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Abstract

This dissertation aims to collect and present the most significant results in the field of micro-
chaos, discovered during my years of pursuing the PhD degree.

Briefly, micro-chaos is a phenomenon, when a combination of digital effects — like sam-
pling, rounding and delay — cause small amplitude chaotic oscillations, often resulting in
multiple disconnected chaotic attractors or chaotic oscillations superposed on a recurrent
orbit. This dissertation is restricted to simple digitally controlled mechanical systems with
sampling and quantization. The effect of processing delay is not examined.

Chapter [I] presents the past and current state of the corresponding research area which
served as an entry point for my own research.

Chapter [2| gives an overall picture about the 2D micro-chaos map corresponding to a
digitally controlled 1-DoF mechanical oscillator. Various properties are shown and a simple
classification of the possible cases is presented. Finally, certain results are generalized to
multi-DoF systems.

Chapter 3| introduces an extension to the Simple Cell Mapping method, which allows
adaptive expansion of the analysed state space region along with the opportunity of parallel
execution.

Chapter [4] analyses the effect of twofold quantization: when both the input and output
of the digital controller are affected by rounding.

Chapter [5] formulates the hybrid-switching micro-chaos map that describes the effect of
dry friction on the motion of a 1-DoF digitally controlled oscillator. Besides the quantization-
related switching events — that happen at the sampling instants — the friction-related switching
events are also incorporated in the model that can be extended to the consideration of impact-
like events, too.

Before proceeding, I would like to thank You, dear Reader, for taking the time to look
into this work, I greatly appreciate any response or ideas regarding the concepts within this
dissertation and those beyond.






Introduction

This chapter provides a brief overview of the research field of digitally controlled systems.
These systems often can be modeled by piecewise smooth maps and specifically, by the so-
called micro-chaos map. Control engineers usually handle the systems described by these
maps in the frequency domain, while mathematicians do their examinations in the time do-
main, but often without connection to a real-world problem. From my engineering point of
view, the goal would be to bring the best of both worlds together. The following sections
introduce some key publications and present their fundamental results.

First, different approaches to describe quantization and sampling are listed, then the one-
dimensional micro-chaos map is introduced. The focus is then shifted towards micro-chaos
maps in higher dimensions and some key numerical approaches are shown, which are fre-
quently used in the analysis of such maps.

1.1 Various approaches to the description of digital effects

In the past 50 years, with the appearance of digital electronic devices, a new challenge was
introduced in the field of control engineering and computational science: dealing with the
so-called digital effects.

The main digital effects are sampling, delay and quantization. Sampling arises from the
fact, that processors operate in a periodic manner, they process one operation per cycle. Since
the computation of control feedback takes time, processing delay between signal measurement
and control effort output is unavoidable. Integer and floating-point numbers in computers
are mostly represented in finite amount of bits, therefore they have a given precision, which
leads to rounding (or with a more technical term, quantization) in calculations. Furthermore,
many digital components like converters and filters can introduce one or more of these digital
effects. For example, an analog-to-digital converter (ADC) can be treated as a composition
of a quantizer and a sampler.

It is important to note, that digital effects also appear in many real world systems indi-
rectly. In several applications, human-work related operations happen in a non-continuous
manner — usually periodically — during the working hours. Similarly, many real world con-
cepts and devices exhibit quantization. Consider the Kerr dam (Montana, US, see Fig. ,
which is adjusted one or two times daily and has 14 doors to let the water flow through. From
the viewpoint of water throughput this is a sampled and quantized system. Quantization and

3



CHAPTER 1. INTRODUCTION

Figure 1.1: The Kerr Dam as an example of real-world sampling and quantization, image
source: WIKIPEDIA, EN: Kerr Dam article.

sampling also appears in logistics due to fixed schedule and size of trucks or package boxes.
These ”digital” effects can occur at several levels in financial systems, too: the stock market
opens in fixed time intervals, companies announce earnings and pay dividends in a periodic
manner and the shares represent quantization of value. In this case, a secondary digital ef-
fect, the quantization of currencies can be also found which resembles to the quantization of
floating point numbers in computers.

In control engineering, one of the most significant books — Widrow and Kollar [52] — pro-
vides a sophisticated way to deal with sampling and quantization in the frequency domain.
The book develops the theory of quantization analogously to the sampling theory, and fo-
cuses on uniform quantization. The statistical analysis of quantization leads to the Pseudo
Quantization Noise (PQN) model. Various properties and application conditions of the PQN
model are discussed in details. The recovery of original signal properties from quantized
signals and analysis of quantization in feedback systems are discussed. The book also covers
floating-point quantization and extends the corresponding quantization theory. Additionally,
various examples of quantization in feedback control systems and filters are presented.

While the quantization theory offers a great way to analyse statistical properties of com-
plex systems including analog-to-digital conversions or floating point calculations, chaos and
chaotic systems are often easier to analyse in the time domain rather than in the frequency
domain.

Mathematicians — Berkolaiko, Boyarsky, Goéra, Domokos, see the citations in the up-
coming paragraphs — studied quantized and sampled systems as piecewise linear or nonlinear
maps, often with hysteresis. Many fundamental properties and intricate details of these maps
have been elaborated, but corresponding practical applications are often not included and
sometimes hard to find.

G. Berkolaiko analysed piecewise linear maps with hysteresis (PLMH) [2] and exam-
ined their basic properties (continuity, topological expansivity, discontinuity points and sets),
proved the existence of a global attractor and formulated several theorems corresponding to
the limit sets of these maps. Many of these results were later found to be in close resemblance
to the results of G. Csernak in [§], see Figure

P. Géra, A. Boyarsky and M. Jabtonski [32] [38] thoroughly studied one dimensional maps
exhibiting chaotic behaviour, introduced an algorithm to control chaos [32], examined round-
off errors introduced by computers and questioned the fact of often treating it as random noise
[31]. They have provided in-depth studies about invariant measures for piecewise smooth
maps and in general, the existence of such measure(s).

G. Domokos and D. Szasz thoroughly studied the effects of rounding introduced by com-
puters in numerical simulation of chaotic maps [20]. They have proposed an approach to
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Figure 1.2: Two very similar piecewise linear maps with chaotic oscillations. Left: Global
attractor of a PLMH, taken from the paper of Berkolaiko [2]. Right: Long tran-
sient chaotic trajectory of a micro-chaos map, taken from the paper of Cserndk
and Stépdn [§].

compute invariant measures of chaotic systems, which, in general cannot be preserved due
to the fact, that simulations generate only a finite set with finite period. The effect of this
secondary quantization was also found by G. Cserndk in [6].

Cs. Budai, L. Kovécs, J. Kovecses and G. Stépan [3] examined the stabilization effect of
Coulomb-friction in an otherwise unstable mechanical system with digital control and sam-
pling. They present a qualitative picture of the time history of the corresponding vibrations
(concave envelope curve) which can be recognized in position control applications. Limit
cycles, thorough stability analysis and experimental validation is also presented.

As it can be seen, there were many opportunities for mechanical engineers to gain ideas
from analytical and numerical approaches used by control engineers and mathematicians
during the analysis of computer-controlled systems. Several researchers focused on simple
mechanical models — low degree of freedom linear oscillators — since the qualitative results
could be generalized to more realistic cases. Moreover, digital effects can be analysed and
algorithmic approaches can be developed effectively using simple mechanical systems. An
invaluable benefit of this approach is that the solution of the linear equation of motion can
be determined analytically. In these cases, the consideration of sampling and quantization
leads to a piecewise linear map: the micro-chaos map.

1.2 The 1D micro-chaos map

The term micro-chaos (or p-chaos) was first introduced by G. Stépan in 1994, then examined
by G. Haller [33] and E. Enikov [2I] (who were his PhD students at that time). They found
that digital effects (sampling, rounding and delay) can lead to very small amplitude — hence
the micro prefix — chaotic oscillations.

Few years earlier D.F. Delchamps [18] also made similar observations during the analysis of
control strategies for linear systems with quantized state feedback. He found that quantized
feedback systems behave chaotically and his quantitative statistical analysis revealed the
existence of an invariant probability measure on the state space.

The first results showing micro-chaotic behaviour opened up a new perspective in control
engineering. In many cases, computer control was designed with an analog model in mind.
From a mechanical engineering point of view, digital effects often seemed to be negligible
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due to their high frequency (in case of sampling) or small amount (of delay and round-off).
However, it turned out that these slight digital effects can lead to a completely unexpected
state space configuration with several coexisting chaotic attractors or repellors.

In [33] a simple stick-slip control system is analysed (C' = 0, wp = 0 case of the polishing
model in Fig. ), where the quantization of the velocity measurement and sampling with
zero-order-hold leads to the 1D micro-chaos map:

Yir1 = ay; — bInt(y;), i=1,2,.... (1.1)

The micro-chaos map is composed of the solution of the equation of motion at sampling

time instants (denoted by i) and quantization of the state variable appears in the form of the

Int(y;). Only the relative velocity y at the contact is measured and controlled in the model,

while the position is assumed to vary according to the controlled velocity. The instability of

the uncontrolled system in the y = 0 state follows from the velocity-weakening characteristic
of the friction coefficient.

PC
(v —v)
N/
A}
Uy | Yl
\ 0 T, v
\ —_—t—=
\
R
C
DC motor [ ] C m
SRR

Shaft

Figure 1.3: Polishing model used as an example for micro-chaos, taken from the paper of
Cserndk and Stépdn [8]. C denotes the mazximal dry friction force, wy is the
angular velocity of the polishing disk of radius R, v is the feed rate and vg = woR.

Here, and throughout the dissertation, Int(z) denotes the integer part functionEl, that is,
a mid-tread, double-deadzone quantization, see Fig.[[.4l The different possible values taken
by the integer part function correspond to different control efforts.

G. Haller and G. Stépan provided a mathematical proof in [33] for the chaotic nature
of the 1D micro-chaos map: the sensitive dependence on initial conditions was shown, the
existence of an attractive invariant set was presented, and it was proven, that the micro-
chaos map is topologically transitive on the set. Parameter domains were given, for which
the attracting set is a hyperbolic strange attractor. It was highlighted, that micro-chaos can
cause relatively large static errors in positioning.

LOf course, there are many different rounding functions; e.g., rounding directly to an integer, up, down,
towards zero or towards infinity, or rounding to the nearest integer instead in a similar fashion (upwards,
downwards, to zero or to infinity). One could even analyse a shifted rounding function to reflect asymmetries in
real measurement situations. The advantages of using the double-deadzone mid-tread variant are its symmetry
and largest possible deadzone.
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Figure 1.4: Integer part function, rounding towards zero. (Mid-tread, double-deadzone quan-
tization.)

In realistic situations, the chaotic motion of a dynamical system usually disappears after
a sufficiently long time. This phenomenon — the transient chaos — differs from sustained
(or permanent) chaos by having a finite lifetime [42]. The variation of parameters may turn
a chaotic system to a transient chaotic one via a crisis bifurcation. During this event, the
chaotic attractor opens up and loses its global attracting property, i.e., trajectories are allowed
to escape from it after a finite-time chaotic motion — this is why the remaining strange set is
referred to as a repellor. Since the probability of finding the system in the chaotic state (in
the repellor) decreases exponentially in time, the lifetime of transient chaos is characterised
by the corresponding exponent, the escape rate.

In works of G. Cserndk, transient chaos is thoroughly examined when friction is added to
the previously mentioned stick-slip model. The escape rate and mean lifetime are estimated
based on the fractal dimension of the repellor [12]. A recursive procedure for life expectancy
(mean kickout number) calculation was also provided in [8] [13]. Again, these results can be
clearly correlated to results obtained in the field of mathematics, see Fig. [1.5

Kickout number

LLL Lt.L L K " Alln "’

Figure 1.5: Invariant sets of piecewise smooth maps. Left: globally attractive set (probability
density vs. initial state), taken from the paper of Jabloriski et al. [38]. Right:
transient chaotic repellor (kickout number vs. initial conditions), taken from the
paper of Cserndk and Stépdan [12].
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1.3 Micro-chaos map in higher dimensions

From practical point of view, micro-chaos maps corresponding to multi degree of freedom
systems are more important compared to the one-dimensional case. These maps, however,
are more challenging to analyse, starting from the visualisation of trajectories and invariant
sets to the proof of certain properties.

The two-dimensional micro-chaos map obtained by taking processing delay into account
was first presented by G. Cserndk [9] using some of the formalism from [21]:

[ yiyil ] - ([ 3/;1 D - [ ay; — b?ﬁlt(yi_l) : (1.2)

Note, that similarly to Eq. , y is related to the velocity of the 1DoF oscillator. Fun-
damental properties of the 2D micro-chaos map were shown: fixed points and basic
branches of the map were identified and chaos was proven by separately proving the follow-
ing statements:

e The map has sensitive dependence on initial conditions.

e A so-called absorbing state-space domain (absorbing sphere) exists, from where solu-
tions cannot leave after they enter. For the proof of chaos, finding an absorbing sphere
is necessary since a strange attractor must reside inside the absorbing sphere.

e The dynamical system, described by Eq. is topologically transitive. This property
means that the attractor can be partitioned in an irreducible way and every partition
can be reached from any other partition, having at least one, whose image fully covers
at least two other partitions. (Or shortly, trajectories withing the attractor are mizing.)

It is worth noting, that mapping can be also considered as a piecewise linear map
with hysteresis, see Fig. Recall, that G. Berkolaiko [2], and B. Garay, R. Csikja and
J. Té6th [22] studied similar maps.

In [10], a 2D micro-chaos map corresponding to a PD-controlled inverted pendulum was
introduced and analysed. The map is formulated as

vi+1 = Uy; + bInt(ky;), where (1.3)

o4 ) =[] (5] o (3]

y; is the dimensionless angular position, y, is the angular velocity, 8 is the characteristic
constant corresponding to the negative stiffness, while P and D are control parameters. The
image of a strange attractor spanning over multiple control effort bands in the state space is
shown in Fig. As it can be seen, the control effort m = Int(ky;) assumes different values
in parallel bands of the phase-plane.

In [21], E. Enikov and G. Stépan presented the analysis of a pendulum-on-a-cart model
which yields the following 3D micro-chaos map:

yit1 = Uy; + bInt(ky;), where (1.4)
ch(B) sh(B)/B (ch(B)—1)/6 0
U= | Bsh(B) ch(p) sh(B3)/8 , b= 0 |,
0 0 0 —
[ P Yi
L 0 Py, + Dy;’_l
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Figure 1.6: Repellor of the 2D micro-chaos map , taken from the paper of Cserndk and
Stépan [8]. The domain of definition is divided into parallel bands, according to
the value of the control effort.

B is, again, the characteristic constant corresponding to the negative stiffness, v is a
system parameter characterising the mass distribution, while P and D are control parameters.
The effect of processing delay is also considered in the model, this is why the control effort
appears in the state vector y;, besides the dimensionless angular position y; and angular
velocity y/. A detailed analysis is provided, including the existence of an absorbing sphere
and an invariant set, to the proof of sensitivity on initial conditions. Topological transitivity
was not proven, but from a practical point of view one can use a naive, less strict definition of
chaos, which does not require the topological transitivity. One could also argue that a really
long periodic orbit cannot be distinguished from chaotic behaviour in real applications. The
chaotic attractor of Map is shown in Figure

In [14], the generalisation of micro-chaos maps for digitally controlled linear systems
with arbitrary feedback with or without delay and zero order hold control is introduced.
The so-called state-space model of micro-chaos is formulated, and several configurations of
digital effects — e.g., sampling with rounding at the input (measured state) and/or output
(control effort) of the controller, with or without additional processing delay — are presented.
Dependence on one or more past state variables can be used to formulate multiple delays,
or numerical derivatives. It was shown that the behaviour of the considered class of systems
can be given in the form

vir1 = Uy; +d;, (1.5)

where U corresponds to the original, unstable, uncontrolled dynamics and d; is the control
effort influenced by digital effects. Map — the generalized micro-chaos map — can be
reformulated as

Yit1 =8y — ¢, (1.6)
where S corresponds to stable, controlled dynamics of the system without quantization, and
c; is a correction term representing quantization.
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Figure 1.7: Chaotic attractor spanning over multiple bands that are separated by switching
lines; taken from the paper of Cserndk and Stépdn [10)].

1
my
nn nn

o |

Figure 1.8: Left: Pendulum-on-a-cart, whose equation of motion leads to a 3D micro-chaos
map. Right: chaotic attractor in the state space of Map , taken from the
paper of Enikov and Stepan [2]1]].

Formula emphasizes the small-scale, locally unstable behaviour of the trajectories,
while the globally stable behaviour of the controlled system is better described by .

This statement is illustrated with Fig. that shows the large-scale and small-scale
dynamics of a 1D micro-chaos map .

At every point of the phase-space, the matrix U is the coefficient matrix of the locally
linearized micro-chaos map. Consequently, for this class of maps the Lyapunov exponents
can be directly calculated as the eigenvalues of matrix U, allowing one to quickly determine
the sensitivity on initial conditions.

Similarly to the result obtained by Enikov and Stépan [21I], one can also express the
mazimum error introduced by the map, which yields the size of the smallest absorbing
sphere. Since the maximum error is a global property of the map, it can be conveniently
expressed based on formula (|1.6)):

isi C;

1=0

[ ool = max = max , o oxie (=1L, (1.7)

i S'by;
=0

10
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Figure 1.9: The large-scale and small-scale behaviour of the 1D micro-chaos map at a = 3.5
and b= 2.8.

Here y; denotes the neglected fractional part during quantization, while vector b characterizes
the effect of the control effort on the state variables — see Eqs. and .

As it will be shown in Chapter [2] the calculation of ||ys|| is often rather challenging due
to the non-normality of the coefficient matrix S.

1.4 Characterisation of micro-chaos

During the analysis of micro-chaos maps, the usual goal is to determine the following prop-
erties and locate the following state space objects:

e largest Lyapunov exponent to determine the sensitivity on initial conditions,

e topological transitivity that is related to the mixing property,

e absorbing region (absorbing sphere) in the state space, whose size corresponds to the
maximal control error, after transients are settled,

e periodic orbits (and as a 1-periodic case, fixed points),

e topological entropy,

e chaotic attractors and/or repellors and their properties (e.g., fractal dimension).

11
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Many of the above tasks are not trivial to carry out analytically, therefore a set of numerical
methods is frequently used.

It is important to note, that in case of the micro-chaos maps presented in this dissertation,
the only non-linearity is originated from the quantization and otherwise the solution of the
equation of motion is known.

Lyapunov exponents can be directly calculated as they are the eigenvalues of matrix U,
see Equation (|1.5)).

Topological transitivity shows the mixing of trajectories on the invariant set (attractor).
It is required for having chaotic behaviour according to the most accepted definition [19]. For
the proof of topological transitivity, a non-trivial partitioning of the state space is usually
necessary, along with the introduction of a symbolic dynamics.

Periodic orbits can be found using symbolic dynamics, where the alphabet of symbols
corresponds to the quantized values of control efforts. The application of this method is
described in Section [2.4.3] An important property of chaotic systems is that many physical
properties can be efficiently averaged on the unstable periodic orbits [15].

Topological entropy shows the growth of the number of periodic orbits with increasing
period. In [5], the topological entropy is calculated using an algorithm which analyses the
pre-images of line sections taken from the vicinity of the invariant set. Topological entropy
can also be determined by simply counting the number of periodic orbits, moreover — in some
metric spaces — it is directly related to topological transitivity.

The size of the absorbing region or absorbing sphere can be formulated using Eq.
which estimates the total amount of error introduced by digital effects in the map. It was
shown in [7] that the infinite series is convergent and yields the radius of the absorbing
state space region. The challenging part is, however, to determine the proper combination
of fractional parts (c;) which maximize the series. The suggested solution to this problem is
described in Section 2.4.2

Fractal dimension of chaotic attractors can be calculated by the traditional box counting
method [15], or using time series analysis [34].

1 2/>/3 4 5 6

T

78 |9 [10 |11 N]12

A

13 |14 [15 [16] [17 |18\

- ~ A\
sink cell s mamer [ = [od ¢

(/—\ —

periodic group (PG), No: 1
transient cell sequence, leading to a PG

transient cell sequence, leading to the sink
Figure 1.10: Illustration of simple cell mapping.
State space objects can be reliably discovered by Cell Mapping methods [35]. Simple Cell

Mapping (SCM) is able to find fixed points and periodic orbits in a selected state space
region, along with their basins of attraction. In SCM, the state space is discretized; divided

12|



1.4. CHARACTERISATION OF MICRO-CHAOS

into cells, as shown in Fig. For every cell a single image cell is determined, where the
dynamics lead from the center point of the cell.

Following the images of cells, one can formulate a graph, which contains cycles (periodic
cell groups) and transient cell sequences leading to either a periodic group or to the area
outside the analysed domain — the sink cell. Chaotic attractors or repellors are usually
covered by one or more high period cell groups [35].
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The micro-chaos map

This chapter introduces the micro-chaos map corresponding to a single degree-of-freedom
digitally controlled mechanical oscillator. Two digital effects — sampling and quantization —
are taken into account: sampling converts the continuous flow to a 2D map and quantization
results in piecewise smooth control efforts.

The general classification of 2D micro-chaos maps is presented and the case of negative
stiffness oscillators with quantization on the control effort is thoroughly analysed. Finally,
certain results are generalized to multi degree-of-freedom cases.

Throughout this chapter, a restriction is made to the digitally controlled oscillator with
linearized equation of motion. The digital controller will implement a feedback control with
proportional and derivative terms (shortly PD-control), with sampling and zero-order-hold,
i.e., the calculated control effort will be kept constant between two sampling instants (see
Fig.[2.1)). Another frequently occuring digital effect — the processing delay — is not considered
in this chapter. The assumption is made, that measuring certain state variables, calculating
the control effort and governing the actuator takes negligible amount of time.

While the aforementioned restrictions could seem to be strict, these assumptions allow one
to see a qualitative picture of the effect of sampling and quantization. Since the solution of
linear systems are known analytically, the only non-linear term comes from the quantization.
The restriction to PD-control has an advantage of having control terms corresponding to the
stiffness and damping in the system. Lastly, the state space of two-dimensional maps can be
represented conveniently by several numerical methods and is easy to illustrate or show in
figures.

2.1 The digitally controlled 1 DoF mechanical oscillator

2.1.1 Solution of the equation of motion

As a consequence of the sampling and zero-order-hold control scheme, the control effort
assumes constant values between the subsequent sampling instants. In the present section,
the equations of motion and the solutions are formulated for three different linear oscillators
under a constant external force. These results provide the basis for the derivation of the
corresponding micro-chaos maps by taking into account the digital effects.

Consider the equation of motion of the 1 DoF oscillator with a linear spring and viscous
damping and constant external force (see Fig. :

15



CHAPTER 2. THE MICRO-CHAOS MAP
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Figure 2.1: One degree-of-freedom mechanical oscillator with digital control. The effect of
sampling and zero-order hold is illustrated on the right subfigures.

() +20ai(t) +alx(t) = —F, telir,(i+1)7), (2.1)

where a = y/k/m is the natural angular frequency, § € [—1, 1] is the damping ratio (20 a =
¢/m) and —F is a control effort betwen the i*" and (i 4 1)** sampling instants. The sampling
period is denoted by 7. Rewriting the system as a set of first order differential equations, one
can obtain

y(t)=Ay(t) +f, (2.2)

T (] A% d] o [3) e

The solution of the equation of motion can be formulated as:

y(t)=U{)y(0)+b(t)F, telir,(i+1)7), (2.4)
where
7% [ Tcos (al't) + dsin (al't) sin (aI't) /a
u) = T [ —asin (al't) I'cos (al't) — dsin (al't) ] ’ (2:5)
—e7% (T cos (a sin (o
ORI =

and I' = v/1 — §2.

Equation represents an operator between an initial condition y(0) and the solution
of the system, for a constant control effort —F'. Since sampling and zero-order-hold will result
in constant control effort between two successive sampling instants, no other inhomogenities
are considered.

Micro-chaos is expected to appear in cases when the trivial equilibrium of the uncontrolled
system is unstable. This situation occurs if either the stiffness or the damping parameter
becomes negative.

If the stiffness of the system is negative, Eq. changes to

Ft)+20ai(t) —a?x(t) = —F, te€lir,(i+1)7), (2.6)
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2.1. THE DIGITALLY CONTROLLED 1 DOF MECHANICAL OSCILLATOR

where a > 0 characterizes the negative stiffness, and the corresponding elements of the
solution are:

Ut = e~% [ Tcosh (al't) + é sinh (al't) sinh (al't) /a (2.7)
T asinh (al't) I cosh (al't) — §sinh (al't) |’ '
b() = 1 [ =T 4 e %% (I cosh (al't) + dsinh (al't))
A& ae 9 sinh (al't) ’

where the definition of I' changes to I' = /1 + 2.

Note, that the corresponding matrix U(¢) and vector b(t) can be derived for the case of
zero stiffness, too [11].
If the damping of the system is negative, Eq. (2.1]) changes to

i) —20az(t)+a’x(t) = —F, telir,(i+1)1), (2.8)

where the damping ratio § > 0 characterizes the negative damping, and the corresponding
elements of the solution are now:

edot [ I cos (al't) — §sin (al't) sin (al't) /o } ’

Ut) =+ —asin (al't) ' cos (al't) — dsin (al't)

. (2.9)

b(t) = 1 - % (T cos (al't) — §sin (al't))
a2l o ed sin (al't) ’

and I' = v1 — §2.

2.1.2 Stability of PD-controlled system with sampling but without quan-
tization

If the trivial equilibrium of the oscillator is unstable (negative stiffness or damping cases,
Egs. —), a proportional-derivative control (or shortly PD-control) is frequently used
to stabilize the equilibrium. Since quantization of control effort introduces a nonlinearity
which would make stability analysis complicated, the case without quantization is used to
obtain a reference stable parameter domain for the micro-chaos map. For the case with
sampling and zero-order hold, the corresponding control force in the i-th sampling period is

To carry out the stability analysis with respect to control parameters P and D, Jury’s
criterion (that follows from the Routh-Hurwitz criterion) [40] is applied to the sampled system
(without quantization)

Yit1 =SYyi, S=U+b®k, (2.11)
wherek =[P D]" andy = [z ],
If the stiffness is negative, the coefficients of the characteristic polynomial yield the fol-
lowing conditions for the stability of the equilibrium at « = 0:

I (a? sinh ™! (ad)(cosh(al') + cosh(ad)) + P) - 6P

ap D < )
a
. D> I ((P —2a?) 4+ Psinh™!(ad)(cosh(al') — cosh(as))) — 6P (2.12)
aj : 5 ,
as: P> a?.
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Figure 2.2: Stable parameter domains of the PD-control, in case of negative stiffness.

Conditions can be used to illustrate the domain of stable control parameters, see
Figure [2.2]

These stable parameter domains will be used as a reference during the analysis of micro-
chaos, after taking digital effects into account. For switched systems of this type, the general
observation is, that transient chaos appears at the boundary of stability [45] [50].
Throughout this chapter, the assumption is made, that for the global behaviour of micro-
chaos maps, the non-quantized case provides a good reference for the domain of stable control
parameters.

2.2 The 2D micro-chaos map and its classification

In this section, another digital effect is added to the sampled system: quantization. As it
will be presented, the presence of two digital effects (sampling and quantization) will result
in chaotic behaviour.

If sampling occurs, with sampling period 7, the following map describes the evolution of
the oscillator:

v+ 1)7)=U(n)y(iT)+b(r) Fi(y(iT)), 1€ Z. (2.13)

Here F; is the control effort calculated at the i'" sampling instant from y(i 7). With re-scaling
the time and using 7' = t/7, one arrives at the following map:

Yit1 = U(l) yi + b(l) Fi(y'i)a 1 € 7. (214)

In order to match the dimensionless time, the following parameters should be used in U and
b:

&=ar, P=Pr®, D=Dr (2.15)
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2.3. INVERTED PENDULUM WITH CONTROL EFFORT QUANTIZATION

Note, that & is the composition of two characteristic time constants: the reciprocal of the
characteristic time constant (or natural angular frequency in the case of positive stiffness) «
and the sampling time 7.

Adding quantization (or in other word, rounding) to the control can be done in two ways.

e Qutput quantization is the case, when the calculated control effort (the output of the
controller) is quantized with output resolution rg. This means, that the rounding
function Int is applied to the control effort F;/ro, then the result is multiplied with the
resolution:

1 ,
Vit1 = U(1)yi +b(1) ro Int <mFZ(yZ)> , i €Z. (2.16)

e Input quantization is the opposite case, when the measured state vector (the input of
the controller) is subject to quantization with input resolution ry; for the it" component
of the state vector. The corresponding map assumes the form

vir1 = U1y, +b(1) F; (RiInt (R; ' yi))),  i€Z (2.17)

Here Ry = diag(ry1,71,2,-..,71,n) is the diagonal matrix of input rounding resolutions.

Maps ([2.16)) and (2.17)) are micro-chaos maps since their form corresponds to the formula
(1.5). Of course, one can re-scale the space coordinates and therefore eliminate the resolution
parameter ro or 7.

Before examining one of the micro-chaos maps in detail, a general classification for the
2D micro-chaos maps corresponding to the 1 DoF mechanical oscillator will be provided. The
categorisation is made by the nature of instability and type of quantization, see Table

Instability / Quantization | Output | Input | Input and output
Negative stiffness A B
Negative damping C D see Chapter

Table 2.1: The classification of 2D micro-chaos maps with respect to the nature of instability
and quantization.

By looking at the standard cases, four simple types of the 2D micro-chaos maps can
be distinguished. The twofold quantization cases (when both the input and output are
quantized) will be covered later, in Chapter Cases with negative stiffness and negative
damping fall back to the negative stiffness cases, as that type of instability dominates.

Although the methods described in this dissertation can be applied to broad classes of
micro-chaos maps, most of the calculations were carried out for Case A. Therefore, the
following section will focus on the negative stiffness, output quantization situation.

2.3 Inverted pendulum with control effort quantization

Applying the control scheme described by (2.16)) to the linearized equation of motion of the
inverted pendulum, one obtains

G(t) + 20ap(t) — a’p(t) = —ro Int (Pfg‘j) + Df(()tj)> , j=1,2,..., (2.18)
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Figure 2.3: Illustration of sampling and quantization and a digitally controlled inverted pen-
dulum.

where « is the inverse of the characteristic time constant that describes the uncontrolled
inverted pendulum, ¢ is the relative damping, P and D are control parameters and ro is the
resolution of the control torque (see Figure . The rounding is taken into account with the
Int() function, which denotes rounding towards the origin, according to Fig. Introducing
the dimensionless time T' = t/7, system parameters & = a T, P = P72, D = D7 and re-
scaled space coordinate © = ¢/(ro 72), the resolution parameter can be eliminated. Note,
that parameter & is the ratio of the sampling period and the characteristic time constant of
the oscillator. Its value is usually kept very small in practical applications.

According to the solution of the linearized, dimensionless equation of motion , the
following mapping can be derived between the states at subsequent sampling instants:

Yir1 YzA zA / (219)
F;, = Int(PxZ- + D.’L‘Z),

where y = [z; /|7, and — with the abuse of notation — U = U(1), b = b(1) from Eq. (2.7).

Equation ([2.19) is the micro-chaos map corresponding to the negative stiffness and output
quantization case (case A in Table [2.1)).

2.3.1 Fixed points, switching lines and topological pattern

Looking at the state space of the micro-chaos map , one can immediately realise the
effect of output-quantization: control effort bands appear in the state space corresponding to
integer F; values. From this fact, the existence of multiple unstable saddle points also arises.

The switching lines corresponding to the PD-control, separating control effort bands F; =
m — 1 and F; = m are:

Int(Pzx+Dz'y=m = swpy:2' = %, m € Z\{0}. (2.20)
For each control effort F; = m, an unstable equilibrium (saddle point) exists:
F,,=UF,,+bm. (2.21)
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Figure 2.4: The state space of micro-chaos map . Black lines indicate switching lines,
Three example

black dots and blue lines are fixed points and their manifolds.
trajectories are depicted leading to chaotic attractors, shown in balloons, where

states corresponding to sampling instants are shown. The red point in the m = 4
band indicates the first virtual fized point of the map (that is closest to the origin).

& =0.07, § = 0.03, P =0.007, D = 0.02.

0]), therefore they can be found on the

Fixed points correspond to zero velocity (F,, = [z}
x-axis: m
Int(Pz™) = a%2™ = a2l = a2 m € Z. (2.22)

The corresponding fixed points are denoted by black dots in Figure This formula is valid

only if 2 resides between the m'™" and (m + 1)%* switching lines — since this is required to

have a matching control effort value:
1
Iml |—”§| Im| + (2.23)
P Q P

If this condition is not satisfied, the fixed point is said to be virtual, see the red dot in Figure

between the switching lines swy and sws.
The stable and unstable manifolds of fixed points are corresponding to the eigenvectors of U:
L ) ] (2.24)

1
€stable = |: @(—F o (5) :| €unstable = |: @(F _5

When varying & or P parameters, if a fixed point crosses the switching line at Im|/&2 =
(jm| +1)/P, a border collision bifurcation occurs and the fixed point becomes virtual. Simi-
larly, if a virtual fixed point crosses the corresponding switching line at |m|/P = |m/|/&2, it
turns to a regular fixed point via border collision bifurcation. See Fig. and Fig.
Iterating the micro-chaos map, these oscillations portray a picture of one or more fractal-like
— supposedly chaotic — attractor in the state space, see balloons in Fig.

Due to the nature of the dynamics around the unstable saddle points, trajectories are pushed
from one control band to the other along the stable and unstable manifolds of the fixed points.
21
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The control effort does not immediately change as a trajectory enters a neighbouring control
effort band, it is updated only at the next sampling instant. This allows the trajectories to
spend a varying amount of time (until the next sampling occurs) in a neighbouring band
with their original dynamics, therefore, irregular oscillation appears between the neighbour-
ing control effort bands, governed by the stable and unstable manifolds of the neighbouring
saddle points — if the steps of the map are sufficiently small — see Fig. [2.4

Therefore, strange sets — chaotic attractors or transient chaotic repellors: conditionally
invariant sets corresponding to transient chaos — are expected to be in the neighbourhood of
the intersection points of the switching lines and the z axis (see Fig. :

t(P T =m = Taper = %, m € Z\{0}. (2.25)

Consequently, an alternating pattern of interesting points (corresponding to strange sets) and
fixed points is present in the state space:

0 1 1 2 2 Mmax
Ty < Tappr < Ty < Topy < Ty <o <x2¥tr<le < < Tty
11 2 2 m  m Mumax (2.26)

0<T<A72<T<A2<"'<T<A72<"'< —.
P « P « P 0} P

The alternating pattern ends with the first virtual fixed point at mpax/ &2 that resides in the
(Mmax + 1)%* band.

Restricting the control parameters to the stable domain (]AD > G2, see Section , the
index mpax of the outermost interesting point can be expressed from Eq. (2.23)) :

~

1 P—a* 1 v
LU kN L R (2.27)
Q P P a2 P P — a2
d2
Mmax = 10t <P - &2> . (2.28)

Here the function Int — just as in the previous sections — rounds to the next integer towards
the zero. In general, the number of fixed points is Ny, = 2mpax + 1, since the origin is also
a fixed point, and the number of attractors or repellors is Nutty = 2 Mpmax- If Mmax = 0, the
only fixed point is the origin and this pattern does not appear. The condition for this case
is:
a? A
. <1 = 2&*<P. (2.29)
P — a2
Based on Condition , the number of fixed points and interesting points is infinite
if P = a2 Figure shows the location of attractors for a case corresponding to realistic
system parameters (small & and P due to relatively small sampling times), where chaotic
attractors appear in the neighbourhood of all interesting points. Figure [2.5] illustrates the
number of fixed points on the stable domain of control parameters.
In this case, the position of the outermost chaotic attractor can be used to provide a good
estimate of the control error. According to Egs. and , the position of the last

interesting point (attractor) can be expressed as:

Mmax

Tattr,last — p 5 (230)

which can be considered as an estimation of the maximal control error, since the extent
of the chaotic attractors is small.
In order to classify the strange sets at the neighbourhood of interesting points, — determine
whether they are chaotic attractors or repellors —, the detailed analysis of the vicinity of
saddle points is carried out.
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302 4 5 b 6 202 7 8

Figure 2.5: The number of fixed points with respect to control parameters, at & = 1.8 and
6 = 0.15. The shaded area is the domain of stability for the sampled system.

2.3.2 Smale horseshoe structures

For the detailed examination of the topology of the phase-space, an attempt is made to find
Smale horseshoe structures. As initial domains, parallelograms @, = L U R, defined by the
stable and unstable manifolds Wf , Wg , Wg and Wg of neighbouring fixed points F; on the
left and F;. on the right are chosen, as depicted in Fig. Here » = [ + 1 denotes the index
of the switching line SW, between the two fixed points. [ and r are the integer numbers
corresponding to the control effort values in the bands next to the switching line SW,.
Each parallelogram is divided into two trapezoids (denoted by R on the right and L on the left,
see the crosshatched regions in Fig. by a switching line. The vertices of the trapezoid L
are the fixed point Fj, the intersection point PEVLS of the manifolds Wg (unstable manifold
of the fixed point on the right) and W7 (stable manifold of the fixed point on the left), the
intersection point PRUSW of ng and the switching line, and the crossing point PLUSW of
manifold WY and the switching line, see Fig. The vertices of the other trapezoid (R)
are the fixed point F,, and points PEUSW  pLUSW anq PLURS  where the notations can be
interpreted similarly. The positions of these points can be deteremined by straightforward
analytical calculations. The images and pre-images of trapezoids L and R can be calculated
by restricting the dynamics to the corresponding band, i.e., to the case m =1 or m = r. The
restricted versions of the micro-chaos map will be denoted by f; = f|n= and f, = flm=r,
respectively.

The images of the quadrangles f,.(R) and f;(L) are stretched along the unstable manifolds,
while the pre-images f,'(R), f; '(L), f; '(R) and f;'(L) are stretched along the stable
manifolds. One must be careful during the determination of pre-images, since e.g. f~'(L) =
f7Y(L) N R, where

L) ={3|5=U""(y-br),yeL}. (2:31)
Thus, it may happen that some parts of the calculated pre-image set ff (L) are cut away
by the switching line SW,.

It is easy to see in Fig. that fi(L) \ Qr # 0, i.e., fi(L) is stretched out from the initial
parallelogram at the considered parameter set. Thus, a chaotic repellor with transient chaotic
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Figure 2.6: Locations of attractors of the micro-chaos map with respect of P, with
& = 0.075, calculated using Eq. . Increasing P, the outermost fixed points
disappear due to border-collision which causes the outermost attractors to vanish.

(The pattern of attractors and fixed points does not depend on parameters § and
D.)

motion exists in this domain.

In general, if there is no trajectory which is able to escape the parallelogram, the horse-
shoe structure indicates a chaotic attractor. Therefore, the images of corner points of L and
R at the switching line SW, should be analysed, as these states have the highest potential
to jump over the neighbouring fixed point’s manifold.

Figure shows four strange sets next to each other. Two of them (at m = 4 and m = 7)
are repellors, while the images of parallelograms do not stretch out from the initial domain
at m = 5,6, thus, two separated attractors exist here. In fact, the topology resembles to
multiple adjacent baker-maps [7].

The detailed analysis of the images of these points and conditions to classify the strange
sets are provided by G. Cserndk in [6] and are not covered in this thesis.

It can happen, that two chaotic repellors together form a chaotic attractor in the state
space. It is important to note, however, that the horseshoe structures of neighbouring strange
sets become entangled in case of extreme jumps passing through multiple control effort bands.
The horseshoe structures of neighbouring strange sets become entangled in case of extreme
jumps, when trajectories cross multiple control effort bands within a sampling period.

Large & corresponds to large sampling period or large amount of inertia and can lead to
large jumps away from the origin. Large P parameter can be related to excessive control effort
and therefore may cause jumps towards the origin — often leading to several control bands
into the other half of the phase plane. As a consequence of these jumps, large attractors can
be formed in the phase-space, hiding the underlying pattern of saddle points and repellors.

Figure [2.9) shows the transition from separated chaotic attractors to a single chaotic
attractor formed by transient chaotic repellors.
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Figure 2.7: The schematic picture of the horseshoe-structure in the parallelogram Q, = LUR.
Here r = 4 and parameter values are « = 0.8, § = 0.2, P = 0.7 and D = 0.6.
Note, that the switching lines and stable manifolds are not necessarily parallel.
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Figure 2.8: The horseshoe structures at the switching lines m = 4,5,6,7 at o = 0.8, 6 = 0.2,
P =0.7 and D = 0.6. Two trajectories are also shown, leading to disconnected
attractors.
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Figure 2.9: The state space of the micro-chaos map when sampling time T increases.
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Left column: Initially, there are four separated chaotic attractors in the state
space. The inner chaotic attractors turn to repellors forming two larger chaotic
attractors spanning over multiple control effort bands.

Right column: These attractors turn to repellors again forming a single chaotic
attractor.

(Note: only the first 3 switching lines are indicated on either sides, pattern-
breaking virtual fized points are indicated with red dots.)



2.4. GENERALISATION TO MULTI DOF AND CONTROL EFFORT QUANTIZATION

2.4 Generalisation to multi DoF and control effort quantiza-
tion

The previous section dealt with the single degree-of-freedom case, introduced a topological
pattern of unstable saddle points and interesting points — whose neighbourhood contains
chaotic attractors or transient chaotic repellors. Smale horseshoe structures were also shown,
whose existence solely proves chaos.

For more degrees of freedom and for higher dimensional micro-chaos maps, the overview
of state space and finding Smale horseshoe structures is often more difficult. Fortunately,
a partial proof of chaos can be done in multi DoF cases by examining the following two
properties:

e Sensitive dependence on initial conditions.
e Existence of an absorbing domain.

The above two points correspond to a mathematically loose, practical definition of chaos,
which lacks the property of topological transitivity.

Additionally, periodic orbits can be provided using a symbolic dynamics approach, indepen-
dently of the dimension of the micro-chaos map.

2.4.1 Lyapunov exponent

Obtaining the Lyapunov exponents of the micro-chaos map has great importance during the
proof of chaos. If the largest Lyapunov exponent (LLE) is larger than 1, the sensitive depen-
dence on initial conditions is immediately proven [50} [15].

As it was already mentioned in Section the Lyapunov exponents of the micro-chaos
map can be directly calculated as the eigenvalues of matrix U.
For example, the Lyapunov exponents in the negative stiffness and output quantization case
(Eq. (2.19)) are

Aty = exp(—da £ I'a) = exp(a(—6 £ 1). (2.32)

Since I' = v/1+ 62 > §, one of the eigenvalues is larger than one: A\Y > 1 > AU. Thus, the
micro-chaos map is sensitive to the initial conditions. This result corresponds to the fact that
all equilibria are locally unstable saddle points.

2.4.2 Absorbing domain; absorbing cuboid

An absorbing domain A in the state space of the micro-chaos map f can be defined with

e f(A) C A, and
e there is n > 0 for every yy, such that f™(yg) € A.

That is, the image of the absorbing domain is within itself, and eventually, the map leads
to the absorbing domain from all initial conditions. This subsection provides an estimate for
the size of the smallest possible absorbing domain of the micro-chaos map.

The micro-chaos map expresses an unstable, uncontrolled system, which is stabi-
lized with a quantized control effort:

yi1 =Uyi+bF;,  F el (2.33)

As it was already mentioned in Section the micro-chaos map can be rewritten as a
stabilized system without quantization, from which correction terms corresponding to the
neglected fractional parts (x;) are subtracted [9].

yit1 =Syi—bxi, xieR (2.34)
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Egs. (2.33) and ([2.34]) are valid for higher-dimensional micro-chaos maps, too, in the case of
output quantization. For the inverted pendulum ({2.19)),

P
S=U+bgk, k:[D]. (2.35)
This formalism allows one to express an estimate for the maximum control error introduced
by the digital effects. Applying the micro-chaos map repeatedly, the following expression can

be written:
j—1

yis1 = yo— > SFbyy. (2.36)
k=0
If the control parameters are chosen from the stable parameter domain (Sec. , the
eigenvalues of S are inside the unit circle on the complex plane [9], therefore:

lim ||S7]| = 0, (2.37)
J—00

with any kind of norm, meaning that the information originating from the initial state will
eventually vanish and solutions will tend towards an absorbing domain in the state space.

It is possible to define a sequence of fractional parts x = {x1,x2,.-- Xk}, such that the
following series is convergent and tends to the farthest point of the invariant set of the micro-
chaos map, or in other words y~, denotes the limit of all possible solutions (after transient
behaviour disappears):

: (2.38)

J
I F
fim 3 S"b

where the limit is maximized with respect to the sequence of fractional parts x. Introducing
D as the diagonal matrix of eigenvalues ()\;) and T, the matrix formed by the columns of
right eigenvectors of S, one can write:

[y ool = max
X

o
Yoo =T Y DFT by, (2.39)

k=0
If the diagonalization of S exists, then (2.39)) will converge, since the eigenvalues of S are
within the unit circle on the complex plane by definition [6]. The case, when the diagonal-
ization of S does not exist is not covered in this thesis, but for reasonable system parameters

this does not occur. Let ¢; and p; denote the modulus and argument of the ith eigenvalue \;,
and b = T~'b. With this notation, Eq. (2.39) can be written as:

S0 MY Xk b >0 Xer TNy X b
> heo A5 X b2 >0 21 T2y xi b

Yoo = -T = - =
o My Xk bn D k0 =1 Tn,j)‘f Xk b
S0 Xer Thj o (cos(k ) + i sin(k ¢;)) x by > h0 0Lk Xk
S0 21 T j pF (cos(k ¢) + i sin(k ¢;)) xx b | Xk 02k Xk (2.40)
>ono 21 Tnj P (cos(k é;) + i sin(k ¢5)) x b > k0 Ok X

Note, that in each component of y,, the same yj fractional part appears.
To maximize the i component of y.., the following choice of the k' fractional part should
be made:

X' = {xi} = {sign(oix)}, E=0,1,2,... (2.41)
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Eq. (2.41) yields a good upper estimation when compared to simulated results.

A global absorbing cuboid can be defined by taking components of y., with the substitu-
tion of the corresponding set of fractional parts x* which maximize that component:

yOO,l |X:X1
yOO,Q ‘X:XQ
Yabs = . . (242)

Yoo |x=x"

This absorbing cuboid can provide a basis for the error estimation and can be used during
the proof of chaos, as well.

Providing a set of neglected fractional parts which maximize a certain norm can be rather
challenging, see Section [25].

2.4.3 Periodic orbits and symbolic dynamics

Periodic orbits can be used to verify the previously introduced error estimation. If periodic
orbits up to a relatively long period are obtained, they are expected to cover the invariant

set — chaotic attractor — of the micro-chaos map quite well.
Starting with the estimation provided by Eq. (2.42)) or Eq. (2.30)), it is possible to select
a corresponding symbolic dynamics, where symbols correspond to control effort values:

m = {—Mmax, —Mmax + 1,...,0,1,2, ..., Mpax}. (2.43)
It can be seen, that a p-periodic orbit starting from yg can be expressed as:
yp=yo=I-U")"" (meUP ' +mUP? + - + m,_1U") b. (2.44)

Here {mg, m1,...,mp_1} is a combination of symbols selected from m. In order to enumerate
all p-periodic orbits using Eq. (2.44), the prime cycles [I5] — circular permutations with
repetition — of symbol set m of length p are calculated and substituted, see Table
Then all possible periodic orbit is tested by repeatedly applying the micro-chaos map and
verifying the actual control effort value m;. Obviously, a periodic orbit is only valid if:

F(y;)=m; for i=0,1,...,p. (2.45)

Prime cycles (circular permutations with repetitions)
{0}, {1}, {2}
{01},{02}, {12}
{0017}, {002}, {0111,
{012}, {021}, {022},
{112}, {122}
4 [ {0001}, {0002}, {0011}, {0012}, {0021}, {0022},
{0102}, {0111}, {0112}, {0121}, {0122}, {0211},
{0212}, {02211, {0222}, {1112}, {1122}, {1222}

W~

Table 2.2: Prime cycles of m = {0, 1,2}, up to length p = 4.

Applying the method and generating the periodic orbits up to p = 22 in case of the micro
chaos map with a symbol alphabet length of 11 (m = —5,...,+5), and plotting the periodic
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1.5 F

-1.5 |

1 \
0 1 2 3 4

-2
-4

Figure 2.10: Unstable periodic orbits (indicated with coloured crosses) from length 3 to length
22 covering a chaotic attractor (red points), at & =1,06 =0,P =1.25,D = 0.8.
Yellow circles indicate saddle points, coloured lines indicate switching lines.

orbits give a good picture of the chaotic attractor which spans over multiple control effort
bands, see Figure 2.10] These periodic orbits are unstable and therefore difficult to find with
numerical simulation. One can imagine, that the actual chaotic behaviour is formed by these
unstable periodic orbits.
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2.5. APPLICATION: MULTI-PD CONTROLLED DOUBLE INVERTED PENDULUM

2.5 Application: Multi-PD controlled double inverted pendu-
lum

Consider a double inverted pendulum with a control torque at the lower joint (Fig. left).

Given a multi PD-control — e.g., separate proportional and derivative control terms for every

part — with zero order hold, 7 sampling period, and rounding of the control signal, the torque
between the ™ and (i + 1) sampling instances can be written as:

1 ) . .
M = pyInt pr (p1 gOl(ti) +d; ng(ti) + po 902(15@') + ds (pz(ti)) , lti=to+1T. (2.46)

::m(ti)

Here pi1,pe,d1,ds are control gains, and py is the resolution of the control torque. After
linearization, the equation of motion can be solved between successive sampling instants.
Introducing dimensionless time 7" = t/7 and rearranging the solution of the equation of
motion, one obtains the following micro-chaos map, that describes the state of the pendulum
at successive sampling instants:

yi+1 =Uyi +bM, (2.47)

where: yI = (( ¢1(t:;) $2(t;) @1(ti) @2(t;) ). U and b are composed from the solution:

Argca—Asgacy c1—c2 Agsaysi—Ajpansy Qapsa—a1 81
Aja—Asg A12—Asg A12—Azz A12—Asz
A12Az2(c2—c1) A1zci—Agacy A12Az(a1s1—a2s2)  Agsopsa—Aisansy
U= A12—Azg Ajp—Asg Aja—Asg A12—Azg
Ajpas2—Agaans Q51— 52 Ajaco—Aszacy c1—co )
Aparaz—Azajas Ajparas—Azajas Aja—Asg A12—Azz
AigAzoansg—AiaAzsansy  Arpansi—Aszpagsy A12A22(ca—c1) Argc1—Asgaca
Ajpaias—Azaiaz Ajparaz—Azaias Aj2—Asz A12—Azz
bl — Agg 51 A2 82 Agg c1i A1 coi
a1(A12—Az2)  a2(A2—A12)  a1(A12—Az2)  az(Axx—A;2)

Here, the eigenvalues of U are A\ 2 = O:ta% and A3 4 = Ozta%, where aq, ao are characteristic
time constants, ¢; and s; are cosh(c;) and sinh(a;) respectively, and Ajs and Ags are the 279
components of the mode shape vectors (with the first component taken as A;; = 1).

(pzﬂ (pz ¢1a gﬂla gﬂz’ gbz / \

PC

G (G2 (b

Figure 2.11: Double inverted pendulum with control torque and zero order hold multi-PD
control. The calculated control effort m(t) is rounded due to the quantization of
the control torque. See Eq. .
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CHAPTER 2. THE MICRO-CHAOS MAP

2.5.1 Stable parameter region of multi-PD control

Considering the stability of the multi-PD control, one can calculate the 4D parameter region
(see Fig. corresponding to stable equilibrium solution for the sampled, but not rounded
case at ¢1 = 0, o = 0, using the Jury’s stability criterion. If the rounding is taken into
account, the stabilized equilibrium becomes unstable, as the control turns off in the band
corresponding to M = 0, although the equilibrium remains practically stable [43] outside
the M = 0 band. Therefore, the goal is the determination of the practical stability of the
micro-chaos map and the maximum distance of trajectories from the origin is examined.

It is important to note, that a stabilizing control can be achieved with p; turned off. This
enables one to examine the projection of solutions and switching planes defined by Eq.
in a 3D subspace of the state-space, as switching planes does not depend on ¢; (See Fig.
2.13])

p1=0,d1=30 p1=10,d1=30 p1=20,d1=30 p1=30,d1=30 p1=40,d1=30

dy

20 40 60 80 100p2 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100}02 20 40 60 80 IOOp2
p1=0,d1=20 p1—10 d1—20 p1—20 d1—20 p1=30,d1=20 p1=40,d1=20

dy
100

80
60
40
20

20 40 60 80 100p2 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100p2 20 40 60 80 IOOp2
p1=0,d1=10 p1=10 dl—lO p1—20 d]‘lO p1=30,d1=10 p1=40,d1=10

dy
100
80

60

40
20

20 40 60 80 100102 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100p2 20 40 60 80 100p2

Figure 2.12: Stable parameter domain of the multi-PD control. Green B indicates stable, red
B indicates unstable parameter regions.

2.5.2 Micro-chaotic behaviour

The rounding in the micro-chaos map defines switching surfaces, which separate bands with
the same integer result of the rounding function (see Eq. ) For a given torque-
resolution, increasing the sampling time 7 allows the system to venture into a neighbouring
band to some extent, before the next sampling occurs and the control torque is updated.

As explained before, this results in chaotic behaviour, as the time instant and the position
of entries and exits vary during the motion between adjacent bands. An example attractor,
where the solution visits the M = —py, M = 0 and M = py bands can be seen in Fig. [2.13]
If the system parameters correspond to larger sampling times or smaller torque-resolution,
the system can cross multiple control bands before the next sampling occurs (i.e., before the
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value of M gets updated).
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Figure 2.13: Example attractor of the micro-chaos map . Colours indicate different M
values. Red M, blue B and green M colours indicate M/py = —1, 0, +1 values.
On the left image, the points of the attractor are joined with blue lines.

2.5.3 Estimation of error in the micro-chaos map

Rewriting the micro-chaos map into the form mentioned in Section [2.4.2] one obtains
yit1 =Syi —bxi (2.48)

where S = U + b ® [d; da p1 p2] is the map corresponding to the stabilized system and y;
denotes the fractional part removed during the i rounding.

In order to estimate the maximal error of the controller, Eq. is applied. Every com-
ponent of y is maximized with a separate choice of the k' fractional part yj = sign(o; k),
yielding a good upper estimation when compared to simulated results, see Fig.

[ 4]
020

Lol - Simulated + Simulated
Estimated Estimated
12}
0.15}
1o}
0.8f
010}
0.6}
04r 005
02 M andh on o ol
50 100 150 200 250 w0012 50 100 150 200 250 300" 2

Figure 2.14: Comparison of simulated and estimated mazima for y1 = p1 and y3 = ¢1.

As it was mentioned in Section [2.4.2] it is not trivial to select a set of fractional parts
to maximize a certain norm. One can construct a suboptimal choice of x; to estimate the
maximum £; norm. Rewrite Eq. (2.40) in the following form:

oo o0 o0

Y b0 0Lk Y e €1k Xk S1,m + D hema1 €Lk Xk
o [oe) o0

> k0 02,k > k0 €2,k Xk $2,m + D k1 €2,k Xk

Yoo = (2.49)

)

(o] (o ¢] o0
> he0 Onk > heo En,k Xk Snam T D hema1 Cnk Xk
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where s;,, denotes Y ;" €;x X% To maximize the £ norm of y, the following strategy was
followed: the k' fractional part y, is chosen such that the new terms maximize the increase
of the £; norm in the k' step, taking into account the sign of the already accumulated part
of the series. According to this rule, one can write:

X = sign(sign(sy x—1) ek + sign(sak—1) €2 + - - - + sign(sp 1) en k) = sign(sign(sx)* ey).

(2.50)
Although the rule for the choice of x; described by Eq. does not yield the optimal
choice to maximize the £1 norm of y., it provides a good estimation. The optimal . series
(yielding the maximum £; norm) for k& € {0...100} had been generated and was compared
to the rule based estimation (See Fig. M) It was found that the rule based estimation
yields close results to the optimal one. It is important to note, that generating the optimal
series involves exponential time complexity, as the number of combinations is 2! for a given
series length [.

Ll(yoo) Ll(yoo)
1.0 1.0 —
0.8 0.8
— optimal yp — optimal yp
0.6 optimal Ly 0.6 optimal Ly
rule based i rule based i
— rule based L; — rule based L;
0.4 0.4
0.2 0.2
I 10 15 20 5 10 15 20 k
1(%0)
1.2
1.0
0.8 .
— optimal yj
optimal [;
0.6 rule based yj
— rule based Ly
0.4
0.2
k
20 40 60 80

Figure 2.15: Analysis of rule-based £1 norm estimation with: a1 = 4.23763, ag = 11.3663,
Ao = 1.4305, Aoy = —2.09717. One can see, that the optimal xp combination
incorporates a choice of xg9 which decreases the £1 norm locally, but increases
its value overall. Top left: series length k = 20, right: k = 21, bottom: k = 93.
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2.5.4 Application of Simple Cell Mapping

The estimated control errors can be used to choose the initial state space region for the
Simple Cell Mapping method [35], which is used for further analysis of the micro-chaos
map. Consequently, the estimation of various norms can be used effectively, even if they are
determined with minor inaccuracies (due to the truncating of the infinite series, or using the
rule based estimation of £; norm, for example.) An example of application to the micro-chaos
map is shown in Fig. which illustrates the result of SCM using a low resolution
cell state space.

Figure 2.16: SCM results with a cell state space of 40 x 100 x 40 x 60 cells (total of 9.6
million cells). Orange M tiles indicate a periodic group of 92 cells situated on
the attractor, blue M dots show the attractor obtained with numerical simulation.
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2.6 Outlook towards input quantization

The previous sections of this chapter dealt with the case of output-quantization, when the
calculated control effort is quantized. This section provides a brief overview about the case
of input-quantization, when the input of the controller, i.e., the measured state is subjected
to rounding.

Most of the previously mentioned methods and approaches can be applied or generalised
to this case, as well [14], [30} 25|, [7]. However, as it will be shown in this section, the complexity
of input-quantization is higher due to the separated quantization of every component of the
state variable.

2.6.1 Micro-chaos map of an inverted pendulum with input-quantization

Consider an inverted pendulum with sampling, zero-order hold and quantization at the mea-
sured angle — the input of the controller — with resolution r; and sampling period 7. Assuming
that the angular velocity is calculated from the sampled angle values, its resolution is ri/7.
Consequently, the linearized equation of motion can be written as:

¢@)+2&mxw—wﬂ¢@):—J%qhm<¢fﬂ>-—D:?mt<¢%07>, i=1,2,..., (2.51)
T I

where « is the inverse of the characteristic time constant that describes the uncontrolled
inverted pendulum, ¢ is the relative damping, P and D are control parameters. Function
Int() denotes rounding towards the origin, according to Fig.

Introducing the dimensionless time 7" = t/7, system parameters & = a7, P=Pr2,D=Dr
and the re-scaled space coordinate x = ¢/ry, the resolution parameter can be eliminated.
Note, that this choice of dimensionless displacement and time results in the same quantiza-
tion resolutions of the displacement and velocity.

According to the solution of the linearized, dimensionless equation of motion , the fol-
lowing micro-chaos map can be written describing the evolution of the system between the
states at subsequent sampling instants:

vit1 = Uy; + b F},

. . , (2.52)

F; = P Int(x;) + D Int(z;),
where y = [z; z!]T, and U = U(1), b = b(1) from Eq. (2.7).
Equation ([2.52)) is the micro-chaos map corresponding to the negative stiffness and input
quantization case (case B in Table [2.1)).

2.6.2 Switching lines and control effort tiles

The most notable difference compared to the case of output quantization is that input-
quantization yields a separate rounding for every state variable. In the case of the 2D micro-
chaos map (2.52)), the control effort contains the quantized position m; and the quantized
velocity n;:

F; = PInt(z;) +D Int(z)) . (2.53)
SN—— SN——
=my; =n;

Therefore, horizontal and vertical switching lines are present in the state space forming a
rectangular grid, see Figure The equations of switching lines are:

SWp, : x=mry, m e Z\{0},

2.54
SW,,: o =nr, n€Z\{0}. (2.54)
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Control effort tile T,y , is the state space domain between SW,,, SWy,+1 and SW,,, SWy 41,
where the value of the control effort is F; = m P +n D, as shown in Fig. Since there
is no switching line at m = 0 and n = 0, the size of control effort tiles around the axes is
doubled.

It is important to note, that the state space domain corresponding to a specific control
effort value is bounded, while in the case of output quantization, control effort bands were
unbounded.

8

Figure 2.17: The state space of the micro-chaos map in case of input-quantization and & =
0.6,0=0,P=D=0.6. Gray lines indicate switching lines, three reqular fized
points (and their manifolds) are shown in blue, and two virtual fized points (and
their manifolds) are shown in red. Note, that due to the special choice of equal
P and D parameters, the dynamics in tiles To o and 111 are governed by the
unstable manifold of the same virtual fized point, according to . Green
lines are the additional branches of the blue and red manifolds that are valid in
the bands |n| = 1.

37



CHAPTER 2. THE MICRO-CHAOS MAP

2.6.3 Fixed points

For every control effort tile 7}, ,, it is possible to express an unstable saddle point of the
micro-chaos map: F™" = [z,"" 0], where the location can be obtained by substituting zero
velocity and acceleration to the equation of motion (2.51]):

3 . P+nD
2ot =mPynD o amn=T2INZ e (2.55)
o
Obviously, only the fixed points corresponding to zero velocity (n = 0) may reside within
their corresponding control effort tiles. The condition for F™ to be a regular fixed point is:

A~

P
m < 772 <m+1, (2.56)
(0%
that is,
ma*<mP < (m+1)a2 (2.57)

The left inequality yields the stability condition P > a2, see Eq. 1) while the right
inequality yields an upper bound for the index of regular fixed points:
d2

m< — . (2.58)
P — a2

This means, that the index of the last regular fixed point is:

P—a?

A9
nhmm::Int< - >. (2.59)

All other fixed points with |m| > mmax and |n| > 0 are virtual fized points, that is, they do
not reside in their corresponding control effort tiles, see Figure 2.1
The stable and unstable manifolds of the fixed points correspond to the eigenvectors of

U, see Eq. (2.24).

2.6.4 Local and global behaviour

Looking at the deadzone of the velocity quantization — the domain of n = 0 control effort
tiles — the same pattern of fixed points and strange sets can be found as in the case of output-
quantization (see Section . The n = 0 control effort domain of the input-quantization
is topologically equivalent to the D =0 case of output-quantization.

Figure illustrates a case, when four separated chaotic attractors are present in the
state space between fixed points F~20, F~10 FO0 F+L0 and F+20. As the damping ratio
is decreased, eventually all the attractors turn to repellors and trajectories escape from the
domains corresponding to n = 0. Figure shows the state space with § = 0, where a
larger chaotic attractor is present.
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2.6. OUTLOOK TOWARDS INPUT QUANTIZATION

Figure 2.18: The state space of the micro-chaos map in case of input-quantization, & = 0.6,
6 =1, P =D =06. Four separated chaotic attractors (indicated with green,
purple, orange and light blue) appear in the quadrangular regions between the
manifolds of regular fized points.
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Figure 2.19: The state space of the micro-chaos map in case of input-quantization, & = 0.6,
0 =0, P=D=06. An example attractor is shown in purple. One can see, that
the quadrangular regions between the manifolds (indicated with blue) of regular
fized points are repelling.
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CHAPTER 2. THE MICRO-CHAOS MAP

The global behaviour (in control effort tiles |n| > 0, |m| > Mpq.) of the micro-chaos map
with input quantization is also governed by fixed points, which are virtual ones based on

Section 2.6.3]

As a trajectory moves from one control effort tile to another, the control effort switches
to a new value (F; = m P+n 15) and the governing virtual fixed point will be an other one
at 23" = (m P +nD)/&%.

This dynamics often leads to a recurrent motion (see Fig. , where the locally (un-
stable) hyperbolic dynamics corresponding to a series of virtual fixed points form a stable,
globally focus-like structure.

Figure [2.20] shows control effort tiles corresponding to the same control effort value with
the same colour shading and manifolds with matching colours. For illustrative purposes
P = D was chosen, since the same fixed points and manifolds are valid in control effort tiles
with the same m + n value. For different P and D parameters, different fixed points would
correspond to the control effort tiles, according to Eq. , and it would be inconvenient
to present them in the state space. Still, a similar qualitative behaviour could be observed.

The chaotic trajectory varies during the recurrent motion, still it can happen, that it
cycles through the same set of control effort tiles. Therefore the series of governing fixed
points will be periodic in this case.

This kind of shadowing can be observed when a chaotic trajectory is examined by the Simple
Cell Mapping method [35]. During the application of this method, chaotic motion is covered
with long, periodic orbits. For further details, refer to Chapter
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Figure 2.20: Illustration of the state space of the 2D micro-chaos map with input quantization.
Coloured regions are control effort tiles corresponding to the same control effort.
Fixzed points and manifolds are shown in matching colour. Since P =D, the
same fized points and manifolds are valid in control effort tiles with the same
m-+n value. The locally (unstable) hyperbolic dynamics corresponding to virtual
fixed points form a stable, globally focus-like structure.
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Looking at the state space from a distance, the global dynamics resembles to the focus-like
phase portrait of the stabilized system S = U +b ® [P, D], see Figure

4
2
& 0
-2
-4
-10 -5 5 10 -10 -5 0 5 10
z z

Figure 2.21: The state space of the micro-chaos map in case of input-quantization, & = 0.1,
0 =0, left: P=D = 0.2, right: P=0.2, D = 0.4. For smaller & values, a
recurrent orbit appears around the m = n = 0 deadzone.

As it can be seen, there are many similarities between the output- and input-quantization
cases, in terms of state-space topology. However, the input-quantization scenario requires
more effort to handle, due to the independent quantization of every state space variable and
the increased number of virtual fixed points, which should be taken into account.

For example, one needs to maintain a wider set of symbols corresponding to control effort
values when generating periodic orbits with the symbolic dynamics approach introduced in
Section [2.4.3

In practice, maximal possible control error is a very important property of the control
system. As it was shown in Section [2.4.2] the control error can be characterized with the size
of an estimated absorbing region. During the calculation of the dimensions of the absorbing
cuboid, a correction term corresponding to every state variable’s quantization should be taken
into account. Micro-chaos map (2.52) can be rewritten as:

Yis1 =Sy; —b (P X1,i + DXz,i), X1, X2, € (—1,1). (2.60)

Here S=U+b® [I:’, ﬁ]T Repeated application of the map corresponds to the following
expression:

j—1 j—1
yi+1=S"y0 - Y 8"bPxip— ) S'bDya. (2.61)
k=0 k=0

With the same approach as described in Section lim;j 00 [|S?|| = 0, and the limit of all
possible solutions can be written as:

J
HyOOH = )I(rlla;; ]ILI&Z (Sk b P xir+ s* bDX27k> . (2.62)
’ k=0
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Here x1 = {x1,1,x1,2,--- X1,6} and x2 = {x2,1, X2,2, - - - X2,k } are sequences of fractional parts
corresponding to the quantization of x and z’ respectively.

Introducing D as the diagonal matrix of eigenvalues ()\;) and T, the matrix formed by
the columns of right eigenvectors of S, Eq. (2.62) can be written as:

o0 o
Yoo =-T> D*T'bPxi;—TY D T 'bDxoy. (2.63)
k=0 k=0

The approach shown in Section leads to:

ook (Pxie + Dxog)

Yoreo02k (Px1k+ D xok)

Yoo = e = (2.64)

EZo:o On.k (P X1,k + D Xz,k)

To maximize the i** component of y.., the following choice of the k" fractional part should
be made:

Xﬁ ={xix} = {sign(oivk ]3)} , k=0,1,2,...

A . (2.65)
Xo ={x2k} = {sign(aiyk D)} , k=0,1,2,....

Consequently, if the sign of P and D is the same, the same fractional part set X = X1 = X2

maximizes the i*" component.

Similarly as in Section a global absorbing cuboid can be defined by taking components

of yoo with the substitution of the corresponding sets of fractional parts x% and x% which

maximize that component.

42



2.7. MAIN RESULTS

2.7 Main results

I have examined the general behaviour of 2D micro-chaos maps corresponding to a digitally
controlled 1 DoF mechanical oscillator with sampling and quantization. The thorough analy-
sis of the case with negative stiffness and quantization at the output revealed the existence of
a characteristic pattern in the state space. It was found that chaotic attractors (or repellors)
and fixed points are situated alternately along the x coordinate axis.

Various methods were generalized to higher dimensional systems, e.g., the calculation of
Lyapunov exponents and the periodic orbits. Special attention was devoted to the deter-
mination of the size of the so-called absorbing domain, since this property characterizes the
maximal control error ||yso||. A formula was derived for the estimation of ||y.| that was
successfully applied to a 4D micro-chaos map.

Main Result 1: Topological pattern

An alternating pattern of chaotic attractors or transient chaotic repellors and fixed points
is present in the state space of the digitally controlled 1 DoF mechanical oscillator if
proportional-derivative control scheme is applied with sampling, zero-order-hold and
quantized output. Depending on the parameters, border collision bifurcations of fixed
points at the switching lines can change this pattern. Moreover, crisis bifurcations can
turn attractors to repellors.

Related publications: [23], [7]

Main Result 2: Absorbing cuboid

An upper bound was given for the control error of the micro-chaos map, by re-formulating
it as a stabilized system without quantization and with additional correction terms cor-
responding to the neglected fractional parts.
In case of output-quantization, the farthest possible point of the invariant set is expressed
in the form:
J D k0 Ok Xk
Yoo = lim 3 S"byj ==
J—00
k=0 > o Onk Xk

The choice of the infinite sequence of fractional parts x;, that maximize the i*" component
of Yoo, 18 X" = {X0sX1s--+»Xbs---} = {sign(eoio),sign(e;1),...,sign(o;),...}, which
yields a close upper bound to the control error.

This approach can be adapted to the case of input quantization, where multiple fractional
part sets correspond to the quantization of state variables.

By taking the separately calculated maxima for each component of y., an absorbing
cuboid was expressed which can be used to provide an absorbing region in the state space.
A practically usable algorithm was also developed for the determination of periodic orbits.
This algorithm is based on a symbolic dynamics-based description of the phase-space and
can be utilized to verify the control error estimation provided by the absorbing cuboid.

Related publications: [7}, 25] 26]

It should be noted, that the upper bound corresponding to other norms can be given
based on the separately calculated maximized components, as well, but these estimations
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will be excessive due to the fact that every component was maximized with a different choice
of Xk-
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Clustered simple cell mapping

This chapter introduces an extension to the Simple Cell Mapping (SCM) method [35]. While
SCM offers a fast and elegant way to find state space objects in a given state space region, it
is often difficult to select this particular, interesting region without preliminary analysis.

The extension allows one to combine two SCM results and thus creating a cluster of
solutions, moreover a simple strategy is provided to automatically extend this cluster with
new state space regions. This way, Clustered SCM can be used to adaptively discover state
space objects which were outside of the initial domain.

The method is divided into two stages, first trajectories (cell sequences) leading from one
SCM to a known object in the other are classified. Afterwards, the key step of the method,
the cell tree mapping is carried out to resolve the non-trivial entanglement of the trajectories.
This enables the method to discover new periodic orbits situated at the boundary of the joined
SCM solutions.

3.1 Cell mapping methods

Cell Mapping methods (or shortly CM methods) were introduced by C.S. Hsu [35], in order
to make the quick and thorough global analysis of nonlinear systems possible. CM methods
discretize a region of the state space, thus creating the so called cell state space. For each
cell one or more image cell is assigned (to where the dynamics lead from that cell), and by
analysing the resulting graph or Markov-chain, periodic orbits, fixed points and their domains
of attraction can be found.

The simplest CM method is the Simple Cell Mapping (SCM) and in the simplest case the
cell state space is an n-dimensional grid of cells of the same size. The basic idea of the SCM
method is that each cell has a single image, which is usually determined using the Centre
Point Method [35], namely, a single trajectory from the centre of the cell domain is examined.
In other words, all states within a cell are mapped to a single cell. Due to this property, the
method is able to classify cells either as periodic cells (belonging to a periodic group) or
transient cells (leading to a periodic group). Successful classification of all cells forms the
solution of the SCM.

There are many variation of the CM methods. Usually a relatively fast CM method (for
example SCM) is applied to the initial state space region, then further analysis is carried out
at certain locations, using more advanced methods (Generalized Cell Mapping, for instance),
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CHAPTER 3. CLUSTERED SIMPLE CELL MAPPING

typically with refined cell state space [53], [55], [16]. These methods are excellent if the
interesting region of the state space is known, but if that is not the case, a method capable
of automatically extending the analysed state space region could be more suitable. The goal
of the present chapter is to extend the Simple Cell Mapping with such capability.

To emphasize the relevance of adaptive state space extension, one could recall the following
situations:

e The dynamical system has an expectedly complex state space and the enclosing region
of state space objects is not known.

e The dynamical system has more than one attractor, and not all of them are found in
the initial state space region. Escaping trajectories indicate the possible direction of
other attracting structures.

e A lower dimensional state space object, e.g., a basin boundary is being followed.

e Examination of global bifurcations or crises in dynamical systems in cases when the
structure and /or the size of state space objects change abruptly during the variation of
certain parameters. This situation is typically encountered in piecewise smooth systems.

e Analysis of diffusion-like processes, for example intermittent maps [39].

My approach to solve the problem of state space extension is to find an adjacent region to
the initial state space, to where most of the trajectories escape. Afterwards, a separate CM
solution is calculated on that region and the two solutions are joined. Upon the joining pro-
cedure, new state space objects residing on the boundary of the two cell state spaces are also
discovered. This chapter introduces this extension, particularly for the Simple Cell Mapping
method, because it is the simplest adequate method to discover all objects in the state space
[35]. The method of joining separate SCM solutions to a cluster of SCM solutions is referred
to as Clustered SCM method. Based on these results, optional later analysis can be carried
out using more advanced CM methods [54].

As an example of application, the analysis of the micro-chaos map is shown, where
multiple disconnected attractors — possibly consisting of distinguishable communicating re-
pellors — are present in the state space. The behaviour of this piecewise smooth system fits
into most of the aforementioned situations, as it exhibits a pattern of chaotic attractors and
crisis phenomena with the appearance or disappearance of chaotic attractors/repellors [7].

3.1.1 Definitions and abbreviations

This section describes the basics terms, definitions and properties related to the Simple
Cell Mapping, which are used throughout the chapter. Also some auxiliary subroutines are
presented, which are necessary for the implementation of the method (see Figure [3.1)).

o Cell state space (CSS): the bounded and discretized state space region, which is continu-
ously covered by arbitrary cell domains. In the simplest case n-dimensional rectangular
cuboids of the same size can be used to discretize an n-dimensional state space.

e (Cell domain: bounded domain of the state space, part of the cell state space. In the
simplest case it can be represented by a centre point in the state space and lengths
along each dimension.

e (lell: object having its unique index referencing to a cell domain and various properties
(e.g. image, pre-image).

e Cell index (or shortly index): cell property; a unique identifier.

e Image: property of a cell, one or more reference to other cells. The dynamics from
the cell domain corresponding to the cell lead to the cell domain(s) indexed by the

image(s).
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Figure 8.1: Fxplanation of the definitions introduced in Section

Pre-image: property of a cell, one or more reference to other cells. The dynamics from
the cell domain(s) indexed by the pre-image(s) lead to the cell domain corresponding
to the cell.

Sink cell (SC): a special cell indexing the unbounded region of the state space outside
the CSS. Once a trajectory enters the sink, its evolution is no longer followed. To
express this property, the image of the sink is itself by definition.

State-to-index (or shortly indez()) function: is a surjective function returning the index
corresponding to the cell domain covering the given point in the state space.
Index-to-domain (or shortly domain()) function: is a bijective function returning the
cell domain representation for the given index.

Cell sequence: A set of cells formed by tracking the image of cells subsequently.

(See cells {7,2,4,11,18,24,16} in Figure )

Periodic group (PG): A part of a cell sequence, that might constitute a periodic motion.
A periodic cycle of n cells forms a periodic group, with periodicity n (or shortly an n-P
group). Each cell within the PG is a periodic cell with period n, or shortly n-P cell
[35]. (For example, the sink cell is a 1-P cell and forms a 1-P group.)

Transient cell: Cell sequences leading to an n-P cell contain an n-P group at the end
of the sequence. All other cells within the sequence are transient cells leading to that
periodic group, forming a transient cell sequence.

Transient cell sequence: cell sequences with their destination n-P cells removed form a
transient cell sequence, see Figure (3.1

Group number (g): For each periodic group a unique group number is assigned. All
periodic cells within a PG and all transient cells leading to that PG have the same
specific group number assigned.

Step number (s): property of a cell, the number of steps required to reach a PG. Periodic
cells’ step number is s = 0, while transient cells’ step number is s > 0.

Domain of Attraction (DoA): the DoA of a PG with group number ¢ is the set of
(transient) cells with the same group number g and positive step numbers s > 0. The
Domain of Attraction can be thought as the discretization of the Basin of Attraction
(see [46], [1] and for its numerical exploration [47].)

SCM solution: After the successful execution of the SCM method, besides the initial
cell properties, the group number and step number properties are assigned to each cell.
At this stage all periodic groups and their domain of attraction are found, and the cell
state space and its properties form the SCM solution.
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3.2 Joining two SCM solutions

This section describes the procedure of joining two SCM solutions with non-overlapping cell
state spaces. No other restrictions apply to the cell state spaces, even non-adjacent regions
can be joined. First, the possible relationships between cells of the SCMs are examined, then
the algorithm of joining is explained supported by a pseudo-code of the procedure.

The following conventions regarding the SCM solutions are adopted to aid the joining
procedure.

e Group number g = 0 is assigned to the sink cell. Also the sink cell’s index is 0.

e A new property, called cell mapping index (shortly: cmid) is assigned to each cell as an
extension to its group number indicating which SCM contains the group referenced by
the group number. Initially all SCM solutions have a unique cmid, and all cells within
an SCM solution have that same cmid.

e Cells have an auxiliary state property, which can take any of the following three values:
UNTOUCHED, UNDER_PROCESSING, PROCESSED. This property is used to keep track of
the solution procedure.

3.2.1 Relationship of two SCM solutions

Upon joining two SCM solutions, transient cell sequences leading to the sink cell are examined,
because these cell sequences might enter the other SCM’s cell state space and lead to an object
within the wunited cell state space — the union of the two cell state spaces. The state space
region outside the united cell state space is called reduced sink. While examining an SCM
solution’s transient cell sequences leading to the original sink, the following cases can occur

(Figure 3.2)).
1. The transient cell sequence leads to a known destination:

(a) the reduced sink or
(b) a periodic or transient cell with group number g > 0 of the other SCM.

2. The transient cell sequence leads to a cell of the other SCM, which belongs to the
domain of attraction of the sink (so the cell’s group number is g = 0). This means that
the final destination of the sequence is not known yet.

Considering the above cases, only Case 2 requires further analysis. Otherwise, transient cell
sequences can be updated with a new group and step number (along with a new cell mapping
id), corresponding to their new destination.

The procedure of joining two SCM solutions is therefore divided into two stages. Stage 1
enumerates all transient cell sequences and also updates those corresponding to Case 1. Stage
2 analyses the remaining sequences of Case 2.

3.2.2 Cell tree mapping

It is clear, that cell sequences leading to the other SCM’s sink cell’s domain of attraction
(See Case 2 in Section will eventually have one of the already existing periodic groups
(including the reduced sink) as their destination, or they might form a new periodic group
possibly with some extra transient cells leading to that PG.

This calls for the idea of mapping these remaining transient cell sequences onto each other
(or some already determined cell). Transient cell sequences form trees called cell trees having
a single cell as destination (which belongs to the other SCM), therefore these trees can be
handled just like cells in SCM. The image of a cell tree is either a cell which was updated in
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Figure 3.2: Joining of previously calculated adjacent SCM solutions. Cell sequences which
lead to a known destination can be updated in Stage 1 (green cells), while se-
quences leading to another unclassified sequence or transient cell need further
analysis in Stage 2 (orange cells). As a result, new periodic groups can be found

close to the boundary of SCM1 and SCM2.

the first stage of the joining procedure (Case 1 in Section, or alternatively a member cell
of another cell tree of the other SCM. Tracking the images of cell trees creates tree sequences.
A tree sequence either leads to an already existing periodic group or forms a new periodic
group and some transient cells leading to that group. Figure [3.3] illustrates two cell trees
mapped to each other.

Shortly, the SCM method can be applied to the cell trees. If a tree sequence leads to a
previously processed cell, all of its member cells can be tagged with the appropriate cmid,
group and step numbers. Otherwise the trees form a graph containing a single cycle — the
new periodic group — and branches which are transient cells belonging to that group, hence
the c¢mid, group and step numbers can be updated. (The new periodic groups obtained this
way must be added to one of the SCM solutions to have a valid cell mapping indez.)

3.2.3 The algorithm of joining

This subsection describes the algorithm of joining adjacent SCM solutions. The algorithm is
divided into preprocessing and two stages of classifying cell sequences which previously led
to the sink cell.

Throughout the presentation of the algorithm, multiple SCM solutions will be examined.
For the sake of simplicity, object oriented notation is used, with simple classes for describing
the cell and SCM solution including the cell state space. See Algorithms [1] and [2] for these
classes. In the pseudo codes the . (dot) operator is used to access data or function members
of these objects. For instance scm.cells[i] .index accesses the index of the i-th cell of the
scm object. Furthermore, > indicates clarifying comments.
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SCM1 SCM2

.f

0 cell tree 1
[ cell tree 2
//// cells of a new periodic group

Figure 8.3: Illustration of the notion of cell tree mapping. Cell trees 1 and 2 are mapped to
each other. The graph formed by them contains a cycle (new periodic group), and
all other branches are transient cells leading to that group.

Algorithm 1 Class for cell

class CELL

index C N

image C N

domain

group C N

step C N

type C { UNKNOWN, TRANSIENT, PERIODIC }

state C { UNTOUCHED, UNDER_PROCESSING, PROCESSED }
end class

Algorithm 2 Class for simple cell mapping

class SCM
cell array of CELL objects
cellCount C N > the number of cells in the cell state space
periodicGroupCount C N > the number of periodic groups in the SCM solution
index(...)
domain(...)

end class
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During the preprocessing the cells corresponding to the domain of attraction of the sink
cell for both SCM solutions are identified. This can be done by selecting cells with group
number 0, which belong to the 1-P group of the sink cell. Checking the step number is not
necessary, since all cells with 0 group number must be transient cells. For the pseudo code
of preprocessing see Algorithm [3] and

Algorithm 3 Identification of sink cell’s domain of attraction

Input: scm object representing an SCM solution
Output: array of indices of sink cell’s domain of attraction

1: function GETSINKDOMAINOFATTRACTION(scm)

2: sinkDoA + ()

3: for i « 1, sem.cellCount do

4: if sem.cellli].group = 0 then

5: sinkDoA < sinkDoA U1

6: sem.cellli].state <— UNTOUCHED b invalidate previously processed cell
7: end if

8: end for

9: return sinkDoA

10: end function

Algorithm 4 Preprocessing of two SCM solutions

Input: objects representing SCM solutions

Output: array of indices for both sink’s domain of attraction
1: function PREPROCESS(scml, sem?2)
2: sinkDoAl <+ GETSINKDOMAINOFATTRACTION(scm1)
3: sinkDoA2 < GETSINKDOMAINOFATTRACTION(scm?2)
4: return {sinkDoAl, sinkDoAl}
5: end function

Once the domain of attraction of the sink cell is identified for each SCM solution, the

first stage of joining examines transient cell sequences and updates cells in Case 1 of Section
[3.2.1] see Algorithm 5] The for loop in line [3] starts a new cell sequence by taking the next
UNTOUCHED cell from the domain of attraction of the sink cell. The while loop in line
builds the cell sequence and updates all cells accordingly. If the condition in line is
true, then the cell sequence is still within the original cell state space. In this case the cmid
is checked in line If the currently examined cell has the same cmid, the current cell
sequence either touches another cell sequence (line and prepended to that cell sequence
(thus forming a cell tree), or touches an already processed cell (line in which case the cell
sequence can be updated accordingly, or touches an UNTOUCHED cell (line which results
in continuing the current sequence by examining that cell’s image.
If the condition in line (emid check) yields false, the cell sequence touches another cell
sequence transiting to the other SCM’s state space, therefore the current sequence can be
updated accordingly. In cases, when imz = 0 is fulfilled (line , the cell sequence leaves the
cell state space. Line 46| checks whether the current cell sequence enters the cell state space
of the other SCM. In this case the sequence either touches a cell with g # 0 (line when
the current sequence is updated, or touches a cell with g = 0 (line when the current cell
sequence (seq) is stored in the array of cell trees (cellTrees) for further analysis. Lastly, if
both cell state space have 0 (sink) index for the cell (see line , the current sequence leads
to the reduced sink.
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Algorithm 5 Stage 1 of the joining procedure

Input: Examined SCM solution and its DoA of sink, other SCM solution
Output: Updated SCM solution object scm, cell trees which require further processing

1: function STAGEL(scm, sinkDoA, otherScm)
2 cellTrees + ()
3 for i < 0, sinkDoA.size do
4 seq <
5: z < sinkDoAl[i
6 if sem.cell|z].state = UNTOUCHED then
7 > Create new cell sequence
8 seq < seqU z
9: left < false
10: while left = false do
11: imz < scm.cell[z].image
12: if imz # 0 then
13: emimz + sem.celllimz].cmid
14: if emimz = cmid then
15: if sem.cell[imz].state = UNDER_PROCESSING then
16: > This sequence touches another sequence under processing
17: left + true
18: ct + scm.cell[imz].cellTreelndex
19: Tag cells in seq as UNDER_PROCESSING, assign ct as cellTreelndex
20: > The current sequence is prepended to cell sequence/tree
21: > with index ct
22: cellTrees[ct] < seq U cellTrees|ct]
23: else if scm.cell[imz].state = PROCESSED then
24: > This sequence touches an already processed cell (Case 1.b)
25: left < true
26: g < scm.cell[imz].group
27: cm < seme.celllimz].cmid
28: Tag cells in seq as PROCESSED and assign new group g and cmid cm
29: else
30: > Append cell to sequence and continue
31: seq < seq Uimz
32: Z 4 1mz
33: end if
34: else
35: > This sequence touches another seq. transiting to the other SCM (Case 1)
36: left < true
37 g < scm.cell[imz].group
38: em < sem.cell[imz].cmid
39: Tag cells in seq as PROCESSED and assign new group number g and cmid cm
40: end if
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41: else

42: > This sequence leaves the cell state space (imz = 0)

43: left < true

44: > Get image using the other SCM’s cell state space

45: imz < otherScm.index(step(scm.cell[z].center))

46: if imz # 0 then

47: > This sequence enters other SCM solutions cell state space

48: g < otherScm.cell[imz].group

49: if g # 0 then

50: > This sequence touches a periodic group with g > 0 (Case 1.b)
51: cm « otherSem.cell[imz].cmid

52: Tag cells in seq as PROCESSED and assign new group ¢ and cmid cm
53: else

54: > This sequence touches a transient cell of the other SCM’s sink,
55: > save this sequence for further analysis (Case 2)

56: Tag cells in seq as UNDER_PROCESSING and assign group g and cmid c¢m
57: cellTrees < cellTrees U seq

58: end if

59: else

60: > This sequence leads to the reduced sink (Case 1.a)

61: Tag cells in seq as PROCESSED

62: end if

63: end if

64: end while

65: else

66: > skip cell

67: end if

68: end for

69: return cellTrees

70: end function

In the second stage, for Case 2 in Sectiona cell tree mapping is carried out (Algorithm
@. The for loop in line [3| starts examining an UNTOUCHED cell tree and the while loop in
line builds a sequence of cell trees (see variable: treeSequence). While examining the
image tree (ctImage) of the current cell tree (cellTrees]i]), the following cases can occur:

e The image of the current cell tree is a cell which was updated in Stage 1 of the procedure
(line . All cells in the sequence of trees can be updated.

e The image tree of the current cell tree is PROCESSED (line , therefore, the sequence of
trees touches a known destination, and all cells in the sequence of trees can be updated
accordingly.

e The image tree of the current cell tree is UNDER_PROCESSING (line , and a new

periodic group and transient cells are found. All cells within the sequence of trees are
examined and tagged as periodic (cycle in the sequence of trees) or transient (branches).

See Figure [3.3]

e The image tree of the current cell tree is UNTOUCHED (line , the image tree is
appended to the sequence of trees, and the examination of the tree sequence is continued.

In the end of Stage 2, all cell trees are processed and new periodic groups (if any) with
their domain of attraction (transient cells) are found. The complete procedure of joining is
summarized in Algorithm [7} The two SCM solutions joined this way form a cluster of cell
mapping solutions, which can be further extended similarly.
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Algorithm 6 Stage 2 of the joining procedure

Input: Cell Sequences Tree arrays and SCM objects
Output: Updated SCM solutions
1: function STAGE2(cellTreesl, cellTrees2, scml, sem?2)
2 cellTrees + cellTreesl U cellTrees2
3 for i < 0, cellTrees.size do
4 if cellTrees|i].state = UNTOUCHED then
5: > Start examining sequence of cell trees
6 cellTrees|i].state + UNDER_PROCESSING
7 treeSequence < QUi
8 processing < True
9 ctImage < cellTreesli].imageTree

10: while processing do

11: if ctImage = null then

12: > There is no sequence image, image cell must be already PROCESSED in Stage 1
13: imageCell + cellTreesli).cell[0].image

14: Update all cells in each cell tree of the current treeSequence
15: Tag all cell tree in treeSequence as PROCESSED

16: else

17: > Cell tree mapping

18: if cellTrees|ctImage].state == PROCESSED then

19: > The sequence of trees leads to a known destination

20: Update all cells in each cell tree of the current treeSequence
21: Tag all cell tree in treeSequence as PROCESSED

22: processing < False

23: else if cellState[ctImage].state = UNDER_PROCESSING then
24: > New periodic group and transient cells are found

25: g < nextGroupNumber()

26: Update all cells in each cell tree of the current treeSequence
27: Tag all cell tree in treeSequence as PROCESSED

28: processing < False

29: else

30: > cellTrees[ctImage].state == UNTOUCHED

31: > Tag this cell tree as UNDER_PROCESSING,

32: > append to treeSequence and continue

33: treeSequence < treeSequence U ctImage

34: cellTrees|ctImage).state « UNDER_PROCESSING

35: end if

36: > Get next image sequence

37 ctImage = cellTrees[ctImagel].imageSeq

38: end if

39: end while

40: else if cellTrees[i].state = PROCESSED then

41: > Skip already processed cell tree

42: end if

43: end for

44: return {scml, sem2}

45: end function
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Algorithm 7 Procedure of joining two SCM solutions

Input: SCM objects representing SCM solutions

Output: updated SCM objects

1: function JOIN(scm1, sem2)

2 {sinkDoA1, sinkDoA2} < PREPROCESS(scml, scm2) > See Algorithm [4]

3 cellTreesl < STAGE1(seml, sinkDoAl, sem2) > See Algorithm

4: cellTrees2 < STAGE1(secm2, sinkDoA2, scml)

5 {seml, sem2} < STAGE2(cellTreesl, cellTrees2, seml, sem?2) > See Algorithm [6]
6 return {scml, scm2}

7: end function

3.3 Properties and possible extensions

3.3.1 Complexity of joining

It can be seen that the complexity of calculating an SCM solution is O(n) where n is the
number of cells in its cell state space [5I]. This comes from the fact that every cell needs
constant amount of operations for initialization, and their state changes twice, first to UN-
DER-PROCESSING then to PROCESSED (Algorithm [3)).

The complexity of preprocessing (Algorithm [3]) is also linear, since the body of loop in line
contains constant amount of operations. For SCM solutions with cells n and m, the com-
plexity of the preprocessing is O(n + m).

The first stage of the joining procedure (Algorithm contains an outer for loop (line 3|) and
an inner while loop (line , however, similarly to the SCM method, every cell is tagged
with a new state maximum twice, therefore, the complexity of the first stage is O(n) where
n is the number of cells in the sink’s domain of attraction.

Lastly, it can be seen that the complexity of the second stage (Algorithm [6) is also linear
in terms of the number of total cells in the cell tree lists. This property can be shown with
the same approach used in the previous case; every tree sequence is tagged with a new state
maximum twice.

Introducing ngnx < n and mgipx < m for the number of cells in the domain of attraction of
the sink cell, the complexity of the joining procedure can be written as O(ngink + Mgink). The
linear nature of the joining procedure can also be seen in the computation times presented
in Table B.11

3.3.2 Simple continuous tiling of the state space

In Section the procedure of joining two arbitrary SCM solutions was introduced. This
section describes a simple algorithm for adaptively selecting an adjacent state space region
(of the same shape and size as the original SCM solution) where most of the trajectories
escape to. For convenience, the original cell state space is chosen to be an d-dimensional
rectangular cuboid.

After selecting the initial state space region for the SCM solution one divides the unbounded
outer state space region into adjacent subregions plus an unbounded non-adjacent region.
To do this, the sink cell is divided into 3¢ sub-regions. From these 3¢ sub-regions, 3¢ — 1
are adjacent and equal size to the initial state space and the remaining region — the rest of
the sink cell — is non-adjacent to the initial state space. These sub-regions are illustrated in
Figure During the calculation of the initial SCM solution, the number of cells entering
these sub-regions can be counted.

Let us assume that the number of cells whose image belongs to the i-th adjacent sub-region
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r; is ¢;, where i = 1,2, ..., 3% — 1. Amongst the adjacent state space regions, the one with the
largest number ¢y, is selected. The index of the selected new adjacent state space region is

k=o(max({c;:i=1,2,..,37 = 1})),

where o(ci) := k is an index function. After solving the new SCM belonging to the newly
selected region, a cluster of two SCM solutions is formed, and the procedure can be continued
similarly, leading to a continuous tiling of a state space region.

v 5

7
[ cells belonging to a PG with g>0
0 cells escaping to an adjacent sub-region } initial state-space region
[ cells escaping to the non-adjacent sub-region
sink cell
N\ adjacent sub-regions of the sink

" sub-regions of the sink
2/, non-adjacent sub-region of the sink }3 sub-regions of the st
Figure 3.4: Sub-regions of the sink cell in case of a 2D cell state space. Sub-regionsr;...r3a_;

are adjacent to the initial state space region, sub-region rsa is non-adjacent.

3.4 Application and Results

3.4.1 Analysis of the micro-chaos map

Although the Clustered SCM method is independent of the system’s dimension, the results
can be displayed most conveniently for systems with 2D state space. In order to demonstrate
the Clustered SCM method, it is applied to the micro-chaos map corresponding to an
inverted pendulum with output quantization.

The quantization according to the Int() function introduces switching lines on the state
space for every integer value. By examining the direction field of Equation , one can
see an alternating pattern of unstable saddle points and switching lines [10], [23] see Figure
5.0

During the application of the Clustered SCM method the resulting cluster of two SCM
solutions is illustrated after every stage, by coloured images in Figures [3.6 Red colour
indicates transient cells leading to the sink, other coloured regions illustrate the domain of
attraction of other periodic groups. The periodic groups residing at the intersections of the
z-axis and the switching lines are denoted by black dots. These PGs correspond to very
small chaotic attractors of the micro-chaos map. White lines indicate the switching lines and
dashed white lines denote the stable and unstable manifolds of the saddle points of the map.
The initial state space region is placed on the left and the new subregion is on the right side,
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Figure 8.5: The state space of micro chaos map (2.19) at parameter values & = 0.078, § = 0,

P =0.007, D = 0.02. Dashed blue lines are the stable and unstable manifolds of
saddle points. Three example trajectories leading to chaotic attractors are shown.
The subsequent points of the trajectories are connected with line sections for better
visibility. The green and blue rectangles show the initial and the adaptively chosen
state space regions of the first example, respectively (see Figure @)

since the right adjacent state space region contains the most escaping trajectories.
In the first example, no periodic groups reside at the boundary of the two state space regions

(see Figure [3.6). Therefore, during Stage 1, all cells can be updated, except transient cell
sequences of the initial region leading to a member cell of the domain of attraction of the

new region’s sink cell (see Figure . These sequences also lead to an already existing PG,
but are updated in Stage 2 (as shown in Figure|3.8). The parameters of the micro-chaos map

are & = 0.078, § = 0, P = 0.007, D = 0.02.

10|

—-10]
1100

900 1000

7 =9
600 &z ! 700 300

100 500
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200
Figure 3.6: Example 1 — Illustration of initial SCM solutions before the joining procedure.
The image on the left shows the initial state space region, the one on the right is
the adaptively selected region. Both regions contain 3 chaotic attractors lying at
the intersections of the x-axis and the switching lines.
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=20 xr —20

200 300 400 500 600 700 800 900 1000 1100 r

Figure 3.7: Example 1 — Illustration of SCM solutions after Stage 1 of the joining procedure.
Cell sequences leading to a PG of the other SCM are updated (recoloured with
the colour of the corresponding periodic group). The initial region contains some
transient cell sequences which are stored for further processing in Stage 2. (See
red bands at the top of the left image.)

=20 xr -2

200 300 400 500 600 700 800 900 1000 1100 r

Figure 8.8: Fxample 1 — Illustration of SCM solutions after Stage 2 of the joining procedure.
Ezamined cell trees are mapped to already processed cells (corresponding to the
PGs with green and orange domain of attraction).

In order to show the detection of new periodic groups, another state space region is
considered, for which a chaotic attractor of the map is just at the boundary of the region.
The joining procedure is illustrated in Figures 3.9] [.10] and 3.11] The parameters of the
micro-chaos map are & = 0.07, § = 0, P = 0.007, D = 0.02. In the second example, a new
periodic group and its domain of attraction are found during Stage 2.
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100 150 200 250 x 300 350 400 450 r

Figure 3.9: Example 2 — Illustration of initial SCM solutions before the joining procedure.
The image on the left shows the initial state space region, the one on the right
is the adaptively selected region. One chaotic attractor for each region is already
detected (see yellow and pink domain of attractions). A third chaotic attractor is
at the boundary of the two state space regions. (The black dot at the boundary of
the state space regions denotes the third attractor’s expected location.)

100 150 200 250 x 300 350 400 450 r

Figure 3.10: Example 2 — Illustration of SCM solutions after Stage 1 of the joining procedure.
Cell sequences leading to the PG of the other SCM are updated (see yellow and
pink cells). Both regions contain cell trees which are stored for further processing
in Stage 2.
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100 150 200 250 300 350 400 450

Figure 3.11: Example 2 — Illustration of SCM solutions after Stage 2 of the joining procedure.
FEzramined cell trees are mapped to each other and a new periodic group is formed
with its domain of attraction in blue.

3.4.2 Comparison of real computational efforts

To support the statements in Section [3.3.1] computation times for Example 1 are provided
using the Clustered SCM. An SCM solution over the full region is also calculated for com-
parison (see Table and Figure. Since the calculation of scM1 and SCM2 can be done
in parallel, the total processing time is calculated as tiotal = max(tscmi, tscmz) + tioining-
(Computations were carried out using 2 cores of an Intel ® Core™ i7-4700MQ CPU.)

In real situations it may happen that the two SCM solutions to be joined are of significantly
different size. Consider the case when a 2D state space is displayed on the screen of a com-
puter and the screen area is panned to move in the state space. Consequently, a separate SCM
solution at the (narrow) state space region entering into the computer’s screen must be calcu-
lated and joined to the already existing cluster. Computation times are checked for the case,
when the original state space region is extended by 10% towards an adjacent narrow state
space region (see Table. The total processing time is calculated as tiota1 = tscM2 +joining-
One can see that the use of the Clustered SCM method makes nearly real-time application
possible. Moreover, further optimizations can be introduced to the method specifically for
the panning application, for example, adjacent state space regions can be joined in advance,
to utilize idle CPU states.

The joining time only depends on the number of cells and state space topology, while the
computation time of SCM solutions also depends on the effort needed to calculate the image
cells. For systems, where greater effort is necessary for the calculation of images (e.g. flows),
the computation time of joining is relatively smaller compared to the complete procedure.

CPU time [ms]
Number of cells .
tscM1  tscM2  tioining  ttotal | SCM on full region

500000 395 386 &9 484 844

1000000 780 791 190 981 1573
2000000 1550 1551 418 1969 3316
4000000 3234 3225 897 4131 6752
8000000 6638 6720 1935 8655 13389

Table 3.1: Computation times for Example 1. (See Figures )
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Figure 3.12: Comparison of computation times listed in Table .

Screen Number of cells CPU time [ms]
resolution NSCM1 nsoMm2 | tsoM1  tsoMm2  tijoining  ttotal | SCM on extended region
853 %480 409440 40944 307 32 58 90 339
1280x 720 921600 92160 661 66 129 195 740
19201080 | 2073600 207360 | 1581 188 361 549 1649
2880x1620 | 4665600 466560 | 3731 434 745 1179 4099
4320x2430 | 10497600 1049760 | 9689 753 1980 2733 11726

Table 3.2: Computation times for Example 1 in case of screen panning. Initially the whole
computer screen is covered with the initial SCM solution (SCM1) and during panning a new
SCM solution (scM2) over a region with +10% width is added to the cluster. For comparison,
the computation time of a single SCM solution on the extended state space region is included.
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3.5 DMain results

Main Result 3: Clustered Simple Cell Mapping

In order to adaptively discover state space objects with cell mapping approach, an ex-
tension to the Simple Cell Mapping (SCM) method was proposed. The Clustered Simple
Cell Mapping method is the procedure of joining two Simple Cell Mapping solutions,
thus creating a cluster of SCMs. Initially, two separate SCM solutions are present with
non-overlapping and not necessarily adjacent domains of interest.

The procedure consists of two stages:

e The first stage updates transient cell sequences, which lead from one SCM domain
to a known object in the other domain.

e The second stage examines cell sequences, which lead to the other domain, but to
an unclassified state. The idea of cell tree mapping is used to discover new periodic
groups situated at the boundary of the two SCM domains.

After the second stage, all cells either correspond to a known state space object or lead
to the reduced sink cell, the state space region outside the cluster. A simple way to select
an adjacent state space region to be added to the cluster is also described, enabling one
to carry out Clustered SCM in an adaptive and automatic manner.

The computational effort of the method is linear in terms of the total number of cells.

Related publications: [24].

The proposed method may have an impact in various fields of application, because it offers
the following advantages:
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e The method allows the continuation of the SCM solution after human assessment in
cases when automatic state space extension is not used, but human supervision is
conducted. Solving an SCM for a new region and incorporating it into the cluster is
computationally cheaper than solving an SCM over the whole extended state space (see
Table [3.1).

e Parallelization of the method is trivial, as separate SCM solutions can be generated
independently before the joining procedure. Also, Stage 1 of the joining procedure (for
each previously calculated SCM solution) can be done in parallel.

e The method is useful in real-time situations, where the region of interest is changing
as a parameter is varied. Clustered Simple Cell Mapping handles screen panning well,
as a separate SCM solution at the (narrow) state space region entering into the com-
puter’s screen can be calculated quickly and joined to the already existing cluster (see
Table .

e The proposed approach helps to overcome memory limitations by dividing large prob-
lems into smaller ones. During the generation of a Clustered SCM solution, if all adja-
cent regions of a cluster have already been examined, the SCM solution corresponding
to the inner (fully surrounded) cluster can be written to disk and freed from memory.
(Later, if any dynamics maps to this region, it can be reloaded from the disk.)



Twotold quantization

This chapter analyses the cases, when both the input (measured states) and output (control
effort) of a digital controller are quantized. In Chapter [2| only the single-quantization cases
were introduced and the twofold quantization was only mentioned briefly. In order to build
up the twofold quantization case from the ground up, the example system of an inverted
pendulum is used, similarly as in Section

4.1 Formulation of quantization ratio

Consider a 1 DoF inverted pendulum that is controlled in such a way that both the measured
states and the output control torque are sampled and quantized. The processing delay is
neglected and the controller realizes zero-order-hold, as depicted in Fig. The measured
angle ¢ and angular velocity ¢ are quantized according to input resolution 71, and the calcu-
lated control effort M is quantized with output resolution ro.

After linearization, the equation of motion of the inverted pendulum assumes the following
form:

G(t) + 20ap(t) — a’p(t) = —(Py; + Dg;), te fir,(i+1)7), (4.1)

where « is the reciprocal of the time constant characterising the instability of the upper
equilibrium position, § is the relative damping, P and D are control parameters, 7 is the
sampling period and Eq. is valid between subsequent sampling instants.

Introducing the dimensionless time 7" = ¢/7 and using the notation ' = dOJ/dT, Eq.
(4.1)) can be rewritten as

¢ (T) + 2064’ (T) — &*p(T) = —(Pyp; + D), T € [i,i+1), (4.2)

where
&=ar, P=Pr’, D=Dr (4.3)

Taking input and output quantization into account, and temporarily returning to the original
control parameters (P and D) introduced in Eq. (4.1, one arrives at the following equation:

P N\ D /
¢"(T) + 266/ (T) — 62p(T) = —ro 72 Int (”Im (“’) + =g (“")) . Teliyi+1).
o 1
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Figure 4.1: The digitally controlled inverted pendulum with the schematic representation of
the zero-order-hold and quantization at the input (measured angle, angular veloc-
ity) and output (control torque).
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Figure 4.2: Rounding towards zero (Int); mid tread quantization with double deadzone.

According to Chapter [2| a mid-tread quantizer with double deadzone is used, that is, Int(x)
yields the integer part of x (see Fig. |4.2)).

Note, that the resolution of the angular velocity ¢; is r1/7. Thus, according to the definition
of the dimensionless time T, one can write ¢; 7/r1 = ¢} /r1. This results in the same dimension
in displacement and velocity with the same quantization resolutions, r; at the input and ro
at the output.

In some cases, one of the quantizations is dominant over the other, and therefore the
quantization with higher resolution can be neglected, and one of the single quantization
models can be used (where either the input, or the output is quantized) [9]. However, the
goal of this chapter is to analyse the joint effect of twofold quantization and examine the
transition between the twofold and single quantization cases. Doing so, one can also highlight
those ranges, where neglecting the less influential quantizer is valid.
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4.1. FORMULATION OF QUANTIZATION RATIO

In order to reduce the number of resolution parameters, re-scale the space coordinate with
a properly chosen (see Sections 4.1.1H4.1.2)) characteristic displacement X. Introducing the
notations z = ¢/ X, 2’ = ¢//X and 2 = ¢" /X, the equation of motion can be rewritten as

2 /p X\ D ' X
2"(T) + 2062 (T) — &22(T) = — 2 Int ( Mg <x ) + 2 g (” >> .
X 70 1 T7T0 1

To transform the output quantizer to a unit resolution one, the characteristic displacement
Xo = ro 72 should be used. Similarly, using X1 = 7 results in unit resolution input quanti-
zation.

4.1.1 Characteristic displacement for unit resolution output quantization

Using X0, the equation of motion assumes the following form:

P ror?\ D Lro 2
&"(T) + 2662’ (T) — &22(T) = —Int ( Mg <$ ror ) + 2 g (x ror )) .
0 r1 Tro T1

Introducing p; = 71/(ro 72) = r1/Xo one can write:
" AT ~2 _ 2 Ly xi
' (T) + 2062"(T) — &“x(T) = —Int ( Pt prInt | — | + D7 prInt ( = ) |,
P1 P1

where P and D can be recognized (see Eq. l} and it can be seen, that pr acts as a resolution
for the input quantization and the output quantizer has unit resolution on the chosen scale:

2" (T) + 2642'(T) — &*x(T) = —Int (]5 prInt (z;/p1) + D pr Int (a:g/pl)) . (4.4)

4.1.2 Characteristic displacement for unit resolution input quantization

Using X1 and po = ro 72/r1 = 1/p1, a similar derivation leads to:

P D
2" (T) + 2642 (T) — &%x(T) = —po Int <TIInt () + =y (3:2)) .
ro Tro

Exploiting the definiton of P, D and po one arrives at the following equation:

2" (T) + 2642 (T) — &*x(T) = —po Int (flnt (xi) + pDInt (acg)) , (4.5)
O O

where the input quantizer has unit resolution and po acts as a resolution for the output
quantization.

In Equations , a single quantization ratio (p) characterises the ratio of input
and output quantization resolutions. For large p; or small po values, the input quantization
dominates, and the outer quantization can be practically neglected. Similarly, for large po or
small pr values, the output quantization is more significant. Lastly, when the characteristic
displacements X1 and X are equal, po = pr = 1, therefore both quantizations have the same
unit resolution.

It may seem, that one could continue by choosing one of the characteristic displacements
X1 (and the corresponding resolution p = po) or Xo (with p = pr) and examine the p — 0
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and p — oo limits to express the single quantization cases. However, neither of the two
choices are perfect, as the upper limit of quantization is

lim pInt(x/p) =0, (4.6)
pP—00

consequently the control effort turns to zero in Equations (4.444.5). Thus, this model does
not reflect the physical properties of the single quantization controller.
Taking the lower limit, the following result is obtained:

lim pInt(x/p) = =, (4.7)
p—0

which means that the twofold quantization turns to single quantization because the infinitely
fine resolution quantizer yields the original signal itself (see Figure .

Consequently, it can be firmly stated, that none of the single-parameter twofold quan-
tization equations or can be solely used to analyse the transition to both single
quantization cases.

Therefore, Eq. is used to examine the transition from twofold quantization to single
quantization at the output (p; — 0). Similarly, Eq. can be used to inspect the transition
to the single quantization at the input (as po — 0):

Int (f’ prInt (x;/p1) + ﬁpl Int ($;/p1)> —0> Int (f’ T; + ﬁmé) ,
pP1—

P D ) .

po Int (Int (x;) + —Int (l‘;)) —— Plnt(x;) + D Int(z}).
PO PO po—0

It is worth noting, that one can trivially switch between (4.4) and (4.5) at pr = po = 1,

or also can use one of the representations to examine the effect of rather large values of p,
without switching to the other representation.

o Int(1/p)
o Int(1/p) 1.00000
1.0
0.99998+
0.8
0.99996 -
0.6
. 4r
oal 0.9999
0.2k 0.99992f
0.2 0.4 0.6 0.8 1.0 1.2p 0.00002 0.00004 0.00006 0.00008 0.000f}O

Figure 4.3: Visualisation of lin%plnt(x/p) =z (forx =1) a