surrounding the conductor, and you should define the path in a counterclockwise direction.

## Vsymm

Symmetry factor applied to the calculated EMF (voltage drop). The EMF (voltage drop) from the conductor to the reference point is multiplied by Vsymm.

## Isymm

Symmetry factor applied to the calculated current. The calculated current is multiplied by Isymm.

## Notes

Used in a harmonic high-frequency electromagnetic analysis, IMPD calculates the impedance of a conductor at a reference plane from the EMF (voltage) and MMF (current) at the reference plane. The EMF (voltage drop) is calculated by a line integral from the input path name (specified by the Vpath argument) that extends from the conductor to a reference point. The MMF (current) is calculated by a closed path around the conductor from the input path name (specified with Ipath). In cases having modeled symmetry, you can multiply the voltage drop or current by symmetry factors (Vsymm and Isymm respectively).

This command macro returns the scalar parameters Zre and Zim, representing the real and imaginary components of the impedance.

See magnetic macros for further details.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu>General Postproc>Elec\&Mag Calc>Path Based>Impedance

INISTATE, Action, Val1, Val2, Val3, Val4, Val5, Val6, Val7, Val8, Val9

## Defines initial state data and parameters.

PREP 7: Data Tables SOLUTION: Analysis Options<br>MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

## Action

Specifies action for defining or manipulating initial state data:

## SET

Use Action = SET to designate initial state coordinate system, data type and material type parameters. See "Command Specification for Action = SET" (p. 844).

## DEFINE

Use Action = DEFINE to specify the actual state values, and the corresponding element, integration point, or layer information. See "Command Specifications for Action = DEFINE" (p. 845).

## WRITE

Use Action = WRITE to write the initial state values to a file when the SOLVE command is issued. See "Command Specifications for Action = WRITE" (p. 846).

## READ

Use Action $=$ READ to read the initial state values from a file. See "Command Specifications for Action $=$ READ" (p. 846).

## LIST

Use Action $=$ LIST to read out the initial state data. See "Command Specifications for Action $=$ LIST" (p. 847).

## DELETE

Use Action = DELE to delete initial state data from a selected set of elements. See "Command Specifications for Action = DELETE" (p. 847)

## Notes

The INISTATE command is available for current-technology elements only. The command is not for use with kinematic hardening material properties.

For detailed information about using the initial state capability, see "Initial State" in the Basic Analysis Guide.

## Command Specification for Action = SET

INISTATE, SET, Val1, Val2

| Val1 $=$ | Val2 $=$ |
| :--- | :--- |
| CSYS | Coordinate system. Val2 will be an integer corresponding to the coordinate <br> system: |


| Val1 = | Va12 $=$ |
| :---: | :---: |
|  | -2 = Element Coordinate System <br> -1 = Material Coordinate System <br> $0=$ Global Cartesian Coordinate System <br> $0-10=$ Any ANSYS defined coordinate system. <br> >= 11 = Any user defined coordinate system ID. |
| DTYP | Data type. Val2 is the type of data that will be set on the subsequent INISTATE,DEFINE command: $\begin{aligned} & \text { STRE }=\text { Stress data } \text { (default) } \\ & \text { EPEL }=\text { Strain data } \\ & \text { EPPL }=\text { Plastic strain data } \\ & \text { PLEQ = Accumulated equivalent plastic strain } \\ & \text { PLWK } ~=~ P l a s t i c ~ s t r a i n ~ e n e r g y ~ d e n s i t y ~ \end{aligned}$ |
| MAT | Material type. Val2 is the material ID. Using Val2 $=-1$ disables materialbased initial state and enables integration-point-based initial state data. |

## Notes

Action $=$ SET specifies and modifies the environment into which you will define the initial state data (via a subsequent INISTATE,DEFINE command). Otherwise, subsequent INISTATE,DEFINE data is input as initial state data in the global Cartesian coordinate system.

## Command Specifications for Action = DEFINE

```
INISTATE,DEFINE,ELID, Eint, Klayer, Parmint, Cxx, Cyy, Czz, Cxy,
Cyz, Cxz
ELID --
Element ID number. If (blank), defaults to current element selection.
```


## Eint --

Gauss integration point (defaults to ALL). Not valid for material-based initial state data.
Klayer --
Layer number (for layered solid/shell elements) or cell number for beam elements. Blank for nonlayered, non-beam, elements, and not valid (ignored) for material-based initial state data.

ParmInt --
Section integration point within a layer, or cell-integration point for beams (typically four integration points). The default value is ALL. Not valid for material-based initial state data.

Cxx, Cyy, Czz, Cxy, Cyz, Cxz--
Stress (S), strain (EPEL), or plastic strain (EPPL) values.

## Notes

You can issue the INISTATE command repeatedly to define multiple sets of initial state values. Initial state data can be specified according to elements, layers or integration points.

When the initial state parameters are being defined based on the material, (INISTATE,SET,MAT,MATID), the $E L I D$ value designates the element number and all subsequent values are ignored.

## Command Specifications for Action = WRITE

INISTATE, WRITE, FLAG, , , CSID, Dtype

## FLAG --

Set this value to 1 to generate the initial state file, or 0 to disable initial state file generation.
CSID --
Determines the coordinate system for the initial state:
0 (default)
Write in global Cartesian coordinate system for solid elements.
-1 (or MAT)
Write in material coordinate system
-2 (or ELEM)
Write in element coordinate system for link, beam, and layered elements.
Dtype --
Sets the data type to be written in the IST file:
S
Output stresses.
EPEL
Output elastic strain.
EPPL
Output plastic strain.
PLEQ
Output equivalent plastic strain.
PLWK
Output plastic strain energy density.

## Notes

Default is 0 for solid elements and -2 for link, beam, and shell elements.

## Command Specifications for Action = READ

## INISTATE, READ, Fname, Ext, Path

Read initial state data from a standalone initial state file of the specified name (Fname) and file name extension (Ext), located in the specified path (Path). The initial state file must be in a comma-delimited ASCII file format, consisting of individual rows for each stress/strain item, with each row consisting of columns separated by commas.

## Notes

Use the READ option to apply complex sets of initial state data to various elements, cells, layers, sections and integration points. See "Initial State" in the Basic Analysis Guide for additional information.

## Command Specifications for Action = LIST

## INISTATE, LIST, ELID

Lists initial state data for elements with ID $=E L I D$. If $E L I D$ is blank, all initial state data for all selected elements are listed.

## Command Specifications for Action = DELETE

## INISTATE, DELE, ELID

Deletes initial state data for elements with $\operatorname{ID}=E L I D$. If $E L I D$ is blank, all initial state data for all selected elements are deleted.

## Menu Paths

## This command cannot be accessed from a menu.

/INPUT, Fname, Ext, --, LINE, LOG

## Switches the input file for the commands that follow.

SESSION: Run Controls
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Fname

File name and directory path ( 248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

The file name defaults to the current Jobname if Ext is specified.
Ext
Filename extension (8 character maximum).

Unused field.
LINE
A value indicating either a line number in the file or a user-defined label in the file from which to begin reading the input file.
(blank), 0, or 1
Begins reading from the top of the file (default).
LINE_NUMBER
Begins reading from the specified line number in the file.
:label
Begins reading from the first line beginning with the matching user-defined label :label (beginning with a colon (:), 8 characters maximum).

## LOG

Indicates whether secondary input from this command should be recorded in the command log (File.LOG) and the database log:

0
Record only the /INPUT command on the log (default).
1
Record commands in the specified secondary file as they are executed.

## Notes

Switches the input file for the next commands. Commands are read from this file until an end-of-file or another file switching directive is read. An end-of-file occurs after the last record of the file or when a /EOF command is read. An automatic switch back one level (to the previous file) occurs when an end-of-file is encountered. Twenty levels of nested file switching are allowed. Note that files including *DO, *USE, *ULIB, and the "Unknown Command" Macro have less nesting available because each of these operations also uses a level of file switching. For an interactive run, a /INPUT,TERM switches to the terminal for the next input. A /EOF read from the terminal then switches back to the previous file. A /INPUT (with a blank second field) switches back to the primary input file.

Setting LOG $=1$ on /INPUT causes all commands read from the specified file to be recorded in the command $\log$ (File. LOG) and the internal database command log [LGWRITE]. This option is recommended if the $\log$ file will be used later (e.g., as batch input or as an analysis file for design optimization). The LOG = 1 option is only valid when the /INPUT occurs in the primary input file. Using LOG = 1 on a nested /INPUT or on a /INPUT within a do-loop will have no effect (i.e., commands in the secondary input file are not written to the command log).

This command is valid in any processor.

## Menu Paths

Utility Menu>File>Read Input from

## /INQUIRE, StrArray, FUNC

## Returns system information to a parameter.

> APDL: Parameters
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Argument Descriptions

## StrArray

Name of the "string array" parameter that will hold the returned values. String array parameters are similar to character arrays, but each array element can be as long as 128 characters. If the string parameter does not exist, it will be created.

## FUNC

Specifies the type of system information returned:

## LOGIN --

Returns the pathname of the login directory on UNIX systems or the pathname of the default directory (including drive letter) on Windows systems.

## DOCU --

Returns the pathname of the ANSYS docu directory.

## APDL --

Returns the pathname of the ANSYS APDL directory.

## PROG --

Returns the pathname of the ANSYS executable directory.

## AUTH --

Returns the pathname of the directory in which the license file resides.

## USER --

Returns the name of the user currently logged-in.

## DIRECTORY --

Returns the pathname of the current directory.

## JOBNAME --

Returns the current Jobname. The value of Jobname can be up to 250 characters in length.

## RSTDIR --

Returns rst directory (FILE command).

## RSTFILE --

Returns rst file name (FILE command).

## RSTEXT --

Returns rst file extension (FILE command).

## PSEARCH --

Returns path used for "unknown command" macro (/PSEARCH command).

## Returning the Value of an Environment Variable to a Parameter

If $F U N C=E N V$, the command format is /INQUIRE,St rArray, $\mathrm{ENV}, E N V N A M E, S u b s t r i n g$. In this instance, ENV specifies that the command should return the value of an environment variable. The following defines the remaining fields:

## ENVNAME

Specifies the name of the environment variable.

## Substring

If Substring $=1$, the first substring (up to the first colon (:)) is returned. If Substring $=2$, the second substring is returned, etc. For Windows platforms, the separating character is semicolon (;). If this argument is either blank or 0 , the entire value of the environment variable is returned.

## Returning the Value of a Title to a Parameter

If $F U N C=$ TITLE, the command format is /INQUIRE,StrArray,TITLE,Title_num. In this context, the value of Title_num can be blank or 1 through 5 . If the value is 1 or blank, the title is returned. If the value is 2 through 5 , a corresponding subtitle is returned ( 2 denoting the first subtitle, and so on).

## Returning Information About a File to a Parameter

The /INQUIRE command can also return information about specified files within the file system. For these capabilities, the format is /INQUIRE,Parameter,FUNC,Fname, Ext, --. The following defines the fields:

## Parameter

Name of the parameter that will hold the returned values.

## FUNC

Specifies the type of file information returned:
EXIST --
Returns a 1 if the specified file exists, and 0 if it does not.
DATE --
Returns the date stamp of the specified file in the format yyyymmdd. hhmmss.
SIZE --
Returns the size of the specified file in MB.
WRITE --
Returns the status of the write attribute. A 0 denotes no write permission while a 1 denotes write permission.

READ --
Returns the status of the read attribute. A 0 denotes no read permission while a 1 denotes read permission.

## EXEC --

Returns the status of the execute attribute (this has meaning only in UNIX). A 0 denotes no execute permission while a 1 denotes execute permission.

## LINES --

Returns the number of lines in an ASCII file.

## Fname

File name and directory path ( 248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

## Ext

Filename extension (8 character maximum).

Unused field.

## Notes

The /INQUIRE command is valid in any processor.

## Menu Paths

This command cannot be accessed from a menu.

INRES, Item1, Item2, Item3, Item4, Item5, Item6, Item7, Item8
Identifies the data to be retrieved from the results file.
POST1:Controls
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
Item1, Item2, Item3, . . . , Item8
Data to be read into the database from the results file. May consist of any of the following labels:
ALL
All solution items (default).
BASIC
NSOL, RSOL, NLOAD, STRS, FGRAD, and FFLUX items.
NSOL
Nodal DOF solution.
RSOL
Nodal reaction loads.
ESOL
Element solution items (includes all of the following):
NLOAD
Element nodal loads.

## STRS

Element nodal stresses.
EPEL
Element elastic strains.
EPTH
Element thermal, initial, and swelling strains.

## EPPL

Element plastic strains.

## EPCR

Element creep strains.
FGRAD
Element nodal gradients.
FFLUX
Element nodal fluxes.
MISC
Element miscellaneous data (SMISC and NMISC).

## Notes

Identifies the type of data to be retrieved from the results file for placement into the database through commands such as SET, SUBSET, and APPEND. INRES is a companion command to the OUTRES command controlling data written to the database and the results file. Since the INRES command can only flag data that has already been written to the results file, care should be taken when using the OUTRES command to include all data you wish to retrieve for postprocessing later on.

## Menu Paths

Main Menu>General Postproc>Data \& File Opts

## INRTIA

## Specifies "Inertial loads" as the subsequent status topic.

SOLUTION: Status
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Notes

This is a status [STAT] topic command. Status topic commands are generated by the GUI and will appear in the log file (Jobname. LOG) if status is requested for some items under Utility Menu> List> Status. This command will be immediately followed by a STAT command, which will report the status for the specified topic.

If entered directly into the program, the STAT command should immediately follow this command.

## Menu Paths

Utility Menu>List>Loads>Inertia Loads
Utility Menu>List>Status>Solution>Inertia Loads

INT1, IR,IY, IX, --, Name, --, --, FACTA, FACTB, CONST

## Integrates a variable.

POST26:Operations
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
IR
Arbitrary reference number assigned to the resulting variable (2 to NV [NUMVAR]). If this number is the same as for a previously defined variable, the previously defined variable will be overwritten with this result. Table values represent integrated sum of $I Y$ to current table position of $I X$.

## IY, IX

Integrate variable $I Y$ with respect to $I X$.

Unused field.

## Name

Thirty-two character name for identifying the variable on the printout and displays. Embedded blanks are compressed upon output.
--, --
Unused fields.
FACTA, FACTB
Scaling factors (positive or negative) applied to the corresponding variables (default to 1.0).

## CONST

Initial value.

## Notes

Integrates variables according to the operation:

$$
I R=\int(F A C T A \times I Y) \mathrm{d}(F A C T B \times I X)+C O N S T
$$

## Menu Paths

## Main Menu>TimeHist Postpro>Math Operations>Integrate

## INTSRF, Lab

## Integrates nodal results on an exterior surface.

POST1:Special Purpose<br>MP ME <> <> <> <> <> FL <> <> DY PP <> EME MFS

## Lab

Label indicating degree of freedom to be integrated:

## PRES

Pressure.
TAUW
Wall shear stress.
FLOW
Both pressure and wall shear stress.

## Notes

Integrates nodal results on a surface. Use node selection (such as the EXT option of the NSEL command) to indicate the surface(s) of element faces to be used in the integration. A surface can be "created" by unselecting elements (such as unselecting non-fluid elements that are adjacent to fluid elements for the postprocessing of fluid flow result). Element faces attached to the selected nodes will be automatically determined. All nodes on a face must be selected for the face to be used. The integration results will cancel for nodes on common faces of adjacent selected elements.

Integration results are in the active coordinate system (see the RSYS command). The type of results coordinate system must match the type used in the analysis. However, you may translate and rotate forces and moments as needed. Use the *GET command (Utility Menu> Parameters> Get Scalar Data) to retrieve the results.

## Menu Paths

## Main Menu>General Postproc>Nodal Calcs>Surface Integral

## IOPTN, Lab, VAL1

## Controls options relating to importing a model.

```
 AUX15:IGES
 MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
```


## Lab

```
Label identifying the import option. The meaning of VAL1 varies depending on Lab.
STAT
List overall status of import facilities, including current option values. VAL1 is ignored.
```


## DEFA

```
Set default values for all import options. VALIis ignored.
MERG
Entity merge option. VAL1 can be:
YES
Automatic merging is performed (default).
NO
No merging of entities.
```


## SOLID

```
Solid option. VAL1 can be:
YES
Solid is created automatically (default).
NO
No solid created.
```


## GTOLER

```
Entity merging tolerance. If IGES = SMOOTH, the GTOLER,VALI can be:
DEFA
Use system defaults (default).
FILE
Use tolerance from the imported file.
n
A user-specified tolerance value.
```


## IGES

```
IGES import option. VAL1 can be:
STAT
List status of IGES related options in the output window.
SMOOTH (or RV52)
Use more robust IGES revision 5.2 import function (default).
```


## SMALL

```
Small areas option. VAL1 can be:
YES
Small areas are deleted (default).
```


## NO

Small areas are retained.

## VAL1

Additional input value as described under each Lab option.

## Command Default

Merging is performed during the IGES transfer with no global solid model tolerance (GTOLER) used.

## Notes

Controls various options during a model file transfer. A global solid model tolerance (GTOLER) can be specified.
The SMALL,YES option (default) delete small areas and can cause geometrical inconsistencies that could cause the import process to abort. Retaining the small areas increases processor time and memory usage.

The data is stored in the standard ANSYS graphics database.
The IGES,SMOOTH (default) option is capable of reading in any rational B-spline curve entity (type 126), or rational B-spline surface entity (type 128) with a degree less than or equal to 20 . Attempts to read in B-spline curve or surface entities of degree higher than 20 may result in error messages.

If you issue the /CLEAR command, the IOPTN settings return to their defaults.
For MERG,YES, merging of coincident geometry items is performed automatically when the IGESIN command is issued (that is, an internal NUMMRG,KP command is issued). The model is merged with the consideration tolerance (TOLER on NUMMRG) set equal to 0.75 * the shortest distance between the endpoints of any active line. See the NUMMRG command for more information about the tolerances. In most cases, the default merging is appropriate. Use the IOPTN command when you want to:

- Disable merging operations.
- Override the default merging and specify a global solid model tolerance value (GTOLER).
- Disable the automatic creation of solids (SOLID).

The IOPTN command should be issued before the IGESIN command. You cannot change these options after your model has been imported or created. If you must change the options:

1. Clear the database (/CLEAR) or exit and restart the program.
2. Set the correct options.
3. Reimport or recreate the model.

This command is valid in any processor.

## Menu Paths

Utility Menu>File>Import

IRLF, KEY
Specifies that inertia relief calculations are to be performed.
SOLUTION: Inertia
MP ME ST PR PRN DS DSS <> <> <> DY PP <> EME MFS

## KEY

Calculation key:
0
No inertia relief calculations.
1
Counterbalance loads with inertia relief forces.
$-1$
Precalculate masses for summary printout only (no inertia relief).

## Command Default

No inertia relief calculations.

## Notes

The IRLF command specifies that the program is to calculate accelerations to counterbalance the applied loads (inertia relief). Displacement constraints on the structure should be only those necessary to prevent rigid-body motions (3 are needed for a 2-D structure and 6 for a 3-D structure). The sum of the reaction forces at the constraint points will be zero. Accelerations are calculated from the element mass matrices and the applied forces. Data needed to calculate the mass (such as density) must be input. Both translational and rotational accelerations may be calculated.

This option applies only to the static (ANTYPE,STATIC) analysis. Nonlinearities, elements that operate in the nodal coordinate system, and axisymmetric or generalized plane strain elements are not allowed. Models with both 2-D and 3-D element types are not recommended. Loads may be input as usual. Displacements and stresses are calculated as usual. Use IRLIST to print inertia relief calculation results. The mass and moment of inertia summary printed before the solution is accurate (because of the additional pre-calculations required for inertia relief). See Inertia Relief in the Theory Reference for the Mechanical APDL and Mechanical Applications for calculation details. See also the Structural Analysis Guide for procedural details.

If the inertia relief calculation is to be performed in the second or later load step, you must specify EMATWRITE,YES in the initial load step for the element matrices needed to perform the calculations to be available.

When a superelement (MATRIX50) is present in the model, any DOF constraints that you need to apply (D) on a degree of freedom (DOF) belonging to the superelement must be applied in the use pass of the MATRIX50 element (not in the generation pass). The command has no effect in the generation pass of a substructure. In the expansion pass, precalculation of masses for summary printout (IRLF,-1) occurs only on elements that are part of the substructure.

This command is also valid in PREP7.
Distributed ANSYS Restriction A KEY value of 1 is not supported in Distributed ANSYS.

## Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Inertia>Inertia Relief Main Menu>Preprocessor>Loads>Load Step Opts>Output Ctrls $>$ Incl Mass Summry Main Menu>Solution>Define Loads>Apply>Structural>Inertia>Inertia Relief Main Menu>Solution>Load Step Opts>Output Ctrls>Incl Mass Summry

## IRLIST

Prints inertia relief summary table.
POST1:Listing
MP ME ST PR PRN DS DSS FL $<><><>$ PP $<>$ EME MFS

## Notes

Prints the inertia relief summary data, including the mass summary table, the total load summary table, and the inertia relief summary table resulting from the inertia relief calculations. These calculations are performed in the solution phase [SOLVE or PSOLVE] as specified by the IRLF command.

Inertia relief output is stored in the database rather than in the results file (Jobname.RST). When you issue IRLIST, ANSYS pulls the information from the database, which contains the inertia relief output from the most recent solution [SOLVE or PSOLVE].

This command is valid in any processor.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

## This command cannot be accessed from a menu.

## *ITENGINE, Type, EngineName, PrecondName, Matrix, RhsVector, SolVector, Maxlter, Toler

## Performs a solution using an iterative solver.

APDL:Matrix Operations<br>MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Argument Descriptions

## Type

Specifies the algorithm to be used:
PCG --
Preconditioned conjugate gradient (default).

## EngineName

Name used to identify this iterative solver engine. Must be specified.

## PrecondName

Linear solver engine name (*LSENGINE) identifying the factored matrix to be used as the preconditioner.

## Matrix

Name of the matrix to solve.

## RhsVector

Matrix (load vector) name.

## SolVector

Solution vector name. If non-zero, it will be taken as the initial vector for the iterative process.

## MaxIter

Maximum number of iterations allowed. Default is 2 times the number of rows in the matrix.

## toler

Convergence tolerance. Default is $1.0 \mathrm{E}-8$.

## Notes

This command solves $\mathrm{Ax}=\mathrm{b}$ using a preconditioned conjugate gradient algorithm. It uses an existing factored system as the preconditioner. This solution method is useful if an existing matrix has been solved and minor changes have been made to the matrix.

## Menu Paths

This command cannot be accessed from a menu.

# J Commands 

## JPEG, Kywrd, OPT

## Provides JPEG file export for ANSYS displays.

GRAPHICS: Set Up<br>MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Kywrd

Specifies various JPEG file export options.
QUAL
If Kywrd $=$ QUAL, then $O P T$ is an integer value defining the JPEG quality index on an arbitrary scale ranging from 1 to 100. The default value is 75 .

## ORIENT

If Kywrd = ORIENT, then OPT will determine the orientation of the entire plot. OPT can be either Horizontal (default) or Vertical.

## COLOR

If Kywrd $=$ COLOR, then $O P T$ will determine the color depth of the saved file. $O P T$ can be 0,1 , or 2, corresponding to Black and White, Grayscale, and Color (default), respectively.
TMOD
If Kywrd $=$ TMOD, then $O P T$ will determine the text method. $O P T$ can be either 1 or 0 , corresponding to bitmap text (default) or line stroke text, respectively.

## DEFAULT

If Kywrd = DEFAULT, then all of the default values, for all of the Kywrd parameters listed above, are active.

OPT
$O P T$ can have the following names or values, depending on the value for Kywrd (see above).

1 to 100
If Kywrd $=$ QUAL, a value between 1 and 100 will determine the quality index of the JPEG file.

## Horizontal, Vertical

If Kywrd $=$ ORIENT, the terms Horizontal or Vertical determine the orientation of the plot.
0,1,2
If Kywrd $=$ COLOR, the numbers 0,1 , and 2 correspond to Black and White, Grayscale and Color, respectively.
1,0
If Kywrd $=$ TMOD, the values 1 and 0 determine whether bitmap (1) or stroke text (0) fonts will be used

## Menu Paths

Utility Menu>PlotCtrIs>HardCopy>ToFile

JSOL, NVAR, ELEM, ITEM, COMP, Name
Specifies result items to be stored for the joint element.

> POST2 6: Set Up
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NVAR

Arbitrary reference number or name assigned to this variable. Variable numbers can be 2 to $N V$ (NUMVAR) while the name can be an eight-byte character string. Overwrites any existing results for this variable.

## ELEM

Element number for which to store results.

## Item

Label identifying the item. Valid item labels are shown in Table 222: JSOL - Valid Item and Component Labels (p. 860) below.

## Comp

Component of the Item (if required). Valid component labels are shown in Table 222: JSOL - Valid Item and Component Labels (p. 860) below.

## Name

Thirty-two character name identifying the item on printouts and displays. Defaults to a label formed by concatenating the first four characters of the Item and comp labels.

## Notes

This command is valid for the MPC184 joint elements. The values stored are for the free or unconstrained degrees of freedom of a joint element. Relative reaction forces and moments are available only if stiffness, damping, or friction is associated with the joint element.

Table 222 JSOL - Valid Item and Component Labels

| Item | Comp | Description |
| :---: | :--- | :--- |
| $U$ | $X, Y, Z$ | $x, y$, or $Z$ relative displacement. |
| ROT | $X, Y, Z$ | $x, y$, or $Z$ relative rotation. |
| VEL | $X, Y, Z$ | $x, y$, or $Z$ relative linear velocity. |
| OMG | $X, Y, Z$ | $x, y$, or $Z$ relative angular velocity. |
| ACC | $X, Y, Z$ | $x, y$, or $Z$ relative linear acceleration. |
| DMG | $X, Y, Z$ | $x, y$, or $Z$ relative angular acceleration. |
| RF | $X, Y, Z$ | Relative reaction forces in the local $x, y$, or $z$ direction. |
| RM | $X, Y, Z$ | Relative reaction moments in the local $x, y$, or $z$ direction. |

## Menu Paths

This command cannot be accessed from a menu.

## K Commands

$\mathbf{K}, N P T, X, Y, Z$
Defines a keypoint.

> PREP 7: Keypoints
> MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS

## NPT

Reference number for keypoint. If zero, the lowest available number is assigned [NUMSTR].

## $\boldsymbol{X}, \mathbf{Y}, \mathbf{Z}$

Keypoint location in the active coordinate system (may be $\mathrm{R}, \theta, \mathrm{Z}$ or $\mathrm{R}, \theta, \Phi$ ). If $X=\mathrm{P}$, graphical picking is enabled and all other fields (including NPT) are ignored (valid only in the GUI).

## Notes

Defines a keypoint in the active coordinate system [CSYS] for line, area, and volume descriptions. A previously defined keypoint of the same number will be redefined. Keypoints may be redefined only if it is not yet attached to a line or is not yet meshed. Solid modeling in a toroidal system is not recommended.

## Menu Paths

Main Menu>Preprocessor>Modeling>Create>Keypoints>In Active CS Main Menu>Preprocessor>Modeling>Create>Keypoints>On Working Plane

KATT, MAT, REAL, TYPE, ESYS

## Associates attributes with the selected, unmeshed keypoints.

PREP7:Meshing<br>MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## MAT, REAL, TYPE, ESYS

Material number, real constant set number, type number, and coordinate system number to be associated with selected, unmeshed keypoints.

## Notes

Keypoints subsequently generated from the keypoints will also have these attributes. These element attributes will be used when the keypoints are meshed. If a keypoint does not have attributes associated with it (by this command) at the time it is meshed, the attributes are obtained from the then current MAT, REAL,TYPE, and ESYS command settings. Reissue the KATT command (before keypoints are meshed) to change the attributes. A zero (or blank) argument removes the corresponding association.

If any of the arguments $M A T, R E A L, T Y P E$, or $E S Y S$ are defined as -1 , then that value will be left unchanged in the selected set.

In some cases, ANSYS can proceed with a keypoint meshing operation even when no logical element type has been assigned via KATT,,,TYPE or TYPE. For more information, see the discussion on setting element attributes in Meshing Your Solid Model in the Modeling and Meshing Guide.

## Menu Paths

Main Menu>Preprocessor>Meshing>Mesh Attributes>All Keypoints
Main Menu>Preprocessor>Meshing>Mesh Attributes>Picked KPs

KBC, $K E Y$

## Specifies stepped or ramped loading within a load step.

> SOLUTION:Load Step Options
> MP ME ST PR PRN <> <> <> EM EH <> PP <> EME MFS

## KEY

Ramping key:
0
Loads are linearly interpolated (ramped) for each substep from the values of the previous load step to the values of this load step.

1
Loads are step changed (stepped) at the first substep of this load step to the values of this load step (i.e., the same values are used for all substeps). Useful for rate-dependent behavior (e.g., creep, viscoplasticity, etc.) or transient load steps only.

## Command Default

When SOLCONTROL is ON, ANSYS performs ramped loading if ANTYPE,STATIC, or if ANTYPE,TRANS and TIMINT,OFF. It performs stepped loading if ANTYPE,TRANS and TIMINT,ON. (In a transient analysis, TIMINT,ON is the default.)

When SOLCONTROL is OFF, ramped loading for all types of transient or nonlinear analysis.

## Notes

Specifies whether loads applied to intermediate substeps within the load step are to be stepped or ramped. Used only if DTIME on the DELTIM command is less than the time span or, conversely, if NSBSTP on the NSUBST command is greater than one. Flags (FSI, MXWF, MVDI, etc.) are always stepped.

For ramped loading ( $\mathbf{K B C}, 0$ ), when a load is applied for the first time, it is interpolated from zero to the value of the current load step, and not from the initial condition or value of the degree of freedom from the previous load step. Spatially varying tabular loads or boundary conditions do not support direct ramping or stepping options and, instead, apply their full values according to the supplied tabular functions regardless of the KBC setting.

For a static or harmonic cyclic symmetry analysis, any load that varies by sector (CYCOPT,LDSECT) is tabular and is applied as a step change, regardless of the KBC setting; however, any non-tabular loads in the same analysis are ramped or stepped according to the KBC setting.

Irrespective of the KBC setting, loads are usually step-removed. See Stepping or Ramping Loads in the Basic Analysis Guide for more information.

It is sometimes difficult to obtain successful convergence with stepped loading in a nonlinear transient problem. If divergence is encountered, determine if stepped loading was used by default, then determine if it is appropriate for the analysis.

If you run an analysis using optimized nonlinear solution defaults (SOLCONTROL,ON) but do not issue the KBC command, the program chooses whether or not to use stepped or ramped loads. The program-chosen option will be recorded on the load step files as KBC,-1.

This command is also valid in PREP7.

## Menu Paths

Main Menu>Preprocessor>Loads>Analysis Type>Sol'n Controls>Transient Main Menu>Preprocessor>Loads>Load Step Opts>Time/Frequenc>Freq and Substps<br>Main Menu>Preprocessor>Loads>Load Step Opts>Time/Frequenc>Time - Time Step<br>Main Menu>Preprocessor>Loads>Load Step Opts>Time/Frequenc>Time and Substps<br>Main Menu>Solution>Analysis Type>Sol'n Controls $>$ Transient<br>Main Menu>Solution>Load Step Opts $>$ Time/Frequenc>Freq and Substps<br>Main Menu>Solution>Load Step Opts>Time/Frequenc>Time - Time Step<br>Main Menu>Solution>Load Step Opts>Time/Frequenc>Time and Substps

KBETW, KP1, KP2, KPNEW, Type, VALUE

## Creates a keypoint between two existing keypoints.

> PREP 7: Keypoints
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

KP1
First keypoint. If $K P 1=P$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI).

## KP2

Second keypoint.

## KPNEW

Number assigned to the new keypoint. Defaults to the lowest available keypoint number.

## Type

Type of input for VALUE.
RATIO
Value is the ratio of the distances between keypoints as follows: (KP1-KPNEW)/(KP1-KP2).
DIST
Value is the absolute distance between KP1 and KPNEW (valid only if current coordinate system is Cartesian).

## VALUE

Location of new keypoint, as defined by Type (defaults to 0.5). If VALUE is a ratio (Type $=$ RATIO) and is less than 0 or greater than 1, the keypoint is created on the extended line. Similarly, if VALUE is a distance ( Type $=$ DIST) and is less than 0 or greater than the distance between KP1 and KP2, the keypoint is created on the extended line.

## Notes

Placement of the new keypoint depends on the currently active coordinate system [CSYS]. If the coordinate system is Cartesian, the keypoint will lie on a straight line between KP1 and KP2. If the system is not Cartesian (e.g., cylindrical, spherical, etc.), the keypoint will be located as if on a line (which may not be straight) created in the current coordinate system between KP1 and KP2. Note that solid modeling in a toroidal coordinate system is not recommended.

## Menu Paths

## Main Menu>Preprocessor>Modeling>Create>Keypoints>KP between KPs

## KCALC, KPLAN, MAT, KCSYM, KLOCPR

Calculates stress intensity factors in fracture mechanics analyses.
POST1:Special Purpose
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

## KPLAN

Key to indicate stress state for calculation of stress intensity factors:
0
Plane strain and axisymmetric condition (default).
1
Plane stress condition.

## MAT

Material number used in the extrapolation (defaults to 1 ).

## KCSYM

Symmetry key:
0 or 1
Half-crack model with symmetry boundary conditions [DSYM] in the crack-tip coordinate system. $\mathrm{K}_{\|}$ $=\mathrm{K}_{\mathrm{III}}=0$. Three nodes are required on the path.

2
Like 1 except with antisymmetric boundary conditions ( $\mathrm{K}_{\mathrm{I}}=0$ ).
3
Full-crack model (both faces). Five nodes are required on the path (one at the tip and two on each face).

## KLOCPR

Local displacements print key:

## 0

Do not print local crack-tip displacements.
1
Print local displacements used in the extrapolation technique.

## Notes

Calculates the stress intensity factors ( $\mathrm{K}_{1}, \mathrm{~K}_{I I}$, and $\mathrm{K}_{I I I}$ ) associated with homogeneous isotropic linear elastic fracture mechanics. A displacement extrapolation method is used in the calculation (see POST1-Crack Analysis in the Theory Reference for the Mechanical APDL and Mechanical Applications). This method assumes that the displacement calculations are for the plane strain state. If the displacement calculations are performed using a plane stress formulation, the calculation of the stress intensity factors can be converted to the plane strain state by using KPLAN $=1$. ANSYS Uses minor Poisson's ratio (MP,NUXY) for the stress intensity factor calculation, therefore the material's Poisson's ratio must be defined using MP,NUXY command. The PATH and PPATH commands must be used to define a path with the crack face nodes (NODE1 at the crack tip, NODE 2 and NODE 3 on one face, NODE 4 and NODE 5 on the other (optional) face). A crack-tip coordinate system, having $\times$ parallel to the crack face (and perpendicular to the crack front) and y perpendicular to the crack face, must be the active RSYS and CSYS before KCALC is issued.

## Menu Paths

## Main Menu>General Postproc>Nodal Calcs>Stress Int Factr

KCENTER, Type, VAL1, VAL2, VAL3, VAL4, KPNEW

## Creates a keypoint at the center of a circular arc defined by three locations.

PREP 7: Keypoints
MP ME ST PR PRN <> <> FL EM EH DY PP $<>$ EME MFS

## Type

Type of entity used to define the circular arc. The meaning of VAL1 through VAL4 will vary depending on Type. If Type $=\mathrm{P}$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI).
KP
Arc is defined by keypoints.

## LINE

Arc is defined by locations on a line.

## VAL1, VAL2, VAL3, VAL4

Values used to specify three locations on the arc (see table below).

## KPNEW

Number assigned to new keypoint. Defaults to the lowest available keypoint number.

## Definitions:

If Type $=\mathrm{KP}$, inputs VAL1 through VAL4 are defined as follows:

## VAL1

First keypoint.

## VAL2

Second keypoint.
VAL3
Third keypoint.
VAL4
Arc radius. If $V A L 4=0$ or blank (default), the arc is defined by the three keypoints specified as VAL1, $V A L 2$, and VAL3 and arc radius is not used. If VAL4 is nonzero, VAL1, VAL2, and VAL4 are used to calculate the center point, and VAL3 is used to locate the center point as follows:

VAL $4>0$
Center point and VAL3 are on the same side of the line between the first two keypoints.

## VAL4<0

Center point and VAL3 are on opposite sides of the line between the first two keypoints.
If Type $=$ LINE, inputs VAL1 through VAL4 are defined as follows:

## VAL1

Line number.

## VAL2

Line ratio ( 0 to 1 ) indicating the first location (defaults to 0 ).

## VAL3

Line ratio (0 to 1 ) indicating the second location (defaults to 0.5 ).

## VAL4

Line ratio ( 0 to 1 ) indicating the third location (defaults to 1 ).

## Notes

KCENTER should be used in the Cartesian coordinate system (CSYS,0) only. This command provides three methods to define a keypoint at the center of three locations. As shown below, the center point can be calculated based on a) three keypoints, b) three keypoints and a radius, or c) three locations on a line. Note that for method $c$, if a circular line is specified by VAL1,VAL2 through VAL4 are not needed.


## Menu Paths

Main Menu>Preprocessor>Modeling>Create>Keypoints>KP at center>3 keypoints Main Menu>Preprocessor>Modeling>Create>Keypoints>KP at center>3 KPs and radius
Main Menu>Preprocessor>Modeling>Create>Keypoints>KP at center>Location on line

## KCLEAR, NP1, NP2, NINC

## Deletes nodes and point elements associated with selected keypoints.

PREP 7:Meshing
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NP1, NP2, NINC

Delete mesh for keypoints NP1 to NP2 (defaults to NP1) in steps of NINC (defaults to 1). If NP1 = ALL, NP2 and NINC are ignored and the mesh for all selected keypoints [KSEL] is deleted. If NP1 = P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NP1.

## Notes

Deletes all nodes and point elements associated with selected keypoints (regardless of whether the nodes or elements are selected). Nodes associated with non-point elements will not be deleted. Attributes assigned as a result of KATT are maintained. In the program's response to the command, if a keypoint is tallied as "cleared," it means either its node or element reference was deleted.

## Menu Paths

Main Menu>Preprocessor>Meshing>Clear>Keypoints

## KDELE, NP1,NP2,NINC

## Deletes unmeshed keypoints.

> PREP 7: Keypoints
> MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS

## NP1, NP2, NINC

Delete keypoints from NP1 to NP2 (defaults to NP1) in steps of NINC (defaults to 1). If NP1 = ALL, NP2 and NINC are ignored and all selected keypoints [KSEL] are deleted. If NPI $=\mathrm{P}$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NP1 (NP2 and NINC are ignored).

## Notes

Deletes selected keypoints. A keypoint attached to a line cannot be deleted unless the line is first deleted.

## Menu Paths

Main Menu>Preprocessor>Modeling>Delete>Keypoints

KDIST, KP1, KP2
Calculates and lists the distance between two keypoints.

> PREP 7: Keypoints
> MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS

## KP1

First keypoint in distance calculation. If $K P 1=P$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI).

## KP2

Second keypoint in distance calculation.

## Notes

KDIST lists the distance between keypoints KP1 and KP2, as well as the current coordinate system offsets from KP1 to KP2, where the $X, Y$, and $Z$ locations of $K P 1$ are subtracted from the $X, Y$, and $Z$ locations of KP2 (respectively) to determine the offsets. KDIST is valid in any coordinate system except toroidal [CSYS,3].

KDIST returns a variable, called "_RETURN," which contains the distance value. You can use this value for various purposes; for example, to set the default number of line divisions to be generated along region boundary lines [ESIZE,_RETURN]. In interactive mode, you can access this command by using the Model Query Picker (Utility Menu> List> Picked Entities), where you can also access automatic annotation functions, and display the value on your model.

This command is valid in any processor.

## Menu Paths

Main Menu>Preprocessor>Modeling>Check Geom>KP distances

## KEEP, Key

## Stores POST26 definitions and data during active session.

POST26:Display<br>MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Key

State or value

## On or 1

Allows you to exit and reenter /POST26 without losing your current time history variable information. Keeps a cache of the /POST26 variable information including the active file name (FILE), variable definitions (NSOL, ESOL, GAPF, RFORCE, SOLU, and EDREAD) and stored variable data in memory for the current ANSYS session.

Off or 0
/POST26 variable information is deleted when you exit /POST26.

## Command Default

ON - Hold time history information in memory. You can, for example, move back and forth between /POST1 and /POST26 without redefining and storing the time history variables each time you enter /POST26.

## Notes

Your variable information is saved in memory only for the current active ANSYS session. It is deleted when you exit ANSYS. This information is also deleted when you issue /CLEAR, RESUME, SOLVE, or RESET.

When you reenter /POST26 all time history variable data is available for use. When you issue STORE,NEW, variable definitions created by math operations such as ADD or PROD will not be restored. However, variables defined with NSOL, ESOL, GAPF, RFORCE, SOLU, and EDREAD will be restored. Only the last active results file name is kept in memory (FILE).

Commands such as LAYERP26, SHELL, and FORCE that specify the location or a component of data to be stored will retain the setting at the time of exiting /POST26 .

## Menu Paths

Main Menu>TimeHist Postpro>Settings>Data

KESIZE, NPT, SIZE, FACT1, FACT2
Specifies the edge lengths of the elements nearest a keypoint.

> PREP 7:Meshing
> MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS

## NPT

Number of the keypoint whose lines will be adjusted. If ALL, use all selected keypoints [KSEL]. If $N P T=$ P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI).

## SIZE

Size of elements along lines nearest keypoint NPT (overrides any other specified size). If SIZE is zero (or blank), use FACT1 or FACT2.

## FACT1

Scale factor applied to a previously defined SIZE. Not used if SIZE is input.

## FACT2

Scale factor applied to the minimum element division at keypoint NPT for any attached line. This feature is useful with adaptive mesh refinement. Not used if SIZE or FACTI is input.

## Notes

Affects only the line divisions adjacent to the keypoint on lines not previously assigned divisions by other line commands [LESIZE, etc.]. The remaining line divisions are determined from the division nearest the keypoint at the other end of the line (specified by another KESIZE command or the ESIZE command). Divisions are transferred to the lines during the mesh operation. If smart element sizing is being used [SMRTSIZE], KESIZE specifications may be overridden (i.e., a smaller element size may be used) to accommodate curvature and small features.

This command is valid in any processor. The command is also valid for rezoning.

## Menu Paths

Main Menu>Preprocessor>Meshing>Size Cntrls>ManualSize>Keypoints>All KPs
Main Menu>Preprocessor>Meshing>Size Cntrls>ManualSize>Keypoints>Clr Size
Main Menu>Preprocessor>Meshing>Size Cntrls>ManualSize>Keypoints>Picked KPs

KEYOPT, ITYPE, KNUM, VALUE

## Sets element key options.

> PREP 7: Element Type
> MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS

## ITYPE

Element type number as defined on the ET command.

## KNUM

Number of the KEYOPT to be defined (KEYOPT(KNUM)).

## VALUE

Value of this KEYOPT.

## Notes

Alternative to inputting KEYOPT values on ET command. Must be used if KEYOPT(7) or greater values are to be input. ITYPE must first be defined with the ET command.

## Menu Paths

# Main Menu>Preprocessor>FLOTRAN Set Up>Flow Environment>FLOTRAN Coor Sys <br> Main Menu>Preprocessor>FLOTRAN Set Up>Multiple Species <br> Main Menu>Solution>FLOTRAN Set Up>Flow Environment>FLOTRAN Coor Sys <br> Main Menu>Solution>FLOTRAN Set Up>Multiple Species 

## KEYPTS

## Specifies "Keypoints" as the subsequent status topic.

PREP 7: Status
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Notes

This is a status [STAT] topic command. Status topic commands are generated by the GUI and will appear in the log file (Jobname. LOG) if status is requested for some items under Utility Menu> List> Status. This command will be immediately followed by a STAT command, which will report the status for the specified topic.

If entered directly into the program, the STAT command should immediately follow this command.

## Menu Paths

This command cannot be accessed from a menu.

KEYW, Keyword, KEY
Sets a keyword used by the GUI for context filtering (GUI).
SESSION:Run Controls
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Keyword

A keyword which, when set to either true or false, changes the behavior of the GUI.

## KEY

Keyword switch:
0
Sets the keyword to "false."
1
Sets the keyword to "true."

## Notes

Defines a keyword used by the GUI for context filtering. This is a command generated by the GUI and may appear in the log file (Jobname. LOG) if the GUI is used. This command is usually not typed in directly in an ANSYS session.

This command is valid in any processor.

## Menu Paths

Main Menu>Preferences

KFILL, NP1, NP2, NFILL, NSTRT, NINC, SPACE

## Generates keypoints between two keypoints.

PREP 7:Keypoints
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NP1, NP2

Beginning and ending keypoints for fill-in. NP1 defaults to next to last keypoint specified, NP2 defaults to last keypoint specified. If NP1 = P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI).

## NFILL

Fill $N F I L L$ keypoints between $N P 1$ and $N P 2$ (defaults to $|N P 2-N P 1|-1$ ). NFILL must be positive.

## NSTRT

Keypoint number assigned to first filled-in keypoint (defaults to NP1 + NINC).

## NINC

Add this increment to each of the remaining filled-in keypoint numbers (may be positive or negative).
Defaults to (NP2-NP1)/(NFILL + 1), i.e., linear interpolation.

## SPACE

Spacing ratio. Ratio of last division size to first division size. If > 1.0, divisions increase. If < 1.0, divisions decrease. Ratio defaults to 1.0 (uniform spacing).

## Notes

Generates keypoints (in the active coordinate system) between two existing keypoints. The two keypoints may have been defined in any coordinate system. However, solid modeling in a toroidal coordinate system is not recommended. Any number of keypoints may be filled in and any keypoint numbering sequence may be assigned.

## Menu Paths

Main Menu>Preprocessor>Modeling>Create>Keypoints>Fill between KPs

KGEN, ITIME, NP1, NP2, NINC, DX, DY, DZ, KINC, NOELEM, IMOVE
Generates additional keypoints from a pattern of keypoints.

> PREP 7: Keypoints
> MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS

## ITIME

Do this generation operation a total of ITIME times, incrementing all keypoints in the given pattern automatically (or by KINC) each time after the first. ITIME must be more than 1 for generation to occur.

## NP1, NP2, NINC

Generate keypoints from the pattern of keypoints beginning with NP1 to NP2 (defaults to NP1) in steps of NINC (defaults to 1 ). If NP $1=A L L, N P 2$ and NINC are ignored and the pattern is all selected keypoints [KSEL]. If NP1 is negative, NP2 and NINC are ignored and the last |NP1| keypoints (in sequence from the highest keypoint number) are used as the pattern to be repeated. If NPI = P , graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NP1 (NP2 and NINC are ignored).

## DX, DY, DZ

Keypoint location increments in the active coordinate system (DR, D日, DZ for cylindrical, DR, D9, D $\Phi$ for spherical).

## KINC

Keypoint increment between generated sets. If zero, the lowest available keypoint numbers are assigned [NUMSTR].

## NOELEM

Specifies if elements and nodes are also to be generated:
0
Generate nodes and point elements associated with the original keypoints, if they exist.

## 1

Do not generate nodes and elements.

## IMOVE

Specifies whether keypoints will be moved or newly defined:
0
Generate additional keypoints as requested with the ITIME argument.
1
Move original keypoints to new position retaining the same keypoint numbers (ITIME, KINC, and NOELEM are ignored). Valid only if the old keypoints are no longer needed at their original positions. Corresponding meshed items are also moved if not needed at their original position.

## Notes

Generates additional keypoints (and corresponding mesh) from a given keypoint pattern. The MAT, TYPE, REAL, and ESYS attributes are based upon the keypoints in the pattern and not upon the current settings. Generation is done in the active coordinate system. Keypoints in the pattern may have been defined in any coordinate system. However, solid modeling in a toroidal coordinate system is not recommended.

## Menu Paths

## Main Menu>Preprocessor>Modeling>Copy>Keypoints

KL, NL1, RATIO, NK1

## Generates a keypoint at a specified location on an existing line.

PREP7:Keypoints
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NL1

Number of the line. If negative, the direction of line (as interpreted for RATIO) is reversed. If NLI = P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI).

## RATIO

Ratio of line length to locate keypoint. Must be between 0.0 and 1.0. Defaults to 0.5 (divide the line in half).

## NK1

Number to be assigned to keypoint generated at division location (defaults to lowest available keypoint number [NUMSTR]).

## Menu Paths

Main Menu>Preprocessor>Modeling>Create>Keypoints>On Line Main Menu>Preprocessor>Modeling>Create>Keypoints>On Line w/Ratio

KLIST,NP1,NP2,NINC, Lab
Lists the defined keypoints or hard points.
PREP 7:Keypoints
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NP1, NP2, NINC

List keypoints from NP1 to NP2 (defaults to NP1) in steps of NINC (defaults to 1). If NP1 = ALL (default), NP2 and NINC are ignored and all selected keypoints [KSEL] are listed. If NP1 = P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NP1 (NP2 and NINC are ignored).

## Lab

Coordinate listing key:

## (blank)

List all keypoint information.
COORD
Suppress all but the keypoint coordinates (shown to a higher degree of accuracy than when displayed with all information).

HPT
List only hard point information.

## Notes

Lists keypoints in the active display coordinate system [DSYS]. An attribute (TYPE, MAT, REAL, or ESYS) listed as a zero is unassigned; one listed as a positive value indicates that the attribute was assigned with the KATT command (and will not be reset to zero if the mesh is cleared); one listed as a negative value indicates
that the attribute was assigned using the attribute pointer [TYPE, MAT, REAL, or ESYS] that was active during meshing (and will be reset to zero if the mesh is cleared).

This command is valid in any processor.

## Menu Paths

# Utility Menu>List>Keypoints>Coordinates +Attributes <br> Utility Menu>List>Keypoints>Coordinates only <br> Utility Menu>List>Keypoints>Hard Points 

KMESH,NP1,NP2,NINC

## Generates nodes and point elements at keypoints.

PREP 7: Meshing
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NP1, NP2, NINC

Mesh keypoints from NP1 to NP2 (defaults to NP1) in steps of NINC (defaults to 1). If NP1 = ALL, NP2 and NINC are ignored and all selected keypoints [KSEL] are meshed. If NPI = P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NP1.

## Notes

Missing nodes required for the generated elements are created and assigned the lowest available numbers.

## Menu Paths

## Main Menu>Preprocessor>Meshing>Mesh>Keypoints

KMODIF, NPT, $X, Y, Z$

## Modifies an existing keypoint.

> PREP 7: Keypoints
> MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS

## NPT

Modify coordinates of this keypoint. If $N P T$ = ALL, modify coordinates of all selected keypoints [KSEL]. If $N P T=$ P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NPT.
$\mathbf{X}, \mathbf{Y}, \mathbf{Z}$
Replace the previous coordinate values assigned to this keypoint with these corresponding coordinate values. Values are interpreted according to the active coordinate system ( $R, \theta, Z$ for cylindrical, $R, \theta, \Phi$ for spherical). If $X=\mathrm{P}$, graphical picking is used to locate keypoint and $Y$ and $Z$ are ignored. A blank retains the previous value. You cannot specify $Y=P$.

## Notes

Lines, areas, and volumes attached to the modified keypoint (if any) must all be selected and will be redefined using the active coordinate system. However, solid modeling in a toroidal coordinate system is not recommended.

## Caution

Redefined entities may be removed from any defined components and assemblies. Nodes and elements will be automatically cleared from any redefined keypoints, lines, areas, or volumes.

The KMODIF command moves keypoints for geometry modification without validating underlying entities. To merge keypoints and update higher order entities, issue the NUMMRG command instead.

## Menu Paths

Main Menu>Preprocessor>Modeling>Move / Modify>Keypoints>Set of KPs Main Menu>Preprocessor>Modeling>Move / Modify>Keypoints>Single KP

KMOVE, NPT, KC1, X1, Y1, Z1, KC2, X2, Y2, Z2

## Calculates and moves a keypoint to an intersection.

> PREP 7: Keypoints
> MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS

## NPT

Move this keypoint. If $N P T=P$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for $N P T$.

## KC1

First coordinate system number. Defaults to 0 (global Cartesian).
x1, Y1, $z 1$
Input one or two values defining the location of the keypoint in this coordinate system. Input "U" for unknown value(s) to be calculated and input "E" to use an existing coordinate value. Fields are R1, $\theta 1$, Z1 for cylindrical, or R1, $\theta 1, \phi 1$ for spherical.

## KC2

Second coordinate system number.

## X2, Y2, z2

Input two or one value(s) defining the location of the keypoint in this coordinate system. Input "U" for unknown value(s) to be calculated and input "E" to use an existing coordinate value. Arguments are R2, $\theta 2, \mathrm{Z2}$ for cylindrical, or R2, $\theta 2, \phi 2$ for spherical.

## Notes

Calculates and moves a keypoint to an intersection location. The keypoint must have been previously defined (at an approximate location) or left undefined (in which case it is internally defined at the SOURCE location). The actual location is calculated from the intersection of three surfaces (implied from three coordinate constants in two different coordinate systems). Note that solid modeling in a toroidal coordinate system is
not recommended. See the MOVE command for surface and intersection details. The three (of six) constants easiest to define should be used. The program will calculate the remaining three coordinate constants. All arguments, except $K C 1$, must be input. Use the repeat command [*REPEAT] after the KMOVE command to move a series of keypoints, if desired.

## Menu Paths

Main Menu>Preprocessor>Modeling>Move / Modify>Keypoints>To Intersect

KNODE, NPT, NODE

## Defines a keypoint at an existing node location.

PREP7:Keypoints
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NPT

Arbitrary reference number for keypoint. If zero, the lowest available number is assigned [NUMSTR].

## NODE

Node number defining global $X, Y, Z$ keypoint location. If $N O D E=\mathrm{P}$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NODE.

## Menu Paths

Main Menu $>$ Preprocessor $>$ Modeling $>$ Create $>$ Keypoints $>$ On Node

KPLOT, NP1, NP2, NINC, Lab

## Displays the selected keypoints.

PREP 7:Keypoints
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NP1, NP2, NINC

Display keypoints from NP1 to NP2 (defaults to NP1) in steps of NINC (defaults to 1). If NP1 = ALL (default), NP2 and NINC are ignored and all selected keypoints [KSEL] are displayed.

## Lab

Determines what keypoints are plotted (one of the following):
(blank)
Plots all keypoints.
HPT
Plots only those keypoints that are hard points.

## Notes

This command is valid in any processor.

## Menu Paths

Utility Menu>Plot>Keypoints>Hardpoints<br>Utility Menu>Plot>Keypoints>Keypoints<br>Utility Menu>Plot>Specified Entities>Keypoints

## KPSCALE, NP1,NP2,NINC, RX, RY, RZ, KINC, NOELEM, IMOVE

## Generates a scaled set of (meshed) keypoints from a pattern of keypoints.

PREP 7: Keypoints
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NP1, NP2, NINC

Set of keypoints (NP1 to NP2 in steps of NINC) that defines the pattern to be scaled. NP2 defaults to $N P 1, N I N C$ defaults to 1 . If NP $1=$ ALL, NP 2 and NINC are ignored and the pattern is defined by all selected keypoints. If NP1 = P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NP1 (NP2 and NINC are ignored).

## RX, RY, RZ

Scale factors to be applied to the $X, Y, Z$ keypoint coordinates in the active coordinate system (RR, R $\theta$, $R Z$ for cylindrical; $R R, R \theta, R \Phi$ for spherical). The $R \theta$ and $R \Phi$ scale factors are interpreted as angular offsets. For example, if $\operatorname{CSYS}=1$, an $R X, R Y, R Z$ input of $(1.5,10,3)$ would scale the specified keypoints 1.5 times in the radial and 3 times in the $Z$ direction, while adding an offset of 10 degrees to the keypoints.) Zero, blank, or negative scale factor values are assumed to be 1.0. Zero or blank angular offsets have no effect.

## KINC

Increment to be applied to the keypoint numbers for generated set. If zero, the lowest available keypoint numbers will be assigned [NUMSTR].

## NOELEM

Specifies whether nodes and elements are also to be generated:
0
Nodes and point elements associated with the original keypoints will be generated (scaled) if they exist.

1
Nodes and point elements will not be generated.

## IMOVE

Specifies whether keypoints will be moved or newly defined:
0
Additional keypoints will be generated.
1
Original keypoints will be moved to new position (KINC and NOELEM are ignored). Use only if the old keypoints are no longer needed at their original positions. Corresponding meshed items are also moved if not needed at their original position.

## Notes

Generates a scaled set of keypoints (and corresponding mesh) from a pattern of keypoints. The MAT, TYPE, REAL, and ESYS attributes are based on the keypoints in the pattern and not the current settings. Scaling is
done in the active coordinate system. Keypoints in the pattern could have been generated in any coordinate system. However, solid modeling in a toroidal coordinate system is not recommended.

## Menu Paths

## Main Menu>Preprocessor>Modeling>Operate>Scale>Keypoints

KREFINE, NP1, NP2, NINC, LEVEL, DEPTH, POST, RETAIN

## Refines the mesh around specified keypoints.

PREP 7:Meshing
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NP1, NP2, NINC

Keypoints (NP1 to NP2 in increments of NINC) around which the mesh is to be refined. NP2 defaults to $N P 1$, and NINC defaults to 1 . If $N P 1=A L L, N P 2$ and $N I N C$ are ignored and all selected keypoints are used for refinement. If NP $1=\mathrm{P}$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NP1 (NP2 and NINC are ignored).

## LEVEL

Amount of refinement to be done. Specify the value of $L E V E L$ as an integer from 1 to 5 , where a value of 1 provides minimal refinement, and a value of 5 provides maximum refinement (defaults to 1 ).

## DEPTH

Depth of mesh refinement in terms of the number of elements outward from the indicated keypoints (defaults to 1 ).

## POST

Type of postprocessing to be done after element splitting, in order to improve element quality:

## OFF

No postprocessing will be done.

## SMOOTH

Smoothing will be done. Node locations may change.

## CLEAN

Smoothing and cleanup will be done. Existing elements may be deleted, and node locations may change (default).

## RETAIN

Flag indicating whether quadrilateral elements must be retained in the refinement of an all-quadrilateral mesh. (The ANSYS program ignores the RETAIN argument when you are refining anything other than a quadrilateral mesh.)

## ON

The final mesh will be composed entirely of quadrilateral elements, regardless of the element quality (default).

## OFF

The final mesh may include some triangular elements in order to maintain element quality and provide transitioning.

## Notes

KREFINE performs local mesh refinement around the specified keypoints. By default, the indicated elements are split to create new elements with $1 / 2$ the edge length of the original elements ( $L E V E L=1$ ).

KREFINE refines all area elements and tetrahedral volume elements that are adjacent to the specified keypoints. Any volume elements that are adjacent to the specified keypoints, but are not tetrahedra (for example, hexahedra, wedges, and pyramids), are not refined.

You cannot use mesh refinement on a solid model that contains initial conditions at nodes [IC], coupled nodes [CP family of commands], constraint equations [CE family of commands], or boundary conditions or loads applied directly to any of its nodes or elements. This applies to nodes and elements anywhere in the model, not just in the region where you want to request mesh refinement. See Revising Your Model in the Modeling and Meshing Guide for additional restrictions on mesh refinement.

This command is also valid for rezoning.

## Menu Paths

Main Menu>Preprocessor>Meshing>Modify Mesh>Refine At>Keypoints

KSCALE, KINC, NP1, NP2, NINC, RX, RY, RZ
Generates a scaled pattern of keypoints from a given keypoint pattern.
PREP 7:Keypoints
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## KINC

Do this scaling operation one time, incrementing all keypoints in the given pattern by KINC. If $K I N C=$ 0 , keypoints will be redefined at the scaled locations.

## NP1, NP2, NINC

Scale keypoints from pattern beginning with NP1 to NP2 (defaults to NP1) in steps of NINC (defaults to 1). If NP1 = ALL, NP2 and NINC are ignored and pattern is all selected keypoints [KSEL]. If NP $1=\mathrm{P}$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NP1 (NP2 and NINC are ignored).

## RX, RY, RZ

Scale factor ratios. Scaling is relative to the origin of the active coordinate system (RR, RQ, RZ for cylindrical, $R R, R \theta, R \Phi$ for spherical). If > 1.0, pattern is enlarged. If < 1.0, pattern is reduced. Ratios each default to 1.0 .

## Notes

Generates a scaled pattern of keypoints from a given keypoint pattern. Scaling is done in the active coordinate system (see analogous node scaling [NSCALE]). Solid modeling in a toroidal coordinate system is not recommended.

## Menu Paths

This command cannot be accessed from a menu.

KSCON, NPT, DELR, KCTIP, NTHET, RRAT

## Specifies a keypoint about which an area mesh will be skewed.

PREP 7: Meshing
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NPT

Keypoint number at concentration. If $N P T=$ ALL, use all selected keypoints. If remaining fields are blank, remove concentration from this keypoint (if unmeshed). If $N P T=P$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NPT.

DELR
Radius of first row of elements about keypoint.

## KCTIP

Crack tip singularity key:
0
Do not skew midside nodes, if any, within the element.
1
Skew midside nodes of the first row of elements to the $1 / 4$ point for crack tip singularity.

## NTHET

Number of elements in circumferential direction (defaults to approximately one per $45^{\circ}$ (or one per $30^{\circ}$, if $K C T I P=1)$ ).

RRAT
Ratio of 2 nd row element size to $D E L R$ (defaults to 0.75 , or 0.5 if $K C T I P=1$ ).

## Notes

Defines a concentration keypoint about which an area mesh will be skewed. Useful for modeling stress concentrations and crack tips. During meshing, elements are initially generated circumferentially about, and radially away, from the keypoint. Lines attached to the keypoint are given appropriate divisions and spacing ratios. Only one concentration keypoint per unmeshed area is allowed. Use KSCON,STAT to list current status of concentration keypoints. The KSCON command does not support 3-D modeling.

This command is also valid for rezoning.

## Menu Paths

Main Menu>Preprocessor>Meshing>Size Cntrls>Concentrat KPs>Create Main Menu>Preprocessor>Meshing>Size Cntrls>Concentrat KPs>List

KSEL, Type, Item, Comp, VMIN, VMAX, VINC, KABS

## Selects a subset of keypoints or hard points.

> DATABASE: Selecting
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Type

Label identifying the type of select:
S
Select a new set (default).
R
Reselect a set from the current set.
A
Additionally select a set and extend the current set.
U
Unselect a set from the current set.
ALL
Restore the full set.

## NONE

Unselect the full set.
INVE
Invert the current set (selected becomes unselected and vice versa).
STAT
Display the current select status.
The following fields are used only with Type $=\mathrm{S}, \mathrm{R}, \mathrm{A}$, or U :

## Item

Label identifying data. Valid item labels are shown in the table below. Some items also require a component label. If Item = PICK (or simply "P"), graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). Defaults to KP.

## Comp

Component of the item (if required). Valid component labels are shown in the table below.

## VMIN

Minimum value of item range. Ranges are keypoint numbers, coordinate values, attribute numbers, etc., as appropriate for the item. A component name (as specified on the CM command) may also be substituted for VMIN (VMAX and VINC are ignored). If It em = MAT, TYPE, REAL, or ESYS and if VMIN is positive, the absolute value of Item is compared against the range for selection; if VMIN is negative, the signed value of Item is compared. See the KLIST command for a discussion of signed attributes.

## VMAX

Maximum value of item range. VMAX defaults to VMIN.

## VINC

Value increment within range. Used only with integer ranges (such as for keypoint numbers). Defaults to 1 . VINC cannot be negative.

## KABS

Absolute value key:

## 0

Check sign of value during selection.

## 1

Use absolute value during selection (sign ignored).

## Command Default

All keypoints are selected.

## Notes

Selects a subset of keypoints or hard points. For example, to select a new set of keypoints based on keypoint numbers 1 through 7, use KSEL,S,KP,,1,7. The selected subset is used when the ALL label is entered (or implied) on other commands, such as KLIST,ALL. Only data identified by keypoint number are selected. Data are flagged as selected and unselected; no data are actually deleted from the database.

This command is valid in any processor.
For selections based on non-integer numbers (coordinates, results, etc.), items that are within the range VMIN-Toler and VMAX + Toler are selected. The default tolerance Toler is based on the relative values of VMIN and VMAX as follows:

- If VMIN $=$ VMAX, Toler $=0.005 \times$ VMIN.
- If $V M I N=V M A X=0.0$, Toler $=1.0 \mathrm{E}-6$.
- If VMAX $\neq$ VMIN, Toler $=1.0 \mathrm{E}-8 \times($ VMAX - VMIN $)$.

Use the SELTOL command to override this default and specify Toler explicitly.

| Valid Item and Component Labels KSEL, Type, |  |  | Item, Comp, | VMIN, | VMAX, |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Item | Comp |  | Description |  |  |
| KP |  | Keypoint number. |  |  |  |
| EXT |  | Keypoint numbers on e fields). | xterior of select | d lines | nore |
| HPT |  | Hard point number. |  |  |  |
| LOC | X, Y, Z | $X, Y$, or Z location in the | active coordina | e system |  |
| MAT |  | Material number associa | ated with the keyp | point. |  |
| TYPE |  | Element type number a | ssociated with t | e keypo |  |
| REAL |  | Real constant set numb | er associated with | h the ke | point. |
| ESYS |  | Element coordinate syst | tem associated | ith the | ypoint |

## Menu Paths

## Utility Menu>Select>Entities

## KSLL, Type

## Selects those keypoints contained in the selected lines.

> DATABASE: Selecting
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Type

Label identifying the type of keypoint select:
S
Select a new set (default).
R
Reselect a set from the current set.
A
Additionally select a set and extend the current set.
U
Unselect a set from the current set.

## Notes

This command is valid in any processor.

## Menu Paths

## Utility Menu>Select>Entities

## KSLN, Type

## Selects those keypoints associated with the selected nodes.

> DATABASE: Selecting
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Type

Label identifying the type of keypoint select:
S
Select a new set (default).
R
Reselect a set from the current set.
A
Additionally select a set and extend the current set.
U
Unselect a set from the current set.

## Notes

Valid only if the nodes were generated by a meshing operation [KMESH, LMESH, AMESH, VMESH] on a solid model that contains the associated keypoints.

This command is valid in any processor.

## Menu Paths

## Utility Menu>Select>Entities

## KSUM

## Calculates and prints geometry statistics of the selected keypoints.

PREP 7:Keypoints<br>MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Notes

Calculates and prints geometry statistics (centroid location, moments of inertia, etc.) associated with the selected keypoints. Geometry items are reported in the global Cartesian coordinate system. A unit density is assumed, irrespective of any material associations [KATT, MAT]. Items calculated by KSUM and later retrieved by a *GET or *VGET command are valid only if the model is not modified after the KSUM command is issued.

## Menu Paths

## Main Menu>Preprocessor>Modeling>Operate>Calc Geom Items>Of Keypoints

KSYMM, Ncomp, NP1, NP2, NINC, KINC, NOELEM, IMOVE

## Generates a reflected set of keypoints.

PREP 7: Keypoints
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Ncomp

Symmetry key:
X
X (or R) symmetry (default).
Y
Y (or $\theta$ ) symmetry.
Z
Z (or $\Phi$ ) symmetry.
NP1, NP2, NINC
Reflect keypoints from pattern beginning with NP1 to NP2 (defaults to NP1) in steps of NINC (defaults to 1). If NP1 = ALL, NP2 and NINC are ignored and pattern is all selected keypoints [KSEL]. If Ncomp = P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NP1 (NP2 and NINC are ignored).

## KINC

Keypoint increment between sets. If zero, the lowest available keypoint numbers are assigned [NUMSTR].

## NOELEM

Specifies whether nodes and elements are also to be generated:
0
Generate nodes and point elements associated with the original keypoints, if they exist.
1
Do not generate nodes and elements.

## IMOVE

Specifies whether keypoints will be moved or newly defined:
0
Generate additional keypoints.
1
Move original keypoints to new position retaining the same keypoint numbers (KINC and NOELEM are ignored). Valid only if the old keypoints are no longer needed at their original positions. Corresponding meshed items are also moved if not needed at their original position.

## Notes

Generates a reflected set of keypoints (and corresponding mesh) from a given keypoint pattern by a symmetry reflection (see analogous node symmetry command, NSYM). The MAT, TYPE, REAL, and ESYS attributes are based upon the keypoints in the pattern and not upon the current settings. Reflection is done in the active coordinate system by changing a particular coordinate sign. Keypoints in the pattern may have been generated in any coordinate system. However, solid modeling in a toroidal coordinate system is not recommended.

## Menu Paths

Main Menu>Preprocessor>Modeling>Reflect>Keypoints

KTRAN, KCNTO, NP1, NP2, NINC, KINC, NOELEM, IMOVE

## Transfers a pattern of keypoints to another coordinate system.

> PREP 7: Keypoints
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## KCNTO

Reference number of coordinate system where the pattern is to be transferred. Transfer occurs from the active coordinate system.

## NP1, NP2, NINC

Transfer keypoints from pattern beginning with NP1 to NP2 (defaults to NP1) in steps of NINC (defaults to 1). If NP1 = ALL, NP2 and NINC are ignored and pattern is all selected keypoints [KSEL]. If NP1 = P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NP1 (NP2 and NINC are ignored).

## KINC

Keypoint increment between sets. If zero, the lowest available keypoint numbers are assigned [NUMSTR].

## NOELEM

Specifies whether nodes and elements are also to be generated:

## 0

Generate nodes and point elements associated with the original keypoints, if they exist.
1
Do not generate nodes and elements.

## IMOVE

Specifies whether keypoints will be moved or newly defined:
0
Generate additional keypoints.
1
Move original keypoints to new position retaining the same keypoint numbers (KINC and NOELEM are ignored). Valid only if the old keypoints are no longer needed at their original positions. Corresponding meshed items are also moved if not needed at their original position.

## Notes

Transfers a pattern of keypoints (and corresponding mesh) from one coordinate system to another (see analogous node transfer command, TRANSFER). The MAT, TYPE, REAL, and ESYS attributes are based upon the keypoints in the pattern and not upon the current settings. Coordinate systems may be translated and rotated relative to each other. Initial pattern may be generated in any coordinate system. Coordinate values are interpreted in the active coordinate system and are transferred directly. Solid modeling in a toroidal coordinate system is not recommended.

## Menu Paths

Main Menu>Preprocessor>Modeling>Move / Modify>Transfer Coord>Keypoints

## KUSE, KEY

## Specifies whether or not to reuse the factorized matrix.

SOLUTION:Load Step Options
MP ME ST PR PRN <> <> <> EM EH DY PP <> EME MFS

## KEY

Reuse key:
0
Program decides whether or not to reuse the previous factorized stiffness matrix.
1
Force the previous factorized stiffness matrix to be reused. Used mainly in a restart. Forcing reuse of the matrix is a nonstandard use of the program, and should be done with caution. For instance, using this option and changing the number of elements, or the number or type of degrees of freedom, may cause an abort.
-1
All element matrices are reformed and are used to reform a new factorized stiffness matrix.

## Command Default

Program makes decision.

## Notes

Overrides the program logic to determine whether or not to reuse the previous factorized stiffness matrix for each substep of this load step. Applies only to static or full transient analyses and to full harmonic analyses if the frequency is not changed for continuing loadsteps. For full harmonic analyses, only $K E Y=1$ or $K E Y$ $=0$ is valid.

This command is also valid in PREP7.

## Menu Paths

Main Menu>Preprocessor>Loads>Load Step Opts>Other>Reuse LN22 Matrix Main Menu>Solution>Load Step Opts>Other>Reuse LN22 Matrix

KWPAVE, P1, P2, P3, P4, P5, P6, P7, P8, P9
Moves the working plane origin to the average location of keypoints.

> DATABASE: Working Plane
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## P1, P2, P3, ..., P9

Keypoints used in calculation of the average. At least one must be defined. If $P 1=\mathrm{P}$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI).

## Notes

Moves the origin of the working plane to the average of the specified keypoints. Averaging is based on the active coordinate system.

This command is valid in any processor.

## Menu Paths

## Utility Menu>WorkPlane>Offset WP to>Keypoints

KWPLAN, WN, KORIG, KXAX, KPLAN

## Defines the working plane using three keypoints.

> DATABASE: Working Plane
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

WN
Window number whose viewing direction will be modified to be normal to the working plane (defaults to 1 ). If $W N$ is a negative value, the viewing direction will not be modified. If fewer than three points are used, the viewing direction of window $W N$ will be used instead to define the normal to the working plane.

## KORIG

Keypoint number defining the origin of the working plane coordinate system. If $K O R I G=P$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI).

## KXAX

Keypoint number defining the $x$-axis orientation (defaults to the $x$-axis being parallel to the global Xaxis; or if the normal to the working plane is parallel to the global X -axis, then defaults to being parallel to the global Y -axis).

## KPLAN

Keypoint number defining the working plane (the normal defaults to the present display view [/VIEW] of window WN).

## Notes

Defines a working plane to assist in picking operations using three keypoints as an alternate to the WPLANE command. The three keypoints also define the working plane coordinate system. A minimum of one keypoint (at the working plane origin) is required. Immediate mode may also be active. See WPSTYL command to set the style of working plane display.

This command is valid in any processor.

## Menu Paths

Utility Menu>WorkPlane>Align WP with>Keypoints

# L Commands 

## L, P1, P2, NDIV, SPACE, XV1, YV1, ZV1, XV2, YV2, ZV2

## Defines a line between two keypoints.

PREP 7:Lines
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
$P 1$
Keypoint at the beginning of line. If $P 1=P$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI).

P2
Keypoint at the end of line.

## NDIV

Number of element divisions within this line. Normally this field is not used; specifying divisions with LESIZE, etc. is recommended.

## SPACE

Spacing ratio. Normally this field is not used, as specifying spacing ratios with the LESIZE command is recommended. If positive, $S P A C E$ is the nominal ratio of the last division size (at $P 2$ ) to the first division size (at $P 1$ ). If the ratio is greater than 1 , the division sizes increase from $P 1$ to $P 2$, and if less than 1 , they decrease. If $S P A C E$ is negative, then $|S P A C E|$ is the nominal ratio of the center division size to those at the ends.

The following fields are used only if specified end slopes on the line are desired, otherwise zero curvature end slopes will be automatically calculated to produce a line which is "straight" in the active coordinate system. To specify end slopes, use the following fields to define a "slope vector" (one for each end of the line, if desired) that has its tail at the origin and its head at the point $X V, Y V, Z V$ in the active coordinate system [CSYS]. The corresponding end slope of the line will then be parallel to this "slope vector."

## XV1, YV1, ZV1

Location (in the active coordinate system) of the head of the "slope vector" corresponding to the slope at the $P 1$ end of the line. The tail of the vector is at the origin of the coordinate system.

## XV2, YV2, ZV2

Location of the head of the "slope vector" corresponding to the slope at the $P 2$ end of the line.

## Notes

Defines a line between two keypoints from P1 to P2. The line shape may be generated as "straight" (in the active coordinate system) or curved. The line shape is invariant with coordinate system after it is generated. Note that solid modeling in a toroidal coordinate system is not recommended. A curved line is limited to $180^{\circ}$. Lines may be redefined only if not yet attached to an area.

## Menu Paths

## Main Menu>Preprocessor>Modeling>Create>Lines>Lines>In Active Coord

L2ANG, NL1, NL2, ANG1, ANG2, PHIT1, PHIT2

## Generates a line at an angle with two existing lines.

PREP 7:Lines
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

NL1
Number of the first line to be hit (touched by the end of the new line). If negative, assume $P 1$ (see below) is the second keypoint of the line instead of the first. If NLI = P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI).

## NL2

Number of the second line to be hit. If negative, assume $P 3$ is the second keypoint of the line instead of the first.

## ANG1

Angle of intersection (usually zero or 180) of generated line with tangent to first line.

## ANG2

Angle of intersection (usually zero or 180) of generated line with tangent to second line.

## PHIT1

Number to be assigned to keypoint generated at hit location on first line (defaults to lowest available keypoint number [NUMSTR]).

## PHIT2

Number to be assigned to keypoint generated at hit location on second line (defaults to lowest available keypoint number [NUMSTR]).

## Notes

Generates a straight line (PHIT1-PHIT2) at an angle (ANG1) with an existing line NLI (P1-P2) and which is also at an angle (ANG2) with another existing line NL2 (P3-P4). If the angles are zero the generated line is tangent to the two lines. The PHIT1 and PHIT2 locations on the lines are automatically calculated. Line P1-P2 becomes P1-PHIT1, P3-P4 becomes P3-PHIT2, and new lines PHIT1-P2, PHIT2-P4, and PHIT1-PHIT2 are generated. Line divisions are set to zero (use LESIZE, etc. to modify).

## Menu Paths

Main Menu>Preprocessor>Modeling>Create>Lines>Lines>Angle to 2 Lines
Main Menu>Preprocessor>Modeling>Create>Lines>Lines>Norm to 2 Lines

L2TAN, NL1, NL2

## Generates a line tangent to two lines.

PREP 7:Lines
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NL1

Number of the first line generated line is tangent to. If negative, assume $P 1$ (see below) is the second keypoint of the line instead of the first. If $N L 1=P$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI).

## NL2

Number of the second line generated line is tangent to. If negative, assume $P 3$ is the second keypoint of the line instead of the first.

## Notes

Generates a line ( $P 2-P 3$ ) tangent at point $P 2$ to line NL1 $(P 1-P 2)$ and tangent at point $P 3$ to line NL2 ( $\mathrm{P} 3-\mathrm{P} 4$ ).

## Menu Paths

Main Menu>Preprocessor>Modeling>Create>Lines>Lines>Tan to $\mathbf{2}$ Lines

## LANG, NL1, P3, ANG, PHIT, LOCAT

## Generates a straight line at an angle with a line.

PREP 7:Lines
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NL1

Number of the line to be hit (touched by the end of the new line). If negative, assume $P 1$ (see below) is the second keypoint of the line instead of the first. If NLI = P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI).

P3
Keypoint at which generated line must end.

## ANG

Angle of intersection of generated line PHIT-P3 with tangent to line P1-P2 at PHIT. If 0 (default), the generated line is tangent to NL1 toward end P1; if 90, the generated line is perpendicular to NL1. If 180, the generated line is tangent to NL1 toward end P2. ANG can be any value, but is adjusted to the corresponding acute angle with respect to LOCAT. See "Notes" (p. 893) for a discussion of accuracy.

PHIT
Number to be assigned to keypoint generated at hit location (defaults to lowest available keypoint number [NUMSTR]).

## LOCAT

Approximate location of PHIT in terms of the ratio of the distance along the line (NLI) to the length of the line. LOCAT can range from 0 to 1 . If LOCAT is blank, the point will be located with less speed and accuracy, and an arbitrary location may result.

## Notes

Generates a straight line (PHIT-P3) at an angle (ANG) with a line NLI (P1-P2). The location of PHIT on the line is automatically calculated. Line P1-P2 becomes P1-PHIT and new lines PHIT-P2 and PHIT-P3 are generated. Line divisions are set to zero (use LESIZE, etc. to modify).

PHIT is positioned closest to LOCAT for the given angle, ANG. To ensure better performance, it is recommended that LOCAT be input, even if it is 0 .

The program uses an iterative procedure to position PHIT. The procedure is not exact, with the result that the actual value of $A N G$ will sometimes differ slightly from the specified value.

## Menu Paths

Main Menu $>$ Preprocessor $>$ Modeling $>$ Create $>$ Lines $>$ Lines $>$ At angle to line Main Menu>Preprocessor>Modeling>Create>Lines>Lines>Normal to Line

LARC, $P 1, P 2, P C, R A D$

## Defines a circular arc.

PREP 7:Lines
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
P1
Keypoint at one end of circular arc line. If $P 1=P$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI).

## P2

Keypoint at other end of circular arc line.
PC
Keypoint defining plane of arc and center of curvature side (with positive radius). Must not lie along the straight line from P1 to P2. PC need not be at the center of curvature.

## RAD

Radius of curvature of the arc. If negative, assume center of curvature side is opposite to that defined by $P C$. If $R A D$ is blank, $R A D$ will be calculated from a curve fit through $P 1, P C$, and $P 2$.

## Notes

Defines a circular arc line from P1 to $P 2$. The line shape is generated as circular, regardless of the active coordinate system. The line shape is invariant with coordinate system after it is generated.

When dealing with a large radius arc (1e3), or if the location of the arc you create is far away from the origin of your coordinate system, anomalies may occur. You can prevent this by creating the arc at a smaller scale, and then scaling the model back to full size (LSSCALE).

## Menu Paths

Main Menu>Preprocessor>Modeling>Create>Lines>Arcs>By End KPs \& Rad Main Menu>Preprocessor>Modeling>Create>Lines>Arcs>Through 3 KPs

/LARC, XCENTR, YCENTR, XLRAD, ANGLE1, ANGLE2

## Creates annotation arcs (GUI).

## XCENTR

Arc $X$ center location ( $-1.0<\mathrm{X}<1.0$ ).

## YCENTR

Arc Y center location ( $-1.0<\mathrm{Y}<1.0$ ).

## XLRAD

Arc radius length.

## ANGLE1

Starting angle of arc.

## ANGLE2

Ending angle of arc. The arc is drawn counterclockwise from the starting angle, ANGLE1, to the ending angle, ANGLE2.

## Notes

Defines annotation arcs to be written directly onto the display at a specified location. This is a command generated by the Graphical User Interface (GUI) and will appear in the log file (Jobname. LOG) if annotation is used. This command is not intended to be typed in directly in an ANSYS session (although it can be included in an input file for batch input or for use with the /INPUT command).

All arcs are shown on subsequent displays unless the annotation is turned off or deleted. Use the /LSPEC command to set the attributes of the arc.

This command is valid in any processor.

## Menu Paths

## Utility Menu>PlotCtrls>Annotation>Create Annotation

## LAREA, P1, P2, NAREA

## Generates the shortest line between two keypoints on an area.

PREP 7:Lines
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## P1

First keypoint of line to be generated. If $P 1=\mathrm{P}$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI).

```
P2
```

Second keypoint of line to be generated.

## NAREA

Area containing P1 and P2, or area to which generated line is to be parallel.

## Notes

Generates the shortest line between two keypoints, $P 1$ and $P 2$, both of which lie on an area. The generated line will also lie on the area. P1 and P2 may also be equidistant (in global Cartesian space) from the area (and on the same side of the area), in which case a line parallel to the area is generated.

## Menu Paths

Main Menu>Preprocessor>Modeling>Create>Lines>Lines>Overlaid on Area

LARGE, IR, IA, IB, IC, Name, --, --, FACTA, FACTB, FACTC
Finds the largest (the envelope) of three variables.

> POST26: Operations
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

IR
Arbitrary reference number assigned to the resulting variable (2 to NV [NUMVAR]). If this number is the same as for a previously defined variable, the previously defined variable will be overwritten with this result.
$I A, I B, I C$
Reference numbers of the three variables to be operated on. If only two, leave IC blank. If only one, leave IB blank also.

## Name

Thirty-two character name for identifying the variable on the printout and displays. Embedded blanks are compressed upon output.
--, --
Unused fields.
FACTA, FACTB, FACTC
Scaling factors (positive or negative) applied to the corresponding variables (default to 1.0).

## Notes

Creates a new variable by finding the largest of up to three variables according to the operation:

$$
I R=\text { Largest of }(F A C T A \times I A, F A C T B \times I B, F A C T C \times I C)
$$

The comparison is done at each time location, so that the new variable is the "envelope" of the three existing variables.

## Menu Paths

Main Menu>TimeHist Postpro>Math Operations>Find Maximum

LATT, MAT, REAL, TYPE, --, KB, KE, SECNUM

## Associates element attributes with the selected, unmeshed lines.

PREP 7: Meshing<br>MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## MAT, REAL, TYPE

Material number, real constant set number, and type number to be associated with selected, unmeshed lines.

Unused field.

## $K B, K E$

Beginning and ending orientation keypoints to be associated with selected, unmeshed lines. ANSYS uses the location of these keypoints to determine how to orient beam cross sections during beam meshing. Beam elements may be created along a line with a constant orientation by specifying only one orientation keypoint ( $K B$ ), or a pre-twisted beam may be created by selecting different orientation keypoints at each end of the line ( $K B$ and $K E$ ). (For a line bounded by two keypoints ( $K P 1$ and $K P 2$ ), the orientation vector at the beginning of the line extends from $K P 1$ to $K B$, and the orientation vector at the end of the line extends from KP2 to KE. The orientation vectors are used to compute the orientation nodes of the elements.)

## SECNUM

Section identifier to be associated with selected, unmeshed lines. For details, see the description of the SECTYPE and SECNUM commands.

## Notes

The element attributes specified by the LATT command will be used when the lines are meshed.
Lines subsequently generated from the lines will also have the attributes specified by MAT, REAL, TYPE, and SECNUM. If a line does not have these attributes associated with it (by this command) at the time it is meshed, the attributes are obtained from the then current MAT, REAL, TYPE, and SECNUM command settings.

In contrast, the values specified by $K B$ and $K E$ apply only to the selected lines; that is, lines subsequently generated from these lines will not share these attributes. Similarly, if a line does not have $K B$ and $K E$ attributes associated with it via the LATT command at the time it is meshed, ANSYS cannot obtain the attributes from elsewhere. See the discussion on beam meshing in Meshing Your Solid Model in the Modeling and Meshing Guide for more information.

Reissue the LATT command (before lines are meshed) to change the attributes. A zero (or blank) argument removes the corresponding association. If any of the arguments are defined as -1 , then that value will be left unchanged in the selected set..

In some cases, ANSYS can proceed with a line meshing operation even when no logical element type has been assigned via LATT,,,TYPE or TYPE. See Meshing Your Solid Model in the Modeling and Meshing Guide for more information about setting element attributes.

## Menu Paths

> Main Menu>Preprocessor>Meshing>Mesh Attributes>All Lines
> Main Menu>Preprocessor>Meshing>Mesh Attributes>Picked Lines

## LAYER, NUM

## Specifies the element layer for which data are to be processed.

POST1:Controls<br>MP ME ST PR PRN <> <> <> <> <> DY PP <> EME MFS

## NUM

Layer-processing mode:
N
The layer number to process. The default value is 0 .
FCMAX
Processes the layer with the largest failure criteria.

## Command Default

The default is $N=0$, meaning that the entire element is considered to be the default "layer." Accordingly, the results data are from the bottom of the bottom layer and the top of the top layer.

## Notes

Specifies the element layer for which results data are to be listed, plotted, or otherwise processed.
Applies to stress and strain data for layered elements SHELL163, SHELL181, SHELL281, ELBOW290, SOLID185, SOLID186, SOLSH190, SHELL208, SHELL209, REINF264, and REINF265; heat flux and heat gradient for SHELL131 and SHELL132.

The SHELL command may then be used (with shell elements) to specify a location (TOP, MID, BOT) within the layer for output. (The SHELL command does not apply to thermal shell elements SHELL131 and SHELL132.) Transverse shear stresses for MID are linearly averaged from TOP and BOT, and do not reflect a parabolic distribution. Setting $\operatorname{KEYOPT}(8)=2$ for SHELL181, SHELL281, SHELL208, SHELL209, and ELBOW290 writes the mid-surface values directly to the results file and yields more accurate values than linear averaging.

Because energy is a per-element quantity, you cannot use this command for energy output.
When using the LAYER command with SHELL181, SOLID185, SOLID186, SOLSH190, SHELL208, SHELL209, SHELL281, and ELBOW290, KEYOPT(8) must be set to 1 (or 2 for SHELL181, SHELL281, ELBOW290, SHELL208, and SHELL209) in order to store results for all layers.

When $N U M=$ FCMAX, you must provide the failure criterion input. If using FC input, ANSYS processes all structural elements.

When $N U M=$ FCMAX, you must provide the failure criterion input. For more information, see the documentation for the FC command.

Use this command with RSYS,LSYS to display results in the layer coordinate system for a particular layer.
For the ANSYS LS-DYNA product, this command works differently than described above. For SHELL163, you must first use EDINT during the solution phase to define the integration points for which you want output data. Be aware that the output location for SHELL163 data is always at the integration point, so "top" and "bottom" refer to the top or bottom integration point, not necessarily the top or bottom surface. For more information, see the ANSYS LS-DYNA User's Guide.

## Menu Paths

Main Menu>General Postproc>Options for Outp Utility Menu>List>Results>Options

## LAYERP26, NUM

## Specifies the element layer for which data are to be stored.

POST2 6:Controls
MP ME ST PR PRN <> <> <> <> <> DY PP <> EME MFS

## NUM

Layer-processing mode:
$\boldsymbol{N}$
The layer number to process. The default value is 1 .

## Command Default

The default is $N=1$, meaning that results data are from the "first" layer. If $\operatorname{KEYOPT}(8)=0$, "first" layer actually means the bottom of the bottom layer and the top of the top layer.

## Notes

Defines the element layer for which results data are to be stored for postprocessing. Applies to stress and strain data for layered elements BEAM161, SHELL163, SHELL181, SOLID185, SOLID186, SOLSH190, SHELL208, SHELL209, SHELL281, REINF265, and ELBOW290.

The SHELL command can be used (for shell elements) to specify a location (TOP, MID, BOT) within the layer for selection on the ESOL command. Transverse shear stresses for MID are linearly averaged from TOP and BOT, and do not reflect a parabolic distribution. Setting KEYOPT(8) = 2 for SHELL181, SHELL208, SHELL209, SHELL281, and ELBOW290 writes the mid-surface values directly to the results file and yields more accurate values than linear averaging.

That this command cannot be used for energy output, as energy is a per-element quantity.
When using the LAYERP26 command with SHELL181, SOLID185, SOLID186, SOLSH190, SHELL208, or SHELL209, KEYOPT(8) must be set to 1 (or 2 for SHELL181, SHELL208, SHELL209, SHELL281, and ELBOW290) in order to store results for all layers.

For the ANSYS LS-DYNA product, this command works differently than described above. For SHELL163 and BEAM161, you must first use EDINT during the solution phase to define the integration points for which you want output data. Be aware that the output location for SHELL163 data is always at the integration point, so "top" and "bottom" refer to the top or bottom integration point, not necessarily the top or bottom surface. For more information, see the ANSYS LS-DYNA User's Guide.

In POST26, the ESOL data stored is based on the active LAYERP26 specification at the time the data is stored. To store data at various specifications (for example, layers 2 and 5), issue a STORE command before each new specification.

## Menu Paths

Main Menu>TimeHist Postpro>Define Variables
Main Menu>TimeHist Postpro>Elec\&Mag>Circuit>Define Variables

LAYLIST, IEL, LAYR1, LAYR2, Mplab1, Mplab2

## Lists real constants material properties for layered elements.

PREP 7: Elements
MP ME ST PR PRN <> <> <> <> <> DY PP <> EME MFS
IEL
Element number to be listed. If ALL, list all selected elements [ESEL] of the appropriate type. If blank and the current element type is a layered element type, list data from the current real constant table in the layered format.

## LAYR1, LAYR2

Range of layer numbers to be listed. If LAYR1 is greater than LAYR2, a reverse order list is produced. LAYR1 defaults to 1. LAYR2 defaults to LAYR1 if LAYR1 is input or to the number of layers if LAYR1 is not input.

## Mplab1, Mplab2

Material property labels (e.g., EX) to be listed along with the layer real constants.

## Notes

Lists real constants and any two material properties for layered shell and solid elements.
If matrix input is selected $(\operatorname{KEYOPT}(2)=2$ or 3), LAYR1, LAYR2, Mplab1, and Mplab2 are not used.
This command is valid in any processor.

## Menu Paths

Utility Menu>List>Elements>Layered Elements
Utility Menu>List>Properties>Layer Data

LAYPLOT, IEL, LAYR1, LAYR2
Displays the layer stacking sequence for layered elements.

> PREP 7: Elements
> MP ME ST PR PRN <> <> <> <> <> DY PP <> EME MFS

IEL
Element number for the display. If blank and the current element type is a layered element type, display data from the current real constant table.

## LAYR1, LAYR2

Range of layer numbers to be displayed. If $L A Y R 1$ is greater than $L A Y R 2$, a reversed order display is produced. Up to 20 layers may be displayed at a time. LAYR1 defaults to 1. LAYR2 defaults to LAYR1 if LAYR1 is input or to the number of layers (or to $19+L A Y R 1$, if smaller) if LAYR1 is not input.

## Notes

Displays the layer-stacking sequence as defined in the real constant table for layered shell and solid elements in a form where the layers are visible (like a sheared deck of cards).

The element x-axis is shown as 0.0 degrees.
Layers are cross-hatched and color-coded for clarity. The hatch lines indicate the layer angle (real constant THETA) and the color coding is for material identification (real constant MAT).

The actual orientation of a specific layer in three-dimensional space can be seen using /PSYMB,LAYR. To use /PSYMB,LAYR with smeared reinforcing elements (REINF265), first set the vector-mode graphics option (/DEVICE,VECTOR,1).

Layer thickness can be displayed using the /ESHAPE and EPLOT commands.
This command is valid in any processor.

## Menu Paths

Utility Menu>Plot>Layered Elements

## LCABS, LCNO, KABS

## Specifies absolute values for load case operations.

> POST1:Load Case Calculations
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

LCNO
Load case pointer number. If ALL, apply to all selected load cases [LCSEL].

## KABS

Absolute value key:
0
Use algebraic values of load case LCNO in operations.
1
Use absolute values of load case LCNO in operations.

## Command Default

Use algebraic values.

## Notes

Causes absolute values to be used in the load case operations [LCASE or LCOPER]. Absolute values are taken prior to assigning a load case factor [LCFACT] and are applied only to defined load cases [LCDEF].

## Menu Paths

Main Menu>General Postproc>Load Case>Calc Options>Absolut Value

LCASE, LCNO

## Reads a load case into the database.

POST1:Load Case Calculations
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
LCNO
Load case pointer number [LCDEF,STAT]. Defaults to 1 .

## Command Default

Load case 1.

## Notes

Reads a load case into the database. Load cases are created as described on the LCDEF or LCWRITE commands. The results portion of the database and the applied forces and displacements are cleared before reading the data in. Absolute values [LCABS] and scale factors [LCFACT] can be applied during the read operation.

## Menu Paths

Main Menu>General Postproc>Load Case>Read Load Case

## LCCALC

## Specifies "Load case settings" as the subsequent status topic.

POST1:Status
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Notes

This is a status [STAT] topic command. Status topic commands are generated by the GUI and will appear in the log file (Jobname. LOG) if status is requested for some items under Utility Menu> List> Status. This command will be immediately followed by a STAT command, which will report the status for the specified topic.

If entered directly into the program, the STAT command should immediately follow this command.

This command is also valid for rezoning.

## Menu Paths

Utility Menu>List>Status>General Postproc>Load Case Calcs

## LCCAT, NL1,NL2

## Concatenates multiple lines into one line for mapped meshing.

PREP 7: Meshing
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NL1, NL2

Lines to be concatenated. If NL1 = ALL, NL2 is ignored and all selected lines [LSEL] are concatenated. If $N L 1=P$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NL1 (NL2 is ignored).

## Notes

Concatenates multiple, adjacent lines (the input lines) into one line (the output line) in preparation for mapped meshing. An area that contains too many lines for mapped meshing can still be mapped meshed if some of the lines in that area are first concatenated (see Meshing Your Solid Model in the Modeling and Meshing Guide for details on mapped meshing restrictions).

LCCAT is meant to be used solely for meshing and cannot be used for any other purposes. Specifically, (a) the output line and any areas that have the output line on their line list [ALIST] cannot be used as input to any other solid modeling operation (not even another LCCAT command); and (b) the output line cannot accept solid model boundary conditions [DL, SFL].

The output line will take on the element divisions of the input lines and will not accept element divisions that are directly assigned [LESIZE]. The output line from the LCCAT operation will be coincident with the input lines and the input lines will be retained. Consider the LCOMB command instead of LCCAT if you wish to delete the input lines and if the lines to be combined have similar slopes at the common keypoint(s). When an LCCAT command is issued, area line lists [ALIST] that contain all of the input lines will be updated so that the area line lists refer to the output line instead of the input lines. Deletion of the output line [LDELE] effectively reverses the LCCAT operation and restores area line lists to their original condition.

You can use the LSEL command to select lines that were created by concatenation, and then follow it with an LDELE,ALL command to delete them. Also see Meshing Your Solid Model in the Modeling and Meshing Guide for a discussion on how to easily select and delete concatenated lines in one step.

## Menu Paths

Main Menu>Preprocessor>Meshing>Mesh>Areas>Mapped>Concatenate>Lines Main Menu>Preprocessor>Meshing>Mesh>Volumes>Mapped>Concatenate>Lines Main Menu>Solution>Manual Rezoning>Create Remesh Zone(s)>Geometry Controls>Concatenate Lines

## LCDEF, LCNO, LSTEP, SBSTEP, KIMG

Creates a load case from a set of results on a results file.

> POST1:Load Case Calculations
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## LCNO

Arbitrary pointer number (1-99) to be assigned to the load case specified by LSTEP, SBSTEP and by the FILE command. Defaults to $1+$ previous value.

## LSTEP

Load step number to be defined as the load case. Defaults to one.

## SBSTEP

Substep number. Defaults to the last substep of the load step.

## KIMG

Used only with results from complex analyses:
0
Use real part of complex solution
1
Use imaginary part.

## Notes

Creates a load case by establishing a pointer to a set of results on a results file (written during the ANSYS solution phase). This pointer (LCNO) can then be used on the LCASE or LCOPER commands to read the load case data into the database.

Issue LCDEF,ERASE to delete all load case pointers (and all load case files, if any). Issue LCDEF, $L C N O, E R A S E$ to delete only the specific load case pointer LCNO (and its file, if any). With the ERASE options, all pointers are deleted; however only files with the default extension [LCWRITE] are deleted. Issue LCDEF,STAT for status of all selected load cases [LCSEL], or LCDEF,STAT,ALL for status of all load cases. The STAT command may be used to list all load cases. See also LCFILE to establish a pointer to a set of results on a load case file (written by LCWRITE). Harmonic element data read from a result file load case is stored at the zero-degree position.

## Menu Paths

Main Menu>General Postproc>Load Case>Create Load Case
Main Menu>General Postproc>Load Case>Erase Load Case
Main Menu>General Postproc>Load Case>List Load Cases

## LCFACT, LCNO, FACT

Defines scale factors for load case operations.

> POST1:Load Case Calculations
> MP ME ST PR PRN <> <> <> EM EH DY PP <> EME MFS

## LCNO

Load case pointer number. If ALL, apply to all selected load cases [LCSEL].

## FACT

Scale factor applied to load case LCNO. Blank defaults to 1.0.

## Command Default

All factors are 1.0.

## Notes

Defines scale factors to be used in the load case operations [LCASE or LCOPER]. Scale factors are applied after an absolute value operation [LCABS] and are applied only to defined load cases [LCDEF].

## Menu Paths

## Main Menu>General Postproc>Load Case>Calc Options>Scale Factor

LCFILE, LCNO, Fname, Ext, --

## Creates a load case from an existing load case file.

POST1:Load Case Calculations
MP ME ST PR PRN <> <> <> EM EH DY PP <> EME MFS

## LCNO

Arbitrary (1-99) pointer number assigned to this load case.

## Fname

File name and directory path ( 248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

The file name defaults to Jobname.

## Ext

Filename extension (8 character maximum).
The extension defaults to the LCNO value preceded by an" L" (for values 10-99) or by an" LO" (for values $1-9)$.

Unused field.

## Notes

Creates a load case by establishing a pointer to an existing load case file [LCWRITE]. This pointer (LCNO) can then be used on the LCASE or LCOPER commands to read the load case data into the database. This command is typically used to reestablish load case pointers in a new ANSYS session (pointers are not saved on the database file), or when more than one pointer to a single load case is desired. See the LCDEF command for status and erase operations. See also LCDEF to establish a pointer to a set of results on a results file (written during the ANSYS solution phase).

## Menu Paths

Main Menu>General Postproc>Load Case>Create Load Case

## LCLEAR, NL1, NL2, NINC

## Deletes nodes and line elements associated with selected lines.

PREP 7:Meshing
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NL1, NL2, NINC

Delete mesh for lines NL1 to NL2 (defaults to NL1) in steps of NINC (defaults to 1). If NL1 = ALL, NL2 and NINC are ignored and the mesh for all selected lines [LSEL] is deleted. If NLI = P , graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NL1 (NL2 and NINC are ignored).

## Notes

Deletes all nodes and line elements associated with selected lines (regardless of whether the nodes or elements are selected). Nodes shared by adjacent meshed lines and nodes associated with non-line elements will not be deleted. Attributes assigned as a result of LATT are maintained. In the program's response to the command, if a line or keypoint is tallied as "cleared," it means either its node or element reference was deleted.

## Menu Paths

Main Menu>Preprocessor>Meshing>Clear>Lines

LCOMB, NL1, NL2, KEEP

## Combines adjacent lines into one line.

> PREP 7:Lines
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NL1

Number of the first line to be combined. If NL1 = ALL, NL2 is ignored and all selected lines [LSEL] are combined. If NLI = P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for $N L 1$ ( $N L 2$ is ignored).

NL2
Number of the second line to be combined.

## KEEP

Specifies whether to keep the input entities:
0
Delete lines NL1 and NL2 and their common keypoint. Keypoints will not be deleted if they are meshed or if they are attached to other lines. Lines will not be deleted if they are attached to different areas.

## 1

Keep NL1, NL2, and their common keypoint. (The common keypoint will not be attached to the output line.)

## Notes

Combines adjacent lines into one line (the output line). This operation will effectively "undo" the LDIV operation. Line divisions are set to zero (use LESIZE, etc. to modify). Lines attached to the same area(s) can also be combined. See also the LCCAT command for line concatenation capability.

## Menu Paths

Main Menu>Preprocessor>Modeling>Operate>Booleans>Add>Lines

## LCOPER, Oper, LCASE1, Oper2, LCASE2

## Performs load case operations.

> POST1: Load Case Calculations
> MP ME ST PR PRN <> <> <> EM EH DY PP <> EME MFS

## Oper

Valid operations are:
ZERO
Zero results portion of database (LCASE1 ignored).
SQUA
Square database values (LCASE1 ignored).
SQRT
Square root of database (absolute) values (LCASE1 ignored).
LPRIN
Recalculate line element principal stresses (LCASE1 ignored). Stresses are as shown for the NMISC items of the ETABLE command for the specific line element type.
ADD
Add LCASE1 to database values.

## SUB

Subtract LCASE1 from database values.
SRSS
Square root of the sum of the squares of database and LCASE1.
MIN
Compare and save in database the algebraic minimum of database and LCASE1.
MAX
Compare and save in database the algebraic maximum of database and LCASE1.
ABMN
Compare and save in database the absolute minimum of database and LCASE1 (based on magnitudes, then apply the corresponding sign).

## ABMX

Compare and save in database the absolute maximum of database and LCASE1 (based on magnitudes, then apply the corresponding sign).

## LCASE1

First load case in the operation (if any). See LCNO of the LCDEF command. If ALL, repeat operations using all selected load cases [LCSEL].

## Oper2

Valid operations are:

## MULT

Multiplication: LCASE 1* LCASE2

## CPXMAX

This option does a phase angle sweep to calculate the true maximum of derived stresses for a complex solution where LCASE1 is the real part and LCASE2 is the imaginary part. The Oper field is not applicable with this option. Also, the LCABS and SUMTYPE commands have no effect on this option. The value of S 3 will be a minimum. This option does not apply to derived displacement amplitude (USUM.)

## LCASE 2

Second load case. Used only with Oper2 operations.

## Notes

LCOPER operates on the database and one or two load cases according to:

$$
\text { Database }=\text { Database Oper }(\text { LCASE1 Oper2 LCASE2 })
$$

where operations Oper and Oper2 are as described above. Absolute values and scale factors may be applied to the load cases before the operations [LCABS, LCFACT]. If LCASE1 is not specified, only operation Oper is performed on the current database. If LCASE2 is specified, operation Oper2 will be performed before operation Oper. If LCASE2 is not specified, operation Oper2 is ignored. Solution items not contained [OUTRES] in either the database or the applicable load cases will result in a null item during a load case operation. Harmonic element data read from a result file load case are processed at zero degrees. All load case combinations are performed in the solution coordinate system, and the data resulting from load case combinations are stored in the solution coordinate system. The resultant data are then transformed to the active results coordinate system [RSYS] when listed or displayed.

If Oper2=CPXMAX, the derived stresses and strain calculation do not apply to line elements.

## Menu Paths

Main Menu>General Postproc>Load Case>Add<br>Main Menu>General Postproc>Load Case>Line Elem Stress<br>Main Menu>General Postproc>Load Case>Min \& Max<br>Main Menu>General Postproc>Load Case>Square<br>Main Menu>General Postproc>Load Case>Square Root<br>Main Menu>General Postproc>Load Case>SRSS<br>Main Menu>General Postproc>Load Case>Subtract

## LCSEL, Type, LCMIN, LCMAX, LCINC

## Selects a subset of load cases.

POST1:Load Case Calculations
MP ME ST PR PRN <> <> <> EM EH DY PP <> EME MFS

## Type

Label identifying the type of select:

## S

Select a new set.
R
Reselect a set from the current set.
A
Additionally select a set and extend the current set.
U
Unselect a set from the current set.
ALL
Restore the full set.

## NONE

Unselect the full set.

## INVE

Invert the current set (selected becomes unselected and vice versa).

## STAT

Display the current select status.

## LCMIN

Minimum value of load case pointer range.

## LCMAX

Maximum value of load case pointer range. LCMAX defaults to LCMIN.
LCINC
Value increment within range. Defaults to 1. LCINC cannot be negative.

## Command Default

All load cases are selected.

## Notes

Selects a subset of load cases for other operations. For example, to select a new set of load cases based on load cases 1 through 7 , use LCSEL,S, 1,7 . The subset is used when the ALL label is entered (or implied) on other commands, such as LCFACT, LCABS, LCOPER, etc. Load cases are flagged as selected and unselected; no load case pointers [LCDEF, LCWRITE, LCFILE] are actually deleted from the database.

## Menu Paths

Main Menu>General Postproc>Load Case>Calc Options>Sele Ld Cases

## LCSL, NL1, NL2, NL3, NL4, NL5, NL6, NL7, NL8, NL9

## Divides intersecting lines at their point(s) of intersection.

PREP 7: Booleans
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NL1, NL2, NL3, . . . , NL9

Numbers of lines to be intersected. If NL1 = ALL, NL2 to NL9 are ignored and the intersection of all selected lines is found. If $N L 1=P$, use graphical picking to specify lines ( $N L 2$ to $N L 9$ are ignored).

## Notes

Divides intersecting (classifies) lines at their point(s) of intersection. The original lines (and their corresponding keypoint(s)) will be deleted by default. See the BOPTN command for the options available to Boolean operations. Element attributes and solid model boundary conditions assigned to the original entities will not be transferred to the new entities generated.

## Menu Paths

This command cannot be accessed from a menu.

## LCSUM, Lab

Specifies whether to process non-summable items in load case operations.
POST1:Results
MP ME ST PR PRN <> <> <> EM EH DY PP <> EME MFS

## Lab

Combination option
(blank)
Only combine summable items [default].
ALL
Combine all items including non summable items.

## Notes

Allows non-summable items (e.g. plastic strains) to be included in load combinations. Issue LCSUM,ALL before the first load case operation (LCXX command). May also be used to include nonsummable items in the appending of a results file (RAPPND command).

## Menu Paths

This command cannot be accessed from a menu.

## LCWRITE, LCNO, Fname, Ext, --

## Creates a load case by writing results to a load case file.

POST1:Load Case Calculations
MP ME ST PR PRN <> <> <> EM EH DY PP <> EME MFS

## LCNO

Arbitrary pointer number (1-99) to be assigned to this load case.

## Fname

File name and directory path ( 248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

The file name defaults to Jobname.

## Ext

Filename extension (8 character maximum).
The extension defaults to the LCNO value preceded by an "L" (for values 10-99) or by an "LO" (for values $1-9)$.

Unused field.

## Notes

Creates a load case by writing the results data in the database to a load case file. The database remains unchanged by this operation. A pointer is also established to the written set of results on the load case file. This pointer ( $L C N O$ ) can then be used on the LCASE or LCOPER commands to read the load case data into the database. By default, only summable results data (such as displacements, stresses, elastic strains) and constant results data (such as volume) are written to the load case file unless requested (LCSUM command). Non-summable results data (such as plastic strains, strain energy), boundary conditions, and nodal loads are not written to the load case file. The load case file may be named by default or by a user name. Rewriting to the same file overwrites the previous data. See the LCDEF command for status and erase operations.

## Menu Paths

Main Menu>General Postproc>Load Case>Write Load Case

## LCZERO

Zeroes the results portion of the database.
POST1:Load Case Calculations
MP ME ST PR PRN <> <> <> EM EH DY PP <> EME MFS

## Notes

Often used before the LCOPER command. Same as LCOPER,ZERO.

## Menu Paths

Main Menu>General Postproc>Load Case>Zero Load Case

LDELE, NL1, NL2, NINC, KSWP

## Deletes unmeshed lines.

PREP 7:Lines
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NL1, NL2, NINC

Delete lines from NL1 to NL2 (defaults to NL1) in steps of NINC (defaults to 1). If NL1 = ALL, NL2 and NINC are ignored and all selected lines [LSEL] are deleted. If NLI = P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NL1 (NL2 and NINC are ignored).

## KSWP

Specifies whether keypoints are also to be deleted:
0
Delete lines only.
1
Delete lines, as well as keypoints attached to lines but not attached to other lines.

## Notes

A line attached to an area cannot be deleted unless the area is first deleted.

## Menu Paths

Main Menu>Preprocessor>Meshing>Concatenate>Del Concats>Lines
Main Menu>Preprocessor>Meshing>Mesh>Areas>Mapped>Del Concats>Lines
Main Menu $>$ Preprocessor $>$ Meshing $>$ Mesh $>$ Volumes $>$ Mapped $>$ Del Concats $>$ Lines
Main Menu>Preprocessor>Modeling>Delete>Del Concats>Lines
Main Menu>Preprocessor>Modeling>Delete>Line and Below
Main Menu>Preprocessor>Modeling>Delete>Lines Only

LDIV, NLI, RATIO, PDIV, NDIV, KEEP
Divides a single line into two or more lines.
PREP 7:Lines
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
NL1
Number of the line to be divided. If negative, assume P1 (see below) is the second keypoint of the line instead of the first for RATIO. If ALL, divide all selected lines [LSEL]. If NLI = P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NL1.

## RATIO

Ratio of line length $P 1-P D I V$ to line length $P 1-P 2$. Must be between 0.0 and 1.0 . Input ignored if $N D I V$ $>2$.

## PDIV

Number to be assigned to keypoint generated at division location (defaults to lowest available keypoint number [NUMSTR]). Input ignored if $N L 1=A L L$ or $N D I V>2$. If $P D I V$ already exists and lies on line $N L 1$, divide line at $P D I V$ (RATIO must also be 0.0 ). If $P D I V$ already exists and does not lie on line $N L 1, P D I V$ is projected and moved to the nearest point on line $N L 1$ (if possible). $P D I V$ cannot be attached to another line, area, or volume.

## NDIV

The number of new lines to be generated from old line (defaults to 2 ).

## KEEP

Specifies whether to keep the input entities:
0
Modify old line to use new keypoints and slopes.

1
Do not modify old line. New lines will overlay old line and have unique keypoints.

## Notes

Divides a single line $N L 1$ (defined from keypoint $P 1$ to keypoint $P 2$ ) into two or more lines. Line NL1 becomes the new line beginning with keypoint $P 1$ and new lines are generated ending at keypoint $P 2$. If the line is attached to an area, the area will also be updated. Line divisions are set to zero (use LESIZE, etc. to modify).

## Menu Paths

> Main Menu $>$ Preprocessor $>$ Modeling>Operate $>$ Booleans $>$ Divide $>$ Line into 2 Ln's
> Main Menu $>$ Preprocessor $>$ Modeling>Operate $>$ Booleans $>$ Divide $>$ Line into N Ln's
> Main Menu $>$ Preprocessor $>$ Modeling $>$ Operate $>$ Booleans $>$ Divide $>$ Lines w/ Options

LDRAG, $N K 1, N K 2, N K 3, N K 4, N K 5, N K 6, N L 1, N L 2, N L 3, N L 4, N L 5, N L 6$
Generates lines by sweeping a keypoint pattern along path.
PREP 7:Lines
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
NK1, NK2, NK3, . . . , NK6
List of keypoints in the pattern to be dragged (6 maximum if using keyboard entry). If NKI = P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). If NK1 = ALL, all selected keypoints (except those that define the drag path) will be swept along the path. A component name may also be substituted for NK1.

## NL1, NL2, NL3, . . . , NL 6

List of lines defining the path along which the pattern is to be dragged ( 6 maximum if using keyboard entry). Must be a continuous set of lines.

## Notes

Generates lines (and their corresponding keypoints) by sweeping a given keypoint pattern along a characteristic drag path. If the drag path consists of multiple lines, the drag direction is determined by the sequence in which the path lines are input ( $N L 1, N L 2$, etc.). If the drag path is a single line ( $N L 1$ ), the drag direction is from the keypoint on the drag line that is closest to the first keypoint of the given pattern to the other end of the drag line.

The magnitude of the vector between the keypoints of the given pattern and the first path keypoint remains constant for all generated keypoint patterns and the path keypoints. The direction of the vector relative to the path slope also remains constant so that patterns may be swept around curves. Keypoint and line numbers are automatically assigned (beginning with the lowest available values [NUMSTR]). For best results, the entities to be dragged should be orthogonal to the start of the drag path. Drag operations that produce an error message may create some of the desired entities prior to terminating.

## Menu Paths

## Main Menu>Preprocessor>Modeling>Operate>Extrude>Keypoints>Along Lines

## LDREAD, Lab, LSTEP, SBSTEP, TIME, KIMG, Fname, Ext, --

Reads results from the results file and applies them as loads.
SOLUTION: FE Constraints
SOLUTION: FE Body Loads
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Lab

Valid load label:
TEMP
Temperatures from a thermal analysis are applied as body force nodal loads (BF) in a structural analysis, an explicit dynamic analysis, or other type of analysis.

If the thermal analysis uses SHELL131 or SHELL132, temperatures are applied as body force element loads (BFE). In most cases, only the top and bottom temperatures from SHELL131 and SHELL132 are used by the structural shell elements; any interior temperatures are ignored.

All temperatures are used for SHELL181 using section input, and SHELL281 using section input; for these elements, therefore, the number of temperature points at a node generated in the thermal model must match the number of temperature points at a node needed by the structural model.

When using SHELL131 or SHELL132 information for the LDREAD operation, all element types should specify the same set of thermal degrees of freedom.

Can also be temperatures applied as nodal loads or initial conditions (see KIMG description).
FORC
Forces from an electromagnetic analysis are applied as force loads (F) in a structural analysis or a FLOTRAN analysis. LDREAD,FORC reads coupling forces. When transferring static magnetic forces from a SOLID117 model, ensure that all nodes and elements of the bodies intended to receive the forces are selected prior to transfer. See the discussion on force computation in the Low-Frequency Electromagnetic Analysis Guide.

For a full harmonic magnetic analysis, FORC represents the time-averaged force (use in conjunction with $K I M G=2$ ). Values are in the nodal coordinate system for the force loads ( $\mathbf{F}$ ).

## HGEN

Heat generations from a magnetic analysis are applied as body force loads (BFE) in a thermal or a FLOTRAN analysis. For a full harmonic analysis, HGEN represents the time-averaged heat generation load (use in conjunction with KIMG = 2).

## HFLU

Heat fluxes from a FLOTRAN analysis are applied as surface loads in a thermal analysis.

## EHFLU

Surface losses from a high frequency electromagnetic analysis are applied as time-average surface heat flux in a thermal analysis.
JS
Source current density from a current-conduction analysis are applied as body force loads (BFE). Values are in the global Cartesian coordinate system.

## EF

Electric field element centroid values from an electrostatic analysis are applied as body force loads
(BFE) in a magnetic analysis. Values are in the global Cartesian coordinate system.

## PRES

Pressures from a FLOTRAN analysis are applied as surface loads (SFE) in a structural analysis. For shell elements, use the KIMG parameter to establish the face on which to apply the pressure.

## REAC

Reaction loads from any analysis are applied as force loads (F) in any analysis. Values are in the nodal coordinate system.

## HFLM

FLOTRAN predicted film coefficient (and associated bulk temperature) are applied as surface loads (film coefficient and bulk temperature) in a thermal analysis (SFE). FLOTRAN film coefficients may be either positive or negative, depending on the direction of heat transfer, but ANSYS thermal analyses require positive film coefficients. If the FLOTRAN film coefficient is negative, LDREAD adjusts the bulk temperature to be equal to twice the wall temperature minus the bulk temperature. The adjusted bulk temperature and the now positive film coefficient make the amount and direction of heat transfer consistent with the FLOTRAN analysis.

H
Nodal magnetic field values from magneto static analysis are applied as nodal loads (BF) in a highfrequency electromagnetic analysis. Values are in the global Cartesian coordinate system.

## FLRZ

Lorentz forces ( $\mathrm{F}=\mathrm{J}$ * B). Used only with SOLID117.

## LSTEP

Load step number of the data set to be read. Defaults to 1 . If LAST, ignore SBSTEP and TIME and read the last data set.

## SBSTEP

Substep number (within LSTEP). If zero (or blank), LSTEP represents the last substep of the load step.
TIME
Time-point identifying the data set to be read. Used only if both LSTEP and SBSTEP are zero (or blank). If TIME is between two solution time points on the results file, a linear interpolation is done between the two data sets. If TIME is beyond the last time point on the file, use the last time point.

## KIMG

When used with results from harmonic analyses (ANTYPE,HARMIC) KIMG establishes which set of data to read:

0
Read the real part of the solution. Valid also for $L a b=$ EHFLU to read in time-average heat flux.
1
Read the imaginary part of the solution.
2
Calculate and read the time-average part. Meaningful for $L a b=$ HGEN or FORC.
When used with the PRES label, KIMG represents the shell element face on which to apply the pressure:
1
Apply pressure to face 1
2
Apply pressure to face 2
When used with the TEMP label, KIMG indicates how temperatures are to be applied. In an explicit dynamic analysis, KIMG $=0$ is the only valid option for applying temperature loads.

0
Apply temperatures as body loads
1
Apply temperatures as nodal loads
2
Apply temperatures as initial conditions.

## Fname

File name and directory path ( 248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

The file name defaults to Jobname.

## Ext

Filename extension (8 character maximum).
The extension defaults to RST if Fname is blank.

Unused field.

## Notes

Reads results data from the results file and applies them as loads. You also can use LDREAD to apply results from an analysis defined with one physics environment as loads on a second analysis using a different physics environment. The values are applied as loads for field coupling effects (such as output temperatures from a thermal analysis as input to a structural analysis). Nodal loads are applied only to selected nodes. Element loads are applied only to selected elements. Element surface loads are applied only to selected elements where all face nodes for that surface are selected. Additionally, to assure proper distribution of the surface loads, select only the nodes on the element face where the surface load is to be applied. Scaling and accumulation specifications are applied as the loads are read (BFCUM for body force loads (heat gener-
ation loads are not accumulated), SFCUM for surface loads, and FCUM for force loads). These commands do not work for tabular boundary conditions or temperature loads applied to an explicit dynamic analysis via LDREAD. Use the appropriate list command to list the results (BFLIST or BFELIST for body force loads, SFELIST for surface loads, and FLIST for force loads). Values may be redefined after being read by issuing LDREAD again with a different load step and substep, or time value.

When you use LDREAD in an explicit dynamic analysis to read in temperatures, you cannot use the EDLOAD,,TEMP command to apply temperature loading. Furthermore, any temperature loading defined by LDREAD cannot be listed or deleted by the EDLOAD command.

This command is also valid in PREP7.

## Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Boundary>Temperature>From Therm Analy
Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/ANSYS>Heat Generat>From Mag Analy
Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/CFD>Forces>Forces>From Mag Analy Main Menu>Preprocessor>Loads>Define Loads>Apply>Initial Condit'n>Temp from ANSYS Main Menu>Preprocessor>Loads>Define Loads>Apply>Initial Condit'n>Temp from Fluid Main Menu>Preprocessor>Loads>Define Loads>Apply>Magnetic>Boundary>Temperature>From Therm Analy
Main Menu>Preprocessor>Loads>Define Loads>Apply>Magnetic>Excitation>AppCurrDens>From Elec An
Main Menu>Preprocessor>Loads>Define Loads>Apply>Magnetic>Other>Electric Field>From Elec An
Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Force/Moment>From Mag Analy Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Force/Moment>From Reactions Main Menu $>$ Preprocessor>Loads $>$ Define Loads $>$ Apply $>$ Structural $>$ Pressure $>$ From Fluid Analy Main Menu>Preprocessor>Loads $>$ Define Loads $>$ Apply>Structural>Temperature>From Therm Analy Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Convection>From Fluid Analy Main Menu $>$ Preprocessor>Loads $>$ Define Loads $>$ Apply $>$ Thermal $>$ Heat Flux $>$ From EMAG Analy Main Menu>Preprocessor>Loads>Define Loads $>$ Apply $>$ Thermal $>$ Heat Flux $>$ From Fluid Analy Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Heat Generat>From Mag Analy Main Menu $>$ Preprocessor>Loads $>$ Define Loads $>$ Apply $>$ Thermal $>$ Temperature $>$ From ANSYS Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Temperature>From Flotran Main Menu>Preprocessor>LS-DYNA Options>Loading Options>Temp From ANSYS Main Menu>Solution>Define Loads $>$ Apply $>$ Electric>Boundary $>$ Temperature $>$ From Therm Analy Main Menu>Solution>Define Loads>Apply>Fluid/ANSYS>Heat Generat>From Mag Analy Main Menu>Solution>Define Loads>Apply>Fluid/CFD>Forces>Forces>From Mag Analy Main Menu>Solution>Define Loads>Apply>Initial Condit' $n>$ Temp from ANSYS Main Menu>Solution>Define Loads>Apply>Initial Condit'n>Temp from Fluid Main Menu $>$ Solution $>$ Define Loads $>$ Apply $>$ Magnetic $>$ Boundary $>$ Temperature $>$ From Therm Analy Main Menu $>$ Solution>Define Loads $>$ Apply $>$ Magnetic>Excitation $>$ AppCurrDens>From Elec An Main Menu>Solution>Define Loads>Apply>Magnetic>Other>Electric Field>From Elec An Main Menu>Solution>Define Loads>Apply>Structural>Force/Moment>From Mag Analy Main Menu>Solution>Define Loads>Apply>Structural>Force/Moment>From Reactions Main Menu>Solution>Define Loads>Apply>Structural>Pressure>From Fluid Analy Main Menu $>$ Solution $>$ Define Loads $>$ Apply $>$ Structural $>$ Temperature $>$ From Therm Analy Main Menu>Solution>Define Loads>Apply>Thermal>Convection>From Fluid Analy Main Menu>Solution>Define Loads>Apply>Thermal>Heat Flux>From EMAG Analy

Main Menu>Solution>Define Loads>Apply>Thermal>Heat Flux>From Fluid Analy Main Menu>Solution>Define Loads>Apply>Thermal>Heat Generat>From Mag Analy Main Menu>Solution>Define Loads>Apply>Thermal>Temperature>From ANSYS Main Menu>Solution>Define Loads>Apply>Thermal>Temperature>From Flotran Main Menu>Solution>Loading Options>Temp From ANSYS

LESIZE, NL1, SIZE, ANGSIZ, NDIV, SPACE, KFORC, LAYER1, LAYER2, KYNDIV
Specifies the divisions and spacing ratio on unmeshed lines.
PREP 7: Meshing
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NL1

Number of the line to be modified. If ALL, modify all selected lines [LSEL]. If NLI = P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NL1.

## SIZE

If $N D I V$ is blank, $S I Z E$ is the division (element edge) length. The number of divisions is automatically calculated from the line length (rounded upward to next integer). If $S I Z E$ is zero (or blank), use ANGSIZ or NDIV.

## ANGSIZ

The division arc (in degrees) spanned by the element edge (except for straight lines, which always result in one division). The number of divisions is automatically calculated from the line length (rounded upward to next integer).

## NDIV

If positive, $N D I V$ is the number of element divisions per line. If -1 (and $K F O R C=1$ ), NDIV is assumed to be zero element divisions per line. TARGE169 with a rigid specification ignores NDIV and will always mesh with one element division.

## SPACE

Spacing ratio. If positive, nominal ratio of last division size to first division size (if $>1.0$, sizes increase, if $<1.0$, sizes decrease). If negative, $|S P A C E|$ is nominal ratio of center division(s) size to end divisions size. Ratio defaults to 1.0 (uniform spacing). For layer-meshing, a value of 1.0 normally is used. If SPACE = FREE, ratio is determined by other considerations

## KFORC

KFORC 0-3 are used only with NLI = ALL. Specifies which selected lines are to be modified.
0
Modify only selected lines having undefined (zero) divisions.
1
Modify all selected lines.
2
Modify only selected lines having fewer divisions (including zero) than specified with this command.
3
Modify only selected lines having more divisions than specified with this command.

## 4

Modify only nonzero settings for SIZE, ANGSIZ, NDIV, SPACE, LAYER1, and LAYER2. If KFORC = 4, blank or 0 settings remain unchanged.

## LAYER1

Layer-meshing control parameter. Distance which defines the thickness of the inner mesh layer, LAYER1. Elements in this layer are uniformly-sized with edge lengths equal to the specified element size for the line (either through SIZE or line-length/NDIV). A positive value for LAYERI is interpreted as an absolute length, while a negative value in interpreted as a multiplier on the specified element size for the line. As a general rule, the resulting thickness of the inner mesh layer should be greater than or equal to the specified element size for the line. If $L A Y E R 1=$ OFF, layer-meshing control settings are cleared for the selected lines. The default value is 0.0

## LAYER2

Layer-meshing control parameter. Distance which defines the thickness of the outer mesh layer, LAYER2. Elements in this layer transition in size from those in LAYER1 to the global element size. A positive value of LAYER2 is interpreted as an absolute length, while a negative value is interpreted as a mesh transition factor. A value of LAYER2 $=-2$ would indicate that elements should approximately double in size as the mesh progresses normal to LAYER1. The default value is 0.0 .

## KYNDIV

0, No, and Off means that SmartSizing cannot override specified divisions and spacing ratios. Mapped mesh fails if divisions do not match. This defines the specification as "hard".

1, Yes, and On means that SmartSizing can override specified divisions and spacing ratios for curvature or proximity. Mapped meshing can override divisions to obtain required matching divisions. This defines the specification as" soft".

## Notes

Defines the number of divisions and the spacing ratio on selected lines. Lines with previously specified divisions may also be changed.

This command is also valid for rezoning.

## Menu Paths

Main Menu>Preprocessor>Meshing>Size Cntrls>ManualSize>Layers>CIr Layers<br>Main Menu>Preprocessor>Meshing>Size Cntrls>ManualSize>Layers>Picked Lines<br>Main Menu>Preprocessor>Meshing>Size Cntrls>ManualSize>Lines>All Lines<br>Main Menu>Preprocessor>Meshing>Size Cntrls>ManualSize>Lines>CIr Size Main Menu>Preprocessor>Meshing>Size Cntrls>ManualSize>Lines>Copy Divs<br>Main Menu>Preprocessor $>$ Meshing $>$ Size Cntrls $>$ ManualSize>Lines $>$ Flip Bias<br>Main Menu>Preprocessor>Meshing>Size Cntrls>ManualSize>Lines>Picked Lines

LEXTND, NL1, NK1, DIST, KEEP

## Extends a line at one end by using its slope.

PREP 7:Lines
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
NL1
Number of the line to be extended. If NL1 = P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI).

## NK1

Number of keypoint at the end of line NL1 to be extended.

## DIST

Distance that the line will be extended.

## KEEP

Specifies whether to keep the input entities:
0
Modify old line to use new keypoints and slopes.
1
Do not modify old line. New line will overlay old line and have unique keypoints.

## Notes

Extends a line at one end by using its slope. Lines may be redefined only if not yet attached to an area. Line divisions are set to zero (use LESIZE, etc. to modify). Note that solid modeling in a toroidal coordinate system is not recommended.

## Menu Paths

Main Menu>Preprocessor>Modeling>Operate>Extend Line

LFILLT, NL1, NL2, RAD, PCENT

## Generates a fillet line between two intersecting lines.

PREP 7:Lines
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NL1

Number of the first intersecting line. If NL1 = P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI).

## NL2

Number of the second intersecting line.
RAD
Radius of fillet to be generated. Radius should be less than the lengths of the two lines specified with NL1 and NL2.

## PCENT

Number to be assigned to generated keypoint at fillet arc center. If zero (or blank), no keypoint is generated.

## Notes

Generates a fillet line between two intersecting lines NLI (P1-PINT) and NL2 (P2-PINT). Three keypoints may be generated, two at the fillet tangent points ( $P$ TAN1 and PTAN2) and one (optional) at the fillet arc center (PCENT). Line P1-PINT becomes P1-PTAN1, P2-PINT becomes P2-PTAN2, and new arc line $P T A N 1-P T A N 2$ is generated. Generated keypoint and line numbers are automatically assigned (beginning with the lowest available values [NUMSTR]). Line divisions are set to zero (use LESIZE, etc. to modify).

## Menu Paths

Main Menu>Preprocessor>Modeling>Create>Lines>Line Fillet

## LFSURF, SLINE, TLINE

## Generates surface elements overlaid on the edge of existing solid elements and assigns the extra node as the closest fluid element node.

PREP 7:Elements<br>MP ME <> PR <> <> <> <> <> <> <> PP <> EME MFS

## SLINE

Component name for the surface lines of the meshed solid areas.

## TLINE

Component name for the target lines meshed with fluid elements.

## Notes

This command macro is used to generate surface effect elements overlaid on the surface of existing plane elements and, based on proximity, to determine and assign the extra node for each surface element. The underlying areas of the solid region and the fluid lines must be meshed prior to calling this command macro. The active element type must be SURF151 with appropriate settings for KEYOPT(4), KEYOPT(5), KEYOPT(6), and KEYOPT(8).

The surface lines of the solid and the target lines of the fluid are grouped into components and named using the CM command. The names must be enclosed in single quotes (e.g., 'SLINE') when the LFSURF command is manually typed in.

When using the GUI method, node and element components are created through the picking dialog boxes associated with this command.

The macro is applicable for the SURF151 and FLUID116 element types.

## Menu Paths

## Main Menu>Preprocessor>Modeling>Create>Elements>Surf / Contact>Surf Effect>Attch to Fluid $>$ Area to Fluid

# Main Menu>Preprocessor>Modeling>Create>Elements>Surf / Contact>Surf Effect>Attch to Fluid>Line to Fluid <br> Main Menu>Preprocessor>Modeling>Create>Elements>Surf / Contact>Surf Effect>Attch to Fluid $>$ Node to Fluid 

LGEN, ITIME, NL1, NL2, NINC, DX, DY, DZ, KINC, NOELEM, IMOVE

## Generates additional lines from a pattern of lines.

PREP 7:Lines
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## ITIME

Do this generation operation a total of ITIMES, incrementing all keypoints in the given pattern automatically (or by KINC) each time after the first. ITIME must be $>1$ for generation to occur.

## NL1, NL2, NINC

Generate lines from pattern beginning with NL1 to NL2 (defaults to NL1) in steps of NINC (defaults to 1). If $N L 1=A L L, N L 2$ and $N I N C$ are ignored and pattern is all selected lines [LSEL]. If NLI $=P$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NL1 (NL2 and NINC are ignored).

## DX, DY, DZ

Keypoint location increments in the active coordinate system (--, D日, DZ for cylindrical, --, D日, -- for spherical).

## KINC

Keypoint increment between generated sets. If zero, the lowest available keypoint numbers are assigned [NUMSTR].

## NOELEM

Specifies if elements and nodes are also to be generated:
0
Generate nodes and elements associated with the original lines, if they exist.
1
Do not generate nodes and elements.

## IMOVE

Specifies whether to redefine the existing lines:
0
Generate additional lines as requested with the ITIME argument.
1
Move original lines to new position retaining the same keypoint numbers (ITIME, KINC, and NOELM are ignored). Valid only if the old lines are no longer needed at their original positions. Corresponding meshed items are also moved if not needed at their original position.

## Notes

Generates additional lines (and their corresponding keypoints and mesh) from a given line pattern. The MAT, TYPE, REAL, and ESYS attributes are based upon the lines in the pattern and not upon the current settings. End slopes of the generated lines remain the same (in the active coordinate system) as those of the given pattern. For example, radial slopes remain radial, etc. Generations which produce lines of a size or shape
different from the pattern (i.e., radial generations in cylindrical systems, radial and phi generations in spherical systems, and theta generations in elliptical systems) are not allowed. Note that solid modeling in a toroidal coordinate system is not recommended. New line numbers are automatically assigned (beginning with the lowest available values [NUMSTR]).

## Menu Paths

Main Menu>Preprocessor>Modeling>Copy>Lines
Main Menu>Preprocessor>Modeling>Move / Modify>Lines

LGLUE, NL1, NL2, NL3, NL4, NL5, NL6, NL7, NL8, NL9
Generates new lines by "gluing" lines.
PREP 7:Booleans
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
NL1, NL2, NL3, . . . , NL9
Numbers of the lines to be glued. If NL1 = ALL, all selected lines will be glued (NL2 to NL9 will be ignored). If NL1 = P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NL1.

## Notes

Use of the LGLUE command generates new lines by "gluing" input lines. The glue operation redefines the input lines so that they share keypoints at their common ends. The new lines encompass the same geometry as the original lines. This operation is only valid if the intersections of the input lines are keypoints at the ends of those lines. See the Modeling and Meshing Guide for an illustration. See the BOPTN command for an explanation of the options available to Boolean operations. Element attributes and solid model boundary conditions assigned to the original entities will not be transferred to the new entities generated.

The LGLUE command results in the merging of keypoints at the common end of the lines. The keypoints of the lower numbered line will be kept. This means one must be aware of line numbering when multiple LGLUE commands are applied to avoid any "ungluing" of geometry.

## Menu Paths

## Main Menu>Preprocessor>Modeling>Operate>Booleans>Glue>Lines

LGWRITE, Fname, Ext, --, Kedit
Writes the database command $\log$ to a file.
SESSION: Files
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Fname

File name and directory path ( 248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

The file name defaults to Jobname.

## Ext

Filename extension (8 character maximum).
The extension defaults to LGW if Fname and Ext are blank.

Unused field.

## Kedit

Flag to suppress nonessential commands:
NONE
Do not suppress any commands (default).

## COMMENT

Write nonessential commands as comments (starting with !).

## REMOVE

Do not write nonessential commands or comments.

## Notes

Writes the database command log to a named file. The database command log contains all commands that were used to create the current database. These commands are recorded in the database as they are issued, and saved in the database file (File.DB) whenever the database is saved. The LGWRITE command extracts these commands from the database and writes them to a file. Nonessential commands (for listing, graphics displays, help, etc.) can be excluded from the file by using the Kedit field. The file resulting from LGWRITE can be used as command input to the program. This command is most useful if the session log file (File.LOG), which is normally saved during an interactive session, has been lost or corrupted. LGWRITE cannot be used after design optimization looping because the database is cleared [/CLEAR] automatically at each loop; use File. LOG instead.

This command is valid in any processor.

## Menu Paths

## Utility Menu>File>Write DB Log File

## /LIGHT, $W N, N U M, I N T, X V, Y V, Z V, R E F L$

## Specifies the light direction for the display window.

GRAPHICS: Style
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
WN
Window number (or ALL) to which command applies (defaults to 1 ).
NUM
Ambient or directional light key:
0
Ambient light (default).

## 1

Directional light.

## INT

Light intensity factor (defaults to 0.3 for ambient, 1.0 for directional). This option is valid only for 3-D devices).

## $X V, Y V, Z V$

Light direction (valid only for $N U M=1$ ). The directional light source is parallel to the line from point $X V$, $Y V, Z V$ to the origin, in the global Cartesian system origin. Defaults to the viewing direction [/VIEW].

## REFL

Light reflectance factor (valid only for $N U M=1$ and 3-D devices).

## Command Default

Use ambient light.

## Notes

Defines the light direction for the window. Use this command only with 3-D graphics devices or 2-D devices when Z-buffering is used [/TYPE,,(6 or 7)]. The ambient light has no direction, only an intensity. You can position the directional light source by defining a point (in the global Cartesian coordinate system) representing a point along the light directional line. This point, and the global Cartesian coordinate system origin, define the line along which the light is positioned looking toward the origin. You can use any point along the light line; for example, both (1.,1.,1.) and (2.,2.,2.) give the same light effect. For 3-D graphics devices only, the directional light source also has intensity and reflectance factors.

By choosing the highest intensity ambient light for 3-D graphics devices (via the command /LIGHT,WN, 0,1 ), you can nullify color shading and other effects of directional lighting.

This command is valid in any processor.

## Menu Paths

Utility Menu>PlotCtrls>Style>Light Source

LINA, NL, NA
Finds the intersection of a line with an area.

> PREP 7: Booleans
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## $N L$

Number of line to be intersected. If $N L=P$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI).

## NA

Number of area to be intersected.

## Notes

Finds the intersection of a line with an area. New lines will be generated where the lines intersect the areas. If the regions of intersection are only points, new keypoints will be generated instead. See the Modeling and Meshing Guide for an illustration. See the BOPTN command for the options available to Boolean operations. Element attributes and solid model boundary conditions assigned to the original entities will not be transferred to the new entities generated.

## Menu Paths

Main Menu>Preprocessor>Modeling>Operate>Booleans>Intersect>Line with Area

## LINE

## Specifies "Lines" as the subsequent status topic.

PREP 7: Status
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Notes

This is a status [STAT] topic command. Status topic commands are generated by the GUI and will appear in the log file (Jobname. LOG) if status is requested for some items under Utility Menu> List> Status. This command will be immediately followed by a STAT command, which will report the status for the specified topic.

If entered directly into the program, the STAT command should immediately follow this command.

## Menu Paths

This command cannot be accessed from a menu.
/LINE, $X 1, Y 1, X 2, Y 2$
Creates annotation lines (GUI).
GRAPHICS: Annotation
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
X1
Line X starting location $(-1.0<\mathrm{X}<2.0)$.
Y1
Line Y starting location ( $-1.0<\mathrm{Y}<1.0$ ).
X2
Line $X$ ending location ( $-1.0<X<2.0$ ).
Y2
Line $Y$ ending location ( $-1.0<\mathrm{Y}<1.0$ ).

## Notes

Defines annotation lines to be written directly onto the display at a specified location. This is a command generated by the Graphical User Interface (GUI) and will appear in the log file (Jobname. LOG) if annotation is used. This command is not intended to be typed in directly in an ANSYS session (although it can be included in an input file for batch input or for use with the /INPUT command).

All lines are shown on subsequent displays unless the annotation is turned off or deleted. Use the /LSPEC command to set the attributes of the line.

This command is valid in any processor.

## Menu Paths

Utility Menu>PlotCtrls>Annotation>Create Annotation

## LINES, $N$

## Specifies the length of a printed page.

POST26:Listing
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## N

Number of lines per page (defaults to 20). (Minimum allowed = 11).

## Command Default

20 lines per page.

## Notes

Specifies the length of a printed page (for use in reports, etc.).

## Menu Paths

Main Menu>TimeHist Postpro>Settings $>$ List

LINL, NL1, NL2, NL3, NL4, NL5, NL6, NL7, NL8, NL9
Finds the common intersection of lines.
PREP 7:Booleans
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
NL1, NL2, NL3, . . . , NL9
Numbers of lines to be intersected. If NL1 = ALL, find the intersection of all selected lines and NL2 to $N L 9$ are ignored. If $N L 1=P$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NL1.

## Notes

Finds the common (not pairwise) intersection of lines. The common intersection is defined as the regions shared (in common) by all lines listed on this command. New lines will be generated where the original lines intersect. If the regions of intersection are only points, new keypoints will be generated instead. See the Modeling and Meshing Guide for an illustration. See the BOPTN command for the options available to Boolean operations. Element attributes and solid model boundary conditions assigned to the original entities will not be transferred to the new entities generated.

## Menu Paths

Main Menu>Preprocessor>Modeling>Operate>Booleans>Intersect>Common>Lines

LINP, NL1, NL2, NL3, NL4, NL5, NL6, NL7, NL8, NL9

## Finds the pairwise intersection of lines.

PREP 7: Booleans
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NL1, NL2, NL3, . . . , NL9

Numbers of lines to be intersected pairwise. If $N L 1=A L L$, find the pairwise intersection of all selected lines and NL2 to NL9 are ignored. If NL1 = P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may be substituted for NL1.

## Notes

Finds the pairwise intersection of lines. The pairwise intersection is defined as any and all regions shared by at least two lines listed on this command. New lines will be generated where the original lines intersect pairwise. If the regions of pairwise intersection are only points, new keypoints will be generated. See the Modeling and Meshing Guide for an illustration. See the BOPTN command for the options available to Boolean operations. Element attributes and solid model boundary conditions assigned to the original entities will not be transferred to the new entities generated.

## Menu Paths

Main Menu>Preprocessor>Modeling>Operate>Booleans>Intersect>Pairwise>Lines

LINV,NL,NV
Finds the intersection of a line with a volume.
PREP 7: Booleans
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
NL
Number of line to be intersected. If $N L=P$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI).

NV
Number of volume to be intersected.

## Notes

Finds the intersection of a line with a volume. New lines will be generated where the lines intersect the volumes. If the regions of intersection are only points, new keypoints will be generated instead. See the Modeling and Meshing Guide for an illustration. See the BOPTN command for the options available to Boolean operations. Element attributes and solid model boundary conditions assigned to the original entities will not be transferred to the new entities generated.

## Menu Paths

Main Menu>Preprocessor>Modeling>Operate>Booleans>Intersect>Line with Volume

## LIST, LEVEL

## Lists out the sets in the results file.

AUX3: Results Files<br>MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Notes

This command lists the results set number, the load step, substep, and time step for each set. It also shows all sets marked for deletion.

## Menu Paths

## This command cannot be accessed from a menu.

*LIST, Fname, Ext, --

## Displays the contents of an external, coded file.

SESSION: Files
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Fname

File name and directory path ( 248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

## Ext

Filename extension (8 character maximum).
--
Unused field.

## Notes

Displays the contents of an external, coded file. The file to be listed cannot be in use (open) at the time (except for the error file, File.ERR, which may be displayed with *LIST,ERR).

Use caution when you are listing active ANSYS files via the List> Files> Other and File> List> Other menu paths. File I/O buffer and system configurations can result in incomplete listings unless the files are closed.

This command is valid in any processor.

## Menu Paths

This command cannot be accessed from a menu.

LLIST, NL1,NL2,NINC, Lab

## Lists the defined lines.

PREP 7:Lines
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NL1, NL2, NINC

List lines from NL1 to NL2 (defaults to NL1) in steps of NINC (defaults to 1). If NL1 = ALL (default), NL2 and NINC are ignored and all selected lines [LSEL] are listed. If NLI $=\mathrm{P}$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NL1 (NL2 and NINC are ignored).

## Lab

Determines what type of listing is used (one of the following):

## (blank)

Prints information about all lines in the specified range.

## RADIUS

Prints the radius of certain circular arcs, along with the keypoint numbers of each line. Straight lines, non-circular curves, and circular arcs not internally identified as arcs (which depends upon how each arc is created) will print a radius value of zero.

## LAYER

Prints layer-mesh control specifications.

## HPT

Prints information about only those lines that contain hard points. HPT is not supported in the GUI.

## ORIENT

Prints a list of lines, and identifies any orientation keypoints and any cross section IDs that are associated with the lines. Used for beam meshing with defined orientation nodes and cross sections.

## Notes

There are 2 listings for the number of element divisions and the spacing ratio. The first listing shows assignments from LESIZE only, followed by the "hard" key (KYNDIV). See LESIZE for more information. The second listing shows NDIV and SPACE for the existing mesh, if one exists. Whether this existing mesh and the mesh generated by LESIZE match at any given point depends upon meshing options and the sequence of meshing operations.

A "-1" in the "nodes" column indicates that the line has been meshed but that there are no interior nodes.
An attribute (TYPE, MAT, REAL, or ESYS) listed as a zero is unassigned; one listed as a positive value indicates that the attribute was assigned with the LATT command (and will not be reset to zero if the mesh is cleared);
one listed as a negative value indicates that the attribute was assigned using the attribute pointer [TYPE, MAT, REAL, or ESYS] that was active during meshing (and will be reset to zero if the mesh is cleared).

This command is valid in any processor.

## Menu Paths

## Utility Menu>List>Lines

## LMATRIX, SYMFAC, Coilname, Curname, Indname

## Calculates an inductance matrix and the total flux linkage for an $\mathbf{N}$-winding coil system.

> SOLUTION: Analysis Options
> MP <> <> <> <> <> <> <> EM <> <> PP <> EME <>


#### Abstract

SYMFAC Geometric symmetry factor. Inductance terms are scaled by this factor which represents the fraction of the total device modeled. Default is 1 .

\section*{Coilname}

Alphanumeric prefix identifier for coil label used in defining named element coil components. Default is 'coil.'

\section*{Curname}

Name of a predefined parameter array containing the nominal coil currents of the system. The array must be defined (see *DIM command) prior to calling the LMATRIX macro. Default is 'cur.'

\section*{Indname}

Name of the array parameter to be created by LMATRIX containing the calculated inductance matrix and the flux linkage in each coil. A text file of the same name with an extension. TXT is created containing the matrix data. Default is 'Imatrix.'


## Notes

LMATRIX calculates the differential inductance matrix for an $N$-winding system where $N$ is the number of coils in the system, and calculates the total flux linkage in each coil. LMATRIX may only be executed after the solution of a problem with nominal currents applied to the coils at a desired "operating point." The array Indname has $N$ rows and $N+1$ columns. The $N \times N$ block is the differential inductance matrix; the $N+1$ th column contains the total flux linkage, with the $i$ th row corresponding to the $i$ th coil. See the Theory Reference for the Mechanical APDL and Mechanical Applications for more details.

To invoke the LMATRIX macro, for the classical formulations, the elements for each coil must be grouped into a component using the CM command. Each set of independent coil elements is assigned a component name with the prefix Coilname followed by the coil number. For the solenoidal formulations, you must make the exciting node with a F,AMPS load a node component using the CM command. The classical and solenoidal formulations cannot be mixed.

To invoke the LMATRIX macro, the vector array parameter Curname with dimension $N$ must be defined and named using the *DIM command. You must set each vector array entry equal to the nominal current per turn in the corresponding coil at the operating point. Zero current values must be approximated by a negligibly small applied current.

Do not apply (or remove) inhomogeneous loads before using the LMATRIX command. Inhomogeneous loads are those created by:

- Degree of freedom commands (D, DA, etc.) specifying nonzero degrees of freedom values on nodes or solid model entities
- Any CE command with a nonzero constant term

Do not put any loads (for example, current) on elements not contained in the element component.
Operating solutions must be obtained through static analysis before calling LMATRIX. All name-strings must be enclosed in single quotes in the LMATRIX command line. The geometric symmetry factor, Symfac, represents the fraction of the device modeled, disregarding any current source primitives.

LMATRIX works only with magnetic field elements: PLANE53, SOLID96, and SOLID97, and with SOLID117/SOURC36 solenoidal formulations. You can use interface element INTER115 to connect SOLID96 and SOLID97 regions.

For more information, see LMATRIX in the Low-Frequency Electromagnetic Analysis Guide.
See the Theory Reference for the Mechanical APDL and Mechanical Applications and Electric and Magnetic Macros in the Low-Frequency Electromagnetic Analysis Guide for details.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu>Solution>Solve>Electromagnet>Static Analysis>Induct Matrix

## LMESH, NL1,NL2,NINC

## Generates nodes and line elements along lines.

PREP 7: Meshing
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NL1, NL2, NINC

Mesh lines from NL1 to NL2 (defaults to NL1) in steps of NINC (defaults to 1). If NL1 = ALL, NL2 and NINC are ignored and all selected lines [LSEL] are meshed. If NLI $=\mathrm{P}$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NL1 (NL2 and NINC are ignored).

## Notes

Generates nodes and line elements along lines. Missing nodes required for the generated elements are created and assigned the lowest available numbers.

## Menu Paths

Main Menu>Preprocessor>Meshing>Mesh>Lines

## LNSRCH, Key

## Activates a line search to be used with Newton-Raphson.

SOLUTION: Nonlinear Options
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

## Key

Line search key:

## OFF

Do not use a line search.
ON
Use a line search. Note, adaptive descent is suppressed when LNSRCH is on unless explicitly requested on the NROPT command. Having line search on and adaptive descent on at the same time is not recommended.

AUTO
ANSYS automatically switches line searching ON and OFF between substeps of a load step as needed. This option is recommended.

## Command Default

Line search off, unless contact elements are present.

## Notes

The default values given for this command assume SOLCONTROL,ON (the default). See the description of SOLCONTROL for a complete listing of the defaults set by SOLCONTROL,ON and SOLCONTROL,OFF.

Activates a line search to be used with the Newton-Raphson method [NROPT]. Line search is an alternative to adaptive descent (see Line Search in the Theory Reference for the Mechanical APDL and Mechanical Applications).

LNSRCH,AUTO can be very efficient for problems in which LNSRCH is needed at only certain substeps.
You cannot use line search [LNSRCH], automatic time stepping [AUTOTS], or the DOF solution predictor [PRED] with the arc-length method [ARCLEN, ARCTRM]. If you activate the arc-length method after you set LNSRCH, AUTOTS, or PRED, a warning message appears. If you choose to proceed with the arc-length method activation, ANSYS disables your line search, automatic time stepping, and DOF predictor settings.

This command is also valid in PREP7.

## Menu Paths

# Main Menu>Preprocessor>Loads>Analysis Type>Sol'n Controls>Nonlinear <br> Main Menu>Preprocessor>Loads>Load Step Opts>Nonlinear>Line Search <br> Main Menu>Solution>Analysis Type>Sol'n Controls>Nonlinear <br> Main Menu>Solution>Load Step Opts>Nonlinear>Line Search 

## LOCAL, KCN, KCS, XC, YC, ZC, THXY, THYZ, THZX, PAR1, PAR2

## Defines a local coordinate system by a location and orientation.

DATABASE: Coordinate System
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
KCN
Arbitrary reference number assigned to this coordinate system. Must be greater than 10. A coordinate system previously defined with this number will be redefined.

KCS
Coordinate system type:
0 or CART
Cartesian
1 or CYLIN
Cylindrical (circular or elliptical)
2 or SPHE
Spherical (or spheroidal)
3 or TORO
Toroidal
$X C, Y C, Z C$
Location (in the global Cartesian coordinate system) of the origin of the new coordinate system.

## THXY

First rotation about local $Z$ (positive $X$ toward $Y$ ).

## THYZ

Second rotation about local $X$ (positive $Y$ toward $Z$ ).

## THZX

Third rotation about local $Y$ (positive $Z$ toward $X$ ).

## PAR1

Used for elliptical, spheroidal, or toroidal systems. If $K C S=1$ or $2, P A R 1$ is the ratio of the ellipse $Y$-axis radius to X -axis radius (defaults to 1.0 (circle)). If $K C S=3, P A R 1$ is the major radius of the torus.

## PAR2

Used for spheroidal systems. If $K C S=2, P A R 2=$ ratio of ellipse $Z$-axis radius to X -axis radius (defaults to 1.0 (circle)).

## Notes

Defines a local coordinate system by origin location and orientation angles. The local coordinate system is parallel to the global Cartesian system unless rotated. Rotation angles are in degrees and redefine any previous rotation angles. See the CLOCAL, CS, CSWPLA, and CSKP commands for alternate definitions. This local system becomes the active coordinate system [CSYS]. Local coordinate systems may be displayed with the /PSYMB command.

This command is valid in any processor.

## Menu Paths

Utility Menu>WorkPlane>Local Coordinate Systems>Create Local CS>At Specified Loc

LOVLAP, NL1, NL2, NL3, NL4, NL5, NL6, NL7, NL8, NL9

## Overlaps lines.

PREP 7: Booleans
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NL1, NL2, NL3, . . . , NL9

Numbers of lines to be overlapped. If NL1 = ALL, NL2 to NL9 are ignored and all selected lines are overlapped. If $N L 1=P$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NL1.

## Notes

Overlaps lines. Generates new lines which encompass the geometry of all the input lines. The new lines are defined by the regions of intersection of the input lines, and by the complementary (non-intersecting) regions. See the Modeling and Meshing Guide for an illustration. This operation is only valid when the region of intersection is a line. See the BOPTN command for an explanation of the options available to Boolean operations. Element attributes and solid model boundary conditions assigned to the original entities will not be transferred to the new entities generated.

## Menu Paths

Main Menu>Preprocessor>Modeling>Operate>Booleans>Overlap>Lines

## LPLOT, NL1,NL2,NINC

## Displays the selected lines.

PREP 7:Lines
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NL1, NL2, NINC

Display lines from $N L 1$ to $N L 2$ (defaults to $N L 1$ ) in steps of $N I N C$ (defaults to 1). If $N L 1=$ ALL (default), NL2 and NINC are ignored and display all selected lines [LSEL].

## Notes

Mesh divisions on plotted lines are controlled by the LDIV option of the /PSYMB command.
This command is valid in any processor.

## Menu Paths

Utility Menu>Plot>Lines<br>Utility Menu>Plot>Specified Entities>Lines

LPRT, PORTNUM, LNUM, Ltype, CS, X1, Y1, Z1, X2, Y2, Z2
Defines impedance and calibration lines for excitation eigenfield.
SOLUTION: Analysis Options
MP <> <> <> <> <> <> <> <> EH <> PP <> <> <>

## PORTNUM

Port number. If $P O R T N U M=$ LIST, lists lines. If $P O R T N U M=$ DELE, deletes lines.

## LNUM

Line number. A maximum of 20 lines can be defined for each port. The line number should be between 1 and 1000.

## Ltype

Type of line:
IMPD
Impedance line.
CIMP
Impedance and calibration line.
CS
Local coordinate system number at port.
X1, Y1, $z 1$
The local coordinates of the starting point.

## X2, Y2, $z 2$

The local coordinates of the ending point.

## Notes

The direction of a line is from starting point to ending point.

## Menu Paths

## This command cannot be accessed from a menu.

LPTN, NL1, NL2, NL3, NL4, NL5, NL6, NL7, NL8, NL9

## Partitions lines.

> PREP 7: Booleans
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NL1, NL2, NL3, . . . , NL9

Numbers of lines to be operated on. If NLI = ALL, NL2 to NL9 are ignored all selected lines are used. If $N L 1=P$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may be substituted for NL1.

## Notes

Partitions lines. Generates new lines which encompass the geometry of all the input lines. The new lines are defined by both the regions of intersection of the input lines and the complementary (non-intersecting) regions. See the Modeling and Meshing Guide for an illustration. See the BOPTN command for an explanation of the options available to Boolean operations. Element attributes and solid model boundary conditions assigned to the original entities will not be transferred to the new entities generated.

## Menu Paths

## Main Menu>Preprocessor>Modeling>Operate>Booleans>Partition>Lines

LREFINE, NL1, NL2, NINC, LEVEL, DEPTH, POST, RETAIN

## Refines the mesh around specified lines.

PREP 7: Meshing
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NL1, NL2, NINC

Lines (NL1 to NL2 in increments of NINC) around which the mesh is to be refined. NL2 defaults to NL1, and NINC defaults to 1 . If NL1 = ALL, NL2 and NINC are ignored and all selected lines are used for refinement. If $N L 1=P$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NL1 (NL2 and NINC are ignored).

## LEVEL

Amount of refinement to be done. Specify the value of $L E V E L$ as an integer from 1 to 5 , where a value of 1 provides minimal refinement, and a value of 5 provides maximum refinement (defaults to 1 ).

## DEPTH

Depth of mesh refinement in terms of the number of elements outward from the indicated lines (defaults to 1).

## POST

Type of postprocessing to be done after element splitting, in order to improve element quality:

## OFF

No postprocessing will be done.

## SMOOTH

Smoothing will be done. Node locations may change.

## CLEAN

Smoothing and cleanup will be done. Existing elements may be deleted, and node locations may change (default).

## RETAIN

Flag indicating whether quadrilateral elements must be retained in the refinement of an all-quadrilateral mesh. (The ANSYS program ignores the RETAIN argument when you are refining anything other than a quadrilateral mesh.)

ON
The final mesh will be composed entirely of quadrilateral elements, regardless of the element quality (default).

## OFF

The final mesh may include some triangular elements in order to maintain element quality and provide transitioning.

## Notes

LREFINE performs local mesh refinement around the specified lines. By default, the indicated elements are split to create new elements with $1 / 2$ the edge length of the original elements ( $L E V E L=1$ ).

LREFINE refines all area elements and tetrahedral volume elements that are adjacent to the specified lines. Any volume elements that are adjacent to the specified lines, but are not tetrahedra (for example, hexahedra, wedges, and pyramids), are not refined.

You cannot use mesh refinement on a solid model that contains initial conditions at nodes [IC], coupled nodes [CP family of commands], constraint equations [CE family of commands], or boundary conditions or loads applied directly to any of its nodes or elements. This applies to nodes and elements anywhere in the model, not just in the region where you want to request mesh refinement. For additional restrictions on mesh refinement, see Revising Your Model in the Modeling and Meshing Guide.

This command is also valid for rezoning.

## Menu Paths

Main Menu>Preprocessor>Meshing>Modify Mesh>Refine At>Lines

## LREVERSE, LNUM, NOEFLIP

## Reverses the normal of a line, regardless of its connectivity or mesh status.

PREP 7:Lines
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## LNUM

Line number of the line whose normal direction is to be reversed. If $L N U M=A L L$, the normals of all selected lines will be reversed. If $L N U M=P$, graphical picking is enabled. A component name may also be substituted for LNUM.

## NOEFLIP

Indicates whether you want to change the normal direction of the existing elements on the reversed line(s) so that they are consistent with each line's new normal direction.

0
Make the normal direction of existing elements on the reversed line(s) consistent with each line's new normal direction (default).

1
Do not change the normal direction of existing elements on the reversed line(s).

## Notes

You cannot use the LREVERSE command to change the normal direction of any element that has a body or surface load. We recommend that you apply all of your loads only after ensuring that the element normal directions are acceptable.

Real constants (such as nonuniform shell thickness and tapered beam constants) may be invalidated by an element reversal.

For more information, see Revising Your Model in the Modeling and Meshing Guide.

## Menu Paths

Main Menu>Preprocessor>Modeling>Move / Modify>Reverse Normals>of Lines

LROTAT, NK1, NK2, NK3, NK4, NK5, NK6, PAX1, PAX2, ARC, NSEG

## Generates circular lines by rotating a keypoint pattern about an axis.

PREP 7:Lines
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NK1, NK2, NK3, . . . , NK6

List of keypoints in the pattern to be rotated (6 maximum if using keyboard entry). If NK1 = P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). If NK1 = ALL, all selected keypoints (except PAX1 and PAX2) will define the pattern to be rotated. A component name may also be substituted for NK1.

## PAX1, PAX2

Keypoints defining the axis about which the keypoint pattern is to be rotated.

## ARC

Arc length (in degrees). Positive follows right-hand rule about PAX1-PAX2 vector. Defaults to 360 .

## NSEG

Number of lines ( 8 maximum) around circumference. Defaults to minimum required for $90^{\circ}$ (maximum) arcs, i.e., 4 for $360^{\circ}, 3$ for $270^{\circ}$, etc.

## Notes

Generates circular lines (and their corresponding keypoints) by rotating a keypoint pattern about an axis. Keypoint patterns are generated at regular angular locations (based on a maximum spacing of $90^{\circ}$ ). Line patterns are generated at the keypoint patterns. Keypoint and line numbers are automatically assigned (beginning with the lowest available values [NUMSTR]).

## Menu Paths

Main Menu>Preprocessor>Modeling>Operate>Extrude>Keypoints>About Axis

LSBA, NL, NA, SEPO, KEEPL, KEEPA

## Subtracts areas from lines.

PREP 7:Booleans
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
$N L$
Line (or lines, if picking is used) to be subtracted from. If ALL, use all selected lines. If $N L=P$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NL.

NA
Area (or areas, if picking is used) to be subtracted. If ALL, use all selected areas. A component name may also be substituted for NA.

## SEPO

Behavior if the intersection of the lines and the areas is a keypoint or keypoints:

## (blank)

The resulting lines will share keypoint(s) where they touch.

## SEPO

The resulting lines will have separate, but coincident keypoint(s) where they touch.

## KEEPL

Specifies whether $N L$ lines are to be deleted:

## (blank)

Use the setting of KEEP on the BOPTN command.

## DELETE

Delete NL lines after LSBA operation (override BOPTN command settings).

## KEEP

Keep $N L$ lines after LSBA operation (override BOPTN command settings).

## KEEPA

Specifies whether NA areas are to be deleted:
(blank)
Use the setting of KEEP on the BOPTN command.

## DELETE

Delete areas after LSBA operation (override BOPTN command settings).

## KEEP

Keep areas after LSBA operation (override BOPTN command settings).

## Notes

Generates new lines by subtracting the regions common to both $N L$ lines and $N A$ areas (the intersection) from the $N L$ lines. The intersection can be a line(s) or keypoint(s). If the intersection is a keypoint and SEPO is blank, the $N L$ line is divided at the keypoint and the resulting lines will be connected, sharing a common keypoint where they touch. If $S E P O$ is set to SEPO, $N L$ is divided into two unconnected lines with separate keypoints where they touch. See the Modeling and Meshing Guide for an illustration. See the BOPTN command for an explanation of the options available to Boolean operations. Element attributes and solid model boundary conditions assigned to the original entities will not be transferred to the new entities generated.

## Menu Paths

Main Menu $>$ Preprocessor $>$ Modeling $>$ Operate $>$ Booleans $>$ Divide $>$ Line by Area Main Menu>Preprocessor>Modeling>Operate>Booleans>Divide>With Options>Line by Area

## *LSBAC, EngineName, RhsVector, SolVector

## Performs the solve (forward/backward substitution) of a factorized linear system.

APDL: Matrix Operations
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Argument Descriptions

## EngineName

Name used to identify this engine. Must have been previously created using *LSENGINE and factorized using *LSFACTOR.

## RhsVector

Name of vector containing the right-hand side (load) vectors as input. Must have been previously defined as a *VEC vector or a *DMAT matrix.

## Solvector

Name of vector that will contain the solution vectors upon completion. Must be predefined as a *VEC vector or *DMAT matrix.

## Notes

This command performs forward and back substitution to obtain the solution to the linear matrix equation $A x=b$. The matrix engine must have been previously defined using *LSENGINE, and the matrix factored using *LSFACTOR.

You can use the *DMAT,,,COPY (or *VEC,,,COPY) command to copy the load vector to the solution vector in order to predefine it with the appropriate size.

## Menu Paths

This command cannot be accessed from a menu.

LSBL, NL1, NL2, SEPO, KEEP1, KEEP2
Subtracts lines from lines.
PREP 7:Booleans
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NL1

Line (or lines, if picking is used) to be subtracted from. If ALL, use all selected lines. Lines specified in this argument are not available for use in the NL2 argument. If P, graphical picking is enabled (valid only in the GUI) and all remaining fields are ignored. A component name may also be substituted for NL1.

## NL2

Line (or lines, if picking is used) to subtract. If ALL, use all selected lines (except those included in the NL1 argument). A component name may also be substituted for NL2.

## SEPO

Behavior if the intersection of the NL1 lines and the NL2 lines is a keypoint or keypoints:
(blank)
The resulting lines will share keypoint(s) where they touch.
SEPO
The resulting lines will have separate, but coincident keypoint(s) where they touch.

## KEEP1

Specifies whether NLI lines are to be deleted:
(blank)
Use the setting of KEEP on the BOPTN command.

## DELETE

Delete NL1 lines after LSBL operation (override BOPTN command settings).

## KEEP

Keep NL1 lines after LSBL operation (override BOPTN command settings).

## KEEP2

Specifies whether NL2 lines are to be deleted:

## (blank)

Use the setting of KEEP on the BOPTN command.

## DELETE

Delete NL2 lines after LSBL operation (override BOPTN command settings).

## KEEP

Keep NL2 lines after LSBL operation (override BOPTN command settings).

## Notes

Generates new lines by subtracting the regions common to both NL1 and NL2 lines (the intersection) from the NL1 lines. The intersection can be a line(s) or point(s). If the intersection is a point and SEPO is blank, the NLI line is divided at the point and the resulting lines will be connected, sharing a common keypoint where they touch. If SEPO is set to SEPO, NLI is divided into two unconnected lines with separate keypoints where they touch. See the Modeling and Meshing Guide for an illustration. See the BOPTN command for an explanation of the options available to Boolean operations. Element attributes and solid model boundary conditions assigned to the original entities will not be transferred to the new entities generated. LSBL,ALL,ALL will have no effect since all the lines (in NL1) will be unavailable as NL2 lines.

## Menu Paths

# Main Menu $>$ Preprocessor $>$ Modeling $>$ Operate $>$ Booleans $>$ Divide $>$ Line by Line Main Menu>Preprocessor>Modeling>Operate>Booleans>Divide>With Options>Line by Line Main Menu>Preprocessor>Modeling>Operate>Booleans>Subtract>Lines Main Menu>Preprocessor>Modeling>Operate>Booleans>Subtract>With Options>Lines 

## Subtracts volumes from lines.

> PREP 7: Booleans
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

NL
Line (or lines, if picking is used) to be subtracted from. If ALL, use all selected lines. If $N L=P$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for $N L$.
$N V$
Volume (or volumes, if picking is used) to be subtracted. If ALL, use all selected volumes. A component name may also be substituted for $N V$.

## SEPO

Behavior if the intersection of the $N L$ lines and the $N V$ volumes is a keypoint or keypoints:

## (blank)

The resulting lines will share keypoint(s) where they touch.

## SEPO

The resulting lines will have separate, but coincident keypoint(s) where they touch.

## KEEPL

Specifies whether $N L$ lines are to be deleted:

## (blank)

Use the setting of KEEP on the BOPTN command.
DELETE
Delete $N L$ lines after LSBV operation (override BOPTN command settings).

## KEEP

Keep $N L$ lines after LSBV operation (override BOPTN command settings).

## KEEPV

Specifies whether $N V$ volumes are to be deleted:

## (blank)

Use the setting of KEEP on the BOPTN command.
DELETE
Delete $N V$ volumes after LSBV operation (override BOPTN command settings).

## KEEP

Keep $N V$ volumes after LSBV operation (override BOPTN command settings).

## Notes

Generates new lines by subtracting the regions common to both $N L$ lines and $N V$ volumes (the intersection) from the $N L$ lines. The intersection can be a line(s) or point(s). If the intersection is a point and SEPO is blank, the NL1 line is divided at the point and the resulting lines will be connected, sharing a common keypoint where they touch. If SEPO is set to SEPO, NLI is divided into two unconnected lines with separate keypoints where they touch. See the Modeling and Meshing Guide for an illustration. See the BOPTN command for an explanation of the options available to Boolean operations. Element attributes and solid model boundary conditions assigned to the original entities will not be transferred to the new entities generated. LSBL,ALL,ALL will have no effect since all the lines (in NL1) will be unavailable as NL2 lines.

## Menu Paths

Main Menu $>$ Preprocessor $>$ Modeling $>$ Operate $>$ Booleans $>$ Divide $>$ Line by Volume
Main Menu $>$ Preprocessor $>$ Modeling $>$ Operate $>$ Booleans $>$ Divide $>$ With Options $>$ Line by Volume Main Menu>Preprocessor>Modeling>Operate>Divide>Line by Volu

LSBW, NL, SEPO, KEEP
Subtracts the intersection of the working plane from lines (divides lines).
PREP 7: Booleans
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
NL
Line (or lines, if picking is used) to be subtracted from. If $N L=A L L$, use all selected lines. If $N L=P$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be input for NL.

## SEPO

Behavior of the created boundary.

## (blank)

The resulting lines will share keypoint(s) where they touch.

## SEPO

The resulting lines will have separate, but coincident keypoint(s).

## KEEP

Specifies whether $N L$ lines are to be deleted:

## (blank)

Use the setting of KEEP on the BOPTN command.

## DELETE

Delete $N L$ lines after LSBW operation (override BOPTN command settings).

## KEEP

Keep NL lines after LSBW operation (override BOPTN command settings).

## Notes

Generates new lines by subtracting the intersection of the working plane from the $N L$ lines. The intersection will be a keypoint(s). The working plane must not be in the same plane as the NL line(s). If SEPO is blank, the $N L$ line is divided and the resulting lines will be connected, sharing a common keypoint where they touch. If $S E P O$ is set to SEPO, $N L$ is divided into two unconnected lines with separate keypoints. See the Modeling and Meshing Guide for an illustration. See the BOPTN command for an explanation of the options available to Boolean operations. Element attributes and solid model boundary conditions assigned to the original entities will not be transferred to the new entities generated. Areas that completely contain the input lines will be updated if the lines are divided by this operation.

## Menu Paths

Main Menu>Preprocessor>Modeling>Operate>Booleans>Divide>Line by WrkPlane Main Menu>Preprocessor>Modeling>Operate>Booleans>Divide>With Options>Line by WrkPlane

Main Menu>Preprocessor>Modeling>Operate>Divide>Line by WrkPlane

## LSCLEAR, Lab

Clears loads and load step options from the database.
SOLUTION: Load Step Operations MP ME ST PR PRN <> <> FL EM EH $<>$ PP $<>$ EME MFS

Lab
Label identifying the data to be cleared:
SOLID
Delete only solid model loads.
FE
Delete only finite element loads.
INER
Delete only inertia loads (ACEL, etc.).
LFACT
Initialize only load factors (on DCUM, FCUM, SFCUM, etc.).
LSOPT
Initialize only load step options.
ALL
Delete all loads and initialize all load step options and load factors.

## Notes

Loads are deleted, and load step options are initialized to their default values.
This command is also valid in PREP7.

## Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Delete>All Load Data>All F.E. Loads
Main Menu>Preprocessor>Loads>Define Loads>Delete>All Load Data>All Inertia Lds
Main Menu>Preprocessor>Loads>Define Loads>Delete>All Load Data>All Loads \& Opts
Main Menu>Preprocessor>Loads>Define Loads>Delete>All Load Data>All SolidMod Lds
Main Menu>Preprocessor>Loads>Define Loads>Settings>Replace vs Add>Reset Factors
Main Menu>Preprocessor>Loads>Load Step Opts>Reset Options
Main Menu>Preprocessor>Meshing>Modify Mesh>Refine At>All
Main Menu>Preprocessor>Meshing>Modify Mesh>Refine At>Areas
Main Menu>Preprocessor>Meshing>Modify Mesh>Refine At>Elements
Main Menu>Preprocessor>Meshing>Modify Mesh>Refine At>Keypoints
Main Menu>Preprocessor>Meshing>Modify Mesh $>$ Refine At $>$ Lines
Main Menu $>$ Preprocessor>Meshing>Modify Mesh $>$ Refine At>Nodes
Main Menu>Solution>Define Loads>Delete>All Load Data>All F.E. Loads
Main Menu>Solution>Define Loads>Delete>All Load Data>All Inertia Lds
Main Menu>Solution>Define Loads>Delete>All Load Data>All Loads \& Opts
Main Menu>Solution>Define Loads>Delete>All Load Data>All SolidMod Lds

# Main Menu>Solution>Define Loads>Settings>Replace vs Add>Reset Factors Main Menu>Solution>Load Step Opts>Reset Options 

## LSDELE, LSMIN, LSMAX, LSINC

## Deletes load step files.

> SOLUTION: Load Step Operations
> MP ME ST PR PRN <> <> FL EM EH <> PP <> EME MFS

## LSMIN, LSMAX, LSINC

Range of load step files to be deleted, from LSMIN to LSMAX in steps of LSINC. LSMAX defaults to $L S M I N$, and LSSINC defaults to 1 . If $L S M I N=A L L$, all load step files are deleted (and LSMAX and LSINC are ignored). The load step files are assumed to be named Jobname. $S n$, where $n$ is a number assigned by the LSWRITE command ( $01--09,10,11$, etc.). On systems with a 3-character limit on the extension, the " S " is dropped for numbers $>99$.

## Notes

Deletes load step files in the current directory (written by the LSWRITE command).
This command is also valid in PREP7.

## Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Operate>Delete LS Files Main Menu>Solution>Define Loads>Operate>Delete LS Files

LSEL, Type, Item, Comp, VMIN, VMAX, VINC, KSWP

## Selects a subset of lines.

> DATABASE: Selecting
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Type

Label identifying the type of select:
S
Select a new set (default).
R
Reselect a set from the current set.
A
Additionally select a set and extend the current set.
U
Unselect a set from the current set.

## ALL

Restore the full set.

## NONE

Unselect the full set.

## INVE

Invert the current set (selected becomes unselected and vice versa).

## STAT

Display the current select status.
The following fields are used only with Type $=\mathrm{S}, \mathrm{R}, \mathrm{A}$, or U:

## Item

Label identifying data. Valid item labels are shown in the table below. Some items also require a component label. If Item = PICK (or simply "P"), graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). Defaults to LINE.

## Comp

Component of the item (if required). Valid component labels are shown in the table below.

## VMIN

Minimum value of item range. Ranges are line numbers, coordinate values, attribute numbers, etc., as appropriate for the item. If $V M I N=0.0$, a tolerance of $\pm 1.0 \mathrm{E}-6$ is used, or $\pm 0.005 \times$ VMIN if VMIN $=$ VMAX. A component name (as specified on the CM command) may also be substituted for VMIN (VMAX and VINC are ignored). If Item = MAT, TYPE, REAL, ESYS, or NDIV and if VMIN is positive, the absolute value of Item is compared against the range for selection; if VMIN is negative, the signed value of Item is compared. See the LLIST command for a discussion of signed attributes.

## VMAX

Maximum value of item range. VMAX defaults to VMIN.
vinc
Value increment within range. Used only with integer ranges (such as for line numbers). Defaults to 1 . VINC cannot be negative.

## KSWP

Specifies whether only lines are to be selected:
0
Select lines only.
1
Select lines, as well as keypoints, nodes, and elements associated with selected lines. Valid only with Type $=\mathrm{S}$.

## Command Default

All lines are selected.

## Notes

Selects lines based on values of a labeled item and component. For example, to select a new set of lines based on line numbers 1 through 7 , use LSEL,S,LINE,,1,7. The subset is used when the ALL label is entered (or implied) on other commands, such as LLIST,ALL. Only data identified by line number are selected. Data are flagged as selected and unselected; no data are actually deleted from the database.

If Item = LCCA, the command selects only those lines that were created by concatenation. The KSWP field is processed, but the Comp, VMIN, VMAX, and VINC fields are ignored.

If Item $=$ HPT, the command selects only those lines that contain hard points.
Item $=$ RADIUS is only valid for lines that are circular arcs.
LSEL is valid in any processor.
For selections based on non-integer numbers (coordinates, results, etc.), items that are within the range VMIN-Toler and VMAX + Toler are selected. The default tolerance Toler is based on the relative values of VMIN and VMAX as follows:

- If VMIN $=$ VMAX, Toler $=0.005 \times$ VMIN.
- If $V M I N=V M A X=0.0$, Toler $=1.0 \mathrm{E}-6$.
- If VMAX $\neq$ VMIN, Toler $=1.0 \mathrm{E}-8 \times($ VMAX - VMIN $)$.

Use the SELTOL command to override this default and specify Toler explicitly.
Table 224 LSEL - Valid Item and Component Labels

Valid Item and Component Labels LSEL, | Type, |
| :---: |
| KSWP | Item, Comp, VMIN, VMAX, VINC,

| Item | Comp | Description |
| :---: | :---: | :---: |
| LINE |  | Line number. |
| EXT |  | Line numbers on exterior of selected area (ignore remaining fields). |
| LOC | X, Y, Z | $\mathrm{X}, \mathrm{Y}$, or Z center location in the active coordinate system. |
| TAN1 | $X, Y, Z$ | Unit vector component of outward tangent at beginning of line. |
| TAN2 | $X, Y, Z$ | Unit vector component of outward tangent at end of line. |
| NDIV |  | Number of divisions within the line. |
| SPACE |  | Spacing ratio of line divisions. |
| MAT |  | Material number associated with the line. |
| TYPE |  | Element type number associated with the line. |
| REAL |  | Real constant set number associated with the line. |
| ESYS |  | Element coordinate system associated with the line. |
| SEC |  | Cross section ID number. [SECNUM] |
| LENGTH |  | Length of the line. |
| RADIUS |  | Radius of the line. |
| HPT |  | Line number (selects only lines with associated hard points). |
| LCCA |  | Concatenated lines (selects only lines that were created by concatenation [LCCAT]). |

## Menu Paths

## Utility Menu>Select>Entities

## *LSENGINE, Type, EngineName, Matrix, Option

## Creates a linear solver engine.

MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Argument Descriptions

## Type

Specifies the algorithm to be used:
BCS --
Boeing sparse solver (default if applied to sparse matrices).
DSS --
MKL sparse linear solver (Intel Windows and Linux systems only).
LAPACK --
LAPACK dense matrix linear solver (default if applied to dense matrices).
DSP --
Distributed sparse solver.

## EngineName

Name used to identify this engine. Must be specified.

## Matrix

Name of the matrix to solve.

## Option

Option to control the memory mode of the DSS solver (used only if Type = DSS):
INCORE --
In-core memory mode.
OUTOFCORE --
Out-of-core memory mode.

## Notes

This command creates a linear solver engine.
The BCS, DSS, and DSP solvers can only be used with sparse matrices. For dense matrices, use the LAPACK solver.

## Menu Paths

This command cannot be accessed from a menu.
*LSFACTOR, EngineName, Option

## Performs the numerical factorization of a linear solver system.

APDL:Matrix Operations<br>MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Argument Descriptions

## EngineName

Name used to identify this engine. Must have been previously created using *LSENGINE.

## Option

Option to invert the matrix, used only with an LAPACK engine (*LSENGINE,LAPACK):
INVERT --
Invert the matrix.

## Notes

Performs the computationally intensive, memory intensive factorization of a matrix specified by *LSENGINE, using the solver engine also specified by *LSENGINE.

## Menu Paths

This command cannot be accessed from a menu.

LSLA, Type
Selects those lines contained in the selected areas.

> DATABASE: Selecting
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Type

Label identifying the type of line select:
S
Select a new set (default).
R
Reselect a set from the current set.
A
Additionally select a set and extend the current set.
U
Unselect a set from the current set.

## Notes

This command is valid in any processor.

## Menu Paths

Utility Menu>Select>Entities

LSLK, Type, LSKEY

## Selects those lines containing the selected keypoints.

DATABASE: Selecting<br>MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Type

Label identifying the type of line select:
S
Select a new set (default).
R
Reselect a set from the current set.
A
Additionally select a set and extend the current set.
U
Unselect a set from the current set.

## LSKEY

Specifies whether all contained line keypoints must be selected [KSEL]:
0
Select line if any of its keypoints are in the selected keypoint set.
1
Select line only if all of its keypoints are in the selected keypoint set.

## Notes

This command is valid in any processor.

## Menu Paths

Utility Menu>Select>Entities

## LSOPER

## Specifies "Load step operations" as the subsequent status topic.

SOLUTION:Status
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Notes

This is a status [STAT] topic command. Status topic commands are generated by the GUI and will appear in the log file (Jobname. LOG) if status is requested for some items under Utility Menu> List> Status. This
command will be immediately followed by a STAT command, which will report the status for the specified topic.

If entered directly into the program, the STAT command should immediately follow this command.

## Menu Paths

Utility Menu>List>Status>Solution>Load Step Operations

## /LSPEC, LCOLOR, LINSTL, XLNWID

Specifies annotation line attributes (GUI).
GRAPHICS: Annotation
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## LCOLOR

Line color:
0
Black
1
Red-Magenta
2
Magenta
3
Blue-Magenta
4
Blue
5
Cyan-Blue
6
Cyan
7
Green-Cyan
8
Green
9
Yellow-Green
10
Yellow
11
Orange
12
Red

## 13

Dark Gray
14
Light Gray
15
White

## LINSTL

Line style:

0
Solid line.
1
Dashed line.

## XLNWID

Line width multiplier (1.0 to 20.0). Defaults to 1.0 .

## Notes

Specifies annotation line attributes to control certain characteristics of the lines created via the /LINE, /LARC, /LSYMBOL, /POLYGON, /PMORE, /PCIRCLE, and /PWEDGE commands. This is a command generated by the Graphical User Interface (GUI) and will appear in the log file (Jobname. LOG) if annotation is used. This command is not intended to be typed in directly in an ANSYS session (although it can be included in an input file for batch input or for use with the /INPUT command).

This command is valid in any processor.

## Menu Paths

Utility Menu>PlotCtrls>Annotation>Create Annotation

## LSREAD, LSNUM

## Reads load and load step option data into the database.

SOLUTION: Load Step Operations
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## LSNUM

Identification number of the load step file to be read. Defaults to $1+$ highest number read in the current session. Issue LSREAD,STAT to list the current value of LSNUM. Issue LSREAD,INIT to reset LSNUM to 1. The load step files are assumed to be named Jobname. $S n$, where $n$ is a number assigned by the LSWRITE command ( $01--09,10,11$, etc.). On systems with a 3 -character limit on the extension, the " S " is dropped for $L S N U M>99$.

## Notes

Reads load and load step option data from the load step file into the database. LSREAD will not clear the database of all current loads. However, if a load is respecified with LSREAD, then it will overwrite the existing
load. See the LSWRITE command to write load step files, and the LSDELE command to delete load step files. LSREAD removes any existing SFGRAD specification.

This command is also valid in PREP7.

## Menu Paths

Main Menu>Preprocessor>Loads>Load Step Opts>Read LS File Main Menu>Solution>Load Step Opts>Read LS File

## LSSCALE, NL1, NL2, NINC, RX, RY, RZ, KINC, NOELEM, IMOVE

## Generates a scaled set of lines from a pattern of lines.

MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NL1, NL2, NINC

Set of lines (NL1 to NL2 in steps of NINC) that defines the pattern to be scaled. NL2 defaults to NL1, NINC defaults to 1 . If NLI = ALL, NL2 and NINC are ignored and the pattern is defined by all selected lines. If NLI = P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NLI (NL2 and NINC are ignored).

## $R X, R Y, R Z$

Scale factors to be applied to the $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ keypoint coordinates in active coordinate system ( $R R, R \theta, R Z$ for cylindrical; $R R, R \theta, R \Phi$ for spherical). Note that the $R \theta$ and $R \Phi$ scale factors are interpreted as angular offsets. For example, for CSYS, $1, R R, R \theta, R Z$ input of $(1.5,10,3)$ would scale the specified keypoints 1.5 times in the radial and 3 times in the $Z$ direction, while adding an offset of 10 degrees to the keypoints. Zero, blank, or negative scale factor values are assumed to be 1.0. Zero or blank angular offsets have no effect.

## KINC

Increment to be applied to keypoint numbers for generated set. If zero, the lowest available keypoint numbers will be assigned [NUMSTR].

## NOELEM

Specifies whether nodes and elements are also to be generated:
0
Nodes and line elements associated with the original lines will be generated (scaled) if they exist.
1
Nodes and line elements will not be generated.

## IMOVE

Specifies whether lines will be moved or newly defined:
0
Additional lines will be generated.
1
Original lines will be moved to new position (KINC and NOELEM are ignored). Use only if the old lines are no longer needed at their original positions. Corresponding meshed items are also moved if not needed at their original position.

## Notes

Generates a scaled set of lines (and their corresponding keypoints and mesh) from a pattern of lines. The MAT, TYPE, REAL, and ESYS attributes are based on the lines in the pattern and not the current settings. Scaling is done in the active coordinate system. Lines in the pattern could have been generated in any coordinate system.

## Menu Paths

## Main Menu>Preprocessor>Modeling>Operate>Scale>Lines

## LSSOLVE, LSMIN, LSMAX, LSINC

## Reads and solves multiple load steps.

SOLUTION:Load Step Operations
MP ME ST PR PRN <> <> FL EM EH <> PP <> EME MFS

## LSMIN, LSMAX, LSINC

Range of load step files to be read and solved, from LSMIN to LSMAX in steps of LSINC. LSMAX defaults to LSMIN, and LSINC defaults to 1 . If LSMIN is blank, a brief command description is displayed. The load step files are assumed to be named Jobname. $\mathrm{S} n$, where $n$ is a number assigned by the LSWRITE command ( $01-09,10,11$, etc.). On systems with a 3 -character limit on the extension, the " S " is dropped for numbers > 99 .

## Notes

LSSOLVE invokes an ANSYS macro to read and solve multiple load steps. The macro loops through a series of load step files written by the LSWRITE command. The macro file called by LSSOLVE is called LSSOLVE. MAC.

LSSOLVE cannot be used with the birth-death option.
LSSOLVE is not supported for cyclic symmetry analyses.
LSSOLVE does not support restarts.
LSSOLVE does not apply to FLOTRAN.

## Menu Paths

Main Menu>Solution>Solve>From LS Files

## LSTR, P1, P2

Defines a straight line irrespective of the active coordinate system.
PREP 7:Lines
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
P1
Keypoint at the beginning of line. If $P 1=P$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI)

## P2

Keypoint at the end of line.
Notes
Defines a straight line from $P 1$ to $P 2$ using the global Cartesian coordinate system. The active coordinate system will be ignored. The line shape is invariant with the coordinate system after it is generated. Lines may be redefined only if not yet attached to an area.

## Menu Paths

Main Menu>Preprocessor>Modeling>Create>Lines>Lines>Straight Line

## LSUM

## Calculates and prints geometry statistics of the selected lines.

PREP 7:Lines
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Notes

Calculates and prints geometry statistics (length, centroid, moments of inertia, etc.) associated with the selected lines. Geometry items are reported in the global Cartesian coordinate system. A unit density is assumed, irrespective of any material associations [LATT, MAT]. Items calculated by LSUM and later retrieved by a *GET or *VGET command are valid only if the model is not modified after the LSUM command is issued.

## Menu Paths

Main Menu>Preprocessor>Modeling>Operate>Calc Geom Items>Of Lines

## Writes load and load step option data to a file.

SOLUTION: Load Step Operations
MP ME ST PR PRN $<><>$ FL EM EH $<>$ PP $<>$ EME MFS

## LSNUM

Number to be assigned to the load step file name for identification purposes. Defaults to $1+$ highest LSNUM used in the current session. Issue LSWRITE,STAT to list the current value of LSNUM. Issue LSWRITE,INIT to reset to 1 . The load step file will be named Jobname. $S n$, where $n$ is the specified LSNUM value (preceded by "0" for values 1-9). On systems with a 3-character limit on the file name extension, the "S" is dropped for LSNUM > 99.

## Command Default

The default behavior of LSWRITE is dependent on the SOLCONTROL command. When solution control is on (default behavior), the LSWRITE command does NOT write the default values for commands affected by solution control. When solution control is off (SOLCONTROL,OFF), LSWRITE does write the default values for commands affected by solution control. See the SOLCONTROL documentation for a list of those commands.

## Notes

Writes all load and load step option data for the selected model to a load step file for later use. LSWRITE does not capture changes made to real constants (R), material properties (MP), couplings (CP), or constraint equations (CE). Solid model loads will not be saved if the model is not meshed. Solid model loads, if any, are transferred to the finite element model. Issue LSCLEAR,FE to delete finite element loads. One file is written for each load step. Use the LSREAD command to read a single load step file, and the LSDELE command to delete load step files. Use the LSSOLVE command to read and solve the load steps sequentially.

LSWRITE does not support the following commands: DJ, FJ, GSBDATA, GSGDATA, ESTIF, EKILL, EALIVE, MPCHG, and OUTRES. These commands will not be written to the load step file.

LSWRITE cannot be used with the birth-death option.
LSWRITE does not apply to FLOTRAN.
This command is also valid in PREP7.

## Menu Paths

Main Menu>Preprocessor>Loads $>$ Load Step Opts $>$ Write LS File
Main Menu>Solution $>$ Load Step Opts $>$ Write LS File

## Creates annotation symbols (GUI).

GRAP HICS: Annotation
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
$x$
X location for symbol ( $-1.0<\mathrm{X}<2.0$ ).
$Y$
Y location for symbol ( $-1.0<\mathrm{Y}<1.0$ ).

## SYMANG

Symbol orientation angle.

## SYMTYP

Symbol type:
1
Arrow.
2
Tee.
3
Circle.
4
Triangle.
5
Star.

## SYMSIZ

Symbol size multiplier (0.1 to 20.0). Defaults to 1.0 .

## KEYBMP

If $K E Y B M P=1$, the annotation is a bitmap. SYMTYP will then be a number from 1-99, indicating the bitmap type (see notes), and $X$ and $Y$ will define the lower left corner of the bitmap. The SYMANG, $S Y M S I Z a r g u m e n t s$ are ignored. If $K E Y B M P=0$, or blank, then the argument definitions above apply.

## Notes

Defines annotation symbols to be written directly onto the display at a specified location. This is a command generated by the GUI and will appear in the log file (Jobname. LOG) if annotation is used. This command is not intended to be typed in directly in an ANSYS session (although it can be included in an input file for batch input or for use with the /INPUT command).

All symbols are shown on subsequent displays unless the annotation is turned off or deleted. Use the /LSPEC command to set the attributes of the symbol.

The KEYBMP argument reads the symtype argument to determine which bitmap to insert. This bitmap is defined by an integer between 1 and 99 . Numbers 1 through 40 correspond to the standard texture values found in the /TXTRE command, while numbers 51 through 99 correspond to user supplied bitmaps, as defined using the Filename option of the /TXTRE command. Numbers 51 through 57 are predefined (the logos, clamps and arrows available from the GUI) but can be overridden. Numbers 41 through 50 are reserved.

This command is valid in any processor.

## Menu Paths

## Utility Menu>PlotCtrls>Annotation>Create Annotation

LSYMM, Ncomp, NL1, NL2, NINC, KINC, NOELEM, IMOVE

## Generates lines from a line pattern by symmetry reflection.

PREP 7:Lines
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Ncomp

Symmetry key:
X
X symmetry (default).
Y
Y symmetry.
Z
Z symmetry.

## NL1, NL2, NINC

Reflect lines from pattern beginning with NL1 to NL2 (defaults to NL1) in steps of NINC (defaults to 1). If $N L 1=A L L, N L 2$ and NINC are ignored and pattern is all selected lines [LSEL]. If NLI = P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NL1 (NL2 and NINC are ignored).

## KINC

Keypoint increment between sets. If zero, the lowest available keypoint numbers are assigned [NUMSTR].

## NOELEM

Specifies whether nodes and elements are also to be generated:
0
Generate nodes and elements associated with the original lines, if they exist.
1
Do not generate nodes and elements.

## IMOVE

Specifies whether areas will be moved or newly defined:
0
Generate additional lines.
1
Move original lines to new position retaining the same keypoint numbers (KINC and NOELEM are ignored). Valid only if the old lines are no longer needed at their original positions. Corresponding meshed items are also moved if not needed at their original position.

## Notes

Generates a reflected set of lines (and their corresponding keypoints and mesh) from a given line pattern by a symmetry reflection (see analogous node symmetry command, NSYM). The MAT, TYPE, REAL, and ESYS attributes are based upon the lines in the pattern and not upon the current settings. Reflection is done in the active coordinate system by changing a particular coordinate sign. The active coordinate system must be Cartesian. Lines in the pattern may have been generated in any coordinate system. However, solid modeling in a toroidal coordinate system is not recommended. Lines are generated as described in the LGEN command.

See the ESYM command for additional information about symmetry elements.

## Menu Paths

Main Menu>Preprocessor>Modeling>Reflect>Lines

LTAN, NL1, P3, XV3, YV3, ZV3

## Generates a line at the end of, and tangent to, an existing line.

PREP 7:Lines
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NL1

Number of the line the generated line is tangent to. If negative, assume $P 1$ (see below), instead of $P 2$, is the second keypoint of line NL1. If $N L 1=P$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI).

## P3

Keypoint at which generated line must end.
The following fields are used only if a specified slope on the end of the new line is desired, otherwise a zero curvature end slope will be automatically calculated. To specify the end slope, use the following fields to define a "slope vector" that has its tail at the origin and its head at the point $X V, Y V, Z V$ in the active coordinate system [CSYS]. The corresponding end slope of the line will then be parallel to this "slope vector."

## XV3, YV3, ZV3

Location (in the active coordinate system) of the head of the "slope vector" corresponding to the slope at the $P 3$ end of the line. The tail of the vector is at the coordinate system origin.

## Notes

Generates a line (P2-P3) tangent at end point (P2) of line NL1 (P1-P2).

## Menu Paths

Main Menu>Preprocessor>Modeling>Create>Lines>Lines>Tangent to Line

LTRAN, KCNTO, NL1, NL2, NINC, KINC, NOELEM, IMOVE

## Transfers a pattern of lines to another coordinate system.

PREP 7:Lines
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## KCNTO

Reference number of coordinate system where the pattern is to be transferred. Transfer occurs from the active coordinate system. The coordinate system type and parameters of KCNTO must be the same as the active system.

## NL1, NL2, NINC

Transfer lines from pattern beginning with NL1 to NL2 (defaults to NL1) in steps of NINC (defaults to 1). If $N L 1=A L L, N L 2$ and $N I N C$ are ignored and pattern is all selected lines [LSEL]. If $N L 1=P$ graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NL1 (NL2 and NINC are ignored).

## KINC

Keypoint increment between sets. If zero, the lowest available keypoint numbers are assigned [NUMSTR].

## NOELEM

Specifies whether nodes and elements are also to be generated:
0
Generate nodes and elements associated with the original lines, if they exist.

1
Do not generate nodes and elements.
IMOVE
Specifies whether lines will be moved or newly defined:
0
Generate additional lines.
1
Move original lines to new position retaining the same keypoint numbers (KINC and NOELM are ignored). Valid only if the old lines are no longer needed at their original positions. Corresponding meshed items are also moved if not needed at their original position.

## Notes

Transfers a pattern of lines (and their corresponding keypoints and mesh) from one coordinate system to another (see analogous node transfer command, TRANSFER). The MAT, TYPE, REAL, and ESYS attributes are based upon the lines in the pattern and not upon the current settings. Coordinate systems may be translated and rotated relative to each other. Initial pattern may be generated in any coordinate system. However, solid modeling in a toroidal coordinate system is not recommended. Coordinate and slope values are interpreted in the active coordinate system and are transferred directly. Lines are generated as described in the LGEN command.

## Menu Paths

Main Menu>Preprocessor>Modeling>Move / Modify>Transfer Coord>Lines

## LUMPM, Key

## Specifies a lumped mass matrix formulation.

SOLUTION: Analysis Options
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

## Key

Formulation key:
OFF
Use the element-dependent default mass matrix formulation (default).
ON
Use a lumped mass approximation.

## Command Default

Use the default element mass matrix.

## Notes

This command is also valid in PREP7. If used in SOLUTION, this command is valid only within the first load step.

## Menu Paths

# Main Menu>Preprocessor>Loads>Analysis Type>Analysis Options <br> Main Menu>Preprocessor>Loads>Analysis Type>New Analysis <br> Main Menu>Solution>Analysis Type>Analysis Options <br> Main Menu>Solution>Analysis Type>New Analysis 

## LVSCALE, FACT, LDSTEP

Scales the load vector for mode superposition analyses.
SOLUTION:Dynamic Options
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS
FACT
Scale factor applied to both the real and imaginary (if they exist) components of the load vector. Defaults to 0.0 .

## LDSTEP

Specifies the load step number (from the modal analysis) to be used in MSUP transient or harmonic analyses. Defaults to 1 .

## Command Default

No load vector is applied.

## Notes

Specifies the scale factor for the load vector that was created in a modal (ANTYPE,MODAL) analysis. Applies only to the mode superposition transient (ANTYPE,TRANS), mode superposition harmonic response (ANTYPE,HARMIC), and PSD spectrum (pressure PSD) analyses.

The LVSCALE command supports tabular boundary conditions (\%TABNAME_X\%) for FACT input values only as a function of time in the mode superposition transient (ANTYPE,TRANS) or as a function of frequency in mode superposition harmonic response (ANTYPE,HARMIC).

MPC contact generates constraint equations that can include constant terms (included on the right-hand side of the system equation). The LVSCALE command scales the constant terms.

This command is also valid in PREP7.

## Menu Paths

> Main Menu $>$ Preprocessor>Loads $>$ Define Loads $>$ Apply $>$ Load Vector $>$ For Mode Super Main Menu $>$ Preprocessor $>$ Loads $>$ Define Loads $>$ Apply $>$ Load Vector $>$ For PSD
> Main Menu $>$ Preprocessor>Loads $>$ Define Loads $>$ Delete $>$ Load Vector $>$ For Mode Super
> Main Menu $>$ Preprocessor $>$ Loads $>$ Define Loads $>$ Delete $>$ Load Vector $>$ For PSD
> Main Menu $>$ Solution $>$ Define Loads $>$ Apply $>$ Load Vector $>$ For Mode Super
> Main Menu $>$ Solution $>$ Define Loads $>$ Apply $>$ Load Vector $>$ For PSD
> Main Menu $>$ Solution $>$ Define Loads $>$ Delete $>$ Load Vector>For Mode Super
> Main Menu $>$ Solution $>$ Define Loads $>$ Delete $>$ Load Vector>For PSD

## LWPLAN, WN, NL1, RATIO

Defines the working plane normal to a location on a line.

> DATABASE: Working Plane
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
wn
Window number whose viewing direction will be modified to be normal to the working plane (defaults to 1 ). If $W N$ is a negative value, the viewing direction will not be modified.

## NL1

Number of line to be used. If NLI = P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI).

## RATIO

Location on NL1, specified as a ratio of the line length. Must be between 0.0 and 1.0. If RATIO $=\mathrm{P}$, use graphical picking to specify location on the line.

## Command Default

Working plane is parallel to the Global $\mathrm{X}-\mathrm{Y}$ plane at $\mathrm{Z}=0.0$.

## Notes

Defines a working plane (to assist in picking operations) normal to a location on a line. See WPSTYL command to set the style of working plane display.

This command is valid in any processor.

## Menu Paths

Utility Menu>WorkPlane>Align WP with>Plane Normal to Line

## M Commands

M, NODE, Lab1, NEND, NINC, Lab2, Lab3, Lab4, Lab5, Lab6

Defines master degrees of freedom for reduced and superelement generation analyses.

SOLUTION:Master DOF<br>MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

## NODE

Node number at which master degree of freedom is defined. If ALL, define master degrees of freedom at all selected nodes (NSEL). If NODE $=\mathrm{P}$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NODE.

## Lab1

Valid degree of freedom label. If ALL, use all appropriate labels. Structural labels: UX, UY, or UZ (displacements); ROTX, ROTY, or ROTZ (rotations). Thermal labels: TEMP, TBOT, TE2, TE3, ..., TTOP (temperature). Electric labels: VOLT (voltage).

## NEND, NINC

Define all nodes from NODE to NEND (defaults to $N O D E$ ) in steps of $N I N C$ (defaults to 1) as master degrees of freedom in the specified direction.

## Lab2, Lab3, Lab4, . . . Lab6

Additional master degree of freedom labels. The nodes defined are associated with each label specified.

## Notes

Defines master degrees of freedom (MDOF) for reduced (dynamic and superelement generation) analyses. If defined for other analyses, MDOF are ignored. If used in SOLUTION, this command is valid only within the first load step. Scalar MDOF (VOLT) are not permitted in structural analyses if mass or damping matrices are reduced. Reduced analyses normally apply only to the UX, UY, UZ, ROTX, ROTY, and ROTZ labels.

Repeat $\mathbf{M}$ command for additional master degrees of freedom. The limit for the number of master nodes used is determined by the maximum system memory available.

The reduced modal (ANTYPE,MODAL), reduced transient (ANTYPE,TRANS), reduced harmonic response (ANTYPE,HARMIC), and the substructure (ANTYPE,SUBSTR) analyses utilize the matrix condensation technique to reduce the structure matrices to those characterized by a set of master degrees of freedom.

Master degrees of freedom are identified by a list of nodes and their nodal directions. The actual degree of freedom directions available for a particular node depends upon the degrees of freedom associated with element types (ET) at that node. There must be some mass (or stress stiffening in the case of the buckling analysis) associated with each master degree of freedom (except for the VOLT label). The mass may be due either to the distributed mass of the element or due to discrete lumped masses at the node. If a master degree of freedom is specified at a constrained point, it is ignored. If a master degree of freedom is specified at a coupled node, it should be specified at the prime node of the coupled set. Master degrees of freedom can also be generated automatically (during solution) by issuing the TOTAL command in PREP7 or SOLUTION.

Transient displacements and forces, used to apply motion to a structure in the reduced transient or reduced harmonic response analysis, must be applied at a master degree of freedom. Substructure analysis connection points must be defined as master degrees of freedom.

This command is also valid in PREP7.

## Menu Paths

Main Menu>Preprocessor>Loads>Master DOFs>User Selected>Define
Main Menu>Preprocessor>Modeling>CMS>CMS Interface>Define
Main Menu>Solution>Master DOFs>User Selected>Define

MADAPT, ERRTARGT, NADAPT, NMAX, KPLT, Ksmooth, KLST, KCD, DEVICE

## Adaptively meshes and solves an edge-based model.

SOLUTION: Analysis Options
MP <> <> <> <> <> <> <> EM <> <> <> <> EME <>

## ERRTARGT

Target percentage for Zienkiewitz Zhu magnetic flux error (defaults to 5).

## NADAPT

Maximum number of adaptive steps (defaults to 5 ).
NMAX
Maximum number of elements at which the iterations may continue (defaults to 50,000). Limits the number of elements that can be chosen for refinement.

## KPLT

Plotting options:
0
No plot (default)
1
Elements and H
2
BERR error estimates
3
BDSG, BEPC error estimates
4
Adaptive details
If $K P L T>0$, then MADAPT disables PowerGraphics for the adaptive solution.

## Ksmooth

Smoothing options for refinement
0
No postprocessing will be done (default).
1
Smoothing will be done. Node locations may change.

## 2

Smoothing and cleanup will be done. Existing elements may be deleted, and node locations may change.

KLST
Listing options
0
No printing (default)
1
Final report
2
Report at each iteration step
3
Report Zienkiewitz Zhu magnetic errors BERR and BSGD
4
Regular details
5
Full details
6
Refine details
7
Track
$K C D$
Allows you to issue a CDWRITE or CDREAD at every iteration.
0
Do not issue CDWRITE or CDREAD (default).
1
Issue CDWRITE at every iteration (to save every mesh variation). This option issues CDWRITE,geom, writing the information to jobnameN.cdb.

2
Issue CDREAD at every iteration (to read every mesh variation). Reads from an existing job-
nameN.cdb.

## DEVICE

Defines the output device for plotting.
0
Screen only (default)
1
JPEG frames. Each frame is written to a file (jobnameN. jpg by default). See /SHOW.

## Notes

MADAPT invokes a predefined ANSYS macro for adaptive meshing and solution of edge-based magnetic analyses. The macro causes repeated runs of the PREP7, SOLUTION, and POST1 phases of the ANSYS program with mesh density refinements based upon the percentage error in energy norm.

The MADAPT command macro requires a second, user-defined macro, which must be named madaptld.mac and must reside in the same directory where ANSYS is being run. This madaptld macro must contain loads and boundary conditions, based on permanent geometry or solid model features (such as sides or vertices). Loads specified in the madaptld macro cannot be based on node numbers because the node numbers will change throughout the refinement process. This secondary macro is required because the MADAPT macro process must delete all loads and boundary conditions at every refinement step.

MADAPT refines tetrahedral volume elements based on error. Hexahedra, wedges, and pyramids are not refined (see NREFINE).

This command is also valid at the Begin level.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

This command cannot be accessed from a menu.

## MAGOPT, value

## Specifies options for a 3-D magnetostatic field analysis.

> SOLUTION:Load Step Options
> MP ME <> <> <> <> <> <> EM <> <> PP <> EME MFS

## Value

Option key:
0
Calculate a complete H field solution in the entire domain using a single (reduced) potential.

## Caution

When used in problems with both current sources and iron regions, errors may result due to numerical cancellation.

1
Calculate and store a preliminary H field in "iron" regions ( $\mu_{r} \neq 1$ ). Requires flux-parallel boundary conditions to be specified on exterior iron boundaries. Used in conjunction with subsequent solutions with $V A L U E=2$ followed by $V A L U E=3$. Applicable to multiply-connected iron domain problems.

2
Calculate and store a preliminary H field in "air" regions ( $\mu_{r}=1$ ). The air-iron interface is appropriately treated internally by the program. Used in conjunction with a subsequent solution with VALUE $=3$. Applicable to singly-connected iron domain problems (with subsequent solution with VALUE $=3$ ) or to multiply-connected iron domain problems (when preceded by a solution with VALUE $=1$ and followed by a solution with $V A L U E=3$ ).

3
Use the previously stored H field solution(s) and calculate the complete H field.

## Notes

Specifies the solution sequence options for a 3-D magnetostatic field analysis using a scalar potential (MAG). The solution sequence is determined by the nature of the problem.

You cannot use constraint equations with Value $=1$.
This command is also valid in PREP7.
Distributed ANSYS Restriction The MAGOPT,3 option is not supported in Distributed ANSYS when the following contact elements are present in the model: CONTA173, CONTA174, CONTA175, CONTA176, or CONTA177.

## Menu Paths

> Main Menu>Preprocessor>Loads>Load Step Opts>Magnetics>Options Only>DSP Method Main Menu $>$ Preprocessor>Loads>Load Step Opts>Magnetics>Options Only>GSP Method Main Menu>Preprocessor>Loads>Load Step Opts>Magnetics>Options Only>RSP Method Main Menu>Solution>Load Step Opts>Magnetics>Options Only>DSP Method Main Menu>Solution>Load Step Opts>Magnetics>Options Only>GSP Method Main Menu>Solution>Load Step Opts>Magnetics>Options Only>RSP Method

## MAGSOLV, OPT, NRAMP, CNVCSG, CNVFLUX, NEQIT, BIOT,CNVTOL

## Specifies magnetic solution options and initiates the solution.

SOLUTION: Load Step Options
MP ME <> <> <> <> <> <> EM <> <> <> <> EME MFS
OPT
Static magnetic solution option:
0
Vector potential (MVP) or edge formulation (default).
1
Combined vector potential and reduced scalar potential (MVP-RSP).
2
Reduced scalar potential (RSP).
3
Difference scalar potential (DSP).
4
General scalar potential (GSP).

## NRAMP

Number of ramped substeps for the first load step of a nonlinear MVP or MVP-RSP solution. Defaults to 3. If $N R A M P=-1$, ignore the ramped load step entirely. $N R A M P$ is ignored for linear magnetostatics.

## CNVCSG

Tolerance value on the program-calculated reference value for the magnetic current-segment convergence. Used for the MVP, the MVP-RSP, and the edge formulation solution options ( $O P T=0$ and 1 ). Defaults to 0.001 .

## CNVFLUX

Tolerance value on the program-calculated reference value for the magnetic flux convergence. Used for all scalar potential solution options $(O P T=2,3,4)$. Defaults to 0.001 .

## NEQIT

Maximum number of equilibrium iterations per load step. Defaults to 25 .

## BIOT

Option to force execution of a Biot-Savart integral solution [BIOT,NEW] for the scalar potential options. Required if multiple load steps are being performed with different current source primitives (SOURC36 elements).

0
Do not force execution of Biot-Savart calculation (default); Biot-Savart is automatically calculated only for the first solution.

1
Force execution of Biot-Savart calculation.

## CNVTOL

Sets the convergence tolerance for AMPS reaction. Defaults to $1 \mathrm{e}-3$. Applicable only when $\mathrm{KEYOPT}(1)=$ 5 on SOLID117.

## Notes

MAGSOLV invokes an ANSYS macro which specifies magnetic solution options and initiates the solution. The macro is applicable to any ANSYS magnetostatic analysis using the magnetic vector potential (MVP), reduced scalar potential (RSP), difference scalar potential (DSP), general scalar potential (GSP), or combined MVP-RSP formulation options. Results are only stored for the final converged solution. (In POST1, issue *SET,LIST to identify the load step of solution results.) The macro internally determines if a nonlinear analysis is required based on magnetic material properties.

If you use the BIOT option and issue SAVE after solution or postprocessing, the Biot-Savart calculations are saved to the database, but will be overwritten upon normal exit from the program. To save this data after issuing SAVE, use the /EXIT,NOSAVE command. You can also issue the /EXIT,SOLU command to exit ANSYS and save all solution data, including the Biot-Savart calculations, in the database. Otherwise, when you issue RESUME, the Biot-Savart calculation will be lost (resulting in a zero solution).

The MVP, MVP-RSP, and edge formulation options perform a two-load-step solution sequence. The first load step ramps the applied loads over a prescribed number of substeps ( $N R A M P$ ), and the second load step calculates the converged solution. For linear problems, only a single load step solution is performed. The ramped load step can be bypassed by setting NRAMP to -1 .

The RSP option solves in a single load step using the adaptive descent procedure. The DSP option uses two load steps, and the GSP solution uses three load steps.

The following analysis options and nonlinear options are controlled by this macro: KBC, NEQIT, NSUBST, CNVTOL, NROPT, MAGOPT, and OUTRES.

You cannot use constraint equations with $O P T=4$.

## Menu Paths

Main Menu>Solution>Solve>Electromagnet>Static Analysis>Opt\&Solv

## /MAIL, --, Address, Fname, Ext

## Mails file to the specifed address.

> APDL:Macro Files
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Argument Descriptions

Unused field.

## Address

Email address (up to 64 characters) of the intended recipient of the file.

## Fname

File name and directory path ( 248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

## Ext

Filename extension (8 character maximum).

## Notes

Issue the /MAIL command to alert someone when a long-running job has completed, as shown in this example:

```
SOLVE
```

/MAIL, , yourname@yourdomain.com, jobdone, txt
If you are running ANSYS in a Microsoft Windows environment, you must configure BLAT (a freeware program provided with ANSYS). Before issuing the /MAIL command, enter this command from the C:\Program Files\Ansys Inc\V130\Ansys\Bin\Intel directory:

If you are running ANSYS in a Windows x64 environment, enter this command from the C:\Program Files\Ansys Inc\V130\Ansys\Bin\Winx64 directory:

```
blat -install smtphost.bar.com you@bar.com
```

For more information about the BLAT program, see the BLAT_README.TXT file in the same directory.
Because Windows cannot operate on a busy file, you cannot mail standard ANSYS output. Instead, redirect the output to a file and then mail that file, as shown in this example:

```
/PREP7
/OUT, scratch.out
:
FINISH
/OUT
/MAIL, , YourName@ YourDomain.com, scratch.out
FINISH
```


## Menu Paths

This command cannot be accessed from a menu.

## MAPSOLVE, MAXSBSTEP

## Maps solved node and element solutions from an original mesh to a new mesh.

SOLUTION: Rezoning
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS

## MAXSBSTEP

The maximum number of substeps for rebalancing the residuals. The default value is 5 .

## Notes

Used during the rezoning process, the MAPSOLVE command maps solved node and element solutions from the original mesh to the new mesh and achieves equilibrium based on the new mesh.

Additional substeps are necessary to reduce the residuals to zero.
During the rebalancing stage, the external loads and time remain unchanged.

The MAPSOLVE command is valid for manual rezoning (REZONE,MANUAL) only.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.
Menu Paths

Main Menu $>$ Solution $>$ Manual Rezoning $>$ Map Results

## MASTER

Specifies "Master DOF" as the subsequent status topic.
SOLUTION: Status
MP ME ST PR PRN <> <> FL EM EH <> PP <> EME MFS

## Notes

This is a status [STAT] topic command. Status topic commands are generated by the GUI and will appear in the log file (Jobname. LOG) if status is requested for some items under Utility Menu> List> Status. This command will be immediately followed by a STAT command, which will report the status for the specified topic.

If entered directly into the program, the STAT command should immediately follow this command.

## Menu Paths

Utility Menu>List>Status>Solution>Master DOF

## MAT, mat

## Sets the element material attribute pointer.

> PREP 7: Meshing
> PREP 7: Elements
> MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS

## MAT

Assign this material number to subsequently defined elements (defaults to 1 ).

## Notes

Identifies the material number to be assigned to subsequently defined elements. This number refers to the material number (MAT) defined with the material properties [MP]. Material numbers may be displayed [/PNUM].

## Menu Paths

Main Menu>Preprocessor>Meshing>Mesh Attributes>Default Attribs
Main Menu>Preprocessor>Modeling>Create>Elements>Elem Attributes

## MATER

## Specifies "Material properties" as the subsequent status topic.

PREP 7: Status
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Notes

This is a status [STAT] topic command. Status topic commands are generated by the GUI and will appear in the log file (Jobname. LOG) if status is requested for some items under Utility Menu> List> Status. This command will be immediately followed by a STAT command, which will report the status for the specified topic.

If entered directly into the program, the STAT command should immediately follow this command.

## Menu Paths

## Utility Menu>List>Status>Preprocessor>Materials

## MCHECK, Lab

## Checks mesh connectivity.

PREP 7: Meshing
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
Lab
Operation:

ESEL
Unselects the valid elements.

## Notes

Wherever two area or volume elements share a common face, MCHECK verifies that the way the elements are connected to the face is consistent with their relative normals or integrated volumes. (This may detect folds or otherwise overlapping elements.)

MCHECK verifies that the element exterior faces form simply-connected closed surfaces. (This may detect unintended cracks in a mesh.)

MCHECK warns if the number of element facets in a 2-D loop or 3-D shell is not greater than a computed limit. This limit is the smaller of either three times the number of faces on one element, or one-tenth the total number of element faces in the model. (This may detect holes in the middle of a mesh.)

The MCHECK command will perform a number of validity checks on the selected elements, including:

1. Normal check: Wherever two area elements share a common edge, MCHECK verifies that the ordering of the nodes on each element is consistent with their relative normals.
2. Volume check: Wherever two volume elements share a common face, MCHECK verifies that the sign of the integrated volume of each element is consistent.
3. Closed surface check: MCHECK verifies that the element exterior faces form simply-connected closed surfaces (this may detect unintended cracks in a mesh).
4. Check for holes in the mesh: MCHECK warns if the number of element faces surrounding an interior void in the mesh is small enough to suggest one or more accidentally omitted elements, rather than a deliberately formed hole. For this test, the number of faces around the void is compared to the smaller of a) three times the number of faces on one element, or b) one-tenth the total number of element faces in the model.

## Menu Paths

Main Menu>Preprocessor>Meshing>Check Mesh>Connectivity>Ck Connectvty
Main Menu>Preprocessor>Meshing>Check Mesh>Connectivity>Sel Bad Connt

MDAMP, sTLOC, V1, V2, V3, V4, V5, V6
Defines the damping ratios as a function of mode.

> SOLUTION: Dynamic Options
> MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

## STLOC

Starting location in table for entering data. For example, if $S T L O C=1$, data input in the $V 1$ field applies to the first constant in the table. If $S T L O C=7$, data input in the $V 1$ field applies to the seventh constant in the table, etc. Defaults to the last location filled +1 .

V1, V2, V3, ..., V6
Data assigned to six locations starting with STLOC. If a value is already in this location, it will be redefined. Blank values for $V 2$ to $V 6$ leave the corresponding previous value unchanged.

## Notes

Defines the damping ratios as a function of mode. Table position corresponds to mode number. These ratios are added to the DMPRAT value, if defined. Use STAT command to list current values. Applies to the mode superposition harmonic response (ANTYPE,HARMIC), the mode superposition linear transient dynamic (ANTYPE,TRANS), and the spectrum (ANTYPE,SPECTR) analyses. Repeat MDAMP command for additional constants (10000 maximum).

This command is also valid in PREP7.

## Menu Paths

## Main Menu>Preprocessor>Loads>Load Step Opts>Time/Frequenc>Damping Main Menu>Solution>Load Step Opts>Time/Frequenc>Damping

## MDELE, NODE, Lab1, NEND, NINC, Lab2, Lab3, Lab4, Lab5, Lab6

## Deletes master degrees of freedom.

SOLUTION: Master DOF
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

## NODE, Lab1, NEND, NINC

Delete master degrees of freedom in the Lab1 direction [M] from NODE to NEND (defaults to NODE) in steps of NINC (defaults to 1). If NODE = ALL, NEND and NINC are ignored and masters for all selected nodes [NSEL] are deleted. If Lab1 $=\mathrm{ALL}$, all label directions will be deleted. If $N O D E=\mathrm{P}$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NODE.

Lab2, Lab3, Lab4, . . . , Lab6
Delete masters in these additional directions.

## Notes

Deletes master degrees of freedom. If used in SOLUTION, this command is valid only within the first load step.

This command is also valid in PREP7.

## Menu Paths

Main Menu>Preprocessor>Loads>Master DOFs>User Selected>Delete Main Menu>Solution>Master DOFs>User Selected>Delete

## MDPLOT, Function, Dmpname, Scale

## Plots frequency-dependent modal damping coefficients calculated by DMPEXT.

SOLUTION: Dynamic Options
MP ME <> <> <> <> <> <> <> <> <> PP <> EME MFS

## Function

Function to display.
d_coeff
Damping coefficient
s_coeff
Squeeze coefficient
d_ratio
Damping ratio
s_ratio
Squeeze stiffness ratio

## Dmpname

Array parameter name where damping information is stored. Defaults to d_damp.

## Scale

Indicates whether to perform a linear or a double logarithmic plot.

## LIN

Perform a linear plot. Default
LOG
Perform a double logarithmic plot.

## Notes

See Thin Film Analysis for more information on thin film analyses.

## Menu Paths

## Main Menu>General Postproc>Plot Results>ThinFilm>Plot Dmp Parm

MEMM, Lab, Kywrd
Allows the current session to keep allocated memory
SESSION: Run Controls
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Lab

When $L a b=$ KEEP, the memory manager's ability to acquire and keep memory is controlled by Kywrd Kywrd

Turns the memory "keep" mode on or off
ON
Keep any memory allocated during the analysis.

## OFF

Use memory dynamically and free it up to other users after use (default).

## Command Default

Kywrd $=$ OFF.

## Notes

You can use the MEMM command to ensure that memory intensive operations will always have the same memory available when the operations occur intermittently. Normally, if a large amount of memory is allocated for a specific operation, it will be returned to the system once the operation is finished. This option always maintains the highest level used during the analysis until the analysis is finished.

The MEMM command does not affect the value you specify with the $-m$ switch. When you allocate memory with the -m switch, that amount will always be available. However, if dynamic memory allocation in excess of the-m value occurs, you can use the MEMM command to ensure that amount is retained until the end of your analysis.

## Menu Paths

This command cannot be accessed from a menu.

## /MENU, Key

## Activates the Graphical User Interface (GUI).

> SESSION: Run Controls
> MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS

Key
Activation key:
ON
Activates the menu system (device dependent).

## GRPH

Enters non-GUI graphics mode. This option is intended for use on graphics devices that do not support the full Motif-based GUI.

## Command Default

GUI is on if entering the ANSYS program through the launcher. GUI is off if entering using the ANSYS execution command.

## Notes

Activates the Graphical User Interface (GUI).

## Caution

if you include the /MENU,ON command in your start130.ans, it should be the last command in the file. Any commands after /MENU,ON may be ignored. (It is not necessary to include the /SHOW and /MENU,ON commands in start130.ans if you will be using the launcher to enter the ANSYS program.)

This command is valid in any processor.

## Menu Paths

This command cannot be accessed from a menu.

## MESHING

Specifies "Meshing" as the subsequent status topic.
PREP 7: Status
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Notes

This is a status [STAT] topic command. Status topic commands are generated by the GUI and will appear in the log file (Jobname. LOG) if status is requested for some items under Utility Menu> List> Status. This command will be immediately followed by a STAT command, which will report the status for the specified topic.

If entered directly into the program, the STAT command should immediately follow this command.

## Menu Paths

Utility Menu>List>Status>Preprocessor>Meshing

## MFANALYSIS, Key

Turns an ANSYS Multi-field solver analysis on or off.
SOLUTION: Multi-field Global Controls MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS Product Restrictions

## Key

Multifield analysis key:
ON
Activates an ANSYS Multi-field solver analysis.
OFF
Deactivates an ANSYS Multi-field solver analysis (default).

## Notes

This command is also valid in PREP7.
See Multi-field Commands in the Coupled-Field Analysis Guide for a list of all ANSYS Multi-field solver commands and their availability for MFS and MFX analyses.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.
Product Restrictions
ANSYS Mechanical allows MFX analyses but not MFS analyses. ANSYS Multiphysics allows both MFS and MFX analyses.

## Menu Paths

Main Menu>Preprocessor>Multi-field Set Up>Select method Main Menu>Solution>Multi-field Set Up>Select method

## MFBUCKET, Key, Value

## Turns a bucket search on or off.

SOLUTION:Multi-field Interface Mapping
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS
Product Restrictions

## Key

Bucket search key:

## ON

Activates a bucket search (default).

## OFF

Deactivates a bucket search. A global search is then activated.

## Value

Scaling factor (\%) used to determine the number of buckets for a bucket search. Defaults to 50\%.

## Notes

A bucket search will more efficiently compute the mapping of surface and volumetric interpolation data across field interfaces (flagged by the FSIN label using SF, SFA, SFE, or SFL or the FVIN label using BFE).

The number of buckets used to partition a flagged interface is equal to the scaling factor (\%) times the total number of interface elements. For example, for the default scaling factor of $50 \%$ and a 10,000 element interface, 5,000 buckets are used.

This command is also valid in PREP7.
See Multi-field Commands in the Coupled-Field Analysis Guide for a list of all ANSYS Multi-field solver commands and their availability for MFS and MFX analyses.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Product Restrictions

ANSYS Mechanical allows MFX analyses but not MFS analyses. ANSYS Multiphysics allows both MFS and MFX analyses.

## Menu Paths

Main Menu>Preprocessor>Multi-field Set Up>MFS-Single Code>Setup>Global Main Menu>Preprocessor>Multi-field Set Up>MFX-ANSYS/CFX>Advanced Set Up>Mapping Main Menu $>$ Solution $>$ Multi-field Set Up $>$ MFS-Single Code $>$ Setup $>$ Global Main Menu>Solution>Multi-field Set Up>MFX-ANSYS/CFX>Advanced Set Up>Mapping

## MFCALC, FNUMB, FREQ

Specifies a calculation frequency for a field in an ANSYS Multi-field solver analysis.
SOLUTION: Multi-field Time Controls
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS

## FNUMB

Field number set by the MFELEM command.

## FREQ

Perform calculation every Nth ANSYS Multi-field solver time step. Defaults to 1 for every time step.

## Notes

This command only applies to a harmonic analysis of the specified field. It is useful when a field contributes negligible field interaction within a single ANSYS Multi-field solver time step.

This command is also valid in PREP7.
See Multi-field Commands in the Coupled-Field Analysis Guide for a list of all ANSYS Multi-field solver commands and their availability for MFS and MFX analyses.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu>Preprocessor>Multi-field Set Up>MFS-Single Code>Frequency
Main Menu>Solution>Multi-field Set Up>MFS-Single Code>Frequency

## MFCI, VAL1, VAL2

Sets the control parameters used by the conservative (CPP) interpolation scheme.
SOLUTION:Multi-field Interface Mapping
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS

## VAL1

Controls the pixel resolution. The higher the resolution, the more accurate and more expensive the conservative (CPP) interpolation will be. Valid values are 10 to 256 ; defaults to 100 .

VAL2
The separation factor to handle any gap between the two surfaces. It is a relative measure of the gap, normalized by the averaged element face sizes from both sides of the interface. Defaults to 0.1.

## Notes

In a conservative (CPP) interpolation scheme as specified on the MFLCOMM command, each element face is first divided into $n$ number of faces, where $n$ is the number of nodes on the face. The three-dimensional faces are then converted onto a two-dimensional polygon made up of rows and columns of dots called pixels. By default, these pixels have a resolution of $100 \times 100$; use VAL1 to increase the resolution and improve the accuracy of the algorithm. See Load Interpolation in the Coupled-Field Analysis Guide for more information on interpolation schemes and adjusting the pixel resolution for the conservative interpolation scheme.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu>Preprocessor>Multi-field Set Up>MFX-ANSYS/CFX>Advanced Set Up>Mapping Main Menu>Solution>Multi-field Set Up>MFX-ANSYS/CFX>Advanced Set Up>Mapping

## MFCLEAR, Option, Value

## Deletes ANSYS Multi-field solver analysis settings.

SOLUTION:Multi-field Global Controls<br>MP <> <> <> <> <> <> <> EM <> <> PP <> <> <><br>Product Restrictions

## Option

SOLU
Resets all ANSYS solution commands except KBC to their default states. This option clears analysis options when setting up different fields for an ANSYS Multi-field solver analysis.
FIELD
Deletes all ANSYS Multi-field solver specifications for the specified field number.
SINT
Deletes all ANSYS Multi-field solver specifications for the specified surface interface number.
VINT
Deletes all ANSYS Multi-field solver specifications for the volumetric interface number.

## ORD

Deletes the analysis order specified by the MFORDER command.

## EXT

Deletes external fields specified by the MFEXTER command

## MFLC

Deletes load transfers specified by the MFLCOMM command

## Value

Use only for Opt ion = FIELD, SINT, or VINT.
Option = FIELD deletes all ANSYS Multi-field solver specifications for the field number Value. Value defaults to 0 (no deletions). A Value of -1 deletes the ANSYS Multi-field solver settings for all fields.

Option $=$ SINT deletes surface interface specifications for the surface interface number Value. Value defaults to 0 (no deletions). A Value of -1 deletes all surface interface specifications. This command deletes the ANSYS Multi-field solver commands, not the boundary conditions themselves.

Option = VINT deletes all volumetric interface specifications for the volume interface number Value. Value defaults to 0 (no deletions). A Value of -1 deletes all volumetric interface specifications. This command deletes the ANSYS Multi-field solver commands, not the boundary conditions themselves.

## Notes

See Multi-field Commands in the Coupled-Field Analysis Guide for a list of all ANSYS Multi-field solver commands and their availability for MFS and MFX analyses.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Product Restrictions

ANSYS Mechanical allows MFX analyses but not MFS analyses. ANSYS Multiphysics allows both MFS and MFX analyses.

## Menu Paths

Main Menu>Preprocessor>Multi-field Set Up>MFS-Single Code>Clear
Main Menu>Preprocessor>Multi-field Set Up>MFX-ANSYS/CFX>Clear
Main Menu>Preprocessor>Multi-field Set Up>MFX-ANSYS/CFX>Solution CtrI
Main Menu>Solution>Multi-field Set Up>MFS-Single Code>Clear
Main Menu>Solution>Multi-field Set Up>MFX-ANSYS/CFX>Clear
Main Menu>Solution>Multi-field Set Up>MFX-ANSYS/CFX>Solution Ctrl

## MFCMMAND, FNUMB, Fname, Ext

Captures field solution options in a command file.
SOLUTION:Multi-field Definitions
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS

## FNUMB

Field number specified by the MFELEM command.

## Fname

Command file name specified for the field number. Defaults to field "FNUMB".
Ext
Extension for Fname. Defaults to .cmd.

## Notes

All relevant solution option commands for the specified field are written to a file with the extension .cmd. Refer to the commands in the following tables in the Command Reference: Analysis Options, Nonlinear Options, Dynamic Options, and Load Step Options.

This command is also valid in PREP7.
See Multi-field Commands in the Coupled-Field Analysis Guide for a list of all ANSYS Multi-field solver commands and their availability for MFS and MFX analyses.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.
Menu Paths
Main Menu>Preprocessor>Multi-field Set Up>MFS-Single Code>Capture Main Menu>Solution>Multi-field Set Up>MFS-Single Code>Capture

MFCONV, Lab, TOLER, --, MINREF
Sets convergence values for an ANSYS Multi-field solver analysis.
SOLUTION: Multi-field Convergence Controls
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS
Product Restrictions

## Lab

Valid labels:
Force labels: FX, FY, FZ
Displacement labels: UX, UY, UZ
Temperature label: TEMP
Heat flux label: HFLU (for surface load transfer)
Heat generation label: HGEN (for volume load transfer)
If $L a b=A L L$ MFCONV applies the convergence value to all nine variables.
TOLER
Convergence tolerance about program calculated reference value (the L2 norm of the new load in a multi-field analysis). Defaults to 0.01 (1\%) for all labels. Must be less than 1.0.

Unused field.

## MINREF

The minimum value allowed for the program calculated reference value. If negative, no minimum is enforced. Defaults to $1.0 \mathrm{e}-6$ for all labels. Not available in the GUI. MINREF corresponds to $\left\|\phi_{\text {new }}\right\|$ as defined in Set up Stagger Solution in the Coupled-Field Analysis Guide.

## Notes

MFCONV sets convergence values for variables at the ANSYS Multi-field solver interface.
This command is also valid in PREP7.
See Multi-field Commands in the Coupled-Field Analysis Guide for a list of all ANSYS Multi-field solver commands and their availability for MFS and MFX analyses.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Product Restrictions

ANSYS Mechanical allows MFX analyses but not MFS analyses. ANSYS Multiphysics allows both MFS and MFX analyses.

## Menu Paths

Main Menu>Preprocessor>Multi-field Set Up>MFS-Single Code>Stagger>Convergence Main Menu>Preprocessor>Multi-field Set Up>MFX-ANSYS/CFX>Advanced Set Up>Convergence Main Menu>Solution>Multi-field Set Up>MFS-Single Code>Stagger>Convergence Main Menu>Solution>Multi-field Set Up>MFX-ANSYS/CFX>Advanced Set Up>Convergence

## MFDTIME, DTIME, DTMIN, DTMAX, Carry

## Sets time step sizes for an ANSYS Multi-field solver analysis.

SOLUTION:Multi-field Time Controls
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS
Product Restrictions

## DTIME

Multi-field time step size. If automatic time stepping is being used [see Notes below], DTIME is the starting time step.

## DTMIN

Minimum time step. Defaults to DTIME.

## DTMAX

Maximum time step. Defaults to DTIME.

## Carry

Time step carryover key.
OFF
Use DTIME as the starting time step for the next restart run (default).
ON
Use the final time step from the previous run as the starting time step for the next restart run.

## Notes

This command specifies time step sizes for an ANSYS Multi-field solver analysis. If either DTMIN or DTMAX is not equal to DTIME, auto time-stepping is turned on for the multi-field loop. ANSYS will automatically
adjust the time step size for the next multi-field step between DTMIN and DTMAX, based on the status of the current convergence, the number of target stagger iterations (specified by MFITER), and the actual number of iterations needed to reach convergence at the current time step.

If auto time-stepping is turned off, the time step size must be evenly divisible into the end time (specified by MFTIME) minus the start time ( 0 for a new analysis or a restart time specified by MFRSTART).

You can use a smaller time step within each ANSYS field analysis. This is called subcycling. Use the DELTIM and AUTOTS commands to subcycle a structural, thermal, or electromagnetic analysis. Use the FLDATA4 command to subcycle a fluid analysis.

This command is also valid in PREP7.
See Multi-field Commands in the Coupled-Field Analysis Guide for a list of all ANSYS Multi-field solver commands and their availability for MFS and MFX analyses.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Product Restrictions

ANSYS Mechanical allows MFX analyses but not MFS analyses. ANSYS Multiphysics allows both MFS and MFX analyses.

## Menu Paths

> Main Menu>Preprocessor>Multi-field Set Up>MFS-Single Code>Time Ctrl
> Main Menu $>$ Preprocessor $>$ Multi-field Set Up $>$ MFX-ANSYS/CFX $>$ Time Ctrl
> Main Menu $>$ Solution $>$ Multi-field Set Up $>$ MFS-Single Code $>$ Time Ctrl
> Main Menu $>$ Solution $>$ Multi-field Set Up $>$ MFX-ANSYS/CFX $>$ Time Ctrl

MFELEM, FNUMB, ITYPE1, ITYPE2, ITYPE3, ITYPE4, ITYPE5, ITYPE6, ITYPE7, ITYPE8, ITYPE9, ITYPE10

## Defines a field by grouping element types.

MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS

## FNUMB

Field number for a group of element types.
ITYPE1, ITYPE2, ITYPE3, ... , ITYPE10
Element types defined by the ET command.

## Notes

You can define up to ten element types per field.
Define only element types that contain elements in the field. Do not include MESH200 because it is a "meshonly" element that does not contribute to the solution.

This command is also valid in PREP7.

See Multi-field Commands in the Coupled-Field Analysis Guide for a list of all ANSYS Multi-field solver commands and their availability for MFS and MFX analyses.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu>Preprocessor>Multi-field Set Up>MFS-Single Code>Define>Define Main Menu>Solution>Multi-field Set Up>MFS-Single Code>Define>Define

MFEM, FNUMB, ITYPE1, ITYPE2, ITYPE3, ITYPE4, ITYPE5, ITYPE6, ITYPE7, ITYPE8, ITYPE9, ITYPE10
Add more element types to a previously defined field number.
SOLUTION: Multi-field Definitions
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS

## FNUMB

Existing field number defined by the MFELEM command.
ITYPE1, ITYPE2, ITYPE3, ... , ITYPE10
Element types defined by the ET command.

## Notes

You can add up to ten element types per MFEM command. This command should not be used after an initial solution.

This command is also valid in PREP7.
See Multi-field Commands in the Coupled-Field Analysis Guide for a list of all ANSYS Multi-field solver commands and their availability for MFS and MFX analyses.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu>Preprocessor>Multi-field Set Up>MFS-Single Code>Define>Add elems Main Menu>Solution>Multi-field Set Up>MFS-Single Code>Define>Add elems

MFEXTER, FNUMB1, FNUMB2, FNUMB3, FNUMB4, FNUMB5, FNUMB6, FNUMB7, FNUMB8, FNUMB9, FNUMB10, FNUMB11, FNUMB12, FNUMB13, FNUMB14, FNUMB15, FNUMB16, FNUMB17, FNUMB18, FNUMB19, FNUMB20

Defines external fields for an ANSYS Multi-field solver analysis.
SOLUTION:Multi-field Definitions
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS
FNUMB1, FNUMB2, FNUMB3, . . . , FNUMB20
External field numbers defined by the MFELEM command.

## Notes

This command specifies external field numbers to be used for load transfer in an ANSYS Multi-field solver analysis. Use the MFIMPORT command to import the external fields.

Use the MFELEM command to specify external field numbers. Use the MFORDER command to specify the solution order for the external fields.

You can define a maximum of 20 fields.
This command is also valid in PREP7.
See Multi-field Commands in the Coupled-Field Analysis Guide for a list of all ANSYS Multi-field solver commands and their availability for MFS and MFX analyses.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

# Main Menu>Preprocessor>Multi-field Set Up>MFS-Single Code>Setup>External Main Menu>Solution>Multi-field Set Up>MFS-Single Code>Setup>External 

## MFFNAME, FNUMB, Fname

## Specifies a file name for a field in an ANSYS Multi-field solver analysis.

SOLUTION:Multi-field Definitions
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS

## FNUMB

Field number specified by the MFELEM command.

## Fname

File name. Defaults to field "FNUMB".

## Notes

All files created for the field will have this file name with the appropriate extensions.
This command is also valid in PREP7.
See Multi-field Commands in the Coupled-Field Analysis Guide for a list of all ANSYS Multi-field solver commands and their availability for MFS and MFX analyses.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu>Preprocessor>Multi-field Set Up>MFS-Single Code>Define>Define Main Menu>Solution>Multi-field Set Up>MFS-Single Code>Define>Define

## MFFR, Fname, Lab, RFINI, RFMIN, RFMAX

## Setup Multi-Field relaxation factors for field solutions.

SOLUTION: Multi-field Global Controls
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS
Product Restrictions

## Fname

Field name (MFX) or number (MFS). Must be the ANSYS field (cannot be a FLOTRAN or CFX field).

## Lab

Label name. Valid values are DISP and TEMP.

## RFINI

Initial relaxation factor. Defaults to 0.75 .

## RFMIN

Minimum relaxation factor. Defaults to RFINI.

## RFMAX

Maximum relaxation factor. Defaults to $R F I N I$.

## Notes

Use this command to relax the field solutions in fluid-solid interaction analyses and thermal-thermal analyses for a better convergence rate in coupled problems, especially cases that need dynamic relaxation. The ANSYS field that has the MFFR command applied will do only one nonlinear stagger iteration within each multifield stagger; the convergence of the ANSYS field solver will be satisfied through multiple multi-field staggers. Note that the CFX field solver can have multiple iterations within the field solver; see the CFX documentation for more details. ANSYS will not terminate the nonlinear field solution until the ANSYS field solver converges or reaches the maximum number of multi-field staggers as specified on MFITER.

The interface load relaxation (MFRELAX) will be automatically turned off for the corresponding surface loads that have MFFR applied. The automatic change of the relaxation factor for accelerating the nonlinear convergence of the coupled field solution is based on Aitken's acceleration scheme.

This command is valid only with coupled problems involving surface load transfer only. No subcycling is allowed for the field solver if using this command.

## Product Restrictions

ANSYS Mechanical allows MFX analyses but not MFS analyses. ANSYS Multiphysics allows both MFS and MFX analyses.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

This command cannot be accessed from a menu.

## MFIMPORT, FNUMB, Option, Fname, Ext

Imports a new field into a current ANSYS Multi-field solver analysis.

PREP 7:Database<br>MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS

## FNUMB

Field number specified by the MFELEM command.
Option
Selects data to read.
DB
Reads a CDB file. The CDB file name and extension are specified by Fname and Ext.

## Fname

File name and directory path ( 248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

The file name defaults to Jobname.
Ext
Filename extension (8 character maximum).
The extension defaults to CDB if Fname is blank.

## Notes

The field to be imported should be written to a CDB file (CDWRITE command). This file is read into the database, offsetting all existing element type numbers, node numbers, etc. in order to accommodate the imported field. (See the NUMOFF command for information on offset capabilities.) It then updates all of the previously issued MFxx commands to the new element type numbers. A new field is created using the specified field number, which must not currently exist. If there are no ANSYS Multi-field solver command files written for the existing fields in the database, one will be written for each field with the default name (see the MFCMMAND command). A MFCMMAND will be issued for the imported field as well.

Repeat the MFIMPORT command to import additional fields. If you are importing a FLOTRAN fluid field along with other fields, you must import the FLOTRAN fluid field last to ensure the FLOTRAN elements have material type 1. FLOTRAN requires its elements to have material type 1.

If the fluid field is imported last and MP commands were used to define the FLOTRAN material properties, the non-FLOTRAN elements will have material numbers greater than 1 . However, if MP commands were not used to define the FLOTRAN material properties, some non-FLOTRAN elements may also have material number 1 . This material numbering anomaly can occur, because if a MP command is not present in the fluid field's CDB file, then MFIMPORT will not offset the material numbers when importing the fluid field. Thus, it is possible for FLOTRAN and non-FLOTRAN elements to share material number 1 . The solution will not be affected, because the MFS internally manages the material numbers to ensure that the correct material properties are used with each field. However, the ability to select elements based on their material properties may be compromised. If unique material numbers are desired, NUMOFF,MAT, 1 can be explicitly included in the fluid field's CDB file to force the material numbers for the non-FLOTRAN elements to be offset.

See Multi-field Commands in the Coupled-Field Analysis Guide for a list of all ANSYS Multi-field solver commands and their availability for MFS and MFX analyses.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.
Menu Paths
Main Menu>Preprocessor>Multi-field Set Up>MFS-Single Code>Import

## MFINTER, Option

## Specifies the interface load transfer interpolation option for an ANSYS Multi-field solver analysis.

SOLUTION:Multi-field Global Controls
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS

## Option

Interface load transfer option:

## CONS

Conservative formulation for load transfer.
NONC
Nonconservative formulation for load transfer (default).

## Notes

This command only applies to the interpolation method for forces, heat flux, and heat generation. Displacement and temperature transfers are always nonconservative.

For more information on conservative and nonconservative load transfer, see Load Transfer in the CoupledField Analysis Guide.

This command is also valid in PREP7.
See Multi-field Commands in the Coupled-Field Analysis Guide for a list of all ANSYS Multi-field solver commands and their availability for MFS and MFX analyses.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu>Preprocessor>Multi-field Set Up>MFS-Single Code>Setup>Global
Main Menu>Solution>Multi-field Set Up>MFS-Single Code>Setup>Global

## MFITER, MAXITER, MINITER, TARGET

## Sets the number of stagger iterations for an ANSYS Multi-field solver analysis.

SOLUTION:Multi-field Convergence Controls
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS
Product Restrictions

## MAXITER

Maximum number of iterations. Defaults to 10.

## MINITER

Minimum number of iterations. Defaults to 1 .

## TARGET

Target number of iterations. Defaults to 5 .

## Notes

The number of stagger iterations applies to each time step in an ANSYS Multi-field solver analysis. MINITER and TARGET are valid only when multi-field auto time stepping is on (MFDTIME).

This command is also valid in PREP7.
See Multi-field Commands in the Coupled-Field Analysis Guide for a list of all ANSYS Multi-field solver commands and their availability for MFS and MFX analyses.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Product Restrictions

ANSYS Mechanical allows MFX analyses but not MFS analyses. ANSYS Multiphysics allows both MFS and MFX analyses.

## Menu Paths

Main Menu>Preprocessor>Multi-field Set Up>MFS-Single Code>Stagger>Iterations Main Menu>Preprocessor>Multi-field Set Up>MFX-ANSYS/CFX>Advanced Set Up>Iterations Main Menu>Solution>Multi-field Set Up>MFS-Single Code>Stagger>Iterations Main Menu>Solution>Multi-field Set Up>MFX-ANSYS/CFX>Advanced Set Up>Iterations

MFLCOMM, Type, Fname1, Intname1, Label1, Fname2, Intname2, Label2, Option

## Defines a load transfer for code coupling analyses.

SOLUTION: Multi-field Load Transfer
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS

## Type

Set to SURF for a surface load transfer. Only surface load transfers are available for MFX.

## Fname1

Sets the field solver name for the server (sending) code with a case-sensitive character string of up to 80 characters.

## Intname1

Sets the interface name or number for the field solver of the server code. ANSYS interfaces are numbered and are defined by the SF family of commands (SF, SFA, or SFE) with the FSIN surface load label. CFX interfaces use names, which are set in CFX-Pre.

## Label1

Sets the surface load label for the field solver of the server code with a character string of up to 80 characters. ANSYS uses a combination of the label and option to determine what data is transferred (e.g., heat flows and not fluxes are sent with the label/option pair HFLU/CPP). ANSYS cannot serve total force or total force density to CFX for either formulation. CFX will send the data requested by the label regardless of the option. CFX labels that have more than one word must be enclosed in single quotes. Note that this field is case-sensitive; i.e., FORC will work, but forc will not.

| CFX Label | ANSYS La- <br> bel | Option | Definition |
| :--- | :--- | :--- | :--- |
| 'Total Force' | FORC | CPP | Sets the surface load label to force. |
| 'Total Force <br> Density' | FORC | NONC | Sets the surface load label to the total <br> force per unit area associated with a mesh <br> node. |
| 'Total Mesh <br> Displace- <br> ment' | DISP | NONC, CPP | Sets the surface load label to displace- <br> ment. |
| Temperature | TEMP | NONC, CPP | Sets the surface load label to temperature. |
| 'Wall Heat <br> Flow' | HFLU | CPP | Sets the surface load label to total wall <br> heat flow. |
| 'Wall Heat <br> Flux' | HFLU | NONC | Sets the surface load label to heat flux. |

## Fname2

Sets the field solver name for the client (receiving) code with a character string of up to 80 characters.

## Intname2

Sets the interface name or number for the field solver of the client code with a character string of up to 80 characters. ANSYS interfaces are numbered and are defined by the SF family of commands (SF, SFA, or SFE) with the FSIN surface load label. CFX interfaces use names, which are set in CFX-Pre.

## Label2

Sets the surface load label for the field solver of the client code with a character string of up to 80 characters. ANSYS uses a combination of the label and option to determine what data is transferred (e.g., heat flows and not fluxes are sent with the label-option pair HFLU/CPP). CFX will send the data requested by the label regardless of the option. CFX labels that have more than one word must be enclosed in single quotes. Note that this field is case-sensitive; i.e., FORC will work, but forc will not.

## Option

NONC
Profile preserving: Sets the interface load transfer to the nonconservative formulation (default for displacement and temperature). In the nonconservative formulation, the force density (or heat flux) is transferred across the interface, preserving the density profile between the two fields.

## CPP

Conservative: Uses a local conservative formulation while preserving the density profile (default for total force and wall heat flow). In the conservative formulation, total force (or heat flow) must be transferred across the interface from the CFX field solver to the ANSYS field solver.

## Notes

ANSYS input should always be in consistent units for its model.
ANSYS uses a combination of the label and option to determine what data to transfer. CFX will send exactly the data requested by the label, regardless of the option. However, for the NONC option, the CFX label must be Total Force Density or Wall Heat Flux and for the CPP option, the CFX label must be Total Force or Wall Heat Flow.

For more information on profile preserving and conservative load transfer, see Load Interpolation in the Coupled-Field Analysis Guide. Mapping Diagnostics are also available; however, if the improperly-mapped nodes are based on the CFX mesh, you should ignore the ANSYS-generated components because the CFX nodes are not present in the ANSYS database.

If you are working interactively, you can choose two pre-defined combinations, Mechanical or Thermal, or you can choose a Custom option. If you choose the Mechanical load type, then the Total Force Density and Total Mesh Displacement data (corresponding to the ANSYS FORC and DISP labels, respectively) is transferred. If you choose the Thermal load type, then the Temperature and Wall Heat Flux data (corresponding to the ANSYS TEMP and HFLU labels, respectively) is transferred. If you choose Custom, you can select any valid combination of label and option as described above.

The ANSYS Multi-field solver solver does not allow you to switch the load transfer direction for the same load quantity across the same interfaces for a restart run. For example, if Field1 sends temperature to and receives heat flow from Field2 across Interface 1 in a previous solution, then you cannot make Field1 send heat flow to and receive temperatures from Field2 across the same interface in a restart run, even if you cleared the corresponding load transfer command.

See Multi-field Commands in the Coupled-Field Analysis Guide for a list of all ANSYS Multi-field solver commands and their availability for MFS and MFX analyses.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

# Main Menu>Preprocessor>Multi-field Set Up>MFX-ANSYS/CFX>Load Transfer Main Menu>Solution>Multi-field Set Up>MFX-ANSYS/CFX>Load Transfer 

## MFLIST, Option, Value

## Lists the settings for an ANSYS Multi-field solver analysis.

SOLUTION: Multi-field Global Controls
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS
Product Restrictions

## Option

ALL
Lists all ANSYS Multi-field solver analysis options.
SOLU
Lists all solution-related ANSYS Multi-field solver options.

## FIELD

Lists all ANSYS Multi-field solver options related to the specified field number.
SINT
Lists all surface interface information for the specified surface interface number.

## VINT

Lists all volumetric interface information for the specified volumetric interface number.

## Value

Use only for Opt ion = FIELD, SINT, or VINT.
Option = FIELD lists all ANSYS Multi-field solver options for the field number Value. Value defaults to 0 , which lists information for all fields.

Option = SINT lists all surface interface information for the interface number Value. Value defaults to 0 , which lists information for all surface interfaces.

Option = VINT lists all volumetric interface information for interface number Value. Value defaults to 0 , which lists information for all volumetric interfaces.

## Notes

This command is also valid in PREP7.
See Multi-field Commands in the Coupled-Field Analysis Guide for a list of all ANSYS Multi-field solver commands and their availability for MFS and MFX analyses.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Product Restrictions

ANSYS Mechanical allows MFX analyses but not MFS analyses. ANSYS Multiphysics allows both MFS and MFX analyses.

## Menu Paths

Main Menu>Preprocessor>Multi-field Set Up>MFS-Single Code>Status
Main Menu>Preprocessor>Multi-field Set Up>MFX-ANSYS/CFX>Status
Main Menu>Solution>Multi-fieId Set Up>MFS-Single Code>Status

## MFMAP, Lab1, Lab2, Filename, Opt

## Calculates, saves, resumes, or deletes mapping data in an ANSYS Multi-field solver analysis.

SOLUTION: Multi-field Interface Mapping
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS

## Lab1

Operation label:
CALC
Calculate mapping data and keep it in memory (default).

## SAVE

Calculate mapping data, keep it in memory, and save it to a file. (If MFMAP,CALC or MFMAP,RESU have been issued, just save it to a file.)

## RESU

Resume the mapping from a file and keep it in memory.

## DELE

Free the mapping memory.

## Lab2

Applicable mapping label:

## ALL

Surface and volumetric mapping.

## SURF

Surface mapping only.

## VOLU

Volumetric mapping only.

## Filename

The file name for a mapping data file (filename.sur for surface mapping and filename.vol for volumetric mapping). Defaults to Jobname. Applies to the commands MFMAP,SAVE and MFMAP,RESU only.

## Opt

File format:
BINA
Binary file (default).
ASCI
ASCII file.

## Notes

This command calculates, saves, resumes, or deletes mapping data. It defaults to calculating the mapping data. If MFMAP has not been previously issued, the mapping data will be automatically calculated during the solution process. On the other hand, the ANSYS Multi-field solver solver will use previously created mapping data. Resumed mapping files must have load transfer specifications that are consistent with those of the current MFSURFACE and MFVOLUME commands and the ANSYS database.

This command is also valid in PREP7.
See Multi-field Commands in the Coupled-Field Analysis Guide for a list of all ANSYS Multi-field solver commands and their availability for MFS and MFX analyses.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu>Preprocessor>Multi-field Set Up>MFS-Single Code>Interface>Mapping Main Menu>Solution>Multi-field Set Up>MFS-Single Code>Interface>Mapping

MFORDER, $F N U M B 1$, FNUMB2, FNUMB3, FNUMB4, FNUMB5, FNUMB6, FNUMB7, FNUMB8, FNUMB9, FNUMB10, FNUMB11, FNUMB12, FNUMB13, FNUMB14, FNUMB15, FNUMB16, FNUMB17, FNUMB18, FNUMB19, FNUMB20

## Specifies field solution order for an ANSYS Multi-field solver analysis.

SOLUTION: Multi-field Global Controls
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS
FNUMB1, FNUMB2, FNUMB3, . . . FNUMB20
Field numbers defined by the MFELEM command .

## Notes

You can define up to twenty fields in an ANSYS Multi-field solver analysis.
This command is also valid in PREP7.
See Multi-field Commands in the Coupled-Field Analysis Guide for a list of all ANSYS Multi-field solver commands and their availability for MFS and MFX analyses.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu>Preprocessor>Multi-field Set Up>MFS-Single Code>Setup>Order Main Menu>Solution>Multi-field Set Up>MFS-Single Code>Setup>Order

## MFOUTPUT, FREQ

Specifies results file output frequency for an ANSYS Multi-field solver analysis.
SOLUTION:Multi-field Time Controls
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS
Product Restrictions
FREQ
N
Write solution every $N$ th (and the last) time step. Defaults to 1 , for every time step.
$-N$
Writes up to $-N$ equally spaced results (for multifield auto time stepping).

## NONE

Suppresses writing of results for all multifield time steps.
ALL
Writes results for every multifield time step (default).
LAST
Writes results for only the last multifield time step.
\%array\%
Where \%arrayo is the name of an $n \times 1 \times 1$ dimensional array parameter defining $n$ key times, the data for the specified solution results item is written at those key times. Key times in the array parameter must appear in ascending order. Value must be greater than or equal to the ending time values for the load step.

For restart runs (see MFRSTART command), either change the parameter values to fall between the beginning and ending time values of the load step, or erase the current settings and reissue the command with a new array parameter.

For more information about defining array parameters, see the *DIM command documentation.

## Notes

A MFOUTPUT setting overrides any other output frequency setting (OUTRES). To select the solution items, use the OUTRES command.

For the case of Freq $=-\mathrm{n}$ and Freq $=\%$ array $\%$, the results at the time points which first time reaches or exceeds the targeting ouptupt time points will be written.

FLOTRAN ignores a MFOUTPUT setting. You should write out every time step in a FLOTRAN analysis.
This command is also valid in PREP7.

See Multi-field Commands in the Coupled-Field Analysis Guide for a list of all ANSYS Multi-field solver commands and their availability for MFS and MFX analyses.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Product Restrictions

ANSYS Mechanical allows MFX analyses but not MFS analyses. ANSYS Multiphysics allows both MFS and MFX analyses.

## Menu Paths

# Main Menu>Preprocessor>Multi-field Set Up>MFS-Single Code>Frequency Main Menu>Solution>Multi-field Set Up>MFS-Single Code>Frequency 

*MFOURI, Oper, COEFF, MODE, ISYM, THETA, CURVE

## Calculates the coefficients for, or evaluates, a Fourier series.

> APDL: Array Parameters
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Argument Descriptions

## Oper

Type of Fourier operation:
FIT --
Calculate Fourier coefficients COEFF from MODE, ISYM, THETA, and CURVE.
EVAL --
Evaluate the Fourier curve CURVE from COEFF, MODE, ISYM and THETA

## COEFF

Name of the array parameter vector containing the Fourier coefficients (calculated if Oper = FIT, required as input if Oper = EVAL). See *SET for name restrictions.

## MODE

Name of the array parameter vector containing the mode numbers of the desired Fourier terms.

## ISYM

Name of the array parameter vector containing the symmetry key for the corresponding Fourier terms. The vector should contain keys for each term as follows:
0 or 1 --
Symmetric (cosine) term
-1 --
Antisymmetric (sine) term.

## theta, CURVE

Names of the array parameter vectors containing the theta vs. curve description, respectively. Theta values should be input in degrees. If Oper = FIT, one curve value should be supplied with each theta value. If Oper = EVAL, one curve value will be calculated for each theta value.

## Notes

Calculates the coefficients of a Fourier series for a given curve, or evaluates the Fourier curve from the given (or previously calculated) coefficients. The lengths of the COEFF, MODE, and ISYM vectors must be the same--typically two times the number of modes desired, since two terms (sine and cosine) are generally required for each mode. The lengths of the CURVE and THETA vectors should be the same or the smaller of the two will be used. There should be a sufficient number of points to adequately define the curve--at least two times the number of coefficients. A starting array element number (1) must be defined for each array parameter vector. The vector specifications *VLEN, *VCOL, *VABS, *VFACT, and *VCUM do not apply to this command. Array elements should not be skipped with the *VMASK and the NINC value of the *VLEN specifications. The vector being calculated (COEFF if Oper is FIT, or CURVE if Oper is EVAL) must exist as a dimensioned array [*DIM].

This command is valid in any processor.

## Menu Paths

Utility Menu>Parameters>Array Operations>Matrix Fourier

MFPSIMUL, gname, Fname1, Fname2

## Sets up a field solver group to simultaneously process with code coupling analyses.

SOLUTION: Multi-field Global Controls<br>MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS<br>Product Restrictions

## gname

Sets the group name with a character string of up to 80 characters.

## Fname1, Fname2

Sets the field solver 1 and field solver 2 names, which are processed simultaneously, with a character string of up to 80 characters.

## Notes

This command is used to define a group of simultaneously-processed field solvers in an MFX analysis. For example, to define group $g 1$ with field solvers ansys-code and $c f x-c o d e$, enter MFPS, g1, ansyscode, cfx-code.

To indicate groups of sequentially-processed field solvers for your MFX analysis, create two groups ( $g 1$ and g2).

A field solver refers to a specific instance of an ANSYS or CFX solver execution that is defined by the respective input file(s) referenced when starting the solver (through the launcher or from the command line). The field solver names that are referenced in several MFX commands must be consistent with the names that will be used when starting the coupled simulation.

## Note

When running MFX from the launcher, you must use ANSYS and CFX (uppercase) as the field solver names (MFPSIMUL) in your input file.

See Multi-field Commands in the Coupled-Field Analysis Guide for a list of all ANSYS Multi-field solver commands and their availability for MFS and MFX analyses.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Product Restrictions

ANSYS Mechanical allows MFX analyses but not MFS analyses. ANSYS Multiphysics allows both MFS and MFX analyses.

## Menu Paths

MFRC, FREQ, MAXFILES

## Controls file writing for multiframe restarts for the ANSYS Multi-field solver.

SOLUTION: Multi-field Time Controls<br>MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS<br>Product Restrictions

## FREQ

Frequency at which the . Xnnn files are written.
0
Do not write any. Xnnn files for this simulation

## LAST

Write the . Xnnn files for the last multifield time step (default).
$\boldsymbol{N}$
If $N$ is a positive number, write the . Xnnn file every $N$ th multifield time step.
If N is a negative number write N equally spaced. Xn nn file for the entire simulation time. If auto time stepping is on, write the file at the multifield time step which first exceeds one of the equally spaced time points.

## MAXFILES

Maximum number of . Xnnn files to save for a multifield analysis.
0
Do not overwrite existing . Xnnn files (default). The total maximum number of . Xnnn files for one run is 999. If this number is reached before the analysis is complete, the analysis will continue, but will no longer write . Xnnn files.
$\boldsymbol{N}$
The maximum number of . Xnnn file to keep for this multifield simulation. When this number of . Rnnn have been written, ANSYS will overwrite the first . Xnnn file of the subsequent multifield time step.

## Notes

This command sets up the restart parameters for a multiframe restart, allowing you to restart an analysis from any multifield time step for which there is a . Rnnn file. You can perform a multiframe restart only for nonlinear static and full transient structural, thermal and thermal- structural (see RESCONTROL for details).

If you have many multifield time steps, and are writing. Xnnn files frequently, use MAXFILES to limit the number of . Xnnn files saved, since these files can fill up your disk quickly.

For a CFX analysis, you must also configure the MFOUTPUT and MFRSTART settings to ensure consistent time points for postprocessing and restart simulation.

For MFX simulation, the RESCONTROL command will be ignored.

## Default Behavior

In nonlinear static and full transient analyses, the default behavior is multiframe restart. (MFRC, LAST). By default, the . Rnnn file will be written at the last multifield time step. A .. Rnnn file and corresponding load set of . ldhifiles is also written at the multifield time step prior to the abort point. of the run if an abort file was used or if the job terminated because of a failure to converge or some other solution error. No information at the aborted multifield time step will be saved in either the . Rnnn file or the .ldhi file.

This command cannot be issued after restarting a multifield analysis.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Product Restrictions

ANSYS Mechanical allows MFX analyses but not MFS analyses. ANSYS Multiphysics allows both MFS and MFX analyses.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.
Menu Paths
This command cannot be accessed from a menu.

## MFRELAX, Lab, VALUE, Option

## Sets relaxation values for an ANSYS Multi-field solver analysis.

SOLUTION: Multi-field Convergence Controls
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS
Product Restrictions

## Lab

Valid labels:
Force label: FORC
Displacement label: DISP
Temperature label: TEMP
Heat flux label: HFLU
Heat generation label: HGEN
If $L a b=A L L$, MFRELAX applies the relaxation value to all variables.

## VALUE

Relaxation value. Defaults to 0.75 for all labels.

## Option

Valid options are:
RELX
Uses relaxation method for load transfer (default).
LINT
Uses a linear interpolation for loaf transfer.

## Notes

MFRELAX sets relaxation values for the load transfer variables at a surface or volume interface. Option $=$ RELX will usually give you a more stable and smooth load transfer and is suitable for strongly coupled problems (such as FSI problems). Option = LINT is suitable for weakly coupled problems because it will transfer the full load in fewer stagger iterations.

See the MFFR and MFITER commands for more information on relaxation in the ANSYS Multi-field solver.
This command is also valid in PREP7.
See Multi-field Commands in the Coupled-Field Analysis Guide for a list of all ANSYS Multi-field solver commands and their availability for MFS and MFX analyses.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Product Restrictions

ANSYS Mechanical allows MFX analyses but not MFS analyses. ANSYS Multiphysics allows both MFS and MFX analyses.

## Menu Paths

Main Menu>Preprocessor>Multi-field Set Up>MFS-Single Code>Stagger>Relaxation Main Menu>Preprocessor>Multi-field Set Up>MFX-ANSYS/CFX>Advanced Set Up>Relaxation Main Menu>Preprocessor>Multi-field Set Up>MFX-ANSYS/CFX>Solution CtrI Main Menu>Solution>Multi-field Set Up>MFS-Single Code>Stagger>Relaxation Main Menu>Solution>Multi-field Set Up>MFX-ANSYS/CFX>Advanced Set Up>Relaxation Main Menu>Solution>Multi-field Set Up>MFX-ANSYS/CFX>Solution Ctrl

## MFRSTART, TIME

Specifies restart status for an ANSYS Multi-field solver analysis.
SOLUTION:Multi-field Time Controls
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS
Product Restrictions

TIME
Restart time
0
New analysis (Default)
-1
Restart from the last result set from a previous run.
$n$
Specify any positive number for the actual time point from which the ANSYS Multi-field solver will restart. ANSYS checks the availability of the result set and database file.

## Notes

For MFX analyses, ANSYS always passes an actual time value to CFX (zero for a new analysis or a positive value for a restart run) and CFX verifies the consistency with the initial results file. For more details about ANSYS restart capabilities, please see Restarting an Analysis in the Basic Analysis Guide.

See Multi-field Commands in the Coupled-Field Analysis Guide for a list of all ANSYS Multi-field solver commands and their availability for MFS and MFX analyses.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Product Restrictions

ANSYS Mechanical allows MFX analyses but not MFS analyses. ANSYS Multiphysics allows both MFS and MFX analyses.

## Menu Paths

# Main Menu>Preprocessor>Multi-field Set Up>MFS-Single Code>Time Ctrl <br> Main Menu>Preprocessor>Multi-field Set Up>MFX-ANSYS/CFX>Time Ctrl <br> Main Menu>Solution>Multi-field Set Up>MFS-Single Code>Time Ctrl <br> Main Menu>Solution>Multi-field Set Up>MFX-ANSYS/CFX>Time Ctrl 

## MFSORDER, gname1, gname2

## Sets up the solution sequence of simultaneous field solver groups for code coupling analyses.

SOLUTION: Multi-field Global Controls
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS
Product Restrictions
gname1, gname2
Specifies the group name for groups defined by the MFPSIMUL command with a character string of up to 80 characters.

## Notes

See Multi-field Commands in the Coupled-Field Analysis Guide for a list of all ANSYS Multi-field solver commands and their availability for MFS and MFX analyses.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Product Restrictions

ANSYS Mechanical allows MFX analyses but not MFS analyses. ANSYS Multiphysics allows both MFS and MFX analyses.

## Menu Paths

> Main Menu>Preprocessor>Multi-field Set Up>MFX-ANSYS/CFX>Solution Ctrl Main Menu>Solution>Multi-field Set Up>MFX-ANSYS/CFX>Solution CtrI

## MFSURFACE, INUMB, FNUMB1, Label, FNUMB2

## Defines a surface load transfer for an ANSYS Multi-field solver analysis.

SOLUTION:Multi-field Load Transfer
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS

## INUMB

Interface number for load transfer. The interface number corresponds to the interface number specified by the surface flag FSIN (SFxxcommands).

## FNUMB1

Field number of sending field.

## Label

Valid surface load labels:
Force label: FORC
Displacement label: DISP
Temperature label: TEMP
Heat flux label: HFLU

## FNUMB2

Field number for receiving field.

## Notes

This command is also valid in PREP7.
The ANSYS Multi-field solver solver does not allow you to switch the load transfer direction for the same load quantity across the same interfaces for a restart run. For example, if Field1 sends temperature to and receives heat flow from Field2 across Interface 1 in a previous solution, then you cannot make Field1 send heat flow to and receive temperatures from Field2 across the same interface in a restart run, even if you cleared the corresponding load transfer command.

See Multi-field Commands in the Coupled-Field Analysis Guide for a list of all ANSYS Multi-field solver commands and their availability for MFS and MFX analyses.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

# Main Menu>Preprocessor>Multi-field Set Up>MFS-Single Code>Interface>Surface Main Menu>Solution>Multi-field Set Up>MFS-Single Code>Interface>Surface 

## MFTIME, TIME

## Sets end time for an ANSYS Multi-field solver analysis.

SOLUTION: Multi-field Time Controls
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS
Product Restrictions
TIME
End time of an ANSYS Multi-field solver analysis. Defaults to 1.

## Notes

A MFTIME setting overrides any other end time setting (TIME or FLDATA4).
This command is also valid in PREP7.

See Multi-field Commands in the Coupled-Field Analysis Guide for a list of all ANSYS Multi-field solver commands and their availability for MFS and MFX analyses.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Product Restrictions

ANSYS Mechanical allows MFX analyses but not MFS analyses. ANSYS Multiphysics allows both MFS and MFX analyses.

## Menu Paths

Main Menu>Preprocessor>Multi-field Set Up>MFS-Single Code>Time CtrI
Main Menu>Preprocessor>Multi-field Set Up>MFX-ANSYS/CFX>Time Ctrl
Main Menu>Solution>Multi-field Set Up>MFS-Single Code>Time Ctrl
Main Menu>Solution>Multi-field Set Up>MFX-ANSYS/CFX>Time Ctrl

## MFTOL, Key, Value, Toler

## Turns normal distance checking on for surface mapping in an ANSYS Multi-field solver analysis.

SOLUTION: Multi-field Interface Mapping
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS
Product Restrictions
Key
Normal distance key
ON
Activates normal distance checking.
OFF
Deactivates normal distance checking (default).

## Value

The normal distance tolerance for surface mapping. Defaults to $1.0 \mathrm{e}-6$. If Toler $=$ REL, Value is dimensionless. If Toler $=A B S$, Value has the dimensions of length.

## Toler

Tolerance definition key
REL
Activates relative gap tolerance, which is independent of units (default).
ABS
Activates absolute gap tolerance.

## Notes

For a dissimilar mesh interface, the nodes of one mesh are mapped to the local coordinates of an element in the other mesh. When normal distance checking is activated, the mapping tool checks the normal distance from the node to the nearest element. The node is considered improperly mapped if the normal distance exceeds the tolerance value. The mapping tool creates a component to graphically display the improperly mapped nodes. See Mapping Diagnostics in the Coupled-Field Analysis Guide for more information.

When using relative gap tolerance (Toler $=$ REL), the normal distance tolerance is derived from the product of the relative tolerance Value and the largest dimension of the Cartesian bounding box for a specific interface. Therefore, each interface will have a different normal distance tolerance , even though MFTOL is a global command.

This command is also valid in PREP7.

See Multi-field Commands in the Coupled-Field Analysis Guide for a list of all ANSYS Multi-field solver commands and their availability for MFS and MFX analyses.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Product Restrictions

ANSYS Mechanical is available only for an MFX analysis. ANSYS Multiphysics is valid for both MFS and MFX analyses.

## Menu Paths

Main Menu>Preprocessor>Multi-field Set Up>MFS-Single Code>Setup>Global
Main Menu>Preprocessor>Multi-field Set Up>MFX-ANSYS/CFX>Advanced Set Up>Mapping
Main Menu>Solution>Multi-field Set Up>MFS-Single Code>Setup>Global
Main Menu>Solution>Multi-field Set Up>MFX-ANSYS/CFX>Advanced Set Up>Mapping
*MFUN, ParR, Func, Par1
Copies or transposes an array parameter matrix.
APDL: Array Parameters
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Argument Descriptions

## ParR

The name of the resulting array parameter matrix. See *SET for name restrictions.

## Func

Copy or transpose function:
COPY --
Parl is copied to ParR
TRAN --
Parl is transposed to ParR. Rows (m) and columns ( n ) of Parl matrix are transposed to resulting ParR matrix of shape ( $\mathrm{n}, \mathrm{m}$ ).

Par1
Array parameter matrix input to the operation.

## Notes

Operates on one input array parameter matrix and produces one output array parameter matrix according to:
$\operatorname{Par} R=\mathrm{f}(\operatorname{Par} 1)$
where the function ( f ) is either a copy or transpose, as described above.
Functions are based on the standard FORTRAN definitions where possible. ParR may be the same as Parl. Starting array element numbers must be defined for each array parameter matrix if it does not start at the first location. For example, *MFUN, $\mathrm{A}(1,5), \mathrm{COPY}, \mathrm{B}(2,3)$ copies matrix B (starting at element $(2,3)$ ) to matrix A (starting at element (1,5)). The diagonal corner elements for each submatrix must be defined: the upper left corner by the array starting element (on this command), the lower right corner by the current values from the *VCOL and *VLEN commands. The default values are the $(1,1)$ element and the last element in the matrix. No operations progress across matrix planes (in the 3rd dimension). Absolute values and scale factors may be applied to all parameters [*VABS, *VFACT]. Results may be cumulative [*VCUM]. Array elements should not be skipped with the *VMASK and the NINC value of the *VLEN specifications. The number of rows [*VLEN] applies to the Par1 array. See the *VOPER command for details.

This command is valid in any processor.

## Menu Paths

Utility Menu>Parameters>Array Operations>Matrix Functions

MFVOLUME, INUMB, FNUMB1, Label, FNUMB2

## Defines a volume load transfer for an ANSYS Multi-field solver analysis.

SOLUTION:Multi-field Load Transfer
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS

## INUMB

Interface number for load transfer. The interface number corresponds to the interface number specified by the volume flag FVIN (BFE command).

## FNUMB1

Field number of sending field.

## Label

Valid volume load labels:
Force label: FORC
Displacement label: DISP
Temperature label: TEMP
Heat generation: HGEN

## FNUMB2

Field number for receiving field.

## Notes

This command is also valid in PREP7.
The ANSYS Multi-field solver solver does not allow you to switch the load transfer direction for the same load quantity across the same interfaces for a restart run. For example, if Field1 sends temperature to and receives heat flow from Field2 across Interface 1 in a previous solution, then you cannot make Field1 send heat flow to and receive temperatures from Field2 across the same interface in a restart run, even if you cleared the corresponding load transfer command.

See Multi-field Commands in the Coupled-Field Analysis Guide for a list of all ANSYS Multi-field solver commands and their availability for MFS and MFX analyses.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu>Preprocessor>Multi-field Set Up>MFS-Single Code>Interface>Volume Main Menu>Solution>Multi-field Set Up>MFS-Single Code>Interface>Volume

## MFWRITE, Fname, Ext

Writes an ANSYS master input file for MFX multiple code coupling.

SOLUTION: Multi-field Global Controls

MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS
Product Restrictions

## Fname

File name and directory path ( 248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

Fname defaults to Jobname.

## Ext

Filename extension (8 character maximum).
Ext defaults to dat.

## Notes

When working interactively, you need to issue this command as the last step in your setup process. This command will write out the input file that you will then use to submit the MFX analysis. This file will include the /SOLU, SOLVE, and FINISH commands.

See Multi-field Commands in the Coupled-Field Analysis Guide for a list of all ANSYS Multi-field solver commands and their availability for MFS and MFX analyses.

## Product Restrictions

ANSYS Mechanical allows MFX analyses but not MFS analyses. ANSYS Multiphysics allows both MFS and MFX analyses.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu $>$ Preprocessor $>$ Multi-field Set Up $>$ MFX-ANSYS/CFX $>$ Write input
Main Menu $>$ Solution $>$ Multi-field Set Up $>$ MFX-ANSYS/CFX $>$ Write input

## MGEN, ITIME, INC, NODE1, NODE2, NINC

## Generates additional MDOF from a previously defined set.

SOLUTION: Master DOF
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

## ITIME, INC

Do this generation operation a total of ITIMEs, incrementing all nodes in the set by INC each time after the first. ITIME must be > 1 for generation to occur. All previously defined master degree of freedom directions are included in the set. A component name may also be substituted for ITIME.

## NODE1, NODE2, NINC

Generate master degrees of freedom from set beginning with NODE1 to NODE2 (defaults to NODE1) in steps of NINC (defaults to 1). If NODE1 = ALL, NODE2 and NINC are ignored and set is all selected nodes [NSEL]. If NODE1 = P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI).

## Notes

Generates additional master degrees of freedom from a previously defined set. If used in SOLUTION, this command is valid only within the first load step.

This command is also valid in PREP7.

## Menu Paths

> Main Menu>Preprocessor>Loads>Master DOFs>User Selected>Copy Main Menu>Solution>Master DOFs>User Selected>Copy

MIDTOL, KEY, TOLERB, RESFQ

## Sets midstep residual criterion values for structural transient analyses.

SOLUTION: Dynamic Options
MP ME ST PR PRN <> <> <> EM <> <> PP <> EME MFS
KEY
Midstep residual criterion activation key.

## ON or 1

Activate midstep residual criterion in a structural transient analysis (default).

## OFF or 0

Deactivate midstep residual criterion in a structural transient analysis.
STAT
List the current midstep residual criterion setting.

## TOLERB

Midstep residual tolerance or reference value for bisection. Defaults to 100 times the TOLER setting of the CNVTOL command.

If TOLERB $>0$, it is used as a tolerance about the typical force and/or moment to compare midstep residual force and/or moment for convergence.

If $T O L E R B<0$, it is used as a reference force value against which the midstep residual force is compared for convergence. The reference force value is used to compute a reference moment value for midstep residual moment comparison.

If midstep residual force and/or moment has not converged and AUTOTS,ON is used, then TOLERB is also used to predict time step size for bisection.

## RESFQ

Key to use response frequency computation along with midstep residual criterion for automatic time stepping (AUTOTS,ON).

## OFF or 0

Do not calculate response frequency and do not consider it in the automatic time stepping (default).

## ON or 1

Calculate response frequency and consider it in the automatic time stepping.

## Command Default

For transient structural analysis, the out-of-balance residual is not checked at the midstep.

## Notes

When $T O L E R B$ is input as a tolerance value ( $T O L E R B>0$ ), the typical force and/or moment from the regular time step is used in the midstep residual force and/or moment comparison.

In a structural transient analysis, the suggested tolerance range of TOLERB (TOLERB $>0$ ) is as follows:
TOLERB = 1 to 10 times the TOLER setting of the CNVTOL command for high accuracy solution.
TOLERB $=10$ to 100 times the TOLER setting of the CNVTOL command for medium accuracy solution.
TOLERB = more than 100 times the TOLER setting of the CNVTOL command for low accuracy solution.

If the structural transient analysis is elastic and linear, and the load is constant or changes slowly, use a smaller value of TOLERB to achieve an accurate solution. If the analysis involves large amounts of energy dissipation, such as elastic-plastic material, TOLERB can be larger. If the analysis includes contact or rapidly varying loads, a smaller value of TOLERB should be used if high frequency response is important; otherwise, a larger value of TOLERB may be used to enable faster convergence with larger time step sizes.

For more information on how the midstep criterion is used by the program, see Midstep Residual for Structural Dynamic Analysis in the Theory Reference for the Mechanical APDL and Mechanical Applications.

This command is also valid in PREP7.

## Menu Paths

## Main Menu>Preprocessor>Loads>Analysis Type>Sol'n Controls>Transient

 Main Menu>Solution>Analysis Type>Sol'n Controls>Transient
## /MKDIR, Dir

Creates a directory.

APDL:Macro Files<br>MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Argument Descriptions

## Dir

The directory to create ( 248 characters maximum on Unix and Linux; 233 on Windows). If no path is provided, it will be created in the current working directory. Must be a valid name (and path) for the system you are working on.

## Notes

Creates a directory on the computer ANSYS is currently running on.

## Menu Paths

This command cannot be accessed from a menu.

## MLIST, NODE1,NODE2,NINC

## Lists the MDOF of freedom.

SOLUTION:Master DOF
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

## NODE1, NODE2, NINC

List master degrees of freedom from NODE1 to NODE2 (defaults toNODE1) in steps of NINC (defaults to 1). If NODE1 = ALL (default), NODE2 and NINC are ignored and masters for all selected nodes [NSEL] are listed. If NODE1 = P , graphical picking is enabled and all remaining command fields are ignored
(valid only in the GUI). A component name may also be substituted for NODE1 (NODE2 and NINC are ignored).

## Notes

Lists the master degrees of freedom. Master degrees of freedom generated from the TOTAL command cannot be listed until after the first load step.

## Menu Paths

Main Menu>Preprocessor>Loads>Master DOFs>User Selected>List All
Main Menu>Preprocessor>Loads>Master DOFs>User Selected>List Picked
Main Menu>Solution>Master DOFs>User Selected>List All
Main Menu>Solution>Master DOFs>User Selected>List Picked
Utility Menu>List>Other>Master DOF>At All Nodes
Utility Menu>List>Other>Master DOF>At Picked Nodes

## MMASS, Option, ZPA

Specifies the missing mass response calculation.
SOLUTION: Spectrum Options
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

## Option

Flag to activate or deactivate missing mass response calculation.
1 (ON or YES)
Activate.
0 (OFF or NO)
Deactivate (this is the default value)

## ZPA

Zero Period Acceleration Value. If a scale factor FACT is defined in the SVTYP command, it applies to this value.

## Notes

For more information on spectrum analysis combination methods, see Combination of Modes
Missing mass calculation is valid only for single point excitation response spectrum analysis (SPOPT, SPRS) and for multiple point response spectrum analysis (SPOPT, MPRS) performed with base excitation using acceleration response spectrum loading. Missing mass is supported in a spectrum analysis only when the preceding modal analysis is performed with Block Lanczos, PCG Lanczos or Supernode eigensolver (Method =LANB, LANPCG, or SNODE on the MODOPT command). Velocity and acceleration solutions are not available (Label=VELO or ACEL on the combination command: SRSS, CQC....).

This command is also valid in PREP7.

## Menu Paths

Menu paths generated with the final build.

## MMF

Calculates the magnetomotive force along a path.
POST1:Magnetics Calculations
MP <> <> <> <> <> <> <> EM <> <> PP <> EME <>

## Notes

MMF invokes an ANSYS macro which calculates the magnetomotive force (mmf) along a predefined path [PATH]. It is valid for both 2-D and 3-D magnetic field analyses. The calculated mmf value is stored in the parameter MMF.

A closed path [PATH], passing through the magnetic circuit for which mmf is to be calculated, must be defined before this command is issued. A counterclockwise ordering of points on the PPATH command will yield the correct sign on the mmf. The mmf is based on Ampere's Law. The macro makes use of calculated values of field intensity (H), and uses path operations for the calculations. All path items are cleared upon completion. The MMF macro sets the "ACCURATE" mapping method and "MAT" discontinuity option of the PMAP command.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

## Main Menu>General Postproc>Elec\&Mag Calc>Path Based>MMF

## MODCONT, MLSkey, EnforcedKey, IgnoreThermalStrain

Specify additional modal analysis options.
SOLUTION: Dynamic Options
MP ME ST PR PRN DS DSS <> <> EH <> PP <> EME MFS

## MLSkey

Multiple Load Step Key:
OFF
Perform the modal analysis for each load step. (default)
ON
Perform the modal analysis only for the first load step; form the load vector for each load step and write it to the Jobname. MODE file for downstream mode superposition analyses.

## EnforcedKey

Enforced Motion Key:
OFF
Do not calculate enforced static modes. (default)
ON
Calculate enforced static modes and write them to theJobname. MODE file.

## IgnoreThermalStrain

Key to ignore thermal strains in the load vector. Only available if MLSkey=ON.

## OFF

Include any thermal strains in the modal load vector. (default)
ON
Ignore any thermal strains.

## Notes

Specifies additional modal analysis (ANTYPE,MODAL) options.
Temperatures applied in the modal analysis are used by default to evaluate material properties and contribute to the load vector if the temperature does not equal the reference temperature and a coefficient of thermal expansion is specified. Use the IgnoreThermalStrain key if you wish to evaluate the material properties but not contribute to the load vector. This is particularly useful when performing a downstream harmonic analysis where you do not want to include harmonically varying thermal loads.

Use the LVSCALE command to apply the desired load in a mode superposition transient or harmonic analysis.

Multiple load steps in MODCONT are not supported for the PSOLVE command.
This command applies only to the Block Lanczos, PCG Lanczos, and Supernode modal methods.

## Menu Paths

This command cannot be accessed from a menu.

MODE, MODE, ISYM

## Specifies the harmonic loading term for this load step.

SOLUTION:Load Step Options
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS

## MODE

Number of harmonic waves around circumference for this harmonic loading term (defaults to 0 ).

## ISYM

Symmetry condition for this harmonic loading term (not used when MODE $=0$ ):
1
Symmetric (UX, UY, ROTZ, TEMP use cosine terms; UZ uses sine term) (default).
-1
Antisymmetric (UX, UY, ROTZ, temp use sine terms; UZ uses cosine term).

## Command Default

$M O D E=0, I S Y M=1$.

## Notes

Used with axisymmetric elements having nonaxisymmetric loading capability (e.g., PLANE25, SHELL61, FLUID81, etc.). For analysis types ANTYPE,MODAL, HARMIC, TRANS, and SUBSTR, the term must be defined in the first load step and may not be changed in succeeding load steps.

This command is also valid in PREP7.

## Menu Paths

## Main Menu>Preprocessor>Loads>Load Step Opts>Other>For Harmonic Ele Main Menu>Solution>Load Step Opts>Other>For Harmonic Ele

## MODIFY, SET, LSTEP, ITER, CUMIT, TIME, Ktitle

## Changes the listed values of the data in a set.

AUX3: Results Files
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS

## SET

Set of data in results file to be modified.

## LSTEP

The new load step number.
ITER
The new load substep number.

## CUMIT

The new cumulative iteration.

## TIME

The new time/frequency value.

## Ktitle

Indicates if the set title should be modified.
0
Keep the original title.
1
Change the title to the title specified with the most current /TITLE command.

## Notes

Use this command to change the listed values in a data set in a results file. Using this command does not change any actual model data; it affects only the values listed in the results file.

For example, if you start with the following results file:

| SET TIME/FREQ | LOAD STEP | SUBSTEP | CUMULATIVE |  |
| :--- | :---: | :---: | :---: | :---: |
| 1 | 1.0000 | 1 | 1 | 1 |
| first load set |  |  |  |  |
| 2 | 2.0000 | 2 | 1 | 2 |
| second load set |  |  |  |  |


| 3 | 3.0000 | 3 | 1 |
| :--- | :--- | :--- | :--- |
| third load set |  | 3 |  |
| 4 | 4.0000 | 4 | 1 |

and you then issue the following commands:

```
/title, modified title for set number 3
modify,3,5,2,5,4.5,1
```

The modified results file would look like this:

| SET | TIME/FREQ | LOAD STEP | SUBSTEP | CUMULATIVE |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1.0000 | 1 | 1 | 1 |
| first load set |  |  |  |  |
| 2 | 2.0000 | 2 | 1 | 2 |
| second load set |  |  |  |  |
| 3 | 4.5000 | 5 | 2 | 5 |
| modified title for set number 3 |  |  |  |  |
| 4 | 4.0000 | 4 | 1 | 4 |
| fourth load set |  |  |  |  |

## Menu Paths

# Main Menu>Preprocessor>Loads>Other>For Harmonic Ele Main Menu>Solution>Other>For Harmonic Ele 

## MODMSH, Lab

## Controls the relationship of the solid model and the FE model.

MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Lab

Relationship key:
STAT
Gives status of command (default). This applies only to the CHECK option (no status is provided for the DETACH option).

## NOCHECK

Deactivates the checking of the solid model and the finite element model. Allows elements and nodes generated with the mesh commands to be modified directly (EMODIF, NMODIF, EDELE, NDELE, etc.). Also deactivates solid model hierarchical checking so that areas attached to volumes may be deleted etc.

## CHECK

Reactivates future checking of the solid model.

## DETACH

Releases all associativity between the current solid model and finite element model. ANSYS deletes any element attributes that were assigned to the affected solid model entities through default attributes (that is, through the TYPE, REAL, MAT, SECNUM, and ESYS command settings and a subsequent
meshing operation). However, attributes that were assigned directly to the solid model entities (via the KATT, LATT, AATT, and VATT commands) are not deleted.

## Notes

Affects the relationship of the solid model (keypoints, lines, areas, volumes) and the finite element model (nodes, elements, and boundary conditions).

Specify Lab = NOCHECK carefully. By deactivating checking, the solid model database can be corrupted by subsequent operations.

After specifying Lab $=$ DETACH, it is no longer possible to select or define finite element model items in terms of the detached solid model or to clear the mesh.

## Menu Paths

## Main Menu>Preprocessor>Checking Ctrls>Model Checking

## MODOPT, Method, NMODE, FREQB, FREQE, Cpxmod/PRMODE, Nrmkey, --, BlockSize

## Specifies modal analysis options.

SOLUTION: Dynamic Options
MP ME ST PR PRN DS DSS <> <> EH <> PP <> EME MFS Product Restrictions

## Method

Mode-extraction method to be used for the modal analysis.
LANB
Block Lanczos
LANPCG
PCG Lanczos

## SNODE

Supernode modal solver
REDUC
Householder (reduced)
UNSYM
Unsymmetric matrix

## DAMP

Damped system
QRDAMP
Damped system using QR algorithm
VT
Solve with the Variational Technology method of ANSYS DesignXplorer

## NMODE

The number of modes to extract. The value can depend on the value supplied for Method. Defaults to the number of master DOFs when Method = REDUC. For the other methods, NMODE has no default and
must be specified. If Method $=$ LANB, LANPCG, or SNODE, the number of modes that can be extracted can equal the DOFs in the model after the application of all boundary conditions.

## Recommendation:

When Method = REDUC, NMODE should be less than half of the number of master DOFs.
When Method = LANPCG, NMODE should be less than 100 to be computationally efficient.
When Method $=$ SNODE, NMODE should be greater than 100 for 2-D plane or 3-D shell/beam models and greater than 250 for 3-D solid elements to be computationally efficient.

## FREQB

The beginning, or lower end, of the frequency range of interest.
For Method = LANB, UNSYM, DAMP, and QRDAMP, $F R E Q B$ also represents the first shift point for the eigenvalue iterations. If values for UNSYM or DAMP are zero or blank, the default value is -1.0 . For the other methods, the default is internally computed. Eigenvalue extraction is most accurate near the shift point; multiple shift points are used internally in the LANB and QRDAMP methods. For LANB, LANPCG, UNSYM, DAMP, and QRDAMP methods with a positive $F R E Q B$, eigenvalues are output beginning at the shift point and increase in magnitude. For UNSYM and DAMP methods with a negative $F R E Q B$ value, eigenvalues are output beginning at zero magnitude and increase.

Choosing higher $F R E Q B$ values with the LANPCG and SNODE methods may lead to inefficient solution times because these methods will find all eigenvalues between zero and $F R E Q B$ before finding the requested modes between $F R E Q B$ and $F R E Q E$.

## FREQE

The ending, or upper end, of the frequency range of interest (in Hz). The default for Method = SNODE is described below. The default for all other methods is to calculate all modes, regardless of their maximum frequency.

The default is 100 Hz for Method = SNODE. To maintain solution efficiency, you should not set the $F R E Q E$ value too high; for example, not higher than 5000 Hz for an industrial problem. The higher the $F R E Q E$ value used for the SNODE method, the more solution time it will take and the more eigenvalues it could produce. For example, if $F R E Q E$ is set to 1 e 8 , it will cause the underlying supernodal structures to find all the possible eigenvalues of each group of supernodes; hence, it will take an excessive amount of solution time.

## Cpxmod/PRMODE

CPXMOD (Valid only when Method = QRDAMP).

## ON

Calculate complex eigenmode shapes.
OFF
Do not calculate complex eigenmode shapes. This is the default.
PRMODE
The number of reduced modes to print. Valid only when Method = REDUC.

## Nrmkey

Mode shape normalization key:
OFF
Normalize the mode shapes to the mass matrix (default).

## ON

Normalize the mode shapes to unity instead of to the mass matrix. If a subsequent spectrum or mode superposition analysis is planned, the mode shapes should be normalized to the mass matrix (Nrmkey = OFF).

Unused field.

## BlockSize

The block vector size to be used with the Block Lanczos eigensolver (used only when Method = LANB). BlockSize must be an integer value between 0 and 16. When BlockSize $=$ zero or blank, the code decides the block size internally (normally, a value of 8 is used). Typically, higher BlockSize values are more efficient under each of the following conditions:

- When running in out-of-core mode and there is not enough physical memory to buffer all of the files written by the Block Lanczos eigensolver (and thus, the time spent doing I/O is considerable).
- Many modes are requested (>100).
- Higher-order solid elements dominate the model.

The memory usage only slightly increases as BlockSize is increased. It is recommended that you use a value divisible by $4(4,8,12$, or 16$)$.

## Notes

Specifies modal analysis (ANTYPE,MODAL) options. Additional options used only for the Supernode (SNODE) eigensolver are specified by the SNOPTION command. If Method = LANPCG, ANSYS automatically switches to the PCG solver internally for this modal analysis. You can further control the efficiency of the PCG solver with the PCGOPT and EQSLV commands.

The Block Lanczos method is strongly recommended for high-frequency magnetic eigenvalue problems. The initial frequency guess is not critical. The ratio of $F R E Q E$ to $F R E Q B$ can be up to 1e6. The PCG Lanczos method is not supported for high-frequency magnetic eigenvalue problems.

For models that involve a non-symmetric element stiffness matrix, as in the case of a contact element with frictional contact, the QR damp eigensolver (MODOPT, QRDAMP) extracts modes in the modal subspace formed by the eigenmodes from the symmetrized eigenproblem. The QR damp eigensolver symmetrizes the element stiffness matrix on the first pass of the eigensolution, and in the second pass, eigenmodes are extracted in the modal subspace of the first eigensolution pass. For such non-symmetric eigenproblems, you should verify the eigenvalue and eigenmode results using the non-symmetric matrix eigensolver (MODOPT, UNSYM ).

The UNSYM, DAMP, and QRDAMP options cannot be followed by a subsequent spectrum analysis.
This command is also valid in PREP7.
Distributed ANSYS Restriction All extraction methods, except VT, are supported within Distributed ANSYS. However, PCG Lanczos, UNSYM, and DAMP are the only distributed eigensolvers that will run a fully distributed solution. The Block Lanczos and Supernode eigensolvers are not distributed eigensolvers; therefore, you will not see the full performance improvements with these methods that you would with a fully distributed solution. The REDUC and QRDAMP methods are supported, but do not use distributed memory parallelism within Distributed ANSYS.

## Product Restrictions

| Command Option Method | Available Products |
| :---: | :---: |
| LANB | MP ME ST PR PRN DS DSS <> <> EH <> PP <> EME MFS [1] |
| LANPCG | MP ME ST PR PRN DS DSS <> <> <> <> PP <> EME MFS [1] |
| SNODE | MP ME ST PR PRN <> <> <> <> EH <> PP <> EME MFS |
| REDUC | MP ME ST PR PRN DS DSS <> <> <> <> PP <> EME MFS [1] |
| UNSYM | MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS |
| DAMP | MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS |
| QRDAMP | MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS |
| VT | <> <> <> <> <> <> <> <> <> <> <> <> VT <> <> |

1. The ANSYS DesignSpace (DS) and ANSYS DesignSpace - Structural (DSS) products do not support distributed solutions (Distributed ANSYS).

## Menu Paths

Main Menu>DesignXplorer>Solution>Solve<br>Main Menu>Preprocessor>Loads>Analysis Type>Analysis Options<br>Main Menu>Solution>Analysis Type>Analysis Options

## MONITOR, var, Node, Lab

## Controls contents of three variable fields in nonlinear solution monitor file.

> SOLUTION: Analysis Options
> MP ME ST PR PRN <> <> <> EM <> <> PP <> EME MFS

## VAR

One of three variable field numbers in the monitor file whose contents can be specified by the Lab field. Valid arguments are integers 1,2 , or 3 . See Notes section for default values.

## Node

The node number for which information is monitored in the specified VAR field. In the GUI, if Node $=$ P, graphical picking is enabled. If blank, the monitor file lists the maximum value of the specified quantity (Lab field) for the entire structure.

## Lab

The solution quantity to be monitored in the specified VAR field. Valid labels for solution quantities are UX, UY, and UZ (displacements); ROTX, ROTY, and ROTZ (rotations); and TEMP (temperature). Valid labels for reaction force are FX, FY, and FZ (structural force) and MX, MY, and MZ (structural moment). Valid label for heat flow rate is HEAT. For defaults see the Notes section.

## Notes

This command is only active when SOLCONTROL,ON.

The monitor file is an ASCII file which is automatically created and saved when SOLCONTROL is active (ON). The monitor file always has an extension of .mntr, and takes its file name from the specified Jobname. If no Jobname is specified, the file name defaults to file.

You must issue this command once for each solution quantity you want to monitor at a specified node at each load step. You cannot monitor a reaction force during a linear analysis. The variable field contents can be redefined at each load step by reissuing the command. The monitored quantities are appended to the file for each load step.

## Note

Reaction forces reported in the monitor file may be incorrect if the degree of freedom of the specified node is involved in externally defined coupling (CP command) or constraint equations (CE command), or if the program has applied constraint equations internally to the node.

The following example shows the format of a monitor file. Note that the file only records the solution substep history when a substep is convergent.

SOLUTION HISTORY INFORMATION FOR JOB: file.mntr

| $\begin{aligned} & \text { LOAD } \\ & \text { STEP } \end{aligned}$ | $\begin{aligned} & \text { SUB- } \\ & \text { STEP } \end{aligned}$ | NO. <br> ATTMP | NO. ITER | TOTL | INCREMENT TIME/LFACT | $\begin{aligned} & \text { TOTAL } \\ & \text { TIME/LFACT } \end{aligned}$ | VARIAB 1 MONITOR UZ | VARIAB 2 MONITOR MZ | VARIAB 3 MONITOR MxPl |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 3 | 3 | 0.25000 | 0.25000 | 1.4145 | $0.19076 \mathrm{E}-06$ | $0.78886 \mathrm{E}-30$ |
| 1 | 2 | 1 | 2 | 5 | 0.25000 | 0.50000 | 2.8283 | $0.92989 \mathrm{E}-06$ | $0.78886 \mathrm{E}-30$ |
| 1 | 3 | 1 | 2 | 7 | 0.37500 | 0.87500 | 4.9467 | $0.33342 \mathrm{E}-05$ | $0.78886 \mathrm{E}-30$ |
| 1 | 4 | 1 | 2 | 9 | 0.12500 | 1.0000 | 5.6519 | $0.16826 \mathrm{E}-05$ | $0.78886 \mathrm{E}-30$ |
| 2 | 1 | 1 | 6 | 15 | $0.20000 \mathrm{E}-03$ | 1.0002 | 4.2198 | 515.23 | $0.78886 \mathrm{E}-30$ |
| 2 | 2 | 2 | 6 | 26 | $0.10000 \mathrm{E}-03$ | 1.0003 | 4.4849 | 593.03 | $0.78886 \mathrm{E}-30$ |
| 2 | 3 | 1 | 3 | 29 | $0.10000 \mathrm{E}-03$ | 1.0004 | 4.7531 | 611.45 | $0.78886 \mathrm{E}-30$ |
| 2 | 4 | 1 | 3 | 32 | $0.15000 \mathrm{E}-03$ | 1.0006 | 5.0696 | 621.83 | $0.78886 \mathrm{E}-30$ |
| 2 | 5 | 1 | 4 | 36 | $0.22500 \mathrm{E}-03$ | 1.0008 | 5.4428 | 628.42 | $0.78886 \mathrm{E}-30$ |
| 2 | 6 | 1 | 4 | 40 | $0.33750 \mathrm{E}-03$ | 1.0011 | 5.8928 | 632.78 | $0.78886 \mathrm{E}-30$ |
| 2 | 7 | 1 | 5 | 45 | $0.50625 \mathrm{E}-03$ | 1.0016 | 6.4454 | 635.62 | $0.78886 \mathrm{E}-30$ |
| 2 | 8 | 1 | 7 | 52 | $0.75938 \mathrm{E}-03$ | 1.0024 | 7.1375 | 637.22 | $0.78886 \mathrm{E}-30$ |
| 2 | 9 | 1 | 5 | 57 | $0.75938 \mathrm{E}-03$ | 1.0031 | 7.7422 | 637.66 | $0.78886 \mathrm{E}-30$ |
| 2 | 10 | 1 | 6 | 63 | $0.11391 \mathrm{E}-02$ | 1.0043 | 8.5588 | 637.42 | $0.78886 \mathrm{E}-30$ |
| 2 | 11 | 2 | 3 | 72 | $0.76887 \mathrm{E}-03$ | 1.0050 | 9.0721 | 636.96 | $0.78886 \mathrm{E}-30$ |
| 2 | 12 | 1 | 3 | 75 | $0.76887 \mathrm{E}-03$ | 1.0058 | 9.5648 | 636.35 | $0.78886 \mathrm{E}-30$ |
| 2 | 13 | 1 | 3 | 78 | $0.11533 \mathrm{E}-02$ | 1.0070 | 10.277 | 635.25 | $0.78886 \mathrm{E}-30$ |
| 2 | 14 | 1 | 4 | 82 | $0.17300 \mathrm{E}-02$ | 1.0087 | 11.306 | 633.37 | $0.78886 \mathrm{E}-30$ |
| 2 | 15 | 1 | 6 | 88 | $0.25949 \mathrm{E}-02$ | 1.0113 | 12.802 | 630.21 | $0.78886 \mathrm{E}-30$ |
| 2 | 16 | 1 | 5 | 93 | $0.25949 \mathrm{E}-02$ | 1.0139 | 14.273 | 626.81 | $0.78886 \mathrm{E}-30$ |
| 2 | 17 | 1 | 7 | 100 | $0.38924 \mathrm{E}-02$ | 1.0178 | 16.477 | 621.42 | $0.78886 \mathrm{E}-30$ |
| 2 | 18 | 1 | 6 | 106 | $0.38924 \mathrm{E}-02$ | 1.0217 | 18.704 | 615.77 | $0.78886 \mathrm{E}-30$ |
| 2 | 19 | 2 | 4 | 116 | $0.26274 \mathrm{E}-02$ | 1.0243 | 20.229 | 611.83 | $0.78886 \mathrm{E}-30$ |
| 2 | 20 | 1 | 4 | 120 | $0.26274 \mathrm{E}-02$ | 1.0269 | 21.777 | 607.80 | $0.78886 \mathrm{E}-30$ |

The following details the contents of the various fields in the monitor file:

## LOAD STEP

The current load step number.

## SUBSTEP

The current substep (time step) number.

## NO. ATTEMPT

The number of attempts made in solving the current substep. This number is equal to the number of failed attempts (bisections) plus one (the successful attempt).

## NO. ITER

The number of iterations used by the last successful attempt.

## TOTL. ITER

Total cumulative number of iterations (including each iteration used by a bisection).

## INCREMENT

## TIME/LFACT

Time or load factor increments for the current substep.

## TOTAL TIME/LFACT

Total time (or load factor) for the last successful attempt in the current substep.

## VARIAB 1

Variable field 1. In this example, the field is reporting the UZ value. By default, this field lists the CPU time used up to (but not including) the current substep.

## VARIAB 2

Variable field 2. In this example, the field is reporting the MZ value. By default, this field lists the maximum displacement in the entire structure.

## VARIAB 3

Variable field 3. By default (and in the example), this field reports the maximum equivalent plastic strain in the entire structure.

## Menu Paths

Main Menu>Preprocessor>Loads>Load Step Opts>Nonlinear>Monitor Main Menu>Solution>Load Step Opts>Nonlinear>Monitor
*MOPER, ParR, Par1, Oper, Par2, Par3, kDim, --, kOut, LIMIT

## Performs matrix operations on array parameter matrices.

APDL: Array Parameters
MP ME ST PR PRN <> <> FL EM EH DY PP $<>$ EME MFS

## Argument Descriptions

## ParR

The name of the resulting array parameter matrix. See *SET for name restrictions.

## Par1

First array parameter matrix input to the operation. For Oper $=$ MAP, this is an $N \times 3$ array of coordinate locations at which to interpolate. ParR will then be an $N(o u t) \times M$ array containing the interpolated values.

## Oper

Matrix operations:
INVERT --
(*MOPER, ParR, Par1, INVERT)

Square matrix invert: Inverts the $n \times n$ matrix in Par1 into ParR. The matrix must be well conditioned.

## Warning

Non-independent or ill-conditioned equations can cause erroneous results.

For large matrices, use the APDL Math operation *LSFACTOR for efficiency (see "APDL Math").

## MULT --

(*MOPER, ParR, Par1, MULT, Par2)
Matrix multiply: Multiplies Par1 by Par2. The number of rows of Par2 must equal the number of columns of Par1 for the operation. If Par2 is input with a number of rows greater than the number of columns of Par1, matrices are still multiplied. However, the operation only uses a number of rows of Par2 equal to the number of columns of Par1.

COVAR --
(*MOPER, ParR, Par1, COVAR, Par2)
Covariance: The measure of association between two columns of the input matrix (Par1). Par1, of size $m$ runs (rows) by $n$ data (columns) is first processed to produce a row vector containing the mean of each column which is transposed to a column vector (Par2) of $n$ array elements. The Par1
 as the diagonal terms).
CORR --
(*MOPER, ParR, Par1, CORR, Par2)
Correlation: The correlation coefficient between two variables. The input matrix (Par1), of size $m$ runs (rows) by n data (columns), is first processed to produce a row vector containing the mean of each column which is then transposed to a column vector (Par2) of $n$ array elements. The Par1 and Par2 operation then produces a resulting $n \times n$ matrix ( $\operatorname{ParR}$ ) of correlation coefficients (with a value of 1.0 for the diagonal terms).

## SOLV --

(*MOPER, ParR, Par1, SOLV, Par2)
Solution of simultaneous equations: Solves the set of $n$ equations of $n$ terms of the form $a_{n 1} x_{1}+$ $a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=b_{n}$ where Par1 contains the matrix of a-coefficients, Par2 the vector(s) of $b$ values, and ParR the vector(s) of x -results. Par1 must be a square matrix. The equations must be linear, independent, and well conditioned.

## Warning

Non-independent or ill-conditioned equations can cause erroneous results.

For large matrices, use the APDL Math operation *LSFACTOR for efficiency (see "APDL Math").

## SORT --

(*MOPER, ParR, Par1, SORT, Par2, n1, n2, n3)
Matrix sort: Sorts matrix Par1 according to sort vector Par2 and places the result back in Par1. Rows of Par1 are moved to the corresponding positions indicated by the values of Par2. Par2
may be a column of $\operatorname{Parl}$ (in which case it will also be reordered). Alternatively, you may specify the column of Par1 to sort using $n 1$ (leaving Par2 blank). A secondary sort can be specified by column n2, and a third sort using n3. ParR is the vector of initial row positions (the permutation vector). Sorting Par1 according to ParR should reproduce the initial ordering.

## NNEAR --

(*MOPER, ParR, Par1, NNEAR, Toler)
Nearest Node: Quickly determine all the nodes within a specified tolerance of a given array.
ParR is a vector of the nearest selected nodes, or 0 if no nodes are nearer than Toler. Par1 is the $n \times 3$ array of coordinate locations. Toler defaults to 1 and is limited to the maximum model size.

## ENEAR --

(*MOPER, ParR, Par1, ENEAR, Toler)
Nearest Element: Quickly determine the elements with centroids that are within a specified tolerance of the points in a given array.

ParR is a vector of the nearest selected elements, or 0 if no element centroids are nearer than Toler. Par1 is the $n \times 3$ array of coordinate locations.

MAP --
(*MOPER, ParR, Par1, MAP, Par2, Par3, kDim, --, kOut, LIMIT)
Maps the results from another program onto your ANSYS finite element model. For example, you can map pressures from a CFD analysis onto your model for a structural analysis.

When you map results, the subsequent Par2 and Par3 arguments define your input values and their locations, and the arguments that follow determine the search area and interpolation schemes (see below).

For Oper = MAP, output points are incorrect if they are not within the boundaries (area or volume) set via the specified input points. Also, calculations for out-of-bound points require much more processing time than do points that are within bounds.

When mapping results from one analysis to another (Oper = MAP), Parl will be your final N(out) $x 3$ array of points. Par2 will be an N(in) x $M$ array that corresponds to the points in Par3. For each point in the destination mesh, all possible triangles in the source mesh are searched to find the best triangle containing each point. It then does a linear interpolation inside this triangle. You should carefully specify your interpolation method and search criteria in order to provide faster and more accurate results (see LIMIT, below). Results mapping (oper $=$ MAP) is available from the command line only.

## Par2

Second array parameter matrix input to the operation. For the COVAR and CORR operations, this parameter must exist as a dimensioned array vector without specified values since its values (means) will be calculated as part of the operations. For MAP, this will be an $\{N(i n) \times M\}$ array of values to be interpolated, where $N($ in $)$ is the number of points to interpolate from, and $M$ is the number of values at each point. For the ENEAR and NNEAR operations, this parameter specifies the tolerance for the search.

## Par3

Third array parameter, used for Oper = MAP. This is an $N \times 3$ array of coordinate locations corresponding to the values in Par2.

## kDim

Interpolation criteria; used for Oper = MAP:
If $\mathrm{kDim}=2$ or 0 , two dimensional interpolation is applied (interpolate on a surface).
If $k \operatorname{Dim}=3$, three dimensional interpolation is applied (interpolate on a volume).

Unused field

## kOut

Outside region results; used for Oper $=$ MAP
If $k O u t=0$, use the value(s) of the nearest region point for points outside of the region.
If $k O u t=1$, set results extrapolated outside of the region to zero.

## LIMIT

Number of nearby nodes considered for interpolation ( Oper $=$ MAP). Minimum $=5$, default $=20$. Lower values will reduce processing time, however, some distorted or irregular meshes will require a higher LIMIT value to encounter three nodes for triangulation.

## Notes

Each starting array element number must be defined for each array parameter matrix if it does not start at the first location. For example, *MOPER, $A(2,3), B(1,4), M U L T, C(1,5)$ multiplies submatrix $B$ (starting at element $(1,4)$ ) by submatrix $C$ (starting at element $(1,5)$ ) and puts the result in matrix $A$ (starting at element $(2,3)$ ).

The diagonal corner elements for each submatrix must be defined: the upper left corner by the array starting element (on this command), the lower right corner by the current values from the *VCOL and *VLEN commands. The default values are the $(1,1)$ element and the last element in the matrix. No operations progress across matrix planes (in the 3rd dimension). Absolute values and scale factors may be applied to all parameters [*VABS, *VFACT]. Results may be cumulative [*VCUM]. Array elements should not be skipped with the *VMASK and the NINC value of the *VLEN specifications. See the *VOPER command for details.

This command is valid in any processor.

## Menu Paths

## Utility Menu>Parameters>Array Operations>Matrix Operations

## MOPT, Lab, Value

## Specifies meshing options.

PREP 7: Meshing
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Lab

Meshing option to be specified (determines the meaning of Value):

## AORDER

Mesh by ascending area size order. Set Value to ON to mesh smaller areas first. Using this results in finer meshes in critical areas for volume meshes; this can be used for cases where SMRTSIZE does not mesh as needed. Default is OFF.

## EXPND

Area mesh expansion (or contraction) option. (This option is the same as SMRTSIZE,,,EXPND.) This option is used to size internal elements in an area based on the size of the elements on the area's boundaries.

Value is the expansion (or contraction) factor. For example, issuing MOPT,EXPND,2 before meshing an area will allow a mesh with elements that are approximately twice as large in the interior of an area as they are on the boundary. If Value is less than 1, a mesh with smaller elements on the interior of the area will be allowed. Value for this option should be greater than 0.5 but less than 4 .

Value defaults to 1 , which does not allow expansion or contraction of internal element sizes (except when using AESIZE sizing). If Value $=0$, the default value of 1 will be used. The actual size of the internal elements will also depend on the TRANS option (or upon AESIZE or ESIZE sizing, if used).

## TETEXPND

Tet-mesh expansion (or contraction) option. This option is used to size internal elements in a volume based on the size of the elements on the volume's boundaries.

Value is the expansion (or contraction) factor. For example, issuing MOPT,TETEXPND, 2 before meshing a volume will allow a mesh with elements that are approximately twice as large in the interior of the volume as they are on the boundary. If Value is less than 1, a mesh with smaller elements on the interior of the volume will be allowed. Value for this option should be greater than 0.1 but less than 3.

Value defaults to 1 , which does not allow expansion or contraction of internal element sizes. If Value $=0$, the default value of 1 will be used. If Value is greater than 2 , mesher robustness may be affected.

The TETEXPND option is supported for both the VMESH and FVMESH commands. Tet-mesh expansion is the only mesh control supported by FVMESH.

## TRANS

Mesh-transition option. Controls how rapidly elements are permitted to change in size from the boundary to the interior of an area. (This option performs the same operation as SMRTSIZE,,,TRANS.)

Value is the transitioning factor. Value defaults to 2.0 , which permits elements to approximately double in size as they approach the interior of the area. (If Value $=0$, the default value of 2 will be used.) Value must be greater than 1 and, for best results, should be less than 4 . The actual size of the internal elements will also depend on the EXPND option (or upon AESIZE or ESIZE sizing, if used).

For a quad mesh with any element size, this option has no effect, as the program strictly respects any face size to ensure the most uniform quad mesh possible. To obtain a graded mesh using this option, apply LESIZE to the lines of the desired face.

## AMESH

Triangle surface-meshing option. Valid inputs for Value are:

## DEFAULT

Allows the program to choose which triangle mesher to use. In most cases, the program chooses the main triangle mesher, which is the Riemann space mesher. If the chosen mesher fails for any reason, the program invokes the alternate mesher and retries the meshing operation.

## MAIN

The program uses the main triangle mesher (Riemann space mesher), and it does not invoke an alternate mesher if the main mesher fails. The Riemann space mesher is well suited for most surfaces.

## ALTERNATE

The program uses the first alternate triangle mesher (3-D tri-mesher), and it does not invoke another mesher if this mesher fails. This option is not recommended due to speed considerations. However, for surfaces with degeneracies in parametric space, this mesher often provides the best results.

## ALT2

The program uses the second alternate triangle mesher (2-D parametric space mesher), and it does not invoke another mesher if this mesher fails. This option is not recommended for use on surfaces with degeneracies (spheres, cones, etc.) or poorly parameterized surfaces because poor meshes may result.

## QMESH

Quadrilateral surface meshing option. (Quadrilateral surface meshes will differ based on which triangle surface mesher is selected. This is true because all free quadrilateral meshing algorithms use a triangle mesh as a starting point.) Valid inputs for Value are:

## DEFAULT

Let the program choose which quadrilateral mesher to use. In most cases, the program will choose the main quadrilateral mesher, which is the Q-Morph (quad-morphing) mesher. For very coarse meshes, the program may choose the alternate quadrilateral mesher instead. In most cases, the Q-Morph mesher results in higher quality elements. If either mesher fails for any reason, the program invokes the other mesher and retries the meshing operation. (Default.)

## MAIN

The program uses the main quadrilateral mesher (Q-Morph mesher), and it does not invoke the alternate mesher if the main mesher fails.

## ALTERNATE

The program uses the alternate quadrilateral mesher, and it does not invoke the Q-Morph mesher if the alternate mesher fails. To use the alternate quadrilateral mesher, you must also select MOPT,AMESH,ALTERNATE or MOPT,AMESH,ALT2.

## VMESH

Tetrahedral element meshing option. Valid inputs for Value are:

## DEFAULT

Let the program choose which tetrahedra mesher to use.

## MAIN

Use the main tetrahedra mesher (Delaunay technique mesher). (GHS3D meshing technology by P. L. George, INRIA, France.) For most models, this mesher is significantly faster than the alternate mesher.

## ALTERNATE

Use the alternate tetrahedra mesher (advancing front mesher). This mesher does not support the generation of a tetrahedral volume mesh from facets (FVMESH). If this mesher is selected and you issue the FVMESH command, the program uses the main tetrahedra mesher to create the mesh from facets and issues a warning message to notify you.

## SPLIT

Quad splitting option for non-mapped meshing. If Value $=1, \mathrm{ON}$, or ERR, quadrilateral elements in violation of shape error limits are split into triangles (default). If Value $=2$ or WARN, quadrilateral
elements in violation of either shape error or warning limits are split into triangles. If Value $=0$ FF, splitting does not occur, regardless of element quality.

## LSMO

Line smoothing option. Value can be ON or OFF. If Value $=$ ON, smoothing of nodes on area boundaries is performed during smoothing step of meshing. During smoothing, node locations are adjusted to achieve a better mesh. If Value = OFF (default), no smoothing takes place at area boundaries.

## CLEAR

This option affects the element and node numbering after clearing a mesh. If Value = ON (default), the starting node and element numbers will be the lowest available number after the nodes and elements are cleared. If Value $=$ OFF, the starting node and element numbers are not reset after the clear operation.

## PYRA

Transitional pyramid elements option. Value can be ON or OFF. If Value $=$ ON (default), the program automatically creates transitional pyramid elements, when possible. Pyramids may be created at the interface of tetrahedral and hexahedral elements, or directly from quadrilateral elements. For pyramids to be created, you must also issue the command MSHAPE, 1,3D (degenerate 3-D elements). If Value = OFF, the program does not create transitional pyramid elements.

## TIMP

Identifies the level of tetrahedra improvement to be performed when the next free volume meshing operation is initiated (VMESH, FVMESH). (For levels 2-5, improvement occurs primarily through the use of face swapping and node smoothing techniques.) Valid inputs for Value are:
0
Turn off tetrahedra improvement. Although this value can lead to faster tetrahedral mesh creation, it is not recommended because it often leads to poorly shaped elements and mesh failures.
1
Do the minimal amount of tetrahedra improvement. (Default.) This option is supported by the main tetrahedra mesher only [MOPT,VMESH,MAIN]. If the alternate tetrahedra mesher (MOPT,VMESH,ALTERNATE) is invoked with this setting, the program automatically performs tetrahedra improvement at level 3 instead (MOPT,TIMP,3).

2
Perform the least amount of swapping/smoothing. No improvement occurs if all tetrahedral elements are within acceptable limits.
3
Perform an intermediate amount of swapping/smoothing. Some improvement is always done.
4
Perform the greatest amount of swapping/smoothing. Meshing takes longer with this level of improvement, but usually results in a better mesh.

Perform the greatest amount of swapping/smoothing, plus additional improvement techniques. This level of improvement usually produces results that are similar to those at level 4, except for very poor meshes.
6
For linear tetrahedral meshes, this value provides the same level of improvement as MOPT,TIMP,5. For quadratic tetrahedral meshes, this value provides an additional pass of cleanup. This value is supported for both the main (MOPT,VMESH,MAIN) and alternate (MOPT,VMESH,ALTERNATE) tetrahedra meshers.

## STAT

Display status of MOPT settings. Value is ignored.

## DEFA

Set all MOPT options to default values. Value is ignored.

## Value

Value, as described for each different Lab above.

## Notes

See the Modeling and Meshing Guide for more information on the MOPT command and its options.
This command is also valid for rezoning.

## Menu Paths

# Main Menu>Preprocessor>Meshing>Mesher Opts <br> Main Menu>Preprocessor>Meshing>Size Cntrls>ManualSize>Global>Area Cntrls <br> Main Menu>Preprocessor>Meshing>Size Cntrls>ManualSize>Global>Volu Cntrls <br> Main Menu>Solution>Manual Rezoning>Create Remesh Zone(s)>Mesh Controls>Global Meshing Options <br> Utility Menu>List>Status>Preprocessor>Solid Model 

MORPH, Option, --, Remeshopt, ElemSet, ARMAX, VOCH, ARCH, STEP, TIME

## Specifies morphing and remeshing controls.

PREP 7:Morphing
MP ME <> <> <> <> <> <> <> <> <> PP <> EME MFS
Option
OFF
Turns off morphing for field elements (default).
ON
Turns on morphing for field elements.

Unused field
Remeshopt
OFF
Do not remesh (default).
ON
Remesh when element qualities fall below values specified by ARMAX, VOCH, or ARCH as explained below. Valid only when Option is ON.

## ElemSet

ALL
Remesh all selected elements if the quality of the worst defined element falls below any quality requirement (default when Remeshopt $=\mathrm{ON}$ ).

## CompName

Specify a component name, up to 32 characters. All elements included in this component name are remeshed if the quality of the worst element falls below any quality requirement.

## ARMAX

The maximum allowable element generalized aspect ratio. Defaults to 5 . See Element Qualities in the Fluids Analysis Guide for the maximum generalized aspect ratio.

## VOCH

The maximum allowable change of element size (area or volume). Defaults to 3. See Element Qualities in the Fluids Analysis Guide for maximum allowable change of element size.

## ARCH

The maximum allowable element aspect ratio change. Defaults to 3 . See Element Qualities in the Fluids Analysis Guide for maximum allowable element aspect ratio change.

## STEP

The frequency of element quality checking, based on time steps. A quality check takes place at the intervals defined by STEP. Defaults to 1 (quality check at every step).

## TIME

A quality check takes place at the time point specified. Defaults to -1 (a quality check at every time point).

## Notes

MORPH is applicable to any non-structural field analysis (not including fluid elements). It activates displacement degrees of freedom for non-structural elements so that boundary conditions may be placed on the field mesh to constrain the movement of the non-structural mesh during morphing. It morphs the nonstructural mesh using displacements transferred at the surface interface between the structural field and the non-structural field. The displacements of non-structural elements are mesh displacements to avoid mesh distortion, but have no physical meaning except at the interface. MORPH does not support surface, link, or shell elements, or any element shape other than triangles, quads, tets, and bricks. Morphed fields must be in the global Cartesian system (CSYS $=0$ ).

After each remesh, new databases and results files are written with the extensions.rthon and . db 0 n , where $n$ is the remesh file number (FieldName.rth01,FieldName.rth02, ... and FieldName. db01, FieldName.db02, etc.). The original database file is FieldName.dbo. The FieldName.db01, FieldName. db02, etc. files have elements that are detached from the solid model.

Remeshing has the following restrictions:

- Valid only for the electrostatic elements (PLANE121, SOLID122, and SOLID123)
- Limited to triangle (2-D) and tetrahedral (3-D) options of these elements
- Valid only for the MFS solver
- No body loads allowed in the interior nodes of the remeshing domain
- Nodes on the boundary cannot be remeshed; remeshing will not work if morphing failed on the surface nodes
- Not suitable for extreme area or volume changes

This command is also valid in SOLUTION.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

## Main Menu>Preprocessor>Loads>Load Step Opts>Other>Element Morphing Main Menu>Solution>Load Step Opts>Other>Element Morphing

MOVE, NODE, KC1, X1, Y1, Z1, KC2, X2, Y2, Z2

## Calculates and moves a node to an intersection.

PREP 7: Nodes
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NODE

Move this node. If NODE $=\mathrm{P}$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NODE.

## KC1

First coordinate system number. Defaults to 0 (global Cartesian).

## x1, Y1, $z 1$

Input one or two values defining the location of the node in this coordinate system. Input "U" for unknown value(s) to be calculated and input "E" to use an existing coordinate value. Fields are R1, $\theta 1, \mathrm{Z1}$ for cylindrical, or R1, $\theta 1, \Phi 1$ for spherical or toroidal.

KC2
Second coordinate system number.

## X2, Y2, $\mathbf{z 2}$

Input two or one value(s) defining the location of the node in this coordinate system. Input "U" for unknown value(s) to be calculated and input " E " to use an existing coordinate value. Fields are R2, $\theta 2, \mathrm{Z} 2$ for cylindrical, or R2, $\theta 2, \Phi 2$ for spherical or toroidal.

## Notes

Calculates and moves a node to an intersection location. The node may have been previously defined (at an approximate location) or left undefined (in which case it is internally defined at the SOURCE location). The actual location is calculated from the intersection of three surfaces (implied from three coordinate constants in two different coordinate systems). The three (of six) constants easiest to define should be used. The program will calculate the remaining three coordinate constants. All arguments, except KC1, must be input. Use the repeat command [*REPEAT] after the MOVE command to define a line of intersection by repeating the move operation on all nodes of the line.

Surfaces of constant value are implied by some commands by specifying a single coordinate value. Implied surfaces are used with various commands [MOVE, KMOVE, NSEL, etc.]. Three surfaces are available with each of the four coordinate system types. Values or $\mathrm{X}, \mathrm{Y}$, or Z may be constant for the Cartesian coordinate system; values of $R, \theta$, or $Z$ for the cylindrical system; and values of $R, \theta, \Phi$ for the spherical and toroidal systems. For example, an X value of 3 represents the Y - Z plane (or surface) at $\mathrm{X}=3$. In addition, the parameters for the cylindrical and spherical coordinate systems may be adjusted [CS, LOCAL] to form elliptical surfaces. For surfaces in elliptical coordinate systems, a surface of "constant" radius is defined by the radius value at the X-axis. Surfaces of constant value may be located in local coordinate systems [LOCAL, CLOCAL, CS, or CSKP] to allow for any orientation.

The intersection calculation is based on an iterative procedure ( 250 iterations maximum) and a tolerance of $1.0 \mathrm{E}-4$. The approximate location of a node should be sufficient to determine a unique intersection if more than one intersection point is possible. Tangent "intersections" should be avoided. If an intersection is not found, the node is placed at the last iteration location.

## Menu Paths

Main Menu>Preprocessor>Modeling>Move / Modify>Nodes>To Intersect

MP, Lab, MAT, C0, C1, C2, C3, C4
Defines a linear material property as a constant or a function of temperature.

PREP 7: Materials<br>MP ME ST PR PRN DS DSS FL EM EH DY PP <> EME MFS<br>Product Restrictions

## Lab

Valid material property label. Applicable labels are listed under "Material Properties" in the input table for each element type in the Element Reference. See Linear Material Properties of the Element Reference for more complete property label definitions:

## EX

Elastic moduli (also EY, EZ).
ALPX
Secant coefficients of thermal expansion (also ALPY, ALPZ).

## CTEX

Instantaneous coefficients of thermal expansion (also CTEY, CTEZ).

## THSX

Thermal strain (also THSY, THSZ).

## REFT

Reference temperature. Must be defined as a constant; C1 through C4 are ignored.

## PRXY

Major Poisson's ratios (also PRYZ, PRXZ).

## NUXY

Minor Poisson's ratios (also NUYZ, NUXZ).

## GXY

Shear moduli (also GYZ, GXZ).
DAMP
K matrix multiplier for damping.

## Note

If used in an explicit dynamic analysis, the value corresponds to the percentage of damping in the high frequency domain. For example, 0.1 roughly corresponds to $10 \%$ damping in the high frequency domain.

## DMPR

Constant material damping coefficient.

## MU

Coefficient of friction.

## DENS

Mass density.
C
Specific heat.

## ENTH

Enthalpy.
KXX
Thermal conductivities (also KYY, KZZ).
HF
Convection or film coefficient.

## EMIS

Emissivity.

## QRATE

Heat generation rate.

## VISC

Viscosity.

## SONC

Sonic velocity.

## RSVX

Electrical resistivities (also RSVY, RSVZ).

## PERX

Electric relative permittivities (also PERY, PERZ).

## Note

If you enter permittivity values less than 1 for SOLID5, PLANE13, or SOLID98, the program interprets the values as absolute permittivity. Values input for PLANE223, SOLID226, or SOLID227 are always interpreted as relative permittivity.

## MURX

Magnetic relative permeabilities (also MURY, MURZ).
MGXX
Magnetic coercive forces (also MGYY, MGZZ).
LSSM
Magnetic loss tangent.
LSST
Electric loss tangent.

## SBKX

Seebeck coefficients (also SBKY, SBKZ).

## MAT

Material reference number to be associated with the elements (defaults to the current MAT setting [MAT]).

## CO

Material property value, or if a property-versus-temperature polynomial is being defined, the constant term in the polynomial. CO can also be a table name (\%tabname\%); if C0 is a table name, C1 through C4 are ignored.

## C1, C2, C3, C4

Coefficients of the linear, quadratic, cubic, and quartic terms, respectively, in the property-versus-temperature polynomial. Leave blank (or set to zero) for a constant material property.

## Notes

MP defines a linear material property as a constant or in terms of a fourth order polynomial as a function of temperature. (See the TB command for nonlinear material property input.) Linear material properties typically require a single substep for solution, whereas nonlinear material properties require multiple substeps; see Linear Material Properties in the Element Reference for details.

If the constants C1-C4 are input, the polynomial

$$
\text { Property }=C 0+C 1(T)+C 2(T)^{2}+C 3(T)^{3}+C 4(T)^{4}
$$

is evaluated at discrete temperature points with linear interpolation between points (that is, a piecewise linear representation) and a constant-valued extrapolation beyond the extreme points. First-order properties use two discrete points ( $\pm 9999^{\circ}$ ). The MPTEMP or MPTGEN commands must be used for second and higher order properties to define appropriate temperature steps. To ensure that the number of temperatures defined via the MPTEMP and MPTGEN commands is minimally sufficient for a reasonable representation of the curve, ANSYS generates an error message if the number is less than N , and a warning message if the number is less than 2 N . The value N represents the highest coefficient used; for example, if C 3 is nonzero and C 4 is zero, a cubic curve is being used which is defined using 4 coefficients so that $\mathrm{N}=4$.

A polynomial input is not valid in an explicit dynamic analysis or for Lab $=$ DAMP. C1, C2, C3, and C4 are ignored.

The use of tabular material properties ( $C 0=\%$ tabname $\%$ ) is available only for FLUID116. Fluid properties can be evaluated as a function of pressure, temperature, velocity, time, and location (independent variables). Use the *DIM command to create the table of property values as a function of the independent variables. Then refer to this table via the MP command for the property. If using temperature or pressure independent variables, you need to activate the appropriate pressure or temperature degrees of freedom on the element. Tabular material properties are calculated before the first iteration (that is, using initial values [IC]). For more information about using table-type array parameters, see the discussion on applying tabular boundary conditions in the Basic Analysis Guide.

When defining a reference temperature (MP,REFT), you can convert temperature-dependent secant coefficients of thermal expansion (SCTE) data from the definition temperature to the reference temperature. To do so, issue the MPAMOD command.

This command is also valid in SOLUTION.

## Product Restrictions

| Command Option Lab | Available Products |
| :---: | :---: |
| ALPX | MP ME ST PR PRN DS DSS <> <> <> DY PP <> EME MFS |
| ALPY | MP ME ST PR PRN DS DSS <>>>>> DY PP <> EME MFS |
| ALPZ | MP ME ST PR PRN DS DSS <> <> <> DY PP <> EME MFS |
| C | MP ME ST PR PRN DS DSS <> <> <> DY PP <> EME MFS |
| CTEX | MP ME ST PR PRN DS DSS <>>> <> DY PP <> EME MFS |
| CTEY | MP ME ST PR PRN DS DSS <> <> <> DY PP <> EME MFS |
| CTEZ | MP ME ST PR PRN DS DSS <> <> <> DY PP <> EME MFS |
| DAMP | MP ME ST <> <> <> <> <> <> <> DY PP <> EME MFS |
| DENS | MP ME ST PR PRN DS DSS <> <> EH DY PP <> EME MFS |
| DMPR | MP ME ST PR PRN <> <> <> <> <> DY PP <> EME MFS |
| EMIS | MP ME ST PR PRN DS DSS <> <> <> DY PP <> EME MFS |
| ENTH | MP ME ST PR PRN DS DSS <> <> <> DY PP <> EME MFS |
| EX | MP ME ST PR PRN DS DSS <> <> <> DY PP <> EME MFS |
| EY | MP ME ST PR PRN DS DSS <> <> <> DY PP <> EME MFS |
| EZ | MP ME ST PR PRN DS DSS <>>> <> DY PP <> EME MFS |
| GXY | MP ME ST PR PRN DS DSS <> <> <> DY PP <> EME MFS |
| GXZ | MP ME ST PR PRN DS DSS <> <> <> DY PP <> EME MFS |
| GYZ | MP ME ST PR PRN DS DSS <> <> <> DY PP <> EME MFS |
| HF | MP ME ST PR PRN DS DSS <> <> <> DY PP <> EME MFS |
| KXX | MP ME ST PR PRN DS DSS <>>>>> DY PP <> EME MFS |
| KYY | MP ME ST PR PRN DS DSS <> <> <> DY PP <> EME MFS |
| KZZ | MP ME ST PR PRN DS DSS <> <> <> DY PP <> EME MFS |
| LSSM | MP <> <> <> <> <> <> <> EM EH <> PP <> EME <> |
| LSST | MP ME <> <> <> <> <> <> EM EH <> PP <> EME MFS |
| MGXX | MP ME <> <> <> <> <> <> EM <> DY PP <> EME MFS |
| MGYY | MP ME <> <> <> <> <> <> EM <> DY PP <> EME MFS |
| MGZZ | MP ME <> <> <> <> <> <> EM <> DY PP <> EME MFS |
| MU | MP ME ST <> PRN <> <> <> <> <> DY PP <> EME MFS |
| MURX | MP ME ST PR PRN DS DSS FL EM EH DY PP <> EME MFS |
| MURY | MP ME ST PR PRN DS DSS FL EM EH DY PP <> EME MFS |
| MURZ | MP ME ST PR PRN DS DSS FL EM EH DY PP <> EME MFS |
| NUXY | MP ME ST PR PRN DS DSS <> <> <> DY PP <> EME MFS |
| NUXZ | MP ME ST PR PRN DS DSS <> <> <> DY PP <> EME MFS |
| NUYZ | MP ME ST PR PRN DS DSS <>>> <> DY PP <> EME MFS |
| PERX | MP ME <> <> <> <> <> FL EM EH DY PP <> EME MFS |


| PERY | MP ME $<><><><><>$ FL EM EH DY PP $<>$ EME MFS |
| :--- | :--- |
| PERZ | MP ME $<><><><><>$ FL EM EH DY PP $<>$ EME MFS |
| PRXY | MP ME ST PR PRN DS DSS FL $<><>$ DY PP $<>$ EME MFS |
| PRXZ | MP ME ST PR PRN DS DSS FL $<><>$ DY PP $<>$ EME MFS |
| PRYZ | MP ME ST PR PRN DS DSS FL $<><>$ DY PP $<>$ EME MFS |
| QRAT | MP ME ST PR PRN DS DSS $<>$ EM $<>$ DY PP $<>$ EME MFS |
| REFT | MP ME ST PR PRN DS DSS FL EM EH DY PP $<>$ EME MFS |
| RSVX | MP ME ST PR PRN DS DSS FL EM EH DY PP $<>$ EME MFS |
| RSVY | MP ME $<><><><><><>$ EM $<><>$ PP $<>$ EME MFS |
| RSVZ | MP ME $<><><><><><>$ EM $<><>$ PP $<>$ EME MFS |
| SBKX | MP ME $<><><><><><><>$ EM $<><>$ PP $<>$ EME MFS |
| SBKY | MP ME ST $<><><><\ggg$ FL $<><>$ DY PP $<>$ EME MFS |
| SBKZ | MP ME ST $<><><><>$ FL $<><>$ DY PP $<>$ EME MFS |
| SONC | MP ME ST $<><><><>$ FL $<><>$ DY PP $<>$ EME MFS |
| THSX | MP ME ST $<><><><>$ FL $<><>$ DY PP $<>$ EME MFS |
| THSY |  |

## Menu Paths

Main Menu>Preprocessor>Loads>Load Step Opts>Other>Change Mat Props>Material Models
Main Menu>Preprocessor>Material Props>Material Models
Main Menu>Solution>Load Step Opts>Other>Change Mat Props>Material Models

## MPAMOD, MAT, DEFTEMP

Modifies temperature-dependent secant coefficients of thermal expansion.
PREP 7: Materials
MP ME ST PR PRN $<><>$ FL EM EH $<>$ PP $<>$ EME MFS

## MAT

Material number for which the secant coefficients of thermal expansion (SCTE's) are to be modified. Defaults to 1.

## DEFTEMP

Definition temperature at which the existing SCTE-versus-temperature tables were defined. Defaults to zero.

## Notes

This command converts temperature-dependent SCTE data (properties ALPX, ALPY, ALPZ) from the definition temperature ( $D E F T E M P$ ) to the reference temperature defined by MP,REFT or TREF. If both the MP,REFT
and TREF commands have been issued, the reference temperature defined by the MP,REFT command will be used.

This command does not apply to the instantaneous coefficients of thermal expansion (properties CTEX, CTEY, CTEZ) or to the thermal strains (properties THSX, THSY, THSZ).

See Linear Material Properties of the Element Reference and the Theory Reference for the Mechanical APDL and Mechanical Applications for more details.

This command is also valid in SOLUTION.

## Menu Paths

## Main Menu>Preprocessor>Loads>Load Step Opts>Other>Change Mat Props>Convert ALPx Main Menu>Preprocessor>Material Props>Convert ALPx Main Menu>Solution>Load Step Opts>Other>Change Mat Props>Convert ALPx

## MPCHG, MAT, ELEM

## Changes the material number attribute of an element.

PREP 7: Materials
SOLUT ION: Misc Loads
MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS

MAT
Assign this material number to the element. Material numbers are defined with the material property commands [MP].

ELEM
Element for material change. If ALL, change materials for all selected elements [ESEL].

## Notes

Changes the material number of the specified element. Between load steps in SOLUTION, material properties cannot be changed from linear to nonlinear, or from one nonlinear option to another.

If you change from one MKIN model to another MKIN model, the different MKIN models need to have the same number of data points. This requirement also applies if you change from one KINH model to another KINH model, or from one CHABOCHE model to another CHABOCHE model.

## Menu Paths

> Main Menu $>$ Preprocessor $>$ Loads $>$ Load Step Opts $>$ Other $>$ Change Mat Props $>$ Change Mat Num Main Menu $>$ Preprocessor $>$ Material Props $>$ Change Mat Num Main Menu $>$ Solution $>$ Load Step Opts $>$ Other $>$ Change Mat Props $>$ Change Mat Num

## MPCOPY, --, MATF, MATT

## Copies linear material model data from one material reference number to another.

PREP 7: Materials
MP ME ST PR PRN <> <> <> EM EH DY PP <> EME MFS

Unused field

## MATF

Material reference number from where material property data will be copied.

## MATT

Material reference number to where material property data will be copied.

## Notes

The MPCOPY command copies linear material properties only, which are all properties defined through the MP command. If you copy a model that includes both linear and yield behavior constants (for example, a BKIN model), the MPCOPY and TBCOPY, ALL commands are used together to copy the entire model. All input data associated with the model is copied, that is, all data defined through the MP and TB commands.

Also, if you copy a material model using the Material Model Interface (Edit> Copy), both the commands MPCOPY and TBCOPY, ALL are issued, regardless of whether the model includes linear constants only, or if it includes a combination of linear and yield behavior constants.

This command is also valid in SOLUTION.

## Menu Paths

Main Menu>Preprocessor>Loads>Load Step Opts>Other>Change Mat Props>Material Models Main Menu>Preprocessor>Material Props>Material Models Main Menu>Solution>Load Step Opts>Other>Change Mat Props>Material Models

MPDATA, Lab, MAT, STLOC, C1, C2, C3, C4, C5, C6

## Defines property data to be associated with the temperature table.

PREP 7: Materials
MP ME <> <> <> <> <> <> EM EH <> PP <> EME MFS
Product Restrictions

## Lab

Valid property label. Applicable labels are listed under "Material Properties" in the input table for each element type in the Element Reference. See Linear Material Properties of the Element Reference for more complete property label definitions:

EX
Elastic moduli (also EY, EZ).
ALPX
Secant coefficients of thermal expansion (also ALPY, ALPZ). (See also MPAMOD command for adjustment to reference temperature).

## CTEX

Instantaneous coefficients of thermal expansion (also CTEY, CTEZ).

## THSX

Thermal strain (also THSY, THSZ).

## REFT

Reference temperature (may not be temperature dependent).

## PRXY

Major Poisson's ratios (also PRYZ, PRXZ).

## NUXY

Minor Poisson's ratios (also NUYZ, NUXZ).
GXY
Shear moduli (also GYZ, GXZ).

## DAMP

K matrix multiplier for damping.

## DMPR

Constant material damping coefficient.
MU
Coefficient of friction.

## DENS

Mass density.
C
Specific heat.

## ENTH

Enthalpy.
KXX
Thermal conductivities (also KYY, KZZ).
HF
Convection or film coefficient.
EMIS
Emissivity.
QRATE
Heat generation rate.

## VISC

Viscosity.

## SONC

Sonic velocity.
RSVX
Electrical resistivities (also RSVY, RSVZ).

## PERX

Electric relative permittivities (also PERY, PERZ).
MURX
Magnetic relative permeabilities (also MURY, MURZ).

## MGXX

Magnetic coercive forces (also MGYY, MGZZ).

## LSST

Dielectric loss tangent.

## SBKX

Seebeck coefficients (also SBKY, SBKZ).
The MPDATA command may also be used to enter temperature dependent properties for fluids in a CFD analysis with FLOTRAN via FLUID141 and FLUID142. Valid MPDATA labels for a CFD analysis in a non-solid region are:

## DENS

Density of fluid. This is the same as the label used to specify mass density with the FLDATA command.
C
Specific heat of fluid. This is equivalent to the SPHT label used to specify conductivity with the FLDATA command.

## KXXX

Thermal conductivity of fluid.

## VISC

Viscosity of fluid. This is the same as the label used to specify kinematic velocity with the FLDATA command.

## MAT

Material reference number to be associated with the elements (defaults to 1 if you specify zero or no material number).

## STLOC

Starting location in table for generating data. For example, if STLOC $=1$, data input in the $C 1$ field is the first constant in the table. If $S T L O C=7$, data input in the $C 1$ field is the seventh constant in the table, etc. Defaults to the last location filled +1 .

## C1, C2, C3, . . . , 6

Property data values assigned to six locations starting with STLOC. If a value is already in this location, it is redefined. A blank (or zero) value for C1 resets the previous value in STLOC to zero. A value of zero can only be assigned by C1. Blank (or zero) values for $C 2$ to $C 6$ leave the corresponding previous values unchanged.

## Notes

Defines a table of property data to be associated with the temperature table. Repeat MPDATA command for additional values ( 100 maximum). Temperatures must be defined first [MPTEMP]. Also stores assembled property function table (temperature and data) in virtual space.

This command is also valid in SOLUTION.

## Product Restrictions

In ANSYS without Emag enabled, the MUR_ and MG__ properties are not allowed. In ANSYS Professional, all structural and thermal properties are allowed except DAMP and MU. In ANSYS Emag, only the RSV_, PER_, MUR_, and MG $\qquad$ properties are allowed. Only products that include ANSYS Emag can use the LSST property. The SBK_ property is only available in ANSYS Multiphysics, ANSYS PrepPost, and ANSYS ED.

## Menu Paths

Main Menu>Preprocessor>Loads>Load Step Opts>Other>Change Mat Props>Material Models Main Menu>Preprocessor>Material Props>Material Models Main Menu>Solution>Load Step Opts>Other>Change Mat Props>Material Models

## MPDELE, Lab, MAT1, MAT2, INC,---, LCHK

## Deletes linear material properties.

PREP 7: Materials
MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS

## Lab

Material property label (see MP command for valid labels). If ALL, delete properties for all applicable labels.

## MAT1, MAT2, INC

Delete materials from MAT1 to MAT2 (defaults to MAT1) in steps of INC (defaults to 1). If MAT1 = ALL, MAT2 and INC are ignored and the properties for all materials are deleted.

Unused field.
LCHK
Specifies the level of element-associativity checking:

## NOCHECK

No element-associativity check occurs. This option is the default.
WARN
When a section, material, or real constant is associated with an element, ANSYS issues a message warning that the necessary entity has been deleted.

## CHECK

The command terminates, and no section, material, or real constant is deleted if it is associated with an element.

## Notes

This command is also valid in SOLUTION.
The LCHK argument is valid only when $L a b=$ ALL.

## Menu Paths

> Main Menu>Preprocessor>Loads>Load Step Opts>Other>Change Mat Props>Material Models Main Menu>Preprocessor>Material Props>Material Models Main Menu $>$ Solution>Load Step Opts>Other>Change Mat Props $>$ Material Models

## MPDRES, LabF, MATF, LabT, MATT

Reassembles existing material data with the temperature table.
PREP 7: Materials
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## LabF

Material property label associated with MATF.
MATF
Material reference number of property to restore from virtual space.
LabT
Material property label associated with MATT (defaults to label associated with MATF).
MATT
Material reference number assigned to generated property (defaults to MATF).

## Notes

Restores into the database (from virtual space) a data table previously defined [MP] for a particular property, assembles data with current database temperature table, and stores back in virtual space as a new property.

This command is also valid in SOLUTION.

## Menu Paths

Main Menu>Preprocessor>Loads>Other>Change Mat Props>Modify Temps
Main Menu>Preprocessor>Material Props>Modify Temps
Main Menu>Solution>Other>Change Mat Props>Modify Temps
/MPLIB, $R$-W_opt, PATH
Sets the default material library read and write paths.

PREP 7: Materials<br>MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## R-W_opt

Determines what path is being set. Possible values are:

## READ

Set the read path.
WRITE
Set the write path.
STAT
Report what read and write paths are currently in use.
PATH
The directory path to be used for material library files.

## Notes

The /MPLIB command sets two path strings used in conjunction with the material library feature and the MPREAD and MPWRITE commands.

For MPREAD, when you use the LIB option and no directory path is given in the file name, the command searches for the file in these locations: the current working directory, the user's home directory, the userspecified material library directory (as defined by the /MPLIB,READ,PATH command), and /ansys_dir/matlib.

For MPWRITE, when you use the LIB option and the directory portion of the specification for the material library file is blank, the command writes the material library file to the directory specified by the /MPLIB,WRITE,PATH command (if that path has been set). If the path has not been set, the default is to write the file to the current working directory.

The Material Library files supplied with the distribution disks are meant for demonstration purposes only. These files are not intended for use in customer applications.

## Menu Paths

```
Main Menu>Preprocessor>Loads>Load Step Opts>Other>Change Mat Props>Material Library>Lib
Path Status
Main Menu>Preprocessor>Material Props>Material Library>Lib Path Status
Main Menu>Solution>Load Step Opts>Other>Change Mat Props>Material Library>Lib Path Status
```


## MPLIST, MAT1, MAT2, INC, Lab, TEVL

## Lists linear material properties.

PREP 7:Materials<br>MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## MAT1, MAT2, INC

List materials from MAT1 to MAT2 (defaults to MAT1) in steps of INC (defaults to 1). If MAT1= ALL (default), MAT2 and INC are ignored and properties for all material numbers are listed.

## Lab

Material property label (see the MP command for labels). If ALL (or blank), list properties for all labels.
If EVLT, list properties for all labels evaluated at TEVL.
tevi
Evaluation temperature for Lab = EVLT listing (defaults to BFUNIF).

## Notes

For $L a b=$ EVLT, when the property is from tables, the MPPLOT command will not be valid because the property could be a function of more than temperature.

This command is valid in any processor.

## Menu Paths

Utility Menu>List>Properties>All Materials
Utility Menu>List>Properties>All Matls, All Temps
Utility Menu>List>Properties>All Matls, Specified Temp
Utility Menu>List>Properties>Specified Matl, All Temps

MPPLOT, Lab, MAT, TMIN, TMAX, PMIN, PMAX
Plots linear material properties as a function of temperature.
PREP 7: Materials
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Lab

Linear material property label (EX, EY, etc.) [MP].
MAT
Material reference number. Defaults to 1 .
TMIN
Minimum abscissa value to be displayed.

## TMAX

Maximum abscissa value.

## PMIN

Minimum property (ordinate) value to be displayed.

## PMAX

Maximum property value.

## Notes

When the property is from tables, the MPPLOT command will not be valid because the property could be a function of more than temperature.

This command is valid in any processor.

## Menu Paths

Utility Menu>Plot>Materials

MPREAD, Fname, Ext, --, LIB
Reads a file containing material properties.
PREP 7: Materials
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Fname

File name and directory path (248 characters maximum, including directory). If you do not specify the LIB option, the default directory is the current working directory. If you specify the LIB option, the
default is the following search path: the current working directory, the user's home directory, MPLIB_DIR (as specified by the /MPLIB,READ,PATH command) and /ansys_dir/matlib (as defined by installation). If you use the default for your directory, you can use all 248 characters for the file name.

The file name defaults to Jobname.

## Ext

Filename extension (8 character maximum).
If you omit the default extension is MP. extension is units_MPL, where units is the system of units currently in use. (See the description of the /UNITS command.) For example, if /UNITS is set to SI, the extension defaults to SI_MPL.

Unused field.
LIB
Reads material library files previously written with the MPWRITE command. (See the description of the LIB option for the MPWRITE command.) The only allowed value for LIB is LIB.

The LIB field indicates that the specified file was written by MPWRITE using the LIB option, and that the file is consistent with the material library file format. When the MPREAD command executes, the ANSYS program reads material properties defined in the specified file into the current ANSYS working database. The currently selected material, as defined by the MAT command (MAT,MAT), determines the material number used when reading the material properties. The LIB option for MPREAD and MPWRITE supports storing and retrieving both linear and nonlinear properties.

## Notes

Material properties written to a file without the LIB option do not support nonlinear properties. Also, properties written to a file without the LIB option are restored in the same material number as originally defined. To avoid errors, use MPREAD with the LIB option only when reading files written using MPWRITE with the LIB option.

If you omit the LIB option for MPREAD, this command supports only linear properties.
Material numbers are hardcoded. If you write a material file without specifying the LIB option, then read that file in using the MPREAD command with the LIB option, the ANSYS program will not write the file to a new material number. Instead, it will write the file to the "old" material number (the number specified on the MPWRITE command that created the file.)

This command is also valid in SOLUTION.

## Menu Paths

Main Menu>Preprocessor>Loads>Load Step Opts>Other>Change Mat Props>Material Library>Export Library<br>Main Menu>Preprocessor>Loads>Load Step Opts>Other>Change Mat Props>Material Library>Import Library<br>Main Menu>Preprocessor>Loads>Load Step Opts>Other>Change Mat Props>Material Library>Select Units<br>Main Menu>Preprocessor>Loads>Load Step Opts>Other>Change Mat Props>Read from File Main Menu>Preprocessor>Material Props>Material Library>Export Library Main Menu>Preprocessor>Material Props>Material Library>Import Library

# Main Menu>Preprocessor>Material Props>Material Library>Select Units <br> Main Menu>Preprocessor>Material Props>Read from File Main Menu>Solution>Load Step Opts>Other>Change Mat Props>Material Library>Export Library Main Menu>Solution>Load Step Opts>Other>Change Mat Props>Material Library>Import Library Main Menu>Solution>Load Step Opts>Other>Change Mat Props>Material Library>Select Units Main Menu>Solution>Load Step Opts>Other>Change Mat Props>Read from File 

## MPRINT, KEY

Specifies that radiation matrices are to be printed.
AUX12: Radiation Matrix Method
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS
KEY
Print key:
0
Do not print matrices.
1
Print matrices.

## Command Default

Matrices are not printed.

## Notes

Specifies that the element and node radiation matrices are to be printed when the WRITE command is issued. If $K E Y=1$, form factor information for each element will also be printed.

## Menu Paths

Main Menu>Radiation Opt>Matrix Method>Write Matrix

MPTEMP, STLOC, T1, T2, T3, T4, T5, T6
Defines a temperature table for material properties.
PREP 7: Materials
MP ME ST PR PRN DS DSS FL EM EH DY PP <> EME MFS

## STLOC

Starting location in table for entering temperatures. For example, if $S T L O C=1$, data input in the $T 1$
field applies to the first constant in the table. If $S T L O C=7$, data input in the $T 1$ field applies to the seventh constant in the table, etc. Defaults to the last location filled +1 .

## T1, т2, т3,..., $\mathbf{T}^{6}$

Temperatures assigned to six locations starting with STLOC. If a value is already in this location, it will be redefined. A blank (or zero) value for $T 1$ resets the previous value in STLOC to zero. A value of zero
can only be assigned by $T 1$. Blank (or zero) values for $T 2$ to $T 6$ leave the corresponding previous values unchanged.

## Command Default

No temperature table defined (i.e., properties must be defined as a constant or linear function of temperature with the MP command).

## Notes

Defines a temperature table to be associated with the property data table [MPDATA]. These temperatures are also used for polynomial property evaluation, if defined [MP]. Temperatures must be defined in nondescending order. Issue MATER \$ STAT to list the current temperature table. Repeat MPTEMP command for additional temperatures ( 100 maximum). If all arguments are blank, the temperature table is erased.

For clear definition, the temperature range you define with the MPTEMP command should include the entire range you'll use in subsequently defined materials. To assist the user in this, the first (and only the first) excursion out of the temperature range defined by the MPTEMP commands is flagged with a warning message. Similarly, the reference temperature (TREF or MP,reft commands) should also fall in this same temperature range. If not and MP, alpx was used, a note will be output. If not, and MP, ctex or MP, thsx was used, an error message will be output.

This command is also valid in SOLUTION.

## Menu Paths

## Main Menu>Preprocessor>Loads>Load Step Opts>Other>Change Mat Props>Material Models Main Menu>Preprocessor>Material Props>Material Models Main Menu>Solution>Load Step Opts>Other>Change Mat Props>Material Models

## MPTGEN, STLOC, NUM, TSTRT, TINC

## Adds temperatures to the temperature table by generation.

PREP 7: Materials
MP ME ST PR PRN <> <> FL <> <> DY PP <> EME MFS

## STLOC

Starting location in table for generating temperatures. Defaults to last location filled +1 .

## NUM

Number of temperatures to be generated (1-100).

## TSTRT

Temperature assigned to STLOC location.
TINC
Increment previous temperature by TINC and assign to next location until all NUM locations are filled.

## Notes

Adds temperatures to the temperature table by generation. May be used in combination (or in place of) the MPTEMP command.

This command is also valid in SOLUTION.

## Menu Paths

Main Menu>Preprocessor>Loads>Other>Change Mat Props>Generate Temp
Main Menu>Preprocessor>Material Props>Generate Temp
Main Menu>Solution>Other>Change Mat Props>Generate Temp

## MPTRES, Lab, MAT

## Restores a temperature table previously defined.

PREP 7: Materials
MP ME ST PR PRN <> <> FL <> <> DY PP <> EME MFS

## Lab

Material property label [MP].

## MAT

Material reference number.

## Notes

Restores into the database (from virtual space) a temperature table previously defined [MP] for a particular property. The existing temperature table in the database is erased before this operation.

This command is also valid in SOLUTION.

## Menu Paths

# Main Menu>Preprocessor>Loads>Other>Change Mat Props>Restore Temps <br> Main Menu>Preprocessor>Material Props>Restore Temps <br> Main Menu>Solution>Other>Change Mat Props>Restore Temps 

## MPWRITE, Fname, Ext, --, LIB, MAT

Writes linear material properties in the database to a file (if the LIB option is not specified) or writes both linear and nonlinear material properties (if LIB is specified) from the database to a file.

PREP 7:Materials
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Fname

File name and directory path (248 characters maximum, including directory). If you do not specify the LIB option, the default directory is the current working directory. If you specify LIB and you have specified a material library directory (via the /MPLIB command), that directory is the default. Otherwise, the default is the current working directory. If you use the default for your directory, you can use all 248 characters for the file name.

The file name defaults to Jobname.

Ext
Filename extension (8 character maximum).
If you omit the LIB option, the default extension is MP. If you specify the LIB option, the default extension is units_MPL, where units is the system of units currently in use. (See the description of the /UNITS command.) For example, if /UNITS is set to BIN, the extension defaults to BIN_MPL.

Unused field.
LIB
The only value allowed for this field is the string "LIB."

The LIB option indicates that you wish to have properties associated with the material (MAT) written to the specified material library file using the material library file format. The material library file format is ASCII-text-based ANSYS command input. Certain commands associated with this format have been modified to interpret the string "_MATL" to mean the currently selected material. This feature makes the material library file independent of the material number in effect when the file was written; this enables you to restore the properties into the ANSYS database using the material number of your choice. The LIB option also enables you to save both linear and nonlinear properties. If you omit the LIB option, you can save linear properties only.

MAT
Specifies the material to be written to the named material library file. There is no default; you must either specify a material or omit the MAT argument. Even if you specify a MAT value, the ANSYS program ignores it if the LIB argument is not specified.

## Notes

Writes linear material properties currently in the database to a file. The file is rewound before and after writing

This command is also valid in SOLUTION.

## Menu Paths

Main Menu>Preprocessor>Loads>Load Step Opts>Other>Change Mat Props>Material Library>Export Library Main Menu>Preprocessor>Loads>Load Step Opts>Other>Change Mat Props>Material Library>Import Library<br>Main Menu>Preprocessor>Loads>Load Step Opts>Other>Change Mat Props>Material Library>Select Units<br>Main Menu>Preprocessor>Loads>Load Step Opts>Other>Change Mat Props>Write to File<br>Main Menu>Preprocessor>Material Props>Material Library>Export Library<br>Main Menu>Preprocessor>Material Props>Material Library>Import Library<br>Main Menu>Preprocessor>Material Props>Material Library>Select Units<br>Main Menu>Preprocessor>Material Props>Write to File<br>Main Menu>Solution>Load Step Opts>Other>Change Mat Props>Material Library>Export Library<br>Main Menu>Solution>Load Step Opts>Other>Change Mat Props>Material Library>Import Library<br>Main Menu>Solution>Load Step Opts>Other>Change Mat Props>Material Library>Select Units Main Menu>Solution>Load Step Opts>Other>Change Mat Props>Write to File

/MREP, NAME, ARG1, ARG2, ARG3, ... ARG4, ARG5, ARG6, ARG7, ARG8, ARG9, ARG10, ARG11, ARG12, ARG13, ARG14, ARG15, ARG16, ARG17, ARG18

## Enables you to reissue the graphics command macro "name" during a replot or zoom operation.

GRAPHICS: Set Up
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NAME

The name identifying the macro file or macro block on a macro library file. The name can contain up to eight characters maximum and must begin with a letter.

## ARG1, ARG2, ARG3, . . . , ARG1 8

Values to be passed into the file or block.

## Notes

This command reissues the graphics command macro "name" during a replot operation [/REPLOT] or a zoom [/ZOOM] operation. The ANSYS program passes the command macro arguments to the replot and zoom feature for use by the graphics macro. You should place the s-MREP command at the end of the graphics command macro, following the last graphics command within the macro, to enable the replot or zoom feature.

## Menu Paths

This command cannot be accessed from a menu.

## MSADV, SPNUM, MTHA

Specifies the approach to discretize the advection term in a species transport equation.
PREP 7:FLOTRAN Multiple Species
MP <> <> <> <> <> <> FL <> <> <> PP <> <> <>

## SPNUM

Species number, from 1 to 6 . Must be specified.
MTHA
Choice of approach to discretize the advection term:
MSU
Monotone Streamline Upwind (MSU) approach.
SUPG
Streamline Upwind / Petrov-Galerkin (SUPG) approach (default).
COLG
Collocated Galerkin (COLG) approach.

## Notes

This command is valid for the multiple species transport option in a FLOTRAN analysis. See Advection Term in the Theory Reference for the Mechanical APDL and Mechanical Applications for more information on the advection term.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu>Preprocessor>FLOTRAN Set Up>Multiple Species
Main Menu>Solution>FLOTRAN Set Up>Multiple Species

## MSAVE, Key

Sets the solver memory saving option. This option only applies to the PCG solver.

$$
\begin{aligned}
& \text { SOLUTION: Analysis Options } \\
& \text { MP ME ST PR PRN <> <> <> EM <> <> PP <> EME MFS }
\end{aligned}
$$

## Key

Activation key:
0 or OFF
Use global assembly for the stiffness matrix (and mass matrix, when using MODOPT,LANPCG) of the entire model.

1 or ON
Use an element-by-element approach when possible to save memory during the solution. In this case, the global stiffness (and mass) matrix is not assembled; element stiffness (mass) is regenerated during PCG or MODOPT,LANPCG iterations.

## Notes

MSAVE,ON only applies to and is the default for parts of the model using the following element types with linear material properties that meet the conditions listed below.

- SOLID186 (Structural Solid only)
- SOLID187

The following conditions must also be true:

- The PCG solver has been specified.
- The analysis is a static analysis. Topological optimization is not supported.
- Small strains are assumed (NLGEOM,OFF).
- No prestress effects (PSTRES) are included.
- No stress stiffening effects (SSTIF) are included when small strains are assumed (NLGEOM,OFF).
- All nodes on the supported element types must be defined (i.e., the midside nodes cannot be removed using the EMID command).
- For elements with thermally dependent material properties, MSAVE,ON applies only to elements with uniform temperatures prescribed.
- The default element coordinate system must be used.

If you manually force MSAVE,ON by including it in the input file, the model can include the following additional conditions:

## MSCAP

- The analysis can be a modal analysis using the PCG Lanczos method (MODOPT,LANPCG).
- Large deflection effects (NLGEOM,ON) are included.
- SOLID185 (brick shapes and KEYOPT(2) $=3$ only) elements can be included.

All other element types or other parts of the model that don't meet the above criteria will be solved using global assembly (MSAVE,OFF). This command can result in memory savings of up to 70 percent over the global assembly approach for the part of the model that meets the criteria. Depending on the processor speed and the computer manufacturer, the solution time may increase or decrease when this feature is used.

This memory-saving feature runs in parallel when multiple processors are used with the /CONFIG command or with Distributed ANSYS. The gain in performance with using multiple processors with this feature turned on should be similar to the default case when this feature is turned off. Performance also improves when using the uniform reduced integration option for SOLID186 elements.

This command does not support the layered option of the SOLID185 and SOLID186 elements.
When using MSAVE,ON with the PCGOPT command, note the following restrictions: .

- For static and modal analyses, MSAVE,ON is not valid when using a Lev_Diff value of 5 on the PCGOPT command; Lev_Diff will automatically be reset to 2 .
- For modal analyses, MSAVE,ON is not valid with the StrmCk option of the PCGOPT command; Strmck will be set to OFF.

When using MSAVE,ON for modal analyses, no .FULL file will be created. The .FULL file may be necessary for subsequent analyses (e.g., harmonic, transient mode superposition, or spectrum analyses). To generate the .FULL file, rerun the modal analysis using the WRFULL command.

## Menu Paths

Main Menu>Preprocessor>Loads>Analysis Type>Analysis Options
Main Menu>Solution>Analysis Type>Analysis Options

MSCAP, SPNUM, Capkey, UPPER, LOWER
Activates and controls mass fraction capping for a species.
PREP 7:FLOTRAN Multiple Species
MP <> <> <> <> <> <> FL <> <> <> PP <> <> <>

## SPNUM

Species number, from 1 to 6 . Must be specified.

## Capkey

Key to activate mass fraction capping:
OFF Capping not enforced (default).
ON Capping will be enforced.

## UPPER, LOWER

Upper and lower bounds on mass fraction if capping is activated. Default to 1.0 and 0.0 respectively.

## Command Default

No mass fraction capping.

## Notes

This command is valid for the multiple species transport option in a FLOTRAN analysis.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu>Preprocessor>FLOTRAN Set Up>Multiple Species
Main Menu>Solution>FLOTRAN Set Up>Multiple Species

## MSDATA, ALGEB, UGAS

## Defines multiple species data applicable to all species.

$$
\begin{array}{r}
\text { PREP 7:FLOTRAN Multiple Species } \\
\text { MP <> <> <> <> <> <> FL <> <> <> PP <> <> <> }
\end{array}
$$

## ALGEB

The algebraic species number whose mass fraction is calculated by subtracting the sum of the mass fractions of all other species from 1.0. This ensures that the sum of the mass fractions of all the species is 1.0. Defaults to 2 .

## UGAS

The universal gas constant. Defaults to 8314.3 (SI units).

## Notes

This command is valid for the multiple species transport option in a FLOTRAN analysis.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu>Preprocessor>FLOTRAN Set Up>Multiple Species<br>Main Menu>Solution>FLOTRAN Set Up>Multiple Species

## Writes an output message via the ANSYS message subroutine.

APDL: Macro Files<br>MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Argument Descriptions

## Lab

Label for output and termination control:

## INFO --

Writes the message with no heading (default).
NOTE --
Writes the message with a "NOTE" heading.

## WARN --

Writes the message with a "WARNING" heading. Also writes the message to the errors file, Jobname.ERR.

## ERROR --

Writes the message with a "ERROR" heading and causes run termination (if batch) at earliest "clean exit" point. Also writes the message to the errors file, Jobname.ERR.

## FATAL --

Writes the message with a "FATAL ERROR" heading and causes run termination immediately. Also writes the message to the errors file, Jobname. ERR.

## UI --

Writes the message with a "NOTE" heading and displays it in the message dialog box. This option is most useful in GUI mode.

## VAL1, VAL2, VAL3, . . . , VAL8

Numeric or alphanumeric character values to be included in message. Values may be the results of parameter evaluations. All numeric values are assumed to be double precision. The FORTRAN nearest integer (NINT) function is used to form integers for the \%l specifier.

## Notes

Allows writing an output message via the ANSYS message subroutine. Also allows run termination control. This command is used only when contained in a prepared file read into the ANSYS program (i.e., *USE,IINPUT, etc.). A message format must immediately follow the *MSG command (on a separate line, without parentheses, as described below).

The message format may be up to 80 characters long, consisting of text strings and predefined "data descriptors" between the strings where numeric or alphanumeric character data are to be inserted. The normal descriptors are \%l for integer data, \%G for double precision data, \%C for alphanumeric character data, and \%/ for a line break. The corresponding FORTRAN data descriptors are I9, 1PG16.9 and A8, respectively. Each descriptor must be preceded by a blank. There must be one data descriptor for each specified value ( 8 maximum) in the order of the specified values.

Enhanced descriptions may also be used:
\%w.pE w is field width

| \%w.pG | p is precision |
| :--- | :--- |
| \%w.pF |  |
| \%\% | a single percent sign |
| \%wC; \%wS | character string |
| \%-wC;\%-wS | left justify string |
| \%wX | w blank characters |
| \%wl | integer format |
| \%Owl | pad integer with leading zeros rather than blanks |
| \%Ow.pl | w is field width; $p$ is number of characters filled |

Do not begin *MSG format lines with *IF, *ELSE , *ELSEIF , or *ENDIF . If the last nonblank character of the message format is an ampersand (\&), a second line will also be read as a continuation of the format. Up to nine continuations (ten total lines) may be read. If normal descriptions are used, then consecutive blanks are condensed into one blank upon output, and a period is appended. Up to ten lines of output of 72 characters each may be produced (using the \%/ descriptor). Two examples follow.

Here is an example of the *MSG command and a format to print a message with two integer values and one real value:

```
*MSG, INFO, 'Inner',25,1.2,148
Radius (%C) = %I, Thick = %G, Length = %I
```

The output line is:

```
Radius (Inner) = 25, Thick = 1.2, Length = 148.
```

Here is an example illustrating multiline displays in GUI message windows:

```
*MSG,UI,Vcoilrms,THTAv,Icoilrms,THTAi,Papprnt,Pelec,PF,indctnc
Coil RMS voltage, RMS current, apparent pwr, actual pwr, pwr factor: %/&
Vcoil = %G V (electrical angle = %G DEG) %/&
Icoil = %G A (electrical angle = %G DEG) %/&
APPARENT POWER = %G W %/&
ACTUAL POWER = %G W %/&
Power factor: %G %/&
Inductance = %G %/&
VALUES ARE FOR ENTIRE COIL (NOT JUST THE MODELED SECTOR)
```


## Note

The /UIS,MSGPOP command controls which messages are displayed in the message dialog box when the GUI is active. All messages produced by the *MSG command are subject to the /UIS specification, with one exception, If $L a b=\mathrm{UI}$, the message will be displayed in the dialog box regardless of the /UIS specification.

This command is valid in any processor.

## Menu Paths

## This command cannot be accessed from a menu.

## MSHAPE, KEY, Dimension

## For elements that support multiple shapes, specifies the element shape to be used for meshing.

PREP 7: Meshing<br>MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## KEY

Key indicating the element shape to be used:
0
Mesh with quadrilateral-shaped elements when Dimension $=2-\mathrm{D}$ mesh with hexahedral-shaped elements when Dimension $=3$-D.

1
Mesh with triangle-shaped elements when Dimension $=2-$ D mesh with tetrahedral-shaped elements when Dimension $=3-$ D.

## Dimension

Specifies the dimension of the model to be meshed:
2D
2-D model (area mesh).
3D
3-D model (volume mesh).

## Command Default

Since specification of element shape [MSHAPE] and meshing type [MSHKEY] are so closely related, the element shape that ANSYS meshes with depends on the combination of the values that are set for the two commands. The table below explains what happens when you fail to specify values for these settings.

| Your action... | How it affects the mesh... |
| :--- | :--- |
| You issue the MSHAPE command with no <br> arguments. | ANSYS uses quadrilateral-shaped or hexahed- <br> ral-shaped elements to mesh the model, de- <br> pending on whether you are meshing an area <br> or a volume. |
| You do not specify an element shape, but you <br> do specify the type of meshing to be used <br> [MSHKEY]. | ANSYS uses the default shape of the element <br> to mesh the model. It uses the type of mesh- <br> ing that you specified. |
| You specify neither an element shape nor the <br> type of meshing to be used. | ANSYS uses the default shape of the element <br> to mesh the model. It uses whichever type of <br> meshing is the default for that shape. |

## Notes

If no value is specified for Dimension the value of $K E Y$ determines the element shape that will be used for both 2-D and 3-D meshing. In other words, if you specify MSHAPE,0, quadrilateral-shaped and hexahedralshaped elements will be used. If you specify MSHAPE, 1 , triangle-shaped and tetrahedral-shaped elements will be used.

The MSHAPE, MSHKEY, and MSHMID commands replace the functionality that was provided by the ESHAPE command in ANSYS 5.3 and earlier releases.

This command is also valid for rezoning.

## Menu Paths

# Main Menu>Preprocessor>Meshing>Mesh>Volumes>Mapped>4 to 6 sided <br> Main Menu>Preprocessor>Meshing>Mesher Opts <br> Main Menu>Solution>Manual Rezoning>Create Remesh Zone(s)>Mesh Controls>Global Meshing Options 

## MSHCOPY, KEYLA, LAPTRN, LACOPY, KCN, DX, DY, DZ, TOL, LOW, HIGH

## Simplifies the generation of meshes that have matching node element patterns on two different line groups (in 2-D) or area groups (3-D).

PREP 7: Meshing<br>MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## KEYLA

Copy line mesh (default) if LINE, 0 or 1 . Copy area mesh if AREA, or 2.

## LAPTRN

Meshed line/area to be copied, or a component name containing a list. If $L A P T R N=\mathrm{P}$, graphical picking is enabled (valid only in the GUI).

## LACOPY

Unmeshed line/area to get copied mesh, or a component name containing a list. If $L A C O P Y=P$, graphical picking is enabled (valid only in the GUI).

KCN
In coordinate system KCN, LAPTRN + DX DY DZ $=$ LACOPY.

## $D X, D Y, D Z$

Node location increments in the active coordinate system (DR, D $\theta, \mathrm{DZ}$ for cylindrical, DR, D $0, \mathrm{D} \Phi$ for spherical or toroidal).

TOL
Tolerance. Defaults to 1.e--4.
LOW
Name of low node component to be defined (optional).
HIGH
Name of high node component to be defined (optional).

## Notes

Matching meshes are used for rotational (cyclic) symmetry, or for contact analysis using coupling or node-to-node gap elements. See Using CPCYC and MSHCOPY Commands in the Modeling and Meshing Guide for more information.

## Menu Paths

Main Menu>Preprocessor $>$ Modeling $>$ Copy $>$ Area Mesh
Main Menu $>$ Preprocessor $>$ Modeling $>$ Copy $>$ Line Mesh
Main Menu>Preprocessor>Modeling>Copy>Line Mesh

## MSHKEY, KEY

Specifies whether free meshing or mapped meshing should be used to mesh a model.
PREP 7:Meshing
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
KEY
Key indicating the type of meshing to be used:
0
Use free meshing (the default).
1
Use mapped meshing.
2
Use mapped meshing if possible; otherwise, use free meshing. If you specify MSHKEY,2, SmartSizing will be inactive even while free meshing non-map-meshable areas.

## Command Default

As stated above, free meshing is the default. However, since the MSHKEY and MSHAPE settings are closely related, you should refer to the table in the MSHAPE command description for more information about defaults.

## Notes

The MSHKEY, MSHAPE, and MSHMID commands replace the functionality that was provided by the ESHAPE command in ANSYS 5.3 and earlier releases.

This command is also valid for rezoning.

## Menu Paths

Main Menu>Preprocessor>Meshing>Mesh>Areas>Mapped>3 or 4 sided
Main Menu>Preprocessor>Meshing>Mesh>Areas>Target Surf
Main Menu>Preprocessor>Meshing>Mesh>Volumes>Mapped>4 to 6 sided
Main Menu>Preprocessor>Meshing>Mesher Opts
Main Menu>Solution>Manual Rezoning>Create Remesh Zone(s)>Mesh Controls>Global Meshing Options

## MSHMID, KEY

Specifies placement of midside nodes.

> PREP 7: Meshing
> MP ME ST PR PRN $<><>$ FL EM EH DY PP <> EME MFS

KEY
Key indicating placement of midside nodes:

## 0

Midside nodes (if any) of elements on a region boundary follow the curvature of the boundary line or area (the default).

1
Place midside nodes of all elements so that element edges are straight. Allows coarse mesh along curves.

2
Do not create midside nodes (elements will have removed midside nodes).

## Notes

The MSHMID, MSHAPE, and MSHKEY commands replace the functionality that was provided by the ESHAPE command in ANSYS 5.3 and earlier releases.

This command is also valid for rezoning.

## Menu Paths

Main Menu>Preprocessor>Meshing>Mesher Opts
Main Menu>Solution>Manual Rezoning>Create Remesh Zone(s)>Mesh Controls>Global Meshing Options

## MSHPATTERN, KEY

## Specifies pattern to be used for mapped triangle meshing.

> PREP 7:Meshing
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

KEY
Key indicating triangle pattern to be used (the figures below illustrate the pattern that will be used for each value of $K E Y$ ):
0
Let ANSYS choose the pattern (the default). ANSYS maximizes the minimum angle of the triangularshaped elements that are created.

1
Unidirectional split at node I.
2
Unidirectional split at node J.


## Notes

"Mapped triangle meshing" refers to the ANSYS program's ability to take a map-meshable area and mesh it with triangular elements, based on the value of MSHPATTERN,KEY. This type of meshing is particularly useful for analyses that involve the meshing of rigid contact elements.

The MSHPATTERN command is valid only when you have specified that ANSYS use triangle-shaped elements [MSHAPE, 1,2D] (or you are meshing with an element that supports only triangles), and you have also specified mapped meshing [MSHKEY,1] to mesh an area.

For details about mapped meshing with triangles, see the Modeling and Meshing Guide.

## Menu Paths

Main Menu>Preprocessor>Meshing>Mesher Opts
Main Menu>Solution>Manual Rezoning>Create Remesh Zone(s)>Mesh Controls>Global Meshing Options

## MSMASS, SPNUM, Value

## Specifies the mass type for a transient species analysis.

PREP 7:FLOTRAN Multiple Species
MP <> <> <> <> <> <> FL <> <> <> PP <> <> <>

## SPNUM

Species number, from 1 to 6 . Must be specified. If ALL, all numbers are used.

## Value

Mass type for transient species analysis:
LUMP
Lumped mass matrix (default).
CONS
Consistent mass matrix.

## Notes

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu>Preprocessor>FLOTRAN Set Up>Multiple Species
Main Menu>Solution>FLOTRAN Set Up>Multiple Species

## MSMETH, SPNUM, KEY

## Specifies the method of solution of the species transport equations.

PREP 7:FLOTRAN Multiple Species
MP <> <> <> <> <> <> FL <> <> <> PP <> <> <>

SPNUM
Species number, from 1 to 6 . Must be specified.
KEY
Key defining the method of solution for the specified species number:
0
No solution of equations for species SPNUM
1
Tri-Diagonal Matrix Algorithm (TDMA).
2
Conjugate residual method.
3
Preconditioned Conjugate Residual method.
4
Preconditioned Generalized Minimum Residual (PGMR) solution method (default).
5
Sparse Direct method.

6
Preconditioned BiCGStab method (PBCGM).

## Command Default

The Preconditioned Generalized Minimum Residual (PGMR) method is used for all species.

## Notes

The Tri-Diagonal Matrix Algorithm (TDMA) method is a special version of the standard Gauss-Seidel iterative method for the solution of sets of algebraic equations. The number of iterations (sweeps) to be performed is specified with the MSSOLU command. No convergence criterion is required for the TDMA method.

Three methods are semi-direct solution methods based on search directions. They are conjugate direction iterative techniques which develop a solution as a linear combination of search directions. The Conjugate Residual method requires the least memory, but stalls when solving ill-conditioned problems. The Preconditioned Conjugate Residual method requires much more memory but performs better for ill-conditioned matrix problems. The PGMR method is memory-intensive; by necessity, it incorporates a tight convergence criterion. The Preconditioned BiCGStab method (PBCGM) requires less memory than the PGMR method and
sometimes performs better than the PGMR method. The number of search vectors and the convergence criterion are specified with the MSSOLU command.

The Sparse Direct method is based on Gaussian elimination to factorize the matrix. This method is memory intensive and creates temporary files on the hard disk. It is robust and can be used for symmetric as well as non-symmetric equation systems.

See the Fluids Analysis Guide for additional information on the FLOTRAN Solvers.
This command is valid for the multiple species transport option in a FLOTRAN analysis.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu>Preprocessor>FLOTRAN Set Up>Multiple Species
Main Menu>Solution>FLOTRAN Set Up>Multiple Species

## MSMIR, SPNUM, Value

## Sets modified inertial relaxation factors for multiple species.

PREP 7:FLOTRAN Multiple Species
MP <> <> <> <> <> <> FL <> <> <> PP <> <> <>

## SPNUM

Species number, from 1 to 6 . Must be specified.
Value
Modified inertial relaxation factor. Value defaults to 0 (modified inertial relaxation off).

## Notes

Value must be a positive real number. A Value between 0.1 and 1.0 is recommended. A larger Value provides a more robust scheme, but it may yield a slower convergence.

This command is valid for the multiple species transport option in a FLOTRAN analysis.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu>Preprocessor>FLOTRAN Set Up>Multiple Species
Main Menu>Solution>FLOTRAN Set Up>Multiple Species

## MSNOMF, SPNUM, FRACTION

## Specifies the initial value of nominal mass fraction for a species.

PREP 7:FLOTRAN Multiple Species
MP <> <> <> <> <> <> FL <> <> <> PP <> <> <>

## SPNUM

Species number, from 1 to 6 . Must be specified.
FRACTION
The initial mass fraction of the entire problem domain for this species. Defaults to 0.0 . The sum of the mass fractions for all species should equal 1.0.

## Notes

This command is valid for the multiple species transport option in a FLOTRAN analysis and is required if the CMIX option has been activated for a property [FLDATA7,PROT,Label,CMIX].

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu>Preprocessor>FLOTRAN Set Up>Multiple Species
Main Menu>Solution>FLOTRAN Set Up>Multiple Species

MSPROP, SPNUM, Label, Type, NOMINAL, COF1, COF2, COF3

## Defines the fluid properties of a species.

PREP 7:FLOTRAN Multiple Species
MP <> <> <> <> <> <> FL <> <> <> PP <> <> <>

## SPNUM

Species number, from 1 to 6 . Must be specified.

## Label

Label identifying the property being defined:
DENS Density.

VISC
Viscosity.
COND
Thermal conductivity.
MDIF
Mass diffusion coefficient.
SPHT
Specific heat.
Type
Type of property:

## CONSTANT

Constant property (default). The property does not vary with temperature.

## LIQUID

Liquid property. Density varies according to a second order polynomial relationship, and all other properties follow Sutherland's law for liquids.

## GAS

Gas property. Density varies according to the ideal gas law, and all other properties follow Sutherland's law for gases.

## NOMINAL

Nominal value of the property being defined. For CONSTANT fluid types, the property remains at this value and does not vary. For GAS and LIQUID property types, this is the value of the property corresponding to the temperature defined by COF1.

## COF1

Temperature corresponding to the NOMINAL value of the property (for GAS and LIQUID property types only; see Notes section). Not required for Label = SPHT.

## COF2, COF 3

Second and third coefficients for temperature variation of the property. Not required for Label $=$ SPHT.

## Notes

If the property type is CONSTANT, the equation used is as follows:

$$
L a b=N O M I N A L
$$

If the property type is LIQUID, a second order polynomial relationship is used for density, and Sutherland's law for liquids is used for the other properties:

$$
\begin{aligned}
& \text { DENS }=\text { NOMINAL }+\operatorname{COF} 2^{*}(\mathrm{~T}-\operatorname{COF} 1)+\operatorname{COF} 3^{*}(\mathrm{~T}-\operatorname{COF} 1)^{2} \\
& \text { Property }=\text { NOMINAL }{ }^{*} \operatorname{EXP}\left[\operatorname{COF} 2^{*}(1 / \mathrm{T}-1 / \operatorname{COF} 1)+\operatorname{COF} 3^{*}(1 / \mathrm{T}-1 \operatorname{COF} 1)^{2}\right]
\end{aligned}
$$

where T is the temperature of the node where the property is being calculated.
If the property type is GAS, the ideal gas law is used for density, and Sutherland's law for gases is used for other properties:

$$
\begin{aligned}
& \text { DENS }=\text { NOMINAL } *(\mathrm{P} / \text { COF } 2 /(\mathrm{T} / \text { COF } 1) \\
& \text { Property } \left.=\text { NOMINAL } *(\mathrm{~T} / \operatorname{COF} 1)^{1.5} *(\operatorname{COF} 1+\operatorname{COF} 2) /(\mathrm{T}+\operatorname{COF} 2)\right]
\end{aligned}
$$

where $P$ and $T$ are the pressure and temperature of the node where the property is being calculated.
Specific heat is always a CONSTANT. Also, property types (Type) such as TABLE, USER, POWL, BIN, etc. are not available for individual species. They are valid only for the bulk fluid.

If a property type is entered incorrectly (e.g. a misspelling), a CONSTANT property type is assumed and the property is assigned the NOMINAL value.

This command is valid for the multiple species transport option in a FLOTRAN analysis.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu>Preprocessor>FLOTRAN Set Up>Multiple Species
Main Menu>Solution>FLOTRAN Set Up>Multiple Species

## MSQUAD, QDIF, QSRC

## Specifies the quadrature order for multiple species elements.

> PREP 7:FLOTRAN Multiple Species
> MP <> <> <> <> <> <> FL <> <> <> PP <> <> <>

QDIF
Quadrature order for diffusion term integration:
0
One-point quadrature (default).
1
Same as 0 , except a distributed value of temperature is used to evaluate temperature-dependent properties.

2
Two-point quadrature (default for axisymmetric models).

## QSRC

Quadrature order for source term integration:
0
One-point quadrature (default).
1
Same as 0, except a distributed value of temperature is used to evaluate temperature-dependent properties.

2
Two-point quadrature (default for axisymmetric models).

## Command Default

As described above.

## Notes

This command is valid for the multiple species transport option in a FLOTRAN analysis.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.
Menu Paths

## Main Menu>Preprocessor>FLOTRAN Set Up>Multiple Species

Main Menu>Solution>FLOTRAN Set Up>Multiple Species

MSRELAX, SPNUM, CONC, MDIF, EMDI, STAB

## Specifies relaxation factors for a multiple species transport analysis.

PREP 7:FLOTRAN Multiple Species $\mathrm{MP}<><><><><><>\mathrm{FL}\langle \rangle<><>\mathrm{PP}<><><>$

## SPNUM

Species number, from 1 to 6 . Must be specified.
CONC
Species concentration relaxation factor. Defaults to 0.5 .
MDIF
Mass diffusion coefficient relaxation factor. Defaults to 0.5.
EMDI
Effective mass diffusion coefficient relaxation factor (used for turbulent flow). Defaults to 0.5.
STAB
Inertial relaxation factor for solution of the transport equation. Defaults to $1.0 \times 10^{+20}$.

## Command Default

As described above for each relaxation factor.
Notes

This command is valid for the multiple species transport option in a FLOTRAN analysis.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.
Menu Paths
Main Menu>Preprocessor>FLOTRAN Set Up>Multiple Species
Main Menu>Solution>FLOTRAN Set Up $>$ Multiple Species

MSSOLU, SPNUM, NSWEEP, MAXI, NSRCH, CONV, DELMAX
Specifies solution options for multiple species transport.
PREP 7:FLOTRAN Multiple Species

$$
\mathrm{MP}<><><><><><>\mathrm{FL}<><><>\mathrm{PP}<><><\rangle
$$

SPNUM
Species number, from 1 to 6 . Must be specified.

## NSWEEP

Number of Tri-Diagonal Matrix Algorithm (TDMA) sweeps. Valid only for the TDMA method [MSMETH]. Defaults to 100.

MAXI
Maximum number of iterations allowed for the semi-direct methods (conjugate residual and preconditioned conjugate residual methods, chosen with the MSMETH command). Defaults to 1000.

## NSRCH

Number of search vectors used for the semi-direct methods. Defaults to 2 . If you are using the Preconditioned BiCGStab Method (PBCGM) solver, the number of search directions is 1 to 8 , with 2 as the default. New search vectors are made orthogonal to $N S R C H$ previous vectors in the solution of the unsymmetric matrix systems.

CONV
Convergence criterion for the semi-direct methods. It represents the factor by which the inner product of the residual vector is reduced during the solution of the equations at any global iteration. Defaults to $1.0 \times 10^{-12}$. If the convergence criterion has not been achieved, the algebraic solver issues a warning message, and the execution of FLOTRAN continues normally.

## DELMAX

Minimum normalized rate of change which will permit the semi-direct solution methods to continue. Used to terminate the semi-direct solvers in the event that stall occurs. Defaults to $1.0 \times 10^{-9}$. If the methods stall, the solver increments the solution only a very small amount despite the fact that the correct solution has been not been achieved (or perhaps even approached). The maximum nodal difference between the solutions, normalized to the value of the variable, is compared to DELMAX, and the solution is terminated if the value is less than DELMAX. Termination of the algebraic solver due to the small rate of change is considered a normal function, and no warning message is printed. Execution of FLOTRAN continues normally.

## Command Default

As described above.

## Notes

This command is valid for the multiple species transport option in a FLOTRAN analysis.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu>Preprocessor>FLOTRAN Set Up>Multiple Species
Main Menu>Solution>FLOTRAN Set Up>Multiple Species

## MSSPEC, SPNUM, Name, MOLWT, SCHMIDT

## Specifies the name, molecular weight, and Schmidt number of a species.

PREP 7:FLOTRAN Multiple Species

## SPNUM

Species number, from 1 to 6 . Must be specified.

## Name

Name to be assigned to the species, up to 4 characters long. Defaults to SP01 for species 1, SP02 for species $2, \ldots$, SP06 for species 6 . This name can be used in place of the species number when specifying mass fraction boundary conditions and in postprocessing.

## Note

The GUI always shows the default names, not the user-defined names.) Name should not be the same as an existing degree of freedom label.

## MOLWT

Molecular weight for the species. Required only for gases (determined by the property type on MSPROP command). Defaults to 29.0.

## SCHMIDT

Schmidt number (diffusion term divisor) for the species. Required only for gases (determined by the property type on MSPROP command). Defaults to 1.0.

## Notes

This command is valid for the multiple species transport option in a FLOTRAN analysis.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu>Preprocessor>FLOTRAN Set Up>Multiple Species
Main Menu>Solution>FLOTRAN Set Up>Multiple Species

## /MSTART, Label, KEY

## Controls the initial GUI components.

SESSION: Run Controls
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Label

Label identifying the GUI component:
ZOOM
Pan, Zoom, Rotate dialog box, off by default.

## WORK

Offset Working Plane dialog box, off by default.

## WPSET

Working Plane Settings dialog box, off by default.

## ABBR

Edit Toolbar/Abbreviations dialog box, off by default.

## PARM

Scalar Parameters dialog box, off by default.

## SELE

Select Entities dialog box, off by default.
ANNO
Annotation dialog box, off by default.

HARD
Hard Copy dialog box, off by default.

## UTIL

Turns on the pre-ANSYS 6.1 (UIDL) GUI, off by default.

## KEY

Switch value:
OFF or 0
Component does not appear when GUI is initialized.
ON or 1
Component appears when GUI is initialized.

## Command Default

Same as Label defaults.

## Notes

Controls which components appear when the Graphical User Interface (GUI) is initially brought up. This command is valid only before the GUI is brought up [/MENU,ON] and is intended to be used in the start130.ans file. It only affects how the GUI is initialized; you can always bring up or close any component once you are in the GUI.

This command is valid only at the Begin Level.

## Menu Paths

This command cannot be accessed from a menu.

MSTERM, SPNUM, STER, TTER

## Sets the convergence monitors for species.

PREP 7:FLOTRAN Multiple Species
MP <> <> <> <> <> <> FL <> <> <> PP <> <> <>

## SPNUM

Species number, from 1 to 6 . Must be specified.
STER
Termination criteria for steady-state analysis. Defaults to $1 \times 10^{-8}$.
TTER
Termination criteria for transient analysis. Defaults to $1 \times 10^{-6}$.

## Notes

Repeat command to set each species number as required.
All specified criteria must be met before the case is terminated.

If a termination criterion for a specific species number is set negative, the termination check is ignored for that particular species.

This command is valid for the multiple species transport option in a FLOTRAN analysis.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu>Preprocessor>FLOTRAN Set Up>Multiple Species
Main Menu>Solution>FLOTRAN Set Up>Multiple Species

## MSTOLE, METHOD, Namesurf, Namefluid

Adds two extra nodes from FLUID116 elements to SURF151 or SURF152 elements for convection analyses.

PREP 7:Special Purpose<br>MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## METHOD

Mapping method:
0
Hybrid method (default).
1
Projection method.
2
Minimum centroid distance method.

## Namesurf

Component name for a group of SURF151 or SURF152 elements. The name must be enclosed in single quotes (e.g., 'COM152') when the MSTOLE command is manually typed in.

## Namefluid

Component name for a group of FLUID116 elements. The name must be enclosed in single quotes (e.g., 'COM116') when the MSTOLE command is manually typed in.

## Notes

For convection analyses, the MSTOLE command adds two extra nodes from FLUID116 elements to SURF151 or SURF152 elements by employing the specified mapping method. In the hybrid method, the projection method is tried first and if it fails the centroid distance method is used. The SURF151 or SURF152 elements and the FLUID116 elements must be grouped into components and named using the CM command.

The SURF151 or SURF152 extra node option must be set for two extra nodes (KEYOPT(5) = 2).
For more information, see Using the Surface Effect Elements in the Thermal Analysis Guide.

## Menu Paths

This command cannot be accessed from a menu.

## MSVARY, SPNUM, Lab, Key

## Allows species properties to vary between global iterations.

PREP 7:FLOTRAN Multiple Species
MP <> <> <> <> <> <> FL <> <> <> PP <> <> <>

## SPNUM

Species number, from 1 to 6 . Must be specified.
Lab
Label identifying the species property:
DENS
Density.
VISC
Viscosity.
COND
Thermal conductivity.
MDIF
Mass diffusion coefficient.
Key
Key to allow property variation between global iterations:
OFF
Variation not allowed (default).
ON
Variation allowed.

## Command Default

No property is allowed to vary between global iterations within a load step.

## Notes

This command is valid for the multiple species transport option in a FLOTRAN analysis.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu>Preprocessor>FLOTRAN Set Up $>$ Multiple Species
Main Menu $>$ Solution $>$ FLOTRAN Set Up $>$ Multiple Species
*MULT, M1, T1, M2, T2, M3
Performs the matrix multiplication M3 $=\mathbf{M 1}(\mathrm{T} 1)^{*} \mathbf{M} 2(\mathrm{~T} 2)$.

> APDL: Matrix Operations
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Argument Descriptions

M1
Name of matrix M1. Must have been previously specified by a *DMAT or *SMAT command.
T1
Transpose key. Set $T 1=$ TRANS to use the transpose of $M 1$. If blank, transpose will not be used.
M2
Name of matrix M2. Must have been previously specified by a *DMAT command.
T2
Transpose key. Set $T 2=$ TRANS to use the transpose of $M 2$. If blank, transpose will not be used.
M3
Name of resulting matrix, M3. Must be specified.

## Notes

The matrices must be dimensionally consistent such that the number of columns of M1 (or the transposed matrix, if requested) is equal to the number of rows of M2 (or the transposed matrix, if requested).

You cannot multiply two sparse matrices with this command (that is, M1 and M2 cannot both be sparse). The resulting matrix, $M 3$, will always be a dense matrix, no matter what combination of input matrices is used (dense*sparse, sparse*dense, or dense*dense).

## Menu Paths

This command cannot be accessed from a menu.
*MWRITE, ParR, Fname, Ext, --, Label, n1, n2, n3

## Writes a matrix to a file in a formatted sequence.

> APDL: Array Parameters
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Argument Descriptions

## ParR

The name of the array parameter. See *SET for name restrictions.

## Fname

File name and directory path ( 248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

If the file name fields are left blank, the default file is the current output file.

## Ext

Filename extension (8 character maximum).

Unused field.
Label
Can use a value of IJK, IKJ, JIK, JKI, KIJ, KJI, or blank (JIK).

## n1, n2, n3

Write as $(((\operatorname{ParR}(\mathrm{i}, \mathrm{j}, \mathrm{k}), \mathrm{k}=1, \mathrm{n} 1), \mathrm{i}=1, \mathrm{n} 2), \mathrm{j}=1, \mathrm{n} 3)$ for Label $=\mathrm{KIJ} . n 1, n 2$, and $n 3$ default to the corresponding dimensions of the array parameter ParR.

## Notes

Writes a matrix or vector to a specified file in a formatted sequence. You can also use the *VWRITE command to write data to a specified file. Both commands contain format descriptors on the line immediately following the command. The format descriptors can be in either Fortran or C format.

Fortran format descriptors are enclosed in parentheses. They must immediately follow the *MWRITE command on a separate line of the same input file. The word FORMAT should not be included. The format must specify the number of fields to be written per line, the field width, the placement of the decimal point, etc. There should be one field descriptor for each data item written. The write operation uses the available system FORTRAN FORMAT conventions (see your system FORTRAN manual). Any standard FORTRAN real format (such as (4F6.0), (E10.3,2X,D8.2), etc.) and character format (A) may be used. Integer (I) and list-directed (*) descriptors may not be used. Text may be included in the format as a quoted string. The FORTRAN descriptor must be enclosed in parentheses and the format must not exceed 80 characters (including parentheses).

The " $C$ " format descriptors are used if the first character of the format descriptor line is not a left parenthesis. "C" format descriptors may be up to 80 characters long, consisting of text strings and predefined "data descriptors" between the strings where numeric or alphanumeric character data are to be inserted. The normal descriptors are \%l for integer data, \%G for double precision data, \%C for alphanumeric character data, and \%/ for a line break. There must be one data descriptor for each specified value in the order of the specified values. The enhanced formats described in *MSG may also be used.

The starting array element number must be defined. Looping continues in the directions indicated by the Label argument. The number of loops and loop skipping may also be controlled with the *VLEN and *VMASK commands, which work in the $n 2$ direction (by row on the output file), and by the *VCOL command, which works in the $n 1$ direction (by column in the output file). The vector specifications *VABS and *VFACT apply to this command, while *VCUM does not apply to this command. See the *VOPER command for details. If you are in the GUI, the *MWRITE command must be contained in an externally prepared file and read into ANSYS (i.e., *USE, /INPUT, etc.).

This command is valid in any processor.

## Menu Paths

## Utility Menu>Parameters>Array Parameters>Write to File

MXPAND, NMODE, FREQB, FREQE, Elcalc, SIGNIF, MSUPkey

## Specifies the number of modes to expand and write for a modal or buckling analysis.

# SOLUTION:Dynamic Options <br> SOLUTION: Nonlinear Options <br> MP ME ST PR PRN DS DSS <> EM EH <> PP <> EME MFS 

## NMODE

Number of modes to expand and write. If blank or ALL, expand and write all modes within the frequency range specified. If -1 , do not expand and do not write modes to the results file during the analysis.

## FREQB

Beginning, or lower end, of frequency range of interest. If $F R E Q B$ and $F R E Q E$ are both blank, expand and write the number of modes specified without regard to the frequency range. Defaults to the entire range.

## FREQE

Ending, or upper end, of frequency range of interest.

## Elcalc

Element calculation key:

## NO

Do not calculate element results, reaction forces, and energies (default).

## YES

Calculate element results, reaction forces, energies, and the nodal degree of freedom solution.

## SIGNIF

Expand only those modes whose significance level exceeds the SIGNIF threshold. The significance level of a mode is defined as the mode coefficient of the mode, divided by the maximum mode coefficient of all modes. Any mode whose significance level is less than SIGNIF is considered insignificant and is not expanded. The higher the SIGNIF threshold, the fewer the number of modes expanded. SIGNIF defaults to 0.001 . If $S I G N I F$ is specified as 0.0 , it is taken as 0.0 . SIGNIF value is only used for singlepoint or DDAM response (SPOPT,SPRS or DDAM) analyses.

## MSUPkey

Element result superposition key:
NO
Do not write element results to the mode file Jobname. MODE.
YES
Write element result to the mode file for use in the expansion pass of a subsequent mode superposition, PSD, transient, or harmonic analysis (default if Elcalc = YES).

## Command Default

Mode shapes (displacements) are expanded and output to the results file (so that if you need to inspect the mode shapes, it is not necessary to run the analysis again). Element stresses are not expanded.

## Notes

Specifies the number of modes to expand and write over a frequency range for a modal (ANTYPE,MODAL) or buckling (ANTYPE,BUCKLE) analysis. For reduced analyses, an expansion is required. If used in SOLUTION, this command is valid only within the first load step.

There is no limit on the number of expanded modes (NMODE). However, there is a limit on the maximum number of modes used via the *GET,,MODE command, mode combinations, and the MDAMP command.

With MSUPkey = YES, the computed element results (Elcalc = YES) are written to Jobname. MODE for subsequent use in downstream mode superposition analyses, including harmonic, transient and PSD analyses. This reduces computation time significantly for the combination or expansion passes.

In a Distributed ANSYS analysis, you must issue MXPAND to specify the number of modes to expand when computing the modes and mode shapes. In a Distributed ANSYS run, MXPAND cannot be issued in an expansion pass (EXPASS).

This command is also valid in PREP7.

## Menu Paths

Main Menu>Preprocessor>Loads>Analysis Type>Analysis Options<br>Main Menu>Preprocessor>Loads>Load Step Opts>ExpansionPass>Single Expand>Expand Modes<br>Main Menu>Solution>Analysis Type>Analysis Options<br>Main Menu>Solution>Load Step Opts>ExpansionPass>Single Expand>Expand Modes

# N Commands 

## N, NODE, X, Y, Z, THXY, THYZ, THZX

## Defines a node.

PREP 7: Nodes
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
NODE
Node number to be assigned. A previously defined node of the same number will be redefined. Defaults to the maximum node number used +1 .

## $\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{Z}$

Node location in the active coordinate system ( $\mathrm{R}, \theta, \mathrm{Z}$ for cylindrical, $\mathrm{R}, \theta, \Phi$ for spherical or toroidal). If $X=\mathrm{P}$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI).

THXY
First rotation about nodal $Z$ (positive $X$ toward Y ).
THYZ
Second rotation about nodal $X$ (positive $Y$ toward $Z$ ).

## THZX

Third rotation about nodal Y (positive Z toward X ).

## Notes

Defines a node in the active coordinate system [CSYS]. The nodal coordinate system is parallel to the global Cartesian system unless rotated. Rotation angles are in degrees and redefine any previous rotation angles. See the NMODIF, NANG, NROTAT, and NORA commands for other rotation options.

## Menu Paths

> Main Menu>Preprocessor $>$ Modeling $>$ Create $>$ Nodes $>$ In Active CS Main Menu $>$ Preprocessor $>$ Modeling $>$ Create $>$ Nodes $>$ On Working Plane

NANG, NODE, $X 1, X 2, X 3, Y 1, Y 2, Y 3, Z 1, Z 2, Z 3$

## Rotates a nodal coordinate system by direction cosines.

PREP 7:Nodes
MP ME ST PR PRN <> <> <> EM EH DY PP <> EME MFS

## NODE

Rotate coordinate system of this node.
x1, x2, x3
Global X, Y, Z components of a unit vector in new nodal $X$ direction.

## Y1, Y2, Y3

Global X, Y, Z components of a unit vector in new nodal $Y$ direction.

## Z1, Z2, Z3

Global X, Y, Z components of a unit vector in new nodal $Z$ direction.

## Notes

Rotates a nodal coordinate system to the orientation specified by the $X, Y$ and $Z$ direction cosines. Existing rotation specifications on the node are redefined. If only two of the three unit vectors are specified, the third is defined according to the right hand rule. It is the responsibility of the user to ensure that input direction cosines are orthogonal in a right-handed system.

See the NMODIF, NROTAT, and NORA commands for other rotation options.

## Menu Paths

Main Menu $>$ Preprocessor $>$ Modeling $>$ Create $>$ Nodes $>$ RotateNode $>$ By Vectors
Main Menu>Preprocessor>Modeling>Move / Modify>RotateNode>By Vectors

NAXIS, Action, Val

## Generates nodes for general axisymmetric element sections.

PREP 7: Nodes
MP ME ST PR PRN <> <> <> EM EH DY PP <> EME MFS

## Action

Specifies one of the following command behaviors:
GEN
Generates nodes around the axis of an axisymmetric section (default).

## CLEAR

Clears all nodes around the axis of an axisymmetric section.

## EFACET

Specifies the number of facets per edge between nodal planes and integration planes in the circumferential direction to display using PowerGraphics. This option is only valid with /ESHAPE, 1 and RSYS,SOLU commands.

## Val

Tolerance value or number of facets per edge:

## TOLER

When Action $=$ GEN, the tolerance to use for merging the generated nodes around the axis.
NUM
When Action = EFACET, the number of facets per element edge for element plots:

## AUTO

Use program-chosen facets per edge (default).
1
Use 1 facet per edge (default for elements with $9,10,11$, or 12 nodal planes). Shows nodal and integration planes only.

2
Use 2 facets per edge (default for elements with $5,6,7$, or 8 nodal planes, and maximum for elements with $9,10,11$, or 12 nodal planes).

3
Use 3 facets per edge (default for elements with 3 or 4 nodal planes, and maximum for elements with 6, 7 , or 8 nodal planes).

4
Use 4 facets per edge (maximum for elements with 5 nodal planes).
5
Use 5 facets per edge (maximum for elements with 4 nodal planes).
6
Use 6 facets per edge (maximum for elements with 3 nodal planes).

## Notes

The NAXIS command generates or clears the nodes for general axisymmetric element sections. The command applies to elements SURF159, SOLID272, and SOLID273.

The generate option (Action $=$ GEN) operates automatically on any current-technology axisymmetric element. Any nodes within the tolerance value (TOLER) of the axis are merged into a single node. The default tolerance is $1.0 \mathrm{e}-4$.

If you want to change the number of nodes, use the clear option (Action = CLEAR) before regenerating the nodes.

To cause the 3-D element plot to appear more like the actual 3-D model, use NAXIS,EFACET,NUM, where $N U M>1$. In this case, the coordinate system specified for displaying element and nodal results (RSYS) must be solution (RSYS,SOLU); otherwise, ANSYS resets NUM to 1.

## Menu Paths

Main Menu>Preprocessor>Modeling>Create>Nodes>About AXIS Section

NCNV, KSTOP, DLIM, ITLIM, ETLIM, CPLIM

## Sets the key to terminate an analysis.

SOLUTION: Nonlinear Options
MP ME ST PR PRN <> <> <> EM EH DY PP <> EME MFS

## KSTOP

Program behavior upon nonconvergence:
0
Do not terminate the analysis if the solution fails to converge.
1
Terminate the analysis and the program execution if the solution fails to converge (default).
2
Terminate the analysis, but not the program execution, if the solution fails to converge.

## DLIM

Terminates program execution if the largest nodal DOF solution value (displacement, temperature, etc.) exceeds this limit. Defaults to 1.0E6 for all DOF except MAG and A and FLOTRAN DOF. Defaults to 1.0E10 for MAG and A. Defaults to 1.0E20 for the FLOTRAN VX, VY, VZ, PRES, and TEMP DOF. Does not apply to the FLOTRAN ENKE and ENDS DOF.

## ITLIM

Terminates program execution if the cumulative iteration number exceeds this limit (defaults to infinity).

## ETLIM

Terminates program execution if the elapsed time (seconds) exceeds this limit (defaults to infinity).

## CPLIM

Terminates program execution if the CPU time (seconds) exceeds this limit (defaults to infinity).

## Command Default

As described for each argument above.

## Notes

Sets the key to terminate an analysis if not converged, or if any of the following limits are exceeded for nonlinear and full transient analyses: DOF (displacement), cumulative iteration, elapsed time, or CPU time limit. Applies only to static and transient analyses (ANTYPE,STATIC and ANTYPE,TRANS), and FLOTRAN analyses. Time limit checks are made at the end of each equilibrium iteration. This command is ignored during an optimization run.

This command is also valid in PREP7.

## Menu Paths

Main Menu>Preprocessor>Loads>Analysis Type>Sol'n Controls>Advanced NL
Main Menu>Preprocessor>Loads>Load Step Opts>Nonlinear>Criteria to Stop
Main Menu>Solution>Analysis Type>Sol'n Controls>Advanced NL
Main Menu>Solution>Load Step Opts>Nonlinear>Criteria to Stop

NDELE, NODE1, NODE2,NINC
Deletes nodes.
PREP 7: Nodes
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NODE1, NODE2, NINC

Delete nodes from NODE1 to NODE2 (defaults to NODE1) in steps of NINC (defaults to 1). If NODE1 = ALL, NODE2 and NINC are ignored and all selected nodes [NSEL] are deleted. If NODE1 = P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NODE1.

## Notes

Deletes selected nodes that are not connected to elements. Nodes may also be redefined instead of deleted, if desired. Boundary conditions (displacements, forces, etc.) as well as any coupling or constraint equations containing the deleted nodes are also deleted.

## Menu Paths

Main Menu>Preprocessor>Modeling>Create>Circuit>Delete Elements Main Menu>Preprocessor>Modeling>Delete>Nodes

## NDIST, ND1,ND2

## Calculates and lists the distance between two nodes.

PREP 7: Nodes
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## ND1

First node in distance calculation. If $N D 1=P$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI).

## ND2

Second node in distance calculation.

## Notes

NDIST lists the distance between nodes ND1 and ND2, as well as the current coordinate system offsets from ND1 to ND2, where the $\mathrm{X}, \mathrm{Y}$, and Z locations of ND1 are subtracted from the $\mathrm{X}, \mathrm{Y}$, and Z locations of ND2 (respectively) to determine the offsets. NDIST is valid in any coordinate system except toroidal [CSYS,3].

NDIST returns a variable, called "_RETURN," which contains the distance value. You can use this value for various purposes, such as the calculation of distributed loads. In interactive mode, you can access this command by using the Model Query Picker (Utility Menu> List> Picked Entities), where you can also access automatic annotation functions and display the value on your model.

This command is valid in any processor.

## Menu Paths

## Main Menu>Preprocessor>Modeling>Check Geom>ND distances

NDSURF, Snode, Telem, DIMN

## Generates surface elements overlaid on the edge of existing elements and assigns the extra node as the closest fluid element node.

PREP 7:Elements<br>MP ME <> PR <> <> <> <> <> <> <> PP <> EME MFS

## Snode

Component name for the surface nodes of the solid elements.

## Telem

Component name for the target fluid elements.

## DIMN

Model dimensionality:
2
2-D model.
3
3-D model.

## Notes

This command macro is used to generate surface effect elements (SURF151 or SURF152) overlaid on the surface of existing plane or solid elements and, based on proximity, to determine and assign the extra node (FLUID116) for each surface element. The active element type must be SURF151 or SURF152 with appropriate settings for KEYOPT(4), KEYOPT(5), KEYOPT(6), and KEYOPT(8).

The surface nodes of the plane or solid elements must be grouped into a node component and the fluid elements must be grouped into an element component and named using the CM command. The names must be enclosed in single quotes (e.g., 'NOD') when the NDSURF command is manually typed in.

When using the GUI method, node and element components are created through the picking dialog boxes associated with this command.

The macro is applicable for the SURF151, SURF152, and FLUID116 element types.

## Menu Paths

Main Menu>Preprocessor>Modeling>Create>Elements>Surf / Contact>Surf Effect>Attch to Fluid $>$ Area to Fluid
Main Menu>Preprocessor>Modeling>Create>Elements>Surf / Contact>Surf Effect>Attch to Fluid>Line to Fluid
Main Menu>Preprocessor>Modeling>Create>Elements>Surf / Contact>Surf Effect>Attch to Fluid $>$ Node to Fluid

## NEQIT, NEQIT, FORCEkey

Specifies the maximum number of equilibrium iterations for nonlinear analyses.
SOLUTION: Nonlinear Options
MP ME ST PR PRN <> <> <> EM <> DY PP <> EME MFS

## NEQIT

Maximum number of equilibrium iterations allowed each substep.

## FORCEkey

One iteration forcing key (used only when $N E Q I T=1$ and SOLCONTROL,ON):
FORCE
Forces one iteration per substep.
(blank)
SOLCONTROL controls the minimum number of iterations (internally set to two iterations per substep if SOLCONTROL,ON).

## Note

Using one iteration per substep may result in unconverged solutions for nonlinear analysis, and the program may not indicate divergence in this case. This option is intended primarily for use by the ANSYS Workbench interface. Keep in mind that forcing one iteration per substep is only recommended under very specific conditions; for example, nonlinearity in bonded penalty type contact. Under these conditions the solution typically converges in one iteration.

## Command Default

When SOLCONTROL,ON, NEQIT is set between 15 and 26 depending on the physics of the problem. When SOLCONTROL,OFF, NEQIT defaults to 25 for all cases.

## Notes

See the description of SOLCONTROL for a complete listing of the defaults set by SOLCONTROL,ON and SOLCONTROL,OFF.

This command is also valid in PREP7.

## Menu Paths

Main Menu>Preprocessor>Loads>Analysis Type>Sol'n Controls>Nonlinear<br>Main Menu>Preprocessor>Loads>Load Step Opts>Nonlinear>Equilibrium Iter<br>Main Menu>Solution>Analysis Type>Sol'n Controls>Nonlinear<br>Main Menu>Solution>Load Step Opts>Nonlinear>Equilibrium Iter

/NERR, NMERR, NMABT, --, IFKEY, NUM
Limits the number of warning and error messages displayed.
SESSION:Run Controls
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NMERR

Maximum number of warning and error messages displayed per command. Defaults to 5 for interactive runs with the GUI turned on, 20 for interactive runs with the GUI turned off, 200 for batch runs. If $N M E R R$ is negative, the absolute value of $N M E R R$ is used as the maximum number of warning and error messages written to the error file (file.ERR) per command, as well as the maximum number of messages displayed per command.

## NMABT

Maximum number of warning and error messages allowed per command before run aborts (must be greater than zero). Maximum value is $99,999,999$. Defaults to 10,000 .

Unused field.
IFKEY
Specifies whether or not to abort if an error occurs during a /INPUT operation:

## 0 or OFF

Do not abort. This option is the default.

## 1 or ON

Abort.
NUM
The number of invalid command warnings before a stop warning will be issued:
0
Disables the stop warning/error function.
$n$
An integer value representing the number of warnings that will be encountered before prompting the user to stop (default $=5$ ). The first error encountered will ALWAYS result in a prompt.

## Note

Invalid command warnings and error tracking are mutually exclusive.

## Command Default

As described above.

## Notes

Limits the number of warning and error messages displayed for any one command in an interactive run.
Warning and error messages continue to be written to Jobname. ERR regardless of these limits (unless $N M E R R$ is negative).

Issue this command with $N U M=n$ to specify the number of "invalid command" warnings to be encountered before the user is prompted to stop. You can then continue or abort the run. If you choose to abort the run, the log file can be saved so that any of the processing up to that point can be appended to an input that rectifies the condition. A batch run always aborts on the first error. Issue /NERR,STAT to list current settings.

Issue /NERR,DEFA to reset values to initial defaults.
An IFKEY value of 1 or ON causes the ANSYS program to abort immediately upon encountering an error during a file /INPUT operation. However, use of this option may cause the following conditions to occur:

- The /INPUT command may abort if issued for a log file (jobname.log).
- Some macros may abort.
- A CAD connection may fail after reading only a small portion of a CAD model.

The command is valid in any processor.

## Menu Paths

Utility Menu>MenuCtrls>Message Controls

## NFORCE, ITEM

## Sums the nodal forces and moments of elements attached to nodes.

POST1:Special Purpose<br>MP ME ST PR PRN <> <> <> EM EH <> PP <> EME MFS

## ITEM

Specifies the selected set of nodes for summing forces and moments for contact elements.
(blank)
Sums the nodal forces of elements for all selected nodes and excludes contact elements (elements 169-177).

CONT
Sums the nodal forces of elements for contact nodes only.
BOTH
Sums the nodal forces of elements for all selected nodes, including contact elements.

## Notes

Sums and prints, in each component direction for each selected node, the nodal force and moment contributions of the selected elements attached to the node. If all elements are selected, the sums are usually zero except where constraints or loads are applied. The nodal forces and moments may be displayed [/PBC,FORC and /PBC,MOME]. Use PRESOL to print nodal forces and moments on an element-by-element basis. You can use the FORCE command to specify which component (static, damping, inertia, or total) of the nodal load is to be used. Nodal forces associated with surface loads are not included.

This vector sum is printed in the global Cartesian system. Moment summations are about the global origin unless another point is specified with the SPOINT command. The summations for each node are printed in the global Cartesian system unless transformed [RSYS]. This command is generally not applicable to
axisymmetric models because moment information from the NFORCE command is not correct for axisymmetric elements.

Selecting a subset of elements [ESEL] and then issuing this command will give the forces and moments required to maintain equilibrium of that set of elements. The effects of nodal coupling and constraint equations are ignored. The option ITEM = CONT provides the forces and moments for the contact elements (CONTA171, CONTA172, CONTA173, CONTA174, CONTA175, CONTA176, and CONTA177). Setting ITEM = BOTH provides the forces and moments for all selected nodes, including contact elements.

This command also includes the FSUM command function which vectorially sums and prints, in each component direction for the total selected node set, the nodal force and moment contributions of the selected elements attached to the selected node set.

## Using NFORCE in a Spectrum or PSD Analysis (ANTYPE, SPECTR)

When using NFORCE in a spectrum analysis after the combination file has been input (/INPUT,,MCOM), or in a PSD analysis when postprocessing 1 -sigma results (loadstep 3, 4, or 5), the following message will display in the printout header:
(Spectrum analysis summation is used)
This message means that the summation of the element nodal forces is performed prior to the combination of those forces. In this case, RSYS does not apply. The forces are in the nodal coordinate systems, and the vector sum is always printed in the global coordinate system.

Because modal displacements cannot be used to calculate contact element nodal forces, ITEM does not apply to spectrum and PSD analyses.

## Menu Paths

## Main Menu>General Postproc>Nodal Calcs>Sum @ Each Node

NGEN, ITIME, INC, NODE1, NODE2, NINC, DX, DY, DZ, SPACE
Generates additional nodes from a pattern of nodes.
PREP 7: Nodes
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## ITIME, INC

Do this generation operation a total of ITIME times, incrementing all nodes in the given pattern by INC each time after the first. ITIME must be $>1$ for generation to occur.

## NODE1, NODE2, NINC

Generate nodes from the pattern of nodes beginning with NODE1 to NODE2 (defaults to NODE1) in steps of NINC (defaults to 1 ). If NODE1 = ALL, NODE2 and NINC are ignored and the pattern is all selected nodes [NSEL]. If NODE1 = P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NODE1 (NODE2 and NINC are ignored).

## DX, DY, DZ

Node location increments in the active coordinate system (DR, D0, DZ for cylindrical, DR, D日, D $\Phi$ for spherical or toroidal).

## SPACE

Spacing ratio. Ratio of last division size to first division size. If > 1.0, divisions increase. If $<1.0$, divisions decrease. Ratio defaults to 1.0 (uniform spacing).

## Note

The average spacing ratio remains 1.0 , such that the location of the last generated set will be the same regardless of SPACE. SPACE only serves to skew the position of the nodes between the pattern set and the last set.

## Notes

Generates additional nodes from a given node pattern. Generation is done in the active coordinate system. Nodes in the pattern may have been generated in any coordinate system.

## Menu Paths

Main Menu>Preprocessor>Modeling>Copy>Nodes>Copy

NKPT, NODE, NPT
Defines a node at an existing keypoint location.
PREP 7: Nodes
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
NODE
Arbitrary reference number for node. If zero or blank, defaults to the highest node number +1 [NUMSTR].
NPT
Keypoint number defining global $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ location. If $N P T=$ All, then a node will be placed at each selected keypoint. If $N P T=P$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NPT.

## Menu Paths

## Main Menu>Preprocessor>Modeling>Create>Nodes>On Keypoint

## NLDIAG, Label, Key

## Sets nonlinear diagnostics functionality.

SOLUTION: Nonlinear Options
MP ME ST PR PRN DS DSS <> <> <> <> PP <> EME MFS

## Label

Specifies a diagnostic function:
NRRE
Store the Newton-Raphson residuals information.

## EFLG

Identify or display elements or nodes that violate the criteria.

## MAXF

Set a maximum number of files (MaxFile) to create. Information is written to Jobname. ndxxx or Jobname. nrxxx, where xxx iterates from 001 through MaxFile. When the maximum number of files is reached, the counter resets to 001 and earlier files are overwritten.

## CONT

Write contact information to a single Jobname. and text file during solution.

## Key

Sets the characteristics of the diagnostic function:

## OFF, or 0

Suppresses writing of diagnostic information. This value is the default.

## ON, or 1

Writes diagnostic information to the Jobname. ndxxx, Jobname. nrxxx, or Jobname. and file. (If Label = CONT, this option is the same as the SUBS option described below.)

## ITER

Writes contact diagnostic information at each iteration. Valid only when Label $=$ CONT.

## SUBS

Writes contact diagnostic information at each substep. Valid only when Label = CONT.
LSTP
Writes contact diagnostic information at each load step. Valid only when Label $=$ CONT.
STAT
Lists information about the diagnostic files in the current working directory.
DEL
Deletes all diagnostic files in the current working directory.

## Maxfile

Sets the maximum number of files to create (Jobname. ndxxx or Jobname. $n r x x x$ ). Valid values are 1 through 999. The default is 4 . (If you change the default MaxFile value, that value is retained until you change it again.) Valid only when Label = MAXF.

## Command Default

No nonlinear diagnostic files are written.

## Notes

The NLDIAG command is a nonlinear diagnostics tool valid for nonlinear structural analyses. It is a debugging tool for use when you must restart after an unconverged solution. The command creates Jobname. ndxxx, Jobname. nrxxx, or Jobname. cnd files in the working directory to store the information you specify.

Newton-Raphson residual Issue the NLDIAG,NRRE,ON command to create Jobname. nrxxx files which store the relevant Newton-Raphson residual information for the last MaxFile equilibrium iterations. Issue a NLDPOST,NRRE,STAT command to list the load step, substep, time, and equilibrium iteration corresponding to each of the Jobname. nrxxx files in the working directory, then issue a PLNSOL,NRRES,,,,FileID command to point to the file from which you want to create a contour plot of your Newton-Raphson residuals.

For NLDIAG,NRRE,ON, any Jobname. nrxxx files in the current (working) directory are overwritten when you issue a new SOLVE command (or restart).

Element components that violate criteria Issue a NLDIAG,EFLG,ON command to create Jobname. ndxxx files which store IDs for elements violating the following criteria:

- Too large a distortion
- Elements contain nodes that have near zero pivots for nonlinear analyses
- Too large a plastic/creep strain increment (CUTCONTROL)
- Elements for which mixed u-P constraints are not satisfied (mixed U-P option of $18 x$ solid elements only)

For NLDIAG,EFLG,ON, all Jobname. ndxxx diagnostic files in the current (working) directory are deleted when you issue a new SOLVE command (or restart).

In the solution processor (/SOLU), use the STAT option to list the active status of this command. In the postprocessor (/POST1), issue a NLDPOST,EFLG,STAT command to list the load step, substep, time, and equilibrium iteration corresponding to each of the Jobname. ndxxx files in the working directory, then issue a NLDPOST,EFLG,CM,FileID command to create element components that violate the criteria.

Contact diagnostic Issue the NLDIAG,CONT,ON command to create a Jobname. cnd file which stores contact information for all defined contact pairs at all substeps. Alternatively, you may issue one of the following commands to store contact information at a specific frequency:

- NLDIAG,CONT,ITER to write at each iteration
- NLDIAG,CONT,SUBS to write at each substep (default)
- NLDIAG,CONT,LSTP to write at each load step

File Jobname. and is written during solution and lists, on a pair-base, the following contact information:

- Number of contact elements in contact ${ }^{[1]}$
- Number of contact elements in "sticking" contact status
- Maximum chattering level
- Maximum contact penetration/Minimum gap ${ }^{[2]}$
- Maximum closed gap
- Maximum normal contact stiffness
- Minimum normal contact stiffness
- Maximum resulting pinball
- Maximum elastic slip distance
- Maximum tangential contact stiffness
- Minimum tangential contact stiffness
- Maximum sliding distance
- Maximum contact pressure
- Maximum friction stress
- Average contact depth
- Maximum closed penetration
- Number of contact points having too much penetration
- Contacting area

1. If $>0$, this quantity indicates the number of contact elements in contact. Other values are interpreted as follows:

0 indicates that the contact pair is in near-field contact status.
-1 indicates that the contact pair is in far-field contact status.
-2 indicates that the contact pair is inactive (symmetric to asymmetric contact)
2. A positive value indicates penetration and a negative value indicates a gap. If the contact pair has a far-field contact status, penetration and gap are not available and the value stored is the current pinball radius.

In the solution processor (/SOLU), use the NLDIAG,CONT,STAT command to list the active status of the contact information. If you subsequently issue a new SOLVE command (or restart), the Jobname. and file in the current (working) directory is not deleted; information is appended to it. Delete the existing file (NLDIAG,CONT,DEL command) if you do not want to retain diagnostic information from previous solutions.

For more information, see nonlinear diagnostics.
Distributed ANSYS Restriction The diagnostic function EFLG (identify or display elements or nodes that violate the criteria) is not supported in Distributed ANSYS. All other diagnostic functions are supported.

## Menu Paths

Main Menu>Solution>Diagnostics>Nonlinear Diagnostics

NLDPOST, Label, Key, FileID, Prefix

## Gets element component information from nonlinear diagnostic files.

> POST1:Special Purpose MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

## Label

Specifies the type of command operation:

## EFLG

Element flag for nonlinear diagnostics.

## NRRE

Newton-Raphson residuals.

## Key

Specifies the command action:
STAT
List information about the diagnostic files (Jobname. ndxxx or Jobname.nrxxx) in the current directory.

For Label = EFLG, the listing gives a summary that associates the loadstep, substep, time, equilibrium iteration number, cumulative iteration number, and the number of elements that fail each criteria with a specific file ID (Jobname. ndxxx). Use the list to create element components (via the CM option) based on the cumulative iteration number.

For Label = NRRE, the listing provides a summary that associates the loadstep, substep, time, equilibrium iteration number, and cumulative iteration number with a specific file ID (Jobname. nr mxx ). Use the list to identify the respective file ID for creating Newton-Raphson residual contour plots (PLNSOL,NRRE,...,FileID).

## DEL

Delete Jobname. ndxxx or Jobname. nrxxx files in the working directory, if any exist.
CM
Create components for elements that violate criteria. This value is valid only when Label = EFLG.

## FileID

Valid only when Label = EFLG and Key = CM, this value specifies file IDs:

## IDnum

The file ID number. Creates the element components from the diagnostic files corresponding to the specified file ID number in the working directory.
ALL
Creates element components from all available diagnostic files residing in the working directory. This value is the default if you do not specify an IDnum value.

## Prefix

Sets the prefix name for components. Specify up to 21 alphanumeric characters.

## Command Default

The NLDPOST command returns no nonlinear diagnostic information.

## Notes

Based on the nonlinear diagnostic results (created via the NLDIAG,EFLG command), the NLDPOST command creates element components with predefined names.

The following table lists the diagnostic criteria and component names (with specified prefix and without). Here $x x x$ corresponds to the file ID (FileID) of Jobname. ndxxx or Jobname.nrxxx.

| Elements with: | If prefix is specified: | Without prefix specified: |
| :--- | :--- | :--- |
| Too large a plastic strain increment | prefix_xxx_eppl | ndxxx_eppl |
| Too large a creep strain increment | prefix_xxx_epcr | ndxxx_epcr |
| Unsatisfied mixed u-P constraints | prefix_xxx_mxup | ndxxx_mxup |
| Too much distortion | prefix_xxx_hdst | ndxxx_hdst |
| Negative/small pivots | prefix_xxx_pivt | ndxxx_pivt |

For more information, see Performing Nonlinear Diagnostics.

## Menu Paths

Main Menu>General Postproc>Nonlinear Diagnostics

## NLGEOM, Key

## Includes large-deflection effects in a static or full transient analysis.

SOLUTION: Nonlinear Options MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

Product Restrictions

## Key

Large-deflection key:

## OFF

Ignores large-deflection effects (that is, a small-deflection analysis is specified). This option is the default.

## ON

Includes large-deflection (large rotation) effects or large strain effects, according to the element type.

## Command Default

Large-deflection effects are ignored.

## Notes

Large-deflection effects are categorized as either large deflection (or large rotation) or large strain, depending on the element type. These are listed (if available) under Special Features in the input data table for each element in the Element Reference. If used during the solution (/SOLU), this command is valid only within the first load step.

In a large-deflection analysis, pressure loads behave differently than other load types. For more information, see Load Direction in a Large-Deflection Analysis.

The gyroscopic matrix (that occurs due to rotational angular velocity) does not support large-deflection effects. The theoretical formulations for the gyroscopic matrix support small deflection (linear formulation) only.

This command is also valid in PREP7.

## Product Restrictions

In ANSYS Professional NLT, large deflection effects should not be turned on if 2-D solid (PLANEn) or 3-D solid (SOLIDn) elements are defined. ANSYS Professional NLS supports NLGEOM,ON for plane and solid elements.

## Menu Paths

# Main Menu>Preprocessor>Loads>Analysis Type>Analysis Options <br> Main Menu>Preprocessor>Loads>Analysis Type>Sol'n Controls>Basic <br> Main Menu>Solution>Analysis Type>Analysis Options 

## Main Menu>Solution>Analysis Type>Sol'n Controls>Basic

NLHIST, Key, Name, Item, Comp, NODE, ELEM, SHELL, LAYER

## Specify result items to track during solution.

SOLUTION: Nonlinear Options
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

## Key

Specifies the command operation:

## NSOL

Nodal solution data.

## ESOL

Element nodal data.

## PAIR

Contact data (pair-based).
STAT
Displays a list of items to track.
OFF or 0
Deactivates tracking of all variables. This value is the default.

## ON or 1

Activates tracking of all variables. Tracking also activates whenever any specification changes.

## DEL

Removes the specified variable from the set of result items to track. If Name = ALL (default), all specifications are removed.

## Name

The 32-character user-specified name.

## Item, Comp

Predetermined output item and component label for valid elements. See the Element Reference for more information.

NODE
Valid node number (if Key = NSOL or ESOL), or valid real constant set number (if $K e y=$ PAIR) identifying a contact pair. Required input for NSOL, ESOL, and PAIR items.

## ELEM

Valid element number for element results. Used for ESOL items. If ELEM is specified, then a node number that belongs to the element must also be specified in the NODE field.

SHELL
Valid labels are TOP, MID or BOT. This field can specify the location on shell elements for which to retrieve data. Used only for element nodal data (ESOL).

## LAYER

Layer number (for layered elements only). Used only for element nodal data (ESOL).

## Notes

The NLHIST command is a nonlinear diagnostics tool allowing you to monitor diagnostics results of interest in real time during solution.

You can track a maximum of 50 variables during solution. The specified result quantities are written to the file Jobname.nlh. Nodal results and contact results are written for every converged substep (irrespective of the OUTRES command setting) while element results are written only at time points specified via the OUTRES command. For time points where element results data is not available, a very small number is written instead. If the conditions for contact to be established are not satisfied, 0.0 will be written for contact results.

Results tracking is available only for a nonlinear structural analysis (static or transient), a nonlinear steadystate thermal analysis, or a transient thermal analysis (linear or nonlinear). All results are tracked in the Solution Coordinate System (that is, nodal results are in the nodal coordinate system and element results are in the element coordinate system). Results tracking is not available for FLOTRAN analyses.

The Jobname.nlh file is an ASCII file that lists each time point at which a converged solution occurs along with the values of the relevant result quantities.

The GUI option Solution> Results tracking provides an interface to define the result items to be tracked. The GUI also allows you to graph one or more variables against time or against other variables during solution. You can use the interface to graph or list variables from any . nlh file generated by the ANSYS program.

You can also track results during batch runs. Either access the ANSYS Launcher and select File Tracking from the Tools menu, or type nlhist130 at the command line. Use the supplied file browser to navigate to your Jobname. nlh file, and click on it to invoke the tracking utilty. You can use this utilty to read the file at any time, even after the solution is complete (the data in the file must be formatted correctly).

Specifications that you set via the NLHIST command are not saved in the database (. db file).
Table 225 NLHIST - ValidNSOL Item and Component Labels

| Item | Comp | Description |
| :--- | :--- | :--- |
| $U$ | $X, Y, Z$ | $X, Y$, or $Z$ structural displacement. |
| ROT | $X, Y, Z$ | $X, Y$, or $Z$ structural rotation. |
| F | $X, Y, Z$ | $X, Y$, or $Z$ structural reaction force. |
| M | $X, Y, Z$ | $X, Y$, or $Z$ structural reaction moment. |
| TEMP [1] | - | Temperature. |
| TEMP | MAX, MIN | Maximum or minimum temperature in the model. |
| HEAT [2] | - | Reaction heat flow. |

1. For SHELL131 and SHELL132 elements with KEYOPT(3) $=0$ or 1 , use the labels TBOT, TE2, TE3, $\ldots$, TTOP instead of TEMP.
2. For SHELL131 and SHELL132 elements with $\operatorname{KEYOPT}(3)=0$ or 1 , use the labels HBOT, HE2, HE3, $\ldots$, HTOP instead of HEAT.

Table 226 NLHIST - ValidESOL Item and Component Labels

| Item | Comp | Description |
| :---: | :---: | :---: |
| S | X, Y, Z, XY, YZ, XZ | Component stress. |
| " | 1, 2, 3 | Principal stress. |
| " | INT | Stress intensity. |
| " | EQV | Equivalent stress. |
| EPEL | $X, Y, Z, X Y, Y Z, X Z$ | Component elastic strain. |
| " | 1, 2, 3 | Principal elastic strain. |
| " | INT | Elastic strain intensity. |
| " | EQV | Elastic equivalent strain. |
| EPPL | $X, Y, Z, X Y, Y Z, X Z$ | Component plastic strain. |
| " | 1, 2, 3 | Principal plastic strain. |
| " | INT | Plastic strain intensity. |
| " | EQV | Plastic equivalent strain. |
| EPCR | X, Y, Z, XY, YZ, XZ | Component creep strain. |
| " | 1, 2, 3 | Principal creep strain. |
| " | INT | Creep strain intensity. |
| " | EQV | Creep equivalent strain. |
| EPTH | X, Y, Z, XY, YZ, XZ | Component thermal strain. |
| " | 1, 2, 3 | Principal thermal strain. |
| " | INT | Thermal strain intensity. |
| " | EQV | Thermal equivalent strain. |
| NL | SEPL | Equivalent stress (from stress-strain curve). |
| " | SRAT | Stress state ratio. |
| " | HPRES | Hydrostatic pressure. |
| " | EPEQ | Accumulated equivalent plastic strain. |
| " | CREQ | Accumulated equivalent creep strain. |
| " | PSV | Plastic state variable. |
| " | PLWK | Plastic work/volume. |
| TG | X, Y, Z, SUM | Component thermal gradient or vector sum. |
| TF | $X, Y, Z, S U M$ | Component thermal flux or vector sum. |

ETABLE items are not supported for ESOL items.

PAIR solution quantities are output on a "per contact pair" basis. As a consequence, the corresponding values listed in the Jobname.nlh file represent a minimum or a maximum over the associated contact pair, as detailed in the table below.

Table 227 NLHIST - Valid PAIR Item and Component Labels

| Item CONT | Comp | Description |
| :---: | :---: | :---: |
|  | ELCN | If $>0$, number of contact elements in contact. Other values are interpreted as follows: |
|  |  | 0 indicates the contact pair is in near-field contact status. <br> -1 indicates the contact pair is in far-field contact status. <br> -2 indicates that the contact pair is inactive (symmetric to asymmetric contact). |
| " | ELST | Number of contact elements in sticking contact status. |
| " | CNOS | Maximum chattering level. |
| " | PENE | Maximum penetration (or minimum gap). [1] |
| " | CLGP | Maximum closed (geometrical) gap. |
| " | SLID | Maximum total sliding distance. |
| " | ESLI | Maximum elastic slip distance. |
| " | KNMX | Maximum normal contact stiffness. |
| " | KTMX | Maximum tangential contact stiffness. |
| " | KNMN | Minimum normal contact stiffness. |
| " | KTMN | Minimum tangential contact stiffness. |
| " | PINB | Maximum pinball radius. |
| " | PRES | Maximum contact pressure. |
| " | SFRI | Maximum frictional stress. |
| " | CNDP | Average contact depth. |
| " | CLPE | Maximum closed (geometrical) penetration. |
| " | LGPE | Number of contact points having too much penetration. |
| " | CAREA | Contacting area. |

1. For PENE, a positive value indicates a penetration, and a negative value indicates a gap. If the contact pair has a far-field contact status, penetration and gap are not available, and the value stored for PENE is the current pinball radius.

## Menu Paths

Main Menu>Solution>Results Tracking

NLIST, NODE1, NODE2, NINC, Lcoord, SORT1, SORT2, SORT3, KINTERNAL

## Lists nodes.

PREP 7:Nodes
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NODE1, NODE2, NINC

List nodes from NODE1 to NODE2 (defaults to NODE1) in steps of NINC (defaults to 1). If NODE1 = ALL (default), NODE2 and NINC are ignored and all selected nodes [NSEL] are listed. If NODE1 = P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NODE1 (NODE2 and NINC are ignored).

## Lcoord

Coordinate listing key:

## (blank)

List all nodal information

## COORD

Suppress all but the XYZ coordinates (shown to a higher degree of accuracy than when displayed with all information).

## SORT1

First item on which to sort. Valid item names are NODE, X, Y, Z, THXY, THYZ, THXZ

## SORT2, SORT3

Second and third items on which to sort. Valid item names are the same as for SORT1.

## KINTERNAL

Internal nodes listing key:

## (blank)

List only external nodes.

## INTERNAL

List all nodes, including internal nodes.

## Notes

Lists nodes in the active display coordinate system [DSYS]. Nodal coordinate rotation angles are also listed (relative to the global Cartesian coordinate system).

Node listing can be in a sorted order (ascending). SORT2, for example, will be carried out on nodes having equal values of SORT1.

This command is valid in any processor.

## Menu Paths

## Main Menu>General Postproc>List Results>Sorted Listing>Sort Nodes Utility Menu>List>Nodes

NLOG, IR, IA, --, --, Name, --, --, FACTA, FACTB

## Forms the natural log of a variable.

> POST2 6: Operations
> MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS

IR
Arbitrary reference number assigned to the resulting variable (2 to NV [NUMVAR]). If this number is the same as for a previously defined variable, the previously defined variable will be overwritten with this result.

IA
Reference number of the variable to be operated on.
--, --
Unused fields.

## Name

Thirty-two character name identifying the variable on printouts and displays. Embedded blanks are compressed for output.

Unused fields.
FACTA
Scaling factor applied to variable IA (defaults to 1.0).

## FACTB

Scaling factor (positive or negative) applied to the operation (defaults to 1.0).

## Notes

Forms the natural log of a variable according to the operation:

```
IR = FACTB*LN(FACTA x IA)
```


## Menu Paths

Main Menu>TimeHist Postpro>Math Operations>Natural Log

## NLOPT

## Specifies "Nonlinear analysis options" as the subsequent status topic.

SOLUTION:Status
MP ME ST PR PRN <> <> FL EM <> DY PP <> EME MFS

## Notes

This is a status [STAT] topic command. Status topic commands are generated by the GUI and will appear in the log file (Jobname. LOG) if status is requested for some items under Utility Menu> List> Status. This command will be immediately followed by a STAT command, which will report the status for the specified topic.

If entered directly into the program, the STAT command should immediately follow this command.

## Menu Paths

## Utility Menu>List>Status>Solution>Nonlinear Options

NMODIF, NODE, $X, Y, Z, T H X Y, T H Y Z, T H Z X$
Modifies an existing node.
PREP 7: Nodes
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NODE

Modify coordinates of this node. If ALL, modify coordinates of all selected nodes [NSEL]. If NODE $=\mathrm{P}$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NODE.
$\mathbf{X}, \mathbf{Y}, \mathbf{Z}$
Replace the previous coordinate values assigned to this node with these corresponding coordinate values. Values are interpreted in the active coordinate system ( $\mathrm{R}, \theta, Z$ for cylindrical; $R, \theta, \Phi$ for spherical or toroidal). Leaving any of these fields blank retains the previous value(s).

## THXY

First rotation of nodal coordinate system about nodal $Z$ (positive $X$ toward $Y$ ). Leaving this field blank retains the previous value.

THYZ
Second rotation of nodal coordinate system about nodal $X$ (positive $Y$ toward $Z$ ). Leaving this field blank retains the previous value.

## THZX

Third rotation of nodal coordinate system about nodal $Y$ (positive $Z$ toward $X$ ). Leaving this field blank retains the previous value.

## Notes

Modifies an existing node. Nodal coordinate system rotation angles are in degrees and redefine any existing rotation angles. Nodes can also be redefined with the $\mathbf{N}$ command.

See the NROTAT, NANG, and NORA commands for other rotation options.

## Menu Paths

Main Menu $>$ Preprocessor $>$ Modeling $>$ Create $>$ Nodes $>$ RotateNode $>$ By Angles
Main Menu $>$ Preprocessor>Modeling>Move / Modify>Nodes>Set of Nodes
Main Menu>Preprocessor>Modeling>Move / Modify>Nodes>Single Node
Main Menu>Preprocessor>Modeling>Move / Modify>RotateNode>By Angles

NOCOLOR, KEY
Removes color from graphics displays.

> DISP LAY: Set Up
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## KEY

Color key:
0
Color the displays.
1
Do not color the displays.
2
Do not shade the displays.

## Command Default

Color graphics displays (device dependent).

## Menu Paths

It is part of the DISPLAY program.

## NODES

Specifies "Nodes" as the subsequent status topic.
PREP 7:Status
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Notes

This is a status [STAT] topic command. Status topic commands are generated by the GUI and will appear in the log file (Jobname. LOG) if status is requested for some items under Utility Menu> List> Status. This command will be immediately followed by a STAT command, which will report the status for the specified topic.

If entered directly into the program, the STAT command should immediately follow this command.

## Menu Paths

Utility Menu>List>Status>Preprocessor>Nodes

## /NOERASE

Prevents the screen erase between displays.

> GRAPHICS:Set Up
> MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS

## Command Default

Issue the command with no arguments to prevent automatic screen erase before creating the next display.

## Notes

Preventing the normal screen erase between requested displays allows you to overlay multiple views.
Clearing the screen with the ERASE command (Utility Menu> PlotCtrls> Erase Options> Erase screen) active simply clears the display area. Subsequent replots will provide the cumulative plots previously generated by the /NOERASE command.

For 3-D devices, you can issue /DV3D,DELS to suppress repeated screen overlays and generate clear contour plots.

Use the /ERASE command to reactivate automatic screen erase.
For 3-D devices (/SHOW,3D), the model in all active windows will be the same, even if you issue a different display command (NPLOT, EPLOT, etc.) for each active window. Use the Multi-Plot command (GPLOT) to display different entities, in different windows, on 3-D devices.

This command is valid in any processor.

## Menu Paths

Utility Menu>PlotCtrls>Erase Options>Erase between Plots

## /NOLIST

## Suppresses the data input listing.

> SESSION: List Controls
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Command Default

Issue the command with no arguments to suppress the data input listing.

## Notes

Printout is suppressed until a /GOLIST command is read or the end of the listing is encountered.
This command is valid in any processor, but only within a batch run [/BATCH].

## Menu Paths

This command cannot be accessed from a menu.

NOOFFSET, Label

## Prevents the CDREAD command from offsetting specified data items

PREP 7: Database<br>MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Label

Specifies items not to be offset.

## NODE

Node numbers

## ELEM

Element numbers
KP
Keypoint numbers

## LINE

Line numbers

## AREA

Area numbers

## VOLU

Volume numbers
MAT
Material numbers
TYPE
Element type numbers

## REAL

Real constant numbers
CSYS
Coordinate system numbers

## SECN

Section numbers
CP
Coupled set numbers
CE
Constraint equation numbers
CLEAR
All items will be offset
STATUS
Shows which items are specified notto be offset.

## Notes

The NOOFFSET command specifies data items not to be offset by a set of data read from a CDREAD command.

## Menu Paths

This command cannot be accessed from a menu.

## NOORDER, Lab

## Re-establishes the original element ordering.

PREP 7: Element Reordering
MP ME ST PR PRN <> <> <> EM EH <> PP <> EME MFS

## Lab

Turns element reordering on or off.

## ON (or blank)

Re-establishes original element ordering (default).
OFF
Original ordering is not used and program establishes its own ordering at the beginning of the solution phase.

## Notes

If $L a b=O N$, the original element ordering is re-established and no automatic reordering occurs at the beginning of the solution phase. Use $L a b=$ OFF only to remove the effect of a previous NOORDER command. This command affects only those elements that were defined up to the point that this command is issued. See the WSORT and WAVES commands for reordering.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu>Preprocessor>Numbering Ctrls>Element Reorder>Reset Elem Order

## /NOPR

Suppresses the expanded interpreted input data listing.
SESSION: List Controls
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Command Default

Issuing this command with no arguments suppresses the interpreted data input print out.

## Notes

Suppresses printout of interpreted input data, including information labeled as "Notes." When this printout is not suppressed, the data input to the analysis is echoed to the output file in an expanded format. Printout is suppressed until a /GOPR or /GO command is read.

Use of /NOPR is not recommended when the graphical user interface (GUI) is active. The GUI sometimes issues "hidden" /NOPR and /GOPR command sequences, which will countermand user-issued /NOPR commands, thus making the use of /NOPR in the GUI environment unpredictable.

This command is valid in any processor.

## Menu Paths

Main Menu>Preprocessor>Coupling / Ceqn>Rigid Region<br>Main Menu>Preprocessor>Loads>Define Loads>Settings>Replace vs Add>Smooth Data<br>Main Menu>Preprocessor>LS-DYNA Options>Loading Options>Smooth Data<br>Main Menu>Preprocessor>Modeling>Delete>Pre-tens Elemnts<br>Main Menu>Solution>Define Loads>Settings>Replace vs Add>Smooth Data<br>Main Menu>Solution>Loading Options>Smooth Data<br>Main Menu>Solution>Time Controls>Time Step Prediction<br>Main Menu>TimeHist Postpro>Smooth Data

NORA, AREA, NDIR

## Rotates nodal coordinate systems to surface normal

PREP 7: Nodes
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## AREA

The area number containing the nodes to be rotated to their normals. If ALL, applies to all selected areas (see the ASEL command). If AREA $=P$, graphical picking is enabled.

## NDIR

Direction of the normal. If NDIR $=-1$, the nodal coordinate system is rotated in the opposite direction of the surface normal. The default is the same direction as the surface normal.

## Notes

The NORA command rotates the X-axis of the nodal coordinate system to the surface normal. The rotated nodal coordinate systems may be displayed through the /PSYMB command. In case multiple areas are selected, there could be conflicts at the boundaries. If a node belongs to two areas that have a different normal, its nodal coordinate system will be rotated to the area normal with the lowest number. You can use the AREVERSE and ANORM commands to rotate the surface normals in the appropriate direction. Keep the following in mind when using the NORA command:

- If the nodal coordinate system is parallel to the global Cartesian system, it is not displayed through the /PSYMB command.
- Previously specified rotation on the selected nodes are overridden.


## Menu Paths

Main Menu>Preprocessor>Modeling>Move / Modify>RotateNode>To Surf Norm>On Areas

NORL, LINE, AREA, NDIR
Rotates nodal coordinate systems perpendicular to line normal
PREP 7: Nodes
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## LINE

Line number containing the nodes to be rotated. If ALL, applies to all selected lines (see the LSEL command). If $L I N E=\mathrm{P}$, graphical picking is enabled.

## AREA

The area number containing the selected lines. The normal of the line(s) selected is supposed to lie on this area. Defaults to the lowest numbered selected area containing the line number.

## NDIR

Direction of the normal. If $N D I R=-1$, the nodal coordinate system is rotated in the opposite direction of the line normal. The default is the same direction as the surface normal.

## Notes

The NORL command rotates the X-axis of the nodal coordinate perpendicular to the line normal. The rotated nodal coordinate systems may be displayed through the /PSYMB command. In case multiple lines are selected, there could be conflicts at the boundaries. If a node belongs to two lines that have a different normal, its nodal coordinate system will be rotated to the line normal with the lowest number. Keep the following in mind when using the NORL command:

- If the nodal coordinate system is parallel to the global Cartesian system, it is not displayed through the /PSYMB command.
- Previously specified rotation on the selected nodes are overridden.


## Menu Paths

Main Menu>Preprocessor>Modeling>Move / Modify>RotateNode $>$ To Surf Norm>On Lines Main Menu>Preprocessor>Modeling>Move / Modify>RotateNode>To Surf Norm>with Area
/NORMAL, $W N, K E Y$

## Allows displaying area elements by top or bottom faces.

> GRAPHICS: Style
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

WN
Window number (or ALL) to which command applies (defaults to 1 ).
KEY
Display key:

0
No face distinction.
1
Show only area elements having their positive normals directed toward the viewing point.
-1
Show only area elements having their positive normals directed away from the viewing point.

## Command Default

Do not distinguish between top face and bottom face elements.

## Notes

/NORMAL allows you to select area elements and area plots by the top or bottom faces. It is useful for checking the normal directions on shell elements. The positive normal (element $Z$ direction) is defined by the right-hand rule following the node $\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}$ input direction. This command is available only with raster or hidden-line displays, for WIN32 or X11 2-D displays only.

This command is valid in any processor.

## Menu Paths

Utility Menu>PlotCtrls>Style>Shell Normals

## NPLOT, $k N \cup M$

## Displays nodes.

PREP7:Nodes
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## KNUM

Node number key:
0
No node numbers on display.
1
Include node numbers on display. See also /PNUM command.

## Notes

Produces a node display. Only selected nodes [NSEL] are displayed. Elements need not be defined. See the DSYS command for display coordinate system.

This command is valid in any processor.

## Menu Paths

Main Menu $>$ Preprocessor $>$ Modeling $>$ Move / Modify $>$ RotateNode $>$ To Surf Norm $>$ On Areas Main Menu>Preprocessor>Modeling>Move / Modify>RotateNode>To Surf Norm>On Lines

```
Main Menu>Preprocessor>Modeling>Move / Modify>RotateNode>To Surf Norm>with Area Utility Menu>Plot>Nodes
```


## NPRINT, $N$

## Defines which time points stored are to be listed.

POST26:Listing
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
N
List data associated with every $N$ time (or frequency) point(s), beginning with the first point stored (defaults to 1).

## Command Default

List all stored points.

## Notes

Defines which time (or frequency) points within the range stored are to be listed.

## Menu Paths

## Main Menu>TimeHist Postpro>Settings $>$ List

NREAD, Fname, Ext,--
Reads nodes from a file.
PREP 7: Nodes
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Fname

File name and directory path ( 248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

The file name defaults to Jobname.
Ext
Filename extension (8 character maximum).
The extension defaults to NODE if Fname is blank.

Unused field.

## Notes

The read operation is not necessary in a standard ANSYS run but is provided as a convenience to users wanting to read a coded node file, such as from another mesh generator or from a CAD/CAM program. Data
should be formatted as produced with the NWRITE command. Only nodes that are within the node range specified with the NRRANG command are read from the file. Duplicate nodes already in the database will be overwritten. The file is rewound before and after reading. Reading continues until the end of the file.

## Menu Paths

Main Menu $>$ Preprocessor $>$ Modeling $>$ Create $>$ Nodes $>$ Read Node File

NREFINE, NN1, NN2, NINC, LEVEL, DEPTH, POST, RETAIN
Refines the mesh around specified nodes.
PREP 7: Meshing
MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS

## NN1, NN2, NINC

Nodes (NN1 to NN2 in increments of NINC) around which the mesh is to be refined. NN2 defaults to NN1, and NINC defaults to 1 . If NN1 = ALL, NN2 and NINC are ignored and all selected nodes are used for refinement. If NN1 $=P$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NN1 (NN2 and NINC are ignored).

## LEVEL

Amount of refinement to be done. Specify the value of $L E V E L$ as an integer from 1 to 5 , where a value of 1 provides minimal refinement, and a value of 5 provides maximum refinement (defaults to 1 ).

## DEPTH

Depth of mesh refinement in terms of number of elements outward from the indicated nodes (defaults to 1 ).

## POST

Type of postprocessing to be done after element splitting, in order to improve element quality:

## OFF

No postprocessing will be done.

## SMOOTH

Smoothing will be done. Node locations may change.

## CLEAN

Smoothing and cleanup will be done. Existing elements may be deleted, and node locations may change (default).

## RETAIN

Flag indicating whether quadrilateral elements must be retained in the refinement of an all-quadrilateral mesh. (The ANSYS program ignores the RETAIN argument when you are refining anything other than a quadrilateral mesh.)

## ON

The final mesh will be composed entirely of quadrilateral elements, regardless of the element quality (default).

## OFF

The final mesh may include some triangular elements in order to maintain element quality and provide transitioning.

## Notes

NREFINE performs local mesh refinement around the specified nodes. By default, the indicated elements are split to create new elements with $1 / 2$ the edge length of the original elements ( $L E V E L=1$ ).

NREFINE refines all area elements and tetrahedral volume elements that are adjacent to the specified nodes. Any volume elements that are adjacent to the specified nodes, but are not tetrahedra (for example, hexahedra, wedges, and pyramids), are not refined.

You cannot use mesh refinement on a solid model that contains initial conditions at nodes [IC], coupled nodes [CP family of commands], constraint equations [CE family of commands], or boundary conditions or loads applied directly to any of its nodes or elements. This applies to nodes and elements anywhere in the model, not just in the region where you want to request mesh refinement. For additional restrictions on mesh refinement, see Revising Your Model in the Modeling and Meshing Guide.

This command is also valid for rezoning.

## Menu Paths

Main Menu>Preprocessor>Meshing>Modify Mesh>Refine At>Nodes

NRLSUM, SIGNIF, Label

## Specifies the Naval Research Laboratory (NRL) sum mode combination method.

SOLUTION: Spectrum Options
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS
Product Restrictions

## SIGNIF

Combine only those modes whose significance level exceeds the SIGNIF threshold. For single point, multipoint, or DDAM response (SPOPT,SPRS, MPRS or DDAM), the significance level of a mode is defined as the mode coefficient of the mode, divided by the maximum mode coefficient of all modes. Any mode whose significance level is less than SIGNIF is considered insignificant and is not contributed to the mode combinations. The higher the SIGNIF threshold, the fewer the number of modes combined. SIGNIF defaults to 0.001 . If SIGNIF is specified as 0.0 , it is taken as 0.0 . (This mode combination method is not valid for SPOPT,PSD.)

## Label

Label identifying the combined mode solution output.
DISP
Displacement solution (default). Displacements, stresses, forces, etc., are available.
VELO
Velocity solution. Velocities, "stress velocities," "force velocities," etc., are available.
ACEL
Acceleration solution. Accelerations, "stress accelerations," "force accelerations," etc., are available.

## Notes

This command is also valid in PREP7. This mode combination method is usually used for SPOPT,DDAM.

## Product Restrictions

NRLSUM is not allowed in ANSYS Professional.

## Menu Paths

Main Menu>Preprocessor>Loads>Load Step Opts>Spectrum>Mode Combine
Main Menu>Preprocessor>Loads>Load Step Opts>Spectrum>MultiPt>Mode Combine
Main Menu>Preprocessor>Loads>Load Step Opts>Spectrum>SinglePt>Mode Combine
Main Menu>Solution>Load Step Opts>Spectrum>Mode Combine
Main Menu>Solution>Load Step Opts>Spectrum>MultiPt>Mode Combine
Main Menu>Solution>Load Step Opts>Spectrum>SinglePt>Mode Combine
*NRM, Name, NormType, ParR
Computes the norm of the specified matrix or vector.

> APDL:Matrix Operations
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Argument Descriptions

## Name

Matrix or vector for which the norm will be computed. This can be a dense matrix (created by the *DMAT command), a sparse matrix (created by the *SMAT command) or a vector (created by the *VEC command)

## NormType

Mathematical norm to use:
NRM2 --
L2 (Euclidian or SRSS) norm (default).
NRM1 --
L1 (absolute sum) norm (vectors only).
NRMINF --
Maximum norm.

## ParR

Parameter name that contains the result.

## Notes

The NRM2 option corresponds to the Euclidian or L2 norm and is applicable to either vectors or matrices. The NRM1 option corresponds to the L1 norm and is applicable to vectors only. The NRMINF option is the maximum norm and is applicable to either vectors or matrices.

## Menu Paths

This command cannot be accessed from a menu.

## NROPT, Option1, Option2, Optval

## Specifies the Newton-Raphson options in a static or full transient analysis.

SOLUTION: Nonlinear Options
MP ME ST $<>$ PRN $<><><>$ EM $<><>$ PP $<>$ EME MFS
Option1
Option key:
AUTO
Let the program choose the option (default).
FULL
Use full Newton-Raphson.
MODI
Use modified Newton-Raphson.

## INIT

Use the previously computed matrix (initial-stiffness).

## UNSYM

Use full Newton-Raphson with unsymmetric matrices of elements where the unsymmetric option exists.

## Option2

Option key:

## CRPL

When applicable in a static creep analysis, activates modified Newton-Raphson with a creep-ratio limit. Valid only when Option $1=$ AUTO.

## Optval

Adaptive descent key:
ON
Use adaptive descent (default if frictional contact exists). Explicit ON is valid only if Option = FULL.
OFF
Do not use adaptive descent (default in all other cases).

## CRLIMIT

The creep-ratio limit for use with the modified Newton-Raphson procedure. Typically, this value should not exceed 0.15 . Valid only when Option $1=$ AUTO (default) and Option $2=$ CRPL.

## Notes

The NROPT command specifies the Newton-Raphson option used to solve the nonlinear equations in a static or full transient analysis.

If used within the solution processor, this command is valid only within the first load step.
The automatic modified Newton-Raphson procedure with creep-ratio limit control (NROPT,AUTO,CRPL, CRLIMIT) applies to static creep analysis only. When the creep ratio is smaller than value of the creep ratio limit specified, the modified Newton-Raphson procedure is used. If convergence difficulty occurs during solution, use the full Newton-Raphson procedure.

The default values given for this command assume SOLCONTROL,ON (the default). See the description of SOLCONTROL for a complete listing of the defaults set by SOLCONTROL,ON and SOLCONTROL,OFF.

See Newton-Raphson Option in the Structural Analysis Guide for more information.
This command is also valid in PREP7.

## Menu Paths

Main Menu>Preprocessor>Loads>Analysis Type>Analysis Options Main Menu>Solution>Analysis Type>Analysis Options

## NROTAT, NODE1,NODE2,NINC

Rotates nodal coordinate systems into the active system.
PREP 7: Nodes
MP ME ST PR PRN <> <> FL EM EH <> PP <> EME MFS

## NODE1, NODE2, NINC

Rotate nodes from NODE1 to NODE2 (defaults to NODE1) in steps of NINC (defaults to 1). If NODE1 = ALL, NODE2 and NINC are ignored and all selected nodes [NSEL] are rotated. If NODE1 = P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NODE1 (NODE2 and NINC are ignored).

## Command Default

No automatic nodal rotation.

## Notes

Rotates nodal coordinate systems into the active coordinate system. Nodal coordinate systems may be automatically rotated into the active (global or local) coordinate system as follows: Rotations in Cartesian systems will have nodal x directions rotated parallel to the Cartesian X direction. Rotations in cylindrical, spherical or toroidal systems will have the nodal $x$ directions rotated parallel to the $R$ direction. Nodes at (or near) a zero radius location should not be rotated. Nodal coordinate directions may be displayed [/PSYMB]. Nodal forces and constraints will also appear rotated when displayed if the nodal coordinate system is rotated. For FLOTRAN analyses, nodal coordinate systems should only be rotated parallel to the global Cartesian system.

ANSYS LS-DYNA (explicit dynamics) does not support the NROTAT command. If you have rotated nodes in the implicit phase of an implicit-to-explicit sequential solution, you must rotate the nodes back to the global Cartesian direction before switching from implicit to explicit elements (ETCHG,ITE). Use the EDNROT command in the explicit run to maintain the same displacement constraints as were used on rotated nodes in the implicit run.

## Note

When the nodal coordinate systems are defined, they remain parallel to the global Cartesian system unless subsequently rotated.

Previously specified rotations on the specified nodes are overridden.
See the NMODIF, NANG, and NORA commands for other rotation options.

## Menu Paths

Main Menu $>$ Preprocessor $>$ Modeling $>$ Create $>$ Nodes $>$ RotateNode $>$ To Active CS Main Menu>Preprocessor>Modeling>Move / Modify>RotateNode>To Active CS

NRRANG, NMIN, NMAX, NINC
Specifies the range of nodes to be read from the node file.
PREP 7: Nodes
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NMIN, NMAX, NINC

Node range is defined from NMIN (defaults to 1) to NMAX (defaults to 99999999) in steps of NINC (defaults to 1).

## Notes

Defines the range of nodes to be read [NREAD] from the node file. Also implies an element range since only elements fully attached to these nodes will be read from the element file.

## Menu Paths

## Main Menu $>$ Preprocessor $>$ Modeling $>$ Create $>$ Nodes $>$ Read Node File

NSCALE, INC, NODE1, NODE2, NINC, RX, RY, RZ

## Generates a scaled set of nodes from a pattern of nodes.

PREP 7: Nodes
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
INC
Do this scaling operation one time, incrementing all nodes in the given pattern by $I N C$. If $I N C=0$, nodes will be redefined at the scaled locations.

## NODE1, NODE2, NINC

Scale nodes from pattern of nodes beginning with NODE1 to NODE2 (defaults to NODE1) in steps of NINC (defaults to 1). If NODE1 = ALL, NODE2 and NINC are ignored and pattern is all selected nodes [NSEL]. If NODE1 = P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NODE1 (NODE2 and NINC are ignored).

## RX, RY, RZ

Scale factor ratios. Scaling is relative to the origin of the active coordinate system (RR, R $\theta$, RZ for cylindrical, $R R, R \theta, R \Phi$ for spherical or toroidal). If absolute value of ratio > 1.0, pattern is enlarged. If < 1.0, pattern is reduced. Ratios default to 1.0 (each).

## Notes

Generates a scaled pattern of nodes from a given node pattern. Scaling is done in the active coordinate system. Nodes in the pattern may have been generated in any coordinate system.

## Menu Paths

Main Menu>Preprocessor>Modeling>Copy>Nodes>Scale \& Copy
Main Menu>Preprocessor>Modeling>Move / Modify>Nodes>Scale \& Move
Main Menu $>$ Preprocessor>Modeling>Operate>Scale>Nodes>Scale \& Copy
Main Menu>Preprocessor>Modeling>Operate>Scale>Nodes>Scale \& Move

NSEL, Type, Item, Comp, VMIN, VMAX, VINC, KABS
Selects a subset of nodes.

> DATABASE: Selecting
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Type

Label identifying the type of select:
S
Select a new set (default).
R
Reselect a set from the current set.
A
Additionally select a set and extend the current set.
U
Unselect a set from the current set.

## ALL

Restore the full set.

## NONE

Unselect the full set.
INVE
Invert the current set (selected becomes unselected and vice versa).
STAT
Display the current select status.
The following fields are used only with Type $=\mathrm{S}, \mathrm{R}, \mathrm{A}$, or U :

## Item

Label identifying data. Valid item labels are shown in the table below. Some items also require a component label. If Item = PICK (or simply "P"), graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). Defaults to NODE.

## Comp

Component of the item (if required). Valid component labels are shown in the table below.

## VMIN

Minimum value of item range. Ranges are node numbers, set numbers, coordinate values, load values, or result values as appropriate for the item. A component name (as specified on the CM command) may also be substituted for VMIN (VMAX and VINC are ignored).

## VMAX

Maximum value of item range. VMAX defaults to VMIN for input values. For result values, VMAX defaults to infinity if VMIN is positive, or to zero if VMIN is negative.

## VINC

Value increment within range. Used only with integer ranges (such as for node and set numbers). Defaults to 1 . VINC cannot be negative.

## KABS

Absolute value key:
0
Check sign of value during selection.

## 1

Use absolute value during selection (sign ignored).

## Command Default

All nodes are selected.

## Notes

Selects a subset of nodes. For example, to select a new set of nodes based on node numbers 1 through 7, use NSEL,S,NODE, 1,7 . The subset is used when the ALL label is entered (or implied) on other commands, such as NLIST,ALL. Only data identified by node number are selected. Data are flagged as selected and unselected; no data are actually deleted from the database.

When selecting nodes by results, the full graphics value is used, regardless of whether PowerGraphics is on.
Solution result data consists of two types, 1) nodal degree of freedom--results initially calculated at the nodes (such as displacement, temperature, pressure, etc.), and 2) element--results initially calculated elsewhere (such as at an element integration point or thickness location) and then recalculated at the nodes (such as stresses, strains, etc.). Various element results also depend upon the recalculation method and the selected results location [AVPRIN, RSYS, FORCE, LAYER and SHELL].

You must have all the nodes (corner and midside nodes) on the external face of the element selected to use Item = EXT.

This command is valid in any processor.
For Selects based on non-integer numbers (coordinates, results, etc.), items that are within the range VMIN-Toler and VMAX+Toler are selected. The default tolerance Toler is based on the relative values of VMIN and VMAX as follows:

- If $\mathrm{VMIN}=\mathrm{VMAX}$, Toler $=0.005 \times \mathrm{VMIN}$.
- If $\mathrm{VMIN}=\mathrm{VMAX}=0.0$, Toler $=1.0 \mathrm{E}-6$.
- If VMAX $\neq \mathrm{VMIN}$, Toler $=1.0 \mathrm{E}-8 \mathrm{x}$ (VMAX-VMIN).

Use the SELTOL command to override this default and specify Toler explicitly.

## Table 228 NSEL - Valid Item and Component Labels

Valid Item and Component Labels NSEL, Type, Item, Comp, VMIn, vmax, vINC, KABS
Valid item and component labels for input values are:

Item NODE EXT

| LOC | $X, Y, Z$ |
| :--- | :--- |
| ANG | $X Y, Y Z, Z X$ |
| M |  |
| CP |  |
| CE |  |
| D | $U$ |

ROTZ
TEMP, TBOT, TE2, Temperature.
TE3, ...,TTOP
PRES
VOLT
MAG
V
VX, VY, VZ
A

AX, AY, AZ

CURR
EMF
ENKE, ENDS
F

FX, FY, FZ
M

MX, MY, MZ

UX, UY, UZ $\quad X, Y$, or $Z$ structural displacement. Amplitude only, if complex.
ROT Any of X, Y, or Z structural rotations. Amplitude only, if complex.
ROTX, ROTY, $\quad X, Y$, or $Z$ structural rotation. Amplitude only, if complex.
Description
Node number.
Nodes on exterior of selected elements (ignore remaining fields).
$X, Y$, or $Z$ location in the active coordinate system.
THXY, THYZ, or THZX rotation angle.
Master node number.
Coupled set number.
Constraint equation set number.
Any of $X, Y$, or $Z$ structural displacements. Amplitude only, if complex. Any of $X, Y$, or $Z$ structural rotations. Amplitude only, if

Pressure.
Electric potential.
Magnetic scalar potential.
Any of $X, Y$, or $Z$ fluid velocities.
$X, Y$, or $Z$ fluid velocity.
Any of $X, Y$, or $Z$ magnetic vector potentials. Amplitude only, if complex.
$X, Y$, or $Z$ magnetic vector potential. Amplitude only, if complex.
Current.
Electromotive force drop.
Turbulent kinetic energy or energy dissipation (FLOTRAN).
Any of $X, Y$, or $Z$ structural forces. Amplitude only, if complex.
$X, Y$, or $Z$ structural force. Amplitude only, if complex.
Any of $\mathrm{X}, \mathrm{Y}$, or Z structural moments. Amplitude only, if complex
$X, Y$, or $Z$ structural moment. Amplitude only, if complex.

| Valid item and component labels for input values are: |  |  |
| :---: | :---: | :---: |
| Item | Comp | Description |
| " | HEAT, HBOT, HE2, HE3, ..., HTOP | Heat flow. |
| " | FLOW | Fluid flow. |
| " | AMPS | Current flow. |
| " | FLUX | Magnetic flux. |
| " | CSG | Any of $X$, $Y$, or $Z$ magnetic current segment components. Amplitude only, if complex. |
| " | CSGX, CSGY, | $\mathrm{X}, \mathrm{Y}$, or Z magnetic current segment component. Amplitude only, if complex. |
|  | CSGZY, | if complex. |
| " | CHRG | Electric charge. |
| " | CHRGD | Electric charge density. |
| BF | TEMP | Nodal temperature. |
| " | FLUE | Nodal fluence. |
| " | HGEN | Nodal heat generation rate. |
| " | JS | Any of $X, Y$, or $Z$ current densities. Amplitude only, if complex. |
| " | JSX, JSY, JSZ | $\mathrm{X}, \mathrm{Y}$, or Z current density. Amplitude only, if complex. |
| " | MVDI | Magnetic virtual displacements flag. |
| Table 2 | NSEL - Valid Ite | and Component Labels for Nodal DOF Result Values |
| Item | Comp | Description |
| U | X, Y, Z, SUM | $X, Y$, or $Z$ structural displacement or vector sum. |
| ROT | $X, Y, Z, S U M$ | $X, Y$ or $Z$ structural rotation or vector sum. |
| TEMP |  | Temperature. |
| PRES |  | Pressure. |
| VOLT |  | Electric potential. |
| MAG |  | Magnetic scalar potential. |
| V | X, Y, Z, SUM | $X, Y$, or $Z$ fluid velocity or vector sum. |
| A | $X, Y, Z, S U M$ | $X, Y$ or $Z$ magnetic vector potential or vector sum. |
| CURR |  | Current. |
| EMF |  | Electromotive force drop. |
| ENKE |  | Turbulent kinetic energy (FLOTRAN). |



| Item | Comp | Description |
| :--- | :--- | :--- |
| EF | $X, Y, Z$, SUM | Component electric field or vector sum. |
| D | $X, Y, Z$, SUM | Component electric flux density or vector sum. |
| H | $X, Y, Z$, SUM | Component magnetic field intensity or vector sum. |
| B | $X, Y, Z$, SUM | Component magnetic flux density or vector sum. |
| FMAG | $X, Y, Z$, SUM | Component electromagnetic forces or vector sum. |
| TOPO |  | Densities used for topological optimization. |

1. For more information on the meaning of contact status and its possible values, see Reviewing Results in POST1 in the Contact Technology Guide.

Table 231 NSEL - Valid Item and Component Labels for FLOTRAN Nodal Result Values

Item
TTOT
HFLU
HFLM
COND
PCOE
PTOT
MACH
STRM
DENS
VISC
EVIS
CMUV
ECON
YPLU
TAUW

Comp
Total temperature.
Heat flux.
Heat transfer (film) coefficient. Fluid laminar conductivity.
Pressure coefficient.
Total (stagnation) pressure.
Mach number.
Stream function. (2-D applications only.)
Fluid density.
Fluid laminar viscosity.
Fluid effective viscosity.
Turbulent viscosity coefficient.
Fluid effective conductivity.
$\mathrm{Y}+$, a turbulent law of the wall parameter.
Shear stress at the wall.

## Menu Paths

# Main Menu>Preprocessor>Modeling>Create>Circuit>Delete Elements <br> Main Menu>Preprocessor>Modeling>Delete>Pre-tens Elemnts <br> Utility Menu>Select>Entities 

NSLA, Type, NKEY
Selects those nodes associated with the selected areas.

DATABASE: Selecting<br>MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Type

Label identifying the type of node select:
S
Select a new set (default).
R
Reselect a set from the current set.
A
Additionally select a set and extend the current set.
U
Unselect a set from the current set.
NKEY
Specifies whether only interior area nodes are to be selected:
0
Select only nodes interior to selected areas.
1
Select all nodes (interior to area, interior to lines, and at keypoints) associated with the selected areas.

## Notes

Valid only if the nodes were generated by an area meshing operation [AMESH, VMESH] on a solid model that contains the selected areas.

This command is valid in any processor.

## Menu Paths

Utility Menu>Select>Entities

NSLE, Type, NodeType, Num
Selects those nodes attached to the selected elements.

> DATABASE: Selecting
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Type

Label identifying the type of node select:
S
Select a new set (default).

R
Reselect a set from the current set.
A
Additionally select a set and extend the current set.
U
Unselect a set from the current set.

## NodeType

Label identifying type of nodes to consider when selecting:
ALL
Select all nodes of the selected elements (default).

## ACTIVE

Select only the active nodes. An active node is a node that contributes DOFs to the model.

## INACTIVE

Select only inactive nodes (such as orientation or radiation).

## CORNER

Select only corner nodes.

## MID

Select only midside nodes.

## POS

Select nodes in position Num.

## FACE

Select nodes on face Num.

## Num

Position or face number for NodeType $=$ POS or FACE.

## Notes

NSLE selects NodeType nodes attached to the currently-selected set of elements. Only nodes on elements in the currently-selected element set can be selected.

## Note

When using degenerate hexahedral elements, NSLE, U,CORNER and NSLE,S,MID will not select the same set of nodes because some nodes appear as both corner and midside nodes.

This command is valid in any processor.

## Menu Paths

Main Menu>Preprocessor>Modeling>CMS>CMS Superelements>By Picking
Main Menu>Preprocessor>Modeling>Delete>Pre-tens Elemnts
Utility Menu>Select>Entities

## NSLK, Type

## Selects those nodes associated with the selected keypoints.

DATABASE: Selecting<br>MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Type

Label identifying the type of node select:
S
Select a new set (default).
R
Reselect a set from the current set.
A
Additionally select a set and extend the current set.
U
Unselect a set from the current set.

## Notes

Valid only if the nodes were generated by a keypoint meshing operation [KMESH, LMESH, AMESH, VMESH] on a solid model that contains the selected keypoints.

This command is valid in any processor.

## Menu Paths

## Utility Menu>Select>Entities

NSLL, Type, NKEY
Selects those nodes associated with the selected lines.

> DATABASE: Selecting
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Type

Label identifying the type of node select:
S
Select a new set (default).
R
Reselect a set from the current set.
A
Additionally select a set and extend the current set.
U
Unselect a set from the current set.
NKEY
Specifies whether only interior line nodes are to be selected:

## 0

Select only nodes interior to selected lines.
1
Select all nodes (interior to line and at keypoints) associated with the selected lines.

## Notes

Valid only if the nodes were generated by a line meshing operation [LMESH, AMESH, VMESH] on a solid model that contains the associated lines.

This command is valid in any processor.

## Menu Paths

## Utility Menu>Select>Entities

## NSLV, Type, NKEY

## Selects those nodes associated with the selected volumes.

## Type

Label identifying the type of node select:
S
Select a new set (default).
R
Reselect a set from the current set.
A
Additionally select a set and extend the current set.
U
Unselect a set from the current set.
NKEY
Specifies whether only interior volume nodes are to be selected:
0
Select only nodes interior to selected volumes.
1
Select all nodes (interior to volume, interior to areas, interior to lines, and at keypoints) associated with the selected volumes.

## Notes

Valid only if the nodes were generated by a volume meshing operation [VMESH] on a solid model that contains the selected volumes.

This command is valid in any processor.

## Menu Paths

Utility Menu>Select>Entities

## NSMOOTH,NPASS

## Smooths selected nodes among selected elements.

PREP 7: Nodes
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NPASS

Number of smoothing passes. Defaults to 3.

## Notes

Repositions each selected node at the average position of its immediate neighbors on the selected elements. The node positions converge after some number of smoothing passes. For some initial conditions, NPASS may need to be much larger than 3 . If the boundary of a mesh is to be undisturbed (usually desirable), the boundary nodes should be unselected before issuing NSMOOTH.

## Menu Paths

This command cannot be accessed from a menu.

NSOL, NVAR, NODE, Item, Comp, Name, SECTOR

## Specifies nodal data to be stored from the results file.

> POST2 6: Set Up
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NVAR

Arbitrary reference number or name assigned to this variable. Variable numbers can be 2 to $N V$ (NUMVAR) while the name can be an eight byte character string. Overwrites any existing results for this variable.

## NODE

Node for which data are to be stored.

## Item

Label identifying the item. Valid item labels are shown in the table below. Some items also require a component label.

## Comp

Component of the item (if required). Valid component labels are shown in the table below.

## Name

Thirty-two character name identifying the item on printouts and displays. Defaults to a label formed by concatenating the first four characters of the Item and Comp labels.

## SECTOR

For a cyclic symmetry solution, the sector number for which the results from NODE are to be stored.

## Notes

Stores nodal degree of freedom and solution results in a variable. For more information, see Data Interpreted in the Nodal Coordinate System in the Modeling and Meshing Guide.

| Valid Item and Component Labels NSOL, NVAR, NODE, Item, Comp, Name |  |  |
| :---: | :---: | :---: |
| Valid item and component labels for nodal degree of freedom results are: |  |  |
| Item | Comp | Description |
| U | X, Y, Z | X, Y, or Z structural displacement. |
| ROT | $X, Y, Z$ | $X, Y$, or $Z$ structural rotation. |
| TEMP[1] |  | Temperature. |
| PRES |  | Pressure. |
| VOLT |  | Electric potential. |
| MAG |  | Magnetic scalar potential. |
| V | X, Y, Z | $X, Y$, or $Z$ fluid velocity in a fluid analysis. |
| A | $X, Y, Z$ | $X, Y$, or $Z$ magnetic vector potential in an electromagnetic analysis. |
| VEL | X, Y, Z | $X, Y$, or $Z$ velocity in a structural transient dynamic analysis (ANTYPE,TRANS). |
| ACC | X, Y, Z | $X, Y$, or $Z$ acceleration in a structural transient dynamic analysis (ANTYPE,TRANS). |
| OMG | X, Y, Z | $X, Y$, or $Z$ rotational velocity in a structural transient dynamic analysis (ANTYPE,TRANS). |
| DMG | X, Y, Z | $\mathrm{X}, \mathrm{Y}$, or Z rotational acceleration in a structural transient dynamic analysis (ANTYPE,TRANS). |
| CURR |  | Current. |
| EMF |  | Electromotive force drop. |
| ENKE |  | Turbulent kinetic energy. |
| ENDS |  | Turbulent energy dissipation. |

Table 233 NSOL - Valid Item and Component Labels for FLOTRAN Nodal Results

Item

TTOT
HFLU
HFLM
COND
PCOE
PTOT
MACH
STRM

Comp
Description
Total temperature.
Heat flux.
Heat transfer (film) coefficient.
Fluid laminar conductivity.
Pressure coefficient.
Total (stagnation) pressure.
Mach number.
Stream function. (2-D applications only.)
Item Comp Description

VISC
EVIS
CMUV
ECON
YPLU
RDFL

Fluid density.
Fluid laminar viscosity.
Fluid effective viscosity.
Turbulent viscosity coefficient.
Fluid effective conductivity.
$\mathrm{Y}+$, a turbulent law of the wall parameter.
Radiation heat flux.

Table 234 NSOL - Valid Item and Component Labels for ANSYS LS-DYNA Nodal Results

Item
U
ROT
v
A

## Description

$X, Y$, or $Z$ nodal displacements.
$X, Y$, or $Z$ nodal rotations.
$X, Y$, or $Z$ nodal velocities.
$X, Y$, or $Z$ nodal accelerations.

1. For SHELL131 and SHELL132 elements with $\operatorname{KEYOPT}(3)=0$ or 1 , use the labels TBOT, TE2, TE3, $\ldots$, TTOP instead of TEMP.

## Menu Paths

Main Menu>Drop Test>Time History>Graph Variables
Main Menu>Drop Test>Time History>List Variables
Main Menu>TimeHist Postpro>Define Variables
Main Menu>TimeHist Postpro>Elec\&Mag>Circuit>Define Variables

NSORT, Item, Comp, ORDER, KABS, NUMB, SEL

## Sorts nodal data.

POST1: Results
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Item

Label identifying the item to be sorted on. Valid item labels are shown in the table below. Some items also require a component label.

## Comp

Component of the item (if required). Valid component labels are shown in the table below.

## ORDER

Order of sort operation:
0
Sort into descending order.
1
Sort into ascending order.

## KABS

Absolute value key:
0
Sort according to real value.
1
Sort according to absolute value.
NUMB
Number of nodal data records to be sorted in ascending or descending order ( $O R D E R$ ) before sort is stopped (remainder will be in unsorted sequence) (defaults to all nodes).

SEL
Allows selection of nodes in the sorted field.
(blank)
No selection (default).

## SELECT

Select the nodes in the sorted list.

## Command Default

Use ascending node-number order.

## Notes

Values are in the active coordinate system [CSYS for input data or RSYS for results data]. Various element results also depend upon the recalculation method and the selected results location [AVPRIN, RSYS, SHELL, ESEL, and NSEL]. If simultaneous load cases are stored, the last sorted sequence formed from any load case applies to all load cases. Use NUSORT to restore the original order. This command is not valid with PowerGraphics.

Table 235 NSORT - Valid Item and Component Labels

| Valid Item and Component Labels NSORT, Item, Comp, ORDER, KABS Valid item and component labels for input values are: |  |  |  |
| :---: | :---: | :---: | :---: |
| Item | Comp |  | Description |
| LOC | X, Y, Z | X, Y, or Z location. |  |
| ANG | $X Y, Y Z, Z X$ | THXY, THYZ, or THZX | rotation angle. |

## Table 236 NSORT - Valid Item and Component Labels for Nodal DOF Result Values

| Item | Comp | $\quad$ Description |
| :--- | :--- | :--- |
| $U$ | $X, Y, Z$, SUM | $X, Y$, or $Z$ structural displacement or vector sum. |
| ROT | $X, Y, Z$, SUM | $X, Y$, or $Z$ structural rotation or vector sum. |
| TEMP |  | Temperature (includes TEMP, TBOT, TE2, TE3, . ., TTOP |
|  |  | values). |
| PRES |  | Pressure. |
| VOLT |  | Electric potential. |
| MAG |  | Magnetic scalar potential. |


| Item | Comp | Description |
| :--- | :--- | :--- |
| V | $X, Y, Z$, SUM | $X, Y$, or $Z$ fluid velocity or vector sum. |
| A | $X, Y, Z$, SUM | $X, Y$, or $Z$ magnetic vector potential or vector sum. |
| CURR |  | Current. |
| EMF |  | Electromotive force drop. |
| ENKE |  | Turbulent kinetic energy (FLOTRAN). |
| ENDS |  | Turbulent energy dissipation (FLOTRAN). |

Table 237 NSORT - Valid Item and Component Labels for Element Result Values

| Item | Comp | Description |
| :---: | :---: | :---: |
| S | X, Y, Z, XY, YZ, XZ | Component stress. |
| " | 1, 2,3 | Principal stress. |
| " | INT, EQV | Stress intensity or equivalent stress. |
| EPTO | X, Y, Z, XY, YZ, XZ | Component total strain (EPEL + EPPL + EPCR). |
| " | 1,2,3 | Principal total strain. |
| " | INT, EQV | Total strain intensity or total equivalent strain. |
| EPEL | X, Y, Z, XY, YZ, XZ | Component elastic strain. |
| " | 1,2,3 | Principal elastic strain. |
| " | INT, EQV | Elastic strain intensity or elastic equivalent strain. |
| EPPL | X, Y, Z, XY, YZ, XZ | Component plastic strain. |
| " | 1, 2, 3 | Principal plastic strain. |
| " | INT, EQV | Plastic strain intensity or plastic equivalent strain. |
| EPCR | X, Y, Z, XY, YZ, XZ | Component creep strain. |
| " | 1, 2, 3 | Principal creep strain. |
| " | INT, EQV | Creep strain intensity or creep equivalent strain. |
| EPTH | X, Y, Z, XY, YZ, XZ | Component thermal strain. |
| " | 1,2,3 | Principal thermal strain. |
| " | INT, EQV | Thermal strain intensity or thermal equivalent strain. |
| EPSW |  | Swelling strain. |
| NL | SEPL | Equivalent stress (from stress-strain curve). |
| " | SRAT | Stress state ratio. |
| " | HPRES | Hydrostatic pressure. |
| " | EPEQ | Accumulated equivalent plastic strain. |
| " | PSV | Plastic state variable. |
| " | PLWK | Plastic work/volume. |
| FAIL | MAX | Maximum of all active failure criteria defined at the current location. (See the FCTYP command for details.) [1] |
| " | EMAX | Maximum Strain Failure Criterion [1] |
| " | SMAX | Maximum Stress Failure Criterion [1] |


| Item | Comp | Description |
| :---: | :---: | :---: |
| " | TWSI | Tsai-Wu Strength Index Failure Criterion [1] |
| " | TWSR | Inverse of Tsai-Wu Strength Ratio Index Failure Criterion [1] |
| " | HFIB | Hashin Fiber Failure Criterion. [1][2] |
| " | HMAT | Hashin Matrix Failure Criterion. [1][2] |
| " | PFIB | Puck Fiber Failure Criterion. [1][2] |
| " | PMAT | Puck Matrix Failure Criterion. [1][2] |
| " | USR1, USR2, ..., USR9 | User-defined failure criteria [1][2][3] |
| CONT | STAT [4] | Contact status. |
| " | PENE | Contact penetration. |
| " | PRES | Contact pressure. |
| " | SFRIC | Contact friction stress. |
| " | STOT | Contact total stress (pressure plus friction). |
| " | SLIDE | Contact sliding distance. |
| TG | X, Y, Z, SUM | Component thermal gradient or vector sum. |
| TF | $X, Y, Z$, SUM | Component thermal flux or vector sum. |
| PG | $X, Y, Z$, SUM | Component pressure gradient or vector sum. |
| EF | $X, Y, Z$, SUM | Component electric field or vector sum. |
| D | $X, Y, Z, S U M$ | Component electric flux density or vector sum. |
| H | $X, Y, Z, S U M$ | Component magnetic field intensity or vector sum. |
| B | $X, Y, Z$, SUM | Component magnetic flux density or vector sum. |
| FMAG | $X, Y, Z, S U M$ | Component electromagnetic forces or vector sum. |
| TOPO |  | Densities used for topological optimization. |

1. Works only if failure criteria information is provided. (For more information, see the documentation for the FC and TB commands.)
2. Must be added via the FCTYP command first.
3. Works only if user failure criteria routine is provided.
4. For more information about contact status and its possible values, see Reviewing Results in POST1 in the Contact Technology Guide.

Table 238 NSORT - Valid Item and Component Labels for FLOTRAN Nodal Result Values

| Item | Comp |
| :--- | :--- |
| TTOT | Total temperature. |
| HFLU | Heat flux. |
| HFLM | Heat transfer (film) coefficient. |
| COND | Fluid laminar conductivity. |
| PCOE | Pressure coefficient. |
| PTOT | Total (stagnation) pressure. |


| Item $\quad$ Comp | $\quad$ Description |
| :--- | :--- |
| MACH | Mach number. |
| STRM | Stream function. (2-D applications only.) |
| DENS | Fluid density. |
| VISC | Fluid laminar viscosity. |
| EVIS | Fluid effective viscosity. |
| ECON | Fluid effective conductivity. |
| YPLU | Y+, a turbulent law of the wall parameter. |
| TAUW | Shear stress at the wall. |

## Menu Paths

## Main Menu>General Postproc>List Results>Sorted Listing>Sort Nodes Utility Menu>Parameters>Get Scalar Data

NSTORE, TINC
Defines which time points are to be stored.
POST26:Set Up
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
TINC
Store data associated with every TINC time (or frequency) point(s), within the previously defined range of TMIN to TMAX [TIMERANGE]. (Defaults to 1)

## Command Default

Store every point.

## Notes

Defines which time (or frequency) points within the range are to be stored.

## Menu Paths

Main Menu $>$ TimeHist Postpro>Settings $>$ Data

## NSUBST, NSBSTP, NSBMX, NSBMN, Carry

## Specifies the number of substeps to be taken this load step.

SOLUTION: Load Step Options
MP ME ST PR PRN <> <> <> EM EH <> PP <> EME MFS

## NSBSTP

Number of substeps to be used for this load step (i.e., the time step size or frequency increment). If automatic time stepping is used [AUTOTS], $N S B S T P$ defines the size of the first substep. If SOLCONTROL,ON and contact elements TARGE169, TARGE170, CONTA171, CONTA172, CONTA173, CONTA174, CONTA175, CONTA176, or CONTA177 are used, defaults to 1 or 20 substeps, depending on the physics of the problem. If SOLCONTROL,ON and none of these contact elements are used, defaults to 1 substep. If SOLCONTROL,OFF, defaults to the previously specified value (or 1 , if there is no previously specified value).

## NSBMX

Maximum number of substeps to be taken (i.e., the minimum time step size) if automatic time stepping is used. If SOLCONTROL,ON, ANSYS determines the default depending on the physics of the problem. If SOLCONTROL,OFF, defaults to the previously specified value (or $N S B S T P$, if there is no previously specified value).

## NSBMN

Minimum number of substeps to be taken (i.e., the maximum time step size) if automatic time stepping is used. If SOLCONTROL,ON, ANSYS determines the default depending on the physics of the problem. If SOLCONTROL,OFF, defaults to the previously specified value (or 1 , if there is no previously specified value).

## Carry

Time step carryover key (ANSYS determines the default depending on the physics of the problem):
OFF
Use $N S B S T P$ to define time step at start of each load step.
ON
Use final time step from previous load step as the starting time step (if automatic time stepping is used).

If SOLCONTROL,ON, ANSYS determines the default depending on the physics of the problem. If SOLCONTROL,OFF, defaults to OFF.

## Notes

See DELTIM for an alternative input. It is recommended that all fields of this command be specified for solution efficiency and robustness.

This command is also valid in PREP7.

## Menu Paths

> Main Menu>Preprocessor>Loads>Analysis Type>Sol'n Controls $>$ Basic
> Main Menu $>$ Preprocessor>Loads $>$ Load Step Opts $>$ Time/Frequenc $>$ Freq and Substps
> Main Menu $>$ Preprocessor>Loads $>$ Load Step Opts $>$ Time/Frequenc>Time and Substps
> Main Menu $>$ Solution $>$ Analysis Type $>$ Sol'n Controls $>$ Basic
> Main Menu>Solution>Load Step Opts $>$ Time/Frequenc>Freq and Substps

NSVR, ITYPE, NSTV

## Defines the number of variables for user-programmable element options.

PREP 7: Element Type
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS

## ITYPE

Element type number as defined on the ET command.

## NSTV

Number of extra state variables to save (must be no more than 840).

## Command Default

No extra variables are saved.

## Notes

Defines the number of extra variables that need to be saved for user-programmable (system-dependent) element options, e.g., material laws through user subroutine USERPL. ITYPE must first be defined with the ET command.

## Menu Paths

This command cannot be accessed from a menu.

NSYM, Ncomp, INC, NODE1, NODE2, NINC
Generates a reflected set of nodes.
PREP 7: Nodes
MP ME ST PR PRN <> <> FL EM EH DY PP $<>$ EME MFS

## Ncomp

Symmetry key:
X
X (or R) symmetry (default).
Y
Y (or $\theta$ ) symmetry.
Z
Z (or $\Phi$ ) symmetry.
INC
Increment all nodes in the given pattern by INC to form the reflected node pattern.

## NODE1, NODE2, NINC

Reflect nodes from pattern beginning with NODE1 to NODE2 (defaults to NODE1) in steps of NINC (defaults to 1). If NODE1 = ALL, NODE2 and NINC are ignored and pattern is all selected nodes [NSEL]. If

NODE1 = P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NODE1 (NODE2 and NINC are ignored).

## Notes

Generates nodes from a given node pattern by a symmetry reflection. Reflection is done in the active coordinate system by changing a particular coordinate sign. Nodes in the pattern may have been generated in any coordinate system. Nodal rotation angles are not reflected.

Symmetry reflection may be used with any node pattern, in any coordinate system, as many times as desired. Reflection is accomplished by a coordinate sign change (in the active coordinate system). For example, an X-reflection in a Cartesian coordinate system generates additional nodes from a given pattern, with a node increment added to each node number, and an X coordinate sign change. An R-reflection in a cylindrical coordinate system gives a reflected "radial" location by changing the "equivalent" Cartesian (i.e., the Cartesian system with the same origin as the active cylindrical system) X and Y coordinate signs. An R-reflection in a spherical coordinate system gives a reflected "radial" location by changing the equivalent Cartesian $\mathrm{X}, \mathrm{Y}$, and $Z$ coordinate location signs. Nodal coordinate system rotation angles are not reflected.

## Menu Paths

## Main Menu>Preprocessor>Modeling>Reflect>Nodes

## /NUMBER,NKEY

## Specifies whether numbers, colors, or both are used for displays.

GRAPHICS:Labeling
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NKEY

Numbering style:
0
Color (terminal dependent) the numbered items and show numbers.
1
Color the numbered items. Do not show the numbers.
2
Show the numbers. Do not color the items.
-1
Do not color the items or show the numbers. For contour plots, the resulting display will vary (see below).

## Notes

Specifies whether numbers, colors, or both are used for numbering displays [/PNUM] of nodes, elements, keypoints, lines, areas, and volumes.

Shading is also available for terminals configured with more than 4 color planes [/SHOW]. Color automatically appears for certain items and may be manually controlled (off or on) for other items.

When you suppress color (NKEY $=-1$ ) your contour plots will produce different results, depending on your graphics equipment. For non-3-D devices (X11, Win32, etc.) your contour plot will be white (no color). For 3-D devices, such as OpenGL, the resulting display will be in color.

The following items are automatically given discrete colors: Boundary condition symbols [/PBC], curves on graph displays, and distorted geometry on postprocessing displays. Contour lines in postprocessing displays are automatically colored based upon a continuous, rather than a discrete, spectrum so that red is associated with the highest contour value. On terminals with raster capability [/SHOW], the area between contour lines is filled with the color of the higher contour.

Explicit entity colors or the discrete color mapping may be changed with the /COLOR command.
This command is valid in any processor.

## Menu Paths

Utility Menu>PlotCtrls>Numbering

## NUMCMP, Label

## Compresses the numbering of defined items.

PREP 7: Database<br>MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Label

Items to be compressed:
NODE
Node numbers

## ELEM

Element numbers
KP
Keypoint numbers
LINE
Line numbers
AREA
Area numbers

## VOLU

Volume numbers

## MAT

Material numbers
TYPE
Element type numbers
REAL
Real constant numbers
CP
Coupled set numbers

## SECN

Section numbers
CE
Constraint equation numbers
ALL
All item numbers

## Notes

The NUMCMP command effectively compresses out unused item numbers by renumbering all the items, beginning with one and continuing throughout the model. The renumbering order follows the initial item numbering order (that is, compression lowers the maximum number by "sliding" numbers down to take advantage of unused or skipped numbers). All defined items are renumbered, regardless of whether or not they are actually used or selected. Applicable related items are also checked for renumbering as described for the merge operation (NUMMRG).

Compressing material numbers (NUMCMP,ALL or NUMCMP,MAT) does not update the material number referenced by either of the following:

- A temperature-dependent convection or surface-to-surface radiation load (SF, SFE, SFL, SFA)
- Real constants for multi-material elements (such as SOLID65)

Compression is usually not required unless memory space is limited and there are large gaps in the numbering sequence.

## Menu Paths

Main Menu>Preprocessor>Numbering Ctrls>Compress Numbers

## NUMEXP, $N U M, B E G R N G, E N D R N G, E l c a l c$

Specifies solutions to be expanded from reduced analyses.
SOLUTION: Load Step Options
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

## NUM

The number of solutions to expand. This value is required.

## Num

Number of solutions to expand.

## ALL

Expand all substeps between BEGRNG and ENDRNG (provided that ENDRNG >0). If BEGRNG and ENDRNG have no specified values, this option expands all substeps of all load steps.

## BEGRNG, ENDRNG

Beginning and ending time (or frequency) range for expanded solutions. The default is 0 for both values.

## Elcalc

The element-calculation key:

## YES

Calculate element results, nodal loads, and reaction loads. This value is the default.
NO
Do not calculate these items.

## Command Defaults

Issuing this command with no arguments is invalid. You must specify the number of solutions, or all solutions, to expand (NUM). The default value for both the beginning (BEGRNG) and ending (ENDRNG) time or frequency is 0 . The default behavior of the command is to calculate element results, nodal loads, and reaction loads (Elcalc = YES).

## Notes

Specifies a range of solutions to be expanded from analyses that use reduced or mode superposition methods (ANTYPE,HARMIC, TRANS, or SUBSTR).

For ANTYPE,TRANS, NUM, evenly spaced solutions are expanded between time BEGRNG and time ENDRNG.
For ANTYPE,HARMIC, NUM, evenly spaced solutions are expanded between frequency BEGRNG and frequency ENDRNG.

The first expansion in all cases is done at the first point beyond BEGRNG (that is, at BEGRNG + (ENDRNG BEGRNG) / NUM)).

For a single expansion of a solution, or for multiple expansions when the solutions are not evenly spaced (such as in a mode superposition harmonic analysis with the cluster option), ANSYS recommends issuing one or more EXPSOL commands.

The NUMEXP command is invalid in these cases:

- In a substructing analysis (ANTYPE,SUBST) when a factorized matrix file (the . LN22 file generated by the sparse solver) does not exist, causing ANSYS to employ the full-resolve method.
- If the full-resolve option is selected using the SEOPT command.

In both situations, use the EXPSOL command to perform a single expansion for each solution desired.
This command is also valid in PREP7.

## Menu Paths

Main Menu>Preprocessor>Loads>Load Step Opts>ExpansionPass>Single Expand>Range of Solu's Main Menu>Solution>Load Step Opts>ExpansionPass>Single Expand>Range of Solu's

NUMMRG, Label, TOLER, GTOLER, Action, Switch

## Merges coincident or equivalently defined items.

PREP 7:Database
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Label

Items to be merged:

## NODE

Nodes

## ELEM

Elements
KP
Keypoints (will also merge lines, areas, and volumes)
MAT
Materials

## TYPE

Element types
REAL
Real constants
CP
Coupled sets
CE
Constraint equations

## ALL

All items
TOLER
Range of coincidence. For Label = NODE and KP, defaults to $1.0 \mathrm{E}-4$ (based on maximum Cartesian coordinate difference between nodes or keypoints). For Label = MAT, REAL, and CE, defaults to 1.0E-7 (based on difference of the values normalized by the values). Only items within range are merged. (For keypoints attached to lines, further restrictions apply. See the GTOLER field and Merging Solid Model Entities below.)

## GTOLER

Global solid model tolerance -- used only when merging keypoints attached to lines. If specified, GTOLER will override the internal relative solid model tolerance. See Merging Solid Model Entities below.

## Action

Specifies whether to merge or select coincident items.

## SELE

Select coincident items but do not merge. Action $=$ SELE is only valid for Label $=$ NODE.
(Blank)
Merge the coincident items (default).

## Switch

Specifies whether the lowest or highest numbered coincident item is retained after the merging operation.
This option does not apply to keypoints; i.e., for Label $=$ KP, the lowest numbered keypoint is retained regardless of the Switch setting.

## LOW

Retain the lowest numbered coincident item after the merging operation (default).

## HIGH

Retain the highest numbered coincident item after the merging operation.

## Notes

After issuing the command, the area and volume sizes (ASUM and VSUM) may give slightly different results. In order to obtain the same results as before, use /FACET, /NORMAL, and ASUM / VSUM.

The merge operation is useful for tying separate, but coincident, parts of a model together. If not all items are to be checked for merging, use the select commands (NSEL, ESEL, etc.) to select items. Only selected items are included in the merge operation for nodes, keypoints, and elements.

By default, the merge operation retains the lowest numbered coincident item. Higher numbered coincident items are deleted. Set Switch to HIGH to retain the highest numbered coincident item after the merging operation. Applicable related items are also checked for deleted item numbers and if found, are replaced with the retained item number. For example, if nodes are merged, element connectivities (except superelements), mesh item range associativity, coupled degrees of freedom, constraint equations, master degrees of freedom, gap conditions, degree of freedom constraints, nodal force loads, nodal surface loads, and nodal body force loads are checked. Merging material numbers [NUMMRG,ALL or NUMMRG,MAT] does not update the material number referenced:

- By temperature-dependent film coefficients as part of convection load or a temperature-dependent emissivity as part of a surface-to-surface radiation load [SF, SFE, SFL, SFA]
- By real constants for multi-material elements (such as SOLID65)

If a unique load is defined among merged nodes, the value is kept and applied to the retained node. If loads are not unique (not recommended), only the value on the lowest node (or highest if Switch $=$ HIGH) will be kept, except for "force" loads for which the values will be summed if they are not defined using tabular boundary conditions.

## Note

The unused nodes (not recommended) in elements, couplings, constraint equations, etc. may become active after the merge operation.

The Action field provides the option of visualizing the coincident items before the merging operation.

## Caution

When merging entities in a model that has already been meshed, the order in which you issue multiple NUMMRG commands is significant. If you want to merge two adjacent meshed regions that have coincident nodes and keypoints, always merge nodes [NUMMRG,NODE] before merging keypoints [NUMMRG,KP]. Merging keypoints before nodes can result in some of the nodes becoming "orphaned"; that is, the nodes lose their association with the solid model. Orphaned nodes can cause certain operations (such as boundary condition transfers, surface load transfers, and so on) to fail. However, using NUMMRG should be avoided if at all possible, as the procedure outlined above may even cause meshing failure, especially after multiple merging and meshing operations.

After a NUMMRG,NODE, is issued, some nodes may be attached to more than one solid entity. As a result, subsequent attempts to transfer solid model loads to the elements may not be successful. Issue NUMMRG,KP to correct this problem. Do NOT issue VCLEAR before issuing NUMMRG,KP.

For NUMMRG,ELEM, elements must be identical in all aspects, including the direction of the element coordinate system.

For certain solid and shell elements (181, 185, 190, etc) ANSYS will interpret coincident faces as internal and eliminate them. To prevent this from occurring, shrink the entities by a very small factor to delineate coincident items (/SHRINK, 0.0001) and no internal nodes, lines, areas or elements will be eliminated.

When working with solid models, you may have better success with the gluing operations (AGLUE, LGLUE, VGLUE). Please read the following information when attempting to merge solid model entities.

## Gluing Operations vs. Merging Operations

Adjacent, touching regions can be joined by gluing them (AGLUE, LGLUE, VGLUE) or by merging coincident keypoints (NUMMRG,KP, which also causes merging of identical lines, areas, and volumes). In many situations, either approach will work just fine. Some factors, however, may lead to a preference for one method over the other.

## Geometric Configuration

Gluing is possible regardless of the initial alignment or offset of the input entities. Keypoint merging is possible only if each keypoint on one side of the face to be joined is matched by a coincident keypoint on the other side. This is commonly the case after a symmetry reflection (ARSYM or VSYMM) or a copy (AGEN or VGEN), especially for a model built entirely in ANSYS rather than imported from a CAD system. When the geometry is extremely precise, and the configuration is correct for keypoint merging, NUMMRG is more efficient and robust than AGLUE or VGLUE.

## Model Accuracy

Gluing, like all ANSYS boolean operations, requires that the input entities meet the current boolean tolerance (BTOL). Otherwise, AGLUE or VGLUE may fail. In such cases, relaxing the tolerance may allow the glue to complete. An advantage of gluing is that it is unlikely to degrade the accuracy of a geometric model. Keypoint merging can operate on almost any combination of entities (although you may have to override the default tolerances on NUMMRG). However, it can also introduce or increase accuracy flaws, making later boolean operations less likely to succeed. If the input tolerances are too large, NUMMRG can collapse out small lines, areas, or volumes you intended to keep, possibly rendering the model unusable.

## Mesh Status

Gluing, like all ANSYS boolean operations, requires that the input entities be unmeshed. Keypoint merging is effective for meshed models under the right conditions. More information on keypoint merging follows.

## Merging Solid Model Entities:

When merging solid model entities (Label = KP or ALL), keypoint locations are used as the basis for merging. Once keypoints are merged, any higher order solid model entities (lines, areas, and volumes), regardless of their select status or attachment to the merged keypoints, are considered for merging.

Keypoints that are attached to lines will be merged only if:

- $\quad \Delta X, \Delta Y$, and $\Delta Z$ are each less than TOLER
where,
$\Delta \mathrm{X}$ is the X component of the distance between keypoints,
$\Delta Y$ is the $Y$ component of the distance between keypoints, and
$\Delta Z$ is the $Z$ component of the distance between keypoints;
and
- $\sqrt{\Delta \mathrm{X}^{2}+\Delta \mathrm{Y}^{2}+\Delta \mathrm{Z}^{2}}$ is less than $1 \mathrm{E}-5$ times the length of the longest line attached to those keypoints (internal relative solid model tolerance), or $\sqrt{\Delta \mathrm{X}^{2}+\Delta \mathrm{Y}^{2}+\Delta \mathrm{Z}^{2}}$ is less than GTOLER (global solid model tolerance) if specified.

The TOLER field is a consideration tolerance. If a keypoint is within TOLER of another keypoint, then those two keypoints are candidates to be merged. If, when "moving" the higher numbered keypoint, the distance exceeds the internal relative solid model tolerance, or the global solid model tolerance (GTOLER) if specified, the keypoints will not be merged. Lines, areas, and volumes are considered for merging in a similar manner.

The internal relative solid model tolerance should be overridden by the global solid model tolerance ( $G T O L E R$ ) only when absolutely necessary. GTOLER is an absolute tolerance; if specified, relative lengths of lines in the model will no longer be considered in the merge operation. If GTOLER is too large, you can "merge-out" portions of your model accidently, effectively defeaturing the model. If GTOLER is used, it is recommended that NUMMRG be preceded by saving the database (since undesired merges of solid model entities could occur).

## Note

Use of the NUMMRG command does not cause changes to a model's geometry; only the topology is affected.

## Menu Paths

# Main Menu>Preprocessor>Modeling>Create>Circuit>Merge Nodes <br> Main Menu>Preprocessor>Modeling>Delete>Pre-tens Elemnts Main Menu>Preprocessor>Numbering Ctrls>Merge Items 

## NUMOFF, Label, VALUE

## Adds a number offset to defined items.

PREP 7:Database

MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Label

Apply offset number to one of the following sets of items:

## NODE

Nodes
ELEM
Elements
KP
Keypoints
LINE
Lines
AREA
Areas

## VOLU

Volumes
MAT
Materials

## TYPE

Element types

## REAL

Real constants

## CP

Coupled sets

## SECN

Section numbers
CE
Constraint equations
CSYS
Coordinate systems

## VALUE

Offset number value (cannot be negative).

## Notes

Useful for offsetting current model data to prevent overlap if another model is read in. CDWRITE automatically writes the appropriate NUMOFF commands followed by the model data to File.CDB. Therefore, when the file is read, any model already existing in the database is offset before the model data on the file is read.

Offsetting material numbers with this command [NUMOFF,MAT] does not update the material number referenced by either of the following:

- A temperature-dependent convection or surface-to-surface radiation load [SF, SFE, SFL, SFA]
- Real constants for multi-material elements (such as SOLID65).

Therefore, a mismatch may exist between the material definitions and the material numbers referenced.

## Menu Paths

Main Menu>Preprocessor>Numbering Ctrls>Add Num Offset

NUMSTR, Label, VALUE
Establishes starting numbers for automatically numbered items.

> PREP 7: Database
> MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS

## Label

Apply starting number to one of the following sets of items:

## NODE

Node numbers. Value defaults (and is continually reset) to $1+$ maximum node number in model. Cannot be reset lower.

ELEM
Element numbers. Value defaults (and is continually reset) to $1+$ maximum element number in model. Cannot be reset lower.

KP
Keypoint numbers. Value defaults to 1 . Only undefined numbers are used. Existing keypoints are not overwritten.

## LINE

Line numbers. Value defaults to 1 . Only undefined numbers are used. Existing lines are not overwritten.

## AREA

Area numbers. Value defaults to 1 . Only undefined numbers are used. Existing areas are not overwritten.

## VOLU

Volume numbers. Value defaults to 1 . Only undefined numbers are used. Existing volumes are not overwritten.

## DEFA

Default. Returns all starting numbers to their default values.

## VALUE

Starting number value.

## Notes

Establishes starting numbers for various items that may have numbers automatically assigned (such as element numbers with the EGEN command, and node and solid model entity numbers with the mesh [AMESH, VMESH, etc.] commands). Use NUMSTR,STAT to display settings. Use NUMSTR,DEFA to reset all specifications back to defaults. Defaults may be lowered by deleting and compressing items (i.e., NDELE and NUMCMP,NODE for nodes, etc.).

## Note

A mesh clear operation (VCLEAR, ACLEAR, LCLEAR, and KCLEAR) automatically sets starting node and element numbers to the highest unused numbers. If a specific starting node or element number is desired, issue NUMSTR after the clear operation.

## Menu Paths

> Main Menu>Preprocessor>Numbering Ctrls>Reset Start Num
> Main Menu>Preprocessor>Numbering Ctrls>Set Start Number
> Main Menu>Preprocessor>Numbering Ctrls>Start Num Status

## NUMVAR, $N V$

Specifies the number of variables allowed in POST26.
POST26:Set Up
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
NV
Allow storage for $N V$ variables. 200 maximum are allowed. Defaults to 10 (except for an explicit dynamics analysis, which defaults to 30 ). TIME (variable 1) should also be included in this number.

## Command Default

Allow storage for 10 variables ( 30 variables for an explicit dynamics analysis).

## Notes

Specifies the number of variables allowed for data read from the results file and for data resulting from an operation (if any). For efficiency, NV should not be larger than necessary. $N V$ cannot be changed after data storage begins.

## Menu Paths

Main Menu $>$ TimeHist Postpro>Settings $>$ File

## NUSORT

## Restores original order for nodal data.

POST1: Results
MP ME ST PR PRN <> <> FL EM EH DY PP $<>$ EME MFS

## Notes

This command restores the nodal data to its original order (sorted in ascending node number sequence) after an NSORT command. Changing the selected nodal set [NSEL] also restores the original nodal order.

## Menu Paths

Main Menu>General Postproc>List Results>Sorted Listing>Unsort Nodes

NWPAVE, $N 1, N 2, N 3, N 4, N 5, N 6, N 7, N 8, N 9$

## Moves the working plane origin to the average location of nodes.

> DATABASE: Working Plane
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## N1, N2, N3, . . . , N9

Nodes used in calculation of the average. At least one must be defined. If $N 1=P$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI).

## Notes

Averaging is based on the active coordinate system.
This command is valid in any processor.

## Menu Paths

Utility Menu>WorkPlane>Offset WP to>Nodes

NWPLAN, $W$, , NORIG, NXAX, NPLAN

## Defines the working plane using three nodes.

> DATABASE: Working Plane
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

WN
Window number whose viewing direction will be modified to be normal to the working plane (defaults to 1 ). If $W N$ is a negative value, the viewing direction will not be modified. If fewer than three points are used, the viewing direction of window WN will be used instead to define the normal to the working plane.

## NORIG

Node number defining the origin of the working plane coordinate system. If NORIG = P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI).

## NXAX

Node number defining the $x$-axis orientation (defaults to the $x$-axis being parallel to the global X -axis; or if the normal to the working plane is parallel to the global X-axis, then defaults to being parallel to the global Y -axis).

## NPLAN

Node number defining the working plane (the normal defaults to the present display view [/VIEW] of window WN).

## Notes

Defines a working plane to assist in picking operations using three nodes as an alternate to the WPLANE command. The three nodes also define the working plane coordinate system. A minimum of one node (at the working plane origin) is required. Immediate mode may also be active. See the WPSTYL command to set the style of the working plane display.

This command is valid in any processor.

## Menu Paths

## Main Menu>General Postproc>Surface Operations>Create Surface>Sphere>At Node Utility Menu>WorkPlane>Align WP with>Nodes

NWRITE, Fname, Ext, --, KAPPND

## Writes nodes to a file.

PREP7:Nodes
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Fname

File name and directory path ( 248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

The file name defaults to Jobname.
Ext
Filename extension (8 character maximum).
The extension defaults to NODE if Fname is blank.

Unused field.

## KAPPND

Append key:
0
Rewind file before the write operation.

## 1

Append data to the end of the existing file.

## Notes

Writes selected nodes [NSEL] to a file. The write operation is not necessary in a standard ANSYS run but is provided as a convenience to users wanting a coded node file. Data are written in a coded format. The format used is ( $18,6 \mathrm{G} 20.13$ ) to write out $N O D E, X, Y, Z, T H X Y, T H Y Z, T H Z X$. If the last number is zero (i.e., $T H Z X$ $=0$ ), or the last set of numbers are zero, they are not written but are left blank. Therefore, you must use a formatted read to process this file. Coordinate values are in the global Cartesian system.

## Menu Paths

Main Menu>Preprocessor>Modeling>Create>Nodes>Write Node File

# O Commands 

OCDATA, VAL1, VAL2, VAL3, ..., VAL14
Defines an ocean environment using non-table data.
PREP 7: Ocean
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

## VAL1, VAL2, VAL3, . . . , VAL14

Values describing the basic ocean environment or a wave condition.

## Notes

The OCDATA command specifies non-table data that defines the ocean environment, such as the ocean section number, the depth of the ocean to the mud line, the ratio of added mass over added mass for a circular cross section, or the wave type to apply. The terms VAL1, VAL2, etc. are specialized according to the input set required for the given ocean environment.

The program interprets the data input via the OCDATA command within the context of the most recently issued OCTYPE command.

Input values in the order indicated.
The following OCDATA usage notes are available according to ocean data type:
Ocean Data Type: Basic (OCTYPE,,BASIC)
Ocean Data Type:Wave (OCTYPE,,WAVE)

## Ocean Data Type: Basic (OCTYPE,,BASIC)

## VAL1

$D E P T H$-- The depth of the ocean (that is, the distance from mean water level--fixed at $Z=0$ on the XY plane--to the mud line. This value is required.

## VAL2

MATOC -- The material number of the ocean. This value is required and is used to input the required density. It is also used to input the viscosity if the Reynolds number is used (OCTABLE.

## VAL3

KFLOOD -- The inside-outside fluid-interaction key, as follows:
0 -- The pressures inside and outside of the pipe are independent. This is the default behavior.
1 -- The pressure inside of the pipe is set to equal the pressure outside of the pipe.
VAL4
Ci -- The ratio of added mass of the external fluid over added mass for a circular cross section. This value defaults to 1.0 if $C i=0.0$ or no value is specified. If this value should be 0.0 , enter a negative number. The added mass represents the mass of the external fluid (ocean water) that moves with the
pipe when the pipe moves in the element $y$ and/or $z$ directions during a dynamic analysis. Using the default presumes that the added mass is equal to the mass of the external fluid displaced by the pipe.

## VAL5

$C b$-- The ratio of buoyancy force used over buoyancy force based on the outside diameter and water density. This value defaults to 1.0 if $C b=0.0$ or no value is specified. If this value should be 0.0 , enter a negative number.

## Ocean Data Type: Wave (OCTYPE,,WAVE)

VAL1
KWAVE -- The wave type to apply to the current profile:
0 or AIRY -- Small amplitude Airy wave type without modifications (default).
1 or WHEELER -- Small amplitude wave type with Wheeler empirical modification of depth decay function.
2 or STOKES-- Stokes fifth order wave type.
3 or STREAMFUNCTION -- Stream function wave type.
5 or IRREGULAR -- Irregular wave type.
6 or SHELLNEWWAVE -- Shell new wave type.
7 or CONSTRAINED -- Constrained new wave type.
101+ -- API for computing particle velocities and accelerations due to waves and current:
101 through 200 -- Data preprocessed (via $K W A V E=0$ logic).
201+ -- Data not preprocessed.
For more information, see the description of the userPartVelAcc subroutine in the Programmer's Manual.

## VAL2

THETA -- Angle of the wave direction $\theta$ from the global Cartesian X axis toward the global Cartesian Y axis (in degrees).

## VAL3

WAVELOC (valid when KWAVE $=0$ through 3, and 101+) -- The wave location type:
0 -- Waves act on elements at their actual locations (default).
1 -- Elements are assumed to be at wave peak.
2 -- Upward vertical wave velocity acts on elements.
3 -- Downward vertical wave velocity acts on elements.
4 -- Elements are assumed to be at wave trough.
SPECTRUM (valid when KWAVE $=5$ through 7) -- The wave spectrum type:
0 -- Pierson-Moskowitz (default).
1 -- JONSWAP.
2 -- User-defined spectrum.
VAL4
KCRC -- The wave-current interaction key.
Adjustments to the current profile are available via the $K C R C$ constant of the water motion table (illustrated in Figure 4 (p. 1151)). Typically, these options are used only when the wave amplitude is large relative to the water depth, such that significant wave-current interaction exists.

0 -- Use the current profile (as input) for wave locations below the mean water level, and the top current profile value for wave locations above the mean water level (default).
1 -- Linearly stretch or compress the current profile from the mud line to the top of the wave.
2 -- Similar to $K C R C=1$, but also adjusts the current profile horizontally such that total flow continuity is maintained with the input profile. All wave directions $\theta(\mathrm{j})$ must be identical.
The following option is valid only when KWAVE $=5$ through 7:
3 -- Nonlinear stretch or compress the current profile, as recommended in API RP 2A Codes of Practice for Designing and Constructing Fixed Offshore Platforms.

VAL5
KMF -- The MacCamy-Fuchs adjustment key, typically used only for larger-diameter pipes in relatively shallow water:

0 -- Do not apply the adjustment (default).
1 -- Apply the adjustment (valid only when $K W A V E=0$ through 3).
VAL 6
$P R K E Y$-- The wavelength wave-printout key:
0 -- No extra printout (default).
1 -- Include the extra printout.
2 -- Print wave component details (valid only when KWAVE $=5$ through 7).
The following input values are valid only when KWAVE $=5$ though 7:
VAL 7
$A P C$-- Activate apparent period calculation when a wave is superimposed upon a current:
0 -- Not activated (default).
1 -- Activated.
VAL8
DSA -- Stretching depth factor:
Stretching is performed between a distance of $D S A^{*}$ Hs below the mean water level (MWL) and the water surface, where Hs is the significant wave height measured from the MWL. No stretching occurs outside this range, or if the wave surface is below the MWL. If $D S A^{*} H s$ is negative, stretching is performed between that level above the MWL and the water surface. The default $D S A$ value is 0.5 .

VAL9
DELTA -- Delta stretching parameter ( $0.0 \leq D E L T A \leq 1.0$ ):
A value of 0.0 corresponds to Wheeler stretching under wave crests, 1.0 corresponds to linear extrapolation of kinematics at mean water level to crest. (Default $=0.3$.) If zero is required, specify a small positive number ( 0.01 or less) instead.

## VAL10

Wave kinematics factor or wave spreading angle:
KINE (KWAVE $=5$ or 7 ) -- Wave kinematics factor ( $0.0<$ KINE $\leq 1.0$ ). The factor is used to account for wave spreading by modifying the horizontal wave velocities and accelerations. A value of 1.0 corresponds to uni-directional wave with no spreading. (Default = 1.0, no spreading.) SPANGLE (KWAVE = 6) -- Wave spreading angle in degrees ( $0.0 \leq$ SPANGLE $\leq 40.0$ ). The angle is used to compute a wave spreading factor to modify the horizontal wave kinematics for nearly unidirectional seas. $\operatorname{SPANGLE}=0.0$ corresponds to no spreading. (Default $=0.0$, no spreading.)

## VAL11

Random seed value for phase angle generation, or wave crest amplitude value:
SEED ( $K W A V E=5$ ) -- Initial seed for random phase angle generation. (Default =1.)
AMPMAX $(K W A V E=6)$-- Maximum wave crest amplitude (distance between the mean water level and maximum wave crest).
AMPCONST ( $K W A V E=7$ ) -- Constrained wave crest amplitude (distance between the mean water level and wave crest).

## The following input values are valid only when $K W A V E=6$ or 7:

VAL12
TOFF -- Time offset at which the maximum wave crest will occur. (Default = 0.0.)
VAL13
ROFF -- Position offset along the wave direction where the maximum wave crest will occur. (Default = 0.0.)

VAL14
EVOLVING $(K W A V E=6)$-- Activate evolving wave:
0 -- Not activated (default).
1 -- Activated.
SEED (KWAVE = 7) -- Initial seed for random phase angle generation. (Default =1.)

## Usage Hints for KWAVE = 5 Through 7

Recommendations given in API RP 2A Codes of Practice for Designing and Constructing Fixed Offshore Platforms can be enforced via the following settings (valid only when $K W A V E=5$ through 7):

- Set $K C R C=4$ (VAL4) to apply nonlinear current stretching.
- Set $A P C=1(V A L 7)$ to enable automatic computation of apparent wave period when a wave is superimposed upon a current.
- If $K W A V E=5$ or 7 , specify wave kinematics factor KINE (VAL10) to modify the horizontal velocities and accelerations due to wave spreading. The factor can be estimated from measurement or hindcast directional spectral wave data as $\sqrt{(n+1) /(n+2)}$, where $n$ is the exponent in the cosine wave spreading function at the spectral peak frequency.
- If $K W A V E=6$, specify wave spreading angle $\operatorname{SPANGLE}$ (VALIO) to modify the horizontal velocities and accelerations due to wave spreading. This parameter differs from the wave kinematics factor indicated in the API codes, but the principle is similar nevertheless.

For VAL11 (when KWAVE = 6 or 7), if no maximum or constrained wave crest amplitude (AMPCONST or AMPMAX) is defined, the value is calculated based on the significant wave height obtained from the spectrum data (OCTABLE). For further information, see Hydrodynamic Loads on Line Elements in the Theory Reference for the Mechanical APDL and Mechanical Applications.

For VAL14, the Shell new wave model (KWAVE = 6) is evolving (or dispersive) in that the crest height varies with time. By default, however, the wave is "frozen" so that it can be stepped through in a quasistatic manner.

Figure 4 Velocity Profiles for Wave-Current Interaction


## Menu Paths

Main Menu>Preprocessor>Sections>Pipe>Ocean>Add/Edit

OCDELETE, OCFIRST, OCLAST, OCINC, --, LCHK
Deletes ocean information from the ANSYS database.
PREP 7: Ocean
MP ME ST PR PRN $<><><><><><>$ PP $<>$ EME MFS

## OCFIRST

First ocean ID to be deleted; defaults to first available ocean in the database.

## OCLAST

Last ocean ID to be deleted; defaults to last available ocean in the database.

## OCINC

Increment of the ocean ID; defaults to 1 .

Unused field.

## LCHK

Specifies the level of element-associativity checking:

## NOCHECK

No element-associativity check occurs. This option is the default.

## WARN

When an ocean ID is associated with an element, ANSYS issues a message warning that the necessary entity has been deleted.

## CHECK

The command terminates, and no ocean ID is deleted if it is associated with an element.

## Notes

Deletes one or more specified ocean IDs and their associated data from the ANSYS database.

## Menu Paths

Main Menu>Preprocessor>Sections>Pipe>Ocean>Delete

OCLIST, SFIRST, SLAST, SINC, Details
Summarizes all currently defined ocean environments.
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

## SFIRST

First ocean environment to be summarized. Defaults to first available ocean ID in the database.

## SLAST

Last ocean environment to be summarized. Defaults to last available ocean ID in the database.

## SINC

Increment of the ocean ID. Defaults to 1 .

## Details

Determines the content of the summarized ocean information:

## BRIEF

Lists only the ocean IDs requested. This option is the default.
GROUP
If a basic ocean environment calls for current and/or waves, this option lists them too.

## Notes

The OCLIST command summarizes the ocean properties for all defined ocean environments in the current session of ANSYS.

## Menu Paths

This command cannot be accessed from a menu.

OCTABLE, VAL1, VAL2, VAL3, VAL4, VAL5, VAL6

## Defines an ocean environment using table data.

PREP 7: Ocean
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

## VAL1, VAL2, VAL3, . . . , VAL 6

Values describing the basic ocean environment, a current condition, or a wave condition.

## Notes

The OCTABLE specifies table data that defines the ocean environment. The terms VAL1, VAL2, etc. are specialized according to the input set required for the given ocean environment.

The program interprets the data input via the OCTABLE command within the context of the most recently issued OCTYPE command.

There is no limit to the number of data input.
Input values in the order indicated.
The following OCTABLE usage notes are available according to ocean data type:
Ocean Data Type: Basic (OCTYPE,,BASIC)
Ocean Data Type: Current (OCTYPE,,CURR)
Ocean Data Type:Wave (OCTYPE,,WAVE)

## Ocean Data Type: Basic (OCTYPE,,BASIC)

Basic ocean data to provide in the value fields:
$R E, C D y, C D z, C T, C M y, C M z$
where
$R E=$ Reynolds number for coefficients for this command. Input these values in ascending order from one command to the next.
$C D y=$ Drag coefficient in the element $y$ direction (normal).
$C D z=$ Drag coefficient in the element $z$ direction (normal). This value defaults to $C D y$.
$C T=$ Drag coefficient in the element x direction (tangential).
$C M y=$ Coefficient of inertia in the element y direction.
$C M z=$ Coefficent of inertia in the element $z$ direction.

## Ocean Data Type: Current (OCTYPE,,CURR)

Current data to provide in the value fields:
Z, W, Th, T
where
$z$ = Coordinate location of the drift current. Input these values in descending order from one command to the next. (The first $Z$ value must be zero and the last one must be -Depth.) If the current is constant, only one OCTABLE command is necessary and this value is not required.
$W=$ Velocity of the drift current at this location.
$T h=$ Angle of the drift current from the global Cartesian X axis toward the global Cartesian Y axis (in degrees) at this location.
$T=$ Temperature at this location.

## Ocean Data Type: Wave (OCTYPE,,WAVE)

When specifying an ocean wave type, issue the OCTABLE command to input either wave location data or wave spectrum data.

## Wave Location Input Data

Wave location data to provide in the value fields (valid only when $K W A V E=0$ through 3 on the OCDATA command):
A, Per, Ps, Lw
where
$A=$ Peak-to-trough amplitude.
Per = Wave period.
$P s=$ Phase shift.
$L_{W}=$ Wavelength. This value is optional.

## Usage Notes

When using Stokes fifth order wave type (KWAVE $=2$ on the OCDATA command), issue only one OCTABLE command. Wavelength ( $L \mathrm{w}$ ) is not input.

When using stream function wave type (KWAVE $=3$ on the OCDATA command), $\mathrm{X}(\mathrm{j}) /\left(\mathrm{H}^{*}\right.$ $\left.\mathrm{T}^{*} \mathrm{G}\right)$ is defined in $A(\mathrm{j})$, where j is the number of the OCTABLE command. Also, DPT / LO = $\operatorname{Per}(2), \mathrm{L} / \mathrm{LO}=\operatorname{Per}(3), \mathrm{H} / \mathrm{DPT}=\operatorname{Per}(4)$, and $\left.\psi / \mathrm{G} * \mathrm{H}^{*} \mathrm{~T}\right)=\operatorname{Per}(5)$. Phase shift is input in $P s(1)$.

## Wave Spectrum Input Data

Wave spectrum data to provide in the value fields (valid only when $K W A V E=5$ through 7 on the OCDATA command):
SPECTRUM = 0 (Pierson-Moskowitz spectrum)
HS, TP, NWC
where
HS = Significant wave height of the spectrum.
$T P=$ Peak period for the spectrum.
$N W C=$ Number of wave components $(1 \leq N W C \leq 1000)$ to model the spectrum. (Default $=50$.)
SPECTRUM = 1 (JONSWAP spectrum)
HS, TP, GAMMA, NWC
where
HS = Significant wave height of the spectrum.
$T P=$ Peak period for the spectrum.
GAMMA = Peak enhancement factor for the spectrum. (Default $=3.3$.)
$N W C=$ Number of wave components $(1 \leq N W C \leq 1000)$ to model the spectrum. (Default $=50$.)
SPECTRUM = 2 (User-defined spectrum)
w, s, NWC
$\mathrm{w}=$ Angular frequency ( $\mathrm{rad} / \mathrm{s}$ ).
$s=$ Spectral energy density (Length ${ }^{2} /(\mathrm{rad} / \mathrm{s})$ )
$N W C=$ Number of wave components $(1 \leq N W C \leq 1000)$ to model the spectrum. (Default $=50$.)

## Hints for Wave Spectrum Input

When defining a Pierson-Moskowitz or JONSWAP spectrum (SPECTRUM $=0$ or 1, respectively, on the OCDATA command), issue only one OCTABLE command.

When defining a Pierson-Moskowitz or JONSWAP spectrum for Shell new wave ( $K W A V E=6$ on the OCDATA command), $H S$ is calculated from the maximum wave crest amplitude (AMPMAX on the OCDATA command) if no value is specified. For further information, see Hydrodynamic Loads on Line Elements in the Theory Reference for the Mechanical APDL and Mechanical Applications.

For a user-defined spectrum ( $S P E C T R U M=2$ on the OCDATA command), issue an OCTABLE command for each frequency data point defining the spectrum. Specify the frequency data in ascending order. The number of wave components ( $N W C$ ) is required on the first OCTABLE command only.

## Menu Paths

Main Menu>Preprocessor>Sections>Pipe>Ocean>Add/Edit

OCTYPE, IDKEY, DataType, Name, OCIDC, OCIDW
Specifies the type of ocean environment data to follow.
PREP 7: Ocean
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

## IDKEY

The ocean environment, current, or wave ID number:
OCID
The ocean environment ID (matching the ocean ID assigned via the SOCEAN command). Specify this value when DataType $=$ BASIC.
OCIDC
The ocean current ID. Specify this value when DataType = CURR.
OCIDW
The ocean wave ID. Specify this value when Data Type = WAVE.

## DataType

The type of ocean data to be input following this command:

## BASIC

The basic ocean environment, required for any ocean loading.

## CURR

An optional drift current.

## WAVE

An optional ocean wave state.
Specify basic, current, or wave input data via the OCDATA and OCTABLE commands. The example input fragment listed in the Notes section shows how to use the ocean environment data types.

## Name

An eight-character name for the ocean environment. An ocean name can consist of letters and numbers, but cannot contain punctuation, special characters, or spaces.

## OCIDC

The optional ocean current ID. Specify this value only when Data Type = BASIC.
OCIDW
The optional ocean wave ID. Specify this value only when DataType = BASIC.

## Notes

The OCTYPE command specifies the type of ocean environment data to follow (basic, current, or wave) along with the appropriate ID number. Issue this command before inputting your ocean environment data (OCDATA and OCTABLE).

To associate your ocean environment with an element section, issue the SOCEAN command.
The ocean environment ID number OCID must be identical to the OCID value specified via the SOCEAN command.

Ocean loading applies only to pipe elements PIPE288 and PIPE289.
The ocean ID number (OCID), ocean current ID number (OCIDC), or ocean wave ID number (OCIDW) must differ from each other and from any element section ID number.

An ocean current or wave ID number is accessible repeatedly. For example, it is not necessary to input an identical current table again just because the drag coefficients of the basic input table have changed.

The following example shows how you can use the basic (Data Type = BASIC), current (DataType = CURR), and wave (DataType $=$ WAVE) ocean data types within the context of a simple input file fragment:

```
Do=1.5 ! outside diameter
th=0.1 ! wall thickness
height=10 ! wave height
CS=2 ! surface current speed
Depth=100 ! water depth
matwat=2 ! material number id of the ocean
secpipe= 1 ! section number of the pipe
idwat=2 ! id number of the ocean
idcur=3 ! id number of the current loading
idwav=4 ! id number of the wave loading
!
sectype,secpipe,pipe, , pipetest
secdata,Do,th,16 ! 16 cells around circumference
socean,idwat ! must be present for every section loaded by ocean
octype,idwat,basic,idcur,idwav
ocdata,Depth,matwat,0,-1,-1 ! suppress added mass and buoyancy
octable,..5,.5,,2 ! CD = .5, CM = 2
octype,idcur,curr
octable, 0.0,CS ! input free surface current speed
octable,-Depth,0.00 ! input ocean floor current speed of 0.0
!
octype,idwav,wave
ocdata,2 ! request Stokes wave type
octable,height,8 ! wave period of 8 seconds
slist,all ! lists pipe section AND
! mentions ocean loading (socean,idwat)
oclist,all ! lists details of ocean loading
```


## Menu Paths

Main Menu>Preprocessor>Sections>Pipe>Ocean>Add/Edit

## OMEGA, OMEGX, OMEGY, OMEGZ

## Specifies the rotational velocity of the structure.

SOLUTION: Inertia
MP ME ST PR PRN DS DSS FL <> <> DY PP <> EME MFS

## OMEGX, OMEGY, OMEGZ

Rotational velocity of the structure about the global Cartesian $X, Y$, and $Z$ axes.

## Notes

This command specifies the rotational velocity of the structure about each of the global Cartesian axes (righthand rule). Rotational velocities may be defined in these analysis types:

- Static (ANTYPE,STATIC)
- Harmonic (ANTYPE,HARMIC) -- Full or mode superposition
- Transient (ANTYPE,TRANS) -- Full or mode superposition
- Substructuring (ANTYPE,SUBSTR)
- Modal (ANTYPE,MODAL)

The OMEGA command supports tabular boundary conditions (\%TABNAME_X\%, \%TABNAME_Y\%, and \%TABNAME_Z\%) for OMEGA_X, OMEGA_Y, and OMEGA_Z input values (*DIM) for full transient and harmonic analyses.

Rotational velocities are combined with the element mass matrices to form a body force load vector term. Units are radians/time. Related commands are ACEL, CGLOC, CGOMGA, DCGOMG, and DOMEGA.

If you have applied the Coriolis effect (CORIOLIS) using a stationary reference frame, the OMEGA command takes the gyroscopic damping matrix into account for the elements listed in the "Stationary Reference Frame" heading in the notes section of the CORIOLIS command. The element axis must pass through the global Cartesian origin. ANSYS verifies that the rotation vector axis is parallel to the axis of the element; if not, the gyroscopic effect is not applied. After issuing the OMEGA command when the Coriolis or gyroscopic effect is present, a subsequently issued CMOMEGA command has no effect.

In a mode-superposition harmonic or transient analysis, you must apply the load in the modal portion of the analysis. ANSYS calculates a load vector and writes it to the MODE file, which you can apply via the LVSCALE command.

This command is also valid in PREP7.

## Menu Paths

Main Menu $>$ Preprocessor $>$ Loads $>$ Define Loads $>$ Apply $>$ Structural $>$ Inertia $>$ Angular Veloc>Global Main Menu>Preprocessor>Loads>Define Loads>Delete>Structural>Inertia>Angular Veloc>Global Main Menu>Solution>Define Loads>Apply>Structural>Inertia>Angular Veloc>Global

OPADD, NRES, NUM1,NUM2, C1,C2

## Forms a set of optimization parameters by adding two sets.

OPTIMIZATION: Operations
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NRES

Number assigned to results set. If same as existing set, the existing values will be overwritten by these results (defaults to next available set number).

## NUM1

Number of first design set to be used in operation.

## NUM2

Number of second design set to be used in operation (may be blank).
C1
Scale factor applied to NUM1 (defaults to 1.0).
C2
Scale factor applied to NUM2 (defaults to 1.0).

## Notes

Forms a result set of parameters by adding two existing design sets according to the operation:

$$
N R E S=(C 1 \times N U M 1)+(C 2 \times N U M 2)
$$

OPADD can also be used to scale results for a single set. If no set number is specified for the results set ( $N R E S$ ), it defaults to the next available set number. Because no compression of set numbers is done, the next available set number will be either $1+$ the highest existing set number, or $1+$ the highest set number used (if sets with higher numbers previously existed but have been removed).

## Menu Paths

Main Menu>Design Opt>Design Sets>Combine

OPANL, Fname, Ext, --
Defines the analysis file to be used for optimization looping.
OPTIMIZATION:Files
MP ME ST PR PRN <> <> FL EM EH DY PP $<>$ EME MFS

## Fname

File name and directory path ( 248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

## Ext

Filename extension (8 character maximum).

Unused field.

## Command Default

If interactive, no default; if batch, use the batch input stream (File. BAT).

## Notes

The optimization looping file must be specified for an optimization which is performed interactively. The file must exist at the time OPANL is issued. In this file, where the /PREP7 and /OPTcommands occur, they must be the first nonblank characters on the line (i.e., do not use the $\$$ delimiter on any /PREP7 or /OPT command lines).

## Menu Paths

## Main Menu>Design Opt>Analysis File>Assign

## OPCLR

## Clears the optimization database.

OPTIMIZATION: Operations
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Notes

Clears the optimization database. All settings are reset to their default values, and all design sets are deleted. This command is useful between multiple (independent) optimization analyses in the same batch run or interactive session.

## Menu Paths

Main Menu>Design Opt>Opt Database>Clear \& Reset

## OPDATA, Fname, Ext, --

## Identifies the file where optimization data is to be saved.

OPTIMIZATION:Files
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Fname

File name and directory path ( 248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

The file name defaults to Jobname.

## Ext

Filename extension (8 character maximum).
The extension defaults to OPT if Fname is blank.

Unused field.

## Command Default

Optimization data is saved on File.OPT.

## Notes

Identifies the file where optimization data is to be automatically saved during looping. Automatic saves occur at the end of each loop or iteration, and upon finishing out of the optimizer [FINISH]. (To save the data elsewhere in the optimizer, use OPSAVE.) Optimization data written to the file include DVs, SVs, saved design sets, analysis file name, etc. The data can be restored via the OPRESU command.

## Menu Paths

## Main Menu>Design Opt>Controls

## OPDEL, NSET1, NSET2

Deletes optimization design sets.

> OPTIMIZATION: Operations
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NSET1

First design set in range to be deleted. Defaults to 0 . If NSET1 is blank and NSET2 is $\geq 1$, all sets from the lowest existing set number to NSET2 will be deleted. If NSET1 = ALL, all design sets are removed.

## NSET2

Last design set in range to be deleted. Defaults to NSET1.

## Notes

Deletes the design sets in a specified range. All sets occurring within that range (i.e., NSET1 $\leq \mathrm{N} \leq$ NSET2, where N is an existing set number) are permanently removed from the optimization database. The original set numbers are retained for remaining design sets. Note that no compression of set numbers is done. Thus, if the highest set is deleted, the next available set number will be the previously existing highest set number +1 . (A maximum of 130 design sets can be stored in the optimization database.)

## Menu Paths

## Main Menu>Design Opt>Design Sets>Select/Delete

OPEQN, KFOBJ, KFSV, KWGHT, KOPPR, INOPT

## Controls curve fitting for the subproblem approximation method.

OPTIMIZATION: Specifications
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## KFOBJ

Objective function curve fit:
0
Quadratic plus cross-term curve fit for objective function (default).
1
Linear curve fit.
2
Quadratic curve fit.
3
Quadratic plus cross-term fit (same as 0 ).
KFSV
State variables curve fit:
0
Quadratic curve fit for state variables (default).
1
Linear curve fit.
2
Quadratic curve fit (same as 0).
3
Quadratic plus cross-term curve fit.

## KWGHT

Weighting factors:
0
Weights applied to design sets based on triple products of distance in design space, objective
function values, and feasibility/infeasibility ( $K W G H T=2,3$, and 4, below) (default).
1
All weights set to unity.
2
Weights based on distance in design space.
3
Weights based on objective function values.
4
Weights based on feasibility/infeasibility.

## KOPPR

Optimization printout:
0
No printout of approximation data (default).

## N

Printout every nth optimization loop.

## INOPT

Approximation reformulation:
0
Approximations are updated every loop (default).
N
Approximations are completely reformulated every nth loop.

## Notes

Controls the curve fitting for the optimization approximations used with the subproblem approximation method [OPTYPE,SUBP]. See Function Approximations in the Theory Reference for the Mechanical APDL and Mechanical Applications for details.

## Menu Paths

Main Menu>Design Opt>Method/Tool

## OPERATE

Specifies "Operation data" as the subsequent status topic.
POST2 6:Status
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Notes

This is a status [STAT] topic command. Status topic commands are generated by the GUI and will appear in the log file (Jobname. LOG) if status is requested for some items under Utility Menu> List> Status. This command will be immediately followed by a STAT command, which will report the status for the specified topic.

If entered directly into the program, the STAT command should immediately follow this command.

## Menu Paths

This command cannot be accessed from a menu.

## OPEXE

## Initiates optimization looping.

> OPTIMIZATION: Run
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Notes

Initiates optimization looping using commands condensed from the analysis file [OPANL]. The type of optimization to be performed is specified by the OPTYPE command. Upon issuing this command, optimization looping begins and the design variables are updated as necessary based on the type of optimization chosen. Control remains with the ANSYS program until convergence or termination occurs, at which time the commands occurring after OPEXE are executed. This command is not allowed within a do-loop [*DO].

## Menu Paths

## Main Menu>Design Opt>Run

## OPFACT, Type

## Defines the type of factorial evaluation to be performed.

> OPTIMIZATION:Specifications
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Type

Type of factorial evaluation. Number of iterations is determined by the number of design variables ( $n$ ).
FULL
Perform a full factorial analysis (default); $2^{2 *} n$ iterations are required. $n$ must be $\leq 7$.
1/2
Perform a $1 / 2$ fractional factorial analysis. $(1 / 2)^{*} 2^{* *} n$ iterations are required. $n$ must be $\leq 8$.
1/4
Perform a $1 / 4$ fractional factorial analysis. $(1 / 4)^{*} 2^{* *} n$ iterations are required. $n$ must be $\leq 9$.

## 1/8

Perform a $1 / 8$ fractional factorial analysis. $(1 / 8)^{*} 2^{* *_{n}}$ iterations are required. $n$ must be $\leq 10$.
1/16
Perform a $1 / 16$ fractional factorial analysis. $(1 / 16)^{*} 2^{* *} n$ iterations are required. $n$ must be $\leq 10$.
1/32
Perform a $1 / 32$ fractional factorial analysis. $(1 / 32)^{* 2} 2^{* *} n$ iterations are required. $n$ must be $\leq 10$.

## 1/64

Perform a $1 / 64$ fractional factorial analysis. $(1 / 64)^{*} 2^{* *} n$ iterations are required. $n$ must be $\leq 10$.

## Command Default

Perform a full factorial analysis.

## Notes

This command is valid for the factorial evaluation method of optimization [OPTYPE,FACT]. The factorial evaluation is defined as either full or fractional. The number of iterations performed is dependent on the number of design variables that have been defined ( $n$ ).

## Menu Paths

Main Menu>Design Opt>Method/Tool

OPFRST, NITR, SIZE, DELTA
Defines specifications for the first order optimization method.
OPTIMIZATION:Specifications
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NITR

Maximum number of optimization iterations for the next execution [OPEXE]. Defaults to previously specified value, if any, otherwise defaults to 10 .

## SIZE

Limit (in percent) that is applied to the size of each line search step. For example, setting SIZE $=10$ will limit design variable changes to 10 percent of the maximum range of design space (defined by feasible design variable limits specified on OPVAR commands) at each iteration. Defaults to previously specified value, if any; otherwise, defaults to 100 (percent).

DELTA
The forward difference (in percent) applied to the design variable range that is used to compute the gradient. For example, the shift in a DV is DELTA*(MAX - MIN)/100, where MIN and MAX are specified on the OPVAR command. Defaults to previously specified value, if any; otherwise, defaults to 0.2 (percent).

## Command Default

$N I T R=10, S I Z E=100, D E L T A=0.2$.

## Notes

This command is valid for the first order method of optimization [OPTYPE,FIRST].

## Menu Paths

## Main Menu>Design Opt>Method/Tool

OPGRAD, Dset, DELTA

## Specifies which design set will be used for gradient evaluation.

OPTIMIZATION:Specifications
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Dset

## BEST

Use the best design set as the evaluation point (default).

## LAST

Use the last design set as the evaluation point.
n
Use design set number $n$ as the evaluation point.

## DELTA

The forward difference applied to the design variable range that is used to compute the gradient. For example, the shift in a design variable (DV) is defined as DELTA*(MAX-MIN)/100, with MIN and MAX as specified on the OPVAR command. Defaults to 0.5 .

## Command Default

As described for each argument above.

## Notes

This command is valid for the gradient evaluation method of optimization [OPTYPE,GRAD]. OPGRAD specifies which point (design set) in design space will be used to evaluate the gradient and what the forward difference will be.

## Menu Paths

Main Menu>Design Opt>Method/Tool

## OPKEEP, кеу

## Specifies whether to save the best-set results and database file.

OP TIMIZATION:Specifications
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Key

Save key:
OFF
Do not save the results and database files for the best design set (default).
ON
Save results and database files (File.BRST and File.BDB) for the best design set during optimization looping.

## Command Default

Do not save the database and results for the best design set.

## Notes

Specifies whether or not the results file and database file corresponding to the best design set (based on all existing sets) should be saved during optimization. The saved files will be named File. BRST (or File.BRTH for thermal analysis, File. BRMG for magnetic analysis, File. BRFL for a FLOTRAN CFD analysis) and File. BDB. If Key = ON, both files will be saved at the end of each optimization loop which results in a new best design set. File.RST (results) and File.DB (database) will be saved as usual for the last design set, regardless of the Key setting. If multiple analyses are done within an optimization loop, then only the last analysis is considered for the Key = ON option. For example, if a thermal analysis is followed by a stress analysis, the files saved for the best set will be File.BRST and File.BDB, which will both correspond to the structural analysis.

## Menu Paths

Main Menu>Design Opt>Controls

OPLFA, Name, Effect, EMIN, EMAX
Displays the results of a factorial evaluation.
OPTIMIZATION: Display
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Name

Parameter name. The parameter must have been previously defined as the objective function or a state variable [OPVAR].

## Effect

Display effects for parameter Name.
MAIN
Display main effects (default).
2FAC
Display two-factor interactions.
3FAC
Display three-factor interactions.

## EMIN

Minimum value of effect to be displayed. Default - computed minimum.

## EMAX

Maximum value of effect to be displayed. Default - computed maximum.

## Notes

Displays the results of a factorial analysis in bar chart form. Only the 10 largest interaction values will be displayed in the specified range (EMIN to EMAX). This command is only valid after a factorial evaluation [OPTYPE,FACT].

## Menu Paths

Main Menu>Design Opt>Design Sets>Tool Results>Graph>Factorial

OPLGR, Pname, Dvnam1, Dvnam2, Dvnam3, Dvnam4, Dvnam5, Dvnam6

## Graphs the results of a gradient evaluation.

OPTIMIZATION: Display
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Pname

Response parameter name. The parameter must have been previously defined as the objective function or a state variable [OPVAR].

Dvnam1, Dvnam2, Dvnam3, . . . , Dvnam6
Design variable names.

## Notes

This command is only valid after a gradient evaluation [OPTYPE,GRAD]. Pname is graphed with respect to a plus or minus $1 \%$ change in design variable (Dvnam1, ... Dvnam6).

## Menu Paths

## Main Menu>Design Opt>Design Sets>Tool Results>Graph>Gradient

OPLIST, SET1, SET2, LKEY

## Displays the parameters for design sets.

OPTIMIZATION: Display
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## SET1, SET2

Display values of all analysis parameters from $\operatorname{SET1}$ (defaults to the highest existing set) to $S E T 2$ (defaults to $S E T 1$ ). If $S E T 1=A L L$, display for all sets.

## LKEY

Listing key:
0
List only scalar parameters related to optimization.
1
List all analysis scalar parameters.

## Notes

Displays the values of the parameters for specified design sets. Note that a *STATUS command may also be issued to display various optimization data.

## Menu Paths

Main Menu>Design Opt>Design Sets>List

## OPLOOP, Read, Dvar, Parms

## Specifies controls for optimization looping.

> OPTIMIZATION:Specifications
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Read

Indicates where to begin reading the analysis file during optimization looping. Note that the /PREP7 command (and the /OPT command) must occur as the first nonblank characters on a line in the analysis file (i.e., do not use the $\$$ delimiter). Defaults to previously specified label, if any; otherwise, defaults to TOP:

## TOP

Read from the first line.

## PREP

Read from the first occurrence of /PREP7.

## Dvar

Indicates how to treat parameters which have been designated as design variables (DVs) during optimization looping. Defaults to previously specified label, if any; otherwise, defaults to IGNORE:

## IGNORE

Do not process DV parameter assignments in the analysis file during looping.

## PROCESS

Process DV parameter assignments in the analysis file during looping.

## Parms

Indicates which types of parameters to save during optimization looping. Defaults to previously specified label, if any; otherwise, defaults to SCALAR:

## SCALAR

Save scalar parameters only.

## ALL

Save all parameters, both scalar and array.

## Command Default

Read $=$ TOP, Dvar $=$ IGNORE, and Parms $=$ SCALAR.

## Menu Paths

Main Menu>Design Opt>Controls

OPLSW, Pname, Dvnam1, Dvnam2, Dvnam3, Dvnam4, Dvnam5, Dvnam6
Graphs the results of a global sweep generation.
OPTIMIZATION: Display
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Pname

Response parameter name. The parameter must have been previously defined as the objective function or a state variable (OPVAR).

Dvnam1, Dvnam2, Dvnam3, ..., Dvnam6
Design variable names.

## Notes

This command is only valid after a global sweep generation [OPTYPE,SWEEP]. Pname is graphed with respect to the specified design variables (Dvnam1, ... Dvnam6). The design variables are normalized ( 0 to 1 ) along the X -axis.

## Menu Paths

# Main Menu>Design Opt>Design Sets>Tool Results>Graph>Sweeps 

## OPMAKE

## Creates a design set using active scalar parameter values.

OPTIMIZATION: Operations
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Notes

The next available design set number is assigned to the new design set. Because no compression of set numbers is done, the next available set number will be either $1+$ the highest existing set number, or $1+$ the highest set number used (if sets with higher numbers previously existed but have been removed). Multiple design sets can be created by repeated use of PARRES (to read parameters from a file) and OPMAKE.

## Menu Paths

Main Menu>Design Opt>Design Sets>Create

## OPNCONTROL, Lab, VALUE, NUMSTEP

## Sets decision parameter for automatically increasing the time step interval.

SOLUTION: Analysis Options
MP ME ST PR PRN <> <> <> EM EH <> PP <> EME MFS

## Lab

## DOF

DOF label used to base a decision for increasing the time step (substep) interval in a nonlinear or transient analysis. The only DOF label currently supported is TEMP.

## OPENUPFACTOR

Factor for increasing the time step interval. Use Lab = OPENUPFACTOR (when AUTOTS,ON is invoked) and specify a VALUE greater than 1.0. Default for OPENUPFACTOR is 1.5. The upper limit for OPENUPFACTOR is 10.0. However, we recommend using a value not greater than 3.0.

## VALUE, NUMSTEP

Two values used in algorithm for deciding if the time step interval can be increased. The time step interval is increased if the maximum absolute value of the incremental solution at the specified DOF label is less than VALUE for the number of contiguous time steps specified by NUMSTEP. The default for VALUE is 0.1 and the default for NUMSTEP is 3 . NUMSTEP is used only when Lab = DOF.

## Notes

This command is available only for nonlinear or full transient analysis, and only when SOLCONTROL,ON.

## Menu Paths

Main Menu>Preprocessor>Loads>Load Step Opts>Nonlinear>Open Control Main Menu>Solution>Load Step Opts>Nonlinear>Open Control

## OPPRNT, Key

## Activates detailed optimization summary printout.

OPTIMIZATION:Specifications
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Key

Summary key:
OFF
Do not print details (default).
ON
Print the detailed summary.
FULL
Same as Key $=$ ON, but includes a full list of all design sets.

## Notes

Activates detailed optimization summary printout to the primary output during optimization analysis.

## Menu Paths

Main Menu>Design Opt>Controls

OPRAND, NITR, NFEAS

## Defines the number of iterations for a random optimization.

OPTIMIZATION:Specifications
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NITR

Maximum number of optimization iterations for the next execution [OPEXE]. Defaults to previously specified value, if any; otherwise, defaults to 1.

## NFEAS

Desired total number of feasible design sets (including existing feasible sets). Once NFEAS feasible sets are achieved, random iterations are terminated. If 0 is input, NITR random iterations will be performed independent of the number of feasible designs that are obtained. Defaults to previously specified value, if any; otherwise, defaults to 0 .

## Command Default

Perform 1 iteration.

## Notes

This command is valid for the random design generation method of optimization [OPTYPE,RAND].

## Menu Paths

## Main Menu>Design Opt>Method/Tool

## OPRESU, Fname, Ext, --

Reads optimization data into the optimization database.
OPTIMIZATION:Files
MP ME ST PR PRN <> <> FLEM EH DY PP <> EME MFS

## Fname

File name and directory path ( 248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

The file name defaults to Jobname.
Ext
Filename extension (8 character maximum).
The extension defaults to OPT if Fname is blank.

Unused field.

## Notes

Reads optimization data from the specified file into the optimization database. Optimization data must have been previously saved to this file [OPSAVE], or automatically written to this file in an earlier optimization analysis. All existing parameters will be deleted and replaced by those stored on the resumed file. (To save existing parameters, use PARSAV before OPRESU.)

## Menu Paths

Main Menu>Design Opt>Opt Database>Resume

OPRFA, Name
Prints the results of a factorial evaluation.
OPTIMIZATION: Display
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Name

Parameter name. The parameter must have been previously defined as the objective function or a state variable [OPVAR]. If Name $=$ ALL, print results for all optimization response variables (default).

## Notes

This command is only valid after a factorial evaluation [OPTYPE,FACT].

## Menu Paths

Main Menu $>$ Design Opt $>$ Design Sets $>$ Tool Results $>$ Print

## OPRGR, Name

Prints the results of a gradient evaluation.
OPTIMIZATION: Display
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Name

Parameter name. The parameter must have been previously defined as the objective function or a state variable [OPVAR]. If Name $=$ ALL, print results for all optimization response variables (default).

## Notes

This command is only valid after a gradient evaluation [OPTYPE,GRAD].

## Menu Paths

Main Menu>Design Opt>Design Sets>Tool Results>Print

## OPRSW, Name

## Prints the results of a global sweep generation.

OPTIMIZATION: Display
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Name

Parameter name. The parameter must have been previously defined as the objective function or a state variable (OPVAR). If Name $=$ ALL, print results for all optimization response variables (default).

## Notes

This command is only valid after a global sweep generation [OPTYPE,SWEEP].

## Menu Paths

## Main Menu>Design Opt $>$ Design Sets $>$ Tool Results $>$ Print

## OPSAVE, Fname, Ext, --

## Writes all optimization data to a file.

OPTIMIZATION:Files
MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS

## Fname

File name and directory path ( 248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

The file name defaults to Jobname.
Ext
Filename extension (8 character maximum).
The extension defaults to OPT if Fname is blank.
$\qquad$
Unused field.

## Notes

Writes all optimization data to File. OPT or a named file. Saved data includes optimization data only (DVs, SVs, saved design sets, analysis file name, etc.). The data can be restored [OPRESU] for an optimization restart.

## Menu Paths

Main Menu>Design Opt>Opt Database>Save

## OPSEL, NSEL

## Selects design sets for subsequent optimization looping.

> OPTIMIZATION: Operations
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

NSEL
Number of best design sets to be selected. If $N S E L=-1$, select all feasible designs. If $N S E L$ is positive and no objective function is defined, the following occurs: all infeasible design sets are removed; next the lowest number (oldest) feasible design sets are removed until NSEL sets are left (i.e., the latest feasible design sets are kept).

## Notes

A number of best design sets or all feasible design sets may be specified. ("Best" design sets are determined by the objective function value for each feasible design.) All design sets not selected are permanently removed from the optimization database. The original set numbers are retained for remaining design sets. Note that no compression of set numbers is done. Thus, if the highest set is removed, the next available set will still be the previously used highest set number +1 . (A maximum of 130 design sets can be stored in the optimization database.)

## Menu Paths

Main Menu>Design Opt>Design Sets>Select/Delete

## OPSUBP, NITR, NINFS

## Defines number of iterations for subproblem approximation method.

OP TIMIZATION: Specifications
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NITR

Maximum number of optimization iterations for the next execution [OPEXE]. Defaults to previously specified value, if any; otherwise, defaults to 30 .

## NINFS

Maximum number of consecutive infeasible design sets that are allowed. Once NINFS consecutive infeasible sets are encountered, iterations are terminated. Defaults to previously specified value, if any; otherwise, defaults to 7 .

## Notes

This command is valid for the subproblem approximation method of optimization [OPTYPE,SUBP].

## Menu Paths

Main Menu>Design Opt>Method/Tool

## OPSWEEP, Dset, NSPS

## Specifies the reference point and number of evaluation points for a sweep generation.

OP TIMIZATION: Specifications
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Dset

BEST
Use the best design set as the reference point (default).
LAST
Use the last design set as the reference point.
$N$
Use design set number N as the reference point.
NSPS
Number of evaluation points used for each design variable sweep. Two to ten evaluation points are allowed. Defaults to 2 (i.e., the minimum and maximum design variable values).

## Command Default

As described by the arguments above.

## Notes

This command is valid for the sweep evaluation method of optimization [OPTYPE,SWEEP].

## Menu Paths

## Main Menu>Design Opt>Method/Tool

## /OPT

## Enters the design optimizer.

> SESSION: Processor Entry OPTIMIZATION: Specifications
> MP ME ST PR PRN <><> FL EM EH DY PP <> EME MFS

## Notes

Enters the ANSYS optimizer for design optimization by iterative analyses. Upon issuing this command, if there are no existing design sets, all currently defined numerical scalar parameters are established as design set number 1 .

This command is valid only at the Begin Level.

## Menu Paths

Main Menu>Design Opt

## OPTYPE, Mname

## Specifies the optimization method to be used.

# OPTIMIZATION:Specifications <br> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS <br> Product Restrictions 

## Mname

Name of the optimization method to be used:
SUBP
Subproblem approximation method. Specifications for this method are defined on the OPSUBP command.

## FIRST

First order optimization method. Specifications for this method are defined on the OPFRST command.

## RAND

Perform random iterations. Specifications for this method are defined on the OPRAND command.

## RUN

Perform a single optimization run with current parameter values for the defined design variables.
FACT
Perform factored design iterations. Specifications for this method are defined on the OPFACT command.

## GRAD

Compute a gradient (design sensitivity) at a point in design space. Specifications for this method are defined on the OPGRAD command.

## SWEEP

Perform global sweeps through global design space starting from a single design set. Specifications for this method are defined on the OPSWEEP command.

## USER

User-supplied external optimization. See the Advanced Analysis Techniques Guide for user optimization information (USEROP routine). Parameters used for this method are defined on the OPUSER command.

## Command Default

Perform a single optimization run (Mname $=$ RUN ) with current parameter values for the defined design variables.

Notes
Specifies the optimization method to be used upon execution [OPEXE].

## Product Restrictions

| Command Op- <br> tion Mname | Available Products |
| :--- | :--- |
| SUBP | MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS |
| FIRST | MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS |
| OPRAND | MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS |
| RUN | MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS |
| FACT | MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS |
| GRAD | MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS |
| SWEEP | MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS |
| USER | MP ME ST $<><><><><\ggg<>$ DY PP $<>$ EME MFS |

## Menu Paths

## Main Menu>Design Opt>Method/Tool

OPUSER, NITR, VAL1, VAL2, VAL3, VAL4, VAL5, VAL6, VAL7, VAL8

## Defines specifications for user-supplied external optimization.

OPTIMIZATION:Specifications
MP ME ST PR PRN <> <> <> <> <> DY PP <> EME MFS

## NITR

Maximum number of optimization iterations for the next execution [OPEXE]. Defaults to previously specified value, if any; otherwise, defaults to 1.

## VAL1, VAL2, VAL3, ..., VAL8

Numerical values (double precision) for user-supplied optimizer. Values may be the results of parameter evaluations. Values are written to File. OPT after the parameter set data. VAL1--VAL8 default to previously specified values, if any; otherwise, default to 0 .

## Notes

Defines the number of iterations and the parameter values for user-supplied external optimization [OPTYPE,USER]. Values are passed to the user routine (USEROP) through the optimization common block.

## Menu Paths

## Main Menu>Design Opt>Method/Tool

## OPVAR, Name, Type, MIN, MAX, TOLER

## Specifies the parameters to be treated as optimization variables.

OPTIMIZATION:Specifications
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Name

Parameter name (must be a scalar parameter).
Type
Optimization variable type:
DV
Design variable. MAX must also be specified.
SV
State variable, also referred to as a constrained variable. (Usually defined via a *GET command.) MIN, or MAX, or both must be specified.

OBJ
Objective function (variable to be minimized). Only one objective function is allowed. MIN and MAX are not used.

DEL
Deletes this optimization variable (does not delete the parameter). This option only has meaning if the parameter Name was previously defined as an optimization variable (DV, SV, or OBJ). The parameter retains the value assigned during the last loop. MIN and MAX are not used.

## MIN

Minimum value for this parameter. For Type $=\mathrm{DV}, M I N$ must be greater than 0.0 and defaults to $0.001^{*}(M A X)$. For Type $=$ SV, there will be no lower limit if $M I N$ is left blank, but if $M I N=0.0$, the lower limit is zero. MIN is ignored for Type = OBJ. MIN is also ignored for Type = DEL (except for the special case when Name $=($ blank $)$ and Type $=$ DEL, as described next).

When the GUI is on, if a Delete operation (in a Design Variables or State Variables dialog box) writes this command to a log file (Jobname. LOG or Jobname. LGW), you will observe that Name is blank, Type = DEL, and MIN is an integer number. In this case, the GUI has assigned a value of MIN that corresponds to the location of a chosen variable name in the dialog box's list. It is not intended that you type in such a location value for MIN in an ANSYS session. However, a file that contains a GUI-generated OPVAR command of this form can be used for batch input or for use with the /INPUT command.

## MAX

Maximum value for this parameter. Required for Type $=\mathrm{DV}$ and ignored for Type $=\mathrm{OBJ}$ or DEL. For Type $=S V$, there will be no upper limit if MAX is left blank, but if $M A X=0.0$, the upper limit is zero.

## TOLER

For Type = DV and OBJ, acceptable change between loops for convergence; defaults to 0.01*(current value) for OBJ and $0.01^{*}(M A X-M I N)$ for DV. For Type $=$ SV, defines feasibility tolerance. For double-sided SV limits (MAX and MIN specified), the default is $0.01^{*}(M A X-M I N)$. For a single-sided SV limit (MAX or MIN specified), the default is $0.01^{*}$ (specified limit) or, if the absolute value of the limit is $<1$, the default is $0.01^{*}$ (current SV value). TOLER is ignored for Type = DEL.

## Command Default

No optimization parameters defined.

## Notes

Specifies the parameters to be treated as optimization variables. Variable constraints ( $M I N$ and $M A X$ ) and tolerances (TOLER) are also specified on this command. If the specified parameter (Name) does not exist at the time OPVAR is issued, the OPVAR command defines that parameter and assigns a value of zero to it. Up to 60 DV and 100 SV parameters are allowed.

## Menu Paths

# Main Menu>Design Opt>Design Variables <br> Main Menu>Design Opt>Objective <br> Main Menu>Design Opt>State Variables 

## OUTOPT

## Specifies "Output options" as the subsequent status topic.

SOLUTION: Status
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Notes

This is a status [STAT] topic command. Status topic commands are generated by the GUI and will appear in the log file (Jobname. LOG) if status is requested for some items under Utility Menu> List> Status. This command will be immediately followed by a STAT command, which will report the status for the specified topic.

If entered directly into the program, the STAT command should immediately follow this command.

## Menu Paths

Utility Menu>List>Status>Solution>Output Options

OUTPR, Item, Freq, Cname

## Controls the solution printout.

SOLUTION: Misc Loads
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Item

Item for print control:
BASIC
Basic quantities (nodal DOF solution, nodal reaction loads, and element solution) (default).
NSOL
Nodal DOF solution.
RSOL
Nodal reaction loads.

## ESOL

Element solution.

## NLOAD

Element nodal loads. When nonlinear stabilization is active, the stabilization force/moments are also printed.

## SFOR

Stabilization force/moment at the applicable nodes (valid only when nonlinear stabilization is active).

## VENG

Element energies. When nonlinear stabilization is active, the energy dissipation due to stabilization is also printed.

V
Nodal velocity (applicable to structural transient analysis only (ANTYPE,TRANS)).
A
Nodal acceleration (applicable to structural transient analysis only (ANTYPE,TRANS)).

## ALL

All of the above solution items.

## Freq

Print solution for this item every Freq ${ }^{\text {th }}$ (and the last) substep of each load step. If $-n$, print up to $n$ equally spaced solutions (for automatic time stepping). If NONE, suppress all printout for this item for this load step. If ALL, print solution for this item for every substep. If LAST, print solution for this item only for the last substep of each load step. For a modal analysis, use NONE or ALL.

## Cname

Name of the component, created with the CM command, defining the selected set of nodes or elements for which this specification is active. If blank, the set is all entities.

## Note

The component named must be of the same type as the item, i.e. nodal or element. A component name is not allowed with the BASIC or ALL labels.

## Command Default

No printout.

## Notes

Controls the solution items to be printed, the frequency with which they are printed (in static, transient, or full harmonic analyses), and the set of nodes or elements to which this specification applies (in static, transient, or full harmonic analyses). An item is associated with either a node (NSOL, RFORCE, V, and A items) or an element (all of the remaining items). The specifications are processed in the order that they are input. Up to 50 specifications (OUTPR and OUTRES commands combined) may be defined. Use OUTPR,STAT to list the current specifications and use OUTPR,ERASE to erase all the current specifications.

As described above, OUTPR writes some or all items (depending on analysis type) for all elements. To restrict the solution printout, use OUTPR to selectively suppress ( $F$ req $=$ NONE) the writing of solution data, or first suppress the writing of all solution data (OUTPR,ALL,NONE) and then selectively turn on the writing of solution data with subsequent OUTPR commands.

If the generalized plane strain feature is active and OUTPR is issued, the change of fiber length at the ending point during deformation and the rotation of the ending plane about $X$ and $Y$ during deformation will be printed if any displacement at the nodes is printed. The reaction forces at the ending point will be printed if any reaction force at the nodes is printed.

Nodal reaction loads ( Item $=\mathrm{RSOL}$ ) are processed according to the specifications listed for the PRRSOL command.

Result printouts for interactive sessions are suppressed for models with more than 10 elements.
This command is also valid in PREP7.

## Menu Paths

Main Menu>Preprocessor>Loads>Load Step Opts>Output Ctrls>Solu Printout Main Menu>Solution>Load Step Opts>Output Ctrls>Solu Printout

## /OUTPUT, Fname, Ext, --, Loc

## Redirects text output to a file or to the screen.

SESSION: Run Controls
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Fname

Filename and directory path ( 248 character maximum, including directory) to which text output will be redirected (defaults to Jobname if Ext is specified). For interactive runs, Fname $=$ TERM (or blank) redirects output to the screen. For batch runs, Fname = blank (with all remaining command arguments blank) redirects output to the default system output file.

## Ext

Filename extension (8 character maximum).

Unused field.
Loc
Location within a file to which output will be written:
(blank)
Output is written starting at the top of the file (default).
APPEND
Output is appended to the existing file.

## Command Default

Text output is written to the screen for interactive runs and to the system output file for batch runs (see the Basic Analysis Guide).

## Notes

Text output includes responses to every command and GUI function, notes, warnings, errors, and other informational messages. Upon execution of /OUTPUT,Fname, Ext, . . ., all subsequent text output is redirected to the file Fname.Ext. To redirect output back to the default location, issue /OUTPUT (no arguments).

## Note

When using the GUI, output from list operations [NLIST, DLIST, etc.] is always sent to a list window regardless of the /OUTPUT setting. The output can then be saved on a file or copied to the /OUTPUT location using the File menu in the list window.

This command is valid in any processor.

## Menu Paths

Utility Menu>File>Switch Output to>File
Utility Menu>File>Switch Output to>Output Window

## OUTRES, Item, Freq, Cname

## Controls the solution data written to the database.

SOLUTION: Misc Loads
MP ME ST PR PRN <> <> <> EM EH <> PP <> EME MFS

## Item

Results item for database and file write control:

## ALL

All solution items except SVAR and LOCI. This value is the default.

## CINT

J-integral results.

## ERASE

Resets OUTRES specifications to their default values.

## STAT

Lists the current OUTRES specifications.

## BASIC

Write only NSOL, RSOL, NLOAD, STRS, FGRAD, and FFLUX records to the results file and database.
NSOL
Nodal DOF solution.
RSOL
Nodal reaction loads.
V
Nodal velocity (applicable to structural full transient analysis only (ANTYPE,TRANS)).
A
Nodal acceleration (applicable to structural full transient analysis only (ANTYPE,TRANS).

## ESOL

Element solution (includes all items following):

## NLOAD

Element nodal, input constraint, and force loads (also used with the /POST1 commands PRRFOR, NFORCE, and FSUM to calculate reaction loads).

## STRS

Element nodal stresses.
EPEL
Element elastic strains.
EPTH
Element thermal, initial, and swelling strains.
EPPL
Element plastic strains.
EPCR
Element creep strains.
FGRAD
Element nodal gradients.
FFLUX
Element nodal fluxes.
LOCI
Integration point locations.
SVAR
State variables (used only by USERMAT).
MISC
Element miscellaneous data (SMISC and NMISC items of the ETABLE command).

## Freq

Specifies how often (that is, at which substeps) to write the specified solution results item. The following values are valid:

| Value | Description |
| :---: | :--- |
| $n$ | Writes the specified results item every $n$th (and the last) substep of each <br> load step. |
| $-n$ | Writes up to $n$ equally spaced solutions (for automatic loading). |
| NONE | Suppresses writing of the specified results item for all substeps. |
| ALL | Writes the solution of the specified solution results item for every substep. <br> This value is the default for a harmonic analysis (ANTYPE,HARMIC) and <br> for any expansion pass (EXPASS,ON). |
| LAST | Writes the specified solution results item only for the last substep of each <br> load step.This value is the default for a static (ANTYPE,STATIC) or transient <br> (ANTYPE,TRANS) analysis. |


| Value | Description |
| :--- | :--- |
| \%ar- <br> ray\% | Where array is the name of an $n \times 1 \times 1$ dimensional array parameter <br> defining $n$ key times, the data for the specified solution results item is <br> written at those key times. |
| Key times in the array parameter must appear in ascending order. <br> Values must be greater than or equal to the beginning values of the <br> load step, and less than or equal to the ending time values of the load <br> step. |  |
| For multiple-load-step problems, either change the parameter values <br> to fall between the beginning and ending time values of the load step <br> or erase the current settings and reissue the command with a new array <br> parameter. <br> For more information about defining array parameters, see the *DIM <br> command documentation. |  |

## Cname

The name of the component, created with the CM command, defining the selected set of elements or nodes for which this specification is active. If blank, the set is all entities. A component name is not allowed with the ALL, BASIC, or RSOL items.

## Command Default

The OUTRES command writes the specified solution results item for every substep. The exceptions to the default behavior are as follows:

- For static (ANTYPE,STATIC) or transient (ANTYPE,TRANS) analyses, the default is to write the specified solution results item for the last substep of each load step.
- For a harmonic analysis (ANTYPE,HARMIC) and any expansion pass, the default is to write the specified solution results item for every substep.
- For reduced or mode superposition transients, the default is to write the reduced displacements file for every 4th substep (as well as the last substep); however, if gap conditions exist, the default is to write the specified solution results item of every substep.


## Notes

The OUTRES command allows you to specify the following:

- The solution item (Item) to write to the database (and to the reduced displacement and results files)
- The frequency (Freq) at which the solution item is written (applicable to static, transient, or full harmonic analyses)
- The set of elements or nodes (Cname) to which your specification applies.

The command generates a specification for controlling data storage for each substep, activating storage of the specified results item for the specified substeps of the solution and suppressing storage of that item for all other substeps.

You can issue multiple OUTRES commands in an analysis. After the initial command creating the storage specification, subsequent OUTRES commands modify the specification set for each substep. The command processes your specifications at each substep in the order in which you input them. If you specify a given solution item twice, output is based upon the last specification. Therefore, issue multiple OUTRES commands carefully and in the proper sequence.

Besides OUTRES, another output-control command named OUTPR exists which controls solution printout. You can issue up to 50 output-control commands (either OUTRES or OUTPR, or some combination of both) in an analysis.

## Note

Issuing OUTRES,ERASE erases the existing output specifications and resets the counted number of OUTRES commands to zero. Issuing OUTPR,ERASE affects the OUTPR command in the same way.

A given OUTRES command has no effect on results items not specified. For example, an OUTRES,ESOL,LAST command does not affect NSOL data; that is, it neither activates nor suppresses NSOL data storage in any substep.

## Caution

In the results-item hierarchy, certain items are subsets of other items. For example, element solution (ESOL) data is a subset of all (ALL) solution data. Therefore, an OUTRES,ALL command can affect ESOL data. Likewise, an OUTRES command that controls ESOL data can affect a portion of ALL data. The example OUTRES commands illustrate the interrelationships between results items and the necessity for employing the OUTRES command thoughtfully.

To suppress ALL data at every substep, issue an OUTRES,ALL,NONE command. (An OUTRES,ERASE command does not suppress ALL data at every substep.)

The NSOL, RSOL, V , and A solution items are associated with nodes. All remaining solution items are associated with elements.

The boundary conditions (constraints and force loads) are written to the results file only if either nodal or reaction loads (NLOAD or RSOL items) are also written.

When specifying a Freq value, observe the following:

- For a modal analysis, the only valid values are NONE or ALL.
- If you issue multiple OUTRES commands during an analysis, you cannot specify a key time array parameter (\%array\%) in a given OUTRES command and then specify a different Freq option in a subsequent OUTRES command.

For a coupled-field analysis using the ANSYS Multi-field Solver, Freq cannot be NONE for Item $=$ NSOL or ESOL because interface loads have to be retrieved from the database.

The OUTRES command is also valid in /PREP7.

## Example

When issuing an OUTRES command, think of a matrix in which you set switches on and off. When a switch is on, a results item is stored for the specified substep. When a switch is off, a results item is suppressed for a specified substep.

Assuming a static (ANTYPE,STATIC) analysis, this example shows how the matrix looks after issuing each OUTRES command in this six-substep solution.

NSUBST, 6
OUTRES, ERASE
OUTRES, NSOL, 2
OUTRES,ALL, 3
OUTRES,ESOL, 4
SOLVE
To simplify the example, only a subset of the available solution items appears in the matrix.
OUTRES,ERASE -- After issuing this command, the default output specifications are in effect, as shown:

| Substep | Results Item Specification |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | BASIC |  |  |  |  |  |  |  |  |  |  |  |
|  | ALL |  |  |  |  |  |  |  |  |  |  |  |
|  | NSOL | RSOL | ESOL |  |  |  |  |  |  |  |  |  |
|  | NLOAD |  |  |  |  |  |  |  | STRS | FGRAD | EPEL | EPTH |
| 1 | off |  |  |  |  |  |
| 2 | off |  |  |  |  |  |
| 3 | off |  |  |  |  |  |
| 4 | off |  |  |  |  |  |
| 5 | off |  |  |  |  |  |
| 6 | ON |  |  |  |  |  |

OUTRES,NSOL, 2 -- This command modifies the initial specifications so that NSOL is turned on for substeps 2,4 and 6 , and turned off for substeps 1,3 and 5 , as shown:

| Substep | Results Item Specification |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | BASIC |  |  |  |  |  |  |  |  |  |  |  |  |
|  | ALL |  |  |  |  |  |  |  |  |  |  |  |  |
|  | NSOL | RSOL | ESOL |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  | NLOAD | STRS | FGRAD | EPEL | EPTH |
| 1 | off |  |  |  |  |  |  |
| 2 | ON | off | off | off | off | off | off |  |  |  |  |  |  |
| 3 | off |  |  |  |  |  |  |
| 4 | ON | off | off | off | off | off | off |  |  |  |  |  |  |
| 5 | off |  |  |  |  |  |  |
| 6 | ON |  |  |  |  |  |  |

OUTRES,ALL,3 -- This command further modifies the specifications so that ALL is turned on for substeps 3 and 6, and turned off for substeps 1, 2, 4 and 5, as shown:

| Substep | Results Item Specification |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | BASIC |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | NSOL | RSOL | ESOL |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  | NLOAD | STRS | FGRAD | EPEL | EPTH |
| 1 | off |  |  |  |  |  |  |
| 2 | off |  |  |  |  |  |  |
| 3 | ON |  |  |  |  |  |  |
| 4 | off |  |  |  |  |  |  |
| 5 | off |  |  |  |  |  |  |
| 6 | ON |  |  |  |  |  |  |

OUTRES,ESOL, 4 -- This command once again modifies the specifications so that ESOL is turned on for the fourth and last substeps, and turned off for substeps 1,2,3 and 5 , as shown:

| Substep | Results Item Specification |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | BASIC |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  | NSOL | RSOL | ESOL |  |  |  |  |
|  |  |  | NLOAD | STRS | FGRAD | EPEL | EPTH |
| 1 | off |
| 2 | off |
| 3 | ON | ON | off | off | off | off | off |
| 4 | off | off | ON | ON | ON | ON | ON |
| 5 | off |
| 6 | ON |

## SOLVE

When obtaining the solution, results data are stored as follows:

| Substep | Results Items Stored |
| :---: | :--- |
| 1 | No data |
| 2 | No data |
| 3 | NSOL and RSOL data |
| 4 | ESOL data |
| 5 | No data |
| 6 | ALL data |

## Menu Paths

Main Menu>Preprocessor>Loads>Analysis Type>Sol'n Controls>Basic
Main Menu>Preprocessor>Loads>Load Step Opts>Output Ctrls>DB/Results File
Main Menu>Solution>Analysis Type>Sol'n Controls>Basic
Main Menu>Solution>Load Step Opts>Output Ctrls>DB/Results File

# P Commands 

## PADELE, DELOPT

Deletes a defined path.

> POST1: Path Operations
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## DELOPT

Path delete option (one of the following):
ALL
Delete all defined paths.
NAME
Delete a specific path from the list of path definitions. (Substitute the actual path name for NAME.)

## Command Default

Deletes the currently active path.

## Notes

Paths are identified by individual path names. To review the current list of path names, issue the command PATH,STATUS.

This command is valid in the general postprocessor.

## Menu Paths

Main Menu>General Postproc>Path Operations>Archive Path $>$ Retrieve $>$ Path from array
Main Menu>General Postproc>Path Operations>Delete Path $>$ All Paths
Main Menu>General Postproc>Path Operations>Delete Path>By Name
Main Menu>Preprocessor>Path Operations>Delete Path>All Paths
Main Menu>Preprocessor>Path Operations>Delete Path>By Name
/PAGE, ILINE, ICHAR, BLINE, BCHAR
Defines the printout and screen page size.
POST1:Listing
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## ILINE

Number of lines (11 minimum) per "page" or screen. Defaults to 24. Applies to interactive non-GUI to the screen output only.

## ICHAR

Number of characters (41 to 132) per line before wraparound. Defaults to 80 . Applies to interactive nonGUI to the screen output only.

## BLINE

Number of lines (11 minimum) per page. Defaults to 56. Applies to batch mode [/BATCH], diverted [/OUTPUT], or interactive GUI [/MENU] output.

## BCHAR

Number of characters ( 41 to 240 (system dependent)) per line before wraparound. Defaults to 132. Applies to batch mode [/BATCH], diverted [/OUTPUT], or interactive GUI [/MENU] output.

## Command Default

As defined by the items above.

## Notes

Defines the printout page size for batch runs and the screen page size for interactive runs. Applies to the POST1 PRNSOL, PRESOL, PRETAB, PRRSOL, and PRPATH commands. See the /HEADER command for additional controls (page ejects, headers, etc.) that affect the amount of printout. A blank (or out-of-range) value retains the previous setting. Issue /PAGE,STAT to display the current settings. Issue /PAGE,DEFA to reset the default specifications.

This command is valid in any processor.

## Menu Paths

This command cannot be accessed from a menu.

## PAGET, PARRAY, POPT

## Writes current path information into an array variable.

> POST1: Path Operations
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## PARRAY

The name of the array parameter that the ANSYS program creates to store the path information. If the array parameter already exists, it will be replaced with the current path information.

## POPT

Determines how data will be stored in the parameter specified with PARRAY:

## POINTS

Store the path points, the nodes (if any), and coordinate system. (For information on defining paths and path points, see the descriptions of the PATH and PPATH commands.)

## TABLE

Store the path data items. (See the PDEF command description for path data items.)
LABEL
Stores path data labels.

## Notes

Use the PAGET command together with the PAPUT command to store and retrieve path data in array variables for archiving purposes. When retrieving path information, restore the path points (POINTS option) first, then the path data (TABLE option), and then the path labels (LABEL option).

## Menu Paths

## Main Menu>General Postproc>Path Operations>Archive Path>Store>Path in array

PAPUT, PARRAY, POPT

## Retrieves path information from an array variable.

POST1:Path Operations<br>MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## PARRAY

Name of the array variable containing the path information.

## POPT

Specifies which path data to retrieve:

## POINTS

Retrieve path point information (specified with the PPATH command and stored with the PAGET,POINTS command). The path data name will be assigned to the path points.

TABLE
Retrieve path data items (defined via the PDEF command and stored with the PAGET,,TABLE command).

LABEL
Retrieve path labels stored with the PAGET,,LABEL command.

## Notes

When retrieving path information, restore path points (POINTS option) first, then the path data (TABLE option), and then the path labels (LABEL option).

## Menu Paths

Main Menu>General Postproc>Path Operations>Archive Path>Retrieve>Path from array

PARESU, Lab, Fname, Ext, --

## Restores previously saved paths from a file.

POST1:Path Operations
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
Lab
Read operation:

## ALL

Read all paths from the selected file (default).

## Fname

File name and directory path ( 248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

The file name defaults to Jobname.
Ext
Filename extension (8 character maximum).
The extension defaults to PATH if Fname is blank.

Unused field.

## Notes

This command removes all paths from virtual memory and then reads path data from a file written with the PASAVE command. All paths on the file will be restored. All paths currently in memory will be deleted.

## Menu Paths

Main Menu>General Postproc>Path Operations $>$ Archive Path $>$ Retrieve $>$ Paths from file
Main Menu $>$ Preprocessor $>$ Path Operations $>$ Retrieve $>$ Paths from file Main Menu>Preprocessor>Path Operations>Retrieve>Paths from file

PARTSEL, Type, PMIN, PMAX, PINC
Selects a subset of parts in an explicit dynamic analysis.
DATABASE:Selecting
<> <> <> <> <> <> <> <> <> <> DY PP <> <> <>

## Type

Label identifying type of select. Because PARTSEL is a command macro, the label must be enclosed in single quotes.
'S'
Select a new set (default).
'R'
Reselect a set from the current set.
'A'
Additionally select a set and extend the current set.
'U'
Unselect a set from the current set.
'ALL'
Select all parts.
'NONE'
Unselect all parts.
'INVE'
Invert the current selected set.
The following fields are used only with Type = 'S', 'R', 'A', or 'U':
PMIN
Minimum part number in the range to be selected.
PMAX
Maximum part number in the range to be selected (defaults to PMIN).
PINC
Part number increment in the range to be selected (default $=1$ ).

## Notes

PARTSEL invokes an ANSYS macro that selects parts in an explicit dynamic analysis. When PARTSEL is executed, an element component is automatically created for each existing part. For example, the elements that make up PART 1 are grouped into the element component _PART1. Each time the PARTSEL command is executed, components for unselected parts will be unselected. To plot selected parts, choose Utility Menu> Plot> Parts in the GUI or issue the command PARTSEL,'PLOT'.

After selecting parts, if you change the selected set of nodes or elements and then plot parts, the nodes and elements associated with the previously selected parts (from the last PARTSEL command) will become the currently selected set.

## Note

A more efficient way to select and plot parts is to use the ESEL (with ITEM = PART) and EPLOT commands. We recommend using ESEL instead of PARTSEL since PARTSEL will be phased out in a future release. Note that the menu path mentioned above for plotting parts does not work with the ESEL command; use Utility Menu> Plot> Elements instead.

In an explicit dynamic small restart analysis (EDSTART,2), PARTSEL can be used to unselect a part during the solution even if it is referenced in some way (such as in a contact definition). (Note that ESEL cannot be used for this purpose.) However, in a new analysis or a full restart analysis (EDSTART,3), all parts that are used in some type of definition must be selected at the time of solution.

This command is valid in any processor.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Utility Menu>Select>Select Parts

PARRES, Lab, Fname, Ext, --

## Reads parameters from a file.

APDL: Parameters
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Argument Descriptions

## Lab

Read operation:
NEW --
Replace current parameter set with these parameters (default).
CHANGE --
Extend current parameter set with these parameters, replacing any that already exist.

## Fname

File name and directory path ( 248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

The file name defaults to Jobname.
Ext
Filename extension (8 character maximum).
The extension defaults to PARM if Fname is blank.

Unused field.

## Notes

Reads parameters from a coded file. The parameter file may have been written with the PARSAV command. The parameters read may replace or change the current parameter set.

This command is valid in any processor.

## Menu Paths

Utility Menu>Parameters>Restore Parameters

PARSAV, Lab, Fname, Ext,--
Writes parameters to a file.
APDL: Parameters
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Argument Descriptions

## Lab <br> Write operation:

## SCALAR --

Write only scalar parameters (default).
ALL --
Write scalar and array parameters. Parameters may be numeric or alphanumeric.
Fname
File name and directory path ( 248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

The file name defaults to Jobname.
Ext
Filename extension (8 character maximum).
The extension defaults to PARM if Fname is blank.
--
Unused field.

## Notes

Writes the current parameters to a coded file. Previous parameters on this file, if any, will be overwritten. The parameter file may be read with the PARRES command.

PARSAV/PARRES operations truncate some long decimal strings, and can cause differing values in your solution data when other operations are performed. A good practice is to limit the number of decimal places you will use before and after these operations.

This command is valid in any processor.

## Menu Paths

Utility Menu>Parameters>Save Parameters

## PASAVE, Lab, Fname, Ext, --

## Saves selected paths to an external file.

> POST1:Path Operations
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Lab

Write operation:

## S

Saves only selected paths.

## ALL

Saves all paths (default).

## Pname

Saves the named path (from the PSEL command).

## Fname

File name and directory path ( 248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

The file name defaults to Jobname.

## Ext

Filename extension (8 character maximum).
The extension defaults to PATH if Fname is blank.

Unused field.

## Notes

Saves the paths selected with the PSEL command to an external file (Jobname. path by default). Previous paths on this file, if any, will be overwritten. The path file may be read with the PARESU command.

This command is valid in POST1.

## Menu Paths

Main Menu>General Postproc>Path Operations>Archive Path>Store>Paths in file Main Menu>Preprocessor>Path Operations>Store>Paths in file

PATH, NAME, nPts, nSets, nDiv

## Defines a path name and establishes parameters for the path.

## POST1:Path Operations <br> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NAME

Name for this path (eight characters maximum. If $n P t s$ is blank, set the current path to the path with this name. If $n P t s$ is greater than zero, create a path of this name. If a path with this name already exists, replace it with a new path. If the NAME value is STATUS, display the status for path settings.
nPts
The number of points used to define this path. The minimum number is two, and the maximum is 1000 . Default is 2 .

## nSets

The number of sets of data which you can map to this path. You must specify at least four: $X, Y, Z$, and S. Default is 30 .
nDiv
The number of divisions between adjacent points. Default is 20 . There is no maximum number of divisions.

## Notes

The PATH command is used to define parameters for establishing a path. The path geometry is created by the PPATH command. Multiple paths may be defined and named; however, only one path may be active
for data interpolation [PDEF] and data operations [PCALC, etc.]. Path geometry points and data are stored in memory while in POST1. If you leave POST1, the path information is erased. Path geometry and data may be saved in a file by archiving the data using the PASAVE command. Path information may be restored by retrieving the data using the PARESU command.

For overlapping nodes, the lowest numbered node is assigned to the path.
The number of divisions defined using nDiv does NOT affect the number of divisions used by PLSECT and PRSECT.

For information on displaying paths you have defined, see the Basic Analysis Guide.

## Menu Paths

Main Menu>General Postproc>List Results>Path Items<br>Main Menu>General Postproc>Path Operations $>$ Archive Path $>$ Retrieve $>$ Path from array<br>Main Menu>General Postproc>Path Operations>Archive Path $>$ Retrieve $>$ Paths from file<br>Main Menu>General Postproc>Path Operations>Define Path>By Location<br>Main Menu>General Postproc>Path Operations>Define Path>By Nodes<br>Main Menu>General Postproc>Path Operations>Define Path>On Working Plane<br>Main Menu>General Postproc>Path Operations>Define Path>Path Status>Defined Paths<br>Main Menu>General Postproc>Path Operations>Delete Path>All Paths<br>Main Menu>General Postproc>Path Operations>Delete Path $>$ By Name<br>Main Menu>General Postproc>Path Operations>Recall Path<br>Main Menu>Preprocessor>Path Operations>Define Path>By Location<br>Main Menu>Preprocessor>Path Operations>Define Path>By Nodes<br>Main Menu>Preprocessor>Path Operations>Define Path>On Working Plane<br>Main Menu>Preprocessor>Path Operations>Define Path>Path Status>Defined Paths<br>Main Menu>Preprocessor>Path Operations>Delete Path $>$ All Paths<br>Main Menu>Preprocessor>Path Operations>Delete Path>By Name<br>Main Menu $>$ Preprocessor $>$ Path Operations $>$ Recall Path<br>Main Menu>Preprocessor $>$ Path Operations $>$ Retrieve $>$ Paths from file Utility Menu>List>Status>General Postproc>Path Operations

## PAUSE

Temporarily releases the current product license.
SESSION: Run Controls
MP ME ST PR PRN DS DSS FL EM EH DY PP VT EME MFS

## Notes

The PAUSE command temporarily releases (or pauses) the current product license so that another application can use it.

This application consumes a license as soon as you launch it, and retains that license until it is finished. If you launch the product interactively, the license is retained until you either close the application or issue a PAUSE command via the command line.

No other operation (other than SAVE or /EXIT) is possible in the current application while use of the product license is paused.

When the second application has finished and releases the license, issue an UNPAUSE command via the command line to restore use of the license to the current application.

For more information, see the ANSYS, Inc. Licensing Guide.

## Menu Paths

This command cannot be accessed from a menu.
/PBC, Item, --, KEY, MIN, MAX, ABS

## Shows boundary condition (BC) symbols and values on displays.

GRAPHICS:Labeling
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Item

Label identifying the item:
U
Applied translational constraints (UX, UY, UZ).
ROT
Applied rotational constraints (ROTX, ROTY, ROTZ).

## TEMP

Applied temperatures (TEMP, TBOT, TE2, TE3, . . ., TTOP).

## PRES

Applied fluid pressures.

## V

Applied flow velocities (VX, VY, VZ).
SPOn
Mass fraction of species $n$, where $n=1$ to 6 (FLOTRAN). If a species is given a user-defined name [MSSPEC], use that name instead of SPOn.

ENKE
Turbulent kinetic energy (FLOTRAN).

## ENDS

Turbulent energy dissipation (FLOTRAN).

## VOLT

Applied voltages.
MAG
Applied scalar magnetic potentials.
A
Applied vector magnetic potentials.

## CHRG

Applied electric charge.

## F or FORC

Applied structural forces (FX, FY, FZ).

## M or MOME

Applied structural moments (MX, MY, MZ).
HEAT
Applied heat flows (HEAT, HBOT, HE2, HE3, . . ., HTOP).
FLOW
Applied fluid flow.
AMPS
Applied current flow.

## FLUX

Applied magnetic flux.
CSG
Applied magnetic current segments.
MAST
Master degrees of freedom.
CP
Coupled nodes.
CE
Nodes in constraint equations.

## NFOR

POST1 nodal forces.

## NMOM

POST1 nodal moments
RFOR
POST1 reaction forces.
RMOM
POST1 reaction moments (MX, MY, MZ).
PATH
Path geometry (undistorted) associated with the PATH command after a PDEF or PVECT command has been issued.

ACEL
Global acceleration (ACELX, ACELY, ACELZ vector).
OMEG
Global angular velocity (OMEGX, OMEGY, OMEGZ vector) and acceleration (DOMEGX, DOMEGY, DOMEGZ vector).

## WELD

Applied spotwelds (ANSYS LS-DYNA).
ALL
Represents all appropriate labels.

Unused field.

## KEY

Symbol key:
0
Do not show symbol.
1
Show symbol.
2
Plot value next to symbol.
MIN
Minimum value in a range of values plotted on screen.
MAX
Maximum value in a range of values plotted on screen.

## ABS

Absolute number. If $K E Y=2$ and $A B S=0$, a number falling between the $M I N$ and $M A X$ is displayed. If $A B S$ is not specified, it defaults to 0 . If $K E Y=2$ and $A B S=1$, an absolute value falling between the MIN and $M A X$ is displayed. $A B S=1$ lets you eliminate the display of numbers whose absolute values are less than a desired tolerance. For example, if $A B S=1, M I N=10$ and $M A X=1 \mathrm{e} 8$, values such as .83646 and -5.59737 are not displayed.

## Command Default

No symbols displayed.

## Notes

The /PBC command adds degree of freedom constraint, force load, and other symbols to displays.
Symbols are applied to the selected nodes only. All arrow and arrowhead symbols are oriented in the nodal coordinate system and lie in two perpendicular planes. Force arrows are scaled proportional to their magnitude. (If $K E Y=1$, use /VSCALE to change arrow length.) For scalar quantities, the specific component direction (i.e., $x, y$, or $z$ ) of the symbol has no meaning, but the positive or negative sense (e.g., positive or negative $x$ ) represents a positive or negative scalar value, respectively.

The effects of the /PBC command are not cumulative (that is, the command does not modify an existing setting from a previously issued /PBC command). If you issue multiple /PBC commands during an analysis, only the setting specified by the most recent /PBC command applies.

Use /PSTATUS or /PBC,STAT to display settings. Use /PBC,DEFA to reset all specifications back to default. See the /PSF and /PBF commands for other display symbols.

In a cyclic symmetry analysis, the /PBC command is deactivated when cyclic expansion is active (/CYCEXPAND,,ON). To view boundary conditions on the basic sector, deactivate cyclic expansion (/CYCEXPAND,,OFF) and issue this command: /PBC,ALL,,1

Issuing the command /PBC,PATH, ,1 displays all defined paths.
The /PBC command is valid in any processor.

## Menu Paths

Main Menu>General Postproc>Path Operations>Define Path>On Working Plane
Main Menu>General Postproc>Path Operations>Plot Paths
Main Menu>Preprocessor>Path Operations>Define Path>On Working Plane
Main Menu>Preprocessor>Path Operations>Plot Paths
Utility Menu>PlotCtrls>Symbols
/PBF, Item, --, KEY
Shows magnitude of body force loads on displays.
GRAPHICS:Labeling
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Item
Label identifying the item:
TEMP
Applied temperatures.
FLUE
Applied fluences.
HGEN
Applied heat generation rates.
JS
Applied current density magnitude.
JSX
X-component of current density.
JSY
Y-component of current density.
JSZ
Z-component of current density.
PHASE
Phase angle of applied load.
MVDI
Applied magnetic virtual displacements flag.

## CHRGD

Applied electric charge density.
VLTG
Applied voltage drop.
FORC
Applied force density (FLOTRAN only).

Unused field.
KEY
Symbol key:

0
Do not show body force load contours.
1
Show body force load contours.
2
Show current density as a vector (not a contour).

## Command Default

No body force load contours displayed.

## Notes

Shows body force loads as contours on displays for the selected elements.
The effects of the /PBF command are not cumulative (that is, the command does not modify an existing setting from a previously issued /PBF command). If you issue multiple /PBF commands during an analysis, only the setting specified by the most recent /PBF command applies.

Use /PSTATUS or /PBF,STAT to display settings. Use /PBF,DEFA to reset all specifications back to default. See also the /PSF and /PBC command for other display contours.

Portions of this command are not supported by PowerGraphics [/GRAPHICS,POWER].
This command is valid in any processor.

## Menu Paths

Utility Menu>PlotCtrls>Symbols

PCALC, Oper, LabR, Lab1, Lab2, FACT1, FACT2, CONST
Forms additional labeled path items by operating on existing path items.

> POST1: Path Operations
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Oper

Type of operation to be performed. See "Notes" (p. 1203) below for specific descriptions of each operation:

## ADD

Adds two existing path items.

## MULT

Multiplies two existing path items.

## DIV

Divides two existing path items (a divide by zero results in a value of zero).
EXP
Exponentiates and adds existing path items.

## DERI

Finds a derivative.

## INTG

Finds an integral.

## SIN

Sine.
COS
Cosine.

## ASIN

Arcsine.
ACOS
Arccosine.
LOG
Natural log.

## LabR

Label assigned to the resulting path item.

## Lab1

First labeled path item in operation.

## Lab2

Second labeled path item in operation. Lab2 must not be blank for the MULT, DIV, DERI, and INTG operations.

FACT1
Factor applied to Lab1. A (blank) or '0' entry defaults to 1.0.
FACT2
Factor applied to Lab2. A (blank) or '0' entry defaults to 1.0.
CONST
Constant value (defaults to 0.0 ).

## Notes

If Oper = ADD, the command format is:
PCALC,ADD,LabR,Lab1,Lab2,FACT1,FACT2,CONST
This operation adds two existing path items according to the operation:

$$
\operatorname{LabR}=(F A C T 1 \times \operatorname{Lab} 1)+(F A C T 2 \times \operatorname{Lab} 2)+C O N S T
$$

It may be used to scale the results for a single path item.
If Oper = MULT, the command format is:
PCALC,MULT,LabR,Lab1,Lab2,FACT1
Lab2 must not be blank. This operation multiplies two existing path items according to the operation:

$$
\operatorname{LabR}=\operatorname{Lab} 1 \times \operatorname{Lab} 2 \times F A C T 1
$$

If Oper = DIV, the command format is:

PCALC,DIV,LabR,Lab1,Lab2,FACT1
Lab2 must not be blank. This operation divides two existing path items according to the operation:

$$
L a b R=(L a b 1 / L a b 2) \times F A C T 1
$$

If Oper = EXP, the command format is:

## PCALC,EXP,LabR,Lab1,Lab2,FACT1,FACT2

This operation exponentiates and adds existing path items according to the operation:

$$
L a b R=\left(|\operatorname{Lab} 1|^{\mathrm{FACT} 1}\right)+\left(|L a b 2|^{\mathrm{FACT}} \mid\right)
$$

If Oper = DERI, the command format is:

## PCALC,DERI,LabR,Lab1,Lab2,FACT1

Lab2 must not be blank. This operation finds a derivative according to the operation:

$$
L a b R=F A C T 1 \times \mathrm{d}(\operatorname{Lab} 1) / \mathrm{d}(L a b 2)
$$

If Oper $=$ INTG, the command format is:
PCALC,INTG,LabR,Lab1,Lab2,FACT1
Lab2 must not be blank. This operation finds an integral according to the operation:

$$
\operatorname{LabR}=\mathrm{FACT} 1 \times \int_{\mathrm{s}} \operatorname{Lab} 1 d(\text { Lab2 })
$$

Use S for Lab2 to integrate Lab1 with respect to the path length. S, the distance along the path, is automatically calculated by the program when a path item is created with the PDEF command.

If Oper $=$ SIN, COS, ASIN, ACOS, or LOG, the command format is:
PCALC,Oper,LabR,Lab1,FACT1,CONST
where the function (SIN, COS, ASIN, ACOS or LOG) is substituted for Oper and Lab2 is blank.
The operation finds the resulting path item according to one of the following formulas:

```
LabR = FACT2 x sin(FACT1 x Lab1) + CONST
LabR = FACT2 x cos(FACT1 x Lab1) + CONST
LabR = FACT2 x 部-1 (FACT1 x Lab1) + CONST
LabR = FACT2 x 矢-1 (FACT1 x Lab1) + CONST
LabR = FACT2 x log(FACT1 x Lab1) + CONST
```


## Menu Paths

Main Menu>General Postproc>Path Operations>Add<br>Main Menu>General Postproc>Path Operations>ArcCosine<br>Main Menu>General Postproc>Path Operations>ArcSine<br>Main Menu>General Postproc>Path Operations>Cosine<br>Main Menu>General Postproc>Path Operations>Differentiate<br>Main Menu>General Postproc>Path Operations>Divide<br>Main Menu>General Postproc>Path Operations>Exponentiate<br>Main Menu>General Postproc>Path Operations>Integrate<br>Main Menu>General Postproc>Path Operations>Multiply<br>Main Menu>General Postproc>Path Operations>Natural Log<br>Main Menu>General Postproc>Path Operations>Sine

## PCGOPT, Lev_Diff, --, ReducelO, StrmCk, Wrtfull, Memory

## Controls PCG solver options.

SOLUTION: Analysis Options
MP ME ST PR PRN DS DSS <> EM <> <> PP <> EME MFS

## Lev_Diff

Indicates the level of difficulty of the analysis. Valid settings are AUTO or 0 (default), 1, 2, 3, 4, or 5 . This option applies to both the PCG solver when used in static and full transient analyses and to the PCG Lanczos method in modal analyses. Use AUTO to let ANSYS automatically choose the proper level of difficulty for the model. Lower values ( 1 or 2) generally provide the best performance for well-conditioned problems. Values of 3 or 4 generally provide the best performance for ill-conditioned problems; however, higher values may increase the solution time for well-conditioned problems. Higher level-of-difficulty values typically require more memory. Using the highest value of 5 essentially performs a factorization of the global matrix (similar to the sparse solver) and may require a very large amount of memory. If necessary, use Memory to reduce the memory usage when using Lev_Diff=5. Lev_Diff=5 is generally recommended for small- to medium-sized problems when using the PCG Lanczos mode extraction method.

For example, models containing elongated elements (i.e., elements with high aspect ratios) and models containing contact elements can lead to ill-conditioned problems. To determine if your problem is illconditioned, view the Jobname. PCS file to see the number of PCG iterations needed to reach a converged solution. Generally, static or full transient solutions that require more than 1500 iterations are considered to be ill-conditioned for the PCG solver.

Unused field.

## ReduceIO

Controls whether the PCG solver will attempt to reduce I/O performed during equation solution:

## AUTO

Automatically chooses whether to reduce I/O or not (default).

## YES

Reduces I/O performed during equation solution in order to reduce total solver time.
NO
Does NOT reduce I/O performed during equation solution.

This option applies to both the PCG solver when used in static and full transient analyses and to the PCG Lanczos method in modal analyses.

## StrmCk

Controls whether or not a Sturm sequence check is performed:
OFF
Does NOT perform Sturm sequence check (default).
ON
Performs Sturm sequence check
This option applies only when using the PCG Lanczos method in modal analyses. When using this option, a factorization must be performed and will require a very large amount of memory for extra computations. This option is generally recommended for small- to medium-sized problems. If the Sturm sequence check takes a large amount of computing time, use the Jobname. ABT file to abort the Sturm check, or press the STOP button if in interactive mode.

## Wrtfull

Controls whether or not the .FULL file is written.

## ON

Write .FULL file (default)

## OFF

Do not write .FULL file.
This option applies only when using the PCG Lanczos method in modal analyses because the .FULL file is never written when using the PCG solver in static or full transient analyses. If using MSAVE,ON and conditions for the MSAVE command are met, a complete .FULL file is never written, regardless of this option.

This option is useful in Distributed ANSYS because assembling the global stiffness and mass matrices on the master machine before writing the .FULL file can take a considerable amount of memory. By setting Wrtfull = OFF, this assembly process is skipped on the master machine, decreasing the amount of memory required to compute the modes and mode shapes. Wrtfull = OFF does not affect the results for the modes and mode shapes. However, without a .FULL file, the participation factor table computations do not occur.

To generate the .FULL file, such as for a harmonic, transient mode superposition, or spectrum analysis, rerun the modal analysis with $W r t f u l l=O N$, or use the WRFULL command.

## Memory

Controls whether to run using in-core or out-of-core mode when using Lev_Diff = 5 .

## AUTO

Automatically chooses which mode to use. (default).

## INCORE

Run using in-core mode.
OOC
Run using out-of-core mode.
This option applies to both the PCG solver when used in static and full transient analyses and to the PCG Lanczos method in modal analyses. However, this option only applies when using Lev_Diff= 5 and does not apply to Distributed ANSYS. Forcing the INCORE option will require a large amount of memory and is only recommended for small-to-medium sized problems. Using the OOC option will make
the PCG solver use the least amount of memory (relative only to Lev_Diff=5) at the cost of additional I/O, which will likely decrease performance as compared to an in-core run.

## Notes

ReduceIO works independently of the MSAVE command in the PCG solver. Setting ReduceIO to YES can significantly increase the memory usage in the PCG solver.

To minimize the memory used by the PCG solver with respect to the Lev_Diff option only, set Lev_Diff $=1$ if you do not have sufficient memory to run the PCG solver with Lev_Diff = AUTO.

The MSAVE,ON command is not valid when using Lev_Diff $=5$. In this case, the Lev_Diff value will automatically be reset to 2 . The MSAVE,ON command is also not valid with the $S t r m C k$ option. In this case, StrmCk will be set to OFF.

## Menu Paths

Main Menu>Preprocessor>Loads>Analysis Type>Analysis Options
Main Menu>Solution>Analysis Type>Analysis Options

PCIRC, RAD1, RAD2, THETA1, THETA2
Creates a circular area centered about the working plane origin.
PREP 7: Primitives
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## RAD1, RAD2

Inner and outer radii (either order) of the circle. A value of either zero or blank for either RAD1 or RAD2, or the same value for both RAD1 and RAD2, defines a solid circle.

THETA1, THETA2
Starting and ending angles (either order) of the circular area. Used for creating a circular sector. The sector begins at the algebraically smaller angle, extends in a positive angular direction, and ends at the larger angle. The starting angle defaults to $0.0^{\circ}$ and the ending angle defaults to $360.0^{\circ}$. See the Modeling and Meshing Guide for an illustration.

## Notes

Defines a solid circular area or circular sector centered about the working plane origin. For a solid circle of $360^{\circ}$, the area will be defined with four keypoints and four lines. See the CYL4 and CYL5 commands for alternate ways to create circles.

## Menu Paths

## Main Menu>Preprocessor>Modeling>Create>Areas>Circle>By Dimensions

/PCIRCLE, XCENTR, YCENTR, XLRAD
Creates an annotation circle (GUI).
GRAPHICS: Annotation
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## XCENTR

Circle X center location ( $-1.0<\mathrm{X}<2.0$ ).

## YCENTR

Circle Y center location ( $-1.0<\mathrm{Y}<1.0$ ).

## XLRAD

Circle radius length.

## Notes

Creates an annotation circle to be written directly onto the display at a specified location. This is a command generated by the Graphical User Interface (GUI) and will appear in the log file (Jobname. LOG) if annotation is used. This command is not intended to be typed in directly in an ANSYS session (although it can be included in an input file for batch input or for use with the /INPUT command).

All circles are shown on subsequent displays unless the annotation is turned off or deleted. Use the /LSPEC and the /PSPEC command to set the attributes of the circle.

This command is valid in any processor.

## Menu Paths

Utility Menu>PlotCtrls>Annotation>Create Annotation

## /PCOPY, KEY

## Automatically generates hard copies for HP UNIX work stations.

GRAPHICS:Set Up
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## KEY

Copy key:
0
No specification setting for automatic hard copy of display.
1
Set specification for automatic hard copy after each display.
NOW
(Action) Produce hard copy of current display (KEY is not reset to 1 ).

## Command Default

No automatic hard copy of display.

## Notes

Sets automatic hard copy specification. This command is available only on HP work stations, and only during interactive runs with the /SHOW specification active (for terminals with hard copy capability).

This command is valid in any processor.

## Menu Paths

## This command cannot be accessed from a menu.

## PCROSS, LabXR, LabYR, LabZR, LabX1, LabY1, LabZ1, LabX2, LabY2, LabZ2

## Calculates the cross product of two path vectors along the current path.

POST1:Path Operations
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## LabXR

Label assigned to X-component of resultant vector.

## LabYR

Label assigned to Y -component of resultant vector.

## LabzR

Label assigned to Z-component of resultant vector.

## Labx1

X-component of first vector label (labeled path item).

## LabY1

Y-component of first vector label.
Labz1
Z-component of first vector label.

## Labx2

X-component of second vector label (labeled path item).
Laby2
Y-component of second vector label.
Labz2
Z-component of second vector label.

## Menu Paths

## Main Menu>General Postproc>Path Operations>Cross Product

PDANL, Fname, Ext,--

## Defines the analysis file to be used for probabilistic looping.

PROBABILISTIC: Deterministic Model
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Fname

File name and directory path (248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

## Ext

Filename extension (8 character maximum).

Unused field.

## Command Default

If interactive, no default; if batch, use the batch input stream (File.BAT).

## Notes

The analysis file containing the deterministic, parameterized model must be specified if the probabilistic analysis is performed interactively. The file must exist at the time the PDANL command is issued. In this file, where /PREP7 and /PDS occur, they must be the first nonblank characters on the line (do not use the \$ delimiter on any /PREP7 and /PDS command lines).

By default the analysis files specified with PDANL are executed from the top. All definitions of random input variables (for example, APDL parameters defined as random input variables with the PDVAR command, using *SET or Pname = ...) are ignored in the analysis file. The PDS takes control of setting the values of random input variable values for each loop.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu>Prob Design>Analysis File>Assign

PDCDF, Rlab, Name, Type, CONF, NMAX
Plots the cumulative distribution function.
PROBABILISTIC: Postprocessing MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Rlab

Result set label. Identifies the result set to be used for postprocessing. A result set label can be the solution set label you defined in a PDEXE command (if you are directly postprocessing Monte Carlo Simulation results), or the response surface set label defined in an RSFIT command (for Response Surface Analyses).

## Name

Parameter name. The parameter must have been previously defined as a random input variable or a random output parameter with the PDVAR command.

## Type

Type of cumulative distribution curve to be displayed.

## EMP

Show an empirical cumulative distribution curve.

## GAUS

Show a cumulative distribution curve in a normal distribution plot. A random variable based on a normal or Gaussian distribution appears as a straight line in this type of plot.

## LOGN

Show a cumulative distribution curve in a log-normal plot. A random variable based on a log-normal distribution appears as a straight line in this type of plot.

## WEIB

Show a cumulative distribution curve in a Weibull distribution plot. A random variable based on a Weibull distribution appears as a straight line in this type of plot.

## CONF

Confidence level. The confidence level is used to plot confidence bounds around the cumulative distribution function. The value for the confidence level must be between 0.0 and 1.0 and it defaults to 0.95 ( $95 \%$ ). Plotting of the confidence bound is suppressed for CONF $\leq 0.5$. This parameter is ignored for the postprocessing of response surface methods results.

## NMAX

Maximum number of points to be plotted for the distribution curve. This must be a positive number and it defaults to 100 . If the sample size is less than NMAX, all sample data is represented in the plot. If the sample size is larger than NMAX, the probabilistic design system classifies the sample into NMAX classes of appropriate size.

## Command Default

Rlab as described above, Type $=E M P, C O N F=0.95$, NMAX $=100$.

## Notes

Plots the cumulative distribution function.
The PDCDF command cannot be used to postprocess the results in a solution set that is based on Response Surface Methods, only Monte Carlo Simulations.

If $R l a b$ is left blank, then the result set label is inherited from the last PDEXE command (Slab), RSFIT command (RSlab), or the most recently used PDS postprocessing command where a result set label was explicitly specified.

## Menu Paths

Main Menu>Prob Design>Prob Results>Statistics>CumulativeDF

## PDCFLD, ParR, Entity, Ctype, CLENGTH

## Calculates a correlation field and stores it into an ANSYS array.

PROBABILISTIC:Preprocessing
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## ParR

Parameter name. ParR is a one-dimensional array with the dimension $N^{*}(N-1) / 2$, where $N$ is either the number of the selected nodes or the number of the selected elements (depending on the Entity field). The PDCFLD command automatically sets ParR as a one-dimensional array, (so you do not have to use the *DIM command). If you use the PDCFLD command twice with the ANSYS parameter ParR, then the values stored in the array are automatically overwritten. If the number of selected FE entities is different from the previous PDCFLD command, then the array ParR is re-dimensioned automatically.

## Entity

Specifies which FE entity the calculation of the correlation field is based on. This field must not be blank.

## NODE

Calculate the correlation coefficients based on the distance between the selected nodes.

## ELEM

Calculate the correlation coefficients based on the distance between the centroids of the selected elements.

## Ctype

Specifies the equation used to calculate the correlation coefficients as a function of the nodal or element centroid distances. This field must not be blank.

## NONE

The random field is not correlated. This means the correlation coefficients are determined according to

$$
\begin{aligned}
& \rho_{\mathrm{ij}}=1 \text { for } \mathrm{i}=\mathrm{j} \\
& \rho_{\mathrm{ij}}=0 \text { for } \mathrm{i} \neq \mathrm{j}
\end{aligned}
$$

Here, $\rho_{\mathrm{ij}}$ is the correlation coefficient between the i -th and j -th selected FE entity (node or element centroid).

## LEXP

Calculate the correlation coefficient according to a linear-exponential decay function.
$\rho_{\mathrm{ij}}=\exp \left(-\frac{\mathrm{D}\left(\left\{\mathrm{x}_{\mathrm{i}}\right\},\left\{\mathrm{x}_{\mathrm{j}}\right\}\right)}{\mathrm{C}_{\mathrm{L}}}\right)$
Here, $\mathrm{D}\left(\left\{\mathrm{x}_{\mathrm{i}}\right\},\left\{\mathrm{x}_{\mathrm{j}}\right\}\right)$ is the "domain distance" between $\left\{\mathrm{x}_{\mathrm{i}}\right\},\left\{\mathrm{x}_{\mathrm{j}}\right\}$, and $\left\{\mathrm{x}_{\mathrm{i}}\right\}$ and $\left\{\mathrm{x}_{\mathrm{j}}\right\}$ are the coordinate vectors of the $i$-th and $j$-th selected FE entity (node or element centroid), and $C_{L}$ is the correlation length of the random field as specified in the CLENGTH field.
QEXP
The correlation coefficient is calculated according to a quadratic- exponential decay function.

$$
\rho_{\mathrm{ij}}=\exp \left(-\left(\frac{\mathrm{D}\left(\left\{\mathrm{x}_{\mathrm{i}}\right\},\left\{\mathrm{x}_{\mathrm{j}}\right\}\right)}{\mathrm{C}_{\mathrm{L}}}\right)^{2}\right)
$$

Here, $D\left(\left\{x_{i}\right\},\left\{x_{j}\right\}\right)$ is the "domain distance" between $\left\{x_{i}\right\},\left\{x_{j}\right\}$, and $\left\{x_{i}\right\}$ and $\left\{x_{j}\right\}$ are the coordinate vectors of the $i$-th and $j$-th selected FE entity (node or element centroid), and $C_{L}$ is the correlation length of the random field as specified in the CLENGTH field.

## DIST

Calculate only $D\left(\left\{x_{i}\right\},\left\{x_{j}\right\}\right)$. $D\left(\left\{x_{i}\right\},\left\{x_{j}\right\}\right)$ is the "domain distance" between $\left\{x_{i}\right\},\left\{x_{j}\right\}$, and $\left\{x_{i}\right\}$ and $\left\{x_{j}\right\}$ are the coordinate vectors of the i -th and j -th selected FE entity (node or element centroid). The CLENGTH argument is ignored for this option.

## CLENGTH

Correlation length of the correlation field. The correlation length is a characteristic length that influences how strongly two elements of a random field are correlated with each other. The larger the value of CLENGTH, the stronger the correlation between the random field elements. CLENGTH is required for Ctype = LEXP and Ctype = QEXP; it must be a nonzero, positive number.

## Notes

Calculates a correlation field for a probabilistic analysis involving a random field. Random fields are random effects with a spatial distribution; the value of a random field not only varies from simulation to simulation at any given location, but also from location to location. The correlation field describes the correlation coefficient between two different spatial locations. Random fields can be either based on element properties (typically material) or nodal properties (typically surface shape defined by nodal coordinates). Hence, random fields are either associated with the selected nodes or the selected elements. If a random field is associated with elements, then the correlation coefficients of the random field are calculated based on the distance of the element centroids.

For more information, see Probabilistic Design in the Advanced Analysis Techniques Guide.
Note that for correlation fields, the "domain distance" $D\left(\left\{x_{i}\right\},\left\{x_{j}\right\}\right)$ is not the spatial distance $\mid\left\{x_{i}\right\}-\left\{x_{j}\right\}$, but the length of a path between $\left\{\mathrm{X}_{\mathrm{i}}\right\}$ and $\left\{\mathrm{X}_{\mathrm{j}}\right\}$ that always remains inside the finite element domain. However, exceptions are possible in extreme meshing cases. For elements that share at least one node, the PDCFLD evaluates the distance by directly connecting the element centroids with a straight line. If these neighboring elements form a sharp inward corner then it is possible that the "domain distance" path lies partly outside the finite element domain, as illustrated below.


After the correlation coefficients have been calculated and stored in the ANSYS parameter ParR, then use the PDCORR command to define the correlations between the elements of the random field.

## Menu Paths

## Main Menu>Prob Design>Prob Definitns>Correl Field

## Clears the probabilistic design database.

> PROBABILISTIC: Database
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Type

Specifies the part of the probabilistic database to be cleared.
ALL
Clear the entire probabilistic database. Both the preprocessing and postprocessing parts are cleared. POST

Clear only the postprocessing part of the probabilistic database. This is necessary if you want to modify the deterministic model (the analysis file) or probabilistic model (random variables, correlations between random variables, or the random output parameter) after a probabilistic analysis has already been performed.

## Notes

Clears the probabilistic design system (PDS) database. The settings are reset to their default values and the memory is cleared. Remember that the result files containing the results of the probabilistic loops are never deleted unless you intentionally delete them. We recommend that you use this command before switching to a new probabilistic analysis using a different probabilistic model (a different analysis loop file or deterministic model), or changing random input variables, their correlations, or random output parameters. Clearing the probabilistic database is not necessary if the probabilistic model remains the same and will be analyzed with a different probabilistic method or different method options. See the PDEXE command for restrictions. Before issuing the PDCLR command, you should save the probabilistic database using the PDSAVE command.

## Menu Paths

Main Menu>Prob Design>Prob Database>Clear \& Reset

## PDCMAT, Rlab, Matrix, Name1, Name2, Corr, SLEVEL, Popt

## Prints the correlation coefficient matrix.

PROBABILISTIC: Postprocessing
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Rlab

Result set label. Identifies the result set to be used for postprocessing. A result set label can be the solution set label you defined in a PDEXE command (if you are directly postprocessing Monte Carlo Simulation results), or the response surface set label defined in an RSFIT command (for Response Surface Analyses).

## Matrix

Keyword for the type of correlation coefficient matrix.
10
Matrix of correlation coefficients between random input variables and output parameters.

## II

Matrix of correlation coefficients between random input variables and other random input variables

## 00

Matrix of correlation coefficients between random output parameters and other random output parameters.

S
Correlation coefficient between a single random parameter (input or output) and another random parameter (input or output). The probabilistic design parameters must be specified in Name1 and Name2 for this option.

Name1, Name2
Parameter names. The parameters must have been previously defined as a random input variable or a random output parameter with the PDVAR command. These parameters are used for Matrix $=\mathrm{S}$ only and are ignored for the other Matrix keywords.

## Corr

Keyword for the type of correlation coefficients to be used for the output.

## RANK

Spearman rank-order correlation coefficient (default).
LIN
Pearson linear correlation coefficient.

## SLEVEL

Significance level. The value for the significance level must be between 0.0 and 1.0 . The default value is 0.025 (2.5\%).

## Popt

Specifies whether the probabilities should be printed with the correlation coefficients.
0
Print only the correlation coefficients.
1
Print both the correlation coefficients and the probabilities (default).

## Command Default

Rlab as described above, Matrix $=10$, Corr $=$ RANK, SLEVEL $=0.025$, Popt $=1$

## Notes

Prints the correlation coefficient matrix.
If $R l a b$ is left blank, then the result set label is inherited from the last PDEXE command ( $S l a b$ ), RSFIT command (RSlab), or the most recently used PDS postprocessing command where a result set label was explicitly specified.

For all correlation coefficients the probabilistic design tool evaluates the probability that the correlation coefficient can be neglected. The evaluation of this probability is based on statistical test theory. The larger this probability is the likelier it is that the correlation coefficient does not really reflect an observable statistical interdependence between the parameters involved. If this probability exceeds the significance level as specified by the SLEVEL parameter, the correlation coefficient should be regarded as negligible or insignificant. The higher the significance level SLEVEL, the more correlation coefficients are considered significant.

Using the Popt parameter you can also get a list of the probabilities and review them as to how far they exceed the significance level or how far they stay below it.

The PDCMAT command cannot be used to postprocess the results in a solution set that is based on Response Surface Methods, only Monte Carlo Simulations.

## Menu Paths

Main Menu>Prob Design>Prob Results>Trends>Correl Matrix

PDCORR, Name1, Name2, CORR

## Specifies the correlation between two random input variables.

PROBABILISTIC:Preprocessing
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Name1

Parameter name. The parameter must have been previously defined as a random input variable with the PDVAR command.

## Name2

Parameter name. The parameter must have been previously defined as a random input variable with the PDVAR command. Must be different from Name1.

## CORR

Specification of the correlation:

## Value

Sets the correlation coefficient between Name1 and Name 2 to the specified value. If this correlation coefficient was already defined it will be changed to this new value. The correlation coefficient must be between -1.0 and +1.0 .

DEL
Delete the previously defined correlation between Name1 and Name2.

## Command Default

No correlations defined between random input variables.

## Notes

Specifies the correlations between two random input variables. The PDS tool generates correlated samples if correlations exist. This applies to both probabilistic methods (Monte Carlo Simulation and Response Surface Methods).

If there are correlated random input variables, the sampled locations of the random input variables reflect the correlation as illustrated below for the case of two standard normal distributed variables $X_{1}$ and $X_{2}$. The illustrations show no correlation (correlation coefficient 0.0 ), a relatively moderate negative correlation (correlation coefficient -0.6 ), and a relative strong positive correlation (correlation coefficient 0.9).


## Menu Paths

## Main Menu>Prob Design>Prob Definitns>Correlation

## PDDMCS, NSIM, --, Astop, ACCMEAN, ACCSTDEV, CHECK, Seed

## Specifies options for Monte Carlo Simulations using direct sampling.

PROBABILISTIC:Methods
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NSIM

Number of simulation loops of the analysis.

Unused field

## Astop

Autostop option label.
AUTO
Enable Autostop. When Autostop is used, the PDS feature continues the simulation loops until the convergence criteria for the mean value and the standard deviation have been met or until the number of simulations NSIM are complete, whichever comes first. The convergence criteria (mean value and standard deviations of all random output parameters) are specified by the ACCMEAN and ACCSTDEV parameters. The criteria are met if the mean value and the standard deviations converge within the accuracy specified in the ACCMEAN and ACCSTDEV options. The convergence check is done every $i$-th loop, where $i$ is specified in the CHECK parameter.

ALL
Disable Autostop option. All Monte Carlo Simulations as specified by NSIM are performed (default).

## ACCMEAN

Accuracy of the mean values of all random output parameters that must be met for the Autostop option. Default is $0.01(1 \%)$. ACCMEAN is ignored for Astop $=$ ALL. The convergence of the mean values is met if for all random output parameters $y$ the equation holds:
$\frac{|\bar{y}(i)-\bar{y}(i-C H E C K)|}{\bar{y}(i)} \leq A C C M E A N \quad$ with $\mathrm{i}=2 \cdot$ CHECK, 3.CHECK,...
where the value of $C H E C K$ is specified in the CHECK option.

## ACCSTDEV

Accuracy of the standard deviations of all random output parameters that must be met for the Autostop option. The default is 0.02 (2\%). ACCSTDEV is ignored for Astop = ALL. The convergence for the standard deviations is met if for all random output parameters $y$ the equation holds:
$\frac{\left|\sigma_{y}(\mathrm{i})-\sigma_{y}(\mathrm{i}-\mathrm{CHECK})\right|}{\sigma_{\mathrm{y}}(\mathrm{i})} \leq$ ACCSTDEV with $\mathrm{i}=2 \cdot$ CHECK, $3 \cdot$ CHECK,$\ldots$
where the value of $C H E C K$ is specified in the CHECK option.

## CHECK

Sets how often conditions for convergence are checked for Autostop. The PDS checks if the convergence criteria are met every $i$-th loop, where $i$ is given by the CHECK parameter. The default value is 10 . It is not recommended to use $C H E C K=1$, because it could cause Autostop to terminate the simulations prematurely. The mean values and standard deviation might not show large differences between consecutive simulation loops but might still have a visible "global" trend if viewed over several simulations. This behavior indicates that convergence has not really been achieved. If you set $C H E C K=1$ (or another small number), then Autostop is not able to detect such a global trend. CHECK is ignored for Astop $=$ ALL.

## Seed

Seed value label. Random number generators require a seed value that is used to calculate the next random number. After each random number generation finishes, the seed value is updated and is used again to calculate the next random number. ANSYS initializes the seed value with the system time when the ANSYS session started.

## CONT

Continues updating using the derived seed value (default).

## TIME

Initializes the seed value with the system time. You can use this if you want the seed value set to a specific value for one analysis and then you want to continue with a "random" seed in the next analysis. It is not recommended to "randomize" the seed value with the Seed = TIME option for multiple analyses. If the Monte Carlo simulations requested with this command will be appended to previously existing simulations, then the Seed option is ignored and Seed = CONT is used.

## INIT

Initializes the seed value using 123457 (a typical recommendation). This option leads to identical random numbers for all random input variables when the exact analysis will be repeated, making it useful for benchmarking and validation purposes (where identical random numbers are desired). If the Monte Carlo simulations requested with this command will be appended to previously existing simulations, then the Seed option is ignored and Seed = CONT is used.

## Value

Uses the specified (positive) value for the initialization of the seed value. This option has the same effect as Seed = INIT, except you can chose an arbitrary (positive) number for the initialization. If the Monte Carlo simulations requested with this command will be appended to previously existing simulations, then the Seed option is ignored and Seed = CONT is used.

## Command Default

$N S I M=30$, Astop $=$ AUTO, $A C C M E A N=0.01, \operatorname{ACCSTDEV}=0.02, C H E C K=10$, seed $=$ CONT.

## Notes

Defines the number of simulations, the specification of the Autostop option, how frequently the Autostop option is checked and the seed value for random number generation. If the Autostop option is enabled, then the number of simulations given for NSIM can be regarded as the maximum number of simulations
to be performed. The Autostop option may terminate the simulations before $N S I M$ simulations are done if the convergence criteria are met.

## Menu Paths

## Main Menu>Prob Design>Prob Method>Monte Carlo Sims

PDDOEL, Name, Method, Vtype, Lopt, VAL1, VAL2, VAL3, VAL4, VAL5

## Defines design of experiment levels for an individual random input variable.

PROBABILISTIC:Preprocessing
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Name

Parameter name. The parameter name must have been previously defined as a random input variable using the PDVAR command.

Method
Specifies the response surface method for which the levels of the design of experiment are to be defined.
This field must not be left blank.
CCD
Use the Central Composite Design method. The design experiment levels of a central composite design are defined in the fields VAL1 to VAL5.

## BBM

Use the Box-Behnken Matrix method. The design experiment levels of a Box-Behnken Matrix design are defined in the fields VAL1 to VAL3. The fields VAL4 and VAL5 are ignored

## Vtype

Specifies the type of the values of the design of experiment levels.

## PROB

The design of experiment levels are specified in terms of probabilities. This is the default.
PHYS
The design of experiment levels are specified in terms of physical values.

## Lopt

Specifies the type of the design of experiment levels, indicating if they are defined by lower and upper bound only (default) or all specified by the user.

BND
You specify the lower and upper bounds for the design of experiment levels. The values for intermediate levels are calculated automatically at run time (default). The lower and upper levels of the design of experiment itself can be specified either in terms of probabilities or in terms of physical values, depending on the Vtype field.

For Lopt $=$ BND and Method $=$ CCD only the entries VAL1 and VAL5 are processed and they represent the lower and upper bound values of a central composite design. The intermediate levels $V A L 2$ to VAL4 are evaluated automatically. For Lopt $=$ BND and Method $=$ BBM only the entries VALI and VAL3 are processed and they represent the lower and upper bound values of a BoxBehnken Matrix design respectively. The intermediate level VAL2 is evaluated automatically.

NOTE: The intermediate levels between the lower and upper bounds are calculated so they are at equal intervals along the curve (interpolated linearly in the physical space whether the curve is symmetrical or not) regardless of whether the lower and upper bounds are specified as probabilities ( $V t$ ype $=\mathrm{PROB}$ ) or as physical values ( $V t y p e=$ PHYS).
ALL
You explicitly specify all necessary design of experiment levels. The design of experiment levels can be in terms of probabilities or in terms of physical values, depending on the vtype field.

## VAL1, VAL2, VAL3, . . . VAL5

Values for the levels of the design of experiment for the random input variable Name. Must be specified in ascending order. All probabilities must be between 0.0 and 1.0.

For response surface methods based on a Central Composite Design (Method = CCD) VAL1 through VAL5 correspond to the five design of experiment levels of this method.

For response surface methods based on a Box-Behnken Matrix design (Method $=$ BBM) VAL1 through VAL 3 correspond to the three design of experiment levels of this method. The entries for VAL4 and VAL5 are ignored for Method $=$ BBM.

## Command Default

For Meth $=C C D, V A L 1=0.005, V A L 2=0.05, V A L 3=0.5, V A L 4=0.95, V A L 5=0.995$.
For Meth $=\mathrm{BBM}$, VAL1 $=0.01$, VAL2 $=0.5$, VAL3 $=0.99$.

## Notes

If Vtype $=$ PHYS, you must enter values for VALI through VAL3 or VAL5 (depending on the Method and Lopt option you choose). If Vtype $=$ PROB and you do not enter values, they default to the values shown below.

For Method=CCD:

|  | Lopt $=$ BND | Lopt $=\mathrm{ALL}$ |
| :--- | :--- | :--- |
| $V t y p e=P H Y S$ | $V A L 1$ and $V A L 5$ must not be blank. | $V A L 1$ through VAL5 must not be blank. |
| $V t y p e=P R O B$ | $V A L 1=0.005, V A L 5=0.995$ | $V A L 1=0.005, V A L 2=0.05, V A L 3=0.50, V A L 4=$ |
|  |  | $0.95, V A L 5=0.995$ |

For Method $=$ BBM:

|  | Lopt $=$ BND | Lopt $=$ ALL |
| :--- | :--- | :--- |
| Vt ype $=$ Phys | VAL1 and VAL3 must not be blank. | VAL1 through VAL3 must not be blank. |
| Vt ype $=$ Prob | VAL1 $=0.01$, VAL3 $=0.99$ | VAL1 $=0.01, V A L 2=0.50, V A L 3=0.99$ |

See Probabilistic Design in the Advanced Analysis Techniques Guide for more information on the PDS methods.

## Menu Paths

Main Menu>Prob Design>Prob Method>Response Surface

PDEF, Lab, Item, Comp, Avglab

## Interpolates an item onto a path.

> POST1: Path Operations
> MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS

## Lab

Label assigned to the resulting path item (8 characters maximum). This item may be used as input for other path operations.

Item
Label identifying the item for interpolation. Valid item labels are shown in Table 239: PDEF - Valid Item and Component Labels (p. 1222) below. Some items also require a component label.

## Comp

Component of the item (if required). Valid component labels are shown in Table 239: PDEF - Valid Item and Component Labels (p. 1222) below.

## Avglab

Option to average across element boundaries:
AVG
Average element results across elements (default).

## NOAV

Do not average element results across elements. If the parameter DISCON = MAT on the PMAP command, this option is automatically invoked.

## Notes

Defines and interpolates a labeled path item along a predefined path (PATH). Path item results are in the global Cartesian coordinate directions unless transformed (RSYS). A path item must be defined before it can be used with other path operations. Additional path items may be defined from the PVECT, PCALC, PDOT, and PCROSS commands. Path items may be listed (PRPATH) or displayed (PLPATH, PLPAGM). A maximum number of path items permitted is established by the nsets argument specified with the PATH command.

When you create the first path item (PDEF or PVECT), the program automatically interpolates four path items which are used to describe the geometry of the path. These predefined items are the position of the interpolated path points (labels XG, YG, and ZG) in global Cartesian coordinates, and the path length (label S). For alternate methods of mapping the path geometry (to include, for example, material discontinuity) see the PMAP command. These items may also be listed or displayed with the PRPATH, PLPATH, and PLPAGM commands.

If specifying that load case operations act on principal/equivalent stresses (SUMTYPE,PRIN), derived quantities (principal and equivalent stresses/strains) will be zero for path plots. A typical use for such a case involves mode combinations in a response spectrum analysis.

The number of interpolation points on the path is defined by the nDiv argument on the PATH command. See Mapping Nodal and Element Data onto the Path in the Theory Reference for the Mechanical APDL and

Mechanical Applications for details. Use PDEF,STAT to list the path item labels. Use PDEF,CLEAR to erase all labeled path items, except the path geometry items (XG, YG, ZG, S).

## Table 239 PDEF - Valid Item and Component Labels <br> Item Comp Description

Valid item and component labels for nodal degree of freedom results are:


ROT
TEMP[1]
PRES
VOLT
MAG
V
A
CURR
EMF
ENKE
ENDS

S
"

EPTO
"
EPEL
"
"
EPPL
"
"
EPCR

EPTH $\quad X, Y, Z, X Y, Y Z, X Z$

SEPL
" SRAT
INT, EQV
$X, Y$, or $Z$ structural displacement or vector sum.
$X, Y$, or $Z$ structural rotation or vector sum.
Temperature.
Pressure.
Electric potential.
Magnetic scalar potential.
$X, Y$, or $Z$ fluid velocity or vector sum.
$X, Y$, or $Z$ magnetic vector potential or vector sum.
Current.
Electromotive force drop.
Turbulent kinetic energy (FLOTRAN).
Turbulent energy dissipation (FLOTRAN).
Valid item and component labels for element results are:
X, Y, Z, XY, YZ, XZ Component stress.
$1,2,3 \quad$ Principal stress.
INT, EQV Stress intensity or Equivalent stress.
$X, Y, Z, X Y, Y Z, X Z \quad$ Component total strain (EPEL + EPPL + EPCR).
$1,2,3 \quad$ Principal total strain.
INT, EQV Total strain intensity or total equivalent strain.
$X, Y, Z, X Y, Y Z, X Z \quad$ Component elastic strain.
1,2,3 Principal elastic strain.
INT, EQV Elastic strain intensity or elastic equivalent strain.
$X, Y, Z, X Y, Y Z, X Z \quad$ Component plastic strain.
$1,2,3 \quad$ Principal plastic strain.
INT, EQV Plastic strain intensity or plastic equivalent strain.
$\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{XY}, \mathrm{YZ}, \mathrm{XZ} \quad$ Component creep strain.
1,2,3 Principal creep strain.
INT, EQV Creep strain intensity or creep equivalent strain.
$X, Y, Z, X Y, Y Z, X Z \quad$ Component thermal strain.
$1,2,3 \quad$ Principal thermal strain.

Thermal strain intensity or thermal equivalent strain.
Swelling strain.
Equivalent stress (from stress-strain curve).
Stress state ratio.

| Item | Comp | Description |
| :---: | :--- | :--- |
| $"$ | HPRES | Hydrostatic pressure. |
| $"$ | EPEQ | Accumulated equivalent plastic strain. |
| $"$ | PSV | Plastic state variable. |
| $"$ | PLWK | Plastic work/volume. |

For contact results PowerGraphics is applicable for 3-D models only.

| CONT | STAT2 | Contact status. |
| :---: | :---: | :---: |
| " | PENE | Contact penetration. |
| " | PRES | Contact pressure. |
| " | SFRIC | Contact friction stress. |
| " | STOT | Contact total stress (pressure plus friction). |
| " | SLIDE | Contact sliding distance. |
| " | GAP | Contact gap distance. |
| " | FLUX | Total heat flux at contact surface. |
| TG | X, Y, Z, SUM | Component thermal gradient or vector sum. |
| TF | $X, Y, Z, S U M$ | Component thermal flux or vector sum. |
| PG | $X, Y, Z, S U M$ | Component pressure gradient or vector sum. |
| EF | $X, Y, Z, S U M$ | Component electric field or vector sum. |
| D | $X, Y, Z, S U M$ | Component electric flux density or vector sum. |
| DC | $X, Y, Z, S U M$ | Component conduction current density or vector sum (for elements that support conduction current calculation) |
| H | X, Y, Z, SUM | Component magnetic field intensity or vector sum. |
| B | $X, Y, Z, S U M$ | Component magnetic flux density or vector sum. |
| FMAG | $X, Y, Z, S U M$ | Component electromagnetic force or vector sum. |
| ETAB | Lab | Any user-defined element table label (see ETABLE command). |
| BFE | TEMP | Applied and calculated temperatures along a defined path. |
| Valid item labels for FLOTRAN nodal results are: |  |  |
| TTOT |  | Total temperature. |
| HFLU |  | Heat flux. |
| HFLM |  | Heat transfer (film) coefficient. |
| COND |  | Fluid laminar conductivity. |
| PCOE |  | Pressure coefficient. |
| PTOT |  | Total (stagnation) pressure. |
| MACH |  | Mach number. |
| STRM |  | Stream function. (2-D applications only.) |
| DENS |  | Fluid density. |
| VISC |  | Fluid laminar viscosity. |
| EVIS |  | Fluid effective viscosity. |


| Item | Comp |
| :--- | :--- |
| CMUV | Description |
| ECON | Turbulent viscosity coefficient. |
| YPLU | Fluid effective conductivity. |
| TAUW | Y + a a turbulent law of the wall parameter. |
| SPHT | Shear stress at the wall. |
| RDFL | Specific heat. |
|  | Radiation heat flux. |

1. For SHELL131 and SHELL132 elements with $\operatorname{KEYOPT}(3)=0$ or 1 , use the labels TBOT, TE2, TE3, ..., TTOP instead of TEMP.
2. For more information on the meaning of contact status and its possible values, see Reviewing Results in POST1 in the Contact Technology Guide.

## Menu Paths

> Main Menu $>$ General Postproc>Path Operations $>$ Clear Path Items
> Main Menu $>$ General Postproc>Path Operations $>$ Define Path $>$ Path Status $>$ Current Path
> Main Menu $>$ General Postproc>Path Operations $>$ Map onto Path Main Menu $>$ General Postproc $>$ Path Operations $>$ Map onto Path $>$ FE Results

PDEXE, Slab, MRUN, NFAIL, FOPT, Fname

## Executes the probabilistic analysis.

> PROBABILISTIC: Run Probabilistic Analysis
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Slab

Solution label. This is the name given to the files containing the results of different probabilistic analyses performed with a particular probabilistic model. Different solutions using different probabilistic methods or method options are stored in separate solution sets identified with this solution label. If the solution label is blank, ANSYS automatically assigns Slab = "SOLUnn", where nn is the current two-digit number of the probabilistic analysis (PDS allows a maximum of 10 solution sets identified by 10 solution labels); for example, the first analysis is SOLU01, the second is SOLU02, and so on up to SOLU10). This field cannot contain blanks. Maximum length of this field is 32 characters; if the field contains more than 32 characters, it will be truncated to 32 characters.

## MRUN

Keyword for the processing of the simulation loops
SER
Executes the simulation loops of the probabilistic analysis using a single machine; serial processing (default).

PAR
Executes the simulation loops of the probabilistic analysis in parallel using the ANSYS parallel-processing tool. See Probabilistic Design in the Advanced Analysis Techniques Guide.

## NFAIL

This parameter sets the number of loops that are allowed to fail before the execution of the probabilistic analysis is terminated. For example, if geometric parameters are used as random variables then for some
simulations (loops) the loop will fail because meshing was not successful. This might happen infrequently which might be acceptable. However, if the probabilistic problem is incorrectly defined then loops could fail frequently or even in every loop. You can define an upper limit for the number of failed loops that will be tolerated before the probabilistic analysis will be terminated. If you use NFAIL $=0$ (default) then failed loops are not tolerated and the probabilistic analysis will terminate the first time a loop fails. $N F A I L$ is used only if MRUN = PAR.

## FOPT

Keyword for the file option. This determines if a copy of the sample file should be saved or not.

## DEL

The sample file will be deleted (default).

## COPY

A copy of the sample file will be saved as the file name specified with the Fname option.

## Fname

Name of the copy of the sample file. The directory for storing the sample file is always the current working directory. The file extension is always . csmp. This option is ignored for $F O P T=$ DEL.

## Command Default

Slab $=$ SOLUnn (see above) $, M R U N=S E R, N F A I L=0, F O P T=$ DEL.

## Notes

Runs the probabilistic analysis. The results of the probabilistic analysis are identified with the solution label specified here. This solution label is used for the postprocessing of the results. The maximum number of probabilistic analyses that can be executed, stored, and post-processed based on the same deterministic and probabilistic model in one session with the PDS is 10 . However, it is not counted as a separate probabilistic analysis if the same solution label is used multiple times in order to append to or overwrite previous results.

The probabilistic results are stored in result files in ASCII format.
If you specify a solution label that has already been used, the results will be appended at the end of the results file.

After the PDEXE command has been issued, you can no longer change the probabilistic model using probabilistic preprocessing commands; doing so would invalidate the probabilistic analysis results and potentially corrupt the probabilistic database. Also, you are not allowed to change the probabilistic analysis file using a PDANL command after the first PDEXE has been executed.

If you need to change the probabilistic model (analysis file, random input variables, etc.) after the PDEXE command has been issued, you should use the PDCLR, POST command to clear the probabilistic results. We recommend that you first save the results using the PDSAVE command.

By default, ANSYS creates a sample file (called Jobname. samp) containing all values of all random input parameters; unless you specify otherwise, this file is deleted after the analysis is finished. With the $F O P T$ and Fname options you can determine if and where a copy of that file should be stored for later use in another analysis.

## Menu Paths

Main Menu>Prob Design>Run>Exec Serial $>$ Run Serial

## PDHIST, Rlab, Name, NCL, Type

## Plots the frequency histogram.

PROBABILISTIC: Postprocessing
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Rlab

Result set label. Identifies the result set to be used for postprocessing. A result set label can be the solution set label you defined in a PDEXE command (if you are directly postprocessing Monte Carlo Simulation results), or the response surface set label defined in an RSFIT command (for Response Surface Analyses).

## Name

Parameter name. The parameter must have been previously defined as a random input variable or a random output parameter with the PDVAR command.

## NCL

Number of classes for the histogram plot. This is the number of bars shown in the histogram. NCL must be a positive number. If this field is left blank, ANSYS calculates an appropriate number of classes based on the sample size. ANSYS divides the range between the smallest and largest sample value into NCL classes of equal width and determines the histogram frequencies by counting the number of hits that fall in the classes.

## Type

Type of histogram.
ABS
Absolute frequency histogram. This is the actual number of hits in each class.
REL
Relative frequency histogram (default). This is the number of hits in the individual classes divided by the total number of samples.

## NORM

Normalized frequency histogram. This is the number of hits in the individual classes divided by the total number of samples and divided by the width of the class. This normalization makes the histogram comparable to the probability density function.

## Command Default

Rlab as described above, NCL as described above, Type $=$ REL.

## Notes

Plots the frequency histogram.
If $R l a b$ is left blank, then the result set label is inherited from the last PDEXE command (Slab), RSFIT command ( $R S l a b$ ), or the most recently used PDS postprocessing command where a result set label was explicitly specified.

The PDHIST command cannot be used to postprocess the results in a solution set that is based on Response Surface Methods, only Monte Carlo Simulations.

## Menu Paths

## Main Menu>Prob Design>Prob Results>Statistics>Histogram

## PDINQR, Rpar, Name, Type, VAL

## Evaluates statistical characteristics of a random input variable.

PROBABILISTIC:Preprocessing MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Rpar

Name of scalar ANSYS parameter into which the characteristic value is stored.

## Name

Parameter name. The parameter must have been previously defined as a random input variable using the PDVAR command.

## Type

Keyword for the type of information you need to retrieve.

## MEAN

Mean value of the random input variable specified in Name.

## STDV

Standard deviation of the random input variable
PDF
Probability density function of the random input variable specified in Name at a given value specified by VAL.

CDF
Cumulative distribution function of the random input variable specified in Name at a given value specified by VAL.

INV
Inverse cumulative distribution function of the random input variable specified in Name at a given probability specified by VAL.

## VAL

Value needed for Type $=$ PDF, CDF, or INV. For Type $=$ PDF and Type $=$ CDF, this is the value of the random input variable at which the probabilistic density or cumulative distribution function should be evaluated. For Type $=$ INV, VAL indicates the probability at which you want the inverse cumulative distribution function evaluated.

## Notes

Evaluates statistical characteristics of a random input variable. The result is stored in the ANSYS parameter Rpar.

## Menu Paths

Main Menu>Prob Design>Prob Definitns>Inquire

## PDLHS, NSIM, NREP, ISopt, --, Astop, ACCMEAN, ACCSTDV, CHECK, Seed

## Specifies options for Monte Carlo Simulations using Latin-Hypercube sampling.

PROBABILISTIC:Methods
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NSIM

Number of simulation loops per repetition cycle.

## NREP

Number of repetition cycles of the analysis.

## ISOPt

Latin-Hypercube sampling divides the domain of each random input variable into intervals of equal probability. The interval sampling option ISopt determines where the samples are located within each interval.

## RAND

Picks a random location within the interval (default).

## MEAN

Picks the mean value location within the interval.

## MEDI

Picks the median value location within the interval.

Unused field.

## Astop

Autostop option label.

## AUTO

Enable Autostop. When Autostop is used, the PDS feature continues the simulation loops until the convergence criteria for the mean value and the standard deviation have been met or until the number of simulations NSIM are complete, whichever comes first. The convergence criteria (mean value and standard deviations of all random output parameters) are specified by the ACCMEAN and ACCSTDEV parameters. The criteria are met if the mean value and the standard deviations converge within the accuracy specified in the ACCMEAN and ACCSTDEV options. The convergence check is done every $i$-th loop, where $i$ is specified in the CHECK parameter.

## ALL

Disable Autostop option. All Monte Carlo Simulations as specified by NSIM and NREP are performed (default).

## ACCMEAN

Accuracy of the mean values of all random output parameters that must be met to activate Autostop. Default is $0.01(1 \%)$. ACCMEAN is ignored for Astop = ALL. The convergence for the mean values is met if for all random output parameters $y$ the following equation is true:

$$
\frac{|\overline{\mathrm{y}}(\mathrm{i})-\overline{\mathrm{y}}(\mathrm{i}-\mathrm{CHECK})|}{\overline{\mathrm{y}}(\mathrm{i})} \leq \text { ACCMEAN }
$$

with $\mathrm{i}=2 \cdot \mathrm{CHECK}, 3 \cdot \mathrm{CHECK}, \ldots$
where the value of CHECK is given by the CHECK option.

## ACCSTDEV

Accuracy of the standard deviations of all random output parameters that must be met to activate Autostop. The default is 0.02 (2\%). ACCSTDEV is ignored for Astop $=$ ALL. The convergence for the standard deviations is met if for all random output parameters $y$ the following equation is true:

$$
\frac{\left|\sigma_{y}(\mathrm{i})-\sigma_{y}(\mathrm{i}-\mathrm{CHECK})\right|}{\sigma_{\mathrm{y}}(\mathrm{i})} \leq \text { ACCSTDEV } \quad \text { with } \mathrm{i}=2 \cdot \text { CHECK }, 3 \cdot \mathrm{CHECK}, \ldots
$$

where the value of $C H E C K$ is given by the CHECK option.

## CHECK

Sets how often conditions for convergence are checked for Autostop. The PDS feature checks if the convergence criteria are met every $i$-th loop, where $i$ is given by the CHECK parameter. The default value is 10 . It not recommended to use $C H E C K=1$, because it could cause Autostop to terminate the simulations prematurely. The mean values and standard deviation might not show large differences between all simulation loops but might still have a visible "global" trend if viewed over several simulations. This behavior indicates that convergence has not really been achieved. If you set $C H E C K=1$, then Autostop is not able to detect such a global trend. CHECK is ignored for Astop = ALL.

## Seed

Seed value label. Random number generators require a seed value that is used to calculate the next random number. After each random number generation finishes, the seed value is updated and is used again to calculate the next random number. ANSYS initializes the seed value with the system time when the ANSYS session started.

## CONT

Continues updating using the derived seed value (default).
TIME
Initializes the seed value with the system time. You can use this if you want the seed value set to a specific value for one analysis and then you want to continue with a "random" seed in the next analysis. It is not recommended to "randomize" the seed value with the Seed = TIME option for multiple analyses. If the Monte Carlo simulations requested with this command will be appended to previously existing simulations, then the Seed option is ignored and Seed $=$ CONT is used.

## INIT

Initializes the seed value using 123457 (a typical recommendation). This option leads to identical random numbers for all random input variables when the exact analysis will be repeated, making it useful for benchmarking and validation purposes (where identical random numbers are desired). If the Monte Carlo simulations requested with this command will be appended to previously existing simulations, then the Seed option is ignored and Seed = CONT is used.

## Value

Uses the specified (positive) value for the initialization of the seed value. This option has the same effect as Seed = INIT, except you can chose an arbitrary (positive) number for the initialization. If the Monte Carlo simulations requested with this command will be appended to previously existing simulations, then the Seed option is ignored and Seed $=$ CONT is used.

## Command Default

NSIM $=30, N R E P=1$, ISopt $=$ RAND, Astop $=$ ALL, $\operatorname{ACCMEAN}=0.01, \operatorname{ACCSTDEV}=0.02, C H E C K=10$, Seed $=$ CONT.

## Notes

Defines the number of simulations per repetition cycle, number of repetition cycles, specification of the Autostop option, checking frequency for the Autostop option, and the seed value for random number generation.

For Latin-Hypercube sampling, it is advantageous to divide the total number of requested simulations into a few repetitions. This adds more randomness to the sampling process. If NTOT is the total number of simulations, then as a rough rule of thumb NTOT should be NREP $=\sqrt[4]{\text { NTOT }}$ repetitions. The number obtained with this rule of thumb must be adjusted such that NTOT $=N R E P^{*} N S I M$. For example if NTOT $=1000$ then NREP $=\sqrt[4]{1000}=10$, so the 1000 simulations can be done in 100 simulations with 10 repetitions. If for example NTOT $=100$ then NREP $=\sqrt[4]{100}=3.16$, which means that the 100 simulations could be broken up into either $2 * 50$ or $4 * 25$ simulations.

If Autostop is enabled then the maximum number of simulations to be performed is given by NSIM*NREP. The Autostop option will terminate the simulations before the NSIM*NREP simulations are done if the convergence criteria are met.

## Menu Paths

Main Menu>Prob Design>Prob Method>Monte Carlo Sims

## PDMETH, Method, Samp

## Specifies the probabilistic analysis method.

$$
\begin{aligned}
& \text { PROBABILISTIC: Methods } \\
& \text { MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS }
\end{aligned}
$$

## Method

Label for the probabilistic analysis method.
MCS
Monte Carlo Simulation
RSM
Response Surface Method

## Samp

Label for the sampling techniques. The sampling technique determines the values of the random input variables during the simulation loops.
DIR
Direct or Crude Monte Carlo Sampling. This technique randomly samples the random input variables according to their distribution functions without "memory" of previous simulations.

The parameters for a Monte Carlo Simulation using direct sampling are specified with the PDDMCS command.

## LHS

Latin Hypercube Sampling (default). Valid only for Method = MCS. For this sampling technique the random input variables are sampled randomly according to their distribution functions, efficiently stratifying the samples into layers and avoiding the re-use of those layers. The sampling process has a "memory" of previous simulations, which prevents accumulation of clusters of samples. In addition, this sampling strategy forces the extreme ends of a distribution function to participate in the sampling. This generally leads to smoother distribution functions of the sampled set.

The parameters for a Monte Carlo Simulation using Latin-Hypercube sampling are specified with the PDLHS command.

## USER

User specified sampling. Valid only for Method = MCS. In this case you provide a file containing the sampling "points" (values) of all random input variables for all simulation loops. These samples are simply executed and it is your responsibility to specify the samples correctly. The probabilistic design system can perform only limited checks on the samples you provide. ANSYS allows Monte Carlo specific postprocessing operations on the results generated with user-specified samples. The parameters for the user-supplied sampling technique are specified with the PDUSER command.
CCD
Central Composite Design. Valid only for Method = RSM. A central composite design is composed of a center point, axis points, and corner points, called factorial points. Using large numbers of random input variables produces prohibitively large numbers of factorial points; therefore, ANSYS automatically reduces the number of factorial points by switching to a fractional plan for the factorial part of the design. See the PDDOEL command for more information.

## Note

This option is only valid for 2 to 20 random input variables. You will receive an error if you have specified fewer than 2 or more than 20 random input variables.

## BBM

Box-Behnken Matrix Design. Valid only for Method = RSM. A Box-Behnken Matrix design is composed of a center point plus the points at the middle of the edges of the hypercube in the space of random input variables. A Box-Behnken design might be advantageous if the corner points of the hypercube represent very extreme conditions that are undesirable and therefore should not be used for the sampling. See the PDDOEL command for more information.

## Note

This option is only valid for 3 to 12 random input variables. You will receive an error if you have specified fewer than 3 or more than 12 random input variables.

## USER

User specified sampling. In this case you provide a file containing the sampling "points" (values) of all random input variables for all simulation loops. These samples are simply executed and it is your responsibility to specify the samples correctly. The PDS can perform only limited checks on the samples you provide, if user-supplied sampling technique are specified with the PDUSER command.

## Command Default

Method $=$ MCS, Samp $=$ LHS.

## Notes

Specifies the probabilistic analysis method and the sampling technique used for the individual probabilistic analysis method.

## Menu Paths

Main Menu>Prob Design>Prob Method>Monte Carlo Sims
Main Menu>Prob Design>Prob Method>Response Surface

PDOT, LabR, LabX1, LabY1, LabZ1, LabX2, LabY2, LabZ2

## Calculates the dot product of two path vectors along the current path.

> POST1: Path Operations
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## LabR

Label assigned to dot product result.

## Labx1

X-component of first vector label (labeled path item).

## LabY1

Y-component of first vector label (labeled path item).

## Labz1

Z-component of first vector label (labeled path item).

## LabX2

X-component of second vector label (labeled path item).
LabY2
Y-component of second vector label (labeled path item).

## Labz2

Z-component of second vector label (labeled path item).

## Menu Paths

Main Menu>General Postproc>Path Operations>Dot Product

PDPINV, Rlab, Name, PROB, --, CONF

## Prints the result of the inversion of a probability.

PROBABILISTIC: Postprocessing
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Rlab

Result set label. Identifies the result set to be used for postprocessing. A result set label can be the solution set label you defined in a PDEXE command (if you are directly postprocessing Monte Carlo Simulation results), or the response surface set label defined in an RSFIT command (for Response Surface Analyses).

## Name

Parameter name. The parameter must have been previously defined as a random input variable or a random output parameter with the PDVAR command.

## PROB

Target probability for which the random parameter value should be determined.

Unused field.
CONF
Confidence level. The confidence level is used to print the confidence bounds on the random parameter value. The value for the confidence level must be between 0.0 and 1.0 and it defaults to 0.95 (95\%). Printing of confidence bound is suppressed for $C O N F \leq 0.5$. This parameter is ignored for response surface methods results postprocessing.

## Command Default

Rlab as described above, $C O N F=0.95$.

## Notes

Prints the value for the random parameter Name at which the probability that there are simulation values lower than that value is equal to $P R O B$. This corresponds to an inversion of the cumulative distribution function (see PDCDF command) at a given probability. In this sense the PDPINV is doing the opposite of the PDPROB command. The PDPROB command evaluates a probability for a given random parameter value and the PDPINV command evaluates the random parameter value that corresponds to a given probability.

If $R l a b$ is left blank, then the result set label is inherited from the last PDEXE command (Slab), RSFIT command (RSlab), or the most recently used PDS postprocessing command where a result set label was explicitly specified.

The confidence level is a probability expressing the confidence that the value for the requested result is in fact between the confidence bounds. The larger the confidence level, the wider the confidence bounds. Printing the confidence bounds only makes sense for postprocessing Monte Carlo simulation results, where the confidence bounds represent the accuracy of the results. With increasing sample sizes, the width of the confidence bounds gets smaller for the same confidence level. For response surface analysis methods, the number of simulations done on the response surface is usually very large; therefore, the accuracy of the results is determined by the response surface fit and not by the confidence level.

The PDPINV command cannot be used to postprocess the results in a solution set that is based on Response Surface Methods, only Monte Carlo Simulations.

## Menu Paths

Main Menu>Prob Design>Prob Results>Statistics>Inverse Prob

## PDPLOT, Name, PLOW, PUP

## Plots the distribution curves of a defined random input variable.

PROBABILISTIC:Preprocessing
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Name

Parameter name. The parameter name must have been previously defined as a random input variable using the PDVAR command.

## PLOW

Lower probability level used to determine the lower boundary of the curve. This probability must be between 0.0 and 1.0 and it defaults to 0.0025 . This parameter is used to determine the lower plotting range (boundary) in case the random input variable does not have a minimum value (such as Gauss).

## PUP

Upper probability level used to determine the upper boundary of the curve. This probability must be between 0.0 and 1.0 and it defaults to 0.9975 .

## Command Default

PLOW $=0.0025$ (applied if distribution type has no minimum), $P U P=0.9975$ (applied if distribution type has no maximum).

## Notes

Plots the distribution of a defined random input variable. The PDPLOT command generates a probability density function plot as well as a cumulative distribution function plot of the random variable. The probabilities PLOW and PUP are used to determine the plot range of the random input variable values. To do this, the probabilities are converted into random input variable values using the inverse cumulative distribution function of the random input variable as shown in the following illustration.


Using the probabilities ensures that the boundaries are always feasible and meaningful for the random input variable regardless of its distribution type.

If $P L O W$ is left blank, then a minimum value of the distribution is used for plotting, provided it exists (for example, uniform distribution). If the distribution type has no minimum value (for example, a Gaussian dis-
tribution) then the default value is used to determine the lower plotting range value. The same applies for the maximum value, if $P U P$ is left blank.

## Menu Paths

## Main Menu>Prob Design>Prob Definitns>Plot

PDPROB, Rlab, Name, Relation, LIMIT, --, CONF
Prints a probability result.
PROBABILISTIC: Postprocessing
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Rlab

Result set label. Identifies the result set to be used for postprocessing. A result set label can be the solution set label you defined in a PDEXE command (if you are directly postprocessing Monte Carlo Simulation results), or the response surface set label defined in an RSFIT command (for Response Surface Analyses).

## Name

Parameter name. The parameter must have been previously defined as a random input variable or a random output parameter using the PDVAR command.

## Relation

Relation label for the relation between probabilistic design parameter Name and the limit value LIMIT:
LT
Less than (default).
GT
Greater than.
LIMIT
Limit value.
--
Unused field.
CONF
Confidence level. The confidence level is used to print the confidence bounds on the probability. The value for the confidence level must be between 0.0 and 1.0 and it defaults to 0.95 (95\%). Printing of confidence bound is suppressed for CONF $\leq 0.5$. This parameter is ignored for response surface methods results postprocessing.

## Command Default

Rlab as described above, Relation $=L T, C O N F=0.95$.

## Notes

Prints the probability that the probabilistic design input or output variable denoted with Name is smaller or larger than a certain limit value.

If $R l a b$ is left blank, then the result set label is inherited from the last PDEXE command (Slab), RSFIT command (RSlab), or the most recently used PDS postprocessing command where a result set label was explicitly specified.

Use the relation label Relation to specify if you want to print a traditional probability value (LT) or the exceedence probability (GT). The LIMIT directly specifies at which value of Name (the design parameter) the probability should be evaluated. If LIMIT is between two sample values of Name the resulting probability is linearly interpolated between the sample values. If $\operatorname{LIMIT}$ is smaller than all sample values of Name the probability is 0.0 for Relation $=\mathrm{LT}$ and 1.0 for Relation $=G T$. If LIMIT is greater than all sample values for Name the probability is 1.0 for Relation $=L T$ and 0.0 for Relation $=G T$.

The confidence level is a probability expressing the confidence that the value for the requested probability is in fact between the confidence bounds. The larger the confidence level, the wider the confidence bounds. Printing the confidence bounds only makes sense for postprocessing Monte Carlo simulation results, where the confidence bounds represent the accuracy of the results. With increasing sample sizes, the width of the confidence bounds gets smaller for the same confidence level. For response surface analysis methods, the number of simulations done on the response surface is usually very large; therefore, the accuracy of the results is determined by the response surface fit and not by the confidence level.

The PDPROB command cannot be used to postprocess the results in a solution set that is based on Response Surface Methods, only Monte Carlo Simulations.

## Menu Paths

Main Menu $>$ Prob Design $>$ Prob Results $>$ Statistics $>$ Probabilities

PDRESU, Fname, Ext, --
Reads the probabilistic model data and loads it into the database.

> PROBABILISTIC: Database
> MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS

## Fname

File name and directory path ( 248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

The file name defaults to Jobname.

## Ext

Filename extension (8 character maximum).
The extension defaults to pds if Fname is blank; otherwise, no default.

Unused field.

## Command Default

Fname $=$ jobname Ext $=$ pds, the default directory is the current working directory.

## Notes

Reads the probabilistic model data from the specified file and loads it into the database. Probabilistic analyses results are not stored in the database with the PDRESU command, rather they reside in separate results files. Analyses results are loaded automatically (one-by-one and on demand) when a probabilistic postprocessing command is issued.

## Menu Paths

## Main Menu>Prob Design $>$ Prob Database $>$ Resume

PDROPT, RVAR, CORR, STAT, SHIS, HIST, CDF, SENS, CMAT, CONF

## Specifies the options for an HTML report.

PROBABILISTIC: Postprocessing
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
RVAR
Specifies in which form to show the definitions of random variables in the report.
0
Using tables (including name and distribution parameter) and figures (including a probability density function plot and a cumulative distribution plot) (default).

1
Using tables only.
2
Using figures only.
3
None.
CORR
Specifies if a table describing the correlation between random variables should be included in the report.
0
Yes, include this table (default).
1
No, do not include this table.
STAT
Specifies which statistics to include in the report. In general, statistics are provided in a tabular form.
0
Statistics of the random output parameters only (default).
1
Statistics of the random input variables only.
2
Statistics of both the random input variables and the random output parameters.
3
None.

## SHIS

Specifies which sample history plots to include in the report. This option applies to the random output parameters only.

0
None (default).
1
Mean value and standard deviation as a sample plot.
2
Mean value, standard deviation and sample values as a sample plot.
3
All types of sample plots - mean value, standard deviation, minimum value, maximum values, and the sample values.

## HIST

Specifies which histogram plots to include in the report.
0
Histogram of the random output parameters only (default).
1
Histogram of the random input variables only.
2
Histogram of both the random input variables and the random output parameters.
3
None.
CDF
Specifies which cumulative distribution function (CDF) plots to include in the report.
0
CDF of the random output parameters only (default).

1
CDF of the random input variables only.
2
CDF of both the random input variables and the random output parameters.
3
None.

## SENS

Specifies which sensitivity plots to include in the report.
0
Plots the sensitivities for all random output parameters based on Spearman-rank-order correlation coefficient (default).

1
Plots the sensitivities for all random output parameters based on linear (Pearson) correlation coefficient.
2
Plots the sensitivities according to option $S E N S=1$ and $S E N S=2$.
3
None.

## CMAT

Specifies which correlation matrices to include in the report.
0
Correlation matrix between random output parameters and random output parameters only (default).
1
Correlation matrix between random input variables and random output parameters only.
2
Correlation matrix between random input variables and random input variables only.
3
Correlation matrices according to option $C M A T=0$ and $C M A T=1$.
4
Correlation matrices according to option $C M A T=0$ and $C M A T=2$.
5
Correlation matrices according to option $C M A T=1$ and $C M A T=2$.
6
Correlation matrices according to option $C M A T=0, C M A T=1$, and $C M A T=2$.
7
None.
CONF
Confidence level. The confidence level is used to plot confidence bounds for the history value. The value for the confidence level must be between 0.0 and 1.0 and it defaults to 0.95 ( $95 \%$ ). Confidence bound(s) plotting is suppressed for $\operatorname{CONF} \leq 0.5$. This option is ignored if the report does not include plots for which confidence bounds are applicable.

## Command Default

$R V A R=0, C O R R=0, S T A T=0, S H I S=0, H I S T=0, C D F=0, S E N S=0, C M A T=0, C O N F=0.95$.

## Notes

Specifies the options for an HTML report. An HTML report includes a description of the deterministic model, the probabilistic model, the probabilistic methods used for the analyses, and the results obtained from the analyses. The deterministic model is documented in the report by including a link to the analysis file (see PDANL command). In addition, an element plot of the component is shown, if available, based on the current view settings. The command ALLSEL is issued automatically prior to the respective plot command.

## Menu Paths

Main Menu>Prob Design>Prob Results>Report>Report Options

## /PDS

## Enters the probabilistic design system.

> PROBABILISTIC:Auxiliary
> MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS

## Notes

Enters the Probabilistic Design System (PDS). This command is valid only at the Begin Level.

## Menu Paths

Main Menu>Prob Design

PDSAVE, Fname, Ext, --

## Writes the probabilistic model data to a file.

> PROBABILISTIC: Database
> MP ME ST PR PRN <> <> FL EM EH DY PP $<>$ EME MFS

## Fname

File name and directory path ( 248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

The file name defaults to Jobname.

## Ext

Filename extension (8 character maximum).
The extension defaults to pds if Fname is blank; otherwise, no default.
--
Unused field.

## Command Default

Fname $=$ Jobname, Ext $=$ pds, the default directory is the current working directory.

## Notes

Writes the probabilistic model data to a file. Saved data include probabilistic data only; the results of the probabilistic analyses are not stored in the file (rather, these are stored in separate result files).

## Menu Paths

Main Menu>Prob Design>Prob Database>Save

## PDSCAT, Rlab, Name 1, Name2, Type, ORDER, NMAX

Plots a scatter graph.
PROBABILISTIC: Postprocessing
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Rlab

Result set label. Identifies the result set to be used for postprocessing. A result set label can be the solution set label you defined in a PDEXE command, or the response surface set label defined in an RSFIT command.

## Name1, Name2

Parameter names. The parameters must have been previously defined as a random input variable or a random output parameter using the PDVAR command. The parameter data for Name 1 is shown on the X-axis and the parameter data for Name 2 is shown on the Y -axis in the plot.

## Type

Keyword for the type of trendline curve.
POLY
Polynomial trendline (default).

## NONE

A trendline is not plotted.

## ORDER

Order of the polynomial trendline. This parameter is used only for Type = POLY. ORDER must be a positive number. There is no maximum for ORDER provided there are enough data points to evaluate a polynomial of the requested order. Default is 1 .

## NMAX

Maximum number of points plotted in the scatter plot. If there are more sample data, then only the first NMAX points are plotted. The default value is 10,000 .

## Command Default

Rlab as described above, Type $=$ POLY, $O R D E R=1$, NMAX $=10,000$

## Notes

Plots a scatter graph with or without a trendline. The scatter plot shows the simulated points for two random parameters. Random input variables and random output parameters are valid for both X - and Y -axis. The mean value of both parameters are marked with separate green lines. The point where the green lines cross marks the statistical center of gravity of the cloud of all simulated data points of the two parameters.

If $R l a b$ is left blank, then the result set label is inherited from the last PDEXE command ( $S l a b$ ), RSFIT command (RSlab), or the most recently used PDS postprocessing command where a result set label was explicitly specified.

If the parameter data for Name1 includes negative values, fitting a logarithmic trendline is not possible and the logarithmic trendline plot is suppressed if requested. The same applies for an exponential trendline if the data for the Name 2 includes negative values.

Because of the amount of data involved, the scatter plot is limited to NMAX points. If shown, the trendline is evaluated only on the NMAX points shown. However, the statistical information shown in the plot, such
as the mean value lines for both parameters and the correlation coefficients listed in the legend are based on the full set of samples. If required, you can increase NMAX to plot more points, but this will affect the time needed to process the PDSCAT command. If NMAX is less than the total amount of simulated points, which is typically possible for Response Surface Methods, you will see an appropriate warning in the plot legend.

## Menu Paths

## Main Menu>Prob Design>Prob Results>Trends>Scatter Plot

PDSENS, Rlab, Name, Chart, Type, SLEVEL
Plots the probabilistic sensitivities.

> PROBABILISTIC: Postprocessing
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Rlab

Result set label. Identifies the result set to be used for postprocessing. A result set label can be the solution set label you defined in a PDEXE command (if you are directly postprocessing Monte Carlo Simulation results), or the response surface set label defined in an RSFIT command (for Response Surface Analyses). The PDSENS command cannot be used to postprocess the results in a solution set that is based on Response Surface Methods, only Monte Carlo Simulations.

## Name

Parameter name. The parameter must have been previously defined as a random output parameter using the PDVAR command.

## Chart

Keyword for the type of chart to be plotted.
BAR
Bar chart of the absolute sensitivities.
PIE
Pie chart of relative and normalized sensitivities.
BOTH
Both pie and bar charts plotted side by side (default).

## Type

Keyword for the type of correlation coefficients used to evaluate the sensitivities.

## RANK

Spearman rank-order correlation coefficient (default).

## LIN

Pearson linear correlation coefficient.

## SLEVEL

Significance level. The value for the significance level must be between 0.0 and 1.0 and it defaults to 0.025 (2.5\%).

## Command Default

Rlab as described above, Chart $=$ BOTH, Corr $=$ RANK, SLEVEL $=0.025$

## Notes

Plots the probabilistic sensitivities.
If $R l a b$ is left blank, then the result set label is inherited from the last PDEXE command (Slab), RSFIT command (RSIab), or the most recently used PDS postprocessing command where a result set label was explicitly specified.

Evaluation of the probabilistic sensitivities is based on the correlation coefficients between all random input variables and the random output parameter specified by Name. You can chose which correlation coefficient should be used for that evaluation using the Corr option. For all sensitivity values, the probabilistic design tool evaluates the probability that the sensitivity can be neglected, based on statistical test theory. If this probability exceeds the significance level as specified by the SLEVEL parameter, the sensitivity value should be regarded as negligible or insignificant. The higher the significance level (SLEVEL) the more sensitivities are considered as significant. The sensitivity plot includes the significant sensitivities only and lists the insignificant ones separately.

## Menu Paths

## Main Menu>Prob Design $>$ Prob Results $>$ Trends $>$ Sensitivities

## PDSHIS, Rlab, Name, Type, CONF

## Plots the sample history values.

PROBABILISTIC: Postprocessing
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Rlab

Result set label. Identifies the result set to be used for postprocessing. A result set label can be the solution set label you defined in a PDEXE command, or the response surface set label defined in an RSFIT command.

## Name

Parameter name. The parameter must have been previously defined as a random input variable or a random output parameter using the PDVAR command.

## Type

Keyword to identify which type of data is to be plotted:

## SAMP

Sampled values (default).
MEAN
Mean values for results based on Monte Carlo simulation methods only.

## STDV

Standard deviations for results based on Monte Carlo simulation methods only.

## MIN

Minimum values for results based on Monte Carlo simulation methods only.
MAX
Maximum values for results based on Monte Carlo simulation methods only.
MEAN, STDV, MIN, and MAX are only valid for Monte Carlo methods.

## CONF

Confidence level. The confidence level is used to plot confidence bounds for the history value. The value for the confidence level must be between 0.0 and 1.0 and it defaults to 0.95 ( $95 \%$ ). Confidence bound(s) plotting is suppressed for CONF $\leq 0.5$. This option is ignored for Type $=$ SAMP (no confidence bounds are plotted).

## Command Default

Rlab as described above, Type $=$ SAMP, CONF $=0.95$

## Notes

Plots the sample history values as a function of the number of simulation loops.
If Rlab is left blank, then the result set label is inherited from the last PDEXE command (Slab), RSFIT command (RSlab), or the most recently used PDS postprocessing command where a result set label was explicitly specified.

The confidence level is a probability expressing the confidence that the value for the requested probability is in fact between the confidence bounds. The larger the confidence level, the wider the confidence bounds. For Type = MEAN and Type = STDV, lower and upper confidence curves are plotted. For Type = MEAN, the mean value curve starts at the first simulation and the confidence bounds start with simulation number 2. For Type $=$ MIN only the upper confidence bound is shown (the interpretation is that by a certain probability the true minimum value is below this curve). This probability (or confidence) is set using CONF. Likewise, for Type = MAX, only the lower confidence bound is shown. For all Type options, confidence curves are plotted starting with the simulation at which enough data is available to calculate the bounds. However, for scaling reasons, no confidence bounds are plotted for simulation numbers 1 to 5 even if they might be available.

## Menu Paths

Main Menu>Prob Design>Prob Results>Statistics>Sampl History

## PDUSER, Fname, Ext,--

## Specifies options for user-specified sampling methods.

$$
\begin{aligned}
& \text { PROBABILISTIC:Methods } \\
& \text { MP ME ST PR PRN }<><>\text { FL EM EH DY PP }<>\text { EME MFS }
\end{aligned}
$$

## Fname

File name and directory path ( 248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

## Ext

Filename extension (8 character maximum).

Unused field.

## Notes

If user-specified sampling methods are requested with the PDMETH, MCS, USER command or the PDMETH, RSM, USER command, then you need to specify which file contains the sample data. For more information on the format of this file, see Probabilistic Design in the Advanced Analysis Techniques Guide.

## Menu Paths

Main Menu>Prob Design>Prob Method>Monte Carlo Sims Main Menu>Prob Design>Prob Method>Response Surface

PDVAR, Name, Type, PAR1, PAR2, PAR3, PAR4

## Specifies the parameters to be treated as probabilistic design variables.

PROBABILISTIC:Preprocessing
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Name

Parameter name (must be a scalar ANSYS parameter). The parameter must have been previously defined as a random input variable or a random output parameter with the PDVAR command. See the *SET command for restrictions about ANSYS parameters.

## Type

Probabilistic design variable type. This is the statistical distribution type. For more information on each of these types, see Probabilistic Design in the Advanced Analysis Techniques Guide.

## BETA

Beta distributed random variable.
$P A R 1=$ Shape parameter. Defaults to 2.0.
$P A R 2=$ Shape parameter. Defaults to 2.0.
$P A R 3=$ Lower minimum value. Defaults to 0.0.
$P A R 4=$ Upper maximum value. Defaults to 1.0 .

## EXPO

Exponential distributed random variable.
PARI = Decay parameter $\lambda$. Must be larger then 0.0 and defaults to 1.0 .
PAR2 $=$ Shift or minimum value. Defaults to 0.0 .
$P A R 3, P A R 4$ are ignored.
GAMA
Gamma distributed random variable.
PAR1 = Decay parameter $\lambda$. Must be larger then 0.0 and defaults to 1.0 .
PAR2 $=$ Exponential parameter k . Must be larger then 0.0 and defaults to 1.0 .
$P A R 3, P A R 4$ are ignored. Exponential distributed random variable.

## GAUS

Gaussian (Normal) distributed random variable.
PAR1 $=$ Mean value. Defaults to 0.0 .
$P A R 2=$ Standard deviation. Must be larger then 0.0 and defaults to 1.0 .
$P A R 3, P A R 4$ are ignored.

## LOG1

Lognormal distributed random variable specified directly with the statistical parameters mean value and standard deviation.
$P A R 1=$ Mean value. Must be larger then 0.0 and defaults to 1.0 .
PAR2 $=$ Standard deviation. Must be larger then 0.0 and defaults to 1.0 .
$P A R 3, P A R 4$ are ignored.

## LOG2

Lognormal distributed random variable specified with the statistical parameters mean value and standard deviation of the logarithm of the random values.
$P A R 1$ and $P A R 2$ must also be defined. $P A R 1=$ Mean value of the logarithm of the data. Defaults to 0.0.
$P A R 2=$ Standard deviation of the logarithm of the data. Must be larger then 0.0 and defaults to 1.0 .
PAR3, PAR4 are ignored.
UNIF
Uniform distributed random variable. Note that PAR1 must be less than PAR2.
$P A R 1=$ Minimum value. Defaults to 0.0 .
PAR2 $=$ Maximum value. Defaults to 1.0 .
$P A R 3, P A R 4$ are ignored.

## TGAU

Truncated Gaussian distributed random variable. Note that PAR3 must be less than PAR4.
$P A R 1=$ Mean value of the untruncated Gaussian distribution. Defaults to 0.0 .
PAR2 = Standard deviation of the untruncated Gaussian distribution. Must be larger then 0.0 and defaults to 1.0 .
$P A R 3=$ Minimum value and lower truncation boundary. Defaults to -3.0.
$P A R 4=$ Maximum value and upper truncation boundary. Defaults to +3.0 .
TRIA
Triangular distributed random variable. Note that PAR1 must be less than PAR2 which must be less than PAR3.

PARI $=$ Minimum value. Defaults to 0.0 .
PAR2 $=$ Most Likely Value (MLV). Defaults to 0.5 .
$P A R 3=$ Maximum value. Defaults to 1.0 .
$P A R 4$ is ignored.

## WEIB

Weibull (Type III smallest) distributed random variable. Note that PAR2 must be greater than PAR3. If $P A R 3=0.0$, the random distribution is equivalent to a two-parameter Weibull distribution.

PAR1 $=$ Weibull exponent. Must be larger then 0.0 and defaults to 1.0 .
PAR2 $=$ Characteristic value. Must be larger then 0.0 and defaults to 1.0 .
$P A R 3=$ Shift or minimum value. Defaults to 0.0 .
PAR4 is ignored.

## RESP

Random output or response parameter.PAR1 to PAR4 are not used.

## DEL

Deletes this probabilistic design variable (does not delete the ANSYS parameter). This option is only valid if the parameter Name was previously defined as a probabilistic design variable (using Type $=$ BETA, ..., WEIB or Type $=$ RESP). The parameter retains the value assigned during the last probabilistic design loop.PAR1 to PAR4 are not used.

## PAR1, PAR2, PAR3, PAR4

Parameters of the distribution function. The parameters must be specified according to the requirements of the individual distribution types described above.

## Notes

Specifies the parameters to be treated as probabilistic design variables. A random input variable is specified by the name of the ANSYS parameter, the type of the distribution function (Type) and its distribution parameters (PAR1, ..., PAR4). A random output parameter is specified by the name of the ANSYS parameter and the type identifying it as a random output parameter (Type = RESP).

## Menu Paths

## Main Menu>Prob Design>Random Input

## PDWRITE, File, Fnam, Lnam

## Generates an HTML report for the probabilistic analyses.

PROBABILISTIC: Postprocessing
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## File

File name and directory path (248 characters maximum, including directory) from which to read the report. If you do not specify a directory path, it will default to your working directory and you can use all 248 characters for the file name.

## Fnam

First name of the author of the report ( 32 characters maximum). This first name must not include blanks.

## Lnam

Last name of the author of the report ( 32 characters maximum). This last name must not include blanks.

## Notes

Generates an HTML report for the probabilistic analysis. An HTML report includes a description of the deterministic model, the probabilistic model, the probabilistic methods used for the analyses and the results obtained from the analyses.

## Menu Paths

## Main Menu>Prob Design>Prob Results>Report>Generate Report

PERBC2D, LOC1, LOC2, LOCTOL, R1, R2, TOLR, OPT, PLNOPT

## Generates periodic constraints for 2-D planar magnetic field analyses.

$$
\begin{aligned}
& \text { PREP 7:Special Purpose } \\
& \mathrm{MP} \text { <> <> <> <> <> <> <> EM EH <> PP <> EME <> }
\end{aligned}
$$

## LOC1

Constant coordinate location of the first plane of nodes. For $P L N O P T=1$ or 2, the constant coordinate location is the global Cartesian coordinate system [CSYS,0] location in the $X$ or $Y$ direction respectively. For $P L N O P T=0$, the location is the angle in the global cylindrical coordinate system [CSYS,1].

## LOC2

Constant coordinate location of the second plane of nodes. For PLNOPT = 1 or 2, the constant coordinate location is the global Cartesian coordinate system [CSYS,0] location in the $X$ or $Y$ direction respectively.
For $P L N O P T=0$, the location is the angle (in degrees) in the global cylindrical coordinate system [CSYS,1].

## LOCTOL

Tolerance on the constant coordinate location for node selection. Defaults to .00001 for $P L N O P T=1$ or 2 and .001 degrees for $P L N O P T=0$.

R1
Minimum coordinate location along the second plane of nodes. For $P L N O P T=1$ or 2, the coordinate location is the global Cartesian coordinate system location in the Y or X direction respectively. For $P L N O P T=0$, the coordinate location is the radial coordinate value in the global cylindrical coordinate system. Periodic conditions are not applied to nodes at this location.

## R2

Maximum coordinate location along the second plane of nodes. For $P L N O P T=1$ or 2 , the coordinate location is the global Cartesian coordinate system location in the Y or X direction respectively. For $P L N O P T=0$, the coordinate location is the radial coordinate value in the global cylindrical coordinate system. Periodic conditions are not applied to nodes at this location.

## TOLR

Tolerance dimension on node selection along the plane of nodes. Defaults to .00001 .

## OPT

Periodic option:
0
Odd symmetry (default). Apply constraint equations such that $A Z(i)=-A Z(j)$.
1
Even symmetry. Apply node coupling such that $A Z(i)=A Z(j)$.

## PLNOPT

Symmetry plane option:
0
Planes of constant angle in the global cylindrical coordinate system [CSYS,1].

1
Planes parallel to the global Cartesian X axis [CSYS,0].

2
Planes parallel to the global Cartesian Y axis [CSYS,0].

## Notes

PERBC2D invokes an ANSYS macro which generates periodic boundary condition constraints for 2-D planar magnetic field analysis. The macro is restricted to node pairs sharing common coordinate values along symmetry planes separated by a constant coordinate value. Planes (or lines) must lie at either constant angles $(P L N O P T=0)$, constant X values $(P L N O P T=1)$, or constant Y values $(P L N O P T=2)$. PERBC2D applies constraint equations ( $O P T=0$, odd symmetry) or node coupling ( $O P T=1$, even symmetry) to each node pair sharing a common coordinate value along the symmetry planes. By default, periodic conditions are not applied at the first and last node pairs on the symmetry planes unless the input location values, R1 and R2, are adjusted to be less than or greater than the actual node coordinate values. Nodes are selected for application of the constraints using the NSEL command with tolerances on the constant coordinate location (LOCTOL) and the coordinate location along the plane (RTOL).

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

> Main Menu $>$ Preprocessor $>$ Loads $>$ Define Loads $>$ Apply $>$ Magnetic $>$ Boundary $>$ VectorPot $>$ Periodic
> BCs
> Main Menu $>$ Solution $>$ Define Loads $>$ Apply $>$ Magnetic $>$ Boundary $>$ VectorPot $>$ Periodic BCs

## PERI, $D X, D Y, D Z$

## Specifies periodic boundary conditions in an incompressible flow analysis.

PREP 7:FLOTRAN Miscellaneous

DX
Offset in the $X$ direction of the second boundary from the first.
DY
Offset in the Y direction of the second boundary from the first.

## DZ

Offset in the $Z$ direction of the second boundary from the first.

## Notes

Specified offsets must be consistent with the flow field coordinate system, as dictated by the FLUID141 and FLUID142 KEYOPT(3) setting.

The meshes at the two boundaries must be identical.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

This command cannot be accessed from a menu.

PERTURB, Type, MatKey, ContKey, LoadControl

## Sets linear perturbation analysis options.

SOLUTION: Analysis Options
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

## Type

Type of linear perturbation analysis to be performed:
MODAL
Perform a linear perturbation modal analysis.
BUCKLING
Perform a linear perturbation eigenvalue buckling analysis. This option is only valid in the ANSYS Workbench product.

## Note

For a linear perturbation buckling analysis, the base analysis must be a linear static analysis. Bonded contact elements can be used in the base analysis.

OFF
Do not perform a linear perturbation analysis (default).

## MatKey

Key that controls how the linear perturbation analysis will use material properties. This key controls all the structural elements, except for contact elements.

## AUTO

The program automatically decides the material properties for linear perturbation (default). The materials are handled in the following way:

- For pure linear elastic materials used in the base analysis, the same properties are used in the linear perturbation.
- For hyperelastic materials used in the base analysis, the material properties are assumed to be linear elastic in the linear perturbation analysis. The material property data (or material Jacobian) is obtained based on the tangent of the hyperelastic material's constitutive law at the point where restart is made.
- For any nonlinear materials other than hyperelastic materials in the base analysis, the material properties are assumed to be linear elastic in the linear perturbation analysis. The material data is the same as the linear portion of the nonlinear materials (that is, the parts defined by MP commands).
See Linear Perturbation Analysis in the Theory Reference for the Mechanical APDL and Mechanical Applications for more information.


## ContKey

Key that controls contact status for the linear perturbation analysis. This key controls all contact elements (TARGE169, TARGE170, and CONTA171 through CONTA178) globally for all contact pairs. Alternatively, contact status can be controlled locally per contact pair by using the CNKMOD command. Note that local contact controls specified by CNKMOD override global settings specified by ContKey = CURRENT. For Cont Key $=$ STICKING or BONDED, the contact status always follows local controls defined by the CNKMOD command first, and is then adjusted by the global sticking or bonded control.

## CURRENT

Use the current contact status from the restart snapshot (default). If the previous run is nonlinear, then the nonlinear contact status at the point of restart is frozen and used throughout the linear perturbation analysis.

## STICKING

For frictional contact pairs, use sticking contact stiffness and status even when the status is sliding (i.e., no sliding status is allowed). This option only applies to contact pairs whose frictional coefficient is greater than zero.

## BONDED

Any contact pairs that are in the closed (sticking/sliding) state will be moved to bonded. Contact pairs that have a status of far/near field will remain open.

## LoadControl

Key that controls how the load vector of $\left\{\mathrm{F}_{\text {perturbed }}\right\}$ is calculated. This control is provided for convenience of load generation for linear perturbation analysis. In general, a new set of loads is required for a linear perturbation analysis. This key controls all mechanical loads except for thermal loads; thermal loads are always kept (i.e., not deleted).

## ALLKEEP

Keep all the boundary conditions (loads and constraints) from the end of the load step of the current restart point. This option is convenient for further load application and is useful for a linear perturbation analysis restarted from a previous linear analysis. For this option, $\left\{\mathrm{F}_{\text {end }}\right\}$ is the total load vector at the end of the load step at the restart point.

## INERKEEP

Delete all loads and constraints from the restart step, except for displacement constraints and inertia loads (default). All displacement constraints and inertia loads are kept for convenience when performing the linear perturbation analysis. Note that nonzero and tabular displacement constraints are actually external loads.

## PARKEEP

Delete all loads and constraints from the restart step, except for displacement constraints. All displacement constraints are kept for convenience when performing the linear perturbation analysis. Note that nonzero and tabular displacement constraints are actually external loads.

## NOKEEP

Delete all the loads and constraints, including all displacement constraints. For this option, $\left\{\mathrm{F}_{\text {end }}\right\}$ is zero unless thermal loads are present.

## Command Default

Linear perturbation analysis is disabled (Type = OFF) by default. When the linear perturbation analysis is enabled, linear material property behavior is assumed for stress calculations; contact status for all contact pairs from the point of restart will be used by default; and all loads and constraints from the restart step are deleted, except for displacement constraints and inertia loads, by default.

## Notes

This command controls options relating to linear perturbation analyses. PERTURB must be issued in the first phase of a linear perturbation analysis.

A linear perturbation analysis consists of two phases (two SOLVE commands). The first phase starts with the ANTYPE,,RESTART,,,PERTURB command and ends with the SOLVE,ELFORM command. The purpose of the first phase is to re-establish a snapshot of the stiffness matrices at the specified restart point. The second phase, ending with the second SOLVE command, is for the actual linear perturbation analysis.

The total perturbed loads are calculated as follows:

$$
\left\{F_{\text {perturbed }}\right\}=\left\{F_{\text {end }}\right\}+\left\{F_{\text {add }}\right\}
$$

where:
$\left\{F_{\text {end }}\right\}=$ total loads at the end of the load step of the current restart point (load applications are read from the . LDHI file). By default, all of the loads in $\left\{F_{\text {end }}\right\}$ are deleted except for displacement boundary conditions and inertia loads (see the description of LoadControl above).
$\left\{\mathrm{F}_{\text {add }}\right\}=$ Additional (new) loads prescribed by the user in the second phase of the linear perturbation analysis (after the first SOLVE command is invoked).

In the first phase of a linear perturbation analysis, the ANTYPE,,RESTART command will resume the Jobname. RDB database and read in the . LDHI file to establish the $\left\{\mathrm{F}_{\text {end }}\right\}$ load. New load application (adding to $\left\{F_{\text {add }}\right\}$ ) or load removal (changing $\left\{\mathrm{F}_{\text {end }}\right\}$ ) can be done only in the second phase of the linear perturbation analysis (after the first SOLVE command). This allows flexibility in controlling the final $\left\{\mathrm{F}_{\text {perturbed }}\right\}$ that will be used.

For Type $=$ MODAL, $\left\{F_{\text {perturbed }}\right\}$ will be calculated and stored in the .FULL and . MODE files for a subsequent mode-superposition, PSD, or other type of modal-based linear dynamic analysis. Linear dynamic options
such as multiple load generations (MODCONT,ON), enforced motion (MODCONT, ,ON), and residual vector methods (RESVEC,ON) can be used in a linear perturbation analysis. For these methods, the MODCONT or RESVEC command should be invoked in the second phase (after the first SOLVE) of the linear perturbation procedure. For the enforced motion method, the base identification number should be specified (D command) in the second phase of the linear perturbation analysis. This base identification number will be used later in the downstream mode superposition or other mode superposition based analysis.

This command is also valid in PREP7.

## Menu Paths

Main Menu>Preprocessor>Loads>Analysis Type>Restart
Main Menu>Solution>Analysis Type>Restart

## PFACT, TBLNO, Excit, Parcor

## Calculates participation factors for the PSD or multi-point response spectrum table.

SOLUTION:Spectrum Options
MP ME ST <> <> <> <> <> <> <> <> <> <> EME MFS

## tBLNO

Input PSD (Power Spectral Density) table number for which participation factors are to be calculated.

## Excit

Label defining the location of excitation:
BASE
Base excitation (default).

## NODE

Nodal excitation.

## Parcor

Label defining excitation type (applies only to SPOPT,PSD analysis). Used only when partially correlated excitation is due to wave propagation or spatial correlation. Defaults to partially correlated excitation as defined by COVAL and QDVAL commands.

## WAVE

Excitation defined by PSDWAV command.

## SPAT

Excitation defined by PSDSPL command.

## Notes

Calculates the participation factors for a particular PSD or multi-point response spectrum table defined with the PSDVAL or SPVAL command. The Jobname. DB file must contain modal solution data in order for this command to calculate the participation factor. There must be a PFACT command for each excitation spectrum. You are limited to 100 excitations.

This command is also valid in PREP7.

## Menu Paths

Main Menu>Preprocessor>Loads>Load Step Opts>Spectrum>MultiPt>Calculate PF Main Menu>Preprocessor>Loads>Load Step Opts>Spectrum>PSD>Calculate PF Main Menu>Solution>Load Step Opts>Spectrum>MultiPt>Calculate PF Main Menu>Solution>Load Step Opts>Spectrum>PSD>Calculate PF

PGRAPH, Option, Fname, Fext, --
Specifies the location from which graphics data will be retrieved for viewing.
SOLUTION: Misc Loads
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Option

Switch that controls the PGR file write operations:
Off
Use the data currently in the data base for display (default).
On
Use the PowerGraphics data in the PGR file for display.

## Fname

File name and directory path ( 248 characters maximum, including directory) from which to read the PGR file. If you do not specify a directory path, it will default to your working directory and you can use all 248 characters for the file name.

The file name defaults to Jobname, or File if no jobname is specified.
Fext
Filename extension (8 character maximum).

Unused field.

## Menu Paths

Main Menu>Solution>Output Controls>PGR File Main Menu>General Postproc>Write PGR File

PGRSET, Lstep, SBSTEP, --, KIMG, TIME, --, NSET
Defines the data set to be read from the PGR file.
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
Lstep
Load step number of the data set to be read (defaults to 1):
$\boldsymbol{N} \quad$ Read load step $N$.

## FIRST

Store the first data set on the PGR file (SBSTEP and TIME are ignored).

## LAST

Store the last data set on the PGR file. (SBSTEP and TIME are ignored).
NEXT
Store the next data set on the PGR file (SBSTEP and TIME are ignored). If at the last data set, the first data set will be read as the next.

## LIST

Scan the PGR file and list a summary of each load step. (FACT, KIMG, TIME and ANGLE are ignored.)

## SBSTEP

Substep number (within Lstep). If Lstep $=$ LIST, SBSTEP $=0$ or 1 lists the basic step information, whereas $S B S T E P=2$ also lists the load step title, and labels imaginary data sets if they exist. Default maximum is 1000 . When the number of substeps exceeds this limit, you need to issue SET,Lstep,LAST to bring in the 1000th load step. Use /CONFIG to increase the limit.

Unused field.

## KIMG

Used only with results from complex analyses.
0
Store real part of complex solution.
1
Store imaginary part.

## TIME

Time-point identifying the data set to be read. For the harmonic response analyses, time corresponds to the frequency. If both Lstep and SBSTEP are zero (or blank), read data set at time $=T I M E$. If $T$ IME is beyond the last time point on the file, the last time point will be used. If TIME doe not match a time value on the PGR file, the nearest time point in the data set will be used.

Unused field.
NSET
Data set number of the data set to be read. If a positive value for NSET is entered, Lstep, SBSTEP, KIMG, and TIME are ignored. Available set numbers can be determined by PGRSET,LIST.

## Notes

Defines the data set to be read from the PGR file into the database. Various operations may also be performed during the read operation.

## Menu Paths

> Main Menu>Solution>Output Ctrls>PGR File Main Menu>General Postproc>Write PGR File

PGSAVE, Fname, Fext, --, DataType, InteriorKey, Append

## Creates a PowerGraphics (PGR) file from results data.

> SOLUTION: Misc Loads
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Fname

File name and directory path (248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

The file name defaults to Jobname, or File if no jobname is specified.

## Fext

Filename extension (8 character maximum).

Unused field.

## DataType

Data type to create. This specification applies to discontinuous results data such as stress, strain, and field data.

0
Save as nodal-averaged data (default). Used by the PLNSOL command.
1
Reserved.
2
Save both nodal averaged and unaveraged data. Used by the PLESOL and PLNSOL commands.

## InteriorKey

Key that controls whether or not internal model data is saved to the PGR file. Internal data is required in order to use graphical slicing, capping, vector displays, or Isosurface displays for data display. Interior data is also required for the AVRES,,FULL option, where surface results take into consideration the interior element contributions.

0
Save exterior surface data only. (default)

1
Save exterior and interior data.

## Append

Append or overwrite data to the specified.
0
Append the data to the existing file (default). Note that the geometry must not have been changed between the write operations.

1
Overwrite the data file.

## Notes

The user may elect to write results to the PGR file in a specified order. The specifications (including /ESHAPE parameters) must be defined before saving the file. The GUI will allow the user to write the current set, or all sets from the results file.

For contact analysis, only flex-flex analysis is supported.

## Menu Paths

## Main Menu>Solution>Output Ctrls>PGR File

 Main Menu>General Postproc>Write PGR FilePGSELE, Type, Item, --, VMIN, VMAX, VINC

## Select a subset of elements for display with the PGR viewer.

GRAPHICS:Labeling
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Type

Label identifying type of select
S
Select a new set (default)
R
Reselect a set from the current set
A
Additionally select a set, extending the current set.
U
Unselect a set from the current set.

## ALL

Restore the full set. Subsequent command arguments are ignored.

## INVE

Invert the current set (change selected to unselected; change unselected to selected). Subsequent command arguments are ignored.

## STAT

Display the current select status. Subsequent command arguments are ignored.

## Item

Label identifying the data. Valid labels are:
If Type = STAT and Item = (blank) or ELEM, the element selection information is provided.
Type - Element type number
Mat - Material number
Real - Real constant number
Sec - Section identification number
Comp or CM - Component name(s). (see notes, below)
Pick - Pick entities via a picking window. (see notes, below)
(Defaults to Type).

Unused field.

## VMIN

Minimum value of Item range. Ranges are attribute numbers.

## VMAX

Maximum value for Item range. VMAX defaults to VMIN for input values.
VINC
Value increment within Item range. Used only with integer ranges (such as for attribute numbers). Defaults to 1 . VINC cannot be negative.

## Command Default

All elements are selected.

## Notes

When Item = Pick, interactive picking is enabled. The displayed facets of the elements you pick will be flagged according to how they are resolved in PowerGraphics. Exterior elements will be flagged on each facet surface, while elements with no external (surface) component will be flagged at the centroid of that element.

When Item $=$ Comp, the subsequent values for VMIN, VMAX, and VINC, are replaced by valid component names ( 32 character max). You can name up to 16 components in this fashion. All named components must contain elements.

This command is valid in POST1

## Menu Paths

Main Menu>General Postproc>Results Viewer

PGWRITE, Label, Fname, Fext, --, DataType, InteriorKey, Append

## Writes selected solution data to the PGR file for faster post processing access.

SOLUTION: Misc Loads
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Label

Switch that controls the PGR file write operations:

## Off

Do not write the PGR file during the solution.
On
Write the PGR file during solution (default).
STAT
Display the current status of the PGR file settings.

## Fname

File name and directory path (248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

The file name defaults to Jobname, or File if no jobname is specified.

## Fext

Filename extension (8 character maximum).

Unused field.

## DataType

Data type to create. This specification applies to discontinuous results data such as stress, strain, and field data. .

0
Save as nodal-averaged data (default). Used by the PLNSOL command.
1
Reserved.
2
Save both nodal averaged and unaveraged data. Used by the PLESOL and PLNSOL commands.

## InteriorKey

Key that controls whether or not internal model data is saved to the PGR file. Internal data is required in order to use graphical slicing, capping, vector displays, or Isosurface displays for data display. Interior data is also required for the AVRES,,FULL option, where surface results take into consideration the interior element contributions.

0
Save exterior surface data only. (default)

1
Save exterior and interior data.

## Append

Append or overwrite data to the specified file. .
0
Append the data to the existing file (default). Note that the geometry must not have been changed between the write operations.

1
Overwrite the data file.

## Notes

In interactive mode, you cannot read the PGR file while PGWRITE is active. If you solve your model and want to plot the model while still in SOLUTION, you must first close the PGR file by issuing PGWRITE,Off. This occurs automatically when you exit SOLUTION and enter POST1.

When you wish to view your stress results in another coordinate system, you must generate your PGR file from the results file, in POST1, in that coordinate system.

## Menu Paths

Main Menu>Solution>Output Ctrls>PGR File
Main Menu>General Postproc>Write PGR File

PHYSICS, Option, Title, Fname, Ext, --

## Writes, reads, or lists all element information

> PREP 7: Special Purpose
> MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS

## Option

Specifies what to do with element information:

## WRITE

Write all appropriate element types, key options, real constants, material properties, solution analysis options, load step options, constraint equations, coupled nodes, defined components, and GUI preference settings to the file specified with the Fname and Ext arguments.

## READ

Deletes all solution information (material properties, solution options, load step options, constraint equations, coupled nodes, results, and GUI preference settings) then reads all the information listed above into the ANSYS database from the location specified by the Fname and Ext arguments.

## LIST

Lists currently defined physics files and their titles.
DELETE
Deletes a specified physics file and its title from the database.

## CLEAR

Deletes all material properties, solution options, load step options, constraint equations, coupled nodes, results, and GUI preference settings from the database. Does NOT clear the active physics file title from the database.

## STATUS

Displays information about all active elements and settings.

## Title

A user-defined title that quickly identifies a set of physics settings. For example, you might use "Fluid," "Structural," or "Magnetic" as titles. A title can contain up to 64 characters. It can be entered in lower or upper case. Lower case is internally converted to upper case within the program.

## Fname

File name and directory path ( 248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

The file name defaults to Jobname. Previous data on this file, if any, are overwritten.

## Ext

Filename extension (8 character maximum).
The extension defaults to $\mathrm{PH} n$ if Fname is blank, where $n$ is a number between one and nine, depending on how many times you have issued the PHYSICS command. (You can have up to nine separate physics
files.) If you issue the command more than nine times, the ANSYS program will require you to delete an existing file.

Unused field.

## Notes

Use the PHYSICS command when you are performing a multiphysics analysis that involves two different disciplines (for example, CFD and structural analysis) and you cannot solve both analyses simultaneously. Once you have set up physics environments for both analyses, you can use the PHYSICS,READ command to change between the defined physics environments. For more information about doing multiphysics analyses, see Sequential Coupled-Field Analysis in the Coupled-Field Analysis Guide.

The PHYSICS command outputs all solution information, including analysis options, to the Jobname. PHn file described above. Although it also outputs components, the ANSYS program does not list entities (nodes, elements, lines, etc.).

PHYSICS,WRITE will overwrite existing physics files with the same title (even if the name is different). In other words, if the directory has a physics file with the same title as the active physics file title, but a different name, the PHYSICS,WRITE command will overwrite the existing physics file and use the existing filename, not the filename specified on the PHYSICS,WRITE command.

## Menu Paths

Main Menu>Preprocessor>Physics>Environment>Clear<br>Main Menu>Preprocessor>Physics>Environment>Delete<br>Main Menu>Preprocessor>Physics>Environment>List<br>Main Menu>Preprocessor>Physics>Environment>Read<br>Main Menu>Preprocessor>Physics>Environment>Status<br>Main Menu>Preprocessor>Physics>Environment>Write<br>Main Menu>Solution>Physics>Environment>Clear<br>Main Menu>Solution>Physics>Environment>Delete<br>Main Menu>Solution>Physics $>$ Environment $>$ List<br>Main Menu>Solution>Physics>Environment>Read<br>Main Menu>Solution>Physics>Environment>Status<br>Main Menu>Solution>Physics>Environment>Write

/PICE, Item, --, KEY
Shows initial conditions on elements as contours on displays.
GRAPHICS:Labeling
MP ME ST PR PRN <> <> FL EM EH <> PP <> EME MFS

## Item

Label identifying the item:
VFRC
Volume fraction.

Unused field.

## KEY

Symbol key:
0
Do not show initial condition contours.
1
Show initial condition contours.

## Command Default

No initial condition contours displayed.

## Notes

Shows initial conditions as contours on displays for the selected elements. Use /PSTATUS or /PICE,STAT to display settings. Use /PICE,DEFA to reset all specifications back to default.
/PICE is overridden if /PBF, /PSF, and /PBC are all on.
This command is valid in any processor.

## Menu Paths

Utility Menu>PlotCtrls>Symbols

## PIVCHECK, ${ }^{\text {KEY, }}$, PRNTCNTRL

Prevents a batch mode, linear static analysis from stopping when a negative or zero equation solver pivot value is encountered.

SOLUTION: Analysis Options
MP ME ST PR PRN <> <> <> EM <> <> PP <> EME MFS
KEY
Determines whether to stop or continue an analysis when a negative or zero equation solver pivot value is encountered:

ON
Default value. ANSYS checks for negative or zero pivot values on linear static analyses performed with the sparse and PCG solvers. When one is encountered, an error is issued, stopping the job. A negative pivot value may be valid for some multiphysics analyses (e.g. Electromagnetic or Thermal); this key has no effect in these cases.

OFF
Pivots will not be checked. This key continues the analysis in spite of a zero or negative pivot value. The program will proceed until other error checking routines are encountered.

## PRNTCNTRL

Provides print options. Print output with these options will be sent to the default output file, not to the files created by the nonlinear diagnostic tools (NLDIAG).

## ONCE or blank

Default value. Print maximum and minimum pivot information once per loadstep if the SPARSE solver (the default solver) is used.

## EVERY

Print maximum and minimum pivot information every Newton-Raphson iteration or at every iteration within a substep of every loadstep. This option is provided for nonlinear diagnostics.

## Command Default

ON, stop the analysis and report an error status to the user.

## Notes

This command is valid only for linear static analyses. In a nonlinear analysis, a negative pivot may be valid. Normally, rigid body motions in a nonlinear analysis will be trapped by error routines checking infinitely large displacements (DOF limit exceeded) or nonconvergence status. An under-constrained model may avoid the pivot check, but fail with a DOF limit exceeded error.

This command is applicable only to batch mode (not in the GUI). While in an ANSYS interactive session, it is generally desirable to remain in the session, even though a pivot error has occurred. Warning messages will be displayed on the screen, allowing the user to take corrective action.

Finally, machine precision will determine if a warning or an error is issued for the small pivot case. In all cases there will be some notification that the model needs to be checked closely for an accurate solution.

This command is also valid in PREP7.

## Menu Paths

# Main Menu>Preprocessor>Loads>Analysis Type>Analysis Options <br> Main Menu>Solution>Analysis Type>Analysis Options 

## PLCAMP, Option, SLOPE, UNIT, FREQB, Cname, STABVAL

## Plots Campbell diagram data for applications involving rotating structure dynamics.

> POST1:Special Purpose
> MP ME ST $<><><><><><><><>$ PP <> EME MFS

## Option

Flag to activate or deactivate sorting of forward or backward whirl frequencies:
0 (OFF or NO)
No sorting.
1 (ON or YES)
Sort. This value is the default.

## SLOPE

The slope of the line to be plotted. This value must be greater than 0 . The line represents the number of excitations per revolution of the rotor. For example, $S L O P E=1$ represents one excitation per revolution, usually resulting from unbalance. The default is no line.

## UNIT

Specifies the unit of measurement for rotational angular velocities:

## RDS

Rotational angular velocities in radians per second (rad/s). This value is the default.

## RPM

Rotational angular velocities in revolutions per minute (RPMs).

## FREQB

The beginning, or lower end, of the frequency range of interest. The default is zero.

## Cname

The rotating component name.

## STABVAL

Flag to plot the stability values:

## 0 (OFF or NO)

Plot the frequencies (the imaginary parts of the eigenvalues in Hz ). This value is the default.

## 1 (ON or YES)

Plot the stability values (the real parts of the eigenvalues in Hz ).
2
Plot the logarithmic decrements.
For more information about complex eigenvalues and corresponding logarithmic decrements, see Complex Eigensolutions in the Theory Reference for the Mechanical APDL and Mechanical Applications.

## Notes

To take the gyroscopic effect into account when plotting a Campbell diagram, first issue the CORIOLIS command in the SOLUTION module.

The PLCAMP command is valid only for modal analyses (QR damped [MODOPT,QRDAMP] or damped [MODOPT,DAMP] methods only). The command works over two or more load step results generated with an ascending order of rotational velocity (OMEGA or CMOMEGA).

Complex eigenvalues are necessary (MODOPT,QRDAMP,,,,,Cpxmod $=$ ON), and you must specify the number of modes to expand (MXPAND) at each load step.

In some cases where modes are not in the same order from one load step to the other, sorting (Option = 1) the frequencies can help to obtain a correct plot. Sorting is based on the comparison between complex mode shapes calculated at two successive load steps.

At each load step, ANSYS compares the mode shape to the loads at other loads steps to determine whirl direction at the load step. If applicable, a label appears (in the plot legend) representing each whirl mode (BW for backward whirl and FW for forward whirl).

ANSYS considers the SLOPE value only if the frequencies are plotted ( $S T A B V A L=O F F$ ).
At each load step, ANSYS checks for instability (based on the sign of the real part of the eigenvalue). The labels "stable" or "unstable" appear in the plot legend for each frequency curve.

The rotational velocities of a named component (Cname) are displayed on the X -axis.
To plot the Campbell diagram for a prestressed structure, first issue a CAMPBELL,ON command in the static portion of the analysis.

In general, ANSYS, recommends plotting a Campbell diagram only when your analysis is performed in a stationary reference frame (CORIOLIS,,,,RefFrame $=$ ON).

For a usage example of the PLCAMP command, see Sample Campbell Diagram Analysis.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu>General Postproc>Rotor Dynamics>Plot Campbell

## PLCINT, ACTION, ID, Node, Cont, Dtype

## Plots the fracture parameter (CINT) result data.

POST1:Results
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

## Action

PATH
Plots CINT quantities according to path number (default).
FRONT
Plots CINT quantities distribution along the crack front.
ID
Crack ID number.

## Node

Crack tip node number (default $=A L L$ ).
Use only for ACTION = PATH. Plots CINT contour for an individual crack tip node.
Cont
Contour number (Default = ALL).
Use only for ACTION = FRONT. Plots CINT distribution along the crack for a given path.
Dtype
Data type to output:
JINT
J-integral (default)
IIN1
Interaction integral 1
IIN2
Interaction integral 2
IIN3
Interaction integral 3
K1
Mode 1 stress-intensity factor

K2
Mode 2 stress-intensity factor
K3
Mode 3 stress-intensity factor
G1
Mode 1 energy release rate
G2
Mode 2 energy release rate
G3
Mode 3 energy release rate
GT
Total energy release rate

## Menu Paths

This command cannot be accessed from a menu.

## PLCPLX, KEY

## Specifies the part of a complex variable to display.

KEY
Complex variable part:
0
Amplitude.
1
Phase angle.
2
Real part.
3
Imaginary part.

## Notes

Used only with harmonic analyses (ANTYPE,HARMIC).
All results data are stored in the form of real and imaginary components and converted to amplitude and/or phase angle as specified via the PLCPLX command. The conversion is not valid for derived results (such as principal stress/strain, equivalent stress/strain and USUM).

## Menu Paths

Main Menu>TimeHist Postpro>Settings>Graph

## PLCRACK, LOC, NUM

## Displays cracking and crushing locations in SOLID65 elements.

> POST1:Special Purpose
> MP ME ST $<><><><><><><><>$ PP $<>$ EME MFS

## LOC

Location at which symbols are to be displayed:
0
Plot symbols at integration points (default).
1
Plot symbol at element centroids (averaged).
NUM
Crack to be displayed:
0
Plot all cracks (default).
1
Plot only the first crack.
2
Plot only the second crack.
3
Plot only the third crack.

## Notes

PLCRACK displays circles at locations of cracking or crushing in concrete elements. Cracking is shown with a circle outline in the plane of the crack, and crushing is shown with an octahedron outline. If the crack has opened and then closed, the circle outline will have an $X$ through it. Each integration point can crack in up to three different planes. The first crack at an integration point is shown with a red circle outline, the second crack with a green outline, and the third crack with a blue outline.

Symbols shown at the element centroid ( $L O C=1$ ) are based on the status of all of the element's integration points. If any integration point in the element has crushed, the crushed (octahedron) symbol is shown at the centroid. If any integration point has cracked or cracked and closed, the cracked symbol is shown at the element centroid. If at least five integration points have cracked and closed, the cracked and closed symbol is shown at the element centroid. Finally, if more than one integration point has cracked, the circle outline at the element centroid shows the average orientation of all cracked planes for that element.

Portions of this command are not supported by PowerGraphics [/GRAPHICS,POWER].

## Menu Paths

## Main Menu>General Postproc>Plot Results>ConcPlot>Crack/Crush

## PLDISP, KUND

## Displays the displaced structure.

POST1: Results
MP ME ST PR PRN DS DSS <> <> <> DY PP <> EME MFS

## KUND

Undisplaced shape key:
0
Display only displaced structure.
1
Overlay displaced display with similar undisplaced display (appearance is system-dependent).
2
Same as 1 except overlay with undisplaced edge display (appearance is system-dependent).

## Notes

Displays the displaced structure for the selected elements.
For information on true scale plots, refer to the description of the /DSCALE command [/DSCALE,,1.0].

## Menu Paths

Main Menu>General Postproc>Plot Results>Deformed Shape
Utility Menu>Plot>Results>Deformed Shape
Utility Menu>PlotCtrls>Animate>Deformed Shape

## PLESOL, Item, Comp, KUND, Fact

## Displays the solution results as discontinuous element contours.

POST1:Results
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Item

Label identifying the item. Valid item labels are shown in Table 240: PLESOL - Valid Item and Component Labels (p. 1269) below. Some items also require a component label.

## Comp

Component of the item (if required). Valid component labels are shown in Table 240: PLESOL - Valid Item and Component Labels (p. 1269) below.

KUND
Undisplaced shape key:
0
Do not overlay undeformed structure display
1
Overlay displaced contour plot with undeformed display (appearance is system-dependent)

## 2

Overlay displaced contour plot with undeformed edge display (appearance is system-dependent)

## Fact

Scale factor for 2-D display of contact items (defaults to 1). A negative scaling factor may be used to invert the display.

## Notes

Displays the solution results as element contours discontinuous across element boundaries for the selected elements. For example, PLESOL,S, $X$ displays the $X$ component of stress $S$ (that is, the $S X$ stress component). Various element results depend on the calculation method and the selected results location (AVPRIN, RSYS, and ESEL). Contours are determined by linear interpolation within each element, unaffected by the surrounding elements (i.e., no nodal averaging is performed). The discontinuity between contours of adjacent elements is an indication of the gradient across elements. Component results are displayed in the active results coordinate system [RSYS] (default is the global Cartesian). See the ETABLE and PLETAB commands for displaying items not available through this command (such as line element results).

For PowerGraphics displays [/GRAPHICS,POWER], results are plotted only for the model exterior surface. The items marked with [1 (p. 1273)] in Table 240: PLESOL - Valid Item and Component Labels (p. 1269) are not supported by PowerGraphics.

## Table 240 PLESOL - Valid Item and Component Labels <br> Item <br> Comp <br> Description

Valid item and component labels for element results are:
S


EPEL

| EPPL | $X, Y, Z, X Y, Y Z, X Z$ | Component plastic strain. |
| ---: | :--- | :--- |
| $"$ | $1,2,3$ | Principal plastic strain. |
| $"$ | $I N T$ | Plastic strain intensity. |
| $"$ | $E Q V$ | Plastic equivalent strain. |
| EPCR | $X, Y, Z, X Y, Y Z, X Z$ | Component creep strain. |
| $"$ | $1,2,3$ | Principal creep strain. |
| $"$ | $I N T$ | Creep strain intensity. |
| $"$ | $E Q V$ | Creep equivalent strain. |
| EPTH | $X, Y, Z, X Y, Y Z, X Z$ | Component thermal strain. |
| $"$ | $1,2,3$ | Principal thermal strain. |
| $"$ | $I N T$ | Thermal strain intensity. |
| $"$ | EQV | Thermal equivalent strain. |

Component stress. Principal stress.
Stress intensity.
Equivalent stress.
Component elastic strain.
Principal elastic strain.
Elastic strain intensity.
Elastic equivalent strain.
Component plastic strain.
Principal plastic strain.
Plastic strain intensity.
Plastic equivalent strain.
Component creep strain.
Principal creep strain.
Creep strain intensity.
Creep equivalent strain.
Component thermal strain.
Principal thermal strain.
Thermal strain intensity.
Thermal equivalent strain.

| Item | Comp | Description |
| :---: | :---: | :---: |
| EPSW |  | Swelling strain. |
| EPTO | $X, Y, Z, X Y, Y Z, X Z$ | Component total mechanical strain (EPEL + EPPL + EPCR). |
| " | 1,2,3 | Principal total mechanical strain. |
| " | INT | Total mechanical strain intensity. |
| " | EQV | Total mechanical equivalent strain. |
| EPTT | $X, Y, Z, X Y, Y Z, X Z$ | Total mechanical and thermal strain (EPEL + EPPL + EPCR + EPTH). |
| " | 1,2,3 | Principal total mechanical and thermal strain. |
| " | INT | Total mechanical and thermal strain intensity. |
| " | EQV | Total mechanical and thermal equivalent strain. |
| NL | SEPL | Equivalent stress (from stress-strain curve). |
| " | SRAT | Stress state ratio. |
| " | HPRES | Hydrostatic pressure. |
| " | EPEQ | Accumulated equivalent plastic strain. |
| " | CREQ | Accumulated equivalent creep strain. |
| " | PSV | Plastic state variable. |
| " | PLWK | Plastic work/volume. |
| SEND | ELASTIC | Elastic strain energy density. |
| " | PLASTIC | Plastic strain energy density. |
| " | CREEP | Creep strain energy density. |
| CDM | DMG | Damage variable |
| " | LM | Maximum previous strain energy for virgin material |
| FAIL | MAX | Maximum of all active failure criteria defined at the current location (See the FCTYP command for details.) [1][3] |
| " | EMAX | Maximum Strain Failure Criterion. [1][3] |
| " | SMAX | Maximum Stress Failure Criterion. [1][3] |
| " | TWSI | Tsai-Wu Strength Index Failure Criterion. [1][3] |
| " | TWSR | Inverse of Tsai-Wu Strength Ratio Index Failure Criterion. [1][3] |
| " | HFIB | Hashin Fiber Failure Criterion. [1][3][5] |
| " | HMAT | Hashin Matrix Failure Criterion. [1][3][5] |
| " | PFIB | Puck Fiber Failure Criterion. [1][3][5] |
| " | PMAT | Puck Matrix Failure Criterion. [1][3][5] |
| " | USR1, USR2, ..., USR9 | User-defined failure criteria. [1][3][4][5] |
| FCMX | LAY | Layer number where the maximum of all active failure criteria over the entire element occurs. [1][3] |
| " | FC | Number of the maximum-failure criterion over the entire element [1][3]: 1 - EMAX 2 - SMAX 3 - TWSI 4 - TWSR 5 HFIB6 - HMAT7 - PFIB8 - PMAT9~17 - USR1~USR9 |


| Item | Comp | Description |
| :---: | :---: | :---: |
| " | VAL | Value of the maximum failure criterion over the entire element. [1][3] |
| SVAR | 1, 2, 3, .. N | State variable. [1] |
| GKS | $X, X Y, X Z$ | Gasket component stress. |
| GKD | $X, X Y, X Z$ | Gasket component total closure. |
| GKDI | $X, X Y, X Z$ | Gasket component total inelastic closure. |
| GKTH | $X, X Y, X Z$ | Gasket component thermal closure. |
| SS | $X, X Y, X Z$ | Interface traction (stress) |
| SD | X, XY, XZ | Interface separation |
| CONT | STAT | Contact status[2]: |
|  |  | 3-closed and sticking <br> 2-closed and sliding <br> 1-open but near contact <br> 0 -open and not near contact |
| " | PENE | Contact penetration |
| " | PRES | Contact pressure |
| " | SFRIC | Contact friction stress |
| " | STOT | Contact total stress (pressure plus friction) |
| " | SLIDE | Contact sliding distance |
| " | GAP | Contact gap distance |
| " | FLUX | Total heat flux at contact surface |
| " | CNOS | Total number of contact status changes during substep. |
| " | FPRS | Fluid penetration pressure |
| TG | X, Y, Z, SUM | Component thermal gradient or vector sum. |
| TF | $X, Y, Z$, SUM | Component thermal flux or vector sum. |
| PG | $X, Y, Z, S U M$ | Component pressure gradient or vector sum. |
| EF | $X, Y, Z, S U M$ | Component electric field or vector sum. |
| D | $X, Y, Z, S U M$ | Component electric flux density or vector sum. |
| H | X, Y, Z, SUM | Component magnetic field intensity or vector sum. |
| B | $X, Y, Z, S U M$ | Component magnetic flux density or vector sum. |
| FMAG | $X, Y, Z, S U M$ | Component electromagnetic force or vector sum [1]. |
| P | $X, Y, Z, S U M$ | Pointing vector component or sum [1]. |
| SERR[6] |  | Structural error energy [1]. |
| SDSG[6] |  | Absolute value of the maximum variation of any nodal stress component [1]. |
| TERR[6] |  | Thermal error energy [1]. |
| TDSG[6] |  | Absolute value of the maximum variation of any nodal thermal gradient component [1]. |
| F | X, Y, Z | X, Y, or Z structural force [1][7]. |


| Item | Comp | Description |
| :---: | :---: | :---: |
| M | X, Y, Z | $\mathrm{X}, \mathrm{Y}$, or Z structural moment [1]. |
| HEAT |  | Heat flow [1]. |
| FLOW |  | Fluid flow [1]. |
| AMPS |  | Current flow [1]. Use FORCE for type. |
| CHRG |  | Charge [1]. Use FORCE for type. |
| FLUX |  | Magnetic flux [1]. |
| CSG | $X, Y, Z$ | $X, Y$ or Z magnetic current segment component [1]. |
| SENE |  | "Stiffness" energy or thermal heat dissipation. Same as TENE[1]. |
| STEN |  | Elemental energy dissipation due to stabilization [1]. |
| TENE |  | Thermal heat dissipation or "stiffness" energy. Same as SENE [1]. |
| KENE |  | Kinetic energy [1]. |
| JHEAT |  | Element Joule heat generation [1]. |
| JS | X, Y, Z, SUM | Source current density for low-frequency magnetic analyses. Total current density (sum of conduction and displacement current densities) in low frequency electric analyses. Components ( $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ ) and vector sum (SUM). [1]. |
| JT | X, Y, Z, SUM | Total measureable current density in low-frequency electromagnetic analyses. (Conduction current density in a lowfrequency electric analysis.) Components ( $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ ) and vector sum (SUM). [1]. |
| JC | X, Y, Z, SUM | Conduction current density for elements that support conduction current calculation. Components ( $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ ) and vector sum (SUM). [1]. |
| MRE |  | Magnetic Reynolds number [1]. |
| VOLU |  | Volume of volume element [1]. |
| CENT | X, Y, Z | Centroid $X, Y$, or $Z$ location (based on shape function) in the active coordinate system [1]. |
| BFE | TEMP | Body temperatures (calculated from applied temperatures) as used in solution (area and volume elements only). |
| SMISC | snum | Element summable miscellaneous data value at sequence number snum (shown in the Output Data section of each element description found in the Element Reference). |
| NMISC | snum | Element non-summable miscellaneous data value at sequence number snum (shown in the Output Data section of each element description found in the Element Reference). |
| TOPO |  | Densities used for topological optimization. |
| CAP | C0,XO,KO,ZONE, DPLS,VPLS | Material cap plasticity model only: Cohesion; hydrostatic compaction yielding stress; 11 at the transition point at which the shear and compaction envelopes intersect; zone $=0$ : elastic state, zone $=1$ : compaction zone, zone $=2$ : |


| Item | Comp | Description <br> shear zone, zone $=3$ : expansion zone; effective deviatoric <br> plastic strain; volume plastic strain. |
| ---: | :--- | :--- |
| EDPC | CSIG,CSTR | Material EDP creep model only (not including the cap <br> model): Equivalent creep stress; equivalent creep strain. |
| FICT | TEMP | Fictive temperature. |
| ESIG | X,Y,Z,XY,YZ,ZX | Components of Biot's effective stress. |
| $"$ | $1,2,3$ | Principal stresses of Biot's effective stress. |
| $"$ | INT | Stress intensity of Biot's effective stress. |
| $"$ | EQV | Equivalent stress of Biot's effective stress. |
| DPAR | TPOR | Total porosity (Gurson material model). |
| $"$ | GPOR | Porosity due to void growth. |
| $"$ | NPOR | Porosity due to void nucleation. |
| FFLX | $X, Y, Z$ | Fluid flow flux in poromechanics. |

1. Not supported by PowerGraphics
2. For MPC-based contact definitions, the value of STAT can be negative. This indicates that one or more contact constraints were intentionally removed to prevent overconstraint. STAT $=-3$ is used for MPC bonded contact; STAT $=-2$ is used for MPC no-separation contact.
3. Works only if failure criteria information is provided. (For more information, see the documentation for the FC and TB commands.)
4. Works only if user-defined failure criteria routine is provided.
5. Must be added via the FCTYP command first.
6. Some element- and material-type limitations apply. (For more information, see the documentation for the PRERR command.)
7. Do not use the PLESOL command to obtain contact forces for contact elements. The force values reported by this command may not be accurate for these elements. Instead, use the ETABLE command to obtain contact force values.

## Menu Paths

## Main Menu>General Postproc>Plot Results>Contour Plot>Element Solu Utility Menu>Plot>Results>Contour Plot>Elem Solution

## PLETAB, Itlab, Avglab

## Displays element table items.

POST1:Element Table
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Itlab

User-defined label, as specified with the ETABLE command, of item to be displayed.

## Avglab

Averaging operation:

## NOAV

Do not average element items at common nodes (default).

## AVG

Average the element items at common nodes.

## Notes

Displays items stored in the table defined with the ETABLE command for the selected elements. For display purposes, items are assumed to be constant over the element and assigned to each of its nodes. Contour display lines (lines of constant value) are determined by linear interpolation within each element from the nodal values. These nodal values have the option of being averaged (values are averaged at a node whenever two or more elements connect to the same node) or not averaged (discontinuous). The discontinuity between contour lines of adjacent elements is an indication of the gradient across elements.

Portions of this command are not supported by PowerGraphics [/GRAPHICS,POWER].

## Menu Paths

Main Menu>General Postproc>Element Table>Plot Elem Table
Main Menu>General Postproc>Plot Results>Contour Plot>Elem Table
Utility Menu>Plot>Results>Contour Plot>Elem Table Data

PLFAR, Lab, Opt, PHI1, PHI2, NPH1, THETA1, THETA2, NTHETA, VAL1, VAL2
Plots electric far fields and far field parameters.
POST1:Special Purpose
MP <> <> <> <> <> <> <> <> EH <> PP <> <> <>

## Lab

Plot Parameter:
EF
Electric Field
RCS
Radar cross section
RCSN
Normalized radar cross section
ANT
Antenna parameters
Opt
As shown below, data entered in the Opt field will vary, depending on the print parameter.

## Lab

As shown below, data entered in the Lab field will vary, depending on the print option (Opt).
Table 241 Valid Lab Data Labels

| Lab | Opt |
| :---: | :---: |
| EF | SUM — the maximum total rE-field (default) <br> X - the maximum rE-field in x -direction <br> Y - the maximum rE-field in y-direction <br> Z - the maximum rE-field in z-direction <br> PHI - the maximum re-field in $\Phi$-direction <br> THETA - the maximum rE-field in $\Theta$-direction <br> R - the maximum rE-field in $r$-direction <br> LHCP - the maximum left-hand circularly polarized component <br> RHCP - the maximum right-hand circularly polarized component <br> ARCP - the circular polarization axial ratio <br> LW3X - the maximum dominant component for an x-polarized aperture with Ludwig's third definition of cross definition <br> LW3Y - the maximum dominant component for an y-polarized aperture with Ludwig's third definition of cross definition <br> ARCP - the linear polarization axial ratio |
| RCS and RCSN | TOTAL — Radar echo area (default) <br> PP - $\Phi$ - $\Phi$ polarization <br> PT $-\Phi-\Theta$ polarization <br> TP - $\Theta$ - $\Phi$ polarization <br> TT $-\Theta-\Theta$ polarization <br> HH - H-H (horizontal - horizontal) polarization <br> HV - H-V (Horizontal - Vertical) polarization <br> VH - V-H (Vertical - Horizontal) polarization <br> VV — V-V (Vertical - Vertical) polarization |


| Lab | Opt |
| :---: | :---: |
|  | TE2D - 2-D TE incident plane wave <br> TM2D - 2-D TM incident plane wave |
| ANT | EPCT - radiation pattern (default) <br> EPPL - radiation pattern in polar coordinate system plot <br> UMAX - the maximum radiation intensity <br> DGCT - directivity in Cartesian coordinate system plot <br> DGPL - directivity in polar coordinate system plot <br> DGMX - peak directivity <br> PGCT - gain in Cartesian coordinate system plot <br> PGPL - gain in polar coordinate system plot <br> PGMX - peak gain <br> RGCT -realized gain in Cartesian coordinate system plot <br> RGPL -realized gain in polar coordinate system plot <br> RGMX - peak realized gain <br> EFF - efficiency <br> PRAD - radiated power |

The following PHI1, PHI2, NPHI, THETA1, THETA2, and NTHETA arguments are used only with Lab = EF, RCS, RCSN and ANT and Opt = EPCT, EPPL, DGCT, DGPL, PGCT, PGPL, RGCT and RGPL.

## PHI1, PHI2

Starting and ending $\phi$ angles (degrees) in the spherical coordinate system. Defaults to 0.

## NPHI

Number of divisions between the starting and ending $\phi$ angles for data computations. Defaults to 0.

## THETA1, THETA2

Starting and ending $\theta$ angles (degrees) in the spherical coordinate system. Defaults to 0.

## NTHETA

Number of divisions between the starting and ending $\theta$ angles for data computations. Defaults to 0.

## VAL1

Used only with Lab $=$ ANT and Opt $=$ PGCT, PGPL, PGMX, RGCT, RGPL, RGMX, EFF or Lab $=$ RCS or RCSN and Opt $=$ TE2D, TM2D. For Lab $=$ ANT and Opt $=$ PGCT, PGMX, RGCT, RGMX, EFF, VAL1 $=$ the incident power, Pinc, in watts. For Lab $=$ RCS or RCSN and Opt $=$ TE2D or TM2D, VAL1 $=$ thickness of the 3-D model in the $z$ direction, defaults to 1.

## VAL2

Used only with $L a b=A N T$ and $O p t=P G C T, P G P L, P G M X, E F F . V A L 2=$ the $|s 11|$ of the lossless port with a single propagation mode to calculate the power delivered to the radiating antenna structure, i.e.
$P_{\text {del }}=P_{\text {inc }}\left(1-\left|s_{11}\right|^{2}\right)$. Defaults to 0.

## Notes

PLFAR plots electric far fields and far field parameters as determined by the equivalent source principle. Use this command to plot electric far field, radar cross section, antenna parameters.

See Spherical Coordinates in Hi-Frequency Electromagnetic Analysis Guide.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

## This command cannot be accessed from a menu.

## PLFSS, Filename, Ext, Opt, Lab1, Lab2

## Plots reflection and transmission parameters of a frequency selective surface solution.

```
POST1:Special Purpose
MP <> <> <> <> <> <> <> <> EH <> PP <> <> <>
```


## Filename

Name of the results file generated by the SPFSS command.

## Ext

Filename extension (8 character maximum).
Opt
Format of plotted parameter:
MAG
Magnitude (default)
ANG
Angle
DB
Magnitude in dB units

## Lab1, Lab2

Labels for reflection and transmission parameters:

## REFL

Reflection coefficient.
TRAN
Transmission coefficient.
PREFL
Power reflection coefficient.

## PTRAN

Power transmission coefficient.
IL
Insertion loss (dB only).
RL
Return loss (dB only).

## Notes

Plots reflection and transmission parameters results of the SPFSS command.
If Lab2 is the same as Lab1 or blank, only one plot is generated.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

This command cannot be accessed from a menu.

## PLF2D, NCONT, OLAY, ANUM, WIN

## Generates a contour line plot of equipotentials.

> POST1:Magnetics Calculations
> MP <> <> <> <> <> <> <> EM <> <> PP <> EME <>

## NCONT

Number of contour lines to display. Issue in multiples of 9 (i.e., $9,18,27$, etc.). Default is 27 contour lines.

## OLAY

Overlay:
0
Overlay edge outlines by material number.
1
Overlay edge outlines by real constant number.

## ANUM

Highest material or real constant attribute number. Command will cycle through ANUM element display overlays. Defaults to 10.

## WIN

Window number to which command applies. Defaults to 1 .

## Notes

PLF2D invokes an ANSYS macro which plots equipotentials of the degree of freedom AZ. These equipotential lines are parallel to flux lines and thus give a good representation of flux patterns. In the axisymmetric case, the display is actually $r^{*} A Z$ where " $r$ " is the node radius. The macro overlays (OLAY) edge outlines by material number or real constant number (ANUM) and allows user control over the number of contour lines to display (NCONT).

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

## Main Menu>General Postproc>Plot Results>Contour Plot>2D Flux Lines Utility Menu>Plot>Results>Flux Lines

## PLLS, Labl, LabJ, Fact, KUND

## Displays element table items as contoured areas along elements.

POST1:Element Table
MP ME ST PR PRN <> <> <> <> <> DY PP <> EME MFS

## LabI

Label of element table item [ETABLE] for node I magnitude.

## LabJ

Label of element table item for node J magnitude.

## Fact

Scale factor for display (defaults to 1). A negative scaling factor may be used to invert the display.

## KUND

Undisplaced shape key:
0
Display selected items on undeformed shape.
1
Display selected items on deformed shape.

## Notes

Displays selected items (e.g., shears and moments) as a contoured area (trapezoid) display along line elements and 2-D axisymmetric shell elements (e.g., shear and moment diagrams). Three sides of the trapezoid are formed by the element (one side) and lines at nodes I and J of length proportional to the item magnitude and displayed normal to the element and the viewing direction (the two parallel sides).

Portions of this command are not supported by PowerGraphics [/GRAPHICS,POWER].

## Menu Paths

Main Menu>General Postproc>Plot Results>Contour Plot>Line Elem Res

PLNEAR, Lab, Opt, KCN, VAL1, VAL2, VAL3, VAL4, VAL5, VAL6, VAL7
Plots the electric field in the near zone exterior to the equivalent source surface.
POST1:Special Purpose
MP <> <> <> <> <> <> <> <> EH <> PP <> <> <>

## Lab

Print the maximum E-file:

## SPHERE

on the spherical structure

## PATH

along the path

## Opt

SUM - the maximum total E-field (default)
X - the maximum E-field in x -direction
Y - the maximum E-field in y -direction
Z - the maximum E-field in z-direction
PHI - the maximum E-field in $\Phi$-direction
THETA - the maximum E-field in $\Theta$-direction
R - the maximum E-field in r-direction
LHCP - the maximum left-hand circularly polarized component
RHCP - the maximum right-hand circularly polarized component
ARCP - the circular polarization axial ratio
LW3X - the maximum dominant component for an x-polarized aperture with Ludwig's third definition of cross definition
LW3Y - the maximum dominant component for an y-polarized aperture with Ludwig's third definition of cross definition
ARCP - the linear polarization axial ratio

## KCN

KCN is the coordinate system reference number. It may be 0 (Cartesian) or any previously defined local coordinate system number (>10). Defaults to 0 .

## VAL1, VAL2, VAL3, ..., VAL 7

For LAB = SPHERE:
VAL1
the radius of spherical surface in spherical coordinate system.
VAL2
starting $\phi$ angle (degree) in the spherical coordinate system. Defaults to 0 .
VAL3
ending $\phi$ angle (degree) in the spherical coordinate system. Defaults to 0 .
VAL4
Number of divisions between the starting and ending $\phi$ angles for data computations. Defaults to 0.

## VAL5

starting $\theta$ angle (degree) in the spherical coordinate system. Defaults to 0 .

VAL 6
ending $\theta$ angle (degree) in the spherical coordinate system. Defaults to 0 .
VAL 7
Number of divisions between the starting and ending $\theta$ angles for data computations. Defaults to 0.

For Lab = PATH, PLNEAR computes the electric field for the path data points for the path currently defined by the PATH and PPATH commands.

## Notes

PLNEAR uses the equivalent source principle to calculate the electric field in the near zone exterior to the equivalent source surface (flagged with the Maxwell surface flag in the preprocessor) for one of the following locations:

- A spherical surface in the KAN coordinate system
- A path defined by the PATH and PPATH commands

To plot the electromagnetic field results for a path, use the PLPAGM or PLPATH commands.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

## This command cannot be accessed from a menu.

## PLNSOL, Item, Comp, KUND, Fact, FilelD

## Displays results as continuous contours.

POST1: Results
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Item

Label identifying the item. Valid item labels are shown in Table 242: PLNSOL - Valid Item and Component Labels ( p . 1282) below. Some items also require a component label.

## Comp

Component of the item (if required). Valid component labels are shown in Table 242: PLNSOL - Valid Item and Component Labels (p. 1282) below.

## KUND

Undisplaced shape key:
0
Do not overlay undeformed structure display
1
Overlay displaced contour plot with undeformed display (appearance is system-dependent)
2
Overlay displaced contour plot with undeformed edge display (appearance is system-dependent)

## Fact

Scale factor for 2-D display for contact items. Default value is 1. A negative scaling factor may be used to invert the display.

## FileID

The file index number (obtained via the NLDIAG,NRRE,ON command). Valid only for $I t e m=$ NRRE.

## Notes

Displays the solution results as continuous contours across element boundaries for the selected nodes and elements. For example, PLNSOL, $S, X$ displays the $X$ component of stress $S$ (that is, the SX stress component). Various element results depend upon the recalculation method and the selected results location [AVPRIN, RSYS, LAYER, SHELL, and NSEL]. Contours are determined by linear interpolation within each element from the nodal values, which are averaged at a node whenever two or more elements connect to the same node (except for FMAG, which is summed at the node).

For PowerGraphics displays [/GRAPHICS,POWER], results are plotted only for the model exterior surface. The items marked with [2 (p. 1286)] are not supported by PowerGraphics. To plot midside nodes, you must first issue /EFACET,2.

## Table 242 PLNSOL - Valid Item and Component Labels

| Item | Comp | Description |
| :---: | :---: | :---: |
| Valid item and component labels for nodal degree of freedom results are: |  |  |
| U | X, Y, Z, SUM | $X, Y$, or Z structural displacement or vector sum |
| ROT | X, Y, Z, SUM | $X$, $Y$, or $Z$ structural rotation or vector sum |
| TEMP[1] |  | Temperature |
| PRES |  | Pressure |
| VOLT |  | Electric potential |
| MAG |  | Magnetic scalar potential |
| V | X, Y, Z, SUM | $X, Y$, or $Z$ fluid velocity or vector sum in a fluid analysis, or $X$, Y , or Z velocity or vector sum in an ANSYS LS-DYNA analysis. |
| A | X, Y, Z, SUM | $X, Y$, or $Z$ magnetic vector potential or vector sum in an electromagnetic analysis, or $X, Y$, or $Z$ acceleration or vector sum in an ANSYS LS-DYNA analysis. |
| VEL | X, Y, Z, SUM | $X, Y$, or $Z$ velocity or vector sum in a structural transient dynamic analysis (ANTYPE,TRANS). |
| ACC | X, Y, Z, SUM | $\mathrm{X}, \mathrm{Y}$, or Z acceleration or vector sum in a structural transient dynamic analysis (ANTYPE,TRANS). |
| OMG | X, Y, Z, SUM | $\mathrm{X}, \mathrm{Y}$, or Z rotational velocity or vector sum in a structural transient dynamic analysis (ANTYPE,TRANS). |
| DMG | X, Y, Z, SUM | $X, Y$, or $Z$ rotational acceleration or vector sum in a structural transient dynamic analysis (ANTYPE,TRANS). |
| ENKE |  | Turbulent kinetic energy (FLOTRAN) |
| ENDS |  | Turbulent energy dissipation (FLOTRAN) |


| Item | Comp | Description |
| :---: | :---: | :---: |
| SP0n |  | Mass fraction of species $n$, where $n=1$ to 6 (FLOTRAN). If a species is given a user-defined name [MSSPEC], use that name instead of $n$. |
| WARP |  | Warping |
| NRRE | FX, FY, FZ, FNRM, MX, MY, MZ, MNRM | Plot the Newton-Raphson residuals from the file you obtained via the NLDIAG,NRRE,ON command. The FNRM and MNRM labels are computed as the square root of the sum of the squares of the residual component forces or moments ( $F X, F Y, F Z, M X, M Y, M Z$ ). [5] <br> When KUND $=0$, use the absolute value of the residual from the files (default). |
| Valid item and component labels for element results are: |  |  |
| S | X, Y, Z, XY, YZ, XZ | Component stress |
| " | 1,2,3 | Principal stress |
| " | INT | Stress intensity |
| " | EQV | Equivalent stress |
| EPEL | X, Y, Z, XY, YZ, XZ | Component elastic strain |
| " | 1, 2, 3 | Principal elastic strain |
| " | INT | Elastic strain intensity |
| " | EQV | Elastic equivalent strain |
| EPTH | X, Y, Z, XY, YZ, XZ | Component thermal strain |
| " | 1,2,3 | Principal thermal strain |
| " | INT | Thermal strain intensity |
| " | EQV | Thermal equivalent strain |
| EPPL | X, Y, Z, XY, YZ, XZ | Component plastic strain |
| " | 1, 2, 3 | Principal plastic strain |
| " | INT | Plastic strain intensity |
| " | EQV | Plastic equivalent strain |
| EPCR | $X, Y, Z, X Y, Y Z, X Z$ | Component creep strain |
| " | 1,2,3 | Principal creep strain |
| " | INT | Creep strain intensity |
| " | EQV | Creep equivalent strain |
| EPSW |  | Swelling strain |
| EPTO | X, Y, Z, XY, YZ, XZ | Component total mechanical strain (EPEL + EPPL + EPCR) |
| " | 1,2,3 | Principal total mechanical strain |
| " | INT | Total mechanical strain intensity |
| " | EQV | Total mechanical equivalent strain |
| EPTT | X, Y, Z, XY, YZ, XZ | Component total mechanical and thermal strain (EPEL + $E P P L+E P C R+E P T H)$ |
| " | 1,2,3 | Principal total mechanical and thermal strain |


| Item | Comp | Description |
| :---: | :---: | :---: |
| " | INT | Total mechanical and thermal strain intensity |
| " | EQV | Total mechanical and thermal equivalent strain |
| ESIG | X,Y,Z,XY,YZ,ZX | Components of Biot's effective stress. |
| " | 1,2,3 | Principal stresses of Biot's effective stress. |
| " | INT | Stress intensity of Biot's effective stress. |
| " | EQV | Equivalent stress of Biot's effective stress. |
| DPAR | TPOR | Total porosity (Gurson material model). |
| " | GPOR | Porosity due to void growth. |
| " | NPOR | Porosity due to void nucleation. |
| NL | SEPL | Equivalent stress (from stress-strain curve) |
| " | SRAT | Stress state ratio |
| " | HPRES | Hydrostatic pressure |
| " | EPEQ | Accumulated equivalent plastic strain |
|  | CREQ | Accumulated equivalent creep strain |
| " | PSV | Plastic state variable |
| " | PLWK | Plastic work/volume |
| SEND | ELASTIC | Elastic strain energy density |
| " | PLASTIC | Plastic strain energy density |
| " | CREEP | Creep strain energy density |
| CDM | DMG | Damage variable |
| " | LM | Maximum previous strain energy for virgin material |
| FAIL | MAX | Maximum of all active failure criteria defined at the current location. (See the FCTYP command for details.) [2][6] |
| " | EMAX | Maximum Strain Failure Criterion [2][6] |
| " | SMAX | Maximum Stress Failure Criterion [2][6] |
| " | TWSI | Tsai-Wu Strength Index Failure Criterion [2][6] |
| " | TWSR | Inverse of Tsai-Wu Strength Ratio Index Failure Criterion [2][6] |
| " | HFIB | Hashin Fiber Failure Criterion. [2][6][8] |
| " | HMAT | Hashin Matrix Failure Criterion. [2][6][8] |
| " | PFIB | Puck Fiber Failure Criterion. [2][6][8] |
| " | PMAT | Puck Matrix Failure Criterion. [2][6][8] |
| " | USR1, USR2, ..., USR9 | User-defined failure criteria [2][6][7][8] |
| SVAR | 1, 2, 3, ... N | State variable [2] |
| GKS | X, XY, XZ | Gasket component stress |
| GKD | $X, X Y, X Z$ | Gasket component total closure |
| GKDI | $X, X Y, X Z$ | Gasket component total inelastic closure |
| GKTH | $X, X Y, X Z$ | Gasket component thermal closure |
| SS | X, XY, XZ | Interface traction (stress) |


| Item | Comp |  |
| :--- | :--- | :--- |
| SD | $X, X Y, X Z$ | Interface separation |
| FICT | TEMP | Fictive temperature |

For contact results PowerGraphics is applicable for 3-D models only.
CONT[3] STAT
TG $\quad X, Y, Z, S U M$
TF $\quad X, Y, Z$, SUM
PG $\quad X, Y, Z$, SUM
EF $\quad X, Y, Z, S U M$
D $\quad X, Y, Z$, SUM
H $\quad X, Y, Z$, SUM
B $\quad X, Y, Z, S U M$

FMAG $\quad X, Y, Z, S U M$
JC $\quad \mathrm{X}, \mathrm{Y}, \mathrm{Z}$, SUM

BFE TEMP

TOPO
Valid item labels for FLOTRAN nodal results are:

TTOT

HFLU
HFLM
COND
PCOE
PTOT
MACH

Contact status[4]:
3-closed and sticking 2-closed and sliding 1-open but near contact 0 -open and not near contact

Contact penetration
Contact pressure
Contact friction stress
Contact total stress (pressure plus friction)
Contact sliding distance
Contact gap distance
Total heat flux at contact surface
Total number of contact status changes during substep.
Fluid penetration pressure
Component thermal gradient or vector sum
Component thermal flux or vector sum
Component pressure gradient or vector sum
Component electric field or vector sum
Component electric flux density or vector sum
Component magnetic field intensity or vector sum
Component magnetic flux density or vector sum
Component electromagnetic force or vector sum [2].
Conduction current density for elements that support conduction current calculation. Components ( $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ ) and vector sum (SUM). [2].
Body temperatures (calculated from applied temperatures) as used in solution (area and volume elements only).
Densities used for topological optimization.

Total temperature
Heat flux
Heat transfer (film) coefficient
Fluid laminar conductivity
Pressure coefficient
Total (stagnation) pressure
Mach number

| Item | Comp |
| :--- | :--- |
| STRM | Stream function (2-D applications only) |
| DENS | Fluid density |
| VISC | Fluid laminar viscosity |
| SPHT | Specific heat [2] |
| EVIS | Fluid effective viscosity |
| CMUV | Turbulent viscosity coefficient |
| ECON | Fluid effective conductivity |
| YPLU | Y+, a turbulent law of the wall parameter |
| TAUW | Shear stress at the wall |
| SFTS | Surface tension coefficient |
| LMDn | Laminar mass diffusion coefficient for species $n$, where $n$ |
|  | $=1$ to 6 |
| EMD $n$ | Effective mass diffusion coefficient for species $n$, where $n$ |
|  | $=1$ to 6 |

1. For SHELL131 and SHELL132 elements with $\operatorname{KEYOPT}(3)=0$ or 1 , use the labels TBOT, TE2, TE3, $\ldots$, TTOP instead of TEMP to view the individual temperature degree of freedom. When other thermal elements are included in the model, they should be unselected to avoid plotting undefined information. To view all temperatures in the same plot, set /ESHAPE,1 and /GRAPHICS,POWER and issue PLNSOL,TEMP.
2. Not supported by PowerGraphics
3. For the CONT items for elements CONTA171 through CONTA177, the reported data is averaged across the element. To obtain a more meaningful STAT value, use the PLESOL command.
4. For MPC-based contact definitions, the value of STAT can be negative. This indicates that one or more contact constraints were intentionally removed to prevent overconstraint. STAT $=-3$ is used for MPC bonded contact; STAT $=-2$ is used for MPC no-separation contact.
5. When plotting Newton-Raphson residual items (Item = NRRE) from a file on the deformed geometry, the displacements are based on the current set of results in the database. These displacements may not correspond to the loadstep and substep in the .nrxxxxx file. (For more information about .nrxxxxx files and nonlinear diagnostics postprocessing, see the description of the NLDPOST command and Performing Nonlinear Diagnostics.)
6. Works only if failure criteria information is provided. (For more information, see the documentation for the FC and TB commands.)
7. Works only if user failure criteria routine is provided.
8. Must be added via the FCTYP command first.

## Menu Paths

Main Menu>Drop Test>Animate Results<br>Main Menu>General Postproc>Plot Results>Contour Plot>Nodal Solu<br>Utility Menu>Plot>Results>Contour Plot>Nodal Solution<br>Utility Menu $>$ PlotCtrls $>$ Animate $>$ Animate Over Results<br>Utility Menu>PlotCtrls>Animate>Animate Over Time

Utility Menu>PlotCtrls>Animate>Deformed Results
Utility Menu>PlotCtrls>Animate>Dynamic Results
Utility Menu>PlotCtrls $>$ Animate $>$ Isosurfaces
Utility Menu>PlotCtrls>Animate>Mode Shape
Utility Menu>PlotCtrls>Animate>Q-Slice Contours
Utility Menu>PlotCtrls>Animate>Time-harmonic

## /PLOPTS, Label, KEY

## Controls graphics options on subsequent displays.

GRAPHICS:Labeling
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Label

Apply display items as selected from the following labels:
INFO
Controls the display of the legend (ON or OFF) and allows the choice of preset or Multi-legend placement. Control is provided by the $K E Y$ values. (Defaults to $K E Y=3$ when the GUI is on. Defaults to $K E Y=2$ otherwise.)

## LEG1

Header portion of legend column (defaults to ON).
LEG2
View portion of legend column (defaults to ON (except off with contour displays)).

## LEG3

View the contour section of the legend column (defaults to ON).

## FRAME

Frame border lines around windows (defaults to ON).

## TITLE

Title (bottom left text) (defaults to ON).

## MINM

Min-Max symbols on contour displays (defaults to ON).

## LOGO

ANSYS logo (defaults to OFF (displayed as text at top of legend column)). If $K E Y=\mathrm{ON}$, the text is removed from legend column but the logo symbol is displayed in whichever active window is either in the uppermost right corner and on top, or if there is no window in that location, then in the window to the furthest right of the screen. Version information remains in the legend column.

## WINS

Controls whether graphics windows automatically stretch or shrink to adjust to screen size as the legend column is turned off or on [/PLOPTS,INFO] (defaults to ON). If WINS is on and the legend column is changed from off to on, all windows are shrunk regardless of what their correct size is.

WP
Working plane (defaults to OFF). The working plane is drawn as part of the display (not just an overlaid image as in WPSTYL). This option is best used in combination with a hidden-line technique [/TYPE].

## DATE

Controls the display of the date and time in your legend. Subsequent $K E Y$ values control the display as follows:

Off or 0 - No date or time displays are included in your legend.
1 - Only the date is shown.
2 (default) - both the date and time are shown.

## FILE

Controls the display of the ANSYS jobname in your legend. Subsequent $K E Y$ values control the display as follows:

Off or 0 (default) - The ANSYS jobname is NOT included in your legend.
On or 1 - The ANSYS jobname is included in your legend.
KEY
Switch:

## OFF or 0

Do not apply this display item. For Label = DATE, no time or date are displayed.

## ON or 1

Apply this display item. For Label = DATE, show only the date.

## AUTO or 2

For Label = INFO, initiate Auto-legend mode. If the display has contours, the legend is ON; if the display has no contours, the legend is OFF. For Label = DATE, display both the date and time.

3
For Label = INFO , switch to Multi-legend mode. See the /UDOC command for the available legend configurations.

## Command Default

See individual label defaults.
The Multi-legend mode (/PLOPTS,INFO,3) is the default for contour legend displays.

## Notes

Use /PLOPTS,STAT to display settings. Use /PLOPTS,DEFA to reset all specifications back to their defaults.
When you perform multiple results displays, contours on the legend column may be truncated. To avoid this, specify /PLOPTS,LEG1,0.

The Multi-legend mode provides a number of legend data item priority and placement options. These options are accessed via the GUI at Utility Menu> PlotCtrls> Window Controls> Window Options. The IUDOC command provides command line options for this capability.

This command is valid in any processor.
This command is not available for Academic Research or Teaching level products

## Menu Paths

## Utility Menu>PlotCtrls>Window Controls>Reset Window Options

## Utility Menu>PlotCtrls>Window Controls>Window Options

## PLORB

## Displays the orbital motion of a rotating structure

POST1:Results<br>MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

## Notes

When a structure is rotating and the Coriolis or gyroscopic effect is taken into account (CORIOLIS), nodes lying on the rotation axis generally exhibit an elliptical orbital motion. The PLORB command displays the orbit of each rotating node as well as the deformed shape at time $t=0$ (the real part of the solution).

To print the characteristics of the orbital path traversed by each node, issue the PRORB command.
The PLORB command is valid for line elements (such as BEAM188, BEAM189, PIPE288, and PIPE289).
Your model must also involve a rotational velocity (OMEGA or CMOMEGA) with Coriolis enabled in a stationary reference frame (CORIOLIS,,,,RefFrame = ON).

A SET command should be issued after PLORB to ensure proper output for subsequent postprocessing commands.

The coordinate system for displaying nodal results must be global Cartesian ( $\mathbf{R S Y S}, K C N=0$ ).

## Menu Paths

## Main Menu>General Postproc>Rotor Dynamics>Plot orbit

## PLOT, NSTRT, NEND, NINC

## Forms a display.

DISPLAY:Action
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NSTRT, NEND, NINC

Display plots sequentially from number NSTRT to NEND in steps of NINC. NSTRT defaults to the next plot. NEND defaults to NSTRT. NINC defaults to 1. If NSTRT = ALL, display all plots from the beginning of the file. If $N E N D=A L L$, display to the end of the file.

## Notes

Output will be to the terminal or to a file, depending on the driver [/SHOWDISP]. The INTERLEAF and DUMP drivers produce an output file for each plot named INTLnn and DUMPnn, with nn sequentially ranging from 00 to 99. A blank line after the PLOT command causes the next plot to be formed.

## Menu Paths

It is part of the DISPLAY command.

## PLOTTING

## Specifies "Plotting settings" as the subsequent status topic.

POST26:Status
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Notes

This is a status [STAT] topic command. Status topic commands are generated by the GUI and will appear in the log file (Jobname. LOG) if status is requested for some items under Utility Menu> List> Status. This command will be immediately followed by a STAT command, which will report the status for the specified topic.

If entered directly into the program, the STAT command should immediately follow this command.

## Menu Paths

Utility Menu>List>Status>TimeHist Postproc>Plot

PLPAGM, Item, Gscale, Nopt
Displays path items along the path geometry.
POST1:Path Operations
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Item

The path data item to be displayed on the currently active path (defined by the PATH command). Valid path items are those defined with the PDEF or PLNEAR commands.

## Gscale

Scale factor for the offset from the path for the path data item displays. Defaults to 1.0.

## Nopt

Determines how data is displayed:
(blank)
Do not display nodes, and scale the display based on the currently selected node set (default).
NODE
Display path item data along with the currently selected set of nodes. The display geometry is scaled to the selected node set.

## Notes

You can use the Gscale argument to scale the contour display offset from the path for clarity. You need to type all six characters to issue this command.

## Menu Paths

Main Menu>General Postproc>Path Operations>Plot Path Item>On Geometry Main Menu>General Postproc>Plot Results>Plot Path Item>On Geometry

## PLPATH, Lab1, Lab2, Lab3, Lab4, Lab5, Lab6

## Displays path items on a graph.

POST1:Path Operations
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Lab1, Lab2, Lab3, . . . , Lab6

Labels identifying the path items to be displayed. Up to six items may be drawn per frame. Predefined path geometry items XG, YG, ZG, and S [PDEF] may also be displayed.

## Notes

The path must have been defined by the PATH and PPATH commands. Path items and their labels must have been defined with the PDEF, PVECT, PCALC, PDOT, PCROSS, or PLNEAR commands. Path items may also be printed with the PRPATH command. Graph scaling may be controlled with the /XRANGE, /YRANGE, and PRANGE commands. You need to type all six characters to issue this command.

## Menu Paths

## Main Menu>General Postproc>Path Operations>Plot Path Item>On Graph

 Main Menu>General Postproc>Plot Results>Plot Path Item>On Graph Utility Menu>Plot>Results>Path Plot
## PLSCH, Fname, Ext, Lab, Port

## Converts and plots scattering, admittance, or impedance parameters on a Smith chart.

> POST1:Special Purpose
> MP <> <> <> <> <> <> <> <> EH <> PP <> <> <>

## Fname

File name and directory path of a Touchstone file ( 248 characters maximum, including the characters needed for the directory path). A Touchstone file may be created in ANSYS by performing a frequency sweep using the SPSWP command macro, or may it be supplied from another source. An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

Ext
Filename extension (8 character maximum).
Lab
Output parameter:
S
Scattering parameter (default)

## Y

Admittance parameter
Z
Impedance parameter
Port
Port number. Defaults to 1 .

## Notes

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.
Menu Paths
Main Menu>General Postproc>Plot Results>Smith Chart

## PLSECT, Item, Comp, RHO, KBR

## Displays membrane and membrane-plus-bending linearized stresses.

POST1:Path Operations
MP ME ST PR PRN DS DSS <> <> <> DY PP <> EME MFS

## Item

Label identifying the item to be processed. Valid item labels are shown in Table 243: PLSECT - Valid Item and Component Labels (p.1293) below. Items also require a component label.

## Comp

Component of the item. Valid component labels are shown in Table 243: PLSECT - Valid Item and Component Labels (p. 1293) below.

## RHO

In-plane ( $\mathrm{X}-\mathrm{Y}$ ) average radius of curvature of the inside and outside surfaces of an axisymmetric section. If zero (or blank), a plane or 3-D structure is assumed. If nonzero, an axisymmetric structure is assumed. Use a very large number (or -1 ) for an axisymmetric straight section.

KBR
Through-thickness bending stresses key for an axisymmetric analysis ( $\mathrm{RHO} \neq 0$ ):
0
Include the thickness-direction bending stresses.
1
Ignore the thickness-direction bending stresses.
2
Include the thickness-direction bending stress using the same formula as the $Y$ (axial direction ) bending stress. Also use the same formula for the shear stress.

## Notes

Calculates and displays the membrane and membrane-plus-bending linearized stresses (as described for the PRSECT command) along a path section [PATH] as a graph. The path section is defined by two points specified with the PPATH command. For linearized stress calculations, the path must be defined with nodes. The path
must be entirely within the selected elements (that is, there must not be any element gaps along the path). The total stress (equivalent to the PLPATH display) is also displayed. This command always uses 48 divisions along the path, regardless of the number of divisions defined by PATH.

Portions of this command are not supported by PowerGraphics [/GRAPHICS,POWER].
Table 243 PLSECT - Valid Item and Component Labels
Item Comp Description

Valid item and component labels for element results are:
S $X, Y, Z, X Y, Y Z, X Z \quad$ Component stress.
" $1,2,3 \quad$ Principal stress.
" INT, EQV Stress intensity or equivalent stress.

## Menu Paths

Main Menu>General Postproc>Path Operations>Linearized Strs Main Menu>General Postproc>Plot Results>Plot Path Item>Lineariz Strs

## PLSYZ, Fname, Ext, Lab, Opt, VAL_I1, VAL_J1, VAL_I2, VAL_J2, VAL_I3, VAL_J3, VAL_I4, VAL_J4

## Converts and plots network parameters versus frequency or plots losses versus frequency.

> POST1:Special Purpose
> MP <> <> <> <> <> <> <> <> EH <> PP <> <> <>

## Fname

File name and directory path of a Touchstone file ( 248 characters maximum, including the characters needed for the directory path). A Touchstone file may be created in ANSYS by performing a frequency sweep using the SPSWP command macro, or may it be supplied from another source. An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name. Fname is only used for network parameters ( $L a b=S, Y$, or Z ).

## Ext

Extension of Touchstone file (.snp where n is the number of ports). Ext is only used for network parameters ( $L a b=S, Y$, or $Z$ ).

## Lab

S
Scattering parameter (default)
Y
Admittance parameter
Z
Impedance parameter

## REFL

Reflection loss
INSL
Insertion loss

ISOL
Isolation loss
VSWR
Voltage standing wave ratio
Opt
For $L a b=S, Y$, or Z, format of Touchstone file:
MAG
Magnitude (default)
ANG
Angle
DB
Magnitude in dB units. Only available for scattering parameters ( $\operatorname{Lab}=\mathrm{S}$ ).
REAL
Real part of the parameter
IMAG
Imaginary part of the parameter
For $L a b=$ REFL, INSL, or ISOL, DB (magnitude in dB units) is the only available option. For $L a b=V S W R$, MAG (mangitude) is the only available option.

## VAL_I1

For $L a b=S, Y$, or $Z$, index I of first parameter plotted. For example, SIJ. Defaults to 1 .
For $L a b=$ REFL, INSL, ISOL, or VSWR, output port number.

## VAL_J1

For $L a b=S, Y$, or $Z$, index J of first parameter plotted. For example, SIJ. Defaults to 1 .
For $L a b=$ REFL, INSL, ISOL, or VSWR, input port number.
VAL_I2, VAL_J2, VAL_I3, VAL_J3, VAL_I4, VAL_J4
For $L a b=S, Y$, or $Z$, index I and J of second, third, and fourth parameters plotted. For example, SIJ. No default.

For $L a b=$ REFL, INSL, ISOL, or VSWR, VAL_I2 through VAL_J4 are not used.

## Notes

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.
Menu Paths
Main Menu>General Postproc>Plot Results>S,Y,Z Parameters

PLTD, Fname, Ext, Lab, Opt, Vkey, NFFT, TSTART, TRISE, PORTI1, PORTJ1, PORTI2, PORTJ2, PORTI3, PORTJ3, PORTI4, PORTJ4

## Displays TDR/TDT waveforms, an impedance profile, or a total waveform.

> POST1: Special Purpose
> $\mathrm{MP}<><><><><><><><>\mathrm{EH}<>\mathrm{PP}<><><>$

## Fname

A Touchstone file containing the S -parameters of a n-port system.

## Ext

Extension of the n-port Touchstone file.

## Lab

Display type:

## SPAR

Display TDR and TDT waveforms.
IMPD
Display impedance profile.
TDWF
Display total waveform.

## Opt

Excitation source:

## STEP

Step-like source (default).

## IMPU

Gaussian impulse.

## Vkey

Control key:
Off
No display of the source waveform (default).

## On

Display the source waveform.

## NFF'T

Number of interpolation points for Fast Fourier Transformation. It must be an integer power of 2. NFTT must be greater than or equal to 256 and less than or equal to 4096 . Defaults to 512.

TSTART
Source beginning time in seconds. Defaults to 0 .

## TRISE

Source rise time. For a step-like source, it is the time from $10 \%$ of the rise to $90 \%$ of the rise. For a Gaussian impulse, it is the time from $50 \%$ of the rise to $50 \%$ of the rise. The rise time must be greater than or equal to 5 time steps. If the TRISE input is less than 5 time steps, it is changed to 5 time steps. Defaults to 5 time steps.

## PORTII

Driven port number. Defaults to 1 .

## PORTJ1

Output port number. Defaults to 1.

## PORTI2

Driven port number. No default.

## PORTJ2

Output port number. No default.

## PORTI3

Driven port number. No default.
PORTJ3
Output port number. No default.

## PORTI4

Driven port number. No default.
PORTJ4
Output port number. No default.

## Notes

The time step is given by $\mathrm{dt}=1 /(2 \mathrm{fmax})$ where fmax is the maximum frequency.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

This command cannot be accessed from a menu.

PLTIME, TMIN, TMAX
Defines the time range for which data are to be displayed.
POST2 6: Display
MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS

## TMIN

Minimum time (defaults to the first point stored).

## TMAX

Maximum time (defaults to the last point stored).

## Command Default

Use the previously defined range [TIMERANGE].

## Notes

Defines the time (or frequency) range (within the range stored) for which data are to be displayed. Time is always displayed in the Z-axis direction for 3-D graph displays. If XVAR = 1, time is also displayed in the Xaxis direction and this control also sets the abscissa scale range.

## Menu Paths

Main Menu>TimeHist Postpro>Settings>Graph

## PLTLINE, Filename, Ext, Lab, Modenum

## Plots port transmission line data generated by the HFPCSWP or SPSWP macros.

POST1:Special Purpose
MP <> <> <> <> <> <> <> <> EH <> PP <> <> <>

## Filename

A file name containing the transmission line results.
Ext
Filename extension (8 character maximum).
Lab
Data type:

## BETA

Propagating constant.
ZC
Characteristic impedance.

## EREFF

Effective dielectric constant.

## Modenam

ALL
Plot data for all modes (default).
N
Plot data for the Nth mode.

## Notes

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

This command cannot be accessed from a menu.

## PLTRAC, Analopt, Item, Comp, TRPNum, Name, MXLOOP, TOLER, OPTION, ESCL, MSCL

Displays a particle flow or charged particle trace on an element display.
POST1:Trace Points
MP <> <> <> <> <> <> FLEM <> <> PP <> <> <>

[^2]
## FLUID

Particle trace in fluid flow (default)

## ELEC

Particle trace in electric field

## MAGN

Particle trace in magnetic field

## EMAG

Particle trace in presence of both electric and magnetic fields

## Item

Label identifying the item to be contoured. Valid item labels are shown in Table 244: PLTRAC - Valid Item and Component Labels (p. 1299) below. Some items also require a component label. If Item is blank, display only the path trajectory.

## Comp

Component of the item (if required). Valid component labels are shown in Table 244: PLTRAC - Valid Item and Component Labels (p. 1299) below.

## TRPNum

Trace point number for storing trajectory data for use with PATH logic. Defaults to 0 (no trajectory path data is stored for further processing with PATH logic).

## Name

Name of prefix of array variable. Defaults to TRAC. NamePOIN stores trajectory path points for trace point number TRPNum. If Analopt = ELEC, MAGN, or EMAG, two additional array parameters, NameDATA and NameLABL, store trajectory path data and labels for the same TRPNum.

## MXLOOP

Maximum number of loops traced by a particle. Defaults to 25 for Opt = FLUID; otherwise, defaults to 1000.

## TOLER

Length tolerance used for particle trajectory geometry calculation. Valid only for Analopt = ELEC, MAGN, or EMAG. If particle trace appears to terminate inside an element, adjusting the length tolerance may be necessary. Defaults to $1.0 \times 10^{-8}$.

## OPTION

Flow trace option:
0
Use the undeformed mesh for computing the flow trace.
1
Use the deformed mesh for computing the flow trace.
ESCL
Electric field scale factor. Setting this scale factor affects only the tracing, not the field solution results. A negative factor corresponds to the opposite vector direction. Valid only for Analopt = ELEC or EMAG. Defaults to 1 .

MSCL
Magnetic field scale factor. Setting this scale factor affects only the tracing, not the field solution results. A negative factor corresponds to the opposite vector direction. Valid only for Analopt $=$ MAGN or EMAG. Defaults to 1.

## Notes

For a specified item, the variation of the item is displayed along the particle trace as a color-contoured ribbon. The TRPOIN command must be used to define a point on the trajectory path. Multiple traces may be displayed simultaneously by defining multiple trace points. Issue the TRPLIS command to list the current tracing points. Issue the TRPDEL command to delete tracing points defined earlier. Use the PAPUT command with the POIN option to retrieve the particle trajectory points as path points.

The model must be 3-D for the ELEC, MAGN, and EMAG analysis options.
Three array parameters are created at the time of the particle trace: TRACPOIN, TRACDATA and TRACLABL. These array parameters can be used to put the particle velocity and the elapsed time into path form. The procedure to put the arrays into a path named PATHNAME is as follows:

```
*get, npts,PARM, TRACPOIN,DIM, x
PATH, PATHNAME, npts, 9,1
PAPUT,TRACPOIN, POINTS
PAPUT,TRACDATA, TABLES
PAPUT, TRACLABL, LABELS
PRPATH,S,T_TRACE,VX_TRACE,VY_TRACE,VZ_TRACE,VS_TRACE
```

Not used if Analopt = FLUID. If working in the GUI, use the "All information" option to retrieve information from all three arrays at once.

If OPTION is set to 1 , the deformed mesh is based on the displacement degrees of freedom UX, UY, and UZ, which must be available in the load step.

## Table 244 PLTRAC - Valid Item and Component Labels

## Item Comp Description

Valid item and component labels for nodal degree of freedom results are:

TEMP
PRES
V
ENKE
ENDS
X, Y, Z, SUM
Temperature.
Pressure.
$\mathrm{X}, \mathrm{Y}$, or Z fluid velocity or vector sum.
Turbulent kinetic energy.
Turbulent energy dissipation.
Valid item and component labels for FLOTRAN nodal results are:
TTOT
COND
PCOE
РTOT
MACH
STRM
DENS
VISC
SPHT
EVIS
CMUV

Total temperature.
Fluid laminar conductivity.
Pressure coefficient.
Total (stagnation) pressure.
Mach number.
Stream function. (2-D applications only.)
Fluid density.
Fluid laminar viscosity.
Specific heat.
Fluid effective viscosity.
Turbulent viscosity coefficient.
Item Comp Description

| ECON | Fluid effective conductivity. |
| :---: | :---: |
|  | Valid item labels for Analopt $=$ ELEC nodal results are: |
| VOLT | Electric potential. |
|  | Valid item labels for Analopt $=$ MAGN or EMAG nodal results are: |

None
Color contour displayed.
See the Basic Analysis Guide for more information on particle flow and charged particle traces. See Animation in the Basic Analysis Guide for information on particle trace animation.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu>General Postproc>Plot Results>Particle Trace<br>Main Menu>General Postproc>Plot Results>Plot Flow Tra<br>Utility Menu>Plot>Results>Flow Trace<br>Utility Menu>PlotCtrls>Animate>Particle Flow

PLVAR, NVAR1, NVAR2, NVAR3, NVAR4, NVAR5, NVAR6, NVAR7, NVAR8, NVAR9, NVAR10

## Displays up to ten variables in the form of a graph.

POST26:Display
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
NVAR1, NVAR2, NVAR3, . . . , NVAR1 0
Variables to be displayed, defined either by the reference number or a unique thirty-two character name. If duplicate names are used the command will plot the data for the lowest-numbered variable with that name.

## Notes

Variables are displayed vs. variable $N$ on the XVAR command. The string value will be a predefined, unique name. For complex variables, the amplitude is displayed by default [PLCPLX]. Each PLVAR command produces a new frame. See the /GRTYP command for displaying multiple variables in a single frame with separate Y axes.

## Menu Paths

Main Menu>TimeHist Postpro>Graph Variables

## PLVAROPT, Lab1, Lab2, Lab3, Lab4, Lab5, Lab6, Lab7, Lab8, Lab9, Lab10

## Displays up to ten parameters in the form of a graph.

OPTIMIZATION: Display<br>MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Lab1, Lab2, Lab3, . . . , Lab10

Names of the parameters to be displayed on this frame.

## Command Default

No display.

## Notes

Displays up to ten parameters in the form of a graph. Parameters are displayed vs. Lab on the XVAROPT command (defaults to set number) in the order corresponding to an ascending order of the XVAROPT parameter. See the /GRTYP command for displaying multiple parameters in a single frame with separate $Y$ axes. Each PLVAROPT command produces a new frame.

## Menu Paths

## Main Menu>Design Opt>Design Sets>Graphs/Tables

## PLVECT, Item, Lab2, Lab3, LabP, Mode, Loc, Edge, KUND

## Displays results as vectors.

> POST1: Results
> POST1: Element Table
> MP ME ST PR PRN <><> FL EM EH DY PP <> EME MFS

## Item

Predefined vector item (from Table 245: PLVECT - Valid Item Labels (p. 1303) below) or a label identifying the i-component of a user-defined vector.

## Lab2

Label identifying the j-component of a user-defined vector. In most cases, this value must be blank if Item is selected from Table 245: PLVECT - Valid Item Labels (p. 1303). Individual principal stresses (Item = S) or principal strains ( Item $=E P_{x x}$ ) may be plotted by specifying the value as 1,2 , or 3 .

## Lab3

Label identifying the $k$-component of a user-defined vector. Must be blank if Item is selected from list below or for 2-D user defined vector.

## LabP

Label assigned to resultant vector for display labeling (defaults to Item).

## Mode

Vector or raster mode override key:
(blank)
Use the setting of $K E Y$ on the /DEVICE command.

## RAST

Use raster mode for PLVECT displays.

## VECT

Use vector mode for PLVECT displays.

## Loc

Vector location for display of field element results:

## ELEM

Display at element centroid (default).

## NODE

Display at element nodes.
Nodal results quantities will only be displayed at nodes, not at element centroids.

## Edge

Edge display override key:

## (blank)

Use the setting of Key on the /EDGE command.

## OFF

Deactivate the edge display.

## ON

Activate the edge display.

## KUND

Undisplaced shape key:
0
Display vectors on undeformed mesh or geometry.
1
Display vectors on deformed mesh or geometry.

## Notes

Displays various solution results as vectors (arrows) for the selected nodes and/or elements (elements must contain at least three nodes that are not colinear). For example, PLVECT, U displays the displacement vector for all selected nodes. For section displays [/TYPE], the vectors are shown only on the section face (i.e., cutting plane). The PLVECT display of principal strains and stresses ( $I t e m=S$, EPTO, EPEL, EPPL, EPCR, or EPTH) on a "cut" of the model (/TYPE,, $1,5,7,8$, or 9 ) is not supported. The resulting plot displays the vectors on all selected elements, not on just the sliced surface. See the /VSCALE command to scale vector lengths. Vector magnitudes may be shown as a contour display with the PLNSOL command. Various results also depend upon the recalculation method and the selected results location [LAYER, SHELL, and NSEL].

Items may be selected from a set of recognized vector labels (Item) or a vector may be defined from up to three scalar labels (Item, Lab2,Lab3). Scalar labels may be user-defined with the ETABLE command. The vectors appear on an element display as arrows showing the relative magnitude of the vector and its direction. The predefined items will be shown either at the node or at the element centroid, depending on what item is being displayed and depending on the Loc setting. User defined ETABLE items will be shown at the element centroid, regardless of the Loc setting. Stress vectors appear as arrows at the element centroid, with the arrowheads pointing away from each other for tension and toward each other for compression.

For PowerGraphics, vector arrow displays are generated in Global Cartesian ( $\mathbf{R S Y S}=0$ ). All subsequent displays will revert to your original coordinate system.

When vector mode is active (Mode = VECT), use the Z-buffered display type [/TYPE, 6 ] to maximize speed of PLVECT plots (other hidden display types may make plotting slow). For PowerGraphics [/GRAPHICS,POWER], the items marked with [1 ( p .1304 )] are not supported by PowerGraphics.

It is possible to plot principal stresses ( Item $=\mathrm{S}$ ) or principal strains ( Item $=\mathrm{EP} x x$ ) individually. To do so, specify a Lab2 value of 1,2 , or 3 . For example, the following are valid commands:

```
PLVECT,S,1,,,VECT,ELEM,ON,0
PLVECT,EPEL,3,,,VECT,NODE,ON,0
```


## Table 245 PLVECT - Valid Item Labels

## Item Description

## Valid item labels for nodal degree of freedom vector results are:

U
ROT Structural rotation vector.

FFLX Fluid flux in poromechanics.
Valid item labels for structural element results are:
S Principal stresses[1].
EPTO Principal total strain (EPEL + EPPL + EPCR)[1].
EPEL Principal elastic strains[1].
EPPL Principal plastic strains[1].
EPCR Principal creep strains[1].
EPTH Principal thermal strains[1].

## Valid item labels for field element results are:

TG Thermal gradient vector.
TF Thermal flux vector.
PG Pressure gradient vector.
EF Electric field vector.
D Electric flux density vector.
H Magnetic field intensity vector. If Lab2 is blank, then Item is interpreted as one of the predefined labels. Otherwise, Item is interpreted as a user-defined ET label and ANSYS will request a nonblank Lab2/Lab3 according to the dimension of the problem.
B Magnetic flux density vector.
FMAG Electromagnetic force vector.
P Poynting vector.
JS Source current density vector for low-frequency magnetic analyses. Total current density vector (sum of conduction

| Item | Description |
| :--- | :--- |
| and displacement current densities) in low frequency |  |
| electric analyses. |  |

1. Not supported by PowerGraphics

## Menu Paths

Main Menu>General Postproc>Plot Results $>$ Vector Plot>Predefined
Main Menu>General Postproc>Plot Results $>$ Vector Plot>User-defined
Utility Menu>Plot>Results>Vector Plot
Utility Menu>PlotCtrls>Animate>Q-Slice Vectors

PLVFRC, CONT
Displays volume fractions in a volume of fluid (VOF) analysis.
PREP7:FLOTRAN Miscellaneous
MP <> <> <> <> <> <> FL <> <> <> PP <> <> <>
CONT
Contour setting:
0
Smooth plot with contour levels at 0.5 and 1.0 (default).
1
Smooth plot with current settings of contour levels.

## Notes

The PLVFRC command macro places the volume fraction results into an element table and then plots the element table data (i.e., ETABLE,VFRC,NMISC, 1 and then PLETAB,VFRC, 1 ). If $\operatorname{CONT}=0$ (default), the command macro issues the /CVAL,ALL, $0.5,1.0$ command before the ETABLE command. This means PLETAB uses contour levels of 0.5 and 1.0 to indicate the free surface and fluid regions. If $C O N T=1$, PLETAB uses the current contour settings.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu>Drop Test>Animate Results<br>Main Menu>General Postproc>Plot Results>Contour Plot>Volume Fraction<br>Utility Menu>PlotCtrls>Animate>Animate Over Results<br>Utility Menu>PlotCtrls>Animate>Animate Over Time<br>Utility Menu>PlotCtrls>Animate>Time-harmonic

## Utility Menu>PlotCtrls>Multi-Plot Contrls

## PLWAVE, Ex, Ey, Ez, AngX, AngZ

## Specifies a free-space time-harmonic incident plane electromagnetic wave.

SOLUTION: Misc Loads
MP <> <> <> <> <> <> <> <> <> <> PP <> <> <>
Ex
Electric field amplitude in x direction.
Ey
Electric field amplitude in y direction.
Ez
Electric field amplitude in z direction.
AngX
Angle between incident wave vector and X -axis (Phi).

## AngZ

Angle between incident wave vector and Z -axis (Theta).

## Notes

Defines an incident plane wave for the entire solution domain. See Spherical Coordinates in the High-Frequency Electromagnetic Analysis Guide.

This command cannot be used for the analysis of periodic structures (see the HFPORT command).

## Menu Paths

> Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Excitation>Planewav0>Define Wave
> Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Excitation>Planewav0>Wave Status Main Menu>Solution>Define Loads>Apply>Electric>Excitation>Planewav0>Define Wave Main Menu>Solution>Define Loads>Apply>Electric>Excitation>Planewav0>Wave Status

## /PMACRO

Specifies that macro contents be written to the session log file.

> APDL: Macro Files
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Notes

This command forces the contents of a macro or other input file to be written to Jobname. LOG. It is valid only within a macro or input file, and should be placed at the top of the file. /PMACRO should be included in any macro or input file that calls GUI functions.

## Menu Paths

This command cannot be accessed from a menu.

PMAP, FORM, DISCON
Creates mapping of the path geometry by defining path interpolation division points.

# POST1:Path Operations <br> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS 

## FORM

Defines the mapping method:
UNIFORM
Maps uniform divisions (specified on the nDiv argument of the PATH command) between specified points. This is the default.

## ACCURATE

Map geometry using a small division at the beginning and end of each segment. This gives you accurate derivatives, integrals, tangents, and normals for curves which do not have continuous slopes at the specified points. To create nonuniform divisions, the nDiv argument of the PATH command must be greater than 2.

## DISCON

Sets mapping for discontinuities in the field. The divisions are modified to put a point just before and just after the discontinuity. The valid label is MAT, for a material discontinuity. No discontinuity is the default. Discontinuity mapping involves the NOAV option on the PDEF command.

## Menu Paths

Main Menu>General Postproc>Path Operations>Define Path>Path Options Main Menu>Preprocessor>Path Operations>Define Path>Path Options

## PMGTRAN, Fname, FREQ, Fcnam1, Fcnam2, Pcnam1, Pcnam2, Ecnam1, Ccnam1

Summarizes electromagnetic results from a transient analysis.

> POST2 6: Special Purpose
> MP <> <> <> <> <> <> <> EM <> <> PP <> <> <>

## Fname

File name (8 characters maximum) to which tabular data and plot files will be written. Must be enclosed in single quotes when the command is manually typed in. Defaults to MG_TRNS. The data file extension is . OUT and the plot file extension is .PLT.

## FREQ

Frequency of solution output. Defaults to 1. Every FREQth solution on the results file is output.

## Fcnam1, Fcnam2

Names of element components for force calculation. Must be enclosed in single quotes when the command is manually typed in.

## Pcnam1, Pcnam2

Names of element components for power loss calculation. Must be enclosed in single quotes when the command is manually typed in.

## Ecnam1, Conam1

Names of element components for energy and total current calculations, respectively. Must be enclosed in single quotes when the command is manually typed in.

## Notes

PMGTRAN invokes an ANSYS macro which calculates and summarizes electromagnetic results from a transient analysis. The results are summarized by element components and listed on the screen as well as written to a file (Fname. OUT). Also, graph plots of results as a function of time are created and written to a file (Fname. PLT) for use in the DISPLAY program.

Two components may be selected for the summary of electromagnetic forces (see FMAGSUM), two for power loss, and one each for stored energy (see SENERGY) and total current (see CURR2D). See the referenced commands for other restrictions.

PMGTRAN is restricted to MKSA units.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

## Main Menu>TimeHist Postpro>Elec\&Mag>Magnetics

## PMLOPT, ESYs, Lab, Xminus, Xplus, Yminus, Yplus, Zminus, Zplus

## Defines perfectly matched layers (PMLs) for a high-frequency analysis.

PREP 7: Perfectly Matched Layers
MP <> <> <> <> <> <> <> <> EH <> PP <> <> <>

## ESYS

Element coordinate system number. ESYS may be 0 (global Cartesian) or any previously defined local Cartesian coordinate system number ( $>10$ ). Defaults to 0 .

## Lab

Label defining the number of dimensions:
ONE
A one-dimensional PML region.
THREE
A three-dimensional PML region (default).

## Xminus

For harmonic analysis, normal reflection coefficient in negative $X$ direction of ESYS. Defaults to 1.E-3 (equivalent to -60 dB ).

## Xplus

For harmonic analysis, normal reflection coefficient in positive $X$ direction of ESYS. Defaults to 1.E-3 (equivalent to -60 dB ).

## Yminus

For harmonic analysis, normal reflection coefficient in negative Y direction of ESYS. Defaults to 1.E-3 (equivalent to -60 dB).

## Yplus

For harmonic analysis, normal reflection coefficient in positive $Y$ direction of ESYS. Defaults to 1.E-3 (equivalent to -60 dB).

## Zminus

For harmonic analysis, normal reflection coefficient in negative $Z$ direction of ESYS. Defaults to $1 . \mathrm{E}-3$ (equivalent to -60 dB ).

## zplus

For harmonic analysis, normal reflection coefficient in positive $Z$ direction of ESYS. Defaults to 1.E-3 (equivalent to -60 dB ).

## Notes

PMLOPT defines perfectly matched layers (PML) for a high-frequency analysis. Each PML region must have a uniquely defined element coordinate system. Normal reflection coefficient values for a harmonic analysis must be less than 1 .

Issue PMLOPT,STAT to list the current normal reflection coefficient or attenuation factor settings for a PML region. Issue PMLOPT,CLEAR to clear all normal reflection coefficient settings and restore them to the defaults. Issue PMLOPT,ESYS,CLEAR to clear all normal reflection coefficient settings for this element coordinate system and restore them to the defaults.

## Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Boundary>PMLOpt>Clear Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Boundary>PMLOpt>Define Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Boundary>PMLOpt>Status Main Menu>Preprocessor>Loads>Define Loads>Delete>Electric>Boundary>PMLOpt>All Main Menu>Preprocessor>Loads $>$ Define Loads $>$ Delete $>$ Electric $>$ Boundary $>$ PMLOpt $>$ On ESYS Main Menu>Solution>Define Loads>Apply>Electric>Boundary>PMLOpt>Clear Main Menu>Solution>Define Loads>Apply>Electric>Boundary>PMLOpt>Define Main Menu>Solution>Define Loads>Apply>Electric>Boundary>PMLOpt>Status Main Menu>Solution>Define Loads>Delete>Electric>Boundary>PMLOpt>All Main Menu>Solution>Define Loads>Delete>Electric>Boundary>PMLOpt>On ESYS

## PMLSIZE, FREQB, FREQE, DMIN, DMAX, THICK, ANGLE

Determines number of PML layers.
PREP 7:Perfectly Matched Layers
MP <> <> <> <> <> <> <> <> EH <> PP <> <> <>

## FREQB

Minimum operating frequency

## FREQE

Maximum operating frequency

## DMIN

Minimum distance from radiation source to PML interface.

## DMAX

Maximum distance from radiation source to PML interface.

## THICK

Thickness of PML region. Defaults to 0 .

## ANGLE

Incident angle of wave to the PML interface. Defaults to 0 .

## Notes

PMLSIZE determines the number of PML layers for acceptable numerical accuracy.
PMLSIZE must be issued before any meshing commands. If the thickness of the PML region is known, it determines an element edge length ( h ) and issues ESIZE, h . If the thickness of the PML region is unknown, it determines the number of layers ( n ) and issues ESIZE,, n .

## Menu Paths

## Main Menu>Preprocessor>Meshing>Size Cntrls>PML

## /PMORE, --, X5, Y5, X6, Y6, X7, Y7, X8, Y8

## Creates an annotation polygon (GUI).

GRAPHICS: Annotation
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## --

Unused field.
X5
$X$ location for vertex 5 of polygon ( $-1.0<X<2.0$ ).
Y5
$Y$ location for vertex 5 of polygon ( $-1.0<Y<1.0$ ).
X6
$X$ location for vertex 6 of polygon ( $-1.0<X<2.0$ ).
Y6
Y location for vertex 6 of polygon (-1.0 $<\mathrm{Y}<1.0$ ).
X7
$X$ location for vertex 7 of polygon ( $-1.0<X<2.0$ ).
Y7
Y location for vertex 7 of polygon ( $-1.0<Y<1.0$ ).
X8
$X$ location for vertex 8 of polygon ( $-1.0<X<2.0$ ).
Y8
$Y$ location for vertex 8 of polygon ( $-1.0<Y<1.0$ ).

## Notes

Defines the 5th through 8th vertices of an annotation polygon [/POLYGON]. This is a command generated by the Graphical User Interface (GUI) and will appear in the log file (Jobname. LOG) if annotation is used. This command is not intended to be typed in directly in an ANSYS session (although it can be included in an input file for batch input or for use with the /INPUT command).

This command is valid in any processor.

## Menu Paths

## Utility Menu>PlotCtrls>Annotation>Create Annotation

PNGR, Kywrd, OPT, VAL

## Provides PNG file export for ANSYS displays.

GRAPHICS:Set Up
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Kywrd

Specifies various PNG file export options.

## COMP

If Kywrd = COMP, then OPT is either ON or OFF (blank is interpreted as OFF). This option allows you to turn PNG file compression ON or OFF. If OPT $=$ ON, then The VAL field is read to determine the degree of compression. See the VALUE argument for acceptable compression values.

## ORIENT

If Kywrd = ORIENT, then $O P T$ will determine the orientation of the entire plot. $O P T$ can be either Horizontal (default) or Vertical.

## COLOR

If Kywrd $=$ COLOR, then $O P T$ will determine the color depth of the saved file. $O P T$ can be 0,1 , or 2, corresponding to Black and White, Grayscale, and Color (default), respectively.
TMOD
If Kywrd $=$ TMOD, then $O P T$ will determine the text method. $O P T$ can be either 1 or 0 , corresponding to bitmap text (default) or line stroke text, respectively.

## DEFAULT

If Kywrd = DEFAULT, then all of the default values, for all of the Kywrd parameters listed above, are active.

STAT
Shows the current status of PNG file export.

## OPT

OPT can have the following names or values, depending on the value for Kywrd (see above).

## ON, OFF

If Kywrd = COMP, the values On and Off control the use of compression. The degree of compression is determined by VAL

## Horizontal, Vertical

If Kywrd = ORIENT, the terms Horizontal or Vertical determine the orientation of the plot.

## 0, 1, 2

If Kywrd $=$ COLOR, the numbers 0,1 , and 2 correspond to Black and White, Grayscale and Color, respectively.
1, 0
If Kywrd $=$ TMOD, the values 1 and 0 determine whether bitmap (1) or stroke text (0) fonts will be used

VAL
VAL is active only when Kywrd = COMP, and determines the degree of compression applied to the exported file (see above).

1
Apply the default, optimum value for compression. This value represents the best combination of speed and compression. It varies according to the release level of the ZLIB compression package.
1-9
Use this value to specify a specific compression level. 1 is the lowest compression level (fastest) and 9 is the highest compression level (slowest).

## Menu Paths

## Utility Menu>PlotCtrls>Redirect Plots <br> Utility Menu>PlotCtrls>Hard Copy

## /PNUM, Label, KEY

## Controls entity numbering/coloring on plots.

GRAPHICS:Labeling
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Label

Type of numbering/coloring:

## NODE

Node numbers on node and element plots.

## ELEM

Element numbers and colors on element plots.

## SEC

Section numbers and colors on element and solid model plots (see "Notes" (p. 1312)).
MAT
Material set numbers and colors on element and solid model plots (see "Notes" (p. 1312)).
TYPE
Element type reference numbers and colors on element and solid model plots (see "Notes" (p. 1312)).
REAL
Real constant set numbers and colors on element and solid model plots (see "Notes" (p. 1312)).

## ESYS

Element coordinate system numbers on element and solid model plots (see "Notes" (p. 1312)).

## PART

Element part numbers and colors on element plots (applicable to ANSYS LS-DYNA only).

## LOC

Location numbers/colors of the element in matrix assembly order on element plots.

## Note

LOC and ELEM numbers will be the same unless the model has been reordered.

## KP

Keypoint numbers on solid model plots.

## LINE

Line numbers on solid model plots (both numbers and colors on line plots).

## AREA

Area numbers on solid model plots (both numbers and colors on area plots).

## VOLU

Volume numbers on solid model plots (both numbers and colors on volume plots).

## SVAL

Stress (or any contour) values on postprocessing plots, and surface load values and colors on model plots (when surface load symbols are on [/PSF]). For tabular boundary conditions, the table-evaluated values will be displayed on node, element, or contour displays in POST1 when load symbols (/PBF, /PSF, /PBC) are on and TABNAM is OFF.

## TABNAM

Table names for tabular boundary conditions. If this label is turned on, the table name appears next to the appropriate symbol, arrow, face outline, or contour as dictated by the /PSF, /PBC, and /PBF commands.

STAT
Shows current settings for /PNUM.

## DEFA

Resets all /PNUM specifications back to default.

## KEY

Switch:
0
Turns OFF numbers/colors for specified label.
1
Turns ON numbers/colors for specified label.

## Notes

This command specifies entity numbering and coloring for subsequent plots.
The MAT, TYPE, REAL, and ESYS labels activate both the numbering and coloring of the corresponding attributes for EPLOT, KPLOT, LPLOT, APLOT, and VPLOT. The ELEM, MAT, TYPE, REAL, ESYS, PART (ANSYS LS-

DYNA only), and LOC labels are mutually exclusive, i.e., only one can be specified at a time. Also, turning on a LINE, AREA, or VOLU label will turn off the MAT, TYPE, REAL, and PART labels.

PowerGraphics [/GRAPHICS,POWER] displays for/PNUM can be problematic. /PNUM,ELEM will display erratically depending on other display command specifications, while /PNUM,LOC and /PNUM,ESYS are not supported.

Element and volume numbers are not visible for 3-D elements and volumes when Z-buffering is turned on (/TYPE,,[6,7, or 8]).

Use /PSTATUS or /PNUM,STAT to show settings. Use /PNUM,DEFA to reset all specifications back to default. Use the /NUMBER command to control whether numbers and colors are displayed together.

This command is valid in any processor

## Menu Paths

```
Utility Menu>PlotCtrls>Numbering
```


## POINT

## Specifies "Point flow tracing settings" as the subsequent status topic.

POST1:Status<br>MP ME ST PR PRN <> <> FL EM EH <> PP <> EME MFS

## Notes

This is a status [STAT] topic command. Status topic commands are generated by the GUI and will appear in the log file (Jobname. LOG) if status is requested for some items under Utility Menu> List> Status. This command will be immediately followed by a STAT command, which will report the status for the specified topic.

If entered directly into the program, the STAT command should immediately follow this command.

## Menu Paths

Utility Menu>List>Status>General Postproc>Trace Points

## POLY

## Creates a polygonal area based on working plane coordinate pairs.

PREP 7:Primitives
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Notes

Defines a polygonal area on the working plane. The area will be defined with NPT keypoints and NPT lines, where NPT (must be at least 3) is the number of coordinate pairs defined with the PTXY command. See the RPOLY and RPR4 commands for other ways to create polygons.

## Menu Paths

This command cannot be accessed from a menu.
/POLYGON, NVERT, X1, Y1, X2, Y2, X3, Y3, X4, Y4

## Creates annotation polygons (GUI).

GRAPHICS:Annotation
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NVERT

Number of vertices of polygon ( $3 \leq N V E R T \leq 8$ ). Use /PMORE for polygons with more than 4 vertices. x1

X location for vertex 1 of polygon ( $-1.0<\mathrm{X}<2.0$ ).
Y1
Y location for vertex 1 of polygon ( $-1.0<\mathrm{Y}<1.0$ ).
x2
$X$ location for vertex 2 of polygon ( $-1.0<\mathrm{X}<2.0$ ).
Y2
Y location for vertex 2 of polygon ( $-1.0<\mathrm{Y}<1.0$ ).
x3
X location for vertex 3 of polygon ( $-1.0<\mathrm{X}<2.0$ ).
Y3
Y location for vertex 3 of polygon ( $-1.0<\mathrm{Y}<1.0$ ).
X4
X location for vertex 4 of polygon ( $-1.0<\mathrm{X}<2.0$ ).
Y4
Y location for vertex 4 of polygon ( $-1.0<\mathrm{Y}<1.0$ ).

## Notes

Creates annotation polygons to be written directly onto the display at a specified location. This is a command generated by the Graphical User Interface (GUI) and will appear in the log file (Jobname. LOG) if annotation
is used. This command is not intended to be typed in directly in an ANSYS session (although it can be included in an input file for batch input or for use with the /INPUT command).

All polygons are shown on subsequent displays unless the annotation is turned off or deleted. Use the /LSPEC and the /PSPEC command to set the attributes of the polygon. Use the /PMORE command to define the 5th through 8th vertices of the polygon.

This command is valid in any processor.

## Menu Paths

Utility Menu>PlotCtrls>Annotation>Create Annotation

## /POST1

## Enters the database results postprocessor.

> SESSION: Processor Entry
> POST1:Set Up

MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Notes

Enters the general database results postprocessor (POST1). All load symbols (/PBC, /PSF, or /PBF) are automatically turned off with this command.

This command is valid only at the Begin Level.

## Menu Paths

## Main Menu>General Postproc

## /POST26

## Enters the time-history results postprocessor.

SESSION: Processor Entry<br>POST26:Set Up<br>MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Notes

Enters the time-history results postprocessor (POST26).
This command is valid only at the Begin Level.

## Menu Paths

## Main Menu>TimeHist Postpro

POUTRES, Item1, Item2, Item3, Item4, Item5, Item6, Item7, Item8, Item9, Item10, Item11, Item 12, Item13, Item14, Item15, Item16, Item 17, Item18, Item 19

Controls the nodal DOF and computed element results graphics data that is written to the PGR file.
SOLUTION: Misc Loads
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Item1, Item2, Item3, . . . , Item19

Data written to the PGR file. Acceptable values are as follows:

## ALL

All solution items are written to the PGR file.

## NONE

No solution results are written to the PGR file (default)

## NSOL

Nodal DOF solution (always written)
S
Stress
NL
Structural nonlinear data

## CONT

Contact data

## EPTO

Total strain

## EPEL

Elastic Strain
EPTH
Thermal strain
EPPL
Plastic Strain
EPCR
Creep strain
TG
Thermal gradient
TF
Thermal flux
EF
Electric field
D
Electric flux density
HF
Magnetic field intensity
B
Magnetic flux density

## FMAG

Electromagnetic forces
PG
Pressure gradient
BFE
Body temperatures
TOPO
Densities for topological optimization

## Command Default

No solution results are written to the PGR file.

## Notes

PowerGraphics data using the CONT option is not available for 2-D models.
This command is also valid in POST1.

## Menu Paths

Main Menu>General Postproc>Write PGR File

## POWERH

## Calculates the rms power loss in a conductor or lossy dielectric.

POST1:Magnetics Calculations
MP <> <> <> <> <> <> <> EM <> <> PP <> <> <>

## Notes

POWERH invokes an ANSYS macro which calculates the time-averaged (rms) power loss in a conductor or lossy dielectric material from a harmonic analysis. The power loss is stored in the parameter PAVG. Conductor losses include solid conductors and surface conductors approximated by impedance or shielding boundary conditions. The power loss density for solid conductors or dielectrics is stored in the element table with the label PLOSSD and may be listed [PRETAB] or displayed [PLETAB]. PLOSSD does not include surface losses. The elements of the conducting region must be selected before this command is issued. POWERH is valid for 2-D and 3-D analyses.

## Menu Paths

## Main Menu>General Postproc>Elec\&Mag Calc>Element Based>Power Loss

## PPATH, POINT, NODE, $X, Y, Z, C S$

Defines a path by picking or defining nodes, or locations on the currently active working plane, or by entering specific coordinate locations.

POST1:Path Operations<br>MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## POINT

The point number. It must be greater than zero and less than or equal to the $n P t s$ value specified on the PATH command if graphical picking is not being used.

## NODE

The node number defining this point. If blank, use the $X, Y, Z$ coordinates to define the point. A valid node number will override $X, Y, Z$ coordinate arguments.

## $X, Y, Z$

The location of the point in the global Cartesian coordinate system. Use these arguments only if you omit the NODE argument.

## CS

The coordinate system for interpolation of the path between the previous point and this point. Omit this argument if you wish to use the currently active (CSYS) coordinate system. If the coordinate system of two adjacent points is different, the CS value of the latter point will be used.

## Notes

For linearized stress calculations, the path must be defined with nodes.
This command is designed and works best in interactive (GUI) mode, using the menu paths listed below. For command line operations, issue PPATH,P to define your path by picking nodes.

For information on displaying paths you have defined, see Defining Data to be Retrieved in the Basic Analysis Guide.

## Menu Paths

Main Menu>General Postproc>Path Operations>Define Path>By Location Main Menu>General Postproc>Path Operations>Define Path>By Nodes Main Menu>General Postproc>Path Operations>Define Path>Modify Path Main Menu>General Postproc>Path Operations>Define Path>On Working Plane Main Menu>Preprocessor>Path Operations>Define Path>By Location Main Menu>Preprocessor>Path Operations>Define Path>By Nodes Main Menu>Preprocessor>Path Operations>Define Path>Modify Path Main Menu>Preprocessor>Path Operations>Define Path>On Working Plane

PRANGE, LINC, VMIN, VMAX, XVAR

## Determines the path range.

> POST1: Path Operations
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## LINC, VMIN, VMAX

Set the range for listing or displaying the table locations between a minimum value (VMIN) and a maximum value (VMAX) of the path distance with a location increment of LINC (defaults to 1 ). The first location begins at VMIN.

XVAR
Path variable item to be used as the $x$-axis plot variable. Any valid path variable may be used (PDEF command). Default variable is the path distance, S .

## Command Default

Include every interpolation point and entire path distance.

## Notes

Determines the path distance range for use with the PRPATH and PLPATH commands.

## Menu Paths

## Main Menu>General Postproc>Path Operations>Plot Path Item>Path Range

PRCAMP, Option, SLOPE, UNIT, FREQB, Cname, STABVAL, KeyALLFreq

## Prints Campbell diagram data for applications involving rotating structure dynamics.

POST1:Special Purpose
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS

## Option

Flag to activate or deactivate sorting of forward or backward whirl frequencies:
0 (OFF or NO)
No sorting.
1 (ON or YES)
Sort. This value is the default.

## SLOPE

The slope of the line to be printed. This value must be greater than 0 . The line represents the number of excitations per revolution of the rotor. For example, $S L O P E=1$ represents one excitation per revolution, usually resulting from unbalance. The default is no line.
UNIT
Specifies the unit of measurement for rotational angular velocities:
RDS
Rotational angular velocities in radians per second (rad/s). This value is the default.

## RPM

Rotational angular velocities in revolutions per minute (RPMs).

## FREQB

The beginning, or lower end, of the frequency range of interest. The default is zero.

## Cname

The rotating component name.

## STABVAL

Flag to plot the stability values:

## 0 (OFF or NO)

Plot the frequencies (the imaginary parts of the eigenvalues in Hz ). This value is the default.
1 (ON or YES)
Plot the stability values (the real parts of the eigenvalues in Hz ).
2
Plot the logarithmic decrements.
For more information about complex eigenvalues and corresponding logarithmic decrements, see Complex Eigensolutions in the Theory Reference for the Mechanical APDL and Mechanical Applications.

## KeyALLFreq

Key to specify if all frequencies above FREQB are printed out:

## 0 (OFF or NO)

A maximum of 10 frequencies are printed out. They correspond to the frequencies displayed via the PLCAMP command. This value is the default.

## 1 (ON or YES)

All frequencies are printed out.

## Notes

To take the gyroscopic effect into account when printing a Campbell diagram, first issue the CORIOLIS command in the SOLUTION module.

The PRCAMP command is valid only for modal analyses (QR damped [MODOPT,QRDAMP] or damped [MODOPT,DAMP] methods only). The command works over two or more load step results generated with an ascending order of rotational velocity (OMEGA or CMOMEGA).

Complex eigenvalues are necessary (MODOPT,QRDAMP,,,,,Cpxmod $=$ ON), and you must specify the number of modes to expand (MXPAND) at each load step.

In some cases where modes are not in the same order from one load step to the other, sorting (option = 1) the frequencies can help to obtain a correct print. Sorting is based on the comparison between complex mode shapes calculated at two successive load steps.

At each load step, ANSYS compares the mode shape to the loads at other loads steps to determine whirl direction at the load step. If applicable, a label appears (on the rows of output data) representing each whirl mode (BW for backward whirl and FW for forward whirl).

If you specify a non-zero slope ( $S L O P E>0$ ), the command prints the critical speeds corresponding to the intersection points of the frequency curves and the added line. In the case of a named component (Cname), critical speeds relate to the rotational velocity of the component.

ANSYS considers the SLOPE value only if the frequencies are plotted ( $S T A B V A L=O F F$ ).
At each load step, ANSYS checks for instability (based on the sign of the real part of the eigenvalue). The label " $U$ " appears on the printout for each unstable frequency.

The rotational velocities of a named component (Cname) are printed out along with the natural frequencies.
In general, ANSYS, recommends printing a Campbell diagram only when your analysis is performed in a stationary reference frame (CORIOLIS,,,,RefFrame $=$ ON).

To print the Campbell diagram for a prestressed structure, first issue a CAMPBELL,ON command in the static portion of the analysis. For a usage example of the companion command PLCAMP (used for plotting a Campbell diagram), see Sample Campbell Diagram Analysis.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu>General Postproc>Rotor Dynamics>Print Campbell

PRCINT, ID, Node, Dtype

## Lists the fracture parameter (CINT) results data.

POST1:Results
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS
ID
Crack ID number.

## Node

Crack tip node number (Default = ALL). Used only for 3-D.
Dtype
Data type to output:
JINT
J-integral
IIN1
Interaction integral 1
IIN2
Interaction integral 2
IIN3
Interaction integral 3
K1
Mode 1 stress-intensity factor
K2
Mode 2 stress-intensity factor
K3
Mode 3 stress-intensity factor

G1
Mode 1 energy release rate
G2
Mode 2 energy release rate
G3
Mode 3 energy release rate
GT
Total energy release rate

## Notes

When a crack tip node is defined, the values associated with the specified node are listed.

## Menu Paths

This command cannot be accessed from a menu.

## PRCPLX, $K E Y$

## Defines the output form for complex variables.

POST26:Listing
MP ME ST PR PRN <> <> <> EM EH DY PP <> EME MFS

## KEY

Output form key:
0
Real and imaginary parts.
1
Amplitude and phase angle. Stored real and imaginary data are converted to amplitude and phase angle upon output. Data remain stored as real and imaginary parts.

## Notes

Defines the output form for complex variables. Used only with harmonic analyses (ANTYPE,HARMIC).
All results data are stored in the form of real and imaginary components and converted to amplitude and/or phase angle as specified via the PRCPLX command. The conversion is not valid for derived results (such as principal stress/strain, equivalent stress/strain and USUM).

## Menu Paths

Main Menu>TimeHist Postpro>Settings>List

## PRED, Sskey, --, Lskey

## Activates a predictor in a nonlinear analysis.

SOLUTION: Nonlinear Options
MP ME ST PR PRN DS DSS <> <> <> <> PP <> EME MFS

## Sskey

Substep predictor key:
OFF
No prediction occurs.
ON
Use a predictor on all substeps after the first. This behavior is the default, with certain exceptions; see "Command Default" (p. 1323) for details.

Unused field.

## Lskey

Load step predictor:
OFF
No prediction across load steps occurs. This is the default behavior.
ON
Use a predictor also on the first substep of the load step. (Sskey $=\mathrm{ON}$ is required.)

## Command Default

The default command behavior is to use prediction (Sskey $=$ ON). However, prediction does not occur (Sskey $=$ OFF) if one or more of these conditions exist:

- You are using the SOLID65 element.
- You are mapping (MAPSOLVE) variables to a new mesh during rezoning. (Prediction does not occur for any MAPSOLVE substeps, nor for the first substep afterwards.)


## Notes

Activates a predictor in a nonlinear analysis on the degree-of-freedom solution for the first equilibrium iteration of each substep.

The default values given for this command assume SOLCONTROL,ON (the default). See the description of the SOLCONTROL command for a complete listing of the defaults set via SOLCONTROL,ON and SOLCONTROL,OFF.

When using the arc-length method (ARCLEN, ARCTRM), you cannot issue the DOF solution predictor command (PRED), the automatic time stepping command (AUTOTS), or the line search command (LNSRCH). If you activate the arc-length method after you set PRED, AUTOTS, or LNSRCH, a warning message appears. If you elect to proceed with the arc-length method activation, ANSYS disables your DOF predictor, automatic time stepping, and line search settings.

When using step-applied loads, such as TUNIF, BFUNIF, etc., or other types of non-monotonic loads, the predictor may adversely affect the convergence. If the solution is discontinuous, the predictor may need to be turned off.

When performing a nonlinear analysis involving large rotations, the predictor may require using smaller substeps.

This command is also valid in PREP7.

## Menu Paths

Main Menu>Preprocessor>Loads>Analysis Type>Sol'n Controls>Nonlinear
Main Menu>Preprocessor>Loads>Load Step Opts>Nonlinear>Predictor
Main Menu>Solution>Analysis Type>Sol'n Controls>Nonlinear
Main Menu>Solution>Load Step Opts>Nonlinear>Predictor

PRENERGY, EnergyType, Cname1, Cname2, Cname3, Cname4, Cname5, Cname6
Prints the total energies of a model or the energies of the specified components.
POST1:Results
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

## EnergyType

Type of energies to be printed:
ALL
All energies are printed: potential, kinetic, artificial hourglass/drill stiffness, and artificial stabilization energy when applicable. This is the default.

## SENE

Potential energy.

## KENE

Kinetic energy.

## Cname1, Cname2, Cname3,...

Component names for energies of the components printout.
If Cname1 is blank, the total energies are listed.
If Cname1 = ALL, the energies are listed for all selected components.
If Cname 1 is neither blank nor ALL, it is the name of an existing component. The energies are listed for up to 6 selected components named in Cname 1 to Cname 6.

## Notes

The PRENERGY command prints out either the total energies of the entire model or the energies of the components depending on the Cname 1 specification.

Only existing components based on elements (defined with the CM command) are supported when component energies are listed.

This command applies to structural elements only.

## Menu Paths

This command cannot be accessed from a menu.

## /PREP7

## Enters the model creation preprocessor.

SESSION: Processor Entry PREP 7: Database<br>MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Notes

Enters the general input data preprocessor (PREP7).
This command is valid only at the Begin Level.

## Menu Paths

Main Menu>Preprocessor

## PRERR

Prints SEPC and TEPC.
POST1:Listing
MP ME ST PR PRN $<><><><><><>$ PP $<>$ EME MFS

## Notes

Prints the percent error in structural energy norm (SEPC) and the thermal energy norm percent error (TEPC). Approximations of mesh discretization error associated with a solution are calculated for analyses having structural or thermal degrees of freedom.

The structural approximation is based on the energy error (which is similar in concept to the strain energy) and represents the error associated with the discrepancy between the calculated stress field and the globally continuous stress field (see POST1 - Error Approximation Technique in the Theory Reference for the Mechanical APDL and Mechanical Applications). This discrepancy is due to the assumption in the elements that only the displacements are continuous at the nodes. The stress field is calculated from the displacements and should also be continuous, but generally is not.).

Thermal analyses may use any solid and shell thermal element having only temperature degrees of freedom. The thermal approximation is based on the total heat flow dissipation and represents the error associated with the discrepancy between the calculated nodal thermal flux within an element and a continuous global thermal flux. This continuous thermal flux is calculated with the normal nodal averaging procedure.

The volume (result label VOLU) is used to calculate the energy error per element (result label SERR for the structural energy error and TERR for the thermal energy error). These energy errors, along with the appropriate energy, are then used to calculate the percent error in energy norm (SEPC for structural and TEPC for thermal).

These percentages can be listed by the PRERR command, retrieved by the *GET command (with labels SEPC and TEPC) for further calculations, and shown on the displacement display (PLDISP), as applicable.

For structural analyses, the maximum absolute value of nodal stress variation of any stress component for any node of an element (result item SDSG) is also calculated. Similarly, for thermal gradient components, TDSG is calculated. Minimum and maximum result bounds considering the possible effect of discretization error will be shown on contour displays (PLNSOL). For shell elements, the top surface location is used to produce a meaningful percentage value. SERR, TERR, SEPC, TEPC, SDSG, and TDSG will be updated whenever the nodal stresses or fluxes are recalculated.

If the energy error is a significant portion of the total energy, then the analysis should be repeated using a finer mesh to obtain a more accurate solution. The energy error is relative from problem to problem but will converge to a zero energy error as the mesh is refined. An automated adaptive meshing procedure using this energy error is described with the ADAPT macro.

## The following element- and material-type limitations apply:

- Valid with most 2-D solid, 3-D solid, axisymmetric solid, or 3-D shell elements.
- The following element types are not valid: SHELL28, SHELL41, and SOLID65.
- The model should have only structural or thermal degrees of freedom.
- The analysis must be linear (for both material and geometry).
- Multi-material (for example, composite) elements are not valid.
- Transition regions from one material to another are not valid (that is, the entire model should consist of one material).
- Anisotropic materials (TB,ANEL) are not considered.


## Menu Paths

Main Menu>General Postproc>List Results>Percent Error Utility Menu>List>Results>Percent Error

PRESOL, Item, Comp

## Prints the solution results for elements.

POST1: Results
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Item

Label identifying the item. Valid item labels are shown in Table 246: PRESOL - Valid Item and Component Labels ( p . 1327) below. Some items also require a component label.

## Comp

Component of the item (if required). Valid component labels are shown in Table 246: PRESOL - Valid Item and Component Labels (p. 1327) below.

## Notes

Prints the solution results for the selected elements in the sorted sequence. For example, PRESOL,S prints the stress items $S X, S Y, S Z, S X Y, S Y Z$, and $S X Z$ for the node locations of the element. Component results are in the global Cartesian coordinate directions unless transformed (RSYS).

Shell elements print values at the top, then bottom of the element (or layer). If $\operatorname{KEYOPT}(8)=2$ (for SHELL181, SHELL208, SHELL209, SHELL281, or ELBOW290), the results are printed in the order TOP, BOT and then MID of each element, (or layer). The MID value will be the actual value as written to the results file.

Items are listed as columns of a table versus element number. An exception occurs for item ELEM which uses an element format (all applicable line element results are listed per element) instead of a tabular format.

The FORCE command can be used to define which component of the nodal load is to be used (static, damping, inertia, or total). See the ETABLE and PRETAB commands for printing items not available through this command (such as line element results).

For PowerGraphics [/GRAPHICS,POWER], results are listed only for the element surface. The items marked with [1 (p. 1330)] are not supported by PowerGraphics.

Table 246 PRESOL - Valid Item and Component Labels

| Item | Comp | Description |
| :---: | :---: | :---: |
| Valid item and component labels for element results are: |  |  |
| S | COMP or blank | Component ( $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{XY}, \mathrm{YZ}, \mathrm{XZ}$ ) stresses. |
| " | PRIN | Principal stresses ( $1,2,3$ ), stress intensity (INT), and equivalent stress (EQV) |
| EPEL | COMP or blank | Component ( $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{XY}, \mathrm{YZ}, \mathrm{XZ}$ ) elastic strains. |
| " | PRIN | Principal elastic strains ( $1,2,3$ ), strain intensity (INT), and equivalent strain (EQV) |
| EPTH | COMP or blank | Component ( $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{XY}, \mathrm{YZ}, \mathrm{XZ}$ ) thermal strains. |
| " | PRIN | Principal thermal strains ( $1,2,3$ ), strain intensity (INT), and equivalent strain (EQV) |
| EPPL | COMP or blank | Component ( $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{XY}, \mathrm{YZ}, \mathrm{XZ}$ ) plastic strains. |
| " | PRIN | Principal plastic strains ( $1,2,3$ ), strain intensity (INT), and equivalent strain (EQV) |
| EPCR | COMP or blank | Component ( $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{XY}, \mathrm{YZ}, \mathrm{XZ}$ ) creep strains. |
| " | PRIN | Principal creep strains ( $1,2,3$ ), strain intensity (INT), and equivalent strain (EQV) |
| EPSW |  | Swelling strain. |
| EPTO | COMP or blank | Component ( $X, Y, Z, X Y, Y Z, X Z$ ) total mechanical strains (EPEL + EPPL + EPCR). |
| " | PRIN | Principal total mechanical strains ( $1,2,3$ ), strain intensity (INT), and equivalent strain (EQV) |
| EPTT | COMP or blank | Component ( $X, Y, Z, X Y, Y Z, X Z$ ) total mechanical and thermal strains (EPEL + EPPL + EPCR + EPTH). |


| Item | Comp | Description |
| :---: | :---: | :---: |
| " | PRIN | Principal total mechanical and thermal strains (1, 2, 3), strain intensity (INT), and equivalent strain (EQV) |
| NL |  | Nonlinear items (SEPL, SRAT, HPRES, EPEQ, CREQ, PSV, PLWK). |
| SEND | ELASTIC | Elastic strain energy density. |
| " | PLASTIC | Plastic strain energy density. |
| " | CREEP | Creep strain energy density. |
| CDM | DMG | Damage variable |
| " | LM | Maximum previous strain energy for virgin material |
| FAIL |  | Failure criteria [1 (p.1330)][2 (p.1330)]. |
|  |  | Default components: Maximum of all failure criteria defined at current location (MAX), maximum strain (EMAX), maximum stress (SMAX), Tsai-Wu Strength Index (TWSI), inverse of Tsai-Wu Strength Ratio Index (TWSR). |
|  |  | Other available components: Hashin Fiber Failure (HFIB), Hashin Matrix Failure (HMAT), Puck Fiber Failure (PFIB), Puck Matrix Failure (PMAT), and any user-defined failure criteria (USR1 through USR9) [4 (p. 1330)]. |
|  |  | Issue the FCTYP command to activate or remove failure criteria. |
| FCMX |  | Maximum failure criterion over the entire element [1][2]. Components: Layer number where the maximum occurs (LAY), name of the maximum failure criterion (FC), and value of the maximum failure criterion (VAL). |
| SVAR | 1,2,3, ... N | State variable. |
| GKS |  | Gasket component ( $\mathrm{X}, \mathrm{XY}, \mathrm{XZ}$ ) stress. |
| GKD |  | Gasket component ( $\mathrm{X}, \mathrm{XY}, \mathrm{XZ}$ ) total closure. |
| GKDI |  | Gasket component ( $\mathrm{X}, \mathrm{XY}, \mathrm{XZ}$ ) total inelastic closure. |
| GKTH |  | Gasket component ( $\mathrm{X}, \mathrm{XY}, \mathrm{XZ}$ ) thermal closure. |
| CONT |  | Contact items (STAT, PENE, PRES, SFRIC, STOT, SLIDE, GAP, FLUX, CNOS, FPRS). See component descriptions in PLESOL. |
| TG |  | Component ( $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ ) thermal gradients and vector sum (SUM). |
| TF |  | Component ( $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ ) thermal fluxes and vector sum (SUM). |
| PG |  | Component ( $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ ) pressure gradients and vector sum (SUM). |
| EF |  | Component ( $X, Y, Z$ ) electric fields and vector sum (SUM). |
| D |  | Component ( $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ ) electric flux densities and vector sum (SUM). |
| H |  | Component ( $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ ) magnetic field intensities and vector sum (SUM). |


| Item | Comp | Description |
| :---: | :---: | :---: |
| B |  | Component ( $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ ) magnetic flux densities and vector sum (SUM). |
| FMAG |  | Component ( $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ ) electromagnetic forces and vector sum (SUM) [1]. |
| P |  | Poynting vector components ( $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ ) and sum (SUM) [1]. |
| F |  | Component ( $X, Y, Z$ ) structural forces. Use FORCE for type [1][5]. |
| M |  | Component ( $X, Y, Z$ ) structural moments. Use FORCE for type [1]. |
| HEAT |  | Heat flow. Use FORCE for type [1]. |
| FLOW |  | Fluid flow. Use FORCE for type. |
| AMPS |  | Current flow [1]. Use FORCE for type. |
| CHRG |  | Charge [1]. Use FORCE for type. |
| FLUX |  | Magnetic flux [1]. |
| CSG |  | Component ( $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ ) magnetic current segments. Use FORCE for type [1]. |
| FORC |  | All available force items ( $F$ to CSG above). (10 maximum) [1]. |
| BFE |  | Body temperatures (calculated from applied temperatures) as used in solution (area and volume elements only). |
| ELEM |  | All applicable element results (available only for structural line elements) [1]. |
| SERR[3] |  | Structural error energy [1]. |
| SDSG[3] |  | Absolute value of the maximum variation of any nodal stress component [1]. |
| TERR[3] |  | Thermal error energy [1]. |
| TDSG[3] |  | Absolute value of the maximum variation of any nodal thermal gradient component [1]. |
| SENE |  | "Stiffness" energy or thermal heat dissipation. Same as TENE [1]. |
| STEN |  | Elemental energy dissipation due to stabilization. |
| TENE |  | Thermal heat dissipation or "stiffness" energy. Same as SENE [1]. |
| KENE |  | Kinetic energy [1]. |
| JHEAT |  | Element Joule heat generation (coupled-field calculation) [1]. |
| JS |  | Source current density for low-frequency magnetic analyses. Total current density (sum of conduction and displacement current densities) in low frequency electric analyses. Components ( $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ ) and vector sum (SUM). [1]. |
| JT |  | Total measureable current density in low-frequency electromagnetic analyses. (Conduction current density in a low- |


| Item | Comp | Description |
| :---: | :---: | :---: |
|  |  | frequency electric analysis.) Components ( $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ ) and vector sum (SUM). [1]. |
| JC |  | Conduction current density for elements that support conduction current calculation. Components ( $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ ) and vector sum (SUM). [1]. |
| MRE |  | Magnetic Reynolds number [1]. |
| VOLU |  | Volume of volume element [1]. |
| CENT |  | Centroid $X, Y$, or $Z$ location (based on shape function) in the active coordinate system [1]. |
| LOCI |  | Integration point location |
| SMISC | snum | Element summable miscellaneous data value at sequence number snum (Shown in the Output Data section of each element description. See Chapter 4 of the Element Reference) [1]. |
| NMISC | snum | Element nonsummable miscellaneous data value at sequence number snum (Shown in the Output Data section of each element description. See Chapter 4 of the Element Reference) [1]. |
| TOPO |  | Densities used for topological optimization. |
| CAP | CO,XO,KO,ZONE, DPLS,VPLS | Material cap plasticity model only: Cohesion; hydrostatic compaction yielding stress; I1 at the transition point at which the shear and compaction envelopes intersect; zone $=0$ : elastic state, zone $=1$ : compaction zone, zone $=2$ : shear zone, zone $=3$ : expansion zone; effective deviatoric plastic strain; volume plastic strain. |
| EDPC | CSIG,CSTR | Material EDP creep model only (not including the cap model): equivalent creep stress; equivalent creep strain. |
| FICT | TEMP | Fictive temperature. |
| ESIG | X,Y,Z,XY,YZ,ZX | Components of Biot's effective stress. |
| " | 1,2,3 | Principal stresses of Biot's effective stress. |
| " | INT | Stress intensity of Biot's effective stress. |
| " | EQV | Equivalent stress of Biot's effective stress. |
| DPAR | TPOR | Total porosity (Gurson material model). |
| " | GPOR | Porosity due to void growth. |
| " | NPOR | Porosity due to void nucleation. |
| FFLX | X, Y, Z | Fluid flow flux in poromechanics. |

1. Not supported by PowerGraphics
2. Works only if failure criteria information is provided. (For more information, see the documentation for the FC and TB commands.)
3. Some element- and material-type limitations apply. (For more information, see the documentation for the PRERR command.)
4. Works only if user failure criteria routine is provided.
5. Do not use the PRESOL command to obtain contact forces for contact elements. The force values reported by this command may not be accurate for these elements. Instead, use the ETABLE command to obtain contact force values.

## Menu Paths

Main Menu>General Postproc>List Results>Element Solution Utility Menu>List>Results>Element Solution

## PRETAB, Lab1, Lab2, Lab3, Lab4, Lab5, Lab6, Lab7, Lab8, Lab9

Prints the element table items.

> POST1: Element Table
> MP ME ST PR PRN <> <> FL EM EH DY PP $<>$ EME MFS

## Lab1, Lab2, Lab3, . . . , Lab9

Print selected items. Valid labels are (blank) or any label as specified with the ETABLE command. Convenience labels may be used for Lab1 to select groups of labels (10 labels maximum): GRP1 for first 10 stored items; GRP2 for items 11 to 20; GRP3 for items 21 to 30; GRP4 for items 31 to 40; GRP5 for items 41 to 50 . Enter ETABLE,STAT command to list stored item order. If all labels are blank, print first 10 stored items (GRP1).

## Notes

Prints the items stored in the table defined with the ETABLE command. Item values will be listed for the selected elements in the sorted sequence [ESORT]. The FORCE command can be used to define which component of the nodal load is to be used (static, damping, inertia, or total).

Portions of this command are not supported by PowerGraphics [/GRAPHICS,POWER].

## Menu Paths

# Main Menu>General Postproc>Element Table>List Elem Table <br> Main Menu>General Postproc>List Results>Elem Table Data Utility Menu>List>Results>Element Table Data 

PRFAR, Lab, Opt, PHI1, PHI2, NPH1, THETA1, THETA2, NTHETA, VAL1, VAL2
Prints electric far fields and far field parameters.
POST1: Special Purpose
$M P<><><><><><><><>\mathrm{EH}<>\mathrm{PP}<><><>$

Lab
Print Parameter:
EF
Electric Field
RCS
Radar cross section

## RCSN

Normalized radar cross section

## ANT

Antenna parameters

## Opt

As shown below, data entered in the Opt field will vary, depending on the print parameter.

## Lab

As shown below, data entered in the Lab field will vary, depending on the print option (Opt).

## Table 247 Valid Lab Data Labels

| Lab | Opt |
| :---: | :---: |
| EF | SUM — the maximum total E-field (default) X - the maximum E -field in x -direction Y - the maximum E-field in y-direction Z - the maximum E-field in z-direction PHI - the maximum E-field in $\Phi$-direction THETA - the maximum E-field in $\Theta$-direction R - the maximum E-field in r-direction LHCP - the maximum left-hand circularly polarized component <br> RHCP - the maximum right-hand circularly polarized component <br> ARCP - the circular polarization axial ratio <br> LW3X - the maximum dominant component for an x-polarized aperture with Ludwig's third definition of cross definition <br> LW3Y - the maximum dominant component for an y-polarized aperture with Ludwig's third definition of cross definition <br> ARCP - the linear polarization axial ratio |
| RCS and RCSN | ```TOTAL — Radar echo area (default) PP - \(\Phi-\Phi\) polarization PT \(-\Phi-\Theta\) polarization TP - \(\Theta\) - \(\Phi\) polarization TT - \(\Theta\) - \(\Theta\) polarization``` |


| Lab | Opt |
| :--- | :--- |
|  | HH - H-H (horizontal - horizontal) polarization |
|  | HV - H-V (Horizontal - Vertical) polarization |
|  | VH - V-H (Vertical - Horizontal) polarization |
| VV - V-V (Vertical - Vertical) polarization |  |
|  | TE2D - 2-D TE incident plane wave |
|  | TM2D - 2-D TM incident plane wave |
| ANT | EPCT - radiation pattern (default) |
|  | UMAX - the maximum radiation intensity |
|  | DGCT - directivity |
|  | DGMX - peak directivity |
| PGCT - gain |  |
|  | PGMX - peak gain |
| RGCT - realized gain |  |
| RGMX - peak realized gain |  |
| EFF - efficiency |  |
| PRAD - radiated power |  |

The following PHI1, PHI2, NPHI, THETA1, THETA2, and NTHETA arguments are used only with Lab = EF, RCS, RCSN and ANT and Opt $=$ EPCT, DGCT, PGCT and RGCT .

## PHI1, PHI2

Starting and ending $\phi$ angles (degrees) in the spherical coordinate system. Defaults to 0.

## NPHI

Number of divisions between the starting and ending $\phi$ angles for data computations. Defaults to 0 .

## THETA1, THETA2

Starting and ending $\theta$ angles (degrees) in the spherical coordinate system. Defaults to 0 .

## NTHETA

Number of divisions between the starting and ending $\theta$ angles for data computations. Defaults to 0 .
VAL1
Used only with Lab $=$ ANT and Opt $=$ PGCT, PGMX, RGCT, RGMX, EFF or Lab $=$ RCS or RCSN and Opt $=$ TE2D, TM2D. For Lab = ANT and Opt = PGCT, PGMX, RGCT, RGMX, EFF, VAL1 = the incident power, Pinc, in watts. For $L a b=$ RCS or RCSN and Opt $=$ TE2D or TM2D, VAL1 $=$ thickness of the 3-D model in the $z$ direction, defaults to 1 .

## VAL2

Used only with $L a b=$ ANT and $O p t=$ PGCT, PGMX, EFF. VAL2 $=$ the $|s 11|$ of the lossless port with a single propagation mode to calculate the power delivered to the radiating antenna structure, i.e.
$P_{\text {del }}=P_{\text {inc }}\left(1-\left|s_{11}\right|^{2}\right)$. Defaults to 0.

## Notes

PRFAR prints electric far fields and far field parameters as determined by the equivalent source principle. Use this command to print electric far field, radar cross section, antenna parameters.

See Spherical Coordinates in Hi-Frequency Electromagnetic Analysis Guide.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

This command cannot be accessed from a menu.

PRI2, P51X, Z1, Z2
Creates a polygonal area or a prism volume by vertices (GUI).
PREP 7:Primitives
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Notes

Creates a polygonal area or a prism volume using the vertices as input. This is a command generated by the Graphical User Interface (GUI) and will appear in the log file (Jobname. LOG) if graphical picking is used. This command is not intended to be typed in directly in an ANSYS session (although it can be included in an input file for batch input or for use with the /INPUT command).

For polygons, the PRI2 command will appear in the log file as PRI2, $\mathrm{P} 51 \mathrm{X}, 0.0,0.0$ preceded by FITEM commands that define the vertices (in global Cartesian coordinates). For prisms, the PRI2 command will appear in the log file as PRI2,P51X preceded by FITEM commands that define the vertices and the Z-end of the prism.

See the RPOLY, POLY, RPRISM, PRISM, and RPR4 commands for other ways to create polygons and prisms.

## Menu Paths

Main Menu $>$ Preprocessor $>$ Modeling $>$ Create $>$ Areas $>$ Polygon $>$ By Vertices Main Menu $>$ Preprocessor $>$ Modeling $>$ Create $>$ Volumes $>$ Prism $>$ By Vertices

## PRIM

Specifies "Solid model primitives" as the subsequent status topic.
PREP 7:Status
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Notes

This is a status [STAT] topic command. Status topic commands are generated by the GUI and will appear in the log file (Jobname. LOG) if status is requested for some items under Utility Menu> List> Status. This command will be immediately followed by a STAT command, which will report the status for the specified topic.

If entered directly into the program, the STAT command should immediately follow this command.

## Menu Paths

## Utility Menu>List>Status>Preprocessor>Solid Model

## PRINT

## Specifies "Print settings" as the subsequent status topic.

POST1:Status
POST26:Status
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Notes

This is a status [STAT] topic command. Status topic commands are generated by the GUI and will appear in the log file (Jobname. LOG) if status is requested for some items under Utility Menu> List> Status. This command will be immediately followed by a STAT command, which will report the status for the specified topic.

If entered directly into the program, the STAT command should immediately follow this command.

## Menu Paths

Utility Menu>List>Status>General Postproc>List Results
Utility Menu>List>Status>TimeHist Postproc>List
*PRINT, Matrix, Fname

## Prints the matrix values to a file.

> APDL: Matrix Operations
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Argument Descriptions

## Matrix

Name of matrix or vector to print. Must be specified.

## Fname

File name. If blank, matrix is written to the output file.

## Notes

The matrix may be a dense matrix (*DMAT), a sparse matrix (*SMAT), or a vector (*VEC). Only the non-zero entries of the matrix are printed.

## Menu Paths

This command cannot be accessed from a menu.

PRISM, $\mathrm{z1}, \mathrm{z2}$
Creates a prism volume based on working plane coordinate pairs.
PREP 7: Primitives
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## z1, $z 2$

Working plane $Z$ coordinates of the top and bottom of the prism.

## Notes

Defines a prism volume based on the working plane. The top and bottom areas will each be defined with NPT keypoints and NPT lines, where NPT (must be at least 3) is the number of coordinate pairs defined with PTXY command. Also, a line will be defined between each point pair on the top and bottom face. See the RPRISM and RPR4 commands for other ways to create prisms.

## Menu Paths

This command cannot be accessed from a menu.

## PRITER

## Prints solution summary data.

POST1:Listing
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Notes

Prints solution summary data (such as time step size, number of equilibrium iterations, convergence values, etc.) from a static or full transient analysis. All other analyses print zeros for the data.

## Menu Paths

## Main Menu>General Postproc>List Results>Iteration Summry Utility Menu>List>Results>Iteration Summry

## PRJSOL, Item, Comp

## Prints joint element output.

POST1:Results
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS
Item
Label identifying the item. Some items also require a component label.
DISP
Relative displacements.
ROT
Relative rotations.
VEL
Relative linear velocities.

## OMG

Relative angular velocities.
ACC
Relative linear accelerations.
DMG
Relative angular accelerations.
SMISC
Summable miscellaneous quantities.

## Comp

Component of the item (if required). For Item = DISP, ROT, VEL, OMG, ACC, and DMG, enter the direction label, $\mathrm{X}, \mathrm{Y}$, or Z . For Item $=$ SMISC, enter a valid number.

## Notes

Prints element output for the MPC184 joint element. The joint element quantities printed are the values for the free or unconstrained relative degrees of freedom.

This command is valid in POST1 only.

## Menu Paths

This command cannot be accessed from a menu.

PRNEAR, Lab, Opt, KCN, VAL1, VAL2, VAL3, VAL4, VAL5, VAL6, VAL7

## Prints the electric field in the near zone exterior to the equivalent source surface.

POST1:Special Purpose
MP <> <> <> <> <> <> <> <> EH <> PP <> <> <>

## Lab

Print the maximum E-file:

## POINT

at the point ( $x, y, z$ )

## SPHERE

on the spherical structure

## PATH

along the path
Opt
SUM - the maximum total E-field (default)
X - the maximum E-field in x -direction
Y - the maximum E-field in y -direction
Z - the maximum E-field in z-direction
PHI - the maximum E-field in $\Phi$-direction
THETA - the maximum E-field in $\Theta$-direction
R - the maximum E-field in r-direction
LHCP - the maximum left-hand circularly polarized component
RHCP - the maximum right-hand circularly polarized component
ARCP - the circular polarization axial ratio
LW3X - the maximum dominant component for an x-polarized aperture with Ludwig's third definition of cross definition
LW3Y - the maximum dominant component for an y-polarized aperture with Ludwig's third definition of cross definition
ARCP - the linear polarization axial ratio
KCN
KCN is the coordinate system reference number. It may be 0 (Cartesian) or any previously defined local coordinate system number ( $>10$ ). Defaults to 0 .

VAL1, VAL2, VAL3, ..., VAL 7
For $L a b=$ POINT:
VAL1
$x$ coordinate value

## VAL2

y coordinate value

VAL3
z coordinate value
For $L A B=$ SPHERE:
VAL1
the radius of spherical surface in spherical coordinate system.
VAL2
starting $\phi$ angle (degree) in the spherical coordinate system. Defaults to 0.
VAL3
ending $\phi$ angle (degree) in the spherical coordinate system. Defaults to 0 .
VAL4
Number of divisions between the starting and ending $\phi$ angles for data computations. Defaults to 0.

## VAL5

starting $\theta$ angle (degree) in the spherical coordinate system. Defaults to 0 .
VAL6
ending $\theta$ angle (degree) in the spherical coordinate system. Defaults to 0 .
VAL 7
Number of divisions between the starting and ending $\theta$ angles for data computations. Defaults to 0.

For $L a b=$ PATH, PRNEAR computes the electric field for the path data points for the path currently defined by the PATH and PPATH commands.

## Notes

PRNEAR uses the equivalent source principle to calculate the electric field in the near zone exterior to the equivalent source surface (flagged with the Maxwell surface flag in the preprocessor) for one of the following locations:

- A point $X, Y, Z$ in the KAN coordinate system
- A spherical surface in the KAN coordinate system
- A path defined by the PATH and PPATH commands

To list the electromagnetic field results for a path, use the PRPATH command.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

This command cannot be accessed from a menu.

PRNLD, Lab, TOL, Item

## Prints the summed element nodal loads.

POST1: Results
MP ME ST PR PRN <> <> <> EM EH DY PP <> EME MFS

## Lab

Nodal reaction load type. If blank, use the first ten of all available labels. Valid labels are: Structural force labels: FX, FY or FZ (forces); F (includes FX, FY and FZ); MX, MY or MZ (moments); M (includes MX, MY and MZ). Thermal force labels: HEAT, HBOT, HE2, HE3, . . , HTOP (heat flow). Fluid force labels: FLOW (fluid flow); VFX, VFY and VFZ (fluid "forces"); VF (includes VFX, VFY and VFZ). Electric force labels: AMPS (current flow); CHRG (charge); CURT (current); VLTG (voltage drop). Magnetic force labels: FLUX (magnetic flux); CSGX, CSGY, CSGZ (magnetic current segments); CSG (includes CSGX, CSGY and CSGZ).

## TOL

Tolerance value about zero within which loads are not printed. Defaults to $1.0 \mathrm{E}-9$ times the absolute value of the maximum load on the selected nodes. If zero, print all nodal loads.

## ITEM

Selected set of nodes.

## (blank)

Prints the summed element nodal loads for all selected nodes (default), excluding contact elements.
CONT
Prints the summed element nodal loads for contact nodes only.
вотн
Prints the summed element nodal loads for all selected nodes, including contact nodes.

## Notes

Prints the summed element nodal loads (forces, moments, heat flows, flux, etc.) for the selected nodes in the sorted sequence. Results are in the global Cartesian coordinate directions unless transformed [RSYS]. Zero values (within a tolerance range) are not printed. Loads applied to a constrained degree of freedom are not included. The FORCE command can be used to define which component of the nodal load is to be used (static, damping, inertia, or total).

By default, PRNLD excludes elements TARGE169 - CONTA177. PRNLD,,,CONT will only account for nodal forces on selected contact elements (CONTA171 - CONTA177). PRNLD,,,BOTH will account for nodal forces on all selected nodes, including contact nodes.

## Using PRNLD in a Spectrum or PSD Analysis (ANTYPE, SPECTR)

When using PRNLD in a spectrum analysis after the combination file has been input (/INPUT,,MCOM), or in a PSD analysis when postprocessing 1 -sigma results (loadstep 3, 4, or 5), the following message will display in the printout header:
(Spectrum analysis summation is used)
This message means that the summation of the element nodal forces is performed prior to the combination of those forces. In this case, RSYS does not apply. The forces are in the nodal coordinate systems, and the vector sum is always printed in the global coordinate system.

Because modal displacements cannot be used to calculate contact element nodal forces, ITEM does not apply to spectrum and PSD analyses.

## Menu Paths

Main Menu>General Postproc>List Results>Nodal Loads Utility Menu>List>Results>Nodal Loads

## PRNSOL, Item, Comp

## Prints the nodal solution results.

POST1:Results
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Item

Label identifying the item. Valid item labels are shown in Table 248: PRNSOL - Valid Item and Component Labels (p. 1342) below. Some items also require a component label.

## Comp

Component of the item (if required). Valid component labels are shown in Table 248: PRNSOL - Valid Item and Component Labels (p. 1342) below. Defaults to COMP.

## Notes

Prints the nodal solution results for the selected nodes in the sorted sequence. For example, PRNSOL,U,X prints the $X$ component of displacement vector $U$ (that is, the $U X$ degree of freedom). Component results are in the global Cartesian coordinate directions unless transformed (RSYS). Various element results also depend upon the recalculation method and the selected results location (AVPRIN, RSYS, LAYER, SHELL, and NSEL). If the LAYER command is issued, then the resulting output is listed in full graphics mode (/GRAPHICS,FULL). You can use the FORCE command to define which component of the nodal load (static, damping, inertia, or total) should be used.

PowerGraphics can affect your nodal solution listings. For PowerGraphics (/GRAPHICS,POWER), results are listed only for the model exterior surfaces.

When shell element types are present, results are output on a surface-by-surface basis. For shell elements, such as SHELL181 or SHELL281, and for ELBOW290, printed output is for both the top and bottom surfaces. For solid elements such as SOLID185, the output is averaged for each surface and printed as follows:

- For a node at a vertex, three lines are output (one printed line for each surface).
- For a node on an edge, two lines are output (one printed line for each surface).
- For nodes on a face, one value is output.
- For nodes interior to the volume, no printed values are output.

If a node is common to more than one element, or if a geometric discontinuity exists, several conflicting listings may result. For example, a corner node incorporating results from solid elements and shell elements could yield as many as nine different results; the printed output would be averages at the top and bottom for the three shell surfaces plus averages at the three surfaces for the solid, for a total of nine lines of output. ANSYS does not average result listings across geometric discontinuities when shell element types are present. It is important to analyze the listings at discontinuities to ascertain the significance of each set of data.

The printed output for full graphics (/GRAPHICS,FULL) follows the standard ANSYS convention of averaging results at the node. For shell elements, the default for display is TOP so that the results for the top of the shell are averaged with the other elements attached to that node.

If an NSORT, ESORT or /ESHAPE command is issued with PowerGraphics activated, then the PRNSOL listings will be the same as in full graphics mode (/GRAPHICS,FULL). The items marked with [2 (p. 1345)] are not supported by PowerGraphics. To print midside nodes, you must first issue an /EFACET,2 command.

## Table 248 PRNSOL - Valid Item and Component Labels

| Item | Comp | Description |
| :---: | :---: | :---: |
| Valid item and component labels for nodal degree of freedom results are: |  |  |
| U | X, Y, Z | $X, Y$, or $Z$ structural displacement. |
| " | COMP | $X, Y$, and $Z$ structural displacements and vector sum. |
| ROT | X, Y, Z | $X, Y$, or $Z$ structural rotation. |
| " | COMP | $X, Y$, and $Z$ structural rotations and vector sum. |
| TEMP [1] |  | Temperature. |
| PRES |  | Pressure. |
| VOLT |  | Electric potential. |
| MAG |  | Magnetic scalar potential. |
| V | $X, Y, Z$ | $X, Y$, or $Z$ fluid velocity in a fluid analysis, or $X, Y$, or $Z$ velocity in an ANSYS LS-DYNA analysis. |
| " | COMP | $X, Y$, and $Z$ fluid velocity and vector sum in a fluid analysis, or $X, Y$, and $Z$ velocity and vector sum in an ANSYS LS-DYNA analysis. |
| A | $X, Y, Z$ | $X, Y$, or $Z$ magnetic vector potential in an electromagnetic analysis, or $X, Y$, or $Z$ acceleration in an ANSYS LS-DYNA analysis. |
| " | COMP | $X, Y$, and $Z$ magnetic vector potential and vector sum in an electromagnetic analysis, or $X, Y$, and $Z$ acceleration and vector sum in an ANSYS LSDYNA analysis. |
| VEL | X, Y, Z | $\mathrm{X}, \mathrm{Y}$, or Z velocity in a structural transient dynamic analysis (ANTYPE,TRANS). |
| " | COMP | $X, Y$, and $Z$ velocity and vector sum in a structural transient dynamic analysis (ANTYPE,TRANS). |
| ACC | $X, Y, Z$ | $\mathrm{X}, \mathrm{Y}$, or Z acceleration in a structural transient dynamic analysis (ANTYPE,TRANS). |
| " | COMP | $X, Y$, and $Z$ acceleration and vector sum in a structural transient dynamic analysis (ANTYPE,TRANS). |
| OMG | $X, Y, Z$ | $X, Y$, or $Z$ rotational velocity in a structural transient dynamic analysis (ANTYPE,TRANS). |
| " | COMP | $X, Y$, and $Z$ rotational velocity and vector sum in a structural transient dynamic analysis (ANTYPE,TRANS). |


| Item | Comp | Description |
| :---: | :---: | :---: |
| DMG | X, Y, Z | $\mathrm{X}, \mathrm{Y}$, or Z rotational acceleration in a structural transient dynamic analysis (ANTYPE,TRANS). |
| " | COMP | $X, Y$, and $Z$ rotational acceleration and vector sum in a structural transient dynamic analysis (ANTYPE,TRANS). |
| CURR |  | Current. |
| EMF |  | Electromotive force drop. |
| ENKE |  | Turbulent kinetic energy. |
| ENDS |  | Turbulent energy dissipation. |
| SPOn |  | Mass fraction of species $n$, where $n=1$ to 6 (FLOTRAN). If a species is given a user-defined name [MSSPEC], use that name instead of SPOn [2]. |
| DOF |  | All available degree of freedom labels (10 maximum). |
| FICT | TEMP | Fictive temperature. |
| Valid item and component labels for element results are: |  |  |
| S | COMP | X, Y, Z, XY, YZ, and XZ component stresses. |
| " | PRIN | S1, S2, S3 principal stresses, SINT stress intensity, and SEQV equivalent stress. |
| EPEL | COMP | Component elastic strains. |
| " | PRIN | Principal elastic strains, strain intensity, and equivalent strain. |
| " | FAIL | Maximum Strain Failure Criteria. [2][4] |
| EPTH | COMP | Component thermal strains. |
| " | PRIN | Principal thermal strains, strain intensity, and equivalent strain. |
| EPPL | COMP | Component plastic strains. |
| " | PRIN | Principal plastic strains, strain intensity, and equivalent strain. |
| EPCR | COMP | Component creep strains. |
| " | PRIN | Principal creep strains, strain intensity, and equivalent strain. |
| EPSW |  | Swelling strain. |
| EPTO | COMP | Component total mechanical strains (EPEL + EPPL + EPCR). |
| " | PRIN | Principal total mechanical strains, strain intensity, and equivalent strain. |
| EPTT | COMP | Component total mechanical and thermal strains (EPEL + EPPL + EPCR + EPTH). |
| " | PRIN | Principal total mechanical and thermal strains, strain intensity, and equivalent strain. |
| NL |  | Nonlinear items (SEPL, SRAT, HPRES, EPEQ, CREQ, PSV, PLWK). |
| SEND |  | Elastic, plastic, and creep strain energy density. |
| CDM | DMG | Damage variable |


| Item | Comp | Description |
| :---: | :---: | :---: |
| " | LM | Maximum previous strain energy for virgin material |
| FAIL |  | Failure criteria [2 (p. 1345)][4 (p. 1346)]. |
|  |  | Default components: Maximum of all failure criteria defined at current location (MAX), maximum strain (EMAX), maximum stress (SMAX), Tsai-Wu Strength Index (TWSI), inverse of Tsai-Wu Strength Ratio Index (TWSR). |
|  |  | Other available components: Hashin Fiber Failure (HFIB), Hashin Matrix Failure (HMAT), Puck Fiber Failure (PFIB), Puck Matrix Failure (PMAT), and any user-defined failure criteria (USR1 through USR9) [5 (p. 1346)]. |
|  |  | To activate or remove failure criteria, issue the FCTYP command. |
| SVAR | 1, 2, 3, ... N | State variable. |
| GKS | COMP | $X, X Y, X Z$ component gasket stress. |
| GKD | COMP | $X, X Y, X Z$ component gasket total closure. |
| GKDI | COMP | $\mathrm{X}, \mathrm{XY}, \mathrm{XZ}$ component gasket total inelastic closure. |
| GKTH | COMP | $\mathrm{X}, \mathrm{XY}, \mathrm{XZ}$ component thermal closure. |
| SS | X, XY, XZ | Interface traction (stress). |
| SD | $X, X Y, X Z$ | Interface separation |
| CONT |  | Contact items (STAT[3], PENE, PRES, SFRIC, STOT, SLIDE, GAP, FLUX, CNOS, FPRS). See component descriptions in PLNSOL. |
| TG | COMP | Component thermal gradients and vector sum. |
| TF | COMP | Component thermal fluxes and vector sum. |
| PG | COMP | Component pressure gradients and vector sum. |
| EF | COMP | Component electric fields and vector sum. |
| D | COMP | Component electric flux densities and vector sum. |
| H | COMP | Component magnetic field intensities and vector sum. |
| B | COMP | Component magnetic flux densities and vector sum. |
| FMAG | COMP | Component electromagnetic forces and vector sum [2]. |
| JC | COMP | Conduction current density for elements that support conduction current calculation. Components ( $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ ) and vector sum (SUM). [2]. |
| BFE |  | Body temperatures (calculated from applied temperatures) as used in solution (area and volume elements only). |
| TOPO |  | Densities used for topological optimization. |
| CAP | C0,XO,KO,ZONE, DPLS,VPLS | Material cap plasticity model only: Cohesion; hydrostatic compaction yielding stress; I1 at the transition point at which the shear and compaction envelopes intersect; zone $=0$ : elastic state, zone $=1$ : compaction zone, zone $=2$ : |


| Item | Comp | Description |
| :---: | :---: | :---: |
|  |  | shear zone, zone $=3$ : expansion zone; effective deviatoric plastic strain; volume plastic strain. |
| EDPC | CSIG,CSTR | Material EDP creep model only (not including the cap model): Equivalent creep stress; equivalent creep strain. |
| ESIG | X,Y,Z,XY,YZ,ZX | Components of Biot's effective stress. |
| " | 1,2,3 | Principal stresses of Biot's effective stress. |
| " | INT | Stress intensity of Biot's effective stress. |
| " | EQV | Equivalent stress of Biot's effective stress. |
| DPAR | TPOR | Total porosity (Gurson material model). |
| " | GPOR | Porosity due to void growth. |
| " | NPOR | Porosity due to void nucleation. |
| FFLX | X, Y, Z | Fluid flow flux in poromechanics. |
| Valid item and component labels for FLOTRAN nodal results are: |  |  |
| TTOT |  | Total temperature. |
| HFLU |  | Heat flux. |
| HFLM |  | Heat transfer (film) coefficient. |
| COND |  | Fluid laminar conductivity. |
| PCOE |  | Pressure coefficient. |
| PTOT |  | Total (stagnation) pressure. |
| MACH |  | Mach number. |
| STRM |  | Stream function. (2-D applications only.) |
| DENS |  | Fluid density. |
| VISC |  | Fluid laminar viscosity. |
| SPHT |  | Specific heat. |
| EVIS |  | Fluid effective viscosity. |
| CMUV |  | Turbulent viscosity coefficient. |
| ECON |  | Fluid effective conductivity. |
| YPLU |  | $\mathrm{Y}+$, a turbulent law of the wall parameter. |
| TAUW |  | Shear stress at the wall. |
| SFTS |  | Surface tension coefficient. |
| LMDn |  | Laminar mass diffusion coefficient for species $n$, where $n$ $=1$ to 6 . |
| EMDn |  | Effective mass diffusion coefficient for species $n$, where $n$ $=1$ to 6 . |
| RDFL |  | Radiation heat flux. |

1. For SHELL131 and SHELL132 elements with $\operatorname{KEYOPT}(3)=0$ or 1 , use the labels TBOT, TE2, TE3, $\ldots$, TTOP instead of TEMP.
2. Not supported by PowerGraphics
3. For the CONT items for elements CONTA171 through CONTA177, the reported data is averaged across the element. To obtain a more meaningful STAT value, use the PRESOL command.
4. Works only if failure criteria information is provided. (For more information, see the documentation for the FC and TB commands.)
5. Works only if user failure criteria routine is provided.

## Menu Paths

# Main Menu>General Postproc>List Results>Nodal Solution Main Menu>General Postproc>List Results>Sorted Listing>Sort Nodes Utility Menu>List>Results>Nodal Solution 

PROD, IR, IA, IB, IC, Name, ---,--, FACTA, FACTB, FACTC

## Multiplies variables.

POST26:Operations
MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS
IR
Arbitrary reference number assigned to the resulting variable (2 to NV [NUMVAR]). If this number is the same as for a previously defined variable, the previously defined variable will be overwritten with this result.

IA, IB, IC
Reference numbers of the three variables to be operated on. If only two leave IC blank. If only one, leave IB blank also.

## Name

Thirty-two character name identifying the variable on printouts and displays. Embedded blanks are compressed for output.

## --, --

Unused fields

## FACTA, FACTB, FACTC

Scaling factors (positive or negative) applied to the corresponding variables (default to 1.0 ).

## Notes

Multiplies variables (up to three at once) according to the operation:

$$
I R=(F A C T A \times I A) \times(F A C T B \times I B) \times(F A C T C \times I C)
$$

## Menu Paths

Main Menu $>$ TimeHist Postpro $>$ Math Operations $>$ Multiply

## PRORB

## Prints the orbital motion characteristics of a rotating structure

POST1:Results
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS

## Notes

When a structure is rotating and the Coriolis or gyroscopic effect is taken into account (CORIOLIS), nodes lying on the rotation axis generally exhibit an elliptical orbital motion. The PRORB command prints out the orbit characteristics A, B, PSI, PHI, YMAX and ZMAX of each rotating node, where

A is the semi-major axis.
$B$ is the semi-minor axis.
PSI is the angle between local y axis and major axis.
PHI is the angle between initial position ( $t=0$ ) and major axis.
YMAX is the maximum displacement along local $y$ axis.
ZMAX is the maximum displacement along local $z$ axis.
Angles PSI and PHI are in degrees and within the range of -180 through +180 . For more information about orbit definition, see Orbits in the Advanced Analysis Techniques Guide.

To display the characteristics of the orbital path traversed by each node, issue the PLORB command.
The PRORB command is valid for line elements (such as BEAM188, BEAM189, PIPE288, and PIPE289).
Your model must also involve a rotational velocity (OMEGA or CMOMEGA) with Coriolis enabled in a stationary reference frame (CORIOLIS,,,,RefFrame = ON).

A SET command should be issued after PRORB to ensure proper output for subsequent postprocessing commands.

The coordinate system for displaying nodal results must be global Cartesian (RSYS,KCN =0).

## Menu Paths

## Main Menu>General Postproc>Rotor Dynamics>Plot orbit

## PRPATH, Lab1, Lab2, Lab3, Lab4, Lab5, Lab6

Prints path items along a geometry path.

> POST1:Path Operations
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Lab1, Lab2, Lab3, . . . , Lab6

Labels identifying the path items to be printed. Up to six items may be printed at a time. Predefined path geometry items $\mathrm{XG}, \mathrm{YZ}, \mathrm{ZG}$, and S [PDEF] may also be printed.

## Notes

Prints path items with respect to a geometry path (as defined by the PATH and PPATH commands). Path items and their labels must have been defined with the PDEF, PVECT, PCALC, PDOT, PCROSS, or PRNEAR commands. Path items may also be displayed with the PLPATH and PLPAGM commands. See the PRANGE command for range control of the path.

## Menu Paths

# Main Menu>General Postproc>List Results>Path Items <br> Main Menu>General Postproc>Path Operations>Plot Path Item>List Path Items <br> Utility Menu>List>Results>Path Data 

## PRRFOR, Lab

## Used with the FORCE command. Prints the constrained node reaction solution.

POST1:Results
MP ME ST PR PRN <> <> <> EM EH DY PP <> EME MFS

## Lab

Nodal reaction load type. If blank, use the first ten of all available labels. Valid labels are: Structural force labels: $F X, F Y$ or $F Z$ (forces); $F$ (FX, FY and FZ); MX, MY or MZ (moments); M (MX, MY and MZ). Thermal force labels: HEAT, HBOT, HE2, HE3, . . . HTOP (heat flow). Fluid force labels: FLOW (fluid flow); VFX, VFY and VFZ (fluid "forces"); VF (VFX, VFY and VFZ). Electric force labels: AMPS (current flow); CHRG (charge); CURT (current); VLTG (voltage drop). Magnetic force labels: FLUX (magnetic flux); CSGX, CSGY, CSGZ (magnetic current segments); CSG (CSGX, CSGY and CSGZ); CURT (current), VLTG (voltage drop).

## Notes

PRRFOR has the same functionality as the PRRSOL command; use PRRFOR instead of PRRSOL when a FORCE command has been issued.

PRRFOR cannot be used when a squaring operation has been carried out on a load case. PRRSOL values are correct in this case, because they are squared after summing the nodal forces.

## Using PRRFOR in a Spectrum or PSD Analysis (ANTYPE, SPECTR)

When using PRRFOR in a spectrum analysis after the combination file has been input (/INPUT,,MCOM), or in a PSD analysis when postprocessing 1 -sigma results (loadstep 3,4, or 5), the following message will display in the printout header:
(Spectrum analysis summation is used)
This message means that the summation of the element nodal forces is performed prior to the combination of those forces. In this case, RSYS does not apply, and the reaction forces are in the nodal coordinate systems.

## Menu Paths

This command cannot be accessed from a menu.

## PRRSOL, Lab

Prints the constrained node reaction solution.

POST1:Results<br>MP ME ST PR PRN <> <> <> EM EH DY PP <> EME MFS

## Lab

Nodal reaction load type. If blank, use the first ten of all available labels. Valid labels are: Structural force labels: FX, FY or FZ (forces); F (FX, FY and FZ); MX, MY or MZ (moments); M (MX, MY and MZ); BMOM (bimoments). Thermal force labels: HEAT, HBOT, HE2, HE3, . . HTOP (heat flow). Fluid force labels: FLOW (fluid flow); VFX, VFY and VFZ (fluid "forces"); VF (VFX, VFY and VFZ). Electric force labels: AMPS (current flow); CHRG (charge); CURT (current); VLTG (voltage drop). Magnetic force labels: FLUX (magnetic flux); CSGX, CSGY, CSGZ (magnetic current segments); CSG (CSGX, CSGY and CSGZ); CURT (current), VLTG (voltage drop).

## Notes

Prints the constrained node reaction solution for the selected nodes in the sorted sequence. For coupled nodes and nodes in constraint equations, the sum of all reactions in the coupled or constraint equation set appears at the primary node of the set. Results are in the global Cartesian coordinate directions unless transformed [RSYS]. PRRSOL is not valid if any load is applied to a constrained node in the direction of the constraint and any of the following is true: a) LCOPER has been used, or b) LCASE has been used to read from a load case file or c) the applied loads and constraints in the database are not the ones used to create the results data being processed.

Use PRRFOR instead of PRRSOL with the FORCE command.

## Menu Paths

## Main Menu>General Postproc>List Results>Reaction Solu Utility Menu>List>Results>Reaction Solution

## PRSECT, RHO, KBR

## Calculates and prints linearized stresses along a section path.

POST1:Path Operations
MP ME ST PR PRN <> <> <> <> <> DY PP <> EME MFS
RHO
In-plane ( $\mathrm{X}-\mathrm{Y}$ ) average radius of curvature of the inside and outside surfaces of an axisymmetric section. If zero (or blank), a plane or 3-D structure is assumed. If nonzero, an axisymmetric structure is assumed. Use any large number (or -1 ) for an axisymmetric straight section.

## KBR

Through-thickness bending stresses key for an axisymmetric analysis (RHO $\neq 0$ ):
0
Include the thickness-direction bending stresses.
1
Ignore the thickness-direction bending stresses.

## 2

Include the thickness-direction bending stress using the same formula as the Y (axial direction ) bending stress. Also use the same formula for the shear stress.

## Notes

You may choose to linearize the stresses through a section and separate them into categories for various code calculations. PRSECT calculates and reports linearized stresses along a section path. The linearized stresses are also separated into membrane, bending, membrane plus bending, peak, and total stress categories.

First, define your section path using the PATH and PPATH (with the NODE option) commands. Your path must lie entirely within the selected set of elements (that is, there must be no element gaps along the path). PATH and PPATH are used only to retrieve the two end nodes. The path data is not retained. The section path is defined by the two end nodes, and by 47 intermediate points that are automatically determined by linear interpolation in the active display coordinate system [DSYS]. The number and location of the intermediate points are not affected by the number of divisions set by PATH,,,,nDiv.

Your linearized component stress values are obtained by interpolating each element's average corner nodal values along the section path points within each path element. PRSECT reports the linearized component and principal stresses for each stress category at the beginning, mid-length, and end of the section path. PRPATH can be used to report the total stresses at the intermediate points.

Section paths may be through any set of solid (2-D plane, 2-D axisymmetric or 3-D) elements. However, section paths are usually defined to be through the thickness of the structure and normal to the inner and outer structure surfaces. Section paths (in-plane only) may also be defined for shell element structures. See the Theory Reference for the Mechanical APDL and Mechanical Applications for details.

If the RHO option is set to indicate the axisymmetric option (non-zero), PRSECT reports the linearized stresses in the section coordinates ( $S X$ - along the path, $S Y$ - normal to the path, and $S Z$ - hoop direction). If the RHO option is set to indicate the 2-D planar or 3-D option (zero or blank), PRSECT reports the linearized stresses in the active results coordinate system [RSYS]. If the RHO option is zero or blank and either RSYS, SOLU or RSYS, -1 are active, the linearized stresses are calculated and reported in the global Cartesian coordinate system. It is recommended that linearized stress calculations be performed in a rectangular coordinate system. Principle stresses are recalculated from the component stresses and are invariant with the coordinate system as long as SX is in the same direction at all points along the defined path. The PLSECT command displays the linearized stresses in the same coordinate system as reported by PRSECT.

Stress components through the section are linearized by a line integral method and separated into constant membrane stresses, bending stresses varying linearly between end points, and peak stresses (defined as the difference between the actual (total) stress and the membrane plus bending combination).

For nonaxisymmetric structures, the bending stresses are calculated such that the neutral axis is at the midpoint of the path. Axisymmetric results include the effects of both the radius of revolution (automatically determined from the node locations) and the in-plane average radius of curvature of the section surfaces (user input).

For axisymmetric cases, ANSYS calculates the linearized bending stress in the through-thickness direction as the difference between the total outer fiber stress and the membrane stress if $K B R=1$. The calculation method may be conservative for locations with a highly nonlinear variation of stress in the through-thickness direction. Alternatively, you can specify $K B R=2$ to calculate the bending stress using the same method and formula as the Y (axial direction) bending stress. For more information, see the discussion of axisymmetric cases (specifically Equation 19-40) in the Theory Reference for the Mechanical APDL and Mechanical Applications.

Portions of this command are not supported by PowerGraphics [/GRAPHICS,POWER].

## Menu Paths

# Main Menu>General Postproc>List Results>Linearized Strs <br> Main Menu>General Postproc>Path Operations>List Linearized Utility Menu>List>Results>Linearized Stresses 

PRSYZ, Fname, Ext, Lab, Opt, VAL1, VAL2, VAL3, VAL4, VAL5, VAL6, VAL7, VAL8, VAL9, VAL10, VAL11, VAL12, VAL13, VAL14, VAL15, VAL16

## Converts and lists scattering, admittance, or impedance parameters.

POST1:Special Purpose<br>MP <> <> <> <> <> <> <> <> EH <> PP <> <> <>

## Fname

File name and directory path of a Touchstone file (248 characters maximum, including the characters needed for the directory path). A Touchstone file may be created in ANSYS by performing a frequency sweep using the SPSWP command macro, or may it be supplied from another source. An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

## Ext

Extension of Touchstone file (.snp where n is the number of ports).
Lab
Output parameters:
S
Scattering parameters (default)
Y
Admittance parameters
Z
Impedance parameters

## SNRM

Renormalized S-parameters

## Opt

Format of Touchstone file:
MA
Magnitude and angle
DB
Magnitude and angle with magnitude in dB units. Only available for scattering parameters (Lab = S).

RI
Real and imaginary parts (default).
VAL1, VAL2, VAL3, . . . VAL1 6
Port characteristic impedance (ohms). Defaults to 50 ohms. Only used for $L a b=$ SNRM.

## Notes

For $L a b=$ SNRM, the renormalized S-parameters are output to a new Touchstone file with the name Fname_Sparm.snp. Up to 16 ports can be renormalized.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

## Main Menu>General Postproc>List Results>Field Extension>S,Y,Z Parameters

PRTIME, TMIN, TMAX

## Defines the time range for which data are to be listed.

POST26:Listing
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## TMIN

Minimum time (defaults to the first point stored).
TMAX
Maximum time (defaults to the last point stored).

## Command Default

Use the previously defined range [TIMERANGE].

## Notes

Defines the time (or frequency) range (within the range stored) for which data are to be listed.

## Menu Paths

Main Menu>TimeHist Postpro>Settings>List

PRVAR, NVAR1, NVAR2, NVAR3, NVAR4, NVAR5, NVAR6

## Lists variables vs. time (or frequency).

POST26:Listing
MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS

## NVAR1, NVAR2, NVAR3, . . . , NVAR6

Variables to be displayed, defined either by the reference number or a unique thirty-two character name. If duplicate names are used the command will print the data for the lowest-numbered variable with that name.

## Notes

Lists variables vs. time (or frequency). Up to six variables may be listed across the line. Time column output format can be changed using the /FORMAT command arguments Ftype, NWIDTH, and DSIGNF.

## Menu Paths

## Main Menu>TimeHist Postpro>List Variables

## PRVAROPT, Lab1, Lab2, Lab3, Lab4, Lab5, Lab6, Lab7, Lab8, Lab9, Lab10

## Lists up to ten optimization parameters.

OPTIMIZATION: Display
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Lab1, Lab2, Lab3, . . . , Lab10

Names of the parameters to be listed.

## Notes

Lists up to ten optimization parameters at a time. Parameters are listed vs. the XVAROPT parameter (defaults to set number) in the order corresponding to an ascending order of the XVAROPT parameter.

## Menu Paths

Main Menu>Design Opt>Design Sets>Graphs/Tables

PRVECT, Item, Lab2, Lab3, LabP
Prints results as vector magnitude and direction cosines.

> POST1: Results POST1:Element Table MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Item

Predefined vector item (from Table 249: PRVECT - Valid Item and Component Labels (p. 1354) below) or a label identifying the i-component of a user-defined vector.

## Lab2

Label identifying the j-component of a user-defined vector. In most cases, this value must be blank if Item is selected from Table 249: PRVECT - Valid Item and Component Labels (p. 1354). Individual principal stresses (Item $=S$ ) or principal strains ( $I t e m=E P x x$ ) may be printed by specifying the value as 1,2 , or 3.

Lab3
Label identifying the k-component of a user-defined vector. Must be blank if Item is selected from list below or for 2-D user defined vector.

## LabP

Label assigned to resultant vector for printout labeling (defaults to Item).

## Notes

Prints various solution results as vector magnitude and direction cosines for the selected nodes and/or elements. For example, PRVECT, U prints the displacement magnitude and its direction cosines for all selected nodes. For nodal degree of freedom vector results, direction cosines are with respect to the results coordinate system RSYS. For element results, direction cosines are with respect to the global Cartesian system. Item components may be printed with the PRNSOL command. Various results also depend upon the recalculation method and the selected results location [LAYER, SHELL, NSEL, and ESEL]. Items may be selected from a set of recognized vector labels (Item) or a vector may be defined from up to three scalar labels (Item,Lab2,Lab3). Scalar labels may be user-defined with the ETABLE command.

Portions of this command are not supported by PowerGraphics [/GRAPHICS,POWER].
Table 249 PRVECT - Valid Item and Component Labels

\left.| Item | Comp |
| :---: | :--- |
| Valid item labels for nodal degree of freedom vector results are: |  |$\right]$| Structural displacement vector magnitude and direction |
| :--- |
| cosines. |


| Item | Comp | | |
|---|---|---|---|
| JS | $\begin{array}{c}\text { Description }\end{array}$ |
| Source current density vector sum and direction cosines |  |
| for low-frequency magnetic analyses. Total current density |  |
| vector sum and direction cosines (sum of conduction and |  |
| displacement current densities) in low frequency electric |  |
| analyses. |  |$]$| Total measurable current density vector sum and direction |
| :--- |
| cosines in low-frequency electromagnetic analyses. (Con- |
| duction current density vector sum and direction cosines |
| in a low-frequency electric analysis.) |

## Menu Paths

## Main Menu>General Postproc>List Results>Vector Data Utility Menu>List>Results>Vector Data

## PSCONTROL, Option, Key

Turn shared-memory parallel operations on or off during solution.

> SOLUTION: Analysis Options
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Option

Specify the operations for which you will enable/disable parallel behavior:

## ALL

Turn parallel on/off for all areas.
PREP
Turn parallel on/off during preprocessing (/PREP7).

## SOLU

Turn parallel on/off during solution (/SOLU).

## FORM

Turn parallel on/off during element matrix generation.

## SOLV

Turn parallel on/off during equation solver.

## RESU

Turn parallel on/off during element results calculation.
POST
Turn parallel on/off during postprocessing (/POST1 and /POST26).

## STAT

List parallel operations that are enabled/disabled.
Key
Option control key. Used for all Option values, except STAT.

## ON

Turn parallel operation on.

## OFF

Turn parallel operation off.

## Command Default

Leave all parallel operations enabled (ON) if multiple processors under Shared-memory ANSYS are used.

## Notes

Use this control on shared memory parallel operations, for example, when you encounter minor discrepancies in a nonlinear solution when using different numbers of processors. A parallel operation applied to the element matrix generation can produce a different nonlinear solution with a different number of processors. Although the nonlinear solution converges to the same nonlinear tolerance, the minor discrepancy created may not be desirable for consistency.

Turning parallel behavior on/off for the solution (Option $=$ SOLU) supercedes the activation/deactivation of parallel behavior for element matrix generation (FORM), equation solver (SOLV), and element results calculation (RESU).

The SOLV option supports only the sparse direct, PCG, and AMG solvers [EQSLV,SPARSE (or PCG, or AMG)]. No other solvers are supported by this option.

This command applies only to shared-memory architecture. It does not apply to the Distributed ANSYS product.

This command does not apply to FLOTRAN analyses.

## Menu Paths

This command cannot be accessed from a menu.

PSCR, Kywrd, KEY

## Specifies various PostScript options.

GRAPHICS: Set Up
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
If Kywrd = CMAP, command format is PSCR,CMAP,INDEX,IRED,IGRN,IBLU.

## INDEX

Color map index (0 to 15,128 to 255 ).

## IRED

Red intensity (0 to 100).
IGRN
Green intensity (0 to 100).
IBLU
Blue intensity (0 to 100).

If Kywrd = LWID, command format is PSCR,LWID,KYLWID.

## KYLWID

Line width factor (1 to 99, initially 3 ).
If Kywrd = COLOR, command format is PSCR,COLOR,KEY.

## KEY

Color key:
0
Monochrome.

1
16 colors.
2
$256+$ colors.
3
Shaded monochrome.
If Kywrd = TRANX, command format is PSCR,TRANX,OFFSET.

## OFFSET

X translational offset (initially 592).
If Kywrd $=$ TRANY, command format is PSCR,TRANY,OFFSET.

## OFFSET

Y translational offset (initially 25).
If Kywrd = ROTATE, command format is PSCR,ROTATE,ANGLE.

## ANGLE

Rotation angle in degrees (initially 90.0).

If Kywrd = SCALE, command format is PSCR,SCALE,SCALE.

## SCALE

Scale factor (initially 0.238).
If Kywrd = TIFF, command format is PSCR,TIFF,KEY. Used to add a Tagged Image File Format (TIFF) bitmap preview image to the encapsulated PostScript file.

KEY
Preview image key:
0
Do not include TIFF bitmap preview image.
1
Include wireframe TIFF bitmap preview image.
2
Include shaded TIFF bitmap preview image.
If Kywrd = EPSI, command format is PSCR,EPSI,KEY. Used to add an Encapsulated PostScript Interchange (EPSI) format bitmap preview image to the encapsulated PostScript file.

## KEY

Preview image key:
0
Do not include EPSI bitmap preview image.
1
Include wireframe EPSI bitmap preview image.
2
Include shaded EPSI bitmap preview image.
If Kywrd = PAPER, command format is PSCR,PAPER,SIZE,ORIENT.

## SIZE

Standard paper sizes, A, B, C, D, E, A4, A3, A1, A0.

## ORIENT

Paper orientation, either Landscape or Portrait.
If Kywrd $=$ HIRES, command format is PSCR,HIRES,KEY. Used to select the output resolution.

## KEY

Output resolution key:
0
High resolution graphics off. The image is exported as a bitmap.
1
High resolution graphics on. The image will be exported in polygon mode (/TYPE, , 4 precise hidden) for maximum printer resolution.

## Notes

This command is available in both the ANSYS and DISPLAY programs. It is valid for postscript format files chosen in ANSYS with the /SHOW,PSCR command, or in DISPLAY with /SHOWDISP,POSTSCRIPT.

An output file is generated for each plot. The ANSYS file is named JobnameNN. pscr. In the DISPLAY program, this file is named PSCRnn. This file remains open for a subsequent /NOERASE plot, and will be incomplete until the program is closed (/EXIT), or until the next file is opened by the next /ERASE plot request.

Issuing PSCR,STAT will list paper size, orientation and resolution modes.

## Menu Paths

## Utility Menu>PlotCtrls>Redirect Plots>To PSCR File

## PSDCOM, SIGNIF, COMODE

## Specifies the power spectral density mode combination method.

SOLUTION: Spectrum Options
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS
Product Restrictions

## SIGNIF

Combine only those modes whose significance level exceeds theSIGNIF threshold. For PSD response (SPOPT,PSD), the significance level is defined as the modal covariance matrix term, divided by the maximum modal covariance matrix term. Any term whose significance level is less than SIGNIF is considered insignificant and is not contributed to the mode combinations. The higher the SIGNIF threshold, the fewer the number of terms used. SIGNIF defaults to 0.0001 . If $S I G N I F$ is specified as 0.0 , it is taken as 0.0 .

COMODE
First COMODE number of modes to be actually combined. COMODE must always be less than or equal to NMODE (input quantity NMODE on the SPOPT command). COMODE defaults to NMODE. COMODE performs a second level of control for the first sequential COMODE number of modes to be combined. It uses the significance level threshold indicated by SIGNIF and operates only on the significant modes.

## Notes

This command is also valid for PREP7. This command is valid only for SPOPT,PSD.

## Product Restrictions

PSDCOM is not allowed in ANSYS Professional.

## Menu Paths

## Main Menu>Preprocessor>Loads>Load Step Opts>Spectrum>PSD>Mode Combine Main Menu>Solution>Load Step Opts>Spectrum>PSD>Mode Combine

## PSDFRQ, TBLNO1, TBLNO2, FREQ1, FREQ2, FREQ3, FREQ4, FREQ5, FREQ6, FREQ7

## Defines the frequency points for the input spectrum tables PSDVAL vs. PSDFRQ for PSD analysis.

SOLUTION: Spectrum Options
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS

## TBLNO1

Input table number. When used with the COVAL or the QDVAL command, TBLNO1 represents the row number of this table. Up to 20 tables may be defined.

## TBLNO2

Input table number. TBLNO2 is used only for the COVAL or the QDVAL commands and represents the column number of this table.

FREQ1, FREQ2, FREQ3, . . . , FREQ7
Frequency points (cycles/time) for spectrum vs. frequency tables. $F R E Q 1$ should be greater than zero, and values must be in ascending order. Log-log interpolation will be used between frequency points.

## Notes

The spectrum values may be input with the PSDVAL, COVAL, or QDVAL commands. A separate PSDFRQ command must be used for each table and cross table defined. Frequencies must be in ascending order.

Repeat PSDFRQ command for additional frequency points. Values are added after the last nonzero frequency. If all fields after PSDFRQ are blank, all input vs. frequency tables are erased. If TBLNO1 is nonblank, all corresponding PSDVAL tables are erased. If both TBLNO1 and TBLNO2 are nonblank, all corresponding COVAL and QDVAL tables are erased.

This command is also valid in PREP7.

## Menu Paths

Main Menu>Preprocessor>Loads>Load Step Opts>Spectrum>PSD>Correlation>Cospectral Main Menu $>$ Preprocessor>Loads $>$ Load Step Opts $>$ Spectrum $>$ PSD $>$ Correlation $>$ Erase Co \& Quad Main Menu $>$ Preprocessor>Loads>Load Step Opts $>$ Spectrum $>$ PSD $>$ Correlation $>$ Quadspectral Main Menu>Preprocessor>Loads>Load Step Opts>Spectrum>PSD>Erase Tables Main Menu>Preprocessor>Loads>Load Step Opts>Spectrum>PSD>PSD vs Freq Main Menu>Solution>Load Step Opts>Spectrum>PSD>Correlation>Cospectral Main Menu $>$ Solution>Load Step Opts>Spectrum>PSD>Correlation>Erase Co \& Quad Main Menu>Solution>Load Step Opts>Spectrum>PSD>Correlation>Quadspectral Main Menu $>$ Solution $>$ Load Step Opts $>$ Spectrum $>$ PSD $>$ Erase Tables Main Menu>Solution>Load Step Opts>Spectrum>PSD>PSD vs Freq

## PSDGRAPH, TBLNO1, TBLNO2

Displays input PSD curves
SOLUTION: Spectrum Options
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS

## TBLNO1

PSD table number to display.

## TBLNO2

Second PSD table number to display. TBLNO2 is used only in conjunction with the COVAL or the QDVAL commands.

## Notes

The input PSD tables are displayed in log-log format as dotted lines. The best-fit curves, used to perform the closed-form integration, are displayed as solid lines. If there is a significant discrepancy between the two, then you should add one or more intermediate points to the table to obtain a better fit.

If TBLNO2 is zero, blank, or equal to TBLNO1, then the autospectra (PSDVAL) are displayed for TBLNO1. If TBLNO2 is also specified, then the autospectra for TBLNO1 and TBLNO2 are displayed, along with the corresponding cospectra (COVAL) and quadspectra (QDVAL), if they are defined.

This command is valid in any processor.

## Menu Paths

Main Menu>Preprocessor>Loads>Spectrum>Graph PSD Tab
Main Menu>Solution>Spectrum>Graph PSD Tab

## PSDRES, Lab, RelKey

## Controls solution output written to the results file from a PSD analysis.

SOLUTION: Spectrum Options
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS

## Lab

Label identifying the solution output:
DISP
Displacement solution (default). One-sigma displacements, stresses, forces, etc. Written as load step 3 on File.RST.

VELO
Velocity solution. One-sigma velocities, "stress velocities," "force velocities," etc. Written as load step 4 of File.RST.

ACEL
Acceleration solution. One-sigma accelerations, "stress accelerations," "force accelerations," etc. Written as load step 5 on File.RST.

## RelKey

Key defining relative or absolute calculations:
REL
Calculations are relative to the base excitation (default).
ABS
Calculations are absolute.
OFF
No calculation of solution output identified by Lab.

## Command Default

Relative displacement solution, no velocity or acceleration solution for $1 \sigma$ results.

## Notes

Controls the amount and form of solution output written to the results file from a PSD analysis. One-sigma values of the relative or absolute displacement solution, relative or absolute velocity solution, relative or absolute acceleration solution, or any combination may be included on the results file.

This command is also valid in PREP7.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu>Preprocessor>Loads>Load Step Opts>Spectrum>PSD>Calc Controls
Main Menu>Solution>Load Step Opts>Spectrum>PSD>Calc Controls

## PSDSPL, TBLNO, RMIN, RMAX

Defines a partially correlated excitation in a PSD analysis.
SOLUTION: Spectrum Options
MP ME ST $<><><><><><><><>$ PP <> EME MFS

## TBLNO

Input PSD table number defined with PSDVAL command.

## RMIN

Minimum distance between excitation points which are partially correlated. Excited nodes closer than RMIN will be fully correlated.

RMAX
Maximum distance between excitation points which are partially correlated. Excited nodes farther apart than RMAX will be uncorrelated.

## Notes

Defines a partially correlated excitation in terms of a sphere of influence relating excitation point geometry (in a PSD analysis). If the distance between any two excitation points is less than RMIN, then the excitation is fully correlated. If the distance is greater than $R M A X$, then the excitation is uncorrelated. If the distance lies between RMIN and RMAX, then the excitation is partially correlated with the degree of correlation dependent on the separation distance between the points. This command is not available for a pressure PSD analysis.

This command is also valid in PREP7.

## Menu Paths

Main Menu>Preprocessor>Loads>Load Step Opts>Spectrum>PSD>Correlation>Spatial Correlat Main Menu>Solution>Load Step Opts>Spectrum>PSD>Correlation>Spatial Correlat

PSDUNIT, tBLno, Type, gValue
Defines the type of input PSD.
SOLUTION: Spectrum Options
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS

## TBLNO

Input table number.
Type
Label identifying the type of spectrum:

## DISP

Displacement spectrum (in terms of displacement ${ }^{2} / \mathrm{Hz}$ ).

## VELO

Velocity spectrum (in terms of velocity ${ }^{2} / \mathrm{Hz}$ ).

## ACEL

Acceleration spectrum (in terms of acceleration ${ }^{2} / \mathrm{Hz}$ ).

## ACCG

Acceleration spectrum (in terms of $\mathrm{g}^{2} / \mathrm{Hz}$ ).

## FORC

Force spectrum (in terms of force ${ }^{2} / \mathrm{Hz}$ ).

## PRES

Pressure spectrum (in terms of pressure ${ }^{2} / \mathrm{Hz}$ ).

## gVALUE

Value of acceleration due to gravity in any arbitrary units for Type=ACCG. Default is $386.4 \mathrm{in} / \mathrm{sec}^{2}$.

## Command Default

Acceleration (ACEL) spectrum (acceleration ${ }^{2} / \mathrm{Hz}$ ).

## Notes

Defines the type of PSD defined by the PSDVAL, COVAL, and QDVAL commands.
Force (FORC) and pressure (PRES) type spectra can be used only as a nodal excitation.
GVALUE is valid only when type ACCG is specified. A zero or negative value cannot be used. A parameter substitution can also be performed.

This command is also valid in PREP7.

## Menu Paths

> Main Menu $>$ Preprocessor>Loads>Load Step Opts $>$ Spectrum $>$ PSD $>$ Settings Main Menu $>$ Solution $>$ Load Step Opts $>$ Spectrum $>$ PSD $>$ Settings

PSDVAL, TBLNO, SV1, SV2, SV3, SV4, SV5, SV6, SV7

## Defines PSD values.

SOLUTION:Spectrum Options
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS

## TBLNO

Input table number being defined.

SV1, SV2, SV3, . . . , SV7
Spectral values corresponding to the frequency points [PSDFRQ]. Values are interpreted as defined with the PSDUNIT command.

## Notes

Defines PSD values to be associated with the previously defined frequency points.
Repeat PSDVAL command for additional values, up to the number of frequency points [PSDFRQ]. Values are added after the last nonzero value.

This command is also valid in PREP7.

## Menu Paths

## Main Menu>Preprocessor>Loads>Load Step Opts>Spectrum>PSD>PSD vs Freq Main Menu>Solution>Load Step Opts>Spectrum>PSD>PSD vs Freq

PSDWAV, $T B L N O, V X, V Y, V Z$
Defines a wave propagation excitation in a PSD analysis.
SOLUTION:Spectrum Options
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS

## TBLNO

Input PSD table number defined with PSDVAL command.
vx
Global Cartesian X-velocity of traveling wave.
VY
Global Cartesian $Y$-velocity of traveling wave.
VZ
Global Cartesian Z-velocity of traveling wave.

## Notes

Defines a traveling wave in a PSD analysis. This command is not available for a pressure PSD analysis.
This command is also valid in PREP7.

## Menu Paths

Main Menu>Preprocessor>Loads>Load Step Opts>Spectrum>PSD>Correlation>Traveling Wave Main Menu>Solution>Load Step Opts>Spectrum>PSD>Correlation>Traveling Wave

## /PSEARCH, Pname

## Specifies a directory to be searched for "unknown command" macro files.

APDL:Macro Files
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Pname

Path name ( 64 characters maximum, and must include the final delimiter) of the middle directory to be searched. Defaults to the user home directory. If Pname = OFF, search only the ANSYS and current working directories. If Pname = STAT, list the current middle directory and show the ANSYS_MACROLIB setting.

## Command Default

The middle directory searched is the user home directory.

## Notes

Specifies the pathname of a directory for file searches when reading "unknown command" macro files. The search for the files is typically from the ANSYS directory, then from the user home directory, and then from the current working directory. This command allows the middle directory searched to be other than the user home directory.

This command is valid only at the Begin Level.

## Menu Paths

Utility Menu>Macro>Macro Search Path

PSEL, Type, Pname1, Pname2, Pname3, Pname4, Pname5, Pname6, Pname7, Pname8, Pname9, Pname10

## Selects a path or paths.

POST1:Path Operations
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Type

Label identifying the type of select:
S
Select a new path.
R
Reselect a path from the current set of paths.
A
Additionally select a path and extend the current set of paths.
U
Unselect a path from the current set of paths.
ALL
Restore the full set of paths.

## NONE

Unselect the full set of paths.

## INV

Invert the current set of paths (selected becomes unselected and vice versa).

## Pname1, Pname2, Pname3, ..., Pname10

Name of existing path(s).

## Notes

Selects a path or multiple paths, up to ten. Data are flagged as selected and unselected; no data are actually deleted from the database. There is no default for this command; you must specify a type and pathname.

## Menu Paths

Main Menu>General Postproc>Path Operations>Archive Path>Store>Paths in file Main Menu>Preprocessor>Path Operations>Store>Paths in file
/PSF, Item, Comp, KEY, KSHELL, Color

## Shows surface load symbols on model displays.

> GRAPHICS:Labeling
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Item, Comp

Labels identifying the surface load to be shown; see Table 250:/PSF - Valid Item and Component Labels ( p .1367 ).

## KEY

Key to turn surface load symbols on or off:
0
Off (default).
1
On, shown as face outlines. Line surface loads (SFL) on solid model plots are shown as arrows.
2
On, shown as arrows.
3
On, shown as color filled surfaces. Line and area surface loads (SFL and SFA) on solid model plots are shown as arrows.

KSHELL
Visibility key for shell elements.
0
Off (default), surface load symbols are displayed only on visible load faces.
1
On, surface load symbols are displayed even if load face is not visible.

## Color

Visibility key for contour legend.

## ON

The symbols (arrows or face outlines) will show up in color with the legend showing the corresponding color labels (default).

## OFF

The contour legend will not be displayed. The symbols (arrows or face outlines) will show up in grey. The size of the arrows will be proportional to the applied load.

## Command Default

No surface load symbols are displayed.

## Notes

The /PSF command determines whether and how to show surface loads on subsequent model displays.
If surface loads are applied to solid model entities, only solid model plots show the load symbols; node and element plots do not show them unless the loads are transferred (SFTRAN or SBCTRAN). Similarly, solid model plots do not show the load symbols if surface loads are applied to nodes and elements. For node and element plots of shell element models, the surface load symbols are shown only if the load face is visible from the current viewing direction.

The effects of the /PSF command are not cumulative (that is, the command does not modify an existing setting from a previously issued /PSF command). Only the setting specified via the most recent /PSF command applies.

If you issue a postprocessing (POST1) plot command that produces result contours (such as PLNSOL), the /PSF command has no effect. This behavior prevents conflicting contours in the graphics window.

When using the Radiosity method ( Item = RDSF and Comp = ENCL) with Key $=2$, the radiation arrows point outward from any element face. When using SURF154 with $\operatorname{KEYOPT}(2)=1$, set the Item to PRES and leave the Component Label blank.
/PSF,STAT displays current /PSF settings, and /PSF,DEFA resets them back to default.
Other useful commands are /PNUM,SVAL,1 to show the values of the surface loads, /VSCALE to change arrow lengths, and /PBC and /PBF to activate other load symbols.

For beam elements, only the colors representing shear (GREEN) and normal (RED) pressures are displayed for the arrows. The color of these arrows does not correspond to the magnitudes in the contour legend. The length of these arrows does, however, correlate to the relative magnitude of the pressures.

For the SURF159, SOLID272, and SOLID273 elements, the /PSF command is not available when displaying elements with shapes determined from the real constants or section definition (/ESHAPE).

This command is valid in any processor.

## Table 250 /PSF - Valid Item and Component Labels

Item Comp Description

Valid item and component labels are:
PRES NORM Applied structural pressure normal to the face (real component).

| Item | Comp | Description |
| :---: | :---: | :---: |
| " | TANX | Applied structural pressure in the tangential-x direction (real component). |
| " | TANY | Applied structural pressure in the tangential-y direction (real component). |
| " | INRM | Applied structural pressure normal to the face (imaginary component). |
| " | ITNX | Applied structural pressure in the tangential-x direction (imaginary component). |
| " | ITNY | Applied structural pressure in the tangential-y direction (imaginary component). |
| CONV | HCOEF | Applied convection (film coefficient). |
| " | TBULK | Applied convection (bulk temperature). |
| RAD | EMIS | Applied radiation (emissivity). |
| " | TAMB | Applied radiation (ambient temperature). |
| RDSF | EMSS | Radiation emissivity. |
| " | ENCL | Enclosure number. |
| FSIN |  | Fluid-solid interface number. |
| VFRC |  | Volume fraction (VOF method). |
| HFLUX |  | Applied heat flux. |
| FSI |  | Acoustic fluid-structure interface flag. |
| IMPD |  | Applied acoustic impedance. |
| SHLD | COND | Applied conductivity. |
| " | MUR | Applied relative permeability. |
| MXWF |  | Maxwell force flag. |
| INF |  | Exterior surface flag. |
| CHRGS |  | Applied electric surface charge density. |
| MCI |  | Magnetic circuit interface. |

## Menu Paths

## Utility Menu>PlotCtrls>Symbols

## PSMAT, Fname, Ext, Matrix, Color

Writes an assembled global matrix to a postscript format that graphically displays nonzero matrix values.
AUX2: Binary Files
MP ME ST PR PRN <> <> <> EM EH <> PP <> EME MFS

## Fname

File name and directory path ( 248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

This file name is used for the postscript file name. It defaults to the current Jobname if left blank.

## Ext

Filename extension (8 character maximum).
Defaults to .PS if left blank.

## Matrix

Specify which matrix to write to the output postscript file:

## STIFF

Write stiffness matrix to output postscript file. Valid for all types of analyses that write a . FULL file.

## MASS

Write mass matrix to output postscript file. Valid for buckling, substructure, and modal analyses. If the .FULL file was generated in a buckling analysis, then this label will write the stress stiffening matrix to the output postscript file.

## DAMP

Write damping matrix to output postscript file. Only valid for damped modal analyses.

## Color

Specifies whether to display the grid in black and white or in color:

## BLACK

Each nonzero coefficient is symbolized by a black square (default).

## COLOR

Each nonzero coefficient is symbolized by a colored square. The color depends on the module of the coefficient; the range is from blue for the smallest values to red for the largest values. The color map is:

## Notes

This command is used to copy a matrix from the assembled global matrix file (. FULL file) as specified on the FILE command and write it in a postscript format to a new file named Fname.Ext (defaults to Jobname.PS). The matrix is symbolized by a grid in which the black or colored squares represent the nonzero coefficients of the matrix. The .FULL file must be available for this command to work properly.

If the matrix is large, it may be difficult to display the postscript file. In this case, use Color = BLACK to reduce the postscript file size.

The assembled global matrix file is created during solution depending on the analysis type, equation solver, and other solution options. By default, the assembled global matrix file is never deleted at the end of solution. For most analysis types, the Sparse direct solver, the ICCG solver, and the AMG solver (when available) will write a .FULL file. With the exception of the reduced (MODOPT,REDUC) and Variational Technology (MODOPT,VT) options, all mode extraction methods used for buckling and modal analyses will write a properly formatted .FULL file to be used with the PSMAT command.

When copying the stiffness matrix for transient and harmonic analyses, be aware that the element mass matrix values (and possibly element damping matrix values) are incorporated into the globally assembled stiffness matrix. Thus, the globally assembled stiffness matrix represents more than the stiffness of the model for these analysis types. Please refer to the Theory Reference for the Mechanical APDL and Mechanical Applications for more details.

The PSMAT command is not able to display a lumped mass matrix from a .FULL file generated by a harmonic analysis.

When copying a .FULL file, the rows and columns corresponding to specified constraints (e.g., D commands) are eliminated from the system of equations and therefore are not written to the .PS file. In addition, rows and columns corresponding to eliminated (slave) degrees of freedom from coupling and/or constraint equations (e.g., CE, CP commands) are eliminated from the system of equations and are not written to the . PS file. The DOFs that are eliminated from any coupling and/or constraint equations are determined internally by the solution code and may not match what you specified via the CE/CP (or similar) commands.

When copying a .FULL file, only the upper triangular part of the matrix will be written to the .PS file if the matrix is symmetric; the full matrix is written if the matrix is unsymmetric. Only matrix coefficients that are greater than zero will be written.

The WRFULL command, in conjunction with the SOLVE command, can be used to generate the assembled global matrix file and eliminate the equation solution process and results output process.

The following command sequence shows typical usage of this command.

```
/BATCH,LIST
/AUX2 ! Enter AUX2 processor
FILE,job1,full ! FULL file containing stiffness matrix is job1.full
PSMAT,job1KColor,ps,STIFF,COLOR ! Create file job1KColor.ps in color
! postscript format for stiffness matrix
PSMAT,job1MBlack,,STIFF,BLACK ! Create file job1MBalck.ps in black/white
! postscript format for stiffness matrix
FINISH
```

Below is an example of an export of the stiffness matrix to a postscript format using the COLOR option.


K Matrix

## Menu Paths

This command cannot be accessed from a menu.

PSMESH, SECID, Name, PO, Egroup, NUM, KCN, KDIR, VALUE, NDPLANE, PSTOL, PSTYPE, ECOMP, NCOMP
Create and mesh a pretension section
MP ME ST PR PRN DS DSS <> <> <> <> PP <> EME MFS

## SECID

Unique section number. This number must not already be assigned to a section.

## Name

Unique eight character descriptive name, if desired.
PO
Pretension node number. The node will be defined if it doesn't exist and the number defaults to the highest node number plus one.

## Egroup, NUM

Element group on which PSMESH will operate. If Egroup $=\mathrm{P}$, graphical picking is enabled and NUM is ignored (valid only in the GUI).

## L (or LINE)

PSMESH operates on all elements in the line specified by NUM. New pretension nodes are associated with NUM or entities below it. Any subsequent LCLEAR operation of NUM deletes the pretension elements and nodes created by PSMESH.

## A (or AREA)

PSMESH operates on all elements in the area specified by NUM. New pretension nodes are associated with $N U M$ or entities below it. Any subsequent ACLEAR of $N U M$ deletes the pretension elements and nodes created by PSMESH.

## V (or VOLU)

PSMESH operates on all elements in the volume specified by NUM. New pretension nodes are associated with $N U M$ or entities below it. Any subsequent VCLEAR of $N U M$ deletes the pretension elements and nodes created by PSMESH.

P
PSMESH operates on elements selected through the subsequent picking operations, and NUM is ignored

## ALL

The command operates on all selected elements, and $N U M$ is ignored.

## KCN

Coordinate system number for the separation surface and normal direction.

## KDIR

Direction ( $\mathrm{x}, \mathrm{y}$, or z ) normal to separation surface in the $K C N$ coordinate system.
If $K C N$ is cartesian, the pretension section normal will be parallel to the $K D I R$ axis regardless of the position of the pretension node.

If $K C N$ is non-cartesian, the pretension section normal will be aligned with the $K D R$ direction of system $K C N$ at the position of the pretension node.

## VALUE

Point along the $K D I R$ axis at which to locate the separation surface. Ignored if NDPLANE is supplied.

## NDPLANE

Existing node that PSMESH will use to locate the separation surface. If NDPLANE is supplied, the location of the separation surface is defined by the KDIR coordinate of NDPLANE.

## PSTOL

Optional tolerance below VALUE. Allows nodes occurring precisely at or slightly below the separation to be identified properly as above the plane. Has the effect of shifting the plane down by PSTOL. The following expression represents the default value:
$\frac{\sqrt{\Delta X^{2}+\Delta Y^{2}+\Delta Z^{2}}}{1000}$
where $\Delta \mathrm{X}, \Delta \mathrm{Y}$, and $\Delta \mathrm{Z}$ are the dimensions of the model based on nodal locations (that is, $\Delta \mathrm{X}=\mathrm{X} \max$ - Xmin).

## PSTYPE

If specified, this value is the type number for pretension elements. (If not specified, ANSYS defines this value.) If already defined, it must be of type PRETS179.

## ECOMP

If specified, the name of a component to be composed of new pretension elements and existing elements modified by the PSMESH command.

## NCOMP

Name of a component to be composed of nodes on new pretension elements.

## Notes

The PSMESH command creates a pretension section normal to the pretension load direction by cutting the mesh along existing element boundaries at the point defined by VALUE or NDPLANE and inserting PRETS179 elements. The PSMESH command verifies that PSTYPE is PRETS179; if it is not, the command finds the lowest available ITYPE that is PRETS179, or if necessary will create a new one.

When it is necessary to define the pretension node, ANSYS uses node NDPLANE. If the NDPLANE value is not specified, ANSYS defines the pretension node at:

- The centroid of geometric entity NUM, if Egroup = LINE, AREA or VOLU
- The centroid location of all selected elements, if Egroup = ALL or if graphical picking is used.

If the elements to which the pretension load is to be applied have already been meshed in two groups, PSMESH cannot be used to insert the pretension elements. The EINTF command must be used to insert the PRETS179 elements between the two meshed groups.

The PSMESH operation copies any nodal temperatures you have defined on the split surface of the original mesh from the original nodes to the newly created coincident duplicate nodes. However, displacements, forces, and other boundary conditions are not copied.

By mathematical definition, the pretension surface must always be a flat plane. In a non-Cartesian coordinate system, the PSMESH command creates that plane at the indicated position, oriented with respect to the specified direction of the active system (in the same manner that the NROTAT command orients a nodal system with respect to a curved system). For example, assuming a $X=1$ and $Y=45$ in a cylindrical coordinate system with $Z$ as the axis of rotation ( $K C N=1$ ), a pretension surface normal to $X$ tilts 45 degrees away from the global X axis.

The PSMESH command is valid for structural analyses only.

## Menu Paths

Main Menu>Preprocessor>Modeling>Create>Elements>Pretension>Pretensn Mesh>Elements in Area<br>Main Menu>Preprocessor>Modeling>Create>Elements>Pretension>Pretensn Mesh>Elements in Line<br>Main Menu>Preprocessor>Modeling>Create>Elements>Pretension>Pretensn Mesh>Elements in Volu<br>Main Menu>Preprocessor>Modeling>Create>Elements>Pretension>Pretensn Mesh $>$ Picked Elements Main Menu>Preprocessor>Modeling>Create>Elements>Pretension>Pretensn Mesh>Selected Element Main Menu>Preprocessor>Modeling>Create>Elements>Pretension>Pretensn Mesh>With Options>Divide at Node>Elements in Area

Main Menu $>$ Preprocessor $>$ Modeling $>$ Create $>$ Elements $>$ Pretension $>$ Pretensn Mesh $>$ With Options $>$ Divide at Node>Elements in Line
Main Menu>Preprocessor>Modeling>Create>Elements>Pretension>Pretensn Mesh>With Options>Divide at Node>Elements in Volu
Main Menu>Preprocessor>Modeling>Create>Elements>Pretension>Pretensn Mesh>With Options>Divide at Node>Picked Elements
Main Menu>Preprocessor>Modeling>Create>Elements>Pretension>Pretensn Mesh>With Options>Divide at Node>Selected Element
Main Menu>Preprocessor>Modeling>Create>Elements>Pretension>Pretensn Mesh>With Options>Divide at Valu>Elements in Area
Main Menu>Preprocessor>Modeling>Create>Elements>Pretension>Pretensn Mesh>With Options>Divide at Valu>Elements in Line
Main Menu>Preprocessor>Modeling>Create>Elements>Pretension>Pretensn Mesh>With Options>Divide at Valu>Elements in Volu
Main Menu>Preprocessor>Modeling>Create>Elements>Pretension>Pretensn Mesh>With Options>Divide at Valu>Picked Elements
Main Menu>Preprocessor>Modeling>Create>Elements>Pretension>Pretensn Mesh>With Options>Divide at Valu>Selected Element
Main Menu>Preprocessor>Sections>Pretension>Pretensn Mesh>Elements in Area
Main Menu>Preprocessor>Sections>Pretension>Pretensn Mesh>Elements in Line
Main Menu>Preprocessor>Sections>Pretension>Pretensn Mesh>Elements in Volu
Main Menu>Preprocessor>Sections>Pretension>Pretensn Mesh>Picked Elements
Main Menu>Preprocessor>Sections>Pretension>Pretensn Mesh>Selected Element
Main Menu>Preprocessor $>$ Sections $>$ Pretension $>$ Pretensn Mesh $>$ With Options $>$ Divide at
Node>Elements in Area
Main Menu>Preprocessor>Sections>Pretension>Pretensn Mesh $>$ With Options $>$ Divide at Node>Elements in Line
Main Menu>Preprocessor>Sections>Pretension>Pretensn Mesh>With Options>Divide at Node>Elements in Volu
Main Menu>Preprocessor>Sections>Pretension>Pretensn Mesh>With Options>Divide at Node>Picked Elements
Main Menu>Preprocessor>Sections>Pretension>Pretensn Mesh>With Options>Divide at Node>Selected Element
Main Menu $>$ Preprocessor $>$ Sections $>$ Pretension $>$ Pretensn Mesh $>$ With Options $>$ Divide at Valu>Elements in Area
Main Menu>Preprocessor>Sections>Pretension>Pretensn Mesh>With Options>Divide at Valu>Elements in Line
Main Menu>Preprocessor>Sections>Pretension>Pretensn Mesh $>$ With Options $>$ Divide at Valu>Elements in Volu
Main Menu>Preprocessor>Sections>Pretension>Pretensn Mesh>With Options>Divide at Valu>Picked Elements
Main Menu>Preprocessor $>$ Sections $>$ Pretension $>$ Pretensn Mesh $>$ With Options $>$ Divide at Valu $>$ Selected Element

## PSOLVE, Lab, Rkey

## Directs the program to perform a partial solution.

SOLUTION: Analysis Options
MP ME ST PR PRN <> <> <> <> <> <> <> PP <> EME MFS

## Lab

Valid labels defining the solution step. All characters are required:

## EIGDAMP

Calculates the eigenvalues and eigenvectors using the damped eigensolver. Requires Jobname. FULL from MODOPT,UNSYM or MODOPT,DAMP options. Produces Jobname .MODE.

## EIGQRDA

Calculates eigenvalues and eigenvectors using the QR damped eigensolver. Requires Jobname.EMAT from MODOPT,QRDAMP option. Produces Jobname. MODE.

## EIGEXP

Expands the eigenvector solution. Requires Jobname.ESAV and Jobname. MODE. Produces Jobname.RST.

EIGLANB
Calculates the eigenvalues and eigenvectors using Block Lanczos. Requires Jobname. EMAT from MODOPT,LANB option. Produces Jobname. MODE.

EIGLANPCG
Calculates the eigenvalues and eigenvectors using PCG Lanczos. Requires Jobname.EMAT from MODOPT,LANPCG option. Produces Jobname. MODE.

EIGSNODE
Calculates the eigenvalues and eigenvectors using the Supernode method. Requires Jobname. EMAT from MODOPT,SNODE option. Produces Jobname . MODE. (See the MODOPT command for more information on the SNODE modal solver.)
EIGREDUC
Calculates the eigenvalues and eigenvectors using Householder. Requires Jobname. REDM. Produces Jobname. MODE.

## EIGUNSYM

Calculates the eigenvalues and eigenvectors using the unsymmetric eigensolver. Requires Jobname. EMAT from MODOPT,UNSYM or MODOPT,DAMP options. Produces Jobname. MODE.

## ELFORM

Creates the element matrices. Produces Jobname.EMAT and Jobname.ESAV.

## Note

If you want to include prestress effects (PSTRES,ON) from a previous prestress analysis, the ELFORM option requires the Jobname. EMAT and Jobname. ESAV files generated by that analysis.

## ELPREP

Modifies element matrices for solution and calculates inertia relief terms (IRLF). Requires Jobname. EMAT. Produces Jobname.EROT.

## REDWRITE

Writes the reduced matrix to a file. Requires Jobname. REDM. Produces Jobname. SUB.

## TRIANG

Triangularizes the matrices completely. This option is required prior to performing a partial solution using the EIGREDUC option.

## Rkey

Key for initial contact results:

## CNDI

Write initial contact configuration to the results file. This option is only valid for $L a b=$ ELFORM.

## Notes

Directs the program to perform a partial solution (that is, one step of an analysis sequence). Predefined analysis types (ANTYPE) perform a defined subset of these solution steps in a predefined sequence. You can use the partial-solution procedure to repeat a certain step of an analysis or to restart an analysis.

Not all steps are valid for all analysis types. The order of the steps may vary depending on the result you desire. See the Basic Analysis Guide for a description of how to perform partial and predefined solutions.

An example of a prestressed modal analysis is given below. The Jobname.EMAT and Jobname.ESAV files from a prior static analysis must be available.

The example is provided for illustration purposes only, as the linear perturbation analysis method is recommended in place of this partial-solution method.

```
Prestressed modal analysis
!
/ SOLU
ANTYPE,MODAL ! Modal analysis
UPCOORD,1.0,ON ! Display mode shapes relative to deformed geometry
PSTRES,ON
MODOPT,LANB ! Select eigensolver
PSOLVE,EIGLANB ! Calculate the eigenvalues and eigenvectors.
 ! EIGxxx label must be consistent with mode extraction method on MODOPT command.
FINISH
/SOLU !Additional solution step for expansion.
EXPASS,ON
MXPAND,... ! Specify the number of modes to expand, if desired.
PSOLVE,EIGEXP ! Expand the eigenvector solution. (Required if you
FINISH
```

In a cyclic symmetry analysis, PSOLVE,EIGLANB or PSOLVE,EIGLANPCG performs the modal analysis at multiple load steps, one for each nodal-diameter specified via the CYCOPT command. In addition, the eigenvector solution is expanded at each nodal-diameter solution, eliminating the need for a separate expansion pass (PSOLVE,EIGEXP).

If issuing PSOLVE,ELFORM and PSOLVE,ELPREP using the Jacobi Conjugate Gradient solver, do so only after issuing PSOLVE,CGSOL; otherwise, unpredictable results may occur.

Although documented to work, using the PSOLVE commands with an iterative solver is not likely to decrease solution-processing time.

If Jobname. EMAT is required, run the prior analysis with EMATWRITE,YES to ensure that a Jobname.EMAT is generated.

In a prestressed modal analysis, issue a PSOLVE,TRIANG command immediately before a PSOLVE,EIGREDUC command to ensure that ANSYS creates a proper .FULL file. The PSOLVE ,EIGUNSYM; PSOLVE,EIGLANB; PSOLVE,EIGDAMP; PSOLVE,EIGQRDA; PSOLVE,EIGLANPCG; and PSOLVE,EIGSNODE commands do not require a preceding PSOLVE,TRIANG command and should not be preceded by a PSOLVE,TRIANG command.

Distributed ANSYS Restriction Only the EIGLANB, and EIGLANPCG options on this command are supported in Distributed ANSYS.

## Menu Paths

Main Menu $>$ Solution $>$ Solve $>$ Partial Solu
/PSPEC, PCOLOR, KFILL, KBORDR

## Creates annotation polygon attributes (GUI).

## PCOLOR

Polygon color ( $0 \leq$ PCOLOR $\leq 15$ ):
0
Black.
1
Red-Magenta.
2
Magenta.
3
Blue-Magenta.
4
Blue.
5
Cyan-Blue.
6
Cyan.
7
Green-Cyan.
8
Green.
9
Yellow-Green.
10
Yellow.

11
Orange.
12
Red.
13
Dark Gray.
14
Light Gray.
15
White.

## KFILL

Polygon fill key:
0
Hollow polygon.
1
Filled polygon.

## KBORDR

Polygon border key:
0
No border.
1
Border.

## Notes

Creates annotation polygon attributes to control certain characteristics of the polygons created via the /POLYGON, /PMORE, /PCIRCLE and /PWEDGE commands. This is a command generated by the Graphical User Interface (GUI) and will appear in the log file (Jobname. LOG) if annotation is used. This command is not intended to be typed in directly in an ANSYS session (although it can be included in an input file for batch input or for use with the /INPUT command).

This command is valid in any processor.

## Menu Paths

## Utility Menu>PlotCtrls>Annotation>Create Annotation

## /PSTATUS, wn

Displays the global or window display specifications.
GRAPHICS: Set Up
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
WN
Window number for status (defaults to global specifications).

## Notes

Displays the current global or window display specifications. Global display specifications are common to all windows (e.g. /SHOW, etc.). Window display specifications are specific to one window (e.g. /VIEW, /TYPE, etc.).

This command is valid in any processor.

## Menu Paths

> Utility Menu>List>Status>Graphics>General Utility Menu $>$ List>Status>Graphics $>$ Window 1 Utility Menu>List>Status>Graphics $>$ Window 2 Utility Menu>List>Status>Graphics $>$ Window 3 Utility Menu $>$ List>Status>Graphics>Window 4 Utility Menu>List>Status>Graphics>Window 5

## PSTRES, Кеу

## Specifies whether prestress effects are calculated or included.

SOLUTION: Nonlinear Options MP ME ST PR PRN DS DSS <> EM EH $<>$ PP $<>$ EME MFS

## Key

Prestress key:
OFF
Do not calculate (or include) prestress effects (default).
ON
Calculate (or include) prestress effects.

## Notes

The PSTRES command specifies whether or not prestress effects are to be calculated or included. The command should be issued after the ANTYPE command.

Prestress effects are calculated in a static or transient analysis for inclusion in a buckling, modal, harmonic (Method = FULL or REDUC), transient (Method = REDUC), or substructure generation analysis. If used in the solution processor (/SOLU), this command is valid only within the first load step.

If the prestress effects are to be calculated in a nonlinear static or transient analysis (for a prestressed modal analysis of a large-deflection solution), you can issue a SSTIF,ON command (rather than a PSTRES,ON command) in the static analysis.

If you apply thermal body forces during a static analysis to calculate prestress effects, do not delete the forces during any subsequent full harmonic response analyses. If you delete the thermal body forces, the thermal prestress effects will not be included in the harmonic response analysis. Temperature loads used to define the thermal prestress will also be used in the full harmonic response analysis as sinusoidally timevarying temperature loads.

A prestress effect applied with non-follower loads resists rigid body rotation of the model. For example, an unsupported beam with axial tensile forces applied to both ends will have two nonzero rotational rigid body modes.

If tabular loading (*DIM,TABLE) was used in the prestress static analysis step, the corresponding value of TIME will be used for tabular evaluations in the modal analysis.

This command is also valid in PREP7.

## Menu Paths

Main Menu>Preprocessor>Loads $>$ Analysis Type $>$ Analysis Options
Main Menu>Preprocessor>Loads>Analysis Type>Sol'n Controls>Basic
Main Menu>Solution>Analysis Type>Analysis Options
Main Menu>Solution>Analysis Type>Sol'n Controls>Basic

## /PSYMB, Label, KEY

## Shows various symbols on displays.

GRAPHICS:Labeling
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Label

Show symbols as selected from the following labels:
CS
Local coordinate systems.
NDIR
Nodal coordinate systems (on rotated nodes only).
ESYS
Element coordinate systems (element displays only).
LDIR
Line directions (line displays only).
LDIV
Controls the display of element divisions on lines.
ADIR
Area direction symbol (for keypoint, line, area and volume plots).

## LAYR

Layer orientations (relative to the projected element $x$-axis) or fiber orientations in smeared reinforcing elements. Used only within an element display. Use $K E Y$ to specify the layer number.

## PCON

Convergence criterion symbols on nodes (for a p-method analysis).

## ECON

Element mesh symbols on keypoints and lines.
DOT
Larger symbols displayed for node and keypoint locations. When Label = DOT, KEY=1 by default.

## XNOD

Extra node of surface or circuit elements.

## FBCS

Force boundary condition scaling. Subsequent $K E Y$ value determines whether or not to scale the applied and derived forces/moments to the same maximum value.

DEFA
Resets the symbol keys so that ANSYS displays none of the symbols controlled by the /PSYMB command. The value of the KEY field is ignored.

## STAT

Prints the status of the settings of the symbol keys controlled by the /PSYMB command. The KEY field is ignored.

## KEY

Symbol key:
-1
Effective only if Label = LAYR and solid shape element display (/ESHAPE) is active. Orientation of all layers appears with the solid shape element display.
0
No symbol (default). If Label = LDIV, then $K E Y=0$ indicates that the displayed element divisions will correspond to the existing mesh (the word MESHED or EXISTING can also be substituted). Also, for Label = LDIV, if you execute any meshing command (such as AMESH or VMESH), KEY is set to 0 (MESHED) automatically. If Label $=\mathrm{FBCS}$, then $K E Y=0$ indicates that boundary condition scaling will not be common. The applied and derived forces/moments will be scaled to their respective maximum values.
1
Include symbol. If Label = LDIV, then $K E Y=1$ indicates that the displayed line divisions will correspond to the value assigned by LESIZE (the word LESIZE can also be substituted). Also, for Label = LDIV, if you execute the LESIZE command, $K E Y$ is set to 1 (LESIZE) automatically. If Label $=$ FBCS, then $K E Y=1$ indicates that boundary condition scaling will be common. The applied and derived forces/moments will be scaled to the same maximum value.
$\boldsymbol{N}$
If Label $=$ LAYR, then $N$ is equal to the layer number. If Label $=D O T$, then $N$ can be equal to $0,1, \ldots . .15$, indicating the dot size. If Label $=$ LDIV, then $K E Y=-1$, indicates that no element divisions will be displayed (the word OFF can also be substituted).

## Notes

Includes various symbols on the display. Triads are right-handed with $x$ displayed as the longest leg. Where color is displayed, x is white, y is green, and z is blue. For beams, x is always along the length of the element. For lines, an arrow represents the direction of a line, from the beginning keypoint to the end keypoint. See /PLOPTS command for additional display options. Use /PSTATUS or /PSYMB,STAT to display settings. Use /PSYMB,DEFA to reset all specifications back to their defaults. The command /PSYMB,ECON, 1 causes the symbol " M " to be displayed on keypoints and lines associated with meshed entities. When you issue the command /PSYMB,DOT,1, a larger symbol is displayed for each node and keypoint location.

PowerGraphics (/GRAPHICS,POWER) does not support /PSYMB,ESYS and /PSYMB,LAYR.

If $K E Y=N$ and PowerGraphics is off, the centroid of the surface elements is connected to the extra node using a gray line. However, if PowerGraphics is on, the color of the line connecting the centroid to the extra node is the same as that for the elements themselves (as determined by /PNUM).

When Label = LAYR, the layer systems can be visualized with all current-technology layered elements and the smeared reinforcing element REINF265. To use /PSYMB,LAYR with REINF265, first set the vector-mode graphics option (/DEVICE,VECTOR,1).

This command is valid in any processor.

## Menu Paths

Main Menu>Preprocessor>Modeling>Move / Modify>RotateNode>To Surf Norm>On Areas Main Menu>Preprocessor>Modeling>Move / Modify>RotateNode>To Surf Norm>On Lines Main Menu>Preprocessor>Modeling>Move / Modify>RotateNode>To Surf Norm>with Area Main Menu>Preprocessor>Trefftz Domain>TZ Symmetry
Utility Menu>PlotCtrls>Symbols

PTR, LOC, BASE
Dumps the record of a binary file.
AUX2: Binary Files
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## LOC, BASE

Dump the file record starting at pointer LOC. BASE is the base pointer, and would be used if LOC is a relative pointer.

## Notes

Dumps the record of the file named on the AUX2 FILEAUX2 command according the format specified on the FORM command.

## Menu Paths

This command cannot be accessed from a menu.

PTXY, $X 1, Y 1, X 2, Y 2, X 3, Y 3, X 4, Y 4$
Defines coordinate pairs for use in polygons and prisms.
PREP7:Primitives
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
X1, Y1, X2, Y2, X3, Y3, X4, Y4
X and Y coordinate pairs on the working plane.

## Notes

Defines coordinate pairs for use in polygons and prisms [POLY, RPRISM]. The coordinates must be in the Cartesian coordinate system. The coordinate pairs must be input in a continuous order. PTXY may be repeated (up to 100 pairs) until the required pairs have been defined. The pairs will be saved until either the POLY or PRISM command is entered. Use PTXY,STAT to list the saved coordinate pairs. Use PTXY,DELE to delete all the saved coordinate pairs. See the RPOLY, RPRISM, and RPR4 commands for other ways to create polygons and prisms.

## Menu Paths

This command cannot be accessed from a menu.

## PVECT, Oper, LabXR, LabYR, LabZR

## Interpolates a set of items onto a path.

> POST1: Path Operations
> MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS

## Oper

Valid operations for geometry operations along a path are:

## NORM

Defines a unit normal vector at each interpolation point in the direction of the cross product of the tangent to the path and the active $Z$ axis. Resulting vector components are in the active coordinate system (which must be Cartesian).
TANG
Defines a unit vector tangent to the path at each interpolation point. Vector components are in the active coordinate system (which must be Cartesian).

RADI
Defines the position vector of each interpolation point of the path from the center of the active coordinate system (which must be Cartesian).

## LabXR

Label ( 8 characters maximum) assigned to X -component of the resulting vector.

## LabYR

Label (8 characters maximum) assigned to Y-component of the resulting vector.

## LabZR

Label (8 characters maximum) assigned to Z-component of the resulting vector.

## Notes

Defines and interpolates a set of labeled path items along predefined path [PATH] and performs various geometric operations on these path items. A path item must be defined before it can be used with other path operations. Additional path items may be defined with the PDEF, PCALC, PDOT, and PCROSS commands. Path items may be listed or displayed with the PLPATH, PLPAGM and PRPATH commands. Path geometry items (XG, YG, ZG, S) are automatically interpolated (in the active CSYS) if not done so previously with the PDEF command.

## Menu Paths

Main Menu>General Postproc>Path Operations>Unit Vector

## /PWEDGE, XCENTR, YCENTR, XLRAD, ANGLE1, ANGLE2

## Creates an annotation wedge (GUI).

GRAP HICS:Annotation
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## XCENTR

Wedge $X$ center location ( $-1.0<X<2.0$ ).

## YCENTR

Wedge Y center location ( $-1.0<\mathrm{Y}<1.0$ ).

## XLRAD

Wedge radius length.
ANGLE1
Starting angle of wedge.
ANGLE2
Ending angle of wedge. The wedge is drawn counterclockwise from the starting angle, ANGLE1, to the ending angle, ANGLE2.

## Notes

Creates an annotation wedge to be written directly onto the display at a specified location. This is a command generated by the Graphical User Interface (GUI) and will appear in the log file (Jobname. LOG) if annotation is used. This command is not intended to be typed in directly in an ANSYS session (although it can be included in an input file for batch input or for use with the /INPUT command).

All wedges are shown on subsequent displays unless the annotation is turned off or deleted. Use the /LSPEC and the /PSPEC command to set the attributes of the wedge.

This command is valid in any processor.

## Menu Paths

Utility Menu>PlotCtrls>Annotation>Create Annotation

## Q Commands

QDVAL, TBLNO1, TBLNO2, SV1, SV2, SV3, SV4, SV5, SV6, SV7

## Defines PSD quadspectral values.

SOLUTION:Spectrum Options
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS

## TBLNO1

First input PSD table number associated with this spectrum.

## TBLNO2

Second input PSD table number associated with this spectrum.
SV1, SV2, SV3, . . . , SV7
PSD quadspectral values corresponding to the frequency points [PSDFRQ].

## Notes

Defines PSD quadspectral values to be associated with the previously defined frequency points. Repeat QDVAL command with the same table number for additional points. Unlike autospectra [PSDVAL], the quadspectra can be positive or negative. The quadspectral curve segment where there is a sign change is interpolated linearly (the rest of the curve segments use log-log interpolation). For better accuracy, choose as small a curve segment as possible wherever a sign change occurs.

Two table numbers are required since values are off-diagonal terms. This command is valid for SPOPT,PSD only.

This command is also valid in PREP7.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

# Main Menu>Preprocessor>Loads>Load Step Opts>Spectrum>PSD>Correlation>Quadspectral Main Menu>Solution>Load Step Opts>Spectrum>PSD>Correlation>Quadspectral 

## QFACT

## Calculates the quality factor for high-frequency electromagnetic resonators.

POST1: Magnetics Calculations
MP <> <> <> <> <> <> <> <> <> <> PP <> <> <>

## Notes

The QFACT command macro calculates the quality factor for high-frequency electromagnetic resonators. It returns the quality factor as a scalar parameter, QFACT. To compute the quality factor, the macro uses the stored energy, surface losses, and dielectric losses.

See magnetic macros for further details.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu>General Postproc>Elec\&Mag Calc>Cavity>Q-factor

## QRDOPT, ReuseKey

Specifies additional QRDAMP modal analysis option.
SOLUTION: Dynamic Options
MP ME ST PR PRN DS DSS <> <> EH <> PP <> EME MFS
Product Restrictions

## ReuseKey

Reuse key for method=QRDAMP specified in MODOPT command.
ON
Reuse the Block Lanczos eigensolution from the previous load steps or from the previous solution.
OFF
Do not reuse (calculates Block Lanczos eigensolution at current load step). This is the default.

## Notes

If the filename.modesym file exists in the working directory and ReuseKey $=\mathrm{ON}$, filename.modesym will be reused. If filename .modesym does not exist in the working directory, the Block Lanczos eigensolution will be calculated.

ReuseKey can be set to ON or OFF in each load step.

## Menu Paths

This command cannot be accessed from a menu.

## QSOPT, opt

## Specifies quasi static radiation options.

SOLUTION: Radiosity
MP ME <> PR <> <> <> <> <> <> <> PP <> EME MFS

## Opt

Quasi static option:
OFF
Do not run transient radiation problem to steady-state (default).
ON
Run transient radiation problem to steady-state.

## Notes

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu>Preprocessor>Loads>Load Step Opts>Time/Frequenc>Quasi-Static Main Menu>Solution>Load Step Opts>Time/Frequenc>Quasi-Static

QUAD, NODE1, NINTR, NODE2, NFILL, NSTRT, NINC, PKFAC

## Generates a quadratic line of nodes from three nodes.

PREP 7: Nodes
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NODE1

Begin fill-in from this node location. If $N O D E 1=\mathrm{P}$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI).

## NINTR

Intermediate or guiding node. Quadratic curve will pass through this location. NINTR may have any node number and any location. If the quadratic line also generates a node with number NINTR, the generated location overrides the previous NINTR location.

## NODE2

End quadratic fill-in at this node location.

## NFILL

Fill-in NFILL nodes between $N O D E 1$ and $N O D E 2$ (defaults to $|N O D E 2-N O D E 1|-1$ ). $N F I L L$ must be positive.
NSTRT
Node number assigned to first filled-in node (defaults to NODE1 + NINC).

## NINC

Add this increment to each of the remaining filled-in node numbers (may be positive or negative). Defaults to (NODE2-NODE1)/(NFILL + 1), i.e., linear interpolation.

## PKFAC

Peak location factor. If $P K F A C=0.5$, the peak of the quadratic shape occurs at the NINTR location. If 0.0 $<P K F A C<0.5$, the peak occurs to the NODE2 side of the NINTR location. If $0.5<P K F A C<1.0$, the peak occurs to the NODE1 side of the NINTR location. Defaults to 0.5.

## Notes

Generates a quadratic line of nodes (in the active coordinate system) from three nodes. The three nodes determine the plane of the curve and may have been defined in any coordinate system. Any number of nodes may be filled-in and any node number sequence may be assigned.

The quadratic line feature uses three nodes (NODE1,NINTR,NODE2) to determine the plane of the curve. The curve passes through the three points, beginning from NODE1, through the intermediate (or guiding) point NINTR, and toward NODE2.

Generated nodes are also quadratically spaced. If the guiding node number is within the set being generated, it will be relocated according to the quadratic spacing.

The peak location factor is used to determine how the quadratic fits through the three points. Various nodal progressions can be obtained by different combinations of PKFAC and the guiding node location. If the guiding node is at mid-length between NODE1 and NODE2, $0.293 \leq P K F A C<0.707$ will ensure that all generated nodes fall within the NODE1,NODE2 bounds. In the limit, as PKFAC approaches 0.0 , the peak approaches the line through NODE1 and NINTR at an infinite distance from NODE1. The QUAD command generates quadratic lines of nodes, which in turn may be used as a base line for generating irregular surfaces of nodes (by repeating [*REPEAT], generating [NGEN, NSCALE], etc.). Irregular surfaces may also be generated with the meshing commands.

## Menu Paths

Main Menu>Preprocessor>Modeling>Create>Nodes>Quadratic Fill

## /QUIT

## Exits a processor.

SESSION: Processor Entry
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Notes

This is an alternative to the FINISH command. If any cleanup or file writing is normally done by the FINISH command, it is bypassed if the /QUIT command is used instead. A new processor may be entered after this command. See the /EXIT command to terminate the run.

This command is valid in any processor. This command is not valid at the Begin level.

## Menu Paths

This command cannot be accessed from a menu.

QUOT, IR, IA, IB, --, Name, --- --, FACTA, FACTB

## Divides two variables.

POST26:Operations
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
IR
Arbitrary reference number assigned to the resulting variable (2 to NV [NUMVAR]). If this number is the same as for a previously defined variable, the previously defined variable will be overwritten with this result.

IA, IB
Reference numbers of the two variables to be operated on.

## Unused field.

## Name

Thirty-two character name identifying the variable on printouts and displays. Embedded blanks are compressed for output.

## --, --

Unused fields.

## FACTA, FACTB

Scaling factors (positive or negative) applied to the corresponding variables (default to 1.0).

## Notes

Divides two variables according to the operation:

$$
I R=(F A C T A \times I A) /(F A C T B \times I B)
$$

## Menu Paths

## Main Menu>TimeHist Postpro>Math Operations>Divide

## R Commands

## R, NSET, R1, R2, R3, R4, R5, R6

Defines the element real constants.

PREP 7: Real Constants<br>MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NSET

Set identification number (arbitrary). If same as a previous set number, set is redefined. Set number relates to that defined with the element [REAL]. Note that the GUI automatically sets this value.

## R1, R2, R3, . . . , R6

Real constant values (interpreted as area, moment of inertia, thickness, etc., as required for the particular element type using this set), or table names for tabular input of boundary conditions. Use RMORE command if more than six real constants per set are to be input.

## Notes

Defines the element real constants. The real constants required for an element are shown in the Input Summary of each element description in the Element Reference. Constants must be input in the same order as shown in that table. If more than the required number of element real constants are specified in a set, only those required are used. If fewer than the required number are specified, zero values are assumed for the unspecified constants.

If using table inputs (SURF151, SURF152, FLUID116, CONTA171, CONTA172, CONTA173, CONTA174, and CONTA175 only), enclose the table name in \% signs (e.g., \% \% tabname\%).

When copying real constants to new sets, ANSYS recommends that you use the command input. If you do use the GUI, restrict the real constant copy to only the first six real constants (real constants seven and greater will be incorrect for both the master and copy set).

This command is also valid in SOLUTION.

## Menu Paths

Main Menu>Preprocessor>Loads>Load Step Opts>Other>Real Constants>Add/Edit/Delete Main Menu>Preprocessor>Modeling>Create>Circuit>Builder>Mechanical>Mass Main Menu>Preprocessor>Modeling>Create>Circuit>Builder>Mechanical>Spring>Nonlin Rotary Main Menu>Preprocessor>Modeling>Create>Circuit>Builder>Mechanical>Spring>Nonlin Trans Main Menu>Preprocessor>Modeling>Create>Circuit>Builder>Transducer>ElecMech Main Menu>Preprocessor>Modeling>Create>Circuit>Edit Real Cnst Main Menu>Preprocessor>Real Constants>Add/Edit/Delete Main Menu>Solution>Load Step Opts>Other>Real Constants>Add/Edit/Delete

RACE, $X C, Y C, R A D, T C U R, D Y, D Z,--,--$, Cname
Defines a "racetrack" current source.
PREP 7:Special Purpose
MP <> <> <> <> <> <> <> EM <> <> PP <> EME <>
xC
Location of the mid-thickness of the vertical leg along the working plane X -axis.
YC
Location of the mid-thickness of the horizontal leg along the working plane Y -axis.

## RAD

Radius of curvature of the mid-thickness of the curves in the racetrack source. Defaults to . 501 * DY

## TCUR

Total current, amp-turns (MKS), flowing in the source.

## DY

In-plane thickness of the racetrack source.
DZ
Out-of-plane thickness (depth) of the racetrack source.

```
-, --
```

Unused fields

## Cname

An alphanumeric name assigned as a component name to the group of SOURC36 elements created by the command macro. Cname must be enclosed in single quotes in the RACE command line. Cname may be up to 32 characters, beginning with a letter and containing only letters, numbers, and underscores. Component names beginning with an underscore (e.g., _LOOP) are reserved for use by ANSYS and should be avoided. If blank, no component name is assigned.

## Notes

RACE invokes an ANSYS macro which defines a "racetrack" current source in the working plane coordinate system. The current source is generated from bar and arc source primitives using the SOURC36 element (which is assigned the next available element type number). The macro is valid for use in 3-D magnetic field analysis using a scalar potential formulation. Current flows in a counterclockwise direction with respect to the working plane.

The diagram below shows you a racetrack current source.


## Menu Paths

> Main Menu>Preprocessor>Loads>Define Loads>Apply>Magnetic>Excitation>Racetrack Coil Main Menu>Preprocessor>Modeling>Create>Racetrack Coil Main Menu>Solution>Define Loads>Apply>Magnetic>Excitation>Racetrack Coil

RADOPT, --, FLUXTOL, SOLVER, MAXITER, TOLER, OVERRLEX

## Specifies Gauss-Seidel Radiosity Solver options.

SOLUTION: Radiosity
AUX12: Radiosity Solver
MP ME <> PR <> <> <> <> <> <> <> PP <> EME MFS

Unused field.

## FLUXTOL

Convergence tolerance for radiation flux. Defaults to 0.0001 for ANSYS Thermal radiation analysis and FLOTRAN surface radiation analysis.

## SOLVER

Choice of solver for radiosity calculation:
0 Iterative solver (default).

1
Direct solver.

## MAXITER

Maximum number of iterations for iterative solver ( $S O L V E R=0$ ). Defaults to 1000.

## TOLER

Convergence tolerance for the iterative solver ( $S O L V E R=0$ ). Defaults to 0.1.

## OVERRLEX

Over relaxation factor applied to the iterative solver ( $S O L V E R=0$ ). Defaults to 0.1.

## Notes

The radiation heat flux is linearized, resulting in a robust convergence.

## Menu Paths

# Main Menu>Preprocessor>Radiation Opts>Solution Opt <br> Main Menu>Radiation Opt>Radiosity Meth>Solution Opt <br> Main Menu>Solution>Radiation Opts>Solution Opt 

## RAPPND, LSTEP, TIME

## Appends results data from the database to the results file.

> POST1:Load Case Calculations
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## LSTEP

Load step number to be assigned to the results data set. If it is the same as an existing load step number on the results file, the appended load step will be inaccessible. Defaults to 1.

## TIME

Time value to be assigned to the results data set. Defaults to 0.0 . A time value greater than the last load step should be used.

## Notes

This command is typically used to append the results from a load case combination to the results file. See the LCWRITE command to create a separate load case file. Only summable and constant data are written to the results file by default; non-summable data are not written unless requested (LCSUM command). RAPPND should not be used to append results from a harmonic analysis.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu>General Postproc>Write Results

## RATE, Option

Specifies whether the effect of creep strain rate will be used in the solution of a load step.
SOLUTION: Analysis Options
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS
Product Restrictions

## Option

Activates implicit creep analysis.
0 or OFF
No implicit creep analysis. This option is the default.
1 or ON
Perform implicit creep analysis.

## Command Default

Issuing this command with no arguments deactivates implicit creep analysis.

## Notes

Set Option $=1$ (or ON) to perform an implicit creep analysis (TB,CREEP with $T B O P T \geq 1$ ). For viscoplasticity/creep analysis, Option specifies whether or not to include the creep calculation in the solution of a load step. If Option $=1$ (or ON), ANSYS performs the creep calculation. Set an appropriate time for solving the load step via a TIME,TIME command.

## Product Restrictions

This command works only when modeling implicit creep with either von Mises or Hill potentials.
When modeling implicit creep with von Mises potential, you can use the following elements: LINK180, SHELL181, PLANE182, PLANE183, SOLID185, SOLID186, SOLID187, SOLID272, SOLID273, SOLID285, SOLSH190, BEAM188, BEAM189, SHELL208, SHELL209, REINF264, SHELL281, and ELBOW290.

When modeling anisotropic creep (TB,CREEP with TB,HILL), you can also use the following elements: LINK180, SHELL181, PLANE182, PLANE183, SOLID185, SOLID186, SOLID187, BEAM188, BEAM189, SOLSH190, SHELL208, SHELL209, REINF264, REINF265, SOLID272, SOLID273, SHELL281, SOLID285, PIPE288, PIPE289, and ELBOW290.

## Menu Paths

> Main Menu>Preprocessor>Loads>Analysis Type>Sol'n Controls>Nonlinear Main Menu $>$ Preprocessor>Loads $>$ Load Step Opts $>$ Nonlinear $>$ Strn Rate Effect
> Main Menu $>$ Solution $>$ Analysis Type $>$ Sol'n Controls $>$ Nonlinear Main Menu $>$ Solution $>$ Load Step Opts $>$ Nonlinear $>$ Strn Rate Effect

## /RATIO, wn, RATOX, RATOY

## Distorts the object geometry.

## WN

Window number (or ALL) to which command applies (defaults to 1).
RATOX
Distort object in the window X direction by this factor (defaults to 1.0).

## RATOY

Distort object in the window Y direction by this factor (defaults to 1.0).

## Command Default

No distortion.

## Notes

Distorts the object geometry in a particular direction. An example of this command's use would be to allow long narrow sections to be distorted to a more square area for better display visualization.

This command is valid in any processor.

## Menu Paths

## Utility Menu>PlotCtrls>Style>Size and Shape

RBE3, Master, DOF, Slaves, Wtfact
Distributes the force/moment applied at the master node to a set of slave nodes, taking into account the geometry of the slave nodes as well as weighting factors.

PREP 7: Constraint Equations
MP ME ST PR PRN $<><><>$ EM $<><>$ PP $<>$ EME MFS

## Master

Node at which the force/moment to be distributed will be applied. This node must be associated with an element for the master node to be included in the DOF solution.

DOF
Refers to the master node degrees of freedom to be used in constraint equations. Valid labels are: UX, UY, UZ, ROTX, ROTY, ROTZ, UXYZ, RXYZ, ALL

## Slaves

The name of an array parameter that contains a list of slave nodes. Must specify the starting index number. ALL can be used for currently selected set of nodes. The slave nodes may not be colinear, that is, not be all located on the same straight line (see Notes below).

## Wtfact

The name of an array parameter that contains a list of weighting factors corresponding to each slave node above. Must have the starting index number. If not specified, the weighting factor for each slave node defaults to 1 .

## Notes

The force is distributed to the slave nodes proportional to the weighting factors. The moment is distributed as forces to the slaves; these forces are proportional to the distance from the center of gravity of the slave nodes times the weighting factors. Only the translational degrees of freedom of the slave nodes are used for constructing the constraint equations. Constraint equations are converted to distributed forces/moments on the slave nodes during solution.

RBE3 creates constraint equations such that the motion of the master is the average of the slaves. For the rotations, a least-squares approach is used to define the "average rotation" at the master from the translations of the slaves. If the slave nodes are colinear, then one of the master rotations that is parallel to the colinear direction can not be determined in terms of the translations of the slave nodes. Therefore, the associated moment component on the master node in that direction can not be transmitted. When this case occurs, a warning message is issued and the constraint equations created by RBE3 are ignored.

Applying this command to a large number of slave nodes may result in constraint equations with a large number of coefficients. This may significantly increase the peak memory required during the process of element assembly. If real memory or virtual memory is not available, consider reducing the number of slave nodes.

As an alternative to the RBE3 command, you can apply a similar type of constraint using contact elements and the internal multipoint constraint (MPC) algorithm. See Surface-based Constraints for more information.

This command is also valid in SOLUTION.

## Menu Paths

Main Menu>Preprocessor>Coupling / Ceqn>Dist F/M at Mstr

## RCON

## Specifies "Real constants" as the subsequent status topic.

PREP 7:Status
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Notes

This is a status [STAT] topic command. Status topic commands are generated by the GUI and will appear in the log file (Jobname. LOG) if status is requested for some items under Utility Menu> List> Status. This command will be immediately followed by a STAT command, which will report the status for the specified topic.

If entered directly into the program, the STAT command should immediately follow this command.

## Menu Paths

## Utility Menu>List>Status>Preprocessor>Real Constants

## RDEC, Option REDUC , --, Nplace

## Defines the decimation parameters.

SOLUTION: Radiosity
MP ME ST PR <> <> <> <> <> <> <> PP <> EME MFS

## Option

Command options:

## DEFINE

Defines the decimation parameters (default).
STAT
Shows the status/listing. Other command options are ignored.

## REDUC

Approximate reduction in the number of surface elements. Valid range is from 0.0 (no decimation, the default) to 1.0 . This number is a factor applied to the initial number of element radiosity surfaces.

Unused field.

## Nplace

Node placement algorithm
OPTI
Optimal placement. An edge is collapsed by moving both nodes (I and J in the figure below) to a new location.

SUBS
Subset placement. An edge is collapsed by moving one node to another one. In the figure below, node $I$ is moved to node $J$.



Before


After

Subset Placement

## Notes

Decimation is the process of simplifying a fine surface mesh into a coarse one. This process is accomplished by a sequence of edge collapses.

The maximum degree of decimation (1.0) is unreachable. The real degree of decimation is always less than 1.0 because the decimated mesh must always consist of at least one element.

## Menu Paths

Main Menu>Preprocessor>Radiation Opts>Advanced Solution Option>Decimation Options>Define Specifications
Main Menu>Solution>Radiation Opts>Advanced Solution Option>Decimation Options>Define Specifications

## RDELE, NSET1, NSET2, NINC,--, LCHK

## Deletes real constant sets.

> PREP 7: Real Constants
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NSET1, NSET2, NINC

Delete real constant sets from NSET1 to NSET2 (defaults to NSET1) in steps of NINC (defaults to 1). If NSET1 = ALL, ignore NSET2 and NINC and all real constant sets are deleted.

Unused field.
LCHK
Specifies the level of element-associativity checking:

## NOCHECK

No element-associativity check occurs. This option is the default.
WARN
When a section, material, or real constant is associated with an element, ANSYS issues a message warning that the necessary entity has been deleted.

## CHECK

The command terminates, and no section, material, or real constant is deleted if it is associated with an element.

## Notes

Deletes real constant sets defined with the $\mathbf{R}$ command.

This command is also valid in SOLUTION.

## Menu Paths

Main Menu>Preprocessor>Loads>Load Step Opts>Other>Real Constants>Add/Edit/Delete Main Menu>Preprocessor>Real Constants<br>Main Menu>Preprocessor>Real Constants>Add/Edit/Delete Main Menu>Solution>Load Step Opts>Other>Real Constants>Add/Edit/Delete

## Sets the element real constant set attribute pointer.

PREP 7: Meshing
PREP 7: Elements
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
NSET
Assign this real constant set number to subsequently defined elements (defaults to 1).

## Command Default

$N S E T=1$.

## Notes

Identifies the real constant set number to be assigned to subsequently defined elements. This number refers to the real constant set number (NSET) defined with the real constant sets [R]. Real constant set numbers may be displayed [/PNUM]. If the element type requires no real constants, this entry is ignored. Elements of different type should not refer to the same real constant set.

## Menu Paths

Main Menu>Preprocessor>Meshing>Mesh Attributes>Default Attribs Main Menu>Preprocessor>Modeling>Create>Elements>Elem Attributes

## REALVAR, IR, IA, --, --, Name, --, --, FACTA

## Forms a variable using only the real part of a complex variable.

POST26:Operations
MP ME ST PR PRN <> <> <> EM EH DY PP <> EME MFS

IR
Arbitrary reference number assigned to the resulting variable (2 to NV [NUMVAR]). If this number is the same as for a previously defined variable, the previously defined variable will be overwritten with this result.

IA
Reference number of the variable to be operated on.
--, --
Unused fields.

## Name

Thirty-two character name identifying the variable on printouts and displays. Embedded blanks are compressed for output.
--, --
Unused fields.

## FACTA

Scaling factor (positive or negative) applied to variable IA (defaults to 1.0).

## Notes

Forms a variable using only the real part of a variable. Used only with harmonic analyses (ANTYPE,HARMIC).
Complex variables are stored in two-column arrays with the real component stored in the first column and the imaginary component stored in the second column. This command extracts the value stored in the first column (i.e., real component). However with harmonic analyses, all variables are stored in two-column arrays as complex variables. If the variable is not complex, then the same value is stored in both columns. This command will extract the variable in the first column of the array, even if this variable is not the real component of a complex variable.

## Menu Paths

Main Menu>TimeHist Postpro>Math Operations>Real Part

## RECTNG, $x 1, x 2, y 1, y 2$

## Creates a rectangular area anywhere on the working plane.

PREP 7:Primitives
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## x1, X2

Working plane $X$ coordinates of the rectangle.
Y1, Y2
Working plane Y coordinates of the rectangle.

## Notes

The area will be defined with four keypoints and four lines. See the BLC4 and BLC5 commands for alternate ways to create rectangles.

## Menu Paths

Main Menu $>$ Preprocessor $>$ Modeling $>$ Create $>$ Areas $>$ Rectangle $>$ By Dimensions

## REMESH, Action, Filename, Ext, --, Opt1, Opt2

## Specifies the starting and ending remeshing points, and other options, for manual rezoning.

SOLUTION: Rezoning
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS

## Action

START
Starts the remeshing operation.
FINISH
Ends the remeshing operation.

## READ

Reads in a generic (.cdb format) new mesh file generated by a third-party application. This remeshing option applies to both 2-D and 3-D rezoning.

## SPLIT

Splits selected elements of an existing 2-D mesh such that a quadrilateral element is split into four quadrilaterals, a degenerate quadrilateral is split into three quadrilaterals, and a quadratic triangular element is split into four quadratic triangles. This remeshing option applies to 2-D rezoning only.

## Filename

Name of a .cdb generic mesh file. The default value is jobname. Valid only when Action = READ.

## Ext

File name extension. The only valid (and the default) extension is CDB. Valid only when Action = READ.

Unused field.

## Opt1

Specifies options for the new mesh when using a generic imported mesh file or the mesh-splitting remeshing method. Valid only when Action = READ or Action $=$ SPLIT.

## REGE

Regenerates all node and element numbers on the new mesh using an offset of the highest existing node and element numbers. This is the default behavior when Action = READ; otherwise, this value is ignored.

## KEEP

Keeps the similarly numbered nodes and elements in the new and the old meshes unchanged. Valid only when Action = READ.

## TRAN

Generates transition elements to ensure nodal compatibility between split and unsplit parts of the mesh. Valid only when Action $=$ SPLIT.

## Opt 2

Specifies transition options for the mesh when elements are split. These options are valid only when Action = SPLIT.

## QUAD

Minimizes the number of degenerate elements in the transition mesh and tries to maximize the number of quadrilateral transition elements across several layers of elements from the split regions. This is the default behavior.

## DEGE

Creates transition zones between the split and unsplit parts of the mesh using mostly degenerate elements with a single element layer.

## Notes

The REMESH command is valid only during the manual rezoning (REZONE,MANUAL) process.
In manual rezoning, a REMESH,START command temporarily exits the /SOLU solution processor and enters a special mode of the /PREP7 preprocessor, after which a limited number of preprocessing commands are available for mesh control, but no solution commands are valid.

A REMESH,FINISH command exits the remeshing process and reenters the solution processor, at which point no preprocessing commands are available. If the new mesh exists, the command creates contact elements
if needed, and transfers all boundary conditions ( BCs ) and loads from the original mesh to the new mesh. You can issue any list or plot command to verify the created contact elements, transferred BCs, and loads. A REMESH,FINISH command is valid only after a previously issued REMESH,START command, and is the only way to safely end the remeshing operation (and exit the special mode of the /PREP7 preprocessor).

A REMESH,READ command is valid only when you want to perform a rezoning operation using a generic new mesh generated by a third-party application (rather than a new mesh generated internally by the ANSYS program). The command is valid between REMESH,START and REMESH,FINISH commands. In this case, the only valid file extension is. $\mathrm{cdb}(E x t=C D B)$. When Option $=$ KEEP, ANSYS assumes that the common node and element numbers between the old and the new mesh are topologically similar (that is, these commonly numbered areas have the same element connectivity and nodal coordinates).

A REMESH,SPLIT command is valid only when you wish to perform a rezoning operation by splitting the existing mesh. The command is valid between REMESH,START and REMESH,FINISH commands.

You can use REMESH,READ and REMESH,SPLIT commands for horizontal multiple rezoning provided that the meshes used in REMESH,READ do not intersect. (ANSYS recommends against issuing an AREMESH command after issuing either of these commands.)

For more detailed about the remeshing options available to you during a rezoning operation, see "Manual Rezoning" in the Advanced Analysis Techniques Guide.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.
Menu Paths

Main Menu>Solution>Manual Rezoning>Cancel<br>Main Menu>Solution $>$ Manual Rezoning $>$ Finish<br>Main Menu>Solution>Manual Rezoning>Read Mesh<br>Main Menu>Solution>Manual Rezoning>Select and Split Elems<br>Main Menu>Solution>Manual Rezoning>Start

## /RENAME, Fname1, Ext1, --, Fname2, Ext2, --

## Renames a file.

> SESSION: Files
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Fname1

Name of file to be renamed and its directory path (248 characters maximum, including directory). If you do not specify a directory path, it will default to your working directory and you can use all 248 characters for the file name.

File name defaults to the current Jobname.

## Ext1

Filename extension (8 character maximum).

Unused field.

## Fname2

Name of file to be renamed and its directory path (248 characters maximum, including directory). If you do not specify a directory path, it will default to your working directory and you can use all 248 characters for the file name.

Fname2 defaults to Fname1.

## Ext2

Filename extension (8 character maximum).
Ext 2 defaults to Ext 1 .

Unused field.

## Notes

Renames a file. Ex: /RENAME, $A_{1, \prime}, B$ renames file $A$ to $B$ in the same directory. /RENAME,A,DAT,,INP renames file A.DAT to A.INP. On all systems, this command will overwrite any existing file named B. See the Operations Guide for details. Only ANSYS binary files should be renamed. Use /SYS and system renaming commands for other files.

Renaming across system partitions may be internally done by a copy and delete operation on some systems.
This command is valid only at the Begin Level.

## Menu Paths

Utility Menu>File>File Operations>Rename

## REORDER

## Specifies "Model reordering" as the subsequent status topic.

PREP 7: Status
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Notes

This is a status [STAT] topic command. Status topic commands are generated by the GUI and will appear in the log file (Jobname. LOG) if status is requested for some items under Utility Menu> List> Status. This command will be immediately followed by a STAT command, which will report the status for the specified topic.

If entered directly into the program, the STAT command should immediately follow this command.

## Menu Paths

Main Menu>Preprocessor>Numbering Ctrls>Element Reorder>List Wave Lists
Utility Menu>List>Status>Preprocessor>Reorder Module

## *REPEAT, NTOT, VINC1, VINC2, VINC3, VINC4, VINC5, VINC6, VINC7, VINC8, VINC9, VINC10, VINC11

## Repeats the previous command.

APDL: Process Controls<br>MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Argument Descriptions

## NTOT

Number of times the preceding command is executed (including the initial execution). Must be 2 or greater. NTOT of 2 causes one repeat (for a total of 2 executions).

## VINC1, VINC2, VINC3, ..., VINC11

Value increments applied to first through eleventh data fields of the preceding command.

## Notes

*REPEAT must immediately follow the command that is to be repeated. The numeric arguments of the initial command may be incremented in the generated commands. The numeric increment values may be integer or real, positive or negative, zero or blank. Alphanumeric arguments cannot be incremented. For large values of $N T O T$, consider printout suppression (/NOPR command) first.

Most commands beginning with slash (/), star (*), as well as "unknown command" macros, cannot be repeated. For these commands, or if more than one command is to be repeated, include them within a do-loop. File switching commands (those reading additional commands) cannot be repeated. If a *REPEAT command immediately follows another *REPEAT command, the repeat action only applies to the last non-*REPEAT command. Also, *REPEAT should not be used in interactive mode immediately after a) a command (or its log file equivalent) that uses picking, or b) a command that requires a response from the user.

This command is valid in any processor.

## Menu Paths

This command cannot be accessed from a menu.

## /REPLOT, Label

## Automatically reissues the last display command for convenience.

GRAPHICS: Set Up
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Label

Controls the type of replot.
RESIZE
Issued internally when a graphics window resize occurs (Default).

## FAST

Only applicable for 3-D devices that allow a fast redisplay for changes in the view characteristics only.

## Notes

Reissues the last display command (NPLOT, EPLOT, KPLOT, PLNSOL, PLVAR, etc.), along with its parameters, for convenience. The current display specifications are used.

When the last display command is invalid in a particular processor, the use of the /REPLOT command is also invalid in that processor. However, if you attempt a /REPLOT and the last display command is invalid in the current processor, ANSYS produces an element display [EPLOT] instead, as long as the last display command was PLNSOL, PLESOL, or PLDISP. ANSYS performs this substitution of /REPLOT with EPLOT for your convenience.

For example, the PLNSOL command, which is used to display solution results as continuous contours, is a valid command in the general postprocessor [/POST1]. If you issue PLNSOL followed by /REPLOT while in the general postprocessor, the /REPLOT command effectively reissues your earlier PLNSOL command, along with its parameters. But if you then exit the general postprocessor, enter the preprocessor [/PREP7], and issue the /REPLOT command again, ANSYS internally issues EPLOT instead. This occurs because PLNSOL is not a valid command in the preprocessor.

When you click on one of the buttons on the Pan, Zoom, Rotate dialog box to manipulate the view of a model, the /REPLOT command is issued internally. Thus, the substitution of /REPLOT with EPLOT as described above may occur not only for the PLNSOL, PLESOL, and PLDISP results display commands, but also for operations that you perform with the Pan, Zoom, Rotate dialog box.
/REPLOT will not show boundary conditions if they are only applied to a solid model and the last display command (for example, EPLOT) displays the finite element model. To show boundary conditions, the following options are available:

- Issue /REPLOT after you issue the SBCTRAN command to transfer solid model boundary conditions to the finite element model.
- Issue /REPLOT after you issue a solid model display command (for example, VPLOT).

This command is valid in any processor (except as noted above).

## Menu Paths

Main Menu>General Postproc>Path Operations>Define Path>On Working Plane<br>Main Menu>General Postproc>Path Operations>Delete Path>All Paths<br>Main Menu>General Postproc>Path Operations>Delete Path $>$ By Name<br>Main Menu>General Postproc>Path Operations>Plot Paths<br>Main Menu>Preprocessor>Modeling>Create>Circuit>Scale Icon<br>Main Menu>Preprocessor>Path Operations>Define Path>On Working Plane<br>Main Menu>Preprocessor>Path Operations>Delete Path $>$ All Paths<br>Main Menu>Preprocessor>Path Operations>Delete Path>By Name<br>Main Menu>Preprocessor>Path Operations>Plot Paths<br>Utility Menu>Plot>Replot<br>Utility Menu>PlotCtrls>Style>Symmetry Expansion>Expansion by values

## RESCONTROL, Action, Ldstep, Frequency, MAXFILES

## Controls file writing for multiframe restarts.

> SOLUTION: Misc Loads
> MP ME ST PR PRN DS DSS FL EM EH <> PP <> EME MFS

## Action

Specify the command action.

## DEFINE

Issuing the command will specify how frequently the . Xnnn restart files are written for a load step (default).

## FILE_SUMMARY

Issuing the command will print the substep and load step information for all. Xnnn files for the current job name in the current directory. If this option is specified, all other arguments are ignored.

## STATUS

Issuing the command will list the current status in the tables of restart control specified earlier by RESCONTROL.

## NORESTART

Issuing the command will not allow restart files to be created for Distributed ANSYS runs only. Therefore, the remote processors will not have files such as.ESAV, .OSAV, . RST, . x000, etc. in the directory at the end of the run. The host processor will not have files such as . ESAV, . OSAV, .$\times 000$.RDB, .LDHI, etc. at the end of the run. Distributed ANSYS will remove all the above scratch files at the end of the solution phase (FINISH or /EXIT ). This option is useful for file clean-up on remote or host processors. If this field is specified, the remaining fields (Ldstep, Frequency, and MAXFILES) are not used.

If this option is used in shared-memory parallel ANSYS, most of the restart files in the working directory are removed. It has the same effect as issuing RESCONTROL,,NONE.

## LINEAR

Issuing the command will specify the same actions as Action = DEFINE. However, this option is intended for linear static applications. For linear static analysis, the restart capability is normally not needed. It is only needed when a subsequent linear perturbation analysis is desired. By default, none of the restart files are written for a linear static analysis.

## Ldstep

Specify how the . Xnnn files are written.
ALL
The . Xnnn files are written at the same frequency for all load steps.

## LAST

Write the . Xnnn files for the last load step only (default for nonlinear static and full transient analyses). If this option is specified, results are written for the last substep and the remaining arguments are ignored.
$\boldsymbol{N}$
Write the . Xnnn files at the frequency indicated only for load step $N$. Other load steps will be written at the default frequency or at a frequency defined by a previous RESCONTROL,DEFINE,ALL,Frequency command.

## NONE

No multiframe restart files (.RDB [restart database file], . LDHI [load history file], . Xnnn) will be created. If you specify this option, all other arguments will be ignored.

For nonlinear static and static and full transient analyses, this option allows a restart to be done at the last or abort point using the same procedure as in ANSYS 5.5 or earlier (using the .EMAT, .ESAV or . OSAV, and .DB files).

For mode-superposition transient analyses, this option allows a restart from the last point using the . RDSP file and the .DB file (default for mode-superposition analysis).

## Frequency

Frequency at which the . Xnnn files are written.

## NONE

Do not write any . Xnnn files for this load step (default for mode superposition analysis).

## LAST

Write the . Xnnn files for the last substep of the load step only (default for nonlinear static and full transient analyses).
$\boldsymbol{N}$
If $N$ is positive, write the . Xnnn file every $N$ th substep of a load step. If $N$ is negative, write $N$ equally spaced . Xnnn files within a load step.

In nonlinear static and full transient analyses, negative $N$ is valid only when AUTOTS,ON.
In mode-superposition analyses, negative $N$ is always valid .

## MAXFILES

Maximum number of . Xnnn files to save for Ldstep.
0
Do not overwrite any existing . Xnnn files (default). The total maximum number of . Xnnn files for one run is 999 . If this number is reached before the analysis is complete, the analysis will continue but will no longer write any . Xnnn files.
$\boldsymbol{N}$
The maximum number of . Xnnn files to keep for each load step. When $N$. Rnnn files have been written for a load step, ANSYS will overwrite the first . Xnnn file of that load step for subsequent substeps.

## Command Default

If the RESCONTROL command is not issued during a structural analysis, the .RDB and . LDHI files will be written as described in Restarting an Analysis in the Basic Analysis Guide.

In nonlinear static and full transient analyses, the default behavior is multiframe restart (command default RESCONTROL,DEFINE,LAST,LAST). The . Rnnn file will be written at the last substep of the last load step by default. A . Rnnn file will also be written at the iteration prior to the abort point of the run if a Jobname. ABT file was used in batch mode or by pressing the Stop button in the GUI, or if the job terminates because of a failure to reach convergence or some other solution error. No information at the aborted substep will be saved to the .Rnnn file.

## Notes

Multiframe restart files are indicated here as . Xnnn files. They correspond to . Rnnn files for nonlinear static and full transient analyses, and . Mnnn files for mode-superposition analyses.

This command sets up the restart parameters for a multiframe restart, which allows you to restart an analysis from any load step and substep for which there is a . Xnnn file. You can perform a multiframe restart only for structural static, structural transient (full or mode-superposition methods), and thermal analyses. For information on how to do a multiframe restart and descriptions of the contents of the files used, see Restarting an Analysis in the Basic Analysis Guide. For information on thermal analysis restarts, please see the Thermal Analysis Guide.

If you have many substeps for each load step, and are writing . Xnnn files frequently, you may want to use MAXFILES to limit the number of . Xnnn saved, since these files can fill up your disk quickly. You may specify MAXFILES and Frequency for individual load steps. These arguments will take on the default value or the value defined by RESCONTROL,,ALL,Frequency,MAXFILES if they are not explicitly defined for a specific load step.

You can specify a maximum of ten load steps; that is, you can issue the RESCONTROL,,N command a maximum of ten times. Specified load steps cannot be changed in a restart.

## Menu Paths

## Main Menu>Preprocessor>Loads>Load Step Opts>Nonlinear>Restart Control Main Menu>Solution>Load Step Opts>Nonlinear>Restart Control

## RESET

## Resets all POST1 or POST26 specifications to initial defaults.

post1:Set Up
POST26:Set Up
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Notes

Has the same effect as entering the processor the first time within the run. In POST1, resets all specifications to initial defaults, erases all element table items, path table data, fatigue table data, and load case pointers. In POST26, resets all specifications to initial defaults, erases all variables defined, and zeroes the data storage space.

## Menu Paths

Main Menu>General Postproc>Reset Main Menu>TimeHist Postpro>Reset Postproc

## /RESET

## Resets display specifications to their initial defaults.

GRAPHICS: Set Up
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Notes

Resets slash display specifications (/WINDOW, /TYPE, /VIEW, etc.) back to their initial default settings (for convenience). Also resets the focus location to the geometric center of the object.

This command is valid in any processor.

## Menu Paths

Utility Menu>PlotCtrls>Reset Plot Ctrls

## RESP, IR, LFTAB, LDTAB, ITYPE, RATIO, DTIME, TMIN, TMAX

## Generates a response spectrum.

> MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

POST2 6:Special Purpose

IR
Arbitrary reference number assigned to the response spectrum results (2 to NV [NUMVAR]). If this number is the same as for a previously defined variable, the previously defined variable will be overwritten with these results.

## LFTAB

Reference number of variable containing frequency table (created with FILLDATA or DATA command).
The frequency table defines the number and frequency of oscillating systems used to determine the response spectrum. The frequency interval need not be constant over the entire range. Frequencies must be input in ascending order.

## LDTAB

Reference number of variable containing the displacement time-history.

## ITYPE

Defines the type of response spectrum to be calculated:
0 or 1
Displacement (relative to base excitation).
2
Velocity.
3
Acceleration response spectrum (absolute).

## RATIO

Ratio of viscous damping to critical damping (input as a decimal number).

## DTIME

Integration time step (ITS) size used in the numerical integration scheme. This value should be equal to or greater than that actually used in the initial transient analysis. With ANTYPE,TRANS data, DTIME defaults to a value of $1 /((20)(F M A X))$, where FMAX is the highest frequency in LFTAB. For reduced linear transient dynamic (ANTYPE,TRANS) displacement pass data, the ITS read from the file (previously input for DTIME in the first load step of the reduced linear transient dynamic (ANTYPE,TRANS) analysis) is used for the default.

## TMIN, TMAX

Specifies a subset of the displacement-time history to be used in the response spectrum calculation. Defaults to the full time range.

## Notes

Generates a response spectrum from displacement time-history and frequency data.

The ANSYS modal analysis (ANTYPE,MODAL) may be followed by a spectrum analysis (ANTYPE,SPECTR). This analysis requires a response spectrum input of up to 100 points. This input may be determined from the response spectrum printout or display of this command and input to the modal analysis (by hand). The response spectrum generator uses the displacements from either a full or reduced transient dynamic (ANTYPE,TRANS) analysis. If a response spectrum is to be calculated from a given displacement time-history, the displacement time-history may be input to a single one-element reduced linear transient dynamic (ANTYPE,TRANS) analysis, so that the calculated output (which should be the same as the input) will be properly located on the file.

The response spectrum is defined as the maximum response of single degree of freedom systems of varying frequency (or period) to a given input support excitation. The equation describing the response of the system in terms of the relative displacement $(X)$ is:

$$
\ddot{\overline{\mathrm{X}}}+2 \xi_{\mathrm{n}} \omega_{\mathrm{n}} \dot{\overline{\mathrm{X}}}+\varpi_{\mathrm{n}}^{2} \overline{\mathrm{X}}=-\ddot{\mathrm{X}}_{0}
$$

where:

```
\(\Omega_{\mathrm{n}}=\) natural frequency of the system, \(\sqrt{\mathrm{k} / \mathrm{m}}\)
\(\xi_{\mathrm{n}}=\) ratio of viscous damping to critical damping, \(\mathrm{c} / \mathrm{c}_{\mathrm{cr}}\)
\(\mathrm{X}_{\mathrm{o}}=\) ground displacement
```

The solution of this equation for the maximum response, $\bar{X}_{\text {max }}$, at various frequencies results in the spectral response curve. See the Theory Reference for the Mechanical APDL and Mechanical Applications for calculation details.

Calculations are based on a numerical integration scheme with the displacement time-history data from the file as the input ground-forcing function. The integration time step (argument DTIME on the RESP command) and the damping coefficient (argument RATIO) are constant over the frequency range. The number of calculations done per displacement spectral response curve is the product of the number of input solution points (TMAX-TMIN)DTIME and the number of oscillating systems (frequencies located in variable LFTAB). Input solution points requested (by DTIME and the frequency range) at a time not corresponding to an actual displacement solution time on the file are read from the next available time. The user has the option of calculating either a displacement, velocity, or acceleration spectral response.

## Menu Paths

Main Menu>TimeHist Postpro>Generate Spectrm

RESUME, Fname, Ext, --, NOPAR, KNOPLOT

## Resumes the database from the database file.

DATABASE:Set Up<br>MP ME ST PR PRN DS DSS FL EM EH DY PP <> EME MFS

## Fname

File name and directory path ( 248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

The file name defaults to Jobname.

## Ext

Filename extension (8 character maximum).
The extension defaults to DB if Fname is blank.

Unused field.

## NOPAR

Parameter resume key:
0
All data in the database, including the scalar parameters, are replaced with the data saved on File. DB (default).

1
All data in the database, except the scalar parameters, are replaced with the data saved on File.DB.

## Note

This option should not be used if array parameters are defined, since existing array parameters might be redefined with arbitrary values. See PARSAV and PARRES for a more general method of preventing the replacement of both scalar and array parameters.)

## KNOPLOT

If equal to 1 , will suppress automatic plot. Otherwise, if the GUI is on and this RESUME command was not read from a file, the selected elements from Fname are plotted. (If there are no selected elements, selected nodes are plotted. If no nodes, volumes; if no volumes, areas; if no areas, lines; if no lines, keypoints. If there are no selected keypoints, the screen is erased.)

## Notes

The RESUME command resumes a database file into the ANSYS program. The command causes the database file (File.DB) to be read, thereby resetting the database (including any geometry settings) either a) as it was at the last SAVE command, or b) as it was saved with the last /EXIT command, whichever was last. For
multiple load step analyses (because only the data for one load step at a time may reside in the database), the load step data restored to the database will correspond to the load step data written when the save occurred.

If the database file was saved in another ANSYS product, it may contain element type and KEYOPT specifications which are invalid in the "resuming" product. Immediately after the database resume is completed, you should redefine these invalid element types and KEYOPT settings to valid ones (ET, KEYOPT).

This command is valid in any processor. If used in SOLUTION, this command is valid only within the first load step.

## Menu Paths

## Utility Menu $>$ File $>$ Resume from <br> Utility Menu>File>Resume Jobname.db

## RESVEC, Key

## Calculates or includes residual vectors.

SOLUTION: Analysis Options
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

## Key

Residual vector key:

## OFF

Do not calculate or include residual vectors. This option is the default.

## ON

Calculate or include residual vectors.

## Command Default

No residual vectors are calculated or included in the analysis.

## Notes

In a modal analysis, the RESVEC command calculates residual vectors. In a mode-superposition transient dynamic, mode-superposition harmonic, PSD or spectrum analysis, the command includes residual vectors.

If rigid-body modes exist, pseudo-constraints are required for the calculation. Issue the $\mathbf{D}_{\text {,I, }}$ SUPPORT command to specify only the minimum number of pseudo-constraints necessary to prevent rigid-body motion.

## Menu Paths

This command cannot be accessed from a menu.

## RESWRITE, Fname

## Appends results data from the database to a results file.

POST1:Special Purpose
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

## Fname

File name and directory path (248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

The file name extension varies as follows:
. RST for structural, fluid, or coupled-field analyses
. RTH for thermal or electrical analyses
. RMG for magnetic analyses
. RFL for FLOTRAN analyses

## Notes

The RESWRITE command appends to the specified file a data set by writing the results data currently in the database. If the file does not exist, it will be created including the geometry records. The current load step, substep, and time value are maintained. All data (summable and nonsummable) are written.

The command is primarily intended for use in a top-down substructuring analysis, where the full model is resumed and the results data read from the use pass results file (SET), and subsequently from all substructure expansion pass results files (APPEND). The full set of data in memory can then be written out via the RESWRITE command to create a complete results file (as though you had run a nonsubstructured analysis).

## Menu Paths

This command cannot be accessed from a menu.

## *RETURN, Level

## Returns input stream to a higher level.

> APDL: Process Controls
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Argument Descriptions

## Level

Number of levels to move up from the current level.

## Negative --

Move relative to current level. For example: *Return,-2 will go up two levels from the current level.

## Positive --

Move to absolute level. For example: *Return,2 will go to level 2.
Level 0 is the primary input file.

## Notes

This command is used to jump to the macro call sequence, ending the current macro file, and returning to the line after the calling line in the previous file. Unlike the *GO command, this command may be used inside *IF or *DO constructs.

## Menu Paths

This command cannot be accessed from a menu.

REXPORT, Target, --, --, LSTEP, SBSTEP, Fname, Ext, --

## Exports displacements from an implicit run to ANSYS LS-DYNA.

SOLUTION: Explicit Dynamics
MP ME ST PR PRN <> <> <> <> <> DY PP <> EME MFS

## Target

The type of analysis run to which displacements are exported.
OFF
Ignore initial displacements.
DYNA
Get initial displacements from an earlier implicit (ANSYS) run and export to an explicit ANSYS LSDYNA run (Default).

## --, --

Unused fields.

## LSTEP

Load step number of data to be exported. Defaults to the last load step.

## SBSTEP

Substep number of data to be exported. Defaults to the last substep.

## Fname

File name and directory path ( 248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

The file name does not have a default; you must specify a name. It CANNOT be the current Jobname.

## Ext

Filename extension (8 character maximum).
The extension must be an RST extension (default). Currently, only structural results are allowed.

Unused field.

## Notes

This command exports the displacements, rotations, and temperatures calculated in an ANSYS implicit analysis into the `drelax' file, which is subsequently read in by ANSYS LS-DYNA when a dynamic relaxation or stress initialization is conducted [EDDRELAX].

This command is not written to the Jobname. CDB file when the CDWRITE command is issued.

## Menu Paths

Main Menu>Preprocessor>LS-DYNA Options>Constraints>Read Disp Main Menu>Solution>Constraints>Read Disp

## REZONE, Option, LDSTEP, SBSTEP

Initiates the rezoning process, sets rezoning options, and rebuilds the database.
SOLUTION: Rezoning
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS

## Option

The rezoning method to employ:

## MANUAL

Manual rezoning. This method is the default.

## LDSTEP

The load step number at which rezoning should occur. The default value is the highest load step number found in the Jobname. Rnnn files (for the current jobname and in the current directory).

## SBSTEP

The substep number of the specified load step (LDSTEP) at which rezoning should occur. The default value is the highest substep number found in the specified load step in the Jobname. Rnnn files (for the current jobname and in the current directory).

## Notes

The REZONE command rebuilds the database (. db file) based on the specified load step and substep information, and updates nodes to their deformed position for remeshing.

Before issuing this command, clear the database via the /CLEAR command.
Currently, support is available for manual rezoning (option = MANUAL) only.
For more information, see "Manual Rezoning" in the Advanced Analysis Techniques Guide.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu>Solution>Manual Rezoning>Start

RFORCE, NVAR, NODE, Item, Comp, Name

## Specifies the total reaction force data to be stored.

POST26:Set Up
MP ME ST PR PRN <> <> <> EM EH DY PP <> EME MFS
NVAR
Arbitrary reference number assigned to this variable (2 to NV [NUMVAR]). Overwrites any existing results for this variable.

## NODE

Node for which data are to be stored. If $N O D E=\mathrm{P}$, graphical picking is enabled (valid only in the GUI).

## Item

Label identifying the item. Valid item labels are shown in the table below. Some items also require a component label.

## Comp

Component of the item (if required). Valid component labels are shown in the table below.

## Name

Thirty-two character name identifying the item on printouts and displays. Defaults to an eight character label formed by concatenating the first four characters of the It em and Comp labels.

## Notes

Defines the total reaction force data (static, damping, and inertial components) to be stored from single pass (ANTYPE,STATIC or TRANS) solutions or from an expansion pass of reduced two-pass (ANTYPE,HARMIC or TRANS) solutions.

## Table 251 RFORCE - Valid Item and Component Labels

Valid item and component labels for node results are:

| Item | Comp | Description |
| :--- | :--- | :--- |
| $F$ | $X, Y, Z$ | $X, Y$, or $Z$ structural force. |
| $M$ | $X, Y, Z$ | $X, Y$, or $Z$ structural moment. |
| HEAT[1] |  | Heat flow. |
| FLOW |  | Fluid flow. |
| AMPS |  | Current flow. |
| FLUX |  | Magnetic flux. |
| CSG | $X, Y, Z$ | $X, Y$, or $Z$ magnetic current segment component. |
| VLTG |  | Voltage drop |
| CURT |  | Current |
| CHRG |  | Charge |

1. For SHELL131 and SHELL132 elements with KEYOPT(3) $=0$ or 1 , use the labels HBOT, HE2, HE3, $\ldots$, HTOP instead of HEAT.

## Menu Paths

Main Menu>TimeHist Postpro>Define Variables
Main Menu>TimeHist Postpro>Elec\&Mag>Circuit>Define Variables
/RGB, Kywrd, PRED, PGRN, PBLU, N1, N2, NINC, NCNTR
Specifies the RGB color values for indices and contours.
POST2 6:Set Up
MP ME ST PR PRN <> <> <> EM EH DY PP <> EME MFS

## Kywrd

Determines how RGB modifications will be applied.

## INDEX

Specifies that subsequent color values apply to ANSYS color indices (0-15).

## CNTR

Specifies that subsequent color values apply to contours (1-128). Applies to C-option devices only (i.e. X11C or Win32C).

PRED
Intensity of the color red, expressed as a percentage.

## PGRN

Intensity of the color green, expressed as a percentage.
PBLU
Intensity of the color blue, expressed as a percentage.
N1
First index (0-15), or contour (1-128) to which the designated RGB values apply.
N2
Final index (0-15), or contour (1-128) to which the designated RGB values apply.

## NINC

The step increment between the values $N 1$ and $N 2$ determining which contours or indices will be controlled by the specified RGB values.

NCNTR
The new maximum number of contours (1-128).

## Notes

Issuing the /CMAP command (with no filename) will restore the default color settings.

## Menu Paths

Utility Menu>PlotCtrls>Redirect Plots>To GRPH File
Utility Menu>PlotCtrls>Redirect Plots>To HPGL File
Utility Menu>PlotCtrls>Redirect Plots>To HPGL2 File
Utility Menu>PlotCtrls>Redirect Plots>To PSCR File

RIGID, Dof1, Dof2, Dof3, Dof4, Dof5, Dof6
Specifies known rigid body modes (if any) of the model.
SOLUTION: Dynamic Options
MP ME ST PR PRN $<><><><><><>$ PP $<>$ EME MFS

## Dof1, Dof2, Dof3, . . . , Dof6

Up to six global Cartesian directions of the rigid modes. For a completely free 2-D model, use ALL or UX, UY, ROTZ. For a completely free 3-D model, use ALL or UX, UY, UZ, ROTX, ROTY, ROTZ. For a constrained model, use UX, UY, UZ, ROTX, ROTY, or ROTZ, as appropriate, to specify each and every unconstrained direction which exists in the model (not specifying every direction may cause difficulties in extracting the modes).

## Notes

Specifies known rigid body modes (if any) of the model. This command applies only to a component mode synthesis (CMS) analysis (see the CMSOPT command). Any rigid body modes specified must be permitted by the applied displacement constraints (i.e., do not specify a rigid body mode in a constrained direction). Reissue the command to redefine the specification. If used in SOLUTION, this command is valid only within the first load step.

This command is also valid in PREP7.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

# Main Menu>Preprocessor>Loads>Analysis Type>Analysis Options <br> Main Menu>Solution>Analysis Type>Analysis Options 

RIGRESP, Option, Method, Val1, Val2

## Specifies the rigid response calculation.

SOLUTION: Spectrum Options
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS
Product Restrictions

## Option

Flag to activate or deactivate the rigid response calculation:
1 (ON or YES)
Activate.
2 (OFF or NO)
Deactivate. This value is the default.

## Method

Method used to calculate the rigid response:

## GUPTA

Gupta method.

## LINDLEY

Lindley-Yow method.

## Val1

If Method = GUPTA, Val1 represents the frequency F1 in Hertz.
If Method = LINDLEY, Vall is the Zero Period Acceleration (ZPA). If a scale factor is defined (FACT in the SVTYP command), it is used to scale this value

## Val2

If Method = GUPTA, Val2 represents the frequency F2 in Hertz.

## Notes

For more information on the rigid response calculation, see Rigid Responses in the Theory Reference for the Mechanical APDL and Mechanical Applications

This rigid response calculation is only valid for single point response spectrum analysis (SPOPT, SPRS) and multiple point response spectrum analysis (SPOPT, MPRS) with combination methods (SRSS), complete quadratic (CQC) or Rosenblueth (ROSE)

This command is also valid in PREP7.

## Product Restrictions

Only Sptype $=$ SPRS is allowed in ANSYS Professional.

## Menu Paths

To be supplied.

RIMPORT, Source, Type, Loc, LSTEP, SBSTEP, Fname, Ext, --, SPSCALE, MSCALE

## Imports initial stresses from an explicit dynamics run into ANSYS.

SOLUTION:FE Body Loads
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

## Source

The type of analysis run from which stresses are imported.
OFF
Ignore initial stresses.
DYNA
Get initial stresses from an earlier explicit (ANSYS LS-DYNA) run (default).

## Type

Type of data imported. Note that this is an ANSYS-defined field; the only valid value is STRESS.

## Loc

Location where the data is imported. Note that this is an ANSYS-defined field; the only valid value is ELEM (data imported at the element integration points).

## LSTEP

Load step number of data to be imported. Defaults to the last load step.

## SBSTEP

Substep number of data to be imported. Defaults to the last substep.

## Fname

File name and directory path ( 248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

The file name does not have a default; you must specify a name. It CANNOT be the current Jobname.

## Ext

Filename extension (8 character maximum).
The extension must be an RST extension (default).
--
Unused field.

## SPSCALE

Stabilization factor. This factor is used in a springback analysis to scale (up or down) the initial stiffness of the applied spring. No default; input a value only if you want to activate stabilization. If SPSCALE is blank, stabilization is not activated.

## MSCALE

Acceptable stabilization stiffness (defaults to $1.0 \times 10^{-4}$ ). In a springback analysis, iterations will stop when the applied spring stiffness comes down to this value. MSCALE is not used if SPSCALE is blank.

## Notes

This command imports initial stress information into ANSYS from an earlier explicit (ANSYS LS-DYNA) run. The stress state from SHELL163 and SOLID164 elements in the explicit analysis is imported to the corresponding SHELL181 and SOLID185 implicit elements. For the shell elements, the current shell element thickness is also imported. This command is valid only before the first SOLVE command of the implicit analysis (which comes after the explicit analysis) and is ignored if issued after subsequent SOLVE commands (that is, stresses will not be re-imported).

RIMPORT is typically used to perform springback analysis of sheet metal forming. We recommend that you use SHELL163 elements in the explicit analysis with 3 to 5 integration points through the thickness. This ensures that the through-thickness stress distribution is transferred accurately to the SHELL181 elements. If more than 5 integration points are used, ANSYS imports resultants (forces and moments) to the SHELL181 elements. This implies that linearization of the through-thickness stress distribution is assumed in SHELL181 elements. If SHELL163 uses full integration in the shell plane, stress and thickness data are averaged and then transferred. For the solid elements, the stress at the SOLID164 element centroid is transferred to the SOLID185 element centroid. If SOLID164 has full integration, the stress is averaged and then transferred.

When the SPSCALE argument is specified, artificial springs with exponentially decaying stiffness (as a function of iterations) are applied. This technique is recommended only for those cases in which there are severe convergence difficulties. In general, you should first attempt a springback analysis without using the stabilization factors SPSCALE and MSCALE. (For more information on springback stabilization, see the ANSYS LS-DYNA User's Guide.)

This command is not written to the Jobname. CDB file when the CDWRITE command is issued. Further, the RIMPORT information is not saved to the database; therefore, the RIMPORT command must be reissued if the database is resumed.

This command is also valid in PREP7.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Other>Import Stress Main Menu>Solution>Define Loads>Apply>Structural>Other>Import Stress

RLIST, NSET1, NSET2, NINC

## Lists the real constant sets.

> PREP 7: Real Constants
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NSET1, NSET2, NINC

List real constant sets from NSET1 to NSET2 (defaults to NSET1) in steps of NINC (defaults to 1). If NSET1 = ALL (default), ignore NSET2 and NINC and list all real constant sets [R].

## Notes

The real constant sets listed contain only those values specifically set by the user. Default values for real constants set automatically within the various elements are not listed.

This command is valid in any processor.

## Menu Paths

Utility Menu>List>Properties>All Real Constants
Utility Menu>List>Properties>Specified Real Constants

## RMALIST

Lists all defined master nodes for a ROM method.
REDUCED ORDER MODELING:Generation Pass
MP <> <> <> <> <> <> <> <> <> <> PP <> EME <>

## Notes

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.
Menu Paths
Main Menu>ROM Tool>Setup>Master Nodes>List

RMANL, Fname, Ext, --, Dimn, Oper

## Assigns model database, dimensionality, and operating direction for the ROM method.

REDUCED ORDER MODELING:Generation Pass MP <> <> <> <> <> <> <> <> <> <> PP <> EME <>

## Fname

Database file name and directory path (248 characters maximum, including directory). The file name defaults to Jobname.

## Ext

File extension (8 character maximum). The extension defaults to db .
-
Unused field.
Dimn
Model dimensionality:
2
2-D models
3
3-D Models
Oper
Primary operating direction:
X
direction
Y
direction

Z
direction

## Notes

## Required Inputs:

Model database containing a structural physics file, title "STRU".
Model database containing an electrostatic physics file, title "ELEC".
Model database containing an area or volume component of the electrostatic domain to be morphed, title "AIR".
Model database containing a node component of the neutral plane nodes, named "NEUN".
Model database containing node components of conductors, named "CONDi", where "i" is the conductor number.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

## Main Menu>ROM Tool>Setup>Model Features

RMASTER, Node, Lab
Defines master nodes for the ROM method.
REDUCED ORDER MODELING:Generation Pass
MP <> <> <> <> <> <> <> <> <> <> PP <> EME <>

## Node

Node number at which master degree of freedom is defined If Node $=P$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI).

## Lab

Valid labels are "ADD" (default) and "DEL".

## Notes

Defines master nodes for the ROM. Master nodes are used to track the total displacement of a structure in the operating direction [RMANL]. They may be used as attachment points for 1-D structural elements during a ROM use pass via the UX degree of freedom.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu>ROM Tool>Setup>Master Nodes>Define
Main Menu>ROM Tool>Setup>Master Nodes>Delete

## RMCAP, RefName, C1, C2

## Defines lumped capacitance pairs between conductors C1 and C2 for a ROM method.

REDUCED ORDER MODELING:Generation Pass
MP <> <> <> <> <> <> <> <> <> <> PP <> EME <>

## RefName

Reference name for capacitance pair definition.
C1
First conductor (between 1 and 5).
C2
Second conductor (between 1 and 5).

## Notes

For a capacitance definition between conductor $C 1$ and C2, node components COND\%C1\% and COND\%C2\% (see CM command) must be present containing the conductor nodes. If C1 and C2 are blank, the capacitance definition with RefName will be deleted. (For example, if $C 1=1$, and $C 2=2$, then node components COND1 and COND2 must be defined).

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu>ROM Tool>Setup>Capacitances>Define>All Capacitances
Main Menu>ROM Tool>Setup>Capacitances>Define>Single Capacitance
Main Menu>ROM Tool>Setup>Capacitances>Delete

## RMCLIST

## Lists all lumped capacitance pairs defined.

> REDUCED ORDER MODELING: Generation Pass MP <> <> <> <> <> <> <> <> <> <> PP <> EME <>

## Notes

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu>ROM Tool>Setup>Capacitances>Define>List Main Menu>ROM Tool>Setup>Capacitances>List

## /RMDIR, Dir

Removes (deletes) a directory.
APDL:Macro Files
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Argument Descriptions

Dir
The directory to remove. If no path is provided, it will be assumed to be in the current working directory. All files in the directory are also removed.

## Notes

Removes a directory on the computer ANSYS is currently running on. No warning or prompt is given, so use with extreme caution.

## Menu Paths

This command cannot be accessed from a menu.

## RMFLVEC

## Writes eigenvectors of fluid nodes to a file for use in damping parameter extraction.

POST1:Special Purpose
MP ME <> <> <> <> <> <> <> <> <> PP <> EME MFS

## Notes

RMFLVEC extracts the modal information from the modal results file for all nodes specified in a node component called 'FLUN'. This component should include all nodes which are located at the fluid-structural interface. Mode shapes, element normal orientation, and a scaling factor are computed and stored in a file Jobname.EFL. For damping parameter extraction, use the DMPEXT command macro. See "Thin Film Analysis" for more information on thin film analyses.

FLUID136 and FLUID138 are used to model the fluid interface. Both the structural and fluid element types must be active. The fluid interface nodes must be grouped into a component 'FLUN'. A results file of the last modal analysis must be available.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu>General Postproc>ThinFilm>Extract Eigv Main Menu>Solution>ThinFilm>DampExtract>Eigenfrequency Main Menu>Solution>ThinFilm>DampExtract>Frequency Range Main Menu>Solution>ThinFilm>RayleighDamp

## RMLVSCALE, Nload, Fact1, Fact2, Fact3, Fact4, Fact5

Defines element load vector scaling for a ROM use pass.
REDUCED ORDER MODELING:Use Pass
MP <> <> <> <> <> <> <> <>> <> <> PP <> EME <>

## Nload

Total number of load cases to be considered within a ROM use pass. If Nload = "DELETE", all defined load vectors are deleted.

## Fact1, Fact2, Fact3, . . . , Fact5

Scale factors applied to load vectors (maximum 5). Defaults to 0.

## Notes

Specifies the element load scale factor applied to a ROM analysis use pass. Element load vectors are extracted from a Static Analysis using the RMNDISP command. Up to 5 element load vectors may be scaled and applied to a ROM use pass.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Apply>Load Vector>For ROM
Main Menu>Preprocessor>Loads>Define Loads>Delete>Load Vector>For ROM
Main Menu>Solution>Define Loads>Apply>Load Vector>For ROM
Main Menu>Solution>Define Loads>Delete>Load Vector>For ROM

## RMMLIST

Lists all mode specifications for the ROM method.

> REDUCED ORDER MODELING: Generation Pass
> $\mathrm{MP}<><><><><><><><><><>$ PP <> EME <>

## Notes

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.
Menu Paths
Main Menu>ROM Tool>Mode Selection>List

RMMRANGE, Mode, Key, Min, Max, Nstep, Damp, Scale

## Defines and edits various modal parameters for the ROM method.

REDUCED ORDER MODELING:Generation Pass
MP <> <> <> <> <> <> <> <> <> <> PP <> EME <>

## Mode

Mode number. Must be lower or equal to the number of modes extracted via the RMNEVEC command.

## Key

Mode classification key. Valid keys are:
DOMINANT
Dominant mode
RELEVANT
Relevant mode

## UNUSED

Unused mode. Do not consider mode in ROM.

## Min

Lower bound for fit range of mode.
Max
Upper bound for fit range of mode.
Nstep
Number of equidistant steps in fit range of mode.

## Damp

Modal damping factor. Defaults to 0.0.

## Scale

Modal scaling factor.

## Notes

When selected manually (RMMSELECT), modes must be classified as dominant, relevant, or unused. Dominant modes (Key = DOMINANT) are basis functions with large amplitudes. Relevant modes (Key = RELEVANT) are influenced by the dominant modes but do not cause interactions among themselves due to the small amplitude. This assumption leads to essential speed up of the sample point generator (see RMSMPLE).

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu>ROM Tool>Mode Selection>Edit

RMMSELECT, Nmode, Method, Dmin, Dmax

## Selects modes for the ROM method.

REDUCED ORDER MODELING:Generation Pass
MP <> <> <> <> <> <> <> <> <> <> PP <> EME <>

## Nmode

Total number of modes to be selected

## Method

Method for mode selection. Valid methods are:

## TMOD

Automated selection using a test load. TMOD must be enclosed in single quotes.

## NMOD

First Nmode eigenmodes. NMOD must be enclosed in single quotes.

## Dmin

Lower bound for total deflection range.

## Dmax

Upper bound for total deflection range.

## Notes

Select pertinent modes for use in a ROM. Pertinent mode selection may be enhanced by using the deflection state of the structure representative of the operating nature of the device (Method=TMOD). A static analysis with an applied Test Load may be used. The test load displacements must be extracted at the neutral plane of the device (if the device is stress-stiffened), or at any plane of the device (non-stress-stiffened). A node component "NEUN" must be defined for the plane of nodes, and the displacements extracted using the RMNDISP command prior to issuing this command. If Method = NMOD, use the first Nmode eigenmodes to select the pertinent modes for the ROM tool. Only those modes are selected that act in the operating direction of the structure [RMANL].

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Required Input Files

jobname.evx, jobname.evy, jobname.evz, jobname.evn, jobname.evl

## Optional Input File

Test load and element load neutral plane displacement files: jobname.tld, jobname.eld

## Menu Paths

## Main Menu>ROM Tool>Mode Selection>Select

## RMNDISP, LoadT, Loc

## Extracts neutral plane displacements from a test load or element load solution for the ROM method.

## REDUCED ORDER MODELING:Preparation

MP <> <> <> <> <> <> <> <> <> <> PP <> EME <>

## LoadT

Load type. Load type must be an alphanumeric string enclosed in single quotes. Valid load types are 'TLOAD' for the test load and 'ELOAD' for the element load.

## Loc

Determines whether file will be overwritten or appended. Valid labels are 'WRITE' or 'APPEND'. Defaults to 'WRITE' for test load.

## Notes

This command extracts the displacements at a neutral plane of a model. If LoadT = 'TLOAD', extract displacements for a test load on a structure that represents the expected deflection state. A test load is used to assist in the automatic mode selection for the ROM mode characterization. If Load $T=$ 'ELOAD', extract the neutral plane displacements for an element load that will be used in the use pass of a ROM analysis. Typical element loads are gravity, and pressure loading. The element loads may be scaled [RMLVSCALE] during the use pass.

The command requires a node component named "NEUN" to be defined. These nodes represent the nodes at the neutral plane of a structure (in the case of a stress-stiffened structure), or at any plane in the structure (non stress-stiffened case).

For LoadT = 'TLOAD', node displacements are written to the file jobname.tld. For LoadT = 'ELOAD', node displacements are written to the file jobname.eld. Up to 5 element load cases may be written to the file jobname.eld.

This command is only valid in POST1.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Output Files

For a test load jobname.tld

For an element load jobname.eld

## Menu Paths

Main Menu>General Postproc>ROM Operations>Extract NP DISP

## RMNEVEC

## Extracts neutral plane eigenvectors from a modal analysis for the ROM method.

REDUCED ORDER MODELING:Preparation
MP <> <> <> <> <> <> <> <> <> <> PP <> EME <>

## Notes

This command extracts the eigenvectors at a neutral plane of a model from a modal analysis. The modal analysis must have expanded modes [MXPAND] in order to process the data. Only the first 9 modes are considered. The command requires a node component named "NEUN" to be defined. These nodes represent the nodes at the neutral plane of a structure (in the case of a stress-stiffened structure), or at any plane in the structure (non stress-stiffened case).

This command is only valid in POST1.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Output Files

jobname.evx, jobname.evy, jobname.evz, jobname.evn, jobname.evl

## Menu Paths

Main Menu>General Postproc>ROM Operations>Extract NP Eigv

RMODIF, NSET, STLOC, V1, V2, V3, V4, V5, V6

## Modifies real constant sets.

> PREP 7: Real Constants
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NSET

Existing set to be modified.

## STLOC

Starting location in table for modifying data. For example, if $S T L O C=1$, data input in the $V 1$ field is the first constant in the set. If $S T L O C=7$, data input in the $V 1$ field is the seventh constant in the set, etc.
Must be greater than zero.
v1
New value assigned to constant in location STLOC. If zero (or blank), a zero value will be assigned.

## V2, V3, V4, ... , V6

New values assigned to constants in the next five locations. If blank, the value remains unchanged.

## Notes

Allows modifying (or adding) real constants to an existing set [ $\mathbf{R}]$ at any location.
This command is also valid in SOLUTION.

## Menu Paths

This command cannot be accessed from a menu.

RMORE, R7, R8, R $2, R 10, R 11, R 12$

## Adds real constants to a set.

> PREP 7: Real Constants
> MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS

## R7, R8, R9, ... , R12

Add real constants 7 to 12 (numerical values or table names) to the most recently defined set.

## Notes

Adds six more real constants to the most recently defined set. Repeat the RMORE command for constants 13 to 18 , again for 19-24, etc.

If using table inputs (SURF151, SURF152, FLUID116, CONTA171, CONTA172, CONTA173, CONTA174, and CONTA175 only), enclose the table name in \% signs (e.g., \%tabname\%).

When copying real constants to new sets, ANSYS recommends that you use the command input. If you do use the GUI, restrict the real constant copy to only the first six real constants (real constants seven and greater will be incorrect for both the master and copy set).

This command is also valid in SOLUTION.

## Menu Paths

Main Menu>Preprocessor>Modeling>Create>Circuit>Builder>Mechanical>Spring>Nonlin Rotary Main Menu>Preprocessor>Modeling>Create>Circuit>Builder>Mechanical>Spring>Nonlin Trans Main Menu>Preprocessor>Modeling>Create>Circuit>Builder>Transducer>ElecMech Main Menu>Preprocessor>Modeling>Create>Circuit>Edit Real Cnst

## RMPORDER, Ord1, Ord2, Ord3, Ord4, Ord5, Ord6, Ord7, Ord8, Ord9

Defines polynomial orders for ROM functions.
REDUCED ORDER MODELING:Generation Pass
MP <> <> <> <> <> <> <> <> <> <> PP <> EME <>

## Ord1, Ord2, Ord3, . . . , Ord9

Polynomial orders for modes. Ordi specifies the polynomial order for modei. Modes are ordered as extracted from a modal analysis using the RMNEVEC command. Defaults to 0 if mode $i$ is unused; default to nstep(i) - 1 for dominant or relevant modes, where nstep(i) is the number of equidistant steps in fit range of mode i. nstep(i) is automatically set by RMMSELECT or modified by the RMMRANGE command.

## Notes

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu>ROM Tool>Resp Surface>Poly Order

## RMRESUME, Fname, Ext,--

## Resumes ROM data from a file.

REDUCED ORDER MODELING: Set Up
MP <> <> <> <> <> <> <> <> <> <> PP <> EME <>

## Fname

Name and directory path of the ROM database file ( 248 character maximum). Default to Jobname.

## Ext

Extension of the ROM database file. Default to .rom.

Unused field.

## Notes

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu>Preprocessor>Loads>Analysis Type>Analysis Options
Main Menu>Preprocessor>Loads>Analysis Type>ExpansionPass
Main Menu>Preprocessor>Loads>Analysis Type>New Analysis
Main Menu>Preprocessor>Modeling>Create>Circuit>Builder>ROM>Database
Main Menu>ROM Tool>Rom Database>Resume
Main Menu>Solution>Analysis Type>Analysis Options
Main Menu>Solution>Analysis Type>ExpansionPass
Main Menu>Solution>Analysis Type>New Analysis

## RMRGENERATE

## Performs fitting procedure for all ROM functions to generate response surfaces.

REDUCED ORDER MODELING:Generation Pass
MP <> <> <> <> <> <> <> <> <> <> PP <> EME <>

## Notes

The fitting procedure uses modal analysis data and function data generated using the RMSMPLE command and specifications set forth in the RMROPTIONS command. The files jobname_ijk.pcs (modes $i, j, k$ ) will be generated containing the coefficients of the response surfaces. These files are needed for the ROM Use Pass along with a ROM data base file [RMSAVE].

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Input Files

Strain energy and capacitance data file jobname_ijk.dec

## Output Files

Response surface coefficients jobname_ijk.pcs (modes i, j, k)

## Menu Paths

Main Menu>ROM Tool>Resp Surface>Fit Functions

RMROPTIONS, RefName, Type, Invert
Defines options for ROM response surface fitting.
REDUCED ORDER MODELING:Generation Pass
MP <> <> <> <> <> <> <> <> <> <> PP <> EME <>

## RefName

Reference name of ROM function to be fitted. Valid reference names are "SENE" for the strain energy of the structural domain and any capacitance reference name previously defined by means of RMCAP command for the electrostatic domain.

## Type

Type of fitting function to be applied for regression analysis. Valid types are:

## LAGRANGE

Lagrange type (default)

## REDLAGRANGE

Reduced Lagrange type
PASCAL
Pascal type
REDPASCAL
Reduced Pascal type

## Invert

Flag to specify whether data should be inverted prior to fitting.
0
Do not invert data (default for SENE)
1
Invert data input on Refname field (recommended for capacitance functions).

## Notes

The objective of response surface fit is to compute an analytical expression for the strain energy and the capacitance as functions of modal amplitudes.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu>ROM Tool>Resp Surface>Options

## RMRPLOT, RefName, Type, Mode1, Mode2

Plots response surface of ROM function or its derivatives with respect to the dominant mode(s).
REDUCED ORDER MODELING:Generation Pass
MP <> <> <> <> <> <> <> <> <> <> PP <> EME <>

## RefName

Reference name of ROM function. Valid reference names are "SENE" for the strain energy of the mechanical domain and any capacitance definition, previously defined by means of the RMCAP command, for the electrostatic domain.

## Type

Type of data to be plotted. Valid types are:
FUNC
Response surface (default)

## FIRST

First derivative of response surface with respect to Mode1.

## SECOND

Second derivative of response surface with respect to Mode1 and Mode2.

## Mode1

First mode number (used for Type = "FIRST" and Type = "SECOND" only).

## Mode2

Second mode number (used for Type = "SECOND" only).

## Notes

The objective of response surface fit is to compute an analytical expression for the strain energy and the capacitance as functions of modal amplitudes. This command assumes that the coefficient files job-
nam_ijk.pcs are available [RMRGENERATE]. Visualization of the response surface will help to evaluate the validity of the function fit.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu>ROM Tool>Resp Surface>Plot

## RMRSTATUS, RefName

## Prints status of response surface for ROM function.

REDUCED ORDER MODELING:Generation Pass
MP <> <> <> <> <> <> <> <> <> <> PP <> EME <>

## RefName

Reference name of ROM function. Valid reference names are "SENE" for the strain energy of the mechanical domain and any capacitance reference names [RMCAP], for the electrostatic domain.

## Notes

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

## Main Menu>ROM Tool>Resp Surface>Status

RMSAVE, Fname, Ext, --

## Saves ROM data to file.

> REDUCED ORDER MODELING: Set Up $\mathrm{MP}<><><><><><><><><><>$ PP $<>$ EME $<>$

## Fname

Name and directory path of the ROM database file. Default to Jobname.

## Ext

Extension of the ROM database file. Default to .rom.

Unused field.

## Notes

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

> Main Menu>ROM Tool>Rom Database>Save

## RMSMPLE, NIgeom, Cap, Seqslv, Eeqs/v

## Runs finite element solutions and obtains sample points for the ROM method.

REDUCED ORDER MODELING:Generation Pass

MP <> <> <> <> <> <> <> <> <> <> PP <> EME <>

## Nlgeom

Specify whether a large or small deflection analysis is to be performed for the mechanical domain:
OFF (or 0)
Perform small deflection analysis (default).

## ON (or 1)

Perform large deflection analysis.

## Cap

Capacitance calculation method.

## CHARGE

Compute capacitance based on the charge voltage relationship (default).

## CMATRIX

Employ CMATRIX macro to calculate capacitance.

## Seqsiv

Solver for structural analysis:

## SPARSE

Sparse direct equation solver (default).

## PCG

Pre-conditioned Conjugate Gradient iterative equation solver.

## Eeqsiv

Solver for electrostatic analysis:

## SPARSE

Sparse direct equation solver (default).
JCG
Jacobi Conjugate Gradient iterative equation solver.
ICCG
Incomplete Cholesky Conjugate Gradient iterative equation solver.

## Notes

This command prepares and runs multiple finite element solutions on the Structural domain and the Electrostatic domain of a model to collect sample points of data for ROM response curve fitting. The command requires a model database [RMANL] and two Physics Files (Structural domain, titled "STRU" and an Electrostatic domain, titled "ELEC"; see PHYSICS command). Also required is a complete ROM database generated from the ROM Tools. The Cap = CHARGE method is preferred when capacitance to "infinity" is not required. Capacitance conductor pairs are defined by the RMCAP command.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Required Input

Model Database filename.db
ROM Database jobname.rom, jobname.evx, jobname.evy, jobname.evz

## Output Files

Strain energy and capacitance data files jobname_ijk.dec (mode i,j,k).

## Menu Paths

Main Menu>ROM Tool>Sample Pt Gen>Compute Points

RMUSE, Option, Usefil

## Activates ROM use pass for ROM elements.

> REDUCED ORDER MODELING:Use Pass MP <> <> <> <> <> <> <> <> <> <> PP <> EME <>

## Option

Type of data to be plotted. Valid types are:
1 or "ON"
Activates ROM use pass.
0 or "OFF"
Deactivates ROM use pass.

## Usefil

Name of the reduced displacement file (.rdsp) created by the ROM Use Pass (required field only for the Expansion Pass).

## Notes

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu>Preprocessor>Loads>Analysis Type>Analysis Options
Main Menu>Preprocessor>Loads>Analysis Type>ExpansionPass
Main Menu>Preprocessor>Loads>Analysis Type>New Analysis
Main Menu>Solution>Analysis Type>Analysis Options
Main Menu>Solution>Analysis Type>ExpansionPass
Main Menu>Solution>Analysis Type>New Analysis

## RMXPORT

## Exports ROM model to external VHDL-AMS simulator.

REDUCED ORDER MODELING:Generation Pass
MP <> <> <> <> <> <> <> <> <> <> PP <> EME <>

## Notes

Use this command to generate all files necessary to run the ROM analysis in an external VHDL-AMS Simulator.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Output Files

VHDL files: Initial.vhd, S_ams_ijk.vhd, Cxxx_ams_ijk.vhd,transducer.vhd.

## Menu Paths

Main Menu>ROM Tool>Export>VHDL-AMS

ROCK, CGX, CGY, CGZ, OMX, OMY, OMZ

## Specifies a rocking response spectrum.

SOLUTION: Spectrum Options
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS
CGX, CGY, CGZ
Global Cartesian X, Y, and Z location of center of rotation about which rocking occurs.
OMX, OMY, OMZ
Global Cartesian angular velocity components associated with the rocking.

## Notes

Specifies a rocking response spectrum effect in the spectrum (ANTYPE,SPECTR) analysis.

The excitation direction with rocking included is not normalized to one; rather, it scales the spectrum. For more information, see Participation Factors and Mode Coefficients.

This command is also valid in PREP7.

## Menu Paths

## Main Menu>Preprocessor>Loads>Load Step Opts $>$ Spectrum $>$ SinglePt $>$ Settings Main Menu>Solution>Load Step Opts>Spectrum>SinglePt>Settings

SOLUTION:Spectrum Options
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

## SIGNIF

Combine only those modes whose significance level exceeds the SIGNIF threshold. For single point, multipoint, or DDAM response (SPOPT, SPRS, MPRS, or DDAM), the significance level of a mode is defined as the mode coefficient of the mode, divided by the maximum mode coefficient of all modes. Any mode whose significance level is less than SIGNIF is considered insignificant and does not contribute to the mode combinations. The higher the SIGNIF threshold, the fewer the number of modes combined. SIGNIF defaults to 0.001 . If SIGNIF is specified as 0.0 , it is taken as 0.0 .

## Label

Label identifying the combined mode solution output.

## DISP

Displacement solution (default). Displacements, stresses, forces, etc., are available.
VELO
Velocity solution. Velocities, "stress velocities," "force velocities," etc., are available.
ACEL
Acceleration solution. Accelerations, "stress accelerations," "force accelerations," etc. are available.
TD
Time duration for earthquake or shock spectrum. TD defaults to 10.

## Notes

For more information on spectrum analysis combination methods, see Combination of Modes
This command is also valid in PREP7.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Menu paths generated with the final build.

## RPOLY, NSIDES, LSIDE, MAJRAD, MINRAD

Creates a regular polygonal area centered about the working plane origin.
PREP7:Primitives
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NSIDES

Number of sides in the regular polygon. Must be greater than 2.

## LSIDE

Length of each side of the regular polygon.

## MAJRAD

Radius of the major (or circumscribed) circle of the polygon. Not used if LSIDE is input.

## MINRAD

Radius of the minor (or inscribed) circle of the polygon. Not used if LSIDE or MAJRAD is input.

## Notes

Defines a regular polygonal area on the working plane. The polygon will be centered about the working plane origin, with the first keypoint defined at $\theta=0^{\circ}$. The area will be defined with NSIDES keypoints and NSIDES lines. See the RPR4 and POLY commands for other ways to create polygons.

## Menu Paths

Main Menu $>$ Preprocessor $>$ Modeling $>$ Create $>$ Areas $>$ Polygon $>$ By Circumscr Rad
Main Menu $>$ Preprocessor $>$ Modeling $>$ Create $>$ Areas $>$ Polygon $>$ By Inscribed Rad
Main Menu $>$ Preprocessor $>$ Modeling $>$ Create $>$ Areas $>$ Polygon $>$ By Side Length

RPR4, NSIDES, XCENTER, YCENTER, RADIUS, THETA, DEPTH

## Creates a regular polygonal area or prism volume anywhere on the working plane.

PREP 7: Primitives
MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS

## NSIDES

The number of sides in the polygon or prism face. Must be greater than 2.

## XCENTER, YCENTER

Working plane X and Y coordinates of the center of the polygon or prism face.

## RADIUS

Distance (major radius) from the center to a vertex of the polygon or prism face (where the first keypoint is defined).

## THETA

Angle (in degrees) from the working plane X -axis to the vertex of the polygon or prism face where the first keypoint is defined. Used to orient the polygon or prism face. Defaults to zero.

## DEPTH

The perpendicular distance (either positive or negative based on the working plane Z direction) from the working plane representing the depth of the prism. If $D E P T H=0$ (default), a polygonal area is created on the working plane.

## Notes

Defines a regular polygonal area anywhere on the working plane or prism volume with one face anywhere on the working plane. The top and bottom faces of the prism are polygonal areas. See the RPOLY, POLY, RPRISM, and PRISM commands for other ways to create polygons and prisms.

## Menu Paths

## Main Menu>Preprocessor>Modeling>Create $>$ Areas $>$ Polygon $>$ Hexagon

Main Menu>Preprocessor>Modeling>Create>Areas>Polygon>Octagon<br>Main Menu>Preprocessor>Modeling>Create>Areas>Polygon>Pentagon<br>Main Menu $>$ Preprocessor $>$ Modeling $>$ Create $>$ Areas $>$ Polygon $>$ Septagon<br>Main Menu $>$ Preprocessor $>$ Modeling $>$ Create $>$ Areas $>$ Polygon $>$ Square<br>Main Menu>Preprocessor>Modeling>Create $>$ Areas $>$ Polygon $>$ Triangle<br>Main Menu $>$ Preprocessor $>$ Modeling $>$ Create $>$ Volumes $>$ Prism $>$ Hexagonal<br>Main Menu $>$ Preprocessor $>$ Modeling $>$ Create $>$ Volumes $>$ Prism $>$ Octagonal<br>Main Menu $>$ Preprocessor $>$ Modeling $>$ Create $>$ Volumes $>$ Prism $>$ Pentagonal<br>Main Menu $>$ Preprocessor $>$ Modeling $>$ Create $>$ Volumes $>$ Prism $>$ Septagonal<br>Main Menu>Preprocessor>Modeling>Create>Volumes>Prism>Square Main Menu $>$ Preprocessor $>$ Modeling $>$ Create $>$ Volumes $>$ Prism $>$ Triangular

## RPRISM, Z1, Z2, NSIDES, LSIDE, MAJRAD, MINRAD

Creates a regular prism volume centered about the working plane origin.
PREP 7:Primitives
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Z1, z2

Working plane Z coordinates of the prism.

## NSIDES

Number of sides in the polygon defining the top and bottom faces of the prism. Must be greater than 2.

## LSIDE

Length of each side of the polygon defining the top and bottom faces of the prism.
MAJRAD
Radius of the major (or circumscribed) circle of the polygon defining the top and bottom faces of the prism. Not used if LSIDE is input.

## MINRAD

Radius of the minor (or inscribed circle) of the polygon defining the top and bottom faces of the prism. Not used if LSIDE or MAJRAD is input.

## Notes

Defines a regular prism volume centered about the working plane origin. The prism must have a spatial volume greater than zero. (i.e., this volume primitive command cannot be used to create a degenerate volume as a means of creating an area.) The top and bottom faces are polygonal areas that are parallel to the working plane but neither face need be coplanar with (i.e., "on") the working plane. The first keypoint defined for each face is at $\theta=0^{\circ}$. See the RPR4 and PRISM commands for other ways to create prisms.

## Menu Paths

Main Menu $>$ Preprocessor $>$ Modeling $>$ Create $>$ Volumes $>$ Prism $>$ By Circumscr Rad Main Menu $>$ Preprocessor $>$ Modeling $>$ Create $>$ Volumes $>$ Prism $>$ By Inscribed Rad Main Menu>Preprocessor>Modeling>Create>Volumes>Prism>By Side Length

RPSD, IR, IA, IB, ITYPE, DATUM, Name

## Computes response power spectral density (PSD).

POST26:Special Purpose
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS
IR
Arbitrary reference number assigned to the resulting variable (2 to NV [NUMVAR]). If this number is the same as for a previous variable, the previous variable will be overwritten with this result.

## IA, IB

Reference numbers of the two variables to be operated on. If only one, leave IB blank.

## ITYPE

Defines the type of response PSD to be calculated:

## 0,1

Displacement (default).
2
Velocity.
3
Acceleration.

## DATUM

Defines the reference with respect to which response PSD is to be calculated:
1
Absolute value.
2
Relative to base (default).

## Name

Thirty-two character name identifying variable on listings and displays. Embedded blanks are compressed for output.

## Notes

This command computes response power spectral density (PSD) for the variables referenced by the reference numbers $I A$ and $I B$. The variable referred by $I R$ will contain the response PSD. You must issue the STORE,PSD command first; File.PSD must be available for the calculations to occur.

The response power spectral density you calculate will include all modes, including those corresponding to a significance level smaller than the threshold (PSDCOM, SIGNIF). See POST26-Response Power Spectral Density in the Theory Reference for the Mechanical APDL and Mechanical Applications for more information on these equations.

## Menu Paths

Main Menu>TimeHist Postpro>Calc Resp PSD

RSFIT, RSlab, Slab, Name, Rmod, Ytrans, Yval, Xfilt, CONF
Fit a response surface for an output parameter in a solution set.
PROBABILISTIC: Response Surfaces
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## RSlab

Response surface set label. Identifies the response surface results for later postprocessing. This label can be used as Rlab for postprocessing response surface results, and for evaluating the fit results with RSPLOT and RSPRNT. You must have separate identification labels for the solution sets and for the response surface sets, because you can perform a response surface fit based on Monte Carlo results. For this case, the original Monte Carlo results are identified by the solution set label provided in the PDEXE command and the results generated with the fitted response surfaces are identified by the response surface set label (RSlab) provided here. RSlab must not contain blanks. Maximum length of this field is 16 characters; if this field contains more than 16 characters, it will be truncated to 16 characters.

## Slab

Solution set label that identifies the probabilistic analysis containing the results to be fitted. This solution set label is defined with the PDEXE command.

## Name

Parameter name. The parameter must have been previously defined as a random output parameter with the PDVAR command. The result values of this parameter (stored in the solution set identified by Slab) are fitted as a function of all random input variables.

## Rmod

Regression model to use for the evaluation of the response surface.

## LIN <br> Regression model with linear terms only. <br> QUAD

Regression model with linear and pure quadratic terms (no cross-terms).
QUAX
Regression model with linear and all quadratic terms (including cross-terms). (Default.)

## Ytrans

Option for the transformation type applied to the output parameter identified with Name.

## NONE

The values of the output parameter Name are not transformed (default).
EXP
The values of the output parameter Name are transformed according to $Y^{*}=\exp (Y)$. The transformed values $Y^{*}$ are used for the fitting process.

## LOGA

The values of the output parameter Name are transformed according to $Y^{*}=\log _{a}(Y)$, where the basis $a$ is specified by Yval. The transformed values $Y^{*}$ are used for the fitting process.
LOGN
The values of the output parameter Name are transformed according to $Y^{*}=\ln (Y)$. The transformed values $Y^{*}$ are used for the fitting process.

## LOG10

The values of the output parameter Name are transformed according to $Y^{*}=\log _{10}(\mathrm{Y})$. The transformed values $Y^{*}$ are used for the fitting process.

## SQRT

The values of the output parameter Name are transformed according to $Y^{*}=\sqrt{y}$. The transformed values $Y^{*}$ are used for the fitting process.

## POW

The values of the output parameter Name are transformed according to $Y^{*}=Y^{a}$, where the exponent $a$ is specified by Yval. The transformed values $Y^{*}$ are used for the fitting process.

## BOX

The values of the output parameter Name are transformed according to the Box-Cox transformation.
$Y^{*}=\frac{Y^{\lambda_{i-1}}}{\lambda_{i}}$ for $\lambda_{i} \neq 0$
$Y^{*}=\ln (Y)$ for $\lambda_{i}=0$
The parameter $\lambda_{i}$ is automatically determined within the interval $[-2,2]$. The step length for this interval search is given in Yval. The transformed values $\mathrm{Y}^{*}$ are used for the fitting process.

## Yval

Value needed for Ytrans = LOGA, Ytrans = POW, and Ytrans $=$ BOX. Ignored for all other options of Ytrans. For Ytrans = LOGA and Ytrans = POW, the default value is Yval = 1.0. For Ytrans $=$ $B O X$, the default value is $Y$ Val $=0.01$.
xfilt
Option that specifies if irrelevant terms of the regression model should be filtered out.

## NONE

Regression term filtering is not done. A full regression model as specified with the Rmod option is evaluated.

## FSR

Use the "forward-stepwise-regression" to automatically filter out individual and irrelevant terms of the regression model. If irrelevant terms are sorted out this leads to a smaller number of coefficients to be determined in the regression analysis, which then leads to increased accuracy of the coefficients of the remaining terms in the regression model (default).

## CONF

Confidence level that is used to filter the terms of the regression model if the $x f i l t=$ FSR option has been selected. The value of CONF must be between 0.0 and 1.0 (default is 0.95 ). The higher this value, the more terms will be filtered out. Consequently, higher CONF values lead to a fewer terms in the regression model. Likewise, lower CONF values lead to more terms being included in the regression model.

## Command Default

Rmod $=$ QUAX, Ytrans $=$ NONE, Xfilt $=F S R, C O N F=0.95, Y v a l$ as explained above.

## Notes

Evaluates a response surface for a random output parameter Name. The result values for the parameter Name as stored in the solution set Slab are fitted as a function of all random input parameters. There can
be only one response surface set for each solution set. A response surface set can include the fitted response surfaces of one or more output parameters.

## Note

If the RSFIT command is used for an existing response surface set for which Monte Carlo simulations have already been generated using the RSSIMS command then these Monte Carlo samples are deleted by the RSFIT command. In this case they need to be generated again using the RSSIMS command. It is necessary to delete the Monte Carlo simulations in order to make sure that the samples, their statistics and correlations are consistent with the response surfaces.

## Menu Paths

Main Menu>Prob Design>Response Surf>Fit Resp Surf

## RSOPT, Opt, Filename, Ext, Dir

## Creates or loads the radiosity mapping data file for SURF251 or SURF252 element types.

SOLUTION: Radiosity
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

## Opt

File option:
SAVE
Write the radiosity mapping data to a file. (Default)
LOAD
Read in the specified mapping data file.

## Fname

File name for radiosity mapping data file. Defaults to Jobname.

## Ext

Filename extension for radiosity mapping data file $($ default $=. r s m)$.
Dir
Directory path for radiosity mapping data file. If you do not specify a directory path, it will default to your working directory.

## Notes

Use this command to manually create or load a radiosity mapping data file. This command is useful if you want to create the mapping data file without issuing SAVE or CDWRITE, or if you want to specify that the file be located in a directory other than your working directory. Also use this command to manually load an existing mapping data file during a restart.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

This command cannot be accessed from a menu.

RSPLIT, Option, Label, Name1, Name2, Name3, Name4, Name5, Name6, Name7, Name8, Name9, Name10, Name11, Name12, Name13, Name14, Name15, Name16

## Creates one or more results file(s) from the current results file based on subsets of elements.

POST1:Special Purpose<br>MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Option

Specify which results to include for the subset of elements.
ALL
Write all nodal and element results based on the subset of elements (default).

## EXT

Write only the nodal and element results that are on the exterior surface of the element subset. The results data will be averaged as in PowerGraphics (see AVRES) when this results file is brought into POST1. Only valid for solid elements.

## Label

Define where the element subset is coming from.
ALL
Use all selected element components (CMSEL) (default).
ESEL
Use the currently selected (ESEL) set of elements. Name1 defines the results file name.
LIST
Use Name1 to Name16 to list the element component and/or assembly names (that contain element components).

## Name1, Name2, Name3, . . . , Name 16

Up to 16 element component and/or assembly names (that contain element components).

## Command Default

Write all data available for the element subset.

## Notes

Results files will be named based on the element component or assembly name, e.g., Cname. rst, except for the ESEL option, for which you must specify the results file name (no extension) using the Name1 field. Note that the .rst filename will be written in all uppercase letters (CNAME.rst) (unless using the ESEL option); when you read the file, you must specify the filename using all uppercase letters (i.e., file,CNAME). You may repeat the RSPLIT command as often as needed. All results sets on the results file are processed. Use /AUX3 to produce a results file with just a subset of the results sets.

Use INRES to limit the results data written to the results files.
The subset geometry is also written so that no database file is required to postprocess the subset results files. You must not resume any database when postprocessing one of these results files. The input results file must have geometry written to it (i.e., do not use /CONFIG,NORSTGM,1).

Applied forces and reaction forces are not apportioned if their nodes are shared by multiple element subsets. Their full values are written to each results file.

Each results file renumbers its nodes and elements starting with 1.
This feature is useful when working with large models. For more information on the advantages and uses of the RSPLIT command, see Splitting Large Results Files in the Basic Analysis Guide.

## Menu Paths

This command cannot be accessed from a menu.

## RSPLOT, RSlab, YName, X1Name, X2Name, Type, NPTS, PLOW, PUP

## Plot a response surface.

PROBABILISTIC: Response Surfaces
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## RSlab

Response Surface set label. Identifies the response surfaces generated by the RSFIT command.

## YName

Parameter name. The parameter must have been previously defined as a random output parameter with the PDVAR command.

## x1Name

Parameter name. The parameter must have been previously defined as a random input variable with the PDVAR command.

## x2Name

Parameter name. The parameter must have been previously defined as a random input variable with the PDVAR command. X2Name must be different than X1Name.

## Type

Type of the response surface visualization.
2D
2-D contour plot.
3D
3-D surface plot.

## NPTS

Number of grid points for both the X 1 -axis and the X 2 -axis. The grid points are used for the evaluation of the response surface. The number must be between 1 and 500 . Defaults to 20 . If NPTS $=0$ or greater than 500 , then a value of 20 is used.

## PLOW

Lower probability level used to determine the lower boundary (plotting range) of the curve in case the random input variable does not have a minimum value (such as Gauss). This probability must be between 0.0 and 1.0. Defaults to 0.0025 .

PUP
Upper probability level used to determine the upper boundary of the curve. This probability must be between 0.0 and 1.0. Defaults to 0.9975 .

## Command Default

$N P T S=20, P L O W=0.0025$ (applied if distribution type has no minimum), $P U P=0.9975$ (applied if distribution type has no maximum)

## Notes

Plots the response surface of an output parameter YName as a function of two input parameters X1Name and X2Name.

If $P L O W$ is left blank, then a minimum value of the distribution is used for plotting, provided it exists (for example, uniform distribution). If the distribution type has no minimum value (for example, Gaussian distribution), then the default value is used to determine the lower plotting range value. The same is true for the maximum value if $P U P$ is left blank.

In addition to the response surface, the sampling points that are fitted by the response surface are also plotted by this command. However, sampling points falling outside of the plotting range defined by the PLOW and PUP fields will not be shown in the plot.

## Menu Paths

Main Menu>Prob Design>Response Surf>Plt Resp Surf

## RSPRNT, RSlab, YName, Xout

## Print a response surface.

> PROBABILISTIC: Response Surfaces MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS

## RSlab

Response Surface set label. Identifies the response surfaces generated by the RSFIT command.

## YName

Parameter name. The parameter must have been previously defined as a random output parameter with the PDVAR command. Identifies the parameter for which a response surface has been generated by the RSFIT command.

## Xout

An option if an extended print-out of more feedback about goodness-of-fit and the details of the regression analysis of the response surface is requested.
No
Use the standard print-out (default).
Yes
Use the extended print-out.

## Notes

Prints the results and details of a response surface analysis generated by the RSFIT command. For the specified output parameter Yname, the fitting details such as the individual terms of the response surface model and their corresponding coefficients are listed. The command also produces a comparison of the original values
of Yname used for the fitting process and the approximate values derived from the fitting, and some goodness of fit measures.

If Xout $=$ Yes, then more information about the regression analysis of the response surface will be printed. For example, the confidence intervals on the regression coefficients and the correlation between the regression coefficients among others.

## Menu Paths

## Main Menu>Prob Design>Response Surf>Prn Resp Surf

## RSSIMS, RSIab, NSIM, Seed

## Performs Monte Carlo simulations on response surface(s).

PROBABILISTIC: Response Surfaces MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## RSlab

Response Surface set label. Identifies the response surfaces generated by the RSFIT command.

## NSIM

Number of simulation loops on the response surfaces that will be generated for all random output parameters. If the RSSIMS command is issued multiple times using the same response surface set label the NSIM Monte Carlo simulations is appended to previous ones. The default value for NSIM is 10,000 .

## Seed

Seed value label. Random number generators require a seed value that is used to calculate the next random number. After each random number generation finishes, the seed value is updated and is used again to calculate the next random number. By default ANSYS initializes the seed value with the system time (one time only) when the ANSYS session started.

## CONT

Continues updating using the derived seed value (default).
TIME
Initializes the seed value with the system time. You can use this if you want the seed value set to a specific value for one analysis and then you want to continue with a "random" seed in the next analysis. It is not recommended to "randomize" the seed value with the Seed = TIME option for multiple analyses. If the Monte Carlo simulations requested with this command will be appended to previously existing simulations, then the Seed option is ignored and Seed $=$ CONT is used.

## INIT

Initializes the seed value using 123457. This value is a typical recommendation used very often in literature. This option leads to identical random numbers for all random input variables when the exact analysis will be repeated, making it useful for benchmarking and validation purposes (where identical random numbers are desired). If the Monte Carlo simulations requested with this command will be appended to previously existing simulations, then the Seed option is ignored and Seed = CONT is used.

## Value

Uses the specified (positive) value for the initialization of the seed value. This option has the same effect as Seed = INIT, except you can chose an arbitrary (positive) number for the initialization. If
the Monte Carlo simulations requested with this command will be appended to previously existing simulations, then the Seed option is ignored and seed = CONT is used.

## Command Default

NSIM $=10,000$, Seed $=$ CONT

## Notes

Generate the Monte Carlo simulations on the response surfaces that are included in a response surface set. Simulations are evaluated only for the output parameters that have been fitted in a response surface set using the RSFIT command.

If the RSSIMS command is issued multiple times using the same response surface label the probabilistic design system appends the samples generated here to the previous ones. This way you can start with a moderate NSIM number and add more samples if the probabilistic results are not accurate enough.

## Menu Paths

Main Menu>Prob Design $>$ Response Surf $>$ RS Simulation

RSTMAC, File1, Lstep1, Sbstep1, File2, Lstep2, Sbstep2, TolerN, MacLim, Cname, KeyPrint

## Calculates modal assurance criterion (MAC) and matches nodal solutions from two results files.

POST1:Special Purpose
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

## File1

Name (32 characters maximum) corresponding to first Jobname (. db and .rst files).

## Lstep1

Load step number of the results to be read in File1.
N
Reads load step $N$. Defaults to 1 .

## Sbstep1

Substep number of the results to be read in File1.
$\boldsymbol{N}$
Reads substep $N$.
All
Reads all substeps. This value is the default.

## File2

Name (32 characters maximum) corresponding to second Jobname (.rst files).

## Lstep2

Load step number of the results to be read in File2.
N
Reads load step $N$. Defaults to 1 .

## Sbstep2

Substep number of the results to be read in File2.

## N

Reads substep $N$.
All
Reads all substeps. This value is the default.

## TolerN

Tolerance for nodes matching. If TolerN $=-1$, the nodes on File 2 are mapped into the elements of File1. If TolerN is positive, the nodes of File1 and File2 are matched. The default value is 0.01 (1\%).

## MacLim

Smallest acceptable MAC value. Must be $\geq 0$ and $\leq 1$. The default value is 0.90 .

## Cname

Name of the component from the first Jobname ( $F$ ile1). The component must be based on nodes. If unspecified, all nodes are matched and used for MAC calculations. If a component name is specified, only nodes included in the specified component are used. Not applicable to node mapping ( $\operatorname{Toler} N=-1$ ).

## KeyPrint

Printout options:
0
Printout matched solutions table. This value is the default.
1
Printout matched solutions table and full MAC table.
2
Printout matched solutions table, full MAC table and matched nodes table.

## Notes

The RSTMAC command allows the comparison of the solutions from two different results files using the modal assurance criterion (MAC).

The meshes read on File1 and File2 may be different. If Toler $N>0$, they are matched. This is the default. If $\operatorname{Toler} N=-1$, the solutions are interpolated from File1.

Units and coordinate systems must be the same for both models.
The corresponding database file (. db ) for File1 must be resumed before running the command only if a component (Cname) is used or if the nodes are mapped (TolerN $=-1$ ).

Results may be real or complex; however, if results from File1 have a different type from results in File2, only the real parts of the solutions are taken into account in MAC calculations. The analysis type can be arbitrary.

Only structural degrees of freedom are considered. Degrees of freedom can vary between File1 and File2, but at least one common degree of freedom must exist. When node mapping and solution interpolation is performed (TolerN=-1), File1 must correspond to a model meshed in solid and/or shell elements. Other types of elements can be present but the node mapping is not performed for those elements. Interpolation is performed on $U X, U Y$, and $U Z$.

Solutions read in results files are not all written to the database, therefore, subsequent plotting or printing of solutions is not possible. A SET command must be issued after the RSTMAC command to post-process each solution.

Comparing cyclic symmetry solutions written on selected set of node (OUTRES) is not supported.
RSTMAC comparison on cyclic symmetry analysis works only if the number of sectors on File1 and File2 are the same. Also comparison cannot be made between cyclic symmetry results and full 360 degree model results (File1 - cyclic solution, File2 - full 360 degree model solution).

For more information and an example, see Comparing Nodal Solutions From Two Models (RSTMAC) in the Basic Analysis Guide.

## Menu Paths

This command cannot be accessed from a menu.

## RSTOFF, Lab, OFFSET

## Offsets node or element IDs in the FE geometry record.

SOLUTION: Analysis Options
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS

## Lab

The offset type:

## NODE

Offset the node IDs.

## ELEM

Offset the element IDs.

## OFFSET

A positive integer value specifying the offset value to apply. The value must be greater than the number of nodes or elements in the existing superelement results file.

## Command Default

Issuing the RSTOFF command with no specified argument values applies no offsets.

## Notes

The RSTOFF command offsets node or element IDs in the FE geometry record saved in the .rst results file. Use the command when expanding superelements in a bottom-up substructuring analysis (where each superelement is generated individually in a generation pass, and all superelements are assembled together in the use pass).

With appropriate offsets, you can write results files with unique node or element IDs and thus display the entire model even if the original superelements have overlapping element or node ID sets. (Such results files are incompatible with the. db database file saved at the generation pass.)

The offset that you specify is based on the original superelement node or element numbering, rather than on any offset specified via a SESYMM or SETRAN command. When issuing an RSTOFF command, avoid specifying an offset that creates conflicting node or element numbers for a superelement generated via a SESYMM or SETRAN command.

If you issue the command to set non-zero offsets for node or element IDs, you must bring the geometry into the database via the SET command so that ANSYS can display the results. You must specify appropriate offsets to avoid overlapping node or element IDs with other superelement results files.

The command is valid only in the first load step of a superelement expansion pass.

## Menu Paths

This command cannot be accessed from a menu.

## RSURF, Options, Delopts, ETNUM

## Generates the radiosity surface elements (SURF251/SURF252) and stores them in the database.

SOLUTION: Radiosity
MP ME ST PR <> <> <> <> <> <> <> PP <> EME MFS

## Options

Command options:

## CLEAR

Deletes radiosity surface elements and nodes. The set of elements and nodes to be deleted is defined by Delopts. ETNUM is ignored.

## DEFINE

Creates the radiosity surface elements and nodes (default).
STAT
Shows the status/listing. Other command options are ignored.

## Delopts

Deletion options
ALL
Deletes all radiosity surface elements and nodes.

## LAST

Deletes radiosity surface elements and nodes created by the last RSURF command.

## ETNUM

Element type number. Leave blank to indicate the next available number.

## Notes

This command generates the radiosity surface elements based on the RSYMM and RDEC parameters and stores them in the database. It works only on selected underlying elements that have RDSF flags on them. You can issue multiple RSURF commands to build the radiosity model. However, all RSURF commands must be issued after issuing the RSYMM, and after the model is complete (i.e., after all meshing operations are complete).

If you do issue multiple RSURF commands for different regions, you must first mesh the different regions, and then generate the radiosity surface elements on each meshed region individually. Use RSURF,,,ETNUM to assign a separate element type number to each region. This procedure allow you to identify the individual regions later in the multi-field analysis.

If the underlying solid elements are higher order, the radiosity surface elements are always lower order (4or 3-node in 3-D or 2-node in 2-D). Decimation will always occur before any symmetry operations.

For 2-D axisymmetric YR models, the newly-generated nodes can have only positive $Y$ coordinates.
If you have already issued RSURF for a surface and you issue RSURF again, ANSYS creates a new set of radiosity surface elements and nodes over the existing set, resulting in an erroneous solution.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu>Preprocessor>Radiation Opts>Advanced Solution Option>Radiation Surface Mesh>Clear Radiation Surface Mesh
Main Menu>Preprocessor>Radiation Opts>Advanced Solution Option>Radiation Surface Mesh>Generate Radiation Surface Mesh
Main Menu>Solution>Radiation Opts>Advanced Solution Option>Radiation Surface Mesh>Clear Radiation Surface Mesh
Main Menu>Solution>Radiation Opts>Advanced Solution Option>Radiation Surface Mesh>Generate Radiation Surface Mesh

RSYMM, Option, CS, Axis, NSECT, CONDVALUE
Defines the plane of symmetry or center of rotation for the radiosity method.
SOLUTION: Radiosity
MP ME ST PR <> <> <> <> <> <> <> PP <> EME MFS

## Option

Command options:

## CLEAR

Deletes all symmetry definitions. Other command options are ignored.

## DEFINE

Defines the symmetry (default).
STAT
Shows the status/listing. Other command options are ignored.
COND
Turns condensation on or off in the radiosity solver for all defined radiation symmetries. CS, AXIS, and NSECT are ignored. Condensation is the process where equations for symmetrical elements are excluded from the linear equation system. Default is off.

CS
Local coordinate system $(\geq 11)$ as defined using the LOCAL or CS commands or a global coordinate system (0). For planar reflection, the coordinate system origin must be on the plane of symmetry (POS)
and one of its axes must be normal to the POS. For cyclic reflection, the coordinate system origin must be coincident with the center of rotation (COR). Only Cartesian systems are valid.

## Axis

Axis label of the coordinate system (CS) that is normal to the POS for planar reflection. For 2-D model planar reflections, valid labels are X or Y . For 3-D model planar reflections, valid labels are $\mathrm{X}, \mathrm{Y}$, or Z . Must be blank for cyclic reflection. For cyclic reflection, it is assumed that the Z axis is aligned with the axis of rotation.

## NSECT

Number of cyclic reflections to be done ( $\geq 1$ ). This field must be blank or 0 for planar reflection. Default is blank.

## CONDVALUE

Condensation key. Used only with Option = COND.
ON
Turns condensation on in the radiosity solver for all defined radiation symmetries.
OFF
Turns condensation off in the radiosity solver for all defined radiation symmetries (default).

## Notes

This command is used to define the POS for planar reflection or the COR for cyclic reflection. The RSYMM command must be issued before RSURF and it may be issued multiple times to have more than one planar/cyclic reflection; however, the RSURF command processes them in the order they are issued.

For planar reflection, you must define a local coordinate system $(\geq 11)$ with its origin on the POS. One of its axes must be aligned so that it is normal to the plane. If possible, use the existing global coordinate system (0).

For cyclic reflection, you must define a local coordinate system ( $\geq 11$ ) with its origin coincident with the COR. Reflections occur about the local Z-axis in the counterclockwise direction. You must align the Z-axis properly. If possible, use the existing global coordinate system (0).

New surface elements generated inherit the properties of the original elements.
For 2-D axisymmetric models, RSYMM can be used only for symmetrization in the YR plane. It cannot be used for the theta direction. Use V2DOPT in that case.

For 2-D axisymmetric YR models, the newly-generated nodes can have only positive X coordinates.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu>Preprocessor>Radiation Opts>Advanced Solution Option>Radiation Symmetry Op-
tions>Clear Symmetry
Main Menu>Preprocessor>Radiation Opts>Advanced Solution Option>Radiation Symmetry Op-
tions>Condensation
Main Menu>Preprocessor>Radiation Opts>Advanced Solution Option>Radiation Symmetry Op-
tions>Cyclic Symmetry

Main Menu>Preprocessor>Radiation Opts>Advanced Solution Option>Radiation Symmetry Options>Planar Symmetry
Main Menu>Solution>Radiation Opts>Advanced Solution Option>Radiation Symmetry Options>Clear Symmetry
Main Menu>Solution>Radiation Opts>Advanced Solution Option>Radiation Symmetry Options>Condensation
Main Menu>Solution>Radiation Opts>Advanced Solution Option>Radiation Symmetry Options>Cyclic Symmetry
Main Menu>Solution>Radiation Opts>Advanced Solution Option>Radiation Symmetry Options>Planar Symmetry

RSYS, KCN
Activates a coordinate system for printout or display of element and nodal results.

POST1:Controls<br>MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## KCN

The coordinate system to use for results output:
0
Global Cartesian coordinate system (default, except for spectrum analyses).
1
Global cylindrical coordinate system.
2
Global spherical coordinate system.
> 10
Any existing local coordinate system.
SOLU
Solution coordinate systems. For element quantities, these are the element coordinate system for each element. For nodal quantities, these are the nodal coordinate systems. If an element or nodal coordinate system is not defined, ANSYS uses the global Cartesian coordinate system. If you issue a LAYER, $N$ command (where $N$ refers to a layer number), the results appear in the layer coordinate system. (SOLU is the default for spectrum analyses.)

## LSYS

Layer coordinate system. For layered shell and solid elements, the results appear in their respective layer coordinate systems. For a specific layer of interest, issue a LAYER, $N$ command (where $N$ refers to a layer number). If a model has both nonlayered and layered elements, you can use RSYS,SOLU and RSYS,LSYS simultaneously (with RSYS,SOLU applicable to nonlayered elements and RSYS,LSYS applicable to layered elements). To reverse effects of the LSYS option, issue an RSYS, 0 command. LSYS is the default for spectrum analysis.

## Command Default

Activate global Cartesian $(K C N=0)$ coordinate system. For spectrum or PSD analyses (ANTYPE,SPECTR), the default is to activate the solution coordinate system ( $K C N=$ SOLU), which is the only available option.

## Notes

The RSYS command activates a coordinate system for printing or displaying element results data such as stresses and heat fluxes, and nodal results data such as degrees of freedom and reactions. ANSYS rotates the results data to the specified coordinate system during printout, display, or element table operations (such as PRNSOL, PRESOL, PLNSOL, and ETABLE). You can define coordinate systems with various ANSYS commands such as LOCAL, CS, CLOCAL, and CSKP.

If you issue RSYS with $K C N>10$ (indicating a local coordinate system), and the specified system is subsequently redefined, you must reissue RSYS for results to be rotated into the redefined system.

## Note

The default coordinate system for certain elements, notably shells, is not global Cartesian and is frequently not aligned at adjacent elements.

The use of RSYS,SOLU with these elements can make nodal averaging of component element results, such as $S X, S Y, S Z, S X Y, S Y Z$, and $S X Z$, invalid and is not recommended.

The RSYS command has no effect on beam or pipe stresses, which ANSYS displays (via /ESHAPE, 1 and PowerGraphics) in the element coordinate system.

Element results such as stresses and heat fluxes are in the element coordinate systems when $K C N=$ SOLU. Nodal requests for element results (for example, PRNSOL,S,COMP) average the element values at the common node; that is, the orientation of the node is not a factor in the output of element quantities. For nearly all solid elements, the default element coordinate systems are parallel to the global Cartesian coordinate system. For shell elements and the remaining solid elements, the default element coordinate system can differ from element to element. For layered shell and layered solid elements, ANSYS initially selects the element coordinate system when $K C N=$ SOLU; you can then select the layer coordinate system via the LAYER command.

Nodal results such as degrees of freedom and reactions can be properly rotated only if the resulting component set is consistent with the degree-of-freedom set at the node. (The degree-of-freedom set at a node is determined by the elements attached to the node.) For example, if a node does not have a UZ degree of freedom during solution, then any $Z$ component resulting from a rotation does not print or display in POST1. Therefore, results at nodes with a single degree-of-freedom (UY only, for example) should not be rotated; that is, they should be viewed only in the nodal coordinate system or a system parallel to the nodal system. (The global Cartesian system--the RSYS command default--may not be parallel to the nodal system.) Results at nodes with a 2-D degree-of-freedom set (UX and UY, for example) should not be rotated out of the 2-D plane.

## PowerGraphics

For PowerGraphics, ANSYS plots PLVECT vector arrow displays (such temperature, velocity, and force) in the global Cartesian coordinate system (RSYS = 0). Subsequent operations revert to your original coordinate system.

## PGR File

When you generate a .PGR file in SOLUTION, you can use the Results Viewer to display your stresses only in the coordinate system in which you write your .PGR file. To view stresses in other coordinate systems, load your results file into the Results Viewer and regenerate the data.

## Large Deflections

If large deflection is active (NLGEOM,ON), ANSYS rotates the element component result directions by the amount of rigid body rotation.

ANSYS displays the element component results in the initial global coordinate system for the following elements: SHELL181, SHELL281, ELBOW290, PLANE182, PLANE183, SOLID185, SOLID186, SOLID187, SOLID272, SOLID273, SOLID285, SOLSH190, SHELL208, and SHELL209. All other element result transformations are, therefore, also relative to the initial global system. Nodal degree-of-freedom results are based on the initial (and not the updated) geometry. For all other element types, component results displayed in the co-rotated coordinate system include the element rigid body rotation from the initial global coordinate system, and all other element result transformations are relative to the rotated global system.

## LS-DYNA

You can use the RSYS command to rotate stress data for all explicit (ANSYS LS-DYNA) elements except BEAM161, COMBI165, and composite SHELL163 (KEYOPT(3) = 1). In models that contain these element types combined with other explicit elements, you must unselect the unsupported elements before issuing the RSYS command. The command does not support strain data for any explicit element types. If you request strain results for explicit elements when RSYS is not set to the global Cartesian coordinate system (KCN = 0 ), ANSYS ignores the printing or plotting command. (ANSYS always rotates displacements into the results coordinate system, independent of the explicit element type.)

## Menu Paths

Main Menu>General Postproc>Options for Outp
Utility Menu>List>Results>Options

## RTHICK, Par, ILOC, JLOC, KLOC, LLOC

## Defines variable thickness at nodes for shell elements.

PREP 7: Meshing
MP ME ST PR PRN <> <> <> <> <> DY PP <> EME MFS

## Par

Array parameter (indexed by node number) that expresses the function to be mapped. For example, func (17) should be the desired shell thickness at node 17.

## ILOC

Position in real constant set for thickness at node I of the element (default 1).

## JLOC

Position in real constant set for thickness at node $J$ of the element (default 2).

## KLOC

Position in real constant set for thickness at node $K$ of the element (default 3).

## LLOC

Position in real constant set for thickness at node L of the element (default 4).

## Notes

After RTHICK, the REAL number will match the ELEM number of each selected element. For example, R $(I L O C)=$ func ( $($ NODE $), R(J L O C)=$ func ( $J$ NODE), etc.
$R(I L O C), R(J L O C), R(K L O C)$, and $R(L L O C)$ on a previously defined real constant will be overwritten. Any other real constants on a previously defined real constant set will remain unchanged. This command cannot be used for beam elements.

## Menu Paths

## Main Menu>Preprocessor>Loads>Load Step Opts>Other>Real Constants>Thickness Func Main Menu>Preprocessor>Real Constants>Thickness Func <br> Main Menu>Solution>Load Step Opts>Other>Real Constants>Thickness Func

## S Commands

## SABS, KEY

## Specifies absolute values for element table operations.

POST1:Element Table<br>MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

KEY
Absolute value key:
0
Use algebraic values in operations.
1
Use absolute values in operations.

## Command Default

Use algebraic values.

## Notes

Causes absolute values to be used in the SADD, SMULT, SMAX, SMIN, and SSUM operations.

## Menu Paths

## Main Menu>General Postproc>Element Table>Abs Value Option

## SADD, LabR, Lab1, Lab2, FACT1, FACT2, CONST

Forms an element table item by adding two existing items.
POST1:Element Table
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## LabR

Label assigned to results. If same as existing label, the existing values will be overwritten by these results.

## Lab1

First labeled result item in operation.
Lab2
Second labeled result item in operation (may be blank).
FACT1
Scale factor applied to Lab1. A (blank) or '0' entry defaults to 1.0 .

## FACT2

Scale factor applied to Lab2. A (blank) or '0' entry defaults to 1.0 .

## CONST

Constant value.

## Notes

Forms a labeled result (see ETABLE command) for the selected elements by adding two existing labeled result items according to the operation:

$$
\operatorname{LabR}=(F A C T 1 \times \operatorname{Lab} 1)+(F A C T 2 \times \operatorname{Lab} 2)+\text { CONST }
$$

May also be used to scale results for a single labeled result item. If absolute values are requested [SABS,1], absolute values of Lab1 and Lab2 are used.

## Menu Paths

Main Menu>General Postproc>Element Table>Add Items

SALLOW, STRS1, STRS2, STRS3, STRS4, STRS5, STRS6
Defines the allowable stress table for safety factor calculations.
POST1:Element Table
MP ME ST PR PRN <> <> <> <> <> DY PP <> EME MFS

## STRS1, STRS2, STRS3, ..., STRS6

Input up to six allowable stresses corresponding to the temperature points [TALLOW].

## Notes

Defines the allowable stress table for safety factor calculations [SFACT,SFCALC]. Use the STAT command to list current allowable stress table. Repeat SALLOW to zero table and redefine points (6 maximum).

Safety factor calculations are not supported by PowerGraphics. Both the SALLOW and TALLOW commands must be used with the Full Model Graphics display method active.

## Menu Paths

Main Menu>General Postproc>Safety Factor>Allowable Strs>Constant
Main Menu>General Postproc>Safety Factor>Allowable Strs>Reset Stress
Main Menu>General Postproc>Safety Factor>Allowable Strs>Temp-depend

SAVE, Fname, Ext, --, Slab

## Saves all current database information.

> DATABASE: Set Up
> MP ME ST PR PRN DS DSS FL EM EH DY PP <> EME MFS

## Fname

File name and directory path ( 248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

The file name defaults to Jobname.

## Ext

Filename extension (8 character maximum).
The extension defaults to DB if Fname is blank.

Unused field.
Slab
Mode for saving the database:

## ALL

Save the model data, solution data and post data (element tables, etc.). This value is the default.
MODEL
Save the model data (solid model, finite element model, loadings, etc.) only.
SOLU
Save the model data and the solution data (nodal and element results).

## Notes

Saves all current database information to a file (File.DB). In interactive mode, an existing File. DB is first written to a backup file (File. DBB). In batch mode, an existing File. DB is replaced by the current database information with no backup. The command should be issued periodically to ensure a current file backup in case of a system "crash" or a "line drop." It may also be issued before a "doubtful" command so that if the result is not what was intended the database may be easily restored to the previous state. A save may be time consuming for large models. Repeated use of this command overwrites the previous data on the file (but a backup file is first written during an interactive run). When issued from within POST1, the nodal boundary conditions in the database (which were read from the results file) will overwrite the nodal boundary conditions existing on the database file.

This command is valid in any processor.

## Menu Paths

## Utility Menu>File>Save as <br> Utility Menu>File>Save as Jobname.db

## SBCLIST

## Lists solid model boundary conditions.

SOLUTION: Misc Loads
MP ME ST PR PRN $<><><>$ EM EH $<>$ PP $<>$ EME MFS

## Notes

Lists all solid model boundary conditions for the selected solid model entities. See also DKLIST, DLLIST, DALIST, FKLIST, SFLLIST, SFALIST, BFLLIST, BFALIST, BFVLIST, and BFKLIST to list items separately.

This command is valid in any processor.

## Menu Paths

Utility Menu>List>Loads>Solid Model Loads

## SBCTRAN

Transfers solid model loads and boundary conditions to the FE model.
SOLUTION: Misc Loads
MP ME ST PR PRN <> <> <> EM EH <> PP <> EME MFS

## Notes

Causes a manual transfer of solid model loads and boundary conditions to the finite element model. Loads and boundary conditions on unselected keypoints, lines, areas, and volumes are not transferred. Boundary conditions and loads will not be transferred to unselected nodes or elements. The SBCTRAN operation is also automatically done upon initiation of the solution calculations [SOLVE].

This command is also valid in PREP7.

## Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Operate>Transfer to FE>All Solid Lds Main Menu>Solution>Define Loads>Operate>Transfer to FE>All Solid Lds

SDELETE, SFIRST, SLAST, SINC, KNOCLEAN, LCHK
Deletes sections from the database.
PREP 7:Cross Sections
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS

## SFIRST

First section ID to be deleted; defaults to first available section in the database.

## SLAST

Last section ID to be deleted; defaults to last available section in the database.

## SINC

Increment of the section ID; defaults to 1 .

## KNOCLEAN

Pretension element cleanup key (pretension sections only).
0
Perform cleanup of pretension elements (delete pretension elements and reconnect elements split during PSMESH).

1
Do not perform cleanup.
LCHK
Specifies the level of element-associativity checking:

## NOCHECK

No element-associativity check occurs. This option is the default.
WARN
When a section, material, or real constant is associated with an element, ANSYS issues a message warning that the necessary entity has been deleted.

## CHECK

The command terminates, and no section, material, or real constant is deleted if it is associated with an element.

## Notes

Deletes one or more specified sections and their associated data from the ANSYS database.

## Menu Paths

Main Menu>Preprocessor>Sections>Delete Section

SE, File, --, --, TOLER

## Defines a superelement.

PREP 7:Superelements
MP ME ST PR PRN <> <> <> EM EH <> PP <> EME MFS

## File

Jobname (case-sensitive, eight-character maximum) of file containing superelement. Defaults to the current Jobname.
--, --
Unused fields.

## TOLER

Tolerance used to determine if use pass nodes are noncoincident with master nodes having the same node numbers. Defaults to 0.0001 . Use pass nodes will always be replaced by master nodes of the same node number. However, if a use pass node is more than $T O L E R$ away from the corresponding master node, a warning is generated.

## Notes

Defines a superelement by reading in the superelement matrices and master nodes from the superelement matrix file. The matrix file (File.SUB) must be available from the substructure generation pass. The proper element type (MATRIX50) must be active [TYPE] for this command. A scratch file called File. SORD showing the superelement names and their corresponding element numbers is also written.

## Menu Paths

Main Menu>Preprocessor>Modeling>Create>Elements>Superelem>From .SUB File

SECCONTROLS, VAL1, VAL2, VAL3, VAL4, VAL5, VAL6, VAL7, VAL8, VAL9, VAL10, VAL11, VAL12, VAL13

## Supplements or overrides default section properties.

PREP 7: Cross Sections<br>MP ME ST PR PRN <> <> <> <> <> DY PP <> EME MFS

## VAL1, VAL2, VAL3, ... , VAL13

Values, such as the length of a side or the numbers of cells along the width, that describe the geometry of a section. See the "Notes" (p. 1466) section of this command description for details about these values for the various section types.

## Notes

The SECCONTROLS command is divided into these operation types: Beams, Pipes, Shells, and Reinforcings.
Values are associated with the most recently issued SECTYPE command. The data required is determined by the section type and is different for each type.

SECCONTROLS overrides the program-calculated transverse-shear stiffness.
The command does not apply to thermal shell elements SHELL131 and SHELL132 or thermal solid elements SOLID278 and SOLID279.

## Beams

## Type: BEAM

Data to provide in the value fields (VAL1 through VAL4):
$T X Z=$ User transverse shear stiffness.

- = Unused field.
$T X Y=$ User transverse shear stiffness.
ADDMAS $=$ Added mass per unit length.


## Pipes

## Type: PIPE

Data to provide in the value field (VAL1):
ADDMAS $=$ Added mass per unit length.

## Shells

## Type: SHELL

Data to provide in the value fields (VAL1 through VAL7):
$E_{11}=$ User transverse shear stiffness.
$E_{22}=$ User transverse shear stiffness.
$E_{12}=$ User transverse shear stiffness.
ADDMAS $=$ Added mass per unit area.
$M E M S C F=$ Hourglass control membrane scale factor.
$B E N S C F=$ Hourglass control bending scale factor.
$D R L S T I F=$ Drill stiffness scale factor.

## Subtype: FIBERSIM

For FiberSIM analyses, provide data for these additional value fields (VAL8 through VAL13): ELFSTIF = Elastic foundation stiffness.
THKTOL = Maximum allowable distance between the ANSYS element centroid and the FiberSIM triangle, normal to the FiberSIM triangle. Defaults to the sum of the defined layers (which does not represent the laminate thickness.)
$E D G T O L=$ Maximum allowable distance from the ANSYS element centroid and an edge of the FiberSIM triangle, in the plane of the FiberSIM triangle. This value is used only when the element centroid is outside of all of the FiberSIM triangles. Defaults to 0.0. A non-zero value may increase running time slightly. ANSYS recommends specifying only a very small tolerance value (as small as possible).
ANGTOL = Maximum allowable angle tolerance in degrees between the normals of the ANSYS element and the FiberSIM triangle. The default value is 10 .
$N E L=$ Activates debugging output (via the LAYLIST command) for the first NEL elements after a new section is called. The default value is 0 .
$T K F L G=$ Layer thickness flag (valid only with FiberSIM version 5.1 or later):
0 - Determine the layer thickness based on the FiberSIM file data.
1 - Use the layer thickness specified via the SECDATA command.
In an analysis that uses FiberSIM data to define sections, issue the SECCONTROLS command after defining the geometry for your section (that is, after issuing all necessary SECDATA commands).

## Reinforcing

## Type: REINF

## Subtype: DISCRETE

Data to provide in the value field (VAL1):
TENSKEY = Flag specifying tension-and-compression, tension-only, or compression-only fibers:
$0=$ Tension and compression.
1 = Tension only.
$-1=$ Compression only. The default value is 0 .
The value specified applies to all fibers defined in the current section.

## Menu Paths

Main Menu $>$ Preprocessor $>$ Sections $>$ Beam $>$ Sect Control<br>Main Menu>Preprocessor>Sections>Pipe>Add<br>Main Menu>Preprocessor>Sections>Pipe>Edit<br>Main Menu>Preprocessor>Sections>Reinforcing>Sect Control<br>Main Menu>Preprocessor>Sections>Shell>Lay-up>Add / Edit

SECDATA, VAL1, VAL2, VAL3, VAL4, VAL5, VAL6, VAL7, VAL8, VAL9, VAL10, VAL11, VAL12
Describes the geometry of a section.
PREP 7: Cross Sections
MP ME ST PR PRN DS DSS <> <> <> <> PP <> EME MFS

## VAL1, VAL2, VAL3, ..., VAL10

Values, such as thickness or the length of a side or the numbers of cells along the width, that describe the geometry of a section. The terms VAL1, VAL2, etc. are specialized for each type of cross-section.

## Notes

The SECDATA command defines the data describing the geometry of a section. The command is divided into these section types: Beams, Pipes, Axisymmetric, Taper, Shells, Pretension, Joints, Reinforcing, and Contact.

The data input on the SECDATA command is interpreted based on the most recently issued SECTYPE command. The data required is determined by the section type and subtype, and is different for each one.

In an analysis using FiberSIM data (SECTYPE,,SHELL,FIBERSIM), the SECDATA command does not define the order of the layers.

## Beams

## Type: BEAM

Beam sections are referenced by beam elements such as BEAM188or BEAM189. Not all SECOFFSET location values are valid for each subtype.


Data to provide in the value fields:
B, H, Nb, Nh
where
$B=$ Width
$H=$ Height
$N b=$ Number of cells along width; default $=2$
$N h=$ Number of cells along height; default $=2$
$N b^{*} N h$

Type: BEAM, Subtype: CSOLID


Data to provide in the value fields:
$R, N, T$
where
$R=$ Radius
$N=$ Number of divisions around the circumfer-
ence; $N \geq 8$, default $=8$
$T=$ Number of divisions through the radius; default $=2$


Data to provide in the value fields:
$y I, z I, y J, z J, y K, z K, y L, z L, N g, N h$
$y I, z I, y J, z J, y K, z K, y L, z L=$ Coordinate
location of various points
$N g=$ Number of cells along $g$; default $=2$
$N h=$ Number of cells along $h$; default $=2$
$N g^{*} N h$
Degeneration to triangle is permitted by specifying the same coordinates for cells along an edge.
Type: BEAM, Subtype: CTUBE


Data to provide in the value fields:
Ri, Ro, N
where
$R i=$ Inner radius of the tube
Ro $=$ Outer radius of the tube
$N=$ Number of cells along the circumference; N
$\geq 8$, default $=8$
This subtype is similar to type PIPE. However, elements using PIPE account for internal or external pressures, whereas elements using CTUBE do not.

Type: BEAM, Subtype: CHAN


Data to provide in the value fields:
W1, W2, W3, t1, t2, t3
where
$w 1, w 2=$ Lengths of the flanges
w3 $=$ Overall depth
$t 1$, t $2=$ Flange thicknesses
$t 3=$ Web thicknesses
Type: BEAM, Subtype: Z


Data to provide in the value fields:
W1, W2, W3, t1, t2, t3
where
w1, w2 = Flange lengths
w3 = Overall depth
$t 1, t 2=$ Flange thicknesses
t $3=$ Stem thicknesses

Type: BEAM, Subtype: I


Data to provide in the value fields:
w1, w2, w3, t1, t2, t 3
where
w1, w2 = Width of the top and bottom flanges
w3 $=$ Overall depth
$t 1, t 2=$ Flange thicknesses
t $3=$ Web thicknesses
Type: BEAM, Subtype: L


Data to provide in the value fields:
w1, w2, t1, t2
where
w1, w2 = Leg lengths
$t 1, t 2=$ Leg thicknesses
If $W 2$ is a negative value, the section will be flipped.

## Type: BEAM, Subtype: T



Data to provide in the value fields:
W1, w2, t1, t2
where
w1 = Flange width
w2 $=$ Overall depth
t1 = Flange thicknesses
t2 $=$ Stem thicknesses
If $W 2$ is a negative value, the section will be flipped.

## Type: BEAM, Subtype: HREC



Data to provide in the value fields:
W1, $W 2$, t $1, ~ t 2, ~ t 3, ~ t 4$
where
W1 = Outer width of the box
W2 = Outer height of the box
$t 1, t 2, t 3, t 4=$ Wall thickness

Type: BEAM, Subtype: HATS


Data to provide in the value fields:
W1, w2, w3, w4, t1, t2, t 3, t4, t5
where
w1, w2 = Width of the brim
w3 = Width of the top of the hat
w4 = Overall depth
$t 1, t 2=$ Thickness of the brim
$t 3=$ Thickness of the top of the hat
$t 4, t 5=$ Web thicknesses
Type: BEAM, Subtype: ASEC
Arbitrary: User-supplied integrated section properties instead of basic geometry data. Data to provide in the value fields:
A, Iyy, Iyz, Izz, Iw, J, CGy, CGz, SHy, SHz where
$A=$ Area of section
$I_{y y}=$ Moment of inertia about the $y$ axis
$I_{y z}=$ Product of inertia
$I z z=$ Moment of inertia about the $z$ axis
Iw $=$ Warping constant
$J=$ Torsional constant
$C G y=Y$ coordinate of centroid
$C G z=Z$ coordinate of centroid
$S H y=Y$ coordinate of shear center
$S H z=Z$ coordinate of shear center
$T K z=$ Thickness along $Z$ axis
$T K Y=$ Thickness along Y axis
SECPLOT cannot display an ASEC plot.

User-defined mesh.
Data required is created by the SECWRITE command and is read into ANSYS by the SECREAD command.
When a user mesh is input via SECREAD, ANSYS calculates the area, second moments of inertia, centroid, torsion constant, warping rigidity, and shear center.
If you redefine a material for a composite crosssection after creating the section, you must reissue the SECREAD command.

## Pipes

## Type: PIPE

Pipe sections are referenced by the PIPE288, PIPE289, and ELBOW290 elements.
Data to provide in the value fields:
$D_{o}, T_{w^{\prime}} N_{C^{\prime}} S_{s^{\prime}} N_{t}, M_{i n t}, M_{i n s^{\prime}} T_{i n s}$
where
$D_{0}=$ Outside diameter of pipe. Does not include $T_{\text {ins }}$.
$T_{W}=$ Wall thickness.
$N_{C}=$ Number of cells along the circumference. This value must be 8 or greater. The default value is 8.
$S_{s}=$ Section number of the shell representing the pipe wall. Valid with ELBOW290 only.
$N_{t}=$ Number of cells through the pipe wall. Valid values are $1,3,5,7$, and 9 . The default value is 1 . Cells are graded such that they are thinner on the inner and outer surfaces. Valid with PIPE288 and PIPE289 only.
$M_{\text {int }}=$ Material number of fluid inside of the pipe. The default value is 0 (no fluid). This value is used to input the density of the internal fluid. Valid with PIPE288 and PIPE289 only.
$M_{\text {ins }}=$ Material number of material external to the pipe (such as insulation, biofouling, or armoring). The default value is 0 (no external material). This value is used to input the density of the external material. Valid with PIPE288 and PIPE289 only.
$T_{\text {ins }}=$ Thickness of material external to the pipe, such as insulation. The default value is 0 (no external material). Valid with PIPE288 and PIPE289 only.

External material ( $M_{i n s}$ ) adds mass and increases hydraulic diameter, but does not add to stiffness. ( $M_{i n s}$ is valid for PIPE288 and PIPE289 only.)

Circumferential cell divisions
( $\mathrm{N}_{\mathrm{C}}=8$ shown)


## Taper

## Type:TAPER

Taper sections are referenced by BEAM188, and BEAM189 elements. After specifying the tapered section type ( SECTYPE,,TAPER), issue separate SECDATA commands to define each end of the tapered beam.

Data to provide in the value fields:
Sec_IDn, XLOC, YLOC, ZLOC
where
Sec_IDn = Previously defined beam section at ends 1 (I) and $2(\mathrm{~J})$.
XLOC, YLOC, $Z L O C=$ The location of Sec_IDn in the global Cartesian coordinate system.

## General Axisymmetric

## Type: AXIS

General axisymmetric sections are referenced by the SURF159, SOLID272, and SOLID273 elements. Use this command to locate the axisymmetric axis.

Data to provide in the value fields:

## Pattern 1 (two points):

1, X1, Y1, Z1, X2, Y2, Z2
where $X 1, Y 1, Z 1, X 2, Y 2, Z 2$ are global Cartesian coordinates.

2, csys, axis
where csys is a Cartesian coordinate system.

## Pattern 3 (origin plus direction):

3, XO, YO, zO, xdir, ydir, zdir
where $X O, Y O, Z O$ are global Cartesian coordinates and xdir,ydir, and zdir are direction cosines.

## Shells

## Type: SHELL

Shell sections are referenced by the SHELL131, SHELL132, SHELL181, SOLID185 Layered Solid, SOLID186 Layered Solid, SOLSH190, SHELL208, SHELL209, SOLID278 Layered Solid, SOLID279 Layered Solid, and SHELL281 elements.

Data to provide in the value fields:
TK, MAT, THETA, NUMP T, LayerName
where
$T K=$ Thickness of shell layer. Zero thickness (not valid for SHELL131 and SHELL132) indicates a dropped layer. The sum of all layer thicknesses must be greater than zero. The total thickness can be tapered via the SECFUNCTION command.
MAT = Material ID for layer (any current-technology material model is available for SHELL181, SOLID185 Layered Solid, SOLID186 Layered Solid, SOLSH190, SHELL208, SHELL209, SOLID278 Layered Solid, and SOLID279 Layered Solid, including UserMat). MAT is required for a composite (multi-layered) laminate. For a homogeneous (single-layered) shell, the default is the MAT command setting. Use the TREF and/or the MP, REFT commands to address multiple reference temperatures.
$T H E T A=$ Angle (in degrees) of layer element coordinate system with respect to element coordinate system (ESYS).
NUMP $T=$ Number of integration points in layer. The GUI permits $1,3,5,7$, or 9 points (default $=3$ ).
However a higher odd number may be specified in the command. The integration rule used is Simpson's Rule. (NUMPT is not used by SHELL131 and SHELL132.)
LayerName = The layer name (up to 72 characters) in an analysis using FiberSIM data (SECTYPE,SHELL, FIBERSIM). The layer name is case-sensitive and must match the ply name in the FiberSIM . xml file. (In a non-FiberSIM analysis, this value serves only as a comment in the input.)

In an analysis using FiberSIM data:

- The THETA value is ignored,
- The order of the SECDATA commands does not matter as the layer order comes from the . xml file. Therefore, repeated values of LayerName should not be used.
- Every LayerName used on the .xml file should be on a separate SECDATA command.

Issue separate SECDATA commands to define each of the layers in the section.

## Pretension

## Type: PRETENSION

Pretension sections are referenced by the PRETS179 element.
Data to provide in the value fields:
node, $n x, n y, n z$
where
node $=$ Pretension node number.
$n x=$ Orientation in global Cartesian x direction.
$n y=$ Orientation in global Cartesian y direction.
$n z=$ Orientation in global Cartesian $z$ direction.
The following usage is typical:
SECTYPE, 1, PRETENSION
SECDATA, 13184, 0.000, 0.000, 1.000
SECMODIF, 1, NAME, example
SLOAD, 1, PL01, TINY, FORC, 100.00 , 1, 2
The PRETENSION section options of SECTYPE and SECDATA are documented mainly to aid in the understanding of data written by CDWRITE. ANSYS recommends that you generate pretension sections using PSMESH.

## Joints

## Type: JOINT

Joint sections are referenced by MPC184 joint elements.
Data to provide in the value fields:
length1, length2, length3, angle1, angle2, angle3
where
length1-3 = Reference lengths used in the constitutive calculations.
angle1-3 = Reference angles used in the constitutive calculations.
The following table shows the lengths and angles to be specified for different kinds of joints.

| Joint | Subtype | Reference lengths and angles |
| :--- | :--- | :--- |
| Revolute | REVO | angle1 for $x$-axis revolute joint <br> angle3 for z-axis revolute joint |
| Universal | UNIV | angle1 and angle3 |
| Slot | SLOT | length1 |
| Point-in-plane | PINP | length2 and length3, |
| RevoluteTransla- <br> tional | PRIS | length1 |


| Joint | Subtype | Reference lengths and angles |
| :--- | :--- | :--- |
| Cylindrical | CYLI | length1 and angle1 for x-axis cylindrical joint <br> length3 and angle3 for z-axis cylindrical joint |
| Planar | PLAN | length2, length3, and angle1 for x-axis planar joint <br> length1, length2, and angle3 for z-axis planar joint |
| Weld | WELD | (not used) |
| Orient | ORIE | (not used) |
| Spherical | SPHE | (not used) |
| General | GENE | length1, length2, length3, angle1, angle2, angle3 -- De- <br> pends upon which "unconstrained" relative degrees of <br> freedom are available. |
| Screw | length3 and angle3 |  |

The reference length and angle specifications correspond to the free relative degrees of freedom in a joint element for which constitutive calculations are performed. These values are used when stiffness and/or damping are specified for the joint elements.

If the reference lengths and angles are not specified, they are calculated from the default or starting configuration for the element.

See MPC184 or the individual joint element descriptions for more information on joint element constitutive calculations.


## Reinforcing

## Type: REINF

Reinforcing sections are referenced by REINF264 and REINF265 elements.

## Type: REINF, Subtype: DISCRETE

This subtype defines discrete reinforcing fibers with arbitrary orientations. Issue separate SECDATA commands to define each reinforcing fiber.

Data to provide in the value fields:
where
MAT, A, PATT, V1, V2, V3, V4, V5
MAT = Material ID for the fiber. (Refer to the REINF264 documentation for available material models.) The material ID is required for all fibers, and no default for this value is available.
$A=$ Cross-section area of the reinforcing fiber.
PATT = Input pattern code indicating how the location of this fiber is defined with respect to the base element. Available input patterns are LAY $n$, EDGo, and BEAM.
V1, V2, V3, V4, V5 = Values to define the location of the reinforcing fiber (depending on the PATT pattern code used), as shown:

## PATT: LAYn

Description: The discrete reinforcing fiber is placed in the middle of a layer in a layered base element. The orientation of the fiber within the layer is adjustable via offsets with respect to a specified element edge.

## Required input:

$V 1$ (or $n$ ) -- The number of the layer in the base element on which to apply the reinforcing fiber. The default value is 1 .
$V 2$ (or e) -- The number to indicate the element edge to which the offsets are measured. The default value is 1 .
V3 and V4 (or Y1 and Y2) -- The normalized distances from the fiber to the two ends of the specified element edge. Valid values for $Y 1$ and $Y 2$ are 0.0 through 1.0. The default value of $Y 1$ is 0.5 . The default value of $Y 2$ is $Y 1$.

When applied to 8-node or 20-node layered solid elements:


When applied to 4-node or 8-node layered shell elements:


## PATT: EDGo

Description: The orientation of the discrete reinforcing fiber is similar to one of the specified element edges. The fiber orientation can be further adjusted via offsets with respect to the specified element edge.

## Required input:

V1 (or e) -- The number to indicate the element edge to which the offsets are measured. The default value is 1 .
V2 and V3 (or Y1 and Z1) -- The normalized distances from the fiber to the first end of the specified element edge. Valid values for $Y 1$ and $Z 1$ are 0.0 through 1.0. The default value for $Y 1$ and $Z 1$ is 0.5 .
$V 4$ and V5 (or Y2 and Z2) - The normalized distances from the fiber to the second end of the specified element edge. Value values for $Y 2$ and $z 2$ are 0.0 through 1.0. The default value for $Y 2$ is $Y 1$, and the default value for $Z 2$ is $z 1$.

If the base element is a beam or link, ANSYS ignores values $V 2$ through $V 5$ and instead places the reinforcing in the center of the beam or link.

When applied to 8-node or 20-node solid elements:



When applied to tetrahedral elements:



When applied to 3-D shell elements:


When applied to beam or link elements:


PATT : BEAM
Description: Use this specialized input pattern for defining reinforcing in regular constant and tapered beams.

## Required input:

$V 1$ and $V 2$ (or Y1 and Z1) -- $Y$ and $Z$ offsets with respect to the section origin in the first beam section referred by the base beam element. The default value for Y 1 and $Z 1$ is 0.0 .
$V 3$ and $V 4$ (or $Y 2$ and $Z 2$ ) -- $Y$ and $Z$ offsets with respect to the section origin in the second beam section referred by the base beam element. The default value for $Y 2$ is $Y 1$, and the default value for $Z 2$ is $Z 1$. (Because V3 and V4 values apply only to tapered beams, ANSYS ignores them if the base beam has a constant section.)


Beam section \#1

## Type: REINF, Subtype: SMEAR

This subtype defines reinforcing fibers in homogenous layered forms. Issue separate SECDATA commands to define each of the layers of reinforcing fibers with uniform cross-section area and spacing.

Data to provide in the value fields:
MAT, A, S, KCN, THETA, PATT, V1, V2, V3, V4, V5
where
$M A T=$ Material ID for layer. (Refer to the REINF265 documentation for available material models.) The material ID is required for all layers, and no default for this value is available.
$A=$ Cross-section area of a single reinforcing fiber.
$S=$ Distance between two adjacent reinforcing fibers.
$K C N=$ Local coordinate system reference number for this layer. (See the LOCAL command documentation for more information about local coordinate systems.) If this value is not provided, the layer adopts a default layer reference system. For the 2-D smeared reinforcing element REINF263, KCN input is ignored and a default layer reference system is adopted.

THETA = Angle (in degrees) of the final layer coordinate system with respect to the default layer system or the layer system specified in the KCN field. This value is ignored for REINF263 when that element is embedded in 2-D plane strain or plane stress base elements.
$P A T T=$ Input pattern code indicating how the location of this layer is defined with respect to the base element. Available input patterns are LAYn, EDGo, and ELE $f$.
$V 1, V 2, V 3, V 4, V 5=$ Values to define the location of the reinforcing layer, as shown:
PATT: LAYn
Description: The smeared reinforcing layer is placed in the middle of a layer in a layered base element.
Required input: $V 1$ (or $n$ ) -- The number of the layer in the base element on which to apply the reinforcing layer. The default value is 1 .

When applied to layered solid elements:


When applied to 2-D axisymmetric shells:
When applied to 3-D layered shells:


PATT: EDGo

Description: This pattern applies only to 2-D smeared reinforcing element REINF263. The smeared reinforcing layer is represented by a line in 2-D. The orientation of the 2-D smeared reinforcing layer is similar to one of the specified element edges. The fiber orientation can be further adjusted via offsets with respect to the specified element edge.

## Required input:

V1 (or e) -- The number to indicate the element edge to which the offsets are measured. The default value is 1 .
V2 (or Y1) -- The normalized distances from the reinforcing layer to the first end of the specified element edge. Valid values for Y 1 are 0.0 through 1.0. The default value for Y 1 is 0.5 . V3 (or Z1) input is ignored. $V 4$ (or $Y 2$ ) -- The normalized distances from the reinforcing layer to the second end of the specified element edge. Value values for Y2 are 0.0 through 1.0. The default value for $Y 2$ is $Y 1 . \mathrm{V} 5$ (or $Z 2^{`}$ ) input is ignored.

When applied to 2-D 4-node or 8-node solid elements:


When applied to 2-D 3-node or 6-node triangular solid elements:


When applied to 2-node or 3-node axisymmetric shell elements:


PATT: ELEf

Description: The smeared reinforcing layer is oriented parallel to one of three adjacent element faces. (This pattern does not apply to 2-D smeared reinforcing element REINF263.)

## Required input:

V1 (or $f$ ) -- The number to indicate the base element face. The default value is 1 .
$V 2$ (or d) -- The normalized distance from the layer to the specified base element face. Valid values for $d$ are 0.0 through 1.0. The default value is 0.5 .

When applied to 8-node or 20-node solid elements:


When applied to tetrahedral elements:


When applied to 3-D shell elements:


## CONTACT

## Type: CONTACT

Contact sections are referenced by CONTA173, CONTA174, and TARGE170 elements for geometry correction. This geometry correction is applicable to cases where the original meshes of contact elements or target elements are located on a portion of a spherical or revolute surface.

Type: CONTACT, Subtype: SPHERE
Data to provide in the value fields for Subtype = SPHERE:
XO, YO, ZO (sphere center location in Global Cartesian coordinates)

## Type: CONTACT, Subtype: CYLINDER

Data to provide in the value fields for Subtype = CYLINDER:
X1, Y1, Z1, X2, Y2, Z2 (two ends of cylindrical axis in Global Cartesian coordinates)

## Menu Paths

Main Menu>Preprocessor>Sections>Axis>Add
Main Menu $>$ Preprocessor $>$ Sections $>$ Axis $>$ Edit
Main Menu $>$ Preprocessor $>$ Sections $>$ Beam $>$ Common Sections
Main Menu $>$ Preprocessor $>$ Sections $>$ Beam $>$ Taper Sections $>$ By Picked Nodes
Main Menu>Preprocessor>Sections>Beam>Taper Sections>By XYZ Location
Main Menu>Preprocessor>Sections>Contact>Add
Main Menu>Preprocessor>Sections>Contact>Edit
Main Menu>Preprocessor>Sections>Joints>Add / Edit
Main Menu>Preprocessor>Sections>Pipe>Add
Main Menu>Preprocessor>Sections>Pipe>Edit
Main Menu>Preprocessor>Sections>Reinforcing>Add / Edit
Main Menu>Preprocessor>Sections>Shell>Lay-up>Add / Edit

## SECFUNCTION, TABLE, KCN

Specifies shell section thickness as a tabular function.
PREP 7: Cross Sections
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

## TABLE

Table name or array parameter reference for specifying thickness.
KCN
Local coordinate system reference number for this tabular function evaluation.

## Notes

The SECFUNCTION command is associated with the section most recently defined via the SECTYPE command.

A table (TABLE) can define tabular thickness as a function of coordinates. Alternatively, you can use an array parameter (indexed by node number) that expresses the function to be mapped. (For example, func (17) should be the desired shell thickness at node 17.) To specify a table, enclose the table or array name in percent signs (\%) (SECFUNCTION,\%tablename\%). Use the *DIM command to define a table.

The table or array defines the total shell thickness at any point in space. In multilayered sections, the total thickness and each layer thickness are scaled accordingly.

The Function Tool is a convenient way to define your thickness tables. For more information, see "Using the Function Tool" in the Basic Analysis Guide.

If you do not specify a local coordinate system (KCN), ANSYS interprets the table in global XYZ coordinates. When $K C N=$ NODE, ANSYS interprets TABLE as an array parameter (indexed by node number) that expresses the function to be mapped. For information about local coordinate systems, see the documentation for the LOCAL command.

## Menu Paths

## Main Menu>Preprocessor>Sections>Shell>Lay-up>Add / Edit

## SECJOINT, Kywrd, Val1, Val2, Val3, Val4, Val5, Val6

## Defines local coordinate systems at joint element nodes and other data for joint elements.

PREP 7: Cross Sections
MP ME ST PR PRN $<><><><><><>$ PP $<>$ EME MFS

## Kywrd

Keyword that indicates the type of joint element data being defined.

## LSYS or blank

Define local coordinate systems at the nodes that form the MPC184 joint element.
RDOF
Define the relative degrees of freedom to be fixed for an MPC184-General joint element.
PITC
Define the pitch of an MPC184-Screw joint element.
FRIC
Define the geometric quantities required for Coulomb frictional behavior in the MPC184-Revolute or MPC184-Translational joint element.

## Val1, Val2, Val3, Val4, Val5, Val 6

The meaning of Vall through Val 6 changes, depending on the value of Kywrd.
If Kywrd = LSYS (or blank), Val1 and Val2 are Identifiers of the local coordinate systems at nodes I and J, respectively, of the joint element. Val 3 through Val 6 are not used.

If Kywrd $=$ RDOF, Val1 through Val 6 are the relative degrees of freedom to be fixed for a general joint element. Input 1 for UX, 2 for UY, 3 for UZ, 4 for ROTX, 5 for ROTY, and 6 for ROTZ. You may input the DOFs in any order.

If Kywrd $=$ PITC, Vall is the pitch of the screw joint element; pitch is defined as the ratio of relative axial displacement (length units) to relative rotation (in radians). Val2 through Val 6 are not used.

If Kywrd $=$ FRIC, Vall through Val3 are defined as follows.

## For Revolute Joint:

Vall = outer radius
Val2 $=$ inner radius
Val3 = effective length
For Translational Joint:
Vall = effective length
Val2 $=$ effective radius

## Notes

Use this command to define additional section data for MPC184 joint elements. To overwrite the current values, issue another SECJOINT command with the same Kywrd value. The data input on this command is interpreted based on the most recently issued SECTYPE command.

## Menu Paths

Main Menu>Preprocessor>Sections>Joints>Add/Edit

## /SECLIB, Option, Path

## Sets the default section library path for the SECREAD command.

PREP 7:Cross Sections
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

## Option

READ
Sets the read path (default).
STATUS
Reports the current section library path setting to the Jobname. LOG file.

## Path

Defines the directory path from which to read section library files.

## Notes

When the SECREAD command is issued without a directory path, the command searches for a section library in the following order:

- The user's home directory
- The current working directory
- The path specified by the /SECLIB command


## Menu Paths

Main Menu $>$ Preprocessor $>$ Sections $>$ Section Library $>$ Library Path

## SECLOCK, dof, minVaLUe, mAXVALUE, dof, mINVALUE, MAXVALUE, dof, MINVALUE, MAXVALUE

## Specifies locks on the components of relative motion in a joint element.

PREP 7:Cross Sections
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS
dof
Local degree of freedom to be locked.

## minVALUE

Low end of the range of allowed movement for the specified DOF.

## MAXVALUE

High end of the range of allowed movement for the specified DOF.

## Notes

Specify up to three DOFs to be locked. Locks are activated when the limit values are reached, and further motion in that DOF is frozen. If necessary, you may repeat the command.

## Menu Paths

## Main Menu>Preprocessor>Sections>Joints>Add / Edit

## SECMODIF, SECID, Kywrd

## Modifies a pretension section

PREP 7: Cross Sections
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

If Kywrd = NORM, command format is SECMODIF,SECID, NORM, NX, NY, NZ, KCN

## SECID

Unique section number. This number must already be assigned to a section.

## NORM

Keyword specifying that the command will modify the pretension section normal direction.

## $\mathbf{N X}, \mathbf{N Y}, \mathbf{N Z}$

Specifies the individual normal components to modify.

## KCN

Coordinate system number. This can be either 0 (Global Cartesian), 1 (Global Cylindrical) 2 (Global Spherical), 4 (Working Plane), 5 (Global Y Axis Cylindrical) or an arbitrary reference number assigned to a coordinate system.

If Kywrd = NAME, the command format is SECMODIF,SECID, NAME, Name
SECID
Unique section number. This number must already be assigned to a section.

## NAME

Action key that instructs the command to change the name of the specified pretension section.

## Name

The new name to be assigned to the pretension section.

## Notes

The SECMODIF command either modifies the normal for a specified pretension section, or changes the name of the specified pretension surface.

## Menu Paths

Main Menu>Preprocessor>Sections>Pretension $>$ Modify Name Main Menu>Preprocessor>Sections>Pretension>Modify Normal

## SECNUM, SECID

## Sets the element section attribute pointer.

PREP 7:Cross Sections
MP ME ST PR PRN DS DSS <> <> <> <> PP <> EME MFS

## SECID

Defines the section ID number to be assigned to the subsequently-defined elements. Defaults to 1 . See SECTYPE for more information about the section ID number.

## Menu Paths

Main Menu>Preprocessor>Meshing>Mesh Attributes>Default Attribs Main Menu>Preprocessor>Modeling>Create>Elements>Elem Attributes

## SECOFFSET, Location, OFFSET1, OFFSET2, CG-Y, CG-Z, SH-Y, SH-Z

## Defines the section offset for cross sections.

PREP 7: Cross Sections
MP ME ST PR PRN DS DSS <> <> <>>>> PP <> EME MFS

## Location, OFFSET1, OFFSET2, CG-Y, CG-Z, SH-Y, SH-Z

The location of the nodes in the section. All are dependent on the type. See the "Notes" (p. 1494) section of this command description for details about these values for the various section types.

## Notes

The SECOFFSET command is divided into three types: Beams, Pipes, and Shells.
The offsets defined by the SECOFFSET command are associated with the section most recently defined using the SECTYPE command. Not all SECOFFSET location values are valid for each subtype.

For the thermal shell elements, SHELL131 and SHELL132, the node offset specified by SECOFFSET is used in thermal contact analyses. Otherwise, the SECOFFSET command has no effect on the solution for these elements and is used only for visualization purposes.

This command is not valid with thermal solid elements SOLID278 and SOLID279.

## Beams

## Type: BEAM

Argument data to provide:

```
Location, OFFSETY, OFFSETZ,CG-Y,CG-Z,SH-Y,SH-Z
```


## Location

## CENT --

Beam node will be offset to centroid (default).

## SHRC --

Beam node will be offset to shear center.
ORIGIN --
Beam node will be offset to origin of the cross section.
USER --
Beam node will be offset to the location specified by the OFFSETY and OFFSETZ arguments.
OFFSETY, OFFSETZ
Values that locate the node with respect to the default origin of the cross section when the Location argument is set to USER. Valid only when USER is set.

The following figure illustrates the offsets for a channel cross section, and shows the relative locations of SHRC and CENT.

Figure 5 Offsets for a CHAN Section Subtype


CG-Y, CG-Z, SH-Y, SH-Z
Override the program-calculated centroid and shear centroid locations.

## Note

This option should only be used by advanced users modeling composite cross sections.

## Pipes

## Type: PIPE

Argument data to provide:
OFFSETY, OFFSETZ
OFFSETY, OFFSETZ
Values that locate the node with respect to the center of the pipe.

## Shells

## Type: SHELL

Argument data to provide:

## Location, OFFSET

Location
TOP --
Shell node will be offset to top of the section.
MID --
Shell node will be offset to midplane of the section (default).
BOT --
Shell node will be offset to bottom of the section.
USER --
Shell node will be offset to the location specified by the OFFSET argument.

## offset

Value that locates the node with respect to the default origin (midplane) of the section. Valid only when Location = USER.

For shells, an offset alters only the reference surface of the shell elements (that is, how the program measures displacements: at the middle, top, or bottom of the physical shell). It does not change the physical dimensions of the shell itself; the volume and mass remain constant when an offset is specified.

## Menu Paths

Main Menu $>$ Preprocessor $>$ Sections $>$ Beam $>$ Common Sections
Main Menu $>$ Preprocessor $>$ Sections $>$ Beam $>$ Custom Sections $>$ Read Sect Mesh
Main Menu $>$ Preprocessor $>$ Sections $>$ Pipe $>$ Add
Main Menu $>$ Preprocessor $>$ Sections $>$ Pipe $>$ Edit
Main Menu $>$ Preprocessor $>$ Sections $>$ Shell $>$ Lay-up $>$ Add $/$ Edit

## SECPLOT, SECID, VAL1, VAL2, VAL3

## Plots the geometry of a beam, pipe, shell, or reinforcing section to scale.

PREP 7: Cross Sections
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

## SECID

The section ID number (as defined via the SECTYPE command).

## VAL1, VAL2, VAL3

Values that control the information to be plotted. See the "Notes" (p.1497) section of this command description for more information. For clarity, the labels VAL1,VAL2, and VAL3 are renamed according to the section type.

## Notes

The SECPLOT command is valid only for "Beams and Pipes" (p. 1497), "Shells" (p. 1498), and "Reinforcings" (p. 1499). Custom sections created using FiberSIM data do not support SECPLOT.

SECPLOT cannot display the plot of an ASEC (arbitrary section) subtype.

## Beams and Pipes

Plots the geometry of the beam or pipe section to scale depicting the centroid, shear center, and origin.
SECPLOT also lists various section properties such as $I_{y y}, I_{y z}$ and $I_{z z}$.
Data to be supplied in the value fields:

## MESHKEY

Beam or pipe section mesh display options:
0 --
Display section outline only.
1 --
Display beam or pipe section mesh.
2 --
Display the section mesh with node numbers.
3 --
Display the section mesh with cell numbers.
4 --
Display the section mesh with material numbers and colors.
5 --
Display the section mesh with material colors only.
6 --
Display the section mesh with the RST node numbers. RST nodes are section corner nodes where results are available. This is applicable when the averaged results format ( $\operatorname{KEYOPT}(15)=0$ for BEAM188, BEAM189, PIPE288, and PIPE289) is used.

## 7 --

Display the section mesh with the RST cell numbers. RST cells are section cells where results are available. This is applicable when the non-averaged results format $(\operatorname{KEYOPT}(15)=1$ for BEAM188, BEAM189, PIPE288, and PIPE289) is used.

Options 2 through 6 do not depict centroid and shear center, nor do they list section properties.
Following is a sample section plot for the beam section type:


## Shells

Plots the layer arrangement of the shell section showing the layer material and orientation.
Data to be supplied in the value fields:

## LAYR1, LAYR2

The range of layer numbers to be displayed. If LAYR1 is greater than LAYR2, a reversed order display is produced. Up to 20 layers may be displayed at the same time. LAYR1 defaults to 1. LAYR2 defaults to LAYR1 if LAYR1 is input or to the number of layers (or to 19+LAYR1, if smaller) if LAYR1 is not input.

Following is a sample section plot for the shell section type:


## Reinforcings

Plots the arrangement of a reinforcing section within the base element.
Data to be supplied in the value fields:
REINF1, REINF2, OVERLAY
REINF1, REINF2 -- The numerical range of reinforcings to be displayed. The default REINF1 value is 1 . The default REINF2 value is the number of reinforcings.

OVERLAY -- The section ID of the base element within which to display the reinforcing section. The section appears translucent and the reinforcing section is solid. Valid values are:

- SOLID -- Display a translucent solid block over the reinforcing section
- SECID -- A number corresponding to a specific section ID of the base element.

If no OVERLAY value is specified, ANSYS displays the reinforcing section only.
Following is a sample section plot for the reinforcing section type:


For more information about reinforcing, see the documentation for the SECDATA command, and the REINF264 and REINF265 elements.

## Menu Paths

Main Menu $>$ Preprocessor $>$ Sections $>$ Beam $>$ Plot Section<br>Main Menu>Preprocessor>Sections>Pipe>Plot Section<br>Main Menu>Preprocessor>Sections>Reinforcing>Plot Section<br>Main Menu $>$ Preprocessor $>$ Sections $>$ Shell $>$ Lay-up $>$ Plot Section

SECREAD, Fname, Ext, --, Option
Reads a custom section library or a user-defined section mesh into ANSYS.
PREP 7:Cross Sections
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

## Fname

Section library file name and directory path containing the section library file ( 248 characters maximum, including directory). If you do not specify a directory path, it will default to your working directory and you can use all 248 characters for the file name.

When the SECREAD command is given without a directory path, the command searches for a section library in the following order:

- The user's home directory
- The current working directory
- The path specified by the /SECLIB command

The file name defaults to Jobname if Fname is left blank.

## Ext

Filename extension (8 character maximum).
The extension defaults to SECT if Ext is left blank.

Unused field.

## Option

## LIBRARY

Reads in a library of sections and their associated section data values; the default. A section library may be created by editing the section-defining portions of the Jobname. LOG file and saving it with a . SECT suffix.

## MESH

Reads in a user mesh section file containing the cell connectivity, cell flags, and nodal coordinates for the current beam section of subtype MESH as defined by SECTYPE. See the "Notes" (p. 1501) section of this command description for details about user mesh section files. SECWRITE builds mesh files based on 2-D models you create.

## Notes

The SECREAD command operates on the section specified via the most recently issued SECTYPE command. Issue a separate SECREAD command for each section ID that you want to read into ANSYS.

For shell sections incorporating FiberSIM data, the . xml file containing the FiberSIM data must exist in its original format. ANSYS cannot use the data if you have altered the file in any way (for example, by opening the file in an XML editor, making changes, and then saving it again).

## Sample User Section Cell Mesh File

Here are excerpts from a sample user section mesh file for a section with 75 nodes, 13 cells, and 9 nodes per cell for a two-hole box section. Illustrations of the two-hole box section and the cell mesh for it appear later in this command description.

| First Line: | 75 | 13 |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Cells Section: |  | 1 | 3 | 25 | 23 | 2 | 14 | 24 | 12 | 13 | 1 |
|  |  | 3 | 5 | 27 | 25 | 4 | 16 | 26 | 14 | 15 | 1 |
|  |  | 5 | 7 | 29 | 27 | 6 | 18 | 28 | 16 | 17 | 1 |
|  |  | 7 | 9 | 31 | 29 | 8 | 20 | 30 | 18 | 19 | 1 |
|  |  | 9 | 11 | 33 | 31 | 10 | 22 | 32 | 20 | 21 | 1 |
|  |  | 23 | 25 | 45 | 43 | 24 | 36 | 44 | 34 | 35 | 1 |
|  |  | 49 | 51 | 73 | 71 | 50 | 62 | 72 | 60 | 61 | 1 |
|  |  | 51 | 53 | 75 | 73 | 52 | 64 | 74 | 62 | 63 | 1 |
|  | 0 | 0.0 |  |  | 0.0 |  |  |  |  |  |  |
|  | 0 | 0.0 |  |  | 0.0 |  |  |  |  |  |  |
|  | 0 | 0.0 |  |  | 0.0 |  |  |  |  |  |  |
|  | 0 | 5.0 | 175 |  | 0.0 |  |  |  |  |  |  |
| Nodes Section: |  |  |  |  |  |  |  |  |  |  |  |
|  | 0 | 19.9 20.0 |  |  | $\begin{aligned} & 10.00 \\ & 10.00 \end{aligned}$ |  |  |  |  |  |  |

The mesh file is divided into three sections: the First Line, the Cells Section, and the Nodes Section. Here are brief descriptions of the contents of each.

First Line: The First Line defines the number of nodes and the number of cells for the mesh.

Cells Section: The Cells Section contains as many lines as there are cells. In this example, there are thirteen cells, so there are thirteen lines in this section. In each line, the number " 1 " that follows the cell connectivity information is the material number.

Cell nodal connectivity must be given in a counterclockwise direction, with the center node being the ninth node. For details, see Figure 7 (p. 1503).

Nodes Section: The Nodes Section contains as many lines as there are nodes. In this example, there are 75 nodes, so there are a total of 75 lines in this section. Each node line contains the node's boundary flag, the Y coordinate of the node, and the Z coordinate of the node. Currently, all node boundary flags appear as $0 s$ in a cell mesh file (as illustrated in Figure 6 ( p .1502 )). Since all node boundary flags are 0, SECREAD ignores them when it reads a cell mesh file into ANSYS.

There cannot be any gaps in the node numbering of a cell mesh. The nodes in a cell mesh must be numbered consecutively, with the first node having a node number of 1, and the last node having a node number that is equal to the maximum number of nodes in the cell mesh.

Figure 6 Two-hole Box Section


Figure 7 Cell Mesh for the Two-hole Box Section
A nine node cell


## Menu Paths

Main Menu>Preprocessor>Sections>Beam>Custom Sections>Read Sect Mesh Main Menu $>$ Preprocessor $>$ Sections $>$ Section Library $>$ Import Library

## SECSTOP, dof, MINVALUE, MAXVALUE, dof, MINVALUE, MAXVALUE, dof, MINVALUE, MAXVALUE

Specifies stops on the components of relative motion in a joint element.
PREP 7: Cross Sections
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS
dof
Local degree of freedom to be stopped.

## minvalue

Low end of the range of allowed movement for the specified DOF.

## maxValue

High end of the range of allowed movement for the specified DOF.

## Notes

Stops restrict motion in a DOF; motion beyond the MINVALUE or MAXVALUE is prevented (motion away from a limit is allowed). You can specify up to three stops. If necessary, you can repeat the command.

## Menu Paths

Main Menu>Preprocessor>Sections>Joints>Add / Edit

SECTYPE, SECID, Type, Subtype, Name, REFINEKEY

## Associates section type information with a section ID number.

PREP 7:Cross Sections
MP ME ST PR PRN DS DSS <> <> <> <> PP <> EME MFS
SECID
Section identification number.

## Type

BEAM
Defines a beam section.
TAPER
Defines a tapered beam section. The sections at the end points must be topologically identical.
GENB
Defines a nonlinear general (temperature-dependent) beam section.
COMB
Defines a composite (temperature-dependent) beam section.
PIPE
Defines a pipe section.
AXIS
Define the axis for a general axisymmetric section.

## SHELL

Defines a shell section.

## GENS

Defines a preintegrated general (temperature-dependent) shell section.

## PRETENSION

Defines a pretension section.
JOINT
Defines a joint section.
REINF
Defines a reinforcing section.

## CONTACT

Defines a contact section.

## Subtype

When Type $=$ BEAM, the possible beam sections that can be defined for Subtype are:

| RECT | Rectangle |
| :--- | :--- |
| QUAD | Quadrilateral |
| CSOLID | Circular solid |
| CTUBE | Circular tube |
| CHAN | Channel |
| I | I-shaped section |
| Z | Z-shaped section |


| L | L-shaped section |
| :--- | :--- |
| T | T-shaped section |
| HATS | Hat-shaped section |
| HREC | Hollow rectangle or box |
| ASEC | Arbitrary section -- integrated cross-section inertia properties <br> supplied by user |
| MESH | User-defined mesh -- see the SECREAD command for more <br> information about this data |

The following figure shows the shape of each cross section subtype:


When Type $=$ GENB, the possible nonlinear general beam sections that can be defined for Subtype are:

| ELASTIC | The generalized-stress/generalized-strain relationship is <br> elastic (linear or nonlinear). |
| :--- | :--- |
| PLASTIC | The generalized-stress/generalized-strain relationship is <br> elasto-plastic (and allows for permanent deformation). |



When Type = COMB, the only possible composite-beam section that can be defined for Subtype is:
MATRIX Matrix.


When Type $=$ SHELL, an optional, special-purpose Subtype is available:
FIBERSIM Specifies that layer data from the FiberSIM product will be used to generate the section.

|  |  |
| :--- | :--- |
| When Type $=$ JOINT, the possible j |  |
| UNIV | Universal joint |
| REVO | Revolute joint |
| SLOT | 3-D Slot joint |
| PINP | Point-in-plane joint |
| PRIS | Translational joint |
| CYLI | Cylindrical joint |
| PLAN | Planar joint |
| WELD | Weld joint |
| ORIE | Orient joint |
| SPHE | Spherical joint |
| GENE | General joint |
| SCRE | Screw joint |
| BUSH | Bushing joint |
|  |  |

When Type $=$ REINF, the possible reinforcing sections that can be defined for Subtype are:
DISC Discrete reinforcing. The reinforcing fibers are arbitrarily oriented and modeled individually.
SMEAR Smeared reinforcing. The reinforcing fibers are homogenous and defined as a membrane.


When Type $=$ CONTACT, the possible contact sections that can be defined for Subtype are:
SPHERE Geometry correction for a portion of a spherical (or nearly spherical) surface.
CYLINDER Geometry correction for a portion of a revolute (or nearly revolute) surface.

## Name

An eight-character name for the section. Name can be a string such as "W36X210" or "HP13X73" for beam sections. Section name can consist of letters and numbers, but cannot contain punctuation, special characters, or spaces.

## REFINEKEY

Sets mesh refinement level for thin-walled beam sections. Valid values are 0 (the default - no mesh refinement) through 5 (high level of mesh refinement). This value has meaning only when Type = BEAM.

## Notes

SECTYPE sets the section ID number, section type, and subtype for a section. If the section ID number is not specified, ANSYS increments the highest section ID number currently defined in the database by one. A previously-defined section with the same identification number will be redefined. The geometry data describing this section type is defined by a subsequent SECDATA command. Define the offsets by a subsequent SECOFFSET command. The SLIST command lists the section properties, and the SECPLOT command displays the section to scale. The SECNUM command assigns the section ID number to a subsequently-defined beam element.

## Beam Section Considerations

For a beam section (Type = BEAM), a subsequent SECDATA command builds a numeric model using a ninenode cell for determining the properties (Ixx, lyy, etc.) of the section and for the solution to the Poisson's equation for torsional behavior. See Beam Analysis and Cross Sections in the Structural Analysis Guide for examples using the section commands.

For a tapered beam section (Type = TAPER), two subsequent SECDATA commands are required (one for each end section). Section ends must be topologically identical (same Subtype, number of cells and material IDs).

For a nonlinear general beam section ( Type = GENB), the Subtype and REFINEKEY options do not apply. Subsequent commands are necessary to define the section: BSAX, BSM1, BSM2, BSTQ, BSS1, BSS2, BSMD, and BSTE are available. All other section commands are ignored for this section type.

For a preintegrated composite-beam section (Type $=$ COMB), the REFINEKEY options do not apply. Subsequent commands are necessary to define the section: CBTMP, CBMX, CBMD, and CBTE are available. All other section commands are ignored for this section type.

## Shell Section Considerations

For a preintegrated general shell section (Type = GENS), the Subtype and REFINEKEY options do not apply. Subsequent commands are necessary to define the section: SSPA, SSPB, SSPD, SSPE, SSMT, SSBT, and SSPM are available. All other section commands are ignored for this section type.

## Pretension Section Considerations

The PRETENSION section options of the SECTYPE and SECDATA commands are documented primarily to aid your understanding of the data written by the CDWRITE command. ANSYS, Inc. recommends that you generate pretension sections via the PSMESH command.

## Displaying Elements with Section Definition

To display elements with shapes determined from the section definition, issue the /ESHAPE command.

## Menu Paths

Main Menu>Preprocessor>Sections>Axis>Add<br>Main Menu $>$ Preprocessor $>$ Sections $>$ Axis $>$ Edit<br>Main Menu>Preprocessor>Sections>Beam>Common Sections<br>Main Menu>Preprocessor>Sections>Beam>Composite Sections<br>Main Menu>Preprocessor>Sections>Beam>Custom Sections>Read Sect Mesh<br>Main Menu>Preprocessor>Sections>Beam>NL Generalized

Main Menu>Preprocessor>Sections>Beam>Taper Sections>By Picked Nodes<br>Main Menu>Preprocessor>Sections>Beam>Taper Sections>By XYZ Location<br>Main Menu>Preprocessor>Sections>Contact>Add<br>Main Menu>Preprocessor>Sections>Contact>Edit<br>Main Menu>Preprocessor>Sections>Joints>Add / Edit<br>Main Menu>Preprocessor>Sections>Pipe>Add<br>Main Menu $>$ Preprocessor $>$ Sections $>$ Pipe $>$ Edit<br>Main Menu>Preprocessor>Sections>Reinforcing>Add / Edit<br>Main Menu>Preprocessor>Sections>Shell>Lay-up>Add / Edit<br>Main Menu>Preprocessor>Sections>Shell>Pre-integrated

SECWRITE, Fname, Ext, --, ELEM_TYPE
Creates an ASCII file containing user mesh section information.
PREP 7: Cross Sections
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

## Fname

File name and directory path ( 248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

The file name defaults to Jobname if Fname is left blank.

## Ext

Filename extension (8 character maximum).
The extension defaults to SECT if Ext is left blank.

Unused field.
ELEM_TYPE
Element type attribute pointer (ET) for the elements that are part of the section. See SECREAD for a detailed description.

## Notes

Before creating a user mesh file, you must create a model using 2-D meshing. Use PLANE183 or MESH200 with $\operatorname{KEYOPT}(1)=7$ (quadrilateral with 8 nodes option) to model the cells. SECWRITE creates an ASCII file that contains information about the nodes and cells that describe a beam section. For detailed information on how to create a user mesh file, see Creating Custom Cross Sections with a User-defined Mesh in the Structural Analysis Guide.

## Menu Paths

Main Menu>Preprocessor>Sections>Beam>Custom Sections>Write From Areas

SED, SEDX, SEDY, SEDZ, Cname
Defines the excitation direction for response spectrum and PSD analyses.
SOLUTION: Spectrum Options
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS
SEDX, SEDY, SEDZ
Global Cartesian coordinates of a point that defines a line (through the origin) corresponding to the excitation direction. For example: $0.0,1.0,0.0$ defines global $Y$ as the spectrum direction.

## Cname

The component name corresponding to the group of excited nodes. Only applies to base excitation multi-point response spectrum analysis (SPOPT, MPRS) and power spectral density analysis (SPOPT, PSD). Defaults to no component.

## Notes

In single-point response spectrum analysis (SPOPT,SPRS), the excitation direction without rocking (ROCK) is normalized to one so that the $S E D X, S E D Y$, and $S E D Z$ values do not scale the spectrum. The excitation direction with rocking is not normalized. The SEDX, SEDY, and SEDZ values must be consistent with the $O M X, O M Y$, and $O M Z$ values on the ROCK command. The calculated direction then scales the spectrum. For more information, see Participation Factors and Mode Coefficients.

In multi-point response spectrum analysis (SPOPT,MPRS) and power spectral density analysis (SPOPT,PSD), the excitation direction is normalized to one so that the SEDX, SEDY, and SEDZ values do not scale the spectrum. The component name (Cname) is required. The constraints corresponding to the excitation direction are applied to the component nodes.

This command is also valid in PREP7.

## Menu Paths

Main Menu>Preprocessor>Loads>Load Step Opts>Spectrum>DDAM Options<br>Main Menu>Preprocessor>Loads>Load Step Opts>Spectrum>MultiPt>Settings<br>Main Menu $>$ Preprocessor $>$ Loads $>$ Load Step Opts $>$ Spectrum $>$ PSD $>$ Settings<br>Main Menu>Preprocessor>Loads>Load Step Opts>Spectrum>SinglePt>Settings<br>Main Menu>Solution>Load Step Opts>Spectrum>DDAM Options<br>Main Menu>Solution>Load Step Opts>Spectrum $>$ MultiPt $>$ Settings<br>Main Menu>Solution>Load Step Opts>Spectrum>PSD>Settings<br>Main Menu>Solution>Load Step Opts>Spectrum>SinglePt>Settings

## SEDLIST, Sename, KOPT

Lists the DOF solution of a superelement after the use pass.
PREP 7:Superelements
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS

## Sename

Name of the superelement on File.DSUB to be listed. If a number, it is the element number of the superelement as used in the use pass. If ALL, list results for all superelements.

## KOPT

List key:
0
List summary data only.
1
List full contents. Be aware that the listing may be extensive.

## Notes

Lists the degree of freedom solution of a superelement after the substructure use pass. Results may be listed for any superelement on File.DSUB.

This command is valid in any processor.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu>General Postproc>List Results>Superelem DOF Utility Menu>List>Results>Superelem DOF Solu

SEEXP, Sename, Usefil, Imagky, Expopt

## Specifies options for the substructure expansion pass.

SOLUTION: Analysis Options
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS

## Sename

The name (case-sensitive) of the superelement matrix file created by the substructure generation pass (Sename.SUB). Defaults to the initial jobname File. If a number, it is the element number of the superelement as used in the use pass.

## Usefil

The name of the file containing the superelement degree-of-freedom (DOF) solution created by the substructure use pass (Usefil.DSUB).

## Imagky

Key to specify use of the imaginary component of the DOF solution. Applicable only if the use pass is a harmonic (ANTYPE,HARMIC) analysis:

OFF
Use real component of DOF solution (default).
ON
Use imaginary component of DOF solution.

## Note

If all solutions are to be expanded (NUMEXP,ALL), Imagky is ignored and both the real and imaginary solutions are expanded.

## Expopt

Key to specify whether the superelement (ANTYPE,SUBSTR) expansion pass (EXPASS,ON) should transform the geometry:
OFF
Do not transform node or element locations (default).
ON
Transform node or element locations in the FE geometry record of the .rst results file.

## Notes

Specifies options for the expansion pass of the substructure analysis (ANTYPE,SUBSTR). If used in SOLUTION, this command is valid only within the first load step.

If you specify geometry transformation (Expopt $=\mathrm{ON}$ ), you must retrieve the transformation matrix (if it exists) from the specified . SUB file. The command updates the nodal $X, Y$, and $Z$ coordinates to represent the transformed node locations. The Expopt option is useful when you want to expand superelements created from other superelements (via SETRAN or SESYMM commands). For more information, see Superelement Expansion in Transformed Locations and Plotting or Printing Mode Shapes.

This command is also valid in /PREP7.

## Menu Paths

Main Menu>Preprocessor>Loads>Load Step Opts>ExpansionPass>Single Expand>Expand Superelem Main Menu>Solution>Load Step Opts>ExpansionPass>Single Expand>Expand Superelem
/SEG, Label, Aviname, DELAY
Allows graphics data to be stored in the local terminal memory.

GRAPHICS:Set Up DISPLAY:Set Up<br>MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Label

Storage key:
SINGL
Store subsequent display in a single segment (overwrites last storage).
MULTI
Store subsequent displays in unique segments [ANIM].
DELET
Delete all currently stored segments.
OFF
Stop storing display data in segments.
STAT
Display segment status.

PC
This option only applies to PC versions of ANSYS and only when animating via the AVI movie player (i.e., /DEVICE,ANIM,2). This command appends frames to the File.AVI, so that the animation goes in both directions (i.e., forward--backward--forward). You must have a current animation file to use this option.

## Aviname

Name of the animation file that will be created when each frame is saved. The .AVI extension is applied automatically. Defaults to Jobname. AVI if no filename is specified.

## DELAY

Delay factor between each frame, in seconds. Defaults to 0.015 seconds if no value is specified.

## Command Default

No segment storage.

## Notes

Allows graphics data to be stored in the terminal local memory (device-dependent). Storage occurs concurrently with the display.

Although the information from your graphics window is stored as an individual segment, you cannot plot directly (GPLOT) from the segment memory.

For the DISPLAY program, the Aviname and DELAY fields are ignored.
This command is valid in any processor.

## Menu Paths

> Utility Menu $>$ PlotCtrls $>$ Redirect Plots $>$ Delete Segments
> Utility Menu $>$ PlotCtrls $>$ Redirect Plots $>$ Segment Status
> Utility Menu $>$ PlotCtrls $>$ Redirect Plots $>$ To Segment Memory

SEGEN, Mode, nSuper, mDof, stopStage
Automatically generate superelements.
SOLUTION: Analysis Options
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

## Mode

Specify action to take (must be specified as one of the following):

## AUTO

Turn on feature.
OFF
Turn off feature.

## nSuper

Number of superelements to create. The minimum number of superelements is 2 , and the maximum number of superelements is 999 . Note that the number of requested superelements may not be the same as the number of defined superelements (see "Notes" (p.1513) for more details).
mDof
Specifies whether to use the master DOF defined by the user.
YES
Use master DOF defined by the user with the M command.
NO
Use the master DOF defined by the automatic generation process. Be aware that this option can generate a large number of master DOFs (see "Notes" (p. 1513) for more details).

## stopStage

Specifies when to stop the automatic superelement generation process.
PREVIEW
Preview the superelements only; stop after creating the domains which will become the superelements, and after creating master DOF on the interfaces between each domain.

## GEN

Create (generate) the superelements.

## Command Default

No command default. If the command is issued, a Mode must be specified. By default, if the AUTO mode is chosen, the SEGEN command automatically creates 10 superelements and defines master DOFs at all DOFs on the interfaces between superelements.

## Notes

This command can be used to quickly generate a set of superelements. Each superelement is created in a separate file (jobnameXXX. sub, where $X X X$ is a positive number from 1 to 999).

Due to the heuristics in the automatic domain decomposer, which is used to define the domains that will become superelements, the number of defined superelements may exceed the number of requested superelements. Use the $m D o f$ and stopStage options to determine exactly how many superelements will be created, the interfaces between each superelement, and where master DOF will be defined. With the /PNUM,DOMAIN command, you can graphically (visually) preview the elements in each superelement. Then, if required, you can add additional master DOF to (or remove from) the boundaries of the superelements. Use the SEGEN command again with stopStage $=$ GEN to actually create the superelements.

ANSYS automatically defines master DOF at each of the following: all interface DOF between superelements, all DOF attached to contact elements (TARGE169 to CONTA177), and all DOF associated with nodes having a point load defined. Note that for regular superelements, all interface DOFs must be defined as master DOFs for the correct solution to be obtained. However, for CMS superelements, some of the interface DOFs can be removed without a significant loss of accuracy.

For the case when $m D \circ f=$ YES, you should select the preview option first (stopStage $=$ PREVIEW) to verify exactly how many superelements will be created and where the superelement boundaries are located. If more superelements will be created than were requested, you should define master DOF on the interface(s) between all superelements.

This command is valid only for substructuring analyses (ANTYPE,SUBSTR). Use SEOPT to specify any options for all of the superelements (e.g., which matrices to reduce), and possibly CMSOPT for any CMS substructuring analysis. Note that the created superelements will follow the current /FILNAME instead of SENAME from SEOPT. Also, only one load vector will be written to each . SUB file. Multiple load steps are not supported with the automatic superelement generation process.

During the actual creation of the superelements, the output is redirected to jobname. autoTemp.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu>Preprocessor>Loads>Analysis Type>Analysis Options
Main Menu>Solution>Analysis Type>Analysis Options

## SELIST, Sename, KOPT, KINT

## Lists the contents of a superelement matrix file.

PREP 7: Superelements<br>MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS

## Sename

The name (case-sensitive) of the superelement matrix file created by the substructure generation pass (Sename.SUB). Defaults to the current Jobname. If a number, it is the element number of the superelement as used in the use pass.

## KOPT

List key:
0
List summary data only.
1
List contents, except load vectors and matrices.
2
List contents, except matrices.
3
List full contents. Be aware that the listing may be extensive.

## KINT

Integer printout format key:
OFF
Default.
ON
Long format for large integers.

## Notes

This command is valid in any processor.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Utility Menu>List>Other>Superelem Data

## SELM

## Specifies "Superelements" as the subsequent status topic.

PREP 7: Status
MP ME ST PR PRN <> <> FL EM EH <> PP <> EME MFS

## Notes

This is a status [STAT] topic command. Status topic commands are generated by the GUI and will appear in the log file (Jobname. LOG) if status is requested for some items under Utility Menu> List> Status. This command will be immediately followed by a STAT command, which will report the status for the specified topic.

If entered directly into the program, the STAT command should immediately follow this command.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Utility Menu>List>Status>Preprocessor>Superelements

## SELTOL, Toler

## Sets the tolerance for subsequent select operations.

DATABASE: Selecting
MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS

## Toler

Tolerance value. If blank, restores the default tolerance logic.

## Notes

For selects based on non-integer numbers (e.g. coordinates, results, etc.), items within the range VMIN Toler and VMAX + Toler are selected, where VMIN and VMAX are the range values input on the xSEL commands (ASEL, ESEL, KSEL, LSEL, NSEL, and VSEL).

The default tolerance logic is based on the relative values of VMIN and VMAX as follows:

- If VMIN $=$ VMAX, Toler $=0.005 \times$ VMIN.
- If $\mathrm{VMIN}=\mathrm{VMAX}=0.0$, Toler $=1.0 \mathrm{E}-6$.
- If VMAX $\neq \mathrm{VMIN}$, Toler $=1.0 \mathrm{E}-8 \times(\mathrm{VMAX}-\mathrm{VMIN})$.

This command is typically used when VMAX-VMIN is very large so that the computed default tolerance is therefore large and the xSEL commands selects more than what is desired.

Toler remains active until respecified by a subsequent SELTOL command. A SELTOL < blank > resets back to the default Toler logic.

## Menu Paths

This command cannot be accessed from a menu.

## SENERGY, OPT, ANTYPE

## Determines the stored magnetic energy or co-energy.

$$
\begin{array}{r}
\text { POST1:Magnetics Calculations } \\
\text { MP <> <> <> <> <> <> <> EM EH <> PP <> EME <> }
\end{array}
$$

## OPT

Item to be calculated:
0
Stored magnetic energy.
1
Stored magnetic co-energy.

## ANTYPE

Analysis type:
0
Static or transient.
1
Harmonic.

## Notes

SENERGY invokes an ANSYS macro which calculates the stored magnetic energy or co-energy for all selected elements. (For a harmonic analysis, the macro calculates a time-averaged (rms) stored energy.) A summary table listing the energy by material number is produced. The energy density is also calculated and stored on a per-element basis in the element table [ETABLE] with the label MG_ENG (energy density) or MG_COENG (co-energy density). The macro erases all other items in the element table [ETABLE] and only retains the energy density or co-energy density. Use the PLETAB and PRETAB commands to plot and list the energy density. The macro is valid for static and low-frequency magnetic field formulations. The macro will not calculate stored energy and co-energy for the following cases:

- Orthotropic nonlinear permanent magnets.
- Orthotropic nonlinear permeable materials.
- Temperature dependent materials.

SENERGY is restricted to MKSA units.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu>General Postproc>Elec\&Mag Calc>Element Based>Co-Energy
Main Menu>General Postproc>Elec\&Mag Calc>Element Based>Energy

## SEOPT, Sename, SEMATR, SEPR, SESST, EXPMTH

## Specifies substructure analysis options.

SOLUTION: Analysis Options
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS

## Sename

The name (case-sensitive) assigned to the superelement matrix file. The matrix file will be named $\mathrm{Se}-$ name. SUB. This field defaults to Fname on the /FILNAME command.

## SEMATR

Matrix generation key:

## 1

Generate stiffness (or conductivity) matrix (default).
2
Generate stiffness and mass (or conductivity and specific heat) matrices.
3
Generate stiffness, mass and damping matrices.
SEPR
Print key:
0
Do not print superelement matrices or load vectors.
1
Print both load vectors and superelement matrices.
2
Print load vectors but not matrices.

## SESST

Stress stiffening key:
0
Do not save space for stress stiffening in a later run.
1
Save space for the stress stiffening matrix (calculated in a subsequent generation run after the expansion pass).

## EXPMTH

Expansion method for expansion pass:

## BACKSUB

Save necessary factorized matrix files for backsubstitution during subsequent expansion passes (default). This normally results in a large usage of disk space

## RESOLVE

Do not save factorized matrix files. Global stiffness matrix will be reformed during expansion pass. This option provides an effective way to save disk space usage. This option cannot be used if the use pass uses large deflections (NLGEOM,ON).

## Notes

Specifies substructure analysis options (ANTYPE,SUBSTR). If used in SOLUTION, this command is valid only within the first load step.

This command is also valid in PREP7.

## Menu Paths

Main Menu>Preprocessor>Loads>Analysis Type>Analysis Options Main Menu>Solution>Analysis Type>Analysis Options

SESYMM, Sename, Ncomp, INC, File, Ext, --

## Performs a symmetry operation on a superelement within the use pass.

PREP 7: Superelements
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS

## Sename

The name (case-sensitive) of the superelement matrix file created by the substructure generation pass (Sename.SUB). Defaults to the current Jobname. If a number, it is the element number of a previously defined superelement in the current use pass.

## Ncomp

Symmetry key:
X
X symmetry (default).
Y
Y symmetry.
Z
Z symmetry.
INC
Increment all nodes in the superelement by INC.

## File

File name and directory path ( 248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

This field must be input.

## Ext

Filename extension (8 character maximum).
The extension defaults to SUB.

Unused field.

## Notes

Performs a symmetry operation on a superelement within the substructure use pass by reversing the sign of component Ncomp in the global Cartesian coordinate system. The node numbers are incremented by INC. The new superelement is written to File. SUB in the current directory (by default). All master node nodal coordinate systems must be global Cartesian (no rotated nodes allowed).

The maximum number of transformations for a given superelement is five (including SETRAN, SESYMM, and the large rotation transformation if NLGEOM is ON in the use pass).

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu>Preprocessor>Modeling>Create>Elements>Superelem>By Reflection
*SET, Par, VALUE, VAL2, VAL3, VAL4, VAL5, VAL6, VAL7, VAL8, VAL9, VAL10
Assigns values to user-named parameters.

APDL:Parameters<br>MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Argument Descriptions

## Par

An alphanumeric name used to identify this parameter. Par may be up to 32 characters, beginning with a letter and containing only letters, numbers, and underscores. Examples: ABC A3X TOP_END. ANSYS command names, function names, label names, component and assembly names, etc., should not be used. Parameter names beginning with an underscore (e.g.,_LOOP) are reserved for use by ANSYS and should be avoided. Parameter names ending in an underscore are not listed by the *STATUS command. Array parameter names must be followed by a subscript, and the entire expression must be 32 characters or less. Examples: $\mathrm{A}(1,1)$ NEW_VAL $(3,2,5)$ RESULT $(1000)$. There is no character parameter substitution for the Par field. Table parameters that are used in command fields (where constant values are normally given) are limited to 32 characters.

## VALUE

Numerical value or alphanumeric character string (up to 32 characters enclosed in single quotes) to be assigned to this parameter. Examples: $\mathrm{A}(1,3)=7.4 \mathrm{~B}=$ 'ABC3'. May also be a parameter or a parametric expression. Examples: $C=A(1,3) A(2,2)=(C+4) / 2$. If blank, delete this parameter. Example: $A=$ deletes parameter A.

## VAL2, VAL3, VAL4, VAL5, VAL6, VAL7, VAL8, VAL9, VAL10

If $P a r$ is an array parameter, values VAL2 through VAL10 (up to the last nonblank value) are sequentially assigned to the succeeding array elements of the column. Example: *SET, $\mathrm{A}(1,4), 10,11$ assigns $\mathrm{A}(1,4)=10$, $A(2,4)=11 .{ }^{*}$ SET, $B(2,3)$,'file 10 ','file 11 ' assigns B(2,3)='file10', B(3,3)='file11'.

## Notes

Assigns values to user-named parameters that may be substituted later in the run. The equivalent (and recommended) format is

Par $=V A L U E, V A L 2, V A L 3, \ldots, V A L 10$
which may be used in place of *SET,Par, ... for convenience.
This command is valid in any processor.

## Parameter Definitions

Parameters (numeric or character) may be scalars (single valued) or arrays (multiple valued in one, two, or three dimensions). An unlimited number of parameter names may be defined in any ANSYS run. For very large numbers of parameters, it is most efficient to define them in alphabetical order.

Parameter values may be redefined at any time. Array parameters may also be assigned values within a doloop [*DO] for convenience. Internally programmed do-loop commands are also available with the *V $\boldsymbol{x} \boldsymbol{x}$ commands (*VFILL). Parameter values (except for parameters ending in an underscore) may be listed with the *STATUS command, displayed with the *VPLOT command (numeric parameters only), and modified with the *VEDIT command (numeric parameters only).

Older ANSYS-supplied macro files may use parameter names that do not begin with an underscore. Using these macros embedded in your own macros may cause conflicts if the same parameter names are used.

Parameters can also be resolved in comments created by the /COM command (see /COM for complete documentation). A parameter can be deleted by redefining it with a blank VALUE. If the parameter is an array, the entire array is deleted. Parameters may also be defined by a response to a query with the *ASK command or from an "ANSYS-supplied" value with the *GET command.

## Array Parameters

Array parameters must be dimensioned [*DIM] before being assigned values unless they are the result of an array operation or defined using the implied loop convention. Scalar parameters that are not defined are initialized to a "near" zero value. Numeric array parameters are initialized to zero when dimensioned, and character array parameters are initialized to blank. An existing array parameter must be deleted before it can be redimensioned. Array parameter names must be followed by a subscript list (enclosed in parentheses) identifying the element of the array. The subscript list may have one, two, or three values (separated by commas). Typical array parameter elements are A(1,1), NEW_VAL( $3,2,5$ ), RESULT(1000). Subscripts for defining an array element must be integers (or parameter expressions that evaluate to integers). Non-integer values are rounded to the nearest integer value. All array parameters are stored as 3-D arrays with the unspecified dimensions set to 1 . For example, the 4th array element of a 1 -dimensional array, $A(4)$, is stored as array element $A(4,1,1)$. Arrays are patterned after standard FORTRAN conventions.

## Numerical Parameter Substitution

If the parameter name Par is input in a numeric argument of a command, the numeric value of the parameter (as assigned with *SET, *GET, =, etc.) is substituted into the command at that point. Substitution occurs only if the parameter name is used between blanks, commas, parentheses, or arithmetic operators (or any combination) in a numeric argument. Substitution can be prevented by enclosing the parameter name Par within single quotes (' ), if the parameter is alone in the argument; if the parameter is part of an arithmetic
expression, the entire expression must be enclosed within single quotes to prevent substitution. In either case the character string will be used instead of the numeric value (and the string will be taken as 0.0 if it is in a numeric argument).

A forced substitution is available in the text fields of the /TITLE, /STITLE, /TLABEL, /AN3D, /SYP (ARG1--ARG8), and *ABBR commands by enclosing the parameter within percent (\%) signs. Also, parameter substitution may be forced within the file name or extension fields of commands having these fields by enclosing the parameter within percent (\%) signs. Array parameters [*DIM] must include a subscript (within parentheses) to identify the array element whose value is to be substituted, such as $A(1,3)$. Out-of-range subscripts result in an error message. Non-integer subscripts are allowed when identifying a TABLE array element for substitution. A proportional linear interpolation of values among the nearest array elements is performed before substitution. Interpolation is done in all three dimensions.

## Note

Interpolation is based upon the assigned index numbers which must be defined when the table is filled [*DIM].

## Character Parameter Substitution

Most alphanumeric arguments permit the use of character parameter substitution. When the parameter name Par input, the alphanumeric value of the parameter is substituted into the command at that point. Substitution can be suppressed by enclosing the parameter name within single quotes ('). Forced substitution is available in some fields by enclosing the parameter name within percent (\%) signs. Valid forced substitution fields include command name fields, Fname (filename) or Ext (extension) arguments, *ABBR command (Abbr arguments), /TITLE and /STITLE commands (Title argument) and /TLABEL command (Text argument). Character parameter substitution is also available in the *ASK, /AN3D, *CFWRITE, *IF, *ELSEIF, *MSG, *SET, *USE, *VREAD, and *VWRITE commands. Character array parameters must include a subscript (within parentheses) to identify the array element whose value is to be substituted.

## Parameter Expressions

If a parameter operation expression is input in a numeric argument, the numeric value of the expression is substituted into the command at that point. Allowable operation expressions are of the form

## E1oE2oE3 ...oE10

where E1, E2, etc. are expressions connected by operators (o). The allowable operations (o) are

+     * $^{* *}<>$
For example, $\mathrm{A}+\mathrm{B}^{* *} \mathrm{C} / \mathrm{D}^{*} \mathrm{E}$ is a valid operation expression. The * represents multiplication and the ${ }^{* *}$ represents exponentiation.


## Note

Exponentiation of a negative number (without parentheses) to an integer power follows standard FORTRAN hierarchy conventions; that is, the positive number is exponentiated and then the sign is attached. Thus, $-4^{* * 2}$ is evaluated as -16 . If parentheses are applied, such as $(-4)^{* *} 2$, the result is 16 .

A parameter is evaluated as a number within parentheses before exponentiation. Exponentiation of a negative number to a non-integer power is performed by exponentiating the positive number and prepending the minus sign, for example, $-4^{* *} 2.3$ is $-\left(4^{* *} 2.3\right)$. The < and > operators allow conditional substitution. For example, $\mathrm{E} 1<\mathrm{E} 2$ substitutes the value of E 1 if the comparison is true or the value of E2 if the comparison is false.

Spaces should not be used around operation symbols since " *" (a space and a star) makes the rest of the line a comment. Operation symbols (or symbols and signs) may not be immediately adjacent to each other. Parentheses may be used to separate symbols and signs, to determine a hierarchy of operations, or for clarity. For example, $A^{* *}(-B)$ must be used instead of $A^{* *}-B$. Numbers ending with $+0 n n$ or $-0 n n$ are assumed to be of exponential form (as written on files by some computer systems) so that $123-002$ is $123 \mathrm{E}-2$ while $123-2$ is 121 . This form of exponential data should not be input directly. The default hierarchy follows the standard FORTRAN conventions, namely:

- operations in parentheses (innermost first)
- then exponentiation (right to left)
- then multiplication or division (left to right)
- then unary association (such as +A or -A )
- then addition or subtraction (left to right)
- then logical evaluations (left to right).

Expressions (E) may be a constant, a parameter, a function, or another operation expression (of the form E1oE2oE3 ...oE10). Functions are of the form FTN(A) where the argument (A) may itself be of the form E1oE2oE3 ...oE10. Operations are recursive to a level of four deep (three levels of internally nested parentheses). Iterative floating point parameter arithmetic should not be used for high precision input because of the accumulated numerical round off-error. Up to 10 expressions are accepted within a set of parenthesis.

Valid functions (which are based on standard FORTRAN functions where possible) are:

| $\operatorname{SIN}(X)$ | Sine |
| ---: | :--- |
| $\operatorname{COS}(X)$ | Cosine |
| $\operatorname{TAN}(X)$ | Tangent |
| $\operatorname{ASIN}(X)$ | Arcsine |
| $\operatorname{ACOS}(X)$ | Arccosine |
| $\operatorname{ATAN}(X)$ | Arctangent |
| ATAN2 $(Y, X)$ | Arctangent $(Y / X)$ with the sign of each component considered |
| $\operatorname{SINH}(X)$ | Hyperbolic sine |
| $\operatorname{COSH}(X)$ | Hyperbolic cosine |
| $\operatorname{TANH}(X)$ | Hyperbolic tangent |
| $\operatorname{SQRT}(X)$ | Square root |
| $\operatorname{ABS}(X)$ | Absolute value |
| $\operatorname{SIGN}(X, Y)$ | Absolute value of $X$ with sign of $Y . Y=0$ results in positive sign |
| $\operatorname{NINT}(X)$ | Nearest integer |
| $\operatorname{MOD}(X, Y)$ | Remainder of $X / Y Y=0$ returns zero $(0)$ |
| $\operatorname{EXP}(X)$ | Exponential |


| LOG( $X$ ) | Natural log |
| :---: | :---: |
| LOG10( $X$ ) | Common log |
| RAND $(X, Y)$ | Random number, where $X$ is the lower bound, and $Y$ is the upper bound |
| GDIS ( $X, Y$ ) | Random sample of Gaussian distributions, where $X$ is the mean, and $Y$ is the standard deviation |
| LWCASE(CPARM) | Lowercase equivalent of character parameter CPARM |
| UPCASE(CPARM) | Uppercase equivalent of character parameter CPARM |
| VALCHR(CPARM) | Numeric value of character parameter CPARM (If CPARM is a numeric parameter, returns 0.0) |
| CHRVAL(PARM) | Character value of numerical parameter PARM. For $\operatorname{ABS}(P A R M)<10$, character value format is 88.5 ; for $10 \leq \operatorname{ABS}(P A R M)<1000$,format is F8.3; for $1,000 \leq \operatorname{ABS}(P A R M)<10,000,000$, format is F8.0. For $10,000,000 \leq$ PARM $<100,000,000$, format is also F8.0. Otherwise result is 0.0 and is not a character value. |
| IBSET(b1,n2) | Set the n 2 bit in value b1 (bits are numbered from 0 to 31) |
| IBCLR(b1,n2) | Clear the n 2 bit in value b1 |
| BTEST(b1,n2) | Test the n 2 bit in value b1 (return true (1.0) if bit is set) |
| BITAND(b1,b2) | Bitwise AND of value b1 and b2 |
| BITOR(b1,b2) | Bitwise OR of value b1 and b2 |
| BITXOR(b1,b2) | Bitwise XOR of value b1 and b2 |
| BITSET(b1,b2) | Set the b2 bits in b1 |
| BITCLEAR(b1,b2) | Clear the b2 bits in b1 |

Function arguments ( $X, Y$, etc.) must be enclosed within parentheses and may be numeric values, parameters, or expressions. Input arguments for angular functions must evaluate to radians by default. Output from angular functions are also in radians by default. See the *AFUN command to use degrees instead of radians for the angular functions. See the *VFUN command for applying these parameter functions to a sequence of array elements. Additional functions, called "get functions" are described with the *GET command. For SINH, COSH, TANH, and EXP, if $\mathrm{X}>80$, the value returned is zero.

## Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Delete>Structural>Section
Main Menu>Solution>Define Loads>Delete>Structural>Section Utility Menu>Parameters>Scalar Parameters

## SET, Lstep, Sbstep, Fact, KIMG, TIME, ANGLE, NSET, ORDER

Defines the data set to be read from the results file.
POST1:Set Up
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Lstep

Load step number of the data set to be read (defaults to 1 ):

## N

Read load step $N$.

## FIRST

Read the first data set (Sbstep and TIME are ignored).

## LAST

Read the last data set (Sbstep and TIME are ignored).

## NEXT

Read the next data set (Sbstep and TIME are ignored). If at the last data set, the first data set will be read as the next.

## PREVIOUS

Read the previous data set (Sbstep and TIME are ignored). If at the first data set, the last data set will be read as the previous.

## NEAR

Read the data set nearest to TIME (Sbstep is ignored). If TIME is blank, read the first data set.

## LIST

Scan the results file and list a summary of each load step. (KIMG, TIME, ANGLE, and NSET are ignored.)

## Sbstep

Substep number (within Lstep). Defaults to the last substep of the load step (except in a buckling or modal analysis). For a buckling (ANTYPE,BUCKLE) or modal (ANTYPE,MODAL) analysis, Sbstep corresponds to the mode number. Specify Sbstep = LAST to store the last substep for the specified load step (that is, issue a SET,Lstep,LAST command).

If Lstep $=$ LIST, Sbstep $=0$ or 1 lists the basic step information. Sbstep $=2$ also lists the basic step information, but includes the load step title, and labels imaginary data sets if they exist.

## Fact

Scale factor applied to data read from the file. If zero (or blank), a value of 1.0 is used. A nonzero factor excludes non-summable items. Harmonic velocities or accelerations may be calculated from the displacement results from a Modal (ANTYPE,MODAL) or Harmonic Response (ANTYPE,HARMIC) analyses. If Fact $=$ VELO, the harmonic velocities ( v ) are calculated from the displacements ( d ) at a particular frequency (f) according to the relationship $v=2 \pi f d$. Similarly, if Fact $=A C E L$, the harmonic accelerations (a) are calculated as $a=(2 \pi f)^{2} d$.

If Lstep $=$ LIST in an analysis employing rezoning, Fact can restrict the output to a file type such as .rst or .rsnn. For example, to see only the portion of the data set associated with the .rs 01 file, issue a SET,LIST,,RS01 command.

## KIMG

Used only with complex results (harmonic and complex modal analyses).

## 0 or REAL

Store the real part of complex solution (default).
1, 2 or IMAG
Store the imaginary part of a complex solution.
3 or AMPL
Store the amplitude
4 or PHAS
Store the phase angle. The angle value, expressed in degrees, will be between $-180^{\circ}$ and $+180^{\circ}$.

## TIME

Time-point identifying the data set to be read. For the harmonic response analyses, time corresponds to the frequency. For the buckling analysis, time corresponds to the load factor. Used only in the following cases: If Lstep = NEAR, read the data set nearest to TIME. If both Lstep and Sbstep are zero (or blank), read data set at time = TIME. Do not use TIME to identify the data set to be read if you used the arc-length method (ARCLEN) in your solution. If TIME is between two solution time points on the results file, a linear interpolation is done between the two data sets (except in rezoning). Solution items not written to the results file (OUTRES) for either data set will result in a null item after data set interpolation. If TIME is beyond the last time point on the file, the last time point will be used.

## ANGLE

Circumferential location ( 0.0 to $360^{\circ}$ ). Defines the circumferential location for the harmonic calculations used when reading from the results file. The harmonic factor (based on the circumferential angle) is applied to the harmonic elements (PLANE25, PLANE75, PLANE78, FLUID81, PLANE83, and SHELL61) of the load case. See the Theory Reference for the Mechanical APDL and Mechanical Applications for details.

## Note

The factored values of applied constraints and loads will overwrite any values existing in the database. If $A N G L E=$ NONE, all harmonic factors are set to 1 and postprocessing will yield the solution output. When using $A N G L E=$ NONE with MODE $>0$, the combined stresses and strains are not valid. The default value of ANGLE is 0.0 , but if the SET command is not used, the effective default is NONE.

## NSET

Data set number of the data set to be read. If a positive value for NSET is entered, Lstep, Sbstep, KIMG, and TIME are ignored. Available set numbers can be determined by SET,LIST.

## ORDER

Sorts the harmonic index results in ascending order of eigenfrequencies or buckling load multipliers. This value applies to cyclic symmetry buckling and modal analyses only, and is valid only when Lstep = FIRST, LAST, NEXT, PREVIOUS, NEAR or LIST.

## Notes

Defines the data set to be read from the results file into the database. Various operations may also be performed during the read operation. The database must have the model geometry available (or use the RESUME command before the SET command to restore the geometry from Jobname.DB). Values for applied constraints $[\mathbf{D}]$ and loads $[\mathbf{F}]$ in the database will be replaced by their corresponding values on the results file, if available. (See the description of the OUTRES command.) In a single load step analysis, these values are usually the same, except for results from harmonic elements. (See the description of the ANGLE value above.)

In an interactive run, the sorted list (ORDER option) is also available for results-set reading via a GUI pick option.

During rezoning, Lstep values NEXT, PREVIOUS, and NEAR are not available.
In ANSYS, you can postprocess results without issuing a SET command if the solution results were saved to the database file (Jobname.DB). Distributed ANSYS, however, can only postprocess using the results file (Jobname. RST) and cannot use the Jobname.DB file since no solution results are written to the database. Therefore, you must issue a SET command before postprocessing in Distributed ANSYS.

When postprocessing amplitudes or phases (KIMG = AMPL or PHAS):

- The only appropriate coordinate system is the solution coordinate system (RSYS ,SOLU). When displaying the displacement amplitudes, use a contour display (PLNSOL command). Because a deformed shape display (PLDISP command) could lead to a non-physical shape, the displacement scaling is off by default (/DSCALE,,OFF).
- The conversion is not valid for derived results such as principal stress/strain, equivalent stress/strain, and USUM.
- Cyclic symmetry results are not supported.


## Menu Paths

```
Main Menu>General Postproc>List Results>Detailed Summary
Main Menu>General Postproc>List Results>Detailed Summary (Freq ordered)
Main Menu>General Postproc>Read Results>By Load Step
Main Menu>General Postproc>Read Results>By Pick
Main Menu>General Postproc>Read Results>By Pick (Freq ordered)
Main Menu>General Postproc>Read Results>First Set
Main Menu>General Postproc>Read Results>Last Set
Main Menu>General Postproc>Read Results>Next Set
Main Menu>General Postproc>Read Results>Previous Set
Main Menu>General Postproc>Results Summary
Main Menu>General Postproc>Results Summary (Freq ordered)
Utility Menu>List>Results>Load Step Summary
```

SETFGAP, GAP, ROPT, --, PAMB, ACF1, ACF2, PREF, MFP
Updates or defines the real constant table for squeeze film elements.
PREP 7: Real Constants
$M P M E<><><><><><><><><>$ PP $<>$ EME MFS

## GAP

Gap separation.

## ROPT

Real constant set option.
0
Creates separate real constant sets for each selected element with the specified real constant values (default).

1
Updates existing real constant sets. The gap separation is updated from displacement results in the database. Other real constants are updated as specified in the command input parameters.

Unused field
PAMB
Ambient pressure.

## ACF1, ACF2

Accommodation factor 1 and 2.

## PREF

Reference pressure for mean free path.

## MFP

Mean free path.

## Notes

This command is used for large signal cases to update the gap separation real constant on a per-element basis. Issue this command prior to solution using the default $R O P T$ value to initialize real constant sets for every fluid element. After a solution, you can re-issue the command to update the real constant set for a subsequent analysis. See "Thin Film Analysis" for more information on thin film analyses.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

## Main Menu>Preprocessor>Loads>Load Step Opts>Other>Real Constants>ThinFilm Main Menu>Preprocessor>Real Constants>ThinFilm Main Menu>Solution>Load Step Opts>Other>Real Constants>ThinFilm

## SETRAN, Sename, KCNTO, INC, File, Ext, --, DX, DY, DZ, NOROT

## Creates a superelement from an existing superelement.

PREP 7: Superelements
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS

## Sename

The name (case-sensitive) of the file containing the original superelement matrix created by the generation pass (Sename. SUB). The default is the current Jobname. If Sename is a number, it is the element number of a previously defined superelement in the current use pass.

## KCNTO

The reference number of the coordinate system to where the superelement is to be transferred. The default is the global Cartesian system. Transfer occurs from the active coordinate system.

INC
The node offset. The default is zero. All new element node numbers are offset from those on the original by INC.

## File

File name and directory path ( 248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

This field requires input.

## Ext

Filename extension (8 character maximum).
The extension defaults to SUB.

Unused field.

## DX, DY, DZ

Node location increments in the global Cartesian coordinate system. Defaults to zero.

## NOROT

Node rotation key:
0
The nodal coordinate systems of the transferred superelement rotate into the KCNTO system. (That is, the nodal coordinate systems rotate with the superelement.) The superelement matrices remain unchanged. This value is the default.

1
The nodal coordinate systems do not rotate. (That is, they remain fixed in their original global orientation.) The superelement matrices and load vectors are modified if any rotations occur.

## Notes

The SETRAN command creates a superelement from an existing superelement and writes the new element to a file. You can then issue an SE command to read the new element (during the use pass).

You can create a superelement from an original by:

- Transferring the original's geometry from the active coordinate system into another coordinate system (KCNTO)
- Offsetting its geometry in the global Cartesian coordinate system ( $D X, D Y$, and $D Z$ )
- Offsetting its node numbers (INC).

A combination of methods is valid. If you specify both the geometry transfer and the geometry offset, the transfer occurs first.

If you specify rotation of the transferred superelement's nodal coordinate systems into the KCNTO system ( $N O R O T=0$ ), the rotated nodes cannot be coupled via the CP command; in this case, issue the CE command instead. If you specify no rotation of the nodal coordinate systems ( $N O R O T=1$ ) for models with displacement degrees of freedom, and KCNTO is not the active system, the superelement Sename must have six MDOF at each node that has MDOF; therefore, only elements with all six structural DOFs are valid in such cases.

There is no limit to the number of copies that can be made of a superelement, provided the copies are all generated from the same original superelement. However, nested copies are limited to five. In other words, the total number of different Sename usages on the SETRAN and SESYMM commands is limited to five.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

> Main Menu>Preprocessor>Modeling>Create>Elements>Superelem>By CS Transfer Main Menu $>$ Preprocessor $>$ Modeling $>$ Create $>$ Elements $>$ Superelem $>$ By Geom Offset

SEXP, LabR, Lab1, Lab2, EXP1, EXP2

## Forms an element table item by exponentiating and multiplying.

POST1:Element Table
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## LabR

Label assigned to results. If same as existing label, the existing values will be overwritten by these results.

## Lab1

First labeled result item in operation.
Lab2
Second labeled result item in operation (may be blank).

## EXP1

Exponent applied to Lab1.
EXP2
Exponent applied to Lab2.

## Notes

Forms a labeled result item (see ETABLE command) for the selected elements by exponentiating and multiplying two existing labeled result items according to the operation:

$$
\operatorname{LabR}=\left(|\operatorname{Lab} 1|^{\mathrm{EXP} 1}\right) \times\left(|\operatorname{Lab} 2|^{\mathrm{EXP} 2}\right)
$$

Roots, reciprocals, and divides may also be done with this command.

## Menu Paths

## Main Menu>General Postproc>Element Table>Exponentiate

## SF, Nlist, Lab, VALUE, VALUE2

## Specifies surface loads on nodes.

SOLUTION: FE Surface Loads
MP ME ST PR PRN <> <> FL EM EH <> PP <> EME MFS

## Nlist

Nodes defining the surface upon which the load is to be applied. Use the label ALL or P, or a component name. If ALL, all selected nodes [NSEL] are used (default). If P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI).

## Lab

Valid surface load label. Load labels are listed under "Surface Loads" in the input table for each element type in the Element Reference.

| Discipline | Surface Load Label | Label Description |
| :--- | :--- | :--- |
| Structural | PRES | pressure |
|  |  |  |


| Discipline | Surface Load Label | Label Description |
| :---: | :---: | :---: |
|  | FREQ | frequency (harmonic analyses only) |
| Thermal | CONV[1] | convection |
|  | HFLUX[1] | heat flux |
|  | RAD | radiation |
|  | RDSF | surface-to-surface radiation |
| Acoustic fluid | FSI[2] | fluid-structure interaction flag |
|  | IMPD | impedance boundary flag |
| Magnetic | MXWF | Maxwell force flag |
|  | MCI | magnetic circuit interface |
| Electric | CHRGS | surface charge density |
|  | MXWF | Maxwell force flag |
| Infinite element | INF | Exterior surface flag for INFIN110 and INFIN111 |
| High-frequency electromagnetic | PORT | number 1-50 for a waveguide exterior port |
|  | SHLD | surface shielding properties |
|  | MXWF | Maxwell surface flag of equivalent source surface |
|  | IMPD | surface impedance |
| Field-surface interface | FSIN[3] | field-surface interface number |
| Poromechanics | FFLX | Fluid flow flux |

1. Thermal labels CONV and HFLUX are mutually exclusive.
2. For an acoustic analysis, apply the fluid-structure interaction flag (Label $=$ FSI) to only the FLUID29, FLUID30, FLUID220, and FLUID221 elements.
3. For a fluid-solid interaction analysis, apply the field-surface interface flag (Label = FSIN) twice: once for the fluid side (FLUID141 or FLUID142 elements) and once for the solid side.

## VALUE

Surface load value or table name reference for specifying tabular boundary conditions.
If $L a b=$ PRES, VALUE is the real component of the pressure.
If $L a b=C O N V, V A L U E$ is typically the film coefficient and VALUE2 (below) is typically the bulk temperature. If $V A L U E=-N$, the film coefficient may be a function of temperature and is determined from the HF property table for material $N$ [MP]. The temperature used to evaluate the film coefficient is usually the average between the bulk and wall temperatures, but may be user-defined for some elements.

If $L a b=$ MCI, VALUE indicates current direction ( -1 ; current flow into the element face (IN), +1 ; current flow out of the element face (OUT). If $L a b=$ RAD, VALUE is surface emissivity.

If $L a b=$ PORT, VALUE is a port number representing a waveguide exterior port. The port number must be an integer between 1 and 50 .

If $L a b=$ SHLD, VALUE is surface conductivity.
If $L a b=I M P D, V A L U E$ is resistance in ohms/square.
If $L a b=$ RDSF, $V A L U E$ is the emissivity value; the following conditions apply: If $V A L U E$ is between 0 and 1, apply a single value to the surface. If $V A L U E=-N$, the emissivity may be a function of the temperature, and is determined from the EMISS property table for material $N(\mathbf{M P})$. The material $N$ does not need to correlate with the underlying solid thermal elements.

If $L a b=$ FSIN in a Multi-field solver (single or multiple code coupling) analysis, VALUE is the surface interface number. If $L a b=$ FSIN in a unidirectional ANSYS to CFX analysis, VALUE is not used unless the ANSYS analysis is performed using the Multi-field solver.

## VALUE2

Second surface load value (if any).
If $L a b=$ PRES, VALUE2 is the imaginary component of the pressure. Imaginary pressures can only be used by SURF153, SURF154 and SURF159, and can only be used for a full harmonic response analysis (HROPT,FULL), or by a mode superposition harmonic response analysis (HROPT,MSUP) if the mode extraction method is Block Lanczos (MODOPT,LANB), PCG Lanczos (MODOPT,LANPCG), or Supernode (MODOPT,SNODE).

If Lab $=$ CONV, VALUE2 is typically the bulk temperature.
If $L a b=R A D, V A L U E 2$ is the ambient temperature.
If $L a b=S H L D, V A L U E 2$ is relative permeability and defaults to 1.0.
If $L a b=I M P D, V A L U E 2$ is reactance in ohms/square.
If $L a b=$ RDSF, $V A L U E 2$ is the enclosure number. Radiation will occur between surfaces flagged with the same enclosure numbers. If the enclosure is open, radiation will also occur to ambient. If VALUE 2 is negative radiation direction is reversed and will occur inside the element for the flagged radiation surfaces. Negative value of enclosure number is applicable for FLUID141 and FLUID142 elements, to model radiation occurring between surfaces inside the fluid domain.

If $L a b=$ FSIN in a unidirectional ANSYS to CFX analysis, VALUE2 is the surface interface number (not available from within the GUI).

If $L a b=P O R T, V A L U E 2$ is not used.

## Notes

Individual nodes may not be entered for this command. The node list is to identify a surface and the Nlist field must contain a sufficient number of nodes to define an element surface. The loads are internally stored on element faces defined by the specified nodes. All nodes on an element face (including midside nodes, if any) must be specified for the face to be used, and the element must be selected.

If all nodes defining a face are shared by an adjacent face of another selected element, the face is not free and will not have a load applied. If more than one element can share the same nodes (for example, a surface element attached to a solid element), select the desired element type before issuing the SF command. The SF command applies only to area and volume elements.

For shell elements, if the specified nodes include face one (which is usually the bottom face) along with other faces (such as edges), only face one is used. Where faces cannot be uniquely determined from the nodes, or where the face does not fully describe the load application, use the SFE command. A load key of 1 (which is typically the first loading condition on the first face) is used if the face determination is not unique. A uniform load value is applied over the element face.

See the SFBEAM command for applying surface loads to beam elements. See the SFGRAD command for an alternate tapered load capability. See the SFFUN command for applying loads from a node vs. value function. Also see the SFE command for applying tapered loads on individual element faces. Use the SFDELE command to delete loads applied with this command. Use the SFCUM command to accumulate (add) surface loads applied with SF.

Tabular boundary conditions (VALUE $=\%$ tabname\% and/or VALUE2 $=\%$ tabname\%) are available for the following surface load labels (Lab) only: PRES (real and/or imaginary components), CONV (film coefficient and/or bulk temperature) or HFLUX, and RAD (surface emissivity and ambient temperature). Use the *DIM command to define a table.

This command is also valid in PREP7.

## Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Boundary>AppImped_E>On Nodes Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Boundary>AppShield>On Nodes Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Excitation>AppSurfChar>On Nodes Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Excitation>EMPorts>Exterior Port>On Nodes<br>Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Flag>AppInfinite>On Nodes Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Flag>AppMaxwell>On Nodes Main Menu>Preprocessor>Loads>Define Loads>Apply>Field Surface Intr>On Nodes Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/ANSYS>Field Surface>On Nodes Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/ANSYS>Impedance>On Nodes Main Menu $>$ Preprocessor>Loads $>$ Define Loads $>$ Apply $>$ Magnetic $>$ Flag $>$ AppInfinite $>$ On Nodes Main Menu $>$ Preprocessor>Loads>Define Loads $>$ Apply $>$ Magnetic>Flag>AppMCI>On Nodes Main Menu>Preprocessor>Loads>Define Loads>Apply>Magnetic>Other>AppMaxwell>On Nodes Main Menu $>$ Preprocessor>Loads $>$ Define Loads $>$ Apply $>$ Structural $>$ Pressure $>$ On Node Components Main Menu $>$ Preprocessor>Loads $>$ Define Loads $>$ Apply $>$ Structural $>$ Pressure $>$ On Nodes Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Convection>On Nodes Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Heat Flux>On Nodes Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Radiation>On Nodes Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Surface Rad>On Nodes Main Menu>Preprocessor>Trefftz Domain>AppInfinite>On Nodes Main Menu>Solution>Define Loads>Apply>Electric>Boundary>Applmped_E>On Nodes Main Menu $>$ Solution $>$ Define Loads $>$ Apply $>$ Electric>Boundary $>$ AppShield $>$ On Nodes Main Menu>Solution>Define Loads>Apply>Electric>Excitation>AppSurfChar>On Nodes Main Menu>Solution>Define Loads>Apply>Electric>Excitation>EMPorts>Exterior Port>On Nodes Main Menu>Solution>Define Loads>Apply>Electric>Flag>AppInfinite>On Nodes Main Menu>Solution>Define Loads>Apply>Electric>Flag>AppMaxwell>On Nodes Main Menu>Solution>Define Loads>Apply>Field Surface Intr>On Nodes Main Menu $>$ Solution>Define Loads>Apply>Fluid/ANSYS>Field Surface>On Nodes Main Menu>Solution>Define Loads>Apply>Fluid/ANSYS>Impedance>On Nodes Main Menu>Solution>Define Loads>Apply>Magnetic>Flag>AppInfinite>On Nodes Main Menu>Solution>Define Loads>Apply>Magnetic>Flag>AppMCI>On Nodes

# Main Menu>Solution>Define Loads>Apply>Magnetic>Other>AppMaxwell>On Nodes <br> Main Menu>Solution>Define Loads>Apply>Structural>Pressure>On Node Components <br> Main Menu>Solution>Define Loads>Apply>Structural>Pressure>On Nodes <br> Main Menu>Solution>Define Loads>Apply>Thermal>Convection>On Nodes <br> Main Menu>Solution>Define Loads>Apply>Thermal>Heat Flux>On Nodes <br> Main Menu $>$ Solution $>$ Define Loads $>$ Apply $>$ Thermal $>$ Radiation $>$ On Nodes <br> Main Menu>Solution>Define Loads>Apply>Thermal>Surface Rad>On Nodes 

SFA, AREA, LKEY, Lab, VALUE, VALUE2
Specifies surface loads on the selected areas.
SOLUTION: Solid Surface Loads
MP ME ST PR PRN <> <> <> EM EH <> PP <> EME MFS
AREA
Area to which surface load applies. If ALL, apply load to all selected areas [ASEL]. If AREA $=\mathrm{P}$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component may be substituted for AREA.

## LKEY

Load key associated with surface load (defaults to 1 ). Load keys ( $1,2,3$, etc.) are listed under "Surface Loads" in the input data table for each element type in the Element Reference. LKEY is ignored if the area is the face of a volume region meshed with volume elements.

## Lab

Valid surface load label. Load labels are listed under "Surface Loads" in the input table for each area type in the Element Reference.

| Discipline | Body Load <br> Label | Label Description |
| :--- | :--- | :--- |
| Structural | PRES | pressure |
| Thermal | CONV[1] | convection |
|  | HFLUX[1] | heat flux |
|  | RAD | radiation |
|  | RDSF | surface-to-surface radiation |
| Fluid | FSI[2] | fluid-structure interaction <br> flag |
|  | IMPD | impedance boundary flag |
| Magnetic | MXWF | Maxwell force flag |
|  | MCI | magnetic circuit interface |
| Electric | CHRGS | surface charge density |
|  | MXWF | Maxwell force flag |
| Infinite ele- <br> ment | INF | Exterior surface flag for IN- <br> FIN110 and INFIN111 |


| Discipline | Body Load <br> Label | Label Description |
| :--- | :--- | :--- |
| High-frequency <br> electromagnet- <br> ic | PORT | number 1-50 for a waveguide <br> exterior port |
|  | SHLD | surface shielding properties |
|  | IMPD | surface impedance |
| Field-surface <br> interface | FSIN[3] | field-surface interface num- <br> ber |

1. Thermal labels CONV and HFLUX are mutually exclusive.
2. For an acoustic analysis, apply the fluid-structure interaction flag (Label $=$ FSI) to only the FLUID129 or FLUID130 elements.
3. For a fluid-solid interaction analysis, apply the field-surface interface flag (Label = FSIN) twice: once for the fluid side (FLUID141 or FLUID142 elements) and once for the solid side.

## VALUE

Surface load value or table name reference for specifying tabular boundary conditions.
If $L a b=C O N V, V A L U E$ is typically the film coefficient and VALUE2 (below) is typically the bulk temperature. If $L a b=C O N V$ and $V A L U E=-N$, the film coefficient may be a function of temperature and is determined from the HF property table for material $N$ [MP]. The temperature used to evaluate the film coefficient is usually the average between the bulk and wall temperatures, but may be user-defined for some elements.

If $L a b=M C I$, VALUE indicates current direction ( -1 ; current flow into the element face (IN), +1 ; current flow out of the element face (OUT).

If $L a b=$ RAD, VALUE is the surface emissivity.
If $L a b=$ PORT, VALUE is a port number representing a waveguide exterior port. The port number must be an integer between 1 and 50 .

If $L a b=$ SHLD, VALUE is surface conductivity.
If $L a b=I M P D, V A L U E$ is resistance in ohms/square.
If $L a b=$ RDSF, VALUE is the emissivity value; the following conditions apply: If VALUE is between 0 and 1 , apply a single value to the surface. If $V A L U E=-N$, the emissivity may be a function of the temperature, and is determined from the EMISS property table for material $N$ (MP). The material $N$ does not need to correlate with the underlying solid thermal elements.

If $L a b=$ FSIN in a Multi-field solver (single or multiple code coupling) analysis, VALUE is the surface interface number and $L K E Y$ is ignored. If $L a b=F S I N$ in a unidirectional ANSYS to CFX analysis, VALUE is not used unless the ANSYS analysis is performed using the Multi-field solver.

## VALUE2

Second surface load value (if any).
If $L a b=$ CONV, VALUE2 2 is typically the bulk temperature.

If $L a b=$ RADVALUE 2 is ambient temperature.
If $L a b=S H L D, V A L U E 2$ is relative permeability (defaults to 1.0 ).
If $L a b=I M P D, V A L U E 2$ is reactance in ohms/square.
If $L a b=$ RDSF, VALUE 2 is the enclosure number. Radiation will occur between surfaces flagged with the same enclosure numbers. If the enclosure is open, radiation will also occur to ambient. If VALUE 2 is negative radiation direction is reversed and will occur inside the element for the flagged radiation surfaces. Negative value of enclosure number is applicable for FLUID141 and FLUID142 elements, to model radiation occurring between surfaces inside the fluid domain.

If $L a b=$ FSIN in a unidirectional ANSYS to CFX analysis, VALUE2 is the surface interface number (not available from within the GUI).

## Notes

Surface loads may be transferred from areas to elements with the SFTRAN or SBCTRAN commands. See the SFGRAD command for an alternate tapered load capability.

Tabular boundary conditions (VALUE $=\%$ tabname $\%$ and/or VALUE2 $=\%$ tabname $\%$ ) are available for the following surface load labels (Lab) only: PRES (real and/or imaginary components), CONV (film coefficient and/or bulk temperature) or HFLUX, and RAD (surface emissivity and ambient temperature). Use the *DIM command to define a table.

This command is also valid in PREP7.

## Menu Paths

Main Menu $>$ Preprocessor>Loads>Define Loads>Apply>Electric>Boundary>AppImped_E $>$ On Areas Main Menu $>$ Preprocessor>Loads>Define Loads $>$ Apply $>$ Electric>Boundary $>$ AppShield $>$ On Areas Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Excitation>AppSurfChar>On Areas Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Excitation>EMPorts>Exterior Port>On Areas
Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Flag>AppInfinite>On Areas Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Flag>AppMaxwell>On Areas Main Menu>Preprocessor>Loads>Define Loads>Apply>Field Surface Intr>On Areas Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/ANSYS>Field Surface>On Areas Main Menu $>$ Preprocessor>Loads>Define Loads $>$ Apply $>$ Fluid/ANSYS $>$ Impedance $>$ On Areas Main Menu>Preprocessor>Loads>Define Loads>Apply>Magnetic>Flag>AppInfinite>On Areas Main Menu>Preprocessor>Loads>Define Loads>Apply>Magnetic>Flag>AppMCI>On Areas Main Menu>Preprocessor>Loads>Define Loads>Apply>Magnetic>Other>AppMaxwell>On Areas Main Menu>Preprocessor>Loads>Define Loads $>$ Apply $>$ Structural $>$ Pressure $>$ On Areas Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Convection>On Areas Main Menu $>$ Preprocessor>Loads $>$ Define Loads $>$ Apply $>$ Thermal $>$ Heat Flux $>$ On Areas Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Radiation>On Areas Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Surface Rad>On Areas Main Menu>Preprocessor>Trefftz Domain>AppInfinite>On Areas Main Menu>Solution>Define Loads>Apply>Electric>Boundary>AppImped_E>On Areas Main Menu>Solution>Define Loads>Apply>Electric>Boundary>AppShield>On Areas Main Menu>Solution>Define Loads>Apply>Electric>Excitation>AppSurfChar>On Areas Main Menu>Solution>Define Loads>Apply>Electric>Excitation>EMPorts>Exterior Port>On Areas

Main Menu>Solution>Define Loads $>$ Apply $>$ Electric $>$ Flag $>$ Applnfinite $>$ On Areas
Main Menu>Solution>Define Loads>Apply>Electric>Flag>AppMaxwell>On Areas Main Menu>Solution>Define Loads>Apply>Field Surface Intr>On Areas
Main Menu>Solution>Define Loads>Apply>Fluid/ANSYS>Field Surface>On Areas Main Menu>Solution>Define Loads>Apply>Fluid/ANSYS>Impedance>On Areas Main Menu>Solution>Define Loads $>$ Apply $>$ Magnetic $>$ Flag $>$ AppInfinite $>$ On Areas Main Menu>Solution>Define Loads>Apply>Magnetic>Flag>AppMCI>On Areas Main Menu>Solution>Define Loads>Apply>Magnetic>Other>AppMaxwell>On Areas Main Menu $>$ Solution $>$ Define Loads $>$ Apply $>$ Structural $>$ Pressure $>$ On Areas Main Menu>Solution>Define Loads $>$ Apply $>$ Thermal $>$ Convection>On Areas Main Menu>Solution>Define Loads>Apply>Thermal>Heat Flux>On Areas Main Menu>Solution>Define Loads>Apply>Thermal>Radiation>On Areas Main Menu>Solution>Define Loads>Apply>Thermal>Surface Rad>On Areas

SFACT, TYPE
Allows safety factor or margin of safety calculations to be made.
POST1:Element Table
MP ME ST PR PRN <> <> <> <> <> DY PP <> EME MFS

## TYPE

Type of calculation:
0
No nodal safety factor or margin of safety calculations.
1
Calculate and store safety factors in place of nodal stresses.
2
Calculate and store margins of safety in place of nodal stresses.

## Command Default

No nodal safety factor or margin of safety calculations.

## Notes

Allows safety factor (SF) or margin of safety (MS) calculations to be made for the average nodal stresses according to:

$$
\begin{aligned}
& S F=\text { SALLOW } / \mid \text { Stress } \mid \\
& M S=(S A L L O W /|S t r e s s|)--1.0
\end{aligned}
$$

Calculations are done during the display, select, or sort operation (in the active coordinate system [RSYS]) with results stored in place of the nodal stresses. Use the PRNSOL or PLNSOL command to display the results.

## Note

The results are meaningful only for the stress (SIG1, SIGE, etc.) upon which SALLOW is based. Nodal temperatures used are those automatically stored for the node. Related commands are SFCALC, SALLOW, TALLOW.

## Menu Paths

Main Menu>General Postproc>Safety Factor>Restore NodeStrs Main Menu>General Postproc>Safety Factor>SF for Node Strs

## SFADELE, AREA, LKEY, Lab

Deletes surface loads from areas.
SOLUT ION: Solid Surface Loads MP ME ST PR PRN <> <> <> EM EH <> PP <> EME MFS

## AREA

Area to which surface load deletion applies. If ALL, delete load from all selected areas [ASEL]. If AREA $=P$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may be substituted for AREA.

```
LKEY
```

Load key associated with surface load (defaults to 1). See the SFA command for details.
Lab
Valid surface load label. If ALL, use all appropriate labels. See the SFA command for labels.

## Notes

Deletes surface loads (and all corresponding finite element loads) from selected areas.
This command is also valid in PREP7.

## Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Delete>All Load Data>All Surface Ld>On All Areas Main Menu>Preprocessor>Loads>Define Loads>Delete>Electric>Boundary>AppImped_E $>$ On Areas Main Menu>Preprocessor>Loads>Define Loads>Delete>Electric>Boundary>AppShield>On Areas Main Menu>Preprocessor>Loads>Define Loads>Delete>Electric>Excitation>AppSurfChar>On Areas Main Menu>Preprocessor>Loads>Define Loads>Delete>Electric>Excitation>DelExtPort>On Areas Main Menu>Preprocessor>Loads>Define Loads>Delete>Electric>Flag>AppInfinite>On Areas Main Menu>Preprocessor>Loads>Define Loads>Delete>Electric>Flag>AppMaxwell>On Areas Main Menu>Preprocessor>Loads>Define Loads>Delete>Field Surface Intr>On Areas Main Menu>Preprocessor>Loads>Define Loads>Delete>Fluid/ANSYS>Field Surface>On Areas Main Menu>Preprocessor>Loads>Define Loads>Delete>Fluid/ANSYS>Impedance>On Areas Main Menu>Preprocessor>Loads>Define Loads>Delete>Magnetic>Flag>AppInfinite>On Areas Main Menu>Preprocessor>Loads>Define Loads>Delete>Magnetic>Flag>AppMCI>On Areas Main Menu>Preprocessor>Loads>Define Loads>Delete>Magnetic>Other>AppMaxwell>On Areas Main Menu>Preprocessor>Loads>Define Loads>Delete>Structural>Pressure>On Areas

Main Menu>Preprocessor>Loads>Define Loads>Delete>Thermal>Ambient Rad>On Areas Main Menu>Preprocessor>Loads>Define Loads>Delete $>$ Thermal>Convection>On Areas Main Menu $>$ Preprocessor>Loads $>$ Define Loads $>$ Delete $>$ Thermal $>$ Heat Flux $>$ On Areas Main Menu>Preprocessor>Loads>Define Loads>Delete $>$ Thermal $>$ Radiation $>$ On Areas Main Menu>Preprocessor>Loads>Define Loads>Delete>Thermal>Surface Rad>On Areas Main Menu>Solution>Define Loads>Delete>All Load Data>All Surface Ld>On All Areas Main Menu>Solution>Define Loads>Delete>Electric>Boundary>Applmped_E>On Areas Main Menu>Solution>Define Loads>Delete>Electric>Boundary>AppShield>On Areas Main Menu>Solution>Define Loads>Delete>Electric>Excitation>AppSurfChar>On Areas Main Menu>Solution>Define Loads>Delete>Electric>Excitation>DelExtPort>On Areas Main Menu>Solution>Define Loads>Delete>Electric>Flag>AppInfinite>On Areas Main Menu>Solution>Define Loads>Delete>Electric>Flag>AppMaxwell>On Areas Main Menu $>$ Solution $>$ Define Loads $>$ Delete $>$ Field Surface Intr>On Areas Main Menu>Solution>Define Loads>Delete>Fluid/ANSYS>Field Surface>On Areas Main Menu>Solution>Define Loads>Delete>Fluid/ANSYS>Impedance>On Areas Main Menu>Solution>Define Loads>Delete>Magnetic>Flag>AppInfinite>On Areas Main Menu>Solution>Define Loads>Delete>Magnetic>Flag>AppMCI>On Areas Main Menu>Solution>Define Loads>Delete>Magnetic>Other>AppMaxwell>On Areas Main Menu>Solution>Define Loads>Delete>Structural>Pressure>On Areas Main Menu>Solution>Define Loads>Delete>Thermal>Ambient Rad>On Areas Main Menu>Solution>Define Loads>Delete $>$ Thermal $>$ Convection $>$ On Areas Main Menu>Solution>Define Loads>Delete $>$ Thermal $>$ Heat Flux $>$ On Areas Main Menu>Solution>Define Loads>Delete $>$ Thermal $>$ Radiation $>$ On Areas Main Menu>Solution>Define Loads>Delete>Thermal>Surface Rad>On Areas

## SFALIST, AREA, Lab

Lists the surface loads for the specified area.
SOLUTION: Solid Surface Loads
MP ME ST PR PRN $<><><>$ EM EH $<>$ PP $<>$ EME MFS

AREA
Area at which surface load is to be listed. If ALL (or blank), list for all selected areas [ASEL]. If AREA $=P$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may be substituted for AREA.

Lab
Valid surface load label. If ALL (or blank), use all appropriate labels. See the SFA command for labels.

## Notes

This command is valid in any processor.

## Menu Paths

Utility Menu>List>Loads>Surface Loads>On All Areas
Utility Menu>List>Loads>Surface Loads>On Picked Areas

SOLUTION: FE Surface Loads
MP ME ST PR PRN DS DSS <> <> <> <> PP <> EME MFS

## ELEM

Element to which surface load is applied. If ALL, apply load to all selected beam elements (ESEL). If ELEM = P , graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may be substituted in ELEM.

## LKEY

Load key associated with surface load (defaults to 1 ). Load keys (1, 2, 3, etc.) are listed under "Surface Loads" in the input table for each element type in the Element Reference. For beam and some pipe elements, the load key defines the load orientation.

## Lab

Valid surface load label. Load labels are listed under "Surface Loads" in the input table for each element type in the Element Reference. Structural labels: PRES (pressure).

## VALI, VALJ

Surface load values at nodes I and J. If VALJ is blank, it defaults to VALI. If VALJ is zero, a zero is used.

## VAL2I, VAL2J

Second surface load values at nodes I and J. Currently not used.

## IOFFST, JOFFST

Offset distance from node I (toward node J) where VALI is applied, and offset distance from node J (toward node I) where VALJ is applied, respectively.

LENRAT
Offset distance flag:
0
Offset is in terms of length units (default).
1
Offset is in terms of a length ratio (0.0 to 1.0).

## Notes

Specifies surface loads on the selected beam elements. Distributed loads are applied on a force-per-length basis (that is, the width of the underlying element is not considered). To list and delete surface loads applied with this command, use the SFELIST and SFEDELE commands, respectively.

If no offset values (IOFFSET and JOFFSET) are specified, the load is applied over the full element length. Values may also be input as length fractions, depending on the LENRAT setting. For example, assuming a line length of 5.0 , an IOFFST of 2.0 with LENRAT $=0$ or an IOFFST of 0.4 with LENRAT $=1$ represent the same point. If JOFFST =-1, VALI is assumed to be a point load at the location specified via IOFFST, and $V A L J$ is ignored. (IOFFSET cannot be equal to -1.) The offset values are stepped even if you issue a KBC,0 command.

Offsets are only available for element types BEAM188 and PIPE288 if using the cubic shape function (KEYOPT(3) $=3$ ) for those element types.

To accumulate (add) surface loads applied with this command, use the SFCUM,,ADD command. Use the same offset values used on the previous SFBEAM command (for a given element face); otherwise, the loads do not accumulate. If no offsets are specified, the command applies the previous offset values.

This command is also valid in PREP7.

## Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Pressure>On Beams
Main Menu>Solution>Define Loads>Apply>Structural>Pressure>On Beams

## SFCALC, LabR, LabS, LabT, TYPE

## Calculates the safety factor or margin of safety.

> POST1:Element Table
> MP ME ST PR PRN <> <> <> <> <> DY PP <> EME MFS

## LabR

Label assigned to results. If same as existing label, the existing values will be overwritten by these results.

## Labs

Labeled result item corresponding to the element stress.

## LabT

Labeled result item corresponding to the element temperature.

## TYPE

Type of calculation:
0 or 1
Use safety factor (SF) calculation.
2
Use margin of safety (MS) calculation.
3
Use 1/SF calculation.

## Notes

Calculates safety factor (SF) or margin of safety (MS) as described for the SFACT command for any labeled result item (see ETABLE command) for the selected elements. Use the PRETAB or PLETAB command to display results. Allowable element stress is determined from the SALLOW-TALLOW table [SALLOW, TALLOW].

## Menu Paths

Main Menu>General Postproc>Safety Factor>SF for ElemTable

## SFCUM, Lab, Oper, FACT, FACT2

## Specifies that surface loads are to be accumulated.

SOLUTION: FE Surface Loads
MP ME ST PR PRN <> <> FL EM EH <> PP <> EME MFS

## Lab

Valid surface load label. If ALL, use all appropriate labels.

| Discipline | Body <br> Load La- <br> bel | Label Description |
| :--- | :--- | :--- |
| Structural | PRES | pressure |
| Thermal | CONV[1] | convection |
|  | HFLUX[1] | heat flux |
| Substructure | SELV | load vector number |
| Electric | CHRGS | surface charge density |
|  | MXWF | Maxwell force flag |
| Magnetic | MXWF | Maxwell force flag |
| Infinite ele- <br> ment | INF | Exterior surface flag for IN- <br> FIN110 and INFIN111 |

1. Thermal labels CONV and HFLUX are mutually exclusive.

## Oper

Accumulation key:

## REPL

Subsequent values replace the previous values (default).
ADD
Subsequent values are added to the previous values.
IGNO
Subsequent values are ignored.
FACT
Scale factor for the first surface load value. A (blank) or '0' entry defaults to 1.0.

## FACT2

Scale factor for the second surface load value. A (blank) or '0' entry defaults to 1.0.

## Command Default

Replace previous values.

## Notes

Allows repeated surface loads (pressure, convection, etc.) to be replaced, added, or ignored. Surface loads are applied with the $\mathbf{S F}, \mathbf{S F E}$, and SFBEAM commands. Issue the SFELIST command to list the surface loads. The operations occur when the next surface load specifications are defined. For example, issuing the SF command with a pressure value of 25 after a previous $\mathbf{S F}$ command with a pressure value of 20 causes the
current value of that pressure to be 45 with the add operation, 25 with the replace operation, or 20 with the ignore operation. All new pressures applied with $\mathbf{S F}$ after the ignore operation will be ignored, even if no current pressure exists on that surface.

Scale factors are also available to multiply the next value before the add or replace operation. A scale factor of 2.0 with the previous "add" example results in a pressure of 70 . Scale factors are applied even if no previous values exist. Issue SFCUM,STAT to show the current label, operation, and scale factors. Solid model boundary conditions are not affected by this command, but boundary conditions on the FE model are affected.

## Note

The FE boundary conditions may still be overwritten by existing solid model boundary conditions if a subsequent boundary condition transfer occurs.

SFCUM does not work for tabular boundary conditions.
This command is also valid in PREP7.

## Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Settings>Replace vs Add>Surface Loads Main Menu>Solution>Define Loads>Settings>Replace vs Add>Surface Loads

## SFDELE, Nlist, Lab

## Deletes surface loads.

> SOLUTION:FE Surface Loads
> MP ME ST PR PRN <> <> FL EM EH <> PP <> EME MFS

## Nlist

Label defining where to find the list of nodes:
ALL
Use all selected nodes [NSEL]. If P, use graphical picking in GUI. A component label may be substituted for Nlist.

Lab
Valid surface load label. If ALL, use all appropriate labels. See the SF command for labels.

## Notes

Deletes surface loads as applied with the SF command. Loads are deleted only for the specified nodes on external faces of selected area and volume elements. For shell elements, if the specified nodes include face one (which is usually the bottom face) along with other faces (such as edges), only the loads on face one will be deleted. The element faces are determined from the list of selected nodes as described for the SF command. See the SFEDELE command for deleting loads explicitly by element faces.

This command is also valid in PREP7.

## Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Delete>Electric>Boundary>AppImped_E>On Nodes Main Menu>Preprocessor>Loads>Define Loads>Delete>Electric>Boundary>AppShield>On Nodes Main Menu $>$ Preprocessor>Loads $>$ Define Loads $>$ Delete $>$ Electric $>$ Excitation $>$ AppSurfChar $>$ On Nodes Main Menu>Preprocessor>Loads>Define Loads>Delete>Electric>Excitation>DelExtPort>On Nodes Main Menu>Preprocessor>Loads>Define Loads>Delete>Electric>Flag>AppInfinite>On Nodes Main Menu>Preprocessor>Loads>Define Loads>Delete>Electric>Flag>AppMaxwell>On Nodes Main Menu>Preprocessor>Loads>Define Loads>Delete>Field Surface Intr>On Nodes Main Menu>Preprocessor>Loads>Define Loads>Delete>Fluid/ANSYS>Field Surface>On Nodes Main Menu>Preprocessor>Loads>Define Loads>Delete>Fluid/ANSYS>Impedance>On Nodes Main Menu>Preprocessor>Loads>Define Loads>Delete>Magnetic>Flag>AppInfinite>On Nodes Main Menu>Preprocessor>Loads>Define Loads>Delete>Magnetic>Flag>AppMCI>On Nodes Main Menu>Preprocessor>Loads>Define Loads>Delete>Magnetic>Other>AppMaxwell>On Nodes Main Menu $>$ Preprocessor>Loads $>$ Define Loads $>$ Delete $>$ Structural $>$ Pressure $>$ On Node Components Main Menu>Preprocessor>Loads>Define Loads>Delete>Structural>Pressure>On Nodes Main Menu>Preprocessor>Loads>Define Loads>Delete>Thermal>Ambient Rad>On Nodes Main Menu>Preprocessor>Loads>Define Loads>Delete>Thermal>Convection>On Nodes Main Menu>Preprocessor>Loads>Define Loads>Delete $>$ Thermal $>$ Heat Flux>On Nodes Main Menu>Preprocessor>Loads>Define Loads>Delete $>$ Thermal>Radiation>On Nodes Main Menu>Preprocessor>Loads>Define Loads>Delete>Thermal>Surface Rad>On Nodes Main Menu>Solution>Define Loads>Delete>Electric>Boundary>AppImped_E>On Nodes Main Menu $>$ Solution $>$ Define Loads $>$ Delete $>$ Electric $>$ Boundary $>$ AppShield $>$ On Nodes Main Menu>Solution>Define Loads>Delete>Electric>Excitation>AppSurfChar>On Nodes Main Menu>Solution>Define Loads>Delete>Electric>Excitation>DelExtPort>On Nodes Main Menu>Solution>Define Loads>Delete>Electric>Flag>AppInfinite>On Nodes Main Menu>Solution>Define Loads>Delete>Electric>Flag>AppMaxwell>On Nodes Main Menu $>$ Solution $>$ Define Loads $>$ Delete $>$ Field Surface Intr>On Nodes Main Menu>Solution>Define Loads>Delete>Fluid/ANSYS>Field Surface>On Nodes Main Menu>Solution>Define Loads>Delete>Fluid/ANSYS>Impedance>On Nodes Main Menu>Solution>Define Loads $>$ Delete $>$ Magnetic>Flag>AppInfinite $>$ On Nodes Main Menu>Solution>Define Loads>Delete>Magnetic>Flag>AppMCI>On Nodes Main Menu>Solution>Define Loads>Delete>Magnetic>Other>AppMaxwell>On Nodes Main Menu>Solution>Define Loads>Delete>Structural>Pressure>On Node Components Main Menu $>$ Solution $>$ Define Loads $>$ Delete $>$ Structural $>$ Pressure $>$ On Nodes Main Menu>Solution>Define Loads>Delete>Thermal>Ambient Rad>On Nodes Main Menu>Solution>Define Loads>Delete>Thermal>Convection>On Nodes Main Menu>Solution>Define Loads>Delete>Thermal>Heat Flux>On Nodes Main Menu>Solution>Define Loads>Delete>Thermal>Radiation>On Nodes Main Menu>Solution>Define Loads>Delete>Thermal>Surface Rad>On Nodes

SFE, ELEM, LKEY, Lab, KVAL, VAL1, VAL2, VAL3, VAL4

## Specifies surface loads on elements.

SOLUTION:FE Surface Loads
MP ME ST PR PRN <> <> FL EM EH <> PP <> EME MFS

## ELEM

Element to which surface load applies. If ALL, apply load to all selected elements [ESEL]. If $E L E M=\mathrm{P}$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may be substituted for ELEM.

## LKEY

Load key or face number associated with surface load (defaults to 1 ). Load keys (1,2,3, etc.) are listed under "Surface Loads" in the input data table for each element type in the Element Reference.

## Lab

Valid surface load label. Load labels are listed under "Surface Loads" in the input table for each element type in the Element Reference.

| Discipline | Surface <br> Load Label | Label Description |
| :---: | :---: | :---: |
| Structural | PRES | pressure |
|  | FREQ | frequency (harmonic analyses only) |
| Thermal | CONV[1] | convection |
|  | HFLUX[1] | heat flux |
|  | RAD | radiation |
|  | RDSF | surface-to-surface radiation |
| Fluid | FSI[2] | fluid-structure interaction flag |
|  | VFRC | volume fraction for VOF method |
|  | IMPD | impedance boundary flag |
| Electric | CHRGS | surface charge density |
|  | MXWF | Maxwell force flag |
| Magnetic | MXWF | Maxwell force flag |
| High-frequency electromagnetic | PORT | waveguide port number |
|  | SHLD | surface shielding properties |
| Field-surface interface | FSIN[3] | field-surface interface number |
| Poromechanics | FFLX | fluid flow flux |
| Infinite element | INF | exterior surface flag for IN FIN110 and INFIN111 |
| Substructure | SELV | load vector number |

1. Thermal labels CONV and HFLUX are mutually exclusive.
2. For an acoustic analysis, apply the fluid-structure interaction flag (Label $=\mathrm{FSI}$ ) to only the FLUID129 or FLUID130 elements.
3. For a fluid-solid interaction analysis, apply the field-surface interface flag (Label = FSIN) twice: once for the fluid side (FLUID141 or FLUID142 elements) and once for the solid side.

KVAL
Value key. If $L a b=$ PRES:
0 or 1
VAL1 through VAL4 are used as real components of pressures.
2
VAL1 through VAL4 are used as imaginary components of pressures.
Value key. If $L a b=C O N V$ :
0 or 1
VAL1 through VAL4 are used as the film coefficients.
2
VALI through VAL4 are the bulk temperatures.
3
VAL1 through VAL4 are used as film effectiveness.
4
VAL1 through VAL 4 are used as free stream temperature.
Value key. If $L a b=$ SHLD:

## 0 or 1

VAL1 through VAL4 are used as the electrical conductivities.
2
VAL1 through VAL4 are used as the relative permeabilities.
Value key. If $L a b=$ RAD:

## 0 or 1

VAL1 through VAL4 are used as the emissivities.
2
VAL1 through VAL4 are ambient temperatures.
Value key. If $L a b=$ RDSF:

## 0 or 1

VAL1 is the emissivity value between 0 and 1 .
2
VAL1 is the enclosure number.
Value key. If $L a b=$ SELV:

## 0 or 1

VAL1 is the multiplier on real load vector LKEY.
2
VAL1 is the multiplier on imaginary load vector LKEY.

Value key. If $L a b=V F R C$ :

## 0 or 1

VAL1 is the boundary load value. VAL1 defaults to 1 .
2
VAL1 is the wetting status. VAL1 defaults to 0 or non-wetting.
If only one set of data is supplied (either emissivities or temperatures when $L a b=$ RAD; or either film coefficients or temperatures when $L a b=$ CONV; or either conductivity or relative permeability when $L a b=$ SHLD), the other set of data defaults to previously specified values (or zero if not previously specified).

## VAL1

First surface load value (typically at the first node of the face) or the name of a table for specifying tabular boundary conditions. Face nodes are listed in the order given for "Surface Loads" in the input data table for each element type in the Element Reference. For example, for SOLID185, the item 1-JILK associates $L K E Y=1$ (face 1) with nodes $J, I, L$, and K. Surface load value VALI then applies to node J of face 1 . To specify a table, enclose the table name in percent signs (\%), e.g., \%tabname\%. Use the *DIM command to define a table. Only one table can be specified, and it must be specified in the VAL1 position; tables specified in the VAL2, VAL3, or VAL4 positions will be ignored. VAL2 applies to node I, etc.

If $L a b=$ PRES and $K V A L=2$, VAL1 is the imaginary pressure, which is used only by SURF153, SURF154, SURF156, or SURF159 in full harmonic response analyses (HROPT,FULL), or by a mode superposition harmonic response analysis (HROPT,MSUP) if the mode-extraction method is Block Lanczos (MODOPT,LANB), PCG Lanczos (MODOPT,LANPCG), or Supernode (MODOPT,SNODE).

If $L a b=C O N V, K V A L=0$ or 1 , and $V A L I=-N$, the film coefficient is assumed to be a function of temperature and is determined from the HF property table for material $N$ [MP]. The temperature used to evaluate the film coefficient is usually the average between the bulk and wall temperatures, but may be user defined for some elements.

If $L a b=P O R T, V A L 1$ is a port number representing a waveguide port. The port number must be an integer between 1 and 6.

If $L a b=$ RDSF, $K V A L=0$ or 1 , and $V A L 1=-N$, the emissivity is assumed to be a function of the temperature, and is determined from the EMISS property table for material $N$ (MP). The material $N$ does not need to correlate with the underlying solid thermal elements. If $L a b=R D S F, K V A L=2$, and VAL1 is negative, radiation direction is reversed and will occur inside the element for the flagged radiation surfaces. Negative value of enclosure number is applicable for FLUID141 and FLUID142 elements, to model radiation occurring between surfaces inside the fluid domain.

If $L a b=V F R C, V A L 1$ is the boundary value or the wetting status, as defined by KVAL above. If $L a b=$ VFRC and $K V A L=2$, a VAL1 setting of 1 indicates a wetted boundary. At a wetted boundary, the fluid upstream keeps the associated elements full.

If $L a b=$ FSIN in a Multi-field solver (single or multiple code coupling) analysis, VAL1 is the surface interface number. KVAL is not used. If $L a b=$ FSIN in a unidirectional ANSYS to CFX analysis, VAL1 is not used unless the ANSYS analysis is performed using the Multi-field solver.

## VAL2, VAL3, VAL4

Surface load values at the $2 n d, 3$ rd, and 4 th nodes (if any) of the face. If all three values are blank, all three default to VAL1, giving a constant load. Zero or other blank values are used as zero. If a table is specified in VAL1, then any tables or numerical values specified in VAL2, VAL3, or VAL4 will be ignored.

If $L a b=$ FSIN in a unidirectional ANSYS to CFX analysis, VAL2 is the surface interface number (not available from within the GUI). VAL3 and VAL4 are not used.

## Notes

Specifies surface loads on selected elements.


#### Abstract

Caution You cannot use the SFE command with the INFIN110 or INFIN111 elements without prior knowledge of element face orientation, i.e., you must know which face is the exterior in order to flag it. Also, the surface effect elements, SURF153 and SURF154, use LKEY to allow the use of tangential and other loads (see SURF153and SURF154 of the Element Reference for more details).


Tapered loads may be applied over the faces of most elements.
For beam elements allowing lateral surface loads that may be offset from the nodes, use the SFBEAM command to specify the loads and offsets. See the SF command for an alternate surface load definition capability based upon node numbers. See the SFGRAD command for an alternate tapered load capability. Use the SFCUM command to accumulate (add) surface loads applied with SFE.

The SFE command can also be used to define fluid pressure penetration loads ( $L a b=$ PRES) at a contact interface. For this type of load, $L K E Y=1$ is used to specify the pressure values and $L K E Y=2$ is used to specify starting points and penetrating points. See Applying Fluid Penetration Pressure in the Contact Technology Guide for details on how to apply this type of load.

Film effectiveness and free stream temperatures specified with $L a b=$ CONV are only valid for SURF151 and SURF152. Film effectiveness must be between 0 and 1 and it defaults to 0 . If film effectiveness is applied, bulk temperature is ignored. When film effectiveness and free stream temperatures are specified, the commands to specify a surface load gradient (SFGRAD) or surface load accumulation (SFCUM) are not valid. For more information on film effectiveness, see Conduction and Convection in the Theory Reference for the Mechanical APDL and Mechanical Applications.

You can specify a table name only when using structural (PRES) and thermal (CONV (film coefficient, bulk temperature, film effectiveness, and free stream temperature), HFLUX), boundary value and wetting status (VFRC), and surface emissivity and ambient temperature (RAD) surface load labels. The Volume of Fluid method ( $L a b=$ VFRC) is applicable only for FLUID141.

When a tabular function load is applied to an element, the load will not vary according to the positioning of the element in space.

This command is also valid in PREP7.

## Menu Paths

# Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Excitation>AppSurfChar>On Elements <br> Main Menu>Preprocessor>Loads>Define Loads>Apply>Field Surface Intr>On Elements Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/ANSYS>Impedance>On Elements Main Menu>Preprocessor>Loads>Define Loads>Apply>Load Vector>For Superelement Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Pressure>On Element Components Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Pressure>On Elements 

Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Convection>On Elements>Tapered Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Convection>On Elements>Uniform Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Heat Flux>On Elements Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Radiation>On Elements Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Surface Rad>On Elements Main Menu>Solution>Define Loads>Apply>Electric>Excitation>AppSurfChar>On Elements Main Menu>Solution>Define Loads>Apply>Field Surface Intr>On Elements Main Menu>Solution>Define Loads>Apply>Fluid/ANSYS>Impedance>On Elements Main Menu>Solution>Define Loads>Apply>Load Vector>For Superelement Main Menu>Solution>Define Loads>Apply>Structural>Pressure>On Element Components Main Menu>Solution>Define Loads>Apply>Structural>Pressure>On Elements Main Menu>Solution>Define Loads>Apply>Thermal>Convection>On Elements>Tapered Main Menu>Solution>Define Loads>Apply>Thermal>Convection>On Elements>Uniform Main Menu>Solution>Define Loads>Apply>Thermal>Heat Flux>On Elements Main Menu>Solution>Define Loads>Apply>Thermal>Radiation>On Elements Main Menu>Solution>Define Loads>Apply>Thermal>Surface Rad>On Elements

SFEDELE, ELEM, LKEY, Lab
Deletes surface loads from elements.

> SOLUTION: FE Surface Loads
> MP ME ST PR PRN $<><>$ FL EM EH $<>$ PP $<>$ EME MFS

## ELEM

Element to which surface load deletion applies. If ALL, delete load from all selected elements [ESEL]. If $E L E M=P$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may be substituted for ELEM.

## LKEY

Load key associated with surface load (defaults to 1). If ALL, delete surface loads for all load keys.
Lab
Valid surface load label. If ALL, use all appropriate labels. See the SFE command for labels.

## Notes

Deletes surface loads from selected elements. See the SFDELE command for an alternate surface load deletion capability based upon selected nodes.

This command is also valid in PREP7.

## Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Delete>All Load Data>All Surface Ld>On All Elems Main Menu>Preprocessor>Loads>Define Loads>Delete>Electric>Boundary>AppImped_E>On Elements
Main Menu>Preprocessor>Loads>Define Loads>Delete>Electric>Excitation>AppSurfChar>On Elements
Main Menu>Preprocessor>Loads>Define Loads>Delete>Electric>Flag>AppInfinite>On Elements Main Menu $>$ Preprocessor>Loads $>$ Define Loads $>$ Delete $>$ Electric $>$ Flag $>$ AppMaxwell>On Elements Main Menu>Preprocessor>Loads>Define Loads>Delete>Field Surface Intr>On Elements

Main Menu>Preprocessor>Loads>Define Loads>Delete>Fluid/ANSYS>Impedance>On Elements Main Menu>Preprocessor>Loads>Define Loads>Delete>Fluid/CFD>Volume Fract>Bound Loads>On Elements<br>Main Menu>Preprocessor>Loads>Define Loads>Delete>Load Vector>For Superelement Main Menu>Preprocessor>Loads>Define Loads>Delete>Magnetic>Flag>AppInfinite>On Elements Main Menu>Preprocessor>Loads>Define Loads>Delete>Magnetic>Flag>AppMCI>On Elements Main Menu>Preprocessor>Loads>Define Loads>Delete>Magnetic>Other>AppMaxwell>On Elements Main Menu>Preprocessor>Loads>Define Loads>Delete>Structural>Pressure>On Element Components<br>Main Menu>Preprocessor>Loads $>$ Define Loads $>$ Delete $>$ Structural $>$ Pressure $>$ On Elements Main Menu>Preprocessor>Loads>Define Loads>Delete>Thermal>Ambient Rad>On Elements Main Menu $>$ Preprocessor>Loads $>$ Define Loads $>$ Delete $>$ Thermal $>$ Convection $>$ On Elements Main Menu>Preprocessor>Loads>Define Loads>Delete>Thermal>Heat Flux>On Elements Main Menu>Preprocessor>Loads>Define Loads>Delete $>$ Thermal $>$ Radiation>On Elements Main Menu>Preprocessor>Loads>Define Loads>Delete>Thermal>Surface Rad>On Elements Main Menu>Solution>Define Loads>Delete>All Load Data>All Surface Ld>On All Elems Main Menu>Solution>Define Loads>Delete>Electric>Boundary>AppImped_E>On Elements Main Menu>Solution>Define Loads>Delete>Electric>Excitation>AppSurfChar>On Elements Main Menu>Solution>Define Loads>Delete>Electric>Flag>AppInfinite>On Elements Main Menu>Solution>Define Loads>Delete>Electric>Flag>AppMaxwell>On Elements Main Menu>Solution>Define Loads>Delete>Field Surface Intr>On Elements Main Menu>Solution>Define Loads>Delete>Fluid/ANSYS>Impedance>On Elements Main Menu>Solution>Define Loads>Delete>Fluid/CFD>Volume Fract>Bound Loads>On Elements Main Menu>Solution>Define Loads>Delete>Load Vector>For Superelement Main Menu>Solution>Define Loads>Delete>Magnetic>Flag>AppInfinite>On Elements Main Menu>Solution>Define Loads>Delete>Magnetic>Flag>AppMCI>On Elements Main Menu>Solution>Define Loads>Delete>Magnetic>Other>AppMaxwell>On Elements Main Menu>Solution>Define Loads>Delete>Structural>Pressure $>$ On Element Components Main Menu>Solution>Define Loads>Delete>Structural>Pressure>On Elements Main Menu>Solution>Define Loads>Delete>Thermal>Ambient Rad>On Elements Main Menu>Solution>Define Loads>Delete>Thermal>Convection>On Elements Main Menu>Solution>Define Loads>Delete>Thermal>Heat Flux>On Elements Main Menu>Solution>Define Loads>Delete>Thermal>Radiation>On Elements Main Menu>Solution>Define Loads>Delete>Thermal>Surface Rad>On Elements

## SFELIST, ELEM, Lab

Lists the surface loads for elements.
SOLUTION:FE Surface Loads
MP ME ST PR PRN <> <> FL EM EH <> PP <> EME MFS

## ELEM

Element at which surface load is to be listed. If ALL (or blank), list loads for all selected elements [ESEL]. If $E L E M=\mathrm{P}$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may be substituted for ELEM.

Lab
Valid surface load label. If ALL (or blank), use all appropriate labels.

| Discipline | Body Load <br> Label | Label Description |
| :--- | :--- | :--- |
| Structural | PRES | pressure |
| Thermal | CONV[1] | convection |
|  | HFLUX[1] | heat flux |
|  | RAD | radiation |
|  | RDSF | surface-to-surface radiation |
| Fluid | FSI[2] | fluid-structure interaction <br> flag |
|  | VFRC | volume fraction for VOF <br> method |
| Magnetic | MXWF | Maxwell force flag |
| Infinite ele- <br> ment | INF | Exterior surface flag for IN- <br> FIN110 and INFIN111 |
| Substructure | SELV | load vector number |
| Electric | CHRGS | surface charge density |
|  | MXWF | Maxwell force flag |
| High-frequency <br> electromagnet- <br> ic | PORT | waveguide port number |
|  | SHLD | surface shielding properties |

1. Thermal labels CONV and HFLUX are mutually exclusive.
2. If $L a b=F S I$, only the fluid elements must be selected for the flag to be applied.

## Notes

The surface loads listed correspond to the current database values. The database is not updated for surface loads in POST1. Surface loads specified in tabular form, however, do list their values corresponding to the current results set in POST1.

For SURF151 or SURF152 elements with an extra node for radiation and/or convection calculations (KEYOPT(5) $=1$ ), the bulk temperature listed is the temperature of the extra node. If the thermal solution does not converge, the extra node temperature is not available for listing.

Film effectiveness and free stream temperatures specified by the SFE command ( $L a b=C O N V$ ) can only be listed by this command. The command lists film coefficients and bulk temperatures first and then film effectiveness and free stream temperatures below those values.

This command is valid in any processor.

## Menu Paths

> Utility Menu>List>Loads>Surface Loads>On All Elements
> Utility Menu>List>Loads>Surface Loads>On Picked Elems

## SFFUN, Lab, Par, Par2

## Specifies a varying surface load.

> SOLUTION: FE Surface Loads
> MP ME ST PR PRN $<><>$ FL EM EH $<>$ PP $<>$ EME MFS

## Lab

Valid surface load label. Load labels are listed under "Surface Loads" in the input table for each element type in the Element Reference. Issue SFFUN,STATUS to list current command settings.

| Discipline | Body Load <br> Label | Label Description |
| :--- | :--- | :--- |
| Structural | PRES | pressure |
| Thermal | CONV[1] | convection |
|  | HFLUX[1] | heat flux |
| Electric | CHRGS | surface charge density |

1. Thermal labels CONV and HFLUX are mutually exclusive.

Par
Parameter containing list of surface load values. If $L a b=C O N V$, values are typically the film coefficients and Par2 values (below) are typically the bulk temperatures.

## Par2

Parameter containing list of second surface load values (if any). If Lab CONV, the Par2 values are typically the bulk temperatures. Par2 is not used for other surface load labels.

## Notes

Specifies a surface load "function" to be used when the SF or SFE command is issued. The function is supplied through an array parameter vector which contains nodal surface load values. Node numbers are implied from the sequential location in the array parameter. For example, a value in location 11 applies to node 11. The element faces are determined from the implied list of nodes when the SF or SFE command is issued. Zero values should be supplied for nodes that have no load. A tapered load value may be applied over the element face. These loads are in addition to any loads that are also specified with the SF or SFE commands. Issue SFFUN (with blank remaining fields) to remove this specification. Issue SFFUN,STATUS to list current settings.

Starting array element numbers must be defined for each array parameter vector. For example, SFFUN,CONV,A(1,1),A(1,2) reads the first and second columns of array A (starting with the first array element of each column) and associates the values with the nodes. Operations continue on successive column array elements until the end of the column. Another example to show the order of the commands:

```
*dim, nodepres, array, 2
nodepres (1) = 11, 12
/prep7
et,1,42
n, 1
n, 2, 1
n, 3, 1, 1
n, 4, 1
e, 1, 2, 3, 4
sfe, 1,1,pres,1,3
sfelist ! expected answer: 3 at both nodes 1 and 2
sfedel, all, pres, all
```

```
sffun,pres, nodepres(1)
sfe,1,1,pres,1,5
sfelist ! expected answer: 5+11=16 at node 1, 5+12=17 at node 2
fini
```

SFFUN does not work for tabular boundary conditions.
This command is also valid in PREP7.

## Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Settings>For Surface Ld>Node Function Main Menu>Solution>Define Loads>Settings>For Surface Ld>Node Function

SFGRAD, Lab, SLKCN, Sldir, SLZER, SLOPE

## Specifies a gradient (slope) for surface loads.

SOLUTION: FE Surface Loads
MP ME ST PR PRN <> <> FL EM EH <> PP <> EME MFS

## Lab

Valid surface load label. Load labels are listed under "Surface Loads" in the input table for each element type in the Element Reference.

| Discipline | Body Load <br> Label | Label Description |
| :--- | :--- | :--- |
| Structural | PRES | pressure (real pressure only) |
| Thermal | CONV[1] | convection (bulk temperat- <br> ures only) |
|  | HFLUX[1] | heat flux |
| Electric | CHRGS | surface charge density |

1. Thermal labels CONV and HFLUX are mutually exclusive.

## SLKCN

Reference number of slope coordinate system (used with Sldir and SLZER to determine COORD). Defaults to 0 (the global Cartesian coordinate system).

## sldir

Slope direction in coordinate system SLKCN:
X
Slope is along X direction (default). Interpreted as R direction for non-Cartesian coordinate systems.
Y
Slope is along Y direction. Interpreted as $\theta$ direction for non-Cartesian coordinate systems.
Z
Slope is along Z direction. Interpreted as $\Phi$ direction for spherical or toroidal coordinate systems.

## SLZER

Coordinate location (degrees for angular input) where slope contribution is zero (CVALUE = VALUE). Allows the slope contribution to be shifted along the slope direction. For angular input, SLZER should be
between $\pm 180^{\circ}$ if the singularity [CSCIR] is at $180^{\circ}$ and should be between $0^{\circ}$ and $360^{\circ}$ if the singularity is at $0^{\circ}$.

## SLOPE

Slope value (load per unit length or per degree).

## Notes

Specifies a gradient (slope) for surface loads. All surface loads issued with the SF, SFE, SFL, or SFA commands while this specification is active will have this gradient applied (for complex pressures, only the real component will be affected; for convections, only the bulk temperature will be affected). The load value, CVALUE, calculated at each node is:

$$
\text { CVALUE }=\text { VALUE }+(S L O P E X(C O O R D-S L Z E R))
$$

where VALUE is the load value specified on the subsequent SF, SFE, SFL, or SFA commands and COORD is the coordinate value (in the Sldir direction of coordinate system SLKCN) of the node. Only one SFGRAD specification may be active at a time (repeated use of this command replaces the previous specification with the new specification). Issue SFGRAD (with blank fields) to remove the specification. Issue SFGRAD,STAT to show the current command status. The SFGRAD specification (if active) is removed when the LSREAD (if any) command is issued.

SFGRAD does not work for tabular boundary conditions.
This command is also valid in PREP7.

## Menu Paths

## Main Menu>Preprocessor>Loads>Define Loads>Settings>For Surface Ld>Gradient Main Menu>Solution>Define Loads>Settings>For Surface Ld>Gradient

## SFL, LINE, Lab, VALI, VALJ, VAL2I, VAL2J

## Specifies surface loads on lines of an area.

SOLUTION: Solid Surface Loads
MP ME ST PR PRN <> <> <> EM EH <> PP <> EME MFS

## LINE

Line to which surface load applies. If ALL, apply load to all selected lines [LSEL]. If LINE = P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may be substituted for LINE.

## Lab

Valid surface load label. Load labels are listed under "Surface Loads" in the input table for each element type in the Element Reference.

| Discipline | Body Load <br> Label | Label Description |
| :--- | :--- | :--- |
| Structural | PRES | pressure |
| Thermal | CONV[1] | convection |


| Discipline | Body Load <br> Label | Label Description |
| :--- | :--- | :--- |
|  | HFLUX[1] | heat flux |
|  | RAD | radiation |
|  | RDSF | surface-to-surface radiation |
| Fluid | FSI[2] | fluid-structure interaction <br> flag |
|  | VFRC | volume fraction for VOF <br> method |
| Magnetic | MXWF | Maxwell force flag |
| Infinite ele- <br> ment | INF | Exterior surface flag for IN- <br> FIN110 and INFIN111 |
| Electric | CHRGS | surface charge density |
|  | MXWF | Maxwell electrostatic force <br> flag |
| Field-surface <br> interface | FSIN[3] | field-surface interface num- <br> ber |

1. Thermal labels CONV and HFLUX are mutually exclusive.
2. For an acoustic analysis, apply the fluid-structure interaction flag (Label $=$ FSI) to only the FLUID129 or FLUID130 elements.
3. For a fluid-solid interaction analysis, apply the field-surface interface flag (Label = FSIN) twice: once for the fluid side (FLUID141 or FLUID142 elements) and once for the solid side.

## VALI, VALJ

Surface load values at the first keypoint (VALI) and at the second keypoint (VALJ) of the line, or table name for specifying tabular boundary conditions. If VALJ is blank, it defaults to VALI. If VALJ is zero, a zero is used. If $L a b=C O N V, V A L I$ and VALJ are the film coefficients and VAL2I and VAL2 $J$ are the bulk temperatures. To specify a table, enclose the table name in percent signs (\%), e.g., \%tabname\%. Use the *DIM command to define a table. If $L a b=$ CONV and $V A L I=-N$, the film coefficient may be a function of temperature and is determined from the HF property table for material $N$ [MP]. If $L a b=$ RAD, $V A L I$ and VALJ values are surface emissivities and VAL2I and VAL2J are ambient temperatures. The temperature used to evaluate the film coefficient is usually the average between the bulk and wall temperatures, but may be user defined for some elements. If $L a b=$ RDSF, VALI is the emissivity value; the following condition apply: If VALI = $N$, the emissivity may be a function of the temperature and is determined from the EMISS property table for material $N[$ MP]. If $L a b=$ VFRC, VALI is the boundary value (defaults to 1 ). If $L a b=$ FSIN in a Multi-field solver (single or multiple code coupling) analysis, $V A L I$ is the surface interface number. If $L a b=F S I N$ in a unidirectional ANSYS to CFX analysis, VAL $J$ is the surface interface number (not available from within the GUI) and VALI is not used unless the ANSYS analysis is performed using the Multi-field solver.

## VAL2I, VAL2J

Second surface load values (if any). If $L a b=$ CONV, VAL2I and VAL2 $J$ are the bulk temperatures. If $L a b$ $=$ RAD, VAL2I and VAL2J are the ambient temperatures. If $L a b=$ RDSF, $V A L 2 I$ is the enclosure number. Radiation will occur between surfaces flagged with the same enclosure numbers. If the enclosure is open, radiation will occur to the ambient. Negative value of enclosure number is applicable for FLUID141 and FLUID142 elements, to model radiation occurring between surfaces inside the fluid domain. VAL2I and
$V A L 2 J$ are not used for other surface load labels. If VAL2 $J$ is blank, it defaults to VAL2I. If VAL2J is zero, a zero is used. To specify a table ( $L a b=C O N V$ ), enclose the table name in percent signs (\%), e.g., \%tabname\%. Use the *DIM command to define a table. If Lab = VFRC, VAL2I is the wetting status value (defaults to 0 or non-wetting). If $L a b=V F R C$, a VAL2I setting of 1 indicates a wetted boundary. At a wetted boundary, the fluid upstream keeps the associated elements full.

## Notes

Specifies surface loads on the selected lines of area regions. The lines represent either the edges of area elements or axisymmetric shell elements themselves. Surface loads may be transferred from lines to elements with the SFTRAN or SBCTRAN commands. See the SFE command for a description of surface loads. Loads input on this command may be tapered. See the SFGRAD command for an alternate tapered load capability.

You can specify a table name only when using structural (PRES) and thermal (CONV (film coefficient and/or bulk temperature), HFLUX), boundary value and wetting status (VFRC), and surface emissivity and ambient temperature (RAD) surface load labels. VALJ and VAL2 $J$ are ignored for tabular boundary conditions.

This command is also valid in PREP7.

## Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Excitation>AppSurfChar>On Lines Main Menu>Preprocessor>Loads>Define Loads $>$ Apply>Electric>Flag>AppInfinite>On Lines Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Flag>AppMaxwell>On Lines Main Menu $>$ Preprocessor>Loads>Define Loads>Apply>Field Surface Intr>On Lines Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/ANSYS>Field Surface>On Lines Main Menu $>$ Preprocessor>Loads $>$ Define Loads $>$ Apply $>$ Fluid/ANSYS $>$ Impedance $>$ On Lines Main Menu>Preprocessor>Loads>Define Loads>Apply>Magnetic>Flag>AppInfinite>On Lines Main Menu>Preprocessor>Loads>Define Loads>Apply>Magnetic>Other>AppMaxwell>On Lines Main Menu $>$ Preprocessor>Loads>Define Loads $>$ Apply $>$ Structural $>$ Pressure $>$ On Lines Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Convection>On Lines Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Heat Flux>On Lines Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Radiation>On Lines Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Surface Rad>On Lines Main Menu>Solution>Define Loads>Apply>Electric>Excitation>AppSurfChar>On Lines Main Menu>Solution>Define Loads>Apply>Electric>Flag>AppInfinite>On Lines Main Menu>Solution>Define Loads>Apply>Electric>Flag>AppMaxwell>On Lines Main Menu>Solution>Define Loads>Apply>Field Surface Intr>On Lines Main Menu $>$ Solution $>$ Define Loads $>$ Apply $>$ Fluid/ANSYS $>$ Field Surface $>$ On Lines Main Menu>Solution>Define Loads>Apply>Fluid/ANSYS>Impedance>On Lines Main Menu>Solution>Define Loads>Apply>Magnetic>Flag>AppInfinite>On Lines Main Menu>Solution>Define Loads>Apply>Magnetic>Other>AppMaxwell>On Lines Main Menu>Solution>Define Loads>Apply>Structural>Pressure>On Lines Main Menu>Solution>Define Loads>Apply>Thermal>Convection>On Lines Main Menu>Solution>Define Loads $>$ Apply $>$ Thermal $>$ Heat Flux $>$ On Lines Main Menu>Solution>Define Loads>Apply>Thermal>Radiation>On Lines Main Menu>Solution>Define Loads>Apply>Thermal>Surface Rad>On Lines

SFLDELE, LINE, Lab
Deletes surface loads from lines.

## LINE

Line to which surface load deletion applies. If ALL, delete load from all selected lines [LSEL]. If $L$ INE $=$ P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may be substituted for LINE.

Lab
Valid surface load label. If ALL, use all appropriate labels. See the SFL command for labels.

## Notes

Deletes surface loads (and all corresponding finite element loads) from selected lines.
This command is also valid in PREP7.

## Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Delete>All Load Data>All Surface Ld>On All Lines Main Menu>Preprocessor>Loads $>$ Define Loads $>$ Delete $>$ Electric $>$ Excitation $>$ AppSurfChar>On Lines Main Menu $>$ Preprocessor>Loads>Define Loads $>$ Delete $>$ Electric $>$ Flag $>$ AppInfinite $>$ On Lines Main Menu>Preprocessor>Loads>Define Loads>Delete>Electric>Flag>AppMaxwell>On Lines Main Menu>Preprocessor>Loads>Define Loads>Delete>Field Surface Intr>On Lines Main Menu>Preprocessor>Loads>Define Loads>Delete>Fluid/ANSYS>Field Surface>On Lines Main Menu>Preprocessor>Loads>Define Loads>Delete>Fluid/ANSYS>Impedance>On Lines Main Menu>Preprocessor>Loads>Define Loads>Delete>Fluid/CFD>Volume Fract>Bound Loads>On Lines
Main Menu>Preprocessor>Loads>Define Loads>Delete>Magnetic>Flag>AppInfinite>On Lines Main Menu>Preprocessor>Loads>Define Loads>Delete>Magnetic>Other>AppMaxwell>On Lines Main Menu $>$ Preprocessor>Loads>Define Loads $>$ Delete $>$ Structural $>$ Pressure $>$ On Lines Main Menu>Preprocessor>Loads>Define Loads>Delete>Thermal>Ambient Rad>On Lines Main Menu>Preprocessor>Loads>Define Loads>Delete>Thermal>Convection>On Lines Main Menu>Preprocessor>Loads>Define Loads>Delete $>$ Thermal $>$ Heat Flux>On Lines Main Menu>Preprocessor>Loads>Define Loads>Delete>Thermal>Radiation>On Lines Main Menu>Preprocessor>Loads>Define Loads>Delete>Thermal>Surface Rad>On Lines Main Menu>Solution>Define Loads>Delete>All Load Data>All Surface Ld>On All Lines Main Menu>Solution>Define Loads>Delete>Electric>Excitation>AppSurfChar>On Lines Main Menu>Solution>Define Loads>Delete>Electric>Flag>AppInfinite>On Lines Main Menu>Solution>Define Loads>Delete>Electric>Flag>AppMaxwell>On Lines Main Menu>Solution>Define Loads>Delete>Field Surface Intr>On Lines Main Menu>Solution>Define Loads>Delete>Fluid/ANSYS>Field Surface>On Lines Main Menu $>$ Solution $>$ Define Loads $>$ Delete $>$ Fluid/ANSYS $>$ Impedance $>$ On Lines Main Menu>Solution>Define Loads>Delete>Fluid/CFD>Volume Fract>Bound Loads>On Lines Main Menu $>$ Solution $>$ Define Loads $>$ Delete $>$ Magnetic>Flag $>$ AppInfinite $>$ On Lines Main Menu>Solution>Define Loads>Delete>Magnetic>Other>AppMaxwell>On Lines Main Menu $>$ Solution $>$ Define Loads $>$ Delete $>$ Structural $>$ Pressure $>$ On Lines Main Menu>Solution>Define Loads>Delete>Thermal>Ambient Rad>On Lines Main Menu $>$ Solution $>$ Define Loads $>$ Delete $>$ Thermal $>$ Convection $>$ On Lines

Main Menu>Solution>Define Loads>Delete>Thermal>Heat Flux>On Lines<br>Main Menu>Solution>Define Loads>Delete>Thermal>Radiation>On Lines<br>Main Menu>Solution>Define Loads>Delete>Thermal>Surface Rad>On Lines

## SFLEX, $F F A X, F F B Y$, FFBZ, FFTO, FFTSY, FFTSZ

## Sets flexibility factors for the currently defined pipe element section.

PREP 7:Cross Sections
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

## FFAX

Factor to increase axial flexibility. The default value is 1.0.

## FFBY

Factor to increase bending flexibility about element $y$ axis (bending in the element $x$-z plane). The default value is 1.0 .

## FFBZ

Factor to increase bending flexibility about element $z$ axis (bending in the element $x$ - $y$ plane). The default value is $F F B Y$.

## FFTO

Factor to increase torsional flexibility. The default value is 1.0 .

## FFTSY

Factor to increase transverse shear flexibility in the element $x-z$ plane. The default value is 1.0 .

## FFTSZ

Factor to increase transverse shear flexibility in the element $x$ - $y$ plane. The default value is FFTSY.

## Notes

The SFLEX command sets section-flexibility factors for sections used by current-technology pipe elements.
To increase stiffness, use a flexibility factor of less than 1.0.
The FFBY and FFTSY arguments affect motion in the element x -z plane, and the FFBZ and FFTSZ arguments affect motion in the element $x-y$ plane. For stout pipe structures with low slenderness ratios, set both FFBY and FFTSY--and/or both FFBZ and FFTSZ (the related bending and transverse shear factors)--to the same value to obtain the expected flexibility effect.

When issued, the SFLEX command applies to the pipe section most recently defined via the SECTYPE command.

SFLEX is valid only for linear material properties and small strain analyses. The command does not support offsets, temperature loading, or initial state loading.

## Menu Paths

Main Menu>Preprocessor>Sections>Pipe>Flexibility Factors

## SFLIST, NODE, Lab

## Lists surface loads.

SOLUTION:FE Surface Loads
MP ME ST PR PRN <> <> FL EM EH <> PP <> EME MFS
NODE
Node at which surface load is to be listed. If ALL (or blank), list for all selected nodes [NSEL]. If NODE $=$ P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may be substituted for NODE.

## Lab

Valid surface load label. If ALL (or blank), use all appropriate labels.

| Discipline | Body <br> Load La- <br> bel | Label Description |
| :--- | :--- | :--- |
| Structural | PRES | pressure |
| Thermal | CONV | convection |
|  | HFLUX | heat flux |
|  | RAD | radiation |
|  | RDSF | surface-to-surface radiation |
| Fluid | FSI[1] | fluid-structure interaction <br> flag |
| Magnetic | MXWF | Maxwell force flag |
|  | MCI | magnetic circuit interface |
| Infinite ele- |  |  |
| ment | INF | Exterior surface flag for IN- <br> FIN110 and INFIN111 |
| Electric | CHRGS | surface charge density |
|  | MXWF | Maxwell force flag |
| High-frequency <br> electromagnet- <br> ic | PORT | waveguide port number |
|  | SHLD | surface shielding properties |

1. If $L a b=$ FSI, only the fluid elements must be selected for the flag to be applied.

## Notes

Lists the surface loads as applied with the $\mathbf{S F}$ command. Loads are listed only for the specified nodes on external faces of selected area and volume elements. Use SFELIST for line elements. The surface loads listed correspond to the current database values. The database is not updated for surface loads in POST1. Surface loads specified in tabular form, however, do list their values corresponding to the current results set in POST1.

For SURF151 or SURF152 elements with an extra node for radiation and/or convection calculations (KEYOPT(5) $=1$ ), the bulk temperature listed is the temperature of the extra node. If the thermal solution does not converge, the extra node temperature is not available for listing.

This command is valid in any processor.

## Menu Paths

Utility Menu>List>Loads>Surface Loads>On All Nodes
Utility Menu>List>Loads>Surface Loads>On Picked Nodes

## SFLLIST, LINE, Lab

## Lists the surface loads for lines.

SOLUTION: Solid Surface Loads
MP ME ST PR PRN <> <> <> EM EH <> PP <> EME MFS

## LINE

Line at which surface load is to be listed. If ALL (or blank), list for all selected lines [LSEL]. If LINE $=\mathrm{P}$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may be substituted for LINE.

## Lab

Valid surface load label. If ALL (or blank), use all appropriate labels. See the SFL command for labels.

## Notes

Lists the surface loads for the specified line.
This command is valid in any processor.

## Menu Paths

Utility Menu>List>Loads>Surface Loads>On All Lines Utility Menu>List>Loads>Surface Loads>On Picked Lines

## SFSCALE, Lab, FACT, FACT2

## Scales surface loads on elements.

SOLUTION: FE Surface Loads
MP ME ST PR PRN <> <> FL <> <> <> PP <> EME MFS

## Lab

Valid surface load label. If ALL, use all appropriate labels.

| Discipline | Body Load <br> Label | Label Description |
| :--- | :--- | :--- |
| Structural | PRES | pressure |


| Discipline | Body Load <br> Label | Label Description |
| :--- | :--- | :--- |
| Thermal | CONV[1] | convection |
|  | HFLUX[1] | heat flux |
| Substructure | SELV | load vector number |
| Electric | CHRGS | surface charge density |

1. Thermal labels CONV and HFLUX are mutually exclusive.

## FACT

Scale factor for the first surface load value. Zero (or blank) defaults to 1.0 . Use a small number for a zero scale factor.

## FACT2

Scale factor for the second surface load value. Zero (or blank) defaults to 1.0. Use a small number for a zero scale factor.

## Notes

Scales surface loads (pressure, convection, etc.) in the database on the selected elements. Surface loads are applied with the SF, SFE, or SFBEAM commands. Issue the SFELIST command to list the surface loads. Solid model boundary conditions are not scaled by this command, but boundary conditions on the FE model are scaled.

## Note

Such scaled FE boundary conditions may still be overwritten by unscaled solid model boundary conditions if a subsequent boundary condition transfer occurs.

SFSCALE does not work for tabular boundary conditions.
This command is also valid in PREP7.

## Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Operate>Scale FE Loads>Surface Loads Main Menu>Solution>Define Loads>Operate>Scale FE Loads>Surface Loads

## SFTRAN

Transfer the solid model surface loads to the finite element model.
SOLUTION: Solid Surface Loads MP ME ST PR PRN <> <> <> EM EH <> PP <> EME MFS

## Notes

Surface loads are transferred only from selected lines and areas to all selected elements. The SFTRAN operation is also done if the SBCTRAN command is issued or automatically done upon initiation of the solution calculations [SOLVE].

This command is also valid in PREP7.

## Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Operate>Transfer to FE>Surface Loads Main Menu>Solution>Define Loads>Operate>Transfer to FE>Surface Loads

## /SHADE, wn, Type

Defines the type of surface shading used with Z-buffering.
GRAPHICS:Style
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
WN
Window number (or ALL) to which command applies (defaults to 1 ).
type
Shading type:
FACET or 0
Facet shading (one color per area face) (default).

## GOURAUD or 1

Gouraud smooth shading (smooth variation of color based on interpolated vertex colors).

## PHONG or 2

Phong smooth shading (smooth variation of color based on interpolated vertex normals).

## Command Default

Facet shading.

## Notes

Defines the type of surface shading used on area, volume, and PowerGraphics [/GRAPHICS,POWER] displays when software Z-buffering is enabled [/TYPE]. This command is only functional for 2-D display devices.

This command is valid in any processor.

## Menu Paths

## Utility Menu>PlotCtrls>Style>Hidden-Line Options

## SHELL, Loc

## Selects a shell element or shell layer location for results output.

POST1:Controls POST26:Controls<br>MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

## LOC

Location within shell element (or layer) to obtain stress results:
TOP
Top of shell element (or layer) (default).
MID
Middle of shell element (or layer). The default method averages the TOP and BOT values to obtain a mid value. Setting KEYOPT(8) $=2$ for SHELL181, SHELL208, SHELL209, and ELBOW290 uses MID results obtained directly from the results file.

BOT
Bottom of shell element (or layer).

## Command Default

Shell element (or layer) top location.

## Notes

Selects the location within a shell element (or a shell layer) for results output (nodal stresses, strains, etc.). Applies to POST1 selects, sorts, and output [NSEL, NSORT, PRNSOL, PLNSOL, PRPATH, PLPATH, etc.], and is used for storage with the POST26 ESOL command. For example, SHELL,TOP causes item S of the POST1 PRNSOL command or the POST26 ESOL command to be the stresses at the top of the shell elements. For layered shell elements, use the LAYER (POST1) or LAYERP26 (POST26) command to select the layer. The SHELL command does not apply to the layered thermal shell elements, SHELL131 and SHELL132. For PowerGraphics [/GRAPHICS,POWER], the SHELL,MID command affects both the printed output and the displayed results, while the SHELL (TOP or BOT) command prints and displays both the top and bottom layers simultaneously.

In POST26, the ESOL data stored is based on the active SHELL specification at the time the data is stored. To store data at various specifications (for example, stresses at the top and bottom locations), issue a STORE command before each new specification.

## Menu Paths

Main Menu>General Postproc>Options for Outp Main Menu>TimeHist Postpro>Define Variables Main Menu>TimeHist Postpro>Elec\&Mag>Circuit>Define Variables Utility Menu>List>Results>Options

/SHOW, Fname, Ext, VECT, NCPL
Specifies the device and other parameters for graphics displays.

GRAPHICS: Set Up<br>MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Fname

Device name, filename, or keyword, as listed below:

## <device name>

Any valid graphics display device name (e.g., X11, 3-D etc.). Defaults to X11 for most systems. See Getting Started with Graphics in the Basic Analysis Guide for details. A device name must be defined before activating the Graphical User Interface (GUI). Once the GUI is activated, the device name cannot be changed for that ANSYS session, except for switching between X11 and X11C.

## <filename>

Name of graphics file to which graphics displays are to be diverted ( 248 characters maximum). Should not be the same as a valid device name or any other Fname option. Plots are written to the file Filename.Ext (or just Filename. Ext if Ext is left blank) in the working directory. This file can be appended only during the same session; reissuing the same filename in a new session will overwrite existing filenames from previous sessions. Although multiple filenames can be used within one session, only the last file created or accessed will be appended. Issuing /SHOW, CLOSE, or starting a new session will prevent access to any previously created files.

## TERM

Graphics displays are switched back to the last-specified device name.

## CLOSE

This option purges the graphics file buffer. The CLOSE option should be issued any time you are changing graphics devices or file output types during an ANSYS session. Graphics displays are switched back to the last-specified device name, and any open graphics files are closed. The CLOSE option is similar to the TERM option, however, with the CLOSE option, another process, such as the DISPLAY program, can access the data in the graphics file. The CLOSE option causes graphics file buffers to be flushed to the graphics file.

## FILE

Graphics displays are switched back to the last-specified file name.

## OFF

Graphics display requests are ignored.

## (blank)

If blank in interactive mode, graphics will be displayed on screen as requested by display commands (no file written); If blank in batch mode, graphics data will be written to Jobname. GRPH.
PSCR
Creates PostScript graphic files that are named Jobnamennn.eps, where $n n n$ is a numeric value that is incremented by one as each additional file is created; that is, Jobname000. eps, Jobname001.eps, Jobname002.eps, and so on. (See the PSCR command for options.) Ignores the Ext and NCPL fields.

## HPGL

Creates Hewlett-Packard Graphics Language files that are named Jobnamennn.hpgl, where nnn is a numeric value that is incremented by one as each additional file is created; that is, Jobname000.hpgl, Jobname001.hpgl, Jobname002.hpgl, and so on. (See the HPGL command for options.) Ignores the Ext and NCPL fields.

## HPGL2

Creates Hewlett-Packard Graphics Language files that are named Jobnamennn.hpgl, where $n n$ is a numeric value that is incremented by one as each additional file is created; that is, Jobname $000 \mathrm{hp}-$ gl, Jobname001.hpgl, Jobname02.hpgl, and so on. The HPGL2 files have enhanced color. (See the HPGL command for options.) Ignores the Ext field.

## JPEG

Creates JPEG files that are named Jobnamennn. jpg, where nnn is a numeric value that is incremented by one as each additional file is created; that is, Jobname 000 . jpg, Jobname 001 . jpg, Jobname 002 .jpg, and so on. Ignores the Ext field.

## TIFF

Creates tagged image format files that are named Jobnamennn.tif, where nnn is a numeric value that is incremented by one as each additional file is created; that is, Jobname 000 . tif, Jobname001.tif, Jobname002.tif, and so on. This value for the Fname argument ignores the Ext field. (See the TIFF command for options.)

## PNG

Creates PNG (Portable Network Graphics) files that are named Jobnamennn. png, where nnn is a numeric value that is incremented by one as each additional file is created; that is, Jobname 000 . png, Jobname001.png, Jobname002.png, and so on. This value for the Fname argument ignores the Ext field. (See the PNGR command for options.)

## VRML

Creates Virtual Reality Meta Language files named Jobname000.wrl that can be displayed on 3D Internet web browsers. Ignores the Ext and NCPL fields.

## Ext

Filename extension (8 character maximum).

## VECT

Specifies raster or vector display mode. This affects area, volume, and element displays, as well as geometric results displays such as contour plots. See the /DEVICE command for an alternate way to toggle between raster and vector mode. Changing VECT also resets the /TYPE command to its default.
0
Raster display (color filled entities; default)
1
Vector display (outlined entities; i.e., "wireframe")

## NCPL

Sets the number of color planes (4 to 8). Default is device-dependent. NCPL is not supported by all graphics devices.

## Command Default

For interactive runs, display is shown on the screen; for batch runs, display commands are ignored (graphics file not written).

## Notes

Specifies the device to be used for graphics displays, and specifies other graphics display parameters. Display may be shown at the time of generation (for interactive runs at a graphics display terminal) or diverted to a file for later processing with the DISPLAY program. Issue /PSTATUS for display status.

Batch runs do not have access to the fonts available on your system. The Courier and Helvetica font files used for JPEG, PNG and TIFF batch output are copyrighted by Adobe Systems Inc. and Digital Equipment Corp. Permission to use these trademarks is hereby granted only in association with the images described above. Batch run JPEG output is produced at the default quality index value of 75 , unless specified otherwise.

Interactive displays will default to eight color planes $(N C P L=8)$ for most monitors, while graph file output will default to eight color planes for VRML output, and four color planes for PSCR, HPGL, HPGL2, JPEG, PNG, TIFF and FILE33.

This command is valid in any processor.

## Menu Paths

Utility Menu>PlotCtrls>Device Options<br>Utility Menu>PlotCtrls>Redirect Plots>To GRPH File<br>Utility Menu>PlotCtrls>Redirect Plots $>$ To HPGL File<br>Utility Menu>PlotCtrls>Redirect Plots>To HPGL2 File<br>Utility Menu>PlotCtrls>Redirect Plots>To PSCR File Utility Menu>PlotCtrls>Redirect Plots>To Screen

/SHOWDISP, Dname, --, --, NCPL
Defines the display driver name.
DISPLAY:Set Up
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Dname

Valid driver name (see Getting Started with Graphics in the Basic Analysis Guide for details):
<device name>
Any linked terminal driver (such as X11, TEKTRONIX, etc.)
HPGL
Hewlett-Packard Graphics Language
HPGL2
Hewlett-Packard Graphics Language with enhanced color. (See the HPGL command for options.) Ignores the $N C P L$ field.

## INTERLEAF

Interleaf ASCII Format, OPS Version 5.0

## POSTSCRIPT

PostScript, Version 1.0 Minimally Conforming

## DUMP

ASCII Text Dump
--, --
Unused fields.
NCPL
Number of color planes (4 to 8). Default is device-dependent.

## Menu Paths

It is part of the DISPLAY command.

SHPP, Lab, VALUE1, VALUE2

## Controls element shape checking.

> PREP 7: Meshing
> MP ME ST PR PRN $<><>$ FL EM EH DY PP <> EME MFS

## Lab

Shape checking option. (When Lab = WARN, STATUS, SUMMARY, or DEFAULT, the remaining arguments are ignored.)
ON
Activates element shape checking. New elements, regardless of how they are created, are tested against existing warning and error limits. (The existing limits may be the default limits, or previously modified limits.) Elements that violate error limits produce error messages and either (a) cause a meshing failure, or (b) for element creation or storage other than AMESH or VMESH, are not stored. Elements that violate warning limits produce warning messages. If shape checking was previously turned off [SHPP,OFF] and you turn it on, existing elements are marked as untested; use the CHECK command to retest them. With this option, you may also specify a value for VALUE1 to turn individual shape tests on. If you do not specify a value for VALUE1, all shape tests are turned on.

## WARN

Activates element shape checking; however, in contrast to SHPP,ON, elements that violate error limits do not cause either a meshing or element storage failure. Instead, they produce warning messages to notify you that error limits have been violated. This option does not alter current shape parameter limits. Since the default shape parameter error limits are set to allow almost any usable element, the elements this option allows, which would otherwise be forbidden, are likely to be very poorly shaped.

## OFF

Deactivates element shape checking. This setting does not alter current shape parameter limits. Use of this option is risky, since poorly shaped elements can lead to analysis results that are less accurate than would otherwise be expected for a given mesh density. With this option, you may also specify a value for VALUE1 to turn individual shape tests off. If you do not specify a value for VALUE1, all element shape tests are turned off.

## SILENT

Determines whether element shape checking runs in silent mode. In silent mode, ANSYS checks elements without issuing warnings, with the exception of the generic warnings that it issues at solution. With this option, you must also specify a value for VALUE1 (During the execution of certain commands, ANSYS automatically runs element shape checking in silent mode, then internally summarizes the shape test results for all of the new or modified elements. ANSYS does this when it executes any of the following commands: AGEN, AMESH, AREFINE, ARSYM, ATRAN, CDREAD, EGEN, ENGEN, ENSYM, EREAD, EREFINE, ESYM, ET, FVMESH, KREFINE, LREFINE, NREFINE, TIMP, VEXT, VGEN, VIMP, VMESH, VOFFST, VROTAT, VSWEEP, VSYMM, and VTRAN.)

## STATUS

Lists the shape parameter limits currently in effect, along with status information about element shape checking (for example, whether any individual shape tests are off, whether any of the shape parameter limits have been modified, and so on).

## SUMMARY

Lists a summary of element shape test results for all selected elements.

## DEFAULT

Resets element shape parameter limits to their default values. Also, if any individual tests were turned off, turns them back on. (The SHPP,DEFAULT command may be useful if any parameter limits were previously altered by using the MODIFY option.)

## OBJECT

Determines whether element shape test results data is stored in memory. When this option is turned on, an "object" is created for storing test results in memory. When this option is turned off, no object is created and no data is stored; thus, any operation that requires shape parameters for an existing element (such as use of the CHECK command) causes the shape parameters to be recomputed. (Note the distinction between storing the data in memory and storing it in the database; regardless of whether this option is turned on or off, no element shape test results data will be stored in the database. The element shape parameter object is deleted automatically before any solution.) This setting is independent of shape checking status, with one exception-if shape checking is turned off [SHPP,OFF], the object is not created. Keep in mind that recomputing shape parameters is more computationally expensive than retrieving them from the object. With this option, you must also specify a value for the VALUE1 argument; the VALUE2 argument is ignored.

## LSTET

Determines, for Jacobian ratio tests, whether sampling is done at integration points (DesignSpace product method), or at corner nodes. When this option is turned on, sampling is done at integration points, and the default limits for h-element Jacobian ratios are a warning tolerance of 10 and an error tolerance of 40 . When this option is turned off, sampling is done at corner nodes, and the corresponding default limits are a warning tolerance of 30 and an error tolerance of 1000 . Sampling at the integration points (option on) results in a lower Jacobian ratio, but that ratio is also subjected to a more restrictive error limit. Some elements that have passed the integration point sampling criterion, have failed the corner mode sampling criterion. Because of this, use integration point sampling only for simple linear analyses. For other types of analyses (e.g., nonlinear, electromagnetic), use sampling at corner nodes, which is the more conservative approach. With this option, you must also specify a value for the VALUE1 argument; the VALUE 2 argument is ignored.

## MODIFY

Indicates that you want to respecify a shape parameter limit. With this option, you must also specify values for the VALUE1 and VALUE 2 arguments.

## FLAT

Determines the warning and error limits used to test elements that may exhibit nonzero/nonconstant Z coordinates. With this option, you must also specify values for the VALUE1 and/or VALUE2 arguments.

## VALUE1

Valid for the ON, OFF, SILENT, OBJECT, LSTET, MODIFY, and FLAT options only. When Lab = ON or OFF, use VALUE1 to individually control (that is, turn off or turn on) specific element shape tests. Thus, VALUE1 can be ANGD (SHELL28 corner angle deviation tests), ASPECT (aspect ratio tests), PARAL (deviation from parallelism of opposite edges tests), MAXANG (maximum corner angle tests), JACRAT (Jacobian ratio tests), WARP (warping factor tests), or ALL (all tests). When Lab = SILENT, VALUE1 can be ON (to turn silent mode on) or OFF (to turn silent mode off). When Lab $=$ OBJECT, VALUE1 can be either 1,

YES, or ON to turn on storage of element shape test data (the default); or it can be 0, NO, or OFF to turn off storage of element shape test data (delete the data and recompute as necessary). When Lab = LSTET, VALUE1 can be either 1, YES, or ON to choose Jacobian sampling at integration points; or it can be 0, NO, or OFF to choose Jacobian sampling at nodes (the default). When Lab = MODIFY, VALUE1 is the numeric location (within the shape parameter limit array) of the shape parameter limit to be modified. Locations are identified in the element shape checking status listing [SHPP,STATUS]. For more information, see the examples in the Notes section. When Lab = FLAT, VALUE1 is the warning limit for XY element constant $Z$ sets performed at CHECK or SOLVE. The default is $1.0 \mathrm{e}-8$.

## VALUE2

Valid for the MODIFY and FLAT options only. When Lab = MODIFY, specifies the new limit for the shape parameter that is in the location indicated by the VALUE1 argument. See the examples in the Notes section. When Lab = FLAT, VALUE2 is the error limit. The default is $1.0 \mathrm{e}-2$.

## Command Default

All shape checking tests are on [SHPP,ON,ALL] with default shape parameter limits. Silent mode is off. Memory object storage of element shape parameters is on.

## Notes

The following examples illustrate how to use the SHPP,MODIFY,VALUE1,VALUE2 command to respecify shape parameter limits. Assume that you issued the SHPP,STATUS command, and you received the output below:

```
ASPECT RATIO (EXCEPT FLOTRAN OR EMAG)
 QUAD OR TRIANGLE ELEMENT OR FACE
 WARNING TOLERANCE (1) = 20.00000
 ERROR TOLERANCE (2) = 1000000.
MAXIMUM CORNER ANGLE IN DEGREES (EXCEPT FLOTRAN OR EMAG)
 TRIANGLE ELEMENT OR FACE
 WARNING TOLERANCE (15) = 165.0000
 ERROR TOLERANCE (16) = 179.9000
```

Notice that in the sample output, the warning tolerance for aspect ratios is set to 20. Now assume that you want to "loosen" this shape parameter limit so that it is less restrictive. To allow elements with aspect ratios of up to 500 without causing warning messages, you would issue this command:

```
SHPP,MODIFY,1,500
```

Also notice that each shape parameter's numeric location within the shape parameter limit array appears in the sample output within parentheses. For example, the numeric location of the aspect ratio shape parameter (for warning tolerance) is 1 , which is why " 1 " is specified for the VALUE1 argument in the example command above.

Now notice that the sample output indicates that any triangle element with an internal angle that is greater than 179.9 degrees will produce an error message. Suppose that you want to "tighten" this shape parameter limit, so that it is more restrictive. To cause any triangle or tetrahedron with an internal angle greater than 170 degrees to produce an error message, you would issue this command:

SHPP, MODIFY, 16, 170

The existence of badly shaped elements in a model may lead to certain computational errors that can cause your system to abort during ANSYS solution. Therefore, you run the risk of a system abort during solution any time that you turn element shape checking off entirely, run shape checking in warning-only mode, turn off individual shape checks, or loosen shape parameter limits.

Changing any shape parameter limit marks all existing elements as untested; use the CHECK command to retest them.

Since the shape parameter limit array was completely reorganized at ANSYS 5.4, you should revise any input files created prior to 5.4 that contain limit changes so that they reflect the reorganized data structure.

For more information about element shape checking, see Meshing Your Solid Model in the Modeling and Meshing Guide.

This command is also valid for rezoning.

## Menu Paths

# Main Menu>Preprocessor>Checking Ctrls>Shape Checking Main Menu>Preprocessor>Checking Ctrls>Toggle Checks Main Menu>Solution>Manual Rezoning>Create Remesh Zone(s)>Mesh Controls>Element Shape Checking>Shape Checking Main Menu>Solution>Manual Rezoning>Create Remesh Zone(s)>Mesh Controls>Element Shape Checking>Toggle Checks 

## /SHRINK, RATIO

## Shrinks elements, lines, areas, and volumes for display clarity.

GRAPHICS: Scaling
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## RATIO

Shrinkage ratio (input as a decimal ( 0.0 to 0.5 )). Defaults to 0.0 (no shrinkage). Values greater than 0.5 default to 0.1 (10\% shrinkage).

## Command Default

Full size entities.

## Notes

Shrinks the elements, lines, areas, and volumes so that adjacent entities are separated for clarity. Portions of this command are not supported by PowerGraphics [/GRAPHICS,POWER].

If only the common lines of non-coplanar faces are drawn (as per the /EDGE command), then this command is ignored.

This command is valid in any processor.

## Menu Paths

Utility Menu>PlotCtrls>Style>Size and Shape

## SLIST, SFIRST, SLAST, SINC, Details, Type

## Summarizes the section properties for all defined sections in the current session.

> PREP 7:Cross Sections
> MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

## SFIRST

First section ID to be summarized. Defaults to first available section in the database.

## SLAST

Last section ID to be summarized. Defaults to last available section in the database.

## SINC

Increment of the section ID; defaults to 1 .

## Details

Determines the content of the summarized information for beams and shells.

## BRIEF

For beams, lists only the section integrated properties (such as Area, lyy, and lyz). This option is the default.

## FULL

For beams, lists the section integrated properties, as well as the section nodal coordinates, section cell connectivity information, and section cell integration point coordinates. For shells, the section stiffness (membrane, bending, membrane-bending coupling and transverse shear) are printed.

The shell section stiffness listed considers elastic behavior of materials at reference temperature only. The elements that use the section data may alter the transverse shear stiffness based on slenderness considerations (in addition to the shear correction factors shown).

Section stiffness terms listed via the FULL option do not include section offsets. The ANSYS program considers section offsets during the solution phase of the analysis.

## GROUP

If a section calls other sections, this option lists those sections too.

## Type

The section type. Valid arguments are ALL (the default) and the types available on the SECTYPE command.

## Notes

For sections integrating FiberSIM data (SECTYPE,,SHELL,FIBERSIM), the SLIST command output displays the relevant layer information.

Because the actual section can vary from element to element, the information provided by the Details $=$ FULL option is not available when using the FiberSIM-ANSYS interface.

By default, the command lists information concerning all sections; however, you can limit the output to only beam or pretension sections via the Type key.

## Sample Output

Following is sample output from the SLIST,,,,BRIEF command for a rectangular beam section subtype (SECTYPE,,BEAM,RECT):

```
LIST SECTION ID SETS 1 TO 1 BY 1
 SECTION ID NUMBER: 1
 BEAM SECTION TYPE: Rectangle
 BEAM SECTION NAME IS:
 BEAM SECTION DATA SUMMARY:
\begin{tabular}{ll}
Area & \(=6.0000\)
\end{tabular}
 Iyy = 4.5000
 Iyz = 0.11281E-15
 Izz = 2.0000
 Warping Constant = 0.23299
 Torsion Constant = 4.7330
 Center of Gravity Y =-0.30973E-16
 Center of Gravity Z = 0.15376E-15
 Shear Center Y =-0.22957E-13
 Shear Center Z = 0.31281E-13
 Beam Section is offset to CENTROID of cross section
```

Following is sample output from the SLIST command for a FiberSIM subtype (SECTYPE,,SHELL,FIBERSIM):

```
LIST SECTION ID SETS 1 TO 4 BY
 INPUT SECTION ID NUMBER 4
 INPUT SECTION IS SHELL SECTION TYPE USING FIBERSIM DATA
 INPUT SHELL SECTION NAME lamin1
\begin{tabular}{cccc}
Thickness & MatID & Num Intg. Pts & Layer ID \\
0.2000 & 1 & 0 & STEEL \\
1.0000 & 2 & 0 & ALUM1 \\
0.2000 & 3 & 0 & ALUM2
\end{tabular}
```

This table is a summary of the SECDATA command input and describes the individual plies/layers and does not normally represent the actual layup used. Layup data is available in FiberSIM.

```
Shell Section is offset to BOTTOM surface of Shell
Section Solution Controls
Tolerance in Thickness Direction = 0.15500
Angle Tolerance = 15.000
Added Mass Per Unit Area = 5.00000E-02
Elastic Foundation Stiffness = 100.00
Parsing Debug = 1
Computed Real Constants = 1
```


## Menu Paths

Main Menu>Preprocessor>Sections>List Sections

SLOAD, SECID, PLNLAB, KINIT, KFD, FDVALUE, LSLOAD, LSLOCK

## Load a pretension section.

PREP 7: Cross Sections
MP ME ST PR PRN DS DSS <> <> <> <> PP <> EME MFS
SECID
Unique section number. The number must already be assigned to a pretension section.
PLNLAB
Label representing the pretension load sequence number in the format "PLnn" where $n n$ is an integer from 1 through 99 (for example, PL01 through PL99).

Specify a value of DELETE to delete all loads on the specified pretension section (SECID). In this case, the command ignores any other argument values.

## KINIT

Initial action key for pretension load PL01. (This field is omitted for PL02 and up.) Three scenarios are possible:

LOCK
Constrains (connects) the cutting plane on the pretension section. This value is the default.

## SLID

Unconstrains (disconnects) the cutting plane on the pretension section.

## TINY

Applies a very small pretension load ( $0.1 \%$ of $F D V A L U E$ ) before the desired load is established. The small load prevents convergence problems which can occur when the desired load is not established in the first load step. This value is valid only if $K F D=F O R C$.

## KFD

Force/Displacement key. Specifies whether FDVALUE is a force or a displacement:
FORC
Apply a force on the specified pretension section. This value is the default.

## DISP

Apply a displacement (adjustment) on the specified pretension section.

## FDVALUE

Pretension load value. If $K F D=$ FORC, this value is a pretension force. If $K F D=$ DISP, this value is a pretension displacement (adjustment).

## LSLOAD

Load step in which to apply the FDVALUE.

## LSLOCK

The load step in which the displacement value resulting from the pretension force is locked. This value is valid only if $K F D=$ FORC.

## Command Default

The default pretension load value FDVALUE is zero (no load). A positive value puts the pretension elements in tension.

No default exists for the $L S L O A D$ applied load step value. You must specify the load step in which to apply the FDVALUE.

No default exists for the LSLOCK locked load step value. You must specify the load step in which to lock the FDVALUE.

## Notes

The SLOAD command applies pretension loads to specified pretension sections (created via the PSMESH command). A pretension load is ramp-applied ( $\mathbf{K B C}=0$ ) if it is a force ( $K F D=F O R C$ ), and step-applied ( $\mathbf{K B C}$ $=1$ ) if it is a displacement (KFD = DISP).

You can "lock" the load value at a specified load step. When locked, the load changes from a force to a displacement, and ANSYS applies the load as a constant displacement in all future load steps. Locking is useful when applying additional loadings. The additional loadings alter the effect of the initial load value, but because locking transforms the load into a displacement, it preserves the initial load's effect.

## Example 1 Applying a Load

The following command shows how to establish loads on a pretension section:
SLOAD, 1, PL01, TINY, FORC, 5000, 2 , 3
In this example, the load is applied to pretension section 1 , and the sequence begins with the initial action key, KINIT, set to TINY. A small stabilization load ( $5=0.10 \%$ of 5000 ) is applied in the first load step, as the actual pretension force is not applied until the second load step. The next four fields set the actual load: the KFD value FORC specifies the type of load, FDVALUE defines the pretension load value (5000), LSLOAD specifies the load step in which the force is applied (2), and the LSLOCK field specifies the load step in which the force is locked (3). Additional sets of four fields can be used to define additional loads.

## Example 2 Editing an Existing Load

You can use the SLOAD command to edit (overwrite) existing loads on a pretension section. This example changes the load on pretension section 1 (set above) to 6000:

SLOAD, 1, PL01, , , 6000, 2 , 3
Unspecified values (blank fields), as shown in this example, remain unchanged from prior settings. If no prior specifications exist, then default values ( $K I N I T=$ LOCK and $K F D=F O R C$ ) apply.

## Example 3 Deleting All Loads

The command can also delete all loads on a specified pretension section, as shown here:
SLOAD, 1, DELETE

## Example 4 Locking a Pretension Element

For a prestressed modal analysis, this command locks the pretension element:
SLOAD, 1, PLO1, LOCK, DISP, 0, 1, 2

## Multiple Loadings

The SLOAD command allows you to apply multiple loadings. You can add up to 15 loadings (PL01 through PL15), or delete loadings, for any given pretension section(s).

## Example 5 Applying Multiple Loadings

The following SLOAD commands, issued in the order shown, establish a pretension load sequence in pretension section 2 with a force of 25 in load step (LS) 2, locked in LS 3-6, a force of 50 in LS 7, locked in LS 8-11, a force of 75 in LS 12, locked in LS 13 and beyond:

SLOAD, 2 , PL01, LOCK, FORC, 25, 2 , 3
SLOAD, 2 , PL02, , FORC, 50, 7, 8
SLOAD, 2, PL03, , FORC, 75, 12, 13
At the same time, you can issue SLOAD commands to apply loads on other pretension sections. For example, in addition to the commands listed above, you could issue the following command to apply a load on pretension section 3:

SLOAD , 3, PL01, LOCK, FORC, 25, 3, 4

## Using the Pretension Section Loads GUI

Any addition or deletion of a loading applies to the selected sections only. ANSYS does not apply or delete a load until you click on the Apply or OK button.

After you have successfully solved for a specified LSLOAD (GUI field Apply at LS) and eventually LSLOCK (GUI field Lock at LS) value, you cannot modify that loading's settings during subsequent steps of the analysis. Similarly, you cannot delete loadings that you have already partially or completely solved.

You can select more than one pretension section at a time in order to specify identical loadings on them. Before you completely solve a given loading, any combination of pretension sections is valid. The following limitations apply:

- After you have completely solved one or more loadings, ANSYS allows multiple selection of only those pretension sections having
-- the same number of defined loadings, and
-- the identical loading number from the most recent completely solved loading.
- A multiple selection meeting the necessary criteria retains the settings that are identical for all selected pretension sections and leaves all other fields blank.


## Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural $>$ Pretnsn Sectn
Main Menu>Preprocessor>Loads>Define Loads>Delete>All Load Data>All Section Lds
Main Menu>Solution>Define Loads>Apply>Structural>Pretnsn Sectn
Main Menu>Solution>Define Loads>Delete>All Load Data>All Section Lds

SMALL, IR, IA, IB, IC, Name, ---, --, FACTA, FACTB, FACTC

## Finds the smallest of three variables.

POST26:Operations
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
IR
Arbitrary reference number assigned to the resulting variable (2 to NV [NUMVAR]). If this number is the same as for a previously defined variable, the previously defined variable will be overwritten with this result.

IA, IB, IC
Reference numbers of the three variables to be operated on. If only two, leave IC blank. If only one, leave IB blank also.

## Name

Thirty-two character name identifying the variable on printouts and displays. Embedded blanks are compressed for output.

## --, --

Unused fields.

## FACTA, FACTB, FACTC

Scaling factors (positive or negative) applied to the corresponding variables (defaults to 1.0).

## Notes

Finds the smallest of three variables according to the operation:
$I R=$ smallest of (FACTA $\times I A, F A C T B \times I B, F A C T C \times I C)$

## Menu Paths

## Main Menu>TimeHist Postpro>Math Operations>Find Minimum

*SMAT, Matrix, Type, Method, Val1, Val2, Val3
Creates a sparse matrix.
APDL:Matrix Operations
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Argument Descriptions

## Matrix

Name used to identify the matrix. Must be specified.

## Type

Matrix type:
D --
Double precision real values (default).
Z --
Complex double precision values.

## Method

Method used to create the matrix:
COPY --
Copy an existing matrix.
IMPORT --
Import the matrix from a file.

## Val1, Val2, Val3

Additional input. The meaning of Vall through Val3 will vary depending on the specified Method. See details below.

## The following Valx fields are used with Method = COPY.

## Val1

Name of the matrix to copy (can be either a dense or a sparse matrix).

## Val2

To copy only the diagonal, input the label below:

## DIAG --

Copy only the diagonal of the matrix.
The following table describes the Valx fields used with Method = IMPORT.

| Method = IMPORT |  |  |  |
| :--- | :--- | :--- | :--- |
| Val1 | Val2 | Val3 | Description |
| FULL | File name | Matrix type: <br> STIFF - Stiffness (or conduct- <br> ivity) matrix <br> MASS - Mass (or specific <br> heat) matrix <br> DAMP - Damping matrix <br> NOD2BCS - Mapping vector <br> relating the full set of nodal <br> DOFs to the subset that the <br> solver uses <br> GMAT - Constraint equation <br> matrix | Import a matrix from an exist- <br> ing FULL file. Currently, only <br> real matrices can be extrac- <br> ted from FULL files. |
| HB- <br> MAT | File name | File format: <br> ASCII <br> BINARY | Import a matrix from an exist- <br> ing Harwell-Boeing format <br> file. |
| MMF | File name | (not used) | Import a matrix from an exist- <br> ing Matrix Market format file. |
| DMGG | File name | Separator character (default <br> = blank) | Import a matrix from an exist- <br> ing NASTRAN DMIG file. |
| MAT | File name | (not used) | Restore from a previous *EX- <br> PORT (FORMAT = MAT) com- <br> mand.. |

## Notes

Use the *DMAT command to create a dense matrix.
Unlike the *DMAT command, the *SMAT command cannot be used to allocate a sparse matrix.
For more information on the NOD2BCS mapping vector, see Degree of Freedom Ordering in the ANSYS Parametric Design Language Guide.

## Menu Paths

## This command cannot be accessed from a menu.

## SMAX, LabR, Lab1, Lab2, FACT1, FACT2

## Forms an element table item from the maximum of two other items.

POST1:Element Table
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## LabR

Label assigned to results. If same as existing label, the existing values will be overwritten by these results.

## Lab1

First labeled result item in operation.
Lab2
Second labeled result item in operation (may be blank).
FACT1
Scale factor applied to Lab1. A (blank) or '0' entry defaults to 1.0.
FACT2
Scale factor applied to Lab2. A (blank) or '0' entry defaults to 1.0.

## Notes

Forms a labeled result item (see ETABLE command) for the selected elements by comparing two existing labeled result items according to the operation:

$$
\operatorname{LabR}=(F A C T 1 \times \operatorname{Lab} 1) \mathrm{cmx}(F A C T 2 \times \operatorname{Lab} 2)
$$

where "cmx" means "compare and save maximum." If absolute values are requested [SABS,1], the absolute values of Lab1 and Lab2 are used.

## Menu Paths

## Main Menu>General Postproc>Element Table>Find Maximum

# Controls the display of solid model boundary condition symbols and labels. 

> DATABASE: Set Up
> MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS

## Mode

## CENT

Solid model boundary condition symbols and labels appear at the centroid of the solid model entity (default).

## TESS

Solid model boundary condition symbols and labels appear inside each constituent element of the tesselation.

## Notes

Mode $=$ CENT is designed to reduce the clutter of boundary condition symbols in solid model plots. For example, if you have assigned normal pressure loads to an area, you may choose to display the pressures as arrows with the /PSF command using /PSF,PRES,NORM, 2 . When Mode $=$ CENT, the pressure arrow is displayed at the centroid of the area. When Mode = TESS, a pressure arrow is displayed at the centroid of each polygon of the area's tesselation.

This command is valid in any processor.

## Menu Paths

This command cannot be accessed from a menu.

## SMBODY

Specifies "Body loads on the solid model" as the subsequent status topic.
SOLUTION: Status
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Notes

This is a status [STAT] topic command. Status topic commands are generated by the GUI and will appear in the log file (Jobname. LOG) if status is requested for some items under Utility Menu> List> Status. This command will be immediately followed by a STAT command, which will report the status for the specified topic.

If entered directly into the program, the STAT command should immediately follow this command.

## Menu Paths

Utility Menu>List>Status>Solution>Body Loads

## SMCONS

Specifies "Constraints on the solid model" as the subsequent status topic.
SOLUTION: Status
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Notes

This is a status [STAT] topic command. Status topic commands are generated by the GUI and will appear in the log file (Jobname. LOG) if status is requested for some items under Utility Menu> List> Status. This command will be immediately followed by a STAT command, which will report the status for the specified topic.

If entered directly into the program, the STAT command should immediately follow this command.

## Menu Paths

Utility Menu>List>Status>Solution>DOF Constraints

## SMFOR

Specifies "Forces on the solid model" as the subsequent status topic.
SOLUTION: Status
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Notes

This is a status [STAT] topic command. Status topic commands are generated by the GUI and will appear in the log file (Jobname. LOG) if status is requested for some items under Utility Menu> List> Status. This command will be immediately followed by a STAT command, which will report the status for the specified topic.

If entered directly into the program, the STAT command should immediately follow this command.

## Menu Paths

Utility Menu>List>Status>Solution>Forces

## SMIN, LabR, Lab1, Lab2, FACT1, FACT2

## Forms an element table item from the minimum of two other items.

POST1:Element Table
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## LabR

Label assigned to results. If same as existing label, the existing values will be overwritten by these results.

## Lab1

First labeled result item in operation.

## Lab2

Second labeled result item in operation (may be blank).

## FACT1

Scale factor applied to Lab1. A (blank) or '0' entry defaults to 1.0.

## FACT2

Scale factor applied to Lab2. A (blank) or '0' entry defaults to 1.0.

## Notes

Forms a labeled result item (see ETABLE command) for the selected elements by comparing two existing labeled result items according to the operation:

$$
\operatorname{LabR}=(F A C T 1 \times \operatorname{Lab} 1) \mathrm{cmn}(F A C T 2 \times \operatorname{Lab} 2)
$$

where "cmn" means "compare and save minimum." If absolute values are requested [SABS,1], the absolute values of Lab1 and Lab2 are used.

## Menu Paths

Main Menu>General Postproc>Element Table>Find Minimum

SMOOTH, Vect1, Vect2, DATAP, FITPT, Vect3, Vect4, DISP
Allows smoothing of noisy data and provides a graphical representation of the data.

> POST2 6: Special Purpose
> MP ME ST PR PRN <><> FL EM EH $<>$ PP $<>$ EME MFS

## Vect 1

Name of the first vector that contains the noisy data set (i.e., independent variable). You must create and fill this vector before issuing SMOOTH.

## Vect2

Name of the second vector that contains the dependent set of data. Must be the same length as the first vector. You must create and fill this vector before issuing SMOOTH.

## DATAP

Number of data points to be fitted, starting from the beginning of the vector. If left blank, the entire vector will be fitted. The maximum number of data points is 100,000 (or greater, depending on the memory of the computer).

## FITPT

Order of the fitting curve that will be used as a smooth representation of the data. This number should be less than or equal to the number of the data points. Default (blank) is one-half the number of data points. Maximum number of smoothed data fitting order is the number of data points up to 50 . Depending on this number, the smoothed curve will be one of the following:

1
Curve is the absolute average of all of the data points.

## 2

Curve is the least square average of all of the data points.

## 3 or more

Curve is a polynomial of the order ( $\mathrm{n}-1$ ), where n is the number of data fitting order points.

## Vect3

Name of the vector that contains the smoothed data of the independent variable. This vector should have a length equal to or greater than the number of smoothed data points. In batch (command) mode, you must create this vector before issuing the SMOOTH command. In interactive mode, the GUI automatically creates this vector (if it does not exist). If you do not specify a vector name, the GUI will name the vector smth_ind.

## Vect 4

Name of the vector that contains the smoothed data of the dependent variable. This vector must be the same length as Vect 3. In batch (command) mode, you must create this vector before issuing the SMOOTH command. In interactive mode, the GUI automatically creates this vector (if it does not exist). If you do not specify a vector name, the GUI will name the vector smth_dep.

DISP
Specifies how you want to display data. No default; you must specify an option.
1
Unsmoothed data only
2
Smoothed data only
3
Both smoothed and unsmoothed data

## Notes

You can control the attributes of the graph using standard ANSYS controls (/GRID, /GTHK, /COLOR, etc.). If working interactively, these controls appear in this dialog box for convenience, as well as in their standard dialog boxes. You must always create Vect 1 and Vect 2 (using *DIM) and fill these vectors before smoothing the data. If you're working interactively, ANSYS automatically creates Vect 3 and Vect 4 , but if you're working in batch (command) mode, you must create Vect 3 and Vect 4 (using *DIM) before issuing SMOOTH. Vect 3 and Vect 4 are then filled automatically by ANSYS. In addition, ANSYS creates an additional TABLE type array that contains the smoothed array and the unsmoothed data to allow for plotting later with *VPLOT. Column 1 in this table corresponds to Vect1, column 2 to Vect2, and column 3 to Vect 4 . This array is named Vect 3_SMOOTH, up to a limit of 32 characters. For example, if the array name is X 1 , the table name is $\mathrm{X1}$ _SMOOTH.

This command is also valid in PREP7 and SOLUTION.

## Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Settings>Replace vs Add>Smooth Data Main Menu>Preprocessor>LS-DYNA Options>Loading Options>Smooth Data Main Menu>Solution>Define Loads>Settings>Replace vs Add>Smooth Data Main Menu>Solution>Loading Options>Smooth Data Main Menu>TimeHist Postpro>Smooth Data

SMRTSIZE, SIZLVL, FAC, EXPND, TRANS, ANGL, ANGH, GRATIO, SMHLC, SMANC, MXITR, SPRX

## Specifies meshing parameters for automatic (smart) element sizing.

PREP 7: Meshing
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## SIZLVL

Overall element size level for meshing. The level value controls the fineness of the mesh. (Any input in this field causes remaining arguments to be ignored.) Valid inputs are:
n
Activate SmartSizing and set the size level to $n$. Must be an integer value from 1 (fine mesh) to 10 (coarse mesh). Remaining arguments are ignored, and argument values are set as shown in Table 252: SMRTSIZE - Argument Values for h-elements (p. 1583).

## STAT

List current SMRTSIZE settings.

## DEFA

Set all SMRTSIZE settings to default values (as shown in Table 252: SMRTSIZE - Argument Values for $h$-elements (p. 1583) for size level 6).

## OFF

Deactivate SmartSizing. Current settings of DESIZE will be used. To reactivate SmartSizing, issue SMRTSIZE,n.

## FAC

Scaling factor applied to the computed default mesh sizing. Defaults to 1 for h-elements (size level 6), which is medium. Values from 0.2 to 5.0 are allowed.

## EXPND

Mesh expansion (or contraction) factor. (This factor is the same as MOPT,EXPND,Value.) EXPND is used to size internal elements in an area based on the size of the elements on the area's boundaries. For example, issuing SMRTSIZE,,,2 before meshing an area will allow a mesh with elements that are approximately twice as large in the interior of an area as they are on the boundary. If EXPND is less than 1 , a mesh with smaller elements on the interior of the area will be allowed. EXPND should be greater than 0.5 but less than 4. EXPND defaults to 1 for h-elements (size level 6), which does not allow expansion or contraction of internal element sizes (except when using AESIZE element sizing). (If EXPND is set to zero, the default value of 1 will be used.) The actual size of the internal elements will also depend on the TRANS option or upon AESIZE or ESIZE sizing, if used.

## TRANS

Mesh transition factor. (This factor is the same as MOPT,TRANS,Value.) TRANS is used to control how rapidly elements are permitted to change in size from the boundary to the interior of an area. TRANS defaults to 2.0 for h-elements (size level 6), which permits elements to approximately double in size from one element to the next as they approach the interior of the area. (If TRANS is set to zero, the default value will be used.) TRANS must be greater than 1 and, for best results, should be less than 4 . The actual size of the internal elements will also depend on the EXPND option or upon AESIZE or ESIZE sizing, if used.

## ANGL

Maximum spanned angle per lower-order element for curved lines. Defaults to 22.5 degrees per element (size level 6). This angle limit may be exceeded if the mesher encounters a small feature (hole, fillet, etc.). (This value is not the same as that set by DESIZE,,,,ANGL.)

## ANGH

Maximum spanned angle per higher-order element for curved lines. Defaults to 30 degrees per element (size level 6). This angle limit may be exceeded if the mesher encounters a small feature (hole, fillet, etc.). (This value is NOT the same as that set by DESIZE,,,,,ANGH.)

## GRATIO

Allowable growth ratio used for proximity checking. Defaults to 1.5 for h-elements (size level 6). Values from 1.2 to 5.0 are allowed; however, values from 1.5 to 2.0 are recommended.

SMHLC
Small hole coarsening key, can be ON (default for size level 6) or OFF. If ON, this feature suppresses curvature refinement that would result in very small element edges (i.e., refinement around small features).

## SMANC

Small angle coarsening key, can be ON (default for all levels) or OFF. If ON, this feature restricts proximity refinement in areas where it is ill-advised (that is, in tight corners on areas, especially those that approach 0 degrees).

## MXITR

Maximum number of sizing iterations (defaults to 4 for all levels).

## SPRX

Surface proximity refinement key, can be off ( $\operatorname{SPRX}=0$, which is the default for all levels) or on via two different values ( $S P R X=1$ or $S P R X=2$ ). If $S P R X=1$, surface proximity refinement is performed and any shell elements that need to be modified are modified. If $S P R X=2$, surface proximity refinement is performed but no shell elements are altered.

## Command Default

SmartSizing is off and DESIZE is used for automatic element sizing.

## Notes

If a valid level number ( 1 (fine) to 10 (coarse)) is input on $S I Z L V L$, inputs for remaining arguments are ignored, and the argument values are set as shown in Table 252: SMRTSIZE - Argument Values for h-elements (p.1583).

The settings shown are for h-elements. The first column contains SIZLV data, ranging from 10 (coarse) to 1 (fine). The default is 6 (indicated by the shaded row).

Table 252 SMRTSIZE - Argument Values for h-elements

| 10 | FAC | EX- <br> PND | TRANS | ANGL | ANGH | GRATIO | SMHLC | SMANC | MXITR | SPRX |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 5.0 | 2.0 | $2.0^{*}$ | 45.0 | $45.0^{*}$ | 2.0 | on | on | $4^{*}$ | off |
| 9 | 3.0 | 1.75 | $2.0^{*}$ | 36.0 | $45.0^{*}$ | 1.9 | on | on | $4^{*}$ | off |
| 8 | 1.875 | 1.5 | $2.0^{*}$ | 30.0 | $45.0^{*}$ | 1.8 | on | on | $4^{*}$ | off |
| 7 | 1.5 | 1.0 | $2.0^{*}$ | 26.0 | $36.0^{*}$ | 1.7 | on | on | $4^{*}$ | off |
| 6 | $1.0^{*}$ | $1.0^{*}$ | $2.0^{*}$ | 22.5 | $30.0^{*}$ | $1.5^{*}$ | on | on | $4^{*}$ | off |
| 5 | 0.65 | $1.0^{*}$ | $2.0^{*}$ | 18.0 | 27.0 | 1.5 | on | on | $4^{*}$ | off |
| 4 | 0.4 | $1.0^{*}$ | $2.0^{*}$ | 15.0 | 22.0 | 1.5 | off | on | $4^{*}$ | off |
| 3 | 0.3 | $1.0^{*}$ | $2.0^{*}$ | 12.0 | 18.0 | 1.5 | off | on | $4^{*}$ | off |


| 2 | FAC | EX- <br> PND | TRANS | ANGL | ANGH | GRATIO | SMHLC | SMANC | MXITR | SPRX |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0.25 | $1.0^{*}$ | $2.0^{*}$ | 10.0 | 15.0 | 1.5 | off | on | $4^{*}$ | off |
| 1 | 0.2 | $1.0^{*}$ | $2.0^{*}$ | 7.5 | 15.0 | 1.4 | off | on | $4^{*}$ | off |

Where appropriate, SmartSizing will start with AESIZE settings. Elsewhere, it will start with any defined ESIZE,SIZE setting. It will locally override AESIZE or ESIZE for proximity and curvature. SmartSizing ignores any ESIZE,NDIV setting.

LESIZE line division and spacing specifications will be honored by SmartSizing, unless you give permission for SmartSizing to override them (for proximity or curvature) by setting KYNDIV to 1 . Lines not having an LESIZE specification are meshed as well as they can be.

This command is also valid for rezoning.

## Menu Paths

# Main Menu>Preprocessor>Meshing>Size Cntrls>SmartSize>Adv Opts <br> Main Menu>Preprocessor>Meshing>Size Cntrls>SmartSize>Basic <br> Main Menu>Preprocessor>Meshing>Size Cntrls>SmartSize>Status 

## SMSURF

Specifies "Surface loads on the solid model" as the subsequent status topic.
SOLUTION:Status
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Notes

This is a status [STAT] topic command. Status topic commands are generated by the GUI and will appear in the log file (Jobname. LOG) if status is requested for some items under Utility Menu> List> Status. This command will be immediately followed by a STAT command, which will report the status for the specified topic.

If entered directly into the program, the STAT command should immediately follow this command.

## Menu Paths

Utility Menu>List>Status>Solution>Surface Loads

SMULT, LabR, Lab1, Lab2, FACT1, FACT2
Forms an element table item by multiplying two other items.
POST1:Element Table
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## LabR

Label assigned to results. If same as existing label, the existing values will be overwritten by these results.

## Lab1

First labeled result item in operation.

## Lab2

Second labeled result item in operation (may be blank).
FACT1
Scale factor applied to Lab1. A (blank) or '0' entry defaults to 1.0.

## FACT2

Scale factor applied to Lab2. A (blank) or '0' entry defaults to 1.0.

## Notes

Forms a labeled result item (see ETABLE command) for the selected elements by multiplying two existing labeled result items according to the operation:

$$
\operatorname{LabR}=(F A C T 1 \times \operatorname{Lab} 1) \times(F A C T 2 \times \operatorname{Lab} 2)
$$

May also be used to scale results for a single labeled result item. If absolute values are requested [SABS,1], the absolute values of Lab1 and Lab2 are used.

## Menu Paths

Main Menu>General Postproc>Element Table>Multiply

## SNOPTION, RangeFact, BlockSize, RobustLev, Compute, --, Solve_Info

## Specifies Supernode (SNODE) eigensolver options.

SOLUTION: Analysis Options
MP ME ST PR PRN <> <> <> EM <> <> PP <> EME MFS

## RangeFact

Factor used to control the range of eigenvalues computed for each supernode. The value of RangeFact must be a number between 1.0 and 5.0. By default the RangeFact value is set to 2.0 , which means that all eigenvalues between 0 and $2^{*} F R E Q E$ are computed for each supernode (where $F R E Q E$ is the upper end of the frequency range of interest as specified on the MODOPT command). As the RangeFact value increases, the eigensolution for the SNODE solver becomes more accurate and the computational time increases.

## BlockSize

BlockSize to be used when computing the final eigenvectors. The value of Blocksize must be either MAX or a number between 1 and $N M O D E$, where $N M O D E$ is the number of modes to be computed as set on the MODOPT command. Input a value of MAX to force the algorithm to allocate enough memory to hold all of the final eigenvectors in memory and, therefore, only read through the file containing the supernode eigenvectors once. Note that this setting is ONLY recommended when there is sufficient physical memory on the machine to safely hold all of the final eigenvectors in memory.

## RobustLev

Parameter used to control the robustness of the SNODE eigensolver. The value of RobustLev must be a number between 0 and 10 . Lower values of Robust Lev allow the eigensolver to run in the most efficient manner for optimal performance. Higher values of RobustLev often slow down the performance
of the eigensolver, but can increase the robustness; this may be desirable if a problem is detected with the eigensolver or its eigensolution.

## Compute

Key to control which computations are performed by the Supernode eigensolver:

## EVALUE

The eigensolver computes only the eigenvalues.

## EVECTOR

The eigensolver computes only the eigenvectors (must be preceded by a modal analysis where the eigenvalues were computed using the Supernode eigensolver).

## BOTH

The eigensolver computes both the eigenvalues and eigenvectors in the same pass (default).

Unused field
Solve_Info
Solver output option:
OFF
Turns off additional output printing from the Supernode eigensolver (default).
PERFORMANCE
Turns on additional output printing from the Supernode eigensolver, including a performance summary and a summary of file I/O for the Supernode eigensolver. Information on memory usage during assembly of the global matrices (that is, creation of the Jobname. FULL file) is also printed with this option.

## Command Default

RangeFact $=2.0$. BlockSize is set to $\min (N M O D E, 40)$, where $N M O D E$ is the number of modes to be computed as set on the MODOPT command. RobustLev $=0$. Compute $=$ BOTH. Additional output is not printed (Solve_Info = OFF).

## Notes

This command specifies options for the Supernode (SNODE) eigensolver.
Setting RangeFact to a value greater than 2.0 will improve the accuracy of the computed eigenvalues and eigenvectors, but will often increase the computing time of the SNODE eigensolver. Conversely, setting RangeFact to a value less than 2.0 will deteriorate the accuracy of the computed eigenvalues and eigenvectors, but will often speedup the computing time of the SNODE eigensolver. The default value of 2.0 has been set as a good blend of accuracy and performance.

The SNODE eigensolver reads the eigenvectors and related information for each supernode from a file and uses that information to compute the final eigenvectors. For each eigenvalue/eigenvector requested by the user, the program must do one pass through the entire file that contains the supernode eigenvectors. By choosing a BlockSize value greater than 1, the program can compute BlockSize number of final eigenvectors for each pass through the file. Therefore, smaller values of BlockSize result in more I/O, and larger values of BlockSize result in less I/O. Larger values of BlockSize also result in significant additional memory usage, as BlockSize number of final eigenvectors must be stored in memory. The default Blocksize of $\min (N M O D E, 40)$ is normally a good choice to balance memory and I/O usage.

The RobustLev field should only be used when a problem is detected with the accuracy of the final solution or if the Supernode eigensolver fails while computing the eigenvalues/eigenvectors. Setting RobustLev to a value greater than 0 will cause the performance of the eigensolver to deteriorate. If the performance deteriorates too much or if the eigensolver continues to fail when setting the Robust Lev field to higher values, then switching to another eigensolver such as Block Lanczos or PCG Lanczos is recommended.

Setting Compute = EVALUE causes the Supernode eigensolver to compute only the requested eigenvalues. During this process a Jobname. SNODE file is written; however, a Jobname. MODE file is not written. Thus, errors will likely occur in any downstream computations that require the . MODE file (for example, participation factor computations, mode superpostion transient/harmonic analysis, PSD analysis). Setting compute = EVECTOR causes the Supernode eigensolver to compute only the corresponding eigenvectors. The Jobname. SNODE file and the associated Jobname. FULL file are required when requesting these eigenvectors. In other words, the eigenvalues must have already been computed for this model before computing the eigenvectors. This field can be useful in order to separate the two steps (computing eigenvalues and computing eigenvectors).

## Menu Paths

## Main Menu>Preprocessor>Loads>Analysis Type>Analysis Options

Main Menu>Solution>Analysis Type>Analysis Options

## SOCEAN, OCID

## Specifies an ocean environment and associates it with an element section.

PREP 7:Cross Sections
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

## OCID

The ocean environment ID number.

## Notes

The SOCEAN command specifies an ocean environment and associates the specified ocean ID (OCID) to the element section most recently defined via the SECTYPE command. (See Table 2.55: Ocean (p. 38) for the commands used to define your ocean environment.)

Ocean loading applies to the PIPE288 and PIPE289 elements only.

## Menu Paths

Main Menu>Preprocessor>Sections>Pipe>Add Main Menu>Preprocessor>Sections>Pipe>Edit

SOLCONTROL, Key1, Key2, Key3, Vtol

## Specifies whether to use optimized nonlinear solution defaults and some enhanced internal solution algorithms.

SOLUTION: Analysis Options
MP ME ST PR PRN DS DSS <> EM EH <> PP <> EME MFS

## Key1

Optimized defaults activation key:

## ON or 1

Activates optimized defaults for a set of commands applicable to nonlinear solutions. This is the default. The majority of solution command defaults are listed in the "Notes" (p.1589) section below. See also the description of individual solution commands for default values.

## OFF or 0

Restores defaults to pre-ANSYS 5.4 values (see the Default States table below). Internal solution algorithms work as for pre-ANSYS 5.4.

## Key2

Check contact state key. This key is operable only when the optimized defaults are active ( Key1 = ON) and a contact or nonlinear status element is present in the model. When check contact state is active, ANSYS will base the time step size on the specifications of KEYOPT(7) for all contact elements. KEYOPT(7) for contact elements can be used to ensure that the time step interval accounts for changes in the contact status. Also, when Key $2=$ ON, ANSYS ensures the time step is small enough to account for changes in nonlinear element status (applies to COMBIN14, COMBIN39, and COMBIN40 elements). Valid arguments for the key are:

## ON or 1

Activate time step predictions based on specifications of element KEYOPT(7) or the nonlinear status of the element (applies to COMBIN14, COMBIN39, and COMBIN40 elements).

## OFF or 0

Time step predictions not based on contact status or nonlinear element status (default).

## Key3

Pressure load stiffness key. In general, use the default setting. Use a non-default setting only if you encounter convergence difficulties. Pressure load stiffness is automatically included when using eigenvalue buckling analyses (ANTYPE,BUCKLE), equivalent to Key $3=$ INCP. For all other types of analyses, valid arguments for Key3 are:

## NOPL

Do not include pressure load stiffness for any elements.

## no entry (default)

Include pressure load stiffness for elements SURF153, SURF154, SURF156, SURF159, SHELL181, PLANE182, PLANE183, SOLID185, SOLID186, SOLID187, SOLSH190, BEAM188, BEAM189, FOLLW201, SHELL208, SHELL209, SOLID272, SOLID273, SHELL281, SOLID285, PIPE288, PIPE289, and ELBOW290.

Do not include pressure load stiffness for elements SOLID65.

## INCP

Include pressure load stiffness for elements SOLID65, SURF153, SURF154, SURF154, SURF156, SURF159, SHELL181, PLANE182, PLANE183, SOLID185, SOLID186, SOLID187, BEAM188, BEAM189, SOLSH190, FOLLW201, SHELL208, SHELL209, SOLID272, SOLID273, SHELL281, SOLID285, PIPE288, PIPE289, and ELBOW290.

## Vtol

Tolerance for volumetric compatibility check in current-technology plane and solid elements (such as PLANE182, PLANE183, SOLID185, SOLID186, SOLID187, SOLSH190, SOLID272, and SOLID273) when mixed $u$-P formulation is employed. When displacement convergence is not checked, the default value is 1.0 $\times 10^{-5}$; when displacement convergence is checked, the default value is $1.0 \times 10^{-3}$. Vtol can range from 0.0 to 1.0 , but recommended values are between $1.0 \times 10^{-5}$ and $1.0 \times 10^{-2}$. For more details, see Volumetric Constraint Equations in u-P Formulations in the Theory Reference for the Mechanical APDL and Mechanical Applications.

## Notes

The SOLCONTROL command is designed to provide reliable and efficient default solution settings for singlefield full structural nonlinear or full transient analysis, or single-field thermal analysis. (It is not applicable for reduced transient analysis.) The optimized default settings and advanced internal solution algorithms can be used to solve the majority of structural/thermal, nonlinear/transient problems with the least amount of user intervention. The SOLCONTROL command is ON by default. In most cases, to successfully solve a problem the user only needs to:

- Choose NLGEOM,ON for large displacement/strain analysis.
- Choose NROPT,UNSYM to access unsymmetric pressure load stiffness, material stiffness, friction behavior, etc.
- Provide the initial step size through the NSUBST or DELTIM command.

To achieve this, the SOLCONTROL command chooses better default settings for a number of commands within ANSYS and uses optimized internal solution algorithms.

THOPT settings take precedence over SOLCONTROL settings.
Commands that ANSYS issues are written to files (such as log and load step files) as COMMAND,-1 (for example, KBC,-1).

## Note

The state of the SOLCONTROL command is not written by the CDWRITE or LSWRITE commands (so that the CDWRITE file does not rigidly define an individual solution command). Also note that switching SOLCONTROL ON and OFF between load steps is not recommended.

The SOLCONTROL command also serves as a "reset" command; when you issue SOLCONTROL, all the control commands set earlier in the interactive or input session are reset to their original default values.

Text database files (.CDB files created by CDWRITE) and load step files (. $\mathrm{SO1}, \mathrm{~s} 02$, . snn, etc. files created by LSWRITE) should be handled with care when SOLCONTROL,ON (default). Files of these types sometimes contain control commands that you did not issue intentionally. These extra commands can overwrite the default settings specified by SOLCONTROL. To avoid overwriting the SOLCONTROL settings when you are using . CDB files, use the following procedure:

1. Read the . CDB files into ANSYS.
2. Enter the solution processor [/SOLU].
3. Issue SOLCONTROL,ON.
4. Issue the desired control commands to overwrite the SOLCONTROL defaults as needed.

To use . Snn files properly, you should preview and edit them. Delete the unwanted solution commands before you execute the LSSOLVE command.

The following table lists the nonlinear solution parameters and algorithm differences when the command is active and inactive.

Table 253 SOLCONTROL - Default States Table

| Command | Argument | SOLCONTROL ON | SOLCONTROL OFF |
| :---: | :---: | :---: | :---: |
| General Options |  |  |  |
| NSUBST | NSBSTP | 1 load step if contact elements TARGE169, TARGE170, CONTA171, CONTA172, CONTA173, CONTA174, CONTA175, CONTA176, CONTA177 are not present; if these elements are present, 1 or 20 substeps, depending on the physics of the program | Previously specified value. If no specified value, defaults to 1 . |
|  | NSBMX | Determined by ANSYS | Previously specified value. If no specified value, defaults to NSBSTP. |
|  | NSBMN | Determined by ANSYS | Previously specified value. If no specified value, defaults to 1. |
|  | Carry | Determined by ANSYS | OFF |
| DELTIM | DTIME | 1 time span of the load step if contact elements TARGE169, TARGE170, CONTA171, CONTA172, CONTA173, CONTA174, CONTA175, CONTA176, CONTA177 are not present; if these elements are present, 1 or $1 / 20$ of the time span of the load step, depending on the physics of the program | Previously specified value, if any. |
|  | DTMIN | Determined by ANSYS | Previously specified value. If no specified value, defaults to DTIME |
|  | DTMAX | Determined by ANSYS | Previously specified value. If no specified value, defaults to time span of load step. |
|  | Carry | Determined by ANSYS | OFF |
| KBC | KEY | 0 (ramped) for static nonlinear, structural and thermal (steady state) analyses, as well as for transient analyses when TIMINT,OFF. 1 (stepped) for transient structural and | 0 for all types of transient or nonlinear analysis |


| Command | Argument | SOLCONTROL ON | SOLCONTROL OFF |
| :---: | :---: | :---: | :---: |
|  |  | thermal analyses when TIMINT,ON. (TIMINT,ON is the default for transient analyses.) |  |
| AUTOTS | Key | Chosen by program | OFF |
| EQSLV |  | Uses sparse solver. If PCG solver is chosen, sets multiplier to 2.0 for Newton-Raphson iteration. | Uses sparse solver. If PCG solver is chosen, sets multiplier to 1.0 for NewtonRaphson iteration. |
| CDWRITE and LSWRITE |  | Does not write default values for most of the relevant solution control commands or options listed in this table. | Write all the default values for solution control commands. |
| MONITOR |  | Active | Not available |
| Nonlinear Options |  |  |  |
| CNVTOL | TOLER | Force or moment convergence tolerance $=0.5 \%$ Displacement tolerance $=5 \%$ | Force or moment convergence tolerance $=0.1 \%$ Displacement tolerance not checked. |
|  | MINREF | 0.01 for force or moment; for heat flow and others the same as SOLCONTROL,OFF | For force or moment, 1.0 for heat flow, 1.0E-6 otherwise, 0 |
| NEQIT | NEQIT | Between 15 and 26, depending on the physics of the problem. | 25 |
| ARCLEN |  | A more aggressive scheme to openup time step is used. A more stable ARCLEN algorithm is used. | Use ARCLEN as in Release 5.3. |
| PRED | Sskey | On, unless SOLID65 is present. | OFF |
| LNSRCH | Key | Automatically turned ON when contact elements present. | OFF |
| CUTCONTROL | PLSLIMIT | 15\% | 5\% |
|  | NPOINT | 13 | 20 |
| OPNCONTROL | TEMP | . 01 | Not Available |
|  | NUM- STEP | 3 | Not Available |
| SSTIF | Key | ON for geometrically nonlinear analysis (NLGEOM, ON). | OFF |
| NROPT | ADPTKY | OFF, except: when frictional contact exists. | Automatically toggled on and off depending on whether plasticity or frictional contact exists or not. |
| TINTP | THETA | 1.0 | . 5 |
|  | TOL | 0.0 | . 2 |


| Command | Argument | SOLCONTROL ON | SOLCONTROL OFF |
| :---: | :---: | :---: | :---: |
| Algorithm Behavior |  |  |  |
| Deformed element shape (Jacobi) check used as criteria for early bisection |  | Active | Not available |
| Euler backward theta (for first order equations) |  | 1.0 for thermal analysis. | 0.0 |
| Log file |  | Does not write default values for any of the relevant commands or options listed in this table. | Write all the default values for solution controls commands. |
| Moment reference values |  | Automatically corrected when values become too small by using a reaction force times an element characteristic length. | When zero CONVTOL, MINREF value is used. |
| Automatic time step scheme |  | Check on nonconvergent patterns. Time step is opened up less aggressively; the increase factor (used in calculating the degree in which the time step is opened) $=1.5$ (in most cases). The calculation also takes into account the physics of the problem. | Check on nonconvergent patterns not implemented. Time step is opened up more aggressively; the increase factor $=2.0$ (in most cases). No physics dependency involved. |
| Reset of all solution control defaults in one command. |  | SOLCONTROL,ON or OFF | Not available |
| Nonlinear convergence criterion |  | When force norm is smaller than 1 , the calculated force value is still used as the REF value. If the calculated force value is approaching machine zero, the MINREF value is used as REF. | When force norm is smaller than 1 , the MINREF value is used as the REF value. |
| Warning message printed when negative diagonal in matrix is discovered. |  | Simplified message, not printed in some cases. | Detailed message printed for each iteration. |
| Stop button |  | Available in GUI. Jobname. ABT file can also be used. | Use Jobname. ABT file to control normal abort. |

## Menu Paths

Main Menu>Preprocessor>Loads>Load Step Opts>Nonlinear>Mixed U-P Toler<br>Main Menu>Preprocessor>Loads>Load Step Opts>Solution Ctrl<br>Main Menu>Solution>Load Step Opts>Nonlinear>Mixed U-P Toler<br>Main Menu>Solution>Load Step Opts>Solution Ctrl

## SOLU, NVAR, Item, Comp, Name

## Specifies solution summary data per substep to be stored.

POST2 6:Set Up
MP ME ST PR PRN <> <> <> EM EH DY PP <> EME MFS

## NVAR

Arbitrary reference number assigned to this variable (2 to NV [NUMVAR]).
Item
Label identifying the item. Valid item labels are shown in the table below. Some items may also require a component label.

## Comp

Component of the item (if required). Valid component labels are shown in the table below. None are currently required.

## Name

Thirty-two character name identifying the item on printouts and displays. Defaults to an eight character label formed by concatenating the first four characters of the Item and Comp labels.

## Notes

See also the PRITER command of POST1 to display some of these items directly. Valid for a static or full transient analysis. All other analyses have zeros for the data. Valid item and component labels for solution summary values are:

| Item | Valid Item Labels |
| :--- | :--- |
| ALLF | Total arc-length load factor (ratio of the load at equilibrium to the total applied <br> load) |
| ALDLF | Arc-length load factor increment (change in ALLF) |
| ARCL | Normalized arc-length radius |
| CNVG | Convergence indicator. |
| CRPRAT | Maximum creep ratio. |
| CSCV | Current segment convergence value. |
| CUCV | Current convergence value. |
| DICV | Displacement convergence value. |
| DSPRM | Descent parameter. |
| DTIME | Time step size. |
| EQIT | Number of equilibrium iterations. |
| FFCV | Fluid flow convergence value. |
| FOCV | Force convergence value. |
| HFCV | Heat flow convergence value. |
| NCMIT | Cumulative number of iterations. |
| NCMLS | Cumulative number of load steps |
| NCMSS | Cumulative number of substeps |


| Item | Valid Item Labels |
| :--- | :--- |
| Description |  |

## /SOLU

Enters the solution processor.

> SESSION: Processor Entry SOLUTION: Analysis Options

## Notes

This command is valid only at the Begin Level.

## Menu Paths

## Main Menu>Solution

## SOLUOPT

## Specifies "Solution options" as the subsequent status topic.

SOLUTION: Status
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Notes

This is a status [STAT] topic command. Status topic commands are generated by the GUI and will appear in the log file (Jobname. LOG) if status is requested for some items under Utility Menu> List> Status. This command will be immediately followed by a STAT command, which will report the status for the specified topic.

If entered directly into the program, the STAT command should immediately follow this command.

## Menu Paths

## Utility Menu>List>Status>Solution>General

## SOLVE, Action

## Starts a solution.

> SOLUTION: Analysis Options
> MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS

## Action

Action to be performed on solve (used only for linear perturbation analyses).

## ELFORM

Reform all appropriate element matrices in the first phase of a linear perturbation analysis.

## Notes

Starts the solution of one load step of a solution sequence based on the current analysis type and option settings. Use Action = ELFORM only in the first phase of a linear perturbation analysis.

## Menu Paths

Main Menu>DesignXplorer>Solution>Solve<br>Main Menu>Drop Test>Solve<br>Main Menu>Solution>Run FLOTRAN<br>Main Menu>Solution>Solve<br>Main Menu>Solution>Solve>Current LS

## SORT

## Specifies "Sort settings" as the subsequent status topic.

POST1:Status
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Notes

This is a status [STAT] topic command. Status topic commands are generated by the GUI and will appear in the log file (Jobname. LOG) if status is requested for some items under Utility Menu> List> Status. This command will be immediately followed by a STAT command, which will report the status for the specified topic.

If entered directly into the program, the STAT command should immediately follow this command.

## Menu Paths

Utility Menu>List>Status>General Postproc>Sort Module

## SOURCE, $X, Y, Z$

Defines a default location for undefined nodes or keypoints.
PREP 7: Keypoints
PREP7:Nodes
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## $X, Y, Z$

Global Cartesian coordinates for source nodes or keypoints (defaults to the origin).

## Command Default

Global Cartesian origin.

## Notes

Defines a global Cartesian location for undefined nodes or keypoints moved during intersection calculations [MOVE or KMOVE].

## Menu Paths

This command cannot be accessed from a menu.

## SPACE, NODE

## Defines a space node for radiation using the Radiation Matrix method.

AUX12: Radiation Matrix Method
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

## NODE

Node defined to be the space node.

## Command Default

No space node (no radiation to space).

## Notes

A space node is required in an open system to account for radiation losses.
If using SPACE with the ANSYS Multi-field solver (MFS), you must capture this command in the command file using MFCMMAND. This step is necessary because at the end of each field computation, this command is unset.

## Menu Paths

Main Menu>Radiation Opt>Matrix Method>Other Settings

## SPADP, FREQ, NUMADP, RMSSP, FACTB, FACTE, SLVOPT, SLVACC

## Automatically refines a HF119 tetrahedral element mesh based on S-parameter convergence.

SOLUTION: Analysis Options
MP <> <> <> <> <> <> <> <> EH <> <> <> <> <>

## Freq

Working frequency (Hz).

## NUMADP

Maximum number of refinement iterations ( 0 to 10). Defaults to 0 .

## RMSSP

Root mean square error criteria for $|S|$. Defaults to 0.01 .
FACTB
Beginning refinement percentage (0 to 100). Defaults to 10.

## FACTE

Ending refinement percentage (0 to 100). Defaults to 10 .
SLVOPT
Solver option:
0
SPARSE
1
QMR (symmetric matrices)

2
ICCG (unsymmetric matrices)

## SLVACC

Convergence criteria for an iterative solver. Defaults to $1.0 \mathrm{E}-6$.

## Notes

The refinement factor varies linearly with the number of refinement iterations.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

This command cannot be accessed from a menu.

SPARM, PORTI, PORTJ, PAROPT

## Calculates parameters between ports of a network system.

POST1:Magnetics Calculations
MP <> <> <> <> <> <> <> <> EH <> PP <> <> <>

## PORTI

Port number of the excited port with a excitation mode. (See the description of the HFPORT command.)

## PORTJ

Port number of the output port. This could be used for a multiport system. All ports but PORTI must be matched.

## PAROPT

Output parameter option:
0
S-parameters (default).
1
Reflection coefficient and voltage standing wave ratio.

## Notes

SPARM calculates parameters for multiport or single port (PORTI = PORTJ) systems.
If $\operatorname{PAROPT}=0$, the SPARM command macro returns the following complex S parameters: SII, $\mathrm{dBSII}, \mathrm{SIIPHR}$, SJl, dBSJI, and SJIPHR, where "I" is the port number for the excited port, "J" is the output port number and PHR is the phase angle.

## Menu Paths

Main Menu>General Postproc>Elec\&Mag Calc>Port>S-Parameters

## SPCNOD, ENCL,NODE

## Defines a space node for radiation using the Radiosity method.

SOLUTION: Radiosity
AUX12: Radiosity Solver
MP ME <> PR <> <> <> <> <> <> <> PP <> EME MFS

ENCL
Radiating surface enclosure number. Defaults to 1 . If ENCL = STAT, the command lists all enclosure space nodes. If ENCL = DELE, the command deletes all enclosure space nodes.

## NODE

Node defined to be the space node.

## Notes

For open systems, an enclosure may radiate to a space node (NODE).
Open systems may be characterized by one or more enclosures (ENCL). Each enclosure may radiate to a different space node (NODE).

For a space node that is not part of the finite element model, specify the temperature using the $\mathbf{D}$ command. For the first load step, the space node temperature ramps from the uniform temperature specified by the TUNIF command to the temperature specified by the $\mathbf{D}$ command. For subsequent load steps, it ramps from the previous value of the space node temperature. For intermediate load steps, use the SPCNOD,DELETE command and specify the space node temperature again to ramp from the uniform temperature.

For a space node that is part of the finite element model, the temperature is that calculated during the finite element solution.

## Menu Paths

# Main Menu>Preprocessor>Radiation Opts>Solution Opt <br> Main Menu>Radiation Opt>Radiosity Meth>Solution Opt Main Menu>Solution>Radiation Opts>Solution Opt 

## SPCTEMP, ENCL, TEMP

## Defines a free-space ambient temperature for radiation using the Radiosity method.

SOLUTION: Radiosity
AUX12: Radiosity Solver
MP ME <> PR <> <> <> <> <> <> <> PP <> EME MFS

ENCL
Radiating surface enclosure number. Defaults to 1 . If $E N C L=$ STAT, the command lists all enclosure space temperatures. If $E N C L=$ DELE, the command deletes all enclosure space temperatures.

TEMP
Temperature of free-space in the reference temperature system. The temperature will be offset by the value specified in the TOFFST command for internal calculations.

## Notes

For open systems, an enclosure may radiate to the free-space ambient temperature (TEMP).
Open systems may be characterized by one or more enclosures (ENCL). Each enclosure may radiate to a different free-space ambient temperature (TEMP).

For the first load step, the space temperature ramps from the uniform temperature specified by the TUNIF command to the temperature specified by the SPCTEMP command. For subsequent load steps, it ramps from the previous value of the space temperature. For intermediate load steps, use the SPCTEMP,DELETE command and specify the space temperature again to ramp from the uniform temperature.

If using SPCTEMP with the ANSYS Multi-field solver (MFS), you must capture this command in the command file using MFCMMAND. This step is necessary because at the end of each field computation, this command is unset.

## Menu Paths

Main Menu>Preprocessor>Radiation Opts>Solution Opt
Main Menu>Radiation Opt>Radiosity Meth>Solution Opt
Main Menu>Solution>Radiation Opts>Solution Opt

## SPDAMP, TBLNO, CURVNO, DampRatio

Defines input spectrum damping in a multi-point response spectrum analysis.
SOLUTION:Spectrum Options
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS

## TBLNO

Input table number. Corresponds to the frequency table number (TBLNO on the SPFREQ command).

## CURVNO

Input curve number. Corresponds to the spectrum values curve number (CURVNO on the SPVAL command).

## DampRatio

Damping ratio for the response spectrum curve. Up to 20 different curves may be defined, each with a different damping ratio. Damping values must be input in ascending order.

## Notes

Defines multi-point response spectrum damping value to be associated with:

- Previously defined frequency points (SPFREQ).
- Subsequently defined spectrum points (SPVAL).

Damping values are used only to identify input spectrum values for the mode coefficients calculation.
The curve number must be input in ascending order starting with 1.
This command is also valid in PREP7.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu>Preprocessor>Loads>Load Step Opts>Spectrum>MultiPt>Spect vs Freq Main Menu>Solution>Load Step Opts>Spectrum>MultiPt>Spect vs Freq

## SPEC

## Specifies "Miscellaneous specifications" as the subsequent status topic.

POST1:Status
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Notes

This is a status [STAT] topic command. Status topic commands are generated by the GUI and will appear in the log file (Jobname. LOG) if status is requested for some items under Utility Menu> List> Status. This command will be immediately followed by a STAT command, which will report the status for the specified topic.

If entered directly into the program, the STAT command should immediately follow this command.

## Menu Paths

## Utility Menu>List>Status>General Postproc>Output Options

## SPFREQ, TBLNO, FREQ1, FREQ2, FREQ3, FREQ4, FREQ5, FREQ6, FREQ7

## Defines the frequency points for the input spectrum tables SPVAL vs. SPFREQ for multi-point spectrum

 analysis.SOLUTION: Spectrum Options
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS

## TBLNO

Input table number. Up to 20 tables may be defined.
FREQ1, FREQ2, FREQ3,..., FREQ7
Frequency points (Hz) for spectrum vs. frequency tables. FREQ1 should be greater than zero, and values must be in ascending order.

## Notes

The spectrum values are input with the SPVAL command. A separate SPFREQ command must be used for each table defined. Frequencies must be in ascending order.

Repeat SPFREQ command for additional frequency points. Values are added after the last nonzero frequency.
If all fields after SPFREQ are blank, all input vs. frequency tables are erased. If TBLNO is the only non-blank field, all corresponding SPVAL curves are erased.

Use the SPTOPT and STAT commands to list current frequency points.
This command is also valid in PREP7.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

This command cannot be accessed from a menu.

## SPFSS, FREQB, FREQE, FREQINC, PHIB, PHIE, PHIINC, THETAB, THETAE, THETAINC, SWPOPT, EFACC, OUTPUT, <br> FILEOPT

## Performs frequency sweep or angle sweep calculations to determine reflection and transmission parameters of a frequency selective surface.

SOLUTION: Analysis Options
MP <> <> <> <> <> <> <> <> EH <> PP <> <> <>

## FREQB

Frequency $(\mathrm{Hz})$ at the beginning of the $F R E Q B$ to $F R E Q E$ range. If $F R E Q E$ is blank, the solution is done only at frequency $F R E Q B$.

## FREQE

Frequency at end of this range.

## FREQINC

Frequency increment. The number of solutions performed is [(FREQE-FREQB)/FREQINC] + 1. Solutions are always performed at FREQB and FREQE.

## PHIB

Angle $\phi$ (Degree) of spherical coordinates at the beginning of the PHIB to PHIE range. If PHIE is blank, the solution is done only at angle PHIB.

## PHIE

Angle $\phi$ at end of this range.

## PHIINC

$\phi$ angle increment. The number of solutions performed is $[(P H I E-P H I B) / P H I I N C]+1$. Solutions are always performed at PHIB and PHIE.

## THETAB

Angle $\theta$ (Degree) of spherical coordinates at the beginning of the THETAB to THETAE range. If THETAE is blank, the solution is done only at angle.

## thetal

Angle $\theta$ at end of this range.

## THETAINC

$\theta$ angle increment. The number of solutions performed is [(THETAE - THETAB) / THETAINC] +1 . Solutions are always performed at THETAB and THETAE.

## SWPOPT

Solution Method (See HROPT command):

## 0

Variational Technology (default). See notes below. 1

Full method.
2
Variational Technology using a perfect absorber. See notes below.
EFACC
Electric field accuracy for fast exploration method. Defaults to 0.01 .
OUTPUT
0
Create minimal size results file required to compute $S$-parameters for the last port excitation case, for all frequencies (default).

1
Create complete results file for the last port excitation case, for all frequencies.
2
Create complete results file for the last port excitation case, for the last frequency only. Valid only for full method.

## FILEOPT

0
Output S-parameter magnitude and phase angle in Touchstone file.
1
Output S-parameter magnitude in dB and phase angle in Touchstone file.

## Notes

Only one parameter among frequency, $\phi$ angle, and $\theta$ angle can be chosen to sweep each time. An output file filename. fnp ( $\mathrm{n}=1$ or 2 ) is generated after the sweep solution.

To use any Variational Technology method, you must have the separately licensed VT Accelerator. The Variational Technology Perfect Absorber method (Method = VTPA) is about $20 \%$ faster but slightly less accurate than the Variational Technology method (Method = VT).

The Variational Technology methods ( $S W P O P T=0$ or 2 ) are only available for frequency sweep calculations.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.
Menu Paths
This command cannot be accessed from a menu.

SPGRAPH, tBLNO, CURVNO, CURVNOBeg
Displays input spectrum curves for MPRS analysis.
SOLUTION: Spectrum Options
MP ME ST $<><><><><><><><>$ PP <> EME MFS

## TBLNO

Table number to display. Defaults to 1 .
CURVNO
Curve number to display. Defaults to none.

## CURVNOBeg

Beginning of the curve number range to display. Defaults to 1 .

## Notes

You can display up to 10 input spectrum curves (SPVAL and SPFREQ commands) with $\log X$ scale.
If the input spectrum curves are not associated with a damping value (SPDAMP command), CURVNO and CURVNOBeg are not applicable and table TBLNO is displayed. Otherwise, specify CURVNO or CURVNOBeg:

- if CURVNO is used, one curve is displayed.
- if CURVNOBeg is used, up to 10 curves are displayed. CURVNOBeg is the beginning of the curve number range of interest.


## Menu Paths

This command cannot be accessed from a menu.

## SPH4, XCENTER, YCENTER, RAD1, RAD2

Creates a spherical volume anywhere on the working plane.
PREP 7:Primitives
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## XCENTER, YCENTER

Working plane X and Y coordinates of the center of the sphere.

## RAD1, RAD2

Inner and outer radii (either order) of the sphere. A value of zero or blank for either RAD1 or RAD2 defines a solid sphere.

## Notes

Defines either a solid or hollow spherical volume anywhere on the working plane. The sphere must have a spatial volume greater than zero. (i.e., this volume primitive command cannot be used to create a degenerate volume as a means of creating an area.) A sphere of $360^{\circ}$ will be defined with two areas, each consisting of a hemisphere. See the SPHERE and SPH5 commands for other ways to create spheres.

When working with a model imported from an IGES file (DEFAULT import option), you can create only solid spheres. If you enter a value for both RAD1 and RAD2 the command is ignored.

## Menu Paths

> Main Menu $>$ Preprocessor $>$ Modeling $>$ Create $>$ Primitives $>$ Solid Sphere
> Main Menu $>$ Preprocessor $>$ Modeling $>$ Create $>$ Volumes $>$ Sphere $>$ Hollow Sphere Main Menu $>$ Preprocessor $>$ Modeling $>$ Create $>$ Volumes $>$ Sphere $>$ Solid Sphere Main Menu $>$ Preprocessor $>$ Trefftz Domain $>$ TZ Geometry $>$ Create $>$ Volume $>$ Sphere $>$ Solid Sphere

## SPH5, XEDGE1, YEDGE1, XEDGE2, YEDGE2

## Creates a spherical volume by diameter end points.

PREP 7: Primitives
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## XEDGE1, YEDGE1

Working plane X and Y coordinates of one edge of the sphere.

## XEDGE2, YEDGE2

Working plane $X$ and $Y$ coordinates of the other edge of the sphere.

## Notes

Defines a solid spherical volume anywhere on the working plane by specifying diameter end points. The sphere must have a spatial volume greater than zero. (i.e., this volume primitive command cannot be used to create a degenerate volume as a means of creating an area.) A sphere of $360^{\circ}$ will be defined with two areas, each consisting of a hemisphere. See the SPHERE and SPH4 commands for other ways to create spheres.

## Menu Paths

Main Menu>Preprocessor>Modeling>Create>Volumes $>$ Sphere $>$ By End Points Main Menu>Preprocessor>Trefftz Domain>TZ Geometry>Create>Volume>Sphere>By End Points

## SPHERE, RAD1, RAD2, THETA1, THETA2

Creates a spherical volume centered about the working plane origin.
PREP 7: Primitives
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## RAD1, RAD2

Inner and outer radii (either order) of the sphere. A value of zero or blank for either RAD1 or RAD2 defines a solid sphere.

THETA1, THETA2
Starting and ending angles (either order) of the sphere. Used for creating a spherical sector. The sector begins at the algebraically smaller angle, extends in a positive angular direction, and ends at the larger
angle. The starting angle defaults to $0.0^{\circ}$ and the ending angle defaults to $360.0^{\circ}$. See the Modeling and Meshing Guide for an illustration.

## Notes

Defines either a solid or hollow sphere or spherical sector centered about the working plane origin. The sphere must have a spatial volume greater than zero. (i.e., this volume primitive command cannot be used to create a degenerate volume as a means of creating an area.) Inaccuracies can develop when the size of the object you create is much smaller than the relative coordinate system values (ratios near to or greater than 1000). If you require an exceptionally small sphere, create a larger object, and scale it down to the appropriate size.

For a solid sphere of $360^{\circ}$, you define it with two areas, each consisting of a hemisphere. See the SPH4 and SPH5 commands for the other ways to create spheres.

## Menu Paths

Main Menu $>$ Preprocessor $>$ Modeling $>$ Create $>$ Volumes $>$ Sphere $>$ By Dimensions
Main Menu>Preprocessor>Trefftz Domain>TZ Geometry>Create>Volume>Sphere>By Dimensions

SPICE, Fname, Ext, RMSERR, Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9, Z10, Z11, Z12, Z13, Z14, Z15, Z16
Generates a SPICE subcircuit model using S-parameters from a Touchstone file.

> POST1:Special Purpose
> MP <> <> <> <> <> <> <> <> EH <> PP <> <> <>

## Fname

File name and directory path ( 248 characters maximum, including the characters needed for the directory path) of the Touchstone input file with s-parameters. An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

## Ext

Extension of Touchstone file (.snp where n is the number of ports).

## RMSERR

The convergence criteria (root-mean-square error) for the SPICE subcircuit model. Default determined by ANSYS.

## z1, z2, z3, ..., $z 16$

Reference impedance for ports $1,2,3, \ldots 16$. Default to 50 ohms.

## Notes

SPICE allows a maximum of 16 reference impedances.
The frequency range is determined by the frequency range of the Touchstone file.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

This command cannot be accessed from a menu.

SPLINE, P1, P2, P3, P4, P5, P6, XV1, YV1, ZV1, XV6, YV6, ZV6
Generates a segmented spline through a series of keypoints.
PREP 7:Lines
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## P1, P2, P3, ..., P6

Keypoints through which the spline is fit. At least two must be defined. If $P 1=P$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI).

The following fields are used only if specified end slopes on the line are desired, otherwise zero curvature end slopes will be automatically calculated to produce a line which is "straight" in the active coordinate system. To specify end slopes, use the following fields to define a "slope vector" (one for each end of the line, if desired) that has its tail at the origin and its head at the point $X V n, Y V n, Z V n$ in the active coordinate system [CSYS]. The corresponding end slope of the line will then be parallel to this "slope vector."

## xV1, YV1, zV1

Location (in the active coordinate system) of the head of the "slope vector" corresponding to the slope at the $P 1$ end of the spline. The tail of the vector is at the origin of the coordinate system.
xV6, YV6, zV6
Location of the head of the "slope vector" corresponding to the slope at the $P 6$ (or the last keypoint if fewer than six specified) end of the spline.

## Notes

The output from this command is a series of connected lines (one line between each pair of keypoints) that together form a spline. Note that solid modeling in a toroidal coordinate system is not recommended.

## Menu Paths

```
Main Menu>Preprocessor>Modeling>Create>Lines>Splines>Segmented Spline Main Menu>Preprocessor>Modeling>Create>Lines>Splines>With Options>Segmented Spline
```


## SPLOT, NA1, NA2, NINC, MESH

## Displays the selected areas and a faceted view of their underlying surfaces

PREP 7: Areas
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NA1

Starting area for display of areas and underlying surfaces. If NA1 = ALL (default), NA2 and NINC are ignored and all selected areas are displayed (ASEL command).

## NA2

Last area to be displayed.

## NINC

Numeric value setting steps between NA1 and NA2 for display. Default value is (1).

## MESH

Specifies a rectangular mesh density used to display the underlying surface (default 4 , i.e. $4 \times 4$ ).

## Notes

This command is valid in any processor. The plot output displays the external and internal trim curves and underlying surface. You cannot obtain a faceted view of your surface areas when you are using the /EXPAND command to create larger graphics displays.

Use APLOT for trimmed surface display.

## Menu Paths

## This command cannot be accessed from a menu.

## SPMWRITE, Method, NMODE, Inputs, InputLabels, Outputs, OutputLabels, NIC, VeIAccKey, FileFormat

Calculates the state-space matrices and writes them to the SPM file.
POST1:Special Purpose
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS

## Method

Reduction method for the calculation of the state-space matrices.
MODAL
Method based on modal analysis results from LANB, LANPCG, or SNODE eigensolver (default).

## NMODE

Number of modes to be used. Defaults to all modes.

## Inputs

Definition of the inputs. Defaults to all load vectors on the MODE file.
If an integer is entered, it specifies the number of load vectors from the MODE file used for the definition of the inputs. The first Inputs load vectors are used.

If Inputs is an array parameter, the first column is the node number and the second column is the structural degree of freedom ( $1=U X, 2=U Y, 3=U Z, 4=$ ROTX, $5=$ ROTY, $6=$ ROTZ ) indicating input points. The number of rows in the array parameter is equal to the number of inputs.

## InputLabels

Definition of the input labels. Defaults to the load vector numbers or input definition (node and degree of freedom array parameter), depending on the Inputs specification.

If a character array parameter is entered (Type=CHAR in the *DIM command), each 8 character string represents an input label. Only valid when Inputs is an array parameter

## Outputs

Definition of the outputs. Defaults to the inputs.
If an array parameter is entered, the first column is the node number and the second column is the structural degree of freedom ( $1=\mathrm{UX}, 2=\mathrm{UY}, 3=\mathrm{UZ}, 4=$ ROTX, $5=$ ROTY, $6=$ ROTZ ) of the output points. The number of rows in the array parameter is equal to the number of outputs.

## OutputLabels

Definition of the output labels. Defaults to the output definition (node and degree of freedom) if used, else defaults to the InputLabels.

If a character array parameter is entered (Type=CHAR in the *DIM command), each 8 character string represents an output label.

## NIC

Load vector on the MODE file used for the calculation of the initial conditions. Defaults to no initial condition.

## VelAccKey

Output velocities and accelerations key.
ofF
Output displacements only (default).
ON
Output displacements, velocities and accelerations.

## FileFormat

The format of the SPM file.
0
Dense format.
1
Matrix Market Exchange format (non-zero terms only).
2
Simplorer SML format without reference (default).
3
Simplorer SML format with common reference.
4
Simplorer SML format with independent references.

## Notes

The SPMWRITE generates the file Jobname.SPM containing the state-space matrices and other information.
The following applies to the SML formats (FileFormat $=2,3$, and 4 ):

- For conservative systems where the outputs are equal to the inputs (Outputs is left blank):
- The labels for the inputs (InputLabels) are required.
- The Inputs must use the array parameter option so that the input degrees of freedom (DOFs) are known.
- For non-conservative systems where the outputs are not equal to the inputs:
- The labels for the outputs (OutputLabels) are required.
- The file formats with references (FileFormat $=3$ and 4) do not apply.
- Velocity and acceleration results are not included in the state-space matrices calculation (VelAccKey $=$ OFF)
- File format with common reference (FileFormat =3) does not apply if the inputs are based on DOFs of a different nature. All input DOFs must be either all rotational or all translational and not a mix of the two.
- A graphics file (Jobname_SPM.PNG) is generated. It contains an element plot of the model.

For more details about the reduction method and the generation of the state-space matrices, see ReducedOrder Modeling for State-Space Matrices Export in the Theory Reference.

For examples of the command usage, see "State-Space Matrices Export".

## Menu Paths

This command cannot be accessed from a menu.

SPOINT, NODE, $X, Y, Z$

## Defines a point for moment summations.

> POST1:Special Purpose
> MP ME ST PR PRN <> <><><><><> PP <> EME MFS

## NODE

Node number of the desired point. If zero, use $X, Y, Z$ to describe point.
$\boldsymbol{X}, \mathbf{Y}, \boldsymbol{Z}$
Global Cartesian coordinates of the desired summation point. Used if NODE is 0 . Defaults to $(0,0,0)$.

## Command Default

No point is defined by default; you must either specify a node or coordinates.

## Notes

Defines a point (any point other than the origin) about which the tabular moment summations are computed [NFORCE, FSUM]. If force summations are desired in other than the global Cartesian directions, a node number must be specified on the NODE field, and the desired coordinate system must be activated with RSYS.

## Menu Paths

Main Menu>General Postproc>Nodal Calcs>Summation Pt>At Node
Main Menu>General Postproc>Nodal Calcs>Summation Pt>At XYZ Loc

SPOPT, Sptype, NMODE, Elcalc, modReuseKey

## Selects the spectrum type and other spectrum options.

SOLUTION: Spectrum Options
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS
Product Restrictions

## Sptype

Spectrum type:
SPRS
Single point excitation response spectrum (default). See also the SVTYP command.

## MPRS

Multiple point excitation response spectrum.

## DDAM

Dynamic design analysis method.

## PSD

Power spectral density.

## NMODE

Use the first NMODE modes from the modal analysis. Defaults to all extracted modes, as specified by the MODOPT and BUCOPT commands. NMODE cannot be larger than 10000.

## Elcalc

Element results calculation key (for Sptype = PSD only):
NO
Do not calculate element results and reaction forces (default).

## YES

Calculate element results and reaction forces, as well as the nodal degree of freedom solution.

## modReuseKey

Key for existing MODE file reuse when running multiple spectrum analyses:

## NO

No spectrum analysis has been performed yet (default).

## YES

This is not the first spectrum analysis. The MODE file will be reused and the necessary files will be cleaned up for the new spectrum analysis.

## Notes

Valid only for a spectrum analysis (ANTYPE,SPECTR). This operation must be preceded by a modal solution (ANTYPE,MODAL) with the appropriate files available. If used in SOLUTION, this command is valid only within the first load step.

This command is also valid in PREP7.

## Product Restrictions

Only Sptype = SPRS is allowed in ANSYS Professional.

## Menu Paths

# Main Menu>Preprocessor>Loads>Analysis Type>Analysis Options Main Menu>Solution>Analysis Type>Analysis Options 

## SPREAD, value

## Turns on a dashed tolerance curve for the subsequent curve plots.

POST26: Display
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## VALUE

Amount of tolerance. For example, 0.1 is $\pm 10 \%$.

## Command Default

No tolerance curve.

## Menu Paths

```
Main Menu>TimeHist Postpro>Settings>Graph
```

SPSCAN, FREQ, LOCAL, PHIB, PHIE, PHIINC, THETAB, THETAE, THETAINC, FILEOPT, SLVOPT, SLVACC, SYMOPT

## Performs a harmonic analysis of a unit cell over a range of angles and extracts the S-parameter.

SOLUTION: Analysis Options
MP <> <> <> <> <> <> <> <> EH <> PP <> <> <>

## FREQ

Working frequency in Hz.
LOCAL
Local coordinate system number (defaults to 0 ).
PHIB
Beginning angle from $x$-axis towards $y$-axis, $\phi$, in degrees (defaults to 0 ).
PHIE
Ending angle from $x$-axis towards $y$-axis, $\phi$, in degrees (defaults to 0 ).

## PHIINC

Increment of $\phi$ in degrees (defaults to 0 ).

## THETAB

Beginning angle from +z -axis towards -z -axis, $\theta$, in degrees (defaults to 0 ).

## thetas

Ending angle from +z -axis towards -z -axis, $\theta$, in degrees (defaults to 0 ).
THETAINC
Increment of $\theta$ in degrees (defaults to 0 ).

## FILEOPT

0
Output S-parameter magnitude and phase angle to Jobname.scan.
1
Output S-parameter magnitude in dB and phase angle to Jobname.scan.

## SLVOPT

Solver option:
0
SPARSE
1
QMR (symmetric matrices)

2
ICCG (unsymmetric matrices)

## SLVACC

Convergence criteria for an iterative solver. Defaults to $1.0 \mathrm{E}-6$.
SYMOPT
Key for S-parameter output format:
0
The S-parameter matrix is symmetrical (default). The following are examples.
For a 2 port system that has only port 1 excited, the assumption is that $S_{12}=S_{21}$ and $S_{22}=S_{11}$.
$[\mathrm{S}]=\left[\begin{array}{ll}\mathrm{S} 11 & \mathrm{~S} 12 \\ \mathrm{~S} 21 & \mathrm{~S} 22\end{array}\right]$

For a 3 port system that has only port 1 excited, the assumption is that $S_{12}=S_{21}$ and $S_{13}=S_{31}$.
$[\mathrm{S}]=\left[\begin{array}{ccc}\mathrm{S} 11 & \mathrm{~S} 12 & \mathrm{~S} 13 \\ \mathrm{~S} 21 & 0 & 0 \\ \mathrm{~S} 31 & 0 & 0\end{array}\right]$

1
The S-parameter matrix is unsymmetrical. The following are examples.
For a 2 port system that has only port 1 excited, the assumption is that $S_{12}$ and $S_{22}$ are zero.
$[\mathrm{S}]=\left[\begin{array}{ll}\mathrm{S} 11 & 0 \\ \mathrm{~S} 21 & 0\end{array}\right]$
For a 3 port system that has only port 1 excited, the assumption is that $S_{12}, S_{22}, S_{32}, S_{13}, S_{23}$, and $S_{33}$ are all zero.
$[\mathrm{S}]=\left[\begin{array}{lll}\mathrm{S} 11 & 0 & 0 \\ \mathrm{~S} 21 & 0 & 0 \\ \mathrm{~S} 31 & 0 & 0\end{array}\right]$

## Notes

See the figure Figure 4.19: "Spherical Coordinates" in the High-Frequency Electromagnetic Analysis Guide for an illustration of the coordinate system.

## Menu Paths

Main Menu>Solution>Solve>S-Par Angle Sweep

## SPSWP, FREQB, FREQE, FREQINC, SWPOPT, EFACC, OUTPUT, FILEOPT, SLVOPT, SLVACC, SYMOPT

## Computes S-parameters over a frequency range and writes them to a file.

SOLUTION: Analysis Options

$$
\mathrm{MP}<><><><><><><><>\mathrm{EH}<>\mathrm{PP}<><><>
$$

## FREQB

Frequency $(\mathrm{Hz})$ at the beginning of the $F R E Q B$ to $F R E Q E$ range. If $F R E Q E$ is blank, the solution is done only at frequency $F R E Q B$.

## FREQE

Frequency at end of this range.

## FREQINC

Frequency increment. The number of solutions performed is [(FREQE-FREQB)/FREQINC] + 1. Solutions are always performed at $F R E Q B$ and $F R E Q E$.

## SWPOPT

Solution Method (See HROPT command):
0
Variational Technology (default).

1
Full method.
2
Variational Technology using a perfect absorber.

## Note

To use any Variational Technology method, you must have the separately licensed VT Accelerator. The Variational Technology Perfect Absorber method (Method $=$ VTPA) is about $20 \%$ faster but slightly less accurate than the Variational Technology method (Method=VT).

## EFACC

Electric field accuracy for fast exploration method. Defaults to 0.01 .
OUTPUT
0
Create minimal size results file required to compute S-parameters for the last port excitation case (see "Notes" (p. 1616)), for all frequencies. (default).

1
Create complete results file for the last port excitation case (see "Notes" (p.1616)), for all frequencies.
2
Create complete results file for the last port excitation case (see "Notes" (p.1616)), for the last frequency only, valid only for full method.

## FILEOPT

0
Output S-parameter magnitude and phase angle in Touchstone file.
1
Output S-parameter magnitude in dB and phase angle in Touchstone file.
2
Output S-parameter real and imaginary parts in Touchstone file.

## SLVOPT

0
SPARSE
1
QMR (symmetric matrices).
2
ICCG (unsymmetric matrices).
SLVACC
Convergence criteria for an iterative solver. Defaults to 1.0E-6.

## SYMOPT

Key for S-parameter output format:
0
The S-parameter matrix is symmetrical (default). The following are examples.
For a 2 port system that has only port 1 excited, the assumption is that $S_{12}=S_{21}$ and $S_{22}=S_{11}$.
$[\mathrm{S}]=\left[\begin{array}{ll}\mathrm{S} 11 & \mathrm{~S} 12 \\ \mathrm{~S} 21 & \mathrm{~S} 22\end{array}\right]$
For a 3 port system that has only port 1 excited, the assumption is that $S_{12}=S_{21}$ and $S_{13}=S_{31}$.
$[\mathrm{S}]=\left[\begin{array}{ccc}\mathrm{S} 11 & \mathrm{~S} 12 & \mathrm{~S} 13 \\ \mathrm{~S} 21 & 0 & 0 \\ \mathrm{~S} 31 & 0 & 0\end{array}\right]$
1
The S-parameter matrix is unsymmetrical. The following are examples.
For a 2 port system that has only port 1 excited, the assumption is that $S_{12}$ and $S_{22}$ are zero.
$[S]=\left[\begin{array}{ll}S 11 & 0 \\ S 21 & 0\end{array}\right]$
For a 3 port system that has only port 1 excited, the assumption is that $\mathrm{S}_{12}, \mathrm{~S}_{22}, \mathrm{~S}_{32}, \mathrm{~S}_{13}, \mathrm{~S}_{23}$, and $\mathrm{S}_{33}$ are all zero.
$[S]=\left[\begin{array}{lll}S 11 & 0 & 0 \\ \text { S21 } & 0 & 0 \\ \text { S31 } & 0 & 0\end{array}\right]$

## Notes

This command computes S-parameters by sequencing through a series of harmonic solutions with different port excitations over the desired frequency range. To use this function, port flag boundary conditions must be previously set (see SF, SFA for exterior waveguide ports, or BFA, BFL or BF for interior waveguide or transmission line ports). Ports should be numbered sequentially from "1" with no gaps in the numbering. Resulting S-parameters are written to a file jobname.snp, where $n$ is the number of ports. The file is written in Touchstone format.

S-parameters require a sequence of solutions whereby for each solution, one port is "excited" and the other ports are "matched". Each solution represents one column of a S-parameter matrix (i.e., if Port 1 is excited for a three-port system, the resulting column represents the S11, S21 and S31 S-parameters). A full S-parameter matrix for a $n$-port system at one frequency requires $n$ solutions alternating "excited" and "matched" port boundary conditions at each port. The SPSWP command will solve a column of the S-parameter matrix for each port that has a defined excitation. If all ports have a defined excitation, then the full S-parameter matrix will be computed.

To prepare the ports for SPSWP, each port must be defined (flagged) as a port and it must have a port excitation defined. For waveguide ports, excitation is defined using the HFPORT command. For transmission line ports, excitation is defined using the BFA, BFL, or BF commands using the JS, H, or EF load options. Transmission line excitation must be defined on the port surface itself (nodes, lines, or areas).

## Menu Paths

Main Menu>Solution>Solve>S-Par Sweep

## SPTOPT

Specifies "Spectrum analysis options" as the subsequent status topic.
SOLUTION: Status
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

## Notes

This is a status [STAT] topic command. Status topic commands are generated by the GUI and will appear in the log file (Jobname. LOG) if status is requested for some items under Utility Menu> List> Status. This command will be immediately followed by a STAT command, which will report the status for the specified topic.

If entered directly into the program, the STAT command should immediately follow this command.

## Menu Paths

Main Menu>Preprocessor>Loads>Load Step Opts>Spectrum>SinglePt>Show Status<br>Main Menu>Solution>Load Step Opts>Spectrum>SinglePt>Show Status<br>Utility Menu>List>Status>Solution>Spectrum Options

## SPUNIT, TBLNO, Type, GVALUE, KeyInterp

## Defines the type of multi-point response spectrum.

SOLUTION:Spectrum Options
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS

## TBLNO

Input table number.
Type
Label identifying the type of spectrum:
DISP
Displacement spectrum (SPVAL values interpreted as displacements with units of length).
VELO
Velocity spectrum (SPVAL values interpreted as velocities with units of length/time).
ACEL
Acceleration spectrum (SPVAL values interpreted as accelerations with units of length/time2).

## ACCG

Acceleration spectrum (SPVAL values interpreted as accelerations with units of g/time2).

## FORC

Force spectrum.
PRES
Pressure spectrum.

## gVALUE

Value of acceleration due to gravity in any arbitrary units for Type=ACCG table. Default is $386.4 \mathrm{in} / \mathrm{sec} 2$.

## KeyInterp

Key to activate or deactivate the linear interpolation between input response spectrum points and input response spectrum curves:

## 0 (OFF or NO)

Deactivate linear and use logarithmic interpolation. This value is the default.

## 1 (ON or YES)

Activate linear interpolation.

## Command Default

Acceleration (ACEL) spectrum (acceleration $2 / \mathrm{Hz}$ ).

## Notes

Defines the type of multi-point response spectrum defined by the SPFREQ and SPVAL commands.
Force (FORC) and pressure (PRES) type spectra can be used only as a nodal excitation.
GVALUE is valid only when type=ACCG is specified. A zero or negative value cannot be used. A parameter substitution can also be performed.

This command is also valid in PREP7.

## Menu Paths

Main Menu>Preprocessor>Loads>Load Step Opts>Spectrum>MultiPt>Settings
Main Menu>Solution>Load Step Opts>Spectrum>MultiPt>Settings

SPVAL, TBLNO, CURVNO, SV1, SV2, SV3, SV4, SV5, SV6, SV7
Defines multi-point response spectrum values.
SOLUTION: Spectrum Options
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS

## TBLNO

Input table number. It corresponds to TBLNO on the SPFREQ command.

## CURVNO

Input curve number. It corresponds to CURVNO on the SPDAMP command (optional).
SV1, SV2, SV3, , , . . . , SV7
Spectral values corresponding to the frequency points (SPFREQ) and damping ratio (SPDAMP). Values are interpreted as defined with the SPUNIT command.

## Notes

Defines multi-point response spectrum values to be associated with the previously defined frequency points (SPFREQ). It can also be associated with the previously defined damping value (SPDAMP). If CURVNO is not specified, the input spectrum is not associated with a damping value.

Repeat SPVAL command for additional values, up to the number of frequency points (SPFREQ). Values are added after the last nonzero value.

The interpolation method between response spectrum points and curves is specified using KeyInterp on the SPUNIT command. It is logarithmic by default.

Use the SPTOPT and STAT commands to list current spectrum curve values.
This command is also valid in PREP7.

## Menu Paths

Main Menu $>$ Preprocessor $>$ Loads $>$ Load Step Opts $>$ Spectrum $>$ MultiPt $>$ Spect vs Freq
Main Menu $>$ Solution $>$ Load Step Opts $>$ Spectrum $>$ MultiPt $>$ Spect vs Freq

SQRT, IR, IA, --, --, Name, --, --, FACTA

## Forms the square root of a variable.

POST26:Operations
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
IR
Arbitrary reference number assigned to the resulting variable (2 to NV [NUMVAR]). If this number is the same as for a previously defined variable, the previously defined variable will be overwritten with this result.

IA
Reference number of the variable to be operated on.
--, --
Unused fields.

## Name

Thirty-two character name identifying the variable on printouts and displays. Embedded blanks are compressed for output.


Unused fields.
FACTA
Scaling factor (positive or negative) applied to variable IA (defaults to 1.0 ).

## Notes

Forms the square root of a variable according to the operation:

$$
\mathrm{IR}=\sqrt{\mathrm{FACTA} \times I A}
$$

## Menu Paths

## Main Menu>TimeHist Postpro>Math Operations>Square Root

## *SREAD, StrArray, Fname, Ext, --, nChar, nSkip, nRead

## Reads a file into a string array parameter.

APDL: Array Parameters<br>MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Argument Descriptions

## StrArray

Name of the "string array" parameter which will hold the read file. String array parameters are similar to character arrays, but each array element can be as long as 128 characters. If the string parameter does not exist, it will be created. The array will be created as: *DIM,StrArray,STRING,nChar,nRead

## Fname

File name and directory path ( 248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

## Ext

Filename extension (8 character maximum).

Unused field.

## nChar

Number of characters per line to read (default is length of the longest line in the file).

## nSkip

Number of lines to skip at the start of the file (default is 0 ).

## nRead

Number of lines to read from the file (default is the entire file).

## Notes

The *SREAD command reads from a file into a string array parameter. The file must be an ASCII text file.

## Menu Paths

This command cannot be accessed from a menu.

SRSS, SIGNIF, Label, AbsSumKey

## Specifies the square root of sum of squares mode combination method.

SOLUTION:Spectrum Options
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

## SIGNIF

Combine only those modes whose significance level exceeds the SIGNIF threshold. For single point, multipoint, or DDAM response (SPOPT,SPRS, MPRS or DDAM), the significance level of a mode is defined as the mode coefficient of the mode, divided by the maximum mode coefficient of all modes. Any mode whose significance level is less than SIGNIF is considered insignificant and is not contributed to the mode combinations. The higher the SIGNIF threshold, the fewer the number of modes combined. $S I G N I F$ defaults to 0.001 . If $S I G N I F$ is specified as 0.0 , it is taken as 0.0 . (This mode combination method is not valid for SPOPT,PSD.)

## Label

Label identifying the combined mode solution output.
DISP
Displacement solution (default). Displacements, stresses, forces, etc., are available.

## VELO

Velocity solution. Velocities, "stress velocities," "force velocities," etc., are available.
ACEL
Acceleration solution. Accelerations, "stress accelerations," "force accelerations," etc., are available.

## AbsSumKey

Absolute Sum combination key (for SPOPT,MPRS only):
NO
Do not use the Absolute Sum method (default).
YES
Combine the modes per excitation direction using the Absolute Sum method, then combine the resulting quantities using the square root of sum of squares method.

When using Absolute Sum combination, the excitation direction must be specified using the SED command.

## Notes

This command is also valid for PREP7.

## Menu Paths

> Main Menu $>$ Preprocessor>Loads $>$ Load Step Opts $>$ Spectrum $>$ Mode Combine
> Main Menu $>$ Preprocessor $>$ Loads $>$ Load Step Opts $>$ Spectrum $>$ MultiPt $>$ Mode Combine
> Main Menu $>$ Preprocessor $>$ Loads $>$ Load Step Opts $>$ Spectrum $>$ SinglePt $>$ Mode Combine
> Main Menu $>$ Solution $>$ Load Step Opts $>$ Spectrum $>$ Mode Combine
> Main Menu $>$ Solution $>$ Load Step Opts $>$ Spectrum $>$ MultiPt $>$ Mode Combine
> Main Menu $>$ Solution $>$ Load Step Opts $>$ Spectrum $>$ SinglePt $>$ Mode Combine

SSBT, $B^{T}{ }_{11}, B^{T}{ }_{22}, B^{T}{ }_{12}, T$
Specifies preintegrated bending thermal effects for shell sections.
PREP 7:Cross Sections
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS
$B^{T}{ }_{11}, B^{T}{ }_{22}, B^{T}{ }_{12}$
Bending thermal effects component $\left[\boldsymbol{B}^{T}\right]$.
$T$
Temperature.

## Notes

The behavior of shell elements is governed by the generalized-stress/generalized-strain relationship of the form:

$$
\begin{aligned}
& \left\{\begin{array}{l}
N \\
M
\end{array}\right\}=\left[\begin{array}{ll}
A & B \\
B^{\top} & D
\end{array}\right]\left\{\begin{array}{l}
\varepsilon \\
\kappa
\end{array}\right\}-\left(T-T^{\prime}\right)\left\{\begin{array}{l}
M^{\top} \\
B^{\top}
\end{array}\right\} \\
& {[S]=[E]\{\gamma\}}
\end{aligned}
$$

The SSBT command, one of several preintegrated shell section commands, specifies the bending thermal effects quantity (submatrix [ $\boldsymbol{B}^{T}$ ] data) for a preintegrated shell section. The section data defined is associated with the section most recently defined (via the SECTYPE command).

The $\left[\boldsymbol{B}^{T}\right]$ quantity represents bending stress resultants caused by a unit raise in temperature on a fully constrained model. For a layered composite shell, it is usually necessary to specify both the $\left[\boldsymbol{B}^{T}\right]$ and $\left[\boldsymbol{M}^{T}\right]$ quantities (by issuing the SSBT and SSMT commands, respectively).

Unspecified values default to zero.
Related commands are SSPA, SSPB, SSPD, SSPE, SSMT, and SSPM.
If you are using the SHELL181 or SHELL281 element's Membrane option (KEYOPT(1) $=1$ ), it is not necessary to issue this command.

For complete information, see Using Preintegrated General Shell Sections.

## Menu Paths

## Main Menu>Preprocessor>Sections>Shell>Pre-integrated

/SSCALE, WN, SMULT
Sets the contour multiplier for topographic displays.
GRAP HICS: Scaling
MP ME ST PR PRN <> <> FL EM EH DY PP $<>$ EME MFS
WN
Window number (or ALL) to which command applies (defaults to 1 ).
SMULT
Contour multiplier that factors in results based on the product of the multiplier and the result being plotted. Defaults to 0.0 (no topographic effects).

## Command Default

No topographic contour effects.

## Notes

Use this command to scale values to the geometry when the contours are shown elevated. For section displays [/TYPE], the elevation is performed perpendicular to the section face.

Nonzero contour multipliers factoring in large results (stresses or displacements) can produce very large distortion, causing images to disappear. To bring a distorted image back into view, reduce the contour multiplier value.

Portions of this command are not supported by PowerGraphics [/GRAPHICS,POWER].

## Menu Paths

Utility Menu>PlotCtrls>Style>Contours>Contour Style

## SSLN, FACT, SIZE

## Selects and displays small lines in the model.

PREP 7:Lines
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
FACT
Factor used to determine small lines. $F A C T$ times the average line length in the model is used as the line length limit below which lines will be selected.

## SIZE

Line length limit for line selection. Lines that have a length less than or equal to SIZE will be selected. Used only if $F A C T$ is blank.

## Notes

SSLN invokes a predefined ANSYS macro for selecting small lines in a model. Lines that are smaller than or equal to the specified limit ( $F A C T$ or $S I Z E$ ) are selected and line numbers are displayed. This command macro is useful for detecting very small lines in a model that may cause problems (i.e., poorly shaped elements or a meshing failure) during meshing. All lines that are not "small" will be unselected and can be reselected with the LSEL command.

## Menu Paths

Main Menu>Preprocessor>Modeling>Check Geom>Sel Small Lines

SSMT, $M^{\top}{ }_{11}, M^{\top}{ }_{22}, M^{\top}{ }_{12} T$

## Specifies preintegrated membrane thermal effects for shell sections.

PREP 7: Cross Sections
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS
$M^{T}{ }_{11}, M^{T}{ }_{22}, M_{12}^{T}$
Membrane thermal effects component $\left[\boldsymbol{M}^{T}\right]$.
$T$
Temperature.

## Notes

The behavior of shell elements is governed by the generalized-stress/generalized-strain relationship of the form:

$$
\begin{aligned}
& \left\{\begin{array}{l}
N \\
M
\end{array}\right\}=\left[\begin{array}{ll}
A & B \\
B^{\top} & D
\end{array}\right]\left\{\begin{array}{l}
\varepsilon \\
\kappa
\end{array}\right\}-\left(T-T^{\top}\right)\left\{\begin{array}{l}
M^{\top} \\
B^{\top}
\end{array}\right\} \\
& {[S]=[E]\{\gamma\}}
\end{aligned}
$$

The SSMT command, one of several preintegrated shell section commands, specifies the membrane thermal effects quantity (submatrix [ $\left.\boldsymbol{M}^{T}\right]$ data) for a preintegrated shell section. The section data defined is associated with the section most recently defined (via the SECTYPE command).

The $\left[\boldsymbol{M}^{T}\right]$ quantity represents membrane stress resultants caused by a unit raise in temperature on a fully constrained model. For a layered composite shell, it is usually necessary to specify both the $\left[\boldsymbol{M}^{T}\right]$ and $\left[\boldsymbol{B}^{T}\right]$ quantities (by issuing the SSMT and SSBT commands, respectively).

Unspecified values default to zero.
Related commands are SSPA, SSPB, SSPD, SSPE, SSBT, and SSPM.
For complete information, see Using Preintegrated General Shell Sections.

## Menu Paths

## Main Menu>Preprocessor>Sections>Shell>Pre-integrated

SSPA, $A_{11}, A_{21}, A_{31}, A_{22}, A_{32}, A_{33}, T$
Specifies a preintegrated membrane stiffness for shell sections.
PREP 7:Cross Sections
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS
$A_{11}, A_{21}, A_{31}, A_{22}, A_{32}, A_{33}$
Membrane stiffness component (symmetric lower part of submatrix [A]).
$T$
Temperature.

## Notes

The behavior of shell elements is governed by the generalized-stress/generalized-strain relationship of the form:

$$
\begin{aligned}
& \left.\begin{array}{l}
N \\
M
\end{array}\right\}=\left[\begin{array}{ll}
A & B \\
B^{\top} & D
\end{array}\right]\left\{\begin{array}{l}
\varepsilon \\
\kappa
\end{array}\right\}-\left(T-T^{\prime}\right)\left\{\begin{array}{c}
M^{\top} \\
B^{\top}
\end{array}\right\} \\
& {[S]=[E]\{\gamma\}}
\end{aligned}
$$

The SSPA command, one of several preintegrated shell section commands, specifies the membrane stiffness quantity (submatrix $[\boldsymbol{A}]$ ) for a preintegrated shell section. The section data defined is associated with the section most recently defined (via the SECTYPE command).

Unspecified values default to zero.
Related commands are SSPB, SSPD, SSPE, SSMT, SSBT, and SSPM.
For complete information, see Using Preintegrated General Shell Sections.

## Menu Paths

## Main Menu>Preprocessor>Sections>Shell>Pre-integrated

SSPB $, B_{11}, B_{21}, B_{31}, B_{22}, B_{32}, B_{33}, T, B_{12}, B_{13}, B_{23}$

## Specifies a preintegrated coupling stiffness for shell sections.

PREP 7:Cross Sections
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

```
\(B_{11}, B_{21}, B_{31}, B_{22}, B_{32}, B_{33}\)
 Coupling stiffness component (symmetric lower part of submatrix \([B]\)).
```

$T$

Temperature.
$B_{12}, B_{13}, B_{23}$
Upper part of submatrix [B]

## Notes

The behavior of shell elements is governed by the generalized-stress/generalized-strain relationship of the form:

$$
\begin{aligned}
& \left\{\begin{array}{l}
N \\
M
\end{array}\right\}=\left[\begin{array}{ll}
A & B \\
B^{\top} & D
\end{array}\right]\left\{\begin{array}{l}
\varepsilon \\
\kappa
\end{array}\right\}-\left(T-T^{\prime}\right)\left\{\begin{array}{l}
M^{\top} \\
B^{\top}
\end{array}\right\} \\
& {[S]=[E]\{\gamma\}}
\end{aligned}
$$

If the coefficients $B_{12}, B_{13}, B_{23}$ are undefined, ANSYS uses a symmetric form of submatrix [ $\boldsymbol{B}$ ]. If any one of the coefficients $B_{12}, B_{13}, B_{23}$ is nonzero, ANSYS considers submatrix $[B]$ to be unsymmetric.

The SSPB command, one of several preintegrated shell section commands, specifies the coupling stiffness quantity (submatrix [ $B$ ] data) for a preintegrated shell section. The section data defined is associated with the section most recently defined (via the SECTYPE command).

Unspecified values default to zero.
Related commands are SSPA, SSPD, SSPE, SSMT, SSBT, and SSPM.
If you are using the SHELL181 or SHELL281 element's Membrane option (KEYOPT(1) = 1), it is not necessary to issue this command.

For complete information, see Using Preintegrated General Shell Sections.

## Menu Paths

SSPD, $D_{11}, D_{21}, D_{31}, D_{22}, D_{32}, D_{33} T$

## Specifies a preintegrated bending stiffness for shell sections.

## PREP 7:Cross Sections MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

$D_{11}, D_{21}, D_{31}, D_{22}, D_{32}, D_{33}$
Bending stiffness component (symmetric lower part of submatrix [D]).
$T$
Temperature.

## Notes

The behavior of shell elements is governed by the generalized-stress/generalized-strain relationship of the form:

$$
\left\{\begin{array}{l}
N \\
M
\end{array}\right\}=\left[\begin{array}{ll}
A & B \\
B^{\top} & D
\end{array}\right]\left\{\begin{array}{l}
\varepsilon \\
\kappa
\end{array}\right\}-\left(T-T^{\top}\right)\left\{\begin{array}{l}
M^{\top} \\
B^{\top}
\end{array}\right\}
$$

$[\mathrm{S}]=[\mathrm{E}]\{\gamma\}$
The SSPD command, one of several preintegrated shell section commands, specifies the bending stiffness quantity (submatrix [ $\boldsymbol{D}$ ] data) for a preintegrated shell section. The section data defined is associated with the section most recently defined (via the SECTYPE command).

Unspecified commands default to zero.
Related commands are SSPA, SSPB, SSPE, SSMT, SSBT, and SSPM.
If you are using the SHELL181 or SHELL281 element's Membrane option (KEYOPT(1) = 1), it is not necessary to issue this command.

For complete information, see Using Preintegrated General Shell Sections.

## Menu Paths

## Main Menu>Preprocessor>Sections>Shell>Pre-integrated

## SSPE, $E_{11}, E_{21}, E_{22}, T$

## Specifies a preintegrated transverse shear stiffness for shell sections.

MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

## $E_{11}, E_{21}, E_{22}$

Transverse shear stiffness component (symmetric lower part of submatrix [E]).

## $T$

Temperature.

## Notes

The behavior of shell elements is governed by the generalized-stress/generalized-strain relationship of the form:

$$
\begin{aligned}
& \left\{\begin{array}{l}
N \\
M
\end{array}\right\}=\left[\begin{array}{ll}
A & B \\
B^{\top} & D
\end{array}\right]\left\{\begin{array}{l}
\varepsilon \\
\kappa
\end{array}\right\}-\left(T-T^{\prime}\right)\left\{\begin{array}{c}
M^{\top} \\
B^{\top}
\end{array}\right\} \\
& {[S]=[E]\{\gamma\}}
\end{aligned}
$$

The SSPE command, one of several preintegrated shell section commands, specifies the transverse shear stiffness quantity (submatrix [ $E$ ] data) for a preintegrated shell section. The section data defined is associated with the section most recently defined (via the SECTYPE command).

Unspecified values default to zero.
Related commands are SSPA, SSPB, SSPD, SSMT, SSBT, and SSPM.

If you are using the SHELL181 or SHELL281 element's Membrane option (KEYOPT $(1)=1$ ), it is not necessary to issue this command.

For complete information, see Using Preintegrated General Shell Sections.

## Menu Paths

## Main Menu>Preprocessor>Sections>Shell>Pre-integrated

## SSPM, DENS, T

## Specifies mass density for a preintegrated shell section.

PREP 7: Cross Sections
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

## DENS

Mass density.
$T$
Temperature.

## Notes

The SSPM command, one of several preintegrated shell section commands, specifies the mass density (assuming a unit thickness) for a preintegrated shell section. The value specified is associated with the section most recently defined (via the SECTYPE command).

Related commands are SSPA, SSPB, SSPD, SSPE, SSMT, and SSBT.
For complete information, see Using Preintegrated General Shell Sections.

## Menu Paths

## Main Menu>Preprocessor>Sections>Shell>Pre-integrated

## SSTIF, Key

## Activates stress stiffness effects in a nonlinear analysis.

SOLUTION: Nonlinear Options
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

## Key

Stress stiffening key:
OFF
No stress stiffening is included (default unless NLGEOM,ON).
ON
Stress stiffening is included (default if NLGEOM,ON).

## Command Default

SSTIF will be turned on if NLGEOM,ON; otherwise it will be turned off.

## Notes

Activates stress stiffness effects in a nonlinear analysis (ANTYPE,STATIC or TRANS). (The PSTRES command also controls the generation of the stress stiffness matrix and therefore should not be used in conjunction with SSTIF.) If used within the solution processor, this command is valid only within the first load step.

When SOLCONTROL and NLGEOM are ON, SSTIF defaults to ON. This normally forms all of the consistent tangent matrix. However, for some special nonlinear cases, this can lead to divergence caused by some elements which do not provide a complete consistent tangent (notably, elements outside the 18 x family). In such a case, ANSYS recommends issuing an SSTIF,OFF command to achieve convergence. For currenttechnology elements, setting SSTIF,OFF when NLGEOM is ON has no effect (because stress stiffness effects are always included).

The default values given for this command assume SOLCONTROL,ON (the default). See the description of SOLCONTROL for a complete listing of the defaults set by SOLCONTROL,ON and SOLCONTROL,OFF.

This command is also valid in PREP7.

## Menu Paths

Main Menu>Preprocessor>Loads>Analysis Type>Analysis Options
Main Menu>Solution>Analysis Type>Analysis Options

## SSUM

## Calculates and prints the sum of element table items.

POST1:Element Table<br>MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Notes

Calculates and prints the tabular sum of each existing labeled result item [ETABLE] for the selected elements. If absolute values are requested [SABS,1], absolute values are used.

## Menu Paths

## Main Menu>General Postproc>Element Table>Sum of Each Item

STABILIZE, Key, Method, VALUE, SubStpOpt, FORCELIMIT

## Activates stabilization for all elements that support nonlinear stabilization.

SOLUTION: Analysis Options
MP ME ST PR PRN <> <> FL EM EH <> PP <> EME MFS
Key
Key for controlling nonlinear stabilization:
OFF
Deactivate stabilization. This value is the default.

## CONSTANT

Activate stabilization. The energy-dissipation ratio or damping factor remains constant during the load step.

REDUCE
Activate stabilization. The energy-dissipation ratio or damping factor is reduced linearly to zero at the end of the load step from the specified or calculated value.

## Method

The stabilization-control method:

## ENERGY

Use the energy-dissipation ratio as the control. This value is the default when $K e y \neq$ OFF.

## DAMPING

Use the damping factor as the control.

## VALUE

The energy-dissipation ratio (Method = ENERGY) or damping factor (Method = DAMPING). This value must be greater than 0 when Method = ENERGY or Method = DAMPING. When Method = ENERGY, this value is usually a number between 0 and 1 .

## SubStpOpt

Option for the first substep of the load step:
NO
Stabilization is not activated for the first substep even when it does not converge after the minimal allowed time increment is reached. This value is the default when Key $\neq$ OFF.

## MINTIME

Stabilization is activated for the first substep if it still does not converge after the minimal allowed time increment is reached.

## ANYTIME

Stabilization is activated for the first substep. Use this option if stabilization was active for the previous load step via $K e y=$ CONSTANT.

## FORCELIMIT

The stabilization force limit coefficient, such that $0<F O R C E L I M I T<1$. The default value is 0.2 . To omit a stabilization force check, set this value to 0 .

## Command Default

Once issued, the stabilization effects of the command remain until you issue either a STABILIZE command (with no arguments) or a STABILIZE,OFF command. If you issue the command with no arguments, the effect is to deactivate stabilization.

## Notes

Once issued, a STABILIZE command remains in effect until you reissue the command.
For the energy dissipation ratio, specify $V A L U E=1.0 \mathrm{e}-4$ if you have no prior experience with the current model; if convergence problems are still an issue, increase the value gradually. The damping factor is mesh, material-, and time-step-dependent; an initial reference value from the previous run (such as a run with the energy-dissipation ratio as input) should suggest itself.

Exercise caution when specifying SubStpOpt = MINTIME or ANYTIME for the first load step; ANSYS recommends this option only for experienced users. If stabilization was active for the previous load step via Key $=$ CONSTANT and convergence is an issue for the first substep, specify SubStpOpt = ANYTIME.

When the L2-norm of the stabilization force (CSRSS value) exceeds the L2-norm of the internal force multiplied by the stabilization force coefficient, ANSYS issues a message displaying both the stabilization force norm and the internal force norm. The FORCELIMIT argument allows you to change the default stabilization force coefficient (normally 20 percent).

This command stabilizes the degrees of freedom for current-technology elements only. Other elements can be included in the FE model, but their degrees of freedom are not stabilized.

For more information about nonlinear stabilization, see Unstable Structures in the Structural Analysis Guide. For additional tips that can help you to achieve a stable final model, see Keep It Simple in the Structural Analysis Guide.

## Menu Paths

Main Menu>Preprocessor>Loads>Analysis Type>Sol'n Controls>Advanced NL
Main Menu>Solution>Analysis Type>Sol'n Controls>Advanced NL

## STAOPT, Method

## Specifies static analysis options.

SOLUTION: Analysis Options
MP ME ST PR PRN <><><><><><> PP <> EME MFS

## Method

Solution method for the static analysis:
DEFA
Regular ANSYS solve (default).
VT
Solve with Variational Technology.

## Notes

Specifies the method of solution for a static analysis (ANTYPE,STATIC). If used in SOLUTION, this command is valid only within the first load step.

The VT option is valid for either thermal or structural nonlinear analyses, where it attempts to reduce the total number of iterations. You can also use the VT option for ANSYS DesignXplorer design parameter studies.

After a Design Exploration solution (SOLVE command), the Variational Technology model is "frozen", i.e., you cannot add or delete input variables.

This command is also valid in PREP7.

## Menu Paths

Main Menu>DesignXplorer>Solution>Solve<br>Main Menu>Preprocessor>Loads>Analysis Type>Analysis Options<br>Main Menu>Solution>Analysis Type>Analysis Options

## STAT

## Displays the status of database settings.

## Notes

In the DISPLAY program, STAT will show the current status of the program settings.
In the ANSYS program, STAT is a command generated by the GUI and will appear in the log file (Jobname. LOG) if status is requested for some items under Utility Menu> List> Status. Generally, STAT will be preceded by one of the commands listed below, which specifies the particular topic that status was requested for.

If entered directly into the program, the STAT command should be immediately preceded by the desired topic command listed below. In processors other than those listed below (e.g., AUX12), no topic command should proceed STAT.

This command is valid in any processor.
PREP7 topic commands (and their corresponding topics) are:

| Topic Command | Topic |
| :--- | :--- |
| ETYPE | Element types |
| RCON | Real constants |
| MATER | Material properties |
| TBLE | Data table properties |
| PRIM | Solid model primitives |
| KEYPTS | Keypoints |
| LINE | Lines |
| AREAS | Areas |
| VOLUMES | Volumes |
| GEOMETRY | Solid model information |
| MESHING | Meshing |
| BOOL | Booleans |
| NODES | Nodes |
| ELEM | Elements |
| SELM | Superelements |
| DIGIT | Node digitizing |
| COUPLE | Node coupling |
| CEQN | Constraint equations |
| REORDER | Model reordering |

SOLUTION topic commands (and their corresponding topics) are:

| Topic Command | Topic |
| :--- | :--- |
| ATYPE | Analysis types |
| MASTER | Master DOF |
| GAP | Reduced transient gap conditions |
| DEACT | Element birth and death (deactivation) |
| LSOPER | Load step operations |
| FECONS | Constraints on nodes |
| FEFOR | Forces on nodes |
| FESURF | Surface loads on elements |
| FEBODY | Body loads on elements |
| SMCONS | Constraints on the solid model |
| SMFOR | Forces on the solid model |
| SMSURF | Surface loads on the solid model |
| SMBODY | Body loads on the solid model |
| INRTIA | Inertial loads |
| GENOPT | General options |
| DYNOPT | Dynamic analysis options |
| NLOPT | Nonlinear analysis options |
| OUTOPT | Output options |
| BIOOPT | Biot-Savart options |
| SPTOPT | Spectrum analysis options |
| SOLUOPT | Solution options |
| FLOTRAN | FLOTRAN data settings |

POST1 topic commands (and their corresponding topics) are:

| Topic Command | Topic |
| :--- | :--- |
| DEFINE | Data definition settings |
| SORT | Sort settings |
| PRINT | Print settings |
| DISPLAY | Display settings |
| CALC | Calculation settings |
| PATH | Path data settings |
| LCCALC | Load case settings |
| DATADEF | Directly defined data status |
| FATIGUE | Fatigue data status |
| POINT | Point flow tracing settings |
| SPEC | Miscellaneous specifications |

POST26 topic commands (and their corresponding topics) are:

| Topic Command | Topic |
| :--- | :--- |
| DEFINE | Data definition settings |
| OPERATE | Operation data |
| PRINT | Print settings |
| PLOTTING | Plotting settings |
| Menu Paths |  |
| Main Menu>Prob Design>Prob Database>Status |  |
| Main Menu>Solution $>$ Solve>Current LS |  |

*STATUS, Par, IMIN, IMAX, JMIN, JMAX, KMIN, KMAX, LMIN, LMAX, MMIN, MMAX, KPRI

## Lists the current parameters and abbreviations.

APDL: Parameters
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Argument Descriptions

## Par

Specifies the parameter or sets of parameters listed. For array parameters, use IMIN, IMAX, etc. to specify ranges. Use *DIM to define array parameters. Use *VEDIT to review array parameters interactively. Use *VWRITE to print array values in a formatted output. If Par is blank, list all scalar parameter values, array parameter dimensions, and abbreviations. If $A R G X$, list the active set of local macro parameters (ARG1 to ARG9 and AR10 to AR99) [*USE].

The following are possible values for Par

## ALL or blank --

Lists all parameters (except local macro parameters and those with names beginning or ending with an underbar) and toolbar abbreviations.

## _PRM --

Lists only parameters with names beginning with an underbar ( $\_$). These are ANSYS internal parameters.

## PRM

Lists only parameters with names ending with an underbar (_). A good APDL programming convention is to ensure that all parameters created by your system programmer are named with a trailing underbar.

## ABBR --

Lists all toolbar abbreviations.

## PARM --

Lists all parameters (except local macro parameters and those with names beginning or ending with an underbar).

## PARNAME --

Lists only the parameter specified. PARNAME cannot be a local macro parameter name.

## ARGX --

Lists all local macro parameter values (ARG1- AR99) that are non-zero or non-blank.
IMIN, IMAX, JMIN, JMAX, KMIN, KMAX, LMIN, LMAX, MMIN, MMAX
Range of array elements to display (in terms of the dimensions (row, column, plane, book, and shelf).
Minimum values default to 1 . Maximum values default to the maximum dimension values. Zero may be input for IMIN, JMIN, and KMIN to display the index numbers. See *TAXIS command to list index numbers of 4- and 5-D tables.

KPRI
Use this field to list your primary variable labels ( $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{TIME}$, etc.).

List the labels (default). YES, $Y$, or $O N$ are also valid entries.
0
Do not list the labels. NO, N, or OFF are also valid entries.

## Notes

You cannot obtain the value for a single local parameter (e.g., *STATUS,ARG2). You can only request all local parameters simultaneously using *STATUS,ARGX.

This command is valid in any processor.

## Menu Paths

```
Utility Menu>List>Other>Named Parameter
Utility Menu>List>Other>Parameters
Utility Menu>List>Status>Parameters>All Parameters
Utility Menu>List>Status>Parameters>Named Parameters
```

/STATUS, Lab

## Lists the status of items for the run.

MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
Lab
Items to list status for:
ALL
List all below (default).
TITLE
List only titles, Jobname, and revision number.

## UNITS

List only units.
MEM
List only memory data statistics.
DB
List only database statistics

## CONFIG

List only configuration parameters.

## GLOBAL

Provides a global status summary.
SOLU
Provides a solution status summary.

## PROD

Provides a product summary.

## Notes

Displays various items active for the run (such as the ANSYS revision number, Jobname, titles, units, configuration parameters, database statistics, etc.).

This command is valid in any processor.

## Menu Paths

Utility Menu>List>Status>Global Status

## STEF, value

Specifies Stefan-Boltzmann radiation constant.

AUX12: General Radiation SOLUTION: Radiosity

MP ME ST PR <> <> <> <> <> <> <> PP <> EME MFS

VALUE
Stefan-Boltzmann constant (defaults to 0.119E-10 $\mathrm{Btu} / \mathrm{hr} / \mathrm{in}^{2} /{ }^{\circ} \mathrm{R}^{4}$ ).

## Command Default

$0.119 \mathrm{E}-10 \mathrm{Btu} / \mathrm{hr} / \mathrm{in}^{2} /{ }^{\circ} \mathrm{R}^{4}$.

## Notes

You can use this command in the general preprocessor (PREP7) and in the Solution processor to specify the Stefan-Boltzmann constant for a FLOTRAN analysis using radiation surface boundary conditions.

## Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/CFD>Displacement>On Areas Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/CFD>Displacement>On Keypoints Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/CFD>Displacement>On Lines Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/CFD>Displacement>On Nodes Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/CFD>Forces>Body Forces>On Nodes Main Menu $>$ Preprocessor>Loads $>$ Define Loads $>$ Apply $>$ Fluid/CFD $>$ Turbulence $>$ On Areas Main Menu $>$ Preprocessor>Loads>Define Loads>Apply>Fluid/CFD $>$ Turbulence>On Lines

Main Menu>Preprocessor>Loads>Define Loads $>$ Apply>Fluid/CFD $>$ Turbulence>On Nodes Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/CFD>Velocity>On Areas Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/CFD>Velocity>On Keypoints Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/CFD>Velocity>On Lines Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/CFD>Velocity>On Nodes Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/CFD>Volume Fract>Bound Loads>On Elements<br>Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/CFD>Volume Fract>Bound Loads>On Lines<br>Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Ambient Rad>On Areas<br>Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Ambient Rad>On Elements<br>Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Ambient Rad>On Lines Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Ambient Rad>On Nodes Main Menu>Preprocessor>Radiation Opts>Solution Opt<br>Main Menu>Radiation Opt>Matrix Method>Other Settings<br>Main Menu>Radiation Opt>Radiosity Meth>Solution Opt<br>Main Menu>Solution>Define Loads>Apply>Fluid/CFD>Displacement>On Areas<br>Main Menu>Solution>Define Loads>Apply>Fluid/CFD>Displacement>On Keypoints<br>Main Menu>Solution>Define Loads>Apply>Fluid/CFD>Displacement>On Lines<br>Main Menu>Solution>Define Loads>Apply>Fluid/CFD>Displacement>On Nodes<br>Main Menu>Solution>Define Loads>Apply>Fluid/CFD>Forces>Body Forces>On Nodes<br>Main Menu $>$ Solution $>$ Define Loads $>$ Apply $>$ Fluid/CFD $>$ Turbulence $>$ On Areas<br>Main Menu>Solution>Define Loads>Apply>Fluid/CFD $>$ Turbulence $>$ On Lines<br>Main Menu>Solution>Define Loads>Apply>Fluid/CFD>Turbulence>On Nodes<br>Main Menu>Solution>Define Loads>Apply>Fluid/CFD>Velocity>On Areas<br>Main Menu>Solution>Define Loads>Apply>Fluid/CFD>Velocity>On Keypoints<br>Main Menu>Solution>Define Loads>Apply>Fluid/CFD>Velocity>On Lines<br>Main Menu>Solution>Define Loads>Apply>Fluid/CFD>Velocity>On Nodes<br>Main Menu>Solution>Define Loads>Apply>Fluid/CFD>Volume Fract>Bound Loads>On Elements<br>Main Menu $>$ Solution $>$ Define Loads $>$ Apply $>$ Fluid/CFD $>$ Volume Fract $>$ Bound Loads $>$ On Lines<br>Main Menu>Solution>Define Loads>Apply>Thermal>Ambient Rad>On Areas<br>Main Menu>Solution>Define Loads>Apply>Thermal>Ambient Rad>On Elements<br>Main Menu $>$ Solution $>$ Define Loads $>$ Apply $>$ Thermal $>$ Ambient Rad $>$ On Lines<br>Main Menu>Solution>Define Loads>Apply>Thermal>Ambient Rad>On Nodes<br>Main Menu>Solution>Radiation Opts>Solution Opt

/STITLE, NLINE, Title
Defines subtitles.
DATABASE: Set Up
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NLINE

Subtitle line number (1 to 4). Defaults to 1 .
Title
Input up to 70 alphanumeric characters. Parameter substitution may be forced within the title by enclosing the parameter name or parametric expression within percent (\%) signs. If Title is blank, this subtitle is deleted.

## Notes

Subtitles ( 4 maximum) are displayed in the output along with the main title [/TITLE]. Subtitles do not appear in GUI windows or in ANSYS plot displays. The first subtitle is also written to various ANSYS files along with the main title. Previous subtitles may be overwritten or deleted. Issue /STATUS to display titles.

This command is valid in any processor.

## Menu Paths

This command cannot be accessed from a menu.

## STORE, Lab, NPTS

Stores data in the database for the defined variables.
POST26:Set Up
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Lab

Valid labels:

## MERGE

Merge data from results file for the time points in memory with the existing data using current specifications (default).

## NEW

Store a new set of data, replacing any previously stored data with current result file specifications and deleting any previously-calculated (OPER) variables. Variables defined using the ANSOL command are also deleted.

## APPEN

Append data from results file to the existing data.

## ALLOC

Allocate (and zero) space for NPTS data points.

## PSD

Create a new set of frequency points for PSD calculations (replacing any previously stored data and erasing any previously calculated data).

## NPTS

The number of time points (or frequency points) for storage (used only with Lab = ALLOC or PSD). The value may be input when using POST26 with data supplied from other than a results file. This value is automatically determined from the results file data with the NEW, APPEN, and MERGE options. For the PSD option, NPTS determines the resolution of the frequency vector (valid numbers are between 1 and 10 , defaults to 5 ).

## Command Default

Merge newly-defined variables with previously stored variables for the time points stored in memory using the current specifications. If STORE is preceded by TIMERANGE or NSTORE, the default is STORE,NEW.

## Notes

This command stores data from the results file in the database for the defined variables [NSOL, ESOL, SOLU, JSOL] per specification [FORCE, LAYERP26, SHELL]. See the Basic Analysis Guide for more information.

The STORE,PSD command will create a new frequency vector (variable 1) for response PSD calculations [RPSD]. This command should first be issued before defining variables [NSOL, ESOL, RFORCE] for which response PSD's are to be calculated.

## Menu Paths

## Main Menu>TimeHist Postpro>Store Data

## SUBSET, Lstep, SBSTEP, FACT, KIMG, TIME, ANGLE, NSET

## Reads results for the selected portions of the model.

POST1:Set Up
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Lstep

Load step number of the data set to be read (defaults to 1 ):
N
Read load step $N$.
FIRST
Read the first data set (SBSTEP and TIME are ignored).
LAST
Read the last data set (SBSTEP and TIME are ignored).

## NEXT

Read the next data set (SBSTEP and TIME are ignored). If at the last data set, the first data set will be read as the next.

## NEAR

Read the data set nearest to TIME (SBSTEP is ignored). If TIME is blank, read the first data set.
LIST
Scan the results file and list a summary of each load step. (FACT, KIMG, TIME and ANGLE are ignored.)

## SBSTEP

Substep number (within Lstep). For the buckling (ANTYPE,BUCKLE) analysis or the modal (ANTYPE,MOD-
AL ) analysis, the substep corresponds to the mode number. Defaults to last substep of load step (except for ANTYPE,BUCKLE or MODAL). If Lstep $=$ LIST, SBSTEP $=0$ or 1 lists the basic step information, whereas $S B S T E P=2$ also lists the load step title, and labels imaginary data sets if they exist.

FACT
Scale factor applied to data read from the file. If zero (or blank), a value of 1.0 is used. Harmonic velocities or accelerations may be calculated from the displacement results from a modal (ANTYPE,MODAL) or harmonic response (ANTYPE,HARMIC) analyses. If $F A C T=$ VELO, the harmonic velocities (v) are calculated from the displacements ( d ) at a particular frequency ( f ) according to the relationship $\mathrm{v}=2 \pi \mathrm{fd}$. Similarly, if $F A C T=A C E L$, the harmonic accelerations (a) are calculated as $a=(2 \pi f)^{2} d$.

## KIMG

Used only with results from complex analyses:

## 0

Store real part of complex solution
1
Store imaginary part.

## TIME

Time-point identifying the data set to be read. For the harmonic responses analyses, time corresponds to the frequency. For the buckling analysis, time corresponds to the load factor. Used only in the following cases: If Lstep is NEAR, read the data set nearest to TIME. If both Lstep and SBSTEP are zero (or blank), read data set at time $=T I M E$. If $T I M E$ is between two solution time points on the results file, a linear interpolation is done between the two data sets. Solution items not written to the results file [OUTRES] for either data set will result in a null item after data set interpolation. If TIME is beyond the last time point on the file, use the last time point.

## ANGLE

Circumferential location ( 0.0 to $360^{\circ}$ ). Defines the circumferential location for the harmonic calculations used when reading from the results file. The harmonic factor (based on the circumferential angle) is applied to the harmonic elements (PLANE25, PLANE75, PLANE78, FLUID81, PLANE83, and SHELL61) of the load case. See the Theory Reference for the Mechanical APDL and Mechanical Applications for details. Note that factored values of applied constraints and loads will overwrite any values existing in the database.

NSET
Data set number of the data set to be read. If a positive value for NSET is entered, Lstep, SBSTEP, KIMG, and TIME are ignored. Available set numbers can be determined by *SET,LIST.

## Notes

Reads a data set from the results file into the database for the selected portions of the model only. Data that has not been specified for retrieval from the results file by the INRES command will be listed as having a zero value. Each time that the SUBSET command is issued, the data currently in the database will be overwritten with a new set of data. Various operations may also be performed during the read operation. The database must have the model geometry available (or used the RESUME command before the SUBSET command to restore the geometry from File.DB).

## Menu Paths

# Main Menu>General Postproc>Read Results>By Load Step Main Menu>General Postproc>Read Results>By Set Number <br> Main Menu>General Postproc>Read Results>By Time/Freq 

SUCALC, RSetName, lab1, Oper, lab2, fact1, fact2, const

## Create new result data by operating on two existing result data sets on a given surface.

POST1:Surface Operations
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## RSetName

Eight character name for new result data.

## lab1

First result data upon which to operate.

## Oper

Mathematical operation to perform.
ADD
(lab1 + lab2 + const)
SUB
(lab1-lab2 + const)
MULT
(lab1* lab2 + const)
DIV
(lab1/lab2 + const)
EXP
(lab1^fact1 + lab2^fact2 + const)
COS
(cos (lab1) + const)
SIN
(sin (lab1) + const)
ACOS
(acos (labl) + const)
ASIN
(asin (lab1) + const)
ATAN
(atan (labl) + const)
ATA2
(atan2 (lab1 / lab2) + const)
LOG
(log (lab1) + const)
ABS
(abs (lab1) + const)
ZERO
( $0+$ const )
lab2
Second result data upon which to operate.

## fact1

First scaling factor (for EXP option only).

## fact2

Second scaling factor (for EXP option only).

## const

Constant added to the values in the resulting data.

## Menu Paths

Main Menu>General Postproc>Surface Operations>Math Operations>Absolute Main Menu>General Postproc>Surface Operations>Math Operations>Add Main Menu>General Postproc>Surface Operations>Math Operations>ArcCosine Main Menu>General Postproc>Surface Operations>Math Operations>ArcSine Main Menu>General Postproc>Surface Operations>Math Operations>ArcTangent Main Menu>General Postproc>Surface Operations>Math Operations>ArcTangent2 Main Menu>General Postproc>Surface Operations>Math Operations>Cosine Main Menu>General Postproc>Surface Operations>Math Operations>Divide Main Menu>General Postproc>Surface Operations>Math Operations>Exponentiate Main Menu>General Postproc>Surface Operations>Math Operations>Initialize Main Menu>General Postproc>Surface Operations>Math Operations>Multiply Main Menu>General Postproc>Surface Operations>Math Operations>Natural Log Main Menu>General Postproc>Surface Operations>Math Operations>Sine Main Menu>General Postproc>Surface Operations>Math Operations>Subtract

## SUCR, SurfName, SurfType, nRefine, Radius, blank, blank, TolOut

Create a surface.

> POST1:Surface Operations
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## SurfName

Eight character surface name.

## Surftype

Surface type.
CPLANE
Surface is defined by the cutting plane in window one (controlled by the working plane (/CPLANE,1), NOT the view settings (/CPLANE,0)).

## SPHERE

Surface is defined by a spherical surface centered about the working plane origin.

## INFC

Surface is defined by a cylindrical surface centered about the working plane origin and extending indefinitely in the positive and negative $Z$ directions.

## nRefine

Refinement level.

## For SurfType = CPLANE

The refinement level of the surface "mesh". This will be an integer between 0 and 3 (default =0). See Notes below.

## For SurfType = SPHERE

The number of divisions along a $90^{\circ}$ arc (minimum $=9$ ). The default is 9 .
For SurfType $=$ INFC
The number of divisions along a $90^{\circ}$ arc (minimum =9). The default is 9 .

## Radius

Appropriate radius value (for INFC or SPHERE).

## Tolout

Tolerance value for inclusion of element facets within a prescribed volume. (for INFC)

## Notes

This command creates a new surface and stores the following data for that surface:
GCX, GCY, GCZ - global Cartesian coordinates at each point on the surface.
NORMX, NORMY, NORMZ - components of the unit normal at each point on the surface.
DA - the contributory area of each point.
 value of zero is used for points where the element face intersects the cutting plane.

If SurfType $=$ CPLANE and $n R e f$ ine $=0$, the points reside at the section cuts where the element intersects the cutting plane. Increasing nRefine from 0 to 1 will subdivide each surface facet into 4 subfacets, and increase the number of points at which results can be interpolated.

For SurfType $=$ CPLANE , the setting from the /EFACET command will affect the creation of surface facets and the quality of the fit of the surface in the model. SUCR employs geometry data from PowerGraphics to aid in determining where the surface intersects the model. If /EFACET, 1 is in effect when the SUCR command is issued, then the curvature of high order elements (that is, elements with midside nodes) will be ignored. If your model contains high order elements, you can see a better fit for your surface if /EFACET, 2 is in effect when the SUCR command is issued. Currently, the SUCR command interprets /EFACET,4 to mean /EFACET,2.

For SurfType $=$ INFC, a default tolerance of 0.01 will be applied to include the vertices of any facets that fall out of the cylinder definition. this tolerance increases the facet size by $1 \%$ to check for inclusion. Excluding facets under such a small tolerance may yield unacceptable (aesthetically) results. Increasing the tolerance by a larger amount ( 0.1 or $10 \%$ ) will sometimes yield smother edges along the surface you create.

## Menu Paths

> Main Menu $>$ General Postproc>Surface Operations $>$ Create Surface $>$ Inf. Cylinder Main Menu $>$ General Postproc $>$ Surface Operations $>$ Create Surface $>$ On Cuttng Plane Main Menu $>$ General Postproc>Surface Operations $>$ Create Surface $>$ Sphere $>$ At Node Main Menu $>$ General Postproc>Surface Operations $>$ Create Surface $>$ Sphere $>$ By Dimensions

SUDEL, SurfName
Delete geometry information as well as any mapped results for specified surface.

> POST1:Surface Operations
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## SurfName

Eight character surface name.
SurfName = ALL will delete all surface geometry and result infromation.

## Menu Paths

Main Menu>General Postproc>Surface Operations>Delete Surfaces

SUEVAL, Parm, lab1, Oper
Perform operations on a mapped item and store result in a scalar parameter.

> POST1:Surface Operations
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Parm

APDL parameter name.

## lab1

Eight character set name for the first set used in calculation.

## Oper

Operation to perform:

## SUM

Sum of lab1 result values.
INTG
Integral of labl over surface.
AVG
Area-weighted average of a result item [ $\Sigma(\mathrm{lab1*} \mathrm{DA}) / \Sigma(\mathrm{DA})]$

## Notes

The result of this operation is a scalar APDL parameter value. If multiple surfaces are selected when this command is issued, then the operation is carried out on each surface individually and the parameter reperesents the culmulative value of the operation on all selected surfaces.

## Menu Paths

Main Menu>General Postproc>Surface Operations>Math Operations>Average Result Main Menu>General Postproc>Surface Operations>Math Operations>Integrate Results Main Menu>General Postproc>Surface Operations>Math Operations>Sum of Results

## SUGET, SurfName, RSetName, Parm, Geom

## Moves surface geometry and mapped results to an array parameter.

POST1:Surface Operations
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## SurfName

Eight character surface name.

## RSetName

Eight character result name.

## Parm

APDL array parameter name (up to 32 characters).

## Geom

Switch controlling how data is written.
ON (or 1 or YES)
Writes geometry data and interpolated results information to the parameter.
OFF (or 0 or NO)
Writes only interpolated results information to the parameter. (Default)

## Notes

For Geom = OFF (or 0 or NO), only results information is written to this parameter.
For Geom = ON (or 1 or YES), both geometry data and results information are written to this parameter. Geometry data includes 7 data items: (GCX, GCY, GCZ, NORMX, NORMY, NORMZ, and DA). Results information is then written to the 8th column of the parameter. SetNames of GCX, GCY, GCZ, NORMX, NORMY, NORMZ, and DA are predefined and computed when SUCR is issued.

## Menu Paths

## Main Menu>General Postproc>Surface Operations>Results to Array

SUMAP, RSetName, Item, Comp

## Map results onto selected surface(s).

POST1:Surface Operations
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## RSetName

Eight character name for the result being mapped.
Item
Label identifying the item.
Valid item labels are defined in PLNSOL. Some items also require a component label.
If Item $=$ CLEAR, the specified result set will be deleted from all selected surfaces

## Comp

Component label of item (if required).

## Notes

Results are mapped in current RSYS. This command interpolates and stores results data on to each of the selected surfaces. SUMAP, ALL, CLEAR will delete all results sets from all selected surfaces.

## Menu Paths

Main Menu>General Postproc>Surface Operations>Clear Results

## SUMTYPE, Label

## Sets the type of summation to be used in the following load case operations.

POST1: Results
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Label

Summation type
COMP
Combine element component stresses only. Stresses such as average nodal stresses, principal stresses, equivalent stresses, and stress intensities are derived from the combined element component stresses. Default.

PRIN
Combine principal stress, equivalent stress, and stress intensity directly as stored on the results file. Component stresses are not available with this option.

## Notes

Issue SUMTYPE,PRIN when you want to have a load case operation (LCOPER) act on the principal / equivalent stresses instead of the component stresses. Also issue SUMTYPE,PRIN when you want to read in load cases (LCASE). Note that the SUMTYPE setting is not maintained between/POST1 sessions.

SUMTYPE,PRIN also causes principal nodal values to be the average of the contibuting principal element nodal values (see AVPRIN,1).

BEAM188 and BEAM189 elements compute principal stress, equivalent stress, and stress intensity values on request instead of storing them on the results file; SUMTYPE,PRIN does not apply for these elements.

## Menu Paths

## Main Menu>General Postproc>Load Case>Calc Options>Stress Options

SUPL, SurfName, RSetName, KWIRE
Plot result data on all selected surfaces or on a specified surface.
POST1:Surface Operations
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## SurfName

Eight character surface name. ALL will plot all selected surfaces.

## RSetName

Eight character result name.

## KWIRE

Plot in context of model.
0
Plot results without the outline of selected elements.
1
Plot results with the outline of selected elements.

## Notes

If RSetName is left blank, then the surface geometry will be plotted. If the Setname portion of the argument is a vector prefix (i.e. if result sets of name SetNameX, SetNameY and SetNameZ exist), ANSYS will plot these vectors on the surface as arrows. For example, SUPL, ALL, NORM will plot the surface normals as vectors on all selected surfaces, since NORMX NORMY and NORMZ are pre-defined geometry items.

## Menu Paths

## Main Menu>General Postproc>Surface Operations>Plot Results

 Main Menu>General Postproc>Surface Operations>Plot Vectors
## SUPR, SurfName, RSetName

Print global status, geometry information and/or result information.
POST1:Surface Operations
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## SurfName

Eight character surface name. If SurfName $=$ ALL, repeat printout for all selected surfaces.

## RSetName

Eight character result set name.

## Notes

When no arguments are specified, SUPR generates a global status summary of all defined surfaces. If only SurfName is specified, the geometry information for that surface is printed. If both SurfName and RSetName are specified, the value of the results set at each point, in addition to the geometry information, is printed.

## Menu Paths

Main Menu>General Postproc>Surface Operations>Print Results
Main Menu>General Postproc>Surface Operations>Status>Global

SURESU, --, Fname, Fext, Fdir
Read a set of surface definitions and result items from a file and make them the current set.
POST1:Surface Operations
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

Unused field.

## Ename

Eight character name.

## Fext

Extension name.
Fdir
Optional path specification.

## Notes

Reading (and therefore resuming) surface and result definitions from a file overwritea any existing surface definitions.

Reading surfaces back into the postprocessor (/POST1) does not insure that the surfaces (and their results) are appropriate for the model currently residing in /POST1.

## Menu Paths

Main Menu>General Postproc>Surface Operations>Resume Surfaces

SUSAVE, Lab, Fname, Fext, Fdir
Saves surface definitions to a file.

> POST1:Surface Operations MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS

Lab
Eight-character surface name.
If $L a b=A L L$ (default), then all surfaces are saved to the file.
If $L a b=S$, only currently selected surfaces are saved to the file.

## Fname

File name and directory path (248 character maximum, including directory). If you do not specify a directory path, the default is your working directory and you can use all 248 characters for the file name. The file name defaults to the jobname.

## Fext

File name extension (eight-character maximum). The extension defaults to "surf".

## Fdir

Optional path specification.

## Notes

The SUSAVE command saves surface definitions (geometry information)--and any result items mapped onto the surfaces--to a file.

Issuing the SUSAVE command has no effect on the database. The database remains unchanged.
Subsequent executions of the SUSAVE command overwrite previous data in the file.
To read the contents of the file created via the SUSAVE command, issue the SURESU command.

## Menu Paths

Main Menu>General Postproc>Surface Operations>Save Surfaces

SUSEL, Type, Name1, Name2, Name3, Name4, Name5, Name6, Name7, Name8

## Selects a subset of surfaces

POST1:Surface Operations<br>MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Type

Label identifying the type of select:
S
Selects a new set (default).
R
Reselects a set from the current set.
A
Additionally selects a set and extends the current set.
U
Unselects a set from the current set.
ALL
Also selects all surfaces.

## NONE

Unselects all surfaces.
Name1, Name2, Name3, . . . , Name8
Eight character surface names

## Notes

The selected set of surfaces is used in the following operations: SUMAP, SUDEL, SUCALC, SUEVAL, and SUVECT.

## Menu Paths

Main Menu>General Postproc>Surface Operations>Select Surfaces

## SUVECT, RSetName, lab1, Oper, lab2, Offset

Create new result data by operating on two existing result vectors on a given surface.

> POST1:Surface Operations
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## RSetName

Eight character name of the result data output. There will be one or three RSetName values depending on the operation specified in Oper.

## lab1

Eight character name of the mapped data that forms vector 1 . Specified sets must exist on all selected surfaces for this operation to take place. The names NORM and GC will be reserved for normals and for global ( $x, y, z$ ).

## Oper

DOT
Computes dot product between lab1 and lab2 vectors. The result is a scalar parameter (RSetName) and each value within the set can be modified (incremented) via Offset.

## CROSS

Computes cross product between lab1 and lab2 vectors. Each $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ value in the result can be modified (incremented) via Offset.

SMULT
Scales (lab1x, lab1y, lab1z) vector by scalar lab2. Each X,Y,Z value in the result can be modified (incremented) via Offset.

## lab2

Eight character name of the mapped data that forms vector 2. Sets with names Lab2X, Lab2Y, and Lab2Z must exist on all selected surfaces for operation to take place. For Oper $=$ SMULT a scalar value or another predefined scalar item (e.g., DA) can be supplied.

## Offset

An offset value to be applied to the resultant $R S$ etName. One value is specified for Oper = DOT, and three values are specified for Oper $=$ SMULT.

## Menu Paths

Main Menu>General Postproc>Surface Operations>Math Operations>Cross Product
Main Menu>General Postproc>Surface Operations>Math Operations>Dot Product
Main Menu>General Postproc>Surface Operations>Math Operations>Scale Result

SV, DAMP, SV1, SV2, SV3, SV4, SV5, SV6, SV7, SV8, SV9

## Defines spectrum values to be associated with frequency points.

SOLUTION: Spectrum Options
MP ME ST PR PRN $<><><><><><>$ PP $<>$ EME MFS

## DAMP

Damping ratio for this response spectrum curve. If the same as a previously defined curve, the SV values are added to the previous curve. Up to four different curves may be defined, each with a different damping ratio. Damping values must be input in ascending order.

SV1, SV2, SV3, . . . , sV9
Spectrum values corresponding to the frequency points [FREQ]. Values are interpreted as defined with the SVTYP command. SV values should not be zero. Values required outside the frequency range use the extreme input values.

## Notes

Defines the spectrum values to be associated with the previously defined frequency points [FREQ]. Applies only to the single-point response spectrum. Damping has no effect on the frequency solution. Damping values are used only to identify SV curves for the mode combinations calculation. Only the curve with the lowest damping value is used in the initial mode coefficient calculation. Use STAT command to list current spectrum curve values.

Repeat SV command for additional SV points (100 maximum per DAMP curve). SV values are added to the DAMP curve after the last nonzero SV value.

The interpolation method between response spectrum points and curves is specified using KeyInterp in the SVTYP command. It is logarithmic by default.

This command is also valid in PREP7.

## Menu Paths

## Main Menu>Preprocessor>Loads>Load Step Opts>Spectrum>SinglePt>Spectr Values Main Menu>Solution>Load Step Opts>Spectrum>SinglePt>Spectr Values

## SVPLOT, OptionScale, damp1, damp2, damp3, damp4

## Displays input spectrum curves.

SOLUTION:Spectrum Options
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

## OptionScale

Flag to activate or deactivate input spectrum value scaling:
OFF
Do not scale the input spectrum values with scale factor FACT (SVTYP command). This is the default value.

ON
Scale the input spectrum values with scale factor FACT (SVTYP command)

## damp1

Damping ratio corresponding to DAMP (SV command) defining the first spectrum curve.

## damp2

Damping ratio corresponding to DAMP (SV command) defining the second spectrum curve.

## damp3

Damping ratio corresponding to DAMP (SV command) defining the third spectrum curve.

## damp4

Damping ratio corresponding to DAMP (SV command) defining the fourth spectrum curve.

## Notes

You can display up to four input spectrum tables (SV and FREQ commands) with $\log X$ scale. If no damping ratio is specified, all spectrum tables are displayed.

This command is valid in any processor.

## Menu Paths

To be supplied.

## SVTYP, KSV, FACT, Keylnterp

## Defines the type of single-point response spectrum.

> SOLUTION: Spectrum Options
> MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

KSV
Response spectrum type:
0
Seismic velocity response spectrum loading (SV values interpreted as velocities with units of length/time).

1
Force response spectrum loading (SV values interpreted as force amplitude multipliers).
2
Seismic acceleration response spectrum loading (SV values interpreted as accelerations with units of length/time ${ }^{2}$ ).

3
Seismic displacement response spectrum loading (SV values interpreted as displacements with units of length).

4
PSD loading (SV values interpreted as acceleration ${ }^{2} /\left(\text { cycles/time), such as (in } / \mathrm{sec}^{2}\right)^{2} / \mathrm{Hz}\left(\right.$ not $\left.\mathrm{g}^{2} / \mathrm{Hz}\right)$ ). (Not recommended)

## FACT

Scale factor applied to spectrum values (defaults to 1.0 ). Values are scaled when the solution is initiated [SOLVE]. Database values remain the same.

## KeyInterp

Key to activate or deactivate the linear interpolation between input response spectrum points and input response spectrum curves:

## 0 (OFF or NO)

Deactivate linear and use logarithmic interpolation. This value is the default.
1 (ON or YES)
Activate linear interpolation.

## Command Default

Seismic velocity response spectrum.

## Notes

Defines the type of single-point response spectrum [SPOPT]. The seismic excitation direction is defined with the SED command.

This command is also valid in PREP7.

## Menu Paths

# Main Menu>Preprocessor>Loads>Load Step Opts>Spectrum>SinglePt>Settings Main Menu>Solution>Load Step Opts>Spectrum>SinglePt>Settings 

## SWADD, Ecomp, SHRD, NCM1, NCM2, NCM3, NCM4, NCM5, NCM6, NCM7, NCM8, NCM9

## Adds more surfaces to an existing spot weld set.

PREP 7:Elements
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

## Ecomp

Name of an existing spot weld set that was previously defined using SWGEN.

## SHRD

Search radius. Defaults to 4 times the spot weld radius defined for the spot weld set (SWRD on SWGEN).
NCM1, NCM2, NCM3, . . . NCM9
Surfaces to be added to the spot weld set. Each surface can be input as a predefined node component or a meshed area number.

## Notes

This command adds surfaces to an existing spot weld set defined by the SWGEN command. You can add additional surfaces by repeating the SWADD command. However, the maximum number of allowable surfaces (including the 2 surfaces used for the original set defined by SWGEN) for each spot weld set is 11 . See Adding Surfaces to a Basic Set for more information.

## Menu Paths

Main Menu>Preprocessor>Modeling>Create>Elements>SpotWeld>Add More Surfaces>By Areas

## SWDEL, Ecomp

## Deletes spot weld sets.

PREP 7: Elements
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS


#### Abstract

Ecomp Name of an existing spot weld set that was previously defined using SWGEN. If Ecomp = ALL (default) all spot welds are deleted.


## Notes

This command deletes spot weld sets previously defined by the SWGEN command.

## Menu Paths

Main Menu>Preprocessor>Modeling>Create>Elements>SpotWeld>Delete

## SWGEN, Ecomp, SWRD, NCM1, NCM2, SND1, SND2, SHRD, DIRX, DIRY, DIRZ, ITTY, ICTY

## Creates a new spot weld set.

PREP 7:Elements<br>MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

## Ecomp

Name to identify the new spot weld. This name will be used for the element component containing the new contact, target, and beam elements generated for the spot weld set.

## SWRD

Spot weld radius.
NCM1
Name of a component containing nodes on the first spot weld surface, or a meshed area number for the surface.

## NCM2

Name of a component containing nodes on the second spot weld surface, or a meshed area number for the surface.

## SND1

Node number of the first spot weld node corresponding to the first surface (NCM1). This node can be on or close to the first surface.

## SND2

Node number of the second spot weld node corresponding to the second surface (NCM2). This node can be on or close to the second surface. ANSYS will create the node if it is not specified.

## SHRD

Search radius. Defaults to 4 times the spot weld radius SWRD.

## DIRX, DIRY, DIRZ

Spot weld projection direction in terms of normal $X, Y$, and $Z$ components.

## ITTY

Target element type ID.

## ICTY

Contact element type ID.

## Notes

This command creates a new spot weld set. You can add more surfaces to the set using SWADD after the initial SWGEN command. However, the maximum number of allowable surfaces (including the 2 surfaces used for the original set) for each spot weld set is 11 .

Ecomp, SWRD, NCM1, NCM2, and SND1 must be specified. SND2, SHRD, DIRX, DIRY, DIRZ, ITTY, ICTY are optional inputs. If the second spot weld node (SND2) is specified, that node is used to determine the spot weld projection direction, and $D I R X, D I R Y$ and $D I R Z$ are ignored.

If $\operatorname{ITTY}$ is specified, the following corresponding target element key option must be set: $\operatorname{KEYOPT}(5)=4$. If ICTY is specified, the following corresponding contact element key options must be set: $\operatorname{KEYOPT}(2)=2$, $\operatorname{KEYOPT}(12)=5$.

Use the SWLIST and SWDEL commands to list or delete spot welds. See Creating a Basic Spot Weld Set with SWGEN for detailed information on defining spot welds.

## Menu Paths

# Main Menu>Preprocessor>Modeling>Create>Elements>SpotWeld>Add More Surfaces>By Node Component <br> Main Menu>Preprocessor>Modeling>Create>Elements>SpotWeld>Create New Set>By Area Main Menu>Preprocessor>Modeling>Create>Elements>SpotWeld>Create New Set>By Node Component 

## SWLIST, Ecomp

## Lists spot weld sets.

PREP 7:Elements
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

## Ecomp

Name of an existing spot weld set that was previously defined using SWGEN. If Ecomp = ALL (default), all spot weld sets are listed.

## Notes

This command lists spot weld node, beam, and contact pair information for all defined spot weld sets, or for the specified set. To ensure that all defined spotwelds are listed, issue CMSEL,ALL (to select all components) before issuing the SWLIST command.

When SWLIST is issued in POST1, the beam forces and moments are output. For the case of a deformable spot weld, the stresses are also output in the beam local coordinate system.

## Menu Paths

Main Menu>General Postproc>List Results>SpotWeld Solution
Main Menu>Preprocessor>Modeling>Create>Elements>SpotWeld>List
Utility Menu>List>Results>SpotWeld Solution

## SYNCHRO, RATIO, Cname

Specifies whether the excitation frequency is synchronous or asynchronous with the rotational velocity of a structure.

SOLUTION: Inertia
MP ME ST <> <> <> <> <> EM <> <> PP <> EME MFS

## RATIO

The ratio between the frequency of excitation and the frequency of the rotational velocity of the structure. This value must be greater than 0 . The default is an unbalance excitation ( $R A T I O=1.0$ ).

## Cname

The name of the rotating component on which to apply the harmonic excitation.

## Notes

The SYNCHRO command specifies whether the excitation frequency is synchronous or asynchronous with the rotational velocity of a structure in a harmonic analysis. Use the command to take into account rotating harmonic forces on rotating structures.

ANSYS calculates the rotational velocity $\Omega$ of the structure from the excitation frequency $f$, defined (via the HARFRQ command) as $\Omega=2 \pi f$ / RATIO. The rotational velocity is applied along the direction cosines of the rotation axis (specified via an OMEGA or CMOMEGA command).

Specifying any value for RATIO causes a general rotational force excitation and not an unbalance force. To define an unbalance excitation force ( $\mathrm{F}=\Omega^{2} * \mathrm{Unb}$ ), RATIO should be left blank (the nodal unbalance Unb is specified via the $\mathbf{F}$ command).

The SYNCHRO command is valid only for a full-solution harmonic analysis (HROPT,Method $=$ FULL) and the Variational Technology method (HROPT, Method $=\mathrm{VT}$ ) involving a rotating structure (OMEGA or CMOMEGA) with Coriolis enabled in a stationary reference frame (CORIOLIS,,,, RefFrame = ON).

## Menu Paths

Main Menu>Preprocessor>Loads $>$ Define Loads $>$ Apply>Structural $>$ Inertia $>$ Angular Veloc>Synchronous
Main Menu>Solution>Define Loads>Apply>Structural>Inertia>Angular Veloc>Synchronous
/SYP, String, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6, ARG7, ARG8
Passes a command string and arguments to the operating system.

> SESSION: Run Controls
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## String

Command string (cannot include commas). See also the /SYS command.

## ARG1, ARG2, ARG3, . . . , ARG8

Arguments to be appended to the command string, separated by blanks, commas, or other delimiter characters (see the Operations Guide). The arguments may be numbers, parameters, or parametric expressions.

## Notes

Passes a command string to the operating system for execution, along with arguments to be appended to the command string. See the Operations Guide for details. ANSYS may not be aware of your specific user environment. In particular, this command may not recognize UNIX aliases, depending on the hardware platform and user environment.

This command is valid in any processor.

## Menu Paths

This command cannot be accessed from a menu.

## /SYS, String

## Passes a command string to the operating system.

> SESSION: Run Controls
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## String

Command string, up to 639 characters (including blanks, commas, etc.). The specified string is passed verbatim to the operating system, i.e., no parameter substitution is performed.

## Notes

Passes a command string to the operating system for execution (see the Operations Guide). Typical strings are system commands such as list, copy, rename, etc. Control returns to the ANSYS program after the system procedure is completed. ANSYS may not be aware of your specific user environment. In particular, this command may not recognize UNIX aliases, depending on the hardware platform and user environment.

This command is valid in any processor.

## Menu Paths

## This command cannot be accessed from a menu.

## T Commands

## TALLOW, TEMP1, TEMP2, TEMP3, TEMP4, TEMP5, TEMP6

## Defines the temperature table for safety factor calculations.

POST1:Element Table
MP ME ST PR PRN <> <> <> <> <> DY PP <> EME MFS
TEMP1, TEMP 2, TEMP 3, . . , TEMP 6
Input up to six temperatures covering the range of nodal temperatures. Temperatures must be input in ascending order.

## Notes

Defines the temperature table for safety factor calculations [SFACT, SALLOW]. Use STAT command to list current temperature table. Repeat TALLOW command to zero table and redefine points ( 6 maximum).

Safety factor calculations are not supported by PowerGraphics. Both the SALLOW and TALLOW commands must be used with the Full Model Graphics display method active.

## Menu Paths

Main Menu>General Postproc>Safety Factor>Allowable Strs>Reset Temps
Main Menu>General Postproc>Safety Factor>Allowable Strs>Temp-depend
*TAXIS, ParmLoc, nAxis, Val1, Val2, Val3, Val4, Val5, Val6, Val7, Val8, Val9, Val10

## Defines table index numbers.

APDL:Parameters
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Argument Descriptions

## ParmLoc

Name and starting location in the table array parameter for indexing. Indexing occurs along the axis defined with nAxis.

## nAxis

Axis along which indexing occurs. Valid labels are:
1 --
Corresponds to Row. Default.
2 --
Corresponds to Column.

3 --
Corresponds to Plane.

## 4 --

Corresponds to Book.
5 --
Corresponds to Shelf.
ALL --
Lists all index numbers. Valid only if Val1 = LIST.

## Val1, Val2, Val3, ..., Val10

Values of the index numbers for the axis nAxis, starting from the table array parameter location ParmLoc. You can define up to ten values.

To list the index values specified with nAxis, issue Vall = LIST. If Vall = LIST, Val2-Vallo are ignored.

## Notes

*TAXIS is a convenient method to define table index values. These values reside in the zero column, row, etc. Instead of filling values in these zero location spots, use the *TAXIS command. For example,
*TAXIS, longtable $(1,4,1,1), 2,1.0,2.2,3.5,4.7,5.9$
would fill index values $1.0,2.2,3.5,4.7$, and 5.9 in nAxis 2 (column location), starting at location 4.
To list index numbers, issue *TAXIS,ParmLoc, nAxis, LIST, where nAxis $=1$ through 5 or ALL.

## Menu Paths

This command cannot be accessed from a menu.

TB, Lab, MAT, NTEMP, NPTS, TBOPT, EOSOPT, FuncName
Activates a data table for nonlinear material properties or special element input.
PREP 7: Data Tables
MP ME ST PR PRN <> <> <> EM EH DY PP <> EME MFS
Product Restrictions

## Lab

Type of data table:

## AHYPER

Anisotropic Hyperelasticity model (SHELL181, PLANE182, PLANE183, SOLID185, SOLID186, SOLID187, SHELL208, SHELL209, SOLID272, SOLID273, SHELL281, SOLID285, PIPE288, PIPE289, and ELBOW290. See AHYPER Specifications (p. 1680) for more information.

## ANEL

Anisotropic elastic matrix (SOLID5, PLANE13, SOLID98, SHELL181, PLANE182, PLANE183, SOLID185, SOLID186, SOLID187, SOLSH190, SHELL208, SHELL209, SOLID272, SOLID273, SHELL281, SOLID285, PIPE288, PIPE289, and ELBOW290, and explicit dynamic elements SOLID164 and SOLID168). Also PLANE223, SOLID226, SOLID227. See ANEL Specifications (p. 1677) for more information.

## ANISO

Anisotropic plasticity (SOLID62, SOLID65, and PLANE183). See ANISO Specifications (p. 1671) for more information.

## BB

Bergstrom-Boyce (PLANE182, PLANE183, SHELL181, SOLID185, SOLID186, SOLID187, SOLSH190, SHELL208, SHELL209, SOLID272, SOLID273, SHELL281, SOLID285, PIPE288, PIPE289, and ELBOW290). See Bergstrom-Boyce Specifications (p. 1681)for more information.

BH
Magnetic field data (SOLID5, PLANE13, PLANE53, SOLID62, SOLID96, SOLID97, SOLID98, SOLID117, PLANE233, SOLID236, SOLID237). See BH Specifications (p. 1685) for more information.

## BISO

Bilinear isotropic hardening using von Mises or Hill plasticity.
For von Mises plasticity: SOLID62, SOLID65, LINK180, SHELL181, PLANE182, PLANE183, SOLID185, SOLID186, SOLID187, BEAM188, BEAM189, SOLSH190, SHELL208, SHELL209, PLANE223, SOLID226, SOLID227, REINF264, REINF264, REINF265, SOLID272, SOLID273, SHELL281, SOLID285, PIPE288, PIPE289, and ELBOW290, and explicit dynamic elements PLANE162, SHELL163, SOLID164, and SOLID168.

For Hill plasticity: LINK180, SHELL181, PLANE182, PLANE183, SOLID185, SOLID186, SOLID187, BEAM188, BEAM189, SOLSH190, SHELL208, SHELL209, PLANE223, SOLID226, SOLID227, REINF264, REINF265, SOLID272, SOLID273, SHELL281, SOLID285, PIPE288, PIPE289, and ELBOW290.

See BISO Specifications (p. 1669) for more information.

## BKIN

Bilinear kinematic hardening using von Mises or Hill plasticity
For von Mises plasticity: SOLID62, SOLID65, LINK180, SHELL181, SOLID185, SOLID186, SOLID187, BEAM188, BEAM189, SOLSH190, SHELL208, SHELL209, PLANE223, SOLID226, SOLID227, REINF264, REINF265, SHELL281, PIPE288, PIPE289, ELBOW290, PLANE182, and PLANE183, and explicit dynamic elements LINK160, BEAM161, PLANE162, SHELL163, SOLID164, and SOLID168.

For Hill plasticity: LINK180, SHELL181, PLANE182, PLANE183, SOLID185, SOLID186, SOLID187, BEAM188, BEAM189, SOLSH190, SHELL208, SHELL209, PLANE223, SOLID226, SOLID227, REINF264, REINF265, SOLID272, SOLID273, SHELL281, SOLID285, PIPE288, PIPE289, and ELBOW290. See BKIN Specifications (p. 1668) for more information.

## CAST

Cast iron material model (PLANE182 (not applicable for plane stress), PLANE183 (not applicable for plane stress), SOLID185, SOLID186, SOLID187, SOLSH190, PLANE223, SOLID226, SOLID227, SOLID272, SOLID273, SOLID285, PIPE288, and PIPE289). See CAST Specifications (p. 1672) for more information.

## CDM

Mullins effect for Isotropic Hyperelasticity models (SHELL181, PLANE182, PLANE183, SOLID185, SOLID186, SOLID187, SOLSH190, SHELL208, SHELL209, SOLID272, SOLID273, SHELL281, SOLID285, PIPE288, PIPE289, and ELBOW290). See Mullins Effect Specifications (p. 1684) for more information.

## CHABOCHE

Chaboche nonlinear kinematic hardening using von Mises or Hill plasticity (LINK180, SHELL181, PLANE182, PLANE183, SOLID185, SOLID186, SOLID187, BEAM188, BEAM189, SOLSH190, SHELL208, SHELL209, PLANE223, SOLID226, SOLID227, REINF264, REINF265, SOLID272, SOLID273, SHELL281, SOLID285, PIPE288, PIPE289, and ELBOW290). See CHABOCHE Specifications (p. 1668) for more information.

## CNDE

Anisotropic electric current conductivity (HF119, HF120). See CNDE Specifications (p. 1686) for more information.

## CNDM

Anisotropic magnetic current conductivity (HF119, HF120). See CNDM Specifications (p. 1686) for more information.

## COMP

Composite material models (explicit dynamic elements PLANE162, SHELL163, SOLID164, and SOLID168). See COMP Specifications (p. 1689) for more information.

## CONCR

Concrete element data (SOLID65) or concrete damage model (explicit dynamic elements SOLID164 and SOLID168). See CONCR Specifications ( p .1672 ) for more information.

## CREEP

Viscoplasticity/creep. You can model pure creep, creep with isotropic hardening plasticity, or creep with kinematic hardening plasticity using both von Mises or Hill potentials. See Material Model Combinations in the Element Reference for further information on combining models.

For explicit creep with von Mises potential: SOLID62 and SOLID65.
For implicit creep with von Mises or Hill potential: LINK180, SHELL181, PLANE182, PLANE183, SOLID185, SOLID186, SOLID187, BEAM188, BEAM189, SOLSH190, SHELL208, SHELL209, PLANE223, SOLID226, SOLID227, REINF264, REINF265, SOLID272, SOLID273, SOLID285, SHELL281, PIPE288, PIPE289, and ELBOW290.

See CREEP Specifications (p. 1679) for more information.

## CZM

Cohesive zone material model (contact elements CONTA171, CONTA172, CONTA173, CONTA174, CONTA175, CONTA176, CONTA177, and interface elements INTER202, INTER203, INTER204, INTER205 ) . See CZM Specifications (p. 1693) for more information.

## DISCRETE

Explicit spring-damper (discrete) material models (COMBI165). See DISCRETE Specifications (p. 1689) for more information.

## DP

Drucker-Prager plasticity (SOLID62, SOLID65, and PLANE83). See DP Specifications (p. 1672) for more information.

## DPER

Anisotropic electric permittivity ( HF118, HF119, HF120, PLANE223, SOLID226, SOLID227). See DPER Specifications (p. 1686) for more information.

## EDP

Extended Drucker-Prager model for granular materials such as rock, concrete, soil, ceramics and other pressure dependent materials. (PLANE182(not applicable for plane stress), PLANE183 (not applicable for plane stress), SOLID185, SOLID186, SOLID187, SOLSH190, PLANE223, SOLID226, SOLID227, SOLID272, SOLID273, SOLID285, PIPE288, and PIPE289). See EDP Specifications (p. 1673) for more information.

## ELASTIC

Elastic material property (LINK180, SHELL181, PLANE182, PLANE183, SOLID185, SOLID186, SOLID187, BEAM188, BEAM189, SOLSH190, SHELL208, SHELL209, CPT212, CPT213, CPT215, CPT216, CPT217, PLANE223, SOLID226, SOLID227, REINF264, REINF265, SOLID272, SOLID273, SHELL281, SOLID285,

PIPE288, PIPE289, and ELBOW290). Elastic properties can be defined as frequency or temperature dependent properties for use in full harmonic analyses (use TBFIELD). See ELASTIC Specifications (p. 1677) for more information.

## EOS

Equation of state (explicit dynamic elements only). See EOS Specifications (p. 1690) for more information.

## EVISC

Viscoelastic element data (via explicit dynamic elements BEAM161, PLANE162, SOLID164, and SOLID168). See EVISC Specifications (p. 1690) for more information.

## EXPE

Experimental data. See EXPE Specifications (p. 1693) for more information.
FCON
Fluid conductance data (FLUID116). See FCON Specifications (p. 1691) for more information.

## FCLI

Material strength limits for calculating failure criteria. See FCLI Specifications (p. 1694) for more information.

## FLUID

Fluid material models (valid for hydrostatic fluid elements HSFLD241, and HSFLD242). See FLUID Specifications (p. 1694) for more information.

## FOAM

Foam material models (explicit dynamic elements PLANE162, SOLID164, and SOLID168). See FOAM Specifications (p. 1691) for more information.
FRIC
Coefficient of friction based on Coulomb's Law (CONTA171, CONTA172, CONTA173, CONTA174, CONTA175, CONTA176, CONTA177, and CONTA178) or user defined friction properties (CONTA171, CONTA172, CONTA173, CONTA174, CONTA175, CONTA176, CONTA177, and CONTA178). See FRIC Specifications ( p .1695 ) for more information.

## GASKET

Gasket material model (INTER192, INTER193, INTER194, and INTER195). See GASKET Specifications (p. 1695) for more information.

## GCAP

Geological Cap material model (explicit dynamic elements SOLID164 and SOLID168). See GCAP Specifications (p. 1691) for more information.

## GURSON

Gurson pressure-dependent plasticity model for porous metals (PLANE182 (not applicable for plane stress), PLANE183 (not applicable for plane stress), SOLID185, SOLID186, SOLID187, SOLSH190, PLANE223, SOLID226, SOLID227, SOLID272, SOLID273, and SOLID285). See GURSON Specifications (p. 1673) for more information. Also see Gurson-Chaboche Material Model in the Structural Analysis Guide.
HFFDLD
Frequency-dependent lossy dielectric (HF119 and HF120). See HFFDLD Specifications (p. 1686) for more information.

## HFLM

Film coefficient data (FLUID116). See HFLM Specifications (p. 1687) for more information.

## HILL

Hill anisotropy when combined with other material options simulates plasticity, viscoplasticity, and creep -- all with the Hill potential. See Material Model Combinations in the Element Reference for further information on combining models (LINK180, SHELL181, PLANE182, PLANE183, SOLID185, SOLID186, SOLID187, BEAM188, BEAM189, SOLSH190, SHELL208, SHELL209, PLANE223, SOLID226, SOLID227, REINF264, REINF265, SOLID272, SOLID273, SHELL281, SOLID285, PIPE288, PIPE289, and ELBOW290). See HILL Specifications (p. 1671) for more information.

## HONEY

Honeycomb material models (explicit dynamic elements PLANE162, SOLID164, and SOLID168). See HONEY Specifications (p. 1692) for more information.

## HYPER

Hyperelasticity models (Arruda-Boyce, Blatz-Ko, Extended Tube, Gent, Mooney-Rivlin (default), NeoHookean, Ogden, Ogden Foam, Polynomial Form, Response Function, Yeoh, and user-defined SHELL181, PIPE288, PIPE289, ELBOW290, PLANE182, PLANE183, SOLID185, SOLID186, SOLID187, SOLSH190, SHELL208, SHELL209, SOLID272, SOLID273, SHELL281, and SOLID285]). See HYPER Specifications ( p . 1681) for more information.

## JOIN

Linear and nonlinear elastic stiffness, linear and nonlinear damping, and frictional behavior (MPC184). See JOIN Specifications (p. 1674) for more information.

## KINH

Multilinear kinematic hardening using von Mises or Hill plasticity.
For von Mises plasticity: PLANE13, SOLID62, LINK180, SHELL181, PLANE182, PLANE183, SOLID185, SOLID186, SOLID187, BEAM188, BEAM189, SOLSH190, SHELL208, SHELL209, PLANE223, SOLID226, SOLID227, REINF264, REINF265, SHELL281, PIPE288, PIPE289, and ELBOW290.

For Hill plasticity: LINK180, SHELL181, PLANE182, PLANE183, SOLID185, SOLID186, SOLID187, BEAM188, BEAM189, SOLSH190, SHELL208, SHELL209, PLANE223, SOLID226, SOLID227, REINF264, REINF265, SOLID272, SOLID273, SHELL281, SOLID285, and ELBOW290. KINH is the same as MKIN with TBOPT $=2$, but with fewer restrictions on the number of points per curve and the number of temperatures. See KINH Specifications (p. 1669) for more information.

## LSEM

Anisotropic electric and magnetic loss tangents (HF119 and HF120). See LSEM Specifications (p. 1687) for more information.

## MELAS

Multilinear elasticity (SOLID62 and SOLID65). See MELAS Specifications (p. 1678) for more information.
MISO
Multilinear isotropic hardening using von Mises or Hill plasticity.
For von Mises plasticity: SOLID62, SOLID65, LINK180, SHELL181,PLANE182, PLANE183, SOLID185, SOLID186, SOLID187, BEAM188, BEAM189, SOLSH190, SHELL208, SHELL209, PLANE223, SOLID226, SOLID227, REINF264, REINF265, SOLID272, SOLID273, SHELL281, SOLID285, PIPE288, PIPE289, and ELBOW290.

For Hill plasticity: LINK180, SHELL181, PLANE182, PLANE183, SOLID185, SOLID186, SOLID187, BEAM188, BEAM189, SOLSH190, SHELL208, SHELL209, PLANE223, SOLID226, SOLID227, REINF264, REINF265, SOLID272, SOLID273, SHELL281, SOLID285, and ELBOW290.

See MISO Specifications (p. 1670) for more information.

## MKIN

Multilinear kinematic hardening using von Mises or Hill plasticity.
For von Mises plasticity: SOLID62, SOLID65, LINK180, SHELL181, PLANE182, PLANE183, SOLID185, SOLID186, SOLID187, BEAM188, BEAM189, SOLSH190, SHELL208, SHELL209, PLANE223, SOLID226, SOLID227, REINF264, REINF265, SOLID272, SOLID273, SHELL281, SOLID285, PIPE288, PIPE289, and ELBOW290.

For Hill plasticity: LINK180, SHELL181, PLANE182, PLANE183, SOLID185, SOLID186, SOLID187, BEAM188, BEAM189, SOLSH190, SHELL208, SHELL209, PLANE223, SOLID226, SOLID227, REINF264, REINF265, SOLID272, SOLID273, SHELL281, SOLID285, and ELBOW290.

See MKIN Specifications (p. 1669) for more information.
MOONEY
Mooney-Rivlin hyperelastic element data (explicit dynamic elements PLANE162, SHELL163, SOLID164, and SOLID168). See MOONEY Specifications (p. 1683) for more information.

## MUR

Anisotropic relative permeability ( HF118, HF119, HF120). See MUR Specifications (p. 1687) for more information.

## NLISO

Voce isotropic hardening law or power law for modeling nonlinear isotropic hardening using von Mises or Hill plasticity (LINK180, SHELL181, PLANE182, PLANE183, SOLID185, SOLID186, SOLID187, BEAM188, BEAM189, SOLSH190, SHELL208, SHELL209, PLANE223, SOLID226, SOLID227, REINF264, REINF265, SOLID272, SOLID273, SHELL281, SOLID285, PIPE288, PIPE289, and ELBOW290). See NLISO Specifications (p. 1670) for more information.
PIEZ
Piezoelectric matrix (SOLID5, PLANE13, SOLID98). Also PLANE223, SOLID226, SOLID227. See PIEZ Specifications (p. 1688) for more information.

## PLASTIC

Nonlinear plasticity with stress-vs.-plastic strain data (LINK180, SHELL181, PIPE288, PIPE289, ELBOW290, PLANE182, PLANE183, SOLID185, SOLID186, SOLID187, BEAM188, BEAM189, SOLSH190, SHELL208, SHELL209, PLANE223, SOLID226, SOLID227, REINF264, REINF265, SOLID272, SOLID273, SHELL281, and SOLID285). See PLASTIC Specifications (p. 1670) for more information.

## PLAW

Plasticity laws (explicit dynamic elements LINK160, BEAM161, PLANE162, SHELL163, SOLID164, and SOLID168). See PLAW Specifications (p. 1692) for more information.

## PM

Porous media material model (coupled elements CPT212, CPT213, CPT215, CPT216, and CPT217). See PM Specifications (p. 1688) for more information.

## PRONY

Prony series constants for viscoelastic materials (LINK180, SHELL181, PIPE288, PIPE289, ELBOW290, PLANE182, PLANE183, SOLID185, SOLID186, SOLID187, BEAM188, BEAM189, SOLSH190, SHELL208, SHELL209, PLANE223, SOLID226, SOLID227, REINF264, REINF265, SOLID272, SOLID273, SHELL281, and SOLID285). See PRONY Specifications (p. 1684) for more information.

## PZRS

Piezoresistive materials (PLANE223, SOLID226, SOLID227). See PZRS Specifications (p. 1688) for more information.

## RATE

Rate-dependent plasticity (viscoplasticity) when combined with the BISO, MISO, NLISO or PLASTIC material options, or rate-dependent anisotropic plasticity (anisotropic viscoplasticity) when combined with the HILL and BISO, MISO, NLISO or PLASTIC material options (LINK180, SHELL181, PLANE182, PLANE183, SOLID185, SOLID186, SOLID187, BEAM188, BEAM189, SOLSH190, SHELL208, SHELL209, PLANE223, SOLID226, SOLID227, REINF264, REINF265, SOLID272, SOLID273, SHELL281, SOLID285, PIPE288, PIPE289, and ELBOW290). For more information about combining material models, see Material Model Combinations in the Element Reference.

The exponential visco-hardening option includes an explicit function for directly defining static yield stresses of materials.

An Anand unified plasticity model is also available, requiring no combination with other material models and supporting the following elements: PLANE182 and PLANE183 (neither applicable for plane stress), SOLID185, SOLID186, SOLID187, SOLSH190, SOLID272, SOLID273, SOLID285, PIPE288, and PIPE289.

See RATE Specifications (p. 1679) for more information.

## SDAMP

Material structural damping coefficient (SHELL181, PLANE182, PLANE183, SOLID185, SOLID186, SOLID187, SOLSH190, SHELL208, SHELL209, PLANE223, SOLID226, SOLID227, SOLID272, SOLID273, SHELL281, SOLID285, and ELBOW290). Damping coefficients can be defined as frequency or temperature dependent properties for use in full harmonic analyses (use TBFIELD). SDAMP specifies damping in terms of the loss factor, which is equal to $2 x$ the damping ratio. See SDAMP Specifications ( p . 1678) and Damping Matrices for more information.

For the relationship between SDAMP, DMPRAT, and MP,DAMP, see "Notes" (p. 1696)

## Note

When specifying frequency dependent damping using TB,SDAMP you must specify the material property using TB,ELAS.

## SHIFT

Shift function for viscoelastic materials (LINK180, SHELL181, PLANE182, PLANE183, SOLID185, SOLID186, SOLID187, BEAM188, BEAM189, SOLSH190, SHELL208, SHELL209, PLANE223, SOLID226, SOLID227, PIPE288, PIPE289, ELBOW290, REINF264, REINF265, SOLID272, SOLID273, SHELL281, and SOLID285). See SHIFT Specifications ( $p .1685$ ) for more information.

## SMA

Shape memory alloy for simulation of hysteresis superelastic behavior with no performance deformation. Plane stress is not supported. See Shape Memory Alloys in the Element Reference, and Shape Memory Alloy in the Theory Reference for the Mechanical APDL and Mechanical Applications for further information. The TB,SMA option is valid for PLANE182, PLANE183, and PLANE223 (with plane strain or axisymmetric stress states), and for SOLID185, SOLID186, SOLID187, SOLSH190, SOLID226, SOLID227, SOLID272, SOLID273, and SOLID285. See SMA Specifications (p. 1676) for more information.

## STATE

User-defined state variables, used with TB,USER or TB,CREEP [when the USER CREEP option is chosen $(T B O P T=100)]$. When used with TB, USER, TB,STATE is only used with the USERMAT subroutine (not USERPL). When used with TB,CREEP, TB,STATE is only used with the USERCREEP subroutine. See STATE Specifications (p. 1696) for more information.

## SWELL

Swelling constants (SOLID62 and SOLID65). See SWELL Specifications (p. 1680) for more information.

## UNIAXIAL

Uniaxial stress-strain relation associated with the Cast Iron material model (PLANE182, PLANE183, and PLANE223 (not applicable for plane stress), SOLID185, SOLID186, SOLID187, SOLSH190, SOLID226, SOLID227, SOLID272, SOLID273, and SOLID285). See UNIAXIAL Specifications ( p .1676 ) for more information.

## USER

User-defined material model; general purpose except for incompressible material models (LINK180, SHELL181, PLANE182, PLANE183, SOLID185, SOLID186, SOLID187, BEAM188, BEAM189, SOLSH190, SHELL208, SHELL209, REINF264, REINF265, SOLID272, SOLID273, SHELL281, SOLID285, PIPE288, PIPE289, and ELBOW290).

Also, user-defined plasticity or viscoplasticity (SOLID62, SOLID65, and PLANE183).
See USER Specifications ( p .1696 ) for more information.

## MAT

Material reference number. The default value is 1 .

## NTEMP

The number of temperatures for which data will be provided (if applicable). Specify temperatures via the TBTEMP command.

## NPTS

For most labels where NPTS is defined, the number of data points to be specified for a given temperature.
Define data points via the TBDATA or TBPT commands.

## EOSOPT

Indicates which equation of state model will be used. Used only for explicit dynamics, and only when Lab = EOS.
1
Linear polynomial equation of state
2
Gruneisen equation of state
3
Tabulated equation of state

## FuncName

The name of the function to be used (entered as \%tabname\%, where tabname is the name of the table created by the Function Tool). Valid only when Lab = JOIN (joint element material) and nonlinear stiffness or damping are specified on the TBOPT field (see JOIN Specifications (p. 1674)). The function must be previously defined using the Function Tool. To learn more about how to create a function, see "Using the Function Tool" in the Basic Analysis Guide.

## Data Table Specifications

Following is a listing of all valid TB command labels (Lab values). For each material type, the data table includes requirements for the $N T E M P, N P T S$, and $T B O P T$ options, along with links to more detailed documentation if needed.

Kinematic Hardening Tables<br>Isotropic Hardening Tables<br>Anisotropic Plasticity Tables<br>Nonmetal and Other Plasticity Tables<br>Elasticity Tables<br>Rate-Dependent Plasticity Tables<br>Hyperelasticity Tables<br>Viscoelasticity Tables<br>Multiphysics Tables<br>Porous Media Tables<br>ANSYS LS-DYNA Tables<br>Special Material Tables<br>User Tables

## Kinematic Hardening Tables

## BKIN Specifications

## NTEMP:

Number of temperatures for which data will be provided. Default $=6$, Maximum $=6$

## NPTS:

Not used.
TBOPT:
Stress-strain options (not used in an explicit dynamics analysis).
0 --
No stress relaxation with temperature increase (this is not recommended for nonisothermal problems).
1 --
Rice's hardening rule, which takes into account stress relaxation with increasing temperature. This value is the default..

## References:

Bilinear Kinematic Hardening Constants (TB,BKIN) in the Element Reference.
Plastic Material Options in the Structural Analysis Guide.

Nonlinear Inelastic Models in the ANSYS LS-DYNA User's Guide.

## CHABOCHE Specifications

## NTEMP:

Number of temperatures for which data will be provided. Default = 1, Maximum value of NTEMP is such that NTEMP $\mathrm{x}(1+2 N P T S)=1000$

## NPTS:

Number of kinematic models to be superposed. Default $=1$, Maximum value of NPTS is such that NTEMP $\mathrm{x}(1+2 N P T S)=1000$

## TBOPT:

Not used.

## References:

Nonlinear Kinematic Hardening Constants (TB,CHABOCHE) in the Element Reference.

Plastic Material Options in the Structural Analysis Guide.

## KINH Specifications

## NTEMP:

Number of temperatures for which data will be provided. Default $=1$, Maximum $=40$

## NPTS:

Number of data points to be specified for a given temperature. Default $=20$, Maximum $=20$

## TBOPT:

Use 0 or leave blank to define stress -vs- total strain curve.
Use 4 or enter "PLASTIC" to define stress -vs- plastic strain curve. This option supports only elements LINK180, SHELL181, PLANE182, PLANE183, SOLID185, SOLID186, SOLID187, BEAM188, BEAM189, SOLSH190, SHELL208, SHELL209, REINF264, REINF265, SOLID272, SOLID273, SOLID285, SHELL281, PIPE288, PIPE289, and ELBOW290, .

## References:

Multilinear Kinematic Hardening Constants (TB,KINH or TB,MKIN) in the Element Reference.
Plastic Material Options in the Structural Analysis Guide.

## MKIN Specifications

## NTEMP:

Number of temperatures for which data will be provided. Default $=5$, Maximum $=5$

## NPTS:

Not used.
твоРт:
Stress-strain options.
0 --
No stress relaxation with temperature increase (this is not recommended for nonisothermal problems); also produces thermal ratcheting. This value is the default.
1 --
Recalculate total plastic strain using new weight factors of the subvolume.
2 --
Scale layer plastic strains to keep total plastic strain constant; agrees with Rice's model (TB, BKIN with $T B O P T=1$ ). Produces stable stress-strain cycles.

## References:

Multilinear Kinematic Hardening Constants (TB,KINH or TB,MKIN) in the Element Reference.
Plastic Material Options in the Structural Analysis Guide.

## Isotropic Hardening Tables

## BISO Specifications

## NTEMP:

Number of temperatures for which data will be provided. Default $=6$, Maximum $=6$

## NPTS:

Not used.

## TBOPT:

Not used.

## References:

Bilinear Isotropic Hardening Constants (TB,BISO) in the Element Reference.
Plastic Material Options in the Structural Analysis Guide.
Nonlinear Inelastic Models in the ANSYS LS-DYNA User's Guide.

## MISO Specifications

## NTEMP:

Number of temperatures for which data will be provided. Default $=1$, Maximum $=20$

## NPTS:

Number of data points to be specified for a given temperature. Default $=20$, Maximum $=100$

## TBOPT:

Not used.

## References:

Multilinear Isotropic Hardening Constants (TB,MISO) in the Element Reference.
Plastic Material Options in the Structural Analysis Guide.

## NLISO Specifications

## NTEMP:

Number of temperatures for which data will be provided. Default $=1$, Maximum $=20$

## NPTS:

Number of data points to be specified for a given temperature. Default $=4$, Maximum $=4$
TBOPT:
Isotropic hardening options.
VOCE --
Voce hardening law. This value is the default.
POWER --
Power hardening law..

## References:

Nonlinear Isotropic Hardening Constants (TB,NLISO) in the Element Reference.
Plastic Material Options in the Structural Analysis Guide.

## PLASTIC Specifications

NTEMP:
The number of temperature points (default $=1$ ). You can specify up to 20.

## NPTS:

The number of stress versus plastic strain data points (default $=20$ ). You can specify up to 100 .

## TBOPT:

Type of plastic hardening:
MISO --
Multilinear isotropic hardening plasticity.
KINH --
Multilinear kinematic hardening plasticity.

## References:

Plasticity in the Structural Analysis Guide.
Multilinear Kinematic Hardening in the Element Reference.
Multilinear Isotropic Hardening in the Element Reference.

## Anisotropic Plasticity Tables

## ANISO Specifications

## NTEMP:

Not used.

## NPTS:

Not used.

## TBOPT:

Not used.

## References:

Anisotropic Constants (TB,ANISO) in the Element Reference.
Plastic Material Options in the Structural Analysis Guide.

## HILL Specifications

## NTEMP:

Number of temperatures for which data will be provided. Default $=1$, Maximum $=40$

## NPTS:

Not used.
TBOPT:
Not used.

## References:

Hill's Anisotropy Constants (TB,HILL) in the Element Reference.
Plastic Material Options in the Structural Analysis Guide.

## Nonmetal and Other Plasticity Tables

## CAST Specifications

## NTEMP :

Number of temperatures for which data will be provided. Default $=1 ;$ Max $=10$.
NPTS:
Not used.
TBOPT:
Defines hardening type.
ISOTROPIC --
Specifies cast iron plasticity with isotropic hardening.

## References:

Cast Iron Plasticity Material Constants (TB,CAST) in the Element Reference.

## CONCR Specifications

NTEMP:
Number of temperatures for which data will be provided (used only if TBOPT $=0$ or 1 ). Default $=6$,
Maximum = 6
NPTS:
Not used.
твоРт:
Concrete material options.
0 or 1 --
General concrete option for element SOLID65.
2 --
Concrete damage model for explicit dynamic elements SOLID164 and SOLID168.

## References:

SOLID65 in the Element Reference.
Concrete Damage Model in the ANSYS LS-DYNA User's Guide.

## DP Specifications

NTEMP:
Not used.
NPTS:
Not used.
твоРт:
Not used.
References:
Drucker-Prager Constants (TB,DP) in the Element Reference.
Plastic Material Options in the Structural Analysis Guide.

## EDP Specifications

## NTEMP:

Number of temperatures for which data will be provided. Default $=1$.

## NPTS:

Number of data points to be specified for a given temperature.

## TBOPT:

EDP material options.
LYFUN --
LInear yield function.
PYFUN --
Power law yield function.

## HYFUN --

Hyperbolic yield function.

## LFPOT --

Linear flow potential function.
PFPOT --
Power law flow potential function.
HFPOT --
Hyperbolic flow potential function.
CYFUN --
Cap yield function.

## CFPOT --

Cap flow potential function.

## References:

See Extended Drucker-Prager in the Element Reference.
Also see Plastic Material Options in the Structural Analysis Guide.

## GURSON Specifications

## NTEMP:

Number of temperatures for which data will be provided. Default $=1$.

## NPTS:

Number of data points to be specified for a given temperature.

## TBOPT:

GURSON material options.
BASE --
Basic model without nucleation or coalescence. This value is the default.
SNNU --
Strain controlled nucleation.
SSNU --
Stress controlled nucleation.
COAL --
Coalescence

## References:

See Gurson's Model in the Element Reference.
Also see Plastic Material Options in the Structural Analysis Guide.

## JOIN Specifications

## NTEMP:

Number of temperatures for which data will be provided. Default $=1$.
NPTS:
Number of data points to be specified for a given temperature. $N P T S$ is ignored if $T B O P T=$ STIF or DAMP.

If Coulomb friction is specified, NPTS is used only for $T B O P T=$ MUS1, MUS4, and MUS6.
TBOPT:
Joint element material options.

## Linear stiffness behavior:

## STIF --

Linear stiffness.

## Nonlinear stiffness behavior:

JNSA --
Nonlinear stiffness behavior in all available components of relative motion for the joint element.
JNS1 --
Nonlinear stiffness behavior in local UX direction only.

## JNS2 --

Nonlinear stiffness behavior in local UY direction only.
JNS3 --
Nonlinear stiffness behavior in local UZ direction only.
JNS4 --
Nonlinear stiffness behavior in local ROTX direction only.
JNS5 --
Nonlinear stiffness behavior in local ROTY direction only.
JNS6 -Nonlinear stiffness behavior in local ROTZ direction only.

## Linear damping behavior:

## DAMP --

Linear damping.

## Nonlinear damping behavior:

JNDA --
Nonlinear damping behavior in all available components of relative motion for the joint element.
JND1 --
Nonlinear damping behavior in local UX direction only.

## JND2 --

Nonlinear damping behavior in local UY direction only.

## JND3 --

Nonlinear damping behavior in local UZ direction only.

## JND4 --

Nonlinear damping behavior in local ROTX direction only.

## JND5 --

Nonlinear damping behavior in local ROTY direction only.

## JND6 --

Nonlinear damping behavior in local ROTZ direction only.

## Friction Behavior:

## Coulomb friction coefficient -

The values can be specified using either TBDATA (NPTS $=0$ ) or TBPT (NPTS is nonzero).

## MUS1 --

Coulomb friction coefficient (stiction) in local UX direction only.

## MUS4 --

Coulomb friction coefficient (stiction) in local ROTX direction only.
MUS6 --
Coulomb friction coefficient (stiction) in local ROTZ direction only.

## Coulomb friction coefficient - Exponential Law -

Use TBDATA to specify $\mu_{s^{\prime}} \mu_{\mathrm{d}}$, and c for the exponential law.

## EXP1 --

Exponential law for friction in local UX direction only.

## EXP4 --

Exponential law for friction in local ROTX direction only.

## EXP6 --

Exponential law for friction in local ROTZ direction only.

## Elastic slip:

## SL1 --

Elastic slip in local UX direction only.

## SL4 --

Elastic slip in local ROTX direction only.

## SL6 --

Elastic slip in local ROTZ direction only.
TMX1 --
Critical force in local UX direction only.
TMX4 --
Critical moment in local ROTX direction only.
TMX6 --
Critical moment in local ROTZ direction only.

## Stick-stiffness:

SK1 --
Stick-stiffness in local UX direction only.
SK4 --
Stick-stiffness in local ROTX direction only.
SK6 --
Stick-stiffness in local ROTZ direction only.

## Interference fit force/moment:

FI1 --
Interference fit force in local UX direction only.
FI4 --
Interference fit moment in local ROTX direction only.
FI6 --
Interference fit moment in local ROTZ direction only.

## References:

MPC184 Joint Material Models (TB,JOIN) in the Element Reference.

## SMA Specifications

NTEMP:
Number of temperatures for which data will be provided. Default $=1$, maximum $=40$.

## NPTS:

Not used.

## TBOPT:

Not used

## References:

Shape Memory Alloy Material Model (TB,SMA) in the Element Reference.
Shape Memory Alloys in the Structural Analysis Guide, and Shape Memory Alloy in the Theory Reference for the Mechanical APDL and Mechanical Applications.

## UNIAXIAL Specifications

NTEMP:
Number of temperatures for which data will be provided. Default $=1 ; \operatorname{Max}=10$.

## NPTS:

Number of data points to be specified for a given temperature. Default $=20 ; \mathrm{Max}=20$.

## TBOPT:

Defines stress-strain relationship for cast iron plasticity.
TENSION --
Defines stress-strain relation in tension
COMPRESSION --
Defines stress-strain relation in compression.

## References:

Cast Iron Plasticity Material Constants (TB,CAST) in the Element Reference.

## Elasticity Tables

## ANEL Specifications

## NTEMP:

Number of temperatures for which data will be provided. Default $=6$, Maximum $=6$. NTEMP is not used for explicit dynamic elements.

## NPTS:

Not used.

## TBOPT:

Anisotropic elastic matrix options.
0 --
Elasticity matrix used as supplied (input in stiffness form).
1 --
Elasticity matrix inverted before use (input in flexibility form). This option is not valid for explicit dynamic elements.

## References:

Anisotropic Elastic Material Model (TB,ANEL) in the Element Reference.
Linear Elastic Models in the ANSYS LS-DYNA User's Guide.

## ELASTIC Specifications

## NTEMP:

Not used.
NPTS:
Number of properties to be defined for the material option. This value is set automatically based on the elasticity option (TBOPT) selected. If TBOPT is not specified, it is set to ISOT by default and NPTS is set to 2.

## TBOPT:

Elasticity options:
ISOT --
Isotropic property (EX,NUXY). This is the default value. $N P T S=2$. Setting $N P T S=2$ selects this option automatically.

OELN --
Orthotropic option with minor Poisson's ratio (EX, EY, EZ, GXY, GYZ, GXZ, NUXY, NUYZ, NUXZ). NP TS $=9$. Setting NPTS $=9$ selects this option automatically. All nine parameters must be set, even for the 2-D case.
OELM --
Orthotropic option with major Poisson's ratio (EX, EY, EZ, GXY, GYZ, GXZ, PRXY, PRYZ, PRXZ). NPTS $=9$. All nine parameters must be set, even for the 2-D case.

## AELS --

Anisotropic option in stiffness form (D11, D21, D31, D41, D51, D61, D22, D32, D42, D52, D62, D33, D43, ..... D66). NPTS $=21$. Setting NPTS $=21$ selects this option automatically.

## AELF --

Anisotropic option in compliance form (C11, C21, C31, C41, C51, C61, C22, C32, C42, C52, C62, C33, C43, ..... C66). NPTS = 21 .

USER --
User-defined linear elastic properties. For more information, see the documentation for the user_tbelastic subroutine in the Guide to ANSYS User Programmable Features.

## References:

See the TBFIELD command for more information on defining temperature and/or frequency dependent properties.

Full Harmonic Response Analysis in the Structural Analysis Guide.

## MELAS Specifications

## NTEMP:

Number of temperatures for which data will be provided. Default $=1$, Maximum $=20$

## NPTS:

Number of data points to be specified for a given temperature. Default = 20, Maximum = 100

## TBOPT:

Not used.

## References:

Multilinear Elastic Constants (TB,MELAS) in the Element Reference.
Multilinear Elasticity in the Structural Analysis Guide.

## SDAMP Specifications

NTEMP:
Not used.
NPTS:
Number of properties to be defined for the material option.
1 --
Structural damping coefficient. This is the default.
TBOPT:
Not Used.

## References:

See the TBFIELD command for more information on defining temperature and/or frequency dependent properties.

Full Harmonic Response Analysis in the Structural Analysis Guide.

## Rate-Dependent Plasticity Tables

## CREEP Specifications

## NTEMP:

Number of temperatures for which data will be provided. Default $=1$, Maximum value of NTEMP is such that NTEMP $\times$ NPTS $=1000$ for implicit creep and 250 for explicit creep.

## NPTS:

Number of data points to be specified for a given temperature. Default $=12$ for implicit creep and 72 for explicit creep, Maximum value of NPTS is such that NTEMP $\times$ NPTS $=1000$ for implicit creep and 250 for explicit creep.

## TBOPT:

Creep model options.
0 --
(or Blank) Explicit creep option. Creep model is defined by constants $\mathrm{C}_{6}, \mathrm{C}_{12}$, and $\mathrm{C}_{66}$, through TBDATA.
See Primary Explicit Creep Equation for $\mathrm{C} 6=0$ through Irradiation Induced Explicit Creep Equation for $\mathrm{C} 66=5$ in the Element Reference for the associated equations. (Applicable to SOLID62 and SOLID65.) $C_{6}=100$ defines the USER CREEP option for explicit creep. You must define the creep law using the subroutine USERCR.F. See the Guide to ANSYS User Programmable Features for more information.

## 1 through 13 --

Implicit creep option. See Table 2.4: "Implicit Creep Equations" in the Element Reference for a list of available equations. Use TBTEMP and TBDATA to define temperature-dependent constants. (Applicable to LINK180 , SHELL181, PLANE182, PLANE183, SOLID185, SOLID186, SOLID187 , BEAM188, BEAM189, SOLSH190, SHELL208, SHELL209, REINF264, REINF265, SOLID272, SOLID273, SHELL281, SOLID285, PIPE288, PIPE289, and ELBOW290).

## 100 --

USER CREEP option (applicable to LINK180, SHELL181, PLANE182, PLANE183, SOLID185, SOLID186, SOLID187, BEAM188, BEAM189, SOLSH190, SHELL208, SHELL209, REINF264, REINF265, SOLID272, SOLID273, SHELL281, SOLID285, PIPE288, PIPE289, and ELBOW290). You must define the creep law using the subroutine USERCREEP .F. See the Guide to ANSYS User Programmable Features for more information. Use TBTEMP and TBDATA to define temperature-dependent constants. For implicit creep, use with TB,STATE for defining the number of state variables.

## References:

Creep Equations (TB,CREEP) in the Element Reference.
Creep in the Structural Analysis Guide.

## RATE Specifications

## NTEMP:

The number of temperatures for which data will be provided. The default is 1 . The maximum NTEMP value is such that NTEMP $\times N P T S=1000$.

## NPTS:

The number of data points to be specified for a given temperature. The default is 2 . The maximum NPTS value is such that $N T E M P \times N P T S=1000$.

## TBOPT:

Rate-dependent viscoplasticity options.

## PERZYNA --

Perzyna option. This value is the default.

## PEIRCE --

Peirce option
EVH --
Exponential visco-hardening option

## ANAND --

Anand option

## References:

Rate-Dependent Plastic (Viscoplastic) Material Models (TB,RATE) in the Element Reference.
Viscoplasticity in the Structural Analysis Guide.
Rate-Dependent Plasticity in the Theory Reference for the Mechanical APDL and Mechanical Applications.

## SWELL Specifications

NTEMP:
Not used.
NPTS:
Not used.

## TBOPT:

Not used.

## References:

Swelling Equation Constants (TB,SWELL) in the Element Reference.
Swelling in the Structural Analysis Guide.

## Hyperelasticity Tables

## AHYPER Specifications

## NTEMP:

Number of temperatures for which data will be provided. Default $=1$.
NPTS:
Number of data points to be specified for a given temperature.

## TBOPT:

Anisotropic hyperelastic material options.

## POLY --

Anisotropic potential.
AVEC --
Define the A vector.
BVEC --
Define the $B$ vector.

## PVOL --

Volumetric potential.

## References:

Anisotropic Hyperelasticity in the Element Reference.
Anisotropic Hyperelasticity in the Theory Reference for the Mechanical APDL and Mechanical Applications

## Bergstrom-Boyce Specifications

## NTEMP:

Number of temperatures for which data will be provided. Default = 1 . Maximum must be a value such that ( $N T E M P \times N P T S$ ) $<=1000$.

## NPTS:

Number of material constants. If $T B O P T=I S O$, then $N P T S=7$. If $T B O P T=1$, then $N P T S=1$.

## TBOPT:

Isochoric or volumetric strain-energy function:
ISO --
Define material constants for isochoric strain energy.
PVOL --
Define material constants for volumetric strain energy.

## References:

Bergstrom-Boyce in the Theory Reference for the Mechanical APDL and Mechanical Applications.
Bergstrom-Boyce Material Constants (TB,BB) in the Element Reference.
Bergstrom-Boyce Hyperviscoelastic Material Model in the Structural Analysis Guide.

## HYPER Specifications

## NTEMP:

Number of temperatures for which data will be provided. Default $=1$. Maximum value of NTEMP is such that $N T E M P \times N P T S=1000$.

## NPTS:

Number of data points to be specified for a given temperature, except for $T B O P T=$ MOONEY, where NPTS is the number of parameters in the Mooney-Rivlin model (2 [default], 3, 5, or 9), and TBOPT = RESPONSE, where NPTS is the number of terms in the volumetric strain energy polynomial.

TBOPT:
Hyperelastic material options. (The default option is $T B O P T=$ MOONEY.)
BOYCE--
Arruda-Boyce model. For $N P T S$, the default $=3$ and the maximum $=3$.

## References:

Arruda-Boyce Hyperelastic Material Constants (TB,HYPER,,,,BOYCE) in the Element Reference.
Arruda-Boyce Hyperelastic Option in the Structural Analysis Guide.
BLATZ --
Blatz-Ko model. For $N P T S$, the default $=1$ and the maximum $=1$.

## References:

Blatz-Ko Foam Hyperelastic Material Constants (TB,HYPER,,,,BLATZ) in the Element Reference.
Blatz-Ko Hyperelastic Option in the Structural Analysis Guide.

## ETUBE --

Extended tube model. Five material constants $(N P T S=5)$ are required.

## References:

Extended Tube Material Constants (TB,HYPER,,,,ETUBE) in the Element Reference
Extended Tube Model in the Theory Reference for the Mechanical APDL and Mechanical Applications
FOAM --
Hyperfoam (Ogden) model. For NPTS, the default = 1 and the maximum is such that NTEMP $\times N P T S$ $\mathrm{x} 3=1000$.

## References:

Ogden Compressible Foam Hyperelastic Material Constants (TB,HYPER,,,,FOAM) in the Element Reference.
Ogden Compressible Foam Hyperelastic Option in the Structural Analysis Guide.

## GENT --

Gent model. For $N P T S$, the default $=3$ and the maximum $=3$.

## References:

Gent Hyperelastic Material Constants (TB,HYPER,,,,GENT) in the Element Reference.
Gent Hyperelastic Option in the Structural Analysis Guide.

## MOONEY --

Mooney-Rivlin model (default). You can choose a two-parameter Mooney-Rivlin model with NPTS = 2 (default), or a three-, five-, or nine-parameter model by setting NPTS equal to one of these values.

## References:

Mooney-Rivlin Hyperelastic Material Constants (TB,HYPER,,,,MOONEY) in the Element Reference.
Mooney-Rivlin Hyperelastic Option in the Structural Analysis Guide.

## NEO --

Neo-Hookean model. For NPTS, the default $=2$ and the maximum $=2$.

## References:

Neo-Hookean Hyperelastic Material Constants (TB,HYPER, ,,,NEO) in the Element Reference.
Neo-Hookean Hyperelastic Option in the Structural Analysis Guide.

## OGDEN --

Ogden model. For $N P T S$, the default $=1$ and the maximum is such that $N T E M P \times N P T S \times 3=1000$.

## References:

Ogden Hyperelastic Material Constants (TB,HYPER,,,,,OGDEN) in the Element Reference.
Ogden Hyperelastic Option in the Structural Analysis Guide.
POLY --
Polynomial form model. For NPTS, the default = 1 and the maximum is such that $N T E M P \times N P T S=$ 1000.

## References:

Polynomial Form Hyperelastic Material Constants (TB,HYPER,,,,POLY) in the Element Reference.
Polynomial Form Hyperelastic Option in the Structural Analysis Guide.

## RESPONSE --

Experimental response function model. For NPTS, the default = 0 and the maximum is such that $N T E M P \times N P T S+2=1000$.

## References:

Response Function Hyperelastic Material Constants (TB,HYPER,,,,RESPONSE) in the Element Reference.
Response Function Hyperelastic Option (TB,HYPER,,,,RESPONSE) in the Structural Analysis Guide.
Experimental Response Functions in the Theory Reference for the Mechanical APDL and Mechanical Applications

## YEOH --

Yeoh model. For NPTS, the default $=1$ and the maximum is such that $N T E M P \times N P T S \times 2=1000$.

## References:

Yeoh Hyperelastic Material Constants (TB,HYPER,,,,YEOH) in the Element Reference.
Yeoh Hyperelastic Option in the Structural Analysis Guide.
USER --
User-defined hyperelastic model. See the ANSYS Guide to User Programmable Features for details.

## References:

User-Defined Hyperelastic Material Constants (TB,HYPER,,,,USER) in the Element Reference.
User-Defined Hyperelastic Option in the Structural Analysis Guide.

## MOONEY Specifications

## NTEMP:

Number of temperatures for which data will be provided. Default $=6$, Maximum $=6$.

## NPTS:

(Not used for explicit dynamic elements.)

## творт:

Mooney-Rivlin material option, applicable to explicit dynamic elements PLANE162, SHELL163, SOLID164, and SOLID168.

0 --
Direct input of hyperelastic material constants. This value is the default.
1 --
Reserved for future use.
2 --
Material constants to be calculated by the LS-DYNA program from experimental data. This option is only valid for explicit dynamic elements.

## References:

Nonlinear Elastic Models in the ANSYS LS-DYNA User's Guide.

## Mullins Effect Specifications

## NTEMP:

Number of temperatures for which data will be provided. Default $=1$. Maximum must be a value such that (NTEMP $\times$ NPTS) $<=1000$.

## NPTS:

Number of data points to be specified for a given temperature.

## TBOPT:

Mullins effect option:
PSE2 --
Pseudo-elastic model with modified Ogden-Roxburgh damage function. Requires NPTS $=3$.

## References:

Mullins Effect in the Theory Reference for the Mechanical APDL and Mechanical Applications.
Mullins Effect Constants (TB,CDM) in the Element Reference.
Mullins Effect Material Model in the Structural Analysis Guide.

## Viscoelasticity Tables

## PRONY Specifications

## NTEMP:

Number of temperatures for which data will be provided. Default $=1 ; \operatorname{Max}=100$.

## NPTS:

Number of pairs of Prony series. Default = 1 pair; Max $=100$ pairs.
The total number of data points allowed is 1000 .

## TBOPT:

Defines the relaxation behavior for viscoelasticity.
1 --
(or SHEAR) relaxation behavior of the shear response.
2 --
(or BULK) relaxation behavior of the volumetric response.

## References:

Viscoelastic Material Model in the Element Reference.

## SHIFT Specifications

## NTEMP:

Allows one temperature for which data will be provided.

## NPTS:

Number of material constants to be entered as determined by the shift function specified by TBOPT.
3 --
for $T B O P T=1$ or WLF
2 --
for $T B O P T=2$ or TN
$n_{f}-$
for TBOPT $=3$ or FICT, where $n_{f}$ is the number of partial fictive temperatures

## TBOPT:

Defines the shift function
1 or WLF --
William-Landel-Ferry shift function

## 2 or TN --

Tool-Narayanaswamy shift function
3 or FICT --
Tool-Narayanaswamy with fictive temperature shift function
100 --
(or USER) User-defined shift function.

## References:

Viscoelastic Material Model in the Element Reference.


## Multiphysics Tables

## BH Specifications

## NTEMP:

Not used.
NPTS:
Number of data points to be specified. Default $=20$, Maximum $=500$

## TBOPT:

Not used.

## References:

Magnetic Materials in the Element Reference.
Additional Guidelines for Defining Regional Material Properties and Real Constants in the Low-Frequency Electromagnetic Analysis Guide.

## CNDE Specifications

NTEMP:
Not used.
NPTS:
Not used.
твоРт:
Not used.

## References:

High-Frequency Electromagnetic Material Models in the Element Reference.

## CNDM Specifications

## NTEMP:

Not used.
NPTS:
Not used.
TBOPT:
Not used.
References:
High-Frequency Electromagnetic Material Models in the Element Reference.

## DPER Specifications

NTEMP:
Not used.
NPTS:
Not used.
TBOPT:
Not used for HF118, HF119, and HF120.
Permittivity matrix options for PLANE223, SOLID226, and SOLID227:
0 --
Permittivity matrix at constant strain $\left[\varepsilon^{s}\right]$ (used as supplied)
1 --
Permittivity matrix at constant stress $\left[\varepsilon^{\top}\right]$ (converted to $\left[\varepsilon^{S}\right]$ form before use)

## References:

Anisotropic Electric Permittivity Material Model (TB,DPER) in the Element Reference

## HFFDLD Specifications

NTEMP:
Not used.
NPTS:
Not used.

## TBOPT:

Not used.

## References:

High-Frequency Electromagnetic Materials in the Element Reference.
Specifying Material Properties in the High-Frequency Electromagnetic Analysis Guide.

## HFLM Specifications

## NTEMP:

Number of temperatures for which data will be provided. Default $=1$, Maximum $=20$

## NPTS:

Number of data points to be specified for a given temperature. Default $=1$, Maximum $=100$

## TBOPT:

Not used.

## References:

FLUID116 in the Element Reference.

## LSEM Specifications

## NTEMP:

Not used.

## NPTS:

Not used.
TBOPT:
Not used.

## References:

High-Frequency Electromagnetic Materials in the Element Reference.
Specifying Material Properties in the High-Frequency Electromagnetic Analysis Guide.

## MUR Specifications

## NTEMP:

Not used.
NPTS:
Not used.
TBOPT:
Anisotropic relative permeability options:
0 --
Input permeability matrix.
1 --
Generate permeability matrix for B-H nonlinear material with uniform dc internal magnetic field
2 --
Generate permeability matrix for B-H nonlinear material with nonuniform dc internal magnetic field

## References:

High-Frequency Electromagnetic Material Models in the Element Reference.

## PIEZ Specifications

## NTEMP:

Not used.

## NPTS:

Not used.
TBOPT:
Piezoelectric matrix options.
0 --
Piezoelectric stress matrix [e] (used as supplied)
1 --
Piezoelectric strain matrix [d] (converted to [e] form before use)

## References:

Piezoelectric Material Model (TB,DPER) in the Element Reference.
Piezoelectric Analysis in the Coupled-Field Analysis Guide.

## PZRS Specifications

NTEMP:
Not used.
NPTS:
Not used.
TBOPT:
Piezoresistive matrix options
0 --
Piezoresistive stress matrix (used as supplied)
1 --
Piezoresistive strain matrix (used as supplied)

## References:

Piezoresistive Material Model (TB,PZRS) in the Element Reference.
Piezoresistive Analysis in the Coupled-Field Analysis Guide.

## Porous Media Tables

## PM Specifications

NTEMP:
The number of temperatures. Default $=1$. Maximum must be a value such that $(N T E M P \times N P T S)<=$ 1000.

## NPTS:

The number of material constants. Default $=4$. Maximum must be a value such that (NTEMP $\times$ NPTS) <= 1000 .

## TBOPT:

Porous media options:
PERM --
Permeability
BIOT --
Biot coefficient

## References:

Porous Media Constants (TB,PM) in the Element Reference.
Pore-Fluid-Diffusion-Structural Analysis in the Coupled-Field Analysis Guide.
Porous Media Flow in the Theory Reference for the Mechanical APDL and Mechanical Applications
Also see VM260 in the Verification Manual.

## ANSYS LS-DYNA Tables

## COMP Specifications

## NTEMP:

Not used.
NPTS:
Not used.

## TBOPT:

Not used.

## References:

Composite Damage Model in the ANSYS LS-DYNA User's Guide.

## DISCRETE Specifications

## NTEMP:

Not used.

## NPTS:

Not used.
TBOPT:
Explicit spring-damper (discrete) material options.
0 --
Linear elastic spring (translational or rotational elastic spring). This value is the default.
1 --
Linear viscous damper (linear translational or rotational damper)
2 --
Elastoplastic spring (elastoplastic translational or rotational spring with isotropic hardening)
3 --
Nonlinear elastic spring (nonlinear elastic translational or rotational spring with arbitrary force/displacement response moment/rotation dependency)

## 4 --

Nonlinear viscous damper (nonlinear damping with arbitrary force/velocity response moment/rotational velocity dependency)

5 --
General nonlinear spring (general nonlinear translational or rotational spring with arbitrary loading and unloading definitions)

6 --
Maxwell viscoelastic spring (Maxwell viscoelastic translational or rotational spring)
7 --
Inelastic tension or compression-only spring (inelastic tension or compression only, translational or rotational spring)

## References:

Spring-Damper (Discrete) Models in the ANSYS LS-DYNA User's Guide.

## EOS Specifications

## NTEMP:

Not used.

## NPTS:

Not used.

## TBOPT:

Equation of state (explicit dynamics elements only - no default, must specify).
1 --
Johnson-Cook material model - for strain, strain rate, and temperature dependent impact/forming analyses.

2 --
Null material model - for allowing equation of state to be considered without computing deviatoric stresses.

3 --
Zerilli-Armstrong material model - for metal forming processes in which the stress depends on strain, strain rate, and temperature.
4 --
Bamman material model - for metal forming processes with strain rate and temperature dependent plasticity. Does not require an additional equation of state (EOSOPT is not used).
5 --
Steinberg material model - for modeling high strain rate effects in solid elements with failure.

## References:

Equation of State Models in the ANSYS LS-DYNA User's Guide.

## EVISC Specifications

## NTEMP:

Not used.
NPTS:
Not used.

## TBOPT:

Not used.

## References:

Nonlinear Elastic Models in the ANSYS LS-DYNA User's Guide.

## FCON Specifications

## NTEMP:

Number of temperatures for which data will be provided. Default $=1$, Maximum $=20$.

## NPTS:

Number of data points to be specified for a given temperature. Default $=1$, Maximum $=100$.

## TBOPT:

Not used.

## References:

FLUID116 in the Element Reference.

## FOAM Specifications

## NTEMP:

Not used.
NPTS:
Not used.

## TBOPT:

Foam material options for explicit dynamics elements (no default - must specify).
1 --
Rigid, closed cell, low density polyurethane foam material model.
2 --
Highly compressible urethane foam material model.
3 --
Energy absorbing foam material model.
4 --
Crushable foam material model.

## References:

Foam Models in the ANSYS LS-DYNA User's Guide.

## GCAP Specifications

## NTEMP:

Not used.

## NPTS:

Not used.
TBOPT:
Not used.

## References:

Pressure Dependent Plasticity Models in the ANSYS LS-DYNA User's Guide.

## HONEY Specifications

NTEMP:
Not used.

## NPTS:

Not used.
TBOPT:
Not used.

## References:

Foam Models in the ANSYS LS-DYNA User's Guide.

## PLAW Specifications

## NTEMP:

Not used.
NPTS:
Not used.
TBOPT:
Plasticity options for explicit dynamics elements (no default - must specify).
1 -Isotropic/kinematic hardening model.
2 --
Strain rate dependent plasticity model used for metal and plastic forming analyses.
3 --
Anisotropic plasticity model (Barlat and Lian).
4 --
Strain rate dependent plasticity model used for superplastic forming analyses.
5 --
Strain rate dependent isotropic plasticity model used for metal and plastic forming analyses.
6 --
Anisotropic plasticity model (Barlat, Lege, and Brem) used for forming processes.
7 --
Fully iterative anisotropic plasticity model for explicit shell elements only.
8 --
Piecewise linear plasticity model for explicit elements only.
9 --
Elastic-plastic hydrodynamic model for explicit elements only.
10 --
Transversely anisotropic FLD (flow limit diagram) model for explicit elements only.
11 --
Modified piecewise linear plasticity model for explicit shell elements only.
12 --
Elastic viscoplastic thermal model for explicit solid and shell elements only.

## References:

Nonlinear Inelastic Models in the ANSYS LS-DYNA User's Guide.
Pressure Dependent Plasticity Models in the ANSYS LS-DYNA User's Guide.

## Special Material Tables

## CZM Specifications

## NTEMP:

Number of temperatures for which data will be provided. Default $=1$.

## NPTS:

Number of data points to be specified for a given temperature.

## TBOPT:

Cohesive zone material options.
EXPO --
Exponential material behavior (valid for interface elements only).
CBDD --
Bilinear material behavior with linear softening characterized by maximum traction and maximum separation (valid for contact elements only).

## CBDE --

Bilinear material behavior with linear softening characterized by maximum traction and critical energy release rate (valid for contact elements only).

## References:

Interface Delamination and Failure Simulation in the Structural Analysis Guide.
Cohesive Zone Material Constants (TB,CZM) in the Element Reference.

## EXPE Specifications

## NTEMP:

Not used.
NPTS:
Not used.
TBOPT:
Experimental data type:
UNIAXIAL --
Uniaxial experimental data.
BIAXIAL --
Equibiaxial experimental data.

## SHEAR --

Pure shear experimental data (also known as planar tension).

## VOLUME --

Volumetric experimental data.

## SSHEAR --

Simple shear experimental data.

## UNITENSION --

Uniaxial tension experimental data.

## UNICOMPRESSION --

Uniaxial compression experimental data.

## References:

Experimental Data (TB,EXPE) in the Element Reference.
Experimental Response Functions in the Theory Reference for the Mechanical APDL and Mechanical Applications

See also the TBFIELD command documentation for information about defining field-dependent experimental data.

## FCLI Specifications

## NTEMP:

Number of temperatures for which data will be provided. Default $=1$. Maximum $=10$.

## NPTS:

Number of data points to be specified for a given temperature. Default $=16$ when $T B O P T=1$. Default $=9$ when $T B O P T=2$.

## TBOPT:

Material strength limit definition:
1 --
Define stress-strength limits.
2 --
Define strain-strength limits.

## References:

Material Strength Limits (TB,FCLI) in the Element Reference.

## FLUID Specifications

NTEMP:
Number of temperatures for which data will be provided. Default $=1 ; \operatorname{Max}=20$.

## NPTS:

Number of data points to be specified for a given temperature.

## TBOPT:

Fluid material options:
LIQUID --
Define material constants for a liquid material.
GAS --
Define material constants for a gas material.
PVDATA --
Define pressure-volume data for a fluid material.

## References:

Fluid Material Models (TB,FLUID) in the Element Reference.
Fluid Material Models in the Theory Reference for the Mechanical APDL and Mechanical Applications.

## FRIC Specifications

## NTEMP :

Number of temperatures for which data will be provided. Default $=1$; Max $=40$.
NTEMP is not used for the following situations:

- Isotropic or orthotropic friction defined in terms of field data (TBFIELD command)
- User-defined friction (TBOPT = USER)


## NPTS:

Number of data points to be specified for user-defined friction ( $T B O P T=$ USER). Not used for $T B O P T=$ ISO or $T B O P T=$ ORTHO.

## TBOPT:

Friction options:
ISO --
Isotropic friction (one coefficient of friction, MU). This option is valid for all 2-D and 3-D contact elements. (Default.)
ORTHO --
Orthotropic friction (two coefficients of friction, MU1 and MU2). This option is valid for CONTA173, CONTA174, CONTA175, CONTA176, and CONTA177.

## USER --

User defined friction. This option is valid for CONTA171, CONTA172, CONTA173, CONTA174, CONTA175, CONTA176, CONTA177, and CONTA178 elements.

## References:

Contact Friction in the Element Reference.
See also the TBFIELD command for more information on defining a coefficient of friction that is dependent on temperature, time, normal pressure, sliding distance, or sliding relative velocity.

## GASKET Specifications

## NTEMP:

Number of temperatures for which data will be provided. Default $=1$.

## NPTS:

Number of data points to be specified for a given temperature. Default $=5$ for $T B O P T=$ PARA. Default $=1$ for all other values of TBOPT.

## TBOPT:

Gasket material options.
PARA --
Gasket material general parameters.
COMP --
Gasket material compression data.

LUNL --
Gasket linear unloading data.
NUNL --
Gasket nonlinear unloading data.
TSS --
Transverse shear data.

## References:

Gasket Materials in the Element Reference.
Gasket Joints Simulation in the Structural Analysis Guide.

## User Tables

## STATE Specifications

## NTEMP:

Not used.

## NPTS:

Number of state variables. Maximum $=1000$

## TBOPT:

Not used.

## References:

User-Defined Material Constants (TB,USER) and Implicit Creep Equations in the Element Reference.
User Defined Material and Implicit Creep Procedure in the Structural Analysis Guide.

## USER Specifications

## NTEMP:

Number of temperatures for which data will be provided. Default $=1$, Maximum value of NTEMP is such that NTEMP x NPTS $=1000$

## NPTS:

Number of data points to be specified for a given temperature. Default $=48$, Maximum value of NPTS is such that NTEMP x NPTS $=1000$

## TBOPT:

Not used.

## References:

User-Defined Material Constants (TB,USER) in the Element Reference.
User-Defined Material Model in the Structural Analysis Guide.


## Notes

TB activates a data table to be used with subsequent TBDATA or TBPT commands. The table space is initialized to zero values. Data from this table are used for certain nonlinear material descriptions as well as
for special input for some elements. See Material Data Tables (Implicit Analysis) in the Element Reference for a description of table types ( $L a b$ ) or the elements that require the table for special data. See Material Models in the ANSYS LS-DYNA User's Guide for a description of data table input required for explicit dynamic materials. See the MP command for linear material property input.

The type of data table specified remains active until the TB command is reissued. More than one type of data table may be defined for each material (for example, MISO and CREEP), except that only one type of plasticity/elasticity may be used for each material.

The relationship between SDAMP, DMPRAT, and MP,DAMP is as follows:

| SDAMP | DMPRAT | MP,DAMP |
| :--- | :--- | :--- |
| $s$ | $s / 2$ | $s /(2 \pi f)$ |

Where $s$ is the damping value specified in TB,SDAMP and $f$ is the corresponding frequency.
This command is also valid in SOLUTION.

## Product Restrictions

| Command Option Lab | Available Products |
| :---: | :---: |
| AHYPER | MP ME ST <> <> <> <> <> <> <> DY PP <> EME MFS |
| ANAN | MP ME ST <> <> <> <> <> <> <> DY PP <> EME MFS |
| ANEL | MP ME ST <> <> <> <> <> <> <> DY PP <> EME MFS |
| ANIS | MP ME ST <> <> <> <> <> <> <> DY PP <> EME MFS |
| BH | MP ME ST <> <> <> <> <> EM <> <> PP <> EME MFS |
| BISO | MP ME ST <> PRN <> <> <> <> <> DY PP <> EME MFS |
| BKIN | MP ME ST <> PRN <> <> <> <> <> DY PP <> EME MFS |
| BOYC | MP ME ST <> <> <> <> <> <> <> DY PP <> EME MFS |
| CAST | MP ME ST <> <> <> <> <> <> <> DY PP <> EME MFS |
| CHAB | MP ME ST <> <> <> <> <> <> <> DY PP <> EME MFS |
| CNDE | MP ME ST <> <> <> <> <> <> EH <> PP <> EME MFS |
| CNDM | MP ME ST <> <> <> <> <> <> EH <> PP <> EME MFS |
| COMP | MP ME ST <> <> <> <> <> <> <> DY PP <> EME MFS |
| CONC | MP ME ST <> <> <> <> <> <> <> DY PP <> EME MFS |
| CREEP | MP ME ST <> <> <> <> <> <> <> DY PP <> EME MFS |
| CZM | MP ME ST <> <> <> <> <> <> <> DY PP <> EME MFS |
| DISC | <> <> <> <> <> <> <> <> <> <> DY PP <> <> <> |
| DP | MP ME ST <> <> <> <> <> <> <> DY PP <> EME MFS |
| DPER | MP ME ST <> <> <> <> <> <> <> DY PP <> EME MFS |
| EDP | MP ME ST <> <> <> <> <> <> <> DY PP <> EME MFS |
| ELASTIC | MP ME ST PR PRN <> <> <> <> <> DY PP <> EME MFS |
| EOS | <> <> <> <> <> <> <> <> <> <> DY PP <> <> <> |


| EVIS | MP ME ST <> <> <> <> <> <> <> DY PP <> EME MFS |
| :---: | :---: |
| FCON | MP ME ST PR PRN <> <> <> <> <> DY PP <> EME MFS |
| FOAM | <> <> <> <> <> <> <> <> <> <> DY PP <> <> <> |
| FRIC | MP ME ST <> <> <> <> <> <> <> DY PP <> EME MFS |
| GASKET | MP ME ST <> <> <> <> <> <> <> DY PP <> EME MFS |
| GCAP | <> <> <> <> <> <> <> <> <> <> DY PP <> <> <> |
| HFLM | MP ME ST PR PRN <> <> <> <>> <> DY PP <> EME MFS |
| HILL | MP ME ST <> <> <> <> <> <> <> DY PP <> EME MFS |
| HONEY | MP ME ST <> <> <> <> <> <> <> DY PP <> EME MFS |
| HYPER | MP ME ST <> <> <> <> <> <> <> DY PP <> EME MFS |
| HYPER - MOONEY (NPTS = 2) | MP ME ST <> PRN <> <> <> <> <> DY PP <> EME MFS |
| HYPER - OGDEN | MP ME ST <> PRN <> <> <> <> <> DY PP <> EME MFS |
| HYPER - NEO | MP ME ST <> PRN <> <> <> <> <> DY PP <> EME MFS |
| KINH | MP ME ST <> <> <> <> <> <> <> DY PP <> EME MFS |
| JOIN | MP ME ST PR PRN <> <> <> <> <> DY PP <> EME MFS |
| MELA | MP ME ST <> <> <> <> <> <> <> DY PP <> EME MFS |
| MISO | MP ME ST <> <> <> <> <> <> <> DY PP <> EME MFS |
| MKIN | MP ME ST <> <> <> <> <> <> <> DY PP <> EME MFS |
| MOON | MP ME ST <> <> <> <> <> <> <> DY PP <> EME MFS |
| MUR | MP ME ST <> <> <> <> <> <> EH <> PP <> EME MFS |
| NL | MP ME ST <> <> <> <> <> <> <> DY PP <> EME MFS |
| NLIS | MP ME ST <> <> <> <> <> <> <> DY PP <> EME MFS |
| PFLO | MP ME ST <> <> <> <> <> <> <> DY PP <> EME MFS |
| PIEZ | MP ME ST <> <> <> <> <> <> <> DY PP <> EME MFS |
| PLASTIC | MP ME ST <> <> <> <> <> <> <> DY PP <> EME MFS |
| PLAW | MP ME ST <> <> <> <> <> <> <> DY PP <> EME MFS |
| PROONY | MP ME ST <> <> <> <> <> <> <> DY PP <> EME MFS |
| PZRS | MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS |
| RATE | MP ME ST <> <> <> <> <> <> <> DY PP <> EME MFS |
| SDAMP | MP ME ST <> <> <> <> <> <> <> DY PP <> EME MFS |
| SHIFT | MP ME ST <> <> <> <> <> <> <> DY PP <> EME MFS |
| SMA | MP ME ST <> <> <> <> <> <> <> DY PP <> EME MFS |
| STATE | MP ME ST <> <> <> <> <> <> <> DY PP <> EME MFS |
| SWELL | MP ME ST <> <> <> <> <> <> <> DY PP <> EME MFS |
| UNIAXIAL | MP ME ST <> <> <> <> <> <> <> DY PP <> EME MFS |
| USER | MP ME ST <> <> <> <> <> <> <> DY PP <> EME MFS |

## Menu Paths

Main Menu>Preprocessor>Loads>Load Step Opts>Other>Change Mat Props>Material Models Main Menu>Preprocessor>Material Props>Material Models Main Menu>Solution>Load Step Opts>Other>Change Mat Props>Material Models

## TBCOPY, Lab, MATF, MATT

Copies a data table from one material to another.
PREP 7: Data Tables
MP ME ST PR PRN $<><><>$ EM EH DY PP $<>$ EME MFS

## Lab

Data table label (see the TB command for valid labels, and see "Notes" (p. 1699) for Lab = ALL).

## MATF

Material reference number where data table is to be copied from.

## MATT

Material reference number where data table is to be copied to.

## Notes

The TBCOPY command, with $L a b=$ ALL, copies all of the nonlinear data defined by the TB command. If you copy a model that includes both yield behavior constants and linear constants (for example, a BKIN model), TBCOPY,ALL and MPCOPY are used together to copy the entire model. All input data associated with the model is copied, that is, all data defined through the TB and MP commands.

Also, if you copy a material model using the Material Model Interface (Edit> Copy), both the commands TBCOPY,ALL and MPCOPY are issued, regardless of whether the model includes linear constants only, or if it includes a combination of linear and yield behavior constants.

This command is also valid in SOLUTION.

## Menu Paths

Main Menu>Preprocessor>Loads>Load Step Opts>Other>Change Mat Props>Material Models Main Menu>Preprocessor>Material Props>Material Models Main Menu>Solution>Load Step Opts>Other>Change Mat Props>Material Models

TBDATA, STLOC, C1, C2, C3, C4, C5, C6
Defines data for the material data table.
PREP 7: Data Tables
MP ME ST PR PRN <> <> <> EM EH DY PP <> EME MFS

## STLOC

Starting location in table for entering data. For example, if $S T L O C=1$, data input in the $C 1$ field applies to the first table constant, $C 2$ applies to the second table constant, etc. If $S T L O C=5$, data input in the

CI field applies to the fifth table constant, etc. Defaults to the last location filled +1 . The last location is reset to 1 with each TB or TBTEMP command.

## C1, C2, C3, ... , C6

Data values assigned to six locations starting with STLOC. If a value is already in this location, it is redefined. A blank value leaves the existing value unchanged.

## Notes

Defines data for the table specified on the last TB command at the temperature specified on the last TBTEMP command (if applicable). The type of data table specified in the last TB command determines the number of data values needed in TBDATA. Data values are linearly interpolated for temperatures that fall between user defined TBTEMP values. See Material Data Tables (Implicit Analysis) of the Element Reference for the number of data values required for different material behavior options.

This command is also valid in SOLUTION.

## Menu Paths

Main Menu>Preprocessor>Loads>Load Step Opts>Other>Change Mat Props>Material Models
Main Menu>Preprocessor>Material Props>Material Models
Main Menu>Solution>Load Step Opts>Other>Change Mat Props>Material Models

TBDELE, Lab, MAT1, MAT2, INC
Deletes previously defined material data tables.
PREP 7: Data Tables
MP ME ST PR PRN <> <> <> EM EH DY PP <> EME MFS

## Lab

Data table label. (See the TB command for valid labels.) If ALL, delete all data tables.

## MAT1, MAT2, INC

Delete tables for materials MAT1 to (MAT2 defaults to MAT1) in steps of INC (defaults to 1). If MAT1= ALL, ignore MAT2 and INC and delete data tables for all materials.

## Notes

This command is also valid in SOLUTION.

## Menu Paths

# Main Menu>Preprocessor>Loads>Load Step Opts>Other>Change Mat Props>Material Models Main Menu>Preprocessor>Material Props>Material Models Main Menu>Solution>Load Step Opts>Other>Change Mat Props>Material Models 

## TBEO, Par, Value

## Sets special options or parameters for material data tables.

> PREP 7: Data Tables
> MP ME ST PR PRN <> <> <> EM EH DY PP <> EME MFS

## Par

Parameter name:

## CAPCREEPREG

Available for the viscoplasticity/creep model (TB,CREEP), allows two creep models to be specified via the same material ID when used with the Extended Drucker-Prager model (TB,EDP).

## Value

Parameter value:

## SHEA

Use the shear stress-state creep model with the Extended Drucker-Prager model. Valid only when Par = CAPCREEPREG.

COMP
Use the compaction stress-state creep model with the Extended Drucker-Prager model. Valid only when Par = CAPCREEPREG.

## Notes

Issue the TBEO command after activating the data table (TB) but before defining data for the table (TBDATA) or a point on a nonlinear data curve (TBPT).

## Menu Paths

## This command cannot be accessed from a menu.

## TBFIELD, Type, Value

## Defines values of field variables for the material data tables.

PREP 7: Data Tables
MP ME ST <> PRN <> <> <> <> <> DY PP <> EME MFS

## Type

Type of field variable:
FREQ
A frequency will be specified in Value
TEMP
A temperature will be specified in Value
TIME
A time will be specified in Value
NPRES
A normal pressure will be specified in Value

## SLDA

A total sliding distance (algebraic) will be specified in Value

## SLDI

A total sliding distance (absolute) will be specified in Value

## SLRV

A sliding velocity will be specified in Value

## Value

The field value to be referenced (use this command multiple times to enter values of different field variables).

## Notes

You use this command with TB,ELASTIC, or TB,SDAMP to define multiple field values for frequency and/or temperature dependent material data tables. You can also use this command with TB,FRIC to define friction that is dependent on temperature, time, normal pressure, sliding distance, and sliding velocity.

## Note

When defining friction, keep in mind the following points:

- The TEMP value specified on this command corresponds to the average temperature on the contact surface for contact elements CONTA171, CONTA172, CONTA173, CONTA174, CONTA175, CONTA176, and CONTA177. For contact element CONTA178, the TEMP value corresponds to the average temperature of the nodes.
- The TIME value specified on this command corresponds to the analysis time specified on the TIME command.
- The algebraic sliding distance (SLDA) specified on this command is the total sliding distance (the algebraic sum) as reported in the element output definitions table for the contact elements (for example, TASS and TASR output items for CONTA174).
- The absolute sliding distance (SLDI) specified on this command is the total accumulated sliding distance (the absolute sum) as reported in the element output definitions table for the contact elements (for example, AASS and AASR output items for CONTA174).
- When used with TB,FRIC, field variables defined by TBFIELD are only available for isotropic friction ( $T B O P T=I S O$ ) and orthotropic friction ( $T B O P T=O R T H O$ ); they are not available for user-defined friction ( $T B O P T=$ USER).

Enter the appropriate TB,ELASTIC, TB,SDAMP, or TB,FRIC option first to define your data tables as field variable-dependent. Then issue the TBFIELD command to define your field values. Data values must be defined in ascending order for all field quantities. If a field value is to be held constant, it should be defined only once; subsequent definitions will be ignored. There is no limit on the number of values you can specify. The specified field value remains active until the next TBFIELD command is input. Once you define the field value(s), use TBDATA to define your data for the data tables.

See Understanding How ANSYS Interpolates Field Variables in the Element Reference for more information on the interpolation scheme used for field-dependent material properties.

See Full Harmonic Response Analysis in the Structural Analysis Guide for more information on using TBFIELD with TB,ELASTIC or TB,SDAMP.

See Contact Friction in the Element Reference for more information on using TBFIELD with TB,FRIC.

## Menu Paths

## This command cannot be accessed from a menu.

TBFT, Oper, ID, Option1, Option2, Option3, Option4, Option5, Option6, Option7

## Performs material curve-fitting operations.

PREP 7:Materials
MP ME ST <> PRN <> <> <> <> <> DY PP <> EME MFS
Use material curve fitting to evaluate your experimental data and correlate it to the nonlinear material models built into ANSYS. You apply coefficients to your curve data, determine a fit with existing model, and write the data according to the table configurations outlined in the TB command. Curve fitting is available for nonlinear models associated with the material behaviors listed below:

For hyperelastic material behavior, see "TBFT Specifications for Hyperelastic Models" (p. 1703), below.
For creep material behavior, see "TBFT Specifications for Creep Models" (p. 1706), below.
For viscoelastic material behavior, see "TBFT Specifications for Viscoelastic Models" (p. 1708), below.

## TBFT Specifications for Hyperelastic Models

TBFT, Oper, ID, Option1, Option2, Option3, Option4, Option5, Option 6, Option 7

## Oper

The specific curve-fitting operation:

## FADD

Define a constitutive model.
FDEL
Delete a constitutive model.
FSET
Write data related to a constitutive model to the database (same as TB command).
SET
Initialize coefficients of a constitutive model for nonlinear curve-fitting procedure.
CDEL
Deletes coefficients at current reference temperature. Applicable only for temperature dependent coefficients.

## SOLVE

Solve for coefficients.
FIX
Fix (hold constant) the coefficient you specify in Option 4.

## EADD

Add experimental data.

## EDEL

Delete experimental data.

## LIST

List all data associated with the material model represented by the material ID number.

## ID

The material reference number (same as $M A T$ argument used in the TB command). Valid entry is any number greater than zero (default $=1$ ) but less than 100,000 .

## Option1

For curve fit function operations (Oper = FADD, FDEL, FSET, SET, CDEL, SOLVE or FIX) this field specifies the category (HYPER).

For adding or deleting your experiment (Oper = EADD or EDEL), this field specifies the experimental data type. Valid entries are: UNIA, BIAX, SHEA, SSHE, and VOLU (default = UNIA).

## Option2

For curve fit function operations ( $O$ per $=$ FADD, FDEL, FSET, SET, CDEL, SOLVE, or FIX), this field specifies constitutive model type. The valid entries are listed in Table 255: Hyperelastic Options (p. 1705) below.

When you need to specify a filename from which to get experimental data (Oper = EADD), place that string here. Valid entry is any filename string. You can enter the entire path $\backslash$ filename. extension string and leave the next two fields (Option 3 and Option 4) blank, or you can specify the name here, the extension in the next field, and the path following.

## Option3

For Oper = FADD, FDEL, FSET, CDEL, SET, SOLVE or FIX, some of the cases specified inOption 2 will require that the polynomial order be specified. The applicable values for the order specification are listed in Table 255: Hyperelastic Options (p. 1705).

If a filename for experimental data is being specified in Option2 (Oper = EADD), this field will contain the file extension.

## Option4

When you are working on a specific coefficient (oper = FIX), this field specifies the index of that coefficient. Valid entries vary from 1 to $n$, where $n$ is the total number of coefficients (default $=1$ ).

For Oper $=$ SET, see Table 254: Set Operations (p. 1704), below.
If a filename for experimental data is being specified in Option2 (Oper = EADD), this field will contain the directory/path specification.

If Oper = SOLVE, this value specifies the curve-fitting procedure. Valid entries are 0 for unnormalized least squares curve-fitting procedure, and 1 for normalized least squares curve-fitting procedure.

## Option5

When you are working on a specific coefficient (oper = FIX), this field specifies the index of that coefficient. Valid entries vary from 1 to N , where N is the total number of coefficients (default = 1 )

For Oper $=$ SET, see Table 254: Set Operations (p. 1704), below.

## Table 254 Set Operations

| Purpose | Option4 | Option5 |
| :---: | :---: | :---: |
| Set the value of the coefficient. | Index of coefficient | Value of that coefficient |


| Purpose | Option4 | Option5 |
| :---: | :---: | :---: |
| Turn temperature dependency <br> ON/OFF* | tdep | 1 for ON and 0 for OFF |
| Set reference temperature | tref | Temperature value |

*     - Temperature data should be supplied in the same units as the TREF command.

If Oper = SOLVE, use this field to specify the number of iterations to be used in the calculation of the coefficients. Valid entry is any positive integer (default = 1000)

## Option6

If Oper $=$ SOLVE, specifies the allowed tolerance in residual change to stop an iteration. Valid entry is 0.0 to 1.0 (default $=0.0$ ).

## Option 7

If Oper = SOLVE, specifies the allowed tolerance in coefficient change to stop an iteration. Valid entry is 0 to 1 (default $=0$ ).

Table 255 Hyperelastic Options

| Option1 | Option2 | Option3 |
| :---: | :---: | :---: |
| HYPER | MOON | $2,3,5,9$ |
| HYPER | POLY | 1 to N |
| HYPER | OGDEN | 1 to N |
| HYPER | YEOH | 1 to N |
| HYPER | BOYC | NA |
| HYPER | GENT | NA |
| HYPER | NEO | NA |
| HYPER | BLAT | NA |
| HYPER | FOAM | 1 to N |

Following table summarizes the format for hyperelastic operations via the TBFT command:

## Hyperelastic Model Command Summary

| Oper | ID | Option1 | Option2 | Option3 | Option4 | Option5 | Option6 | Option7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| FADD | ID | HYPER | Option | Order |  |  |  |  |
| FDEL | ID | HYPER | Option | Order |  |  |  |  |
| FSET | ID | HYPER | Option | Order |  |  |  |  |
| SET | ID | HYPER | Option | Order | Index | Value |  |  |
| SOLVE | ID | HYPER | Option | Order | Norm <br> Flag | Num Iter | RTOL | CTOL |
| FIX | ID | HYPER | Option | Order | Index | Fix / Un- <br> fix Flag |  |  |
| EADD | ID | ExpType | File | Exten- <br> sion | Direct- <br> ory |  |  |  |


| Oper | ID | Option1 | Option2 | Option3 | Option4 | Option5 | Option6 | Option7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| EDEL | ID | ExpType <br> /ndex |  |  |  |  |  |  |

## TBFT Specifications for Creep Models

TBFT, Oper, ID, Option1, Option2, Option3, ..., Option 7

## Oper

The specific curve-fitting operation:

## FADD

Define a constitutive model.

## FDEL

Delete a constitutive model.

## FSET

Write data related to a constitutive model to the database (same as TB command).

## SET

Initialize coefficients of a constitutive model for nonlinear curve-fitting procedure.

## CDEL

Deletes coefficients at current reference temperature. Applicable only for temperature dependent coefficients.

## SOLVE

Solve for coefficients.
FIX
Fix (hold constant) the coefficient you specify in Option 4.

## EADD

Add experimental data.

## EDEL

Delete experimental data.

## LIST

List all data associated with the material model represented by the material ID number.
ID
The material reference number (same as MAT argument used in the TB command). Valid entry is any number greater than zero (default $=1$ ) but less than 100,000.

## Option1

For curve fit function operations (Oper = FADD, FDEL, FSET, SET, CDEL, SOLVE or FIX) this field specifies the category (CREEP).

For adding or deleting your experiment (Oper = EADD or EDEL), this field specifies the experimental data type (CREEP).

## Option2

For curve fit function operations ( Oper = FADD, FDEL, FSET, SET, CDEL, SOLVE, or FIX), this field specifies constitutive model type. The valid entries are listed in Table 257: Creep Options (p. 1708) below.

When you need to specify a filename from which to get experimental data ( Oper = EADD), place that string here. Valid entry is any filename string. You can enter the entire path $\backslash$ filename.extension
string and leave the next two fields (Option3 and Option4) blank, or you can specify the name here, the extension in the next field, and the path following.

## Option3

If a filename for experimental data is being specified in Option2 (Oper = EADD), this field will contain the file extension.

## Option4

When you are working on a specific coefficient (Oper = FIX), this field, specifies the index of that coefficient. Valid entries vary from 1 to $n$, where $n$ is the total number of coefficients (default $=1$ ).

For Oper $=$ SET, see Table 256: Set Operations (p. 1707), below.
If a filename for experimental data is being specified in Option2 (Oper = EADD), this field will contain the directory/path specification.

If Oper $=$ SOLVE, this value specifies the curve-fitting procedure. Valid entries are 0 for unnormalized least squares curve-fitting procedure, and 1 for normalized least squares curve-fitting procedure.

## Option5

If Oper = SOLVE, use this field to specify the number of iterations to be used in the calculation of the coefficients. Valid entry is any positive integer (default $=1000$ )

If you specify a coefficient to be held constant (Oper = FIX), enter a 1 to FIX the coefficient, and a 0 to allow it to vary (turn fixing OFF).

For Oper $=$ SET, see Table 256: Set Operations (p. 1707), below.
Table 256 Set Operations

| Purpose | Option4 | Option5 |
| :---: | :---: | :---: |
| Set the value of the coefficient | Index of coefficient | Value of coefficient |
| Turn temperature dependency <br> ON/OFF* | tdep | 1 for ON and 0 for OFF |
| Set reference temperature | tref | Temperature value |

*     - When tdep is OFF, the Arrhenius term (e.g. C4) in the strain hardening creep equation is calculated. Because TBTEMP is not included in the curve-fitting regimen, the experimental data (in absolute temperature) must be supplied using the /TEMP command.
*     - When tdep is set ON, the Arrhenius term is set to 0 and the constants are separately computed for each temperature. The curve-fitting regimen uses TBTEMP. In this case, you must supply the experimental data using the same units as the TREF command.


## Option 6

If Oper $=$ SOLVE, specifies the allowed tolerance in residual change to stop an iteration. Valid entry is 0.0 to 1.0 (default $=0.0$ ).

## Option 7

If Oper = SOLVE, specifies the allowed tolerance in coefficient change to stop an iteration. Valid entry is 0 to 1 (default $=0$ ).

Table 257 Creep Options

| Category | Name | Option |
| :---: | :---: | :---: |
| CREEP | SHAR | NA |
| CREEP | THAR | NA |
| CREEP | GEXP | NA |
| CREEP | GGRA | NA |
| CREEP | GBLA | NA |
| CREEP | MTHA | NA |
| CREEP | MSHA | NA |
| CREEP | GGAR | NA |
| CREEP | EXPO | NA |
| CREEP | NORT | NA |
| CREEP | PSTH | NA |
| CREEP | PSRP | NA |
| CREEP | GTHA | NA |

Following table summarizes the format for creep operations via the TBFT command:

## Creep Model Command Summary

| Oper | ID | Option1 | Option2 | Option3 | Option4 | Option5 | Option6 | Option7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| FADD | ID | CREEP | Option | NA |  |  |  |  |
| FDEL | ID | CREEP | Option | NA |  |  |  |  |
| FSET | ID | CREEP | Option | NA |  |  |  |  |
| SET | ID | CREEP | Option | NA | Index | Value |  |  |
| SOLVE | ID | CREEP | Option | NA | Norm <br> Flag | Num Iter | RTOL | CTOL |
| FIX | ID | CREEP | Option | NA | Index | Fix / Un- <br> fix Flag |  |  |
| EADD | ID | ExpType | File | Exten- <br> sion | Direct- <br> ory |  |  |  |
| EDEL | ID | ExpType <br> /Index |  |  |  |  |  |  |

## TBFT Specifications for Viscoelastic Models

TBFT, Oper, ID, Option1, Option2, Option3, ..., Option 7

Oper
The specific curve-fitting operation:

## FCASE

Define a case/constitutive model for viscoelasticity (prony).

## FADD

Define a constitutive model.

## FDEL

Delete a constitutive model.
FSET
Write data related to a constitutive model to the database (same as TB command).

## SET

Initialize coefficients of a constitutive model for nonlinear curve-fitting procedure.
CDEL
Deletes coefficients at current reference temperature. Applicable only for temperature dependent coefficients.

## SOLVE

Solve for coefficients.
FIX
Fix (hold constant) the coefficient you specify in Option 4.
EADD
Add experimental data.
EDEL
Delete experimental data.
LIST
List all data associated with the material model represented by the material ID number.
ID
The material reference number (same as $M A T$ argument used in the TB command). Valid entry is any number greater than zero (default $=1$ ) but less than 100,000.

## Option1

This option is set to VISCO for adding coefficients (Oper = FADD). The FADD operation is used to specify the shear order, the bulk order or the shift option.

This option (Oper = CASE) is set to NEW or FINI. The FADD commands are always enclosed by TBFT,FCASE, ID, NEW and TBFT,FCASE, ID, FINI. See "Material Curve Fitting" in the Structural Analysis Guide for more information.

For other curve fit function operations (Oper = FDEL, FSET, SET, CDEL, SOLVE or FIX) this field is set to CASE.

For adding or deleting your experiment (Oper = EADD or EDEL), this field specifies the experiment type. Valid entries are: SDEC (Shear Modulus vs. Time) or BDEC (Bulk Modulus vs. Time).

## Option2

For defining your viscoelastic case ( Oper = FCASE), you specify PVHE.
For curve fit function operations ( Oper = FDEL, FSET, SET, CDEL, SOLVE, or FIX), this field specifies the case name.

To create a new case (Oper = FADD), the valid options are listed in Table 259: Viscoelastic Options (p.1711) below.

When you need to specify a filename from which to get experimental data (Oper = EADD), place that string here. Valid entry is any filename string. You can enter the entire path $\backslash$ filename. extension string and leave the next two fields (Option3 and Option 4) blank, or you can specify the name here, the extension in the next field, and the path following.

## Option3

For Oper = FCASE, this field specifies the CASE name.
For Oper = FADD, this field specifies the order
If a filename for experimental data is being specified in Option2 (Oper = EADD), this field will contain the file extension.

## Option4

When you are working on a specific coefficient ( Oper $=$ FIX), this field specifies the index of that coefficient. Valid entries vary from 1 to $n$, where $n$ is the total number of coefficients (default $=1$ ).

For Oper = SET, see Table 258: Set Operations (p. 1710), below.
You can also specify TREF to indicate the reference temperature, or COMP for a partial/complete solution (only for bulk, only for shear, or all coefficients).

If a filename for experimental data is being specified in Option2 (Oper = EADD), this field will contain the directory/path specification.

If Oper $=$ SOLVE, this value specifies the curve-fitting procedure. Valid entries are 0 for unnormalized least squares curve-fitting procedure, and 1 for normalized least squares curve-fitting procedure.

## Option5

For Oper = SET, see Table 258: Set Operations (p. 1710), below.
Table 258 Set Operations

| Purpose | Option4 | Option5 |
| :---: | :---: | :---: |
| Set the value of the coefficient | Index of coefficient | Value of coefficient |
| Turn temperature dependency <br> ON/OFF | tdep | 1 for ON and 0 for OFF |
| Set reference temperature | tref | Temperature value |
| Set current component to solve for | comp | pshea, pbulk, or pvhe |

If Oper = SOLVE, use this field to specify the number of iterations to be used in the calculation of the coefficients. Valid entry is any positive integer (default $=1000$ ).

If you are specifying a coefficient to be held constant (Oper = FIX), a 1 FIXES the specified coefficient, and a 0 allows it to vary (turns fixing OFF).

## Option6

If Oper $=$ SOLVE, specifies the allowed tolerance in residual change to stop an iteration. Valid entry is 0.0 to 1.0 (default $=0.0$ ).

## Option 7

If Oper $=$ SOLVE, specifies the allowed tolerance in coefficient change to stop an iteration. Valid entry is 0 to 1 (default $=0$ ).

## Table 259 Viscoelastic Options

| Category | Name | Option |
| :---: | :---: | :---: |
| VISCO | PSHEAR | 1 to N |
| VISCO | PBULK | 1 to N |
| VISCO | SHIFT | TN, WLF, NONE |

Following table summarizes the format for viscoelastic operations via the TBFT command:

## Viscoelastic Models

| Oper | ID | Option1 | Option2 | Option3 | Option4 | Option5 | Option6 | Option7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| FCASE | ID | NEW | PVHE | Case <br> Name |  |  |  |  |
| FCASE | ID | FINI |  |  |  |  |  |  |
| FADD | ID | VISCO | Option | Order |  |  |  |  |
| FDEL | ID | CASE | Case <br> Name | NA |  |  |  |  |
| FSET | ID | CASE | Case <br> Name | NA |  |  |  |  |
| SET | ID | CASE | Case <br> Name | NA | Index | Value |  |  |
| SOLVE | ID | CASE | Case <br> Name | NA | Norm <br> Flag | Num Iter | RTOL | CTOL |
| FIX | ID | CASE | Case <br> Name | NA | Index | Fix / Un- <br> fix Flag |  |  |
| EADD | ID | ExpType | File | Exten- <br> sion | Direct- <br> ory |  |  |  |
| EDEL | ID | ExpType <br> / Index |  |  |  |  |  |  |

## Notes

This command provides tools for comparing experimental material data to the program-provided calculated data for various nonlinear material options. Based on curve-fitting comparisons and error norms, you choose the model to use during the solution phase of the analysis according to the best fit. All of the capabilities of the TBFT-series of commands are accessible interactively via the standard material GUI. See "Material Curve Fitting" in the Structural Analysis Guide for more information.

You can display material model data associated with both the TB command and the TBFT,FSET command by issuing TBLIST,ALL,ALL.

Material model data associated with the latest TB or TBFT,FSET command overwrites previous data.

You can display material model data associated with both the TB command and the TBFT,FSET command by issuing TBLIST,ALL,ALL.

The capability to fix coefficients (Option $4=$ FIX) applies only to nonlinear curve fits (as listed in Table 10.3: "Hyperelastic Curve-Fitting Model Types".

The uniaxial, biaxial, and shear experimental data use engineering stress. The volumetric data uses true stress. See the Element Reference for details on experimental data for creep and viscoelasticity.

## Menu Paths

Main Menu> Preprocessor> Material Props> Material Models

## TBLE

## Specifies "Data table properties" as the subsequent status topic.

PREP 7: Status
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Notes

This is a status (STAT) topic command. Status topic commands are generated by the GUI and will appear in the log file (Jobname.LOG) if status is requested for some items under Utility Menu> List> Status. This command will be immediately followed by a STAT command, which will report the status for the specified topic.

If entered directly into the program, the STAT command should immediately follow this command.

## Menu Paths

## Utility Menu>List>Status>Preprocessor>Data Tables

## TBLIST, Lab, MAT

## Lists the material data tables.

PREP 7: Data Tables
MP ME ST PR PRN <> <> <> EM EH DY PP <> EME MFS

## Lab

Data table label. (See the TB command for valid labels.) Defaults to the active table. If ALL, list data for all labels.

## MAT

Material number to be listed (defaults to the active material). If ALL, list data tables for all materials.

## Notes

This command is a utility command, valid anywhere.

## Menu Paths

Utility Menu>List>Properties>Data Tables

## TBMODIF, ROW, COL, VALUE

## Modifies data for the material data table (GUI).

PREP 7: Data Tables
MP ME ST PR PRN $<><><>$ EM EH DY PP $<>$ EME MFS

## ROW, COL

The row and column numbers of the table entry to be modified.

## VALUE

The new value to be used in the $R O W, C O L$ location.

## Notes

The TBMODIF command modifies data for the table specified on the last TB command.
For temperature-dependent data, the temperature specified on the last TBTEMP command is used.

TBMODIF is a command generated by the Graphical User Interface (GUI). It appears in the log file (Jobname.LOG) if a TB material data table is graphically edited in spreadsheet fashion.

The TBMODIF command is not intended to be typed in directly during an analysis session (although it can be included in an input file for batch input or for use with the /INPUT command).

This command is also valid in SOLUTION.

## Menu Paths

## Main Menu>Preprocessor>Loads>Load Step Opts>Other>Change Mat Props>Material Models Main Menu>Preprocessor>Material Props>Material Models Main Menu>Solution>Load Step Opts>Other>Change Mat Props>Material Models

TBPLOT, Lab, MAT, TBOPT, TEMP, SEGN
Displays the material data table.
PREP 7: Data Tables
MP ME ST PR PRN <> <> <> EM EH DY PP <> EME MFS

## Lab

Data table label. Valid labels are: MKIN, KINH, MELAS, MISO, BKIN, BISO, BH, GASKET, and JOIN. Defaults to the active table label. For B-H data, also valid are: NB to display NU- ${ }^{2}$, MH to display MU vs. H , and SBH, SNB, SMH to display the slopes of the corresponding data.

MAT
Material number to be displayed (defaults to the active material).

## TBOPT

Gasket material or joint element material option to be plotted.
The following gasket material options are valid only when $L a b=$ GASKET:

## ALL

Plots all gasket data.

## COMP

Plots gasket compression data only.

## LUNL

Plots gasket linear unloading data with compression curve.

## NUNL

Plots gasket nonlinear unloading data only.
The following joint element material options are valid only when Lab = JOIN:

## JNSA

Plots nonlinear stiffness data that is applicable to all relevant directions.

## JNSn

Plots only the specified nonlinear stiffness data. The " $n$ " can be 1, 4, or 6 . For example, JNS4 plots only the nonlinear stiffness data specified in the local direction 4 (ROTX).

## JNDA

Plots nonlinear damping data that is applicable to all relevant directions.

## JNDn

Plots only the specified nonlinear damping data. The " $n$ " can be 1, 4, or 6. For example, JND4 plots only the nonlinear damping data specified in the local direction 4 (ROTX).

## JNFA

Plots nonlinear hysteretic friction data that is applicable to all relevant directions.

## JNF $n$

Plots only the specified nonlinear hysteretic friction data. The " $n$ " can be 1, 4, or 6 . For example, JNF4 plots only the nonlinear hysteretic friction data specified in local direction 4 (ROTX).

## TEMP

Specific temperature at which gasket data or joint element material data will be plotted (used only when Lab $=$ GASKET or JOIN). Use TEMP = ALL to plot gasket data or joint element material data at all temperatures.

## SEGN

Segment number of plotted curve (valid only when Lab $=$ GASKET):

## NO

Segment number is not added to plotted curve (default).
YES
Segment number is added to plotted curve. This option is ignored if the number of data points in a curve exceeds 20.

## Notes

Only data for stress-strain, B-H, gasket curves, or joint element nonlinear material model curves can be displayed.

The $T B O P T$ and $T E M P$ values are valid only when $L a b=$ GASKET or JOIN.
The $S E G N$ value is valid only when $L a b=$ GASKET.
This command is valid in any processor.

## Menu Paths

## Utility Menu>Plot>Data Tables

TBPT, Oper, $X 1, X 2, X 3, \ldots, X N$

## Defines a point on a nonlinear data curve.

PREP 7: Data Tables
MP ME ST PR PRN <> <> <> EM EH <> PP <> EME MFS

## Oper

Operation to perform:
DEFI
Defines a new data point (default). The point is inserted into the table in ascending order of $x 1$. If a point already exists with the same $X 1$ value, it is replaced.

DELE
Deletes an existing point. The $X 1$ value must match the $X 1$ value of the point to be deleted ( $X N$ is ignored).
x1, $x 2, \ldots, x N$
The N components of the point. N depends on the type of data table. Except for TB,EXPE all other TB Tables support only 2 components.

## Notes

TBPT defines a point on a nonlinear data curve (such as a stress-strain curve, B-H curve, etc.) at the temperature specified on the last TBTEMP command. The meaning of the values depends on the type of data table specified on the last TB command (MISO, BH, etc.).

This command is also valid in SOLUTION.

## Menu Paths

Main Menu>Preprocessor>Loads>Load Step Opts>Other>Change Mat Props>Material Models Main Menu>Preprocessor>Material Props>Material Models Main Menu>Solution>Load Step Opts>Other>Change Mat Props>Material Models

TBTEMP, TEMP, KMOD

## Defines a temperature for a material data table.

PREP 7: Data Tables
MP ME ST PR PRN $<><><>$ EM $<>$ DY PP $<>$ EME MFS

## TEMP

Temperature value (defaults to 0.0 if $K M O D$ is blank).

## KMOD

If blank, TEMP defines a new temperature. If an integer, 1 to NTEMP (from the TB command), modify that previously defined temperature to the TEMP value, unless TEMP is blank, then that previously defined temperature is reactivated. Use TBLIST to list temperatures and data. The next TBDATA or TBPT commands also add or change the data at this temperature. If KMOD = CRIT (and TEMP is blank), the next TBDATA values are failure-criteria keys. If KMOD = STRAIN (and TEMP is blank), the next TBDATA values are strains as described for the MKIN property option (see Material Data Tables (Implicit Analysis) of the Element Reference).

## Notes

The TBTEMP command defines a temperature to be associated with the data on subsequent TBPT or TBDATA commands.

The defined temperature remains active until the next TBTEMP command is issued.
Data values must be defined with the temperatures in ascending order. Temperatures previously associated with a data table may also be modified.

This command is also valid in SOLUTION.

## Menu Paths

# Main Menu>Preprocessor>Loads>Load Step Opts>Other>Change Mat Props>Material Models Main Menu>Preprocessor>Material Props>Material Models Main Menu>Solution>Load Step Opts>Other>Change Mat Props>Material Models 

## TCHG, ENAME1, ENAME2, ETYPE2

Converts 20-node degenerate tetrahedral elements to their 10-node non-degenerate counterparts.
PREP 7: Meshing
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## ENAME1

Name (or the number) of the 20-node tetrahedron element that you want to convert. This argument is required.

## ENAME2

Name (or the number) of the 10-node tetrahedron element to which you want to convert the ENAME elements. This argument is required.

## ETYPE2

Element TYPE reference number for ENAME2. If ETYPE2 is 0 or is not specified, ANSYS chooses the element TYPE reference number for ENAME2. See the "Notes" (p. 1717) section for details. This argument is optional.

## Notes

The TCHG command allows you to specify conversion of any selected 20-node brick that is degenerated into a tetrahedron to a 10 -node tetrahedron.

The TCHG command is useful when used in with the MOPT,PYRA command. Twenty-node pyramid shaped elements may be used in the same volume with 10-node tetrahedra.

Performing a conversion is likely to create circumstances in which more than one element type is defined for a single volume.

If specified, ETYPE 2 will usually be the same as the local element TYPE number (ET,ITYPE) that was assigned to ENAME2 with the ET command. You can specify a unique number for ETYPE2 if you prefer. Although ETYPE2 is optional, it may be useful when two or more ITYPEs have been assigned to the same element (for example, if two SOLID187 elements have been established in the element attribute tables for the current model, use the ETYPE2 argument to distinguish between them). If ETYPE2 is nonzero and it has not already been assigned to an element via ET, ANSYS assigns the ETYPE 2 value to ENAME 2 as its element TYPE reference number.

If ETYPE 2 is 0 or is not specified, ANSYS determines the element TYPE reference number for ENAME 2 in one of these ways:

- If ETYPE 2 is 0 or is not specified, and ENAME 2 does not appear in the element attribute tables, ANSYS uses the next available (unused) location in the element attribute tables to determine the element TYPE reference number for ENAME2.
- If ETYPE 2 is 0 or is not specified, and ENAME 2 appears in the element attribute tables, ANSYS uses ENAME2 's existing element TYPE reference number for ETYPE2. (If there is more than one occurrence of ENAME 2 in the element attribute tables (each with its own TYPE reference number), ANSYS uses the first ENAME2 reference number for ETYPE2.)

See Meshing Your Solid Model of the Modeling and Meshing Guide for detailed information about converting degenerate tetrahedral elements.

## Menu Paths

## Main Menu>Preprocessor>Meshing>Modify Mesh>Change Tets

## /TEE, Label, Fname, Ext, --

## Writes a list of commands to a specified file at the same time that the commands are being executed.

APDL:Macro Files<br>MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Argument Descriptions

## Label

Indicates how ANSYS is to interpret this /TEE command:
NEW --
Signals the beginning of the command text that is to be written to Fname. If Fname already exists, specifying NEW causes the contents of Fname to be overwritten.

## APPEND --

Indicates that you want to append to Fname the command text that follows.

## END --

Signals the end of the command text that is to be written to or appended to Fname.

## Fname

File name and directory path ( 248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

## Ext

Filename extension (8 character maximum).
If you plan to execute the file as if it were an ANSYS command, use the extension .mac.

Unused field.

## Notes

You can use the /TEE command to record a macro to a specified file at the same time that the macro is being executed. It is similar to the UNIX tee command.

For more information about the /TEE command, see the "Introducing APDL" of the ANSYS Parametric Design Language Guide.

The following example illustrates the use of the /TEE command. If you issue these commands:

```
/tee, new,myfile,mac
et,1,42,0,0,1
ex,1,3e7
/tee,end
/tee, append,myfile,mac
n,1,8
n,5,11
fill
ngen, 5, 5, 1, 5, 1, 0, 1
/tee, end
```

the content of myfile.mac is:

```
et,1,42,0,0,1
ex,1,3e7
```

```
n,1,8
n,5,11
fill
ngen,5,5,1,5,1,0,1
```

This command is valid in any processor, but only during an interactive run.

## Menu Paths

This command cannot be accessed from a menu.

TERM, Kywrd, Opt1, Opt2, Opt3

## Specifies various terminal driver options.

DISPLAY:Driver Options
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## If Kywrd = COPY, command format is TERM,COPY,NCOPY

## NCOPY

Activate hard copy device for $\operatorname{NCOPY}(0,1,2$, etc. $)$ copies.
If Kywrd = LOOP, command format is TERM,LOOP,NLOOP,PAUSE. Used only with PLOT,ALL

## NLOOP

Loop NLOOP times back to beginning of file when end of file is reached.

## PAUSE

Pause PAUSE seconds between plots.

## If Kywrd = NOPROM, command format is TERM,NOPROM,KEY

KEY
Prompt key:
0
Display prompt line for prompt.
1
Use terminal bell for prompt.

## Notes

Used only with terminal driver names on /SHOWDISP command.
This command is also valid in PREP7.

## Menu Paths

## This command cannot be accessed from a menu.

## THOPT, Refopt, REFORMTOL, NTABPOINTS, TEMPMIN, TEMPMAX

## Nonlinear transient thermal solution option.

SOLUTION: Analysis Options
MP ME <> PR <> <> <> <> <> <> <> PP <> EME MFS

## Refopt

Matrix reform option.
FULL
Use the full Newton-Raphson solution option (default).

## QUASI

Use a selective reform solution option based on REFORMTOL.

## LINEAR

Use a linear solution option with no matrix reform.

## REFORMTOL

Property change tolerance for Matrix Reformation (. 05 default). The thermal matrices are reformed if the maximum material property change in an element (from the previous reform time) is greater than the reform tolerance.

## NTABPOINTS

Number of points in Fast Material Table (64 default).

## TEMPMIN

Minimum temperature for Fast Material Table. Defaults to the minimum temperature defined by the MPTEMP command for any material property defined.

## TEMPMAX

Maximum temperature for Fast Material Table. Defaults to the maximum temperature defined by the MPTEMP command for any material property defined.

## Notes

This solution logic is only supported by the ICCG and the JCG solvers (EQSLV command). You must issue the THOPT command before the EQSLV command to use the QUASI option.

For Refopt = QUASI, results from a restart may be different than results from a single run because the stiffness matrices are always recreated in a restart run, but may or may not be in a single run (depending on the behavior resulting from the REFORMTOL setting). Additionally, results may differ between two single runs as well, if the matrices are reformed as a result of the REFORMTOL setting.

For Refopt = QUASI, midside node temperatures are not calculated if 20-node thermal solid elements (SOLID90 or SOLID279) are used.

Because the matrices are reformed based on material properties, only Refopt $=$ FULL should be used for the radiosity solver method.

THOPT settings take precedence over SOLCONTROL settings.
ANTYPE,,RESTART (including multiframe restart) is not supported by THOPT, LINEAR option.
Distributed ANSYS Restriction The Refopt = QUASI and Refopt = LINEAR options are not supported in Distributed ANSYS.

## Menu Paths

Main Menu>Preprocessor>Loads>Analysis Type>Analysis Options
Main Menu>Solution>Analysis Type>Analysis Options

TIFF, Kywrd, OPT
Provides TIFF file Export for ANSYS Displays.
GRAPHICS: Set Up
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Kywrd

Specifies various TIFF file export options.

## COMP

If Kywrd $=$ COMP, then $O P T$ controls data compression for the output file. If $C O M P=0$, then compression is off. If COMP = 1 (default), then compression is on.

## ORIENT

If Kywrd = ORIENT, then $O P T$ will determine the orientation of the entire plot. $O P T$ can be either Horizontal (default) or Vertical.

## COLOR

If Kywrd $=$ COLOR, then $O P T$ will determine the color attribute of the saved file. OPT can be 0,1 , or 2, corresponding to Black and White, Grayscale, and Color (default), respectively.

TMOD
If Kywrd $=$ TMOD, then $O P T$ will determine the text method. $O P T$ can be either 1 or 0 , corresponding to bitmap text (default) or line stroke text, respectively.

## DEFAULT

If Kywrd = DEFAULT, then all of the default values, for all of the Kywrd parameters listed above, are active.

OPT
OPT can have the following names or values, depending on the value for Kywrd (see above).
1 or 0
If Kywrd = COMP, a value or 1 (on) or 0 (off) will control compression for the TIFF file.

## Horizontal, Vertical

If Kywrd = ORIENT, the terms Horizontal or Vertical determine the orientation of the plot.
0, 1, 2
If Kywrd $=$ COLOR, the numbers 0,1 , and 2 correspond to Black and White , Grayscale and Color, respectively.

1, 0
If Kywrd $=$ TMOD, the values 1 and 0 determine whether bitmap (1) or stroke text (0) fonts will be used

## Menu Paths

## Utility Menu>PlotCtrls>HardCopy>ToFile

TIME, time

## Sets the time for a load step.

SOLUTION: Load Step Options
MP ME ST PR PRN $<><><>$ EM $<>$ DY PP $<>$ EME MFS

## TIME

Time at the end of the load step.

## Command Default

Previous TIME + 1.0 (at each load step), corresponding to the load step number.

## Notes

Associates the boundary conditions at the end of the load step with a particular TIME value.
TIME must be a positive, nonzero, monotonically increasing quantity that "tracks" the input history. Units of time should be consistent with those used elsewhere (for properties, creep equations, etc.).

Typically, for the first load step TIME defaults to 1 . However, for the first load step of a reduced transient analysis (ANTYPE,TRANS and TRNOPT,REDUC) or mode superposition transient analysis (ANTYPE,TRANS and TRNOPT,MSUP), the TIME command is ignored and a static solution is performed at TIME $=0$.

For a full transient analyses, the command's default behavior does not apply. You must specify a time for each load step and it must be greater than the time at the end of the prior load step.

TIME does not apply to modal (ANTYPE,MODAL), harmonic response (ANTYPE,HARMIC), or substructure (ANTYPE,SUBSTR) analyses.

This command is also valid in PREP7.

## Menu Paths

Main Menu>Preprocessor>Loads>Analysis Type>Sol'n Controls>Basic
Main Menu>Preprocessor>Loads>Load Step Opts>Time/Frequenc>Time - Time Step
Main Menu>Preprocessor>Loads>Load Step Opts>Time/Frequenc>Time and Substps
Main Menu>Solution>Analysis Type>Sol'n Controls>Basic
Main Menu>Solution>Load Step Opts>Time/Frequenc>Time - Time Step
Main Menu>Solution>Load Step Opts $>$ Time/Frequenc>Time and Substps
Main Menu>Solution>Time Controls>Solution Time

TIMERANGE, $T M I N, T M A X$
Specifies the time range for which data are to be stored.
POST2 6:Set Up
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

TMIN
Minimum time (defaults to first time (or frequency) point on the file).

## TMAX

Maximum time (defaults to last time (or frequency) point on the file).

## Command Default

Include all time (or frequency) points in the range.

## Notes

Defines the time (or frequency) range for which data are to be read from the file and stored in memory. Use the NSTORE command to define the time increment.

## Menu Paths

## Main Menu $>$ TimeHist Postpro>Settings $>$ Data

## TIMINT, Key, Lab

## Turns on transient effects.

SOLUTION: Dynamic Options
MP ME ST PR PRN $<><><>$ EM $<><>$ PP $<>$ EME MFS
Key
Transient effects key:
OFF
No transient effects (static or steady-state).
ON
Include transient (mass or inertia) effects.

## Lab

Degree of freedom label:
ALL
Apply this key to all appropriate labels (default).
STRUC
Apply this key to structural DOFs.

## THERM

Apply this key to thermal DOFs.

## ELECT

Apply this key to electric DOFs.

## MAG

Apply this key to magnetic DOFs.

## FLUID

Apply this key to fluid DOFs.

## Command Default

Include transient effects (ON) if ANTYPE,TRANS, exclude transient effects (OFF) if ANTYPE,STATIC.

## Notes

Indicates whether this load step in a full transient analysis should use time integration, that is, whether it includes transient effects (e.g. structural inertia, thermal capacitance) or whether it is a static (steady-state) load step for the indicated DOFs. Transient initial conditions are introduced at the load step having Key = ON. Initial conditions are then determined from the previous two substeps. Zero initial velocity and acceleration are assumed if no previous substeps exist. See the Structural Analysis Guide, the Thermal Analysis Guide, and the Low-Frequency Electromagnetic Analysis Guide for details.

This command is also valid in PREP7.

## Menu Paths

Main Menu>Preprocessor>Loads>Analysis Type>Sol'n Controls>Transient
Main Menu>Preprocessor>Loads>Load Step Opts>Time/Frequenc>Time Integration>Amplitude Decay
Main Menu>Preprocessor>Loads>Load Step Opts>Time/Frequenc>Time Integration>Newmark Parameters
Main Menu>Solution>Analysis Type>Sol'n Controls>Transient
Main Menu>Solution>Load Step Opts $>$ Time/Frequenc>Time Integration $>$ Amplitude Decay Main Menu>Solution>Load Step Opts>Time/Frequenc>Time Integration>Newmark Parameters

TIMP, ELEM, CHGBND, IMPLEVEL
Improves the quality of tetrahedral elements that are not associated with a volume.
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## ELEM

Identifies the tetrahedral elements to be improved. Valid values are ALL and P. If $E L E M=$ ALL (default), improve all selected tetrahedral elements. If $E L E M=P$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI).

## CHGBND

Specifies whether to allow boundary modification. Boundary modification includes such things as changes in the connectivity of the element faces on the boundary and the addition of boundary nodes. (Also see the Notes section below for important usage information for CHGBND.)

0
Do not allow boundary modification.
1
Allow boundary modification (default).

## IMPLEVEL

Identifies the level of improvement to be performed on the elements. (Improvement occurs primarily through the use of face swapping and node smoothing techniques.)

0
Perform the least amount of swapping/smoothing.
1
Perform an intermediate amount of swapping/smoothing.

Perform the greatest amount of swapping/smoothing.
3
Perform the greatest amount of swapping/smoothing, plus additional improvement techniques (default).

## Notes

The TIMP command enables you to improve a given tetrahedral mesh by reducing the number of poorlyshaped tetrahedral elements (in particular, the number of sliver tetrahedral elements)--as well as the overall number of elements--in the mesh. It also improves the overall quality of the mesh.

TIMP is particularly useful for an imported tetrahedral mesh for which no geometry information is attached.
Regardless of the value of the CHGBND argument, boundary mid-nodes can be moved as long as you are not using p-method analysis. When $C H G B N D=0$ and you are using p-method analysis, boundary mid-nodes cannot be moved. (ANSYS issues an error message if it would be necessary to move boundary mid-nodes in order to generate valid quadratic elements.)

When loads or constraints have been placed on boundary nodes or mid-nodes, and boundary mid-nodes are later moved, ANSYS issues a warning message to let you know that it will not update the loads or constraints.

No boundary modification is performed if shell or beam elements are present in the mesh, even when $C H G B N D=1$.

## Menu Paths

Main Menu>Preprocessor>Meshing>Modify Mesh>Improve Tets>Detached Elems

TINTP, GAMMA, ALPHA, DELTA, THETA, OSLM, TOL, --- --, AVSMOOTH, ALPHAF, ALPHAM

## Defines transient integration parameters.

SOLUTION: Dynamic Options
MP ME ST PR PRN <> <> <> EM <> <> PP <> EME MFS

## GAMMA

Amplitude decay factor for 2 nd order transient integration, e.g., structural dynamics (used only if $A L P H A$, DELTA, ALPHAF, and ALPHAM are blank). Defaults to 0.005 .

## ALPHA

2nd order transient integration parameter (used only if GAMMA is blank). Defaults to 0.2525 .

## DELTA

2nd order transient integration parameter (used only if GAMMA is blank). Defaults to 0.5050 .

## THETA

1st order transient (e.g., thermal transient) integration parameter. Defaults to 0.5 if SOLCONTROL is OFF. Defaults to 1.0 if SOLCONTROL is ON.

## OSLM

Specifies the oscillation limit criterion for automatic time stepping of 1st order transients (e.g., thermal transients). Defaults to 0.5 with a tolerance of TOL.

## TOL

Tolerance applied to OSLM. Defaults to 0.0 .
--, --
Unused fields.

## AVSMOOTH

Smooth flag option:
0
Include smoothing of initial velocity (1st order system) or initial acceleration (2nd order system) (default).

1
Do not include smoothing.

## ALPHAF

Interpolation factor in HHT algorithm for force and damping terms (used only if GAMMA is blank). Defaults to 0.005 .

## ALPHAM

Interpolation factor in HHT algorithm for inertial term (used only if GAMMA is blank). Defaults to 0.0.

## Notes

Used to define the transient integration parameters. For more information on transient integration parameters, refer to the Theory Reference for the Mechanical APDL and Mechanical Applications.

For structural transient analyses, you may choose between the Newmark and HHT time integration methods (see the TRNOPT command). In this case, if GAMMA is input and the integration parameters ALPHA, DELTA, $A L P H A F$, and $A L P H A M$ are left blank, the program will calculate the integration parameters. Alternatively, you can input these integration parameters directly on this command. However, for the unconditional stability and second order accuracy of the time integration, these parameters should satisfy a specific relationship, as described in Description of Structural and Other Second Order Systems of the Theory Reference for the Mechanical APDL and Mechanical Applications.

In a transient piezoelectric analysis, required input for this command is $A L P H A=0.25, D E L T A=0.5$, and $T H E T A=0.5$. For a coupled electromagnetic-circuit transient analysis, use $T H E T A=1.0$, the default value, to specify the backward Euler method.

The default values given for this command assume SOLCONTROL,ON (the default). If your analysis is using SOLCONTROL,OFF, you may need to adjust some defaults to prevent the solution from diverging. See the description of SOLCONTROL for a complete listing of the defaults set by SOLCONTROL,ON and SOLCONTROL,OFF.

This command is also valid in PREP7.

## Menu Paths

Main Menu>Preprocessor>Loads>Analysis Type>Sol'n Controls>Transient
Main Menu>Preprocessor>Loads>Load Step Opts>Time/Frequenc>Time Integration>Amplitude Decay

Main Menu>Preprocessor>Loads>Load Step Opts>Time/Frequenc>Time Integration>Newmark Parameters<br>Main Menu>Solution>Analysis Type>Sol'n Controls>Transient<br>Main Menu>Solution>Load Step Opts>Time/Frequenc>Time Integration>Amplitude Decay Main Menu>Solution>Load Step Opts>Time/Frequenc>Time Integration>Newmark Parameters

## /TITLE, Title

## Defines a main title.

DATABASE: Set Up<br>MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Title

Input up to 72 alphanumeric characters. Parameter substitution may be forced within the title by enclosing the parameter name or parametric expression within percent (\%) signs.

## Notes

The title is carried through the printout and written on various files. The title written to a file is the title defined at that time. Special characters may be used within the title text. Subtitles may also be defined [/STITLE].

This command is valid in any processor.

## Menu Paths

Utility Menu>File>Change Title
/TLABEL, XLOC, YLOC, Text
Creates annotation text (GUI).
GRAP HICS:Annotation
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## XLOC

Text $X$ starting location ( $-1.0<X<1.6$ ).

## YLOC

Text $Y$ starting location ( $-1.0<Y<1.0$ ).
Text
Text string (60 characters maximum). Parameter substitution may be forced within the text by enclosing the parameter name or parametric expression within percent (\%) signs.

## Notes

Defines annotation text to be written directly onto the display at a specified location. This is a command generated by the Graphical User Interface (GUI) and will appear in the log file (Jobname. LOG) if annotation is used. This command is not intended to be typed in directly in an ANSYS session (although it can be included in an input file for batch input or for use with the /INPUT command).

All text is shown on subsequent displays unless the annotation is turned off or deleted. Use the /TSPEC command to set the attributes of the text.

This command is valid in any processor.

## Menu Paths

Utility Menu>PlotCtrls>Annotation>Create Annotation

TOCOMP, Refname, Type, NUMLC, LCARR
Defines single or multiple compliance as the topological optimization function.
OPTIMIZATION: Specifications
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

## Refname

Reference name (8 character string). TOCOMP,Refname with the other fields blank deletes the defined compliance function.

## type

Sets the type of compliance function. Valid types are:
SINGLE
Sets the topological optimization function for Refname to single compliance. NumLC is the load case number.

## MULTIPLE

Sets the topological optimization function to weighted summation of individual compliances. NumLC is the number of load cases considered

## NUMLC

For Type $=$ Single, NumLC is the load case identifier. For Type $=$ Multiple, NumLC is the total number of load cases considered.

## LCARR

Used when Type = Multiple. The array (of dimension NumLC) defining the load case weights. Array name must be enclosed in \% signs: \%WEIGHT\%.

## Notes

The function defined using TOCOMP is used as an objective or constraint for the topological optimization, as defined further in TOVAR. When used as the objective, the optimization distributes the material so that the compliance measure is minimized (stiffness is maximized).

## Menu Paths

## Main Menu>Topological Opt>Set Up>Advanced Opt>Topo Function Main Menu>Topological Opt>Set Up>Basic Opt

## TODEF, ACCUR

## Defines parameters for and initializes topological optimization.

OPTIMIZATION: Specifications
MP ME ST PR PRN $<><><><><><>$ PP $<>$ EME MFS

## ACCUR

Accuracy used for termination and convergence checking. Default $=0.0005$.

## Notes

Initializes the topological optimization problem and defines the accuracy for the solution. Issue this command before TOLOOP.

## Menu Paths

## Main Menu>Topological Opt>Run

## TOEXE

## Executes one topological optimization iteration.

OPTIMIZATION: Run
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

## Notes

Runs one topological optimization iteration, leading to the prediction of a new shape, defined by means of element densities. Before issuing TOEXE, you must perform a static or modal analysis solution depending on the type of objective and constraints you defined. TOEXE performs a convergence test based on relative objective and element density change with an accuracy as specified by TODEF.

## Menu Paths

This command cannot be accessed from a menu.

TOFFST, value
Specifies the temperature offset from absolute zero to zero.
SOLUTION: Analysis Options AUX12: General Radiation

MP ME ST PR PRN DS DSS FL EM EH DY PP <> EME MFS

## VALUE

Degrees between absolute zero and zero of temperature system used (should be positive).

## Notes

Specifies the difference (in degrees) between absolute zero and the zero of the temperature system used. Absolute temperature values are required in evaluating certain expressions, such as for creep, swelling, radiation heat transfer, MASS71, etc. (The offset temperature is not used in evaluating emissivity.) Examples are $460^{\circ}$ for the Fahrenheit system and $273^{\circ}$ for the Celsius system. The offset temperature is internally included in the element calculations and does not affect the temperature input or output. If used in SOLUTION, this command is valid only within the first load step.

This command is also valid in PREP7.

## Menu Paths

Main Menu>Preprocessor>Loads>Analysis Type>Analysis Options
Main Menu>Preprocessor>Loads>Load Step Opts>Other>Change Mat Props>Temperature Units
Main Menu>Preprocessor>Material Props $>$ Temperature Units
Main Menu>Preprocessor>Radiation Opts>Solution Opt
Main Menu>Radiation Opt>Radiosity Meth>Solution Opt
Main Menu>Solution>Analysis Type>Analysis Options
Main Menu>Solution>Load Step Opts>Other>Change Mat Props>Temperature Units
Main Menu>Solution>Radiation Opts>Solution Opt

TOFREQ, Refname, Type, Nfreq, Frqarr, Targval
Defines single or mean frequency formulation as the topological optimization function.
OP TIMIZATION: Specifications
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

## Refname

Reference name (8 character string). TOFREQ,Refname with other fields blank deletes the defined compliance function.

## type

Defines type of frequency topological optimization function. Valid types are:

## SINGLE

Defines single frequency as the topological optimization function.

## WEIGHTED

Defines a weighted summation of individual frequencies as the topological optimization function.

## RECIPROCAL

Uses a reciprocal formulation as the topological optimization function.
EUCLIDEAN
Uses a Euclidean Norm formulation as the topological optimization function.

## Nfreq

For Type $=$ SINGLE, Nfreq is the frequency identifier. For Type $=$ WEIGHTED, RECIPROCAL, or EUCLIDEAN, Nfreq is the total number of frequencies considered.

## Frqarr

For Type $=$ WEIGHTED or RECIPROCAL, Frqarr is the array of dimension Nfreq that defines the weights for mean frequency formulation. For Type = EUCLIDEAN, Frqarr is the array (of dimension Nfreq)
defining the target values for mean frequency formulation. The array name must be enclosed in \% signs: \%ARRAY\%.

## Targval

For Type $=$ RECIPROCAL, Targval specifies the target value for mean frequency formulation.

| Type | Nfreq | Frqarr | Targval |
| :---: | :---: | :---: | :---: |
| SINGLE | Frequency identifier | N/A | $\mathrm{N} / \mathrm{A}$ |
| WEIGHTED | Total number of frequencies | Defines weights | $\mathrm{N} / \mathrm{A}$ |
| RECIPROCAL | Total number of frequencies | Defines weights | Target value |
| EUCLIDEAN | Total number of frequencies | Defines target values | $\mathrm{N} / \mathrm{A}$ |

## Notes

Single, when the frequency function is set as the objective (TOVAR), distributes material so that the single frequency specified is maximized.

Weighted (available only as an objective function) distributes material so that the specified mean frequency formulation is maximized.

Reciprocal (available only as an objective function) is a mean frequency formulation that defines a smoother function than Single. It is best used when two modes whose eigenfrequencies occur in the given mean formulation exchange their orders during optimization. The eigenfrequency that is closest to the target frequency (set with Targval) experiences the largest increase and is maximized.

Euclidean Norm Formulation (available only as an objective function) is used to shift single or multiple eigenfrequencies up. The mean eigenfrequency is utilized to smooth the optimization process. This must be used as the objective where the optimization procedure distributes material so that the mean frequency is minimized.

If the optimization problem does not converge, try specifying a different type of frequency formulation. Each formulation uses different methods to calculate the frequency optimization, so depending on your specific problem, one might work better than another. See the Theory Reference for the Mechanical APDL and Mechanical Applications for more information on these formulations.

## Menu Paths

Main Menu>Topological Opt>Set Up>Advanced Opt>Topo Function

## TOGRAPH, Type, Refname

## Plots iteration solution of topological optimization.

MP ME ST PR PRN $<><><><><><>$ PP $<>$ EME MFS
TyPe
OBJ
$\quad$ Plot objective history versus iteration number.

CON
Plot constraint history versus iteration number.

## Refname

Used if multiple constraints were defined. Defaults to the first constraint name.

## Notes

Plots all iterations of the topological optimization solution, using either objective or constraint history.

## Menu Paths

Main Menu>Topological Opt>Graph History

## TOLIST

Lists all topological optimization functions currently defined.
OPTIMIZATION: Display
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

## Notes

Provides a list of all defined topological functions, in the order they were defined.

## Menu Paths

Main Menu>Topological Opt>Set Up>Advanced Opt>List Functions

## TOLOOP, NITER, PLOT

## Execute several topological optimization iterations.

OPTIMIZATION:Run
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

## NITER

Number of iterations to be performed (maximum of 100). Default is 1.

## PLOT

Sets display of topological densities for each iteration:
0
Do not display the results of each iteration.
1
Display the results of each iteration.

## Command Default

TOLOOP,1,0.

## Notes

Invokes a macro to solve, postprocess, and plot each iteration. For compliance cases, you must write at least one load step (using LSWRITE) before issuing this command. LSSOLVE is used for static analyses if there are multiple load steps. The Block Lanczos eigensolver is used for modal analyses. PLNSOL,TOPO and TOEXE are used for each iteration. The macro terminates when either the number of iterations or the convergence criteria is met, as specified in TODEF,ACCUR.

## Menu Paths

Main Menu>Topological Opt>Run
*TOPER, ParR, Par1, Oper, Par2, FACT1, FACT2, CON1

## Operates on table parameters.

> APDL: Array Parameters
> MP ME ST PR PRN <><> FL EM EH DY PP <> EME MFS

## Argument Descriptions

## ParR

Name of the resulting table parameter. The command will create a table array parameter with this name. Any existing parameter with this name will be overwritten.

## Par1

Name of the first table parameter.
Oper
The operation to be performed: ADD. The operation is: $\operatorname{ParR}(\mathrm{i}, \mathrm{j}, \mathrm{k})=\mathrm{FACT} 1 * \operatorname{Par} 1(\mathrm{i}, \mathrm{j}, \mathrm{k})+\mathrm{FACT} 2 * \operatorname{Par} 2(\mathrm{i}, \mathrm{j}, \mathrm{k})$ +CON1

## Par2

Name of the second table parameter.

## FACT1

The first table parameter multiplying constant. Defaults to 1 .

## FACT2

The second table parameter multiplying constant. Defaults to 1 .
CON1
The constant increment for offset. Defaults to 0 .

## Notes

*TOPER operates on table parameters according to: $\operatorname{ParR}(\mathrm{i}, \mathrm{j}, \mathrm{k})=\mathrm{FACT} 1 * \operatorname{Par} 1(\mathrm{i}, \mathrm{j}, \mathrm{k})+\mathrm{FACT} 2 * \operatorname{Par2}(\mathrm{i}, \mathrm{j}, \mathrm{k})+\mathrm{CON} 1$
Par1 and Par2 must have the same dimensions and the same variable names corresponding to those dimensions. Par1 and Par2 must also have identical index values for rows, columns, etc.

If you want a local coordinate system for the resulting array, you must dimension it as such using the *DIM command before issuing *TOPER.

This command is valid in any processor.

## Menu Paths

Utility Menu>Parameters>Array Operations>Table Operations

## TOPLOT, AVRG

Plot current topological density distribution.
OPTIMIZATION: Display
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

## AVRG

Sets TOPLOT to show smoothed nodal solution or non-smoothed element solution.
0
Plot smoothed nodal solution. Default.
1
Plot non-smoothed element solution.

## Notes

Invokes a macro to postprocess the current element pseudo densities for topological optimization. TOPLOT,0 uses PLNSOL,TOPO, and TOPLOT, 1 uses PLESOL,TOPO to plot the current density distribution predicted by the topological optimization.

## Menu Paths

Main Menu>Topological Opt>Plot Dens Unavg Main Menu>Topological Opt>Plot Densities

## TOPRINT, Type, Refname

Print iteration solution history of topological optimization.
OPTIMIZATION: Display
MP ME ST PR PRN $<><><><><><>$ PP $<>$ EME MFS
Type
OBJ
Print objective history versus iteration number.
CON
Print constraint history versus iteration number.

## Refname

Used if multiple constraints were defined. Defaults to the first constraint name.

## Notes

Prints one iteration of the topological optimization solution, using either objective or constraint history.

## Menu Paths

Main Menu>Topological Opt>Print History

## TORQ2D

Calculates torque on a body in a magnetic field.
POST1:Magnetics Calculations
MP <> <> <> <> <> <> <> EM <> <> PP <> EME <>

## Notes

TORQ2D invokes an ANSYS macro which calculates mechanical torque on a body in a magnetic field. The body must be completely surrounded by air (symmetry permitted), and a closed path [PATH] passing through the air elements surrounding the body must be available. A counterclockwise ordering of nodes on the PPATH command will give the correct sign on the torque result. The macro is valid for 2-D planar analysis.

The calculated torque is stored in the parameter TORQUE. A node plot showing the path is produced in interactive mode. The torque is calculated using a Maxwell stress tensor approach. Path operations are used for the calculation, and all path items are cleared upon completion. See the TORQC2D command for torque calculation based on a circular path.

## Menu Paths

## Main Menu>General Postproc>Elec\&Mag Calc>Path Based>Torque

## TORQC2D, RAD, NUMN, LCSYS

## Calculates torque on a body in a magnetic field based on a circular path.

POST1:Magnetics Calculations
MP <> <> <> <> <> <> <> EM <> <> PP <> EME <>

## RAD

Radius of the circular path. The nodes for the path are created at this radius.

## NUMN

Number of nodes to be created for the circular path. The greater the number of nodes, the higher the accuracy of the torque evaluation. Defaults to 18 .

## LCSYS

(Optional) Local coordinate system number to be used for defining the circular arc of nodes and the path. Defaults to 99 . (If a local system numbered 99 already exists, it will be overwritten by this default.)

## Notes

TORQC2D invokes an ANSYS macro which calculates the mechanical torque on a body using a circular path. It is used for a circular or cylindrical body such as a rotor in an electric machine. The body must be centered about the global origin and must be surrounded by air elements. The air elements surrounding the path at radius RAD must be selected, and elements with a high-permeability material should be unselected prior to using the macro. The macro is valid for 2-D planar analyses only. For a harmonic analysis, the macro calculates the time-average torque. Radial symmetry models are allowed, i.e., the model need not be a full $360^{\circ}$ model.

The calculated torque is stored in the parameter TORQUE. If the model is not a full $360^{\circ}$ model, $\operatorname{TORQUE}$ should be multiplied by the appropriate factor (such as 4.0 for a $90^{\circ}$ sector) to obtain the total torque. A node plot showing the path is produced in interactive mode.

The torque is calculated via a circular path integral of the Maxwell stress tensor. The circular path and the nodes for the path are created by the macro at the specified radius RAD. Path operations are used for the calculation, and all path items are cleared upon completion. See the TORQ2D command for torque calculation based on an arbitrary, non-circular path.

## Menu Paths

## Main Menu>General Postproc>Elec\&Mag Calc>Path Based>Circular Torq

## TORQSUM, Cnam1, Cnam2, Cnam3, Cnam4, Cnam5, Cnam6, Cnam7, Cnam8, Cnam9

## Summarizes electromagnetic torque calculations on element components.

> POST1:Magnetics Calculations
> MP <> <> <> <> <> <> <> EM <> <> PP <> EME <>

## Cnam1, Cnam2, Cnam3, ... , Cnam9

Names of existing element components for which Maxwell or virtual work boundary conditions were applied in the preprocessor. Must be enclosed in single quotes (e.g., 'CNAM1') when the command typed in the command input box.

## Notes

TORQSUM invokes an ANSYS macro that summarizes the Maxwell and virtual work torque values. The element components must have had appropriate Maxwell or virtual work boundary conditions established in the preprocessor prior to solution in order to retrieve torques (see the FMAGBC command). The torque values are stored on a per-element basis for the adjacent air layer elements surrounding the components and are retrieved and summed by the macro. For a harmonic analysis, the calculated torque represents a time-average value.

TORQSUM is valid only for 2-D planar analysis.

## Menu Paths

Main Menu>General Postproc>Elec\&Mag Calc>Component Based>Torque

## TORUS, RAD1, RAD2, RAD3, THETA1, THETA2

Creates a toroidal volume.
PREP 7: Primitives
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## RAD1, RAD2, RAD3

Three values that define the radii of the torus. You can specify the radii in any order. The smallest of the values is the inner minor radius, the intermediate value is the outer minor radius, and the largest value is the major radius. (There is one exception regarding the order of the radii values--if you want to create a solid torus, specify zero or blank for the inner minor radius, in which case the zero or blank must occupy either the RAD1 or RAD2 position.) At least two of the values that you specify must be positive values; they will be used to define the outer minor radius and the major radius. See the diagram in the Notes section for a view of a toroidal sector showing all radii.

## THETA1, THETA2

Starting and ending angles (either order) of the torus. Used for creating a toroidal sector. The sector begins at the algebraically smaller angle, extends in a positive angular direction, and ends at the larger angle. The starting angle defaults to $0^{\circ}$ and the ending angle defaults to $360^{\circ}$.

## Notes

Defines a toroidal volume centered about the working plane origin. A solid torus of $360^{\circ}$ will be defined with four areas, each area spanning $180^{\circ}$ around the major and minor circumference.

To create the toroidal sector shown below, the command TORUS,5,1,2,0,180 was issued. Since " 1 " was the smallest radii value specified, it defined the inner minor radius; since " 2 " was the intermediate radii value specified, it defined the outer minor radius; and since " 5 " was the largest radii value specified, it defined the major radius. The values " 0 " and " 180 " defined the starting and ending angles of the torus.


## Menu Paths

Main Menu $>$ Preprocessor $>$ Modeling $>$ Create $>$ Volumes $>$ Torus

## TOSTAT

## Displays topological optimization status and results information.

OPTIMIZATION: Display
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

## Notes

Displays information for defined functions from TOVAR, TODEF, and TOTYPE, and results information such as final volume, number of iterations, and convergence status.

## Menu Paths

Main Menu>Topological Opt>Set Up>Advanced Opt>Status
Main Menu>Topological Opt>Status

TOTAL, NTOT, NRMDF

## Specifies automatic MDOF generation.

SOLUTION: Master DOF
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

## NTOT

Total number of master degrees of freedom to be used in the analysis, including specified (NS, see below) master degrees of freedom. NTOT must be greater than NS if any automatic generation is to be done.

## NRMDF

Rotational masters key:
0
Include all degrees of freedom in automatic master selection.
1
Exclude rotational degrees of freedom (and VOLT degrees of freedom in a piezoelectric analysis) from automatic selection.

## Command Default

Do not use any automatically generated MDOF.

## Notes

Specifies automatic master degree of freedom (MDOF) generation. The limit on the number of MDOF is equal to the maximum in-memory wavefront size (see the Basic Analysis Guide). If NS is defined as the number of master degrees of freedom specified with the M or MGEN command, NTOT-NS additional master
degrees of freedom will be automatically generated during the solution phase if TOTAL is used. NS may be zero, i.e., all master degrees or freedom can be automatically generated. After the solution phase, generated masters become specified masters ( $\mathrm{NS}=N T O T$ ) so that they may be listed, displayed, modified, etc. The TOTAL command is ignored in subsequent solutions unless masters are deleted, such that NS $<N T O T$. If used in SOLUTION, this command is valid only within the first load step.

During the matrix triangulation (wavefront) operation, the first NTOT degrees of freedom are temporarily identified as masters and then are replaced as degrees of freedom with lower K/M ratios are found. Degrees of freedom matching the user specified set (if any) are permanently identified. The wavefront builds to NTOT and will have a minimum (and final) value of NTOT. The final set of automatic masters identified will be those corresponding to the lowest modes of the structure.

Constrained degrees of freedom are excluded from the automatic master selection. Constraints may be defined to prevent undesirable modes from being present (thus preventing the corresponding MDOF from being selected). For example, if symmetry constraints are imposed, degrees of freedom producing only symmetric modes will be selected. In-plane rotational degrees of freedom for shell elements lying in a global plane are automatically excluded. All rotational degrees of freedom can be excluded during the automatic selection if desired.

If automatic master selection is used in the reduced linear transient dynamic (ANTYPE,TRANS) analysis or the reduced harmonic response (ANTYPE,HARMIC) analysis, be sure to force the selection [M] of any degrees of freedom having nonzero displacement or force inputs. If automatic master selection is used in the superelement generation pass (ANTYPE,SUBSTR), be sure to force the selection of connection points to nonsuperelements.

Automatically selected masters are shown in the solution listing (and not in preprocessing listings) as follows:

- in the reduced eigenvector solution for modal (ANTYPE,MODAL).
- in the reduced displacement solution for harmonic response (ANTYPE,HARMIC).
- in the reduced displacement solution for linear transient dynamic (ANTYPE,TRANS).
- in the matrix or load vector printout for substructures (ANTYPE,SUBSTR).

In the substructure generation pass (ANTYPE,SUBSTR), a mass matrix must be available if the TOTAL option is to be used.

The TOTAL command is used in conjunction with a specific solver developed in an earlier version of the ANSYS program. ANSYS automatically chooses this solver when the TOTAL command is executed. Other solvers are not available with the TOTAL command.

We recommend that you define as many MDOF as you can based on your knowledge of the dynamic characteristics of the structure and let the program choose a few additional masters with the TOTAL command.

This command is also valid in PREP7.

## Menu Paths

> Main Menu>Preprocessor>Loads>Master DOFs $>$ Program Selected Main Menu>Solution>Master DOFs>Program Selected

## TOTYPE, Type

## Specifies solution method for topological optimization.

OPTIMIZATION: Specifications
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

## Type

Choose the solution method to use:
OC
Use Optimality Criteria (OC) approach. (Default)
SCP
Use Sequential Convex Programming (SCP) approach.

## Notes

The OC approach is applicable to problems with only volume as the constraint (or "volume as the only constraint"). The SCP approach is applicable to all valid combinations of objectives and constraints. See TOVAR for a description of valid combinations.

## Menu Paths

Main Menu>Topological Opt>Run

## TOVAR, Refname, Type, LOWER, UPPER, Boundtype

## Specifies the objective and constraints for the topological optimization problem.

> OPTIMIZATION: Specifications
> MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

## Refname

Reference name (8 character string), previously defined with TOCOMP and TOFREQ, or VOLUME (reserved name; default).

## Type

Valid types for this command are:
OBJ
Specifies the objective for the topological optimization problem. The Refname(s) specified must already be defined (TOCOMP,Refname, or TOFREQ) before defining your constraint(s). LOWER, UPPER, and Boundtype are not used if the specified Refname is the objective. To specify total volume as the objective function, use VOLUME as the Refname. For single or multiple compliance, see TOCOMP. For frequency formulations (single, weighted mean, reciprocal mean, or Euclidean normal), see TOFREQ.

CON
Specifies the constraint for the topological optimization problem. Requires a previously defined objective function (TOVAR,Refname,OBJ). LOWER, UPPER, and Boundtype must be specified as listed below.

## DEL

Deletes the previously defined topological optimization objective or constraint named in Refname. LOWER, UPPER, and Boundt ype are not used.

## LOWER

Lower bound for the constraint ( Type $=\mathrm{CON}$ ).
UPPER
Upper bound for the constraint ( Type $=$ CON). Default is no defined upper bound.

## Boundtype

For Type $=$ CON, specifies whether the specified bounds are actual values, or indicate percentages.

## PERCENT

Indicates that the values specified in LOWER and UPPER should be treated as percentages of the original value. The original value is $100 \%$; only values less than 100 are valid. Depending on the type of constraint, this value indicates a decrease or increase of the initial values. For example, specify 50 to reduce the volume by $50 \%$, or specify 30 to increase the compliance by $30 \%$.

## ACTUAL

Indicates that the values specified in LOWER and UPPER should be treated as actual values.

## Command Default

TOVAR,VOLUME,OBJ

## Notes

You must set the objective first, then set the constraint(s).
If a single or multiple compliance function (see TOCOMP) is specified as objective function, only the VOLUME function is allowed as a constraint.

If a single, weighted mean, reciprocal mean, or euclidean norm frequency (see TOFREQ) objective is selected, only the VOLUME function is allowed as a constraint.

If the VOLUME function is selected as the objective function, then only a single or multiple compliance constraint (see TOCOMP) is allowed as constraint function. In this case, a multiple single compliance constraint definition is also possible. LOWER is not applicable if Type $=$ OBJ or DEL, and is not used if Boundtype $=$ PERCENT.

UPPER is not applicable if Type $=$ OBJ or DEL. If Boundtype $=$ PERCENT, and RefName $=$ VOLUME, UPPER specifies the percentage of volume reduction. If Boundtype $=$ PERCENT, and RefName is a single or multiple compliance function, UPPER specifies the percentage of compliance increase.

If Boundtype $=$ PERCENT, the valid range for UPPER is [5\%,95\%].

## Menu Paths

Main Menu>Topological Opt>Set Up>Advanced Opt>Topo Objective<br>Main Menu>Topological Opt>Set Up>Advanced Opt>TopoConstraint>By Percentage<br>Main Menu>Topological Opt>Set Up>Advanced Opt>TopoConstraint>By Value<br>Main Menu>Topological Opt>Set Up>Advanced Opt>TopoConstraint>Delete<br>Main Menu>Topological Opt>Set Up>Basic Opt

TRANS, Fname, Ext, --
Reformats File. GRPH for improved performance with plotters.

DISPLAY:Set Up<br>MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Fname

File name and directory path ( 248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

The file name defaults to TRAN33.
Ext
Filename extension (8 character maximum).
--
Unused field.

## Notes

Reformats current Fname. GRPH data (based on color) for improved performance with pen plotters.

## Menu Paths

It is part of the DISPLAY command.

## TRANSFER, KCNTO, INC, NODE1, NODE2, NINC

## Transfers a pattern of nodes to another coordinate system.

PREP 7: Nodes
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## KCNTO

Reference number of coordinate system where the pattern is to be transferred. Transfer occurs from the active coordinate system.

## INC

Increment all nodes in the given pattern by INC to form the transferred node pattern.

## NODE1, NODE2, NINC

Transfer nodes from pattern beginning with NODE1 to NODE2 (defaults to NODE1) in steps of NINC (defaults to 1). If NODE1 = ALL, NODE2 and NINC are ignored and the pattern is all selected nodes [NSEL]. If NODE1 = P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component may be substituted for NODE1 (NODE2 and NINC are ignored).

## Notes

Transfers a pattern of nodes from one coordinate system to another. Coordinate systems may be translated and rotated relative to each other. Initial pattern may be generated in any coordinate system. Coordinate values are interpreted in the active coordinate system and are transferred directly.

A model generated in one coordinate system may be transferred to another coordinate system. The user may define several coordinate systems (translated and rotated from each other), generate a model in one coordinate system, and then repeatedly transfer the model to other coordinate systems. The model may be generated in any type of coordinate system (Cartesian, cylindrical, etc.) and transferred to any other type of coordinate system. Coordinate values ( $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$, or $\mathrm{R}, \theta, \mathrm{Z}$, or etc.) of the model being transferred are interpreted in the active coordinate system type, regardless of how they were generated. Values are transferred directly and are interpreted according to the type of coordinate system being transferred to. For example, transferring from a Cartesian coordinate system to a cylindrical coordinate system (not recommended) would cause $X$ $=2.0$ and $Y=3.0$ values to be directly interpreted as $R=2.0$ and $\theta=3.0$ values, respectively.

## Menu Paths

Main Menu>Preprocessor>Modeling>Move / Modify>Transfer Coord>Nodes
*TREAD, Par, Fname, Ext, --, NSKIP

## Reads data from an external file into a table array parameter.

APDL:Parameters<br>MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Argument Descriptions

## Par

Table array parameter name as defined by the *DIM command.

## Fname

File name and directory path ( 248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

File name has no default.
Ext
Filename extension (8 character maximum).
Extension has no default.

Unused field.
NSKIP
Number of comment lines at the beginning of the file being read that will be skipped during the reading. Default $=0$.

## Notes

Use this command to read in a table of data from an external file into an ANSYS table array parameter. The external file may be created using a text editor or by an external application or program. The external file must be in tab-delimited, blank-delimited, or comma-delimited format to be used by *TREAD. The ANSYS TABLE type array parameter must be defined before you can read in an external file. See *DIM for more information.

This command is not applicable to 4- or 5-D tables.

## Menu Paths

Utility Menu>Parameters>Array Parameters>Read from File

## TREF, TREF

Defines the reference temperature for the thermal strain calculations.
SOLUTION: Load Step Options
MP ME ST PR PRN DS DSS FL EM EH DY PP <> EME MFS

## TREF

Reference temperature for thermal expansion.

## Note

If the uniform temperature (TUNIF) is not specified, it is also set to this value.

## Command Default

Reference temperature is 0.0 degrees.

## Notes

Defines the reference temperature for the thermal strain calculations in structural analyses and explicit dynamic analyses. Thermal strains are given by $\alpha^{*}$ (T-TREF), where $\alpha$ is the coefficient of thermal expansion (for more on this see the Theory Reference for the Mechanical APDL and Mechanical Applications). Input the strain via ALPX, ALPY, ALPZ (the secant or mean coefficient value), or CTEX, CTEY, CTEZ (the instantaneous coefficient value), or the thermal strain value (THSX, THSY, THSZ). T is the element temperature. If $\alpha$ is tem-perature-dependent, TREF should be in the range of temperatures you define using the MPTEMP command.

Reference temperatures may also be input per material by specifying a value on the MP material property command:

MP,REFT,MAT,CO.
Only a constant (non-temperature-dependent) value is valid. The value input on the TREF command applies to all materials not having a specified material property definition.

To convert temperature-dependent secant coefficients of thermal expansion (SCTE) data (properties ALPX, ALPY, ALPZ) from the definition temperature to the reference temperature defined via a TREF (or MP,REFT) command, issue the MPAMOD command.

This command is also valid in PREP7.

## Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Settings>Reference Temp
Main Menu>Preprocessor>Loads>Load Step Opts>Other>Reference Temp

Main Menu>Preprocessor>LS-DYNA Options>Loading Options>Reference Temp<br>Main Menu>Solution>Define Loads>Settings>Reference Temp<br>Main Menu>Solution>Load Step Opts>Other>Reference Temp Main Menu>Solution>Loading Options>Reference Temp

## /TRIAD, Lab

Shows the global XYZ coordinate triad on displays.
GRAPHICS:Labeling
MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS

## Lab

Display triad as follows:
ORIG
Display triad at global origin (default).

## OFF

Turn off triad display.
LBOT
Display triad in lower left screen corner.
RBOT
Display triad in lower right screen corner.
LTOP
Display triad in upper left screen corner.
RTOP
Display triad in upper right screen corner.

## Notes

For efficiency, ANSYS 3-D graphics logic maintains a single data structure (segment), which includes the triad as a 3-D data object. If a 3-D device is involved (/SHOW,3D), and the ANSYS graphics are not being displayed as multi-plots, then the triad location is determined by the view settings for Window \#1. A request for triad display anywhere except for the origin could yield an improper display in windows 2 through 5 . The program displays the same segment in all windows. The view settings of each window constitute the only difference in the display in the active windows.

This command is valid in any processor.

## Menu Paths

## Utility Menu>PlotCtrls>Window Controls>Reset Window Options <br> Utility Menu>PlotCtrls>Window Controls>Window Options

/TRLCY, Lab, TLEVEL,N1,N2,NINC
Specifies the level of translucency.

> GRAP HICS: Style
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Lab

Apply translucency level to the items specified by the following labels:

## ELEM

Elements. Use N1, N2, NINC fields for element numbers.

## AREA

Solid model areas. Use N1, N2, NINC fields for area numbers.

## VOLU

Solid model volumes. Use N1, N2, NINC fields for volume numbers.

## ISURF

Isosurfaces (surfaces of constant stress, etc., value). Translucency varies with result value, to a maximum of the specified translucency level.

## CM

Component group. Use N1 for component name, ignore N2 and NINC.

## CURVE

Filled areas under curves of line graphs. Use N1, N2, NINC fields for curve numbers.

## ZCAP

If /TYPE,WN,ZCAP is the current display type, then /TRLCY,ZCAP,TLEVEL will display the model in window $W N$ with the portion of the model in front of the section plane displayed at the translucency level TLEVEL.

## ON, OFF

Sets the specified translucency display on or off. All other fields are ignored.

## thevel

Translucency level: 0.0 (opaque) to 1.0 (transparent).

## N1, N2, NINC

Used only with labels as noted above. Apply translucency level to Lab items numbered N1 to N2 (defaults to $N 1$ ) in steps of NINC (defaults to 1 ). If $N 1$ is blank or ALL, apply specified translucency level to entire selected range. If $L a b$ is CM, use component name for $N 1$ and ignore $N 2$ and NINC. A value of $N 1=\mathrm{P}$ allows you to graphically pick elements, areas, and volumes. You can then assign translucency levels to the entities via the picker. The Lab and TLEVEL fields are ignored when translucency is applied by picking.

## Command Default

Zero translucency (opaque) level.

## Notes

Specifies the level of translucency for various items. Issue /TRLCY,DEFA to reset the default (0) translucency levels. This command is valid only on selected 2-D and 3-D graphics devices; see in the Basic Analysis Guide for more information on applying translucency.

For 2-D devices, ANSYS displays only the visible faces of the items being displayed. The information behind the facing planes is not displayed. Issuing the /SHRINK command will force the hardware to display information behind the translucent items.

This command is valid in any processor.

## Menu Paths

## Utility Menu>PlotCtrIs>Style>Translucency

## TRNOPT, Method, MAXMODE, Dmpkey, MINMODE, MCout, TINTOPT

## Specifies transient analysis options.

SOLUTION: Dynamic Options
MP ME ST PR PRN <> <> <> EM <> <> PP <> EME MFS
Product Restrictions

## Method

Solution method for the transient analysis:

## FULL

Full method (default).
REDUC
Reduced method.
MSUP
Mode superposition method.
VT
Variational Technology method.

## MAXMODE

Largest mode number to be used to calculate the response (for Method = MSUP). Defaults to the highest mode calculated in the preceding modal analysis.

## Dmpkey

Damping option (for Method = REDUC):

## DAMP

Include the effects of damping if present (default).

## NODAMP

Ignore the effects of damping, even if present.

## MINMODE

Smallest mode number to be used (for Method = MSUP). Defaults to 1 .

## MCout

Modal coordinates output key (valid only for the mode superposition method MSUP):
NO
No output of modal coordinates (default).
YES
Output modal coordinates to the text file jobname.MCF.

## TINTOPT

Time integration method for the transient analysis:

## NMK or 0

Newmark algorithm (default).

## HHT or 1

HHT algorithm (valid only for the full transient method).

## Notes

Specifies transient analysis (ANTYPE,TRANS) options. If used in SOLUTION, this command is valid only within the first load step. Use the TINTP command to set transient integration parameters.

The VT option is valid for either thermal or structural analyses, where it attempts to reduce the total number of iterations. Both linear and nonlinear structural transient analyses are supported. The VT option is a FULL transient solution.

To include residual vectors in your mode-superposition transient analysis (Method=MSUP), specify RESVEC,ON.
This command is also valid in PREP7.

## Product Restrictions

The VT option is only available with a HPC license.
Additional product restrictions for the TRNOPT command are shown in the table below.

| Command <br> Option <br> Method | Available Products |
| :--- | :--- |
| FULL | MP ME ST $<><><><><>$ EM $<><>$ PP $<>$ EME MFS |
| REDUC | MP ME ST $<><><><><><><><>$ PP $<>$ EME MFS |
| MSUP | MP ME ST PR PRN $<><><>$ EM $<><>$ PP $<>$ EME MFS |

## Menu Paths

Main Menu>Preprocessor>Loads>Analysis Type>Analysis Options<br>Main Menu>Preprocessor>Loads>Analysis Type>New Analysis<br>Main Menu>Preprocessor>Loads>Analysis Type>Sol'n Controls>Transient<br>Main Menu $>$ Solution $>$ Analysis Type $>$ Analysis Options<br>Main Menu>Solution>Analysis Type>New Analysis<br>Main Menu>Solution>Analysis Type>Sol'n Controls>Transient

TRPDEL, NTRP1, NTRP2, TRPINC

## Deletes particle flow or charged particle trace points.

> POST1:Trace Points
> MP $<><><><><><>$ FL EM $<><>$ PP $<>$ EME $<>$

## NTRP1, NTRP2, TRPINC

Delete points from $N T R P 1$ to $N T R P 2$ (defaults to $N T R P 1$ ) in steps of $T R P I N C$ (defaults to 1). If NTRP1 $=$ ALL, NTRP2 and TRPINC are ignored and all trace points are deleted. If $N T R P 1=P$ graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI).

## Notes

Deletes particle flow or charged particle trace points defined with the TRPOIN command.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

## Main Menu>General Postproc>Plot Results>Dele Trace Pt

## TRPLIS, NTRP1, NTRP2, TRPINC, Opt

## Lists the particle flow or charged particle trace points.

> POST1:Trace Points
> MP $<><><><><><>$ FL EM $<><>$ PP $<>$ EME $<>$

## NTRP1, NTRP2, TRPINC

List points from NTRP1 to NTRP2 (defaults to NTRP1) in steps of TRPINC (defaults to 1). If NTRP1 = ALL, NTRP2 and TRPINC are ignored and all trace points are listed. If NTRP1 = P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI).

## Opt

Opt $=$ LOC lists the trace point number location $(X, Y, Z)$. Default.
Opt $=$ PART lists the trace point number particle settings (velocity, charge, mass).

## Notes

Lists the particle flow or charged particle trace points in the active display coordinate system [DSYS]. Trace points are defined with the TRPOIN command.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu $>$ General Postproc $>$ Plot Results $>$ List Trace Pt

TRPOIN, $X, Y, Z, V X, V Y, V Z, C H R G, M A S S$
Defines a point through which a particle flow or charged particle trace will travel.
POST1:Trace Points
MP <> <> <> <> <> <> FL EM <> <> PP <> EME <>

## $X, Y, Z$

Coordinate location of the trace point (in the active coordinate system). If $X=\mathrm{P}$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI).

## VX, VY, VZ

Particle velocities in the $X, Y$ and $Z$ directions (in the active coordinate system).

## CHRG

Particle charge.

## MASS

Particle mass.

## Notes

Defines a point through which a particle flow or charged particle trace [PLTRAC] will travel. Multiple points ( 50 maximum) may be defined which will result in multiple flow traces. Use TRPLIS to list the currently defined trace points and TRPDEL to delete trace points.

The VX, VY, VZ, CHRG, and MASS arguments only apply to charged particles.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu>General Postproc>Plot Results>Defi Trace Pt

TRTIME, TIME, SPACING, OFFSET, SIZE, LENGTH

## Defines the options used for the PLTRAC (particle flow or charged particle trace) command.

POST1:Animation<br>MP ME ST PR PRN <> <> FL EM <> <> PP <> EME MFS

TIME
Total Trace Time (seconds) (defaults to 0 , which is the full flow trace).

## SPACING

Particle spacing in seconds (defaults to 0 ).

## OFFSET

Particle offset in seconds (defaults to 0). It is used internally in the ANFLOW macro to produce an animation of particle flow in a flowing fluid or charged particle motion in an electric or magnetic field.

## SIZE

Particle size (defaults to 0 , which is a line).

## LENGTH

Particle length fraction (defaults to .1).

## Command Default

Full particle flow or charged particle trace.

## Notes

The TRTIME command varies the type of PLTRAC display produced. Particle flow or charged particle traces follow a particle's path in the forward and backward direction of travel. The DOF selected determines the color of the particle trace. SPACING defines the particle spacing in seconds from adjacent particles in the stream line. OFFSET defines the offset in seconds from the spacing set by the SPACING argument.

LENGTH defines the particle length fraction. The default value (.1), means the particle occupies $10 \%$ of the flow region, and the other $90 \%$ is a color-coded line.

SIZE sets the radius of the particle. Use SPACING, OFFSET and LENGTH only when SIZE is nonzero (i.e., the particle is bigger than the line).

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

## Main Menu>General Postproc>Plot Results>Time Interval

## TSHAP, Shape

## Defines simple 2-D and 3-D geometric surfaces for target segment elements.

PREP 7: Elements
MP ME ST PR PRN <> <> <> EM <> <> PP <> EME MFS

## Shape

Specifies the geometric shapes for target segment elements TARGE169 and TARGE170.
LINE
Straight line (2-D, 3-D) (Default for 2-D)
PARA
Parabola (2-D, 3-D)
ARC
Clockwise arc (2-D)
CARC
Counterclockwise arc (2-D)
CIRC
Complete circle (2-D)
TRIA
Three-node triangle (3-D) (Default for 3-D)
TRI6
Six-node triangle (3-D)
QUAD
Four-node quadrilateral (3-D)

## QUA8

Eight-node quadrilateral (3-D)

## CYLI

Cylinder (3-D)
CONE
Cone (3-D)
SPHE
Sphere (3-D)
PILO
Pilot node (2-D, 3-D)
POINT
Point (rigid surface node) (2-D, 3-D)

## Notes

Use this command to specify the target segment shapes for the rigid target surface associated with surface-to-surface contact (TARGE169, CONTA171, CONTA172 (2-D) and TARGE170, CONTA173, CONTA174 (3-D)), 3D beam-to-beam contact (TARGE170 and CONTA176), and 3-D line-to-surface contact (TARGE170 and CONTA177). Once you issue TSHAP, all subsequent target elements generated via the direct element generation technique will have the same shape, until you issue TSHAP again with a different Shape value.

## Menu Paths

## Main Menu>Preprocessor>Modeling>Create>Elements>Elem Attributes

/TSPEC, TCOLOR, TSIZE, TXTHIC, PANGLE, IANGLE
Creates annotation text attributes (GUI).
GRAPHICS: Annotation
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## TCOLOR

Text color ( $0 \leq$ TCOLOR $\leq 15$ ):
0
Black.
1
Red-Magenta.
2
Magenta.
3
Blue-Magenta.
4
Blue.
5
Cyan-Blue.

## 6

Cyan.
7
Green-Cyan.
8
Green.
9
Yellow-Green.
10
Yellow.
11
Orange.
12
Red.
13
Dark Gray.
14
Light Gray.
15
White.

## TSIZE

Text size factor.

## TXTHIC

Text thickness key:
1
normal.
2
twice as thick.
3
three times as thick.
4
four times as thick.

## PANGLE

Text path angle ( 0.0 < angle $<360.0$ ).

## IANGLE

Text italic angle (0.0 < angle < 45.0).

## Notes

Defines annotation text attributes to control certain characteristics of the text created via the /TLABEL command. This is a command generated by the Graphical User Interface (GUI) and will appear in the log file (Jobname. LOG) if annotation is used. This command is not intended to be typed in directly in an ANSYS session (although it can be included in an input file for batch input or for use with the /INPUT command).

This command is valid in any processor.

## Menu Paths

Utility Menu>PlotCtrls>Annotation>Create Annotation

## TSRES, Array

## Defines an array of key times at which the time-stepping strategy changes.

SOLUTION: Load Step Options
MP ME ST PR PRN <> <> FL EM <> DY PP <> EME MFS


#### Abstract

Array Identifies an $N \times 1 \times 1$ array parameter containing the key times at which the heat transfer time-stepping strategy changes (the time step is reset to the initial time step based on DELTIM or NSUBST settings). The array name must be enclosed by \% signs (e.g., \%array\%). See *DIM for more information on array parameters.


## Notes

Time values in the array parameter must be in ascending order and must not exceed the time at the end of the load step as defined on the TIME command. The time increment between time points in the array list must be larger than the initial time step defined on the DELTIM or NSUBST command. Time values must also fall between the beginning and ending time values of the load step. For multiple load step problems, you must either change the parameter values to fall between the beginning and ending time values of the load step or reissue the command with a new array parameter. To clear the array parameter specification, issue TSRES,ERASE. Results can be output at the requested time points if the array or time values in the array are also specified in the OUTRES command using $F R E Q=\%$ array $\%$. Use this command to reset the timestepping strategy within a load step. You may need to reset the time-stepping strategy when using tabular time-varying boundary conditions.

See Steady-State Thermal Analysis of the Thermal Analysis Guide for more information on applying boundary conditions via tabular input. See Transient Thermal Analysis of the Thermal Analysis Guide for more information on defining the key time array.

## Menu Paths

Main Menu>Preprocessor>Loads>Load Step Opts $>$ Time/Frequenc>Time - Time Step<br>Main Menu>Preprocessor>Loads>Load Step Opts>Time/Frequenc>Time and Substps<br>Main Menu>Solution>Load Step Opts>Time/Frequenc>Time - Time Step Main Menu>Solution>Load Step Opts>Time/Frequenc>Time and Substps

TUNIF, TEMP
Assigns a uniform temperature to all nodes.

> SOLUTION:FE Body Loads
> MP ME ST PR PRN DS DSS FL EM EH DY PP <> EME MFS

TEMP
Uniform temperature assigned to the nodes. If a TEMP value is not specified, the uniform temperature is set to zero.

## Command Default

Set the uniform temperature to the reference temperature (defined via the TREF command).

## Notes

TUNIF is a convenient form of the more general BFUNIF command.
In a transient or nonlinear thermal analysis, the uniform temperature is used during the first iteration of a solution as follows:

- as the starting nodal temperature (except where temperatures are explicitly specified [D, DK]),
- to evaluate temperature-dependent material properties.

In a structural analysis or an explicit dynamic analysis, the uniform temperature is used as the default temperature for thermal strain calculations and material property evaluation (except where body load temperatures are specified (BF, BFE, BFK, LDREAD). In other scalar field analyses, the uniform temperature is used for material property evaluation.

Because TUNIF (or BFUNIF,TEMP) is step-applied in the first iteration, issue a BF,ALL,TEMP,Value command to ramp on a uniform temperature load.

When the TUNIF command is used in an explicit dynamic analysis, you cannot apply temperature loading via the EDLOAD,,TEMP command. Furthermore, temperature loading defined by TUNIF cannot be listed or deleted by the EDLOAD command.

The command default sets the uniform temperature to the reference temperature defined via the TREF command only (and not the MP,REFT command).

If using the command default to set the uniform temperature (to the reference temperature set via TREF), you can convert temperature-dependent secant coefficients of thermal expansion (SCTEs) from the definition temperature to the uniform temperature. To do so, issue the MPAMOD command.

This command is also valid in PREP7.

## Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Boundary>Temperature>Uniform Temp<br>Main Menu>Preprocessor>Loads>Define Loads>Apply>Magnetic>Boundary>Temperature>Uniform Temp<br>Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Temperature>Uniform Temp

Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Temperature>Uniform Temp Main Menu>Preprocessor>Loads>Define Loads>Settings>Uniform Temp Main Menu>Preprocessor>LS-DYNA Options>Loading Options>Uniform Temp Main Menu>Solution>Define Loads>Apply>Electric>Boundary>Temperature>Uniform Temp Main Menu>Solution>Define Loads>Apply>Magnetic>Boundary>Temperature>Uniform Temp Main Menu>Solution>Define Loads>Apply>Structural>Temperature>Uniform Temp Main Menu>Solution>Define Loads>Apply>Thermal>Temperature>Uniform Temp Main Menu>Solution>Define Loads>Settings $>$ Uniform Temp Main Menu>Solution>Loading Options>Uniform Temp

## TVAR, KEY

Changes time to the cumulative iteration number.
POST26:Controls
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## KEY

Time key:
0
Time is used for the variable TIME.
1
NCUMIT is used for the variable TIME.

## Command Default

TIME is the variable TIME.

## Notes

Changes the meaning of the time variable to the cumulative iteration number (NCUMIT) variable. Data can be read from the file, printed, and displayed as a function of NCUMIT rather than time. All POST26 descriptions applying to TIME then apply to NCUMIT.

## Menu Paths

Main Menu>TimeHist Postpro>Settings>Data
/TXTRE, Lab, NUM, N1, N2, NINC
Controls application of texture to selected items.

> GRAPHICS: Style
> MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS

## Lab

You can apply texture according to the following labels:

## ELEM

Apply texture to elements N1 through N2 in steps of NINC.

## AREA

Apply texture to areas $N 1$ through $N 2$ in steps of NINC.

## VOLU

Apply texture to volumes N1 through N2 in steps of NINC.
CM
Apply texture to the component named in N1.N2 and NINC are ignored.

## ON, OFF

Sets the specified texture display on or off. All other fields are ignored.
File
If Lab = File, the command format is /TXTRE, File, Key_Index, Fname, Fext, --, Format (This variant of the command is applicable to 2-D drivers).

## Key_Index

The texture index associated with the file. If the number fifty-one (51) is used, the imported bitmap will be used as the window's logo.

## Fname

File name and directory path (248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

Fext
Filename extension (8 character maximum).
--
Unused field.
Format
The file format. If Format $=0$, the file is a pixmap (UNIX) or Bitmap (PC). The file cannot contain a compressed image, and the PC file must be 8 or 24 bit BI_RGB format. If Format $=1$ or JPEG, then the file is in JPEG (Joint Photographic Experts Group) format. If Format $=2$ or PNG, then the file is in PNG (Portable Network Graphics) format.

## NUM

Select the texture index number from the following list:
0
No Texturing
1
Aluminum
2
Aluminum, Brushed
3
Steel With Bumps
4
Steel, Embossed
5
Iron
6
Steel, Pattern

## 7

Steel, Riveted
8
Steel, Scratched
9
Tin
10
Metal
11
Steel, Etched
12
Metal, Hot
13
Iron, Grainy
14
Metal, Rusty
15
Brick
16
Block
17
Wood
18
Wood, Light
19
Wood, Walnut
20
Plastic, Hard Blue
21
Plastic, Light Blue
22
Plastic, Hard Red
31
Gold
32
Brass
33
Silver
34
Plastic, Black
35
Plastic, Ivory

## 36

Plastic, Blue
37
Plastic, Red
38
Plastic, Yellow
39
Plastic, Green
40
Plastic, Brown

## N1, N2, NINC

Apply texture to Lab items numbered $N 1$ through $N 2$ in steps of NINC (defaults to 1 ). If $L a b=C M$, then N 1 is used to for the component name and $N 2$ and NINC are ignored. If Lab $=$ ELEM, AREA, or VOLU and $N 1=$ blank or ALL, then the specified texture will be applied to all entities of type Lab. If $N 1$ $=P$, then graphical picking is enabled.

## Command Default

No texture (/TXXTRE,DEFA)

## Notes

This command is available for 3-D Open GL devices. 2-D devices are supported only for the Lab = File variation of the command, allowing imported bitmaps to be used for texturing and annotation. Textures can affect the speed of many of your display operations. You can increase the speed by temporarily turning the textures off (Utility Menu> PlotCtrls> Style> Texturing(3D)> Display Texturing). This menu selection toggles your textures on and off. When textures are toggled off, all of the texture information is retained and reapplied when texturing is toggled back on.

For some displays, the texture will appear distorted because of a technique used to enhance 3-D displays (/DV3D,TRIS,1). Disabling this function (/DV3D,TRIS,0) will improve the quality of some texture displays. Disabling the TRIS option of the /DV3D command will slow down 3-D displays significantly. Be sure to reapply the TRIS option after you obtain a satisfactory output.

Specifying /TXTRE,DEFA removes all texturing.

## Menu Paths

Utility Menu>PlotCtrls>Style>Texturing(3D)
/TYPE, wN, Type

## Defines the type of display.

GRAPHICS:Style
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## WN

Window number (or ALL) to which command applies (defaults to 1 ).

## Type

Display type. Defaults to ZBUF for raster mode displays or BASIC for vector mode displays:

## BASIC or 0

Basic display (no hidden or section operations).

## SECT or 1

Section display (plane view). Use the /CPLANE command to define the cutting plane.

## HIDC or 2

Centroid hidden display (based on item centroid sort).

## HIDD or 3

Face hidden display (based on face centroid sort).

## HIDP or 4

Precise hidden display (like HIDD but with more precise checking). Because all facets are sorted, this mode can be extremely slow, especially for large models.

## CAP or 5

Capped hidden display (same as combined SECT and HIDD with model in front of section plane removed).

## ZBUF or 6

Z-buffered display (like HIDD but using software Z-buffering).

## ZCAP or 7

Capped Z-buffered display (same as combined SECT and ZBUF with model in front of section plane removed).

## ZQSL or 8

QSLICE Z-buffered display (same as SECT but the edge lines of the remaining 3-D model are shown).

## HQSL or 9

QSLICE precise hidden display (like ZQSL but using precise hidden).

## Command Default

ZBUF for raster mode displays; BASIC for vector mode displays.

## Notes

Defines the type of display, such as section display or hidden-line display. Use the /DEVICE command to specify either raster or vector mode.

The SECT, CAP, ZCAP, ZQSL, and HQSL options produce section displays. The section or "cutting" plane is specified on the /CPLANE command as either normal to the viewing vector at the focus point (default), or as the working plane.

When you use PowerGraphics, the section display options (Section, Slice, and Capped) use different averaging techniques for the interior and exterior results. Because of the different averaging schemes, anomalies may appear at the transition areas. In many cases, the automatically computed MIN and MAX values will differ from the full range of interior values. You can lessen the effect of these anomalies by issuing AVRES,,FULL (Main Menu> General Post Proc> Options for Outp). This command sets your legend's automatic contour interval range according to the minimum and maximum results found throughout the entire model.

With PowerGraphics active (/GRAPHICS,POWER), the averaging scheme for surface data with interior element data included (AVRES,,FULL) and multiple facets per edge (/EFACET, 2 or /EFACET,4) will yield differing minimum and maximum contour values depending on the Z-Buffering options (/TYPE,,6 or /TYPE,,7). When the Section data is not included in the averaging schemes (/TYPE,,7), the resulting absolute value for the midside node is significantly smaller.

The HIDC, HIDD, HIDP, ZBUF, ZQSL, and HQSL options produce displays with "hidden" lines removed. Hidden lines are lines obscured from view by another element, area, etc. The choice of non-Z-buffered hidden-line procedure types is available only for raster mode [/DEVICE] displays. For vector mode displays, all non-Zbuffered "hidden-line" options use the same procedure (which is slightly different from the raster procedures). Both geometry and postprocessing displays may be of the hidden-line type. Interior stress contour lines within solid elements can also be removed as hidden lines, leaving only the stress contour lines and element outlines on the visible surfaces. Midside nodes of elements are ignored on postprocessing displays. Overlapping elements will not be displayed.

The ZBUF, ZCAP, and ZQSL options use a specific hidden-line technique called software Z-buffering. This technique allows a more accurate display of overlapping surfaces (common when using Boolean operations or /ESHAPE on element displays), and allows smooth shaded displays on all interactive graphics displays. Z-buffered displays can be performed faster than HIDP and CAP type displays for large models. See also the /LIGHT, /SHADE, and /GFILE commands for additional options when Z-buffering is used.

This command is valid in any processor.

## Menu Paths

## Utility Menu>PlotCtrls>Style>Hidden-Line Options

## TYPE, ITYPE

## Sets the element type attribute pointer.

> PREP 7: Meshing
> PREP 7: Elements
> MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS

## ITYPE

Assign this type number to the elements (defaults to 1 ).

## Command Default

$I T Y P E=1$.

## Notes

Activates an element type number to be assigned to subsequently defined elements. This number refers to the element type number (ITYPE) defined with the ET command. Type numbers may be displayed [/PNUM].

In some cases, ANSYS can proceed with a meshing operation even when no logical element type has been assigned via TYPE or XATT,,,TYPE. For more information, see the discussion on setting element attributes in Meshing Your Solid Model in the Modeling and Meshing Guide.

## Menu Paths

# Main Menu>Preprocessor>Meshing>Mesh Attributes>Default Attribs <br> Main Menu>Preprocessor>Modeling>Create>Elements>Elem Attributes <br> Main Menu>Preprocessor>Modeling>Operate>Extrude>Elem Ext Opts 

## TZAMESH, Tvolu, SIZE, NDIV

Meshes the areas of a volume to create Trefftz nodes.

$$
\begin{array}{r}
\text { PREP 7:Trefftz Domain } \\
\text { MP <> <> <> <> <> <> <> EM <> <> PP <> EME <> }
\end{array}
$$

## Tvolu

Component name for the Trefftz volume. The component name must be enclosed in single quotes in the TZAMESH command line.

## SIZE

Edge length between Trefftz nodes on surface boundaries (i.e. lines). The areas of the component volume will be meshed with this specification to create the Trefftz nodes. If $S I Z E$ is zero (or blank), use NDIV.

## NDIV

Number of element divisions along the surface boundary lines. Defaults to 2 .

## Notes

The command macro is used to create Trefftz nodes by meshing the surface areas of the selected volumes. The nodes of the meshed surface areas are grouped into the node component TZ_NOD. There is no solid model associativity with the Trefftz volume and the Trefftz nodes. The Trefftz nodes (component TZ_NOD) are used to create the Trefftz substructure (TZEGEN command).

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu>Preprocessor>Trefftz Domain>Mesh TZ Geometry

## TZDELE

## Deletes the Trefftz superelement, associated constraint equations and all supporting Trefftz files.

$$
\begin{array}{r}
\text { PREP 7:Trefftz Domain } \\
\mathrm{MP} \text { <> <> <> <> <> <> <> EM <> <> PP <> EME <> }
\end{array}
$$

## Notes

Deletes the Trefftz superelement, associated constraint equations and all supporting Trefftz files previously generated with the TZEGEN command.

You should delete the Trefftz superelement if you are going to create new Trefftz nodes and generate a new Trefftz superelement.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu>Preprocessor>Trefftz Domain>Superelement>Delete TZ

## TZEGEN

## Generates a Trefftz domain substructure and defines a Trefftz superelement for use in electrostatic analysis.

PREP7:Trefftz Domain<br>MP <> <> <> <> <> <> <> EM <> <> PP <> EME <>

## Notes

The command generates a Trefftz domain substructure from the Trefftz node component (TZ_NOD) and the flagged infinite surfaces of the exterior finite element domain [SF command with the INF surface load label].

The Trefftz nodes should be uniformly scattered between the modeled components and the exterior of the finite element mesh. The nodes must not be attached to any underlying electrostatic finite elements. The nodes may be created automatically from a solid model volume using the TZEGEN command macro.

The substructure named Jobname. sub is created and automatically brought into the problem as a superelement (MATRIX50) using the next available element number. Also created is a set of constraint equations relating the Trefftz nodes to the surface nodes of the flagged exterior finite element domain. The TZEGEN command creates temporary files during the substructure generation. These include the following:

- Jobname. TZN - Trefftz nodes
- Jobname. TZE - Trefftz surface facets on the FE boundary
- Jobname. TZX - Surface nodes of the FE boundary
- Jobname. TZM - Trefftz material

The TZEGEN macro is only valid for 3-D electrostatics analysis. In addition, the bounding surface of the finite element domain must contain no symmetry planes.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu>Preprocessor>Trefftz Domain>Superelement>Generate TZ

## U Commands

/UCMD, Cmd, SRNUM

Assigns a user-defined command name.

> APDL: Abbreviations
> MP ME ST $<><><><><>$ EM EH $<>$ PP $<>$ EME MFS

## Argument Descriptions

## Cmd

User-defined command name. Only the first four characters are significant. Must not conflict with any ANSYS command name or any user "unknown command" macro name.

## SRNUM

User subroutine number ( 1 to 10 ) programmed for this command. For example, the command /UCMD,MYCMD, 3 will execute subroutine USERO3 whenever the command MYCMD is entered. Use a blank command name to disassociate SRNUM from its command. For example, /UCMD,,3 removes MYCMD as a command.

## Notes

Assigns a user-defined command name to a user-programmable (system-dependent) subroutine. This feature allows user-defined commands to be programmed into the ANSYS program. Once programmed, this command can be input to the program like other commands, and can also be included in the ANSYS start-up file. See *ULIB for another way of defining user commands.

Up to 10 subroutines are available for user-defined commands (USER01 to USER10). Users must have system permission, system access, and knowledge to write, compile, and link the appropriate subprocessors into the ANSYS program at the site where it is to be run. All routines should be written in FORTRAN. For more information on FORTRAN compilers please refer to either the ANSYS, Inc. Windows Installation Guide or the ANSYS, Inc. UNIX/Linux Installation Guide for details specific to your platform or operating system. The USER01 routine is commented and should be listed from the distribution media (system dependent) for more details. Issue /UCMD,STAT to list all user-defined command names. Since a user-programmed command is a nonstandard use of the program, the verification of any ANSYS run incorporating these commands is entirely up to the user. In any contact with ANSYS customer support regarding the performance of a custom version of the ANSYS program, you should explicitly state that a user programmable feature has been used. See the Advanced Analysis Techniques Guide for a general description of user-programmable features and Guide to ANSYS User Programmable Features for a detailed description of these features.

This command is valid only at the Begin Level.

## Menu Paths

This command cannot be accessed from a menu.
/UDOC, WIND, Class, Key,
Determines position and content for the multi-legend options.
GRAPHICS:Labeling
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## WIND

The window number to which the command applies. (defaults to 1 )

## Class

The type (and relative importance) of legend item being displayed:

## CNTR

Contour legend. This legend item is controlled separately from the other legend items (see note below).

## DATE

The items in the DATE class include the date and time, or the ANSYS graphical logo (/PLOPTS,LOGO,1). This item is shown by default in all plots.

## GWIN

The items in the GWIN class include the entity acronyms that appear in the legend of a multiplot of entities (Nodes, Elements, Keypoints, Lines, Areas, Volumes). GWIN items are shown by default for all GPLOT displays.

## TYPE

Items in the TYPE class include the plot type (e.g. ELEMENTS, MATERIALS, NODAL SOLUTIONS, etc.). TYPE items are shown by default in all plots.
TYP2
Items in the TYP2 class include supplementary type information, such as DMAX and SMAX for nodal solutions. TYP2 items are shown by default in all plots.

## INUM

Items in the INUM class include the number labels generated by the /PNUM command. This class is displayed by default in all plots that contain /PNUM information.

## BCDC

The items in the BCDC class include labels created by the /PBC command. This class is shown by default in all plots which contain /PBC information.

## VECT

Items in the VECT class include labels created by the PLVECT command. This class is shown by default for all PLVECT plots.

## SURF

The items in the SURF class include labels from the /PSF legend. This class is shown by default on all plots of surface boundary conditions.

BODY
Items from the BODY class include labels from the /PBF legend. This class is shown by default in all plots of body forces.

PSTA
Items from the PSTA class include stress scaling statistics, such as the /SSCALE setting. This class is not shown as the default for any type of plot, and must be specifically referenced to display the included data.

## VIEW

The items in the VIEW class include view statistics. This class is not shown as the default for any type of plot, and must be specifically referenced to display the included data.

## MISC

The items in the MISC class include supplementary labels like /EXPANDED and Stress Section Cross Section. This class is not shown as the default for any type of plot, and must be specifically referenced to display the included data.

KEY
Switch:

OFF or 0 --
LEFT, RIGHT, TOP or BOTTOM --
LEFT or RIGHT --

Do not display the legend.
If the value for Class is CNTR, these are the four acceptable values for the contour legend position.
If any value other than CNTR is used for Class, these are the two acceptable values for the text data.

## Notes

The legend classes conform to the controls specified in the window options panel (PlotCtrls> Window Controls> Window Options). In many instances, the legend controls specified with the /PLOPTS command will take precedence and override /UDOC specifications. For instance:
/PLOPTS,LEG1,OFF will disable the TYPE, TYP2, INUM, and MISC classes, regardless of the /UDOC settings.
/PLOPTS,LEG2,OFF will disable the VIEW class, regardless of the /UDOC settings.
/PLOPTS,LEG3,OFF will disable the PSTA class, regardless of the /UDOC settings.
All items in a class are listed with the same X coordinate (except for contours). The contents of the text classes are dumped onto the display window from top to bottom, in order of class importance.

The font specification for text items that are included in the user-specified legends are controlled with the /DEVICE command (PlotCtrls> Font Controls> Anno/Graph Font).

The floating point values for the data presented in the legend(s) are controlled by the /GFORMAT command.

## Menu Paths

Utility Menu>PlotCtrls>Style>MultiLegend Options>Contour Legend Utility Menu>PlotCtrls>Style>MultiLegend Options>Text Legend

/UI, Func, Type, Format, Screen, Color, Krev, Orient, Compress, Quality

## Activates specified GUI dialog boxes.

|  | SESSION: Run Controls |
| :--- | :--- |
| Func |  |
| $\quad$ Label identifying the dialog box to be activated: |  |

## HELP

Activates the online help system. Valid only in non-UI graphics mode (/MENU,GRPH).

## VIEW

Activates the Pan, Zoom, Rotate dialog box

## WPSE

Activates the Working Plane Settings dialog box.
WPVI
Activates the Offset Working Plane dialog box.

## RESULT

Activates the Query Picking Menu for reviewing results.

## QUERY

Activates the Query Picked Entities (preprocess) dialog box.

## COPY

Activates the Hard Copy dialog box.
ANNO
Activates the 2D Annotation dialog box.

## AN3D

Activates the 3D Annotation dialog box.

## SELECT

Activates the Select Entities dialog box.

## NSEL

Activates a picking menu to select nodes.

## ESEL

Activates a picking menu to select elements.

## KSEL

Activates a picking menu to select keypoints.
LSEL
Activates a picking menu to select lines.
ASEL
Activates a picking menu to select areas.

## VSEL

Activates a picking menu to select volumes.

## REFRESH

Refreshes the graphics window (non-Ul mode only).

## COLL

Controls the collapse of the ANSYS Main Menu when a FINISH command is issued. See Type below for a discussion of the arguments.

Type
Label identifying the type of select operation. Valid only for the following Func labels; NSEL, ESEL, KSEL, LSEL, ASEL, and VSEL:

S
Select a new set.

## R

Reselect a set from the current set.
A
Additionally select a set and extend the current set.
U
Unselect a set from the current set.
Label identifying the type of results data to be queried. Valid only for $F u n c=$ RESULT:

## NODE

Nodal solution data (h-elements only).

## ELEMENT

Element solution data.
Label specifying the behavior of the ANSYS Main Menu after a FINISH command is issued. Note that this does not affect user interaction with the Main Menu. Valid only for Func = COLL:

## YES, 1 or blank

Allows the Main Menu to collapse after FINISH command.

## NO or 0

Prevents Main Menu collapse after FINISH command.
If Func $=\mathbf{C O P Y}$, and Type $=\mathbf{S A V E}$, command format is /UI,Func,Type,Format,Screen,Color,Krev,Orient,Compress,Quality. The remaining fields (after Type) identify the portion of the screen, the type of file, and the method of display that the portion of the screen is to be saved as.

## Format

PSCR
Encapsulated Postscript File Format.
TIFF
Tagged Image File Format.
EPSI
Encapsulated Postscript with TIFF preview.

## BMP

(PC only) Bitmap (Windows) file format.
WMF
(PC only) Windows Metafile format.

## EMF

(PC only) Enhanced Metafile format.
JPEG
JPEG (Joint Photographic Experts Group) file format.

## Screen

FULL
Saves the entire screen in the specified format.
GRAPH
Saves only the ANSYS Graphic window.

## Color

## MONO

A two color (black and white) file is saved.

## GRAY

The specified file format is saved in gray scale.

## COLOR

The file is saved at the specified color depth.

## Krev

## NORM

Saves file as shown on the screen.

## REVERSE

Saves file with the background color reversed.

## Orient

## LANDSCAPE

Saves file in landscape mode.

## PORTRAIT

Saves file in portrait mode.

## Compress

YES
Compresses TIFF files and EPS files with TIFF preview (default).
NO
Saves files with no compression.

## Quality

1,2,,,100
JPEG quality index, with 100 being the maximum quality level.

## Notes

Allows you to activate specified GUI dialog boxes directly in either GUI or non-GUI mode.
The /UI command itself is valid in any processor, however certain dialog boxes are accessible only in a particular processor (e.g., /UI,RESULT,... is valid only in the General Postprocessor).

ANSYS JPEG software is based in part on the work of the Independent JPEG Group, Copyright 1998, Thomas G. Lane.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

## Main Menu>Solution>Manual Rezoning>Create Remesh Zone(s)>Create Rezone Area

UIMP, MAT, Lab1, Lab2, Lab3, VAL1, VAL2, VAL3
Defines constant material properties (GUI).

> PREP 7: Materials
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## MAT

Material number.

## Lab1, Lab2, Lab3

Material property labels (see the MP command for valid labels).

## VAL1, VAL2, VAL3

Values corresponding to three labels.

## Notes

Defines constant material properties. This is a command generated by the Graphical User Interface (GUI) and will appear in the log file (Jobname. LOG) if material properties are specified using the Material Properties dialog box. This command is not intended to be typed in directly in an ANSYS session (although it can be included in an input file for batch input or for use with the /INPUT command).

## Menu Paths

> Main Menu $>$ Preprocessor $>$ Loads $>$ Load Step Opts $>$ Other $>$ Change Mat Props $>$ Material Models Main Menu $>$ Preprocessor $>$ Material Props $>$ Material Models Main Menu $>$ Solution $>$ Load Step Opts $>$ Other $>$ Change Mat Props $>$ Material Models

## /UIS, Label, VALUE

## Controls the GUI behavior.

> SESSION: Run Controls
> MP ME ST PR PRN $<><>$ FL EM EH DY PP <> EME MFS

## Label

Behavior control key:
BORD
Controls the functionality of the mouse buttons for dynamic viewing mode only. When Label = BORD, the three values that follow control the functionality of the LEFT, MIDDLE and RIGHT buttons, respectively (see below).
MSGPOP
Controls which messages from the ANSYS error message subroutine are displayed in a message dialog box.

REPLOT
Controls whether or not an automatic replot occurs after functions affecting the model are executed.
ABORT
Controls whether or not ANSYS displays dialog boxes to show the status of an operation in progress and to cancel that operation.

## DYNA

Controls whether the dynamic mode preview is a bounding box or the edge outline of the model. This label only applies to 2-D display devices (i.e., /SHOW,XII or /SHOW,WIN32). This "model edge outline" mode is only supported in PowerGraphics [/GRAPHICS,POWER] and is intended for element, line, results, area, or volume displays.

## PICK

Controls how graphical entities are highlighted from within the ANSYS Select menu.

## POWER

Controls whether or not PowerGraphics is active when the GUI is initiated. The ANSYS program default status is PowerGraphics "ON"; this command is used (placed in the start. ans file) when full graphics is desired on start up.

## DPRO

Controls whether or not the ANSYS input window displays a dynamic prompt. The dynamic prompt shows the correct command syntax for the command, as you are entering it.

## UNDO

Controls whether or not the session editor includes nonessential commands or comments in the file it creates. You can use this option to include comments and other materials in the session editor file.

## LEGE

Controls whether or not the multi-legend is activated when you start the GUI. The multi-legend allows you specify the location of your legend items in each of the five graphics windows. You can place this option in your start. ans file and have the GUI start with the legend items in a pre-specified location.

## PBAK

Controls whether or not the background shading is activated when you start the GUI. Background shading. You can place this option in your start. ans file and control whether or not background shading is activated.

## ZPIC

Controls the sorting order for entities that are coincident (directly in front of or behind each other) to a picked spot on your model. When you pick a spot on your model that could indicate two or more entities, a message warns you of this condition, and a list of the coincident entities can be generated. The VALUE term (below) will determine the sort order.

## HPOP

Controls the prioritization of your GUI windows when the contents are ported to a plot or print file (/UI,COPY,SAVE). OpenGL (3D) graphics devices require that the ANSYS Graphics Screen contents be set in front of all overlying windows in order to port them to a printer or a file. This operation can sometimes conflict with /NOERASE settings. See the VALUE term (below) to determine the available control options.

## VALUE

Values controlling behavior if Label = BORD:
(These values control the operation according to syntax :/UIS,BORD,LEFT,MIDDLE,RIGHT)
1
PAN, controls dynamic translations.
2
ZOOM, controls zoom, and dynamic rotation about the view vector.

3
ROTATE, controls dynamic rotation about the screen X and Y axes.

## Note

You can designate any value for any button, or designate the same value for all three buttons. If no value is specified, default is LEFT $=$ PAN, MIDDLE $=$ ZOOM and RIGHT = ROTATE.

Values controlling behavior if Label $=$ MSGPOP:
0
All messages displayed.
1
Only notes, warnings, and errors displayed.
2
Only warnings and errors displayed (default).
3
Only errors displayed.
Values controlling behavior if Label $=$ REPLOT:
0
No automatic replot.
1
Automatic replot (default).
Values controlling behavior if Label $=$ ABORT:

## ON

Display status and cancellation dialog boxes (default).

## OFF

Do not display status and cancellation dialog boxes.
1
Same as ON.
0
Same as OFF.
Values controlling behavior if Label = DYNA:
0
Use model edge outline when possible (default).
1
Use bounding box preview.
Values controlling behavior if Label $=$ PICK:
0
Picked keypoints and nodes are enclosed by a square. Picked lines are overlaid by a thicker line.
Picked areas, volumes, and elements (non-point/non-line) are redrawn with highlighting colors.

However, if the pick is a box, circle, or polygon pick, the highlighting for all entitles consists only of a square placed around the entity's centroid.

Picked entities are not highlighted.
2
5.1 highlighting (that is, no XOR).

3
Picked entities are highlighted as in $V A L U E=0$, except that, for a box, circle, or polygon pick, the picked areas, volumes, and elements (non-point/non-line) are redrawn with highlighting colors. This technique is slower than the $V A L U E=0$ technique.

Values controlling behavior if Label $=$ POWER:
0
Start GUI in Full Graphics mode.
1
Start GUI in PowerGraphics mode (default).
Values controlling behavior if Label = DPRO:

## 0 or OFF

Do not display the dynamic prompt.
1 or ON
Display the dynamic prompt (default).
Values controlling behavior if Label = UNDO:

## 0 or None

Do not suppress any commands (default).

## 1 or Comment

Write the nonessential commands to the session editor file as comments (with a! at the beginning).

## 2 or Remove

Do not write nonessential commands or comments.
Values controlling behavior if Label $=$ LEGE:

## 0 or OFF

Start GUI with the enhanced legend off (default).

## 1 or ON

Start GUI with the enhanced legend capability activated.
Values controlling behavior if Label $=$ PBAK:

## 0 or OFF

Start the GUI with the no background shading (default).
1 or ON
Start the GUI with background shading activated.
Values controlling behavior if Label $=$ HPOP:

## 0 or OFF

No rewrite operations are performed to compensate for items that obscure or overlay the graphics window (default).
1 or ON
The Graphics screen contents are replotted to ensure that they are situated in front of all other windows. If /NOERASE is detected, this operation is suppressed.

## Notes

Controls certain features of the Graphical User Interface (GUI), including whether the ANSYS program displays dialog boxes to show you the status of an operation (such as meshing or solution) in progress and to enable you to cancel that operation. Issue /UIS,STAT for current status. Issue /UIS,DEFA to reset default values for all labels. Issue /UIS,Label,STAT and /UIS,Label,DEFA for status and to reset a specific Label item.

A /UIS,HPOP, 1 command employs a fast redraw method which does not allow entering the legend logic for a /PLOPTS,INFO, 1 or /PLOPTS,INFO,2 command. However, the legend is redrawn for /PLOPTS,INFO,3 because that command also allows a fast redraw.

This command is valid in any processor.

## Menu Paths

Utility Menu $>$ MenuCtrls $>$ Message Controls
Utility Menu>PlotCtrls>Device Options

## *ULIB, Fname, Ext, --

## Identifies a macro library file.

APDL:Macro Files<br>MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Argument Descriptions

## Fname

File name and directory path ( 248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

## Ext

Filename extension (8 character maximum).

Unused field.

## Command Default

No macro library file.

## Notes

Identifies a macro library file for the *USE command. A library of macros allows blocks of often used ANSYS commands to be stacked and executed from a single file. The macro blocks must be enclosed within block identifier and terminator lines as shown in the example below. If you want to add comment lines to a macro block, you may place them anywhere within the macro block. (This includes placing them directly on the lines where the macro block identifier and the macro block terminator appear, as shown in the example.) Do not place comment lines (or any other lines) outside of a macro block.

```
ABC! Any valid alphanumeric name (8 characters maximum)
! identifying this data block
---! ANSYS data input commands

/EOF! Terminator for this data block
XYZ! Identify another data block (if desired)
---! ANSYS data input commands

/EOF! Terminator for this data block
(etc.)
```

The name of the macro library file is identified for reading on the *ULIB command. The name of the macro block is identified on the *USE command. The commands within the macro block are copied to a temporary file (of the macro block name) during the *USE operation and executed as if a macro file of that name had been created by the user. The temporary file is deleted after it has been used. Macro block names should be acceptable filenames (system dependent) and should not match user created macro file names, since the user macro file will be used first (if it exists) before the library file is searched. Macro blocks may be stacked in any order. Branching [*GO or *IF] external to the macro block is not allowed.

This command is valid in any processor.

## Menu Paths

Utility Menu>Macro>Execute Data Block

## UNDELETE, Option, Nstart, Nend

Removes results sets from the group of sets selected for editing.
AUX3: Results Files
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Option

Specifies which sets are to be removed from the selected sets.
SET
Specifies one or more particular sets in the results file that are to be removed from the group of sets selected for deletion.

ALL
Removes all selected sets that are currently selected for deletion.

## Nstart

The first set to be removed from the set selected for deletion.

## Nend

The final set to be removed from the set selected for deletion. This field is used only if operating on more than one sequential set.

## Notes

Use this command if you have previously marked a set for deletion (with the DELETE command) and now wish to keep that set instead of deleting it.

## Menu Paths

This command cannot be accessed from a menu.

## UNDO, Kywrd

## Allows the user to modify or save commands issued since the last RESUME or SAVE command.

DATABASE: Set Up
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Kywrd

NEW
Create an editable GUI window that allows the user to alter the commands issued since the most recent SAVE or RESUME operations (GUI only).

## Notes

The UNDO command brings up the session editor, a text window that displays all of the program operations since the last SAVE or RESUME command. You can modify command parameters, delete whole sections of text and even save a portion of the command string to a separate file. The file is named jobname $000 . \mathrm{cmds}$, with each subsequent save operation incrementing the filename by one digit.

## Note

The session editor file can be changed only by the session editor. If you rename your database file outside of ANSYS and then resume that database, the session editor will display the old filename.

For more information on the session editor, see Using the Session Editor in the Operations Guide.

## Menu Paths

Main Menu>Preprocessor>Session Editor

/UNITS, Label, LENFACT, MASSFACT, TIMEFACT, TEMPFACT, TOFFSET, CHARGEFACT, FORCEFACT, HEATFACT
Annotates the database with the system of units used.
DATABASE: Set Up
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Label

Label to denote the system of units used in this job:
USER
User-defined system (default).
SI
International system (m, kg, s, K).
MKS
MKS system ( $\mathrm{m}, \mathrm{kg}, \mathrm{s},{ }^{\circ} \mathrm{C}$ ).
uMKS
$\mu$ MKS system ( $\mu \mathrm{m}, \mathrm{kg}, \mathrm{s},{ }^{\circ} \mathrm{C}$ ).
CGS
CGS system ( $\mathrm{cm}, \mathrm{g}, \mathrm{s},{ }^{\circ} \mathrm{C}$ ).
MPA
MPA system (mm, Mg, s, ${ }^{\circ} \mathrm{C}$ ).
BFT
U. S. Customary system using feet ( ft , slug, $\mathrm{s},{ }^{\circ} \mathrm{F}$ ).

BIN
U. S. Customary system using inches (in, lbf*s ${ }^{2} / \mathrm{in}, \mathrm{s},{ }^{\circ} \mathrm{F}$ ).

If Label $=$ USER, the remaining fields on this command may be used to enter conversion factors that are appropriate for the user-defined system of units.

## LENFACT

Conversion factor to meter $(\mathrm{m})$. Default $=1$.
MASSFACT
Conversion factor to kilogram (kg). Default $=1$.
TIMEFACT
Conversion factor to second (s). Default $=1$.
TEMPFACT
Conversion factor to Kelvin (K). Default $=1$.

## TOFFSET

Temperature offset from absolute zero in degrees Kelvin. Default $=0$.

## CHARGEFACT

Conversion factor to Coulomb. Default $=1$.

## FORCEFACT

Conversion factor to Newton (N). Default $=1$.

## heAtFACT

Conversion factor to Joule (J). Default $=1$.

## Command Default

User-defined units.

## Notes

Allows the user to set a marker in the database indicating the system of units used. The setting may be reviewed with the /STATUS command at the Begin level. The units label and conversion factors on this command are for user convenience only and have no effect on the analysis or data. That is, /UNITS will not convert database items from one system to another (e.g., from U. S. Customary to SI , etc.). The units setting will be written to the file of IGES data [IGESOUT or CDWRITE], which can then be read by many programs that read IGES files. The user must still use consistent units for the results to be valid.

If you choose the MKS system of units, the EPZRO option for the EMUNIT command is set to $8.85 \mathrm{e}-12 \mathrm{~F} / \mathrm{m}$. (EPZRO specifies alternate free-space permittivity.)

For micro-electromechanical systems (MEMS), where dimensions are on the order of microns, see the conversion factors in System of Units in the Coupled-Field Analysis Guide.

If you use the ANSYS ADAMS Interface to export model information to the ADAMS program, the /UNITS command is required to ensure the correct transfer of data between ANSYS and ADAMS. You may choose a predefined unit system label (Label = SI, CGS, etc.) or you can select the user-defined system option (Label = USER) and input the appropriate conversion factors (LENFACT, MASSFACT, TIMEFACT, and FORCEFACT). The conversion factors will be written to the ADAMS input file Jobname. MNF in order to correctly generate the load. For more information, see Export to ADAMS in the Advanced Analysis Techniques Guide.

All differences between the base solution units used by the ANSYS and CFX solvers will be noted in the ANSYS output file. Unit conversions are automatically applied to all loads transferred unless Label = USER. Unit conversions are not applied to any of the loads transferred between the ANSYS and CFX solvers if they use a user-defined unit system.

This command is valid in any processor.

## Menu Paths

## This command cannot be accessed from a menu.

## UNPAUSE

## Restores use of a temporarily released product license.

SESSION: Run Controls MP ME ST PR PRN DS DSS FL EM EH DY PP VT EME MFS

## Notes

The UNPAUSE command restores use of a temporarily released (paused) product license. The command is valid only after a previously issued PAUSE command.

When use of the product license is paused via the PAUSE command, no other operation (other than SAVE or /EXIT) is possible until you issue the UNPAUSE command.

For more information, see the documentation for the PAUSE command and the ANSYS, Inc. Licensing Guide.

## Menu Paths

This command cannot be accessed from a menu.

## UPCOORD, FACTOR, Key

## Modifies the coordinates of the active set of nodes, based on the current displacements.

SOLUTION:Load Step Options
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

## FACTOR

Scale factor for displacements being added to nodal coordinates. If $F A C T O R=1.0$, the full displacement value will be added to each node, 0.5 , half the displacement value will be added, etc. If $F A C T O R=-1$, the full displacement value will be subtracted from each node, etc.

## Key

Key for zeroing displacements in the database:

## OFF

Do not zero the displacements (default).

## ON

Zero the displacements.

## Notes

The UPCOORD command uses displacements stored in the ANSYS database, and not those contained within the results file, Jobname. RST. Nodal coordinates are updated each time the command is issued. After updating, both the nodal displacements and rotations are set to zero if $\mathrm{Key}=\mathrm{ON}$.

For structural solutions with an updated mesh, unless the coefficient matrix is otherwise reformed (e.g., a new analysis or NLGEOM,ON) it should first be reformed by issuing a KUSE,-1 command.

UPCOORD should not be issued between load steps in structural analysis.
For a multiphysics simulation where a CFD or electromagnetic field is being coupled to a structure undergoing large displacements, all (or a portion) of the surrounding field mesh may take part in the structural solution to "move" with the displacing structure. You can use the UPCOORD command with a suitable FACTOR to update the coordinates of the nodes using the newly computed displacements. The mesh will now conform with the displaced structure for subsequent field solutions. However, the mesh should always be restored to its original location by using an UPCOORD,FACTOR command before performing any subsequent structural solutions. This is true for both repeated linear solutions, and for nonlinear restarts. (All saved displacements are relative to the original mesh location.)

This command is not intended to replace either the large displacement or birth and death logic.
This command is also valid in PREP7.

## Menu Paths

Main Menu>Preprocessor>Loads>Load Step Opts>Other>Updt Node Coord Main Menu>Solution>Load Step Opts>Other>Updt Node Coord

UPGEOM, FACTOR, LSTEP, SBSTEP, Fname, Ext, --

## Adds displacements from a previous analysis and updates the geometry of the finite element model to the deformed configuration.

PREP 7: Elements
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## FACTOR

Multiplier for displacements being added to coordinates. The value 1.0 will add the full value of the displacements to the geometry of the finite element model. Defaults to 1.0.

## LSTEP

Load step number of data to be imported. Defaults to the last load step.

## SBSTEP

Substep number of data to be imported. Defaults to the last substep.

## Fname

File name and directory path ( 248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

The field must be input (no default).
Ext
Filename extension (8 character maximum).
The extension must be an RST extension.
--
Unused field

## Notes

This command updates the geometry of the finite element model according to the displacement results of the previous analysis and creates a revised geometry at the deformed configuration. This command works on all nodes (default) or on a selected set of nodes. If this command is issued repeatedly, it creates a revised geometry of the finite element model in a cumulative fashion, i.e., it adds displacement results on the previously generated deformed geometry. The solid model geometry is not updated by this command.

## Menu Paths

## Main Menu>Preprocessor>Modeling>Update Geom

*USE, Name, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6, ARG7, ARG8, ARG9, AR10, AR11, AR12, AR13, AR14, AG15, AR16, AR17, AR18

## Executes a macro file.

APDL:Macro Files<br>MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Argument Descriptions

## Name

Name (32 characters maximum, beginning with a letter) identifying the macro file or a macro block on a macro library file.

## ARG1, ARG2, ARG3, . . . AR18

Values passed into the file or block where the parameters ARG1 through ARG9 and AR10 through AR18 are referenced. Values may be numbers, alphanumeric character strings (up to 32 characters enclosed in single quotes), parameters (numeric or character) or parametric expressions. See below for additional details.

## Notes

Causes execution of a macro file called Name, or, if not found, a macro block "Name" on the macro library file [*ULIB]. Argument values (numeric or character) are passed into the file or block and substituted for local parameters ARG1, ARG2, ..., AR18. The file Name may also be executed as an "unknown command" (i.e., without the *USE command name) as described below.

A macro is a sequence of ANSYS commands (as many as needed) recorded in a file or in a macro block in a library file (specified with the *ULIB command). The file or block is typically executed with the *USE command. In addition to command, numerical and alphanumeric data, the macro may include parameters which will be assigned numerical or alphanumerical character values when the macro is used. Use of the macro may be repeated (within a do-loop, for example) with the parameters incremented. A macro is defined within a run by "enclosing" a sequence of data input commands between a *CREATE and a *END command. The data input commands are passive (not executed) while being written to the macro file. The macro file (without *CREATE and *END ) can also be created external to ANSYS.

Up to 99 specially named scalar parameters called ARG1 to AR99 are locally available to each macro. Note that the prefix for the first 9 parameters is "ARG," while the prefix for the last 90 is "AR." A local parameter is one which is not affected by, nor does it affect, other parameters, even those of the same name, which are used outside of the macro. The only way a local parameter can affect, or be affected by, parameters outside the macro is if values are passed out of, or into, the macro by an argument list. Parameters ARG1 through AR18 can have their values (numeric or character) passed via the argument list on the *USE command (ARG1 through AR19 can be passed as arguments on the "unknown command" macro). Parameters AR19 through AR99 (AR20 through AR99 in the "unknown command" macro) are available solely for use within the macro; they cannot be passed via an argument list. Local parameters are available to do-loops and to /INPUT files processed within the macro. In addition to an ARG1--AR99 set for each macro, another ARG1-AR99 set is available external to all macros, local to "non-macro" space.

A macro is exited after its last line is executed. Macros may be nested (such as a *USE or an "unknown command" within a macro). Each nested macro has its own set of 99 local parameters. Only one set of local parameters can be active at a time and that is the set corresponding to the macro currently being executed or to the set external to all macros (if any). When a nested macro completes execution, the previous set of local parameters once again becomes available. Use *STATUS,ARGX to view current macro parameter values.

An alternate way of executing a macro file is via the "unknown command" route. If a command unknown to the ANSYS program is entered, a search for a file of that name (plus a . MAC suffix) is made. If the file exists, it is executed, if not, the "unknown command" message is output. Thus, users can write their own commands in terms of other ANSYS commands. The procedure is similar to issuing the *USE command with the unknown command in the Name field. For example, the command CMD, 10,20,30 is internally similar to *USE,CMD, $10,20,30$. The macro file named CMD . MAC will be executed with the three parameters. The *USE macro description also applies to the "unknown command" macro, except that various directories are searched and a suffix (.MAC) is assumed. Also, a macro library file is not searched.

A three-level directory search for the "unknown command" macro file may be available (see the Operations Guide). The search order may be: 1) a high-level system directory, 2) the login directory, and 3) the local (working) directory. Use the /PSEARCH command to change the directory search path. For an "unknown command" CMD, the first file named CMD.MAC found to exist in the search order will be executed. The command may be input as upper or lower case, however, it is converted to upper case before the file name search occurs. On systems that uniquely support both upper and lower case file names, the file with the matching lower case name will be used if it exists, otherwise, the file with the matching upper case name will be used. All macro files placed in the apdl directory must be upper case.

Note, since undocumented commands exist in the ANSYS program, the user should issue the command intended for the macro file name to be sure the "unknown command" message is output in the processor where it's to be used. If the macro is to be used in other processors, the other processors must also be checked.

This command is valid in any processor.

## Menu Paths

Utility Menu>Macro>Execute Data Block

## /USER, wn

Conveniently resets /FOCUS and /DIST to USER.
GRAPHICS:Views
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
WN
Window number (or ALL) to which command applies (defaults to 1 ).

## Notes

Conveniently resets scale parameters to USER on the /FOCUS and /DIST commands. Scale parameters will be internally respecified to those used for the last display. Convenient when the last scale parameters were automatically calculated. User specified parameters hold until changed or removed [/AUTO]. Parameters may be reset on the individual commands after this command has been issued.

This command is valid in any processor.

## Menu Paths

Utility Menu $>$ PlotCtrls $>$ View Settings $>$ Automatic Fit Mode

USRCAL, Rnam1, Rnam2, Rnam3, Rnam4, Rnam5, Rnam6, Rnam7, Rnam8, Rnam9
Allows user-solution subroutines to be activated or deactivated.
SOLUTION:Load Step Options
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS

## Rnam1, Rnam2, Rnam3, . . . , Rnam9

User-defined solution subroutine names to be activated. Up to nine may be defined on one command or multiple commands may be used. If Rnam1 = ALL, activate all valid user subroutines. If Rnam1 = NONE, deactivate all valid user subroutines. All characters are required:

## USREFL

Allows user defined scalar field (body force) loads.

## USERCV

Allows user defined convection (surface) loads.

## USERPR

Allows user defined pressure (surface) loads.

## USERFX

Allows user-defined heat flux (surface) loads.

## USERCH

Allows user-defined charge density (surface) loads.

## USERFD

Computes the complex load vector for the frequency domain logic.

## USEROU

Allows user supplied element output.

## USERMC

Allows user control of the hygrothermal growth).

## USOLBEG

Allows user access before each solution.

## ULDBEG

Allows user access before each load step.

## USSBEG

Allows user access before each substep.

## UITBEG

Allows user access before each equilibrium iteration.

## UITFIN

Allows user access after each equilibrium iteration.

## USSFIN

Allows user access after each substep.

## ULDFIN

Allows user access after each load step.

## USOLFIN

Allows user access after each solution.

## UANBEG

Allows user access at start of ANSYS run.

## UANFIN

Allows user access at end of ANSYS run.
UELMATX
Allows user access to element matrices and load vectors.

## USWVVEAC

Allows user access to ocean loading.

## Command Default

No user-solution subroutines are active (even if linked into the program).

## Notes

Allows certain user-solution subroutines to be activated or deactivated (system-dependent). This command only affects the subroutines named. Other user subroutines (such as user elements, user creep, etc.) have their own activation controls described with the feature.

The routines are commented and should be listed after performing a custom installation from the distribution media for more details. See also the Advanced Analysis Techniques Guide for a general description of userprogrammable features.

Users must have system permission, system access, and knowledge to write, compile, and link the appropriate subroutines into the ANSYS program at the site where it is to be run. All routines should be written in FORTRAN. (For more information on FORTRAN compilers please refer to either the ANSYS, Inc. Windows Installation Guide or the ANSYS, Inc. UNIX/Linux Installation Guide for details specific to your platform or operating system.) Issue USRCAL,STAT to list the status of these user subroutines. Since a user-programmed subroutine is a nonstandard use of the program, the verification of any ANSYS run incorporating these commands is entirely up to the user. In any contact with ANSYS customer support regarding the performance of a custom version of the ANSYS program, you should explicitly state that a user programmable feature has been used.

This command is also valid in PREP7.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

## Main Menu>Preprocessor>Loads>Load Step Opts>Other>User Routines Main Menu>Solution>Load Step Opts>Other>User Routines

USRDOF, Action, DOF1, DOF2, DOF3, DOF4, DOF5, DOF6, DOF7, DOF8, DOF9, DOF10
Specifies the degrees of freedom for the user-defined element USER300.
PREP 7: Elements
MP ME ST <> <> <> <> FL EM EH <> PP <> EME MFS

## Action

One of the following command operations:

## DEFINE

Specify the degrees of freedom (DOFs). This value is the default.

## LIST

List all previously specified DOFs.

## DELETE

Delete all previously specified DOFs.
DOF1, DOF2, DOF3, . . . , DOF10
The list of DOFs.

## Notes

The USRDOF command specifies the degrees of freedom for the user-defined element USER300.
Although you can intersperse other commands as necessary for your analysis, issue the USRDOF command as part of the following general sequence of commands:

1. Issue the ET command for element USER300, followed by the related TYPE command.
2. Issue both the USRELEM and USRDOF commands (in either order).
3. Define your element using USER300.

The DOF list (DOF1 through DOF10) can consist of up to 10 DOFs. Use any valid and appropriate DOF (such as UX, UY, UZ, ROTX, ROTY, ROTZ, AX, AY, AZ, VX, VY, VZ, PRES, WARP, TEMP, VOLT, MAG, ENKE, ENDS, EMF, and CURR).

You can specify a maximum of 10 DOFs per USRDOF command. To define additional DOFs, issue the command again.

The maximum number of DOFs for a user-defined element--the number of nodes times the number of DOFs per node--cannot exceed 480.

To learn more about user-defined elements, see Creating a New Element in the Programmer's Manual.

## Menu Paths

This command cannot be accessed from a menu.

USRELEM, NNODES, NDIM, KeyShape, NREAL, NSAVEVARS, NRSLTVAR, KEYANSMAT, NINTPNTS, KESTRESS, KEYSYM

Specifies the characteristics of the user-defined element USER300.

> PREP 7: Elements
> MP ME ST $<><><><>$ FL EM EH $<>$ PP $<>$ EME MFS

## NNODES

The number of nodes.

## NDIM

The number of dimensions (of nodal coordinates). Valid values are 2 or 3.

## KeyShape

One of the following element shape options:

## ANYSHAPE

Any shape (that is, no specified shape). This value is the default. (The ANSYS MeshTool is unavailable.)

## POINT

Point.

## LINE

Straight line.

## TRIAN

Triangle.

## QUAD

Quadrilateral. This shape can be degenerated to a triangle.

## TET

Tetrahedron.

## BRICK

Brick. This shape can be degenerated to a wedge, pyramid, or tetrahedron.

## NREAL

The number of real constants.

## NSAVEVARS

The number of saved variables.

## NRSLTVAR

The number of variables saved in results files.

## KEYANSMAT

Key for element formulation control:
0
Create your own material codes within the element formulation. In this case, the real constants are available to input material properties. You can also input linear material properties via MP and MPDATA commands .

1
Use ANSYS standard material routines or the USERMAT subroutine to form structural material data. ANSYS material properties must be input in the standard way (as you would for non-user-defined elements). This value is invalid when KeyShape = ANYSHAPE.

## NINTPNTS

The maximum number of integration points (used when KEYANSMAT = 1).

## KESTRESS

Key for the element stress state (used when KEYANSMAT = 1):
0
Plane stress elements.
1
Axisymmetric elements.
2
Plane strain elements.

3
3-D solid elements.
4
3-D solid-shell elements.
5
Generalized plane strain elements.
6
Beam elements.
7
Link/truss elements.
8
3-D shell elements.
9
Axisymmetric shell elements.

## KEYSYM

Key for specifying whether element stiffness matrices are symmetric or unsymmetric:
0
Symmetric.
1
Unsymmetric.

## Notes

The USRELEM command specifies the characteristics of the user-defined element USER300.
Although you can intersperse other commands as necessary for your analysis, issue the USRELEM command as part of the following general sequence of commands:

1. Issue the ET command for element USER300, followed by the related TYPE command.
2. Issue both the USRELEM and USRDOF commands (in either order).
3. Define your element using USER300.

The number of real constants (NREAL) can refer to geometry quantities, material quantities, or any parameters for element formulation.

ANSYS saves variables in the .esav file to preserve element data when you specify a positive NSAVEVARS value. When KEYANSMAT $=0$, all variables of both material and kinematic formulation are saved. When KEYANSMAT = 1, only the variables for kinematic formulation (such as deformation gradient tensor) are saved; in this case, the material routine saves all necessary material data automatically.

Element data saved in results files (NRSLTVAR) are accessible only as nonsummable miscellaneous data. ANSYS saves stress and total strain data for structural elements in the . rst file automatically (as it does for equivalent variables such as thermal gradient and thermal flux in thermal elements); therefore, NRSLTVAR does not need to include stress and total strain data.

To learn more about creating user-defined elements, see Creating a New Element in the Programmer's Manual.

## Menu Paths

This command cannot be accessed from a menu.

## V Commands

> V, P1, P2, P3, P4, P5, P6, P7, P8

## Defines a volume through keypoints.

PREP 7:Volumes
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

P1
Keypoint defining starting corner of volume. If $P 1=P$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI).

```
P2
```

Keypoint defining second corner of volume.
P3
Keypoint defining third corner of volume.
P4
Keypoint defining fourth corner of volume.
P5
Keypoint defining fifth corner of volume.
P6
Keypoint defining sixth corner of volume.

## P7

Keypoint defining seventh corner of volume.
P8
Keypoint defining eighth corner of volume.

## Notes

Defines a volume (and its corresponding lines and areas) through eight (or fewer) existing keypoints. Keypoints must be input in a continuous order. The order of the keypoints should be around the bottom and then the top. Missing lines are generated "straight" in the active coordinate system and assigned the lowest available numbers [NUMSTR]. Missing areas are generated and assigned the lowest available numbers.

Solid modeling in a toroidal coordinate system is not recommended.
Certain faces may be condensed to a line or point by repeating keypoints. For example, use $\mathbf{V}, P 1, P 2, P 3, P 3, P 5, P 6, P 7, P 7$ for a triangular prism or $\mathbf{V}, P 1, P 2, P 3, P 3, P 5, P 5, P 5, P 5$ for a tetrahedron.

Using keypoints to produce partial sections in CSYS = 2 can generate anomalies; check the resulting volumes carefully.

## Menu Paths

Main Menu>Preprocessor>Modeling>Create>Volumes>Arbitrary>Through KPs

## V2DOPT, GEOM, NDIV, HIDOPT, NZONE

## Specifies 2-D/axisymmetric view factor calculation options.

SOLUTION: Radiosity
AUX12: Radiosity Solver
MP ME <> PR <> <> <> <> <> <> <> PP <> EME MFS

## GEOM

Choice of geometry:
0
Planar (default).
1
Axisymmetric
NDIV
Number of divisions for axisymmetric geometry. Defaults to 20 .

## HIDOPT

Viewing option:
0
Hidden (default).
1
Non-hidden

## NZONE

Number of zones for view factor calculation. Defaults to 200.

## Command Default

V2DOPT allows you to select options for 2-D view factor calculation. The geometry type can be set to either 2-D plane or axisymmetric (defaults to plane). You can also define the number of divisions (defaults to 20) for an axisymmetric geometry. This command also allows you to select either hidden or non-hidden viewing option (defaults to hidden) and the number of zones for view factor calculation (defaults to 200).

## Menu Paths

Main Menu>Preprocessor>Radiation Opts>View Factor<br>Main Menu>Radiation Opt>Radiosity Meth>View Factor<br>Main Menu>Solution>Radiation Opts>View Factor

## Generates a volume bounded by existing areas.

PREP 7:Volumes
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## A1, A2, A3, ... , A10

List of areas defining volume. The minimum number of areas is 4 . If A1 = ALL, use all selected [ASEL] areas and ignore $A 2$ to $A 10$. If $A 1=P$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for A1.

## Notes

This command conveniently allows generating volumes from regions having more than eight keypoints (which is not allowed with the $\mathbf{V}$ command). Areas may be input in any order. The exterior surface of a VA volume must be continuous, but holes may pass completely through it.

## Menu Paths

Main Menu $>$ Preprocessor $>$ Modeling $>$ Create $>$ Volume by Areas
Main Menu>Preprocessor>Modeling>Create>Volumes>Arbitrary>By Areas
*VABS, KABSR, KABS1, KABS2, KABS3
Applies the absolute value function to array parameters.
APDL:Array Parameters
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Argument Descriptions

## KABSR

Absolute value of results parameter:
0 --
Do not take absolute value of results parameter (ParR).
1 --
Take absolute value.

## KABS1

Absolute value of first parameter:
0 --
Do not take absolute value of first parameter (Par1 or Parl).
1 --
Take absolute value.

## KABS2

Absolute value of second parameter:
0 --
Do not take absolute value of second parameter (Par2 or ParJ).

## 1 --

Take absolute value.

## KABS3

Absolute value of third parameter:
0 --
Do not take absolute value of third parameter (Par3 or ParK).
1 --
Take absolute value.

## Command Default

Do not use absolute values.

## Notes

Applies an absolute value to parameters used in certain ${ }^{*} \mathbf{V} \boldsymbol{x x}$ and ${ }^{*} \mathbf{M} \boldsymbol{x} \boldsymbol{x}$ operations. Typical absolute value applications are of the form:
$\operatorname{ParR}=|f(|\operatorname{Par} 1|)|$
or
$\operatorname{ParR}=|(|\operatorname{Par} 1| \circ|\operatorname{Par} 2|)|$
The absolute values are applied to each input parameter value before the operation and to the result value after the operation. Absolute values are applied before the scale factors so that negative scale factors may be used. The absolute value settings are reset to the default (no absolute value) after each *Vㅈxx or *Mxx operation. Use *VSTAT to list settings.

This command is valid in any processor.

## Menu Paths

## Utility Menu>Parameters>Array Operations>Operation Settings

VADD, NV1, NV2, NV3, NV4, NV5, NV6, NV7, NV8, NV9

## Adds separate volumes to create a single volume.

PREP7:Booleans
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NV1, NV2, NV3, . . . , NV9

Numbers of volumes to be added. If NV1 = ALL, add all selected volumes and ignore NV2 to NV9. If NV1 $=\mathrm{P}$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI).
A component name may also be substituted for NV1.

## Notes

Adds separate volumes to create a single volume. The original volumes (and their corresponding areas, lines and keypoints) will be deleted by default [BOPTN]. See the BOPTN command for the options available to Boolean operations. Element attributes and solid model boundary conditions assigned to the original entities will not be transferred to the new entities generated. Concatenated entities are not valid with this command.

## Menu Paths

```
Main Menu>Preprocessor>Modeling>Operate \(>\) Add \(>\) Volumes
Main Menu>Preprocessor>Modeling>Operate>Booleans>Add>Volumes
```


## VARDEL, NVAR

## Deletes a variable (GUI).

POST2 6:Set Up
MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS

## NVAR

The reference number of the variable to be deleted. $N V A R$ is as defined by NSOL, ESOL, etc.

## Notes

Deletes a POST26 solution results variable. This is a command generated by the Graphical User Interface (GUI). It will appear in the log file (Jobname . LOG) if a POST26 variable is deleted from the "Defined TimeHistory Variables" dialog box. This command is not intended to be typed in directly in an ANSYS session (although it can be included in an input file for batch input or for use with the /INPUT command).

## Menu Paths

Main Menu>TimeHist Postpro>Define Variables<br>Main Menu>TimeHist Postpro>Elec\&Mag>Circuit>Define Variables

VARNAM, IR, Name

## Names (or renames) a variable.

POST2 6: Set Up
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## IR

Reference number of the variable (2 to NV [NUMVAR]).

## Name

Thirty-two character name for identifying variable on printouts and displays. Embedded blanks are compressed for output.

## Menu Paths

Main Menu>TimeHist Postpro>Settings>Graph

VATT, MAT, REAL, TYPE, ESYS, SECNUM
Associates element attributes with the selected, unmeshed volumes.
PREP 7: Meshing
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## MAT, REAL, TYPE, ESYS, SECNUM

Material number, real constant set number, type number, coordinate system number, and section number to be associated with selected, unmeshed volumes.

## Notes

These element attributes will be used when the volumes are meshed. If a volume does not have attributes associated with it (by this command) at the time it is meshed, the attributes are obtained from the then current MAT, REAL, TYPE, ESYS, and SECNUM command settings. Reissue the VATT command (before volumes are meshed) to change the attributes. A zero (or blank) argument removes the corresponding association.

If any of the arguments MAT, REAL, TYPE, ESYS or SECNUM are defined as -1 , then that value will be left unchanged in the selected set.

In some cases, ANSYS can proceed with a volume meshing operation even when no logical element type has been assigned via VATT,,,TYPE or TYPE. For more information, see the discussion on setting element attributes in Meshing Your Solid Model of the Modeling and Meshing Guide.

## Menu Paths

Main Menu $>$ Preprocessor $>$ Meshing $>$ Mesh Attributes $>$ All Volumes
Main Menu>Preprocessor>Meshing>Mesh Attributes>Picked Volumes

VCLEAR,NV1,NV2,NINC
Deletes nodes and volume elements associated with selected volumes.
PREP 7: Meshing
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NV1, NV2, NINC

Delete mesh for volumes NV1 to NV2 (defaults to NV1) in steps of NINC (defaults to 1). If NV1 = ALL, NV2 and NINC are ignored and mesh for all selected volumes [VSEL] is deleted. If NV1 = P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NV1 (NV2 and NINC are ignored).

## Notes

Deletes all nodes and volume elements associated with selected volumes (regardless of whether the nodes or elements are selected). Nodes shared by adjacent meshed volumes and nodes associated with non-volume elements will not be deleted. Attributes assigned as a result of VATT are maintained. In the program's response
to the command, if a volume, area, line, or keypoint is tallied as "cleared," it means either its node or element reference was deleted.

## Menu Paths

Main Menu>Preprocessor>Meshing>Clear>Volumes
*VCOL, NCOL1,NCOL2

## Specifies the number of columns in matrix operations.

APDL: Array Parameters<br>MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Argument Descriptions

## NCOL1

Number of columns to be used for Par1 with *Mxx operations. Defaults to whatever is needed to fill the result array.

## NCOL2

Number of columns to be used for Par2 with *Mxx operations. Defaults to whatever is needed to fill the result array.

## Command Default

Fill all locations of the result array from the specified starting location.

## Notes

Specifies the number of columns to be used in array parameter matrix operations. The size of the submatrix used is determined from the upper left starting array element (defined on the operation command) to the lower right array element (defined by the number of columns on this command and the number of rows on the *VLEN command).

The default $N C O L$ is calculated from the maximum number of columns of the result array (the *DIM column dimension) minus the starting location + 1 . For example, *DIM, $\mathrm{R}, 1,10$ and a starting location of $\mathrm{R}(1,7)$ gives a default of 4 columns ( starting with $R(1,7), R(1,8), R(1,9)$, and $R(1,10)$ ). Repeat operations automatically terminate at the last column of the result array. Existing values in the rows and columns of the results matrix remain unchanged where not overwritten by the requested input or operation values.

The column control settings are reset to the defaults after each *MXX operation. Use *VSTAT to list settings.
This command is valid in any processor.

## Menu Paths

## Utility Menu>Parameters>Array Operations>Operation Settings

## /VCONE, wN, PH

Defines the view cone angle for perspective displays.
GRAPHICS:Views
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
WN
Window number (or ALL) to which command applies (defaults to 1 ).
PHI
View cone angle ( 0.0 to $85 .{ }^{\circ}$ ) to define perspective. Use $P H I=45.0^{\circ}$ for typical perspective. Increase angle for more perspective, decrease angle for less. If the distance [/DIST] is not specified, it will be automatically calculated to give full window magnification. If the distance is also specified, $P H I$ controls both the perspective and the magnification. The larger the angle, the more the perspective and the less the magnification. Defaults to 0.0 (no perspective).

## Command Default

0.0 degrees (no perspective (parallel projection)).

## Notes

Perspective shows the true depth of the object in the display. A variable magnification results since the back plane of the object is further from the observer than the front plane. The largest magnification occurs at the front plane. With perspective, the magnification factor (MAGF) is not only a function of the distance from the object, but also the window shape and the perspective (or view cone) angle $\Phi$ as follows:

$$
\text { MAGF }=\frac{\ell / 2}{(d) \mathrm{TAN} \phi}
$$

where $\ell$, for square windows, is the largest in-plane vertical or horizontal dimension, d is the distance from the observer to the plane of $\ell$ (usually the front plane of the object), and $\Phi$ is the view cone angle (defined with the /VCONE command). The bigger the cone angle, the more the perspective. The magnification factor proportionally decreases with increasing $\Phi$. The distance can be defined with the /DIST or the /FOCUS command. Note, the distance input on the /DIST command is equal to $d$ only if the focus point is located on the plane of $\ell$. It is recommended that if a general perspective is desired (i.e., not any specific cone angle), use $\Phi=45.0$ (since $\operatorname{TAN}(45.0)=1.0$ ) and let the $d$ value be automatically calculated for full window magnification.

Note that any number of /DIST, /FOCUS, and /VCONE combinations can be used to produce the same magnification. Distances less than the object depth will produce views from within the object.

A magnification factor of 1.0 just fills the window. If the automatic scaling option is used [/AUTO], the magnification factor is fixed at 0.91 (to allow a $10 \%$ margin around the object) and d is automatically calculated for the given /VCONE and /FOCUS values. Any value of $\Phi$ between 0.0 and 85.0 (usually 45.0 ) may be used to activate the perspective. Views from inside the object are not possible when $d$ is automatically calculated (use manual scaling [/USER] along with /DIST specification).

This command is valid in any processor.

## Menu Paths

Utility Menu>PlotCtrls>View Settings>Perspective View

VCROSS, LabXR, LabYR, LabZR, LabX1, LabY1, LabZ1, LabX2, LabY2, LabZ2
Forms element table items from the cross product of two vectors.

## POST1:Element Table <br> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## LabXR, LabYR, LabZR

Label assigned to $\mathrm{X}, \mathrm{Y}$, and Z-component of resultant vector.

## LabX1, LabY1, LabZ1

$X, Y$, and $Z$-component of first vector label.

## LabX2, LabY2, LabZ2

$\mathrm{X}, \mathrm{Y}$, and Z -component of second vector label.

## Notes

Forms labeled result items for the selected element from the cross product of two vectors:

```
{LabXR, LabYR, LabZR} = {LabX1, LabY1, LabZ1} X {LabX2,LabY2, LabZ2}
```

Data must be in a consistent coordinate system. Labels are those associated with the ETABLE command.

## Menu Paths

Main Menu>General Postproc>Element Table>Cross Product

## *VCUM, KEY

Allows array parameter results to add to existing results.
APDL:Array Parameters
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Argument Descriptions

KEY
Accumulation key:
0 --
Overwrite results.
1 --
Add results to the current value of the results parameter.

## Command Default

Overwrite results.

## Notes

Allows results from certain ${ }^{*} \mathbf{V} \boldsymbol{x x}$ and ${ }^{*} \mathbf{M} \boldsymbol{x} \boldsymbol{x}$ operations to overwrite or add to existing results. The cumulative operation is of the form:

ParR $=$ ParR $+\operatorname{ParR}($ Previous $)$
The cumulative setting is reset to the default (overwrite) after each *VXX or *Mxx operation. Use *VSTAT to list settings.

This command is valid in any processor.

## Menu Paths

Utility Menu>Parameters>Array Operations>Operation Settings

VDDAM, $V F, V A, V B, V C$
Specifies the velocity spectrum computation constants for the analysis of shock resistance of shipboard structures.

SOLUTION:Spectrum Options<br>MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS

## VF

Direction-dependent velocity coefficient for elastic or elastic-plastic analysis option (Default $=0$ ).

## VA, VB, VC

Coefficients for the DDAM velocity spectrum equations. See the Theory Reference for the Mechanical APDL and Mechanical Applications. Default for these coefficients is zero.

## Notes

This command specifies velocity coefficients to analyze shock resistance of shipboard equipment. These coefficients are used to compute mode coefficients according to the equations given in the Theory Reference for the Mechanical APDL and Mechanical Applications. The form of these equations is based on the Naval NRL Dynamic Design Analysis Method. This command, along with the ADDAM and SED commands, is used with the spectrum (ANTYPE,SPECTR) analysis as a special purpose alternative to the SV, FREQ, and SVTYP commands. The mass and length units of the model must be in pounds and inches, respectively.

This command is also valid in PREP7.

## Menu Paths

# Main Menu>Preprocessor>Loads>Load Step Opts>Spectrum>DDAM Options Main Menu>Solution>Load Step Opts>Spectrum>DDAM Options 

VDELE, NV1,NV2, NINC, KSWP
Deletes unmeshed volumes.
PREP 7:Volumes
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NV1, NV2, NINC

Delete volumes from NV1 to NV2 (defaults to NV1) in steps of NINC (defaults to 1). If NV1 = ALL, NV2 and NINC are ignored and all selected volumes [VSEL] are deleted. If NV1 = P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NV1 (NV2 and NINC are ignored).

## KSWP

Specifies whether keypoints, lines, and areas are also deleted:
0
Delete volumes only (default).
1
Delete volumes, as well as keypoints, lines, and areas attached to the specified volumes but not shared by other volumes.

## Menu Paths

# Main Menu $>$ Preprocessor $>$ Modeling $>$ Delete $>$ Volume and Below <br> Main Menu>Preprocessor>Modeling>Delete>Volumes Only <br> Main Menu>Preprocessor>Trefftz Domain $>$ TZ Geometry>Delete>Volume and Below Main Menu>Preprocessor>Trefftz Domain>TZ Geometry>Delete>Volumes Only 

## VDGL,NV1,NV2,NINC

## Lists keypoints of a volume that lie on a parametric degeneracy.

PREP 7:Volumes
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
NV1, NV2, NINC
List keypoints that lie on a parametric degeneracy on volumes from NV1 to NV2 (defaults to NV1) in steps of NINC (defaults to 1). If NV1 = ALL (default), NV2 and NINC will be ignored and keypoints on all selected volumes [VSEL] will be listed. If NV1 = P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). You may also substitute a component name for NV1 (ignore NV2 and NINC).

## Notes

See the Modeling and Meshing Guide for details about parametric degeneracies.
This command is valid in any processor.

## Menu Paths

Main Menu>Preprocessor>Modeling>Check Geom>Show Degeneracy>List Degen Volus

## VDOT, LabR, LabX1, LabY1, LabZ1, LabX2, LabY2, LabZ2

## Forms an element table item from the dot product of two vectors.

MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## LabR

Label assigned to dot product result.

## Labx1, LabY1, Labz1

$\mathrm{X}, \mathrm{Y}$, and Z -component of first vector label.

## LabX2, LabY2, LabZ2

$\mathrm{X}, \mathrm{Y}$, and Z-component of second vector label.

## Notes

Forms labeled result items for the selected element from the dot product of two vectors:

```
LabR = {LabX1,LabY1,LabZ1} \bullet{LabX2, LabY2,LabZ2}
```

Data must be in a consistent coordinate system. Labels are those associated with the ETABLE command.

## Menu Paths

## Main Menu>General Postproc>Element Table>Dot Product

VDRAG, NA1,NA2, NA3, NA4, NA5, NA6, NLP1, NLP2, NLP3, NLP4, NLP5, NLP6

## Generates volumes by dragging an area pattern along a path.

PREP 7:Volumes
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NA1, NA2, NA3, . . . NA 6

List of areas in the pattern to be dragged (6 maximum if using keyboard entry). If NA1 = P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). If NA1 = ALL, all selected areas will be swept along the path. A component name may also be substituted for NA1.

## NLP1, NLP2, NLP3, . . . , NLP 6

List of lines defining the path along which the pattern is to be dragged (6 maximum if using keyboard entry). Must be a continuous set of lines. To be continuous, adjacent lines must share the connecting keypoint (the end keypoint of one line must also be first keypoint of the next line).

## Notes

Generates volumes (and their corresponding keypoints, lines, and areas) by sweeping a given area pattern along a characteristic drag path. If the drag path consists of multiple lines, the drag direction is determined by the sequence in which the path lines are input ( $N L P 1, N L P 2$, etc.). If the drag path is a single line ( $N L P 1$ ),
the drag direction is from the keypoint on the drag line that is closest to the first keypoint of the given area pattern to the other end of the drag line.

The magnitude of the vector between the keypoints of the given pattern and the first path keypoint remains constant for all generated keypoint patterns and the path keypoints. The direction of the vector relative to the path slope also remains constant so that patterns may be swept around curves. Lines are generated with the same shapes as the given pattern and the path lines.

Keypoint, line, area, and volume numbers are automatically assigned (beginning with the lowest available values [NUMSTR]). Adjacent lines use a common keypoint, adjacent areas use a common line, and adjacent volumes use a common area. For best results, the entities to be dragged should be orthogonal to the start of the drag path. Drag operations that produce an error message may create some of the desired entities prior to terminating.

If element attributes have been associated with the input area via the AATT command, the opposite area generated by the VDRAG operation will also have those attributes (i.e., the element attributes from the input area are copied to the opposite area). Note that only the area opposite the input area will have the same attributes as the input area; the areas adjacent to the input area will not.

If the input areas are meshed or belong to a meshed volume, the area(s) can be extruded to a 3-D mesh. Note that the NDIV argument of the ESIZE command should be set before extruding the meshed areas. Alternatively, mesh divisions can be specified directly on the drag line(s) (LESIZE). See the Modeling and Meshing Guide for more information.

You can use the VDRAG command to generate 3-D interface element meshes for elements INTER194 and INTER195. When generating interface element meshes using VDRAG, you must specify the line divisions to generate one interface element directly on the drag line using the LESIZE command. The source area to be extruded becomes the bottom surface of the interface element. Interface elements must be extruded in what will become the element's local $x$ direction, that is, bottom to top.

## Menu Paths

## Main Menu>Preprocessor>Modeling>Operate>Extrude>Areas>Along Lines

*VEC, Vector, Type, Method, Val1, Val2, Val3, Val4
Creates a vector.

APDL:Matrix Operations<br>MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Argument Descriptions

## Vector

Name used to identify the vector. Must be specified.

## Type

Vector type:
D --
Double precision real values (default).

## Z --

Complex double precision values.
I --
Integer values.

## Method

Method used to create the vector:
ALLOC --
Allocate space for a vector (default).
COPY --
Copy an existing vector.

## IMPORT --

Import the vector from a file.
LINK --
Link to a column of an existing dense *DMAT matrix and use it in subsequent vector calculations. Any changes to the vector are also made to the corresponding matrix column (memory is shared).

## Val1, Val2, Val3, Val4

Additional input. The meaning of Vall through Val4 will vary depending on the specified Method. See details below.

## The following Valx field is used with Method = ALLOC:

## Vall

Number of rows in the vector.

## The following Valx field is used with Method = COPY:

## Val1

Name of the vector to copy.
The following table describes the Valx fields used with Method = IMPORT.

| Method = IMPORT |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :---: |
| Val1 | Val2 | Val3 | Va14 | Description |  |
| FULL | File name | RHS - Load vector <br> GVEC - Constraint equation <br> constant terms <br> BACK - nodal mapping vec- <br> tor (internal to user) <br> FORWARD - nodal mapping <br> vector (user to internal) | (not used) | Import a load vector or nodal <br> mapping vector from an exist- <br> ing FULL file. |  |
| MDEE | File name | Mode number | (not used) | Import a mode from an exist- <br> ing MODE file. |  |
| RST | File name | Data set number | (not used) | Import degree of freedom <br> results from an existing RST <br> file. |  |
| SUB | File name | RHS - Load vector | (not used) | Import a load vector from an <br> existing SUB file. |  |


| EMAT | File name | RHS - Load vector | Element <br> number | lmport an element load vec- <br> tor from an existing EMAT <br> file. |
| :--- | :--- | :--- | :--- | :--- |
| MAT | File name | (not used) | (not used) | Restore from a previous *EX- <br> PORT (FORMAT = MAT) com- <br> mand. |
| AP- <br> DL | Array para- <br> meter name | (not used) | (not used) | Import an existing array <br> parameter. |
| HB- <br> MAT | File name | File format: | (not used) | Import a load vector from an <br> existing Harwell-Boeing <br> format file. |

## The following Valx fields are used with Method = LINK:

## Val1

Name of the *DMAT matrix.

## Val2

Column number of the matrix to link to.

## Notes

Use the *DMAT command to create a matrix.
For more information on the BACK and FORWARD nodal mapping vectors, see Degree of Freedom Ordering in the ANSYS Parametric Design Language Guide.

## Menu Paths

This command cannot be accessed from a menu.

## *VEDIT, Par

## Allows numerical array parameters to be graphically edited.

APDL:Array Parameters<br>MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Argument Descriptions

Par
Name of the array parameter to be edited.

## Notes

Invokes a graphical editing system that displays array parameter values in matrix form, and allows the use of the mouse to edit individual values. The starting array subscripts must be defined, such as *VEDIT,A(4,6,1), to indicate the section of the array to be edited. The array section starts at the specified array element and continues to the maximum extent of the array parameter. Row and column index values may be set or changed in any plane, and those values will be applied to all planes. The menu system must be on [/MENU]
when this command is issued. Graphical editing is not available for character array parameters. The *VEDIT command can not be used in a macro or other secondary input file.

This command is not applicable to 4- or 5-D arrays.
This command is valid in any processor.

## Menu Paths

Utility Menu>Parameters>Array Parameters>Define/Edit

## VEORIENT, VNUM, Option, VALUE1, VALUE2

## Specifies brick element orientation for volume mapped (hexahedron) meshing.

PREP 7:Meshing
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## VNUM

Number identifying volume for which elements are to be oriented (no default).

## Option

Option for defining element orientation:
KP
Orientation is determined by two keypoints on the volume. Input the keypoint numbers (KZ1 and KZ2) in fields VALUE1 and VALUE2, respectively. The element $z$-axis points from KZ1 toward KZ2. Element x and y directions point away from KZ1 along edges of the volume to make a right-hand triad. (The element $x$ - and $y$-axes are uniquely determined by this specification.)

## LINE

Orientation is determined by one of the lines defining the volume. Input the line number in field VALUE1. The element $z$ direction follows the direction of the line. Input a negative value if the desired $z$ direction is opposite to the direction of the specified line. (The element $x$ - and $y$-axes are uniquely determined by this specification.) (VALUE2 is not used.)

AREA
Orientation is determined by one of the areas defining the volume. The area represents the desired element top surface. Input the area number as VALUE1. The shortest line in the volume connected to the area will be used to specify the element $z$ direction. (If more than one shortest line exists, the lowest numbered of those is used.) Element $x$ and $y$ directions are not uniquely specified by this option. (VALUE2 is not used.)

## THIN

Align the element z normal to the thinnest dimension of the volume. The shortest line in the volume is used to specify the element $z$ direction. (If more than one shortest line exists, the lowest numbered of those is used.) Element $x$ and $y$ directions are not uniquely specified by this option. (VALUE1 and VALUE2 are not used.)

## DELE

Delete the previously defined volume orientation for the specified volume (VNUM). (VALUE1 and VALUE2 are not used.)

## VALUE1, VALUE2

Parameters required for the element $z$-axis direction specification. The meaning of VALUE1 and VALUE 2 will depend on the chosen Option. See the description of Option above for details.

## Command Default

Elements are not oriented in any specific manner.

## Notes

Use VEORIENT before the VMESH command to specify the desired orientation of brick elements in a mapped mesh. VEORIENT has no effect on tetrahedron meshes, extruded meshes (VROTAT, VDRAG, VEXT, etc.), or swept meshes (VSWEEP).

Proper brick orientation is essential for certain element types such as SOLID185 Layered Solid, SOLID186 Layered Solid, and SOLSH190. In such cases, use VEORIENT or EORIENT to achieve the desired orientation. For other brick element types, you may need to specify element orientation to control orthotropic material property directions without concern for the element connectivity. For those cases, the ESYS command is the preferred method of specifying the material property directions.

For Option = LINE, AREA, and THIN, the orientation will be internally converted to an equivalent Option = KP specification (KP,KZ1,KZ2). Use the VLIST command to view the element orientations (in terms of KZ1 and KZ2) associated with each volume.

## Menu Paths

> Main Menu $>$ Preprocessor $>$ Meshing $>$ Mesh Attributes $>$ Volume Brick Orient $>$ Delete Specification Main Menu $>$ Preprocessor $>$ Meshing $>$ Mesh Attributes $>$ Volume Brick Orient $>Z$ Along Line Main Menu $>$ Preprocessor $>$ Meshing $>$ Mesh Attributes $>$ Volume Brick Orient $>Z$ by 2 Keypoints Main Menu $>$ Preprocessor $>$ Meshing $>$ Mesh Attributes $>$ Volume Brick Orient $>Z$ in Thin Direction Main Menu $>$ Preprocessor $>$ Meshing $>$ Mesh Attributes $>$ Volume Brick Orient $>Z$ Normal to Area

VEXT, NA1, NA2, NINC, $D X, D Y, D Z, R X, R Y, R Z$

## Generates additional volumes by extruding areas.

PREP 7: Volumes
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NA1, NA2, NINC

Set of areas (NA1 to NA2 in steps of NINC) that defines the pattern to be extruded. NA 2 defaults to NA1, NINC defaults to 1 . If NA1 = ALL, NA 2 and NINC are ignored and the pattern is defined by all selected areas. If NA1 = P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NA1 (NA2 and NINC are ignored).

## DX, DY, DZ

Increments to be applied to the $\mathrm{X}, \mathrm{Y}$, and Z keypoint coordinates in the active coordinate system ( $D R$, $D \theta, D Z$ for cylindrical; $D R, D \theta, D \Phi$ for spherical).

## RX, RY, RZ

Scale factors to be applied to the $X, Y$, and $Z$ keypoint coordinates in the active coordinate system ( $R R$, $R \theta, R Z$ for cylindrical; $R R, R \theta, R \Phi$ for spherical). Note that the $R \theta$ and $R \Phi$ scale factors are interpreted as
angular offsets. For example, if $C S Y S=1, R X, \quad R Y, \quad R Z$ input of $(1.5,10,3)$ would scale the specified keypoints 1.5 times in the radial and 3 times in the $Z$ direction, while adding an offset of 10 degrees to the keypoints. Zero, blank, or negative scale factor values are assumed to be 1.0. Zero or blank angular offsets have no effect.

## Notes

Generates additional volumes (and their corresponding keypoints, lines, and areas) by extruding and scaling a pattern of areas in the active coordinate system.

If element attributes have been associated with the input area via the AATT command, the opposite area generated by the VEXT operation will also have those attributes (i.e., the element attributes from the input area are copied to the opposite area). Note that only the area opposite the input area will have the same attributes as the input area; the areas adjacent to the input area will not.

If the areas are meshed or belong to meshed volumes, a 3-D mesh can be extruded with this command. Note that the NDIV argument on the ESIZE command should be set before extruding the meshed areas.

Scaling of the input areas, if specified, is performed first, followed by the extrusion.
In a non-Cartesian coordinate system, the VEXT command locates the end face of the volume based on the active coordinate system. However, the extrusion is made along a straight line between the end faces. Note that solid modeling in a toroidal coordinate system is not recommended.

## Caution

Use of the VEXT command can produce unexpected results when operating in a non-Cartesian coordinate system. For a detailed description of the possible problems that may occur, see Solid Modeling in the Modeling and Meshing Guide.

## Menu Paths

Main Menu>Preprocessor>Modeling>Operate>Extrude>Areas>By XYZ Offset
*VFACT, FACTR, FACT1, FACT2, FACT3

## Applies a scale factor to array parameters.

APDL: Array Parameters<br>MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Argument Descriptions

## FACTR

Scale factor applied to results (ParR) parameter. Defaults to 1.0.

## FACT1

Scale factor applied to first parameter (Par1 or Parl). Defaults to 1.0.

## FACT2

Scale factor applied to second parameter (Par2 or ParJ). Defaults to 1.0.

## FACT3

Scale factor applied to third parameter (Par3 or ParK). Defaults to 1.0.

## Command Default

Use 1.0 for all scale factors.

## Notes

Applies a scale factor to parameters used in certain ${ }^{*} \mathbf{V} \boldsymbol{X} \boldsymbol{X}$ and ${ }^{*} \mathbf{M} \boldsymbol{X} \boldsymbol{X}$ operations. Typical scale factor applications are of the form:

```
ParR = FACTR*f(FACT1*Par1)
or
ParR = FACTR*((FACT1*Par1) o (FACT2*Par2))
```

The factors are applied to each input parameter value before the operation and to the result value after the operation. The scale factor settings are reset to the default (1.0) after each *V $\mathbf{X X}$ or ${ }^{*} \mathbf{M} \boldsymbol{x} \boldsymbol{x}$ operation. Use *VSTAT to list settings.

This command is valid in any processor.

## Menu Paths

Utility Menu>Parameters>Array Operations>Operation Settings
*VFILL, ParR, Func, CON1, CON2, CON3, CON4, CON5, CON6, CON7, CON8, CON9, CON10
Fills an array parameter.

> APDL: Parameters
> MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS

## Argument Descriptions

## ParR

The name of the resulting numeric array parameter vector. See *SET for name restrictions.

## Func

Fill function:
DATA --
Assign specified values CON1, CON2, etc. to successive array elements. Up to 10 assignments may be made at a time. Any CON values after a blank CON value are ignored.

RAMP --
Assign ramp function values: CON1+((n-1)*CON2), where n is the loop number [*VLEN]. To specify a constant function (no ramp), set CON2 to zero.

RAND --
Assign random number values based on a uniform distribution: RAND(CON1,CON2), where CON1 is the lower bound (defaults to 0.0 ) and CON2 is the upper bound (defaults to 1.0).

## GDIS --

Assign random sample of Gaussian distributions: GDIS(CON1,CON2), where CON1 is the mean (defaults to 0.0 ) and CON2 is the standard deviation (defaults to 1.0 ).

## TRIA --

Assigns random number values based on a triangular distribution:TRIA(CON1,CON2,CON3), where CON1 is the lower bound (defaults to 0.0 ), CON2 is the location of the peak value
(CON1 $\leq$ CON2 $\leq$ CON3; CON2 defaults to 0 if CON1 $\leq 0 \leq$ CON3, CON1 if $0 \leq$ CON1, or CON3 if CON3 $\leq 0$ ), and CON3 is the upper bound (defaults to $1.0+\operatorname{CON} 1$ if CON1 $\geq 0$ or 0.0 if CON1 $\leq 0$ ).

## BETA --

Assigns random number values based on a beta distribution: BETA(CON1,CON2, CON $3, \operatorname{CON} 4)$, where CON1 is the lower bound (defaults to 0.0 ), CON2 is the upper bound (defaults to $1.0+\operatorname{CON1}$ if $\operatorname{CON1} \geq 0$ or 0.0 if CON1 $\leq 0$ ), and CON3 and CON4 are the alpha and beta parameters, respectively, of the beta function. Alpha and beta must both be positive; they default to 1.0.

GAMM --
Assigns random number values based on a gamma distribution: GAMM(CON1,CON2,CON3), where CON1 is the lower bound (defaults to 0.0 ), and CON2 and CON3 are the alpha and beta parameters. respectively, of the gamma function. Alpha and beta must both be positive; they default to 1.0.

CON1, CON2, CON3, . . . , CON10
Constants used with above functions.

## Notes

Operates on input data and produces one output array parameter vector according to:

```
ParR = f(CON1, CON2, ...)
```

where the functions ( $f$ ) are described above. Operations use successive array elements [*VLEN, *VMASK] with the default being all successive elements. For example, *VFILL,A,RAMP, 1,10 assigns $A(1)=1.0, A(2)=$ 11.0, $A(3)=21.0$, etc. ${ }^{*}$ VFILL, $B(5,1), D A T A, 1.5,3.0$ assigns $B(5,1)=1.5$ and $B(6,1)=3.0$. Absolute values and scale factors may be applied to the result parameter [*VABS, *VFACT]. Results may be cumulative [*VCUM]. See the *VOPER command for details.

This command is valid in any processor.

## Menu Paths

Utility Menu>Parameters>Array Parameters>Fill

VFOPT, Opt, Filename, Ext, Dir, Format
Specifies options for view factor file.
SOLUTION: Radiosity
AUX12: Radiosity Solver
MP ME <> PR <> <> <> <> <> <> <> PP <> EME MFS

## Opt

View factor option:

## NEW

Compute view factors and write them to a file.

## OFF

Do not recompute view factors it they already exist in the database, otherwise compute them (default).

## READ

Read view factors from a binary file. For subsequent SOLVE commands, switch to the default option (OFF).

## NONE

Do not write view factors to a file.

## Fname

File name for view factor matrix. Defaults to Jobname.

## Ext

Filename extension for view factor matrix (default $=\mathrm{vf})$.
Dir
Directory path for view factor matrix. If you do not specify a directory path, it will default to your working directory.

## Format

File format for view factor file. Defaults to a Binary format.
BINA
Binary file (default).
ASCI
ASCII file.

## Notes

This command allows you to deactivate the view factor computation (opt = OFF) if the view factors already exist in the database. OFF is the default upon encountering the second and subsequent SOLVE commands in the solution processor. When using the READ option, only a previously-calculated view factor binary file is supported.

## Menu Paths

Main Menu>Preprocessor>Radiation Opts>View Factor
Main Menu>Radiation Opt>Radiosity Meth $>$ Compute
Main Menu>Radiation Opt>Radiosity Meth $>$ View Factor
Main Menu>Solution>Radiation Opts>View Factor

## VFQUERY, srcelem, tarelem

## Queries and prints element Hemicube view factors and average view factor.

AUX12: Radiosity Solver
MP ME <> PR <> <> <> <> <> <> <> PP <> EME MFS

## SRCELEM

Elements representing the source radiating surfaces used to query the view factor at the target element(s). If $S R C E L E M=\mathrm{P}$, graphical picking is enabled (valid only in the GUI). If $S R C E L E M=\mathrm{ALL}$, all selected ele-
ments will have their view factors queried. A component name may also be substituted for SRCELEM. Selected elements must be flagged for surface to surface radiation in order to query view factors ( $\mathbf{S F}$, SFA, or SFE with Lab = RDSF). The view factors must have been previously computed.

## tARELEM

Element for view factor query. If TARELEM = P, graphical picking is enabled (valid only in the GUI). If $T A R E L E M=$ ALL, all selected elements will have their view factors queried. A component name may also be substituted for TARELEM. Selected elements must be flagged for surface to surface radiation in order to query view factors (SF, SFA, or SFE with Lab = RDSF). The view factors must have been previously computed.

## Notes

View factors for each target element will be printed.
An average view factor for all target elements will be computed. (Use *GET to retrieve the average value).
When resuming a database, issue the command VFOPT,READ before issuing the VFQUERY command.

## Menu Paths

## Main Menu>Radiation Opt>Radiosity Meth>Query

## VFSM, Action, ENCL, Scale

## Scales view factor matrix to yield row sum values equal to one.

AUX12: Radiosity Solver
MP ME <> PR <> <> <> <> <> <> <> PP <> EME MFS

## Action

Action to be performed:

## Define

Define a view factor summation (default)

## Clear

Resets the scaling method to 0 for all enclosures. All subsequent arguments are ignored.

## Status

Outputs scaling method for each enclosure in the model.
ENCL
Enclosure number for the view factor scaling.

## Scale

Scaling factor key:
0
The view factor matrix is not changed and no scaling is applied (default).
1
Use scaling.

## Notes

For a perfect enclosure the view factor row sum should be 1.0. Computational errors may yield a row sum $<1.0$, requiring a space mode temperature specification for the enclosure, and yielding an unrealistic temperature distribution. Use the VFSM command to correct this problem.

## Menu Paths

This command cannot be accessed from a menu.
*VFUN, ParR, Func, Par1, CON1, CON2, CON3

## Performs a function on a single array parameter.

APDL: Array Parameters<br>MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Argument Descriptions

## ParR

The name of the resulting numeric array parameter vector. See *SET for name restrictions.

## Func

Function to be performed:
ACOS --
Arccosine: ACOS(Par1).
ASIN --
Arcsine: ASIN(Par1).
ASORT --
Par1 is sorted in ascending order. *VCOL, *VMASK, *VCUM, and *VLEN,,NINC do not apply.
*VLEN,NROW does apply.
ATAN --
Arctangent: ATAN(Par1).
COMP --
Compress: Selectively compresses data set. "True" (*VMASK) values of Par1 (or row positions to be considered according to the NINC value on the *VLEN command) are written in compressed form to ParR, starting at the specified position.

COPY --
Copy: Parl copied to ParR.
COS --
Cosine: COS(Parl).
COSH --
Hyperbolic cosine: $\operatorname{COSH}(\operatorname{Par} 1)$.
DIRCOS --
Direction cosines of the principal stresses (nX9). Par1 contains the nX6 component stresses for the $n$ locations of the calculations.

## DSORT --

Par1 is sorted in descending order. *VCOL, *VMASK, *VCUM, and *VLEN,,NINC do not apply.
*VLEN,NROW does apply.

## EULER --

Euler angles of the principal stresses ( $n$ X3). Par1 contains the $n$ X6 component stresses for the $n$ locations of the calculations.

## EXP --

Exponential: EXP(Par1).

## EXPA --

Expand: Reverse of the COMP function. All elements of Par1 (starting at the position specified) are written in expanded form to corresponding "true" (*VMASK) positions (or row positions to be considered according to the NINC value on the *VLEN command) of ParR.

## LOG --

Natural logarithm: LOG(Par1).

## LOG10 --

Common logarithm: LOG10(Par1).

## NINT --

Nearest integer: 2.783 becomes 3.0, -1.75 becomes -2.0 .

## NOT --

Logical complement: values $\leq 0.0$ (false) become 1.0 (true). Values $>0.0$ (true) become 0.0 (false).

## PRIN --

Principal stresses ( $n \mathrm{X} 5$ ). Par1 contains the $n \mathrm{X} 6$ component stresses for the $n$ locations of the calculations.

## PWR --

Power function: Par1**CON1. Exponentiation of any negative number in the vector Parl to a noninteger power is performed by exponentiating the positive number and prepending the minus sign. For example, $-4{ }^{* * 2.3}$ is $-\left(4^{* *} 2.3\right)$.

## SIN --

Sine: $\operatorname{SIN}(\operatorname{Par} 1)$.

## SINH --

Hyperbolic sine: $\operatorname{SINH}(\operatorname{Par1})$.

## SQRT --

Square root: SQRT(Par1).

## TAN --

Tangent: TAN(Par1).
TANH --
Hyperbolic tangent: TANH(Par1).

## TANG --

Tangent to a path at a point: the slope at a point is determined by linear interpolation half way between the previous and next points. Points are assumed to be in the global Cartesian coordinate system. Path points are specified in array Parl (having 3 consecutive columns of data, with the columns containing the $x, y$, and $z$ coordinate locations, respectively, of the points). Only the starting row index and the column index for the $x$ coordinates are specified, such as $A(1,1)$. The $y$ and $z$ coordinates of the vector are assumed to begin in the corresponding next columns, such as $A(1,2)$ and

A(1,3). The tangent result, ParR, must also have 3 consecutive columns of data and will contain the tangent direction vector (normalized to 1.0 ); such as $1,0,0$ for an $x$-direction vector.

## NORM --

Normal to a path and an input vector at a point: determined from the cross-product of the calculated tangent vector (see TANG) and the input direction vector (with the $\mathrm{i}, \mathrm{j}$, and k components input as CON1, CON2, and CON3). Points are assumed to be in the global Cartesian coordinate system. Path points are specified in array Parl (having 3 consecutive columns of data, with the columns containing the $x, y$, and $z$ coordinate locations, respectively, of the points). Only the starting row index and the column index for the $x$ coordinates are specified, such as $A(1,1)$. The $y$ and $z$ coordinates of the vector are assumed to begin in the corresponding next columns, such as $A(1,2)$ and $A(1,3)$. The normal result, ParR, must also have 3 consecutive columns of data and will contain the normal direction vector (normalized to 1.0 ); such as $1,0,0$ for an $x$-direction vector.

LOCAL --
Transforms global Cartesian coordinates of a point to the coordinates of a specified system: points to be transformed are specified in array Parl (having 3 consecutive columns of data, with the columns containing the $x, y$, and $z$ global Cartesian coordinate locations, respectively, of the points). Only the starting row index and the column index for the $x$ coordinates are specified, such as $A(1,1)$. The $y$ and $z$ coordinates of the vector are assumed to begin in the corresponding next columns, such as $A(1,2)$ and $A(1,3)$. Results are transformed to coordinate system CON1 (which may be any valid coordinate system number, such as $1,2,11,12$, etc.). The transformed result, ParR, must also have 3 consecutive columns of data and will contain the corresponding transformed coordinate locations.

## GLOBAL --

Transforms specified coordinates of a point to global Cartesian coordinates: points to be transformed are specified in array Parl (having 3 consecutive columns of data, with the columns containing the local coordinate locations ( $x, y, z$ or $r, \theta, z$ or etc.) of the points). Only the starting row index and the column index for the $x$ coordinates are specified, such as $A(1,1)$. The $y$ and $z$ coordinates (or $\theta$ and $z$, or etc.) of the vector are assumed to begin in the corresponding next columns, such as $A(1,2)$ and $\mathrm{A}(1,3)$. Local coordinate locations are assumed to be in coordinate system CON1 (which may be any valid coordinate system number, such as $1,2,11,12$, etc.). The transformed result, ParR, must also have 3 consecutive columns of data, with the columns containing the global Cartesian $x, y$, and $z$ coordinate locations, respectively.

## Par1

Array parameter vector in the operation.
CON1, CON2, CON3
Constants (used only with the PWR, NORM, LOCAL, and GLOBAL functions).

## Notes

Operates on one input array parameter vector and produces one output array parameter vector according to:
$\operatorname{ParR}=\mathrm{f}($ Parl $)$
where the functions (f) are described below. Functions are based on the standard FORTRAN definitions where possible. Out-of-range function results (or results with exponents whose magnitudes are approximately greater than 32 or less than -32) produce a zero value. Input and output for angular functions may be radians (default) or degrees [*AFUN]. ParR may be the same as Par1. Starting array element numbers must be defined for each array parameter vector if it does not start at the first location. For example, *VFUN,A,SQRT,B(5) takes the square root of the fifth element of $B$ and stores the result in the first element of $A$. Operations
continue on successive array elements [*VLEN, *VMASK] with the default being all successive elements. Absolute values and scale factors may be applied to all parameters [*VABS, *VFACT]. Results may be cumulative [*VCUM]. Skipping array elements via *VMASK or *VLEN for the TANG and NORM functions skips only the writing of the results (skipped array element data are used in all calculations). See the *VOPER command for details.

This command is valid in any processor.

## Menu Paths

Utility Menu>Parameters>Array Operations $>$ Vector Functions

VGEN, ITIME, NV1, NV2, NINC, DX, DY, DZ, KINC, NOELEM, IMOVE
Generates additional volumes from a pattern of volumes.
PREP 7:Volumes
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## ITIME

Do this generation operation a total of ITIMES, incrementing all keypoints in the given pattern automatically (or by KINC) each time after the first. ITIME must be $>1$ for generation to occur.

## NV1, NV2, NINC

Generate volumes from pattern beginning with NV1 to NV2 (defaults to NV1) in steps of NINC (defaults to 1). If $N V 1=A L L, N V 2$ and $N I N C$ are ignored and the pattern is all selected volumes [VSEL]. If NV1 = P , graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NV1 (NV2 and NINC are ignored).

## DX, DY, DZ

Keypoint location increments in the active coordinate system (--, D日, DZ for cylindrical, --, D日, -- for spherical).

## KINC

Keypoint increment between generated sets. If zero, the lowest available keypoint numbers are assigned [NUMSTR].

## NOELEM

Specifies if elements and nodes are also to be generated:
0
Generate nodes and elements associated with the original volumes, if they exist.
1
Do not generate nodes and elements.

## IMOVE

Specifies whether to redefine the existing volumes:
0
Generate additional volumes as requested with the ITIME argument.
1
Move original volumes to new position retaining the same keypoint line, and area numbers (ITIME, KINC, and NOELEM are ignored). Corresponding meshed items are also moved if not needed at their original position.

## Notes

Generates additional volumes (and their corresponding keypoints, lines, areas and mesh) from a given volume pattern. The MAT, TYPE, REAL, and ESYS attributes are based upon the volumes in the pattern and not upon the current settings of the pointers. End slopes of the generated lines remain the same (in the active coordinate system) as those of the given pattern. For example, radial slopes remain radial, etc. Generations which produce volumes of a size or shape different from the pattern (i.e., radial generations in cylindrical systems, radial and phi generations in spherical systems, and theta generations in elliptical systems) are not allowed. Note that solid modeling in a toroidal coordinate system is not recommended. Volume, area, and line numbers are automatically assigned (beginning with the lowest available values [NUMSTR]).

## Menu Paths

Main Menu $>$ Preprocessor $>$ Modeling $>$ Copy $>$ Volumes
Main Menu>Preprocessor>Modeling>Move / Modify>Volumes
*VGET, ParR, Entity, ENTNUM, Item1, IT1NUM, Item2, IT2NUM, KLOOP

## Retrieves values and stores them into an array parameter.

APDL: Parameters<br>MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Argument Descriptions

## ParR

The name of the resulting vector array parameter. See *SET for name restrictions.

## Entity

Entity keyword. Valid keywords are NODE, ELEM, KP, LINE, AREA, VOLU, etc. as shown for Entity $=$ in the table below.

## ENTNUM

The number of the entity (as shown for $E N T N U M=$ in the table below).

## Item1

The name of a particular item for the given entity. Valid items are as shown in the Item1 columns of the table below.

## IT1NUM

The number (or label) for the specified Item1 (if any). Valid IT1NUM values are as shown in the ITINUM columns of the table below. Some Item1 labels do not require an ITINUM value.

## Item2, ITRNUM

A second set of item labels and numbers to further qualify the item for which data is to be retrieved. Most items do not require this level of information.

## KLOOP

Field to be looped on:
0 or 2 --
Loop on the ENTNUM field (default).
3 --
Loop on the Item1 field.

```
4 --
 Loop on the IT1NUM field. Successive items are as shown with IT1NUM.
5 --
 Loop on the Item2 field.
6 --
Loop on the IT2NUM field. Successive items are as shown with IT2NUM.
```


## Notes

Retrieves values for specified items and stores the values in an output vector of a user-named array parameter according to:

ParR $=\mathrm{f}($ Entity, ENTNUM, Item1, IT1NUM, Item2, IT2NUM)
where (f) is the *GET function; Entity, Item1, and Item2 are keywords; and ENTNUM, IT1NUM, and IT2NUM are numbers or labels corresponding to the keywords. Looping continues over successive entity numbers (ENTNUM) for the KLOOP default. For example, *VGET,A(1),ELEM,5,CENT,X returns the centroid xlocation of element 5 and stores the result in the first location of $A$. Retrieving continues with element 6,7, 8 , etc., regardless of whether the element exists or is selected, until successive array locations are filled. Use *VLEN or *VMASK to skip locations. Absolute values and scale factors may be applied to the result parameter [*VABS, *VFACT]. Results may be cumulative [*VCUM]. See the *VOPER command for general details. Results can be put back into an analysis by writing a file of the desired input commands with the *VWRITE command. See also the *VPUT command.

Both *GET and *VGET retrieve information from the active data stored in memory. The database is often the source, and sometimes the information is retrieved from common memory blocks that ANSYS uses to manipulate information. Although POST1 and POST26 operations use a *. rst file, GET data is accessed from the database or from the common blocks. Get operations do not access the *. rst file directly.

The *VGET command retrieves both the unprocessed real and the imaginary parts (original and duplicate sector nodes and elements) of a cyclic symmetry solution.

This command is valid in any processor.

## Table 260 *VGET - PREP7 Items

## PREP7 Items

| Item1 | IT1NUM | Description |
| :---: | :---: | :---: |
| LOC | X, Y, Z | $X, Y$, or Z location in the active coordinate system. |
| ANG | $X Y, Y Z, Z X$ | THXY, THYZ, THZX rotation angle. |
| NSEL |  | Select status of node $n(-1$ - unselected, 0 - undefined, 1 - selected). |
| NLIST |  | Returns the list of selected nodes (ENTNUM is ignored). |
| Entity = ELEM, ENTNUM $=n$ (element number) |  |  |
| Item1 | IT1NUM | Description |
| NODE | 1,2,--20 | Node number at position 1,2,--20 of element $n$. |


| PREP7 Items |  |  |
| :---: | :---: | :---: |
| CENT | X, Y, Z | Centroid $X, Y$, or $Z$ location (based on shape function) in the active coordinate system. |
| ADJ | 1,2,-- 6 | Number of element adjacent to face 1, 2,--6. |
| ATTR | name | Number assigned to attribute name $=$ MAT, TYPE, REAL, ESYS, ENAM, or SECN). |
| GEOM |  | Characteristic element geometry. Length of line element (straight line between ends), area of area element, or volume of volume element. Issuing *VGET for an element returns a signed value. To always get a positive value, issue *VABS,1 just prior to issuing *VGET, $\operatorname{par}(\mathrm{n}), E L E M, \mathrm{x}, \mathrm{GEOM}$. |
| ESEL |  | Select status of element $n$ (-1-unselected, 0 - undefined, 1 selected). |
| SHPAR | Test | Element shape test result for selected element $n$, where Test=ANGD (SHELL28 corner angle deviation), ASPE (aspect ratio), JACR (Jacobian ratio), MAXA (maximum corner angle), PARA (deviation from parallelism of opposite edges), or WARP (warping factor). |
| ELIST |  | Returns the list of selected elements (ENTNUM is ignored). |
| Entity $=$ KP, ENTNUM $=n$ (keypoint number) |  |  |
| Item1 | IT1NUM | Description |
| LOC | X, Y, Z | $X, Y$, or Z location in the active coordinate system. |
| ATTR | name | Number assigned to attribute (name = MAT, TYPE, REAL, ESYS, NODE or ELEM). |
| DIV |  | Divisions (element size setting) from KESIZE command. |
| KSEL |  | Select status of keypoint $n$ ( -1 - unselected, 0 - undefined, 1 selected). |
| KLIST |  | Returns the list of selected keypoints (ENTNUM is ignored). |
| Entity = LINE, ENTNUM $=n$ (line number) |  |  |
| Item1 | IT1NUM | Description |
| KP | 1,2 | Keypoint number at position 1 or 2. |
| ATTR | name | Number assigned to attribute ( name $=$ MAT, TYPE, REAL, ESYS, NNOD, NELM, or NDIV). NNOD = number of nodes, NELM = number of elements, NDIV = number of divisions. |
| LENG |  | Length. |
| LSEL |  | Select status of line $n$ (-1-unselected, 0 - undefined, 1 - selected). |
| LLIST |  | Returns the list of selected lines (ENTNUM is ignored). |
| Entity $=$ AREA, ENTNUM $=n$ (area number) |  |  |
| Item1 | IT1NUM | Description |
| LOOP Item2 | $1,2,--I$ <br> IT2NUM | Loop number. Must be input if LINE number is to be retrieved. Description |


| PREP7 Items |  |  |
| :---: | :---: | :---: |
| LINE | 1,2,--p | Line number at position 1, 2, --- p. |
| ATTR | name | Number assigned to attribute ( name $=$ MAT, TYPE, REAL, ESYS, SECN, NNOD, or NELM). NNOD = number of nodes, NELM = number of elements. |
| AREA |  | Area (after last ASUM). |
| ASEL |  | Select status of area $n(-1$ - unselected, 0 - undefined, 1 - selected). |
| ALIST |  | Returns the list of selected areas (ENTNUM is ignored). |
| Entity $=$ VOLU, ENTNUM $=n$ (volume number) |  |  |
| Item1 | IT1NUM | Description |
| SHELL <br> Item2 | $1,2,--1$ <br> IT2NUM | Shell number. Must be input if AREA number is to be retrieved. Description |
| AREA | 1, 2, -- p | Area number at position 1, 2, --- $p$. |
| ATTR | name | Number assigned to attribute ( name $=$ MAT, TYPE, REAL, ESYS, NNOD, or NELM). NNOD = number of nodes, NELM = number of elements. |
| VOLU |  | Volume (after last VSUM). |
| VSEL |  | Select status of volume $n$ ( -1 - unselected, 0 - undefined, 1 selected). |
| VLIST |  | Returns the list of selected volumes (ENTNUM is ignored). |
| Entity $=$ CDSY, ENTNUM $=n$ (coordinate system number) |  |  |
| Item1 | IT1NUM | Description |
| LOC | $X, Y, Z$ | X, Y, or Z origin location (global Cartesian coordinate). |
| ANG | XY, YZ, ZX | THXY, THYZ, or THZX rotation angle ( ${ }^{\circ}$ ) relative to the global Cartesian coordinate system. |
| ATTR | name | Number assigned to attribute ( name $=$ KCS, KTHET, KPHI, PAR1, or PAR2). A - 1.0 is returned for KCS if coordinate system is undefined). |
| Entity $=$ RCON, ENTNUM $=n$ (real constant set number) |  |  |
| Item1 | IT1NUM | Description |
| CONST | 1,2,-m | Real constant value for constant 1,2,--- m. |
| Ent ity $=$ TLAB, ENTNUM $=n$ (Tlab is the data table label: BKIN, MKIN, MISO, etc. as described on the TB command. $n$ is the material number.) |  |  |
| Item1 | IT1NUM | Description |
| TEMP | val | Temperature value (if any) at which to retrieve table data. |
| Item2 | IT2NUM | Description |
| CONST | num | Constant number whose value is to be retrieved (see Data Tables <br> - Implicit Analysis in the Element Reference). For constants input |

## PREP7 Items

as $X, Y$ points, the constant numbers are consecutive with the $X$ constants being the odd numbers, beginning with one.

Table 261 *VGET - POST1 Items
Entity = NODE, ENTNUM = $n$ (node number)
Vector items are in the active results coordinate system unless otherwise specified. Item1 IT1NUM Description
Valid labels for nodal degree of freedom results are:

| U | X, Y, Z | $X, Y$, or $Z$ structural displacement. |
| :---: | :---: | :---: |
| ROT | $X, Y, Z$ | $X, Y$, or $Z$ structural rotation. |
| TEMP |  | Temperature. For SHELL131 and SHELL132 elements with KEYOPT(3) $=0$ or 1 , use TBOT, TE2, TE3, $\ldots$, TTOP instead of TEMP. Alternative get functions: TEMP(N), TBOT(N), TE2(N), etc. |
| PRES |  | Pressure. |
| VOLT |  | Electric potential. |
| MAG |  | Magnetic scalar potential. |
| V | $X, Y, Z$ | X, Y, or Z fluid velocity. |
| A | $X, Y, Z$ | $X, Y$, or Z magnetic vector potential. |
| CURR |  | Current. |
| EMF |  | Electromotive force drop. |
| ENKE |  | Turbulent kinetic energy (FLOTRAN). |
| ENDS |  | Turbulent energy dissipation (FLOTRAN). |
| Valid labels for element nodal results are: |  |  |
| Item1 | IT1NUM | Description |
| S | $\begin{aligned} & X, Y, Z, X Y, Y Z, \\ & X Z \end{aligned}$ | Component stress. |
| " | 1,2,3 | Principal stress. |
| " | INT, EQV | Stress intensity or equivalent stress. |
| EPTO | $\begin{aligned} & X, Y, Z, X Y, Y Z, \\ & X Z \end{aligned}$ | Component total strain (EPEL + EPPL + EPCR). |
| " | 1,2,3 | Principal total strain. |
| " | INT, EQV | Total strain intensity or total equivalent strain. |
| EPEL | $\begin{aligned} & X, Y, Z, X Y, Y Z, \\ & X Z \end{aligned}$ | Component elastic strain. |
| " | 1,2,3 | Principal elastic strain. |
| " | INT, EQV | Elastic strain intensity or elastic equivalent strain. |
| EPPL | $\begin{aligned} & X, Y, Z, X Y, Y Z, \\ & X Z \end{aligned}$ | Component plastic strain. |
| " | 1,2,3 | Principal plastic strain. |

## Entity = NODE, ENTNUM = $n$ (node number)

| Item1 | IT1NUM | Description |
| :---: | :---: | :---: |
| " | INT, EQV | Plastic strain intensity or plastic equivalent strain. |
| EPCR | $\begin{aligned} & X, Y, Z, X Y, Y Z, \\ & X Z \end{aligned}$ | Component creep strain. |
| " | 1, 2, 3 | Principal creep strain. |
| " | INT, EQV | Creep strain intensity or creep equivalent strain. |
| EPTH | $\begin{aligned} & X, Y, Z, X Y, Y Z, \\ & X Z \end{aligned}$ | Component thermal strain. |
| " | 1, 2, 3 | Principal thermal strain. |
| " | INT, EQV | Thermal strain intensity or thermal equivalent strain. |
| EPSW |  | Swelling strain. |
| NL | SEPL | Equivalent stress (from stress-strain curve). |
| " | SRAT | Stress state ratio. |
| " | HPRES | Hydrostatic pressure. |
| " | EPEQ | Accumulated equivalent plastic strain. |
| " | PSV | Plastic state variable. |
| " | PLWK | Plastic work/volume. |
| HS | X, Y, Z | Component magnetic field intensity from current sources (in the global Cartesian coordinate system). |
| BFE | TEMP | Body temperatures (calculated from applied temperatures) as used in solution. |
| TG | X, Y, Z, SUM | Component thermal gradient and sum. |
| TF | $X, Y, Z$, SUM | Component thermal flux and sum. |
| PG | $X, Y, Z$, SUM | Component pressure gradient and sum. |
| EF | $X, Y, Z$, SUM | Component electric field and sum. |
| D | $X, Y, Z, S U M$ | Component electric flux density and sum. |
| H | X, Y, Z, SUM | Component magnetic field intensity and sum. |
| B | $X, Y, Z$, SUM | Component magnetic flux density and sum. |
| FMAG | $X, Y, Z$, SUM | Component electromagnetic force and sum. |

## Note

Element nodal results are the average nodal value of the selected elements.

Valid labels for FLOTRAN nodal results are:
Item1
IT1NUM
Description

TTOT
HFLU
HFLM

Total temperature.
Heat flux.
Heat transfer (film) coefficient.

Entity $=$ NODE, ENTNUM $=n$ (node number)
Vector items are in the active results coordinate system unless otherwise specified.
Item1 IT1NUM Description
COND Fluid laminar conductivity.
PCOE Pressure coefficient.
PTOT Total (stagnation) pressure.
MACH Mach number.
STRM Stream function. (2-D applications only.)

DENS
VISC
EVIS
ECON
YPLU
TAUW

Fluid density.
Fluid laminar viscosity.
Fluid effective viscosity.
Fluid effective conductivity.
$\mathrm{Y}+$, a turbulent law of the wall parameter.
Shear stress at the wall.

Entity $=$ ELEM, ENTNUM $=n$ (element number)
Valid labels for element results are:
ETAB Lab
Any user-defined element table label (see ETABLE command).

## Menu Paths

Utility Menu>Parameters>Get Array Data

VGET, Par, IR, TSTRT, KCPLX
Moves a variable into an array parameter vector.
POST26:Special Purpose
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Par

Array parameter vector in the operation.
IR
Reference number of the variable (1 to NV [NUMVAR]).
TSTRT
Time (or frequency) corresponding to start of $I R$ data. If between values, the nearer value is used.

## KCPLX

Complex number key:
0
Use the real part of the $I R$ data.
1
Use the imaginary part of the $I R$ data.

## Notes

Moves a variable into an array parameter vector. The starting array element number must be defined. For example, VGET,A(1),2 moves variable 2 (starting at time 0.0 ) to array parameter A. Looping continues from array element $A(1)$ with the index number incremented by one until the variable is filled. The number of loops may be controlled with the *VLEN command (except that loop skipping (NINC) is not allowed). For multi-dimensioned array parameters, only the first (row) subscript is incremented.

## Menu Paths

Main Menu>TimeHist Postpro>Table Operations>Variable to Par

VGLUE, NV1,NV2, NV3, NV4, NV5, NV6, NV7, NV8, NV9

## Generates new volumes by "gluing" volumes.

PREP 7: Booleans
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NV1, NV2, NV3, . . . , NV9

Numbers of the volumes to be glued. If NV1 = ALL, all selected volumes will be glued ( $N V 2$ to $N V 9$ will be ignored). If NV1 $=P$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NV1.

## Notes

Use of the VGLUE command generates new volumes by "gluing" input volumes. The glue operation redefines the input volumes so that they share areas along their common boundaries. The new volumes encompass the same geometry as the original volumes. This operation is only valid if the intersections of the input volumes are areas along the boundaries of those volumes. See the Modeling and Meshing Guide for an illustration. See the BOPTN command for an explanation of the options available to Boolean operations. Element attributes and solid model boundary conditions assigned to the original entities will not be transferred to the new entities generated.

The VGLUE command results in the merging of areas, lines, and keypoints at the common volume boundaries. The areas, lines, and keypoints of the lower numbered volume will be kept. This means one must be aware of volume numbering when multiple VGLUE commands are applied to avoid any "ungluing" of geometry.

## Menu Paths

Main Menu>Preprocessor>Modeling>Operate>Booleans>Glue>Volumes

## Defines the viewing direction for the display.

GRAPHICS:Views
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
wn
Window number (or ALL) to which command applies (defaults to 1 ).

## $X V, Y V, Z V$

The object is viewed along the line from point $X V, Y V, Z V$ (in the global coordinate system) to the global coordinate system origin. For section displays, the cutting plane is assumed to be perpendicular to this line. If $X V=W P$, modify view to be normal to the currently defined working plane. Defaults to $(0,0,1)$.

## Command Default

$0,0,1$ view. The default reference orientation is X -axis horizontal to the right, Y -axis vertical upward, and Z axis out from the screen (normal). See /VUP command to change reference orientation.

## Notes

The view line is always normal to the screen. The view is selected by defining a point (in the global Cartesian coordinate system) representing a point along the viewing line. This point, and the global Cartesian coordinate system origin, define the line along which the object is viewed while looking toward the origin. Any point along the view line may be used, i.e., $(1,1,1)$ and $(2,2,2)$ give the same view. The display orientation may be changed as desired [/ANGLE]. The display coordinate system type may be changed (from Cartesian to cylindrical, spherical, toroidal, etc.) with the DSYS command.

This command is valid in any processor.

## Menu Paths

# Main Menu>General Postproc>Path Operations>Define Path>On Working Plane Main Menu>Preprocessor>Path Operations>Define Path>On Working Plane Utility Menu>PlotCtrls $>$ Pan, Zoom, Rotate Utility Menu>PlotCtrls>View Settings>Viewing Direction 

VIMP, VOL, CHGBND, IMPLEVEL
Improves the quality of the tetrahedral elements in the selected volume(s).
PREP 7: Meshing
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
VOL
Number of the volume containing the tetrahedral elements to be improved. If $V O L=A L L$ (default), improve the tetrahedral elements in all selected volumes. If $V O L=P$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for VOL.

## CHGBND

Specifies whether to allow boundary modification. Boundary modification includes such things as changes in the connectivity of the element faces on the boundary and the addition of boundary nodes. (Also see "Notes" (p. 1826) below for important usage information for CHGBND.)

0
Do not allow boundary modification.
1
Allow boundary modification (default).

## IMPLEVEL

Identifies the level of improvement to be performed on the elements. (Improvement occurs primarily through the use of face swapping and node smoothing techniques.)

0
Perform the least amount of swapping/smoothing.
1
Perform an intermediate amount of swapping/smoothing.
2
Perform the greatest amount of swapping/smoothing.
3
Perform the greatest amount of swapping/smoothing, plus additional improvement techniques (default).

## Notes

VIMP is useful for further improving a volume mesh created in ANSYS [VMESH], especially quadratic tetrahedral element meshes.

The VIMP command enables you to improve a given tetrahedral mesh by reducing the number of poorlyshaped tetrahedral elements (in particular, the number of sliver tetrahedral elements)--as well as the overall number of elements--in the mesh. It also improves the overall quality of the mesh.

Regardless of the value of the CHGBND argument, boundary mid-nodes can be moved as long as you are not using p-method analysis. When $C H G B N D=0$ and you are using p-method analysis, boundary mid-nodes cannot be moved. (ANSYS issues an error message if it would be necessary to move boundary mid-nodes in order to generate valid quadratic elements.)

When loads or constraints have been placed on boundary nodes or mid-nodes, and boundary mid-nodes are later moved, ANSYS issues a warning message to let you know that it will not update the loads or constraints.

Even when CHGBND $=1$, no boundary modification is performed on areas and lines that are not modifiable (for example, areas that are adjacent to other volumes or that contain shell elements, or lines that are not incident on modifiable areas, contain beam elements, or have line divisions specified for them [LESIZE]).

## Menu Paths

## Main Menu>Preprocessor>Meshing>Modify Mesh>Improve Tets>Volumes

VINP, NV1, NV2, NV3, NV4, NV5, NV6, NV7, NV8, NV9
Finds the pairwise intersection of volumes.

> PREP 7: Booleans
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NV1, NV2, NV3, . . . NV9

Numbers of volumes to be intersected pairwise. If NV1 = ALL, NV2 to NV9 are ignored and the pairwise intersection of all selected volumes is found. If NV1 = P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NV1.

## Notes

Finds the pairwise intersection of volumes. The pairwise intersection is defined as all regions shared by any two or more volumes listed on this command. New volumes will be generated where the original volumes intersect pairwise. If the regions of pairwise intersection are only areas, new areas will be generated. See the Modeling and Meshing Guide for an illustration. See the BOPTN command for an explanation of the options available to Boolean operations. Element attributes and solid model boundary conditions assigned to the original entities will not be transferred to the new entities generated.

## Menu Paths

Main Menu>Preprocessor>Modeling>Operate>Booleans>Intersect>Pairwise>Volumes

VINV,NV1,NV2,NV3,NV4,NV5,NV6, NV7,NV8,NV9
Finds the intersection of volumes.

> PREP 7: Booleans
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NV1, NV2, NV3, . . . , NV9

Numbers of volumes to be intersected. If NV1 = ALL, NV2 to NV9 are ignored, and the intersection of all selected volumes is found. If NV1 = P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NV1.

## Notes

Finds the common (not pairwise) intersection of volumes. The common intersection is defined as the regions shared (in common) by all volumes listed on this command. New volumes will be generated where the original volumes intersect. If the regions of intersection are only areas, new areas will be generated instead. See the Modeling and Meshing Guide for an illustration. See the BOPTN command for an explanation of the options available to Boolean operations. Element attributes and solid model boundary conditions assigned to the original entities will not be transferred to the new entities generated.

## Menu Paths

Main Menu>Preprocessor>Modeling>Operate>Booleans>Intersect>Common>Volumes

*VITRP, ParR, ParT, Parl, ParJ, Park

## Forms an array parameter by interpolation of a table.

> APDL: Array Parameters
> MP ME ST PR PRN $<><>$ FL EM EH DY PP <> EME MFS

## Argument Descriptions

## ParR

The name of the resulting array parameter. See *SET for name restrictions.

## Part

The name of the TABLE array parameter. The parameter must exist as a dimensioned array of type TABLE [*DIM].

## ParI

Array parameter vector of I (row) index values for interpolation in ParT.

## ParJ

Array parameter vector of J (column) index values for interpolation in $\operatorname{Part}$ (which must be at least 2-
D).

## ParK

Array parameter vector of K (depth) index values for interpolation in $\operatorname{ParT}$ (which must be 3-D).

## Notes

Forms an array parameter (of type ARRAY) by interpolating values of an array parameter (of type TABLE) at specified table index locations according to:

ParR $=\mathrm{f}($ ParT, Parl, ParJ, ParK $)$
where Part is the type TABLE array parameter, and ParI, ParJ, ParK are the type ARRAY array parameter vectors of index values for interpolation in Part. See the *DIM command for TABLE and ARRAY declaration types. Linear interpolation is used. The starting array element number for the TABLE array ( $\operatorname{ParT}$ ) is not used (but a value must be input). Starting array element numbers must be defined for each array parameter vector if it does not start at the first location. For example, *VITRP, $R(5), T A B(1,1), X(2), Y(4)$ uses the second element of $X$ and the fourth element of $Y$ as index values (row and column) for a 2-D interpolation in TAB and stores the result in the fifth element of R. Operations continue on successive array elements [*VLEN, *VMASK] with the default being all successive elements. Absolute values and scale factors may be applied to the result parameter [*VABS, *VFACT]. Results may be cumulative [*VCUM]. See the *VOPER command for details.

This command is valid in any processor.

## Menu Paths

Utility Menu>Parameters $>$ Array Operations $>$ Vector Interpolate

## *VLEN, NROW, NINC

Specifies the number of rows to be used in array parameter operations.

APDL: Array Parameters<br>MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Argument Descriptions

## NROW

Number of rows to be used with the ${ }^{*} \mathbf{V} \boldsymbol{x x}$ or ${ }^{*} \mathbf{M} \boldsymbol{x x}$ operations. Defaults to the number of rows needed to fill the result array.

NINC
Perform the operation on every NINC row (defaults to 1 ).

## Command Default

Fill all locations of the result array from the specified starting location.

## Notes

Specifies the number of rows to be used in array parameter operations. The size of the submatrix used is determined from the upper left starting array element (defined on the operation command) to the lower right array element (defined by the number of rows on this command and the number of columns on the *VCOL command). NINC allows skipping row operations for some operation commands. Skipped rows are included in the row count. The starting row number must be defined on the operation command for each parameter read and for the result written.

The default NROW is calculated from the maximum number of rows of the result array (the *DIM row dimension) minus the starting location +1 . For example, *DIM, $R, 10$ and a starting location of $R(7)$ gives a default of 4 loops (filling $R(7), R(8), R(9)$, and $R(10)$ ). Repeat operations automatically terminate at the last row of the result array. Existing values in the rows and columns of the results matrix remain unchanged where not overwritten by the requested input or operation values.

The stride (NINC) allows operations to be performed at regular intervals. It has no effect on the total number of row operations. Skipped operations retain the previous result. For example, *DIM, $\mathrm{R}, \mathrm{6}, \mathrm{w}$, with a starting location of $R(1)$, NROW $=10$, and NINC $=2$ calculates values for locations $R(1), R(3)$, and $R(5)$ and retains values for locations $R(2), R(4)$, and $R(6)$. A more general skip control may be done by masking [*VMASK]. The row control settings are reset to the defaults after each *VXX or *MXX operation. Use *VSTAT to list settings.

This command is valid in any processor.

## Menu Paths

Utility Menu>Parameters>Array Operations>Operation Settings

## VLIST,NV1,NV2, NINC

## Lists the defined volumes.

> PREP 7:Volumes
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NV1, NV2, NINC

List volumes from NV1 to NV2 (defaults to NV1) in steps of NINC (defaults to 1). If NV1 = ALL (default), $N V 2$ and NINC are ignored and all selected volumes [VSEL] are listed. If NV1 $=\mathrm{P}$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NV1 (NV2 and NINC are ignored).

## Notes

An attribute (TYPE, MAT, REAL, or ESYS) listed as a zero is unassigned; one listed as a positive value indicates that the attribute was assigned with the VATT command (and will not be reset to zero if the mesh is cleared); one listed as a negative value indicates that the attribute was assigned using the attribute pointer [TYPE, MAT, REAL, or ESYS] that was active during meshing (and will be reset to zero if the mesh is cleared). A "-1" in the "nodes" column indicates that the volume has been meshed but there are no interior nodes. The volume size is listed only if a VSUM command has been performed on the volume. Volume orientation attributes (KZ1 and KZ2) are listed only if a VEORIENT command was previously used to define an orientation for the volume.

This command is valid in any processor.

## Menu Paths

## Utility Menu>List>Volumes

## VLSCALE, NV1,NV2, NINC, RX, RY, RZ, KINC, NOELEM, IMOVE

## Generates a scaled set of volumes from a pattern of volumes.

PREP 7:Volumes
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NV1, NV2, NINC

Set of volumes (NV1 to NV2 in steps of NINC) that defines the pattern to be scaled. NV2 defaults to NV1, NINC defaults to 1 . If NV1 = ALL, NV2 and NINC are ignored and the pattern is defined by all selected volumes. If NV1 = P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NV1 (NV2 and NINC are ignored).

## RX, RY, RZ

Scale factors to be applied to the $X, Y$, and $Z$ keypoint coordinates in active coordinate system ( $R R, R \theta$, $R Z$ for cylindrical; $R R, R \theta, R \Phi$ for spherical). Note that the $R \theta$ and $R \Phi$ scale factors are interpreted as angular offsets. For example, if CSYS $=1, R X, \quad R Y, \quad R Z$ input of $(1.5,10,3)$ would scale the specified keypoints 1.5 times in the radial and 3 times in the $Z$ direction, while adding an offset of 10 degrees to the keypoints. Zero, blank, or negative scale factor values are assumed to be 1.0. Zero or blank angular offsets have no effect.

## KINC

Increment to be applied to keypoint numbers for generated set. If zero, the lowest available keypoint numbers will be assigned [NUMSTR].

## NOELEM

Specifies whether nodes and elements are also to be generated:
0
Nodes and elements associated with the original volumes will be generated (scaled) if they exist.
1
Nodes and elements will not be generated.
IMOVE
Specifies whether volumes will be moved or newly defined:
0
Additional volumes will be generated.
1
Original volumes will be moved to new position (KINC and NOELEM are ignored). Use only if the old volumes are no longer needed at their original positions. Corresponding meshed items are also moved if not needed at their original position.

## Notes

Generates a scaled set of volumes (and their corresponding keypoints, lines, areas, and mesh) from a pattern of volumes. The MAT, TYPE, REAL, and ESYS attributes are based on the volumes in the pattern and not the current settings. Scaling is done in the active coordinate system. Volumes in the pattern could have been generated in any coordinate system. However, solid modeling in a toroidal coordinate system is not recommended.

## Menu Paths

Main Menu>Preprocessor>Modeling>Operate>Scale>Volumes

## *VMASK, Par

Specifies an array parameter as a masking vector.

## Argument Descriptions

## Par

Name of the mask parameter. The starting subscript must also be specified.

## Command Default

No mask parameter specified (use true for all operations).

## Notes

Specifies the name of the parameter whose values are to be checked for each resulting row operation. The mask vector usually contains only 0 (for false) and 1 (for true) values. For each row operation the corresponding mask vector value is checked. A true value allows the operation to be done. A false value skips the operation (and retains the previous results). A mask vector can be created from direct input, such as $M(1)=1,0,0,1,1,0,1$; or from the DATA function of the *VFILL command. The NOT function of the *VFUN command can be used to reverse the logical sense of the mask vector. The logical compare operations ( $\mathrm{LT}, \mathrm{LE}, \mathrm{EQ}, \mathrm{NE}, \mathrm{GE}$, and GT ) of the *VOPER command also produce a mask vector by operating on two other vectors. Any numeric vector can be used as a mask vector since the actual interpretation assumes values less than 0.0 are 0.0 (false) and values greater than 0.0 are 1.0 (true). If the mask vector is not specified (or has fewer values than the result vector), true (1.0) values are assumed for the unspecified values. Another skip control may be input with NINC on the *VLEN command. If both are present, operations occur only when both are true. The mask setting is reset to the default (no mask) after each ${ }^{*} \mathbf{V} \boldsymbol{X X}$ or ${ }^{*} \mathbf{M} \boldsymbol{x} \boldsymbol{x}$ operation. Use *VSTAT to list settings.

This command is valid in any processor.

## Menu Paths

## Utility Menu>Parameters>Array Operations>Operation Settings

VMESH,NV1,NV2,NINC
Generates nodes and volume elements within volumes.
PREP 7: Meshing
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NV1, NV2, NINC

Mesh volumes from NV1 to NV2 (defaults to NV1) in steps of NINC (defaults to 1). If NV1 = ALL, NV2 and NINC are ignored and all selected volumes [VSEL] are meshed. If NV1 $=\mathrm{P}$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NV1 (NV2 and NINC are ignored).

## Notes

Missing nodes required for the generated elements are created and assigned the lowest available numbers [NUMSTR]. During a batch run and if elements already exist, a mesh abort will write an alternative database file (File.DBE) for possible recovery.

Tetrahedral mesh expansion [MOPT,TETEXPND, Value] is supported for both the VMESH and FVMESH commands.

## Menu Paths

Main Menu $>$ Preprocessor $>$ Meshing $>$ Mesh $>$ Volumes $>$ Free Main Menu>Preprocessor>Meshing>Mesh>Volumes>Mapped>4 to 6 sided

## VOFFST, NAREA, DIST, KINC

## Generates a volume, offset from a given area.

> PREP 7:Volumes
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NAREA

Area from which generated volume is to be offset. If NAREA $=P$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI).

## DIST

Distance normal to given area at which keypoints for generated volume are to be located. Positive normal is determined from the right-hand rule keypoint order.

## KINC

Increment to be applied to the keypoint numbers between sets. If zero, keypoint numbers will be automatically assigned beginning with the lowest available value [NUMSTR].

## Notes

Generates a volume (and its corresponding keypoints, lines, and areas) by offsetting from an area. The direction of the offset varies with the given area normal. End slopes of the generated lines remain the same as those of the given pattern.

If element attributes have been associated with the input area via the AATT command, the opposite area generated by the VOFFST operation will also have those attributes (i.e., the element attributes from the input area are copied to the opposite area). Note that only the area opposite the input area will have the same attributes as the input area; the areas adjacent to the input area will not.

If the areas are meshed or belong to meshed volumes, a 3-D mesh can be extruded with this command. Note that the NDIV argument on the ESIZE command should be set before extruding the meshed areas.

## Menu Paths

Main Menu>Preprocessor>Modeling>Operate>Extrude>Areas>Along Normal

## VOLUMES

## Specifies "Volumes" as the subsequent status topic.

PREP 7:Status
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Notes

This is a status [STAT] topic command. Status topic commands are generated by the GUI and appear in the log file (Jobname. LOG) if status is requested for some items by choosing Utility Menu> List> Status. This command will be immediately followed by a STAT command, which will report the status for the specified topic.

If entered directly into the program, the STAT command should immediately follow this command.

## Menu Paths

This command cannot be accessed from a menu.
*VOPER, ParR, Par1, Oper, Par2, CON1, CON2

## Operates on two array parameters.

> APDL: Array Parameters
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Argument Descriptions

## ParR

The name of the resulting array parameter vector. See *SET for name restrictions.

## Par1

First array parameter vector in the operation. May also be a scalar parameter or a literal constant.

## Oper

Operations:
ADD--
Addition: Par1+Par2.

## SUB --

Subtraction: Par1-Par2.

## MULT --

Multiplication: Par1*Par2.

## DIV --

Division: Par1/Par2 (a divide by zero results in a value of zero).
MIN --
Minimum: minimum of Par1 and Par2.
MAX --
Maximum: maximum of Par1 and Par2.
LT --
Less than comparison: Par1<Par2 gives 1.0 if true, 0.0 if false.
LE --
Less than or equal comparison: $\operatorname{Par} 1 \leq \operatorname{Par} 2$ gives 1.0 if true, 0.0 if false.
EQ --
Equal comparison: Par1 = Par2 gives 1.0 if true, 0.0 if false.
NE --
Not equal comparison: Par1 $\neq \operatorname{Par2}$ gives 1.0 if true, 0.0 if false.
GE --
Greater than or equal comparison: $\operatorname{Par} 1 \geq$ Par2 gives 1.0 if true, 0.0 if false.
GT --
Greater than comparison: Par1>Par2 gives 1.0 if true, 0.0 if false.

## DER1 --

First derivative: $\mathrm{d}(\operatorname{Par} 1) / \mathrm{d}(\operatorname{Par} 2)$. The derivative at a point is determined over points half way between the previous and next points (by linear interpolation). Parl must be a function (a unique Par1 value for each Par2 value) and Par2 must be in ascending order.

## DER2 --

Second derivative: $\mathrm{d}^{2}(\operatorname{Par} 1) / \mathrm{d}(\operatorname{Par} 2)^{2}$. See also DER1.

## INT1 --

Single integral: $\int \operatorname{Par} 1 \mathrm{~d}(\operatorname{Par} 2)$, where CON1 is the integration constant. The integral at a point is determined by using the single integration procedure described in the Theory Reference for the Mechanical APDL and Mechanical Applications.

## INT2 --

Double integral: $\iint \operatorname{Par} 1 \mathrm{~d}(\operatorname{Par} 2)$, where CON1 is the integration constant of the first integral and CON2 is the integration constant of the second integral. If Par1 contains acceleration data, CON1 is the initial velocity and CON2 is the initial displacement. See also INT1.

DOT --
Dot product: Par1 . Par2. Par1 and Par2 must each have three consecutive columns of data, with the columns containing the $i$, $j$, and $k$ vector components, respectively. Only the starting row index and the column index for the $\boldsymbol{i}$ components are specified for Parl and Par2, such as A(1,1). The j and k components of the vector are assumed to begin in the corresponding next columns, such as $A(1,2)$ and $A(1,3)$.

## CROSS --

Cross product: Par1 x Par2. Par1, Par2, and ParR must each have 3 components, respectively. Only the starting row index and the column index for the i components are specified for Par1, Par2, and ParR, such as A(1,1). The $j$ and $k$ components of the vector are assumed to begin in the corresponding next columns, such as $A(1,2)$ and $A(1,3)$.

GATH --
Gather: For a vector of position numbers, Par2, copy the value of Par1 at each position number to ParR. Example: for $\operatorname{Par} 1=10,20,30,40$ and $\operatorname{Par} 2=2,4,1 ; \operatorname{Par} R=20,40,10$.

## SCAT --

Scatter: Opposite of GATH operation. For a vector of position numbers, Par2, copy the value of Par1 to that position number in ParR. Example: for $\operatorname{Par} 1=10,20,30,40,50$ and $\operatorname{Par} 2=2,1,0,5,3$; $\operatorname{Par} R=20,10,50,0,40$.

ATN2 --
Arctangent: arctangent of Par1/Par2 with the sign of each component considered.
LOCAL --
Transform the data in Par1 from the global Cartesian coordinate system to the local coordinate system given in CON1. Par1 must be an $N \times 3$ (i.e., vector) or an $N \times 6$ (i.e., stress or strain tensor) array. If the local coordinate system is a cylindrical, spherical, or toroidal system, then you must provide the global Cartesian coordinates in Par2 as an $N \times 3$ array. Set CON2 $=1$ if the data is strain data.

## GLOBAL --

Transform the data in Par1 from the local coordinate system given in CON1 to the global Cartesian coordinate system. Parl must be an $N \times 3$ (i.e., vector) or an $N x 6$ (i.e., stress or strain tensor) array. If the local coordinate system is a cylindrical, spherical, or toroidal system, then you must provide the global Cartesian coordinates in Par2 as an $N \times 3$ array. Set CON2 $=1$ if the data is strain data.

## Par2

Second array parameter vector in the operation. May also be a scalar parameter or a literal constant.

## CON1

First constant (used only with the INT1 and INT2 operations).

## CON2

Second constant (used only with the INT2 operation).

## Notes

Operates on two input array parameter vectors and produces one output array parameter vector according to:

ParR = Par1 o Par2
where the operations (o) are described below. ParR may be the same as Par1 or Par2. Absolute values and scale factors may be applied to all parameters [ ${ }^{*}$ VABS, ${ }^{*}$ VFACT]. Results may be cumulative [*VCUM]. Starting array element numbers must be defined for each array parameter vector if it does not start at the first location, such as *VOPER,A,B(5),ADD,C(3) which adds the third element of $C$ to the fifth element of B and stores the result in the first element of A. Operations continue on successive array elements [*VLEN, *VMASK] with the default being all successive elements. Skipping array elements via *VMASK or *VLEN for the DER_ and INT_ functions skips only the writing of the results (skipped array element data are used in all calculations).

Parameter functions and operations are available to operate on a scalar parameter or a single element of an array parameter, such as SQRT(B) or SQRT(A(4)). See the *SET command for details. Operations on a sequence of array elements can be done by repeating the desired function or operation in a do-loop [*DO]. The vector operations within the ANSYS program ( ${ }^{*} \mathbf{V} \boldsymbol{X X}$ commands) are internally programmed do-loops that conveniently perform the indicated operation over a sequence of array elements. If the array is multidimensional, only the first subscript is incremented in the do-loop, that is, the operation repeats in column vector fashion "down" the array. For example, for $A(1,5), A(2,5), A(3,5)$, etc. The starting location of the row index must be defined for each parameter read and for the result written.

The default number of loops is from the starting result location to the last result location and can be altered with the *VLEN command. A logical mask vector may be defined to control at which locations the operations are to be skipped [*VMASK]. The default is to skip no locations. Repeat operations automatically terminate at the last array element of the result array column if the number of loops is undefined or if it exceeds the last result array element. Zeroes are used in operations for values read beyond the last array element of an input array column. Existing values in the rows and columns of the results matrix remain unchanged where not changed by the requested operation values. The result array column may be the same as the input array column since results in progress are stored in a temporary array until being moved to the results array at the end of the operation. Results may be overwritten or accumulated with the existing results [*VCUM]. The default is to overwrite results. The absolute value may be used for each parameter read or written [*VABS]. A scale factor (defaulting to 1.0 ) is also applied to each parameter read and written [*VFACT].

This command is valid in any processor.

## Menu Paths

## Utility Menu>Parameters>Array Operations $>$ Vector Operations

VOVLAP, NV1,NV2,NV3,NV4,NV5,NV6, NV7,NV8,NV9

## Overlaps volumes.

> PREP 7: Booleans
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NV1, NV2, NV3, . . . , NV9

Numbers of volumes to be operated on. If NV1 = ALL, NV2 to NV9 are ignored and all selected volumes are used. If NV1 = P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NV1.

## Notes

Overlaps volumes. Generates new volumes which encompass the geometry of all the input volumes. The new volumes are defined by the regions of intersection of the input volumes, and by the complementary (non-intersecting) regions. See the Modeling and Meshing Guide for an illustration. This operation is only valid when the region of intersection is a volume. See the BOPTN command for an explanation of the options available to Boolean operations. Element attributes and solid model boundary conditions assigned to the original entities will not be transferred to the new entities generated.

## Menu Paths

Main Menu>Preprocessor>Modeling>Operate>Booleans>Overlap>Volumes
*VPLOT, ParX, ParY, Y2, Y3, Y4, Y5, Y6, Y7, Y8

## Graphs columns (vectors) of array parameters.

APDL: Array Parameters<br>MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Argument Descriptions

## ParX

Name of the array parameter whose column vector values will be the abscissa of the graph. If blank, row subscript numbers are used instead. ParX is not sorted by the program.

## Pary

Name of the array parameter whose column vector values will be graphed against the ParX values.

## Y2, Y3, Y4, . . . , Y8

Additional column subscript of the ParY array parameter whose values are to be graphed against the ParX values.

## Notes

The column to be graphed and the starting row for each array parameter must be specified as subscripts. Additional columns of the ParY array parameter may be graphed by specifying column numbers for Y2, Y3, ...,Y8. For example, *VPLOT,TIME (4,6), DISP ( 8,1 ), 2,3 specifies that the 1 st, 2 nd, and 3rd columns of array parameter DISP (all starting at row 8) are to be graphed against the 6th column of array parameter TIME (starting at row 4). The columns will be graphed from the starting row to their maximum extent. See the
*VLEN and *VMASK commands to limit or skip data to be graphed. The array parameters specified on the *VPLOT command must be of the same type (type ARRAY or TABLE; [*DIM]. Arrays of type TABLE will be graphed as continuous curves. Arrays of type ARRAY will be displayed in bar chart fashion.

The normal curve labeling scheme for *VPLOT is to label curve 1 "COL 1 ", curve 2 "COL 2 " and so on. You can use the /GCOLUMN command to apply user-specifed labels (8 characters maximum) to your curves. See Modifying Curve Labels in the ANSYS Parametric Design Language Guide for more information on using /GCOLUMN.

When a graph plot reaches minimum or maximum y-axis limits, ANSYS indicates the condition by clipping the graph. The clip appears as a horizontal magenta line. ANSYS calculates $y$-axis limits automatically; however, you can modify the (YMIN and YMAX) limits via the /YRANGE command.

This command is valid in any processor.

## Menu Paths

Utility Menu>Plot>Array Parameters

## VPLOT, NV1,NV2,NINC, DEGEN, SCALE

## Displays the selected volumes.

PREP 7:Volumes
MP ME ST PR PRN <> <> FL EM EH DY PP $<>$ EME MFS

## NV1, NV2, NINC

Display volumes from NV1 to NV2 (defaults to NV1) in steps of NINC (defaults to 1). If NV1 = ALL (default), NV2 and NINC are ignored and all selected volumes [VSEL] are displayed.

## DEGEN

Degeneracy marker:
(blank)
No degeneracy marker is used (default).
DEGE
A red star is placed on keypoints at degeneracies (see the Modeling and Meshing Guide). Not available if /FACET,WIRE is set.

## SCALE

Scale factor for the size of the degeneracy-marker star. The scale is the size in window space ( -1 to 1 in both directions) (defaults to .075 ).

## Notes

Displays selected volumes. (Only volumes having areas within the selected area set [ASEL] will be plotted.) With PowerGraphics on [/GRAPHICS,POWER], VPLOT will display only the currently selected areas. This command is also a utility command, valid anywhere. The degree of tessellation used to plot the volumes is set through the /FACET command.

## Menu Paths

Main Menu>Preprocessor>Modeling>Check Geom>Show Degeneracy>Plot Degen Volus Main Menu>Preprocessor>Modeling>Operate>Booleans>Show Degeneracy>Plot Degen Volus Utility Menu>Plot>Specified Entities>Volumes Utility Menu>Plot>Volumes

VPTN, NV1,NV2,NV3, NV4, NV5, NV6, NV7, NV8, NV9

## Partitions volumes.

PREP 7: Booleans
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
NV1, NV2, NV3, . . . , NV9
Numbers of volumes to be operated on. If NV1 = ALL, NV2 to NV9 are ignored and all selected volumes are used. If NVI = P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NV1.

## Notes

Partitions volumes. Generates new volumes which encompass the geometry of all the input volumes. The new volumes are defined by the regions of intersection of the input volumes, and by the complementary (non-intersecting) regions. See the Modeling and Meshing Guide for an illustration. See the BOPTN command for an explanation of the options available to Boolean operations. Element attributes and solid model boundary conditions assigned to the original entities will not be transferred to the new entities generated.

## Menu Paths

Main Menu>Preprocessor>Modeling>Operate>Booleans>Partition>Volumes
*VPUT, ParR, Entity, ENTNUM, Item1, IT1NUM, Item2, IT2NUM, KLOOP
Restores array parameter values into the ANSYS database.
APDL: Array Parameters
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Argument Descriptions

## ParR

The name of the input vector array parameter. See *SET for name restrictions. The parameter must exist as a dimensioned array [*DIM] with data input.

## Entity

Entity keyword. Valid keywords are shown for Entity $=$ in the table below.

## ENTNUM

The number of the entity (as shown for $E N T N U M=$ in the table below).

## Item1

The name of a particular item for the given entity. Valid items are as shown in the Item1 columns of the table below.

## IT1NUM

The number (or label) for the specified Item1 (if any). Valid IT1NUM values are as shown in the IT1NUM columns of the table below. Some Item1 labels do not require an IT1NUM value.

## Item2, IT2NUM

A second set of item labels and numbers to further qualify the item for which data is to be stored. Most items do not require this level of information.

## KLOOP

Field to be looped on:

## 0 or 2 --

Loop on the ENTNUM field (default).
3 --
Loop on the Item1 field.
4 --
Loop on the IT1NUM field. Successive items are as shown with IT1NUM.
5 --
Loop on the Item2 field.
6 --
Loop on the IT2NUM field. Successive items are as shown with IT2NUM.

## Notes

The *VPUT command is not supported for PowerGraphics displays. Inconsistent results may be obtained if this command is not used in /GRAPHICS, FULL.

Plot and print operations entered via the GUI (Utility Menu> Pltcrtls, Utility Menu> Plot) incorporate the AVPRIN command. This means that the principal and equivalent values are recalculated. If you use *VPUT to put data back into the database, issue the plot commands from the command line to preserve your data.

This operation is basically the inverse of the *VGET operation. Vector items are put directly (without any coordinate system transformation) into the ANSYS database. Items can only replace existing items of the database and not create new items. Degree of freedom results that are replaced in the database are available for all subsequent postprocessing operations. Other results are changed temporarily and are available mainly for the immediately following print and display operations. The vector specification *VCUM does not apply to this command. The valid labels for the location fields (Ent ity, ENTNUM, Item1, and IT1NUM) are listed below. Item2 and IT2NUM are not currently used. Not all items from the *VGET list are allowed on *VPUT since putting values into some locations could cause the database to be inconsistent.

This command is valid in any processor.

## Table 262 *VPUT - POST1 Items

## Entity $=$ NODE, ENTNUM $=n$ (node number)

Item1 IT1NUM

## Description

Valid labels for nodal degree of freedom results are:

| Item1 | IT1NUM | Description |
| :---: | :---: | :---: |
| U | $X, Y, Z$ | $X, Y$, or $Z$ structural displacement. |
| ROT | $X, Y, Z$ | $X, Y$, or $Z$ structural rotation. |
| TEMP |  | Temperature. For SHELL131 and SHELL132 elements with KEYOPT(3) $=0$ or 1 , use TBOT, TE2, TE3, $\ldots$, TTOP instead of TEMP. Alternative get functions: TEMP( N ), $\operatorname{TBOT}(\mathrm{N})$, TE2(N), etc. |
| PRES |  | Pressure. |
| VOLT |  | Electric potential. |
| MAG |  | Magnetic scalar potential. |
| V | $X, Y, Z$ | $X, Y$, or $Z$ fluid velocity. |
| A | $X, Y, Z$ | $X, Y$, or $Z$ magnetic vector potential. |
| CURR |  | Current. |
| EMF |  | Electromotive force drop. |
| ENKE |  | Turbulent kinetic energy (FLOTRAN). |
| ENDS |  | Turbulent energy dissipation (FLOTRAN). |

Valid labels for element nodal results are:
Item1 IT1NUM Description
$S \quad X, Y, Z, X Y, Y Z, \quad$ Component stress.

XZ
X, Y, Z, XY, YZ, Component stress.
X
1, 2, 3
INT, EQV
X, Y, Z, XY, YZ,
XZ
1,2,3
INT, EQV
X, Y, Z, XY, YZ,
XZ
1, 2, 3
INT, EQV
X, Y, Z, XY, YZ,
XZ
1,2,3
INT, EQV
X, Y, Z, XY, YZ,
XZ
1, 2, 3
INT, EQV
Principal stress.

Principal total strain.

Component elastic strain.

Principal elastic strain.

Component plastic strain.

Principal plastic strain.

Component creep strain.

Principal creep strain.

Stress intensity or equivalent stress.
Component total strain (EPEL + EPPL + EPCR).

Total strain intensity or total equivalent strain.

Elastic strain intensity or elastic equivalent strain.

Plastic strain intensity or plastic equivalent strain.

Creep strain intensity or creep equivalent strain.

| Item1 | IT1NUM | Description |
| :---: | :---: | :---: |
| EPTH | $\begin{aligned} & X, Y, Z, X Y, Y Z, \\ & X Z \end{aligned}$ | Component thermal strain. |
| " | 1, 2, 3 | Principal thermal strain. |
|  | INT, EQV | Thermal strain intensity or thermal equivalent strain. |
| EPSW |  | Swelling strain. |
| NL | SEPL | Equivalent stress (from stress-strain curve). |
| " | SRAT | Stress state ratio. |
| " | HPRES | Hydrostatic pressure. |
| " | EPEQ | Accumulated equivalent plastic strain. |
| " | PSV | Plastic state variable. |
| " | PLWK | Plastic work/volume. |
| TG | $X, Y, Z$ | Component thermal gradient. |
| TF | $X, Y, Z$ | Component thermal flux. |
| PG | $X, Y, Z$ | Component pressure gradient. |
| EF | $X, Y, Z$ | Component electric field. |
| D | $X, Y, Z$ | Component electric flux density. |
| H | $X, Y, Z$ | Component magnetic field intensity. |
| B | $X, Y, Z$ | Component magnetic flux density. |
| FMAG | $X, Y, Z$ | Component electromagnetic force. |

Valid labels for FLOTRAN nodal results are:

Item1 IT1NUM
TTOT
HFLU
HFLM
COND
PCOE
PTOT
MACH
STRM
DENS
VISC
EVIS
ECON
YPLU
TAUW

Total temperature.
Heat flux.
Heat transfer (film) coefficient.
Fluid laminar conductivity.
Pressure coefficient.
Total (stagnation) pressure.
Mach number.
Stream function. (2-D applications only.)
Fluid density.
Fluid laminar viscosity.
Fluid effective viscosity.
Fluid effective conductivity.
$\mathrm{Y}+$, a turbulent law of the wall parameter.
Shear stress at the wall.

Entity $=$ ELEM, ENTNUM $=n$ (element number)
Valid labels for element results are:

```
Entity = NODE, ENTNUM = n (node number)
 Item1 IT1NUM Description
ETAB Lab
 Any user-defined element table label (see ETABLE com-
 mand).
```


## Menu Paths

Utility Menu>Parameters>Array Operations>Put Array Data

## VPUT, Par, IR, TSTRT, KCPLX, Name

## Moves an array parameter vector into a variable.

> POST2 6: Special Purpose
> MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS

## Par

Array parameter vector in the operation.

## IR

Arbitrary reference number assigned to this variable (1 to NV [NUMVAR]). Overwrites any existing results for this variable.

## TSTRT

Time (or frequency) corresponding to start of $I R$ data. If between values, the nearer value is used.

## KCPLX

Complex number key:

0
Use the real part of the $I R$ data.
1
Use the imaginary part of the $I R$ data.

## Name

Thirty-two character name identifying the item on printouts and displays. Defaults to the label formed by concatenating VPUT with the reference number $I R$.

## Notes

At least one variable should be defined (NSOL, ESOL, RFORCE, etc.) before using this command. The starting array element number must be defined. For example, VPUT,A(1),2 moves array parameter $A$ to variable 2 starting at time 0.0 . Looping continues from array element $A(1)$ with the index number incremented by one until the variable is filled. Unfilled variable locations are assigned a zero value. The number of loops may be controlled with the *VLEN command (except that loop skipping (NINC) is not allowed). For multi-dimensioned array parameters, only the first (row) subscript is incremented.

## Menu Paths

Main Menu>TimeHist Postpro>Table Operations>Parameter to Var

## *VREAD, ParR, Fname, Ext, --, Label, n1, n2, n3, NSKIP

## Reads data and produces an array parameter vector or matrix.

APDL: Parameters
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Argument Descriptions

## ParR

The name of the resulting array parameter vector. See *SET for name restrictions. The parameter must exist as a dimensioned array [*DIM]. String arrays are limited to a maximum of 8 characters.

## Fname

File name and directory path ( 248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

If the Fname field is left blank, reading continues from the current input device, such as the terminal.

## Ext

Filename extension (8 character maximum).

Unused field.

## Label

Can take a value of IJK, IKJ, JIK, JKI, KIJ, KJI, or blank (IJK).

## n1, n2, n3

Read as $(((\operatorname{Par} R(\mathrm{i}, \mathrm{j}, \mathrm{k}), \mathrm{k}=1, \mathrm{n} 1), \mathrm{i}=1, \mathrm{n} 2), \mathrm{j}=1, \mathrm{n} 3)$ for Label $=\mathrm{KIJ} . \mathrm{n} 2$ and $n 3$ default to 1 .

## NSKIP

Number of lines at the beginning of the file being read that will be skipped during the reading. Default $=0$.

## Notes

Reads data from a file and fills in an array parameter vector or matrix. Data are read from a formatted file or, if the menu is off [/MENU,OFF] and Fname is blank, from the next input lines. The format of the data to be read must be input immediately following the *VREAD command. The format specifies the number of fields to be read per record, the field width, and the placement of the decimal point (if none specified in the value). The read operation follows the available FORTRAN FORMAT conventions of the system (see your system FORTRAN manual). Any standard FORTRAN real format (such as (4F6.0), (E10.3,2X,D8.2), etc.) or alphanumeric format (A) may be used. Alphanumeric strings are limited to a maximum of 8 characters for any field (A8). For storage of string arrays greater than 8 characters, the *SREAD command can be used. Integer (I) and list-directed (*) descriptors may not be used. The parentheses must be included in the format and the format must not exceed 80 characters (including parentheses). The input line length is limited to 128 characters.

A starting array element number must be defined for the result array parameter vector (numeric or character). For example, entering these two lines:

```
*VREAD,A (1),ARRAYVAL
(2F6.0)
```

will read two values from each line of file ARRAYVAL and assign the values to $A(1), A(2), A(3)$, etc. Reading continues until successive row elements [*VLEN, *VMASK, *DIM] are filled.

For an array parameter matrix, a starting array element row and column number must be defined. For example, entering these two lines:

```
VREAD,A (1, 1), ARRAYVAL, , , IJK, 10,2
(2F6.0)
```

will read two values from each line of file ARRAYVAL and assign the values to $A(1,1), A(2,1), A(3,1)$, etc. Reading continues until $n 1$ (10) successive row elements are filled. Once the maximum row number is reached, subsequent data will be read into the next column (e.g., $A(1,2), A(2,2), A(3,2)$, etc.)

For numerical parameters, absolute values and scale factors may be applied to the result parameter [*VABS, *VFACT]. Results may be cumulative [*VCUM]. See the *VOPER command for details. If you are in the GUI the *VREAD command must be contained in an externally prepared file read into the ANSYS program (i.e., *USE, IINPUT, etc.).

This command is not applicable to 4- or 5-D arrays.
This command is valid in any processor.

## Menu Paths

Utility Menu>Parameters>Array Parameters>Read from File

VROTAT, NA1, NA2, NA3, NA4, NA5, NAG, PAX1, PAX2, ARC, NSEG
Generates cylindrical volumes by rotating an area pattern about an axis.
PREP 7:Volumes
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NA1, NA2, NA3, . . . NA 6

List of areas in the pattern to be rotated ( 6 maximum if using keyboard entry). Areas must lie to one side of, and in the plane of, the axis of rotation. If NA1 = P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). If NA1 = ALL, all selected areas will define the pattern to be rotated. A component name may also be substituted for NA1.

## PAX1, PAX2

Keypoints defining the axis about which the area pattern is to be rotated.

## ARC

Arc length (in degrees). Positive follows right-hand rule about PAX1-PAX2 vector. Defaults to 360 .

## NSEG

Number of volumes ( 8 maximum) around circumference. Defaults to minimum required for $90^{\circ}$ (maximum) arcs, i.e., 4 for $360^{\circ}, 3$ for $270^{\circ}$, etc.

## Notes

Generates cylindrical volumes (and their corresponding keypoints, lines, and areas) by rotating an area pattern (and its associated line and keypoint patterns) about an axis. Keypoint patterns are generated at regular angular locations (based on a maximum spacing of $90^{\circ}$ ). Line patterns are generated at the keypoint patterns.

Arc lines are also generated to connect the keypoints circumferentially. Keypoint, line, area, and volume numbers are automatically assigned (beginning with the lowest available values). Adjacent lines use a common keypoint, adjacent areas use a common line, and adjacent volumes use a common area.

To generate a single volume with an arc greater than $180^{\circ}$, NSEG must be greater than or equal to 2 .
If element attributes have been associated with the input area via the AATT command, the opposite area generated by the VROTAT operation will also have those attributes (i.e., the element attributes from the input area are copied to the opposite area). Note that only the area opposite the input area will have the same attributes as the input area; the areas adjacent to the input area will not.

If the given areas are meshed or belong to meshed volumes, the 2-D mesh can be rotated (extruded) to a 3-D mesh. See the Modeling and Meshing Guide for more information. Note that the NDIV argument on the ESIZE command should be set before extruding the meshed areas.

## Menu Paths

Main Menu $>$ Preprocessor $>$ Modeling $>$ Operate $>$ Extrude $>$ Areas $>$ About Axis

VSBA, $N V, N A$, SEPO, KEEPV, KEEPA

## Subtracts areas from volumes.

PREP 7:Booleans
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
NV
Volume (or volumes, if picking is used) to be subtracted from. If ALL, use all selected volumes. If P , graphical picking is enabled (valid only in the GUI) and remaining fields are ignored. A component name may also be substituted for $N V$.

## NA

Area (or areas, if picking is used) to subtract. If ALL, use all selected areas. A component name may also be substituted for NA.

## SEPO

Behavior of the touching boundary:
(blank)
The resulting volumes will share area(s) where they touch.
SEPO
The resulting volumes will have separate, but coincident area(s) where they touch.

## KEEPV

Specifies whether $N V$ volumes are to be deleted:
(blank)
Use the setting of KEEP on the BOPTN command.

## DELETE

Delete $N V$ volumes after VSBA operation (override BOPTN command settings).
KEEP
Keep NV volumes after VSBA operation (override BOPTN command settings).

## KEEPA

Specifies whether NA areas are to be deleted:
(blank)
Use the setting of KEEP on the BOPTN command.
DELETE
Delete NA areas after VSBA operation (override BOPTN command settings).
KEEP
Keep NA areas after VSBA operation (override BOPTN command settings).

## Notes

Generates new volumes by subtracting the regions common to both the volumes and areas (the intersection) from the $N V$ volumes. The intersection will be an area(s). If SEPO is blank, the volume is divided at the area and the resulting volumes will be connected, sharing a common area where they touch. If SEPO is set to SEPO, the volume is divided into two unconnected volumes with separate areas where they touch. See the Modeling and Meshing Guide for an illustration. See the BOPTN command for an explanation of the options available to Boolean operations. Element attributes and solid model boundary conditions assigned to the original entities will not be transferred to the new entities generated.

## Menu Paths

Main Menu $>$ Preprocessor $>$ Modeling $>$ Operate $>$ Booleans $>$ Divide $>$ Volume by Area Main Menu>Preprocessor>Modeling>Operate>Booleans>Divide>With Options>Volume by Area

VSBV, NV1, NV2, SEPO, KEEP1, KEEP2

## Subtracts volumes from volumes.

PREP 7:Booleans
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## NV1

Volume (or volumes, if picking is used) to be subtracted from. If ALL, use all selected volumes. Volumes specified in set NV2 are removed from set NV1. If P, graphical picking is enabled (valid only in the GUI) and remaining fields are ignored. A component name may also be substituted for NV1.

## NV2

Volume (or volumes, if picking is used) to subtract. If ALL, use all selected volumes (except those included in the NV1 argument). A component name may also be substituted for NV2.

## SEPO

Behavior if the intersection of the NV1 volumes and the NV2 volumes is an area or areas:
(blank)
The resulting volumes will share area(s) where they touch.

## SEPO

The resulting volumes will have separate, but coincident area(s) where they touch.

## KEEP1

Specifies whether NV1 volumes are to be deleted:

## (blank)

Use the setting of $K E E P$ on the BOPTN command.

## DELETE

Delete NV1 volumes after VSBV operation (override BOPTN command settings).
KEEP
Keep NV1 volumes after VSBV operation (override BOPTN command settings).

## KEEP2

Specifies whether NV2 volumes are to be deleted:

## (blank)

Use the setting of $K E E P$ on the BOPTN command.

## DELETE

Delete NV2 volumes after VSBV operation (override BOPTN command settings).

## KEEP

Keep NV2 volumes after VSBV operation (override BOPTN command settings).

## Notes

Generates new volumes by subtracting the regions common to both NV1 and NV2 volumes (the intersection) from the NV1 volumes. The intersection can be an volume(s) or area(s). If the intersection is an area and SEPO is blank, the NV1 volume is divided at the area and the resulting volumes will be connected, sharing a common area where they touch. If SEPO is set to SEPO, NV1 is divided into two unconnected volumes with separate areas where they touch. See the Modeling and Meshing Guide for an illustration. See the BOPTN command for an explanation of the options available to Boolean operations. Element attributes and solid model boundary conditions assigned to the original entities will not be transferred to the new entities generated. VSBV,ALL,ALL will have no effect because all the volumes in set NV1 will have been moved to set NV2.

## Menu Paths

Main Menu>Preprocessor>Modeling>Operate>Booleans>Subtract>Volumes Main Menu>Preprocessor>Modeling>Operate>Booleans>Subtract>With Options>Volumes
Main Menu>Preprocessor>Modeling>Operate>Subract>Volumes

VSBW, NV, SEPO, KEEP
Subtracts intersection of the working plane from volumes (divides volumes).
PREP 7:Booleans
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
NV
Volume (or volumes, if picking is used) to be subtracted from. If $N V=A L L$, use all selected volumes. If $N V=\mathrm{P}$, graphical picking is enabled (valid only in the GUI). A component name may also be input for NV.

## SEPO

Behavior of the created boundary.

## (blank)

The resulting volumes will share area(s) where they touch.

## SEPO

The resulting volumes will have separate, but coincident area(s).

## KEEP

Specifies whether $N V$ volumes are to be deleted.
(blank)
Use the setting of KEEP on the BOPTN command.
DELETE
Delete $N V$ volumes after VSBW operation (override BOPTN command settings).

## KEEP

Keep $N V$ volumes after VSBW operation (override BOPTN command settings).

## Notes

Generates new volumes by subtracting the intersection of the working plane from the $N V$ volumes. The intersection will be an area(s). If SEPO is blank, the volume is divided at the area and the resulting volumes will be connected, sharing a common area where they touch. If SEPO is set to SEPO, the volume is divided into two unconnected volumes with separate areas. The SEPO option may cause unintended consequences if any keypoints exist along the cut plane. See the Modeling and Meshing Guide for an illustration. See the BOPTN command for an explanation of the options available to Boolean operations. Element attributes and solid model boundary conditions assigned to the original entities will not be transferred to the new entities generated.

Issuing the VSBW command under certain conditions may generate a topological degeneracy error. Do not issue the command if:

- A sphere or cylinder has been scaled. (A cylinder must be scaled unevenly in the XY plane.)
- A sphere or cylinder has not been scaled but the work plane has been rotated.


## Menu Paths

Main Menu $>$ Preprocessor $>$ Modeling $>$ Operate $>$ Booleans $>$ Divide $>$ Volu by WrkPlane Main Menu>Preprocessor>Modeling>Operate>Booleans>Divide $>$ With Options $>$ Volu by WrkPlane Main Menu>Preprocessor>Modeling>Operate>Divide>Volu by WrkPlane

/VSCALE, wn, VRATIO, KEY

## Scales the length of displayed vectors.

GRAPHICS: Scaling
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
WN
Window number (or ALL) to which command applies (defaults to 1 ).

## VRATIO

Ratio value applied to the automatically calculated scale factor (defaults to 1.0 , i.e., use scale factor as automatically calculated).

## KEY

Relative scaling key:
0
Use relative length scaling among vectors based on magnitudes.
1
Use uniform length scaling for all vector lengths.

## Command Default

Automatic vector scaling.

## Notes

Allows scaling of the vector length displayed with the PLVECT command of POST1 and the /PBC and /PSF commands. Also allows the scaling of the element (i.e., /PSYMB,ESYS) and the nodal (i.e., /PSYMB,NDIR) coordinate system symbols.

This command is valid in any processor.

## Menu Paths

Main Menu>General Postproc>Plot Results>Vector Plot>Predefined
Utility Menu>Plot>Results>Vector Plot
Utility Menu>PlotCtrls>Multi-Plot Contrls
Utility Menu>PlotCtrls>Style>Vector Arrow Scaling
*VSCFUN, ParR, Func, Par1
Determines properties of an array parameter.
APDL: Array Parameters
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Argument Descriptions

## ParR

The name of the resulting scalar parameter. See *SET for name restrictions.

## Func

Functions:
MAX --
Maximum: the maximum Par1 array element value.
MIN --
Minimum: the minimum Parl array element value.
LMAX --
Index location of the maximum Par1 array element value. Array Parl is searched starting from its specified index.

## LMIN --

Index location of the minimum Par1 array element value. Array Par1 is searched starting from its specified index.

## FIRST --

Index location of the first nonzero value in array Par1. Array Par1 is searched starting from its specified index.

## LAST --

Index location of the last nonzero value in array Par1. Array Parl is searched starting from its specified index.

## SUM --

Sum: Parl (the summation of the Parl array element values).

## MEDI --

Median: value of Parl at which there are an equal number of values above and below.

```
MEAN --
```

Mean: ( $\sigma$ Par1)/NUM, where NUM is the number of summed values.

## VARI --

Variance: ( $\sigma$ ((Par1-MEAN)**2))/NUM.

## STDV --

Standard deviation: square root of VARI.

## RMS --

Root-mean-square: square root of $\left(\sigma\left(\operatorname{Par} 1^{* *} 2\right)\right) / \mathrm{NUM}$.
NUM --
Number: the number of summed values (masked values are not counted).

## Par1

Array parameter vector in the operation.

## Notes

Operates on one input array parameter vector and produces one output scalar parameter according to:

```
ParR = f(Par1)
```

where the functions ( $f$ ) are described below. The starting array element number must be defined for the array parameter vector. For example, *VSCFUN,MU,MEAN,A(1) finds the mean of the A vector values, starting from the first value and stores the result as parameter MU. Operations use successive array elements [*VLEN, *VMASK] with the default being all successive array elements. Absolute values and scale factors may be applied to all parameters [*VABS, *VFACT]. Results may be cumulative [*VCUM]. See the *VOPER command for details.

This command is valid in any processor.

## Menu Paths

Utility Menu>Parameters>Array Operations>Vector-Scalar Func

VSEL, Type, Item, Comp, VMIN, VMAX, VINC, KSWP

## Selects a subset of volumes.

> DATABASE: Selecting
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Type

Label identifying the type of volume select:

## S

Select a new set (default).
R
Reselect a set from the current set.
A
Additionally select a set and extend the current set.
U
Unselect a set from the current set.
ALL
Restore the full set.

## NONE

Unselect the full set.
INVE
Invert the current set (selected becomes unselected and vice versa).
STAT
Display the current select status.
The following fields are used only with Type $=\mathrm{S}, \mathrm{R}, \mathrm{A}$, or U :

## Item

Label identifying data. Valid item labels are shown in the table below. Some items also require a component label. If Item = PICK (or simply "P"), graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). Defaults to VOLU.

## Comp

Component of the item (if required). Valid component labels are shown in the table below.

## VMIN

Minimum value of item range. Ranges are volume numbers, coordinate values, attribute numbers, etc., as appropriate for the item. A component name (as specified on the CM command) may also be substituted for VMIN (VMAX and VINC are ignored). If Item = MAT, TYPE, REAL, or ESYS and if VMIN is positive, the absolute value of Item is compared against the range for selection; if VMIN is negative, the signed value of Item is compared. See the VLIST command for a discussion of signed attributes.

## VMAX

Maximum value of item range. VMAX defaults to VMIN.

## VINC

Value increment within range. Used only with integer ranges (such as for volume numbers). Defaults to 1. VINC cannot be negative.

## KSWP

Specifies whether only volumes are to be selected:

## 0

Select volumes only.
1
Select volumes, as well as keypoints, lines, areas, nodes, and elements associated with selected volumes. Valid only with Type $=\mathrm{S}$.

## Command Default

All volumes are selected.

## Notes

Selects volumes based on values of a labeled item and component. For example, to select a new set of volumes based on volume numbers 1 through 7 , use VSEL,S,VOLU,,1,7. The subset is used when the ALL label is entered (or implied) on other commands, such as VLIST,ALL. Only data identified by volume number are selected. Data are flagged as selected and unselected; no data are actually deleted from the database.

This command is valid in any processor.
For Selects based on non-integer numbers (coordinates, results, etc.), items that are within the range VMIN-Toler and VMAX+Toler are selected. The default tolerance Toler is based on the relative values of VMIN and VMAX as follows:

- If $\mathrm{VMIN}=\mathrm{VMAX}$, Toler $=0.005 \times \mathrm{VMIN}$.
- If $\mathrm{VMIN}=\mathrm{VMAX}=0.0$, Toler $=1.0 \mathrm{E}-6$.
- If VMAX $\neq \mathrm{VMIN}$, Toler $=1.0 \mathrm{E}-8 \times(\mathrm{VMAX}-\mathrm{VMIN})$.

Use the SELTOL command to override this default and specify Toler explicitly.

## Table 263 VSEL - Valid Item and Component Labels

VSEL Type, Item, Comp, VMIN, VMAX, VINC, KABS


VOLU
Volume number.
LOC X, Y, Z $\quad \mathrm{X}, \mathrm{Y}$, or Z center (picking "hot spot" location in the active coordinate system).
MAT
TYPE
Material number associated with the volume.

REAL
Element type number associated with the volume.

ESYS
Real constant set number associated with the volume.
Element coordinate system associated with the volume.

## Menu Paths

## Utility Menu>Select>Entities

VSLA, Type, VLKEY
Selects those volumes containing the selected areas.

DATABASE:Selecting<br>MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Type

Label identifying the type of volume select:
S
Select a new set (default).
R
Reselect a set from the current set.
A
Additionally select a set and extend the current set.
U
Unselect a set from the current set.
VLKEY
Specifies whether all contained volume areas must be selected [ASEL]:
0
Select volume if any of its areas are in the selected area set.
1
Select volume only if all of its areas are in the selected area set.

## Notes

This command is valid in any processor.

## Menu Paths

## Utility Menu>Select>Entities

## *VSTAT

Lists the current specifications for the array parameters.

> APDL: Array Parameters
> MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS

## Notes

Lists the current specifications for the *VABS, *VCOL, *VCUM, *VFACT, *VLEN, and *VMASK commands.
This command is valid in any processor.

## Menu Paths

This command cannot be accessed from a menu.

VSUM, $\angle A B$

## Calculates and prints geometry statistics of the selected volumes.

PREP 7:Volumes
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
$L A B$
Controls the degree of tessellation used in the calculation of area properties. If $L A B=$ DEFAULT, area calculations will use the degree of tessellation set through the /FACET command. If $L A B=$ FINE, area calculations are based on a finer tessellation.

## Notes

Calculates and prints geometry statistics (volume, centroid location, moments of inertia, etc.) associated with the selected volumes. Geometry items are reported in the global Cartesian coordinate system. A unit density is assumed unless the volumes have a material association via the VATT command. Items calculated by VSUM and later retrieved by a *GET or *VGET command are valid only if the model is not modified after the VSUM command is issued.

Setting a finer degree of tessellation will provide area calculations with greater accuracy, especially for thin, hollow models. However, using a finer degree of tessellation requires longer processing.

For very thin volumes, such that the ratio of the minimum to the maximum dimension is less than 0.01 , the VSUM command can provide erroneous volume information. To ensure that such calculations are accurate, make certain that you subdivide such volumes so that the ratio of the minimum to the maximum is at least 0.05 .

## Menu Paths

Main Menu $>$ Preprocessor $>$ Modeling $>$ Operate $>$ Calc Geom Items $>$ Of Volumes

VSWEEP, VNUM, SRCA, TRGA, LSMO

## Fills an existing unmeshed volume with elements by sweeping the mesh from an adjacent area through

 the volume.REP 7: Meshing
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## VNUM

Number identifying the volume that is to be meshed by VSWEEP. If $V N U M=P$, graphical picking is enabled, you will be prompted to choose the volume or volumes based on the setting of EXTOPT,VSWE,AUTO. This argument is required.
"ALL" is a valid input value that when selected sends all the selected volumes to the sweeper. If VNUM = ALL, each volume that can be swept will be and those not able to be swept will be unmeshed or meshed with tets depending upon the setting of EXTOPT,VSWE,TETS.

A component name is a valid input value. All volumes that are part of the specified component will be sent to the sweeper.

## SRCA

Number identifying the source area. This is the area whose mesh will provide the pattern for the volume elements. (If you do not mesh the source area prior to volume sweeping, ANSYS meshes it internally when you initiate volume sweeping.) ANSYS sweeps the pattern of the area elements through the volume to create the mesh of volume elements. You cannot substitute a component name for SRCA.

This argument is optional. If $V N U M=$ ALL or is a component containing more than one volume, $S R C A$ is ignored. If $S R C A$ is not provided or if it is ignored, VSWEEP attempts to automatically determine which area should be the target area.

## TRGA

Number identifying the target area. This is the area that is opposite the source area specified by SRCA. You cannot substitute a component name for $T R G A$.

This argument is optional. If $V N U M=A L L$ or component containing more than one volume, $T R G A$ is ignored. If $T R G A$ is not provided or if it is ignored, VSWEEP attempts to automatically determine which area should be the target area.

## LSMO

Value specifying whether ANSYS should perform line smoothing during volume sweeping. (The value of this argument controls line smoothing for the VSWEEP command only; it has no effect on the setting of the MOPT command's LSMO option.) This argument is optional.

0
Do not perform line smoothing. This is the default.
1
Always perform line smoothing. This setting is not recommended for large models due to speed considerations.

## Notes

If the source mesh consists of quadrilateral elements, ANSYS fills the volume with hexahedral elements. If the source mesh consists of triangles, ANSYS fills the volume with wedges. If the source mesh consists of a combination of quadrilaterals and triangles, ANSYS fills the volume with a combination of hexahedral and wedge elements.

In the past, you may have used the VROTAT, VEXT, VOFFST, and/or VDRAG commands to extrude a meshed area into a meshed volume. However, those commands create the volume and the volume mesh simultaneously. In contrast, the VSWEEP command is intended for use in an existing unmeshed volume. This makes VSWEEP particularly useful when you have imported a solid model that was created in another program, and you want to mesh it in ANSYS.

For related information, see the description of the EXTOPT command (although EXTOPT sets volume sweeping options, it does not affect element spacing). Also see the detailed discussion of volume sweeping in Meshing Your Solid Model of the Modeling and Meshing Guide.

## Menu Paths

Main Menu $>$ Preprocessor $>$ Meshing $>$ Mesh $>$ Volume Sweep $>$ Sweep

## VSYMM, Ncomp, NV1, NV2, NINC, KINC, NOELEM, IMOVE

## Generates volumes from a volume pattern by symmetry reflection.

PREP 7:Volumes
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Ncomp

Symmetry key:

## X

X symmetry (default).
Y
Y symmetry.
Z
Z symmetry.

## NV1, NV2, NINC

Reflect volumes from pattern beginning with NV1 to NV2 (defaults to NV1) in steps of NINC (defaults to 1). If NV1 = ALL, NV2 and NINC are ignored and the pattern is all selected volumes [VSEL]. If NV1 = P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NV1 (NV2 and NINC are ignored).

## KINC

Keypoint increment between sets. If zero, the lowest available keypoint numbers are assigned [NUMSTR].

## NOELEM

Specifies whether nodes and elements are also to be generated:
0
Generate nodes and elements associated with the original volumes, if they exist.
1
Do not generate nodes and elements.
IMOVE
Specifies whether volumes will be moved or newly defined:
0
Generate additional volumes.
1
Move original volumes to new position retaining the same keypoint numbers (KINC and NOELEM are ignored). Corresponding meshed items are also moved if not needed at their original position.

## Notes

Generates a reflected set of volumes (and their corresponding keypoints, lines, areas and mesh) from a given volume pattern by a symmetry reflection (see analogous node symmetry command, NSYM). The MAT, TYPE, REAL, and ESYS attributes are based upon the volumes in the pattern and not upon the current settings. Reflection is done in the active coordinate system by changing a particular coordinate sign. The active coordinate system must be a Cartesian system. Volumes in the pattern may have been generated in any coordinate system. However, solid modeling in a toroidal coordinate system is not recommended. Volumes are generated as described in the VGEN command.

See the ESYM command for additional information about symmetry elements.

## Menu Paths

Main Menu>Preprocessor>Modeling>Reflect>Volumes
/VT

## Enters the Variational Technology preprocessor.

> SESSION: Processor Entry
> VARIATIONAL TECHNOLOGY:DesignXplorer
> $<><><><><><><><><><><><>$ VT <> <>

## Notes

Enters the Variational Technology processor.

## Menu Paths

## Main Menu>DesignXplorer>Solution>Solve

## VTCLR, Type

## Clears the Variational Technology database.

VARIATIONAL TECHNOLOGY:DesignXplorer
<> <> <> <> <> <> <> <> <> <> <> <> VT <> <>

## Type

Specifies the part of the Variational Technology database to be cleared. Valid labels are:
ALL
Clears the entire Variational Technology database. Both the preprocessing part (settings for input variables, result parameters, etc.) and results part (results for the derivatives) are cleared.

RSLT
Clear only the results part of the Variational Technology database. This is necessary if you want to modify the Variational Technology model (for example, adding a new input variable and so on) after a solution has already been performed.

## Notes

Clear the database of the Variational Technology module. The settings are reset to their default values and the memory is cleared. Remember that the result files containing the results of Variational Technology (see VTRFIL command) are never deleted unless you intentionally delete them. We recommend that you use this command before switching to a new solution, which, for example, includes different input variables or different element or node components for input variables. See the various Variational Technology commands for changes that are possible after the solution has been performed.

If the entire database is cleared with VTCLR,ALL then also all definitions for input variables, result parameters, solution method, result file storage and so on are either deleted and/or reset to their default values.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu>DesignXplorer>Other>Clear Database

## VTDISC, Name, ElComp

## Defines an element component as a discrete input variable for the DesignXplorer.

VARIATIONAL TECHNOLOGY:DesignXplorer

$$
<><><><><><><><><><><><>\mathrm{VT}<><>
$$

## Name

Name for the input variable. This is a string of up to 250 characters used for postprocessing purposes. Blanks are allowed in the string.

## ElComp

The name of either of an element component or the number of a single element.

## Command Default

None

## Notes

Defines a component containing a group of elements as a discrete input variable of the DesignXplorer. In a discrete optimization the DesignXplorer will evaluate the dependency of the result parameter(s) (see the VTRSLT command) as a function of the discrete case of either including the group of elements in the finiteelement model or excluding the group of elements from the model.

The ElComp field defines a group of elements that are considered as either being included or excluded from the finite-element model during a discrete optimization.

If a solution has already been performed with Variational Technology using STAOPT,VT and the SOLVE command, then the Variational Technology database is locked. In this case no input variables can be added to the model. You cannot change the specific definitions of an existing input variable. If you want to modify the Variational Technology model by adding a discrete variable, you first have to unlock the model with the VTCLR command.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu>DesignXplorer>Setup>Discrete Variable

## VTEVAL, --, Mode

Triggers evaluation of generated results based on input variables specified via the VTVMOD command.
VARIATIONAL TECHNOLOGY:DesignXplorer <> <> <> <> <> <> <> <> <> <> <> <> VT <> <>

Unused field.

## Mode

The mode number for normal modes. By default, driven by the application.

## Command Default

Defaults as outlined above.

## Notes

Used in conjunction with the VTVMOD command, VTEVAL evaluates the designated variables and loads the results into the ANSYS database. You can employ the ANSYS postprocessing tools to view the results, or perform an optimization or PDS loop.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

## Main Menu> DesignXplorer> Postprocessing> Evaluate Results

VTFREQ, Name, MIN, MAX, INC, RedOpt
Defines the frequency as input variable for the harmonic sweep functionality of VT Accelerator.

> VARIATIONAL TECHNOLOGY:DesignXplorer VARIATIONAL TECHNOLOGY:VT Harmonic Sweep
> <> <> <> <> <> <> <> <> <> <> <> <> VT <> <>

## Name

Name of the variable. This is a string of up to 250 characters used for postprocessing purposes. Blanks can be included in the string.

## MIN

Minimum value of the input variable.
MAX
Maximum value of the input variable.
INC
Number of increments within the range of the input variable as defined by the MIN and MAX fields.

## RedOpt

Reduction option that specifies what to do if the DesignXplorer needs to reduce the variation range from MIN to MAX. Valid labels are:

## CONT

Continue with the calculation of the derivatives. This is the default.

## STOP

Stop the calculation of the derivatives. This option is necessary if a reduction of the variation range is not acceptable.

## Command Default

There are no default values for the command fields.

## Notes

Defines the frequency as an input variable. Variational Technology will evaluate a frequency sweep from the specified minimum to the maximum frequency values given in the MIN and MAX fields. The frequency sweep will include as many frequency increments as specified in the INC field.

If a solution has already been performed with Variational Technology using STAOPT,VT and the SOLVE command, then the Variational Technology database is locked. In this case no input variables can be added to the model. You cannot change the specific definitions of an existing input variable. If you want to modify the Variational Technology model by adding a discrete variable, you first have to unlock the model with the VTCLR command.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu>DesignXplorer>Setup>Frequency

## VTGEOM, Name, MIN, MAX, RedOpt, Order

## Defines a geometry parameter created with ANSYS MeshMorpher as a DesignXplorer input variable.

VARIATIONAL TECHNOLOGY:DesignXplorer <> <> <> <> <> <> <> <> <> <> <> <> VT <> <>

## Name

Name of an input variable. This is a string of up to 256 characters used for postprocessing purposes. It can have blanks included in the string.

## MIN

Minimum value of the input variable. By default, driven by the application.

## MAX

Maximum value of the input variable. By default, driven by the application.

## RedOpt

Reduction option that specifies what to do if the DesignXplorer needs to reduce the variation range from MIN to MAX. Valid labels are;

CONT
Continue with the calculation of the derivatives. This is the default.

## STOP

Stop the calculation of the derivatives. This option is necessary if a reduction of the variation range is not acceptable.

## Order

Deviation Order. By default, driven by the application.

## Command Default

Defaults as outlined above.

## Notes

If you do not use ANSYS MeshMorpher, you can ignore the VTGEOM command.
The VTGEOM command allows you to define a geometry parameter created with ANSYS MeshMorpher as an input variable of the DesignXplorer.

The filename of the ANSYS MeshMorpher database has to be defined using the VTRFIL command. DesignXplorer uses the same RSX file to store its results. If the RSX file does not exist or does not contain the expected geometry parameters and associated morphed mesh, then the VTGEOM command is ignored.

In the general case, the fields MIN and MAX should not be used because a range of variation is already defined in ANSYS MeshMorpher. Nethertheless, the MIN and MAX fields allow to define a smaller range of variation to compute the VT results. Althought is it not recommended, it is also possible to define a larger range of variation. In this case, a warning message is always generated.

The MIN and MAX field must always be specified or left blank together. If only one field is specified, then the VTGEOM command is ignored.

If the Order is not specified, it will be increased until the accuracy requirements of the VTRSLT command are satisfied. When you set a value for Order, no further adjustments for accuracy will be performed. Order should only be used when an input parameter has an influence with a limited order.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

This command cannot be accessed from a menu.

VTIN, Name, MIN, MAX, RedOpt, Lab, Comp, --, VarType, Order
Defines an inertial load as an input variable for DesignXplorer.

> VARIATIONAL TECHNOLOGY: DesignXplorer <> <> <> <> <> <> <> <> <> <> <> <> VT <> <>

## Name

Name for the input variable. This is a string of up to 250 characters used for postprocessing purposes. Blanks can be included in the string.

MIN
Minimum value of the input variable.

## MAX

Maximum value of the input variable.

## RedOpt

Reduction option that specifies what to do if DesignXplorer needs to reduce the variation range from MIN to MAX. Valid labels are:

CONT
Continue with the calculation of the derivatives. This is the default.
STOP
Stop the calculation of the derivatives. This option is necessary if a reduction of the variation range is not acceptable.

## Lab

Valid inertial load label. This label must be defined for the inertial load using the ANSYS command of the same name prior to issuing this command. Applicable labels are:

## ACEL

Linear acceleration.

## CGOMGA

Rotational velocity of the global origin.
DCGOMG
Rotational acceleration of the global origin.
DOMEGA
Rotational acceleration of the structure.
OMEGA
Rotational velocity.

Unused field.

## Comp

$X, Y, Z$ or $A L L$
If Comp $=\mathrm{ALL}$, the VarType must be FACT.

## VarType

Label indicating how the variability of vectors should be handled, when COMP = ALL is used. Valid labels are:

FACT
The variability of vector is described by a scaling factor that is applied to all 3 vectors components. This means that the MIN field is the value of the minimum factor to be applied and the MAX field is the maximum factor to be applied.

## ADD

The variability of vector components is described by an add-on that is applied to vector components. This means that the MIN field is the minimum value that is added to the vector components and the MAX field contains the maximum value that is added to the vector components. As such the values specified for MIN and MAX have the same unit as the vector itself.

VAL
The variability of the vectors is described by the variability of the vector components itself. This is only applicable if ALL has not been used. This means that the MIN field is the minimum value that
the vector component itself can take and the MAX field contains the maximum value, which the vector component can take. This is the default.

## Order

Derivation order. By default, driven by the application.

## Notes

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

## This command cannot be accessed from a menu.

## VTMETH, SoluType, ApprType, ModeTrack

## Defines the solution options for the DesignXplorer.

> VARIATIONAL TECHNOLOGY: DesignXplorer
> <> <> <> <> <> <> <> <> <> <> <> <> VT <> <>

## SoluType

Specifies the type of solution that needs to be evaluated during the solution run of the DesignXplorer. Valid labels are:

INDP
Builds the solution approximation assuming that the input variables are independent. Therefore, mixed input variables interactions will be neglected.

FULL
Builds the full solution approximation, addressing the interactions between the input variables (if necessary). This option is the default.

## ApprType

Specifies the type of approximation function that is used to build the DesignXplorer. Valid labels are:

## ROMS

Uses a Reduced Order Model Sweep approximation. This method is the more accurate, it supports multiple input variables per element, continuous as well as discrete input variables. However it is limited to linear static analysis (structural and thermal), and cannot accept more than 10 continuous input variables or 20 discrete input variables. Continuous and Discrete input variables cannot be mixed.

## PADE

Uses a series expansion based on Pade approximations using rational functions. This method is more accurate than TAYLOR, however it is limited to a single input variable per element and does not support geometry input variables.

TAYL
Uses a Taylor series expansion as the approximation function. This method supports multiple input variables per element, i.e. Young's Modulus and thickness, geometry input variables, linear static and normal modes analysis. However, Discrete input variables is not supported.

## AUTO

This option is the default and allows DesignXplorer to determine automatically the most appropriate method to use. This is the recommended option.

## ModeTrack

Specifies whether or not mode tracking should be in a modal solution of the DesignXplorer. Valid labels are:

YES
Mode Tracking will be used in a modal solution. This option is the default.
No
Mode Tracking will not be used in a modal solution.

## Command Default

Defaults as outlined above.

## Notes

Determines which approximation function of the result parameters with respect to the input variables shall be calculated during the DesignXplorer solution run.

The default ApprType=AUTO is recommended. It selects the ROMS method each time it is possible, or the most appropriate method in case ROMS does not apply to the model.

If Variational Technology is not used in connection with a modal analysis, then the ModeTrack option is ignored.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.
Menu Paths
Main Menu>DesignXplorer>Solution>Solution Method

## VTMP, Name, MIN, MAX, RedOpt, Lab, MAT, EIComp, VarType, Order

## Defines a material property as an input variable for DesignXplorer.

VARIATIONAL TECHNOLOGY:DesignXplorer
<> <> <> <> <> <> <> <> <> <> <> <> VT <> <>
Name
Name for the input variable. This is a string of up to 250 characters used for postprocessing purposes. Blanks can be included in the string.

## MIN

Minimum value of the input variable.
MAX
Maximum value of the input variable.

## RedOpt

Reduction option that specifies what to do if DesignXplorer needs to reduce the variation range from MIN to MAX. Valid labels are:

## CONT

Continue with the calculation of the derivatives. This is the default.
STOP
Stop the calculation of the derivatives. This option is necessary if a reduction of the variation range is not acceptable.

## Lab

Valid material property label. This label must be defined for the material number MAT using the MP or MPDATA command prior to issuing this command. Applicable labels are:

## EX

Elastic moduli (also EY, EZ).
nUXY
Minor Poisson's ratios (also NUYZ, NUXZ).

## GXY

Shear moduli (also GYZ, GXZ).

```
DENS
```

Material density
Kxx
Conductivity (only in thermal analysis), also KYY, KZZ

## ALPX

Thermal Expansion, also ALPY, ALPZ

## MAT

Material identification number

## ElComp

Name of an element component or number of a single individual element. If $E 1 C o m p=A L L$, then all elements are considered for the VTMP command.

## Vartype

Label indicating how the variability of temperature dependent material properties should be handled. This is particularly useful to describe how temperature dependent material properties are handled. At this release, only one label (the default) is valid:

FACT
The variability of the material property is described by a scale factor that is applied to the material property values. In the case of temperature dependent material properties, a scale factor will be applied to all defined material property values. This means that the MIN field is the value of the minimum factor to be applied and the MAX field is the maximum factor to be applied. As such the values specified for MIN and MAX are unitless quantities. VarType $=$ FACT is the default for temperature dependent material properties.
ADD
The variability of the material property is described by an add-on that is applied to the material property values. In the case of a temperature dependent material property, the defined property values are shifted all at the same time. This means that the MIN field is the minimum value that is added to the material property values and the MAX field contains the maximum value that is added to the material property values. Hence, the values specified for MIN and MAX have the same unit as the material property itself.

VAL
The variability of the material property is described by the variability of the material property value itself. This is only applicable if the material property is not temperature dependent. This means that the MIN field is the minimum value that the material property itself can take and the MAX field contains the maximum value which the material property values can take. This is the default if the material properties are not temperature dependent.

## Order

Derivation order. By default, driven by the application.

## Command Default

As described above.

## Notes

Defines a material property of a single element or a set of elements as an input variable of the DesignXplorer. The DesignXplorer will evaluate the derivatives of the result parameter(s) (see VTRSLT command) with respect to the material property defined here. The derivatives are used to determine an approximation function for the result parameter(s) as a function of the material property in the range specified by the MIN and MAX fields.

The type of the material property is defined by the Lab field, which must not be left blank. The material property must exist or be specified using the MP or MPDATA command prior to issuing the VTMP command.

Using either the MAT field or the ElComp field a set of element is selected for which the material property is varied. The user must define one of them and leave the respective other one blank. All selected elements must be associated with the same material number. This is of course always given in the MAT field. If selected by the ElComp field, an error will be issued if an element is found that is associated with a material number that is different from the one associated with any other element in the element component.

If the material properties are temperature dependent, then the temperature dependency is defined by either several data points at different temperatures (MP) or by coefficients defining the temperature dependent polynomial (MPDATA). To describe a variation of the material property with one single parameter is only possible by using a scalar addition to the temperature dependency curve (VarType = ADD) or by using a scalar multiplication factor for the entire temperature dependency curve (VarType = FACT). Varying the material property value itself using VarType $=$ VAL is not possible, if the material property is temperature dependent.

An error message is generated and the VTMP command is ignored when the current value is outside the variation range.

If the Order is not specified, it will be increased until the accuracy requirements of the VTRSLT command are satisfied. When you set a value for Order, no further adjustments for accuracy will be performed. Order should only be used when an input parameter has an influence with a limited order.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu>DesignXplorer>Setup>Material Property

## VTOP, Oper, Name, Value

## Defines options value for the DesignXplorer.

VARIATIONAL TECHNOLOGY:DesignXplorer
$<><><><><><><><><><><><>$ VT <> <>

## Oper

Label for the type of operation that is performed. Valid labels are:
SET
Add an option (or if it already exists, modify its value).

## DELETE

Delete an option.

## RESET

Reset an option to its default value. If the option name is not specified, this applies to all options.

## Name

Name of the option to define or modify. If this field is left blank, the command applies to all options. Valid labels are listed in the table below.

## Value

If Oper=SET, this is the value assigned to the option. Valid labels and values for each option are listed in the table below.

## Notes

Table of valid Name and Value labels.

| Name | Option Description | Value | Value Description |
| :--- | :--- | :--- | :--- |
| VERBOSITY | Controls the level of details of the out- <br> put messages. | PUBLIC | Normal (default) |
|  |  | DETAILED | Detailed messages |
|  | VERBOSE | Maximum verbosity |  |
| OPT_FAST_Per-- | Activates an additional interpolation <br> formInterpol <br> phase at the end of the ROMSVariation- <br> al solve in order to provide fast post- <br> processing evaluations. | 1 | 1 |
|  |  | Interpolation deactivated (default) |  |
| OUTOFCORE | Activates/deactivates the out-of-core <br> postprocessing mode to evaluate large <br> results databases using less memory. <br> Valid for TAYLOR and ROMS approxim- <br> ation types. | 0 | Interpolation activated |
|  |  | Out-of-core is deactivated (default). |  |

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

This command cannot be accessed from a menu.

## VTPOST

## Launches the DesignXplorer postprocessing application.

VARIATIONAL TECHNOLOGY:DesignXplorer
<> <> <> <> <> <> <> <> <> <> <> <> VT <> <>

## Notes

The postprocessing application provides a viewer for Variational Technology results files. You can only launch this application if the ANSYS GUI is active; that is, it cannot be launched from batch mode.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu>DesignXplorer>Postprocessing>SolutionViewer

## VTRAN, KCNTO, NV1, NV2, NINC, KINC, NOELEM, IMOVE

## Transfers a pattern of volumes to another coordinate system.

PREP 7:Volumes
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## KCNTO

Reference number of coordinate system where the pattern is to be transferred. Transfer occurs from the active coordinate system. The coordinate system type and parameters of KCNTO must be the same as the active system.

## NV1, NV2, NINC

Transfer volumes from pattern beginning with NV1 to NV2 (defaults to NV1) in steps of NINC (defaults to 1). If NV1 = ALL, NV2 and NINC are ignored and the pattern is all selected volumes [VSEL]. If NV1 = P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NV1 (NV2 and NINC are ignored).

## KINC

Keypoint increment between sets. If zero, the lowest available keypoint numbers are assigned [NUMSTR].

## NOELEM

Specifies whether elements and nodes are also to be generated:
0
Generate nodes and elements associated with the original volumes, if they exist.
1
Do not generate nodes and elements.

## IMOVE

Specifies whether to redefine the existing volumes:
0
Generate additional volumes.

Move original volumes to new position retaining the same keypoint numbers (KINC and NOELEM are ignored). Corresponding meshed items are also moved if not needed at their original position.

## Notes

Transfers a pattern of volumes (and their corresponding keypoints, lines, areas and mesh) from one coordinate system to another (see analogous node transfer command, TRANSFER). The MAT, TYPE, REAL, and ESYS attributes are based upon the volumes in the pattern and not upon the current settings. Coordinate systems may be translated and rotated relative to each other. Initial pattern may be generated in any coordinate system. However, solid modeling in a toroidal coordinate system is not recommended. Coordinate and slope values are interpreted in the active coordinate system and are transferred directly. Volumes are generated as described in the VGEN command.

## Menu Paths

## Main Menu>Preprocessor>Modeling>Move / Modify>Transfer Coord>Volumes

## VTREAL, Name, MIN, MAX, RedOpt, Lab, NSET, EIComp, VarType, Order

## Defines a real constant property as an input variable for the DesignXplorer.

VARIATIONAL TECHNOLOGY:DesignXplorer
$<><><><><><><><><><><><>$ VT <> <>

## Name

Name of the input variable. This is a string of up to 250 characters used for postprocessing purposes.
Blanks are allowed in the string.

## MIN

Minimum value of the input variable.

## MAX

Maximum value of the input variable.

## RedOpt

Reduction option that specifies what to do if the DesignXplorer needs to reduce the variation range from MIN to MAX. Valid labels are:

CONT
Continue with the calculation of the derivatives. This is the default.
STOP
Stop the calculation of the derivatives. This option is necessary if a reduction of the variation range is not acceptable.

## Lab

Valid real constant label. This label must refer to a valid property of the real constant set as defined in the $\mathbf{R}$ command. Applicable labels are:

TK
Shell thickness. This applies only to shell elements of type SHELL181, where the element thickness has been defined with the $\mathbf{R}$ command.

## STIF

Spring stiffness. This applies only to combination elements of type COMBIN14, where the spring stiffness has been defined with the $\mathbf{R}$ command.

## MASS

Lumped mass. This applies only to structural mass elements of type MASS21 with $\operatorname{KEYOPT}(3)=2$, where the lumped mass has been defined with the $\mathbf{R}$ command.
NSET
Real constant set identification number as defined by the $\mathbf{R}$ command.

## ElComp

Name of an element component or number of a single individual element. If $E 1 C \circ m p=A L L$, then all elements are considered for the VTREAL command.

## Vartype

Label indicating how the variability of a spatially dependent element thickness should be handled. This label is ignored if the shell element thickness is constant for all elements selected by either the NSET or the ElComp field. Valid labels are:

FACT
The variability of the section property is described by a scale factor that is applied to the section property values. In case the section properties are different from element to element, a scale factor will be applied to all section property values. This means that the MIN field is the value of the minimum factor to be applied and the MAX field is the maximum factor to be applied. As such the values specified for MIN and MAX are unitless quantities. VarType $=$ FACT is the default if the section property is different from element to element.

## ADD

The variability of the section property is described by an add-on that is applied to the section property values. In case the section properties are different from element to element, then the section property values are shifted at the same time by this add-on. This means that the MIN field is the minimum value that is added to the section property values and the MAX field contains the maximum value that is added to the property values. Hence, the values specified for MIN and MAX have the physical unit of a length.

## VAL

The variability of the section property is described by the modification of the section property value itself. This is only applicable if the section property value is identical and constant for all selected elements. This means that the MIN field is the minimum value that the section property value itself can take and the MAX field contains the maximum value, which the section property value can take. This is the default if the section property is identical and constant from element to element.

## Order

Derivation order. By default, driven by the application.

## Notes

Defines the real constant property of a single element or a set of elements as an input variable of the DesignXplorer. The real constant property must be specified with the R command prior to the VTREAL command. The DesignXplorer will evaluate the derivatives of the result parameter(s) (see VTRSLT command) with respect to the section property defined here. The derivatives are used to determine an approximation function for the result parameter(s) as a function of the section property in the range specified by the MIN and MAX fields.

Using either the NSET field or the ElComp field a set of elements is selected for which the real constant property is varied. The user must define one of these two fields and leave the respective other one blank.

If the real constant property is different from element to element, then each element has different values for the real constant properties at the individual nodes. To describe a variation of the real constant property with one single parameter is only possible by using a scalar addition to all real constant property values (VarType = ADD) or by using a scalar multiplication factor for all real constant property values (VarType $=$ FACT). Varying the real constant property by its value itself using VarType = VAL is only possible if the element thickness is constant and identical for all elements.

An error message is generated and the VTREAL command is ignored when the current value is outside the variation range.

If the Order is not specified, it will be increased until the accuracy requirements of the VTRSLT command are satisfied. When you set a value for Order, no further adjustments for accuracy will be performed. Order should only be used when an input parameter has an influence with a limited order.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

## Main Menu>DesignXplorer>Setup>Real Constant

VTRFIL, Fname, Ext, Dir

## Specifies the file to which DesignXplorer results are written.

VARIATIONAL TECHNOLOGY:DesignXplorer
<> <> <> <> <> <> <> <> <> <> <> <> VT <> <>

## Fname

File name (32 characters maximum). Defaults to Jobname.

## Ext

File name extension (8 characters maximum). Defaults to rsx if Fname is blank; otherwise, no default.
Dir
Directory name ( 64 characters maximum). Defaults to the current working directory.

## Command Default

Fname $=$ Jobname, Ext $=r s x$, the default directory is the current working directory.

## Notes

Specifies which file is used to store the results of DesignXplorer. The file contains the description of the higher order derivatives of the result parameters (selected by the VTRSLT command) with respect to the input variables (selected by commands VTFREQ, VTMP, VTSEC,... ).

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu>DesignXplorer>Solution>Results File

## VTRSLT, Name, Entity, Type, Comp, ACC, CompName

## Defines a result quantity for the DesignXplorer.

VARIATIONAL TECHNOLOGY:DesignXplorer
<> <> <> <> <> <> <> <> <> <> <> <> VT <> <>

## Name

Name of the result parameter. This is a string of up to 250 characters used for postprocessing purposes. Blanks can be included.

## Entity

Entity keyword. Valid keywords are listed in the tables below.

## Type

Type of result parameter. Valid labels are listed in the table below depending on the Ent ity field.

## Comp

Component of the result parameter type. Valid labels are listed in the table below depending on the Type field.

ACC
Required accuracy for the requested result parameter. Default values depend on the individual result parameter. The default value is 0.02 (2\%).

## CompName

Name of an element or node component, depending on the Entity field. If CompName = ALL then all entities as specified in the Entity field are considered for the VTRSLT command. CompName = ALL is the default.

## Command Default

ACC $=2 \%$, CompName $=$ ALL.

## Notes

Defines the result quantity, for which an approximation function with respect to the input variables will be calculated.

In static analysis, displacement and temperature do not need to be specified, as they are automatically computed for all nodes of the model and for all components.

The accuracy provided with the ACC field should not be confused with the error due to meshing of the finiteelement model. The accuracy is the maximum difference you can expect between an evaluation of the results of DesignXplorer at any point of the input space of the defined input variables and a rerun of a full ANSYS model at the same location of the input space.

The accuracy for all result parameters will be used to derive a global accuracy measure using the minimum value. This means that if there are several result parameters defined with the VTRSLT command and some
have a requested accuracy of $A C C=0.05$ and one has a requested accuracy of $A C C=0.01$, then an accuracy of 0.01 (1\%) will be adopted for all result parameters.

If the derivation order has been specified for one parameter, then the accuracy is not guaranteed for any variation involving this parameter.

For a normal modes analysis the result type MASS cannot be selected.
Table 264 Table of Valid Labels for the Type and Comp Fields for Entity = ELEM

| Type | Comp | Description |
| :--- | :--- | :--- |
| MASS |  | Structural mass based on the elements. |
| S | ALL | Component nodal stress of the element(s) (not averaged at nodes). |
| TG | ALL | Component nodal temperature gradient of the element(s) (not <br> averaged at nodes). |
| TF | ALL | Component nodal heat flux of the element(s) (not averaged at <br> nodes). |

## Note

For Entity = ELEM an existing component name including a set of elements must be specified in the CompName field.

Table 265 Table of valid labels for the Type and Comp fields for Entity = Node

| Type | Comp | Description |
| :--- | :--- | :--- |
| U | ALL | Displacement |
| TEMP | ALL | Temperature |
| RF | FX, FY, FZ, <br> MX, MY, MZ, <br> ALL | Nodal reaction forces in the nodal coordinate system |

## Note

For Entity = NODE an existing component name including a set of nodes must be specified in the CompName field.

Table 266 Table of valid labels for the Type and Comp fields for Entity = Mode

| Type | Comp | Description |
| :--- | :--- | :--- |
| MODE | All mode shapes and the corresponding eigenfrequencies that are <br> evaluated as part of the solution. |  |
| FREQ | All eigenfrequencies that are evaluated as part of the solution. <br> Compared to the Type $=$ MODE option, the $T y p e=$ FREQ option <br> does not provide the solutions for the mode shapes. The option <br> will save memory compared to the Type = MODE option. |  |

## Note

For Entity = MODE, all modes are always taken into consideration, that is, the only valid user input is CompName $=$ ALL.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

## Main Menu>DesignXplorer>Setup>Result Quantity

## VTSEC, Name, MIN, MAX, RedOpt, Lab, SECID, LAYERID, EIComp, VarType, Order

## Defines a section property as an input variable for DesignXplorer.

VARIATIONAL TECHNOLOGY:DesignXplorer

$$
<><><><><><><><><><><><>\mathrm{VT}<><>
$$

## Name

Name for the input variable. This is a string of up to 250 characters used for postprocessing purposes. Blanks can be included.

## MIN

Minimum value of the input variable.

## MAX

Maximum value of the input variable.

## RedOpt

Reduction option that specifies what to do if DesignXplorer must reduce the variation range from MIN to MAX. Valid labels are:

CONT
Continue with the calculation of the derivatives. This is the default.
STOP
Stop the calculation of the derivatives. This option is necessary if a reduction of the variation range is not acceptable.

## Lab

Valid section property label. This label must refer to a valid property of the section as defined by the SECTYPE and SECDATA commands. The applicable label is:
тK
Shell thickness. This applies only if the section property has been defined with Type = SHELL of the SECTYPE command.

A
Area of section.
Iyy
Moment of inertia about the $y$ axis.
Iyz
Product of inertia.

```
Izz
 Moment of interia about the z axis.
Iw
 Wrapping constant.
J
 Torsional constant.
```

SECID

Section identification number as defined by the SECTYPE command and further specified by the SECDATA command.

## LAYERID

Layer identification number as defined by the SECDATA command.

## ElComp

Name of an element component or number of a single individual element. If $E I C \circ m p=A L L$, then all elements are considered for the VTSEC command.

## Vartype

Label indicating how the variability of a spatially dependent element thickness should be handled. This label is ignored if the shell element thickness is constant for all elements selected by either the SECID or the ElComp field. Valid labels are:
FACT
The variability of the section property is described by a scale factor that is applied to the section property values. In case the section properties are different from element to element, a scale factor will be applied to all section property values. This means that the MIN field is the value of the minimum factor to be applied and the MAX field is the maximum factor to be applied. As such the values specified for MIN and MAX are unitless quantities. VarType $=$ FACT is the default if the section property is different from element to element.
ADD
The variability of the section property is described by an add-on that is applied to the section property values. In case the section properties are different from element to element, then the section property values are shifted at the same time by this add-on. This means that the MIN field is the minimum value that is added to the section property values and the MAX field contains the maximum value that is added to the section property values. Hence, the values specified for MIN and MAX have the physical unit of a length.

VAL
The variability of the section property is described by the modification of the section property value itself. This is only applicable if the section property value is identical and constant for all selected elements. This means that the MIN field is the minimum value that the section property value itself can take and the MAX field contains the maximum value, which the section property value can take. This is the default if the section property is identical and constant from element to element.

## Order

Derivation order. By default, driven by the application.

## Notes

Defines the section property of a single element or a set of elements as an input variable of DesignXplorer. The section property must be specified with the SECTYPE and SECDATA commands prior to the VTSEC command. The DesignXplorer will evaluate the derivatives of the result parameter(s) (see VTRSLT command) with respect to the section property defined here. The derivatives are used to determine an approximation
function for the result parameter(s) as a function of the section property in the range specified by the MIN and MAX fields.

Using either the SECID field or the EIComp field a set of elements is selected for which the section property is varied. The user must define one of these two fields and leave the respective other one blank.

If the section property is different from element to element, then each element has different values for the section property at the individual nodes. To describe a variation of the section property with one single parameter is only possible by using a scalar addition to all section property values (VarType =ADD) or by using a scalar multiplication factor for all section property values (VarType $=$ FACT). Varying the section property by its value itself using VarType = VAL is only possible, if the section property is constant and identical for all elements.

An error message is generated and the VTSEC command is ignored when the current value is outside the variation range.

If the Order is not specified, it will be increased until the accuracy requirements of the VTRSLT (p. 1873) command are satisfied. When you set a value for Order, no further adjustments for accuracy will be performed.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

## Main Menu>DesignXplorer>Setup>Section Property

## VTSFE, Name, MIN, MAX, RedOpt, Lab, LKEY, EIComp, VarType, Order

## Defines a surface load as an input variable for the DesignXplorer.

> VARIATIONAL TECHNOLOGY: DesignXplorer <> <> <> <> <> <> <> <> <> <> <> <> VT <> <>

## Name

Name of the input variable. This is a string of up to 256 characters used for postprocessing purposes. Blanks are allowed in the string.

## MIN

Minimum value of the input variable.

## MAX

Maximum value of the input variable.

## RedOpt

Reduction option that specifies what to do if the DesignXplorer needs to reduce the variation range from MIN to MAX. Valid labels are:

CONT
Continue with the calculation of the derivatives. This is the default.
STOP
Stop the calculation of the derivatives. This option is necessary if a reduction of the variation range is not acceptable.

## Lab

Valid surface load label. This label must be defined using the SFE or SF command prior to issuing this command. Applicable labels are:

## PRES

Pressure, Force

## HFILM

Convection surface loads (film coefficient)

## tBULK

Convection surface loads (bulk temperature)

## hFLUX

Heat flux

## LKEY

Load key associated with surface load (not applicable when Lab is different from PRES). Valid load keys are: $1,2,3,4$, or 5 for element SURF154 and 1,2,3, or 4 for element SURF153.

## ElComp

Name of an element component or number of a single individual element. If $E l C o m p=A L L$, then all elements are considered for the VTSFE command.

## VarType

Label indicating how the variability of surface load should be handled. Valid labels are:
FACT
The variability of the surface load is described by a scale factor that is applied to the load values. This means that the MIN field is the value of the minimum factor to be applied and the MAX field is the maximum factor to be applied. As such the values specified for MIN and MAX are unitless quantities. VarType $=$ FACT is the default for surface load parameters.

## ADD

The variability of the surface load is described by an add-on that is applied to the load values. This means that the MIN field is the minimum value that is added to the load values and the MAX field contains the maximum value that is added to the surface load values. Hence, the values specified for MIN and MAX have the same unit as the surface load itself.

## Order

Derivation order. By default, driven by the application.

## Notes

Defines the surface load of a single element or a set of elements as an input variable of the DesignXplorer. The DesignXplorer will evaluate the derivatives of the result parameter(s) (see VTRSLT command) with respect to the surface load defined here. The derivatives are used to determine an approximation function for the result parameter(s) as a function of the surface load in the range specified by the MIN and MAX fields.

The type of the surface load is defined by the Lab field, which must not be left blank. The surface load must exist or be specified using the SFE command prior to issuing the VTSFE command.

Using the ElComp field a set of elements is selected for which the surface load is varied.
If the Order is not specified, it will be increased until the accuracy requirements of the VTRSLT command are satisfied. When you set a value for Order, no further adjustments for accuracy will be performed. Order should only be used when an input parameter has an influence with a limited order.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

This command cannot be accessed from a menu.

VTSL, Type, Varname
Selects a subset of elements associated with an VT input variable.
VARIATIONAL TECHNOLOGY:DesignXplorer
<> <> <> <> <> <> <> <> <> <> <> <> VT <> <>

## Type

Label identifying the type of select:
S
Select a new set. This is the default.
R
Reselect a set from the current set.
A
Additionally select a set and extend the current set.
U
Unselect a set from the current set.

## Varname

Name of an VT input variable, defined with the VTMP, VTREAL, VTSEC or VTDISC commands.

## Command Default

There are no default values for the command fields.

## Notes

This command does not apply to output variables or VTGEOM input variables.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

```
Main Menu> DesignXplorer>Setup> Frequency
```


## VTSTAT, EntyLis

## Print the status of the DesignXplorer definitions and settings into a separate window.

> VARIATIONAL TECHNOLOGY: DesignXplorer
> <> <> <> <> <> <> <> <> <> <> <> <> VT <> <>

## EntyLis

Option that specifies whether the nodes or element lists should be printed for those Variational Technology commands where nodes or element lists have been specified. Valid labels are:

NO
Do not print out the list of nodes or elements (default).
YES
Print out the list of nodes or elements.

## Notes

Prints the status the user definitions and settings of the DesignXplorer to a separate window.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

## Main Menu>DesignXplorer>Other>Status

## VTTEMP,Name, MIN, MAX, RedOpt, --, VarType, Order

## Defines the temperature as input variable for the DesignXplorer.

VARIATIONAL TECHNOLOGY:DesignXplorer <> <> <> <> <> <> <> <> <> <> <> <> VT <> <>

## Name

Name for the input variable. This is a string of up to 250 characters used for postprocessing purposes. Blanks are allowed in the string.

MIN
Minimum value of the input variable.
MAX
Maximum value of the input variable.

## RedOpt

Reduction option that specifies what to do if the DesignXplorer needs to reduce the variation range from MIN to MAX. Valid labels are:

CONT
Continue with the calculation of the derivatives. This is the default.
STOP
Stop the calculation of the derivatives. This option is necessary if a reduction of the variation range is not acceptable.

Unused field.

## Vartype

Label indicating how the variability of temperature should be handled. Valid labels are:
FACT
The variability of the temperature is described by an scaling factor that is applied to the temperature. This means that the MIN field is the value of the minimum factor to be applied and the MAX field is the maximum factor to be applied. Hence, the values specified for MIN and MAX are unitless quantities. VarType $=$ FACT is the default for temperature parameters.

## ADD

The variability of the temperature is described by an add-on that is applied to the temperature values. This means that the MIN field is the minimum value that is added to the temperature values and the MAX field contains the maximum value that is added to the temperature values. Hence, the values specified for MIN and MAX have the same unit as the temperature itself.

Order
Derivation Order. By default, driven by the application.

## Command Default

Defaults as outlined above.

## Notes

Defines the temperature as an input variable.
If the Order is not specified, it will be increased until the accuracy requirements of the VTRSLT command are satisfied. When you set a value for Order, no further adjustments for accuracy will be performed.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

## Main Menu>DesignXplorer>Setup $>$ Temperature Load

## VTVMOD, Name, Oper, Value

## Modifies the status or current value of an input variable for the DesignXplorer.

VARIATIONAL TECHNOLOGY:DesignXplorer

$$
<><><><><><><><><><><><>\mathrm{VT}<><>
$$

## Name

Name for an input or results variable of the DesignXplorer. This is a string of up to 250 characters used for postprocessing purposes. Blanks can be used. An input variable with this name must be previously defined using one of the following commands: VTFREQ, VTMP, VTRSLT, ...
oper
Label for the type of operation that is performed on the input variable Name. Valid labels are:

ACT
Activates an input variable in the DesignXplorer. This operation is ignored, if the variable specified is already activated.

DEACT
Deactivates an input variable of the DesignXplorer. This operation is ignored, if the variable specified is not activated.

DEL
Deletes an input or results variable of the DesignXplorer.
SET
Sets the value of an input variable of the DesignXplorer.

## Value

Is the value of the input variable for the VTEVAL command.

## Notes

Modifies the status of an input variable for the DesignXplorer that have been previously defined, by activating, deactivating or deleting it.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu $>$ DesignXplorer $>$ Setup $>$ Modify

VTYPE, NOHID, NZONE
Specifies the viewing procedure used to determine the form factors for the Radiation Matrix method.
AUX12: Radiation Matrix Method
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

## NOHID

Type of viewing procedure:
0
Hidden procedure.
1
Non-hidden (faster, but less general) procedure.

## NZONE

Number of sampling zones for the hidden procedure (100 maximum for 3-D, 1000 maximum for 2-D). Defaults to 20 for 3-D, 200 for 2-D. Number of points is $2^{*}$ NZONE for 2-D and $2^{*}$ NZONE* $(N Z O N E+1)$ for 3-D.

## Command Default

Hidden procedure using 20 zones for 3-D, 200 zones for 2-D.

## Menu Paths

Main Menu>Radiation Opt>Matrix Method>Write Matrix
/VUP, wN, Label

## Specifies the global Cartesian coordinate system reference orientation.

GRAPHICS:Views
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## WN

Window number (or ALL) to which command applies (defaults to 1 ).

## Label

Orientation:
Y
Y vertical upward, $X$ horizontal to the right, $Z$ out from the screen (default).
-Y
Y vertical downward, $X$ horizontal to the left, $Z$ out from the screen.
X
$X$ vertical upward, $Y$ horizontal to the left, $Z$ out from the screen.
-X
$X$ vertical downward, $Y$ horizontal to the right, $Z$ out from the screen.
Z
$Z$ vertical upward, $Y$ horizontal to the right, $X$ out from the screen. With this choice, you should use a view other than the /VIEW default of $(0,0,1)$.
-Z
$Z$ vertical downward, $Y$ horizontal to the left, $X$ out from the screen. With this choice, you should use a view other than the /VIEW default of $(0,0,1)$.

## Command Default

$Y$ vertical upward, $X$ horizontal to the right, $Z$ out from the screen.

## Notes

Specifies the global Cartesian coordinate system reference orientation. The /VIEW and /ANGLE commands may be used to reorient the view and are relative to this reference orientation. All coordinate systems are right-handed.

This command is valid in any processor.

## Menu Paths

Utility Menu>PlotCtrls>View Settings>Viewing Direction

## Writes data to a file in a formatted sequence.

APDL:Array Parameters<br>MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Argument Descriptions

Par1, Par2, Par3, ..., Par19

You can write up to 19 parameters (or constants) at a time. Any Par values after a blank Par value are ignored. If you leave them all blank, one line will be written (to write a title or a blank line). If you input the keyword SEQU, a sequence of numbers (starting from 1) will be written for that item.

## Notes

You use *VWRITE to write data to a file in a formatted sequence. Data items (Par1, Par2, etc.) may be array parameters, scalar parameters, character parameters (scalar or array), or constants. You must evaluate expressions and functions in the data item fields before using the *VWRITE command, since initially they will be evaluated to a constant and remain constant throughout the operation. Unless a file is defined with the *CFOPEN command, data is written to the standard output file. Data written to the standard output file may be diverted to a different file by first switching the current output file with the /OUTPUT command. You can also use the *MWRITE command to write data to a specified file. Both commands contain format descriptors on the line immediately following the command. The format descriptors can be in either Fortran or C format.

You must enclose Fortran format descriptors in parentheses. They must immediately follow the *VWRITE command on a separate line of the same input file. Do not include the word FORMAT. The format must specify the number of fields to be written per line, the field width, the placement of the decimal point, etc. You should use one field descriptor for each data item written. The write operation uses your system's available FORTRAN FORMAT conventions (see your system FORTRAN manual). You can use any standard FORTRAN real format (such as (4F6.0), (E10.3,2X,D8.2), etc.) and alphanumeric format (A). Alphanumeric strings are limited to a maximum of 8 characters for any field (A8) using the Fortran format. Use the "C" format for string arrays larger than 8 characters. Integer (I) and list-directed (*) descriptors may not be used. You can include text in the format as a quoted string. The parentheses must be included in the format and the format must not exceed 80 characters (including parentheses). The output line length is limited to 128 characters.

The " $C$ " format descriptors are used if the first character of the format descriptor line is not a left parenthesis. " C " format descriptors are up to 80 characters long, consisting of text strings and predefined "data descriptors" between the strings where numeric or alphanumeric character data will be inserted. The normal descriptors are \%l for integer data, \%G for double precision data, \%C for alphanumeric character data, and \%/ for a line break. There must be one data descriptor for each specified value ( 8 maximum) in the order of the specified values. The enhanced formats described in *MSG may also be used.

For array parameter items, you must define the starting array element number. Looping continues (incrementing the vector index number of each array parameter by one) each time you output a line, until the maximum array vector element is written. For example, *VWRITE,A(1) followed by (F6.0) will write one value per output line, i.e., $A(1), A(2), A(3), A(4)$, etc. You write constants and scalar parameters with the same values for each loop. You can also control the number of loops and loop skipping with the *VLEN and *VMASK commands. The vector specifications *VABS, *VFACT, and *VCUM do not apply to this command. If looping
continues beyond the supplied data array's length, zeros will be output for numeric array parameters and blanks for character array parameters. For multi-dimensioned array parameters, only the first (row) subscript is incremented. See the *VOPER command for details. If you are in the GUI, the *VWRITE command must be contained in an externally prepared file and read into ANSYS (i.e., *USE, /INPUT, etc.).

This command is valid in any processor.

## Menu Paths

## Utility Menu>Parameters>Array Parameters $>$ Write to File

# W Commands 

## /WAIT, DTIME

## Causes a delay before the reading of the next command.

APDL: Process Controls<br>MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## Argument Descriptions

## DTIME

Time delay (in seconds). Maximum time delay is 59 seconds.

## Notes

The command following the /WAIT will not be processed until the specified wait time increment has elapsed. Useful when reading from a prepared input file to cause a pause, for example, after a display command so that the display can be reviewed for a period of time. Another "wait" feature is available via the *ASK command.

This command is valid in any processor.

## Menu Paths

## This command cannot be accessed from a menu.

WAVES, Wopt, OLDMAX, OLDRMS
Initiates reordering.
PREP 7: Element Reordering
MP ME ST PR PRN $<><><>$ EM $<><>$ PP $<>$ EME MFS
Wopt
Option for comparison:
MAX
Use maximum wavefront value for comparison (default).
RMS
Use RMS wavefront value for comparison.

## OLDMAX, OLDRMS

Maximum and RMS wavefront values of model to be used in place of the old values. OLDRMS defaults to OLDMAX (and vice versa). If neither is specified, each defaults to its calculated old value.

## Notes

Initiates the element reordering based upon the previously defined starting wave lists (if any). Reordering affects only the element order for the solution phase and not the element numbers (input referring to element numbers, such as element pressures, is unaffected by reordering).


#### Abstract

Note The new order is retained only if new the new maximum or RMS wavefront values are lower than the old values, as described below. See the WSORT command for another reordering procedure. The resulting element ordering can be shown by listing the wavefront history [WFRONT,1] or by displaying elements with their element location numbers [/PNUM].


The WAVES reordering procedure is based upon a list of nodes defining where the element reordering is to start (either input on the WSTART command, or automatically determined if not input). If a list is input, additional starting wave lists may be defined to allow the user to block or guide the wave. An input starting list usually consists of one node for a line element model, a line of nodes for an area element model, or a plane of nodes for a volume element model. Elements are ordered from the first starting wave list in a direction that attempts to minimize the wavefront. Nodes are deleted and added to the total wave list set as reordering progresses through the model. Elements attached to nodes on succeeding starting lists, if any, are ignored at this time, thereby temporarily blocking that path. Whenever no more elements can be reordered, the procedure is repeated starting from the nodes defined on the second starting list (if any). The same node number should not appear on more than one list. If no starting list is input, a starting node is automatically selected from an element weighting procedure (see Element Reordering in the Theory Reference for the Mechanical APDL and Mechanical Applications).

Reordering may be made from the previously reordered model or from the initial model (by issuing the SAVE command before reordering and then restoring that model back to PREP7 with the RESUME command after reordering). The WFRONT command is useful for calculating and printing the current wavefront statistics at any time without causing any reordering of the elements. If a model is to be used for both a thermal and a structural analysis, the reordered statistics should be based upon the structural model (because of the higher number of degrees of freedom per node).

The reordering procedure treats separate portions of the model (i.e., not connected by elements) as discontinuous. Reordering automatically continues across a discontinuity as best as possible.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

## Main Menu>Preprocessor>Numbering Ctrls>Element Reorder>Reorder by List

## WERASE

## Erases all reordering wave lists.

PREP 7: Element Reordering
MP ME ST PR PRN <> <> <> EM <> <> PP <> EME MFS

## Notes

The REORDER then STAT commands will display the current wave lists.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu>Preprocessor>Numbering Ctrls>Element Reorder>Erase Wave List

## WFRONT, KPRNT, KCALC

## Estimates wavefront statistics.

> PREP 7:Element Reordering
> MP ME ST PR PRN <> <> <> EM <> <> PP <> EME MFS

## KPRNT

Wavefront history print key:
0
Print current wavefront statistics.
1
Print current wavefront statistics but also print wavefront history (wavefront at each element). Elements are listed in the reordered sequence.

## KCALC

Calculation options:
0
Wavefront estimate assumes maximum model DOF set at each node and does not include the effects of master degrees of freedom and specified displacement constraints.
1
Wavefront estimate uses the actual DOF set at each node and does not include the effects of master degrees of freedom and specified displacement constraints. More time consuming than estimated wavefront. $K P R N T=1$ is not available with this option.

## Notes

Estimates wavefront statistics of the model as currently ordered.
Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu>Preprocessor>Numbering Ctrls>Element Reorder>Est. Wavefront
/WINDOW, WN, XMIN, XMAX, YMIN, YMAX, NCOPY

## Defines the window size on the screen.

> GRAPHICS: Set Up
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

WN
Window reference number ( 1 to 5 ). Defaults to 1 . This number, or ALL (for all active windows), may be used on other commands.

## XMIN, XMAX, YMIN, YMAX

Screen coordinates defining window size. Screen coordinates are measured as -1.0 to 1.67 with the origin at the screen center. For example, $(-1,1.67,-1,1)$ is full screen, $(-1,0,-1,0)$ is the left bottom quadrant. If XMIN = OFF, deactivate this previously defined window; if ON, reactivate this previously defined window. If FULL, LEFT, RIGH, TOP, BOT, LTOP, LBOT, RTOP, RBOT, form full, half, or quarter window. If SQUA, form largest square window within the current graphics area. If DELE, delete this window (cannot be reactivated with ON).

NCOPY
Copies the current specifications from window $N C O P Y(1$ to 5$)$ to this window. If $N C O P Y=0$ (or blank), no specifications are copied.

## Command Default

One window at full screen.

## Notes

Defines the window size on the screen. Windows may occupy a separate section of the screen or they may overlap. Requested displays are formed in all windows according to the selected window specifications.

This command is valid in any processor.

## Menu Paths

Utility Menu>PlotCtrls>Window Controls>Copy Window Specs
Utility Menu>PlotCtrls>Window Controls>Delete Window
Utility Menu>PlotCtrls>Window Controls>Window Layout
Utility Menu>PlotCtrls>Window Controls>Window On or Off

## WMID, кеу

## Specifies reordering options for the WAVES command.

> PREP 7: Element Reordering
> MP ME ST PR PRN <> <> <> EM <> <> PP <> EME MFS

## Key

Determines whether midside nodes are considered when reordering.
NO
Do not consider midside nodes when reordering (default).
YES
Consider midside nodes when reordering. This option is useful for models where line elements are only attached to midside nodes of solid elements.

## Notes

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

## This command cannot be accessed from a menu.

## WMORE, NODE1, NODE2, NINC, ITIME, INC

## Adds more nodes to the starting wave list.

PREP 7: Element Reordering
MP ME ST PR PRN <> <> <> EM <> <> PP <> EME MFS

## NODE1, NODE2, NINC

Add another node set to the previous starting wave list. Set is NODE1 to NODE2 (defaults to NODE1) in steps of NINC (defaults to 1). If NODE1 is negative, delete (instead of add) this node set from previous starting wave list.

## ITIME, INC

Add other node sets to the same starting wave list by repeating the previous node set with NODE1 and NODE2 incremented by INC (defaults to 1) each time after the first. ITIME is the total number of sets (defaults to 1 ) defined with this command.

## Notes

Adds more nodes to (or modifies) the previous starting wave list (if any) [WSTART]. Repeat WMORE command to add more nodes to the previous starting wave list. Up to 10,000 nodes may be defined (total, for all starting waves).

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

Main Menu>Preprocessor>Numbering Ctrls>Element Reorder>Extend Wave List

WPAVE, $X 1, Y 1, Z 1, X 2, Y 2, Z 2, X 3, Y 3, Z 3$
Moves the working plane origin to the average of specified points.

> DATABASE: Working Plane
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## X1, Y1, Z1

Coordinates (in the active coordinate system) of the first point. If $X 1=P$, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI).

## X2, Y2, Z2

Coordinates (in the active coordinate system) of the second point.

## X3, Y3, Z3

Coordinates (in the active coordinate system) of the third point.

## Notes

Moves the origin of the working plane to the average of the specified points. A point is considered specified only if at least one of its coordinates is non-blank, and at least one point ( 1,2, or 3 ) must be specified. Blank coordinates of a specified point are assumed to be zero. Averaging is based on the active coordinate system.

This command is valid in any processor.

## Menu Paths

Utility Menu>WorkPlane>Offset WP to>Global Origin
Utility Menu $>$ WorkPlane $>$ Offset WP to>Origin of Active CS
Utility Menu>WorkPlane>Offset WP to>XYZ Locations

WPCSYS, $w N$, KCN

## Defines the working plane location based on a coordinate system.

DATABASE:Working Plane
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
wN
Window number whose viewing direction will be modified to be normal to the working plane (defaults to 1 ). If $W N$ is a negative value, the viewing direction will not be modified.

## KCN

Coordinate system number. KCN may be $0,1,2$ or any previously defined local coordinate system number (defaults to the active system).

## Notes

Defines a working plane location and orientation based on an existing coordinate system. If a Cartesian system is used as the basis (KCN) for the working plane, the working plane will also be Cartesian, in the XY plane of the base system. If a cylindrical, spherical, or toroidal base system is used, the working plane will be a polar system in the R- $\theta$ plane of the base system.

If working plane tracking has been activated (CSYS,WP or CSYS,4), the updated active coordinate system will be of a similar type, except that a toroidal system will be updated to a cylindrical system. See the Modeling and Meshing Guide for more information on working plane tracking.

This command is valid in any processor.
Some primitive generation commands will not honor R-theta transformations for non-cartesian coordinate systems. Refer to the primitive commands table for more information.

## Menu Paths

> Main Menu>General Postproc>Surface Operations>Create Surface>Sphere>At Node Utility Menu $>$ WorkPlane $>$ Align WP with $>$ Active Coord Sys Utility Menu>WorkPlane $>$ Align WP with $>$ Global Cartesian Utility Menu $>$ WorkPlane $>$ Align WP with $>$ Specified Coord Sys

WPLANE, WN, XORIG, YORIG, ZORIG, XXAX, YXAX, ZXAX, XPLAN, YPLAN, ZPLAN
Defines a working plane to assist in picking operations.
DATABASE:Working Plane
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
wn
Window number whose viewing direction will be modified to be normal to the working plane (defaults to 1 ). If $W N$ is a negative value, the viewing direction will not be modified. If fewer than three points are used, the viewing direction of window $W N$ will be used instead to define the normal to the working plane.

## XORIG, YORIG, ZORIG

Global Cartesian coordinates of the origin of the working plane coordinate system.

## XXAX, YXAX, ZXAX

Global Cartesian coordinates of a point defining the $x$-axis orientation. The $x$-axis aligns with the projection of the line from this orientation point to the origin.

## XPLAN, YPLAN, ZPLAN

Global Cartesian coordinates of the third point defining the working plane. This point will also define the location of the positive XY -sector of the working plane coordinate system.

## Command Default

Working plane parallel to the global $X-Y$ plane at $Z=0.0$.

## Notes

Defines a working plane to assist in picking operations using the coordinates of three noncolinear points. The three points also define the working plane coordinate system. A minimum of one point (the working plane origin) is required. Immediate mode may also be active. See WPSTYL command to set the style of working plane display.

This command is valid in any processor.

## Menu Paths

Utility Menu>WorkPlane>Align WP with>XYZ Locations

## WPOFFS, XOFF, YOFF, ZOFF

## Offsets the working plane.

> DATABASE: Working Plane
> MP ME ST PR PRN $<><>$ FL EM EH DY PP $<>$ EME MFS

## XOFF, YOFF, ZOFF

Offset increments defined in the working plane coordinate system. If only $Z O F F$ is used, the working plane will be redefined parallel to the present plane and offset by ZOFF.

## Notes

Changes the origin of the working plane by translating the working plane along its coordinate system axes.
This command is valid in any processor.

## Menu Paths

## Utility Menu>WorkPlane>Offset WP by Increments

WPROTA, $T H X Y$, $T H Y Z, T H Z X$
Rotates the working plane.

> DATABASE: Working Plane
> MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

THXY
First rotation about the working plane $Z$ axis (positive $X$ toward $Y$ ).
THYZ
Second rotation about working plane $X$ axis (positive $Y$ toward $Z$ ).
THZX
Third rotation about working plane Y axis (positive Z toward X ).

## Notes

The specified angles (in degrees) are relative to the orientation of the working plane.
This command is valid in any processor.

## Menu Paths

## Utility Menu>WorkPlane>Offset WP by Increments

## Controls the display and style of the working plane.

DATABASE:Working Plane
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## SNAP

Snap increment for a locational pick (1E-6 minimum). If -1, turn off snap capability. For example, a picked location of 1.2456 with a snap of 0.1 gives 1.2 , with 0.01 gives 1.25 , with 0.001 gives 1.246 , and with 0.025 gives 1.250 (defaults to 0.05 ).

## GRSPAC

Graphical spacing between grid points. For graphical representation only and not related to snap points (defaults to 0.1).

## GRMIN, GRMAX

Defines the size of a square grid (if $W P C T Y P=0$ ) to be displayed over a portion of the working plane. The opposite corners of the grid will be located at grid points nearest the working plane coordinates of ( $G R M I N, G R M I N$ ) and (GRMAX,GRMAX). If a polar system (WPCTYP $=1$ ), GRMAX is the outside radius of grid and GRMIN is ignored. If GRMIN = GRMAX, no grid will be displayed (defaults to -1.0 and 1.0 for GRMIN and GRMAX respectively).

## WPTOL

The tolerance that an entity's location can deviate from the specified working plane, while still being considered on the plane. Used only for locational picking of vertices for polygons and prisms (defaults to 0.003).

## WPCTYP

Working plane coordinate system type:
0
Cartesian (default). If working plane tracking is on [CSYS,4], the updated active coordinate system will also be Cartesian.

1
Polar. If working plane tracking is on, the updated active coordinate system will be cylindrical.
2
Polar. If working plane tracking is on, the updated active coordinate system will be spherical.

## GRTYPE

Grid type:
0
Grid and WP triad.
1
Grid only.
2
WP triad only (default).
WPVIS
Grid visibility:
0
Do not show GRTYPE entities (grid and/or triad) (default).

1
Show GRTYPE entities. Cartesian working planes will be displayed with a Cartesian grid, polar with a polar grid.

## SNAPANG

Snap angle (0--180) in degrees. Used only if $W P C T Y P=1$ or 2 . Defaults to 5 degrees.

## Command Default

Snap capability on with an increment of .05 , spacing between grid points of 0.1 , Cartesian coordinate system, WP triad displayed, and a tolerance of .003 .

## Notes

Use WPSTYL,DEFA to reset the working plane to its default location and style. Use WPSTYL,STAT to list the status of the working plane. Blank fields will keep present settings.

It is possible to specify SNAP and WPTOL values that will cause conflicts during picking operations. Check your values carefully, and if problems are noted, revert to the default values.

WPSTYL with no arguments will toggle the grid on and off. The working plane can be displayed in the nonGUI interactive mode only after issuing a /PLOPTS,WP,1 command. See the Modeling and Meshing Guide for more information on working plane tracking. See /PLOPTS command for control of hidden line working plane.

This command is valid in any processor.

## Menu Paths

Main Menu>Preprocessor>Modeling>Create>Circuit>Builder>ROM>ElecStruc<br>Main Menu>Preprocessor>Modeling>Create>Circuit>Set Grid<br>Utility Menu>List>Status>Working Plane<br>Utility Menu>WorkPlane>Display Working Plane<br>Utility Menu>WorkPlane>Offset WP by Increments<br>Utility Menu>WorkPlane>Show WP Status<br>Utility Menu>WorkPlane>WP settings

## WRFULL, Ldstep

Stops solution after assembling global matrices.

> SOLUTION:Load Step Options
> MP ME ST PR PRN <> <> <> EM EH <> PP <> EME MFS

## Ldstep

Specify action to take:

## OFF or 0

Turn off feature (default)
$\boldsymbol{N}$
Turn on feature and set it to stop after assembling the global matrices and writing the .FULL file for load step N .

## Command Default

By default the WRFULL command is turned OFF.

## Notes

This command is used in conjunction with the SOLVE command to generate the assembled matrix file (.FULL file) only. The element matrices are assembled into the relevant global matrices for the particular analysis being performed and the .FULL file is written. Equation solution and the output of data to the results file are skipped. To dump the matrices written on the .FULL file into Harwell-Boeing format, use the HBMAT command in /AUX2. To copy the matrices to a postscript format that can be viewed graphically, use the PSMAT command.

To use the LSSOLVE macro with this command, you may need to modify the LSSOLVE macro to properly stop at the load step of interest.

This command only valid for linear static, full harmonic, and full transient analyses when the sparse direct solver is selected. This command is also valid for buckling or modal analyses with any mode extraction method. This command is not valid for nonlinear analyses.

In general, the assembled matrix file .FULL contains stiffness, mass, and damping matrices. However, the availability of the matrices depends on the analysis type chosen when the file is written.

## Menu Paths

Main Menu>Preprocessor>Loads>Load Step Opts>Stop Solution Main Menu>Solution>Load Step Opts>Stop Solution

## WRITE, Fname

## Writes the radiation matrix file.

> AUX12: Radiation Matrix Method
> MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

## Fname

File name and directory path ( 248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.

The file name Defaults to Jobname.

## Notes

Writes radiation matrix file (File.SUB) for input to the substructure thermal "use" pass. Subsequent WRITE operations to the same file overwrite the file.

## Menu Paths

Main Menu>Radiation Opt>Matrix Method>Write Matrix

WSORT, Lab, KORD, --, Wopt, OLDMAX, OLDRMS
Initiates element reordering based upon a geometric sort.
PREP 7:Element Reordering
MP ME ST PR PRN <> <> <> EM <> <> PP <> EME MFS

## Lab

Coordinate (in the active system) along which element centroid locations are sorted. Valid labels are: X, $\mathrm{Y}, \mathrm{Z}, \mathrm{ALL}$. If ALL (default), all three directions will be used, and the order corresponding to the lowest MAX or RMS wavefront value will be retained.

## KORD

Sort order:
0
Sort according to ascending coordinate values.
1
Sort according to descending coordinate values.

Unused field.

## Wopt

Option for comparison:
MAX
Use maximum wavefront value for comparison (default).
RMS
Use RMS wavefront value.

## OLDMAX, OLDRMS

MAX and RMS wavefront values of model to be used in place of the old values. OLDRMS defaults to OLDMAX (and vice versa). If neither is specified, each defaults to its calculated old value.

## Notes

Initiates element reordering based upon a geometric sort of the element centroid locations. Wave lists, if any [WSTART], are ignored. Reordering affects only the element order for the solution phase and not the element numbers (input referring to element numbers, such as element pressures, is unaffected by reordering).

## Note

The new order is retained only if new the new maximum or RMS wavefront values are lower than the old values, as described below. See the WAVES command for another reordering procedure and for more details on reordering. The resulting element ordering can be shown by listing the wavefront history [WFRONT,1] or by displaying elements with their element location numbers [/PNUM].

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

## Main Menu>Preprocessor>Numbering Ctrls>Element Reorder>Reorder by XYZ

## WSPRINGS

Creates weak springs on corner nodes of a bounding box of the currently selected elements.

SOLUTION:Misc Loads<br>MP ME ST PR PRN DS DSS <> <> <> <> PP <> EME MFS

## Notes

WSPRINGS invokes a predefined ANSYS macro that is used during the import of loads from the ADAMS program into the ANSYS program. WSPRINGS creates weak springs on the corner nodes of the bounding box of the currently selected elements. The six nodes of the bounding box are attached to ground using COMBIN14 elements. The stiffness is chosen as a small number and can be changed by changing the real constants of the COMBIN14 elements. This command works only for models that have a geometric extension in two or three dimensions. One dimensional problems (pure beam in one axis) are not supported.

For more information on how WSPRINGS is used during the transfer of loads from the ADAMS program to ANSYS, see Import Loads into ANSYS in the Advanced Analysis Techniques Guide.

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

## Main Menu>Solution>ADAMS Connection>Import fr ADAMS

## WSTART, NODE1, NODE2, NINC, ITIME, INC

## Defines a starting wave list.

PREP 7: Element Reordering
MP ME ST PR PRN <> <> <> EM <> <> PP <> EME MFS

## NODE1, NODE2, NINC

Define a set of nodes in the starting wave list from NODE1 to NODE2 (defaults to NODE1) in steps of NINC (defaults to 1). If NODE1 = ALL, ignore remaining fields and use all selected nodes [NSEL].

## ITIME, INC

Add more node sets to the same starting wave list by repeating the previous node set with NODE1 and NODE2 incremented by INC (defaults to 1) each time after the first. ITIME is the total number of sets (defaults to 1 ) defined with this command.

## Command Default

If no starting waves, a starting node will be automatically defined when the WAVES command is issued.

## Notes

Defines a starting wave list (optional) for reordering with the WAVES command. Repeat WSTART command to define other starting wave lists ( 20 maximum).

Distributed ANSYS Restriction This command is not supported in Distributed ANSYS.

## Menu Paths

## Main Menu>Preprocessor>Numbering Ctrls>Element Reorder>Define Wave List

## X Commands

/XFRM, $L A B, X 1, Y 1, Z 1, X 2, Y 2, Z 2$
Controls the centroid or the axis of dynamic rotation.
GRAPHICS:Views
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## $L A B$

The location or entity (centroid) used to define the center or axis of rotation.

## NODE

If NODE is chosen for the center of rotation, the node number will be $x$ 1. If the rotation is to be about an axis, then $X 1$ and $Y 1$ define the two nodes between which a line is drawn to determine the axis. The remaining arguments are ignored.

## ELEMENT

If ELEMENT is chosen for the center of rotation, the element number will be $X 1$. If the rotation is to be about an axis, then $X 1$ and $Y 1$ define the two elements between which a line is drawn to determine the axis. The remaining arguments are ignored.

## KP

If $K P$ is chosen for the center of rotation, the keypoint number will be $X 1$. If the rotation is to be about an axis, then $X 1$ and $Y 1$ define the two keypoints between which a line is drawn to determine the axis. The remaining arguments are ignored.

## LINE

If LINE is chosen for the center of rotation, the line number will be $x$. If the rotation is to be about an axis, then $X 1$ and $Y 1$ define the two lines between which a line is drawn to determine the axis. The remaining arguments are ignored.

## AREA

If AREA is chosen for the center of rotation, the area number will be $X$ 1. If the rotation is to be about an axis, then $X 1$ and $Y 1$ define the two areas between which a line is drawn to determine the axis. The remaining arguments are ignored.

## VOLUME

If VOLUME is chosen for the center of rotation, the volume number will be $x 1$. If the rotation is to be about an axis, then $X 1$ and $Y 1$ define the two volumes between which a line is drawn to determine the axis. The remaining arguments are ignored.
XYZ
If XYZ is chosen for the center of rotation, the location of that center is determined by the coordinates $X 1, Y 1, Z 1$. If values are specified for $X 2, Y 2, Z 2$, then the axis of rotation will be about the line between those two points.

## OFF

If $L A B=$ OFF, DEFAULT, FOCUS or if no value is specified, then the center of rotation is set at the FOCUS point, as defined by the /FOCUS command.

X1
The entity number or $X$ coordinate for the center of rotation.
Y1
The entity number or Y coordinate for the center of rotation.
Z1
The Z coordinate for the center of rotation.
X2
The $X$ coordinate for the axis of rotation.
Y2
The $Y$ coordinate for the axis of rotation.
$z 2$
The $Z$ coordinate for the axis of rotation.

## Command Default

Issuing /XFRM, with no LAB defined sets the center of rotation at the focal point specified by the /FOCUS command.

## Notes

The /XFRM command is active only when the cumulative rotation key is specified ON for the /ANGLE command ( $K I N C R=1$ ). This command affects dynamic manipulations only.

For center rotation, the middle mouse button will rotate the model about the screen $Z$ axis and the right mouse button will rotate the model about the screen $X$ and $Y$ axis.

For rotation about an axis, the middle mouse button will rotate the model about the defined axis of rotation and the right mouse button will be deactivated.

This command is valid in any processor.

## Menu Paths

Utility Menu>PlotCtrls>ViewSettings>Rotational Center>ByPick
/XRANGE, XMIN, XMAX
Specifies a linear abscissa ( $X$ ) scale range.
GRAPHICS: Graphs
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## XMIN

Minimum abscissa scale value.
XMAX
Maximum abscissa scale value.

## Command Default

Automatically select X-range scale to include all data being displayed.

## Notes

Specifies a linear abscissa ( X ) scale range for the line graph display. Use /XRANGE,DEFAULT to return to automatic scaling.

Automatic scaling will often yield inappropriate range values for logarithmic scales (/GROPT, LOGX).
This command is valid in any processor.

## Menu Paths

Utility Menu>PlotCtrls>Style>Graphs>Modify Axes

## XVAR, $N$

## Specifies the X variable to be displayed.

POST26:Display
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
N
X variable number:
0 or 1
Display PLVAR values vs. time (or frequency).
n
Display PLVAR values vs. variable $n$ (2 to $N V$ [NUMVAR]).
1
Interchange time and PLVAR variable numbers with time as the curve parameter. PLVAR variable numbers are displayed uniformly spaced along X-axis from position 1 to 10.

## Command Default

Use time or frequency.

## Notes

Defines the $X$ variable (displayed along the abscissa) against which the $Y$ variable(s) [PLVAR] are to be displayed.

## Menu Paths

## Main Menu>TimeHist Postpro>Settings>Graph

## XVAROPT, Lab

Specifies the parameter to be used as the $\mathbf{X}$-axis variable.
OPTIMIZATION: Display
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
Lab
Parameter to be used as the $X$ variable. Defaults to set numbers.

## Command Default

Use design set numbers as the $X$ variable.

## Notes

Specifies the parameter to be used as the X-axis variable for graphical displays produced by the PLVAROPT command, and for the first column of the tabular listings produced by the PRVAROPT command. Design sets are automatically sorted in a sequence corresponding to an ascending order of the specified parameter.

## Menu Paths

Main Menu>Design Opt>Design Sets>Graphs/Tables

## Y Commands

## /YRANGE, YMIN, YMAX,NUM

## Specifies a linear ordinate (Y) scale range.

GRAPHICS: Graphs
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS

## YMIN

Minimum ordinate scale value.

## YMAX

Maximum ordinate scale value.

## NUM

Y-axis number to which range applies (defaults to 1). Valid numbers are 1 to 3 for /GRTYP,2 and 1 to 6 for /GRTYP,3. If ALL, apply to all Y-axes.

## Command Default

Automatically select Y-range scale to include all data being displayed.

## Notes

Specifies a linear ordinate (Y) scale range for the line graph display. Use /YRANGE,DEFAULT to return to automatic scaling. For multiple Y-axes graphs [/GRTYP], see /GROPT, ASCAL to automatically scale the additional Y-axes.

Automatic scaling will often yield inappropriate range values for logarithmic scales (/GROPT, LOGY).
This command is valid in any processor.

## Menu Paths

## Utility Menu>PlotCtrls>Style>Graphs>Modify Axes

## Z Commands

## /ZOOM, WN, Lab, X1, Y1, X2, Y2

## Zooms a region of a display window.

GRAPHICS:Views
MP ME ST PR PRN <> <> FL EM EH DY PP <> EME MFS
WN
Window number to which command applies (defaults to 1 ).
Lab
Label to define the desired type of zoom:
OFF
Turns zoom off (refits image of entire model to the window).
BACK
Goes back to previous zoom setting (five successive back ups, maximum).
SCRN
Interprets $\mathrm{X} 1, \mathrm{Y} 1$ as the screen coordinates of the center of a square zoom region; $\mathrm{X} 2, \mathrm{Y} 2$ as the screen coordinates of a point on one side of that square.

RECT
Interprets $\mathrm{X} 1, \mathrm{Y} 1$ and $\mathrm{X} 2, \mathrm{Y} 2$ as the screen coordinates of two opposite corners of a rectangular zoom region.

## Notes

Zooms (centers and magnifies) the specified region of a display window. /ZOOM will operate on a display that has been formed by an explicit graphics action command (APLOT, EPLOT, etc.)./ZOOM has no effect on an "immediate" graphics display. When /ZOOM is executed, the display is automatically replotted such that the specified zoom region is centered and sized to fill the window.

Auto resizing is disabled when you issue the /ZOOM command. To restore auto resizing, issue the /AUTO command, or select FIT from the Pan, Zoom, Rotate box.

This command is valid in any processor.

## Menu Paths

Utility Menu>PlotCtrls>Pan, Zoom, Rotate

## Index

## Symbols

*ABBR command, 93
*AFUN command, 108
*ASK command, 166
*AXPY command, 180
*CFCLOS command, 255
*CFOPEN command, 255
*CFWRITE command, 256
*COMP command, 300
*CREATE command, 318
*CYCLE command, 333
*DEL command, 368
*DIM command, 382
*DMAT command, 400
*DO command, 408
*DOWHILE command,411
*EIGEN command, 510
*ELSE command, 515
*ELSEIF command, 515
*END command, 525
*ENDDO command, 526
*ENDIF command, 526
*EXIT command, 577
*EXPORT command, 583
*FREE command, 700
*GET command, 717
*GO command, 778
*IF command, 835
*ITENGINE command, 857
*LIST command, 929
*LSBAC command, 941
*LSENGINE command, 949
*LSFACTOR command, 950
*MFOURI command, 998
*MFUN command, 1006
*MOPER command, 1022
*MSG command, 1054
*MULT command, 1072
*MWRITE command, 1072
*NRM command, 1110
*PRINT command, 1336
*REPEAT command, 1405
*RETURN command, 1414
*SET command, 1519
*SMAT command, 1575
*SREAD command, 1619
*STATUS command, 1634
*TAXIS command, 1659
*TOPER command, 1733
*TREAD command, 1743
*ULIB command, 1775
*USE command, 1782
*VABS command, 1793
*VCOL command, 1797
*VCUM command, 1799
*VEC command, 1803
*VEDIT command, 1805
*VFACT command, 1808
*VFILL command, 1809
*VFUN command, 1813
*VGET command, 1817
*VITRP command, 1828
*VLEN command, 1829
*VMASK command, 1831
*VOPER command, 1834
*VPLOT command, 1837
*VPUT command, 1839
*VREAD command, 1844
*VSCFUN command, 1850
*VSTAT command, 1854
*VWRITE command, 1884
/AN3D command, 117
/ANFILE command, 124
/ANGLE command, 125
/ANNOT command, 130
/ANUM command, 146
/ASSIGN command, 169
/AUTO command, 174
/AUX12 command, 176
/AUX15 command, 176
/AUX2 command, 175
/AUX3 command, 175
/AXLAB command, 179
/BATCH command, 181
/CFORMAT command, 257
/CLABEL command, 265
/CLEAR command, 266
/CLOG command, 269
/CMAP command, 272
/COLOR command, 296
/COM command, 299
/CONFIG command, 302
/CONTOUR command, 305
/COPY command, 306
/CPLANE command, 313
/CTYPE command, 326
/CVAL command, 329
/CWD command, 330
/CYCEXPAND command, 331
/DELETE command, 369
/DEVDISP command, 376
/DEVICE command, 378
/DFLAB command, 381
/DIRECTORY command, 385
/DIST command, 386
/DSCALE command, 413
/DV3D command, 421
/EDGE command, 461
/EFACET command, 507
/EOF command, 531
/ERASE command, 538
/ESHAPE command, 547
/EXIT command, 577
/EXPAND command,580
/FACET command, 592
/FDELE command, 600
/FILNAME command, 607
/FOCUS command, 695
/FORMAT command, 698
/GCMD command, 715
/GCOLUMN command, 715
/GFILE command, 774
/GFORMAT command, 774
/GLINE command, 775
/GMARKER command,776
/GO command, 779
/GOLIST command, 779
/GOPR command, 780
/GRAPHICS command, 783
/GRESUME command, 785
/GRID command, 785
/GROPT command, 786
/GRTYP command, 789
/GSAVE command, 790
/GST command, 794
/GTHK command, 795
/GTYPE command, 796
/HBC command, 799
/HEADER command, 802
/ICLWID command, 833
/ICSCALE command, 833
/IMAGE command, 839
/INPUT command, 847
/INQUIRE command, 848
/LARC command, 895
/LIGHT command, 924
/LINE command, 926
/LSPEC command, 952
/LSYMBOL command, 958
/MAIL command, 971
/MENU command, 977
/MKDIR command, 1011
/MPLIB command, 1042
/MREP command, 1050
/MSTART command, 1068
/NERR command, 1084
/NOERASE command, 1101
/NOLIST command, 1101
/NOPR command, 1103
/NORMAL command, 1105
/NUMBER command, 1133
/OPT command, 1175
/OUTPUT command, 1181
/PAGE command, 1189
/PBC command, 1198
/PBF command, 1201
/PCIRCLE command, 1208
/PCOPY command, 1208
/PDS command, 1240
/PICE command, 1261
/PLOPTS command, 1287
/PMACRO command, 1305
/PMORE command, 1309
/PNUM command, 1311
/POLYGON command, 1314
/POST1 command, 1315
/POST26 command, 1315
/PREP7 command, 1325
/PSEARCH command, 1365
/PSF command, 1366
/PSPEC command, 1377
/PSTATUS command, 1378
/PSYMB command, 1380
/PWEDGE command, 1384
/QUIT command, 1388
/RATIO command, 1396
/RENAME command, 1403
/REPLOT command, 1405
/RESET command, 1410
/RGB command, 1418
/RMDIR command, 1425
/SECLIB command, 1492
/SEG command, 1511
/SHADE command, 1561
/SHOW command, 1563
/SHOWDISP command, 1565
/SHRINK command, 1569
/SMBC command, 1578
/SOLU command, 1594
/SSCALE command, 1622
/STATUS command, 1635
/STITLE command, 1637
/SYP command, 1657
/SYS command, 1657
/TEE command, 1718
/TITLE command, 1727
/TLABEL command, 1727
/TRIAD command, 1745
/TRLCY command, 1746
/TSPEC command, 1752
/TXTRE command, 1756
/TYPE command, 1759
/UCMD command, 1765
/UDOC command, 1766
/UI command, 1767
/UIS command, 1771
/UNITS command, 1778
/USER command, 1783
/VCONE command, 1798
/VIEW command, 1825
/VSCALE command, 1849
/VT command, 1858
/VUP command, 1883
/WAIT command, 1887
/WINDOW command, 1890
/XFRM command, 1901
/XRANGE command, 1902
/YRANGE command, 1905
/ZOOM command, 1907
~CAT5IN command, 83
~CATIAIN command, 84
~PARAIN command, 85
~PROEIN command, 86
~SATIN command, 87
~UGIN command, 88

## A

A command, 91
AADD command, 91
AATT command, 92
ABBRES command, 94
ABBSAV command, 95
ABEXTRACT command, 93
ABS command, 96
ACCAT command, 97
ACCOPTION command, 98
ACEL command, 99
ACLEAR command, 100
ADAMS command, 101
ADAPT command, 102
ADD command, 103
ADDAM command, 104
ADELE command, 104
ADGL command, 105
ADRAG command, 105
AESIZE command, 106
AFILLT command, 107

AFLIST command, 107
AFSURF command, 108
AGEN command, 109
AGLUE command, 110
AINA command, 111
AINP command, 111
AINV command, 112
AL command, 112
ALIST command, 113
ALLSEL command, 114
ALPHAD command, 115
AMAP command, 115
AMESH command, 116
ANCNTR command, 119
ANCUT command, 119
ANCYC command, 120
ANDATA command, 121
ANDSCL command, 122
ANDYNA command, 123
ANFLOW command, 124
ANHARM command, 126
ANIM command, 127
ANISOS command, 128
ANMODE command, 128
ANMRES command, 129
ANORM command, 131
ANSOL command, 132
ANSTOAQWA command, 135
ANSTOASAS command, 137
ANTIME command, 142
ANTYPE command, 143
AOFFST command, 147
AOVLAP command, 148
APLOT command, 149
APPEND command, 149
APTN command, 151
ARCLEN command, 151
ARCTRM command, 152
AREAS command, 153
AREFINE command, 154
AREMESH command, 155
AREVERSE command, 156
AROTAT command, 156
ARSCALE command, 157
ARSYM command, 158
ASBA command, 159
ASBL command, 161
ASBV command, 162
ASBW command, 163
ASEL command, 164
ASKIN command, 167
ASLL command, 168

ASLV command, 169
ASUB command, 170
ASUM command, 171
ATAN command, 171
ATRAN command, 172
ATYPE command, 173
AUTOTS command, 174
AVPRIN command, 177
AVRES command, 178

## B

BCSOPTION command, 182
BETAD command, 184
BF command, 184
BFA command, 188
BFADELE command, 190
BFALIST command, 191
BFCUM command, 192
BFDELE command, 193
BFE command, 195
BFECUM command, 197
BFEDELE command, 199
BFELIST command, 200
BFESCAL command, 200
BFINT command, 202
BFK command, 203
BFKDELE command, 205
BFKLIST command, 206
BFL command, 207
BFLDELE command, 209
BFLIST command, 210
BFLLIST command, 210
BFSCALE command, 211
BFTRAN command, 212
BFUNIF command, 212
BFV command, 214
BFVDELE command, 215
BFVLIST command, 216
BIOOPT command, 217
BIOT command, 217
BLC4 command, 218
BLC5 command, 219
BLOCK command, 220
BOOL command, 220
BOPTN command, 221
BSAX command, 222
BSM1 command, 224
BSM2 command, 225
BSMD command, 223
BSPLIN command, 226
BSS1 command, 226
BSS2 command, 227

BSTE command, 228
BSTQ command, 229
BTOL command, 230
BUCOPT command, 230
C
C $^{* * *}$ command, 233
CALC command, 233
CAMPBELL command, 234
CBDOF command, 235
CBMD command, 237
CBMX command, 237
CBTE command, 238
CBTMP command, 239
CDOPT command, 239
CDREAD command, 240
CDWRITE command, 241
CE command, 245
CECHECK command, 246
CECMOD command, 247
CECYC command, 248
CEDELE command, 249
CEINTF command, 249
CELIST command, 250
CENTER command, 251
CEQN command, 251
CERIG command, 252
CESGEN command, 254
CFACT command, 254
CGLOC command, 258
CGOMGA command, 259
CHECK command, 259
CHKMSH command, 260
CINT command, 261
CIRCLE command, 264
CISOL command, 264
CLOCAL command, 267
CLOG command, 268
CLRMSHLN command, 269
CM command, 270
CMACEL command, 271
CMATRIX command, 273
CMDELE command, 274
CMDOMEGA command, 275
CMEDIT command, 276
CMGRP command, 277
CMLIST command, 278
CMMOD command, 279
CMOMEGA command, 279
CMPLOT command, 281
CMROTATE command, 283
CMSEL command, 284

CMSFILE command, 285
CMSOPT command, 287
CMWRITE command, 288
CNCHECK command, 289
CNKMOD command, 293
CNVTOL command, 294
COMPRESS command, 300
CON4 command, 301
CONE command, 301
CONJUG command, 304
CORIOLIS command, 307
COUPLE command, 308
COVAL command, 309
CP command, 309
CPCYC command, 311
CPDELE command, 312
CPINTF command, 313
CPLGEN command, 314
CPLIST command, 314
CPMERGE command, 315
CPNGEN command, 316
CPSGEN command, 317
CQC command, 317
CRPLIM command, 319
CS command, 320
CSCIR command, 321
CSDELE command, 322
CSKP command, 322
CSLIST command, 323
CSWPLA command, 324
CSYS command, 325
CURR2D command, 327
CUTCONTROL command, 327
CVAR command, 329
CYCLIC command, 334
CYCOPT command, 336
CYCPHASE command, 340
CYL4 command, 343
CYL5 command, 344
CYLIND command, 344
CZDEL command, 345
CZMESH command, 346

## D

D command, 349
DA command, 352
DADELE command, 355
DALIST command, 358
DAMORPH command, 358
DATA command, 359
DATADEF command, 360
DCGOMG command, 361

DCUM command, 361
DCVSWP command, 362
DDELE command, 364
DDOPTION command, 366
DEACT command, 367
DEFINE command, 367
DELETE command, 369
DELTIM command, 370
DEMORPH command, 371
DERIV command, 372
DESIZE command, 373
DESOL command, 374
DETAB command, 376
DIG command, 381
DIGIT command, 382
DISPLAY command,386
DJ command, 387
DJDELE command, 389
DJIIST command, 390
DK command, 391
DKDELE command, 392
DKLIST command, 393
DL command, 394
DLDELE command, 397
DLIST command, 399
DLLIST command, 399
DMOVE command, 402
DMPEXT command, 403
DMPRAT command, 404
DNSOL command, 405
DOF command, 409
DOFSEL command, 409
DOMEGA command, 411
DSCALE command, 412
DSET command, 414
DSPOPTION command, 414
DSUM command, 416
DSURF command, 417
DSYM command,417
DSYS command, 419
DTRAN command, 420
DUMP command, 421
DVAL command, 424
DVMORPH command, 425
DYNOPT command, 426

## E

E command, 427
EALIVE command, 427
EDADAPT command, 428
EDALE command, 429
EDASMP command, 430

EDBOUND command,431
EDBVIS command, 434
EDBX command, 433
EDCADAPT command, 434
EDCGEN command, 436
EDCLIST command, 441
EDCMORE command, 441
EDCNSTR command, 442
EDCONTACT command, 445
EDCPU command, 447
EDCRB command, 447
EDCSC command, 448
EDCTS command, 449
EDCURVE command, 450
EDDAMP command, 452
EDDBL command, 454
EDDC command, 455
EDDRELAX command, 456
EDDUMP command, 457
EDELE command, 458
EDENERGY command, 458
EDFPLOT command, 459
EDGCALE command, 460
EDHGLS command, 462
EDHIST command, 462
EDHTIME command, 463
EDINT command, 464
EDIPART command, 465
EDIS command, 467
EDLCS command, 468
EDLOAD command, 469
EDMP command, 474
EDNB command, 477
EDNDTSD command, 478
EDNROT command, 479
EDOPT command, 480
EDOUT command, 481
EDPART command, 483
EDPC command, 485
EDPL command, 485
EDPVEL command, 486
EDRC command, 488
EDRD command, 490
EDREAD command, 491
EDRI command, 493
EDRST command, 494
EDRUN command, 494
EDSHELL command, 495
EDSOLV command, 497
EDSP command, 497
EDSTART command, 498
EDTERM command, 500

EDTP command, 501
EDVEL command, 502
EDWELD command, 505
EDWRITE command, 506
EGEN command, 509
EINTF command, 510
EKILL command, 512
ELBOW command, 512
ELEM command, 514
ELIST command, 514
EMAGERR command, 517
EMATWRITE command, 517
EMF command, 518
EMFT command, 519
EMID command, 519
EMIS command, 520
EMODIF command, 521
EMORE command, 521
EMSYM command, 522
EMTGEN command, 522
EMUNIT command, 524
EN command, 525
ENDRELEASE command, 527
ENERSOL command, 528
ENGEN command, 528
ENORM command, 529
ENSYM command, 530
EORIENT command, 532
EPLOT command, 533
EQSLV command, 534
ERASE command, 538
EREAD command, 539
EREFINE command, 539
EREINF command, 541
ERESX command, 541
ERNORM command, 542
ERRANG command, 543
ESCHECK command, 543
ESEL command, 544
ESIZE command, 549
ESLA command, 550
ESLL command, 550
ESLN command, 551
ESLV command, 552
ESOL command, 553
ESORT command, 556
ESSOLV command, 557
ESTIF command, 560
ESURF command, 560, 1070
ESYM command, 562
ESYS command, 563
ET command, 564

ETABLE command, 565
ETCHG command, 572
ETCONTROL command, 574
ETDELE command, 575
ETLIST command, 575
ETYPE command, 575
EUSORT command, 576
EWRITE command, 576
EXP command, 578
EXPAND command, 579
EXPASS command, 582
EXPROFILE command, 584
EXPSOL command, 586
EXTOPT command, 586
EXTREM command, 588
EXUNIT command, 589

## F

F command, 591
FATIGUE command, 593
FC command, 593
FCCHECK command, 595
FCDELE command, 595
FCLIST command, 596
FCTYP command, 597
FCUM command, 596
FDELE command, 599
FE command, 601
FEBODY command, 601
FECONS command, 602
FEFOR command, 602
FELIST command, 603
FESURF command, 603
FILE command, 603
FILEAUX2 command, 604
FILEAUX3 command, 605
FILEDISP command, 605
FILL command, 606
FILLDATA command, 607
FINISH command, 608
FIPLOT command, 609
FITEM command, 610
FJ command, 611
FJDELE command, 611
FJIIST command, 612
FK command, 613
FKDELE command, 614
FKLIST command, 615
FL command, 615
FLDATA command, 616
FLDATA1 command, 619
FLDATA10 command, 638

FLDATA11 command, 640
FLDATA12 command, 641
FLDATA13 command, 642
FLDATA14 command, 643
FLDATA15 command, 644
FLDATA16 command, 644
FLDATA17 command, 645
FLDATA18 command, 646
FLDATA19 command, 648
FLDATA2 command, 620
FLDATA20 command, 649
FLDATA20A command, 651
FLDATA20B command, 652
FLDATA21 command, 653
FLDATA22 command, 654
FLDATA23 command, 656
FLDATA24 command, 657
FLDATA24A command, 660
FLDATA24B command, 662
FLDATA24C command, 663
FLDATA24D command, 664
FLDATA24E command, 665
FLDATA24F command, 666
FLDATA24G command, 667
FLDATA24H command, 668
FLDATA25 command, 669
FLDATA26 command, 670
FLDATA27 command, 671
FLDATA28 command, 673
FLDATA29 command, 674
FLDATA3 command, 622
FLDATA30 command, 676
FLDATA31 command, 677
FLDATA32 command, 678
FLDATA33 command, 681
FLDATA34 command, 682
FLDATA35 command, 682
FLDATA36 command, 683
FLDATA37 command, 684
FLDATA38 command, 685
FLDATA39 command, 686
FLDATA4 command, 623
FLDATA40 command, 688
FLDATA4A command, 626
FLDATA5 command, 627
FLDATA6 command, 631
FLDATA7 command, 632
FLDATA8 command, 636
FLDATA9 command, 637
FLIST command, 689
FLLIST command, 689
FLOCHECK command, 690

FLOTRAN command, 691
FLREAD command, 691
FLST command, 692
FLUXV command, 693
FMAGBC command, 693
FMAGSUM command, 694
FOR2D command, 696
FORCE command, 696
FORM command, 697
FP command, 699
FPLIST command, 700
FREQ command, 700
FRQSCL command, 701
FS command, 702
FSCALE command, 703
FSDELE command, 703
FSLIST command, 704
FSNODE command, 704
FSPLOT command, 705
FSSECT command, 706
FSSPARM command, 707
FSUM command, 707
FTCALC command, 709
FTRAN command, 709
FTSIZE command, 709
FTWRITE command, 710
FVMESH command, 711

## G

GAP command, 713
GAPF command, 713
GAUGE command, 714
GENOPT command, 716
GEOM command, 716
GEOMETRY command, 717
GMATRIX command, 777
GMFACE command, 778
GP command, 780
GPDELE command, 782
GPLIST command, 782
GPLOT command, 783
GRP command, 788
GSBDATA command, 791
GSGDATA command, 792
GSLIST command, 792
GSSOL command, 793
GSUM command, 795

## H

HARFRQ command, 799
HBMAT command, 800
HELP command, 803

HELPDISP command, 804
HEMIOPT command, 804
HFADP command, 804
HFANG command, 805
HFARRAY command, 805
HFDEEM command, 806
HFEIGOPT command, 807
HFEREFINE command, 808
HFMODPRT command, 808
HFPA command, 809
HFPCSWP command, 809
HFPORT command, 811
HFPOWER command, 810
HFSCAT command, 817
HFSYM command, 818
HMAGSOLV command, 819
HPGL command, 820
HPTCREATE command, 821
HPTDELETE command, 822
HRCPLX command, 823
HREXP command, 824
HROPT command, 825
HROUT command, 827

## I

IC command, 829
ICDELE command, 830
ICE command, 831
ICEDELE command, 831
ICELIST command, 832
ICLIST command, 832
ICVFRC command, 834
IGESIN command, 837
IGESOUT command, 838
IMAGIN command, 840
IMESH command, 841
IMMED command, 842
IMPD command, 843
INISTATE command, 844
INRES command, 851
INRTIA command, 852
INT1 command, 852
INTSRF command, 853
IOPTN command, 854
IRLF command, 856
IRLIST command, 857

## J

JPEG command, 859
JSOL command, 860

## K

K command, 861
KATT command, 861
KBC command, 862
KBETW command, 863
KCALC command, 864
KCENTER command, 865
KCLEAR command, 867
KDELE command, 868
KDIST command, 868
KEEP command, 869
KESIZE command, 870
KEYOPT command, 870
KEYPTS command, 871
KEYW command, 871
KFILL command, 872
KGEN command, 873
KL command, 874
KLIST command, 874
KMESH command, 875
KMODIF command, 875
KMOVE command, 876
KNODE command, 877
KPLOT command, 877
KPSCALE command, 878
KREFINE command, 879
KSCALE command, 880
KSCON command, 881
KSEL command, 882
KSLL command, 884
KSLN command, 884
KSUM command, 885
KSYMM command, 885
KTRAN command, 886
KUSE command, 887
KWPAVE command, 888
KWPLAN command, 888

## L

L command, 891
L2ANG command, 892
L2TAN command, 892
LANG command, 893
LARC command, 894
LAREA command, 895
LARGE command, 896
LATT command, 897
LAYER command, 898
LAYERP26 command, 899
LAYLIST command, 900
LAYPLOT command, 900
LCABS command, 901

LCASE command, 902
LCCALC command, 902
LCCAT command, 903
LCDEF command, 904
LCFACT command, 904
LCFILE command, 905
LCLEAR command, 906
LCOMB command, 906
LCOPER command, 907
LCSEL command, 909
LCSL command, 910
LCSUM command, 910
LCWRITE command, 911
LCZERO command, 911
LDELE command, 912
LDIV command, 912
LDRAG command, 913
LDREAD command, 914
LESIZE command, 918
LEXTND command, 920
LFILLT command, 920
LFSURF command, 921
LGEN command, 922
LGLUE command, 923
LGWRITE command, 923
LINA command, 925
LINE command, 926
LINES command, 927
LINL command, 927
LINP command, 928
LINV command, 928
LIST command, 929
LLIST command, 930
LMATRIX command, 931
LMESH command, 932
LNSRCH command, 933
LOCAL command, 934
LOVLAP command, 935
LPLOT command, 935
LPRT command, 936
LPTN command, 936
LREFINE command, 937
LREVERSE command, 938
LROTAT command, 939
LSBA command, 940
LSBL command, 941
LSBV command, 943
LSBW command, 944
LSCLEAR command, 945
LSDELE command, 946
LSEL command, 946
LSLA command, 950

LSLK command, 951
LSOPER command, 951
LSREAD command, 953
LSSCALE command, 954
LSSOLVE command, 955
LSTR command, 956
LSUM command, 956
LSWRITE command, 957
LSYMM command, 959
LTAN command, 960
LTRAN command, 961
LUMPM command, 962
LVSCALE command, 962
LWPLAN command, 963

## M

M command, 965
MADAPT command, 966
MAGOPT command, 968
MAGSOLV command, 969
MAPSOLVE command, 972
MASTER command, 972
MAT command, 973
MATER command, 973
MCHECK command, 973
MDAMP command, 974
MDELE command, 975
MDPLOT command, 976
MEMM command, 976
MESHING command, 978
MFANALYSIS command, 978
MFBUCKET command, 979
MFCALC command, 980
MFCI command, 981
MFCLEAR command, 981
MFCMMAND command, 982
MFCONV command, 983
MFDTIME command, 984
MFELEM command, 985
MFEM command, 986
MFEXTER command, 986
MFFNAME command, 987
MFFR command, 988
MFIMPORT command, 989
MFINTER command, 990
MFITER command, 991
MFLC command, 991
MFLIST command, 994
MFMAP command, 995
MFORDER command, 996
MFOUTPUT command, 996
MFPS command, 999

MFRC command, 1000
MFRELAX command, 1001
MFRSTART command, 1002
MFSO command, 1003
MFSURFACE command, 1004
MFTIME command, 1005
MFTOL command, 1005
MFVOLUME command, 1007
MFWR command, 1008
MGEN command, 1009
MIDTOL command, 1010
MLIST command, 1011
MMASS command, 1012
MMF command, 1013
MODCONT command, 1013
MODE command, 1014
MODIFY command, 1015
MODMSH command, 1016
MODOPT command, 1017
MONITOR command, 1020
MOPT command, 1025
MORPH command, 1029
MOVE command, 1031
MP command, 1032
MPAMOD command, 1036
MPCHG command, 1037
MPCOPY command, 1038
MPDATA command, 1038
MPDELE command, 1041
MPDRES command, 1042
MPLIST command, 1043
MPPLOT command, 1044
MPREAD command, 1044
MPRINT command, 1046
MPTEMP command, 1046
MPTGEN command, 1047
MPTRES command, 1048
MPWRITE command, 1048
MSADV command, 1050
MSAVE command, 1051
MSCAP command, 1052
MSDATA command, 1053
MSHAPE command, 1056
MSHCOPY command, 1057
MSHKEY command, 1058
MSHMID command, 1058
MSHPATTERN command, 1059
MSMASS command, 1060
MSMETH command, 1061
MSMIR command, 1062
MSNOMF command, 1063
MSPROP command, 1063

MSQUAD command, 1065
MSRELAX command, 1066
MSSOLU command, 1066
MSSPEC command, 1067
MSTERM command, 1069
MSVARY command, 1071
MXPAND command, 1074

## N

N command, 1077
NANG command, 1077
NAXIS command, 1078
NCNV command, 1079
NDELE command, 1080
NDIST command, 1081
NDSURF command, 1082
NEQIT command, 1083
NFORCE command, 1085
NGEN command, 1086
NKPT command, 1087
NLDIAG command, 1087
NLDPOST command, 1090
NLGEOM command, 1092
NLHIST command, 1093
NLIST command, 1097
NLOG command, 1098
NLOPT command, 1098
NMODIF command, 1099
NOCOLOR command, 1100
NODES command, 1100
NOOFFSET command, 1102
NOORDER command, 1103
NORA command, 1104
NORL command, 1105
NPLOT command, 1106
NPRINT command, 1107
NREAD command, 1107
NREFINE command, 1108
NRLSUM command, 1109
NROPT command, 1111
NROTAT command, 1112
NRRANG command, 1113
NSCALE command, 1113
NSEL command, 1114
NSLA command, 1120
NSLE command, 1120
NSLK command, 1122
NSLL command, 1122
NSLV command, 1123
NSMOOTH command, 1124
NSOL command, 1124
NSORT command, 1126

NSTORE command, 1130
NSUBST command, 1131
NSVR command, 1132
NSYM command, 1132
NUMCMP command, 1134
NUMEXP command, 1135
NUMMRG command, 1137
NUMOFF command, 1141
NUMSTR command, 1142
NUMVAR command, 1143
NUSORT command, 1144
NWPAVE command, 1144
NWPLAN command, 1144
NWRITE command, 1145

## 0

OCDATA command, 1147
OCDELETE command, 1151
OCLIST command, 1152
OCTABLE command, 1153
OCTYPE command, 1155
OMEGA command, 1157
OPADD command, 1158
OPANL command, 1158
OPCLR command, 1159
OPDATA command, 1159
OPDEL command, 1160
OPEQN command, 1161
OPERATE command, 1162
OPEXE command, 1163
OPFACT command, 1163
OPFRST command, 1164
OPGRAD command, 1165
OPKEEP command, 1165
OPLFA command, 1166
OPLGR command, 1167
OPLIST command, 1167
OPLOOP command, 1168
OPLSW command, 1169
OPMAKE command, 1169
OPNCONTROL command, 1170
OPPRNT command, 1170
OPRAND command, 1171
OPRESU command, 1171
OPRFA command, 1172
OPRGR command, 1172
OPRSW command, 1173
OPSAVE command, 1173
OPSEL command, 1174
OPSUBP command, 1174
OPSWEEP command, 1175
OPTYPE command, 1176

OPUSER command, 1177
OPVAR command, 1178
OUTOPT command, 1179
OUTPR command, 1179
OUTRES command, 1182

## P

PADELE command, 1189
PAGET command, 1190
PAPUT command, 1191
PARESU command, 1191
PARRES command, 1194
PARSAV command, 1194
PARTSEL command, 1192
PASAVE command, 1195
PATH command, 1196
PAUSE command, 1197
PCALC command, 1202
PCGOPT command, 1205
PCIRC command, 1207
PCROSS command, 1209
PDANL command, 1210
PDCDF command, 1210
PDCFLD command, 1212
PDCLR command, 1214
PDCMAT command, 1214
PDCORR command, 1216
PDDMCS command, 1217
PDDOEL command, 1219
PDEF command, 1221
PDEXE command, 1224
PDHIST command, 1226
PDINQR command, 1227
PDLHS command, 1228
PDMETH command, 1230
PDOT command, 1232
PDPINV command, 1233
PDPLOT command, 1234
PDPROB command, 1235
PDRESU command, 1236
PDROPT command, 1237
PDSAVE command, 1240
PDSCAT command, 1241
PDSENS command, 1242
PDSHIS command, 1243
PDUSER command, 1244
PDVAR command, 1245
PDWRITE command, 1248
PERBC2D command, 1248
PERI command, 1250
PERTURB command, 1250
PFACT command, 1253

PGRAPH command, 1254
PGRSET command, 1254
PGSAVE command, 1256
PGSELE command, 1257
PGWRITE command, 1258
PHYSICS command, 1260
PIVCHECK command, 1262
PLCAMP command, 1263
PLCINT command, 1265
PLCPLX command, 1266
PLCRACK command, 1267
PLDISP command, 1268
PLESOL command, 1268
PLETAB command, 1273
PLF2D command, 1278
PLFAR command, 1274
PLFSS command, 1277
PLLS command, 1279
PLNEAR command, 1280
PLNSOL command, 1281
PLORB command, 1289
PLOT command, 1289
PLOTTING command, 1290
PLPAGM command, 1290
PLPATH command, 1291
PLSCH command, 1291
PLSECT command, 1292
PLSYZ command, 1293
PLTD command, 1295
PLTIME command, 1296
PLTLINE command, 1297
PLTRAC command, 1297
PLVAR command, 1300
PLVAROPT command, 1301
PLVECT command, 1301
PLVFRC command, 1304
PLWAVE command, 1305
PMAP command, 1306
PMGTRAN command, 1306
PMLOPT command, 1307
PMLSIZE command, 1308
PNGR command, 1310
POINT command, 1313
POLY command, 1314
POUTRES command, 1316
POWERH command, 1317
PPATH command, 1318
PRANGE command, 1319
PRCAMP command, 1319
PRCINT command, 1321
PRCPLX command, 1322
PRED command, 1323

PRENERGY command, 1324
PRERR command, 1325
PRESOL command, 1326
PRETAB command, 1331
PRFAR command, 1331
PRI2 command, 1334
PRIM command, 1335
PRINT command, 1335
PRISM command, 1336
PRITER command, 1337
PRJSOL command, 1337
PRNEAR command, 1338
PRNLD command, 1340
PRNSOL command, 1341
PROD command, 1346
PRORB command, 1347
PRPATH command, 1347
PRRFOR command, 1348
PRRSOL command, 1349
PRSECT command, 1349
PRSYZ command, 1351
PRTIME command, 1352
PRVAR command, 1352
PRVAROPT command, 1353
PRVECT command, 1353
PSCONTROL command, 1355
PSCR command, 1356
PSDCOM command, 1359
PSDFRQ command, 1359
PSDGRAPH command, 1360
PSDRES command, 1361
PSDSPL command, 1362
PSDUNIT command, 1362
PSDVAL command, 1363
PSDWAV command, 1364
PSEL command, 1365
PSMAT command, 1368
PSMESH command, 1371
PSOLVE command, 1375
PSTRES command, 1379
PTR command, 1382
PTXY command, 1382
PVECT command, 1383

## Q

QDVAL command, 1385
QFACT command, 1386
QRDOPT command, 1386
QSOPT command, 1387
QUAD command, 1387
QUOT command, 1389

## R

R command, 1391
RACE command, 1392
RADOPT command, 1393
RAPPND command, 1394
RATE command, 1395
RBE3 command, 1396
RCON command, 1397
RDEC command, 1398
RDELE command, 1399
REAL command, 1400
REALVAR command, 1400
RECTNG command, 1401
reinforcing, 541
REMESH command, 1401
REORDER command, 1404
RESCONTROL command, 1407
RESET command, 1409
RESP command, 1410
RESUME command, 1412
RESVEC command, 1413
RESWRITE command, 1414
REXPORT command, 1415
REZONE command, 1416
RFORCE command, 1417
RIGID command, 1419
RIGRESP command, 1419
RIMPORT command, 1420
RLIST command, 1422
RMALIST command, 1422
RMANL command, 1423
RMASTER command, 1424
RMCAP command, 1424
RMCLIST command, 1425
RMFLVEC command, 1426
RMLVSCALE command, 1426
RMMLIST command, 1427
RMMRANGE command, 1427
RMMSELECT command, 1428
RMNDISP command, 1429
RMNEVEC command, 1430
RMODIF command, 1430
RMORE command, 1431
RMPORDER command, 1432
RMRESUME command, 1432
RMRGENERATE command, 1433
RMROPTIONS command, 1433
RMRPLOT command, 1434
RMRSTATUS command, 1435
RMSAVE command, 1435
RMSMPLE command, 1436
RMUSE command, 1437

RMXPORT command, 1438
ROCK command, 1438
ROSE command, 1439
RPOLY command, 1439
RPR4 command, 1440
RPRISM command, 1441
RPSD command, 1442
RSFIT command, 1443
RSOPT command, 1445
RSPLIT command, 1446
RSPLOT command, 1447
RSPRNT command, 1448
RSSIMS command, 1449
RSTMAC command, 1450
RSTOFF command, 1452
RSURF command, 1453
RSYMM command, 1454
RSYS command, 1456
RTHICK command, 1458

## S

SABS command, 1461
SADD command, 1461
SALLOW command, 1462
SAVE command, 1463
SBCLIST command, 1464
SBCTRAN command, 1464
SDELETE command, 1464
SE command, 1465
SECCONTROLS command, 1466
SECDATA command, 1468
SECFUNCTION command, 1490
SECJOINT command, 1491
SECLOCK command, 1493
SECMODIF command, 1493
SECNUM command, 1494
SECOFFSET command, 1494
SECPLOT command, 1497
SECREAD command, 1500
SECSTOP command, 1503
SECTYPE command, 1504
SECWRITE command, 1508
SED command, 1509
SEDLIST command, 1509
SEEXP command, 1510
SEGEN command, 1512
SELIST command, 1514
SELM command, 1515
SELTOL command, 1515
SENERGY command, 1516
SEOPT command, 1517
SESYMM command, 1518

SET command, 1523
SETFGAP command, 1526
SETRAN command, 1527
SEXP command, 1529
SF command, 1529
SFA command, 1533
SFACT command, 1536
SFADELE command, 1537
SFALIST command, 1538
SFBEAM command, 1539
SFCALC command, 1540
SFCUM command, 1541
SFDELE command, 1542
SFE command, 1544
SFEDELE command, 1548
SFELIST command, 1549
SFFUN command, 1551
SFGRAD command, 1552
SFL command, 1553
SFLDELE command, 1556
SFLEX command, 1557
SFLIST command, 1558
SFLLIST command, 1559
SFSCALE command, 1559
SFTRAN command, 1560
SHELL command, 1562
SHPP command, 1566
SLIST command, 1570
SLOAD command, 1572
SMALL command, 1575
SMAX command, 1577
SMBODY command, 1578
SMCONS command, 1579
SMFOR command, 1579
SMIN command, 1579
SMOOTH command, 1580
SMRTSIZE command, 1582
SMSURF command, 1584
SMULT command, 1584
SNOPTION command, 1585
SOCEAN command, 1587
SOLCONTROL command, 1588
SOLU command, 1593
SOLUOPT command, 1595
SOLVE command, 1595
SORT command, 1596
SOURCE command, 1596
SPACE command, 1597
SPADP command, 1597
SPARM command, 1598
SPCNOD command, 1599
SPCTEMP command, 1599

SPDAMP command, 1600
SPEC command, 1601
SPFREQ command, 1601
SPFSS command, 1602
SPGRAPH command, 1604
SPH4 command, 1604
SPH5 command, 1605
SPHERE command, 1605
SPICE command, 1606
SPLINE command, 1607
SPLOT command, 1607
SPMWRITE command, 1608
SPOINT command, 1610
SPOPT command, 1610
SPREAD command, 1612
SPSCAN command, 1612
SPSWP command, 1614
SPTOPT command, 1616
SPUNIT command, 1617
SPVAL command, 1618
SQRT command, 1619
SRSS command, 1620
SSBT command, 1621
SSLN command, 1623
SSMT command, 1623
SSPA command, 1624
SSPB command, 1625
SSPD command, 1626
SSPE command, 1627
SSPM command, 1627
SSTIF command, 1628
SSUM command, 1629
STABILIZE command, 1629
STAOPT command, 1631
STAT command, 1632
STEF command, 1636
STORE command, 1638
SUBSET command, 1639
SUCALC command, 1641
SUCR command, 1642
SUDEL command, 1644
SUEVAL command, 1644
SUGET command, 1645
SUMAP command, 1645
SUMTYPE command, 1646
SUPL command, 1647
SUPR command, 1647
SURESU command, 1648
SUSAVE command, 1648
SUSEL command, 1649
SUVECT command, 1650
SV command, 1651

SVPLOT command, 1651
SVTYP command, 1652
SWADD command, 1653
SWDEL command, 1654
SWGEN command, 1654
SWLIST command, 1655
SYNCHRO command, 1656

## $T$

TALLOW command, 1659
TB command, 1660
TBCOPY command, 1699
TBDATA command, 1699
TBDELE command, 1700
TBEO command, 1701
TBFIELD command, 1701
TBFT command, 1703
TBLE command, 1712
TBLIST command, 1712
TBMODIF command, 1713
TBPLOT command, 1713
TBPT command, 1715
TBTEMP command, 1716
TCHG command, 1716
TERM command, 1719
THOPT command, 1720
TIFF command, 1721
TIME command, 1722
TIMERANGE command, 1722
TIMINT command, 1723
TIMP command, 1724
TINTP command, 1725
TOCOMP command, 1728
TODEF command, 1729
TOEXE command, 1729
TOFFST command, 1729
TOFREQ command, 1730
TOGRAPH command, 1731
TOLIST command, 1732
TOLOOP command, 1732
TOPLOT command, 1734
TOPRINT command, 1734
TORQ2D command, 1735
TORQC2D command, 1735
TORQSUM command, 1736
TORUS command, 1737
TOSTAT command, 1738
TOTAL command, 1738
TOTYPE command, 1740
TOVAR command, 1740
TRANS command, 1742
TRANSFER command, 1742

TREF command, 1744
TRNOPT command, 1747
TRPDEL command, 1749
TRPLIS command, 1749
TRPOIN command, 1750
TRTIME command, 1750
TSHAP command, 1751
TSRES command, 1754
TUNIF command, 1755
TVAR command, 1756
TYPE command, 1761
TZAMESH command, 1762
TZDELE command, 1762
TZEGEN command, 1763

## U

UIMP command, 1771
UNDELETE command, 1776
UNDO command, 1777
UNPAUSE command, 1779
UPCOORD command, 1780
UPGEOM command, 1781
USRCAL command, 1784
USRDOF command, 1785
USRELEM command, 1786

## V

V command, 1791
V2DOPT command, 1792
VA command, 1793
VADD command, 1794
VARDEL command, 1795
VARNAM command, 1795
VATT command, 1796
VCLEAR command, 1796
VCROSS command, 1799
VDDAM command, 1800
VDELE command, 1801
VDGL command, 1801
VDOT command, 1802
VDRAG command, 1802
VEORIENT command, 1806
VEXT command, 1807
VFOPT command, 1810
VFQUERY command, 1811
VFSM command, 1812
VGEN command, 1816
VGET command, 1823
VGLUE command, 1824
VIMP command, 1825
VINP command, 1827
VINV command, 1827

VLIST command, 1830
VLSCALE command, 1830
VMESH command, 1832
VOFFST command, 1833
VOLUMES command, 1833
VOVLAP command, 1837
VPLOT command, 1838
VPTN command, 1839
VPUT command, 1843
VROTAT command, 1845
VSBA command, 1846
VSBV command, 1847
VSBW command, 1848
VSEL command, 1852
VSLA command, 1854
VSUM command, 1855
VSWEEP command, 1855
VSYMM command, 1857
VTCLR command, 1858
VTDISC command, 1859
VTEVAL, 1860
VTFREQ command, 1860
VTGEOM, 1861
VTIN command, 1862
VTMETH command, 1864
VTMP command, 1865
VTOP command, 1868
VTPOST command, 1869
VTRAN command, 1869
VTREAL command, 1870
VTRFIL command, 1872
VTRSLT command, 1873
VTSEC, 1875
VTSFE command, 1877
VTSL command, 1879
VTSTAT command, 1880
VTTEMP, 1880
VTVMOD command, 1881
VTYPE command, 1882

## W

WAVES command, 1887
WERASE command, 1889
WFRONT command, 1889
WMID command, 1891
WMORE command, 1891
WPAVE command, 1892
WPCSYS command, 1892
WPLANE command, 1893
WPOFFS command, 1894
WPROTA command, 1894
WPSTYL command, 1895

WRFULL command, 1896
WRITE command, 1897
WSORT command, 1898
WSPRINGS command, 1899
WSTART command, 1899

## X

XVAR command, 1903
XVAROPT command, 1904


[^0]:    NSET
    Set reference number [CP].
    Lab
    Degree of freedom label [CP].

[^1]:    *IF,VAL1,Oper,VAL2,THEN

[^2]:    Analopt
    Analysis option

