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Abstract

This dissertation aims to collect and present the most significant results in the field of micro-
chaos, discovered during my years of pursuing the PhD degree.

Briefly, micro-chaos is a phenomenon, when a combination of digital effects – like sam-
pling, rounding and delay – cause small amplitude chaotic oscillations, often resulting in
multiple disconnected chaotic attractors or chaotic oscillations superposed on a recurrent
orbit. This dissertation is restricted to simple digitally controlled mechanical systems with
sampling and quantization. The effect of processing delay is not examined.

Chapter 1 presents the past and current state of the corresponding research area which
served as an entry point for my own research.

Chapter 2 gives an overall picture about the 2D micro-chaos map corresponding to a
digitally controlled 1-DoF mechanical oscillator. Various properties are shown and a simple
classification of the possible cases is presented. Finally, certain results are generalized to
multi-DoF systems.

Chapter 3 introduces an extension to the Simple Cell Mapping method, which allows
adaptive expansion of the analysed state space region along with the opportunity of parallel
execution.

Chapter 4 analyses the effect of twofold quantization: when both the input and output
of the digital controller are affected by rounding.

Chapter 5 formulates the hybrid-switching micro-chaos map that describes the effect of
dry friction on the motion of a 1-DoF digitally controlled oscillator. Besides the quantization-
related switching events – that happen at the sampling instants – the friction-related switching
events are also incorporated in the model that can be extended to the consideration of impact-
like events, too.

Before proceeding, I would like to thank You, dear Reader, for taking the time to look
into this work, I greatly appreciate any response or ideas regarding the concepts within this
dissertation and those beyond.
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1
Introduction

This chapter provides a brief overview of the research field of digitally controlled systems.
These systems often can be modeled by piecewise smooth maps and specifically, by the so-
called micro-chaos map. Control engineers usually handle the systems described by these
maps in the frequency domain, while mathematicians do their examinations in the time do-
main, but often without connection to a real-world problem. From my engineering point of
view, the goal would be to bring the best of both worlds together. The following sections
introduce some key publications and present their fundamental results.
First, different approaches to describe quantization and sampling are listed, then the one-
dimensional micro-chaos map is introduced. The focus is then shifted towards micro-chaos
maps in higher dimensions and some key numerical approaches are shown, which are fre-
quently used in the analysis of such maps.

1.1 Various approaches to the description of digital effects

In the past 50 years, with the appearance of digital electronic devices, a new challenge was
introduced in the field of control engineering and computational science: dealing with the
so-called digital effects.

The main digital effects are sampling, delay and quantization. Sampling arises from the
fact, that processors operate in a periodic manner, they process one operation per cycle. Since
the computation of control feedback takes time, processing delay between signal measurement
and control effort output is unavoidable. Integer and floating-point numbers in computers
are mostly represented in finite amount of bits, therefore they have a given precision, which
leads to rounding (or with a more technical term, quantization) in calculations. Furthermore,
many digital components like converters and filters can introduce one or more of these digital
effects. For example, an analog-to-digital converter (ADC) can be treated as a composition
of a quantizer and a sampler.

It is important to note, that digital effects also appear in many real world systems indi-
rectly. In several applications, human-work related operations happen in a non-continuous
manner – usually periodically – during the working hours. Similarly, many real world con-
cepts and devices exhibit quantization. Consider the Kerr dam (Montana, US, see Fig. 1.1),
which is adjusted one or two times daily and has 14 doors to let the water flow through. From
the viewpoint of water throughput this is a sampled and quantized system. Quantization and
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CHAPTER 1. INTRODUCTION

Figure 1.1: The Kerr Dam as an example of real-world sampling and quantization, image
source: Wikipedia, EN: Kerr Dam article.

sampling also appears in logistics due to fixed schedule and size of trucks or package boxes.
These ”digital” effects can occur at several levels in financial systems, too: the stock market
opens in fixed time intervals, companies announce earnings and pay dividends in a periodic
manner and the shares represent quantization of value. In this case, a secondary digital ef-
fect, the quantization of currencies can be also found which resembles to the quantization of
floating point numbers in computers.

In control engineering, one of the most significant books – Widrow and Kollár [52] – pro-
vides a sophisticated way to deal with sampling and quantization in the frequency domain.
The book develops the theory of quantization analogously to the sampling theory, and fo-
cuses on uniform quantization. The statistical analysis of quantization leads to the Pseudo
Quantization Noise (PQN) model. Various properties and application conditions of the PQN
model are discussed in details. The recovery of original signal properties from quantized
signals and analysis of quantization in feedback systems are discussed. The book also covers
floating-point quantization and extends the corresponding quantization theory. Additionally,
various examples of quantization in feedback control systems and filters are presented.

While the quantization theory offers a great way to analyse statistical properties of com-
plex systems including analog-to-digital conversions or floating point calculations, chaos and
chaotic systems are often easier to analyse in the time domain rather than in the frequency
domain.

Mathematicians – Berkolaiko, Boyarsky, Góra, Domokos, see the citations in the up-
coming paragraphs – studied quantized and sampled systems as piecewise linear or nonlinear
maps, often with hysteresis. Many fundamental properties and intricate details of these maps
have been elaborated, but corresponding practical applications are often not included and
sometimes hard to find.

G. Berkolaiko analysed piecewise linear maps with hysteresis (PLMH) [2] and exam-
ined their basic properties (continuity, topological expansivity, discontinuity points and sets),
proved the existence of a global attractor and formulated several theorems corresponding to
the limit sets of these maps. Many of these results were later found to be in close resemblance
to the results of G. Csernák in [8], see Figure 1.2.

P. Góra, A. Boyarsky and M. Jab loński [32, 38] thoroughly studied one dimensional maps
exhibiting chaotic behaviour, introduced an algorithm to control chaos [32], examined round-
off errors introduced by computers and questioned the fact of often treating it as random noise
[31]. They have provided in-depth studies about invariant measures for piecewise smooth
maps and in general, the existence of such measure(s).

G. Domokos and D. Szász thoroughly studied the effects of rounding introduced by com-
puters in numerical simulation of chaotic maps [20]. They have proposed an approach to
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1.2. THE 1D MICRO-CHAOS MAP
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Figure 1.2: Two very similar piecewise linear maps with chaotic oscillations. Left: Global
attractor of a PLMH, taken from the paper of Berkolaiko [2]. Right: Long tran-
sient chaotic trajectory of a micro-chaos map, taken from the paper of Csernák
and Stépán [8].

compute invariant measures of chaotic systems, which, in general cannot be preserved due
to the fact, that simulations generate only a finite set with finite period. The effect of this
secondary quantization was also found by G. Csernák in [6].

Cs. Budai, L. Kovács, J. Kövecses and G. Stépán [3] examined the stabilization effect of
Coulomb-friction in an otherwise unstable mechanical system with digital control and sam-
pling. They present a qualitative picture of the time history of the corresponding vibrations
(concave envelope curve) which can be recognized in position control applications. Limit
cycles, thorough stability analysis and experimental validation is also presented.

As it can be seen, there were many opportunities for mechanical engineers to gain ideas
from analytical and numerical approaches used by control engineers and mathematicians
during the analysis of computer-controlled systems. Several researchers focused on simple
mechanical models – low degree of freedom linear oscillators – since the qualitative results
could be generalized to more realistic cases. Moreover, digital effects can be analysed and
algorithmic approaches can be developed effectively using simple mechanical systems. An
invaluable benefit of this approach is that the solution of the linear equation of motion can
be determined analytically. In these cases, the consideration of sampling and quantization
leads to a piecewise linear map: the micro-chaos map.

1.2 The 1D micro-chaos map

The term micro-chaos (or µ-chaos) was first introduced by G. Stépán in 1994, then examined
by G. Haller [33] and E. Enikov [21] (who were his PhD students at that time). They found
that digital effects (sampling, rounding and delay) can lead to very small amplitude – hence
the micro prefix – chaotic oscillations.

Few years earlier D.F. Delchamps [18] also made similar observations during the analysis of
control strategies for linear systems with quantized state feedback. He found that quantized
feedback systems behave chaotically and his quantitative statistical analysis revealed the
existence of an invariant probability measure on the state space.

The first results showing micro-chaotic behaviour opened up a new perspective in control
engineering. In many cases, computer control was designed with an analog model in mind.
From a mechanical engineering point of view, digital effects often seemed to be negligible
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CHAPTER 1. INTRODUCTION

due to their high frequency (in case of sampling) or small amount (of delay and round-off).
However, it turned out that these slight digital effects can lead to a completely unexpected
state space configuration with several coexisting chaotic attractors or repellors.

In [33] a simple stick-slip control system is analysed (C = 0, ω0 = 0 case of the polishing
model in Fig. 1.3.), where the quantization of the velocity measurement and sampling with
zero-order-hold leads to the 1D micro-chaos map:

yi+1 = a yi − b Int(yi), i = 1, 2, . . . . (1.1)

The micro-chaos map is composed of the solution of the equation of motion at sampling
time instants (denoted by i) and quantization of the state variable appears in the form of the
Int(yi). Only the relative velocity y at the contact is measured and controlled in the model,
while the position is assumed to vary according to the controlled velocity. The instability of
the uncontrolled system in the y = 0 state follows from the velocity-weakening characteristic
of the friction coefficient.

µ(v0−v)

µ(v0−v)

v0

v0−v

x, v

DC motor

PC

C
m

0

Shaft

Rω0

vrel

Figure 1.3: Polishing model used as an example for micro-chaos, taken from the paper of
Csernák and Stépán [8]. C denotes the maximal dry friction force, ω0 is the
angular velocity of the polishing disk of radius R, v is the feed rate and v0 = ω0R.

Here, and throughout the dissertation, Int(x) denotes the integer part function1, that is,
a mid-tread, double-deadzone quantization, see Fig. 1.4. The different possible values taken
by the integer part function correspond to different control efforts.

G. Haller and G. Stépán provided a mathematical proof in [33] for the chaotic nature
of the 1D micro-chaos map: the sensitive dependence on initial conditions was shown, the
existence of an attractive invariant set was presented, and it was proven, that the micro-
chaos map is topologically transitive on the set. Parameter domains were given, for which
the attracting set is a hyperbolic strange attractor. It was highlighted, that micro-chaos can
cause relatively large static errors in positioning.

1Of course, there are many different rounding functions; e.g., rounding directly to an integer, up, down,
towards zero or towards infinity, or rounding to the nearest integer instead in a similar fashion (upwards,
downwards, to zero or to infinity). One could even analyse a shifted rounding function to reflect asymmetries in
real measurement situations. The advantages of using the double-deadzone mid-tread variant are its symmetry
and largest possible deadzone.
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-4 -2 2 4
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Int(x)

Figure 1.4: Integer part function, rounding towards zero. (Mid-tread, double-deadzone quan-
tization.)

In realistic situations, the chaotic motion of a dynamical system usually disappears after
a sufficiently long time. This phenomenon – the transient chaos – differs from sustained
(or permanent) chaos by having a finite lifetime [42]. The variation of parameters may turn
a chaotic system to a transient chaotic one via a crisis bifurcation. During this event, the
chaotic attractor opens up and loses its global attracting property, i.e., trajectories are allowed
to escape from it after a finite-time chaotic motion – this is why the remaining strange set is
referred to as a repellor. Since the probability of finding the system in the chaotic state (in
the repellor) decreases exponentially in time, the lifetime of transient chaos is characterised
by the corresponding exponent, the escape rate.

In works of G. Csernák, transient chaos is thoroughly examined when friction is added to
the previously mentioned stick-slip model. The escape rate and mean lifetime are estimated
based on the fractal dimension of the repellor [12]. A recursive procedure for life expectancy
(mean kickout number) calculation was also provided in [8, 13]. Again, these results can be
clearly correlated to results obtained in the field of mathematics, see Fig. 1.5.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  0.5  1  1.5  2

Figure 1.5: Invariant sets of piecewise smooth maps. Left: globally attractive set (probability
density vs. initial state), taken from the paper of Jab loński et al. [38]. Right:
transient chaotic repellor (kickout number vs. initial conditions), taken from the
paper of Csernák and Stépán [12].
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1.3 Micro-chaos map in higher dimensions

From practical point of view, micro-chaos maps corresponding to multi degree of freedom
systems are more important compared to the one-dimensional case. These maps, however,
are more challenging to analyse, starting from the visualisation of trajectories and invariant
sets to the proof of certain properties.

The two-dimensional micro-chaos map obtained by taking processing delay into account
was first presented by G. Csernák [9] using some of the formalism from [21]:[

yi
yi+1

]
= F

([
yi−1
yi

])
=

[
yi

a yi − b Int(yi−1)

]
. (1.2)

Note, that similarly to Eq. (1.1), y is related to the velocity of the 1DoF oscillator. Fun-
damental properties of the 2D micro-chaos map (1.2) were shown: fixed points and basic
branches of the map were identified and chaos was proven by separately proving the follow-
ing statements:

• The map has sensitive dependence on initial conditions.
• A so-called absorbing state-space domain (absorbing sphere) exists, from where solu-

tions cannot leave after they enter. For the proof of chaos, finding an absorbing sphere
is necessary since a strange attractor must reside inside the absorbing sphere.

• The dynamical system, described by Eq. (1.2) is topologically transitive. This property
means that the attractor can be partitioned in an irreducible way and every partition
can be reached from any other partition, having at least one, whose image fully covers
at least two other partitions. (Or shortly, trajectories withing the attractor are mixing.)

It is worth noting, that mapping (1.2) can be also considered as a piecewise linear map
with hysteresis, see Fig. 1.6. Recall, that G. Berkolaiko [2], and B. Garay, R. Csikja and
J. Tóth [22] studied similar maps.

In [10], a 2D micro-chaos map corresponding to a PD-controlled inverted pendulum was
introduced and analysed. The map is formulated as

yi+1 = Uyi + b Int(kyi), where (1.3)

U =

[
ch(β) sh(β)/β
β sh(β) ch(β)

]
, b =

[
(1− ch(β))/β2

− sh(β)/β

]
, k =

[
P
D

]
, yi =

[
yi
y′i

]
,

yi is the dimensionless angular position, y′i is the angular velocity, β is the characteristic
constant corresponding to the negative stiffness, while P and D are control parameters. The
image of a strange attractor spanning over multiple control effort bands in the state space is
shown in Fig. 1.7. As it can be seen, the control effort m ≡ Int(kyi) assumes different values
in parallel bands of the phase-plane.

In [21], E. Enikov and G. Stépán presented the analysis of a pendulum-on-a-cart model
which yields the following 3D micro-chaos map:

yi+1 = Uyi + b Int(kyi), where (1.4)

U =

 ch(β) sh(β)/β ( ch(β)− 1)/β2

β sh(β) ch(β) sh(β)/β
0 0 0

 , b =

 0
0
−γ

 ,
k =

 P
D
0

 , yi =

 yi
y′i

Pyi−1 +Dy′i−1

 .
8
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yj = yj−1
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Figure 1.6: Repellor of the 2D micro-chaos map (1.2), taken from the paper of Csernák and
Stépán [8]. The domain of definition is divided into parallel bands, according to
the value of the control effort.

β is, again, the characteristic constant corresponding to the negative stiffness, γ is a
system parameter characterising the mass distribution, while P and D are control parameters.
The effect of processing delay is also considered in the model, this is why the control effort
appears in the state vector yi, besides the dimensionless angular position yi and angular
velocity y′i. A detailed analysis is provided, including the existence of an absorbing sphere
and an invariant set, to the proof of sensitivity on initial conditions. Topological transitivity
was not proven, but from a practical point of view one can use a naive, less strict definition of
chaos, which does not require the topological transitivity. One could also argue that a really
long periodic orbit cannot be distinguished from chaotic behaviour in real applications. The
chaotic attractor of Map (1.4) is shown in Figure 1.8.

In [14], the generalisation of micro-chaos maps for digitally controlled linear systems
with arbitrary feedback with or without delay and zero order hold control is introduced.
The so-called state-space model of micro-chaos is formulated, and several configurations of
digital effects – e.g., sampling with rounding at the input (measured state) and/or output
(control effort) of the controller, with or without additional processing delay – are presented.
Dependence on one or more past state variables can be used to formulate multiple delays,
or numerical derivatives. It was shown that the behaviour of the considered class of systems
can be given in the form

yi+1 = Uyi + di, (1.5)

where U corresponds to the original, unstable, uncontrolled dynamics and di is the control
effort influenced by digital effects. Map (1.5) – the generalized micro-chaos map – can be
reformulated as

yi+1 = Syi − ci, (1.6)

where S corresponds to stable, controlled dynamics of the system without quantization, and
ci is a correction term representing quantization.

9
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Figure 1.7: Chaotic attractor spanning over multiple bands that are separated by switching
lines; taken from the paper of Csernák and Stépán [10].

Figure 1.8: Left: Pendulum-on-a-cart, whose equation of motion leads to a 3D micro-chaos
map. Right: chaotic attractor in the state space of Map (1.4), taken from the
paper of Enikov and Stepan [21].

Formula (1.5) emphasizes the small-scale, locally unstable behaviour of the trajectories,
while the globally stable behaviour of the controlled system is better described by (1.6).

This statement is illustrated with Fig. 1.9 that shows the large-scale and small-scale
dynamics of a 1D micro-chaos map (1.1).

At every point of the phase-space, the matrix U is the coefficient matrix of the locally
linearized micro-chaos map. Consequently, for this class of maps the Lyapunov exponents
can be directly calculated as the eigenvalues of matrix U, allowing one to quickly determine
the sensitivity on initial conditions.

Similarly to the result obtained by Enikov and Stépán [21], one can also express the
maximum error introduced by the map, which yields the size of the smallest absorbing
sphere. Since the maximum error is a global property of the map, it can be conveniently
expressed based on formula (1.6):

‖y∞‖ = max
ci

∥∥∥∥ ∞∑
i=0

Si ci

∥∥∥∥ = max
χi

∥∥∥∥ ∞∑
i=0

Si bχi

∥∥∥∥, χi ∈ (−1, 1). (1.7)
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Figure 1.9: The large-scale and small-scale behaviour of the 1D micro-chaos map at a = 3.5
and b = 2.8.

Here χi denotes the neglected fractional part during quantization, while vector b characterizes
the effect of the control effort on the state variables – see Eqs. (1.3) and (1.4).

As it will be shown in Chapter 2, the calculation of ‖y∞‖ is often rather challenging due
to the non-normality of the coefficient matrix S.

1.4 Characterisation of micro-chaos

During the analysis of micro-chaos maps, the usual goal is to determine the following prop-
erties and locate the following state space objects:

• largest Lyapunov exponent to determine the sensitivity on initial conditions,

• topological transitivity that is related to the mixing property,

• absorbing region (absorbing sphere) in the state space, whose size corresponds to the
maximal control error, after transients are settled,

• periodic orbits (and as a 1-periodic case, fixed points),

• topological entropy,

• chaotic attractors and/or repellors and their properties (e.g., fractal dimension).
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CHAPTER 1. INTRODUCTION

Many of the above tasks are not trivial to carry out analytically, therefore a set of numerical
methods is frequently used.

It is important to note, that in case of the micro-chaos maps presented in this dissertation,
the only non-linearity is originated from the quantization and otherwise the solution of the
equation of motion is known.

Lyapunov exponents can be directly calculated as they are the eigenvalues of matrix U,
see Equation (1.5).

Topological transitivity shows the mixing of trajectories on the invariant set (attractor).
It is required for having chaotic behaviour according to the most accepted definition [19]. For
the proof of topological transitivity, a non-trivial partitioning of the state space is usually
necessary, along with the introduction of a symbolic dynamics.

Periodic orbits can be found using symbolic dynamics, where the alphabet of symbols
corresponds to the quantized values of control efforts. The application of this method is
described in Section 2.4.3. An important property of chaotic systems is that many physical
properties can be efficiently averaged on the unstable periodic orbits [15].

Topological entropy shows the growth of the number of periodic orbits with increasing
period. In [5], the topological entropy is calculated using an algorithm which analyses the
pre-images of line sections taken from the vicinity of the invariant set. Topological entropy
can also be determined by simply counting the number of periodic orbits, moreover – in some
metric spaces – it is directly related to topological transitivity.

The size of the absorbing region or absorbing sphere can be formulated using Eq. (1.7)
which estimates the total amount of error introduced by digital effects in the map. It was
shown in [7] that the infinite series is convergent and yields the radius of the absorbing
state space region. The challenging part is, however, to determine the proper combination
of fractional parts (cj) which maximize the series. The suggested solution to this problem is
described in Section 2.4.2.

Fractal dimension of chaotic attractors can be calculated by the traditional box counting
method [15], or using time series analysis [34].

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

periodic group (PG), No: 1

transient cell sequence, leading to a PG 

transient cell sequence, leading to the sink

sink cell

Figure 1.10: Illustration of simple cell mapping.

State space objects can be reliably discovered by Cell Mapping methods [35]. Simple Cell
Mapping (SCM) is able to find fixed points and periodic orbits in a selected state space
region, along with their basins of attraction. In SCM, the state space is discretized; divided

12



1.4. CHARACTERISATION OF MICRO-CHAOS

into cells, as shown in Fig. 1.10. For every cell a single image cell is determined, where the
dynamics lead from the center point of the cell.

Following the images of cells, one can formulate a graph, which contains cycles (periodic
cell groups) and transient cell sequences leading to either a periodic group or to the area
outside the analysed domain – the sink cell. Chaotic attractors or repellors are usually
covered by one or more high period cell groups [35].
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2
The micro-chaos map

This chapter introduces the micro-chaos map corresponding to a single degree-of-freedom
digitally controlled mechanical oscillator. Two digital effects – sampling and quantization –
are taken into account: sampling converts the continuous flow to a 2D map and quantization
results in piecewise smooth control efforts.
The general classification of 2D micro-chaos maps is presented and the case of negative
stiffness oscillators with quantization on the control effort is thoroughly analysed. Finally,
certain results are generalized to multi degree-of-freedom cases.

Throughout this chapter, a restriction is made to the digitally controlled oscillator with
linearized equation of motion. The digital controller will implement a feedback control with
proportional and derivative terms (shortly PD-control), with sampling and zero-order-hold,
i.e., the calculated control effort will be kept constant between two sampling instants (see
Fig. 2.1). Another frequently occuring digital effect – the processing delay – is not considered
in this chapter. The assumption is made, that measuring certain state variables, calculating
the control effort and governing the actuator takes negligible amount of time.

While the aforementioned restrictions could seem to be strict, these assumptions allow one
to see a qualitative picture of the effect of sampling and quantization. Since the solution of
linear systems are known analytically, the only non-linear term comes from the quantization.
The restriction to PD-control has an advantage of having control terms corresponding to the
stiffness and damping in the system. Lastly, the state space of two-dimensional maps can be
represented conveniently by several numerical methods and is easy to illustrate or show in
figures.

2.1 The digitally controlled 1 DoF mechanical oscillator

2.1.1 Solution of the equation of motion

As a consequence of the sampling and zero-order-hold control scheme, the control effort
assumes constant values between the subsequent sampling instants. In the present section,
the equations of motion and the solutions are formulated for three different linear oscillators
under a constant external force. These results provide the basis for the derivation of the
corresponding micro-chaos maps by taking into account the digital effects.

Consider the equation of motion of the 1 DoF oscillator with a linear spring and viscous
damping and constant external force (see Fig. 2.1):
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Figure 2.1: One degree-of-freedom mechanical oscillator with digital control. The effect of
sampling and zero-order hold is illustrated on the right subfigures.

ẍ(t) + 2 δ α ẋ(t) + α2 x(t) = −F, t ∈ [iτ, (i+ 1)τ), (2.1)

where α =
√
k/m is the natural angular frequency, δ ∈ [−1, 1] is the damping ratio (2 δ α =

c/m) and −F is a control effort betwen the ith and (i+ 1)st sampling instants. The sampling
period is denoted by τ . Rewriting the system as a set of first order differential equations, one
can obtain

ẏ(t) = Ay(t) + f , (2.2)

where

y(t) =

[
x(t)
ẋ(t)

]
, A =

[
0 1
−α2 −2 δ α

]
and f =

[
0
−F

]
. (2.3)

The solution of the equation of motion can be formulated as:

y(t) = U(t)y(0) + b(t)F, t ∈ [iτ, (i+ 1)τ), (2.4)

where

U(t) =
e−δαt

Γ

[
Γ cos (αΓt) + δ sin (αΓt) sin (αΓt) /α

−α sin (αΓt) Γ cos (αΓt)− δ sin (αΓt)

]
, (2.5)

b(t) =
1

α2Γ

[
Γ− e−δαt (Γ cos (αΓt) + δ sin (αΓt))

α e−δαt sin (αΓt)

]
,

and Γ =
√

1− δ2.
Equation (2.4) represents an operator between an initial condition y(0) and the solution

of the system, for a constant control effort −F . Since sampling and zero-order-hold will result
in constant control effort between two successive sampling instants, no other inhomogenities
are considered.

Micro-chaos is expected to appear in cases when the trivial equilibrium of the uncontrolled
system is unstable. This situation occurs if either the stiffness or the damping parameter
becomes negative.

If the stiffness of the system is negative, Eq. (2.1) changes to

ẍ(t) + 2 δ α ẋ(t)− α2 x(t) = −F, t ∈ [iτ, (i+ 1)τ), (2.6)
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2.1. THE DIGITALLY CONTROLLED 1 DOF MECHANICAL OSCILLATOR

where α > 0 characterizes the negative stiffness, and the corresponding elements of the
solution are:

U(t) =
e−δαt

Γ

[
Γ cosh (αΓt) + δ sinh (αΓt) sinh (αΓt) /α

α sinh (αΓt) Γ cosh (αΓt)− δ sinh (αΓt)

]
, (2.7)

b(t) =
1

α̂2Γ

[
−Γ + e−δαt (Γ cosh (αΓt) + δ sinh (αΓt))

α e−δαt sinh (αΓt)

]
,

where the definition of Γ changes to Γ =
√

1 + δ2.

Note, that the corresponding matrix U(t) and vector b(t) can be derived for the case of
zero stiffness, too [11].

If the damping of the system is negative, Eq. (2.1) changes to

ẍ(t)− 2 δ α ẋ(t) + α2 x(t) = −F, t ∈ [iτ, (i+ 1)τ), (2.8)

where the damping ratio δ > 0 characterizes the negative damping, and the corresponding
elements of the solution are now:

U(t) =
eδαt

Γ

[
Γ cos (αΓt)− δ sin (αΓt) sin (αΓt) /α

−α sin (αΓt) Γ cos (αΓt)− δ sin (αΓt)

]
, (2.9)

b(t) =
1

α2Γ

[
Γ− eδαt (Γ cos (αΓt)− δ sin (αΓt))

α eδαt sin (αΓt)

]
,

and Γ =
√

1− δ2.

2.1.2 Stability of PD-controlled system with sampling but without quan-
tization

If the trivial equilibrium of the oscillator is unstable (negative stiffness or damping cases,
Eqs. (2.6)-(2.8)), a proportional-derivative control (or shortly PD-control) is frequently used
to stabilize the equilibrium. Since quantization of control effort introduces a nonlinearity
which would make stability analysis complicated, the case without quantization is used to
obtain a reference stable parameter domain for the micro-chaos map. For the case with
sampling and zero-order hold, the corresponding control force in the i-th sampling period is

Fi = (P xi +D ẋi). (2.10)

To carry out the stability analysis with respect to control parameters P and D, Jury’s
criterion (that follows from the Routh-Hurwitz criterion) [40] is applied to the sampled system
(without quantization)

yi+1 = Syi, S = U + b⊗ k, (2.11)

where k = [P D]T and y = [x ẋ]T.

If the stiffness is negative, the coefficients of the characteristic polynomial yield the fol-
lowing conditions for the stability of the equilibrium at x = 0:

a0 : D <
Γ
(
α2 sinh−1(αδ)(cosh(αΓ) + cosh(αδ)) + P

)
− δP

α
,

a1 : D >
Γ
((
P − 2α2

)
+ P sinh−1(αδ)(cosh(αΓ)− cosh(αδ))

)
− δP

α
,

a2 : P > α2.

(2.12)
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Figure 2.2: Stable parameter domains of the PD-control, in case of negative stiffness.

Conditions (2.12) can be used to illustrate the domain of stable control parameters, see
Figure 2.2.

These stable parameter domains will be used as a reference during the analysis of micro-
chaos, after taking digital effects into account. For switched systems of this type, the general
observation is, that transient chaos appears at the boundary of stability [45, 50].
Throughout this chapter, the assumption is made, that for the global behaviour of micro-
chaos maps, the non-quantized case provides a good reference for the domain of stable control
parameters.

2.2 The 2D micro-chaos map and its classification

In this section, another digital effect is added to the sampled system: quantization. As it
will be presented, the presence of two digital effects (sampling and quantization) will result
in chaotic behaviour.

If sampling occurs, with sampling period τ , the following map describes the evolution of
the oscillator:

y((i+ 1) τ) = U(τ)y(i τ) + b(τ)Fi(y(i τ)), i ∈ Z. (2.13)

Here Fi is the control effort calculated at the ith sampling instant from y(i τ). With re-scaling
the time and using T = t/τ , one arrives at the following map:

yi+1 = U(1)yi + b(1)Fi(yi), i ∈ Z. (2.14)

In order to match the dimensionless time, the following parameters should be used in U and
b:

α̂ = ατ, P̂ = Pτ2, D̂ = Dτ. (2.15)

18
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Note, that α̂ is the composition of two characteristic time constants: the reciprocal of the
characteristic time constant (or natural angular frequency in the case of positive stiffness) α
and the sampling time τ .

Adding quantization (or in other word, rounding) to the control can be done in two ways.

• Output quantization is the case, when the calculated control effort (the output of the
controller) is quantized with output resolution rO. This means, that the rounding
function Int is applied to the control effort Fi/rO, then the result is multiplied with the
resolution:

yi+1 = U(1)yi + b(1) rO Int

(
1

rO
Fi(yi)

)
, i ∈ Z. (2.16)

• Input quantization is the opposite case, when the measured state vector (the input of
the controller) is subject to quantization with input resolution rI,i for the ith component
of the state vector. The corresponding map assumes the form

yi+1 = U(1)yi + b(1)Fi
(
RI Int

(
R−1I yi)

))
, i ∈ Z. (2.17)

Here RI = diag(rI,1, rI,2, . . . , rI,n) is the diagonal matrix of input rounding resolutions.

Maps (2.16) and (2.17) are micro-chaos maps since their form corresponds to the formula
(1.5). Of course, one can re-scale the space coordinates and therefore eliminate the resolution
parameter rO or rI.

Before examining one of the micro-chaos maps in detail, a general classification for the
2D micro-chaos maps corresponding to the 1 DoF mechanical oscillator will be provided. The
categorisation is made by the nature of instability and type of quantization, see Table 2.1.

Instability / Quantization Output Input Input and output

Negative stiffness A B
see Chapter 4.Negative damping C D

Table 2.1: The classification of 2D micro-chaos maps with respect to the nature of instability
and quantization.

By looking at the standard cases, four simple types of the 2D micro-chaos maps can
be distinguished. The twofold quantization cases (when both the input and output are
quantized) will be covered later, in Chapter 4. Cases with negative stiffness and negative
damping fall back to the negative stiffness cases, as that type of instability dominates.

Although the methods described in this dissertation can be applied to broad classes of
micro-chaos maps, most of the calculations were carried out for Case A. Therefore, the
following section will focus on the negative stiffness, output quantization situation.

2.3 Inverted pendulum with control effort quantization

Applying the control scheme described by (2.16) to the linearized equation of motion of the
inverted pendulum, one obtains

ϕ̈(t) + 2δαϕ̇(t)− α2ϕ(t) = −rO Int

(
Pϕ(tj)

rO
+
Dϕ̇(tj)

rO

)
, j = 1, 2, . . . , (2.18)
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Figure 2.3: Illustration of sampling and quantization and a digitally controlled inverted pen-
dulum.

where α is the inverse of the characteristic time constant that describes the uncontrolled
inverted pendulum, δ is the relative damping, P and D are control parameters and rO is the
resolution of the control torque (see Figure 2.3). The rounding is taken into account with the
Int() function, which denotes rounding towards the origin, according to Fig. 1.4. Introducing
the dimensionless time T = t/τ , system parameters α̂ = α τ , P̂ = P τ2, D̂ = D τ and re-
scaled space coordinate x = ϕ/(rO τ

2), the resolution parameter can be eliminated. Note,
that parameter α̂ is the ratio of the sampling period and the characteristic time constant of
the oscillator. Its value is usually kept very small in practical applications.

According to the solution of the linearized, dimensionless equation of motion (2.4), the
following mapping can be derived between the states at subsequent sampling instants:

yi+1 = Uyi + bFi,

Fi = Int(P̂ xi + D̂x′i),
(2.19)

where y = [xi x′i]
T , and – with the abuse of notation – U ≡ U(1), b ≡ b(1) from Eq. (2.7).

Equation (2.19) is the micro-chaos map corresponding to the negative stiffness and output
quantization case (case A in Table 2.1).

2.3.1 Fixed points, switching lines and topological pattern

Looking at the state space of the micro-chaos map (2.19), one can immediately realise the
effect of output-quantization: control effort bands appear in the state space corresponding to
integer Fi values. From this fact, the existence of multiple unstable saddle points also arises.
The switching lines corresponding to the PD-control, separating control effort bands Fi =
m− 1 and Fi = m are:

Int(P̂ x+ D̂ x′) = m ⇒ swm : x′ =
m− P̂ x

D̂
, m ∈ Z\{0}. (2.20)

For each control effort Fi = m, an unstable equilibrium (saddle point) exists:

Fm = UFm + bm. (2.21)
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Figure 2.4: The state space of micro-chaos map (2.19). Black lines indicate switching lines,
black dots and blue lines are fixed points and their manifolds. Three example
trajectories are depicted leading to chaotic attractors, shown in balloons, where
states corresponding to sampling instants are shown. The red point in the m = 4
band indicates the first virtual fixed point of the map (that is closest to the origin).
α̂ = 0.07, δ = 0.03, P̂ = 0.007, D̂ = 0.02.

Fixed points correspond to zero velocity (Fm = [xmu 0]), therefore they can be found on the
x-axis:

Int(P̂ xmu ) = α̂2 xmu ⇒ xmu =
m

α̂2
, m ∈ Z. (2.22)

The corresponding fixed points are denoted by black dots in Figure 2.4. This formula is valid
only if xmu resides between the mth and (m + 1)st switching lines – since this is required to
have a matching control effort value:

|m|
P̂
≤ |m|

α̂2
<
|m|+ 1

P̂
. (2.23)

If this condition is not satisfied, the fixed point is said to be virtual, see the red dot in Figure
2.4, between the switching lines sw4 and sw5.
The stable and unstable manifolds of fixed points are corresponding to the eigenvectors of U:

estable =

[
1

α̂ (−Γ− δ)

]
eunstable =

[
1

α̂ (Γ− δ)

]
(2.24)

When varying α̂ or P̂ parameters, if a fixed point crosses the switching line at |m|/α̂2 =
(|m|+ 1)/P̂ , a border collision bifurcation occurs and the fixed point becomes virtual. Simi-
larly, if a virtual fixed point crosses the corresponding switching line at |m|/P̂ = |m|/α̂2, it
turns to a regular fixed point via border collision bifurcation. See Fig. 2.4 and Fig. 2.6.
Iterating the micro-chaos map, these oscillations portray a picture of one or more fractal-like
– supposedly chaotic – attractor in the state space, see balloons in Fig. 2.4.
Due to the nature of the dynamics around the unstable saddle points, trajectories are pushed
from one control band to the other along the stable and unstable manifolds of the fixed points.
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The control effort does not immediately change as a trajectory enters a neighbouring control
effort band, it is updated only at the next sampling instant. This allows the trajectories to
spend a varying amount of time (until the next sampling occurs) in a neighbouring band
with their original dynamics, therefore, irregular oscillation appears between the neighbour-
ing control effort bands, governed by the stable and unstable manifolds of the neighbouring
saddle points – if the steps of the map are sufficiently small – see Fig. 2.4.

Therefore, strange sets – chaotic attractors or transient chaotic repellors: conditionally
invariant sets corresponding to transient chaos – are expected to be in the neighbourhood of
the intersection points of the switching lines and the x axis (see Fig. 2.4):

Int(P̂ xattr) = m ⇒ xattr =
m

P̂
, m ∈ Z\{0}. (2.25)

Consequently, an alternating pattern of interesting points (corresponding to strange sets) and
fixed points is present in the state space:

x0u < x1attr < x1u < x2attr < x2u < · · · < xmattr < xmu < · · · < xmmax
attr

0 <
1

P̂
<

1

α̂2
<

2

P̂
<

2

α̂2
< · · · < m

P̂
<
m

α̂2
< · · · < mmax

P̂
.

(2.26)

The alternating pattern ends with the first virtual fixed point at mmax/α̂
2 that resides in the

(mmax + 1)st band.

Restricting the control parameters to the stable domain (P̂ > α̂2, see Section 2.1.2), the
index mmax of the outermost interesting point can be expressed from Eq. (2.23) :

m

α̂2
<
m+ 1

P̂
⇒ m

P̂ − α̂2

P̂ α̂2
<

1

P̂
⇒ m <

α̂2

P̂ − α̂2
, (2.27)

mmax = Int

(
α̂2

P̂ − α̂2

)
. (2.28)

Here the function Int – just as in the previous sections – rounds to the next integer towards
the zero. In general, the number of fixed points is Nfp = 2mmax + 1, since the origin is also
a fixed point, and the number of attractors or repellors is Nattr = 2mmax. If mmax = 0, the
only fixed point is the origin and this pattern does not appear. The condition for this case
is:

α̂2

P̂ − α̂2
< 1 ⇒ 2 α̂2 < P̂ . (2.29)

Based on Condition (2.28), the number of fixed points and interesting points is infinite
if P̂ = α̂2. Figure 2.6 shows the location of attractors for a case corresponding to realistic
system parameters (small α̂ and P̂ due to relatively small sampling times), where chaotic
attractors appear in the neighbourhood of all interesting points. Figure 2.5 illustrates the
number of fixed points on the stable domain of control parameters.

In this case, the position of the outermost chaotic attractor can be used to provide a good
estimate of the control error. According to Eqs. (2.25) and (2.28), the position of the last
interesting point (attractor) can be expressed as:

xattr,last =
mmax

P̂
, (2.30)

which can be considered as an estimation of the maximal control error, since the extent
of the chaotic attractors is small.
In order to classify the strange sets at the neighbourhood of interesting points, – determine
whether they are chaotic attractors or repellors –, the detailed analysis of the vicinity of
saddle points is carried out.
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Figure 2.5: The number of fixed points with respect to control parameters, at α̂ = 1.8 and
δ = 0.15. The shaded area is the domain of stability for the sampled system.

2.3.2 Smale horseshoe structures

For the detailed examination of the topology of the phase-space, an attempt is made to find
Smale horseshoe structures. As initial domains, parallelograms Qr = L ∪ R, defined by the
stable and unstable manifolds WS

L , WU
L , WS

R and WU
R of neighbouring fixed points Fl on the

left and Fr on the right are chosen, as depicted in Fig. 2.7. Here r = l+ 1 denotes the index
of the switching line SWr between the two fixed points. l and r are the integer numbers
corresponding to the control effort values in the bands next to the switching line SWr.
Each parallelogram is divided into two trapezoids (denoted by R on the right and L on the left,
see the crosshatched regions in Fig. 2.7) by a switching line. The vertices of the trapezoid L
are the fixed point Fl, the intersection point PRULS of the manifolds WU

R (unstable manifold
of the fixed point on the right) and WS

L (stable manifold of the fixed point on the left), the
intersection point PRUSW of WU

R and the switching line, and the crossing point PLUSW of
manifold WU

L and the switching line, see Fig. 2.7. The vertices of the other trapezoid (R)
are the fixed point Fr, and points PRUSW , PLUSW and PLURS , where the notations can be
interpreted similarly. The positions of these points can be deteremined by straightforward
analytical calculations. The images and pre-images of trapezoids L and R can be calculated
by restricting the dynamics to the corresponding band, i.e., to the case m = l or m = r. The
restricted versions of the micro-chaos map will be denoted by fl = f |m=l and fr = f |m=r,
respectively.
The images of the quadrangles fr(R) and fl(L) are stretched along the unstable manifolds,
while the pre-images f−1r (R), f−1l (L), f−1l (R) and f−1r (L) are stretched along the stable
manifolds. One must be careful during the determination of pre-images, since e.g. f−1r (L) =
f̃−1r (L) ∩R, where

f̃−1r (L) =
{
ỹ | ỹ = U−1(y − br),y ∈ L

}
. (2.31)

Thus, it may happen that some parts of the calculated pre-image set f̃−1r (L) are cut away
by the switching line SWr.
It is easy to see in Fig. 2.7 that fl(L) \ Qr 6= ∅, i.e., fl(L) is stretched out from the initial
parallelogram at the considered parameter set. Thus, a chaotic repellor with transient chaotic
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Figure 2.6: Locations of attractors of the micro-chaos map (2.19) with respect of P̂ , with
α̂ = 0.075, calculated using Eq. (2.25). Increasing P̂ , the outermost fixed points
disappear due to border-collision which causes the outermost attractors to vanish.
(The pattern of attractors and fixed points does not depend on parameters δ and
D̂.)

motion exists in this domain.

In general, if there is no trajectory which is able to escape the parallelogram, the horse-
shoe structure indicates a chaotic attractor. Therefore, the images of corner points of L and
R at the switching line SWr should be analysed, as these states have the highest potential
to jump over the neighbouring fixed point’s manifold.

Figure 2.8 shows four strange sets next to each other. Two of them (at m = 4 and m = 7)
are repellors, while the images of parallelograms do not stretch out from the initial domain
at m = 5, 6, thus, two separated attractors exist here. In fact, the topology resembles to
multiple adjacent baker-maps [7].

The detailed analysis of the images of these points and conditions to classify the strange
sets are provided by G. Csernák in [6] and are not covered in this thesis.

It can happen, that two chaotic repellors together form a chaotic attractor in the state
space. It is important to note, however, that the horseshoe structures of neighbouring strange
sets become entangled in case of extreme jumps passing through multiple control effort bands.
The horseshoe structures of neighbouring strange sets become entangled in case of extreme
jumps, when trajectories cross multiple control effort bands within a sampling period.

Large α̂ corresponds to large sampling period or large amount of inertia and can lead to
large jumps away from the origin. Large P̂ parameter can be related to excessive control effort
and therefore may cause jumps towards the origin – often leading to several control bands
into the other half of the phase plane. As a consequence of these jumps, large attractors can
be formed in the phase-space, hiding the underlying pattern of saddle points and repellors.

Figure 2.9 shows the transition from separated chaotic attractors to a single chaotic
attractor formed by transient chaotic repellors.

24



2.3. INVERTED PENDULUM WITH CONTROL EFFORT QUANTIZATION

Figure 2.7: The schematic picture of the horseshoe-structure in the parallelogram Qr = L∪R.
Here r = 4 and parameter values are α = 0.8, δ = 0.2, P = 0.7 and D = 0.6.
Note, that the switching lines and stable manifolds are not necessarily parallel.

Figure 2.8: The horseshoe structures at the switching lines m = 4, 5, 6, 7 at α = 0.8, δ = 0.2,
P = 0.7 and D = 0.6. Two trajectories are also shown, leading to disconnected
attractors.
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Figure 2.9: The state space of the micro-chaos map when sampling time τ increases.
Left column: Initially, there are four separated chaotic attractors in the state
space. The inner chaotic attractors turn to repellors forming two larger chaotic
attractors spanning over multiple control effort bands.
Right column: These attractors turn to repellors again forming a single chaotic
attractor.
(Note: only the first 3 switching lines are indicated on either sides, pattern-
breaking virtual fixed points are indicated with red dots.)
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2.4. GENERALISATION TO MULTI DOF AND CONTROL EFFORT QUANTIZATION

2.4 Generalisation to multi DoF and control effort quantiza-
tion

The previous section dealt with the single degree-of-freedom case, introduced a topological
pattern of unstable saddle points and interesting points – whose neighbourhood contains
chaotic attractors or transient chaotic repellors. Smale horseshoe structures were also shown,
whose existence solely proves chaos.
For more degrees of freedom and for higher dimensional micro-chaos maps, the overview
of state space and finding Smale horseshoe structures is often more difficult. Fortunately,
a partial proof of chaos can be done in multi DoF cases by examining the following two
properties:

• Sensitive dependence on initial conditions.
• Existence of an absorbing domain.

The above two points correspond to a mathematically loose, practical definition of chaos,
which lacks the property of topological transitivity.
Additionally, periodic orbits can be provided using a symbolic dynamics approach, indepen-
dently of the dimension of the micro-chaos map.

2.4.1 Lyapunov exponent

Obtaining the Lyapunov exponents of the micro-chaos map has great importance during the
proof of chaos. If the largest Lyapunov exponent (LLE) is larger than 1, the sensitive depen-
dence on initial conditions is immediately proven [50, 15].

As it was already mentioned in Section 1.3, the Lyapunov exponents of the micro-chaos
map can be directly calculated as the eigenvalues of matrix U.
For example, the Lyapunov exponents in the negative stiffness and output quantization case
(Eq. (2.19)) are

λU1,2 = exp(−δ α̂± Γ α̂) = exp(α̂(−δ ± Γ)). (2.32)

Since Γ =
√

1 + δ2 > δ, one of the eigenvalues is larger than one: λU1 > 1 > λU2 . Thus, the
micro-chaos map is sensitive to the initial conditions. This result corresponds to the fact that
all equilibria are locally unstable saddle points.

2.4.2 Absorbing domain; absorbing cuboid

An absorbing domain A in the state space of the micro-chaos map f can be defined with

• f(A) ⊂ A, and
• there is n > 0 for every y0, such that fn(y0) ∈ A.

That is, the image of the absorbing domain is within itself, and eventually, the map leads
to the absorbing domain from all initial conditions. This subsection provides an estimate for
the size of the smallest possible absorbing domain of the micro-chaos map.

The micro-chaos map (2.19) expresses an unstable, uncontrolled system, which is stabi-
lized with a quantized control effort:

yi+1 = Uyi + bFi, Fi ∈ Z. (2.33)

As it was already mentioned in Section 1.3, the micro-chaos map can be rewritten as a
stabilized system without quantization, from which correction terms corresponding to the
neglected fractional parts (χi) are subtracted [9].

yi+1 = Syi − bχi, χi ∈ R. (2.34)
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CHAPTER 2. THE MICRO-CHAOS MAP

Eqs. (2.33) and (2.34) are valid for higher-dimensional micro-chaos maps, too, in the case of
output quantization. For the inverted pendulum (2.19),

S = U + b⊗ k, k =

[
P
D

]
. (2.35)

This formalism allows one to express an estimate for the maximum control error introduced
by the digital effects. Applying the micro-chaos map repeatedly, the following expression can
be written:

yj+1 = Sj y0 −
j−1∑
k=0

Sk bχk. (2.36)

If the control parameters are chosen from the stable parameter domain (Sec. 2.1.2), the
eigenvalues of S are inside the unit circle on the complex plane [9], therefore:

lim
j→∞
‖Sj‖ = 0, (2.37)

with any kind of norm, meaning that the information originating from the initial state will
eventually vanish and solutions will tend towards an absorbing domain in the state space.

It is possible to define a sequence of fractional parts χ = {χ1, χ2, . . . χk}, such that the
following series is convergent and tends to the farthest point of the invariant set of the micro-
chaos map, or in other words y∞ denotes the limit of all possible solutions (after transient
behaviour disappears):

‖y∞‖ = max
χ

∥∥∥∥∥ lim
j→∞

j∑
k=0

Sk bχk

∥∥∥∥∥, (2.38)

where the limit is maximized with respect to the sequence of fractional parts χ. Introducing
D as the diagonal matrix of eigenvalues (λi) and T, the matrix formed by the columns of
right eigenvectors of S, one can write:

y∞ = −T
∞∑
k=0

DkT−1 bχk. (2.39)

If the diagonalization of S exists, then (2.39) will converge, since the eigenvalues of S are
within the unit circle on the complex plane by definition [6]. The case, when the diagonal-
ization of S does not exist is not covered in this thesis, but for reasonable system parameters
this does not occur. Let φi and ρi denote the modulus and argument of the ith eigenvalue λi,
and b̃ = T−1 b. With this notation, Eq. (2.39) can be written as:

y∞ = −T


∑∞

k=0 λ
k
1 χk b̃1∑∞

k=0 λ
k
2 χk b̃2

...∑∞
k=0 λ

k
n χk b̃n

 = −


∑∞

k=0

∑n
j=1 T1,jλ

k
j χk b̃j∑∞

k=0

∑n
j=1 T2,jλ

k
j χk b̃j

...∑∞
k=0

∑n
j=1 Tn,jλ

k
j χk b̃j

 =

−


∑∞

k=0

∑n
j=1 T1,j ρ

k
j (cos(k φj) + i sin(k φj))χk b̃j∑∞

k=0

∑n
j=1 T2,j ρ

k
j (cos(k φj) + i sin(k φj))χk b̃j

...∑∞
k=0

∑n
j=1 Tn,j ρ

k
j (cos(k φj) + i sin(k φj))χk b̃j

 :=


∑∞

k=0 σ1,k χk∑∞
k=0 σ2,k χk

...∑∞
k=0 σn,k χk

 . (2.40)

Note, that in each component of y∞, the same χk fractional part appears.
To maximize the ith component of y∞, the following choice of the kth fractional part should
be made:

χi = {χk} = {sign(σi,k)} , k = 0, 1, 2, . . . (2.41)
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Eq. (2.41) yields a good upper estimation when compared to simulated results.

A global absorbing cuboid can be defined by taking components of y∞ with the substitu-
tion of the corresponding set of fractional parts χi which maximize that component:

yabs =


y∞,1 |χ=χ1

y∞,2 |χ=χ2

...
y∞,n |χ=χn

 . (2.42)

This absorbing cuboid can provide a basis for the error estimation and can be used during
the proof of chaos, as well.

Providing a set of neglected fractional parts which maximize a certain norm can be rather
challenging, see Section 2.5, [25].

2.4.3 Periodic orbits and symbolic dynamics

Periodic orbits can be used to verify the previously introduced error estimation. If periodic
orbits up to a relatively long period are obtained, they are expected to cover the invariant
set – chaotic attractor – of the micro-chaos map quite well.

Starting with the estimation provided by Eq. (2.42) or Eq. (2.30), it is possible to select
a corresponding symbolic dynamics, where symbols correspond to control effort values:

m = {−mmax,−mmax + 1, . . . , 0, 1, 2, . . . ,mmax}. (2.43)

It can be seen, that a p-periodic orbit starting from y0 can be expressed as:

yp ≡ y0 = (I−Up)−1
(
m0U

p−1 +m1U
p−2 + · · ·+mp−1U

0
)
b. (2.44)

Here {m0,m1, . . . ,mp−1} is a combination of symbols selected from m. In order to enumerate
all p-periodic orbits using Eq. (2.44), the prime cycles [15] – circular permutations with
repetition – of symbol set m of length p are calculated and substituted, see Table 2.2.
Then all possible periodic orbit is tested by repeatedly applying the micro-chaos map and
verifying the actual control effort value mi. Obviously, a periodic orbit is only valid if:

F (yi) = mi for i = 0, 1, . . . , p. (2.45)

p Prime cycles (circular permutations with repetitions)

1 {0}, {1}, {2}
2 {01}, {02}, {12}
3 {001}, {002}, {011},

{012}, {021}, {022},
{112}, {122}

4 {0001}, {0002}, {0011}, {0012}, {0021}, {0022},
{0102}, {0111}, {0112}, {0121}, {0122}, {0211},
{0212}, {0221}, {0222}, {1112}, {1122}, {1222}

Table 2.2: Prime cycles of m = {0, 1, 2}, up to length p = 4.

Applying the method and generating the periodic orbits up to p = 22 in case of the micro
chaos map with a symbol alphabet length of 11 (m = −5, . . . ,+5), and plotting the periodic
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Figure 2.10: Unstable periodic orbits (indicated with coloured crosses) from length 3 to length
22 covering a chaotic attractor (red points), at α̂ = 1, δ = 0, P̂ = 1.25, D̂ = 0.8.
Yellow circles indicate saddle points, coloured lines indicate switching lines.

orbits give a good picture of the chaotic attractor which spans over multiple control effort
bands, see Figure 2.10. These periodic orbits are unstable and therefore difficult to find with
numerical simulation. One can imagine, that the actual chaotic behaviour is formed by these
unstable periodic orbits.
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2.5 Application: Multi-PD controlled double inverted pendu-
lum

Consider a double inverted pendulum with a control torque at the lower joint (Fig. 2.11, left).
Given a multi PD-control – e.g., separate proportional and derivative control terms for every
part – with zero order hold, τ sampling period, and rounding of the control signal, the torque
between the ith and (i+ 1)st sampling instances can be written as:

M = ρM Int

 1

ρM
(p1 ϕ1(ti) + d1 ϕ̇1(ti) + p2 ϕ2(ti) + d2 ϕ̇2(ti))︸ ︷︷ ︸

:=m(ti)

 , ti = t0 + i τ. (2.46)

Here p1, p2, d1, d2 are control gains, and ρM is the resolution of the control torque. After
linearization, the equation of motion can be solved between successive sampling instants.
Introducing dimensionless time T = t/τ and rearranging the solution of the equation of
motion, one obtains the following micro-chaos map, that describes the state of the pendulum
at successive sampling instants:

yi+1 = Uyi + bM, (2.47)

where: yT
i =

(
ϕ̇1(ti) ϕ̇2(ti) ϕ1(ti) ϕ2(ti)

)
. U and b are composed from the solution:

U =


A12c2−A22c1
A12−A22

c1−c2
A12−A22

A22α1s1−A12α2s2
A12−A22

α2s2−α1s1
A12−A22

A12A22(c2−c1)
A12−A22

A12c1−A22c2
A12−A22

A12A22(α1s1−α2s2)
A12−A22

A22α2s2−A12α1s1
A12−A22

A12α1s2−A22α2s1
A12α1α2−A22α1α2

α2s1−α1s2
A12α1α2−A22α1α2

A12c2−A22c1
A12−A22

c1−c2
A12−A22

A12A22α1s2−A12A22α2s1
A12α1α2−A22α1α2

A12α2s1−A22α1s2
A12α1α2−A22α1α2

A12A22(c2−c1)
A12−A22

A12c1−A22c2
A12−A22

 ,

bT =
[

A22 s1
α1(A12−A22)

A12 s2
α2(A22−A12)

A22 c1i
α1(A12−A22)

A12 c2i
α2(A22−A12)

]
.

Here, the eigenvalues of U are λ1,2 = 0±α2
1 and λ3,4 = 0±α2

2, where α1, α2 are characteristic
time constants, ci and si are cosh(αi) and sinh(αi) respectively, and A12 and A22 are the 2nd

components of the mode shape vectors (with the first component taken as Ai,1 = 1).
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Figure 2.11: Double inverted pendulum with control torque and zero order hold multi-PD
control. The calculated control effort m(t) is rounded due to the quantization of
the control torque. See Eq. (2.46).
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2.5.1 Stable parameter region of multi-PD control

Considering the stability of the multi-PD control, one can calculate the 4D parameter region
(see Fig. 2.12) corresponding to stable equilibrium solution for the sampled, but not rounded
case at ϕ1 = 0, ϕ2 = 0, using the Jury’s stability criterion. If the rounding is taken into
account, the stabilized equilibrium becomes unstable, as the control turns off in the band
corresponding to M = 0, although the equilibrium remains practically stable [43] outside
the M = 0 band. Therefore, the goal is the determination of the practical stability of the
micro-chaos map and the maximum distance of trajectories from the origin is examined.
It is important to note, that a stabilizing control can be achieved with p1 turned off. This
enables one to examine the projection of solutions and switching planes defined by Eq. (2.46)
in a 3D subspace of the state-space, as switching planes does not depend on ϕ1 (See Fig.
2.13.)
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Figure 2.12: Stable parameter domain of the multi-PD control. Green � indicates stable, red
� indicates unstable parameter regions.

2.5.2 Micro-chaotic behaviour

The rounding in the micro-chaos map defines switching surfaces, which separate bands with
the same integer result of the rounding function (see Eq. (2.46)). For a given torque-
resolution, increasing the sampling time τ allows the system to venture into a neighbouring
band to some extent, before the next sampling occurs and the control torque is updated.
As explained before, this results in chaotic behaviour, as the time instant and the position
of entries and exits vary during the motion between adjacent bands. An example attractor,
where the solution visits the M = −ρM, M = 0 and M = ρM bands can be seen in Fig. 2.13.
If the system parameters correspond to larger sampling times or smaller torque-resolution,
the system can cross multiple control bands before the next sampling occurs (i.e., before the
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value of M gets updated).
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Figure 2.13: Example attractor of the micro-chaos map (2.47). Colours indicate different M
values. Red �, blue � and green � colours indicate M/ρM = −1, 0, +1 values.
On the left image, the points of the attractor are joined with blue lines.

2.5.3 Estimation of error in the micro-chaos map

Rewriting the micro-chaos map into the form mentioned in Section 2.4.2, one obtains

yi+1 = Syi − bχi (2.48)

where S = U + b ⊗ [d1 d2 p1 p2] is the map corresponding to the stabilized system and χi
denotes the fractional part removed during the ith rounding.

In order to estimate the maximal error of the controller, Eq. (2.38) is applied. Every com-
ponent of y∞ is maximized with a separate choice of the kth fractional part χk = sign(σi,k),
yielding a good upper estimation when compared to simulated results, see Fig. 2.14.

Figure 2.14: Comparison of simulated and estimated maxima for y1 = ϕ̇1 and y3 = ϕ1.

As it was mentioned in Section 2.4.2, it is not trivial to select a set of fractional parts
to maximize a certain norm. One can construct a suboptimal choice of χk to estimate the
maximum L1 norm. Rewrite Eq. (2.40) in the following form:

y∞ =


∑∞

k=0 σ1,k∑∞
k=0 σ2,k

...∑∞
k=0 σn,k

 =


∑∞

k=0 e1,k χk∑∞
k=0 e2,k χk

...∑∞
k=0 en,k χk

 =


s1,m +

∑∞
k=m+1 e1,k χk

s2,m +
∑∞

k=m+1 e2,k χk
...

sn,m +
∑∞

k=m+1 en,k χk

 , (2.49)
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where sj,m denotes
∑m

k=0 ej,k χk. To maximize the L1 norm of y∞, the following strategy was
followed: the kth fractional part χk is chosen such that the new terms maximize the increase
of the L1 norm in the kth step, taking into account the sign of the already accumulated part
of the series. According to this rule, one can write:

χk = sign(sign(s1,k−1) e1,k + sign(s2,k−1) e2,k + · · ·+ sign(sn,k−1) en,k) = sign(sign(sk)
T ek).
(2.50)

Although the rule for the choice of χk described by Eq. (2.50) does not yield the optimal
choice to maximize the L1 norm of y∞, it provides a good estimation. The optimal χk series
(yielding the maximum L1 norm) for k ∈ {0 . . . 100} had been generated and was compared
to the rule based estimation (See Fig. 2.15.). It was found that the rule based estimation
yields close results to the optimal one. It is important to note, that generating the optimal χk
series involves exponential time complexity, as the number of combinations is 2l for a given
series length l.
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Figure 2.15: Analysis of rule-based L1 norm estimation with: α1 = 4.23763, α2 = 11.3663,
A12 = 1.4305, A22 = −2.09717. One can see, that the optimal χk combination
incorporates a choice of χ9 which decreases the L1 norm locally, but increases
its value overall. Top left: series length k = 20, right: k = 21, bottom: k = 93.
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2.5.4 Application of Simple Cell Mapping

The estimated control errors can be used to choose the initial state space region for the
Simple Cell Mapping method [35], which is used for further analysis of the micro-chaos
map. Consequently, the estimation of various norms can be used effectively, even if they are
determined with minor inaccuracies (due to the truncating of the infinite series, or using the
rule based estimation of L1 norm, for example.) An example of application to the micro-chaos
map (2.47) is shown in Fig. 2.16, which illustrates the result of SCM using a low resolution
cell state space.
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Figure 2.16: SCM results with a cell state space of 40 × 100 × 40 × 60 cells (total of 9.6
million cells). Orange � tiles indicate a periodic group of 92 cells situated on
the attractor, blue � dots show the attractor obtained with numerical simulation.
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2.6 Outlook towards input quantization

The previous sections of this chapter dealt with the case of output-quantization, when the
calculated control effort is quantized. This section provides a brief overview about the case
of input-quantization, when the input of the controller, i.e., the measured state is subjected
to rounding.

Most of the previously mentioned methods and approaches can be applied or generalised
to this case, as well [14, 30, 25, 7]. However, as it will be shown in this section, the complexity
of input-quantization is higher due to the separated quantization of every component of the
state variable.

2.6.1 Micro-chaos map of an inverted pendulum with input-quantization

Consider an inverted pendulum with sampling, zero-order hold and quantization at the mea-
sured angle – the input of the controller – with resolution rI and sampling period τ . Assuming
that the angular velocity is calculated from the sampled angle values, its resolution is rI/τ .
Consequently, the linearized equation of motion can be written as:

ϕ̈(t) + 2δαϕ̇(t)−α2ϕ(t) = −P rI Int

(
ϕ(ti)

rI

)
−D rI

τ
Int

(
ϕ̇(ti) τ

rI

)
, i = 1, 2, . . . , (2.51)

where α is the inverse of the characteristic time constant that describes the uncontrolled
inverted pendulum, δ is the relative damping, P and D are control parameters. Function
Int() denotes rounding towards the origin, according to Fig. 1.4.
Introducing the dimensionless time T = t/τ , system parameters α̂ = α τ , P̂ = P τ2, D̂ = D τ
and the re-scaled space coordinate x = ϕ/rI, the resolution parameter can be eliminated.
Note, that this choice of dimensionless displacement and time results in the same quantiza-
tion resolutions of the displacement and velocity.
According to the solution of the linearized, dimensionless equation of motion (2.4), the fol-
lowing micro-chaos map can be written describing the evolution of the system between the
states at subsequent sampling instants:

yi+1 = Uyi + bFi,

Fi = P̂ Int(xi) + D̂ Int(x′i),
(2.52)

where y = [xi x′i]
T , and U ≡ U(1), b ≡ b(1) from Eq. (2.7).

Equation (2.52) is the micro-chaos map corresponding to the negative stiffness and input
quantization case (case B in Table 2.1).

2.6.2 Switching lines and control effort tiles

The most notable difference compared to the case of output quantization is that input-
quantization yields a separate rounding for every state variable. In the case of the 2D micro-
chaos map (2.52), the control effort contains the quantized position mi and the quantized
velocity ni:

Fi = P̂ Int(xi)︸ ︷︷ ︸
:=mi

+D̂ Int(x′i)︸ ︷︷ ︸
:=ni

. (2.53)

Therefore, horizontal and vertical switching lines are present in the state space forming a
rectangular grid, see Figure 2.17. The equations of switching lines are:

swm : x = mrI, m ∈ Z\{0},
swn : x′ = n rI, n ∈ Z\{0}.

(2.54)
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Control effort tile Tm,n is the state space domain between swm, swm+1 and swn, swn+1,
where the value of the control effort is Fi = mP̂ + n D̂, as shown in Fig. 2.17. Since there
is no switching line at m = 0 and n = 0, the size of control effort tiles around the axes is
doubled.
It is important to note, that the state space domain corresponding to a specific control
effort value is bounded, while in the case of output quantization, control effort bands were
unbounded.
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Figure 2.17: The state space of the micro-chaos map in case of input-quantization and α̂ =
0.6, δ = 0, P̂ = D̂ = 0.6. Gray lines indicate switching lines, three regular fixed
points (and their manifolds) are shown in blue, and two virtual fixed points (and
their manifolds) are shown in red. Note, that due to the special choice of equal
P̂ and D̂ parameters, the dynamics in tiles T2,0 and T1,1 are governed by the
unstable manifold of the same virtual fixed point, according to (2.55). Green
lines are the additional branches of the blue and red manifolds that are valid in
the bands |n| = 1.
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2.6.3 Fixed points

For every control effort tile Tm,n, it is possible to express an unstable saddle point of the
micro-chaos map: Fm,n = [xm,nu 0], where the location can be obtained by substituting zero
velocity and acceleration to the equation of motion (2.51):

α̂2 xm,nu = mP̂ + n D̂ −→ xm,nu =
mP̂ + n D̂

α̂2
, m, n ∈ Z. (2.55)

Obviously, only the fixed points corresponding to zero velocity (n = 0) may reside within
their corresponding control effort tiles. The condition for Fm,0 to be a regular fixed point is:

m <
mP̂

α̂2
< m+ 1, (2.56)

that is,
mα̂2 < mP̂ < (m+ 1) α̂2. (2.57)

The left inequality yields the stability condition P̂ > α̂2, see Eq. (2.12), while the right
inequality yields an upper bound for the index of regular fixed points:

m <
α̂2

P̂ − α̂2
. (2.58)

This means, that the index of the last regular fixed point is:

mmax = Int

(
α̂2

P̂ − α̂2

)
. (2.59)

All other fixed points with |m| > mmax and |n| > 0 are virtual fixed points, that is, they do
not reside in their corresponding control effort tiles, see Figure 2.17.

The stable and unstable manifolds of the fixed points correspond to the eigenvectors of
U, see Eq. (2.24).

2.6.4 Local and global behaviour

Looking at the deadzone of the velocity quantization – the domain of n = 0 control effort
tiles – the same pattern of fixed points and strange sets can be found as in the case of output-
quantization (see Section 2.3.1). The n = 0 control effort domain of the input-quantization
is topologically equivalent to the D̂ = 0 case of output-quantization.

Figure 2.18 illustrates a case, when four separated chaotic attractors are present in the
state space between fixed points F−2,0, F−1,0,F0,0, F+1,0 and F+2,0. As the damping ratio
is decreased, eventually all the attractors turn to repellors and trajectories escape from the
domains corresponding to n = 0. Figure 2.19 shows the state space with δ = 0, where a
larger chaotic attractor is present.
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Figure 2.18: The state space of the micro-chaos map in case of input-quantization, α̂ = 0.6,
δ = 1, P̂ = D̂ = 0.6. Four separated chaotic attractors (indicated with green,
purple, orange and light blue) appear in the quadrangular regions between the
manifolds of regular fixed points.
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Figure 2.19: The state space of the micro-chaos map in case of input-quantization, α̂ = 0.6,
δ = 0, P̂ = D̂ = 0.6. An example attractor is shown in purple. One can see, that
the quadrangular regions between the manifolds (indicated with blue) of regular
fixed points are repelling.
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The global behaviour (in control effort tiles |n| > 0, |m| > mmax) of the micro-chaos map
with input quantization is also governed by fixed points, which are virtual ones based on
Section 2.6.3.

As a trajectory moves from one control effort tile to another, the control effort switches
to a new value (Fi = mP̂ + n D̂) and the governing virtual fixed point will be an other one
at xm,nu = (mP̂ + n D̂)/α̂2.

This dynamics often leads to a recurrent motion (see Fig. 2.21), where the locally (un-
stable) hyperbolic dynamics corresponding to a series of virtual fixed points form a stable,
globally focus-like structure.

Figure 2.20 shows control effort tiles corresponding to the same control effort value with
the same colour shading and manifolds with matching colours. For illustrative purposes
P̂ = D̂ was chosen, since the same fixed points and manifolds are valid in control effort tiles
with the same m + n value. For different P̂ and D̂ parameters, different fixed points would
correspond to the control effort tiles, according to Eq. (2.55), and it would be inconvenient
to present them in the state space. Still, a similar qualitative behaviour could be observed.

The chaotic trajectory varies during the recurrent motion, still it can happen, that it
cycles through the same set of control effort tiles. Therefore the series of governing fixed
points will be periodic in this case.
This kind of shadowing can be observed when a chaotic trajectory is examined by the Simple
Cell Mapping method [35]. During the application of this method, chaotic motion is covered
with long, periodic orbits. For further details, refer to Chapter 3.
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Figure 2.20: Illustration of the state space of the 2D micro-chaos map with input quantization.
Coloured regions are control effort tiles corresponding to the same control effort.
Fixed points and manifolds are shown in matching colour. Since P̂ = D̂, the
same fixed points and manifolds are valid in control effort tiles with the same
m+n value. The locally (unstable) hyperbolic dynamics corresponding to virtual
fixed points form a stable, globally focus-like structure.
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Looking at the state space from a distance, the global dynamics resembles to the focus-like
phase portrait of the stabilized system S = U + b⊗ [P̂ , D̂]T , see Figure 2.21.
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Figure 2.21: The state space of the micro-chaos map in case of input-quantization, α̂ = 0.1,
δ = 0, left: P̂ = D̂ = 0.2, right: P̂ = 0.2, D̂ = 0.4. For smaller α̂ values, a
recurrent orbit appears around the m = n = 0 deadzone.

As it can be seen, there are many similarities between the output- and input-quantization
cases, in terms of state-space topology. However, the input-quantization scenario requires
more effort to handle, due to the independent quantization of every state space variable and
the increased number of virtual fixed points, which should be taken into account.

For example, one needs to maintain a wider set of symbols corresponding to control effort
values when generating periodic orbits with the symbolic dynamics approach introduced in
Section 2.4.3.

In practice, maximal possible control error is a very important property of the control
system. As it was shown in Section 2.4.2 the control error can be characterized with the size
of an estimated absorbing region. During the calculation of the dimensions of the absorbing
cuboid, a correction term corresponding to every state variable’s quantization should be taken
into account. Micro-chaos map (2.52) can be rewritten as:

yi+1 = Syi − b (P̂ χ1,i + D̂ χ2,i), χ1,i, χ2,i ∈ (−1, 1). (2.60)

Here S = U + b ⊗ [P̂ , D̂]T . Repeated application of the map corresponds to the following
expression:

yj+1 = Sj y0 −
j−1∑
k=0

Sk b P̂ χ1,k −
j−1∑
k=0

Sk b D̂ χ2,k. (2.61)

With the same approach as described in Section 2.4.2, limj→∞‖Sj‖ = 0, and the limit of all
possible solutions can be written as:

‖y∞‖ = max
χ1,χ2

∥∥∥∥∥ lim
j→∞

j∑
k=0

(
Sk b P̂ χ1,k + Sk b D̂ χ2,k

)∥∥∥∥∥. (2.62)
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Here χ1 = {χ1,1, χ1,2, . . . χ1,k} and χ2 = {χ2,1, χ2,2, . . . χ2,k} are sequences of fractional parts
corresponding to the quantization of x and x′ respectively.

Introducing D as the diagonal matrix of eigenvalues (λi) and T, the matrix formed by
the columns of right eigenvectors of S, Eq. (2.62) can be written as:

y∞ = −T
∞∑
k=0

DkT−1 b P̂ χ1,k −T

∞∑
k=0

DkT−1 b D̂ χ2,k. (2.63)

The approach shown in Section 2.4.2 leads to:

y∞ = · · · =


∑∞

k=0 σ1,k (P̂ χ1,k + D̂ χ2,k)∑∞
k=0 σ2,k (P̂ χ1,k + D̂ χ2,k)

...∑∞
k=0 σn,k (P̂ χ1,k + D̂ χ2,k)

 . (2.64)

To maximize the ith component of y∞, the following choice of the kth fractional part should
be made:

χi1 = {χ1,k} =
{

sign(σi,k P̂ )
}
, k = 0, 1, 2, . . .

χi2 = {χ2,k} =
{

sign(σi,k D̂)
}
, k = 0, 1, 2, . . . .

(2.65)

Consequently, if the sign of P̂ and D̂ is the same, the same fractional part set χ ≡ χ1 = χ2

maximizes the ith component.
Similarly as in Section 2.4.2, a global absorbing cuboid can be defined by taking components
of y∞ with the substitution of the corresponding sets of fractional parts χi1 and χi2 which
maximize that component.
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2.7 Main results

I have examined the general behaviour of 2D micro-chaos maps corresponding to a digitally
controlled 1 DoF mechanical oscillator with sampling and quantization. The thorough analy-
sis of the case with negative stiffness and quantization at the output revealed the existence of
a characteristic pattern in the state space. It was found that chaotic attractors (or repellors)
and fixed points are situated alternately along the x coordinate axis.

Various methods were generalized to higher dimensional systems, e.g., the calculation of
Lyapunov exponents and the periodic orbits. Special attention was devoted to the deter-
mination of the size of the so-called absorbing domain, since this property characterizes the
maximal control error ‖y∞‖. A formula was derived for the estimation of ‖y∞‖ that was
successfully applied to a 4D micro-chaos map.

Main Result 1: Topological pattern

An alternating pattern of chaotic attractors or transient chaotic repellors and fixed points
is present in the state space of the digitally controlled 1 DoF mechanical oscillator if
proportional-derivative control scheme is applied with sampling, zero-order-hold and
quantized output. Depending on the parameters, border collision bifurcations of fixed
points at the switching lines can change this pattern. Moreover, crisis bifurcations can
turn attractors to repellors.

Related publications: [23, 7]

Main Result 2: Absorbing cuboid

An upper bound was given for the control error of the micro-chaos map, by re-formulating
it as a stabilized system without quantization and with additional correction terms cor-
responding to the neglected fractional parts.
In case of output-quantization, the farthest possible point of the invariant set is expressed
in the form:

y∞ = lim
j→∞

j∑
k=0

Sk bχk = · · · =


∑∞

k=0 σ1,k χk
...∑∞

k=0 σn,k χk

 .
The choice of the infinite sequence of fractional parts χk that maximize the ith component
of y∞, is χi = {χ0, χ1, . . . , χk, . . . } = {sign(σi,0), sign(σi,1), . . . , sign(σi,k), . . . }, which
yields a close upper bound to the control error.
This approach can be adapted to the case of input quantization, where multiple fractional
part sets correspond to the quantization of state variables.
By taking the separately calculated maxima for each component of y∞, an absorbing
cuboid was expressed which can be used to provide an absorbing region in the state space.
A practically usable algorithm was also developed for the determination of periodic orbits.
This algorithm is based on a symbolic dynamics-based description of the phase-space and
can be utilized to verify the control error estimation provided by the absorbing cuboid.

Related publications: [7, 25, 26]

It should be noted, that the upper bound corresponding to other norms can be given
based on the separately calculated maximized components, as well, but these estimations
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will be excessive due to the fact that every component was maximized with a different choice
of χk.
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3
Clustered simple cell mapping

This chapter introduces an extension to the Simple Cell Mapping (SCM) method [35]. While
SCM offers a fast and elegant way to find state space objects in a given state space region, it
is often difficult to select this particular, interesting region without preliminary analysis.

The extension allows one to combine two SCM results and thus creating a cluster of
solutions, moreover a simple strategy is provided to automatically extend this cluster with
new state space regions. This way, Clustered SCM can be used to adaptively discover state
space objects which were outside of the initial domain.

The method is divided into two stages, first trajectories (cell sequences) leading from one
SCM to a known object in the other are classified. Afterwards, the key step of the method,
the cell tree mapping is carried out to resolve the non-trivial entanglement of the trajectories.
This enables the method to discover new periodic orbits situated at the boundary of the joined
SCM solutions.

3.1 Cell mapping methods

Cell Mapping methods (or shortly CM methods) were introduced by C.S. Hsu [35], in order
to make the quick and thorough global analysis of nonlinear systems possible. CM methods
discretize a region of the state space, thus creating the so called cell state space. For each
cell one or more image cell is assigned (to where the dynamics lead from that cell), and by
analysing the resulting graph or Markov-chain, periodic orbits, fixed points and their domains
of attraction can be found.
The simplest CM method is the Simple Cell Mapping (SCM) and in the simplest case the
cell state space is an n-dimensional grid of cells of the same size. The basic idea of the SCM
method is that each cell has a single image, which is usually determined using the Centre
Point Method [35], namely, a single trajectory from the centre of the cell domain is examined.
In other words, all states within a cell are mapped to a single cell. Due to this property, the
method is able to classify cells either as periodic cells (belonging to a periodic group) or
transient cells (leading to a periodic group). Successful classification of all cells forms the
solution of the SCM.
There are many variation of the CM methods. Usually a relatively fast CM method (for
example SCM) is applied to the initial state space region, then further analysis is carried out
at certain locations, using more advanced methods (Generalized Cell Mapping, for instance),
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typically with refined cell state space [53], [55], [16]. These methods are excellent if the
interesting region of the state space is known, but if that is not the case, a method capable
of automatically extending the analysed state space region could be more suitable. The goal
of the present chapter is to extend the Simple Cell Mapping with such capability.
To emphasize the relevance of adaptive state space extension, one could recall the following
situations:

• The dynamical system has an expectedly complex state space and the enclosing region
of state space objects is not known.

• The dynamical system has more than one attractor, and not all of them are found in
the initial state space region. Escaping trajectories indicate the possible direction of
other attracting structures.

• A lower dimensional state space object, e.g., a basin boundary is being followed.
• Examination of global bifurcations or crises in dynamical systems in cases when the

structure and/or the size of state space objects change abruptly during the variation of
certain parameters. This situation is typically encountered in piecewise smooth systems.

• Analysis of diffusion-like processes, for example intermittent maps [39].

My approach to solve the problem of state space extension is to find an adjacent region to
the initial state space, to where most of the trajectories escape. Afterwards, a separate CM
solution is calculated on that region and the two solutions are joined. Upon the joining pro-
cedure, new state space objects residing on the boundary of the two cell state spaces are also
discovered. This chapter introduces this extension, particularly for the Simple Cell Mapping
method, because it is the simplest adequate method to discover all objects in the state space
[35]. The method of joining separate SCM solutions to a cluster of SCM solutions is referred
to as Clustered SCM method. Based on these results, optional later analysis can be carried
out using more advanced CM methods [54].
As an example of application, the analysis of the micro-chaos map (2.19) is shown, where
multiple disconnected attractors – possibly consisting of distinguishable communicating re-
pellors – are present in the state space. The behaviour of this piecewise smooth system fits
into most of the aforementioned situations, as it exhibits a pattern of chaotic attractors and
crisis phenomena with the appearance or disappearance of chaotic attractors/repellors [7].

3.1.1 Definitions and abbreviations

This section describes the basics terms, definitions and properties related to the Simple
Cell Mapping, which are used throughout the chapter. Also some auxiliary subroutines are
presented, which are necessary for the implementation of the method (see Figure 3.1).

• Cell state space (CSS): the bounded and discretized state space region, which is continu-
ously covered by arbitrary cell domains. In the simplest case n-dimensional rectangular
cuboids of the same size can be used to discretize an n-dimensional state space.

• Cell domain: bounded domain of the state space, part of the cell state space. In the
simplest case it can be represented by a centre point in the state space and lengths
along each dimension.

• Cell : object having its unique index referencing to a cell domain and various properties
(e.g. image, pre-image).

• Cell index (or shortly index ): cell property; a unique identifier.
• Image: property of a cell, one or more reference to other cells. The dynamics from

the cell domain corresponding to the cell lead to the cell domain(s) indexed by the
image(s).
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cell 2:

index: 2
image: 4
pre-image: 7

type: transient
group number: 1
step number: 2

periodic group (PG), No: 1

transient cell sequence, leading to a PG 

transient cell sequence, leading to the sink

sink cell

Figure 3.1: Explanation of the definitions introduced in Section 3.1.1

• Pre-image: property of a cell, one or more reference to other cells. The dynamics from
the cell domain(s) indexed by the pre-image(s) lead to the cell domain corresponding
to the cell.

• Sink cell (SC): a special cell indexing the unbounded region of the state space outside
the CSS. Once a trajectory enters the sink, its evolution is no longer followed. To
express this property, the image of the sink is itself by definition.

• State-to-index (or shortly index()) function: is a surjective function returning the index
corresponding to the cell domain covering the given point in the state space.

• Index-to-domain (or shortly domain()) function: is a bijective function returning the
cell domain representation for the given index.

• Cell sequence: A set of cells formed by tracking the image of cells subsequently.
(See cells {7, 2, 4, 11, 18, 24, 16} in Figure 3.1.)

• Periodic group (PG): A part of a cell sequence, that might constitute a periodic motion.
A periodic cycle of n cells forms a periodic group, with periodicity n (or shortly an n-P
group). Each cell within the PG is a periodic cell with period n, or shortly n-P cell
[35]. (For example, the sink cell is a 1-P cell and forms a 1-P group.)

• Transient cell : Cell sequences leading to an n-P cell contain an n-P group at the end
of the sequence. All other cells within the sequence are transient cells leading to that
periodic group, forming a transient cell sequence.

• Transient cell sequence: cell sequences with their destination n-P cells removed form a
transient cell sequence, see Figure 3.1.

• Group number (g): For each periodic group a unique group number is assigned. All
periodic cells within a PG and all transient cells leading to that PG have the same
specific group number assigned.

• Step number (s): property of a cell, the number of steps required to reach a PG. Periodic
cells’ step number is s = 0, while transient cells’ step number is s > 0.

• Domain of Attraction (DoA): the DoA of a PG with group number g is the set of
(transient) cells with the same group number g and positive step numbers s > 0. The
Domain of Attraction can be thought as the discretization of the Basin of Attraction
(see [46], [1] and for its numerical exploration [47].)

• SCM solution: After the successful execution of the SCM method, besides the initial
cell properties, the group number and step number properties are assigned to each cell.
At this stage all periodic groups and their domain of attraction are found, and the cell
state space and its properties form the SCM solution.
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3.2 Joining two SCM solutions

This section describes the procedure of joining two SCM solutions with non-overlapping cell
state spaces. No other restrictions apply to the cell state spaces, even non-adjacent regions
can be joined. First, the possible relationships between cells of the SCMs are examined, then
the algorithm of joining is explained supported by a pseudo-code of the procedure.

The following conventions regarding the SCM solutions are adopted to aid the joining
procedure.

• Group number g = 0 is assigned to the sink cell. Also the sink cell’s index is 0.
• A new property, called cell mapping index (shortly: cmid) is assigned to each cell as an

extension to its group number indicating which SCM contains the group referenced by
the group number. Initially all SCM solutions have a unique cmid, and all cells within
an SCM solution have that same cmid.

• Cells have an auxiliary state property, which can take any of the following three values:
untouched, under processing, processed. This property is used to keep track of
the solution procedure.

3.2.1 Relationship of two SCM solutions

Upon joining two SCM solutions, transient cell sequences leading to the sink cell are examined,
because these cell sequences might enter the other SCM’s cell state space and lead to an object
within the united cell state space – the union of the two cell state spaces. The state space
region outside the united cell state space is called reduced sink. While examining an SCM
solution’s transient cell sequences leading to the original sink, the following cases can occur
(Figure 3.2).

1. The transient cell sequence leads to a known destination:

(a) the reduced sink or

(b) a periodic or transient cell with group number g > 0 of the other SCM.

2. The transient cell sequence leads to a cell of the other SCM, which belongs to the
domain of attraction of the sink (so the cell’s group number is g = 0). This means that
the final destination of the sequence is not known yet.

Considering the above cases, only Case 2 requires further analysis. Otherwise, transient cell
sequences can be updated with a new group and step number (along with a new cell mapping
id), corresponding to their new destination.
The procedure of joining two SCM solutions is therefore divided into two stages. Stage 1
enumerates all transient cell sequences and also updates those corresponding to Case 1. Stage
2 analyses the remaining sequences of Case 2.

3.2.2 Cell tree mapping

It is clear, that cell sequences leading to the other SCM’s sink cell’s domain of attraction
(See Case 2 in Section 3.2.1) will eventually have one of the already existing periodic groups
(including the reduced sink) as their destination, or they might form a new periodic group
possibly with some extra transient cells leading to that PG.
This calls for the idea of mapping these remaining transient cell sequences onto each other
(or some already determined cell). Transient cell sequences form trees called cell trees having
a single cell as destination (which belongs to the other SCM), therefore these trees can be
handled just like cells in SCM. The image of a cell tree is either a cell which was updated in
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previously classified transient cells
previously classified periodic cells
cells updated in the 1st stage
cells updated in the 2nd stage

SCM1 SCM2

cell seq. leading to a known destination
cell seq. leading to SCM2 from SCM1
cell seq. leading to SCM1 from SCM2

reduced sink

Figure 3.2: Joining of previously calculated adjacent SCM solutions. Cell sequences which
lead to a known destination can be updated in Stage 1 (green cells), while se-
quences leading to another unclassified sequence or transient cell need further
analysis in Stage 2 (orange cells). As a result, new periodic groups can be found
close to the boundary of SCM1 and SCM2.

the first stage of the joining procedure (Case 1 in Section 3.2.1), or alternatively a member cell
of another cell tree of the other SCM. Tracking the images of cell trees creates tree sequences.
A tree sequence either leads to an already existing periodic group or forms a new periodic
group and some transient cells leading to that group. Figure 3.3 illustrates two cell trees
mapped to each other.
Shortly, the SCM method can be applied to the cell trees. If a tree sequence leads to a
previously processed cell, all of its member cells can be tagged with the appropriate cmid,
group and step numbers. Otherwise the trees form a graph containing a single cycle – the
new periodic group – and branches which are transient cells belonging to that group, hence
the cmid, group and step numbers can be updated. (The new periodic groups obtained this
way must be added to one of the SCM solutions to have a valid cell mapping index.)

3.2.3 The algorithm of joining

This subsection describes the algorithm of joining adjacent SCM solutions. The algorithm is
divided into preprocessing and two stages of classifying cell sequences which previously led
to the sink cell.

Throughout the presentation of the algorithm, multiple SCM solutions will be examined.
For the sake of simplicity, object oriented notation is used, with simple classes for describing
the cell and SCM solution including the cell state space. See Algorithms 1 and 2 for these
classes. In the pseudo codes the . (dot) operator is used to access data or function members
of these objects. For instance scm.cells[i].index accesses the index of the i-th cell of the
scm object. Furthermore, B indicates clarifying comments.
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SCM1 SCM2

cell tree 1
cell tree 2
cells of a new periodic group

Figure 3.3: Illustration of the notion of cell tree mapping. Cell trees 1 and 2 are mapped to
each other. The graph formed by them contains a cycle (new periodic group), and
all other branches are transient cells leading to that group.

Algorithm 1 Class for cell

class Cell
index ⊂ N
image ⊂ N
domain
group ⊂ N
step ⊂ N
type ⊂ { unknown, transient, periodic }
state ⊂ { untouched, under processing, processed }

end class

Algorithm 2 Class for simple cell mapping

class SCM
cell array of Cell objects
cellCount ⊂ N . the number of cells in the cell state space
periodicGroupCount ⊂ N . the number of periodic groups in the SCM solution
index(...)
domain(...)

end class
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During the preprocessing the cells corresponding to the domain of attraction of the sink
cell for both SCM solutions are identified. This can be done by selecting cells with group
number 0, which belong to the 1-P group of the sink cell. Checking the step number is not
necessary, since all cells with 0 group number must be transient cells. For the pseudo code
of preprocessing see Algorithm 3 and 4.

Algorithm 3 Identification of sink cell’s domain of attraction

Input : scm object representing an SCM solution
Output : array of indices of sink cell’s domain of attraction

1: function GetSinkDomainOfAttraction(scm)
2: sinkDoA← ∅
3: for i← 1, scm.cellCount do
4: if scm.cell[i].group = 0 then
5: sinkDoA← sinkDoA ∪ i
6: scm.cell[i].state← untouched . invalidate previously processed cell
7: end if
8: end for
9: return sinkDoA

10: end function

Algorithm 4 Preprocessing of two SCM solutions

Input : objects representing SCM solutions
Output : array of indices for both sink’s domain of attraction

1: function Preprocess(scm1, scm2)
2: sinkDoA1← GetSinkDomainOfAttraction(scm1)
3: sinkDoA2← GetSinkDomainOfAttraction(scm2)
4: return {sinkDoA1, sinkDoA1}
5: end function

Once the domain of attraction of the sink cell is identified for each SCM solution, the
first stage of joining examines transient cell sequences and updates cells in Case 1 of Section
3.2.1, see Algorithm 5. The for loop in line 3 starts a new cell sequence by taking the next
untouched cell from the domain of attraction of the sink cell. The while loop in line
10 builds the cell sequence and updates all cells accordingly. If the condition in line 12 is
true, then the cell sequence is still within the original cell state space. In this case the cmid
is checked in line 14. If the currently examined cell has the same cmid, the current cell
sequence either touches another cell sequence (line 16) and prepended to that cell sequence
(thus forming a cell tree), or touches an already processed cell (line 24) in which case the cell
sequence can be updated accordingly, or touches an untouched cell (line 30) which results
in continuing the current sequence by examining that cell’s image.
If the condition in line 14 (cmid check) yields false, the cell sequence touches another cell
sequence transiting to the other SCM’s state space, therefore the current sequence can be
updated accordingly. In cases, when imz = 0 is fulfilled (line 41), the cell sequence leaves the
cell state space. Line 46 checks whether the current cell sequence enters the cell state space
of the other SCM. In this case the sequence either touches a cell with g 6= 0 (line 49) when
the current sequence is updated, or touches a cell with g = 0 (line 53) when the current cell
sequence (seq) is stored in the array of cell trees (cellT rees) for further analysis. Lastly, if
both cell state space have 0 (sink) index for the cell (see line 59), the current sequence leads
to the reduced sink.
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Algorithm 5 Stage 1 of the joining procedure

Input : Examined SCM solution and its DoA of sink, other SCM solution
Output : Updated SCM solution object scm, cell trees which require further processing

1: function Stage1(scm, sinkDoA, otherScm)
2: cellT rees← ∅
3: for i← 0, sinkDoA.size do
4: seq ← ∅
5: z ← sinkDoA[i]
6: if scm.cell[z].state = untouched then
7: . Create new cell sequence
8: seq ← seq ∪ z
9: left← false

10: while left = false do
11: imz ← scm.cell[z].image
12: if imz 6= 0 then
13: cmimz ← scm.cell[imz].cmid
14: if cmimz = cmid then
15: if scm.cell[imz].state = under processing then
16: . This sequence touches another sequence under processing
17: left← true
18: ct← scm.cell[imz].cellT reeIndex
19: Tag cells in seq as under processing, assign ct as cellT reeIndex
20: . The current sequence is prepended to cell sequence/tree
21: . with index ct
22: cellT rees[ct]← seq ∪ cellT rees[ct]
23: else if scm.cell[imz].state = processed then
24: . This sequence touches an already processed cell (Case 1.b)
25: left← true
26: g ← scm.cell[imz].group
27: cm← scm.cell[imz].cmid
28: Tag cells in seq as processed and assign new group g and cmid cm
29: else
30: . Append cell to sequence and continue
31: seq ← seq ∪ imz
32: z ← imz
33: end if
34: else
35: . This sequence touches another seq. transiting to the other SCM (Case 1)
36: left← true
37: g ← scm.cell[imz].group
38: cm← scm.cell[imz].cmid
39: Tag cells in seq as processed and assign new group number g and cmid cm
40: end if
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41: else
42: . This sequence leaves the cell state space (imz = 0)
43: left← true
44: . Get image using the other SCM’s cell state space
45: imz ← otherScm.index(step(scm.cell[z].center))
46: if imz 6= 0 then
47: . This sequence enters other SCM solutions cell state space
48: g ← otherScm.cell[imz].group
49: if g 6= 0 then
50: . This sequence touches a periodic group with g > 0 (Case 1.b)
51: cm← otherScm.cell[imz].cmid
52: Tag cells in seq as processed and assign new group g and cmid cm
53: else
54: . This sequence touches a transient cell of the other SCM’s sink,
55: . save this sequence for further analysis (Case 2)
56: Tag cells in seq as under processing and assign group g and cmid cm
57: cellT rees← cellT rees ∪ seq
58: end if
59: else
60: . This sequence leads to the reduced sink (Case 1.a)
61: Tag cells in seq as processed
62: end if
63: end if
64: end while
65: else
66: . skip cell
67: end if
68: end for
69: return cellT rees
70: end function

In the second stage, for Case 2 in Section 3.2.1 a cell tree mapping is carried out (Algorithm
6). The for loop in line 3 starts examining an untouched cell tree and the while loop in
line 10 builds a sequence of cell trees (see variable: treeSequence). While examining the
image tree (ctImage) of the current cell tree (cellT rees[i]), the following cases can occur:

• The image of the current cell tree is a cell which was updated in Stage 1 of the procedure
(line 11). All cells in the sequence of trees can be updated.

• The image tree of the current cell tree is processed (line 18), therefore, the sequence of
trees touches a known destination, and all cells in the sequence of trees can be updated
accordingly.

• The image tree of the current cell tree is under processing (line 23), and a new
periodic group and transient cells are found. All cells within the sequence of trees are
examined and tagged as periodic (cycle in the sequence of trees) or transient (branches).
See Figure 3.3.

• The image tree of the current cell tree is untouched (line 29), the image tree is
appended to the sequence of trees, and the examination of the tree sequence is continued.

In the end of Stage 2, all cell trees are processed and new periodic groups (if any) with
their domain of attraction (transient cells) are found. The complete procedure of joining is
summarized in Algorithm 7. The two SCM solutions joined this way form a cluster of cell
mapping solutions, which can be further extended similarly.
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Algorithm 6 Stage 2 of the joining procedure

Input : Cell Sequences Tree arrays and SCM objects
Output : Updated SCM solutions

1: function Stage2(cellT rees1, cellT rees2, scm1, scm2)
2: cellT rees← cellT rees1 ∪ cellT rees2
3: for i← 0, cellT rees.size do
4: if cellT rees[i].state = untouched then
5: . Start examining sequence of cell trees
6: cellT rees[i].state← under processing
7: treeSequence← ∅ ∪ i
8: processing ← True
9: ctImage← cellT rees[i].imageTree

10: while processing do
11: if ctImage = null then
12: . There is no sequence image, image cell must be already processed in Stage 1
13: imageCell← cellT rees[i].cell[0].image
14: Update all cells in each cell tree of the current treeSequence
15: Tag all cell tree in treeSequence as processed
16: else
17: . Cell tree mapping
18: if cellT rees[ctImage].state == processed then
19: . The sequence of trees leads to a known destination
20: Update all cells in each cell tree of the current treeSequence
21: Tag all cell tree in treeSequence as processed
22: processing ← False
23: else if cellState[ctImage].state = under processing then
24: . New periodic group and transient cells are found
25: g ← nextGroupNumber()
26: Update all cells in each cell tree of the current treeSequence
27: Tag all cell tree in treeSequence as processed
28: processing ← False
29: else
30: . cellT rees[ctImage].state == untouched
31: . Tag this cell tree as under processing,
32: . append to treeSequence and continue
33: treeSequence← treeSequence ∪ ctImage
34: cellT rees[ctImage].state← under processing
35: end if
36: . Get next image sequence
37: ctImage = cellT rees[ctImage].imageSeq
38: end if
39: end while
40: else if cellT rees[i].state = processed then
41: . Skip already processed cell tree
42: end if
43: end for
44: return {scm1, scm2}
45: end function
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Algorithm 7 Procedure of joining two SCM solutions

Input : SCM objects representing SCM solutions
Output : updated SCM objects

1: function Join(scm1, scm2)
2: {sinkDoA1, sinkDoA2} ← Preprocess(scm1, scm2) . See Algorithm 4
3: cellT rees1← Stage1(scm1, sinkDoA1, scm2) . See Algorithm 5
4: cellT rees2← Stage1(scm2, sinkDoA2, scm1)
5: {scm1, scm2} ← Stage2(cellT rees1, cellT rees2, scm1, scm2) . See Algorithm 6
6: return {scm1, scm2}
7: end function

3.3 Properties and possible extensions

3.3.1 Complexity of joining

It can be seen that the complexity of calculating an SCM solution is O(n) where n is the
number of cells in its cell state space [51]. This comes from the fact that every cell needs
constant amount of operations for initialization, and their state changes twice, first to un-
der processing then to processed (Algorithm 8).
The complexity of preprocessing (Algorithm 3) is also linear, since the body of loop in line
3 contains constant amount of operations. For SCM solutions with cells n and m, the com-
plexity of the preprocessing is O(n+m).
The first stage of the joining procedure (Algorithm 5) contains an outer for loop (line 3) and
an inner while loop (line 10), however, similarly to the SCM method, every cell is tagged
with a new state maximum twice, therefore, the complexity of the first stage is O(n) where
n is the number of cells in the sink’s domain of attraction.
Lastly, it can be seen that the complexity of the second stage (Algorithm 6) is also linear
in terms of the number of total cells in the cell tree lists. This property can be shown with
the same approach used in the previous case; every tree sequence is tagged with a new state
maximum twice.
Introducing nsink ≤ n and msink ≤ m for the number of cells in the domain of attraction of
the sink cell, the complexity of the joining procedure can be written as O(nsink +msink). The
linear nature of the joining procedure can also be seen in the computation times presented
in Table 3.1.

3.3.2 Simple continuous tiling of the state space

In Section 3.2 the procedure of joining two arbitrary SCM solutions was introduced. This
section describes a simple algorithm for adaptively selecting an adjacent state space region
(of the same shape and size as the original SCM solution) where most of the trajectories
escape to. For convenience, the original cell state space is chosen to be an d-dimensional
rectangular cuboid.
After selecting the initial state space region for the SCM solution one divides the unbounded
outer state space region into adjacent subregions plus an unbounded non-adjacent region.
To do this, the sink cell is divided into 3d sub-regions. From these 3d sub-regions, 3d − 1
are adjacent and equal size to the initial state space and the remaining region – the rest of
the sink cell – is non-adjacent to the initial state space. These sub-regions are illustrated in
Figure 3.4. During the calculation of the initial SCM solution, the number of cells entering
these sub-regions can be counted.
Let us assume that the number of cells whose image belongs to the i-th adjacent sub-region
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ri is ci, where i = 1, 2, ..., 3d− 1. Amongst the adjacent state space regions, the one with the
largest number ck is selected. The index of the selected new adjacent state space region is

k = σ(max({ci : i = 1, 2, ..., 3d − 1})),

where σ(ck) := k is an index function. After solving the new SCM belonging to the newly
selected region, a cluster of two SCM solutions is formed, and the procedure can be continued
similarly, leading to a continuous tiling of a state space region.

cells belonging to a PG with g>0
cells escaping to an adjacent sub-region
cells escaping to the non-adjacent sub-region
sink cell
adjacent sub-regions of the sink
non-adjacent sub-region of the sink
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Figure 3.4: Sub-regions of the sink cell in case of a 2D cell state space. Sub-regions ri . . . r3d−1
are adjacent to the initial state space region, sub-region r3d is non-adjacent.

3.4 Application and Results

3.4.1 Analysis of the micro-chaos map

Although the Clustered SCM method is independent of the system’s dimension, the results
can be displayed most conveniently for systems with 2D state space. In order to demonstrate
the Clustered SCM method, it is applied to the micro-chaos map (2.19) corresponding to an
inverted pendulum with output quantization.

The quantization according to the Int() function introduces switching lines on the state
space for every integer value. By examining the direction field of Equation (2.19), one can
see an alternating pattern of unstable saddle points and switching lines [10], [23] see Figure
3.5.

During the application of the Clustered SCM method the resulting cluster of two SCM
solutions is illustrated after every stage, by coloured images in Figures 3.6-3.11. Red colour
indicates transient cells leading to the sink, other coloured regions illustrate the domain of
attraction of other periodic groups. The periodic groups residing at the intersections of the
x-axis and the switching lines are denoted by black dots. These PGs correspond to very
small chaotic attractors of the micro-chaos map. White lines indicate the switching lines and
dashed white lines denote the stable and unstable manifolds of the saddle points of the map.
The initial state space region is placed on the left and the new subregion is on the right side,
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Figure 3.5: The state space of micro chaos map (2.19) at parameter values α̂ = 0.078, δ = 0,
P̂ = 0.007, D̂ = 0.02. Dashed blue lines are the stable and unstable manifolds of
saddle points. Three example trajectories leading to chaotic attractors are shown.
The subsequent points of the trajectories are connected with line sections for better
visibility. The green and blue rectangles show the initial and the adaptively chosen
state space regions of the first example, respectively (see Figure 3.6).

since the right adjacent state space region contains the most escaping trajectories.
In the first example, no periodic groups reside at the boundary of the two state space regions
(see Figure 3.6). Therefore, during Stage 1, all cells can be updated, except transient cell
sequences of the initial region leading to a member cell of the domain of attraction of the
new region’s sink cell (see Figure 3.7). These sequences also lead to an already existing PG,
but are updated in Stage 2 (as shown in Figure 3.8). The parameters of the micro-chaos map
are α̂ = 0.078, δ = 0, P̂ = 0.007, D̂ = 0.02.

Figure 3.6: Example 1 – Illustration of initial SCM solutions before the joining procedure.
The image on the left shows the initial state space region, the one on the right is
the adaptively selected region. Both regions contain 3 chaotic attractors lying at
the intersections of the x-axis and the switching lines.
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Figure 3.7: Example 1 – Illustration of SCM solutions after Stage 1 of the joining procedure.
Cell sequences leading to a PG of the other SCM are updated (recoloured with
the colour of the corresponding periodic group). The initial region contains some
transient cell sequences which are stored for further processing in Stage 2. (See
red bands at the top of the left image.)

Figure 3.8: Example 1 – Illustration of SCM solutions after Stage 2 of the joining procedure.
Examined cell trees are mapped to already processed cells (corresponding to the
PGs with green and orange domain of attraction).

In order to show the detection of new periodic groups, another state space region is
considered, for which a chaotic attractor of the map is just at the boundary of the region.
The joining procedure is illustrated in Figures 3.9, 3.10 and 3.11. The parameters of the
micro-chaos map are α̂ = 0.07, δ = 0, P̂ = 0.007, D̂ = 0.02. In the second example, a new
periodic group and its domain of attraction are found during Stage 2.
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Figure 3.9: Example 2 – Illustration of initial SCM solutions before the joining procedure.
The image on the left shows the initial state space region, the one on the right
is the adaptively selected region. One chaotic attractor for each region is already
detected (see yellow and pink domain of attractions). A third chaotic attractor is
at the boundary of the two state space regions. (The black dot at the boundary of
the state space regions denotes the third attractor’s expected location.)

Figure 3.10: Example 2 – Illustration of SCM solutions after Stage 1 of the joining procedure.
Cell sequences leading to the PG of the other SCM are updated (see yellow and
pink cells). Both regions contain cell trees which are stored for further processing
in Stage 2.
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Figure 3.11: Example 2 – Illustration of SCM solutions after Stage 2 of the joining procedure.
Examined cell trees are mapped to each other and a new periodic group is formed
with its domain of attraction in blue.

3.4.2 Comparison of real computational efforts

To support the statements in Section 3.3.1, computation times for Example 1 are provided
using the Clustered SCM. An SCM solution over the full region is also calculated for com-
parison (see Table 3.1 and Figure 3.12). Since the calculation of scm1 and scm2 can be done
in parallel, the total processing time is calculated as ttotal = max(tSCM1, tSCM2) + tjoining.
(Computations were carried out using 2 cores of an Intel ® Core™ i7-4700MQ CPU.)
In real situations it may happen that the two SCM solutions to be joined are of significantly
different size. Consider the case when a 2D state space is displayed on the screen of a com-
puter and the screen area is panned to move in the state space. Consequently, a separate SCM
solution at the (narrow) state space region entering into the computer’s screen must be calcu-
lated and joined to the already existing cluster. Computation times are checked for the case,
when the original state space region is extended by 10% towards an adjacent narrow state
space region (see Table 3.2). The total processing time is calculated as ttotal = tSCM2+tjoining.
One can see that the use of the Clustered SCM method makes nearly real-time application
possible. Moreover, further optimizations can be introduced to the method specifically for
the panning application, for example, adjacent state space regions can be joined in advance,
to utilize idle CPU states.
The joining time only depends on the number of cells and state space topology, while the
computation time of SCM solutions also depends on the effort needed to calculate the image
cells. For systems, where greater effort is necessary for the calculation of images (e.g. flows),
the computation time of joining is relatively smaller compared to the complete procedure.

Number of cells
CPU time [ms]

tSCM1 tSCM2 tjoining ttotal scm on full region

500000 395 386 89 484 844
1000000 780 791 190 981 1573
2000000 1550 1551 418 1969 3316
4000000 3234 3225 897 4131 6752
8000000 6638 6720 1935 8655 13389

Table 3.1: Computation times for Example 1. (See Figures 3.6-3.8.)
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Figure 3.12: Comparison of computation times listed in Table 3.1.

Screen Number of cells CPU time [ms]
resolution nSCM1 nSCM2 tSCM1 tSCM2 tjoining ttotal scm on extended region

853×480 409440 40944 307 32 58 90 339
1280×720 921600 92160 661 66 129 195 740
1920×1080 2073600 207360 1581 188 361 549 1649
2880×1620 4665600 466560 3731 434 745 1179 4099
4320×2430 10497600 1049760 9689 753 1980 2733 11726

Table 3.2: Computation times for Example 1 in case of screen panning. Initially the whole
computer screen is covered with the initial SCM solution (scm1) and during panning a new
SCM solution (scm2) over a region with +10% width is added to the cluster. For comparison,
the computation time of a single SCM solution on the extended state space region is included.
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3.5 Main results

Main Result 3: Clustered Simple Cell Mapping

In order to adaptively discover state space objects with cell mapping approach, an ex-
tension to the Simple Cell Mapping (SCM) method was proposed. The Clustered Simple
Cell Mapping method is the procedure of joining two Simple Cell Mapping solutions,
thus creating a cluster of SCMs. Initially, two separate SCM solutions are present with
non-overlapping and not necessarily adjacent domains of interest.
The procedure consists of two stages:

• The first stage updates transient cell sequences, which lead from one SCM domain
to a known object in the other domain.

• The second stage examines cell sequences, which lead to the other domain, but to
an unclassified state. The idea of cell tree mapping is used to discover new periodic
groups situated at the boundary of the two SCM domains.

After the second stage, all cells either correspond to a known state space object or lead
to the reduced sink cell, the state space region outside the cluster. A simple way to select
an adjacent state space region to be added to the cluster is also described, enabling one
to carry out Clustered SCM in an adaptive and automatic manner.
The computational effort of the method is linear in terms of the total number of cells.

Related publications: [24].

The proposed method may have an impact in various fields of application, because it offers
the following advantages:

• The method allows the continuation of the SCM solution after human assessment in
cases when automatic state space extension is not used, but human supervision is
conducted. Solving an SCM for a new region and incorporating it into the cluster is
computationally cheaper than solving an SCM over the whole extended state space (see
Table 3.1).

• Parallelization of the method is trivial, as separate SCM solutions can be generated
independently before the joining procedure. Also, Stage 1 of the joining procedure (for
each previously calculated SCM solution) can be done in parallel.

• The method is useful in real-time situations, where the region of interest is changing
as a parameter is varied. Clustered Simple Cell Mapping handles screen panning well,
as a separate SCM solution at the (narrow) state space region entering into the com-
puter’s screen can be calculated quickly and joined to the already existing cluster (see
Table 3.2).

• The proposed approach helps to overcome memory limitations by dividing large prob-
lems into smaller ones. During the generation of a Clustered SCM solution, if all adja-
cent regions of a cluster have already been examined, the SCM solution corresponding
to the inner (fully surrounded) cluster can be written to disk and freed from memory.
(Later, if any dynamics maps to this region, it can be reloaded from the disk.)
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4
Twofold quantization

This chapter analyses the cases, when both the input (measured states) and output (control
effort) of a digital controller are quantized. In Chapter 2 only the single-quantization cases
were introduced and the twofold quantization was only mentioned briefly. In order to build
up the twofold quantization case from the ground up, the example system of an inverted
pendulum is used, similarly as in Section 2.3.

4.1 Formulation of quantization ratio

Consider a 1 DoF inverted pendulum that is controlled in such a way that both the measured
states and the output control torque are sampled and quantized. The processing delay is
neglected and the controller realizes zero-order-hold, as depicted in Fig. 4.1. The measured
angle ϕ and angular velocity ϕ̇ are quantized according to input resolution rI, and the calcu-
lated control effort M is quantized with output resolution rO.

After linearization, the equation of motion of the inverted pendulum assumes the following
form:

ϕ̈(t) + 2δαϕ̇(t)− α2ϕ(t) = −(Pϕi +Dϕ̇i), t ∈ [iτ, (i+ 1)τ), (4.1)

where α is the reciprocal of the time constant characterising the instability of the upper
equilibrium position, δ is the relative damping, P and D are control parameters, τ is the
sampling period and Eq. (4.1) is valid between subsequent sampling instants.

Introducing the dimensionless time T = t/τ and using the notation �′ = d�/dT , Eq.
(4.1) can be rewritten as

ϕ′′(T ) + 2δα̂ϕ′(T )− α̂2ϕ(T ) = −(P̂ϕi + D̂ϕ′i), T ∈ [i, i+ 1), (4.2)

where
α̂ = ατ, P̂ = Pτ2, D̂ = Dτ. (4.3)

Taking input and output quantization into account, and temporarily returning to the original
control parameters (P and D) introduced in Eq. (4.1), one arrives at the following equation:

ϕ′′(T ) + 2δα̂ϕ′(T )− α̂2ϕ(T ) = −rO τ2 Int

(
P rI
rO

Int

(
ϕi
rI

)
+
D rI
τ rO

Int

(
ϕ′i
rI

))
, T ∈ [i, i+ 1).

63



CHAPTER 4. TWOFOLD QUANTIZATION

PC

M

φ, φg

φi φi ,

t

t
rO

2rO

3rO

4rO

5rO

6rO

M
tj-1 tj tj+1 tj+2

φ, φ

tj-1 tj tj+1 tj+2 tj+3

tj+3

τ τ

rI

2rI

3rI

4rI

5rI

6rI

control law +
output quantization

input quantization

Figure 4.1: The digitally controlled inverted pendulum with the schematic representation of
the zero-order-hold and quantization at the input (measured angle, angular veloc-
ity) and output (control torque).
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Figure 4.2: Rounding towards zero (Int); mid tread quantization with double deadzone.

According to Chapter 2, a mid-tread quantizer with double deadzone is used, that is, Int(x)
yields the integer part of x (see Fig. 4.2).
Note, that the resolution of the angular velocity ϕ̇i is rI/τ . Thus, according to the definition
of the dimensionless time T , one can write ϕ̇i τ/rI = ϕ′i/rI. This results in the same dimension
in displacement and velocity with the same quantization resolutions, rI at the input and rO
at the output.

In some cases, one of the quantizations is dominant over the other, and therefore the
quantization with higher resolution can be neglected, and one of the single quantization
models can be used (where either the input, or the output is quantized) [9]. However, the
goal of this chapter is to analyse the joint effect of twofold quantization and examine the
transition between the twofold and single quantization cases. Doing so, one can also highlight
those ranges, where neglecting the less influential quantizer is valid.
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In order to reduce the number of resolution parameters, re-scale the space coordinate with
a properly chosen (see Sections 4.1.1-4.1.2) characteristic displacement X. Introducing the
notations x = ϕ/X, x′ = ϕ′/X and x′′ = ϕ′′/X, the equation of motion can be rewritten as

x′′(T ) + 2δα̂x′(T )− α̂2x(T ) = −rO τ
2

X
Int

(
P rI
rO

Int

(
xiX

rI

)
+
D rI
τ rO

Int

(
x′iX

rI

))
.

To transform the output quantizer to a unit resolution one, the characteristic displacement
XO = rO τ

2 should be used. Similarly, using XI = rI results in unit resolution input quanti-
zation.

4.1.1 Characteristic displacement for unit resolution output quantization

Using XO, the equation of motion assumes the following form:

x′′(T ) + 2δα̂x′(T )− α̂2x(T ) = −Int

(
P rI
rO

Int

(
xi rO τ

2

rI

)
+
D rI
τ rO

Int

(
x′i rO τ

2

rI

))
.

Introducing ρI = rI/(rO τ
2) = rI/XO one can write:

x′′(T ) + 2δα̂x′(T )− α̂2x(T ) = −Int

(
P τ2 ρI Int

(
xi
ρI

)
+D τ ρI Int

(
x′i
ρI

))
,

where P̂ and D̂ can be recognized (see Eq. (4.3)) and it can be seen, that ρI acts as a resolution
for the input quantization and the output quantizer has unit resolution on the chosen scale:

x′′(T ) + 2δα̂x′(T )− α̂2x(T ) = −Int
(
P̂ ρI Int (xi/ρI) + D̂ ρI Int

(
x′i/ρI

))
. (4.4)

4.1.2 Characteristic displacement for unit resolution input quantization

Using XI and ρO = rO τ
2/rI = 1/ρI, a similar derivation leads to:

x′′(T ) + 2δα̂x′(T )− α̂2x(T ) = −ρO Int

(
P rI
rO

Int (xi) +
D rI
τ rO

Int
(
x′i
))

.

Exploiting the definiton of P̂ , D̂ and ρO one arrives at the following equation:

x′′(T ) + 2δα̂x′(T )− α̂2x(T ) = −ρO Int

(
P̂

ρO
Int (xi) +

D̂

ρO
Int
(
x′i
))

, (4.5)

where the input quantizer has unit resolution and ρO acts as a resolution for the output
quantization.

In Equations (4.4-4.5), a single quantization ratio (ρ) characterises the ratio of input
and output quantization resolutions. For large ρI or small ρO values, the input quantization
dominates, and the outer quantization can be practically neglected. Similarly, for large ρO or
small ρI values, the output quantization is more significant. Lastly, when the characteristic
displacements XI and XO are equal, ρO = ρI = 1, therefore both quantizations have the same
unit resolution.

It may seem, that one could continue by choosing one of the characteristic displacements
XI (and the corresponding resolution ρ = ρO) or XO (with ρ = ρI) and examine the ρ → 0
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and ρ → ∞ limits to express the single quantization cases. However, neither of the two
choices are perfect, as the upper limit of quantization is

lim
ρ→∞

ρ Int(x/ρ) = 0, (4.6)

consequently the control effort turns to zero in Equations (4.4-4.5). Thus, this model does
not reflect the physical properties of the single quantization controller.
Taking the lower limit, the following result is obtained:

lim
ρ→0

ρ Int(x/ρ) = x, (4.7)

which means that the twofold quantization turns to single quantization because the infinitely
fine resolution quantizer yields the original signal itself (see Figure 4.3).

Consequently, it can be firmly stated, that none of the single-parameter twofold quan-
tization equations (4.4) or (4.5) can be solely used to analyse the transition to both single
quantization cases.

Therefore, Eq. (4.4) is used to examine the transition from twofold quantization to single
quantization at the output (ρI → 0). Similarly, Eq. (4.5) can be used to inspect the transition
to the single quantization at the input (as ρO → 0):

Int
(
P̂ ρI Int (xi/ρI) + D̂ ρI Int

(
x′i/ρI

))
−−−→
ρI→0

Int
(
P̂ xi + D̂ x′i

)
,

ρO Int

(
P̂

ρO
Int (xi) +

D̂

ρO
Int
(
x′i
))
−−−−→
ρO→0

P̂ Int(xi) + D̂ Int(x′i).

It is worth noting, that one can trivially switch between (4.4) and (4.5) at ρI = ρO = 1,
or also can use one of the representations to examine the effect of rather large values of ρ,
without switching to the other representation.
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Figure 4.3: Visualisation of lim
ρ→0

ρ Int(x/ρ) = x (for x = 1) and lim
ρ→∞

ρ Int(x/ρ). The values

of the function ρ Int(x/ρ) are between the bounds x and x− ρ.
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4.2 Numerical analysis of the Micro-Chaos map with twofold
quantization

4.2.1 Micro-Chaos map

Equations (4.4-4.5) characterise the behaviour of the inverted pendulum with sampling, PD-
control and quantization at both input and output. Rewriting it as a system of first order
differential equations, one can formulate its solution as:

y(T ) = U(T )y(0) + b(T )F (T ), T ∈ [0, 1), (4.8)

where y = [x(T ) x′(T )]T , Γ =
√

1 + δ2, F is the control effort,

U(T ) =
e−α̂δT

Γ

[
Γ ch (α̂ΓT ) + δ sh (α̂ΓT ) sh (α̂ΓT ) /α̂

α̂ sh (α̂ΓT ) Γ ch (α̂ΓT )− δ sh (α̂ΓT )

]
,

and

b(T ) =
1

α̂2Γ

[
Γ− e−α̂δT (Γ ch (α̂ΓT ) + δ sh (α̂ΓT ))

−α̂e−α̂δT sh (α̂ΓT )

]
,

as it was shown in Section 2.1.1. Substituting T = 1, a new type of the micro-chaos map
[33] is obtained, which is valid at sampling instants:

yi+1 = U(1)yi + b(1)Fi, where (4.9)

Fi = Int
(
ρI (P̂ Int(xi/ρI) + D̂ Int(x′i/ρI))

)
if X = XI,

or

Fi = ρO Int

(
1

ρO
(P̂ Int(xi) + D̂ Int(x′i))

)
if X = XO.

Here Fi is the control effort between the dimensionless sampling instants T = i and T = i+1.

It is clear, that the quantization causes the control effort Fi to be a piecewise constant
function over the state space, which consists of domains, each corresponding to a specific

Fi value. When the output-quantization is dominant, Fi = Int
(
P̂ xi + D̂ x′i

)
. Thus, the

aforementioned domains are parallel bands separated by parallel switching lines that can be
given as

x′ =
m− Px
D

, m ∈ Z, (4.10)

(see Figures 4.4 and 4.6).

For the input-quantization case, however, these domains are rectangular areas since Fi =
P̂ Int(xi) + D̂ Int(x′i). Consequently, the quantization results in a grid of horizontal and
vertical switching lines (see Figures 4.5 and 4.6).

Based on Chapter 2, in the case of single quantization at the output, multiple chaotic
attractors can be found in the state space, at the intersections of switching lines and the x
axis, as it is illustrated in Fig. 4.4. Depending on system and control parameters, attractors
may appear or disappear due to border-collision bifurcation, or some of them may become
repellors, and form one or more bigger attractors, by pushing the trajectory towards each
other [7].

In case of input quantization, the general observation is that a periodic orbit (with super-
imposed chaotic oscillations) appears around the internal structure of repellors. Depending
on the parameters, one or more chaotic attractors spanning over multiple control effort bands
can be found, see Fig. 4.5.
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Figure 4.4: Output quantization. State space of the micro-chaos map at α̂ = 0.07, δ = 0.03,
P̂ = 0.007, D̂ = 0.02, rI → 0 and rO = 1. Three example trajectories are shown
starting from x = 0 and �: x′ = 10, �: x′ = 13, �: x′ = 15. The first trajectory
(�) ends up in an attractor on the switching line between control effort bands
F = 2 and F = 3, the second one (�) ends up in an attractor between bands
F = 0 and 1, while the third (�) ends up in an attractor between bands F = 1
and 2. Close-up images of the attractors are also provided in the balloons with
the corresponding colour.
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Figure 4.5: Input-quantization. Switching lines and example periodic orbits with superim-
posed chaotic oscillations at α̂ = 0.007, δ = 0., P̂ = 0.027, D̂ = 0.02 and
ρI = 0.8. Two example trajectories are shown starting from x′ = 0 and �: x = 8
and �: x = 15. They end up in the same periodic orbits with superimposed
chaotic oscillations indicated with �.
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Figure 4.6: Left: Switching lines and control effort bands in case of output quantization.
Right: Switching line grid and control effort tiles in case of input quantization.

4.2.2 Cell Mapping results

In order to explore the effect of varying the quantization ratio and examine the transitions
from twofold to single quantization cases, Cell Mapping Methods [35] were utilized. Simple
Cell Mapping (SCM) is suitable to obtain a global picture of a certain state space region, i.e.,
to find periodic orbits, fixed points and their domains of attraction. Chaotic attractors are
usually covered by one or more high-period cell groups.

Utilizing Clustered Simple Cell Mapping ([24] and Chapter 3), it is possible to automat-
ically extend the analysed state space region and also execute cell mapping in a parallel
computing environment.

The primary goal is to express the control error, therefore the location (average of attrac-
tor’s cell coordinates; xattr, yattr) and size (Sx, Sy) of chaotic attractors are extracted (see
Fig, 4.7). In the output quantization case the attractors reside on the x-axis (yattr = 0).
Since the desired control state is the origin, any solution arriving to a specific attractor will
yield a mean control error of xattr.

A series of SCM solutions was generated by sweeping the parameter ρI for some fixed
α̂, β, P̂ and D̂ values. Figure 4.8 shows the transition from ρI = 0 to ρI = 16 at P̂ =
0.007, D̂ = 0.02, α = 0.074 and δ = 0. Here the output quantization case has eight separated
chaotic attractors (four-four on both sides, see Fig. 4.9 top) and as the quantization ratio
increases, these attractors eventually become repellors. At ρI = 1.28 (see Fig. 4.9 bottom),
the outermost attractors disappear resulting in a more favourable state space configuration
in terms of control error.

The aforementioned results can be traced back to two phenomena: as it can be seen in
Fig. 4.7, the switching lines become jagged, and consequently regions appear in the state space
corresponding to only-P and only-D control (so-called input deadzones, see Fig, 4.6), due to
the quantization of measured values. In the next section, the effect of these new deadzones
is examined.
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Figure 4.7: Left: Example attractor in the twofold quantization case, obtained by SCM and
illustration of extracted properties, location of attractor’s averaged centre (xattr,
yattr) and the extent along x and x′ axes: (Sx, Sy). Right: The same attractor ob-
tained by numerical simulation. Blue line indicates the switching line, and black
straight line shows the reference switching line corresponding to output quantiza-
tion.

4.2.3 Deadzone crisis

For output quantization, the deadzone of the output quantizer creates an unstable band
between switching lines sw−1 and sw1 (see Fig. 4.4 and 4.6). On the other hand, in case
of input quantization the two deadzones (corresponding to the measured values’ quantizers)
around the x and x′ axes will cause the PD-control to work as only-P control for small
velocities and only-D control for small displacements (see Fig. 4.6).

In the case of twofold quantization, during the variation of the quantization ratio, the
borders of the output deadzone (uncontrolled region between the sw±1 switching lines, where
the control effort is F = 0) and input deadzones (deadzones around x and x′ axes, where
either part of the PD-control is offline) move, thus state space objects (e.g., attractors or
periodic orbits) can disappear or qualitatively change. This is called deadzone crisis.

To illustrate a possible scenario, consider Figure 4.10. As the quantization ratio ρI in-
creases, the steps on the switching lines grow. At the intersection of the x-axis and the
switching line, the switching line becomes locally vertical in the range of the input quan-
tizer’s deadzone and the attractor adapts to this by expanding proportionally. At a certain
point – as the switching line gets close to the stable manifold of the nearby saddle point – a
deadzone crisis happens, and the solution will be able to escape from the chaotic attractor,
leaving a transient chaotic repellor behind.

During the transition from the output quantization to twofold quantization, a series of
deadzone crises occur and eventually all chaotic attractors turn to repellors. The interactions
of the repellors lead to a newly formed recurring orbit with superimposed chaotic oscillations
(see Section 4.2.2 and Fig. 4.8).

Based on these results, it is obvious that the non-smooth, stair-like shape of the switch-
ing lines play an important role in manipulating state space objects by opening up escape
possibilities from the previously closed domains of chaotic attractors.
To gain a deeper insight in this phenomenon, the following section examines the topology of
switching lines.
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Figure 4.8: Transition from output quantization to twofold quantization. At ρI ≈ 1.3, the
outermost chaotic attractors, while at ρI ≈ 2.4, the innermost attractors disappear
due to deadzone crisis (denoted by X). At ρI ≈ 4.7 the chaotic attractors merge
(denoted by arrows) on both sides and lastly at ρI ≈ 12 they merge again resulting
in a single recurring orbit with superimposed chaotic vibrations.

4.3 Analysis of switching lines

4.3.1 Switching Line Collision

For the single quantization cases, the switching lines corresponding to different efforts of the
PD-control are simple to express: parallel lines (P̂ x + D̂ x′ = m,m ∈ Z) for the output
quantization, and a grid of lines (x = i ρI, x

′ = j ρI, i, j ∈ Z) for the input quantization. In
the twofold quantization case, however, their explicit expression is not straightforward.

In this section, Eq. (4.4) and ρI is used, with the implicit equation of the control effort:

Int
(
P̂ ρI Int (x/ρI) + D̂ ρI Int

(
x′/ρI

))
= m, m ∈ Z.

The domain of control effort band Fi = m is bounded by two switching lines: swm and
swm+1, see Fig. 4.4. The equation of the lower bounding switching line is

swm : P̂ ρI Int (x/ρI) + D̂ ρI Int
(
x′/ρI

)
= m, m ∈ Z, (4.11)

while the upper bounding switching line can be expressed implicitly as

swm+1: P̂ ρI Int (x/ρI) + D̂ ρI Int
(
x′/ρI

)
= m+ 1, m ∈ Z. (4.12)

Expressing the quantized velocity (ρI Int(x′/ρI)) from Eq. (4.11):

ρI Int
(
x′/ρI

)
=
m− P̂ ρI Int (x/ρI)

D̂
, m ∈ Z,

and applying the conjugated version (Int∗) of the rounding function used in quantizers, i.e.
rounding towards infinity without deadzone (see Fig 4.11), yields the explicit formula of the
switching lines:

x′ = ρI Int∗

(
m− P̂ ρI Int (x/ρI)

D̂ ρI

)
, m ∈ Z. (4.13)
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Figure 4.9: SCM results illustrating deadzone crisis. Top: 4-4 separated attractors and their
domains of attraction are highlighted at ρI = 1.247. Bottom: Outermost at-
tractors disappear via deadzone crisis at ρI = 1.287. Coloured regions indicate
domains of attraction, pink circles highlight chaotic attractors, white crosses de-
note unstable fixed points.
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Figure 4.10: Deadzone crisis: increasing the quantization ratio changes the switching line and
the chaotic attractor around it. As the step around the x axis becomes larger,
the switching line becomes ”locally vertical” (when compared to the reference
switching line corresponding to output quantization). From left to right: ρI =
0.1, ρI = 0.5, ρI = 1, ρI = 2.5. The last subfigure illustrates the crisis, when
transient chaotic solution escapes by jumping over the stable manifold (indicated
by blue arrow) of the neighbouring fixed point.
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Figure 4.11: Conjugated integer-part function Int∗(), i.e., rounding towards infinity.

-4 -2 2 4 6 8 10
x

-4

-2

2

4

6

8

10
x'

-4 -2 2 4 6 8 10
x

-4

-2

2

4

6

8

10
x'

-4 -2 2 4 6 8 10
x

-4

-2

2

4

6

8

10
x'

SW2

SW3

F=2

Figure 4.12: Switching lines at P̂ = 2/5, D̂ = 2/9 and ρI = 0.33 (left) ρI = 1.0 (centre),
ρI = 1.65 (right). The latter value is slightly above ρL,iI = 1/(P̂ + D̂) ≈ 1.61.
Black lines indicate the switching lines for the output quantization case, gray
gridlines indicate the ρI-spaced grid corresponding to the input quantization.
Red point highlights switching line collision, pink and blue points highlight upper
corners of sw2 and lower corners of sw3, respectively. Green region indicates
control effort band F = 2 which becomes disconnected due to slc.

One can similarly derive the inverse expression:

x = ρI Int∗

(
m− D̂ ρI Int (x′/ρI)

P̂ ρI

)
, m ∈ Z. (4.14)

As the quantization ratio increases further, the stairs on the switching lines become larger
and at some point, the jagged switching lines will touch each other (see Fig. 4.12). This event
– which will be referred to as Switching Line Collision (slc) – changes the topology of control
effort bands in the state space, regardless of the dynamics of the system under control as the
switching lines depend only on the control strategy.

When switching line collision occurs, trajectories gain the ability to bypass certain control
bands by passing through a switching line intersection point. In the case of PD-control –
if there is no switching line collision – bands corresponding to the same control effort are
connected domains. However, if the switching lines swm and swm+1 collide, the band Fi = m
becomes disconnected (see Fig. 4.12).

Observing the collision of swm and swm+1 at x = i ρI, x
′ = j ρI, one can write the

following condition:
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Figure 4.13: Switching lines at P̂ = 2/5, D̂ = 2/9 and critical quantization ratios ρI = 2.0
(left), ρI = ρ1,iI = 1/P̂ (centre), ρI = ρ2,iI = 2/P̂ (right). Trajectories going
through intersection points may bypass certain control effort bands. Orange
points highlight 2nd order switching line collisions.

lim
ε→0

ρI Int∗

(
m− P̂ ρI Int(i− ε)

D̂ ρI

)
= lim

ε→0
ρI Int∗

(
(m+ 1)− P̂ ρI Int(i+ ε)

D̂ ρI

)
.

Here the left and right hand sides correspond to switching lines swm and swm+1, respec-
tively (see Eqs. (4.11-4.12)), both sides equal to x′ = j ρI and {i, j,m} ∈ Z.
Since the quantization Int(i) has a discontinuity (see Fig. 4.14), a small neighbourhood ε
around x = i ρI is analyzed and the collision between the upper corner of the lower switching
line (swm) and the lower corner of the upper switching line (swm+1) is formulated.
Expressing the limits, one can substitute lim ε→0 Int(i−ε) = i−1 for swm and use lim ε→0 Int(i+
ε) = i for swm+1, resulting in the following equation:

SWm

SWm+1

i-ε i+ε

F=m

F=m-1

F=m

F=m+1

i-1 i i+1 i+2 i+3
x/ρ

j-2

j-1

j

j+1

j+2

x'/ρ

Figure 4.14: Illustration of switching line collision of swm (�) and swm+1 (�) at (i, j) ρI.
The upper corner of swm touches the lower corner of swm+1.
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Int∗

(
m− P̂ ρI (i− 1)

D̂ ρI

)
= j = Int∗

(
(m+ 1)− P̂ ρI i

D̂ ρI

)
, {i, j,m} ∈ Z. (4.15)

Resolving the quantization to infinity (Int∗) in Eq. (4.15), the following inequalities can be
written:

(j − 1) <
m− P̂ ρI (i− 1)

D̂ ρI
< j, (j − 1) <

(m+ 1)− P̂ ρI i
D̂ ρI

< j. (4.16)

The inequalities in Eq. (4.16) can be reformulated as

1

D̂ + P̂
< ρI ≤

1

P̂
∧ (m+ 1)− P̂ ρI i

D̂ ρI
≤ j < m− P̂ ρI (i− 1) + D̂ ρI

D̂ ρI
, (4.17)

1

P̂
<

if P̂>D̂>0︷ ︸︸ ︷
ρI <

1

P̂ − D̂
∧ m− P̂ ρI (i− 1)

D̂ρI
≤ j < (m+ 1)− P̂ ρI i+ D̂ ρI

D̂ρI
.

(4.18)

For a given m and i, Eqs. (4.17-4.18) can be solved for j ∈ Z to find switching line
collisions between swm and swm+1 at [x, x′] = ρI [i, j].
These kind of slcs will be referred to as first order switching line collisions (while in general,
the kth order slc means the collision of swm and swm+k).
It can be observed, that there is a lowest quantization ratio for first order switching line
collisions to appear at a certain value of i in the state space:

ρL,iI = 1/(P̂ + D̂), (4.19)

When ρI ≥ ρL,iI , first order slcs are present in the state space and by increasing ρI, they
become more and more frequent (see Fig. 4.13). Equation (4.17) reveals the value of the
critical quantization ratio for which there is a solution for every i:

ρ1,iI = 1/P̂ . (4.20)

When ρI = ρ1,iI , every switching line collides with its neighbour at coordinates x = i ρI, for all

i. To prove this statement, one can substitute ρ1,iI into Eq. (4.17), and the four inequalities
are reduced to two relations:

(j − 1) <
m+ 1− i
D̂ ρI

< j. (4.21)

This result shows that there is a solution j ∈ Z for every {i,m} ∈ Z:

j = Int∗
(
m+ 1− i
D̂ ρI

)
. (4.22)

Note, that it does not imply that collision occurs for every x′ = j ρI, too (see Fig. 4.13 centre
panel).

It follows from (4.18) that one can introduce the highest quantization ratio corresponding
to the disappearance of first order switching line collisions:

ρH,iI = 1/(P̂ − D̂) when 0 < D̂ < P̂ . (4.23)
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When ρI > ρH,iI , first order switching line collisions no longer present, because higher order
collisions take their place.

Expressing the condition for the collision of swm and swm+1 for i (instead of j, similarly
to Eq. (4.15)), one can write:

Int∗

(
m− D̂ ρI (j − 1)

P̂ ρI

)
= i = Int∗

(
(m+ 1)− D̂ ρI j

P̂ ρI

)
, {i, j,m} ∈ Z, (4.24)

which yields the following inequalities:

1

P̂ + D̂
< ρI ≤

1

D̂
∧ (m+ 1)− D̂ ρI j

P̂ ρI
≤ i < m− D̂ ρI (j − 1) + P̂ ρI

P̂ ρI
, (4.25)

1

D̂
<

if D̂>P̂>0︷ ︸︸ ︷
ρI <

1

D̂ − P̂
∧ m− D̂ ρI (j − 1)

P̂ ρI
≤ i < (m+ 1)− D̂ ρI j + P̂ ρI

P̂ ρI
.

(4.26)

Here another critical quantization ratio is revealed for which Eqs. (4.25-4.26) have a solution
for every j (but not necessarily for every x = i ρI):

ρ1,jI = 1/D̂. (4.27)

Combining Eqs. (4.20) and (4.27), one can express a combined critical quantization ratio:

ρ1I = max(ρ1,iI , ρ1,jI ) = max(1/P̂ , 1/D̂). (4.28)

If ρI ≥ ρ1I , switching line collisions occur for all i and j.
Expressing higher order switching line collisions in a similar fashion, one can arrive at the
formulae of k-th order critical quantization ratios for the collision of swm and swm+k at
∀ i ∈ Z and ∀ j ∈ Z, respectively:

ρk,iI = k/P̂ , (4.29)

ρk,jI = k/D̂. (4.30)

It is important to note, that due to the double deadzone of the mid-tread quantizer (see Fig.
4.2), switching line collisions of sw−1 and sw+1 are 2nd order ones.
Here only the case of positive P̂ and D̂ is considered, but a similar analysis can be carried
out for negative control parameters, as well.
In the following sections, it is shown, how the transition between the twofold and single
quantization cases affects the switching lines.

4.3.2 Transition from twofold quantization to output quantization

It is clear – based on Section 4.3, and Eq. (4.13) – that refining the input quantizer (ρI → 0)
means smaller steps on the jagged switching lines, and eventually the transition to output
quantization leads to a set of parallel lines.

ρI Int∗

(
m− P̂ ρI Int (x/ρI)

D̂ ρI

)
−−−→
ρI→0

m− P̂ x
D̂

m ∈ Z. (4.31)

One can imagine this kind of transition by looking at Fig. 4.12. The transition from
twofold quantization to input quantization, however, is not this trivial.
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4.3.3 Transition from twofold quantization to input quantization

Switching lines corresponding to input quantizations form a regular grid of horizontal (Int(y))
and vertical (Int(x)) lines (see Fig. 4.6 right). The square shaped domains (or rectangle
shaped domains around the axes) between switching lines correspond to integer value lin-
ear combination of the control parameters, e.g., F = i P̂ + j D̂ control effort at Int(x) =
i, Int(x′) = j.

If one would like to achieve the same structure of switching lines in the twofold quantiza-
tion case, the following conditions must be satisfied:

– Condition 1 : switching lines must partition the state space into square shaped domains,
i.e., for every x′ value, crossing x = i, (i ∈ Z) values must result in a switch in the control
effort value. Similarly, for every x value, crossing x′ = j, (j ∈ Z) must also result in a switch.
– Condition 2 : for each domain between the switching lines, the control effort value should
be the same as in the case of input quantization.

Condition 1 can be satisfied by using ρO ≤ ρ1O (where ρ1O = 1/ρ1I = min(P̂ , D̂)), which

corresponds to ρI ≥ max(1/P̂ , 1/D̂) (see Eq. (4.28)), because in this case, for all i, j ∈ Z – at
least first order – switching line collision takes place.
It can be seen, that once Condition 1 is satisfied (and the structure of the state space matches
the input quantization case), the control effort value of twofold quantization will be within
an error of ρO to the control effort value of the input quantization case (see Eq. (4.9)). It
follows therefore, that ρO → 0 will satisfy Condition 2.

78



4.4. MAIN RESULTS

4.4 Main results

I have analysed the effect of twofold quantization in digital control, i.e., when both the input
and the output of the controller are quantized. I have formulated the corresponding micro-
chaos map, and determined how the single quantization cases can be derived from the twofold
quantization formalism. I pointed out that the transition between these cases is not trivial.
I have found two new bifurcation phenomena that can occur in the case of twofold quantization
only. One of them is the deadzone crisis when the variation of the quantization parameter
changes the interaction of the input and output deadzones, leading to a crisis event, that
turns the attractor to a chaotic repellor exhibiting transient chaos.
Another phenomenon is the switching line collision, when neighbouring switching lines touch
each other, significantly changing the state-space topology.

Main Result 4: Quantization Ratio

Twofold quantization – when both the input and the output of the controller are quan-
tized – can be characterised by the so-called quantization ratio parameter, corresponding
to the ratio of input and output quantizers’ resolution. Twofold quantization can be
reduced to a single quantization case (input-only or output-only quantization) if an ap-
propriate quantization ratio ρ is used and its limit ρ→ 0 is analysed.
It is impossible to analyse both kinds of twofold-to-single quantization transitions with a
single quantization ratio, because parameter ρ appears in an integer-part function in the
governing equations of the dynamical system. Consequently, the upper limit correspond-
ing to one of the transitions is zero: limρ→∞ ρ Int(x/ρ) = 0, therefore, the control effort
is turned off for finite values of x, where x is a linear combination of state variables.
Hence, two different quantization ratios are necessary to be used for the two transitions,
and they are inversely proportional to each other: ρ′ ∼ 1/ρ.

Related publications: [29, 28].

Main Result 5: Switching Line Collision and Deadzone Crisis

In the case of twofold quantization – when both the input and the output of the controller
are quantized – the state space of the controlled system can be divided into domains,
each corresponding to a certain value of the control effort, separated by switching lines.
Two new bifurcation phenomena were introduced that can occur only in the case of
twofold quantization:
- Switching Line Collision is the event, when piecewise smooth switching lines touch
each other, that is, collide in the state space. This phenomenon can induce qualitative
changes in the state space of continuous flows, but – since the trajectories of maps are
allowed to “jump” in the phase-space – the effects of Switching Line Collision are less
pronounced in the case of maps.
The condition of the existence of first order switching line collisions is provided for
maps where the neighbouring switching lines are originating from twofold quantization
and proportional-derivative (PD) control scheme. Conditions for the collision between
any switching line and its k-th neighbour were determined as well, along with critical
quantization ratios which correspond to special cases, when all switching lines collide at
all possible locations.
- Deadzone Crisis is an event, when a chaotic attractor turns to a transient chaotic
repellor due to the change of the corresponding switching line’s shape. The term deadzone
crisis is originated from the observation, that this event is strongly related to the variation
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of input-deadzones in case of the 2D micro-chaos map. It was shown that this crisis event
can strongly influence the maximal possible control error in the system. In some cases,
even the increase of a resolution parameter rI or rO can lead to smaller control error.

Related publications: [29, 28].

From practical point of view, it is possible to improve the properties of the control for
a given application, by carrying out an analysis of the quantization ratio and selecting a
favourable range as illustrated in Section 4.2.2. Doing so, one can also find out how to
improve a certain controlled system, i.e., which quantizer should be replaced by a higher-
resolution one. In some cases one can even arrive to an unnatural conclusion, that using
lower-resolution output quantizer or larger sampling time will actually result in lower control
error. Similar results were found in [45, 49], where the quantization improved the stability
properties of the controlled system.
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5
Hybrid-switching micro-chaos map

5.1 Introduction

In the previous chapters, various digitally controlled systems exhibiting micro-chaos were
analysed. It was shown that in case of quantization at the control effort (output of the con-
troller), separated chaotic attractors are present in the state-space, see Section 2.3. However,
if the measured states (input of the controller) are quantized, usually a periodic orbit appears
with superimposed chaotic oscillation [7]. The transition between these two cases was also
discussed in Chapter 4.

Thus, although several digital control schemes were analysed, one important point have
not been addressed yet: since the amplitude of micro-chaotic oscillations is typically small,
the inevitable friction that is present in mechanical systems may have a large influence on the
dynamics. Thus, the question naturally arises: can micro-chaos persist if Coulomb friction is
present?

This chapter introduces the hybrid-switching micro-chaos map, where the term hybrid
refers to the two types of switching in the system: the ”map-like” switching of the control
effort that happens only at sampling time instants and the ”flow-like”, continuous switching of
the friction force at the sign changes of the velocity. Simple analytical formulas are presented
to determine if chaotic attractors are affected by the sticking introduced by the friction or
not. Finally, numerical results obtained using Clustered Simple Cell Mapping (C-SCM) [24]
are given to support the theoretical results.

Lastly, the chapter concludes, that the phenomena of micro-chaos can withstand the
presence of Coulomb-friction and chaotic attractors can coexist with sticking zones in the
state space.

5.2 PD-controlled inverted pendulum with dry friction

Consider an inverted pendulum controlled according to a proportional-derivative (PD) scheme
with sampling and zero order hold, as shown in Figure 5.1. Dry friction, symbolised by µ in
the figure, is temporarily omitted.
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Figure 5.1: Digitally controlled inverted pendulum realising zero-order-hold and the control
torque M with respect to time. Blue dashed envelope curve indicates a reference
control torque corresponding to a continuous, non-sampled case.

The equation of motion of the frictionless system can be given as

J ϕ̈(t) = mgh sin(ϕ(t))− k ϕ̇(t)− pϕi − d ϕ̇i, t ∈ [iτ, (i+ 1)τ), (5.1)

where m and J are the mass and mass moment of inertia of the pendulum, respectively. h is
the distance between the centre of mass and the axis of rotation, p and d are control gains
and k is the linear damping coefficient. Gravitational acceleration is denoted by g, τ is the
sampling time, while ϕi = ϕ(iτ) and ϕ̇i = ϕ̇(iτ) are the sampled values of the angular position
and angular velocity, respectively, at the beginning of the ith time interval. Rearranging and
linearizing (5.1) yields

ϕ̈(t) + 2αδϕ̇(t)− α2ϕ(t) = −P ϕi −D ϕ̇i, (5.2)

where

α2 =
mgh

J
, 2αδ =

k

J
, P =

p

J
, D =

d

J
. (5.3)

As it is shown in [7], if the control torque can assume only quantized values, this system
exhibits small amplitude chaotic vibrations. However, as it was pointed out in [4], Coulomb
friction has a major role in the damping of such systems. Therefore, our present goal is to
analyse the effect of dry friction on the previously found, so-called micro-chaotic solutions.
Before formulating the equations for the quantized case, we add a new term to (5.2) that
corresponds to Coulomb friction (see Fig. 5.2):

ϕ̈(t) + 2αδϕ̇(t)− α2ϕ(t) = −P ϕi −D ϕ̇i − sgn(ϕ̇(t))µ0. (5.4)

Note, that this equation is non-linear due to the sgn function that may assume any value
between -1 and 1 at zero angular velocity. The actual value of the friction force at ϕ̇(t) = 0 is
determined by the other forces and torques acting on the pendulum. As a consequence, the
upper equilibrium point turns to an interval of possible equilibrium positions. Thus, (5.4)
cannot be linearized at the ϕ = 0, ϕ̇ = 0 state in the conventional manner. To linearize
the equation in a mathematically correct way, one could apply the theory of differential
inclusions [17] or introduce a regularized, smooth approximation to the sgn function. This
latter approach was followed in [4].
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However, as it will be shown in this section, quantization is another non-smooth effect that
introduces non-linearity in the system. Thus, instead of focusing on the linearization process,
we opted for using non-smooth models describing the effects of friction and quantization. It is
usual in textbooks and papers dealing with dry friction (see e.g., [44] and [48]) that a friction
force-related term Ffriction = −sgn(v)FN is added to otherwise linear(ized) equations, and
the resulting piecewise linear system is analysed. Even in case of time-delayed systems,
piecewise smooth control input is considered similarly, [36, 37]. Since this method led to
qualitatively correct findings, it is often applied in the industry, too [41]. Following this
approach, we continue the analysis of (5.4) without further linearization.

Eq. (5.2) can be rewritten as a system of first order differential equations that is valid for
t ∈ [iτ, (i+ 1)τ), i.e., in a sampling interval:

ω̇(t) = α2ϕ(t)− 2αδϕ̇(t)− Pϕi −Dωi − sgn(ϕ̇(t))µ0,

ϕ̇(t) = ω(t),
(5.5)

with initial conditions ω(iτ) = ωi and ϕ(iτ) = ϕi.

If the sign of the angular velocity does not change, Eq. (5.5) can be easily solved for a
sampling interval. Introducing the notations α̂ = ατ , Γ =

√
1 + δ2, P̂ = Pτ2, D̂ = Dτ ,

x = ϕ/(routτ
2), v = ω/(routτ), µ̂ = µ0 τ

2/(routτ
2), dimensionless time T = t/τ and rout as

the resolution of the actuated control effort, the solution formulates a dimensionless 2D map:

y(T ) ≡
[
x(T ) v(T )

]T
= U(T )y(0) + b(T )F (y(0)), T ∈ [0, 1), (5.6)

where F is composed of the control effort and the friction force

F (y(T )) = P̂ x(0) + D̂ v(0) + sgn(v(T )) µ̂, (5.7)

and the solution operators of the ODE are

U(T ) =
e−α̂δT

Γ

[
Γ ch (α̂ΓT ) + δ sh (α̂ΓT ) sh (α̂ΓT ) /α̂

α̂ sh (α̂ΓT ) Γ ch (α̂ΓT )− δ sh (α̂ΓT )

]
and

b(T ) =
1

α̂2Γ

[
Γ− e−α̂δT (Γ ch (α̂ΓT ) + δ sh (α̂ΓT ))

−α̂e−α̂δT sh (α̂ΓT )

]
,

according to Section 2.1.1.

-3 -2 -1 1 2 3
φ


M0

Mfriction

-M0

Figure 5.2: Bearing friction with respect to angular velocity of the pendulum. The coefficients
of kinetic and static friction are considered to be equal.
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5.3 The hybrid-switching micro-chaos map

The calculated control force does not change within the sampling interval, due to the zero
order hold. Consequently, Eq. (5.6) can be used as a map between states at the ith and
(i+ 1)st sampling instants, if the sign of the velocity v does not change either in the interval
T ∈ [i, i+ 1):

y(i+ T ) = U(T )y(i) + b(T )F (y(i)), T ∈ [0, 1). (5.8)

Introducing the notation yi =
[
x(i) v(i)

]T
, the state vector at the next sampling instant

can be expressed by substituting T = 1 in Eq. (5.8). Thus, the following map is obtained:

yi+1 = Uyi + b

Int(P̂ xi + D̂ vi)︸ ︷︷ ︸
mi

+ sgn(vi) µ̂︸ ︷︷ ︸
µi

 . (5.9)

Here mi is the control effort, µi is the friction force and Int(·) denotes the integer part function
representing the quantization of the control effort. The zero-order-hold introduces a map-like
switching in the system: the controller updates the control effort at sampling instants, only.

In the frictionless case (at µ̂ = 0) or if the sign of the velocity does not change within a
sampling interval, there is no other discontinuity in the system. Consequently, (5.8) – that is
another generalization of the micro-chaos map – fully describes the evolution of the solutions
in these cases.

The signum function corresponding to the friction, however, corresponds to a flow-like
switching, because the sign of the friction force changes at any time instant when the velocity
changes sign – regardless of the sampling. Thus, (5.8) must be modified to take into account
this type of switching, as well.

To handle the case when the velocity changes sign within the ith sampling interval, one
needs to calculate the dimensionless time T0,i when the solution reaches the switching line of
the friction force

Σf : y |v=0, (5.10)

i.e., when the velocity is zero. Expressing the velocity using Eq. (5.8), one arrives at

α̂Γ vi︸ ︷︷ ︸
:=Ci

cosh(α̂ΓT0,i)−
(
α̂ δ vi − α̂2 xi +mi + µi

)︸ ︷︷ ︸
:=Si

sinh(α̂ΓT0,i) = 0. (5.11)

From Eq. (5.11), the dimensionless time corresponding to zero velocity can be obtained:

T0,i =
1

α̂Γ
log

(√
Si − Ci
Si + Ci

)
, (5.12)

where Si and Ci are the coefficients of sinh(α̂ΓT0,i) and cosh(α̂ΓT0,i), respectively in Eq.
(5.11). Both Si and Ci depend on the state of the system (i.e., xi, vi or µi) at the beginning
of the sampling interval. Thus, the state vector ỹi must be supplemented with the friction

state µi: ỹi =
[
xi vi µi

]T
. The condition of crossing the switching line of the friction

force (Σf ) within the actual sampling interval is

0 ≤ T0,i < 1. (5.13)

If T0,i > 1, one can use (5.8). Otherwise, the mapping between successive sampling instants
must be divided into three steps: 1) time evolution until the velocity becomes zero, 2) change
of the sign of friction force (or sticking), and 3) time evolution until the next sampling interval.
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Combining these steps, one can formulate the so-called hybrid-switching micro-chaos map:

ỹ(T0,i) = Ũ(T0,i) ỹi + b̃(T0,i)F (ỹi),

ỹ(T0,i)
+ = Q̃ ỹ(T0,i)

ỹi+1 = Ũ(1− T0,i) ỹ(T0,i)
+ + b̃(1− T0,i)F (ỹ(T0,i)

+),

(5.14)

where

Ũ(T ) =

 U(T )
0
0

0 0 1

 and b̃(T ) =

[
b(T )

0

]
. (5.15)

The discontinuity map related to the change of sign of the friction force is

Q̃ =



 1 0 0

0 0 0

0 0 0

 if sticking occurs,

 1 0 0

0 1 0

0 0 −1

 otherwise,

(5.16)

where the condition of sticking is:

abs
(

Int(P̂ x(i) + D̂ v(i))− α̂2 x(i+ T0,i)
)
< µ̂. (5.17)

In the first case of Eq. (5.16), when (5.17) is satisfied, the solution sticks and will stay at Σf .
Otherwise, the solution crosses the switching line and the sign of the friction force is changed.
ỹ(T0,i) is the state when the solution reaches Σf and ỹ(T0,i)

+ is the state immediately after
crossing Σf .
It should be noted, that the initial state of map (5.14) must contain a friction force µ0 =
sgn(v0) µ̂, compatible with the initial velocity.

5.4 Topological patterns, sticking zones

Recall from Section 2.3.1, that the equation of control effort switching lines is

Int(P̂ x+ D̂ v) = m ⇒ v =
m− P̂ x

D̂
, m ∈ Z\{0}. (5.18)

The unstable fixed points Fm = [xmu 0]T of the micro-chaos map lie on the x-axis, at zero
velocity. Omitting the friction force, the positions of the fixed points can be determined:

Int(P̂ xmu ) = α̂2 xmu ⇒ xmu =
m

α̂2
, m ∈ Z. (5.19)

This formula is valid only if xmu resides between the mth and (m+ 1)st switching lines – since
this is required to have Int(P̂ xmu ) = m. Based on Eqs. (5.18)-(5.19), unstable fixed points
and switching lines occur alternately on the x− v phase-space (see Fig. 5.3).

If unstable fixed points exist on both sides of a switching line, they push the trajectories
towards each other. Therefore, chaotic attractors are expected to be at the intersections of
the switching lines and the x axis (see Fig. 5.3):

xattr =
m

P̂
, m ∈ Z\{0}. (5.20)
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Figure 5.3: The state space of the micro-chaos map, when µ̂ = 0. Black lines are control
effort switching lines, Σf is denoted with a green line, unstable fixed points are
denoted with black dots and their manifolds are the blue dashed lines. Three
example trajectories corresponding different initial velocities are shown, ending
in different chaotic attractors. Here mmax = 3 and after the 3rd attractor at
approx. x = 420, the alternating pattern of attractors and fixed points breaks.
The upcoming, virtual fixed point is shown with a red dot.

Restricting the control parameters to the stable domain (P̂ > α̂2), the index of the
outermost attractor can be expressed – in a slighly different way as in Section 2.3:

m− 1

α̂2
=
m

P̂
⇒ mmax = Int

(
P̂

P̂ − α̂2

)
. (5.21)

At m > mmax, the alternating pattern of attractors and fixed points breaks because the
m = mmax control effort band does not have a fixed point inside. This particular fixed point
is virtual and is situated in the next control effort band, see Fig. 5.3. While there can exist an
attractor between a real and a virtual fixed point [7], there cannot be attractors at switching
lines if m > mmax. Thus, one can expect to have several attractors when the difference
between the control gain P̂ and α̂2 is relatively small. At certain parameter combinations
(see [6]), the neighbouring attractors merge and form a larger attractor.

An upper estimate for the control error – the distance of the outermost attractor from
the origin – can be given for that frictionless case, when the eigenvalues of U are positive
and real [6]:

xerr,max =
1

P̂ − α̂2
. (5.22)

As friction is introduced in the system, the fixed points extend to larger intervals along
the x axis, where the friction force can be in equilibrium with the other forces acting on the
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system. If such an equilibrium interval collides with an attractor, a crisis phenomenon occurs
and the attractor turns to a repellor, exhibiting finite time transient chaotic behaviour.

As it was shown in [6], there is only one fixed point in the phase-space – at the origin – if
large control gain P̂ > 2α̂2 is chosen from the domain of stability. The corresponding large
attractor immediately disappears if friction is present.

However, at relatively small values of P̂ – when it is only slightly larger than α̂2 –, several
small attractors coexist and some of them may be quite far from the neighbouring fixed
points. Thus, such attractors can persist even if friction is taken into account.

Considering the condition of sticking (5.17) and substituting the control effort value m,
one arrives at

abs(m− α̂2 x) < µ̂.

Resolving the absolute value yields

(m− µ̂)

α̂2
< xsticking <

(m+ µ̂)

α̂2
. (5.23)

One can recognize here the term corresponding to the unstable fixed points (Eq. (5.19)), that
is, the m-th sticking zone will appear around the m-th unstable fixed point:

xsticking,m ∈
[
xu,m −

µ̂

α̂2
, xu,m +

µ̂

α̂2

]
. (5.24)

Using Eq. (5.20) and Eq. (5.24), one can express the condition corresponding to the overlap
of the attractor centered around x = m/P̂ and one of its neighbouring sticking zones:

m− 1 + µ̂

α̂2
=
m

P̂
or

m

P̂
=
m− µ̂
α̂2

. (5.25)

Note, that the size of the attractor is not taken into account by these formulae. The colli-
sion of the attractor and the sticking zone (the crisis) takes place at a smaller value of the
friction parameter. However, the parameters corresponding to the crisis phenomenon can be
estimated fairly well by (5.25) if the attractor is significantly smaller than 1/P̂ .

One can also express the critical friction parameter when all sticking zones merge with
their neighbours, that is the whole x-axis behaves as a sticking zone:

µ̂crit
α̂2

=
1

α̂2
→ µ̂crit = 1. (5.26)

Since the collision of chaotic attractors and sticking zones also depends on the size of
the attractors, providing an exact formula for the absorbtion of a certain chaotic attractor
can be challenging. Therefore, cell mapping, especially, the Clustered Simple Cell Mapping
(C-SCM) method (see Chapter 3 and [24]) was used to examine the effect of increasing the
friction parameter µ̂.

5.5 Cell mapping results

As it was discussed in Chapter 3, cell mapping methods are suitable for the global investi-
gation of the long term behaviour of nonlinear dynamical systems [35]. Using cell mapping
methods fixed points, periodic orbits and their basin of attraction can be quickly found.
Chaotic attractors are usually covered with one or more high-period orbits. The Clustered
Simple Cell Mapping (C-SCM) was applied to Eq. (5.14) in order to determine whether the
chaotic attractors disappear due to the dry friction or not.

Consider Figure 5.4, showing chaotic attractors (black dots), their basin of attraction
(coloured bands), switching lines (white), and manifolds of fixed points (dashed white lines).
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x

x

Figure 5.4: C-SCM results for α̂ = 6.53×10−3, δ̂ = 0, P̂ = 5.5×10−5, D̂ = 2.5×10−3. Top:
µ̂ = 0. Bottom: µ̂ = 0.095. Chaotic attractors are indicated with black dots,
their basin of attractions are coloured regions, fixed points’ manifolds are shown
as white dashed lines. Gray regions indicate the basins of attraction of sticking
zones, the bottom subfigure shows the case, when the outermost chaotic attractors
are absorbed by sticking zones.
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Figure 5.5: C-SCM parameter scan results for α̂ = 5.5 × 10−5, δ̂ = 0, P̂ = 5.5 × 10−5,
D̂ = 2.5× 10−3. Coloured points correspond to the location coordinate of chaotic
attractors, while gray points indicate the centers of periodic cell groups corre-
sponding to sticking zones. The theoretical ranges of sticking zones are shown by
vertical sections. As the friction parameter is increasing, chaotic attractors are
absorbed by sticking zones, one by one.

Results with µ̂ = 0 and µ̂′ = 0.095 are shown, where the latter corresponds to the collision of
the sticking zone and the 4th attractor: (m− 1 +µ′)/α̂2 = m/P̂ , with m = 4. Since domains
of attraction are provided by cell mapping, one can clearly see which initial states lead to
sticking zones (gray regions).

In order to explore the effect of varying µ̂, a parameter scan was carried out on µ̂ ∈ [0, 0.5].
Attractor and fixed point positions (mean of x coordinates) are shown in Fig. 5.5, with
coloured and gray dots, respectively. As the sticking zones around fixed points grow, they
absorb chaotic attractors one after the other. In this particular case, all chaotic attractors
are absorbed at µ̂ ≈ 0.45.
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CHAPTER 5. HYBRID-SWITCHING MICRO-CHAOS MAP

5.6 Main results

I have introduced the hybrid-switching micro-chaos map that describes the behavior of a PD-
controlled inverted pendulum with sampling and dry friction. Without fricton, this system
can have multiple separated chaotic attractors in its state space. By the generalisation of the
micro chaos map, the effect of friction was analysed.
I have shown, that chaotic attractors can turn to chaotic repellers via a crisis event, when a
chaotic attractors collides with a boundaries of a sticking zone. The conditions for this crisis
were formulated. There is a wide range of parameters, where chaotic attractors coexist with
sticking zones originating from dry friction.
Using the proposed methodology, other switching phenomena, e.g., impact, could be taken
into account, as well.

Main Result 6: Hybrid-switching Micro-Chaos Map

The notion of micro-chaos can be generalized to incorporate switching events – e.g.,
related to dry friction or impact – which are independent from sampling. The map
obtained this way is called hybrid-switching micro-chaos map.
Chaotic attractors and sticking zones of friction force can coexist in the state-space of the
hybrid-switching micro-chaos map, therefore it has been proven, that the micro-chaos
phenomenon can persists in the presence of Coulomb-friction.

Related publications: [27, 30].

The practical relevance of this result is the fact, that it is possible to detect micro-chaos
in measurements even in non-ideal circumstances, e.g., in the presence of unwanted Coulomb-
friction. One attempt to experimentally detect micro-chaos was presented in [30], although
the chaotic nature of the measured trajectories was not proven.
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6
Epilogue

I have presented five chapters dealing with the history, description and analysis of micro-
chaos. The new results are briefly summarized in the following paragraphs.

In Chapter 2 the topological pattern found in the state space of micro-chaos is presented
and a formula for calculating the size of an absorbing cuboid is derived.

Chapter 3 introduced the Clustered Simple Cell Mapping method (an extension to the
Simple Cell Mapping – SCM), which deals with joining separate SCM solutions, therefore
allows adaptive expansion of the examined state space region and enables parallel execution.

In Chapter 4 the effect of twofold quantization was examined: the characterization of
twofold quantization with the quantization ratio, and two new bifurcation phenomena: the
switching line collision and the deadzone crisis were presented.

Chapter 5 explained the formulation of the hybrid-switching micro-chaos map, and showed
that micro-chaotic oscillations can coexist with sticking zones caused by Coulomb-friction in
the state space of this generalized micro-chaos map.

Lastly, I would like to express my gratitude towards the PhD program. It provided me
a safe environment to push myself beyond my mental limits, widen my perspectives towards
analytical mechanics, numerical methods, learning and education. It was fun at many times,
but more importantly, it was fulfilling. I consider myself extremely lucky to have been given
the opportunity to pursue a PhD at the Department of Applied Mechanics and be creative
and open-minded during this time.
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7
Brief summary of new results

Main Result 1: Topological pattern

An alternating pattern of chaotic attractors or transient chaotic repellors and fixed points is
present in the state space of the digitally controlled 1 DoF mechanical oscillator if proportional-
derivative control scheme is applied with sampling, zero-order-hold and quantized output.
Depending on the parameters, border collision bifurcations of fixed points at the switching
lines can change this pattern. Moreover, crisis bifurcations can turn attractors to repellors.

Main Result 2: Absorbing cuboid

An upper bound was given for the control error of the micro-chaos map, by re-formulating it as
a stabilized system without quantization and with additional correction terms corresponding
to the neglected fractional parts.
In case of output-quantization, the farthest possible point of the invariant set is expressed in
the form:

y∞ = lim
j→∞

j∑
k=0

Sk bχk = · · · =


∑∞

k=0 σ1,k χk
...∑∞

k=0 σn,k χk

 .
The choice of the infinite sequence of fractional parts χk that maximize the ith component
of y∞, is χi = {χ0, χ1, . . . , χk, . . . } = {sign(σi,0), sign(σi,1), . . . , sign(σi,k), . . . }, which yields
a close upper bound to the control error.
This approach can be adapted to the case of input quantization, where multiple fractional
part sets correspond to the quantization of state variables.
By taking the separately calculated maxima for each component of y∞, an absorbing cuboid
was expressed which can be used to provide an absorbing region in the state space. A prac-
tically usable algorithm was also developed for the determination of periodic orbits. This
algorithm is based on a symbolic dynamics-based description of the phase-space and can be
utilized to verify the control error estimation provided by the absorbing cuboid.
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Main Result 3: Clustered Simple Cell Mapping

In order to adaptively discover state space objects with cell mapping approach, an extension to
the Simple Cell Mapping (SCM) method was proposed. The Clustered Simple Cell Mapping
method is the procedure of joining two Simple Cell Mapping solutions, thus creating a cluster
of SCMs. Initially, two separate SCM solutions are present with non-overlapping and not
necessarily adjacent domains of interest.
The procedure consists of two stages:

• The first stage updates transient cell sequences, which lead from one SCM domain to
a known object in the other domain.

• The second stage examines cell sequences, which lead to the other domain, but to an
unclassified state. The idea of cell tree mapping is used to discover new periodic groups
situated at the boundary of the two SCM domains.

After the second stage, all cells either correspond to a known state space object or lead to
the reduced sink cell, the state space region outside the cluster. A simple way to select an
adjacent state space region to be added to the cluster is also described, enabling one to carry
out Clustered SCM in an adaptive and automatic manner.
The computational effort of the method is linear in terms of the total number of cells.

Main Result 4: Quantization Ratio

Twofold quantization – when both the input and the output of the controller are quantized
– can be characterised by the so-called quantization ratio parameter, corresponding to the
ratio of input and output quantizers’ resolution. Twofold quantization can be reduced to a
single quantization case (input-only or output-only quantization) if an appropriate quantiza-
tion ratio ρ is used and its limit ρ→ 0 is analysed.
It is impossible to analyse both kinds of twofold-to-single quantization transitions with a
single quantization ratio, because parameter ρ appears in an integer-part function in the
governing equations of the dynamical system. Consequently, the upper limit corresponding
to one of the transitions is zero: limρ→∞ ρ Int(x/ρ) = 0, therefore, the control effort is turned
off for finite values of x, where x is a linear combination of state variables.
Hence, two different quantization ratios are necessary to be used for the two transitions, and
they are inversely proportional to each other: ρ′ ∼ 1/ρ.

Main Result 5: Switching Line Collision and Deadzone Crisis

In the case of twofold quantization – when both the input and the output of the controller
are quantized – the state space of the controlled system can be divided into domains, each
corresponding to a certain value of the control effort, separated by switching lines.
Two new bifurcation phenomena were introduced that can occur only in the case of twofold
quantization:
- Switching Line Collision is the event, when piecewise smooth switching lines touch each
other, that is, collide in the state space. This phenomenon can induce qualitative changes
in the state space of continuous flows, but – since the trajectories of maps are allowed to
“jump” in the phase-space – the effects of Switching Line Collision are less pronounced in
the case of maps.
The condition of the existence of first order switching line collisions is provided for maps where
the neighbouring switching lines are originating from twofold quantization and proportional-
derivative (PD) control scheme. Conditions for the collision between any switching line and
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its k-th neighbour were determined as well, along with critical quantization ratios which cor-
respond to special cases, when all switching lines collide at all possible locations.
- Deadzone Crisis is an event, when a chaotic attractor turns to a transient chaotic repellor
due to the change of the corresponding switching line’s shape. The term deadzone crisis is
originated from the observation, that this event is strongly related to the variation of input-
deadzones in case of the 2D micro-chaos map. It was shown that this crisis event can strongly
influence the maximal possible control error in the system. In some cases, even the increase
of a resolution parameter rI or rO can lead to smaller control error.

Main Result 6: Hybrid-switching Micro-Chaos Map

The notion of micro-chaos can be generalized to incorporate switching events – e.g., related
to dry friction or impact – which are independent from sampling. The map obtained this
way is called hybrid-switching micro-chaos map.
Chaotic attractors and sticking zones of friction force can coexist in the state-space of the
hybrid-switching micro-chaos map, therefore it has been proven, that the micro-chaos phe-
nomenon can persists in the presence of Coulomb-friction.
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[7] Csernák, G., Gyebrószki, G., and Stépán, G. (2016). Multi-baker map as a model of
digital PD control. International Journal of Bifurcations and Chaos, 26(2):1650023–11.

[8] Csernák, G. and Stépán, G. (2005). Life expectancy of transient microchaotic behaviour.
J. Nonlinear Science, 15:63–91.

[9] Csernák, G. and Stépán, G. (2010). Digital control as source of chaotic behavior. Inter-
national Journal of Bifurcations and Chaos, 5(20):1365–1378.

[10] Csernák, G. and Stépán, G. (2011). Sampling and round-off, as sources of chaos in
PD-controlled systems. Proceedings of the 19th Mediterranean Conference on Control and
Automation.

[11] Csernák, G. and Stépán, G. (2012). Disconnected chaotic attractors in digitally con-
trolled linear systems. Proceedings of the 8th WSEAS International Conference on Dy-
namical Systems and Control, pages 97–102.

[12] Csernák, G. and Stépán, G. (2006). Quick estimation of escape rate with the help
of fractal dimension. Communications in Nonlinear Science and Numerical Simulation,
11(5):595 – 605. Dynamical systems—theory and applications.

[13] Csernák, G. and Stépán, G. (2007). Life expectancy calculation of transient chaos in the
2d micro-chaos map. Periodica Polytechnica Mechanical Engineering, 51(2):59–62.

[14] Csernák, G. and Stépán, G. (2013). The state-space model of micro-chaos. Proceedings of
the 2013 International Conference on Systems, Control, Signal Processing and Informatics,
pages 420–425.

97



BIBLIOGRAPHY
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[23] Gyebrószki, G. and Csernák, G. (2014). Methods for the quick analysis of micro-chaos.
In Awrejcewicz, J., editor, Applied Non-Linear Dynamical Systems, chapter 28, pages 383–
395. Springer International Publishing.
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Appendices

7.1 Appendix A: Complexity of Simple Cell Mapping

Algorithm 8 Simple Cell Mapping

Input : Cell State space
Output : SCM solution Number of execution, cost

1: g ← 0
2: for z ← 0, n do n+ 1, 1
3: if state[z] = untouched then
4: processing ← True
5: sequence← ∅ ∪ z
6: im← z
7: while processing do

∑n−1
z=0 tz, 1

8: if state[im] = processed then
9: Tag cells in sequence as processed and transient

∑n−1
z=0 1, sz

10: processing ← False
11: else if state[im] = under processing then
12: . New periodic group and possibily some transients found

∑n−1
z=0 1, sz

13: Examine sequence, starting with im and tag cells as periodic,
14: assign group g and step 0
15: Tag remaining cells as transient, assign group← g
16: and calculate step numbers
17: g ← g + 1
18: processing ← False
19: else
20: . state[im] = untouched, continue along the image track

∑n−1
z=0 tz, 1

21: state[im]← under processing
22: sequence← sequence ∪ im
23: im← image[im]
24: end if
25: end while
26: else
27: . Skip this cell
28: end if
29: end for

The number of times of execution and cost for some lines are denoted at line endings.
The for loop is executed n+1 times, let tz be the number of times the while loop is executed
for that value of z. Let sz be the length of the sequence accumulated starting with cell z.
By examining the algorithm, one can see, that sz = tz, since no branches of the if-else
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structure append new cell to the sequence or terminates the while loop at the same time.
New cells are only appended to the sequence in line 22, while the processing of a sequence
is either terminated at line 10 (reaching an already determined destination) or at line 18
(finding a new PG and transient cells). Therefore the cost of the algorithm is

CSCM = n c1 +
n−1∑
z=0

(2 sz + tz c2) = (2 + c1)n+
n−1∑
z=0

tz c2 = O(n),

where the sum of the length of sequences
∑n−1

z=0 sz = n, c1 is the total cost of constant-cost
operations in the for loop outside the while loop, and c2 is the total cost of constant-cost
operations within the while loop.
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