NNSYS
 RELEASE I 3.0

ANSYS Mechanical APDL Element Reference

INSYS

ANSYS, Inc.
Release 13.0
Southpointe
November 2010
275 Technology Drive
Canonsburg, PA 15317
ANSYS, Inc. is
ansysinfo@ansys.com
certified to ISO
http://www.ansys.com
(T) 724-746-3304
(F) 724-514-9494

Copyright and Trademark Information

© 2010 SAS IP, Inc. All rights reserved. Unauthorized use, distribution or duplication is prohibited.
ANSYS, ANSYS Workbench, Ansoft, AUTODYN, EKM, Engineering Knowledge Manager, CFX, FLUENT, HFSS and any and all ANSYS, Inc. brand, product, service and feature names, logos and slogans are registered trademarks or trademarks of ANSYS, Inc. or its subsidiaries in the United States or other countries. ICEM CFD is a trademark used by ANSYS, Inc. under license. CFX is a trademark of Sony Corporation in Japan. All other brand, product, service and feature names or trademarks are the property of their respective owners.

Disclaimer Notice

THIS ANSYS SOFTWARE PRODUCT AND PROGRAM DOCUMENTATION INCLUDE TRADE SECRETS AND ARE CONFIDENTIAL AND PROPRIETARY PRODUCTS OF ANSYS, INC., ITS SUBSIDIARIES, OR LICENSORS. The software products and documentation are furnished by ANSYS, Inc., its subsidiaries, or affiliates under a software license agreement that contains provisions concerning non-disclosure, copying, length and nature of use, compliance with exporting laws, warranties, disclaimers, limitations of liability, and remedies, and other provisions. The software products and documentation may be used, disclosed, transferred, or copied only in accordance with the terms and conditions of that software license agreement.
ANSYS, Inc. is certified to ISO 9001:2008.

U.S. Government Rights

For U.S. Government users, except as specifically granted by the ANSYS, Inc. software license agreement, the use, duplication, or disclosure by the United States Government is subject to restrictions stated in the ANSYS, Inc. software license agreement and FAR 12.212 (for non-DOD licenses).

Third-Party Software

See the legal information in the product help files for the complete Legal Notice for ANSYS proprietary software and third-party software. If you are unable to access the Legal Notice, please contact ANSYS, Inc.

Published in the U.S.A.

Table of Contents

1. About This Reference 1
1.1. Conventions Used in This Reference 1
1.1.1. Product Codes 2
1.1.2. Applicable ANSYS Products 2
1.2. ANSYS Product Capabilities 3
2. General Element Features 5
2.1. Element Input 5
2.1.1. Element Name 6
2.1.2. Nodes 6
2.1.3. Degrees of Freedom 6
2.1.4. Real Constants 6
2.1.5. Material Properties 6
2.1.6. Surface Loads 7
2.1.7. Body Loads 7
2.1.8. Special Features 7
2.1.9. KEYOPTs 7
2.2. Solution Output 8
2.2.1. Nodal Solution 8
2.2.2. Element Solution 9
2.2.2.1. The Element Output Definitions Table 9
2.2.2.2. The Item and Sequence Number Table 9
2.2.2.3. Surface Loads 10
2.2.2.4. Centroidal Solution (output listing only) 10
2.2.2.5. Surface Solution 10
2.2.2.6. Integration Point Solution (output listing only) 11
2.2.2.7. Element Nodal Solution 11
2.2.2.8. Element Nodal Loads 12
2.2.2.9. Nonlinear Solution 12
2.2.2.10. Plane and Axisymmetric Solutions 12
2.2.2.11. Member Force Solution 12
2.2.2.12. Failure Criteria 12
2.3. Coordinate Systems 14
2.3.1. Element Coordinate Systems 15
2.3.2. Elements that Operate in the Nodal Coordinate System 15
2.4. Linear Material Properties 16
2.4.1. Defining Linear Material Properties 17
2.4.2. Stress-Strain Relationships 18
2.4.3. Damping 19
2.4.4. Thermal Expansion 19
2.4.5. Emissivity 21
2.4.6. Specific Heat 21
2.4.7. Film Coefficients 21
2.4.8. Temperature Dependency 21
2.4.9. How ANSYS Evaluates Linear Material Properties 21
2.5. Material Data Tables (Implicit Analysis) 22
2.5.1. Nonlinear Stress-Strain Material Models 22
2.5.1.1. Bilinear Kinematic Hardening Constants (TB,BKIN) 24
2.5.1.2. Multilinear Kinematic Hardening Constants (TB,KINH or TB,MKIN) 24
2.5.1.3. Nonlinear Kinematic Hardening Constants (TB,CHABOCHE) 26
2.5.1.4. Bilinear Isotropic Hardening Constants (TB,BISO) 27
2.5.1.5. Multilinear Isotropic Hardening Constants (TB,MISO) 27
2.5.1.6. Nonlinear Isotropic Hardening Constants (TB,NLISO) 28
2.5.1.7. Anisotropic Constants (TB,ANISO) 29
2.5.1.8. Hill's Anisotropy Constants (TB,HILL) 29
2.5.1.9. Experimental Data (TB,EXPE) 30
2.5.1.10. Drucker-Prager Constants (TB,DP) 31
2.5.1.11. Extended Drucker-Prager Constants (TB,EDP) 31
2.5.1.11.1.EDP Cap Material Constants (TB,EDP,,,,CAPFUNCTION) 33
2.5.1.12. Gurson's Model Constants (TB,GURSON) 34
2.5.1.13. Multilinear Elastic Constants (TB,MELAS) 35
2.5.1.14. Cast Iron Plasticity Material Constants (TB,CAST) 35
2.5.1.15. Porous Media Constants (TB,PM) 36
2.5.1.16. User-Defined Material Constants (TB,USER) 36
2.5.2. Hyperelastic Material Models 37
2.5.2.1. Arruda-Boyce Hyperelastic Material Constants (TB,HYPER,,,,BOYCE) 38
2.5.2.2. Blatz-Ko Foam Hyperelastic Material Constants (TB,HYPER,,,,BLATZ) 38
2.5.2.3. Extended Tube Material Constants (TB,HYPER,,,,ETUBE) 39
2.5.2.4. Gent Hyperelastic Material Constants (TB,HYPER,\ldots, ,GENT) 39
2.5.2.5. Mooney-Rivlin Hyperelastic Material Constants (TB,HYPER,,,,MOONEY) 40
2.5.2.6. Neo-Hookean Hyperelastic Material Constants (TB,HYPER,,,,NEO) 41
2.5.2.7. Ogden Compressible Foam Hyperelastic Material Constants (TB,HYPER,,,,FOAM) 42
2.5.2.8. Ogden Hyperelastic Material Constants (TB,HYPER,,,,OGDEN) 43
2.5.2.9. Polynomial Form Hyperelastic Material Constants (TB,HYPER,,,,,POLY) 44
2.5.2.10. Response Function Hyperelastic Material Constants (TB,HYPER,,,,RESPONSE) 45
2.5.2.11. Yeoh Hyperelastic Material Constants (TB,HYPER, ,, YEOH) 46
2.5.2.12. User-Defined Hyperelastic Material Constants (TB,HYPER,,,,USER) 47
2.5.3. Special Hyperelastic Material Models 47
2.5.3.1. Anisotropic Hyperelastic Material Constants (TB,AHYPER) 47
2.5.3.2. Bergstrom-Boyce Material Constants (TB,BB) 48
2.5.3.3. Mullins Effect Constants (TB,CDM) 49
2.5.4. Viscoelastic Material Model 49
2.5.5. Magnetic Material Model (TB,BH) 52
2.5.6. High-Frequency Electromagnetic Material Models 52
2.5.6.1. 3-D Elements HF119 and HF120 52
2.5.6.1.1. Conductivity, Permittivity, and Permeability Matrices 53
2.5.6.1.2. B-H Nonlinear Material Permeability Matrix 53
2.5.6.1.3. Anisotropic Electric and Magnetic Loss Tangents 55
2.5.6.1.4. Frequency-Dependent Lossy Dielectric 56
2.5.6.2. 2-D Element HF118 57
2.5.7. Anisotropic Elastic Material Model (TB,ANEL) 58
2.5.8. Piezoelectric Material Model (TB,DPER) 59
2.5.9. Piezoresistive Material Model (TB,PZRS) 60
2.5.10. Anisotropic Electric Permittivity Material Model (TB,DPER) 61
2.5.11. Rate-Dependent Plastic (Viscoplastic) Material Models (TB,RATE) 62
2.5.11.1. Perzyna, Peirce, Exponential Visco-Hardening, and Anand Material Option Descrip- tions 62
2.5.11.2. Specifying Rate-Dependent Plasticity (Viscoplasticity) 64
2.5.12. Gasket Material Model (TB,GASKET) 64
2.5.13. Creep Equations (TB,CREEP) 66
2.5.13.1. Implicit Creep Equations 67
2.5.13.2. Explicit Creep Equations 69
2.5.13.2.1. Primary Explicit Creep Equation for $\mathrm{C} 6=0$ 70
2.5.13.2.2. Primary Explicit Creep Equation for C6 = 1 70
2.5.13.2.3. Primary Explicit Creep Equation for $\mathrm{C} 6=2$ 70
2.5.13.2.4. Primary Explicit Creep Equation for $\mathrm{C} 6=9$ 70
2.5.13.2.4.1. Double Exponential Creep Equation ($\mathrm{C} 4=0$) 70
2.5.13.2.4.2. Rational Polynomial Creep Equation with Metric Units ($C 4=1$) 71
2.5.13.2.4.3. Rational Polynomial Creep Equation with English Units ($C 4=2$) 71
2.5.13.2.5. Primary Explicit Creep Equation for $\mathrm{C} 6=10$ 71
2.5.13.2.5.1. Double Exponential Creep Equation ($\mathrm{C} 4=0$) 72
2.5.13.2.5.2. Rational Polynomial Creep Equation with Metric Units $(C 4=1)$ 72
2.5.13.2.5.3. Rational Polynomial Creep Equation with English Units $(\mathrm{C} 4=2)$ 72
2.5.13.2.6. Primary Explicit Creep Equation for $\mathrm{C} 6=11$ 72
2.5.13.2.6.1. Modified Rational Polynomial Creep Equation ($C 4=0$) 72
2.5.13.2.6.2. Rational Polynomial Creep Equation with Metric Units ($C 4=1$) 73
2.5.13.2.6.3. Rational Polynomial Creep Equation with English Units $(\mathrm{C} 4=2)$ 73
2.5.13.2.7. Primary Explicit Creep Equation for $\mathrm{C} 6=12$ 73
2.5.13.2.8. Primary Explicit Creep Equation for C6 Equals 13 74
2.5.13.2.9. Primary Explicit Creep Equation for $\mathrm{C} 6=14$ 74
2.5.13.2.10. Primary Explicit Creep Equation for $\mathrm{C} 6=15$ 75
2.5.13.2.11. Primary Explicit Creep Equation for $\mathrm{C} 6=100$ 75
2.5.13.2.12. Secondary Explicit Creep Equation for $\mathrm{C} 12=0$ 75
2.5.13.2.13. Secondary Explicit Creep Equation for C12 $=1$ 76
2.5.13.2.14. Irradiation Induced Explicit Creep Equation for $\mathrm{C} 66=5$ 76
2.5.14. Shape Memory Alloy Material Model (TB,SMA) 76
2.5.15. Swelling Equation Constants (TB,SWELL) 77
2.5.16. MPC184 Joint Material Models (TB,JOIN) 78
2.5.16.1.Linear Elastic Stiffness and Damping Behavior Constants 78
2.5.16.2. Nonlinear Elastic Stiffness and Damping Behavior Constants 79
2.5.16.2.1. Specifying a Function Describing Nonlinear Stiffness Behavior 81
2.5.16.3. Frictional Behavior 81
2.5.17. Contact Friction (TB,FRIC) 83
2.5.17.1. Isotropic Friction (TB,FRIC,,,,ISO) 83
2.5.17.2. Orthotropic Friction (TB,FRIC,,,,ORTHO) 84
2.5.17.3. Redefining Friction Between Load Steps 84
2.5.17.4. User-Defined Friction (TB,FRIC,\ldots, USER) 85
2.5.18. Cohesive Zone Material Constants (TB,CZM) 85
2.5.18.1. Cohesive Zone Material Constants for Interface Elements (TB,CZM,,,,EXPO) 86
2.5.18.2. Cohesive Zone Material Constants for Contact Elements (TB,CZM,,,,CBDD and TB,CZM,,,,,CBDE) 86
2.5.19. Fluid Material Models (TB,FLUID) 87
2.5.20. Material Strength Limits (TB,FCLI) 88
2.5.21. Understanding Field Variable Interpolation 90
2.5.21.1.Data Processing 90
2.5.21.2. Example: One-Dimensional Interpolation 91
2.5.21.3. Example:Two-Dimensional Interpolation 92
2.5.22. GUI-Inaccessible Material Properties 93
2.6. Material Model Combinations 93
2.7. Explicit Dynamics Materials 97
2.8. Node and Element Loads 97
2.9. Triangle, Prism, and Tetrahedral Elements 99
2.10. Shell Elements 100
2.11. Generalized Plane Strain (Current-Technology Solid Element Option) 101
2.12. Harmonic Axisymmetric Elements 102
2.12.1. Harmonic Axisymmetric Elements with Nonaxisymmetric Loads 103
2.13. General Axisymmetric Elements 107
2.13.1. Example: 3-D General Axisymmetric Model 110
2.14. Shear Deflection 113
2.15. Geometric Nonlinearities 113
2.16. Mixed u-P Formulation Elements 116
2.16.1. Overview of Mixed u-P Element Technologies 116
2.16.2. Mixed u-P Element Summary 117
2.16.3. Applications of Mixed u-P Formulations 118
2.16.4. Mixed u-P Models and Overconstraint or No Unique Solution 118
2.17. Elements Supporting Linear Perturbation Analysis 119
2.17.1. Material Behavior of Structural Elements in Linear Perturbation 119
2.17.2. Interpretation of Structural Element Results after a Linear Perturbation Analysis 120
2.17.3. Loads, Initial Conditions, and Other Limitations in Linear Perturbation 120
2.18. Legacy vs. Current Element Technologies 121
2.18.1. Current-Technology Element Benefits 122
2.19. Automatic Selection of Element Technologies 122
2.20. User-Defined Elements 125
3. Element Characteristics 127
3.1. Element Classifications 128
3.2. Pictorial Summary 129
3.3. GUI-Inaccessible Elements 145
4. Element Library 147
I. Element Library 149
SOLID5 151
INFIN9 161
LINK11 165
PLANE13 169
COMBIN14 179
MASS21 185
PLANE25 189
MATRIX27 197
SHELL28 203
FLUID29 209
FLUID30 215
LINK31 221
LINK33 225
LINK34 229
PLANE35 233
SOURC36 237
COMBIN37 241
FLUID38 251
COMBIN39 255
COMBIN40 263
SHELL41 271
INFIN47 279
MATRIX50 283
PLANE53 287
PLANE55 297
SHELL61 303
SOLID62 319
SOLID65 329
LINK68 339
SOLID70 343
MASS71 349
PLANE75 353
PLANE77 359
PLANE78 365
FLUID79 371
FLUID80 375
FLUID81 381
PLANE83 387
SOLID87 395
SOLID90 399
CIRCU94 405
SOLID96 413
SOLID97 419
SOLID98 431
TRANS109 441
INFIN110 445
INFIN111 451
INTER115 457
FLUID116 461
SOLID117 471
HF118 483
HF119 489
HF120 497
PLANE121 505
SOLID122 511
SOLID123 517
CIRCU124 523
CIRCU125 535
TRANS126 541
FLUID129 551
FLUID130 555
SHELL131 559
SHELL132 567
FLUID136 575
FLUID138 585
FLUID139 589
FLUID141 595
FLUID142 605
ROM144 615
SURF151 619
SURF152 629
SURF153 639
SURF154 647
SURF156 655
SHELL157 661
SURF159 667
LINK160 677
BEAM161 681
PLANE162 695
SHELL163 701
SOLID164 713
COMBI165 719
MASS166 723
LINK167 725
SOLID168 729
TARGE169 733
TARGE170 741
CONTA171 751
CONTA172 765
CONTA173 779
CONTA174 795
CONTA175 811
CONTA176 827
CONTA177 841
CONTA178 853
PRETS179 867
LINK180 871
SHELL181 877
PLANE182 893
PLANE183 901
MPC184 909
MPC184-Link/Beam 915
MPC184-Slider 921
MPC184-Revolute 925
MPC184-Universal 935
MPC184-Slot 945
MPC184-Point 953
MPC184-Translational 961
MPC184-Cylindrical 969
MPC184-Planar 981
MPC184-Weld 993
MPC184-Orient 999
MPC184-Spherical 1005
MPC184-General 1011
MPC184-Screw 1021
SOLID185 1031
SOLID186 1047
SOLID187 1063
BEAM188 1069
BEAM189 1085
SOLSH190 1101
INTER192 1111
INTER193 1115
INTER194 1119
INTER195 1125
MESH200 1129
FOLLW201 1133
INTER202 1137
INTER203 1141
INTER204 1145
INTER205 1149
SHELL208 1153
SHELL209 1163
CPT212 1173
CPT213 1179
COMBI214 1185
CPT215 1191
CPT216 1197
CPT217 1203
FLUID220 1209
FLUID221 1215
PLANE223 1221
SOLID226 1231
SOLID227 1243
PLANE230 1253
SOLID231 1259
SOLID232 1263
PLANE233 1267
SOLID236 1275
SOLID237 1285
HSFLD241 1293
HSFLD242 1299
SURF251 1305
SURF252 1309
REINF263 1313
REINF264 1321
REINF265 1329
SOLID272 1337
SOLID273 1345
SOLID278 1353
SOLID279 1363
SHELL281 1375
SOLID285 1389
PIPE288 1395
PIPE289 1411
ELBOW290 1427
USER300 1443
Bibliography 1445
Index 1447
List of Figures
2.1. Shape Memory Alloy Phases 77
2.2. Generalized Plane Strain Deformation 101
2.3. Axisymmetric Radial, Axial, Torsion and Moment Loadings 104
2.4. Bending and Shear Loading (ISYM = 1) 105
2.5. Uniform Lateral Loadings 106
2.6. Bending and Shear Loading (ISYM $=-1$) 106
2.7. Displacement and Force Loading Associated with $M O D E=2$ and $I S Y M=1$ 106
2.8. General Axisymmetric Elements and Their Coordinate Systems (KEYOPT(2) $=3$) 108

List of Tables

2.1. Output Available through ETABLE 10
2.2. Orthotropic Material Failure Criteria Data 13
2.3. Linear Material Property Descriptions 17
2.4. Implicit Creep Equations 67
2.5. Shape Memory Alloy Constants 76
2.6. Material Model Combination Possibilities 93
2.7. Surface Loads Available in Each Discipline 98
2.8. Body Loads Available in Each Discipline 98
2.9. Fourier Terms for General Axisymmetric Elements 109
2.10. Elements Having Nonlinear Geometric Capability 114
2.11. Number of Independent Pressure Degrees of Freedom in One Element 117
2.12. Elements that Support Linear Perturbation 119
2.13. Recommendation Criteria for Element Technology (Linear Material) 123
2.14. Recommendation Criteria for Element Technology (Nonlinear Materials) 124
3.1. List of Elements by Classification 128

Chapter 1: About This Reference

Welcome to the Element Reference. This reference contains a complete library of detailed ANSYS element descriptions, arranged in order by element number. It is the definitive reference for element documentation.

For detailed information about the features included in the element documentation, see General Element Features (p.5). For a classification table of element types and a pictorial summary list of element characteristics, see Element Characteristics (p. 127).

This reference is not a primary source of procedural information. See the appropriate analysis guides for conceptual and procedural information.

The following Element Reference topics are available:
1.1. Conventions Used in This Reference
1.2. ANSYS Product Capabilities

1.1. Conventions Used in This Reference

ANSYS documentation uses the following conventions to help you identify various types of information:

Type style or text	Indicates
BOLD	Uppercase, bold text indicates command names (such as K, DDELE) or elements (LINK180).
Bold>Bold	Bold text in mixed case indicates a GUI menu path, a series of menu choices for accessing a command from the GUl. One or more angle brackets (>) separate menu items in a menu path. Frequently in text, an ANSYS command is followed by its GUI equivalent in parentheses, as shown in this example: *GET command (Utility Menu> Paramet- ers> Get Scalar Data)
ITALICS	Uppercase italic letters indicate command arguments for numeric values (such as VALLU, INC, TIME). On some commands, non-numeric convenience labels (for example, ALL and P) can also be entered for these arguments.
Italics	Mixed case italic letters indicate command arguments for alphanumer- ic values (for example, Lab or Fname).The documentation also uses italic text for emphasis.
TYPEWRITER	A typewriter font indicates command input listings and ANSYS output listings.

Any mention of a command or element name in this document implies a reference to the appropriate command or element documentation. For more detailed information about a command or element mentioned in the text, see the Command Reference or Element Reference documents, respectively. If you are viewing the documentation online, click on a command or element name to view the documentation for that command or element.

1.1.1. Product Codes

Near the top of the first page of each element description, a list of product codes appears. These codes represent the individual products in the ANSYS suite of products. The element is valid only for those products whose symbols are listed. An element that is valid in the entire set of products has the following list of product codes:

MP ME ST PR PRN DS DSS FL EM EH DY PP VT EME MFS

The codes represent each of the products in the ANSYS suite of products:

Code	Product
MP	ANSYS Multiphysics
ME	ANSYS Mechanical
ST	ANSYS Structural
PR	ANSYS Professional - Nonlinear Thermal
PRN	ANSYS Professional - Nonlinear Structural
DS	ANSYS DesignSpace
DSS	ANSYS DesignSpace - Structural
FL	ANSYS FLOTRAN
EM	ANSYS Emag - Low Frequency
EH	ANSYS Emag - High Frequency
DY	ANSYS LS-DYNA
PP	ANSYS PrepPost
VT	ANSYS DesignXplorer
EME	ANSYS Mechanical/ANSYS Emag
MFS	ANSYS Mechanical/CFX-Flo

For a brief description of each product, see Applicable ANSYS Products (p. 2).
If the symbol for a product does not appear, the element is either invalid for (or inapplicable to) the corresponding product, and should not be used. For example, if the PR and FL symbols are not listed, the element is invalid in the ANSYS Professional or ANSYS FLOTRAN products, but is valid in all other ANSYS products.

In most cases, commands and elements that are valid in ANSYS Multiphysics are also valid in the ANSYS ED and ANSYS Multiphysics 1, 2, and 3 products. Exceptions are noted under Product Restrictions for the applicable command or element. ANSYS ED and ANSYS Multiphysics 1, 2, and 3 are not listed as separate product codes.

1.1.2. Applicable ANSYS Products

This document applies to the following ANSYS products:
ANSYS Multiphysics (includes all structural, thermal, electromagnetics, and computational fluid dynamics (CFD) capabilities, excludes explicit dynamics)
ANSYS Mechanical (includes all structural and thermal capabilities; excludes electromagnetics, CFD, and explicit dynamics capabilities)
ANSYS Structural (includes all structural linear and nonlinear capabilities)

```
ANSYS Professional (Nonlinear Thermal and Nonlinear Structural)
ANSYS Emag (Low Frequency and High Frequency)
ANSYS FLOTRAN
ANSYS LS-DYNA
ANSYS PrepPost
ANSYS ED
ANSYS Mechanical/ANSYS Emag (combination of All Mechanical and Emag capabilities)
ANSYS Mechanical/CFX-Flo (combination of All Mechanical and CFX-Flo capabilities)
```

Some command arguments and element key option (KEYOPT) settings have defaults in the derived products that are different from those in ANSYS Multiphysics. These cases are clearly documented under the Product Restrictions section of the affected commands and elements. If you intend to use your derived product input file in ANSYS Multiphysics, you should explicitly input these settings in the derived product, rather than letting them default; otherwise, behavior in ANSYS Multiphysics will be different.

While ANSYS connection capabilities and High Performance Computing are included as part of the ANSYS release distribution, they are separately-licensed products. Consult your ASD if you want to install and run any of the separately-licensed products at your site.

Even if an element is available in a particular product, some of its options may not be. Most element descriptions include a Product Restrictions section which details any specific restrictions the element may have in each of the products.

1.2. ANSYS Product Capabilities

A complete list of engineering capabilities available in the various ANSYS products is available on the ANSYS Web site at http://www.ansys.com/assets/brochures/capabilities-brochure.pdf.

Chapter 2: General Element Features

The element library consists of approximately 200 element formulations or types. Individual elements are described in Element Library (p. 147).

Many features are common to all elements in the library. This chapter addresses the common features.
Some element types or features may not be available based on the product-licensing options active at your site. Any restrictions for an element are documented in the "Product Restrictions" section for that element.

The following element feature topics are available:
2.1. Element Input
2.2. Solution Output
2.3. Coordinate Systems
2.4.Linear Material Properties
2.5. Material Data Tables (Implicit Analysis)
2.6. Material Model Combinations
2.7. Explicit Dynamics Materials
2.8. Node and Element Loads
2.9. Triangle, Prism, and Tetrahedral Elements
2.10. Shell Elements
2.11.Generalized Plane Strain (Current-Technology Solid Element Option)
2.12. Harmonic Axisymmetric Elements
2.13. General Axisymmetric Elements
2.14. Shear Deflection
2.15. Geometric Nonlinearities
2.16. Mixed u-P Formulation Elements
2.17.Elements Supporting Linear Perturbation Analysis
2.18. Legacy vs. Current Element Technologies
2.19. Automatic Selection of Element Technologies
2.20. User-Defined Elements

2.1. Element Input

Element Library (p. 147) includes a summary table of element input. The table usually contains the following items:

Element Name
Nodes
Degrees of Freedom
Real Constants
Material Properties
Surface Loads
Body Loads
Special Features
Key Options (KEYOPTs)

Details on these items follow:

2.1.1. Element Name

An element type is identified by a name (8 characters maximum), such as SOLID285, consisting of a group label (SOLID) and a unique, identifying number (285). The element descriptions in Element Library (p. 147) are arranged in order of these identification numbers. The element is selected from the library for use in the analysis by inputting its name on the element type command (ET. See Element Characteristics (p. 127) for a list of all available elements.

2.1.2. Nodes

The nodes associated with the element are listed as I, J, K, etc. Elements are connected to the nodes in the sequence and orientation shown on the input figure for each element type. This connectivity can be defined by automatic meshing, or may be input directly by the user with the \mathbf{E} command. The node numbers must correspond to the order indicated in the "Nodes" list. The I node is the first node of the element. The node order determines the element coordinate system orientation for some element types. See Coordinate Systems (p. 14) for a description of the element coordinate system.

2.1.3. Degrees of Freedom

Each element type has a degree of freedom set, which constitute the primary nodal unknowns to be determined by the analysis. They may be displacements, rotations, temperatures, pressures, voltages, etc. Derived results, such as stresses, heat flows, etc., are computed from these degree of freedom results. Degrees of freedom are not defined on the nodes explicitly by the user, but rather are implied by the element types attached to them. The choice of element types is therefore, an important one in any ANSYS analysis.

2.1.4. Real Constants

Data which are required for the calculation of the element matrix, but which cannot be determined from the node locations or material properties, are input as "real constants." Typical real constants include area, thickness, inner diameter, outer diameter, etc. A basic description of the real constants is given with each element type. The Theory Reference for the Mechanical APDL and Mechanical Applications section describing each element type shows how the real constants are used within the element. The real constants are input with the \mathbf{R} command. The real constant values input on the command must correspond to the order indicated in the "Real Constants" list.

2.1.5. Material Properties

Various material properties are used for each element type. Typical material properties include Young's modulus (of elasticity), density, coefficient of thermal expansion, thermal conductivity, etc. Each property is referenced by an ANSYS label - EX, EY, and EZ for the directional components of Young's modulus, DENS for density, and so on. All material properties can be input as functions of temperature.

Some properties for non-thermal analyses are called linear properties because typical solutions with these properties require only a single iteration. Properties such as stress-strain data are called nonlinear because an analysis with these properties requires an iterative solution. A basic description of the linear material properties is given in Linear Material Properties (p.16) and of the nonlinear properties in Material Data Tables (Implicit Analysis) (p. 22). Linear material properties are input with the MP family of commands while nonlinear properties are input with the TB family of commands. Some elements require other special data which need to be input in tabular form. These tabular data are also input with the TB commands and are described with the element in Element Library (p. 147), or in Material Data Tables (Implicit Analysis) (p. 22) if they apply to a
family of elements. The Theory Reference for the Mechanical APDL and Mechanical Applications shows how the properties and special data are actually used within the element.

Material models used in explicit dynamic analyses are discussed in Material Models in the ANSYS LS-DYNA User's Guide.

2.1.6. Surface Loads

Various element types allow surface loads. Surface loads are typically pressures for structural element types, convections or heat fluxes for thermal element types, etc. See Node and Element Loads (p. 97) for additional details.

2.1.7.Body Loads

Various element types allow body loads. Body loads are typically temperatures for structural element types, heat generation rates for thermal element types, etc. See Node and Element Loads (p. 97) for details. Body loads are designated in the "Input Summary" table of each element by a label and a list of load values at various locations within the element. Body loads are input with the BF or BFE commands. The load values input on the BFE command must correspond to the order indicated in the "Body Load" list.

2.1.8. Special Features

The keywords in the "Special Features" list indicate that certain additional capabilities are available for the element. Most often these features make the element nonlinear and require that an iterative solution be done. For a description of the special feature "Plasticity," see Nonlinear Stress-Strain Material Models (p. 22); for "Creep," see Creep Equations (TB,CREEP) (p. 66); and for "Swelling," see Swelling Equation Constants (TB,SWELL) (p. 77). See Nonlinear Structural Analysis in the Structural Analysis Guide and the Theory Reference for the Mechanical APDL and Mechanical Applications for information about "Large Deflection," "Large Strain," "Stress Stiffening," "Adaptive Descent," "Error Estimation," "Birth and Death," "Hyperelasticity," and "Viscoelasticity."

2.1.9. KEYOPTs

KEYOPTs (or key options) are switches, used to turn various element options on or off. KEYOPT options include stiffness formulation choices, printout controls, element coordinate system choices, etc. A basic description of the KEYOPTs is given with each element type. The Theory Reference for the Mechanical APDL and Mechanical Applications section for the element type shows how some of the KEYOPTs are used within the element. KEYOPTs are identified by number, such as $\operatorname{KEYOPT}(1), \operatorname{KEYOPT}(2)$, etc., with each numbered KEYOPT able to be set to a specific value. Values for the first six KEYOPTs (KEYOPT(1) through KEYOPT(6)) may be input with the ET or KEYOPT commands. Values for KEYOPT(7) or greater on any element are input with the KEYOPT command.

Note

The defaults for element key options are chosen to be most convenient for the ANSYS product you are using, which means that some of the defaults may be different in some of the ANSYS products. These cases are clearly documented under the "Product Restrictions" section of the affected elements. If you plan to use your input file in more than one ANSYS product, you should explicitly input these settings, rather than letting them default; otherwise, behavior in the other ANSYS product may be different.

2.2. Solution Output

The output from the solution consists of the nodal solution (or the primary degree of freedom solution) and the element solution (or the derived solution). Each of these solutions is described below. Solution output is written to the output file (Jobname. OUT, also known as the "printout"), the database, and the results file (Jobname.RST, Jobname.RTH, Jobname. RMG, or Jobname.RFL). The output file can be viewed through the GUI, while the database and results file data (sometimes called the "post data") can be postprocessed.

The output file contains the nodal degree-of-freedom solution, nodal and reaction loads, and the element solutions, depending on the OUTPR settings. The element solutions are primarily the centroidal solution values for each element. Most elements have KEYOPTs to output more information (e.g. integration points).

The results file contains data for all requested (OUTRES) solutions, or load steps. In POST1, you issue the SET command to identify the load step you wish to postprocess. Results items for the area and volume elements are generally retrieved from the database by commands such as PRNSOL, PLNSOL, PRESOL, PLESOL, etc. The labels on these commands correspond to the labels shown in the input and output description tables for each element. For example, postprocessing the X -stress (typically labeled SX) is identified as item S and component X on the postprocessing commands. Coordinate locations $X C, Y C, Z C$ are identified as item CENT and component X, Y, or Z. Only items shown both on the individual command and in the element input/output tables are available for use with that command. An exception is EPTO, the total strain, which is available for all structural solid and shell elements even though it is not shown in the output description tables for those elements.

Generic labels do not exist for some results data, such as integration point data, all derived data for structural line elements (such as spars, beams, and pipes) and contact elements, all derived data for thermal line elements, and layer data for layered elements. Instead, a sequence number is used to identify these items (described below).

2.2.1. Nodal Solution

The nodal solution from an analysis consists of:

- the degree-of-freedom solution, such as nodal displacements, temperatures, and pressures
- the reaction solution calculated at constrained nodes - forces at displacement constraints, heat flows at temperature degree-of-freedom constraints, fluid flows at pressure degree-of-freedom constraints, and so on.

The degree-of-freedom solution is calculated for all active degrees of freedom in the model, which are determined by the union of all degree-of-freedom labels associated with all the active element types. It is output at all degrees of freedom that have a nonzero stiffness or conductivity and can be controlled by OUTPR,NSOL (for printed output) and OUTRES,NSOL (for results file output).

The reaction solution is calculated at all nodes that are constrained (D, DSYM, etc.). Its output can be controlled by OUTPR,RSOL and OUTRES,RSOL.

For vector degrees of freedom and corresponding reactions, the output during solution is in the nodal coordinate system. If a node was input with a rotated nodal coordinate system, the output nodal solution will also be in the rotated coordinate system. For a node with the rotation $\theta_{x y}=90^{\circ}$, the printed UX solution will be in the nodal X direction, which in this case corresponds to the global Y direction. Rotational displacements (ROTX, ROTY, ROTZ) are output in radians, and phase angles from a harmonic analysis are output in degrees.

2.2.2. Element Solution

The element output items (and their definitions) are shown along with the element type description. Not all of the items shown in the output table will appear at all times for the element. Normally, items not appearing are either not applicable to the solution or have all zero results and are suppressed to save space. However, except for the coupled-field elements PLANE223, SOLID226, and SOLID227, coupled-field forces appear if they are computed to be zero. The output is, in some cases, dependent on the input. For example, for thermal elements accepting either surface convection (CONV) or nodal heat flux (HFLUX), the output will be either in terms of convection or heat flux. Most of the output items shown appear in the element solution listing. Some items do not appear in the solution listing but are written to the results file.

Most elements have 2 tables which describe the output data and ways to access that data for the element. These tables are the "Element Output Definitions" table and the "Item and Sequence Numbers" tables used for accessing data through the ETABLE and ESOL commands.

2.2.2.1. The Element Output Definitions Table

The first table, "Element Output Definitions," describes possible output for the element. In addition, this table outlines which data are available for solution printout (Jobname. OUT and/or display to the terminal), and which data are available on the results file (Jobname. RST, Jobname. RTH, Jobname. RMG, etc.). Only the data which you request with the solution commands (OUTPR and OUTRES) are included in printout and on the results file, respectively.

As an added convenience, items in the table which are available via the Component Name method of the ETABLE command are identified by special notation (:) included in the output label.(See The General Postprocessor (POST1) in the Basic Analysis Guide for more information.) The label portion before the colon corresponds to the Item field on the ETABLE command, and the portion after the colon corresponds to the Comp field. For example, $\mathrm{S}: \mathrm{EQV}$ is defined as equivalent stress, and the ETABLE command for accessing this data would be:

ETABLE,ABC,S,EQV

where $A B C$ is a user-defined label for future identification on listings and displays. Other data having labels without colons can be accessed through the Sequence Number method, discussed with the "Item and Sequence Number" tables below.

In some cases there is more than one label which can be used after the colon, in which case they are listed and separated by commas. The Definition column defines each label and, in some instances, also lists the label used on the printout, if different. The \mathbf{O} column indicates those items which are written to the output window and/or the output file. The \mathbf{R} column indicates items which are written to the results file and which can be obtained in postprocessing; if an item is not marked in the \mathbf{R} column, it cannot be stored in the "element table."

2.2.2.2. The Item and Sequence Number Table

Many elements also have a table, or set of tables, that list the Item and sequence number required for data access using the Sequence Number method of the ETABLE command. See The General Postprocessor (POST1) in the Basic Analysis Guide for an example. The number of columns in each table and the number of tables per element vary depending on the type of data available and the number of locations on the element where data was calculated. For structural line elements, for example, the KEYOPT(9) setting will determine the number of locations (intermediate points) along the element where data is to be calculated.

See Table 2: "PLANE182 Item and Sequence Numbers" for a sample item and sequence number table. Items listed as SMISC refer to summable miscellaneous items, while NMISC refers to nonsummable miscellaneous items. (See the Basic Analysis Guide for details.)

2.2.2.3. Surface Loads

Pressure output for structural elements shows the input pressures expanded to the element's full taperedload capability. See the SF, SFE, and SFBEAM commands for pressure input. If the pressure is input as a constant instead of tapered, both nodal values of the pressure will be the same. Beam elements which allow an offset from the node have addition output labeled OFFST. To save space, pressure output is often omitted when values are zero. Similarly, other surface load items (such as convection (CONV) and heat flux (HFLUX)), and body load input items (such as temperature (TEMP), fluence (FLUE), and heat generation (HGEN)), are often omitted when the values are zero (or, for temperatures, when the T-TREF values are zero).

2.2.2.4. Centroidal Solution (output listing only)

Output such as stress, strain, temperature, etc. in the output listing is given at the centroid (or near center) of the element. The location of the centroid is updated if large deflections are used. The output quantities are calculated as the average of the integration point values (see the Theory Reference for the Mechanical APDL and Mechanical Applications). The component output directions for vector quantities correspond to the input material directions which, in turn, are a function of the element coordinate system. For example, the SX stress is in the same direction as EX. In postprocessing, ETABLE may be used to compute the centroidal solution of each element from its nodal values.

2.2.2.5. Surface Solution

Surface output is available in the output listing on certain free surfaces of solid elements. A free surface is a surface not connected to any other element and not having any degree-of-freedom constraint or nodal force load on the surface. Surface output is not valid on surfaces which are not free or for elements having nonlinear material properties. Surface output is also not valid for elements deactivated (EKILL) and then reactivated (EALIVE). Surface output does not include large strain effects.

The surface output is automatically suppressed if the element has nonlinear material properties. Surface calculations are of the same accuracy as the displacement calculations. Values are not extrapolated to the surface from the integration points but are calculated from the nodal displacements, face load, and the material property relationships. Transverse surface shear stresses are assumed to be zero. The surface normal stress is set equal to the surface pressure. Surface output should not be requested on condensed faces or on the zero-radius face (center line) of an axisymmetric model.

For 3-D solid elements, the face coordinate system has the x-axis in the same general direction as the first two nodes of the face, as defined with pressure loading. The exact direction of the x-axis is on the line connecting the midside nodes or midpoints of the two opposite edges. The y-axis is normal to the x-axis, in the plane of the face.

Table 2.1: Output Available through ETABLE (p. 10) lists output available through the ETABLE command using the Sequence Number method (Item = SURF). See the appropriate table (4.xx.2) in the individual element descriptions for definitions of the output quantities.

Table 2.1 Output Available through ETABLE

	Element Dimensionality		
snum	3-D	2-D	Axisymm
1	FACE	FACE	FACE

	Element Dimensionality		
snum	3-D	2-D	Axisymm
2	AREA	AREA	AREA
3	TEMP	TEMP	TEMP
4	PRES	PRES	PRES
5	EPX	EPPAR	EPPAR
6	EPY	EPPER	EPPER
7	EPZ	EPZ	EPZ
8	EPXY	0	EPSH [1]
9	SX	SPAR	SPAR
10	SY	SPER	SPER
11	SZ	SZ	SZ
12	SXY	0	0
13	0	0	0
14	0	0	SSH [1]
15	S1	S1	S1
16	S2	S2	S2
17	S3	S3	S3
18	SINT	SINT	SINT
19	SEQV	SEQV	SEQV

1. Axiharmonic only

If an additional face has surface output requested, then snum 1-19 are repeated as snum 20-38.
Convection heat flow output may be given on convection surfaces of solid thermal elements. Output is valid on interior as well as exterior surfaces. Convection conditions should not be defined on condensed faces or on the zero-radius face (center line) of an axisymmetric model.

2.2.2.6. Integration Point Solution (output listing only)

Integration point output is available in the output listing with certain elements. The location of the integration point is updated if large deflections are used. See the element descriptions in the Theory Reference for the Mechanical APDL and Mechanical Applications for details about integration point locations and output. Also the ERESX command may be used to request integration point data to be written as nodal data on the results file.

2.2.2.7. Element Nodal Solution

The term element nodal means element data reported for each element at its nodes. This type of output is available for 2-D and 3-D solid elements, shell elements, and various other elements. Element nodal data consist of the element derived data (e.g. strains, stresses, fluxes, gradients, etc.) evaluated at each of the element's nodes. These data are usually calculated at the interior integration points and then extrapolated to the nodes. Exceptions occur if an element has active (nonzero) plasticity, creep, or swelling at an integration point or if ERESX,NO is input. In such cases the nodal solution is the value at the integration point nearest the node. See the Theory Reference for the Mechanical APDL and Mechanical Applications for details. Output
is usually in the element coordinate system. Averaging of the nodal data from adjacent elements is done within POST1.

2.2.2.8. Element Nodal Loads

These are an element's loads (forces) acting on each of its nodes. They are printed out at the end of each element output in the nodal coordinate system and are labeled as static loads. If the problem is dynamic, the damping loads and inertia loads are also printed. The output of element nodal loads can be controlled by OUTPR,NLOAD (for printed output) and OUTRES,NLOAD (for results file output).

Element nodal loads relate to the reaction solution in the following way: the sum of the static, damping, and inertia loads at a particular degree of freedom, summed over all elements connected to that degree of freedom, plus the applied nodal load (\mathbf{F} or $\mathbf{F K}$ command), is equal to the negative of the reaction solution at that same degree of freedom.

2.2.2.9. Nonlinear Solution

For information about nonlinear solution due to material nonlinearities, see the Theory Reference for the Mechanical APDL and Mechanical Applications. Nonlinear strain data (EPPL, EPCR, EPSW, etc.) is always the value from the nearest integration point. If creep is present, stresses are computed after the plasticity correction but before the creep correction. The elastic strains are printed after the creep corrections.

2.2.2.10. Plane and Axisymmetric Solutions

A 2-D solid analysis is based upon a "per unit of depth" calculation and all appropriate output data are on a "per unit of depth" basis. Many 2-D solids, however, allow an option to specify the depth (thickness). A 2D axisymmetric analysis is based on a full 360°. Calculation and all appropriate output data are on a full 360° basis. In particular, the total forces for the 360° model are output for an axisymmetric structural analysis and the total convection heat flow for the 360° model is output for an axisymmetric thermal analysis. For axisymmetric analyses, the X, Y, Z, and $X Y$ stresses and strains correspond to the radial, axial, hoop, and inplane shear stresses and strains, respectively. The global Y axis must be the axis of symmetry, and the structure should be modeled in the +X quadrants.

2.2.2.11. Member Force Solution

Member force output is available with most structural line elements. The listing of this output is activated with a KEYOPT described with the element and is in addition to the nodal load output. Member forces are in the element coordinate system and the components correspond to the degrees of freedom available with the element.

2.2.2.12. Failure Criteria

Failure criteria are commonly used for orthotropic materials. Input failure criteria using the FC command (and related commands in the FCXXXXXx family) in the POST1 postprocessor.

For temperature-dependent failure data, you can input up to six temperatures. Strains must have absolute values less than 1.0.

The failure criteria constants entered via the FC command are:
Table 2.2 Orthotropic Material Failure Criteria Data

FC Lab1 Value	FC Lab2 Value	Constant
EPEL	XTEN	$\left(\varepsilon_{\mathrm{xt}}^{\mathrm{f}}\right)$ - Failure strain in material x -direction in tension (must be positive).
	XCMP	$\left(\varepsilon_{\mathrm{xc}}^{f}\right)$ - Failure strain in material x -direction in compression (default $\left.=-\varepsilon_{\mathrm{xt}}^{\mathrm{f}}\right)($ may not be positive).
	YTEN	$\left(\varepsilon_{\mathrm{yt}}^{f}\right)$ - Failure strain in material y-direction in tension (must be positive).
	YCMP	$\left(\varepsilon^{f}{ }^{f}\right)$ - Failure strain in material y-direction in compression (default $\left.=-\varepsilon^{f}{ }^{f}\right)($ may not be positive).
	ZTEN	$\left(\varepsilon_{z t}^{f}\right)$ - Failure strain in material z-direction in tension (must be positive).
	ZCMP	$\left(\varepsilon_{\mathrm{zc}}^{\mathrm{f}}\right)$ - Failure strain in material z-direction in compression (default $\left.=-\varepsilon_{\text {zt }}^{f}\right)($ may not be positive).
	XY	$\left(\varepsilon_{x y}^{f}\right)$ - Failure strain in material $x-y$ plane (shear) (must be positive).
	YZ	$\left(\varepsilon^{f}{ }^{f}\right)$ - Failure strain in material y-z plane (shear) (must be positive).
	XZ	$\left(\varepsilon_{x z}^{f}\right)$ - Failure strain in material $x-z$ plane (shear) (must be positive).
S	XTEN	$\left(\sigma_{\mathrm{xt}}^{\mathrm{f}}\right)$ - Failure stress in material x -direction in tension (must be positive).
	XCMP	$\left(\sigma_{\mathrm{xc}}^{f}\right)$ - Failure stress in material x-direction in compression (default $\left.=-\sigma_{x t}^{f}\right)($ may not be positive).
	YTEN	$\left(\sigma_{y t}^{f}\right)$ - Failure stress in material y-direction in tension (must be positive).

FC Lab1 Value	FC Lab2 Value	Constant
	YCMP	$\left(\sigma_{y c}^{f}\right)$ - Failure stress in material y-direction in compression (default $=-\sigma_{y t}^{\dagger}$) (may not be positive).
	ZTEN	$\left(\sigma_{\mathrm{zt}}^{\mathrm{f}}\right)$ - Failure stress in material z-direction in tension (must be positive).
	ZCMP	$\left(\sigma_{\mathrm{zc}}^{\mathrm{f}}\right)$ - Failure stress in material z-direction in compression (default $\left.=-\sigma_{z t}^{\dagger}\right)($ may not be positive).
	XY	$\left(\sigma_{x y}^{f}\right)$ - Failure stress in material x-y plane (shear) (must be positive).
	YZ	$\left(\sigma_{y z}^{f}\right)$ - Failure stress in material y-z plane (shear) (must be positive).
	XZ	$\left(\sigma_{x z}^{f}\right)$ - Failure stress in material x-z plane (shear) (must be positive).
	XYCP	$\left(C_{x y}^{*}\right)-x-y$ coupling coefficient for Tsai-Wu Theory (default =-1.0).
	YZCP	$\left(C_{y z}^{*}\right)-y-z$ coupling coefficient for Tsai-Wu Theory (default =-1.0).
	XZCP	($C_{x z}^{*}$) - x-z coupling coefficient for Tsai-Wu Theory (default $=-1.0$).

Tsai-Wu coupling coefficients must be between -2.0 and 2.0. Values between -1.0 and 0.0 are recommended. For 2-D analysis, set $\sigma_{z t}^{f}, \sigma_{z c}^{f}, \sigma_{y z}^{f}$, and $\sigma_{x z}^{f}$ to a value several orders of magnitude larger than $\sigma_{x t}^{f}, \sigma_{x c}^{f}$, or $\sigma_{x y}^{f}$; and set $C_{x z}$ and $C_{y z}$ to zero.

See Specifying Failure Criteria in the Structural Analysis Guide for more information about this material option.

2.3. Coordinate Systems

The following coordinate system topics are available:
2.3.1. Element Coordinate Systems
2.3.2. Elements that Operate in the Nodal Coordinate System

2.3.1. Element Coordinate Systems

The element coordinate system is used for orthotropic material input directions, applied pressure directions, and, under some circumstances, stress output directions. (See Rotating Results to a Different Coordinate System in the Basic Analysis Guide for a discussion of the circumstances in which the program uses the element coordinate system for stress output directions.) A default element coordinate system orientation is associated with each element type. In general, these systems are described below. Elements departing from this description have their default element coordinate system orientation described in Element Library (p. 147).

Element coordinate systems are right-handed, orthogonal systems. For line elements, the default orientation is generally with the x -axis along the element I-J line. For solid elements (such as PLANE182 or SOLID185), the default orientation is generally parallel to the global Cartesian coordinate system. For general axisymmetric solid elements (SOLID272 and SOLID273), the general orientation is determined by the cylindrical coordinate system, with z and the origin defined via SECTYPE and SECDATA commands, and $\theta=0$ on the master plane; the r, θ, and z directions adhere to the right-hand rule. For area shell elements (such as SHELL181), the default orientation generally has the x-axis aligned with element I -J side, the z -axis normal to the shell surface (with the outward direction determined by the right-hand rule around the element from node I to J to K), and the y-axis perpendicular to the x and z-axes.

Unless otherwise changed, the element coordinate system orientation is the default orientation for that element type as described above. The orientation may be changed for area and volume elements by making it parallel to a previously defined local system (ESYS) or, for some elements, by a KEYOPT selection. If both are specified, the ESYS definition overrides. A further rotation, relative to the previous orientation, is allowed for some elements by a real constant angle specification (see, for example, the real constant THETA for SHELL181). Note that if no ESYS or KEYOPT orientation is specified, the real constant angle rotation (if any) is relative to the default orientation. The coordinate systems of axisymmetric elements may only be rotated about the global Z-axis; however, general axisymmetric elements can be rotated about any axis.

For shell elements, the ESYS orientation uses the projection of the local system on the shell surface. The element x-axis is determined from the projection of the local x-axis on the shell surface. If the projection is a point (or the angle between the local x-axis and the normal to the shell is 0° (plus a tolerance of 45°), the local y-axis projection is used for the element x-axis direction. The z and y-axes are determined as described for the default orientation. For non-midside-node elements, the projection is evaluated at the element centroid and is assumed constant in direction throughout the element. For midside-node elements, the projection is evaluated at each integration point and may vary in direction throughout the element. For axisymmetric elements, only rotations in the $\mathrm{X}-\mathrm{Y}$ plane are valid. Some elements also allow element coordinate system orientations to be defined by user written subroutines (see the Guide to ANSYS User Programmable Features).

Layered elements use the x-axis of the element coordinate system as a base from which to rotate each layer to the layer coordinate system. The layers are rotated by the angles input on the SECDATA or RMORE commands. Material properties, stresses, and strains for layered elements are based on the layer coordinate system, not the element coordinate system.

All element coordinate systems shown in the element figures assume that no ESYS orientation is specified. Element coordinate systems may be displayed as a triad with the /PSYMB command or as an ESYS number (if specified) with the /PNUM command. Triad displays do not include the effects of any real constant angle. For large deflection analyses, the element coordinate system rotates from the initial orientation described above by the amount of rigid body rotation of the element.

2.3.2. Elements that Operate in the Nodal Coordinate System

A few special elements operate totally in the nodal coordinate system:

COMBIN14 Spring-Damper with KEYOPT(2) $=1,2,3,4,5$, or 6
MATRIX27 Stiffness, Damping, or Mass Matrix
COMBIN37 Control Element
FLUID38 Dynamic Fluid Coupling
COMBIN39 Nonlinear Spring with KEYOPT(4) $=0$
COMBIN40 Combination Element
TRANS126 Electromechanical Transducer
These elements are defined in the nodal coordinate systems. This allows for easy directional control, especially for the case of 2-node elements with coincident nodes. If UX, UY, or UZ degrees of freedom are being used, the nodes are not coincident, and the load is not acting parallel to the line connecting the 2 nodes, there is no mechanism for the element to transfer the resulting moment load, resulting in loss of moment equilibrium. The one exception is MATRIX27, which can include moment coupling when appropriate additional terms are added to the matrix.

There are some things to consider if any of the nodes have been rotated, for example with the NROTAT command:

- If the nodes of elements containing more than one node are not rotated in the exact same way, force equilibrium may not be maintained.
- Accelerations operate normally in the global Cartesian system. But since there is no transformation done between the nodal and global systems, the accelerations will effectively act on any element mass in the nodal system, giving unexpected results. Therefore, it is recommended not to apply accelerations when these elements use rotated nodes.
- Mass and inertia relief calculations will not be correct.

2.4. Linear Material Properties

Material properties (which may be functions of temperature) are described as linear properties because typical non-thermal analyses with these properties require only a single iteration.

Conversely, if properties needed for a thermal analysis (such as KXX) are temperature-dependent, the problem is nonlinear. Properties such as stress-strain data are described as nonlinear properties because an analysis with these properties requires an iterative solution.

Linear material properties that are required for an element, but which are not defined, use default values. (The exception is that EX and KXX must be input with a nonzero value where applicable.) Any additional material properties are ignored.

The X, Y, and Z portions of the material property labels refer to the element coordinate system. In general, if a material is isotropic, only the " X " and possibly the " XY " term is input.

To define the material properties for an element, issue the MP command.
The following topics concerning linear material properties are available:
2.4.1. Defining Linear Material Properties
2.4.2. Stress-Strain Relationships
2.4.3. Damping
2.4.4.Thermal Expansion
2.4.5. Emissivity
2.4.6. Specific Heat
2.4.7. Film Coefficients
2.4.8. Temperature Dependency

2.4.9. How ANSYS Evaluates Linear Material Properties

2.4.1. Defining Linear Material Properties

The linear material properties used by the element type are listed under "Material Properties" in the input table for each element type. The following table describes all available linear material properties, defined via the Lab value on the MP command:

Table 2.3 Linear Material Property Descriptions

$\begin{gathered} \hline \text { MP, } \\ \text { Lab } \\ \text { Value } \end{gathered}$	Units	Description
EX	Force/Area	Elastic modulus, element x direction
EY		Elastic modulus, element y direction
EZ		Elastic modulus, element z direction
PRXY	None	Major Poisson's ratio, $x-y$ plane
PRYZ		Major Poisson's ratio, y-z plane
PRXZ		Major Poisson's ratio, x-z plane
NUXY		Minor Poisson's ratio, $x-y$ plane
NUYZ		Minor Poisson's ratio, y-z plane
NUXZ		Minor Poisson's ratio, x-z plane
GXY	Force/Area	Shear modulus, $x-y$ plane
GYZ		Shear modulus, y-z plane
GXZ		Shear modulus, x xz plane
ALPX	Strain/Temp	Secant coefficient of thermal expansion, element x direction
ALPY		Secant coefficient of thermal expansion, element y direction
ALPZ		Secant coefficient of thermal expansion, element z direction
CTEX	Strain/Temp	Instantaneous coefficient of thermal expansion, element x direction
CTEY		Instantaneous coefficient of thermal expansion, element y direction
CTEZ		Instantaneous coefficient of thermal expansion, element z direction
THSX	Strain	Thermal strain, element x direction
THSY		Thermal strain, element y direction
THSZ		Thermal strain, element z direction
REFT	Temp	Reference temperature (as a property) (see also TREF)
MU	None	Coefficient of friction (or, for FLUID29 and FLUID30 elements, boundary admittance)
DAMP	None	K matrix multiplier for damping (also see BETAD)
DMPR	None	Constant material damping coefficient
DENS	Mass/Vol	Mass density

$\begin{gathered} \text { MP, } \\ \text { Lab } \\ \text { Value } \end{gathered}$	Units	Description
KXX	Heat*Length/ (Time*Area*Temp)	Thermal conductivity, element x direction
KYY		Thermal conductivity, element y direction
KZZ		Thermal conductivity, element z direction
C	Heat/Mass*Temp	Specific heat
ENTH	Heat/Vol	Enthalpy (\int DENS* ${ }^{\text {c }}$ d(Temp)
HF	Heat / (Time*Area*Temp)	Convection (or film) coefficient
EMIS	None	Emissivity
QRATE	Heat/Time	Heat generation rate (MASS71 element only)
VISC	Force*Time/ Length ${ }^{2}$	Viscosity
SONC	Length/Time	Sonic velocity (FLUID29, FLUID30, FLUID129, and FLUID130 elements only)
MURX	None	Magnetic relative permeability, element x direction
MURY		Magnetic relative permeability, element y direction
MURZ		Magnetic relative permeability, element z direction
MGXX	Current/Length	Magnetic coercive force, element x direction
MGYY		Magnetic coercive force, element y direction
MGZZ		Magnetic coercive force, element z direction
RSVX	Resistance*Area/Length	Electrical resistivity, element x direction
RSVY		Electrical resistivity, element y direction
RSVZ		Electrical resistivity, element z direction
PERX	None	Electric relative permittivity, element x direction
PERY		Electric relative permittivity, element y direction
PERZ		Electric relative permittivity, element z direction
LSST	None	Dielectric loss tangent
SBKX	Voltage/Temp	Seebeck coefficient, element x direction
SBKY		Seebeck coefficient, element y direction
SBKZ		Seebeck coefficient, element z direction

2.4.2.Stress-Strain Relationships

Structural material properties must be input as an isotropic, orthotropic, or anisotropic material.

If the material is isotropic:

Young's modulus (EX) must be input.
Poisson's ratio (PRXY or NUXY) defaults to 0.3 . If a zero value is desired, input PRXY or NUXY with a zero or blank value. Poisson's ratio should not be ≥ 0.5 nor ≤-1.0.

The shear modulus (GXY) defaults to EX/(2(1+NUXY)). If GXY is input, it must match EX/(2 ($1+$ NUXY)). The sole purpose for inputting GXY is to ensure consistency with the other two properties.

If the material is orthotropic:

EX, EY, EZ, (PRXY, PRYZ, PRXZ, or NUXY, NUYZ, NUXZ), GXY, GYZ, and GXZ must all be input if the element type uses the material property. There are no defaults. For example, if only EX and EY are input (with different values) to a plane stress element, ANSYS issues an error indicating that the material is orthotropic and that GXY and NUXY are also needed.

Poisson's ratio may be input in either major (PRXY, PRYZ, PRXZ) or minor (NUXY, NUYZ, NUXZ) form, but not both for a particular material. The major form is converted to the minor form during the solve operation (SOLVE). Solution output is in terms of the minor form, regardless of how the data was input. If zero values are desired, input the labels with a zero (or blank) value.

For axisymmetric analyses, the X, Y, and Z labels refer to the radial (R), axial (Z), and hoop (θ) directions, respectively. Orthotropic properties given in the R, Z, θ system should be input as follows: $\mathrm{EX}=\mathrm{ER}, \mathrm{EY}=\mathrm{EZ}$, and $\mathrm{EZ}=\mathrm{E} \theta$. An additional transformation is required for Poisson's ratios. If the given R, Z, θ properties are column-normalized (see the Theory Reference for the Mechanical APDL and Mechanical Applications), NUXY $=$ NURZ, NUYZ $=$ NUZ $\theta=(E T / E Z) * N U \theta Z$, and NUXZ $=$ NUR θ. If the given R, Z, θ properties are row-normalized, $N U X Y=(E Z / E R)^{*} N U R Z$, NUYZ $=(E \theta / E Z) * N U Z \theta=N U \theta Z$, and $N U X Z=(E \theta / E R) * N U R \theta$.

For all other orthotropic materials (including ALPX, ALPY, and ALPZ), the X, Y, and Z part of the label (as in KXX, KYY, and KZZ) refers to the direction (in the element coordinate system) in which that particular property acts. The Y and Z directions of the properties default to the X direction (for example, KYY and KZZ default to KXX) to reduce the amount of input required.

If the material is anisotropic:

See Anisotropic Elastic Material Model (TB,ANEL) (p. 58).

2.4.3. Damping

Material dependent (stiffness) damping (DAMP) is an additional method of including damping for dynamic analyses and is useful when different parts of the model have different damping values. If DAMP is included, the DAMP value is added to the value defined with BETAD as appropriate. For mode-superposition analyses, DAMP can be defined in the prior modal analysis; DAMP is a material dependent modal damping ratio in this case. See the Theory Reference for the Mechanical APDL and Mechanical Applications for more details. DAMP is not assumed to be temperature dependent and is always evaluated at $\mathrm{T}=0.0$. Special-purpose elements, such as MATRIX27 and FLUID29, generally do not require damping. However, if material property DAMP is specified for these elements, the value will be used to create the damping matrix at solution time.

Constant material damping coefficient (DMPR) is a material-dependent structural damping coefficient that is constant with respect to the excitation frequency in harmonic analysis and is useful when different parts of the model have different damping values (see Damping Matrices in the Theory Reference for the Mechanical APDL and Mechanical Applications). DMPR is not temperature dependent and is always evaluated at $\mathrm{T}=$ 0.0. See Damping in the Structural Analysis Guide for more information about DMPR.

2.4.4. Thermal Expansion

The uniform temperature does not default to REFT (but does default to TREF on the TREF command).

The effects of thermal expansion can be accounted for in three different (and mutually exclusive) ways:

- secant coefficient of thermal expansion (ALPX, ALPY, ALPZ)
- instantaneous coefficient of thermal expansion (CTEX, CTEY, CTEZ)
- thermal strain (THSX, THSY, THSZ)

When you use ALPX to enter values for the secant coefficient of thermal expansion ($\alpha^{\text {se }}$), the program interprets those values as secant or mean values, taken with respect to some common datum or definition temperature. For instance, suppose you measured thermal strains in a test laboratory, starting at $23^{\circ} \mathrm{C}$, and took readings at $200^{\circ}, 400^{\circ}, 600^{\circ}, 800^{\circ}$, and 1000°. When you plot this strain-temperature data, you could input this directly using THSX. The slopes of the secants to the strain-temperature curve would be the mean (or secant) values of the coefficient of thermal expansion, defined with respect to the common temperature of $23^{\circ}\left(T_{o}\right)$. You can also input the instantaneous coefficient of thermal expansion ($\alpha^{\text {in }}$, using CTEX). The slopes of the tangents to this curve represent the instantaneous values. Hence, the figure below shows how the alternate ways of inputting coefficients of thermal expansion relate to each other.

The program calculates structural thermal strain as follows:

$$
\varepsilon^{\mathrm{th}}=\alpha^{\mathrm{se}}(\mathrm{~T}) *(\mathrm{~T}-\text { TREF })
$$

where:
$\mathrm{T}=$ element evaluation temperature
TREF = temperature at which zero thermal strains exist (TREF command or REFT)
$\alpha^{\text {se }}(T)=$ secant coefficient of thermal expansion, with respect to a definition temperature (in this case, same as TREF) (ALPX)

If the material property data is in terms of instantaneous values of α, then the program will convert those instantaneous values into secant values as follows:

$$
\alpha^{\mathrm{se}}\left(T_{n}\right)=\frac{\int_{T_{0}}^{T_{n}} \alpha^{\text {in }}(T)^{*} d T}{\left(T_{n}-\text { TREF }\right)}
$$

where:
$T_{n}=$ temperature at which an $\alpha^{\text {se }}$ value is being evaluated
$T_{0}=$ definition temperature at which the $\alpha^{\text {se }}$ values are defined (in this case, same as TREF)
$\alpha^{\text {in }}(T)=$ instantaneous coefficient of thermal expansion at temperature T (CTEX)

If the material property data is in terms of thermal strain, the program will convert those strains into secant values of coefficients of thermal expansion as follows:

$$
\alpha^{\text {se }}\left(T_{n}\right)=\frac{\varepsilon^{\text {ith }}(T)}{\left(T_{n}-T_{\text {ref }}\right)}
$$

where:

$$
\varepsilon^{\mathrm{ith}}(\mathrm{~T})=\text { thermal strain at temperature } \mathrm{T}(\mathrm{THSX})
$$

If necessary, the data is shifted so that the thermal strain is zero when $T_{n}=T_{\text {ref. }}$. If a data point at $T_{\text {ref }}$ exists, a discontinuity in $\alpha^{\text {se }}$ may be generated at $T_{n}=T_{\text {ref. }}$. This can be avoided by ensuring that the slopes of $\varepsilon^{\text {ith }}$ on both sides of $\mathrm{T}_{\text {ref }}$ match.

If the $\alpha^{\text {se }}$ values are based upon a definition temperature other than TREF, then you need to convert those values to TREF. This can be done using the MPAMOD command. Also see the Theory Reference for the Mechanical APDL and Mechanical Applications.

2.4.5. Emissivity

EMIS defaults to 1.0 if not defined. However, if EMIS is set to zero or blank, EMIS is taken to be 0.0 .

2.4.6. Specific Heat

You can input specific heat effects using either the C (specific heat) or ENTH (enthalpy) property. Enthalpy has units of heat/volume and is the integral of C x DENS over temperature. If both C and ENTH are specified, ANSYS uses ENTH. ENTH should be used only in a transient thermal analysis. For phase-change problems, you must input ENTH as a function of temperature using the MP family of commands (MP, MPTEMP, MPTGEN, and MPDATA).

2.4.7. Film Coefficients

Film coefficients are evaluated as described via the SF command. See the Theory Reference for the Mechanical APDL and Mechanical Applications for additional details. Property evaluation at element temperatures beyond the supplied tabular range assumes a constant property at the extreme range value. An exception occurs for the ENTH property, which continues along the last supplied slope.

2.4.8. Temperature Dependency

Temperature-dependent properties may be input in tabular form (value vs. temperature [MP]) or as a fourthorder polynomial (value $=f$ (temperature) [MPTEMP and MPDATA]). If input as a polynomial, ANSYS evaluates the dependencies at discrete temperature points during PREP7 preprocessing and then converts the properties to tabular form. The tabular properties are then available to the elements.

2.4.9. How ANSYS Evaluates Linear Material Properties

ANSYS evaluates material properties at or near the centroid of the element or at each of the integration points, as follows:

- Heat-transfer elements: All properties are evaluated at the centroid (except for the specific heat or enthalpy, which is evaluated at the integration points).
- Structural elements: All properties are evaluated at the integration points.
- All other elements: All properties are evaluated at the centroid.

If the temperature of the centroid or integration point falls below or rises above the defined temperature range of tabular data, ANSYS assumes the defined extreme minimum or maximum value, respectively, for the material property outside the defined range.

2.5. Material Data Tables (Implicit Analysis)

A data table is a series of constants that are interpreted when they are used. Data tables are always associated with a material number and are most often used to define nonlinear material data (stress-strain curves, creep constants, swelling constants, and magnetization curves). Other material properties are described in Linear Material Properties (p. 16). For some element types, the data table is used for special element input data other than material properties. The form of the data table (referred to as the TB table) depends upon the data being defined. Where the form is peculiar to only one element type, the table is described with the element in Element Library (p. 147). If the form applies to more than one element, it is described below and referenced in the element description.

The following data table topics are available:
2.5.1. Nonlinear Stress-Strain Material Models
2.5.2. Hyperelastic Material Models
2.5.3. Special Hyperelastic Material Models
2.5.4. Viscoelastic Material Model
2.5.5. Magnetic Material Model (TB,BH)
2.5.6. High-Frequency Electromagnetic Material Models
2.5.7. Anisotropic Elastic Material Model (TB,ANEL)
2.5.8. Piezoelectric Material Model (TB,DPER)
2.5.9. Piezoresistive Material Model (TB,PZRS)
2.5.10. Anisotropic Electric Permittivity Material Model (TB,DPER)
2.5.11. Rate-Dependent Plastic (Viscoplastic) Material Models (TB,RATE)
2.5.12. Gasket Material Model (TB,GASKET)
2.5.13. Creep Equations (TB,CREEP)
2.5.14. Shape Memory Alloy Material Model (TB,SMA)
2.5.15. Swelling Equation Constants (TB,SWELL)
2.5.16. MPC184 Joint Material Models (TB,JOIN)
2.5.17. Contact Friction (TB,FRIC)
2.5.18. Cohesive Zone Material Constants (TB,CZM)
2.5.19. Fluid Material Models (TB,FLUID)
2.5.20. Material Strength Limits (TB,FCLI)
2.5.21. Understanding Field Variable Interpolation
2.5.22. GUI-Inaccessible Material Properties

For information about explicit dynamic materials, see "Material Models" in the ANSYS LS-DYNA User's Guide. For more information, see "Nonlinear Structural Analysis" in the Structural Analysis Guide.

2.5.1. Nonlinear Stress-Strain Material Models

If Table 4.n-1 lists "plasticity" as a "Special Feature," several options are available to describe the material behavior of that element. Options are available for rate-independent plasticity, rate-dependent plasticity, and elasticity. A user-defined material model option is also available.

Select the material behavior option via menu path Main Menu> Preprocessor> Material Props> Material Models, or via a TB,Lab command, as follows:

Lab value	Material Behavior Option
BKIN	Bilinear Kinematic Hardening (rate-independent plasticity)
MKIN	Multilinear Kinematic Hardening (rate-independent plasticity)
KINH	Multilinear Kinematic Hardening (rate-independent plasticity) CHABOCHE
Chaboche Nonlinear Kinematic Hardening (rate-independent plas- ticity)	
MISO	Multilinear Isotropic Hardening (rate-independent plasticity)
BISO	Bilinear Isotropic Hardening (rate-independent plasticity)
NLISO	Nonlinear Isotropic Hardening (rate-independent plasticity)
ANISO	Anisotropic (rate-independent plasticity)
HILL	Hill Anisotropic Potential
DP	Drucker-Prager (rate-independent plasticity)
EDP	Extended Drucker-Prager
GURSON	Gurson Plasticity and Damage
MELAS	Multilinear Elastic
CAST	Cast Iron Plasticity
PM	Porous media
USER	User-defined materials

Most options require a uniaxial stress-strain curve to be input. The exceptions are CHABOCHE, NLISO, HILL, DP, and USER.

Most options must have elastically isotropic ($\mathrm{EX}=\mathrm{EY}=\mathrm{EZ}$) materials. The exceptions are HILL, ANISO, and USER.

Required values not included in the data table are assumed to be zero. If the data table is not defined (or contains all zero values), the material is assumed to be linear.

The material behavior options are described below. See the Theory Reference for the Mechanical APDL and Mechanical Applications for more detail.
2.5.1.1. Bilinear Kinematic Hardening Constants (TB,BKIN)
2.5.1.2. Multilinear Kinematic Hardening Constants (TB,KINH or TB,MKIN)
2.5.1.3. Nonlinear Kinematic Hardening Constants (TB,CHABOCHE)
2.5.1.4. Bilinear Isotropic Hardening Constants (TB,BISO)
2.5.1.5. Multilinear Isotropic Hardening Constants (TB,MISO)
2.5.1.6. Nonlinear Isotropic Hardening Constants (TB,NLISO)
2.5.1.7. Anisotropic Constants (TB,ANISO)
2.5.1.8. Hill's Anisotropy Constants (TB,HILL)
2.5.1.9. Experimental Data (TB,EXPE)
2.5.1.10. Drucker-Prager Constants (TB,DP)
2.5.1.11.Extended Drucker-Prager Constants (TB,EDP)
2.5.1.12. Gurson's Model Constants (TB,GURSON)
2.5.1.13. Multilinear Elastic Constants (TB,MELAS)
2.5.1.14. Cast Iron Plasticity Material Constants (TB,CAST)
2.5.1.15. Porous Media Constants (TB,PM)

2.5.1.16.User-Defined Material Constants (TB,USER)

2.5.1.1. Bilinear Kinematic Hardening Constants (TB,BKIN)

This option (BKIN) assumes the total stress range is equal to twice the yield stress, so that the Bauschinger effect is included. BKIN may be used for materials that obey von Mises yield criteria (which includes most metals). The material behavior is described by a bilinear total stress-total strain curve starting at the origin and with positive stress and strain values. The initial slope of the curve is taken as the elastic modulus of the material. At the specified yield stress (C1), the curve continues along the second slope defined by the tangent modulus, C2 (having the same units as the elastic modulus). The tangent modulus cannot be less than zero nor greater than the elastic modulus.

Initialize the stress-strain table with TB,BKIN. For each stress-strain curve, define the temperature (TBTEMP), then define C1 and C2 (TBDATA). You can define up to six temperature-dependent stress-strain curves (NTEMP $=6$ maximum on the TB command) in this manner. The constants C1 and C2 are:

Constant Meaning
 C1 Yield stress (Force/Area)
 C2 Tangent modulus (Force/Area)

BKIN can be used with the $T B O P T$ option. In this case, $T B O P T$ takes two arguments. For $\operatorname{TB}, \mathrm{BKIN}, \ldots, 0$, there is no stress relaxation with an increase in temperature. This option is not recommended for nonisothermal problems. For TB,BKIN ,,,,1, Rice's hardening rule is applied (which does take stress relaxation with temperature increase into account). This is the default.

See the TB command for a listing of the elements that can be used with this material option.
See Plastic Material Options in the Structural Analysis Guide for more information on this material option.
You can combine this option with other material options to simulate more complex material behaviors. See Material Model Combinations (p. 93) for further information.

2.5.1.2. Multilinear Kinematic Hardening Constants (TB,KINH or TB,MKIN)

You can use either TB,KINH (alternately TB,PLASTIC,,,,KINH), or TB,MKIN to model metal plasticity behavior under cyclic loading.

The two options use the Besseling model (see the Theory Reference for the Mechanical APDL and Mechanical Applications), also called the sublayer or overlay model. The material response is represented by multiple layers of perfectly plastic material; the total response is obtained by weighted average behavior of all the layers. Individual weights are derived from the uniaxial stress-strain curve. The uniaxial behavior is described by a piece-wise linear "total stress-total strain curve", starting at the origin, with positive stress and strain values. The slope of the first segment of the curve must correspond to the elastic modulus of the material and no segment slope should be larger. The slope of the stress-strain curve is assumed to be zero beyond the last user-defined stress-strain data point. In the following, the option TB,KINH is described first, followed by that of TB,MKIN.

The KINH option is recommended because layers are scaled (Rice's model), providing better representations. The KINH option allows you to define up to 40 temperature-dependent stress-strain curves. If you define more than one stress-strain curve for temperature-dependent properties, then each curve should contain the same number of points (up to a maximum of 20 points in each curve). The assumption is that the corresponding points on the different stress-strain curves represent the temperature dependent yield behavior of a particular sublayer.

For stress vs. total strain input, initialize the stress-strain table with TB,KINH. For stress vs. plastic strain input, initialize the stress-strain table with either TB,KINH,,,,PLASTIC or TB,PLASTIC,,,,KINH. Input the temperature of the first curve with the TBTEMP, then input stress and strain values using the TBPT. Input the remaining temperatures and stress-strain values using the same sequence (TBTEMP followed by TBPT).

See the TB command for a listing of the elements that can be used with this material option.
See Plastic Material Options in the Structural Analysis Guide for more information on this material option.
You can combine this option with other material options to simulate more complex material behaviors. See Material Model Combinations (p. 93) for further information.

The curve defined with the MKIN option is continuous from the origin with a maximum of five total stresstotal strain points. The slope of the first segment of the curve must correspond to the elastic modulus of the material and no segment slope should be larger.

The MKIN option has the following restrictions:

- You may define up to five temperature dependent stress-strain curves.
- You may use only five points for each stress-strain curve.
- Each stress-strain curve must have the same set of strain values.

This option is used as follows:
Initialize the stress-strain table with TB,MKIN, followed by a special form of the TBTEMP command (TBTEMP,,STRAIN) to indicate that strains are defined next. The constants (C1-C5), entered on the next TBDATA command, are the five corresponding strain values (the origin strain is not input). The temperature of the first curve is then input with TBTEMP, followed by the TBDATA command with the constants C1-C5 representing the five stresses corresponding to the strains at that temperature. You can define up to five temper-ature-dependent stress-strain curves ($N T E M P=5$ max on the TB command) with the TBTEMP command.

MKIN can also be used in conjunction with the TBOPT option (TB,MKIN,,,,TBOPT). TBOPT has the following three valid arguments:

0 - No stress relaxation with temperature increase (this is not recommended for nonisothermal problems); also produces thermal ratcheting.
1 - Recalculate total plastic strain using new weight factors of the subvolume.
2 - Scale layer plastic strains to keep total plastic strain constant; agrees with Rice's model (TB, BKIN with $T B O P T=1$). Produces stable stress-strain cycles.

See the TB command for a listing of the elements that can be used with this material option.

Note

The mechanical behavior of the TB,KINH option is the same as TB,MKIN with $T B O P T=2$.

See Plastic Material Options in the Structural Analysis Guide for more information on this material option.
You can combine this option with other material options to simulate more complex material behaviors. See Material Model Combinations (p. 93) for further information.

2.5.1.3. Nonlinear Kinematic Hardening Constants (TB,CHABOCHE)

This option (TB,CHABOCHE) uses the Chaboche model for simulating the cyclic behavior of materials. (See the Theory Reference for the Mechanical APDL and Mechanical Applications for more information.) Like the BKIN and MKIN options, you can use this model to simulate monotonic hardening and the Bauschinger effect. You can also superpose up to five kinematic hardening models and an isotropic hardening model to simulate the complicated cyclic plastic behavior of materials, such as cyclic hardening or softening, and ratcheting or shakedown.

The Chaboche model implemented in ANSYS is:
$\dot{\alpha}=\sum_{i}^{n} \dot{\alpha}_{i}=\frac{2}{3} \sum_{i}^{n} C_{i} \dot{\varepsilon}^{\mathrm{pl}}-\gamma_{i} \alpha_{i} \dot{\varepsilon}^{\mathrm{pl}}+\frac{1}{\mathrm{C}_{\mathrm{i}}} \frac{\mathrm{dC}}{\mathrm{d} \theta} \dot{\theta} \alpha_{i}$
where:

$$
\begin{aligned}
& \alpha=\text { back stress tensor } \\
& \varepsilon^{\mathrm{pl}}=\text { plastic strain tensor } \\
& \dot{\varepsilon}^{\mathrm{pl}}=\text { accumulated equivalent plastic strain } \\
& \theta=\text { temperature }
\end{aligned}
$$

(A dot located above any of these quantities indicates the first derivative of the quantity with respect to time.)
C_{i} and $\gamma_{\mathrm{i}}=$ material constants that you enter as inputs
$\mathrm{n}=$ number of nonlinear kinematic models that you specify as NPTS in the TB command
The yield function is:

$$
\mathrm{f}\left(\sigma, \varepsilon^{\mathrm{pl}}\right)=\bar{\sigma}-\mathrm{k}=0
$$

where:
$\bar{\sigma}=$ effective equivalent stress
$\mathrm{k}=$ yield stress of materials that you enter as an input. You can also define k using BISO, MISO, or NLISO, through the TB command.

Initialize the data table with TB,CHABOCHE. For each set of data, define the temperature (TBTEMP), then define C1 through Cm (TBDATA), where $m=1+2 N P T S$. The maximum number of constants, m is 11 , which corresponds to 5 kinematic models ($N P T S=5$ on the TB command). The default value for m is 3 , which corresponds to one kinematic model (NPTS = 1). You can define up to 1000 temperature-dependent constants ([NTEMP $\mathrm{xm} \leq 1000$] maximum on the TB command) in this manner. The constants C 1 through $\mathrm{C}(1+$ $2 N P T S$) are:

Constant	Meaning
C1	$\mathrm{k}=$ Yield stress
C2	$\mathrm{C}_{1}=$ Material constant for first kinematic model
C 3	$\gamma_{1}=$ Material constant for first kinematic model
C4	$\mathrm{C}_{2}=$ Material constant for second kinematic model
C5	$\gamma_{2}=$ Material constant for second kinematic model

```
Constant Meaning
C(2NPTS) C C CNTS = Material constant for last kinematic model
    C(1+}\quad\mp@subsup{\gamma}{NPTS}{}=\mathrm{ Material constant for last kinematic model
2NPTS)
```

k, and all C and γ values in the right column are material constants in the Chaboche model (see the Theory Reference for the Mechanical APDL and Mechanical Applications for details).

See the TB command for a listing of the elements that can be used with this material option.
See Plastic Material Options in the Structural Analysis Guide for more information on this material option.
You can combine this option with other material options to simulate more complex material behaviors. See Material Model Combinations (p. 93) for further information.

2.5.1.4. Bilinear Isotropic Hardening Constants (TB,BISO)

This option (TB,BISO) uses the von Mises yield criteria coupled with an isotropic work hardening assumption. The material behavior is described by a bilinear stress-strain curve starting at the origin with positive stress and strain values. The initial slope of the curve is taken as the elastic modulus of the material. At the specified yield stress (C1), the curve continues along the second slope defined by the tangent modulus C2 (having the same units as the elastic modulus). The tangent modulus cannot be less than zero nor greater than the elastic modulus.

Initialize the stress-strain table with TB,BISO. For each stress-strain curve, define the temperature (TBTEMP), then define C1 and C2 (TBDATA). Define up to six temperature-dependent stress-strain curves ($N T E M P=6$ max on the TB command) in this manner. The constants $C 1$ and $C 2$ are:

```
Constant Meaning
    C1 Yield stress (Force/Area)
    C2 Tangent modulus (Force/Area)
```

See the TB command for a listing of the elements that can be used with this material option.
See Plastic Material Options in the Structural Analysis Guide for more information on this material option.
You can combine this option with other material options to simulate more complex material behaviors. See Material Model Combinations (p. 93) for further information.

2.5.1.5. Multilinear Isotropic Hardening Constants (TB,MISO)

This option (TB,MISO) is similar to BISO except that a multilinear curve is used instead of a bilinear curve. It can be used for non-cyclic load histories or for those elements that do not support the multilinear kinematic hardening option (MKIN). This option may be preferred for large strain cycling where kinematic hardening could exaggerate the Bauchinger effect. The uniaxial behavior is described by a piece-wise linear total stresstotal strain curve, starting at the origin, with positive stress and strain values. The curve is continuous from the origin through 100 (max) stress-strain points. The slope of the first segment of the curve must correspond to the elastic modulus of the material and no segment slope should be larger. No segment can have a slope less than zero. The slope of the stress-strain curve is assumed to be zero beyond the last user-defined stressstrain data point.

You can specify up to 20 temperature-dependent stress-strain curves. For stress vs. total strain input, initialize the curves with TB,MISO. For stress vs. plastic strain input, initialize the curves with TB,PLASTIC,,,,MISO. Input the temperature for the first curve (TBTEMP), followed by up to 100 stress-strain points (the origin stressstrain point is not input) (TBPT). Define up to 20 temperature-dependent stress-strain curves ($N T E M P=20$, maximum on the TB command) in this manner. The constants (X, Y) entered on the TBPT command (two per command) are:

```
Constant Meaning
    X Strain value (Dimensionless)
    Y Corresponding stress value (Force/Area)
```

See the TB command for a listing of the elements that can be used with this material option.
See Plastic Material Options in the Structural Analysis Guide for more information on this material option.
You can combine this option with other material options to simulate more complex material behaviors. See Material Model Combinations (p. 93) for further information.

2.5.1.6. Nonlinear Isotropic Hardening Constants (TB,NLISO)

This option (TB,NLISO) uses either the Voce hardening law or the power law to describe the isotropic hardening behavior of materials. You select either method by specifying the appropriate TBOPT value on the TB,NLISO command. It is especially suitable for large-deformation analyses. When the power law option is combined with GURSON plasticity, ductile plasticity and damage can be modeled. See Material Model Combinations (p. 93) for further information. Also, combining the NLISO Voce hardening option with the CHABOCHE nonlinear kinematic hardening option simulates cyclic hardening or softening behavior of materials (see the Theory Reference for the Mechanical APDL and Mechanical Applications for details).

Once you initialize the data table with TB,NLISO, you define the temperature via the TBTEMP command, and then define either C1 through C4 (TBOPT = Voce) or C1 and C2 (TBOPT = Power) via the TBDATA command. You can define up to twenty temperature-dependent stress-strain curves (NTEMP $=20$ maximum on the TB command) in this manner.

Voce Con- stants	Meaning
C1	$k=$ Yield stress
C2	$R_{o}=$ Material constant in Voce hardening law
C3	$R_{\infty}=$ Material constant in Voce hardening law
C4	$b=$ Material constant in Voce hardening law
Power Con- stants	Meaning
C1	$\sigma_{0}=$ Yield stress
C2	$\mathrm{N}=$ Power value in the power hardening law

See the TB command for a listing of the applicable elements for this material option.
See Plastic Material Options in the Structural Analysis Guide for more information on this material option.

2.5.1.7. Anisotropic Constants (TB,ANISO)

This option (TB,ANISO) allows for different stress-strain behavior in the material x, y, and z directions as well as different behavior in tension and compression (see Anisotropic Elastic Material Model (TB,ANEL) (p. 58)). A modified von Mises yield criterion is used to determine yielding. The theory is an extension of Hill's formulation as noted in the Theory Reference for the Mechanical APDL and Mechanical Applications. This option is not recommended for cyclic or highly nonproportional load histories since work hardening is assumed. The principal axes of anisotropy coincide with the material (or element) coordinate system and are assumed not to change over the load history.

The material behavior is described by the uniaxial tensile and compressive stress-strain curves in three orthogonal directions and the shear stress-engineering shear strain curves in the corresponding directions. A bilinear response in each direction is assumed. The initial slope of the curve is taken as the elastic moduli of the material. At the specified yield stress, the curve continues along the second slope defined by the tangent modulus (having the same units as the elastic modulus). The tangent modulus cannot be less than zero or greater than the elastic modulus. Temperature dependent curves cannot be input. All values must be input as no defaults are defined. Input the magnitude of the yield stresses (without signs). No yield stress can have a zero value. The tensile x-direction is used as the reference curve for output quantities SEPL and EPEQ.

Initialize the stress-strain table with TB,ANISO. You can define up to 18 constants with TBDATA commands. The constants (C1-C18) entered on TBDATA commands (6 per command) are:

Constant	Meaning (all units are Force/Area)
C1-C3	Tensile yield stresses in the material x, y, and z directions
C4-C6	Corresponding tangent moduli
C7-C9	Compressive yield stresses in the material x, y, and z directions
C10-C12	Corresponding tangent moduli
C13-C15	Shear yield stresses in the material $x y, y z$, and $x z$ directions
C16-C18	Corresponding tangent moduli

See the TB command for a listing of the elements that can be used with this material option.
See Plastic Material Options in the Structural Analysis Guide for more information on this material option.

2.5.1.8. Hill's Anisotropy Constants (TB,HILL)

This option (TB,HILL) defines stress ratios for anisotropic yield and creep. Specifically, the following simulations are available by combining the HILL option with other material options, as noted:

- Rate-independent anisotropic plasticity with isotropic hardening -- TB,HILL combined with TB,BISO or TB,MISO or TB,NLISO.
- Rate-independent anisotropic plasticity with kinematic hardening -- TB,HILL combined with TB,BKIN or TB,MKIN or TB,KINH or TB,CHAB.
- Rate-independent anisotropic plasticity with combined hardening -- TB,HILL combined with TB,CHAB and TB,BISO or TB,MISO or TB,NLISO.
- Rate-dependent anisotropic plasticity (anisotropic viscoplasticity) with isotropic hardening -- TB,HILL combined with TB,BISO or TB,MISO or TB,NLISO and TB,RATE.
- Anisotropic creep -- TB,HILL combined with TB,CREEP (implicit).
- Anisotropic creep and anisotropic plasticity with isotropic hardening -- TB,HILL combined with TB,CREEP and TB,BISO or TB,MISO or TB,NLISO (implicit).
- Anisotropic creep and anisotropic plasticity with kinematic hardening -- TB,HILL combined with TB,CREEP and TB,BKIN (implicit)

See Material Model Combinations (p. 93) for more information on combining the HILL option with the plasticity and creep options.

The HILL option's material behavior is described by six constants that define the stress ratios in different directions (see the Theory Reference for the Mechanical APDL and Mechanical Applications for details). All cases can be used with the following elements: LINK180, SHELL181, PLANE182, PLANE183, SOLID185, SOLID186, SOLID187, SOLSH190, BEAM188, BEAM189, SHELL208, and SHELL209.

Initialize the data table with TB,HILL. For each set of data, you then define the temperatures using the TBTEMP command, then define C1 through C6 using the TBDATA command. The input must then be followed by the TB command again, but with one of the plasticity and / or creep options.

For each set of data, you then define the temperature using the TBTEMP command, and then define the constants using the TBDATA command.

The constants C1 through C6 for the HILL option are:

Constant	Meaning	
C 1	r_{xx}	
C 2	r_{yy}	
C 3	r_{zz}	
C 4	r_{xy}	
C 5	r_{yz}	Shear ij
C 6	r_{xz}	

For plasticity, r_{ij} is the ratio of the yield stress in the ij direction, to the yield stress specified for the plasticity input as part of the TB command.

For creep, r_{ij} is the ratio of the creep strain in the ij direction to the reference value calculated by the implicit creep equation.

2.5.1.9. Experimental Data (TB,EXPE)

The experimental data table option (TB,EXPE) allows you to input experimental data. The data is used with other material models.

Initiate the experimental data table (TB,EXPE) and specify the appropriate experimental data type (TBOPT). The following data types are supported:

```
UNIAXIAL - Uniaxial experimental data
BIAXIAL - Equibiaxial experimental data
SHEAR - Pure shear experimental data, also known as planar tension
VOLUMETRIC - Volumetric experimental data
SSHEAR - Simple shear experimental data
UNITENSION - Uniaxial tension experimental data
UNICOMPRESSION - Uniaxial compression experimental data
```

Enter the data (TBPT) for each data point. Each data point entered consists of the independent variable followed by one or more dependent variables. The specific definition of the input points depends on the requirements of the material model associated with the experimental data.

You can also define experimental data as a function of field variables. Field-dependent data are entered by preceding a set of experimental data (TBFIELD) to define the value of the field.

2.5.1.10. Drucker-Prager Constants (TB,DP)

This option (TB,DP) is applicable to granular (frictional) material such as soils, rock, and concrete and uses the outer cone approximation to the Mohr-Coulomb law (see the Theory Reference for the Mechanical APDL and Mechanical Applications). The input consists of only three constants:

- the cohesion value (must be >0)
- the angle of internal friction
- the dilatancy angle.

The amount of dilatancy (the increase in material volume due to yielding) can be controlled with the dilatancy angle. If the dilatancy angle is equal to the friction angle, the flow rule is associative. If the dilatancy angle is zero (or less than the friction angle), there is no (or less of an) increase in material volume when yielding and the flow rule is nonassociated. Temperature-dependent curves are not allowed.

Initialize the constant table with TB,DP. You can define up to three constants with TBDATA commands. The constants (C1-C3) entered on TBDATA are:

Constant	Meaning
C1	Cohesion value (Force/Area)
C2	Angle (in degrees) of internal friction
C3	Dilatancy angle (in degrees)

See the TB command for a listing of the elements that can be used with this material option.
See Plastic Material Options in the Structural Analysis Guide for more information on this material option.

2.5.1.11. Extended Drucker-Prager Constants (TB,EDP)

The Extended Drucker-Prager (TB,EDP) model is also used for granular material. (Also see EDP Cap Material Constants (TB,EDP,,,,CAPFUNCTION) (p. 33).) This model supports various combinations of yield and potential functions as indicated below:

Linear Yield Function	$F=q+\alpha \sigma_{m}-\sigma_{Y}\left(\hat{\varepsilon}_{\mathrm{p}} \mathrm{l}\right)=0$ where: $\alpha=$ material parameter referred to pressure sensitive parameter (input as C 1 on TBDATA command using TB,EDP) $q=\left[\frac{3}{2}\{s\}^{\top}[M]\{s\}\right]^{\frac{1}{2}}$

	$\sigma_{Y}\left(\hat{\varepsilon}_{\mathrm{pl}}\right)=$ yield stress of material (input as C2 on TBDATA command or input using TB,MISO, TB,BISO; TB,NLISO; or TB,PLAST)
Power Law Yield Function	$q^{b}+\alpha \sigma_{m}-\sigma_{Y}^{b}\left(\hat{\varepsilon}_{\mathrm{pl}}\right)=0$ where: $\alpha=$ material parameter referred to pressure sensitive parameter (input as C1 on TBDATA command using TB,EDP) $\mathrm{b}=$ material parameter characterizing the shape of yield surface (input as C2 on TBDATA command using TB,EDP): $\sigma_{\mathrm{Y}}(\hat{\varepsilon} \mathrm{pl})=$ yield stress of material (input as C3 on TBDATA command or input using TB,MISO; TB,BISO; TB,NLISO; or TB,PLAST)
Hyperbolic Yield Function	$\sqrt{a^{2}+q^{2}}+\alpha \sigma_{m}-\sigma_{Y}(\hat{\varepsilon} \mathrm{pl})=0$ where: $\alpha=$ material parameter referred to pressure sensitive parameter (input as C1 on TBDATA command using TB,EDP) a $=$ the parameter input as C2 on the TBDATA command. $\sigma_{\mathrm{Y}}(\hat{\varepsilon} \mathrm{pl})=\text { yield stress of material (input as C3 on }$ TBDATA command or input using TB,MISO; TB,BISO; TB,NLISO; or TB,PLAST)
Linear Plastic Flow Potential Function	$\mathrm{Q}=\mathrm{q}+\alpha \sigma_{\mathrm{m}}-\sigma_{\mathrm{Y}}\left(\hat{\varepsilon}_{\mathrm{pl}}\right)$ Refer to the Linear Yield Function for parameter definitions.
Power Law Plastic Flow Potential Function	$\mathrm{Q}=\mathrm{q}^{\mathrm{b}}+\alpha \sigma_{\mathrm{m}}-\sigma_{Y}{ }^{\mathrm{b}}\left(\hat{\varepsilon}_{\mathrm{pl}}\right)$ Refer to the Power Law Yield Function for parameter definitions.
Hyperbolic Plastic Flow Potential Function	$Q=\sqrt{a^{2}+q^{2}}+\alpha \sigma_{m}-\sigma_{Y}(\hat{\varepsilon} \mathrm{l} /)$

	Refer to the Hyperbolic Yield Function for parameter definitions.

You can use any combination of the yield and potential functions listed (above), but one of each must be specified. The cap model, however, is a special EDP case that requires exclusive use of combined cap potential and yield functions. More information on the EDP cap model is provided in the following section.

When plasticity is defined by TB,MISO, TB,BISO, TB,NLISO, or TB,PLAS, that definition overrides the yield stress definition you define using TB,EDP and TBDATA.

See the EDP argument and associated specifications in the TB command, and also The Extended DruckerPrager Model in the Theory Reference for the Mechanical APDL and Mechanical Applications for more information.

2.5.1.11.1.EDP Cap Material Constants (TB,EDP,,,,,CAPFUNCTION)

The cap model is a subset of the TB,EDP data table operations. It is used for modeling the geomaterial plasticity that results from compaction at low mean stresses, followed by significant pre-failure dilation, but before shear failure occurs. The following table lists the coefficients that are addressed for the cap model. If cap flow potential is not defined, associative cap model is assumed.
Cap Model

Constants ${ }^{*}$| TBOPT $=$ CYFU |
| :---: |
| C1 |\quad Yielding Function (NPTS = 11)

TBOPT $=$ CFPOT Flow Potential (NPTS = 4)

$$
\begin{gathered}
\mathrm{R}_{\mathrm{c}}^{\mathrm{F}} \\
\mathrm{R}_{\mathrm{t}}^{\mathrm{F}} \\
\beta^{\mathrm{F}} \\
\alpha^{\mathrm{F}}
\end{gathered}
$$

See Cap Model in the Theory Reference for the Mechanical APDL and Mechanical Applications for more information on the constant conventions.

You can input the cohesion-related shear hardening constant σ_{i} by using TB,MISO, TB,BISO, TB,NLISO, or TB,PLAS. This input regulates the relationship between the cohesion and the effective deviatoric plastic strain.

Note

Calibrating the cap constants $\sigma_{i}, \beta^{Y}, A, \alpha^{Y}, \beta^{F}, \alpha^{F}$ and the hardening input for σ_{i} differs significantly from the other EDP options. The cap parameters are all defined in relation to I_{1} and J_{2}, while the other EDP coefficients are defined according to p and q.

2.5.1.12. Gurson's Model Constants (TB,GURSON)

Gurson's model represents plasticity and damage in ductile and porous metals. A TB data table is used to handle the data for both stress and strain controlled nucleation, both with and without coalescence. Specify a TBOPT value in the TB,GURSON command to correspond to the Gurson basic model ($T B O P T=B A S E$), strain controlled nucleation ($T B O P T=$ SNNU), stress controlled nucleation ($T B O P T=$ SSNU), or coalescence ($T B O P T=$ COAL). The following table lists the coefficient values that are addressed for the available $T B O P T$ values.

Gurson Model Constants	TBOPT = BASE	TBOPT = SNNU	TBOPT = SSNU	TBOPT = COAL
	Basic Model $(N P T S=5)$	Strain-Controlled Nucleation (NPTS =3)	Stress-Controlled Nucleation (NPTS =3)	Coalescence $(N P T S=2)$
C1	σ_{Y} - initial yielding strength	f_{N} - nucleation porosity	f_{N} - nucleation porosity	f_{c} - critical porosity
C2	f_{o} - initial porosity	ε_{N}-mean strain	σ_{N} - mean stress	f_{F} - failure porosity
C3	q_{1} - first Tver-gaard-Needleman	S_{N} - standard strain deviation	$\mathrm{S}_{\mathrm{N}}^{\top}$ - mean stress devi	iation
C4	q_{2} - second Tver-gaard-Needleman constant			
C5	q_{3} - third Tver-gaard-Needleman constant			

You can combine certain TBOPT values to address specific model behaviors. The following combinations are valid:

BASE and SNNU
BASE and SSNU
BASE and SNNU and COAL
BASE and SSNU and COAL
BASE and COAL
Although all three constants (q_{1}, q_{2}, q_{3}) are independent input parameters, setting $q_{3}=q_{1}^{2}$ is recommended, unless specific data is available.

Isotropic hardening can be modeled using TB, BISO, TB, MISO, TB, NLISO or TB, PLASTIC.

2.5.1.13. Multilinear Elastic Constants (TB,MELAS)

This option (TB,MELAS) causes unloading to occur along the same path as loading. This behavior, unlike the other options, is conservative (path-independent). The plastic strain $\left(\varepsilon_{\mathrm{pl}}\right)$ for this option should be interpreted as a "pseudo plastic strain" since it returns to zero when the material is unloaded (no hysteresis). See the Theory Reference for the Mechanical APDL and Mechanical Applications for details.

The material behavior is described by a piece-wise linear stress-strain curve, starting at the origin, with positive stress and strain values. The curve is continuous from the origin through 100 (max) stress-strain points. Successive slopes can be greater than the preceding slope; however, no slope can be greater than the elastic modulus of the material. The slope of the first curve segment usually corresponds to the elastic modulus of the material, although the elastic modulus can be input as greater than the first slope to ensure that all slopes are less than or equal to the elastic modulus.

Specify up to 20 temperature-dependent stress-strain curves. Initialize the curves with TB,MELAS. The temperature for the first curve is input with TBTEMP, followed by TBPT commands for up to 100 stress-strain points (the origin stress-strain point is not input). You can define up to 20 temperature- dependent stressstrain curves (N TEMP $=20$ max on the TB command) in this manner. The constants (X, Y) entered on TBPT (two per command) are:

Constant Meaning
 X Strain value (Dimensionless)
 Y Corresponding stress value (Force/Area)

See the TB command for a listing of the elements that can be used with this material option.
See Multilinear Elasticity in the Structural Analysis Guide for more information on this material option.

2.5.1.14. Cast Iron Plasticity Material Constants (TB,CAST)

The cast iron plasticity option (TB,CAST) uses a composite yield surface to describe the different behavior in tension and compression. In tension the yielding is pressure-dependent and the Rankine maximum stress criterion is used. In compression, the behavior is pressure independent and the Mises yield criterion is used. A modified Mises potential is used as the flow potential. The elastic behavior is isotropic and is the same in tension and compression. Cast Iron Plasticity with isotropic hardening is intended for monotonic loading only and cannot be combined with any other material model.

Initiate the cast iron material model with TB,CAST. Activate the stress-strain table in tension using TB, UNIAXIAL with the TENSION option, then enter the stress-strain relation using the TBPT command. Activate the stress-strain table in compression using theTB, UNIAXIAL with the COMPRESSION option, then enter the stress-strain relation using the TBPT command. The slope of the stress-strain curve is assumed to be zero beyond the last user-defined stress-strain data point.

The NROPT,UNSYM command should be used at the solution level as the flow rule is not associated and the material Jacobian matrix is unsymmetric.

Initialize the database with TB,CAST. For each set of data, define the temperature using TBTEMP, then define the constant C 1 .

Constant Meaning
 C1 Plastic Poisson's ratio in tension

See the TB command description for a listing of the elements that can be used with this material option. See Plastic Material Options in the Structural Analysis Guide for more information on this material option.

2.5.1.15. Porous Media Constants (TB,PM)

Issue the TB,PM command to define material model constants for a porous medium. Fluid permeability (PERM) and Biot coefficient (BIOT) options are available.

Material constants for $T B O P T=$ PERM

Constant	Meaning	Material Property	Units
C1	kx	Permeability coeffi- cient	-
C2	ky	Permeability coeffi- cient	-
C3	kz	Permeability coeffi- cient	-

Material constants for TBOPT $=$ BIOT

Constant	Meaning	Material Property	Units
C1	α	Biot coefficient	Dimension- less
C2	k_{m}	Biot modulus	Defaults to zero.

For more information, see:

- The PM argument and associated specifications in the TB command documentation
- Pore-Fluid-Diffusion-Structural Analysis in the Coupled-Field Analysis Guide
- Porous Media Flow in the Theory Reference for the Mechanical APDL and Mechanical Applications

2.5.1.16. User-Defined Material Constants (TB,USER)

The User-Defined material option (TB,USER) describes input parameters for defining your own material model using either of two subroutines, UserMat or UserPL. Both are user-programmable features described in the Guide to ANSYS User Programmable Features, available on the ANSYS product distribution media.

The choice of which subroutine to use depends upon whether you are using a current-technology or legacy element type, as follows:

UserMat Subroutine

The UserMat subroutine defines any material model except incompressible materials. The subroutine supports current-technology elements only. For more information, see Subroutine UserMat (Creating Your Own Material Model) in the Guide to ANSYS User Programmable Features.

UserPL Subroutine

To define your own material model, use current-technology elements and the UserMat subroutine.

Input for the user-defined option is determined by user-defined constants. The TB,USER command initializes the constant table. The constants are defined via TBDATA commands (six per command). The number of constants can be any combination of the number of temperatures (NTEMP) and the number of data points per temperature (NPTS), to a maximum of NTEMP $\times N P T S=1000$.

Example 2.1 Input for a User-Defined Material

```
TB,USER,1,2,4
TBTEMP,1.0
```

TBDATA,1,19e5,0.3,1e3,100, ! Four material constants for
! first temperature.
TBTEMP,2.0 ! Second temperature.
TBDATA, 1,21e5,0.3,2e3,100, ! Four material constants for
! second temperature.

You can use state variables in the UserMat subroutine (but not in UserPL). To use state variables, initialize the constant table via the TB,STATE command, then define the constants via the TBDATA command.

Example 2.2 Initializing the Values of State Variables for a User-Defined Material

```
TB,STATE,1,,4, ! Define material 1, which
! has four state variables.
TBDATA,1,C1,C2,C3,C4, ! Initialize the four state variables.
```

You can define a maximum of 1000 state variables (NPTS $=1000$).

2.5.2. Hyperelastic Material Models

Hyperelasticity is listed in the Special Features section of the Input Summary for current-technology shell, plane, and solid elements. You can specify options to describe the hyperelastic material behavior for these elements.

Hyperelasticity options are available via the TBOPT argument on the TB,HYPER command.
Several forms of strain energy potentials describe the hyperelasticity of materials. These are based on either strain invariants or principal stretches. The behavior of materials is assumed to be incompressible or nearly incompressible.

The following hyperelastic material model topics are available:
2.5.2.1. Arruda-Boyce Hyperelastic Material Constants (TB,HYPER,,,,BOYCE)
2.5.2.2. Blatz-Ko Foam Hyperelastic Material Constants (TB,HYPER,,,,BLATZ)
2.5.2.3. Extended Tube Material Constants (TB,HYPER,,,,ETUBE)
2.5.2.4. Gent Hyperelastic Material Constants (TB,HYPER ${ }_{, 1,}$, GENT)
2.5.2.5. Mooney-Rivlin Hyperelastic Material Constants (TB,HYPER,,,,MOONEY)
2.5.2.6. Neo-Hookean Hyperelastic Material Constants (TB,HYPER,,,,NEO)
2.5.2.7. Ogden Compressible Foam Hyperelastic Material Constants (TB,HYPER,,,,FOAM)
2.5.2.8. Ogden Hyperelastic Material Constants (TB,HYPER,,,,OGDEN)
2.5.2.9. Polynomial Form Hyperelastic Material Constants (TB,HYPER,,,,POLY)
2.5.2.10. Response Function Hyperelastic Material Constants (TB,HYPER,,,,RESPONSE)
2.5.2.11. Yeoh Hyperelastic Material Constants (TB,HYPER, ,,,YEOH)
2.5.2.12. User-Defined Hyperelastic Material Constants (TB,HYPER,,,,USER)

For information about other hyperelastic material models, see Special Hyperelastic Material Models (p. 47).

2.5.2.1. Arruda-Boyce Hyperelastic Material Constants (TB,HYPER,,I,BOYCE)

The TB,HYPER, ,,,BOYCE option uses the Arruda-Boyce form of strain energy potential given by:

$$
\begin{aligned}
W & =\mu\left[\frac{1}{2}\left(\bar{I}_{1}-3\right)+\frac{1}{20 \lambda_{\mathrm{L}}^{2}}\left(\bar{I}_{1}^{2}-9\right)+\frac{11}{1050 \lambda_{\mathrm{L}}^{4}}\left(\bar{I}_{1}^{3}-27\right)\right. \\
& \left.+\frac{19}{7000 \lambda_{\mathrm{L}}^{6}}\left(\overline{\mathrm{I}}_{1}^{4}-81\right)+\frac{519}{673750 \lambda_{\mathrm{L}}^{8}}\left(\bar{I}_{1}^{5}-243\right)\right]+\frac{1}{\mathrm{~d}}\left(\frac{\mathrm{~J}^{2}-1}{2}-\ln \mathrm{J}\right)
\end{aligned}
$$

where:

$$
\begin{aligned}
& W=\text { strain energy per unit reference volume } \\
& \bar{I}_{1}=\text { first deviatoric strain invariant } \\
& J=\text { determinant of the elastic deformation gradient } F \\
& \mu=\text { initial shear modulus of materials } \\
& \lambda_{L}=\text { limiting network stretch } \\
& d=\text { material incompressibility parameter }
\end{aligned}
$$

The initial bulk modulus is defined as:
$K=\frac{2}{d}$
As λ_{L} approaches infinity, the option becomes equivalent to the Neo-Hookean option.
The constants μ, λ_{L} and d are defined by $C 1, C 2$, and $C 3$ using the TBDATA command.
See the TB command for a listing of the elements that can be used with this material option.
See Arruda-Boyce Hyperelastic Option in the Structural Analysis Guide for more information on this material option.

2.5.2.2. Blatz-Ko Foam Hyperelastic Material Constants (TB,HYPER,, , BLATZ

The TB,HYPER,,,,BLATZ option uses the Blatz-Ko form of strain energy potential given by:
$W=\frac{\mu}{2}\left(\frac{l_{2}}{l_{3}}+2 \sqrt{l_{3}}-5\right)$
where:

> W = strain energy per unit reference volume
> $\mu=$ initial strain shear modulus
> I_{2} and $I_{3}=$ second and third strain invariants

The initial bulk modulus k is defined as:

$$
\mathrm{k}=\frac{5}{3} \mu
$$

The model has only one constant μ and is defined by C1 using the TBDATA command.
See the TB command for a listing of the elements that can be used with this material option.
See Blatz-Ko Foam Hyperelastic Option in the Structural Analysis Guide for more information on this material option.

2.5.2.3. Extended Tube Material Constants (TB,HYPER, ,/,IETUBE)

The extended tube model is available as a hyperelastic material option (TB,HYPER). The model simulates filler-reinforced elastomers and other rubber-like materials, supports material curve-fitting, and is available in all current-technology continuum, shell, and pipe elements.

Five material constants are needed for the extended-tube model:

TBOPT	Constants	Purpose
C1	G_{c}	Crosslinked network modulus
C2	G_{e}	Constraint network modulus
C3	β	Empirical parameter $(0 \leq \beta \leq 1)$
C4	δ	Extensibility parameter
C5	d	Compressibility parameter

Following the material data table command (TB), specify the material constant values via the TBDATA command, as shown in this example:

```
TB,HYPER,1,,5,ETUBE ! Hyperelastic material, 1 temperature,
    ! 5 material constants, and the extended tube option
TBDATA,1,0.25, 0.8,1.0,0.5,1.0e-5 ! Five material constant values (C1 through C5)
```

For more information, see the documentation for the TB,HYPER command, and Extended Tube Model in the Theory Reference for the Mechanical APDL and Mechanical Applications.

2.5.2.4. Gent Hyperelastic Material Constants (TB,HYPER,,$/$, GENT)

The TB, HYPER,,,,,GENT option uses the Gent form of strain energy potential given by:

$$
W=\frac{\mu J_{m}}{2} \ln \left(1-\frac{\bar{I}_{1}-3}{J_{m}}\right)^{-1}+\frac{1}{d}\left(\frac{J^{2}-1}{2}-\ln J\right)
$$

where:
W = strain energy per unit reference volume
$\mu=$ initial shear modulus of material
$J_{m}=$ limiting value of $\bar{I}_{1}-3, \bar{I}_{1}$
$\bar{I}_{1}=$ first deviatoric strain invariant
$J=$ determinant of the elastic deformation gradient \boldsymbol{F}
$d=$ material incompressibility parameter

The initial bulk modulus K is defined as:
$K=\frac{2}{d}$
As J_{m} approaches infinity, the option becomes equivalent to the Neo-Hookean option.
The constants μ, J_{m}, and d are defined by C1, C2, and C3 using the TBDATA command.
See the TB command for a listing of the elements that can be used with this material option.
See Gent Hyperelastic Option in the Structural Analysis Guide for more information on this material option.

2.5.2.5. Mooney-Rivlin Hyperelastic Material Constants (TB,HYPER, ונ,MOONEY)

The Mooney-Rivlin model applies to current-technology shell, beam, and plane elements such as SHELL181, SHELL281, PLANE182, PLANE183, SOLID185, SOLID186, SOLID187, SOLSH190, SHELL208, and SHELL209.

The TB,HYPER,,,,MOONEY option allows you to define $2,3,5$, or 9 parameter Mooney-Rivlin models using $N P T S=2,3,5$, or 9 , respectively.

For NPTS = 2 (2 parameter Mooney-Rivlin option, which is also the default), the form of the strain energy potential is:

$$
W=c_{10}\left(\bar{I}_{1}-3\right)+c_{01}\left(\bar{I}_{2}-3\right)+\frac{1}{d}(J-1)^{2}
$$

where:

$$
\begin{aligned}
& \text { W = strain energy potential } \\
& \overline{\mathrm{I}}_{1}=\text { first deviatoric strain invariant } \\
& \overline{\mathrm{T}}_{2}=\text { second deviatoric strain invariant } \\
& c_{10}, c_{01}=\text { material constants characterizing the deviatoric deformation of the material } \\
& d=\text { material incompressibility parameter }
\end{aligned}
$$

The initial shear modulus is defined as:

$$
\mu=2\left(c_{10}+c_{01}\right)
$$

and the initial bulk modulus is defined as:

$$
K=\frac{2}{d}
$$

where:

$$
d=\left(1-2^{*} \nu\right) /\left(C_{10}+C_{01}\right)
$$

The constants c_{10}, c_{01}, and d are defined by $\mathrm{C} 1, \mathrm{C} 2$, and C 3 using the TBDATA command.

For NPTS = 3 (3 parameter Mooney-Rivlin option, which is also the default), the form of the strain energy potential is:

$$
\mathrm{W}=\mathrm{c}_{10}\left(\overline{\mathrm{I}}_{1}-3\right)+\mathrm{c}_{01}\left(\overline{\mathrm{I}}_{2}-3\right)+\mathrm{c}_{11}\left(\overline{\mathrm{I}}_{1}-3\right)\left(\overline{\mathrm{I}}_{2}-3\right)+\frac{1}{\mathrm{~d}}(\mathrm{~J}-1)^{2}
$$

The constants c_{10}, c_{01}, c_{11}; and d are defined by $\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3$, and C 4 using the TBDATA command.
For NPTS $=5$ (5 parameter Mooney-Rivlin option), the form of the strain energy potential is:

$$
\begin{aligned}
W & =c_{10}\left(\bar{I}_{1}-3\right)+c_{01}\left(\bar{I}_{2}-3\right)+c_{20}\left(\bar{I}_{1}-3\right)^{2} \\
& +c_{11}\left(\bar{I}_{1}-3\right)\left(\bar{T}_{2}-3\right)+c_{02}\left(\bar{I}_{2}-3\right)^{2}+\frac{1}{d}(\mathrm{~J}-1)^{2}
\end{aligned}
$$

The constants $c_{10}, c_{01}, c_{20}, c_{11}, c_{02}$, and d are material constants defined by $\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 4, \mathrm{C} 5$, and C 6 using the TBDATA command.

For NPTS = 9 (9 parameter Mooney-Rivlin option), the form of the strain energy potential is:

$$
\begin{aligned}
W & =c_{10}\left(\bar{T}_{1}-3\right)+c_{01}\left(\bar{I}_{2}-3\right)+c_{20}\left(\bar{I}_{1}-3\right)^{2} \\
& +c_{11}\left(\bar{I}_{1}-3\right)\left(\bar{I}_{2}-3\right)+c_{02}\left(\bar{T}_{2}-3\right)^{2}+c_{30}\left(\bar{I}_{1}-3\right)^{3} \\
& +c_{21}\left(\bar{I}_{1}-3\right)^{2}\left(\bar{T}_{2}-3\right)+c_{12}\left(\bar{I}_{1}-3\right)\left(\bar{T}_{2}-3\right)^{2}+c_{03}\left(\bar{T}_{2}-3\right)^{3}+\frac{1}{d}(\mathrm{~J}-1)^{2}
\end{aligned}
$$

The constants $c_{10}, c_{01}, c_{20}, c_{11}, c_{02}, c_{30}, c_{21}, c_{12}, c_{03}$, and d are material constants defined by $\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 4$, $\mathrm{C} 5, \mathrm{C} 6, \mathrm{C} 7, \mathrm{C} 8, \mathrm{C} 9$, and C 10 using the TBDATA command.

See Mooney-Rivlin Hyperelastic Option (TB,HYPER) in the Structural Analysis Guide for more information on this material option.

2.5.2.6. Neo-Hookean Hyperelastic Material Constants (TB,HYPER, ונ, NEO)

The option TB,HYPER, ,,,NEO uses the Neo-Hookean form of strain energy potential, which is given by:
$W=\frac{\mu}{2}\left(\bar{I}_{1}-3\right)+\frac{1}{d}(J-1)^{2}$
where:
W = strain energy per unit reference volume
$\bar{I}_{1}=$ first deviatoric strain invariant
$\mu=$ initial shear modulus of the material
d = material incompressibility parameter.
$J=$ determinant of the elastic deformation gradient \mathbf{F}
The initial bulk modulus is defined by:
$K=\frac{2}{d}$
The constants μ and d are defined using the TBDATA command.
See the TB command for a listing of the elements that can be used with this material option.
See Neo-Hookean Hyperelastic Option in the Structural Analysis Guide for more information on this material option.

2.5.2.7.Ogden Compressible Foam Hyperelastic Material Constants (TB,HYPER, ,I,FOAM)

The TB,HYPER ,,,,FOAM option uses the Ogden form of strain energy potential for highly compressible elastomeric foam material. The strain energy potential is based on the principal stretches of the left Cauchy-Green tensor and is given by:

$$
W=\sum_{i=1}^{N} \frac{\mu_{i}}{\alpha_{i}}\left(J^{\alpha_{i} / 3}\left(\bar{\lambda}_{1}^{\alpha_{i}}+\bar{\lambda}_{2}^{\alpha_{i}}+\bar{\lambda}_{3}^{\alpha_{i}}\right)-3\right)+\sum_{i=1}^{N} \frac{\mu_{i}}{\alpha_{i} \beta_{i}}\left(J^{-\alpha_{i} \beta_{i}}-1\right)
$$

where:
W = strain energy potential
$\bar{\lambda}_{p}^{\alpha_{i}}(p=1,2,3)=$ deviatoric principal stretch
$J=$ determinant of the elastic deformation gradient
$\mathrm{N}, \mu_{\mathrm{i}}, \alpha_{\mathrm{i}}$ and $\beta_{\mathrm{k}}=$ material constants
For this material option, the volumetric and deviatoric terms are tightly coupled. Hence, this model is meant to simulate highly compressible elastomers.

In general there is no limitation on the value of N in ANSYS (see the TB command). A higher value of N can provide a better fit to the exact solution. It may however cause numerical difficulties in fitting the material constants. For this reason, very high values of N are not recommended.

The initial shear modulus μ is defined by:
$\mu=\frac{\sum_{i=1}^{N} \mu_{i} \alpha_{i}}{2}$
and the initial bulk modulus K is defined by:
$K=\sum_{i=1}^{N} \mu_{i} \alpha_{i}\left(\frac{1}{3}+\beta_{i}\right)$
For $N=1, \alpha_{1}=-2, \mu_{1}=-\mu$, and $\beta_{1}=0.5$, the Ogden foam option is equivalent to the Blatz-Ko option.
The constants μ_{i}, α_{i} and β_{i} are defined using the TBDATA command in the following order:
For $\mathrm{N}(N P T S)=1$:

$$
\mu_{1}, \alpha_{1}, \beta_{1}
$$

For $\mathrm{N}(N P T S)=2$:

$$
\mu_{1}, \alpha_{1}, \mu_{2}, \alpha_{2}, \beta_{1}, \beta_{2}
$$

For $\mathrm{N}(N P T S)=3:$

$$
\mu_{1}, \alpha_{1}, \mu_{2}, \alpha_{2}, \mu_{3}, \alpha_{3}, \beta_{1}, \beta_{2}, \beta_{3}
$$

For $\mathrm{N}(N P T S)=\mathrm{k}:$

$$
\mu_{1}, \alpha_{1}, \mu_{2}, \alpha_{2}, \ldots, \mu_{k^{\prime}}, \alpha_{k^{\prime}}, \beta_{1}, \beta_{2}, \ldots, \beta_{k}
$$

See the TB command for a listing of the elements that can be used with this material option.
See Ogden Compressible Foam Hyperelastic Option in the Structural Analysis Guide for more information on this material option.

2.5.2.8. Ogden Hyperelastic Material Constants (TB,HYPER,,I,OGDEN)

The TB,HYPER,\ldots, OGDEN option uses the Ogden form of strain energy potential. The Ogden form is based on the principal stretches of the left Cauchy-Green tensor. The strain energy potential is:

$$
W=\sum_{i=1}^{N} \frac{\mu_{i}}{\alpha_{i}}\left(\bar{\lambda}_{1}^{\alpha_{i}}+\bar{\lambda}_{2}^{\alpha_{i}}+\bar{\lambda}_{3}^{\alpha_{i}}-3\right)+\sum_{k=1}^{N} \frac{1}{d_{k}}(J-1)^{2 k}
$$

where:
$W=$ strain energy potential
$\bar{\lambda}_{p}(p=1,2,3)=$ deviatoric principal stretches, defined as $\bar{\lambda}_{p}=J^{-\frac{1}{3}} \lambda_{p}$
$\lambda_{p}=$ principal stretches of the left Cauchy-Green tensor
$J=$ determinant of the elastic deformation gradient
$\mathrm{N}, \mu_{\mathrm{p}}, \alpha_{\mathrm{p}}$ and $\mathrm{d}_{\mathrm{p}}=$ material constants
In general there is no limitation on the value of N in ANSYS (see the TB command). A higher value of N can provide a better fit to the exact solution. It may however cause numerical difficulties in fitting the material constants. For this reason, very high values of N are not recommended.

The initial shear modulus μ is defined by:
$\mu=\frac{1}{2} \sum_{i=1}^{N} \alpha_{i} \mu_{i}$

The initial bulk modulus K is defined by:
$K=\frac{2}{d_{1}}$

For $\mathrm{N}=1$ and $\alpha_{1}=2$, the Ogden option is equivalent to the Neo-Hookean option. For $\mathrm{N}=2, \alpha_{1}=2$, and α_{2} $=-2$, the Ogden option is equivalent to the 2 parameter Mooney-Rivlin option.

The constants μ_{p}, α_{p} and d_{p} are defined using the TBDATA command in the following order:
For $\mathrm{N}(N P T S)=1$:

$$
\mu_{1}, \alpha_{1}, d_{1}
$$

For $\mathrm{N}(N P T S)=2$:

$$
\mu_{1}, \alpha_{1}, \mu_{2}, \alpha_{2}, d_{1}, d_{2}
$$

For $\mathrm{N}(N P T S)=3:$

$$
\mu_{1}, \alpha_{1}, \mu_{2}, \alpha_{2}, \mu_{3}, \alpha_{3}, d_{1}, d_{2}, d_{3}
$$

For $\mathrm{N}(N P T S)=\mathrm{k}$:

$$
\mu_{1}, \alpha_{1}, \mu_{2}, \alpha_{2}, \ldots, \mu_{k}, \alpha_{k}, d_{1}, d_{2}, \ldots, d_{k}
$$

See the TB command for a listing of the elements that can be used with this material option.
See Ogden Hyperelastic Option in the Structural Analysis Guide for more information on this material option.

2.5.2.9. Polynomial Form Hyperelastic Material Constants (TB,HYPER,, , POLY)

The TB,HYPER,,,,POLY option allows you to define a polynomial form of strain energy potential. The form of the strain energy potential for the Polynomial option is given by:

$$
W=\sum_{i+j=1}^{N} c_{i j}\left(\bar{I}_{1}-3\right)^{i}\left(\bar{I}_{2}-3\right)^{j}+\sum_{k=1}^{N} \frac{1}{d_{k}}(J-1)^{2 k}
$$

where:

$$
\begin{aligned}
& \mathrm{W}=\text { strain energy potential } \\
& \overline{\mathrm{I}}_{1}=\text { first deviatoric strain invariant } \\
& \overline{\mathrm{I}}_{2}=\text { second deviatoric strain invariant }
\end{aligned}
$$

$J=$ determinant of the elastic deformation gradient \mathbf{F}
$\mathrm{N}, \mathrm{c}_{\mathrm{ij}}$, and $\mathrm{d}=$ material constants
In general there is no limitation on the value of N in ANSYS (see the TB command). A higher value of N can provide a better fit to the exact solution. It may however cause a numerical difficulty in fitting the material constants, and it also requests enough data to cover the whole range of deformation for which you may be interested. For these reasons, a very high value of N is not recommended.

The initial shear modulus μ is defined by:
$\mu=2\left(c_{10}+c_{01}\right)$
and the initial bulk modulus is defined as:

$$
\mathrm{K}=\frac{2}{\mathrm{~d}_{1}}
$$

For $N=1$ and $c_{01}=0$, the polynomial form option is equivalent to the Neo-Hookean option. For $N=1$, it is equivalent to the 2 parameter Mooney-Rivlin option. For $N=2$, it is equivalent to the 5 parameter MooneyRivlin option, and for $\mathrm{N}=3$, it is equivalent to the 9 parameter Mooney-Rivlin option.

The constants $c_{i j}$ and d are defined using the TBDATA command in the following order:
For $\mathrm{N}(N P T S)=1$:

$$
c_{10}, c_{01}, d_{1}
$$

For $\mathrm{N}(N P T S)=2$:

$$
c_{10}, c_{01}, c_{20,}, c_{11}, c_{02}, d_{1}, d_{2}
$$

For $\mathrm{N}(N P T S)=3:$

$$
c_{10^{\prime}} c_{01}, c_{20,}, c_{11}, c_{02}, c_{30}, c_{21}, c_{12}, c_{03}, d_{1}, d_{2}, d_{3}
$$

For $\mathrm{N}(N P T S)=\mathrm{k}$:

$$
c_{10}, c_{01}, c_{20}, c_{11}, c_{02}, c_{30}, c_{21}, c_{12}, c_{033}, \ldots, c_{k 0}, c_{(k-1) 11}, \ldots, c_{0 k}, d_{1}, d_{2}, \ldots, d_{k}
$$

See the TB command for a listing of the elements that can be used with this material option.
See Polynomial Form Hyperelastic Option in the Structural Analysis Guide for more information on this material option.

2.5.2.10. Response Function Hyperelastic Material Constants (TB,HYPER,/,/,RESPONSE)

The response function option for hyperelastic material constants (TB,HYPER,,,,RESPONSE) uses experimental data (TB,EXPE) to determine the constitutive response functions.

The response functions (first derivatives of the hyperelastic potential) are used to determine hyperelastic constitutive behavior of the material. In general, the stiffness matrix requires derivatives of the response functions (second derivatives of the hyperelastic potential).

The method for determining the derivatives is ill-conditioned near the zero stress-strain point; therefore, a deformation limit is used, below which the stiffness matrix is calculated with only the response functions. The deformation measure is $\delta=I_{1}-3$, where I_{1} is the first invariant of the Cauchy-Green deformation tensor.

The stiffness matrix is then calculated with only the response functions if $\delta<C_{1}$, where C_{1} is the material constant deformation limit (default 1×10^{-5}).

The remaining material parameters are for the volumetric strain energy potential, given by
$W(J)=\sum_{k=1}^{N} \frac{1}{d_{k}}(J-1)^{2 k}$
where N is the $N P T S$ value (TB,HYPER,,,,RESPONSE) and d_{k} represents the material constants incompressibility parameters (default 0.0) and J is the volume ratio. Use of experimental volumetric data requires $N P T S=0$. Incompressible behavior results if all $\mathrm{d}_{\mathrm{k}}=0$ or $N P T S=0$ with no experimental volumetric data.

2.5.2.11. Yeoh Hyperelastic Material Constants (TB,HYPER,,$_{, \prime \prime}$ YEOH)

The TB,HYPER,,,,YEOH option follows a reduced polynomial form of strain energy potential by Yeoh. The form of the strain energy potential for the Yeoh option is given by:

$$
W=\sum_{i=1}^{N} c_{i 0}\left(\bar{l}_{1}-3\right)^{i}+\sum_{k=1}^{N} \frac{1}{d_{k}}(J-1)^{2 k}
$$

where:
W = strain energy potential
$\bar{I}_{1}=$ first deviatoric strain invariant
$J=$ determinant of the elastic deformation gradient \mathbf{F}
$\mathrm{N}, \mathrm{c}_{\mathrm{i} 0}$, and $\mathrm{d}_{\mathrm{k}}=$ material constants
In general there is no limitation on the value of N in ANSYS (see the TB command). A higher value of N can provide a better fit to the exact solution. It may however cause a numerical difficulty in fitting the material constants, and it also requests enough data to cover the whole range of deformation for which you may be interested. For these reasons, a very high value of N is not recommended.

The initial shear modulus μ is defined by:
$\mu=2 \mathrm{c}_{10}$
and the initial bulk modulus K is defined as:
$K=\frac{2}{d_{1}}$

For $\mathrm{N}=1$ the Yeoh form option is equivalent to the Neo-Hookean option.
The constants $c_{i 0}$ and d_{k} are defined using the TBDATA command in the following order:
For $\mathrm{N}(N P T S)=1$:

$$
c_{10}, d_{1}
$$

For $\mathrm{N}(N P T S)=2:$

$$
c_{10}, c_{20}, d_{1}, d_{2}
$$

For $\mathrm{N}(N P T S)=3$:

$$
c_{10}, c_{20}, c_{30}, d_{1}, d_{2}, d_{3}
$$

For $\mathrm{N}(N P T S)=\mathrm{k}$:

$$
c_{10}, c_{20}, c_{30}, \ldots, c_{k 0}, d_{1}, d_{2}, \ldots, d_{k}
$$

See the TB command for a listing of the elements that can be used with this material option.
See Yeoh Hyperelastic Option in the Structural Analysis Guide for more information on this material option.

2.5.2.12. User-Defined Hyperelastic Material Constants (TB,HYPER,$_{, / \prime \prime}$ USER)

You can define a strain energy potential by using the option TB,HYPER,,,,USER. This allows you to provide a subroutine USERHYPER to define the derivatives of the strain energy potential with respect to the strain invariants. Refer to the Guide to ANSYS User Programmable Features for a detailed description on writing a user hyperelasticity subroutine.

See the TB command documentation for a listing of the elements that can be used with this material option.
See User-Defined Hyperelastic Option (TB,HYPER,,,,USER) in the Structural Analysis Guide for more information on this material option.

2.5.3. Special Hyperelastic Material Models

The following hyperelastic material models have their own Lab value on the TB command (and are not simply TBOPT hyperelasticity options on the TB,HYPER command):
2.5.3.1. Anisotropic Hyperelastic Material Constants (TB,AHYPER)
2.5.3.2. Bergstrom-Boyce Material Constants (TB,BB)
2.5.3.3. Mullins Effect Constants (TB,CDM)

2.5.3.1. Anisotropic Hyperelastic Material Constants (TB,AHYPER)

The anisotropic hyperelasticity material model (TB,AHYPER) is available with current-technology shell, plane, and solid elements such as SHELL181, PLANE182, PLANE183, SOLID185, SOLID186, SOLID187, SHELL208, and SHELL209. Anisotropic hyperelasticity is a potential-based-function with parameters to define the volumetric part, the isochoric part and the material directions.

You can use anisotropic hyperelasticity to model elastomers with reinforcements, and for biomedical materials such as muscles or arteries.

The strain energy potential for anisotropic hyperelasticity is given by

$$
\mathrm{W}=\mathrm{W}_{\mathrm{v}}(\mathrm{~J})+\mathrm{W}_{\mathrm{d}}(\overline{\mathbf{C}}, \mathbf{A} \otimes \mathbf{A}, \mathbf{B} \otimes \mathbf{B})
$$

Where:

$$
W_{v}(J)=\frac{1}{d} \cdot(J-1)^{2}
$$

and

$$
\begin{aligned}
W_{d}(\mathbf{C}, \mathbf{A} \otimes \mathbf{A}, \mathbf{B} \otimes \mathbf{B}) & =\sum_{i=1}^{3} a_{i}\left(\bar{l}_{1}-3\right)^{i}+\sum_{j=1}^{3} b_{j}\left(\bar{l}_{2}-3\right)^{j}+\sum_{k=2}^{6} c_{k}\left(\bar{I}_{4}-1\right)^{k} \\
& +\sum_{l=2}^{6} d_{l}\left(\bar{I}_{5}-1\right)^{l}+\sum_{m=2}^{6} e_{m}\left(\bar{l}_{6}-1\right)^{m}+\sum_{n=2}^{6} f_{n}\left(\bar{I}_{7}-1\right)^{\mathrm{n}}+\sum_{0=2}^{6} g_{o}\left(\bar{l}_{8}-\varsigma\right)^{0}
\end{aligned}
$$

Use TB,AHYPER, , TBOPT to define the isochoric part, material directions and the volumetric part. Only one TB table can be defined for each option.

TBOPT	Constants	Purpose	Input Format
POLY	C1 to C31	Anisotropic strain energy potential	TB, AHYPER, , , POLY TBDATA, , A1, A2, A3, B1
AVEC	C1 to C3	Material direction constants	TB, AHYPER, , AVEC TBDATA, , A1, A2, A3
BVEC	C1 to C3	Material direction constants	TB, AHYPER, , BVEC TBDATA, B1,B2, B3
PVOL	C1	Volumetric potential	$\begin{aligned} & \text { TB, AHYPER,, }, \text { PVOL } \\ & \text { TBDATA }, \text {, } \end{aligned}$

You can enter temperature dependent data for anisotropic hyperelastic material with the TBTEMP command. For the first temperature curve, you issue TB, AHYPER,,,TBOPT, then input the first temperature using the TBTEMP command. The subsequent TBDATA command inputs the data.

ANSYS interpolates the temperature data to the material points automatically using linear interpolation. When the temperature is out of the specified range, the closest temperature point is used.

See the TB command, and Anisotropic Hyperelasticity in the Theory Reference for the Mechanical APDL and Mechanical Applications for more information.

2.5.3.2. Bergstrom-Boyce Material Constants (TB,BB)

The Bergstrom Boyce option (TB,BB) is a phenomenological-based, highly nonlinear, rate-dependent material model for simulation of elastomer materials. The model assumes inelastic response only for shear distortional behavior defined by an isochoric strain energy potential, while the response to volumetric deformations is still purely elastic and characterized by a volumetric strain energy potential.

This model requires seven material constants input for the isochoric ($T B O P T=I S O$) option and one material constant for the volumetric potential ($T B O P T=P V O L$) option. Issue the TBDATA data table command to input the constant values in the order shown:

Isochoric

TB,BB,,,,ISO

Constant	Meaning	Material Property	Units
C1	μ_{0}	Initial shear modulus for Part A	Pa
C2	N_{0}	$\left(\lambda_{A}^{\text {lock }}\right)^{2}$, where $\lambda^{\text {lock }}$ is the limiting chain stretch	Dimensionless
C3	μ_{1}	Initial shear modulus for Part B	Pa
C4	N_{1}	$\left(\lambda_{B}^{\text {lock })^{2}}\right.$	Dimensionless
C5	$\dot{\gamma}_{0} / \tau_{\text {base }}$	Material constant	$\mathrm{s}^{-1}(\mathrm{~Pa})^{-\mathrm{m}}$
C6	C	Material constant	
C7	m	Material constant	Dimensionless

Constant	Meaning	Material Property	Units
C8	ε	Optional material constant	Dimensionless

The default optional material constant is $\varepsilon=1 \times 10^{-5}$. However, if $T B N P T>7$ or TBNPT is unspecified, the table value is used instead. If the table value is zero or exceeds 1×10^{-3}, the default constant value is used.

Volumetric Potential

TB,BB,,,,PVOL

Constant	Meaning	Material Property	Units
C1	d	$1 / K$, where K is the bulk modulus	$1 / \mathrm{Pa}$

For more information, see:

- The BB argument and associated specifications in the TB command documentation
- Bergstrom-Boyce Hyperviscoelastic Material Model in the Structural Analysis Guide
- Bergstrom-Boyce in the Theory Reference for the Mechanical APDL and Mechanical Applications

2.5.3.3. Mullins Effect Constants (TB,CDM)

The Mullins effect is a modification to the nearly- and fully-incompressible isotropic hyperelastic constitutive models (all TB,HYPER options with the exception of $T B O P T=$ BLATZ or $T B O P T=F O A M$) and is used with those models. The data table is initiated via the following command:

TB,CDM,MAT,NTEMPS,NPTS,TBOPT.
The material constants for each valid $T B O P T$ value follow:

Modified Ogden-Roxburgh Pseudo-Elastic		
TBOPT $=$ PSE2		
Constant	Meaning	Material Property
C1	r	Damage variable parameter
C2	m	Damage variable parameter
C3	β	Damage variable parameter

For more information, see:

- The CDM argument and associated specifications in the TB command documentation
- Mullins Effect Material Model in the Structural Analysis Guide
- Mullins Effect in the Theory Reference for the Mechanical APDL and Mechanical Applications.

2.5.4. Viscoelastic Material Model

The viscoelastic material model is available for small- and large-deformation viscoelasticity via elements LINK180, SHELL181, SHELL281, PLANE182, PLANE183, SOLID185, SOLID186, SOLID187, SOLSH190, BEAM188, BEAM189, SHELL208, and SHELL209.

The viscoelasticity input for many current-technology elements (such as SHELL181, SHELL281, PLANE182, PLANE183, SOLID185, SOLID186, SOLID187, SOLSH190, SHELL208, and SHELL209) consists of elasticity properties and relaxation properties. The underlying elasticity is specified by either the MP command (for hypoelasticity) or by the TB,HYPER command (for hyperelasticity).

For LINK180, BEAM188, and BEAM189, the underlying elasticity is specified by the MP command (hypoelasticity) only. Use the TB,PRONY or TB,SHIFT commands to input the relaxation properties. Enter the required data using the TBDATA command using the following constants.

TB,PRONY:
For the shear kernel function ($T B O P T=$ SHEAR $)$,

$$
G=G_{0}\left[\alpha_{\infty}^{G}+\sum_{i=1}^{n_{G}} \alpha_{i}^{G} \exp \left(-\frac{t}{\tau_{i}^{G}}\right)\right]
$$

where the number of shear Prony pairs is $\mathrm{n}_{\mathrm{G}}=N P T S$, the material constants for the relative moduli and relaxation times are input in pairs as

Constant	Meaning
C1,C2	$\alpha_{1}^{G}, \tau_{1}^{G}$
C3, C4	$\alpha_{2}^{G}, \tau_{2}^{G}$
Etc.	Etc.

For the bulk kernel function ($T B O P T=B U L K$),

$$
K=K_{0}\left[\alpha_{\infty}^{K}+\sum_{i=1}^{n_{K}} \alpha_{i}^{K} \exp \left(-\frac{t}{\tau_{i}^{K}}\right)\right]
$$

where the number of bulk Prony pairs is $\mathrm{n}_{\mathrm{K}}=N P T S$, the material constants for the relative moduli and relaxation times are input in pairs as

TB,SHIFT:
The William-Landel-Ferry ($T B O P T=$ WLF) shift function, A , takes the form

$$
\log _{10}(A)=\frac{C_{2}\left(T-C_{1}\right)}{C_{3}+T-C_{1}}
$$

Constant	Meaning
C1	Relative temperature $\left(T_{r}\right)$
C2-C3	WLF constants

The Tool-Narayanaswamy $(T B O P T=T N)$ shift function, A, takes the form

$$
A=\exp \left(C_{2}\left(\frac{1}{C_{1}}-\frac{1}{T}\right)\right)
$$

Constant

Meaning

C1
Relative temperature (T_{r})
C2
TN constant

The Tool-Narayanaswamy with fictive temperature ($T B O P T=F I C T$) shift function, A, takes the form

$$
A=\exp \left(\frac{H}{R}\left(\frac{1}{T_{r}}-\frac{X}{T}-\frac{1-X}{T_{F}}\right)\right)
$$

The fictive temperature is given by

$$
T_{F}=\sum_{i=1}^{n_{f}} C_{f i f} T_{f i}
$$

and evolves as

$$
\mathrm{T}_{\mathrm{fi}}=\frac{\tau_{\mathrm{ff}} \mathrm{~T}_{\mathrm{fi}}^{0}+\mathrm{T} \Delta \mathrm{t} A\left(\mathrm{~T}_{F}^{0}\right)}{\tau_{\mathrm{fi}}+\Delta \mathrm{t} A\left(\mathrm{~T}_{\mathrm{F}}^{0}\right)}
$$

Isotropic thermal expansion is given by

$$
\Delta_{\varepsilon}^{\top}=\alpha_{g}(\mathrm{~T}) \Delta \mathrm{T}+\left[\alpha_{l}\left(\mathrm{~T}_{F}\right)-\alpha_{g}\left(\mathrm{~T}_{F}\right)\right] \Delta \mathrm{T}_{F}
$$

where the glass and liquid coefficients of thermal expansion are given by

$$
\begin{aligned}
& \alpha_{g}(T)=\alpha_{g 0}+\alpha_{g 1} T+\alpha_{g 2} T^{2}+\alpha_{g 3} T^{3}+\alpha_{g 4} T^{4} \\
& \alpha_{1}(T)=\alpha_{10}+\alpha_{11} T+\alpha_{12} T^{2}+\alpha_{13} T^{3}+\alpha_{14} T^{4}
\end{aligned}
$$

These constants are entered on the TBDATA command in the following order:

Constant	Meaning
$\mathbf{1}$	Reference temperature $\left(T_{r}\right)$
$\mathbf{2}$	Scaled activation energy (H / R)

Constant Meaning

3 Fictive temperature weight (X)
4 to 3(NPTS Partial fictive temperature parameter sets ($\mathrm{T}_{\mathrm{f} 1}, \mathrm{C}_{\mathrm{f} 1}, \tau_{\mathrm{f} 1}, \mathrm{~T}_{\mathrm{f} 2}, \mathrm{C}_{\mathrm{f} 2}$,
4 to 3(NPTS Partial fictive temperature parameter sets ($\mathrm{T}_{\mathrm{f} 1}, \mathrm{C}_{\mathrm{f} 1}, \tau_{\mathrm{f} 1}, \mathrm{~T}_{\mathrm{f} 2}, \mathrm{C}_{\mathrm{f} 2}$,
+1)
+1)
$\left.\tau_{f 2}, \ldots, T_{f n}, C_{f n}, \tau_{f n}\right)$
$\left.\tau_{f 2}, \ldots, T_{f n}, C_{f n}, \tau_{f n}\right)$
3(NPTS + 1) Polynomial coefficients for glass coefficient of thermal expan-
to 3(NPTS + $\operatorname{sion}\left(\alpha_{g 0}, \alpha_{g 1}, \alpha_{g 2}, \alpha_{g 3}, \alpha_{g 4}\right)$
1) +5
3(NPTS + 1) Polynomial coefficients for liquid coefficient of thermal expan-
to 3(NPTS + $\operatorname{sion}\left(\alpha_{10}, \alpha_{11}, \alpha_{12}, \alpha_{13}, \alpha_{14}\right)$
1) +10

See Viscoelasticity in the Structural Analysis Guide for more information.

2.5.5. Magnetic Material Model (TB,BH)

Elements with magnetic capability use the TB table to input points characterizing B-H curves. (See the Theory Reference for the Mechanical APDL and Mechanical Applications for details.) These curves are available in elements SOLID5, PLANE13, PLANE53, SOLID62, SOLID96, and SOLID98. Temperature-dependent curves cannot be input.

Initialize the curves with the TB,BH command. Use TBPT commands to define up to 500 points (H, B). The constants (X, Y) entered on TBPT (two per command) are:

Constant	Meaning
X	Magnetic field intensity (H) (Magnetomotive force/length)
Y	Corresponding magnetic flux density (B) (Flux/Area)

Specify the system of units (MKS or user defined) with EMUNIT, which also determines the value of the permeability of free space. Free-space permeability is available in elements SOLID5, INFIN9, PLANE13, INFIN47, PLANE53, SOLID62, SOLID96, SOLID97, SOLID98, INFIN110, INFIN111, and with similar current-technology elements. This value is used with the relative permeability property values (MP) to establish absolute permeability values. The defaults (also obtained for Lab $=$ MKS) are MKS units and free-space permeability of $4 \pi \mathrm{E}-7$ Henries/meter. You can specify Lab $=$ MUZRO to define any system of units, then input free-space permeability.

For more information about this material option, see Additional Guidelines for Defining Regional Material Properties and Real Constants in the Low-Frequency Electromagnetic Analysis Guide

2.5.6. High-Frequency Electromagnetic Material Models

Specify high-frequency electromagnetic material properties using the TB command. The following topics provide specific information about the various high-frequency material model (Lab) options available:
2.5.6.1.3-D Elements HF119 and HF120

2.5.6.2.2-D Element HF118

2.5.6.1. 3-D Elements HF1 19 and HF120

High-frequency elements HF119 and HF120 use the TB table to specify the following material properties:

- TB,CNDE - anisotropic electric current conductivity (mhos $/ \mathrm{m}$) $(1 / \Omega \mathrm{m})$
- TB,CNDM - anisotropic magnetic current conductivity (ohms/m)
- TB,DPER - anisotropic relative permittivity
- TB,MUR - anisotropic relative permeability
- TB,LSEM - anisotropic electric and magnetic loss tangents
- TB,HFFDLD - frequency-dependent lossy dielectric

2.5.6.1.1. Conductivity, Permittivity, and Permeability Matrices

For electric current conductivity (TB,CNDE), magnetic current conductivity (CNDM), relative permittivity (DPER), and relative permeability (TB,MUR,MAT,,TBOPT with TBOPT $=0$ - input a permeability matrix), a 3 $x 3$ matrix relates terms ordered by x, y, and z.
$[X]=\left[\begin{array}{lll}x_{11} & x_{12} & x_{13} \\ X_{21} & x_{22} & x_{23} \\ X_{31} & X_{32} & x_{33}\end{array}\right]$
The constants (C1-C9) entered on the TBDATA command are:

Constant Meaning

C1-C9 $\quad X_{11}, X_{22}, X_{33}, X_{12}, X_{23}, X_{13}, X_{21}, X_{32}, X_{31}$
If $X_{i j}$ is 0 where i and j are indexes, then X_{ji} must also be zero.
For TB, DPER and TB,MUR the diagonal elements cannot be zero.

2.5.6.1.2. B-H Nonlinear Material Permeability Matrix

TB,MUR,MAT,,,TBOPT with TBOPT $=1$ or 2 generates a B-H nonlinear material permeability matrix with a uniform or non-uniform dc magnetic field, respectively. A non-uniform dc magnetic field can be the solution of an ANSYS magneto static analysis.

The matrix is give by the following equations for a static magnetic field $\left(H_{0}\right)$ in the x, y, and z directions, respectively.

$$
\begin{aligned}
& {\left[\dot{\mu}_{r}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \mu_{r} & -j \kappa \\
0 & j \kappa & \mu_{r}
\end{array}\right] \text { (For } H_{0} \text { in x-direction) }} \\
& {\left[\dot{\mu}_{r}\right]=\left[\begin{array}{ccc}
\mu_{r} & 0 & j \kappa \\
0 & 1 & 0 \\
-j \kappa & 0 & \mu_{r}
\end{array}\right] \text { (For } H_{0} \text { in y-direction) }} \\
& {\left[\dot{\mu}_{r}\right]=\left[\begin{array}{ccc}
\mu_{r} & -j \kappa & 0 \\
j \kappa & \mu_{r} & 0 \\
0 & 0 & 1
\end{array}\right] \text { (For } H_{0} \text { in z-direction) }}
\end{aligned}
$$

where:

$$
\begin{aligned}
& \mu_{\mathrm{r}}=1+\frac{\omega_{\mathrm{m}}\left(\omega_{0}+j \omega \alpha\right)}{\left(\omega_{0}+j \omega \alpha\right)^{2}-\omega^{2}} \\
& \kappa=\frac{\omega_{\mathrm{m}} \omega}{\left(\omega_{0}+\mathrm{j} \omega \alpha\right)^{2}-\omega^{2}} \\
& \omega_{0}=\gamma \mu_{0} H_{0} \\
& \omega_{\mathrm{m}}=\gamma \mu_{0} \mathrm{M}_{\mathrm{s}} \\
& \alpha=\gamma \mu_{0} \Delta \mathrm{H} / 2 \omega \\
& \gamma=\gamma_{0} \mathrm{~g} / 2
\end{aligned}
$$

and

- γ is the gyromagnetic ratio
- γ_{0} is the electron gyromagnetic ratio
- g is the Lande factor
- H_{o} is the static magnetic field in the z, y, or x direction
- M_{s} is the saturation magnetization introduced by H_{o}
- $\Delta \mathrm{H}$ is the resonance line width
- ω is the working angular frequency

The constants (C1-C7) entered on TBDATA are:

Constant	Meaning
C1	Saturation magnetization $4 \pi \mathrm{M}_{\mathrm{s}}$ (Gauss) (no default).
C 2	Lande g-factor (1.8 to 2.5 , defaults to 2.0).
C 3	Resonance line width $\Delta \mathrm{H}$ (Oe) (defaults to 0).
C4	Internal dc magnetic field H_{o} (Oe) (no default).
C5	Direction of H_{o}.
	$0-\mathrm{z}$ direction (default)
	$1-\mathrm{y}$ direction (default)
	$2-\mathrm{x}$ direction (default)
C6	Sign of off-diagonal element of permeability matrix.

$\mathrm{C} 6 \geq 0$,
$\left[\dot{\mu}_{r}\right]=\left[\begin{array}{ccc}\mu_{r} & -j \kappa & 0 \\ j \kappa & \mu_{r} & 0 \\ 0 & 0 & 1\end{array}\right]$ (default)

Constant Meaning

C6 < 0 ,

$$
\left[\dot{\mu}_{r}\right]=\left[\begin{array}{ccc}
\mu_{r} & \mathrm{j} \kappa & 0 \\
-\mathrm{j} \kappa & \mu_{r} & 0 \\
0 & 0 & 1
\end{array}\right] \text { (default) }
$$

C7 Symmetry key for permeability matrix.
0 - antisymmetric matrix (default)
1 - symmetric matrix

2.5.6.1.3. Anisotropic Electric and Magnetic Loss Tangents

You can specify anisotropic electric and magnetic loss tangent matrices using TB,LSEM. The anisotropic electric loss tangent matrix is defined as:

$$
[\varepsilon]=\varepsilon_{0}\left[\begin{array}{lll}
\varepsilon_{r, 1}^{\prime}\left(1-j \tan \delta_{1}\right) & & \\
& \varepsilon_{r, 2}^{\prime}\left(1-j \tan \delta_{2}\right) & \\
& & \varepsilon_{r, 3}^{\prime}\left(1-j \tan \delta_{3}\right)
\end{array}\right]
$$

where:

$$
\tan \delta_{1}=\frac{\varepsilon_{1}^{\prime \prime}}{\varepsilon_{1}^{\prime}}, \quad \tan \delta_{2}=\frac{\varepsilon_{2}^{\prime \prime}}{\varepsilon_{2}^{\prime}}, \quad \tan \delta_{3}=\frac{\varepsilon_{3}^{\prime \prime}}{\varepsilon_{3}^{\prime}}
$$

The anisotropic magnetic loss tangent matrix is defined as:

$$
[\mu]=\mu_{0}\left[\begin{array}{lll}
\mu_{\mathrm{r}, 1}^{\prime}\left(1-j \tan \delta_{\mathrm{m} 1}\right) & & \\
& \mu_{\mathrm{r}, 2}^{\prime}\left(1-j \tan \delta_{\mathrm{m} 2}\right) & \\
& & \mu_{\mathrm{r}, 3}^{\prime}\left(1-j \tan \delta_{\mathrm{m} 3}\right)
\end{array}\right]
$$

where:

$$
\tan \delta_{\mathrm{m} 1}=\frac{\mu_{1}^{\prime \prime}}{\mu_{1}^{\prime}}, \tan \delta_{\mathrm{m} 2}=\frac{\mu_{2}^{\prime \prime}}{\mu_{2}^{\prime}}, \tan \delta_{\mathrm{m} 3}=\frac{\mu_{3}^{\prime \prime}}{\mu_{3}^{\prime}}
$$

The constants (C1-C6) entered on TBDATA are:

Constant	Meaning
C1	Electric loss tangent in the X direction, $\tan \delta_{1}$
C2	Electric loss tangent in the Y direction, $\tan \delta_{2}$
C3	Electric loss tangent in the Z direction, $\tan \delta_{3}$
C4	Magnetic loss tangent in the X direction, $\tan \delta_{m 1}$
C5	Magnetic loss tangent in the Y direction, $\tan \delta_{m 2}$

Constant Meaning
 C6 Magnetic loss tangent in the Z direction, $\tan \delta_{m 3}$

2.5.6.1.4. Frequency-Dependent Lossy Dielectric

You can specify a frequency-dependent lossy dielectric using TB,HFFDLD. In this Debye relaxation polarization model, the complex permittivity is given by:
$\varepsilon_{r, \text { complex }}=\varepsilon_{r \infty}+\frac{\varepsilon_{r s}-\varepsilon_{r \infty}}{1+j \omega \tau}$
where:
$\tau=$ relaxation time
$\varepsilon_{r \infty}=$ optical permittivity
$\varepsilon_{\mathrm{rs}}=$ static permittivity
$\omega=$ working angular frequency
The frequency-dependent lossy dielectric is characterized by a dielectric constant $\left(\varepsilon_{\mathrm{r}}\right)$ and a loss tangent $(\tan \delta)$ at two frequencies. In terms of Maxwell's equations, the real parts of the dielectric constant and the conductivity are given by:

$$
\begin{aligned}
& \varepsilon_{\mathrm{r}}=\varepsilon_{\mathrm{r} \infty}+\frac{\varepsilon_{\mathrm{rs}}-\varepsilon_{\mathrm{r}}}{1+(\omega \tau)^{2}} \\
& \sigma=\sigma_{0}+\frac{\omega^{2} \varepsilon_{0} \tau\left(\varepsilon_{\mathrm{rs}}-\varepsilon_{\mathrm{r} \mathrm{\infty}}\right)}{1+(\omega \tau)^{2}}
\end{aligned}
$$

where:
$\sigma_{0}=$ DC conductivity
$\varepsilon_{0}=$ free space permittivity
ε_{r} and σ are determined by the four parameters: $\varepsilon_{\mathrm{rs}}, \sigma_{0}, \varepsilon_{r \infty}$, and τ. Experimentally measured values of the dielectric constant and loss tangent are usually available at two frequencies:
$\varepsilon_{\mathrm{r} 1}$ and $\tan \delta_{1}$ at a lower frequency ω_{1} of approximately 1 MHz
$\varepsilon_{\mathrm{r} 2}$ and $\tan \delta_{2}$ at a higher frequency ω_{2} between 1 and 2 GHz
The lower frequency data is considered static or DC values. Accordingly, the static permittivity and DC conductivity are given by:
$\varepsilon_{\mathrm{rs}}=\varepsilon_{\mathrm{r} 1}$
$\sigma_{0}=\omega_{1} \varepsilon_{0} \varepsilon_{r 1} \tan \delta_{1}$

If $\varepsilon_{r o}$ is known from experimental measurements, the Debye's model can then be completely defined by calculating the relaxation time τ by:
$\tau=\frac{b-\sqrt{b^{2}-4}}{2 \omega_{2}}$
where:
$\mathrm{b}=\omega_{2} \varepsilon_{0}\left(\varepsilon_{\mathrm{rs}}-\varepsilon_{\mathrm{r} \infty}\right) / \bar{\sigma}$ and $\bar{\sigma}=\omega_{2} \varepsilon_{0} \varepsilon_{\mathrm{r} 2} \tan \delta_{2}-\sigma_{0}$
Knowing τ, the material characteristics can be determined over the entire frequency range.

If $\varepsilon_{r o}$ is unknown, the following equations (based on the higher frequency data) can be solved simultaneously for $\varepsilon_{r \infty}$ and τ.

$$
\tau=\frac{\varepsilon_{0}\left|\varepsilon_{\mathrm{rs}}-\varepsilon_{\mathrm{ro}}\right|}{\left|\sigma_{2}-\sigma_{0}\right|}
$$

$$
\varepsilon_{r \infty}=\varepsilon_{\mathrm{rs}}-\left(\varepsilon_{\mathrm{rs}}-\varepsilon_{\mathrm{r} 2}\right) \frac{1+\omega_{2}^{2} \tau^{2}}{\omega_{2}^{2} \tau^{2}}
$$

where:
$\sigma_{2}=\omega_{2} \varepsilon_{0} \varepsilon_{r 2} \tan \delta_{2}$
The constants (C1-C8) entered on TBDATA are:

Constant Meaning

C1 Lower frequency $\left(f_{1}\right)$ at which measured data is considered static or DC values.
C2 Higher frequency $\left(f_{2}\right)$ at which measured data is available.
C3 Relative permittivity at lower frequency $\left(\varepsilon_{r 1}\right)$.
C4 Relative permittivity at lower frequency $\left(\varepsilon_{\mathrm{r} 2}\right)$.
C5 Relative permittivity at optical frequency ($\varepsilon_{r \infty}$).Input if known. Calculated if it is not known.
C6 DC conductivity (σ_{0}). It does not have to be defined if the loss tangent at lower frequency is defined.
C7 Loss tangent at lower frequency $\left(\tan \delta_{1}\right)$. It does not have to be defined if the DC conductivity is defined.
C8 Loss tangent at higher frequency $\left(\tan \delta_{2}\right)$.

2.5.6.2. 2-D Element HF1 18

The high-frequency 2-D modal analysis element HF118 uses the TB table to specify the following material properties:

- TB,DPER - anisotropic relative permittivity
- TB,MUR,MAT,,TBOPT with TBOPT $=0$ - anisotropic relative permeability

The element must lie in an $X-Y$ plane and a 3×3 matrix relates terms ordered by x, y, and z.

$$
[X]=\left[\begin{array}{ccc}
X_{x x} & X x y & 0 \\
X_{y x} & X_{y y} & 0 \\
0 & 0 & X_{z z}
\end{array}\right]
$$

The constants (C1-C9) entered on the TBDATA command are:

Constant Meaning

C1-C9 $\quad X_{x x}, X_{y y}, X_{z z}, X_{x y} 0,0, X_{y x}, 0,0$

Note

HF118 can not use the TB table to specify the following:

- Anisotropic electric current conductivity (TB,CNDE)
- Anisotropic magnetic current conductivity (TB,CNDM)
- B-H nonlinear material permeability matrix with a uniform or non-uniform dc magnetic field (TB,MUR,MAT,,,TBOPT with TBOPT = 1 or 2).

2.5.7. Anisotropic Elastic Material Model (TB,ANEL)

Anisotropic elastic capability (TB,ANEL) is available with the PLANE182, SOLID185, PLANE183, SOLID186, SOLID187, and SOLSH190 structural elements. (Also see Anisotropic Constants (TB,ANISO) (p. 29)) and the SOLID5, PLANE13, SOLID98, PLANE223, SOLID226, and SOLID227 coupled-field elements.) Input the elastic coefficient matrix [D] either by specifying the stiffness constants (EX, EY, etc.) with MP commands, or by specifying the terms of the matrix with data table commands as described below. The matrix should be symmetric and positive definite (requiring all determinants to be positive).

The full 6×6 elastic coefficient matrix [D] relates terms ordered $x, y, z, x y, y z, x z$ via 21 constants as shown below.
$\left[\begin{array}{llllll}D_{11} & & & & & \\ D_{21} & D_{22} & & & & \\ D_{31} & D_{32} & D_{33} & \text { Symmetric } & \\ D_{41} & D_{42} & D_{43} & D_{44} & & \\ D_{51} & D_{52} & D_{53} & D_{54} & D_{55} & \\ D_{61} & D_{62} & D_{63} & D_{64} & D_{65} & D_{66}\end{array}\right]$

For 2-D problems, a 4×4 matrix relates terms ordered $x, y, z, x y$ via 10 constants ($D_{11}, D_{21}, D_{22}, D_{31}, D_{32}$, $\left.D_{33}, D_{41}, D_{42}, D_{43}, D_{44}\right)$. Note, the order of the vector is expected as $\{x, y, z, x y, y z, x z\}$, whereas for some published materials the order is given as $\{x, y, z, y z, x z, x y\}$. This difference requires the "D" matrix terms to be converted to the expected format. The "D" matrix can be defined in either "stiffness" form (with units of Force/Area operating on the strain vector) or in "compliance" form (with units of the inverse of Force/Area
operating on the stress vector), whichever is more convenient. Select a form using TBOPT on the TB command. Both forms use the same data table input as described below.

Enter the constants of the elastic coefficient matrix in the data table via the TB family of commands. Initialize the constant table with TB,ANEL. Define the temperature with TBTEMP, followed by up to 21 constants input with TBDATA commands. The matrix may be input in either stiffness or flexibility form, based on the TBOPT value. For the coupled-field elements, temperature- dependent matrix terms are not allowed. You can define up to six temperature-dependent sets of constants (N TEMP = 6 max on the TB command) in this manner. Matrix terms are linearly interpolated between temperature points. The constants (C1-C21) entered on TBDATA (6 per command) are:

Constant Meaning

$$
\begin{array}{cl}
\text { C1-C6 } & \text { Terms } D_{11}, D_{21}, D_{31}, D_{41}, D_{51}, D_{61} \\
\text { C7-C12 } & \text { Terms } D_{22}, D_{32}, D_{42}, D_{52}, D_{62}, D_{33} \\
\text { C13-C18 } & \text { Terms } D_{43}, D_{53}, D_{63}, D_{44}, D_{54}, D_{64} \\
\text { C19-C21 } & \text { Terms } D_{55}, D_{65}, D_{66}
\end{array}
$$

See the TB command for a listing of the elements that can be used with this material option.

2.5.8. Piezoelectric Material Model (TB,DPER)

Piezoelectric capability (TB,DPER or via the MP command)) is available with the SOLID5, PLANE13, SOLID98, PLANE223, SOLID226, and SOLID227 coupled-field elements. SOLID5, PLANE13, and SOLID98 have this capability in the ANSYS Multiphysics and ANSYS Mechanical products; PLANE223, SOLID226, and SOLID227 have this capability in the ANSYS Multiphysics product. Material properties required for the piezoelectric effects include the dielectric (relative permittivity) constants, the elastic coefficient matrix, and the piezoelectric matrix.

Input the dielectric constants either by specifying orthotropic dielectric permittivity (PERX, PERY, PERZ) on the MP command or by specifying the terms of the anisotropic permittivity matrix [ε] on the TB,DPER command. The values input on the MP command will be interpreted as permittivity at constant strain $\left[\varepsilon^{5}\right]$. Using TB,DPER, you can specify either permittivity at constant strain $\left[\varepsilon^{\mathrm{S}}\right](T B O P T=0)$, or permittivity at constant stress $\left[\varepsilon^{\top}\right](T B O P T=1)$.

Input the elastic coefficient matrix [c] either by specifying the stiffness constants (EX, EY, etc.) with MP commands, or by specifying the terms of the anisotropic elasticity matrix with TB commands as described in Anisotropic Constants (TB,ANISO) (p. 29).

You can define the piezoelectric matrix in [e] form (piezoelectric stress matrix) or in [d] form (piezoelectric strain matrix). The [e] matrix is typically associated with the input of the anisotropic elasticity in the form of the stiffness matrix [c], and the permittivity at constant strain $\left[\varepsilon^{s}\right]$. The [d] matrix is associated with the input of compliance matrix [s] and permittivity at constant stress $\left[\varepsilon^{\top}\right]$. Select the appropriate matrix form for your analysis using the TB,PIEZ command.

The full 6×3 piezoelectric matrix relates terms $x, y, z, x y, y z, x z$ to x, y, z via 18 constants as shown:

$$
\left[\begin{array}{lll}
e_{11} & e_{12} & e_{13} \\
e_{21} & e_{22} & e_{23} \\
e_{31} & e_{32} & e_{33} \\
e_{41} & e_{42} & e_{43} \\
e_{51} & e_{52} & e_{53} \\
e_{61} & e_{62} & e_{63}
\end{array}\right]
$$

For 2-D problems, a 4×2 matrix relates terms ordered $x, y, z, x y$ via 8 constants $\left(e_{11}, e_{12}, e_{21}, e_{22}, e_{31}, e_{32}\right.$, e_{41}, e_{42}). The order of the vector is expected as $\{x, y, z, x y, y z, x z\}$, whereas for some published materials the order is given as $\{x, y, z, y z, x z, x y\}$. This difference requires the piezoelectric matrix terms to be converted to the expected format.

Use the TB commands to enter the constants of the piezoelectric matrix in the data table. Initialize the constant table with TB,PIEZ. You can define up to 18 constants (C1-C18) with TBDATA commands (6 per command):

Constant	Meaning
C1-C6	Terms $\mathrm{e}_{11}, \mathrm{e}_{12}, \mathrm{e}_{13}, \mathrm{e}_{21}, \mathrm{e}_{22}, \mathrm{e}_{23}$
C7-C12	Terms $\mathrm{e}_{31}, \mathrm{e}_{32}, \mathrm{e}_{33}, \mathrm{e}_{41}, \mathrm{e}_{42}, \mathrm{e}_{43}$
C13-C18	Terms $\mathrm{e}_{51}, \mathrm{e}_{52}, \mathrm{e}_{53}, \mathrm{e}_{61}, \mathrm{e}_{62}, \mathrm{e}_{63}$

See Piezoelectric Analysis in the Coupled-Field Analysis Guide for more information on this material model.

2.5.9. Piezoresistive Material Model (TB,PZRS)

Elements with piezoresistive capabilities (PLANE223, SOLID226, SOLID227) use the TB,PZRS command to calculate the change in electric resistivity produced by elastic stress or strain. Material properties required to model piezoresistive materials are electrical resistivity, the elastic coefficient matrix, and the piezoresistive matrix.

You can define the piezoresistive matrix either in the form of piezoresistive stress matrix [π] ($T B O P T=0$) or piezoresistive strain matrix $[\mathrm{m}](T B O P T=1)$.

The piezoresistive stress matrix [π] uses stress to calculate the change in electric resistivity due to piezoresistive effect, while the piezoresistive strain matrix $[\mathrm{m}](T B O P T=1)$ uses strain to calculate the change in electric resistivity. See Piezoresistivity in the Theory Reference for the Mechanical APDL and Mechanical Applications for more information.

The full $6 x 6$ piezoresistive matrix relates the $x, y, z, x y, y z, x z$ terms of stress to the $x, y, z, x y, y z, x z$ terms of electric resistivity via 36 constants:
$\left[\begin{array}{llllll}\pi_{11} & \pi_{12} & \pi_{13} & \pi_{14} & \pi_{15} & \pi_{16} \\ \pi_{21} & \pi_{22} & \pi_{23} & \pi_{24} & \pi_{25} & \pi_{26} \\ \pi_{31} & \pi_{32} & \pi_{33} & \pi_{34} & \pi_{35} & \pi_{36} \\ \pi_{41} & \pi_{42} & \pi_{43} & \pi_{44} & \pi_{45} & \pi_{46} \\ \pi_{51} & \pi_{52} & \pi_{53} & \pi_{54} & \pi_{55} & \pi_{56} \\ \pi_{61} & \pi_{62} & \pi_{63} & \pi_{64} & \pi_{65} & \pi_{66}\end{array}\right]$

Constant Meaning

C1-C6	Terms $\pi_{11}, \pi_{12}, \pi_{13}, \pi_{14}, \pi_{15}, \pi_{16}$
C7-C12	Terms $\pi_{21}, \pi_{22}, \pi_{23}, \pi_{24}, \pi_{25}, \pi_{26}$
C13-C18	Terms $\pi_{31}, \pi_{32}, \pi_{33}, \pi_{34}, \pi_{35}, \pi_{36}$
C19-C24	Terms $\pi_{41}, \pi_{42}, \pi_{43}, \pi_{44}, \pi_{45}, \pi_{46}$
C25-C30	Terms $\pi_{51}, \pi_{52}, \pi_{53}, \pi_{54}, \pi_{55}, \pi_{56}$
C31-C36	Terms $\pi_{61}, \pi_{62}, \pi_{63}, \pi_{64}, \pi_{65}, \pi_{66}$

For 2-D problems, a $4 x 4$ matrix relates terms ordered $x, y, z, x y$ via 16 constants.

Constant	Meaning
C1-C4	Terms $\pi_{11}, \pi_{12}, \pi_{13}, \pi_{14}$
C7-C10	Terms $\pi_{21}, \pi_{22}, \pi_{23}, \pi_{24}$
C13-C16	Terms $\pi_{31}, \pi_{32}, \pi_{33}, \pi_{34}$
C19-C22	Terms $\pi_{41}, \pi_{42}, \pi_{43}, \pi_{44}$

The order of the vector is expected as $\{x, y, z, x y, y z, x z\}$, whereas for some published materials the order is given as $\{x, y, z, y z, x z, x y\}$. This difference requires the piezoresistive matrix terms to be converted to the expected format.

See Piezoresistive Analysis in the Coupled-Field Analysis Guide for more information on this material model.

2.5.10. Anisotropic Electric Permittivity Material Model (TB,DPER)

Elements with piezoelectric capabilities (PLANE223, SOLID226, SOLID227) use the TB,DPER command to specify anisotropic relative electric permittivity. You can define electric permittivity at constant strain $\left[\varepsilon^{5}\right]$ $(T B O P T=0)$ or constant stress $\left[\varepsilon^{\top}\right](T B O P T=1)$

Note

ANSYS will convert matrix $\left[\varepsilon^{\top}\right]$ to $\left[\varepsilon^{S}\right]$ using piezoelectric strain and stress matrices.
The full $3 x 3$ electric permittivity matrix relates x, y, z components of electric field to the x, y, z components of electric flux density via 6 constants:
$\left[\begin{array}{lll}\varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\ & \varepsilon_{22} & \varepsilon_{23} \\ \operatorname{sym} & & \varepsilon_{33}\end{array}\right]$

Constant Meaning

$$
\text { C1-C6 } \quad \varepsilon_{11}, \varepsilon_{22}, \varepsilon_{33}, \varepsilon_{12}, \varepsilon_{23}, \varepsilon_{13}
$$

For 2-D problems, a $2 x 2$ matrix relates terms ordered x, y via 3 constants $\left(\varepsilon_{11} \varepsilon_{22} \varepsilon_{12}\right)$:

$$
\begin{array}{ll}
\text { Constant } & \text { Meaning } \\
\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 4 & \varepsilon_{11}, \varepsilon_{22}, \varepsilon_{12}
\end{array}
$$

2.5.11. Rate-Dependent Plastic (Viscoplastic) Material Models (TB,RATE)

ANSYS offers the following options for rate-dependent plasticity (viscoplasticity) via the TB,RATE command:

- PERZYNA or PEIRCE-- Perzyna option (default) or Peirce option, respectively

To simulate viscoplasticity, combine the RATE option with the BISO, MISO, or NLISO options. To simulate anisotropic viscoplasticity, combine the RATE and HILL options with the BISO, MISO, or NLISO options.

Both models support the following elements: LINK180, SHELL181, SHELL281, PLANE182, PLANE183, SOLID185, SOLID186, SOLID187, SOLSH190, BEAM188, BEAM189, SHELL208, SHELL209, and SOLID285.

Specify the Perzyna model ($T B O P T=$ PERZYNA) as follows: TB,RATE,,,,,PERZYNA
Specify the Peirce model ($T B O P T=$ PEIRCE) as follows: TB,RATE,,,,PEIRCE

- EVH -- Exponential visco-hardening option

This option offers EVH nonlinear kinematic hardening using von Mises or Hill plasticity.
The model supports the following elements: LINK180, SHELL181, PLANE182, PLANE183, SOLID185, SOLID186, SOLID187, BEAM188, BEAM189, SOLSH190, SHELL208, SHELL209, REINF264, SOLID272, SOLID273, SHELL281, SOLID285, PIPE288, PIPE289, and ELBOW290

Specify this option $(T B O P T=E V H)$ as follows: $T B, R A T E,,, 6, E V H$

- ANAND -- Anand option

This option offers a unified plasticity model requiring no combination with other material models.
The model supports the following elements: PLANE182 and PLANE183 (except for plane stress), SOLID185, SOLID186, SOLID187, SOLSH190, SOLID285, PIPE288, and PIPE289.

Specify this model (TBOPT = ANAND) as follows: TB,RATE,,,9,ANAND
For more information, see Perzyna, Peirce, Exponential Visco-Hardening, and Anand Material Option Descriptions (p. 62).

2.5.11.1. Perzyna, Peirce, Exponential Visco-Hardening, and Anand Material Option Descriptions

This section provides more information about each rate-dependent plasticity (viscoplasticity) option (TB,RATE).

Perzyna and Peirce options

The Perzyna option has the following form:
$\dot{\Xi}_{\mathrm{pl}}=\gamma\left(\frac{\sigma}{\sigma_{0}}-1\right)^{1 / m}$
The Peirce option has the following form:
$\dot{\dot{\varepsilon}}_{\mathrm{pl}}=\gamma\left[\left(\frac{\sigma}{\sigma_{0}}\right)^{1 / m}-1\right]$

In both cases, σ is the material yield stress, $\dot{\varepsilon}^{\mathrm{pl}}$ is the equivalent plastic strain rate, m is the strain rate hardening parameter, γ is the material viscosity parameter, and σ_{o} is the static yield stress of material. σ_{o} is a function of some hardening parameter and can be defined by isotropic plasticity (for example, TB, BISO).
As γ approaches ∞, or m approaches zero, or $\dot{\varepsilon}^{\mathrm{pl}}$ approaches zero, the solution approaches the static (rateindependent) solution.

When m is very small, the Peirce model has less difficulty converging as compared to the Perzyna model.
For details, see Rate-Dependent Plasticity in the Theory Reference for the Mechanical APDL and Mechanical Applications.

The two material constants for the Perzyna and Peirce models (defined by the TBDATA) are:

```
Con- Meaning
stant
    C1 m}\mathrm{ - Material strain rate hardening parameter
C2 }\gamma\mathrm{ -Material viscosity parameter
```


Exponential visco-hardening option

The exponential visco-hardening option has the following form:
$\dot{\varepsilon}_{\mathrm{pl}}=\left(\frac{\sigma-\bar{\sigma}_{0}}{K}\right)^{1 / m}$
where $\bar{\sigma}_{o}=K o+R_{0} \bar{\varepsilon}_{p l}+R_{\infty}\left(1-e^{-b \bar{\varepsilon}_{\mathrm{pl}}}\right)$.
This six material constants in the exponential visco-hardening option are input via the data table command (TBDATA) in the order shown:

$$
\begin{array}{rl}
\begin{array}{l}
\text { Con- } \\
\text { stant }
\end{array} & \text { Meaning } \\
\mathrm{C} 1 & \mathrm{~K}_{\mathrm{o}}=\text { Material strain hardening parameter } \\
\mathrm{C} 2 & \mathrm{R}_{\mathrm{o}}=\text { Material strain hardening parameter } \\
\mathrm{C} 3 & \mathrm{R}_{\infty}=\text { Material strain hardening parameter } \\
\mathrm{C} 4 & \mathrm{~b}=\text { Material strain hardening parameter } \\
\mathrm{C} 5 & \mathrm{~m}=\text { Material strain rate hardening parameter } \\
\mathrm{C} 6 & \mathrm{~K}=\text { Material viscosity parameter }
\end{array}
$$

Anand option

Details for the Anand option appear in Anand Viscoplasticity in the Theory Reference for the Mechanical APDL and Mechanical Applications.

This option requires nine material constants input via the data table command (TBDATA) in the order shown:

Con- stant	Mean- ing	Property	Units
C1	s_{0}	Initial value of deformation resist- ance	Stress
C2	Q / R	$\mathrm{Q}=$ Activation energy $\mathrm{R}=$ Universal gas constant	Energy / Volume Energy /Volume temperat- ure
C3	A	Pre-exponential factor	$1 /$ Time
C4	xi	Stress multiplier	Dimensionless
C5	m	Strain rate sensitivity of stress	Dimensionless
C6	h_{0}	Hardening / softening constant Coefficient for deformation resist- ance saturation value	Stress
C7 Stress			

Additional Information

For further information about rate-dependent plastic (viscoplastic) material options, see Viscoplasticity in the Structural Analysis Guide.

2.5.11.2. Specifying Rate-Dependent Plasticity (Viscoplasticity)

The general process for specifying rate-dependent plasticity (viscoplasticity) follows:

1. Initialize the data table via TB,RATE and specify the model option (TBOPT) as described above.
2. Define the temperature (TBTEMP) for each set of data.
3. Define material constants (TBDATA) for each set of data.

You can define up to nine material constants via TBDATA commands, but only six constants per command. For the Anand model, therefore, you must issue the TBDATA command more than once.

The data table command (TBDATA) must be defined for the same material number to specify the static hardening behavior of the materials (rate-independent and isotropic).

2.5.12. Gasket Material Model (TB,GASKET)

The TB,GASKET option allows you to simulate gasket joints with the ANSYS interface elements INTER192, INTER193, INTER194, and INTER195. The gasket material is usually under compression and is highly nonlinear. The material also exhibits quite complicated unloading behavior when compression is released. The GASKET option allows you to define some general parameters including the initial gap, stable stiffness for numerical stabilization, and stress cap for a gasket in tension. The GASKET option also allows you to directly input data for the experimentally measured complex pressure closure curves for the gaskets. The GASKET option also offers two sub-options to define gasket unloading behavior including linear and nonlinear unloading. The linear unloading option simplifies the input by defining the starting closure at the compression curves and
the slope. The nonlinear unloading option allows you to directly input unloading curves to more accurately model the gasket unloading behavior. When no unloading curves are defined, the material behavior follows the compression curve while it is unloaded.

You enter the general parameters and the pressure closure behavior data using the TBOPT field when issuing TB,GASKET. You then input the material data using either the TBDATA command or the TBPT command as shown in the table below that describes the various gasket data types and presents the command input format.

You can enter temperature dependent data using the TBTEMP command for any of the gasket data types. For the first temperature curve, you issue TB,GASKET,,,,,TBOPT, then input the first temperature using TBTEMP, followed by the data using either TBDATA or TBPT depending on the value of TBOPT as shown in the table. ANSYS automatically interpolates the temperature data to the material points using linear interpolation. When the temperature is out of the specified range, the closest temperature point is used.

Gasket Data Type	TBOPT	Constants	Meaning	Input Format
General parameters	PARA	C1	Initial gap (default $=0$, meaning there is no initial gap).	TB, GASKET, , , , PARA TBDATA, 1, C1, C2, C3
		C2	Stable stiffness (default $=0$, meaning there is no stable stiffness. [1]	
		C3	Maximum tension stress allowed when the gasket material is in tension (default $=0$, meaning there is no tension stress in the gasket material).	
Compression load closure curve	COMP	Xi	Closure value.	
		Yi	Pressure value.	
Linear unloading data	LUNL	Xi	Closure value on compression curve where unloading started.	$\begin{aligned} & \text { TB, GASKET, , } 2 \text {, LUNL } \\ & \text { TBPT, } \mathrm{x} 1, \mathrm{Y} 1 \end{aligned}$tвPt, , x2, Y2
		Yi	Unloading slope value.	
Nonlinear unloading data [2]	NUNL	Xi	Closure value.	TB, GASKET, , , 2, NUNL TBPT, X1, Y1 TBPT, $\mathrm{X} 2, \mathrm{Y} 2$
		Yi	Pressure value.	
Transverse shear	TSS	XY, XZ	Transverse shear values	TB, GASKET, , 2, TSS TBDATA, 1,TSSXY,TSSXZ

1. Stable stiffness is used for numerical stabilization such as the case when the gasket is opened up and thus no stiffness is contributed to the element nodes, which in turn may cause numerical difficulty.
2. Multiple curves may be required to define the complex nonlinear unloading behavior of a gasket material.

When there are several nonlinear unloading curves defined, ANSYS requires that the starting point of each unloading curve be on the compression curve to ensure the gasket unloading behavior is correctly simulated. Though it is not a requirement that the temperature dependency of unloading data be the same as the compression data, when there is a missing temperature, ANSYS uses linear interpolation to obtain the material data of the missing temperature. This may result in a mismatch between the
compression data and the unloading data. Therefore, it is generally recommended that the number of temperatures and temperature points be the same for each unloading curve and compression curve.

When using the material GUI to enter data for the nonlinear unloading curves, an indicator at the top of the dialog box states the number of the unloading curve whose data is currently displayed along with the total number of unloading curves defined for the particular material (example: Curve number $\mathbf{2 / 5}$). To enter data for the multiple unloading curves, type the data for the first unloading curve, then click on the Add Curve button and type the data for the second curve. Repeat this procedure for entering data for the remaining curves. Click the Del Curve button if you want to remove the curve whose data is currently displayed. Click the > button to view the data for the next curve in the sequence, or click the < button to view the data for the previous curve in the sequence. To insert a curve at a particular location in the sequence, click on the > or < buttons to move to the curve before the insertion location point and click on the Add Curve button. For example, if the data for Curve number $\mathbf{2 / 5}$ is currently displayed and you click on the Add Curve button, the dialog box changes to allow you to enter data for Curve number 3/6. You can define a total of 100 nonlinear unloading curves per material.

For a more detailed description of the gasket joint simulation capability in ANSYS, see the Gasket Joints Simulation chapter in the Structural Analysis Guide.

2.5.13. Creep Equations (TB,CREEP)

If Table 4.n-1 lists "creep" as a "Special Feature," the element can model creep behavior.
The creep strain rate, $\dot{\varepsilon}_{\text {cr }}$, can be a function of stress, strain, temperature, and neutron flux level. Libraries of creep strain rate equations are included under the Implicit Creep Equations (p. 67) and Explicit Creep Equations (p.69) sections. Enter the constants shown in these equations using TB,CREEP and TBDATA as described below. These equations (expressed in incremental form) are characteristic of materials being used in creep design applications (see the Theory Reference for the Mechanical APDL and Mechanical Applications for details).

Three types of creep equations are available:

- Primary creep
- Secondary creep
- Irradiation induced creep

You can define the combined effects of more than one type of creep using the implicit equations specified by $T B O P T=11$ or 12 , the explicit equations, or a user-defined creep equation.

The program analyzes creep using the implicit and the explicit time-integration method. The implicit method is robust, fast, accurate, and recommended for general use, especially with problems involving large creep strain and large deformation. It has provisions for including temperature-dependent constants. The program can model pure creep, creep with isotropic hardening plasticity, and creep with kinematic hardening plasticity, using both von Mises and Hill potentials. See Material Model Combinations (p. 93) for further information. Since the creep and plasticity are modeled simultaneously (no superposition), the implicit method is more accurate and efficient than the explicit method. Temperature dependency can also be incorporated by the Arrhenius function (see the Theory Reference for the Mechanical APDL and Mechanical Applications for details).

The explicit method is useful for cases involving very small time steps, such as in transient analyses. There are no provisions for temperature-dependent constants, nor simultaneous modeling of creep with any other material models such as plasticity. However, there is temperature dependency using the Arrhenius function,
and you can combine explicit creep with other plasticity options using non-simultaneous modeling (superposition). In these cases, the program first performs the plastic analysis, then the creep calculation.

The terms "implicit" and "explicit" as applied to creep, have no relationship to "explicit dynamics," or any elements referred to as "explicit elements."

2.5.13.1. Implicit Creep Equations

Enter an implicit creep equation using TBOPT within the TB command. Enter the value of TBOPT corresponding to the equation, as shown in Table 2.4: Implicit Creep Equations (p. 67).

Table 2.4 Implicit Creep Equations

Creep Model (TBOPT)	Name	Equation		Type
1	Strain Hardening	$\dot{\varepsilon}_{\text {cr }}=\mathrm{C}_{1} \sigma^{\mathrm{C} 2} \varepsilon_{\text {cr }}{ }^{\mathrm{C} 3} \mathrm{e}^{-\mathrm{C} 4 / \mathrm{T}}$	$C_{1}>0$	Primary
2	Time Hardening	$\dot{\varepsilon}_{\text {cr }}=\mathrm{C}_{1} \sigma^{\mathrm{C} 2} \mathrm{t}^{\mathrm{C} 3} \mathrm{e}^{-\mathrm{C4/T}}$	$\mathrm{C}_{1}>0$	Primary
3	Generalized Exponential	$\dot{\varepsilon}_{\mathrm{cr}}=\mathrm{C}_{1} \sigma^{\mathrm{C} 2} \mathrm{re}^{-\mathrm{rt}}, \mathrm{r}=\mathrm{C}_{5} \sigma^{\mathrm{C} 3} \mathrm{e}^{-\mathrm{C} 4 / \mathrm{T}}$	$\begin{aligned} & C_{1}>0, \\ & C_{5}>0 \end{aligned}$	Primary
4	Generalized Graham	$\dot{\varepsilon}_{\text {cr }}=\mathrm{C}_{1} \sigma^{\mathrm{C}_{2}}\left(\mathrm{t}^{\mathrm{C}_{3}}+\mathrm{C}_{4} \mathrm{t}^{\mathrm{C}_{5}}+\mathrm{C}_{6} \mathrm{t}^{\mathrm{C}_{7}}\right) \mathrm{e}^{-\mathrm{C}_{8} / \mathrm{T}}$	$\mathrm{C}_{1}>0$	Primary
5	Generalized Blackburn	$\begin{aligned} & \dot{\varepsilon}_{\mathrm{cr}}=\mathrm{f}\left(1-e^{-r t}\right)+\mathrm{gt} \\ & \mathrm{f}=\mathrm{C}_{1} e^{C_{2} \sigma}, \mathrm{r}=\mathrm{C}_{3}\left(\sigma / \mathrm{C}_{4}\right)^{C_{5}}, \mathrm{~g}=\mathrm{C}_{6} e^{C_{7} \sigma} \end{aligned}$	$\begin{aligned} & C_{1}>0, \\ & C_{3}>0, \\ & C_{6}>0 \end{aligned}$	Primary
6	Modified Time Hardening	$\varepsilon_{\text {cr }}=\mathrm{C}_{1} \sigma^{\mathrm{C}_{2} \mathrm{C}{ }^{+1} \mathrm{e}^{-\mathrm{C}_{4} / \mathrm{T}} /\left(\mathrm{C}_{3}+1\right)}$	$\mathrm{C}_{1}>0$	Primary
7	Modified Strain Hardening	$\dot{\varepsilon}_{\text {cr }}=\left\{\mathrm{C}_{1} \sigma^{\mathrm{C}_{2}}\left[\left(\mathrm{C}_{3}+1\right) \varepsilon_{\mathrm{cr}}\right]^{\mathrm{C}_{3}}\right\}^{1 /\left(\mathrm{C}_{3}+1\right)} e^{-\mathrm{C} 4 / \mathrm{T}}$	$\mathrm{C}_{1}>0$	Primary
8	Generalized Garofalo	$\dot{\varepsilon}_{\mathrm{cr}}=\mathrm{C}_{1}\left[\sinh \left(\mathrm{C}_{2} \sigma\right)\right]^{\mathrm{C}_{3}} \mathrm{e}^{-\mathrm{C}_{4} / \mathrm{T}}$	$\mathrm{C}_{1}>0$	Secondary
9	Exponential form	$\dot{\varepsilon}_{\text {cr }}=\mathrm{C}_{1} \mathrm{e}^{\sigma / \mathrm{C}_{2}} \mathrm{e}^{-\mathrm{C}_{3} / \mathrm{T}}$	$\mathrm{C}_{1}>0$	Secondary
10	Norton	$\dot{\varepsilon}_{\text {cr }}=\mathrm{C}_{1} \sigma^{\mathrm{C}_{2}} \mathrm{e}^{-\mathrm{C}_{3} / \mathrm{T}}$	$\mathrm{C}_{1}>0$	Secondary
11	Combined Time Hardening	$\begin{aligned} \varepsilon_{\mathrm{cr}} & =\mathrm{C}_{1} \sigma^{\mathrm{C}_{2}}{ }_{\mathrm{t}} \mathrm{C}_{3}+1 \mathrm{e}^{-\mathrm{C}_{4} / \mathrm{T}} /\left(\mathrm{C}_{3}+1\right) \\ & +\mathrm{C}_{5} \sigma^{\mathrm{C}_{6}} \mathrm{te}^{-\mathrm{C}_{7} / \mathrm{T}} \end{aligned}$	$\begin{aligned} & C_{1}>0, \\ & C_{5}>0 \end{aligned}$	Primary + Secondary
12	Rational polynomial	$\begin{aligned} & \dot{\varepsilon}_{\mathrm{cr}}=\mathrm{C}_{1} \frac{\partial \varepsilon_{\mathrm{c}}}{\partial \mathrm{t}}, \varepsilon_{\mathrm{c}}=\frac{\mathrm{cpt}}{1+\mathrm{pt}}+\dot{\varepsilon}_{\mathrm{m}}^{\mathrm{t}} \\ & \dot{\varepsilon}_{\mathrm{m}}=\mathrm{C}_{2} 10^{\mathrm{C}_{3} \sigma} \sigma^{\mathrm{C}_{4}} \\ & \mathrm{c}=\mathrm{C}_{7} \dot{\varepsilon}_{\mathrm{m}}^{\mathrm{C}_{8}} \sigma^{\mathrm{C}_{9}}, \mathrm{p}=\mathrm{C}_{10} \dot{\varepsilon}_{\mathrm{m}}^{\mathrm{C}_{11}} \sigma^{\mathrm{C}_{12}} \end{aligned}$	$\mathrm{C}_{2}>0$	Primary + Secondary

Creep Mod- el (TBOPT)	Name	Equation	Type	
13	Generalized Time Harden- ing	$\varepsilon_{\mathrm{cr}}=\mathrm{ft}^{\mathrm{r}} \mathrm{e}^{-\mathrm{C}_{6} / \mathrm{T}}$ $\mathrm{f}=\mathrm{C}_{1} \sigma+\mathrm{C}_{2} \sigma^{2}+\mathrm{C}_{3} \sigma^{3}$ $\mathrm{r}=\mathrm{C}_{4}+\mathrm{C}_{5} \sigma$	Primary	
100	---	User Creep	---	---

where:
$\varepsilon_{\mathrm{cr}}=$ equivalent creep strain
$\dot{\varepsilon}_{\mathrm{cr}}=$ change in equivalent creep strain with respect to time
$\sigma=$ equivalent stress
$\mathrm{T}=$ temperature (absolute). The offset temperature (from TOFFST), is internally added to all temperatures for convenience.
C_{1} through $\mathrm{C}_{12}=$ constants defined by the TBDATA command
$\mathrm{t}=$ time at end of substep
$e=$ natural logarithm base
You can define the user creep option by setting $T B O P T=100$, and using TB,STATE to specify the number of state variables for the user creep subroutine. See the Guide to ANSYS User Programmable Features for more information. The RATE command is necessary to activate implicit creep for specific elements (see the RATE command description for details). The RATE command has no effect for explicit creep.

For temperature-dependent constants, define the temperature using TBTEMP for each set of data. Then, define constants C 1 through Cm using TBDATA (where m is the number of constants, and depends on the creep model you choose).

The following example shows how you would define the implicit creep model represented by $T B O P T=1$ at two temperature points.

```
TB,CREEP,1,,1 !Activate creep data table, specify creep model 1
TBTEMP,100 !Define first temperature
TBDATA,1,c11,c12,c13,c14 !Creep constants c11, c12, c13, c14 at first temp.
TBTEMP,200 !Define second temperature
TBDATA,1,c21,c22,c23,c24 !Creep constants c21, c22, c23, c24 at second temp.
```

Coefficients are linearly interpolated for temperatures that fall between user defined TBTEMP values. For some creep models, where the change in coefficients spans several orders of magnitude, this linear interpolation might introduce inaccuracies in solution results. Use enough curves to accurately capture the temperature dependency. Also, consider using the curve fitting subroutine to calculate a temperature dependent coefficient that includes the Arrhenius term.

When a temperature is outside the range of defined temperature values, ANSYS uses the coefficients defined for the constant temperature.

See the TB command for a listing of the elements that can be used with this material option.
See Creep in the Structural Analysis Guide for more information on this material option.

2.5.13.2. Explicit Creep Equations

Enter an explicit creep equation by setting $T B O P T=0$ (or leaving it blank) within the TB command, then specifying the constants associated with the creep equations using the TBDATA command.

Specify primary creep with constant C6. Primary Explicit Creep Equation for C6 $=0$ (p. 70), through Primary Explicit Creep Equation for $C 6=100$ (p. 75), show the available equations. You select an equation with the appropriate value of C_{6} (0 to 15). If $C_{1} \leq 0$, or if $T+T_{\text {offset }} \leq 0$, no primary creep is computed.

Specify secondary creep with constant C_{12}. Secondary Explicit Creep Equation for $\mathrm{C} 12=0(\mathrm{p} .75)$ and Secondary Explicit Creep Equation for C12 = 1 (p.76) show the available equations. You select an equation with the appropriate value of C_{12} (0 or 1). If $\mathrm{C}_{7} \leq 0$, or if $\mathrm{T}+\mathrm{T}_{\text {offset }} \leq 0$, no secondary creep is computed. Also, primary creep equations $C_{6}=9,10,11,13,14$, and 15 bypass any secondary creep equations since secondary effects are included in the primary part.

Specify irradiation induced creep with constant C_{66}. Irradiation Induced Explicit Creep Equation for $\mathrm{C} 66=$ 5 (p.76) shows the single equation currently available; select it with $\mathrm{C}_{66}=5$. This equation can be used in conjunction with equations $\mathrm{C}_{6}=0$ to 11 . The constants should be entered into the data table as indicated by their subscripts. If $\mathrm{C}_{55} \leq 0$ and $\mathrm{C}_{61} \leq 0$, or if $\mathrm{T}+\mathrm{T}_{\text {offset }} \leq 0$, no irradiation induced creep is computed.

A linear stepping function is used to calculate the change in the creep strain within a time step ($\Delta \varepsilon_{\mathrm{cr}}=$ $\left(\dot{\varepsilon}_{\text {cr }}\right)(\Delta \mathrm{t})$). The creep strain rate is evaluated at the condition corresponding to the beginning of the time interval and is assumed to remain constant over the time interval. If the time step is less than $1.0 \mathrm{e}-6$, then no creep strain increment is computed. Primary equivalent stresses and strains are used to evaluate the creep strain rate. For highly nonlinear creep strain vs. time curves, use a small time step if you are using the explicit creep algorithm. A creep time step optimization procedure is available for automatically increasing the time step whenever possible. A nonlinear stepping function (based on an exponential decay) is also available ($C_{11}=1$) but should be used with caution since it can underestimate the total creep strain where primary stresses dominate. This function is available only for creep equations $C_{6}=0,1$ and 2 . Temperatures used in the creep equations should be based on an absolute scale (TOFFST).

Use the BF or BFE commands to enter temperature and fluence values. The input fluence (Φ_{t}) includes the integrated effect of time and time explicitly input is not used in the fluence calculation. Also, for the usual case of a constant flux (Φ), the fluence should be linearly ramp changed.

Temperature dependent creep constants are not permitted for explicit creep. You can incorporate other creep options by setting $C 6=100$. See the Guide to ANSYS User Programmable Features for more information.

The following example shows how you would use the explicit creep equation defined by $C 6=1$.

```
TB,CREEP,1 !Activate creep data table
TBDATA,1,c1,c2,c3,c4,,1 !Creep constants c1, c2, c3, c4 for equation C6=1
```

The explicit creep constants that you enter with the TBDATA are:

Constant Meaning

C1-CN Constants $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$, etc. (as defined in Primary Explicit Creep Equation for $\mathrm{C} 6=0$ to Irradiation Induced Explicit Creep Equation for C66 = 5) These are obtained by curve fitting test results for your material to the equation you choose. Exceptions are defined below.

2.5.13.2.1. Primary Explicit Creep Equation for C6 = 0

$\dot{\varepsilon}_{\mathrm{Cr}}=\mathrm{C}_{1} \sigma^{\mathrm{C} 2} \varepsilon_{\mathrm{cr}}{ }^{\mathrm{C} 3} \mathrm{e}^{-\mathrm{C} 4 / \mathrm{T}}$
where:
$\dot{\varepsilon}=$ change in equivalent strain with respect to time
$\sigma=$ equivalent stress
T = temperature (absolute). The offset temperature (from TOFFST) is internally added to all temperatures for convenience.
$t=$ time at end of substep
$e=$ natural logarithm base

2.5.13.2.2. Primary Explicit Creep Equation for $\mathbf{C} 6=1$

$\dot{\varepsilon}_{\mathrm{cr}}=\mathrm{C}_{1} \sigma^{\mathrm{C} 2} \mathrm{t}^{\mathrm{C} 3} e^{-\mathrm{C} 4 / \mathrm{T}}$

2.5.13.2.3. Primary Explicit Creep Equation for C6 = 2

$\dot{\varepsilon}_{\mathrm{cr}}=\mathrm{C}_{1} \sigma^{\mathrm{C} 2} \mathrm{re}^{-\mathrm{rt}}$
where:
$r=C_{5} \sigma^{C 3} e^{-C 4 / T}$

2.5.13.2.4. Primary Explicit Creep Equation for C6 = 9

Annealed 304 Stainless Steel:
$\dot{\varepsilon}_{\mathrm{Cr}}=\mathrm{C}_{1} \frac{\partial \varepsilon_{\mathrm{C}}}{\partial \mathrm{t}}$

2.5.13.2.4.1. Double Exponential Creep Equation $(C 4=0)$

To use the following Double Exponential creep equation to calculate

$$
\varepsilon_{\mathrm{c}}=\varepsilon_{\mathrm{x}}\left(1-\mathrm{e}^{-\mathrm{st}}\right)+\varepsilon_{\mathrm{t}}\left(1-\mathrm{e}^{-\mathrm{rt}}\right)+\dot{\varepsilon}_{\mathrm{m}} \mathrm{t}
$$

where:

$$
\begin{aligned}
& \varepsilon_{x}=0 \text { for } \sigma \leq C_{2} \\
& \varepsilon_{x}=G+H \sigma \text { for } C_{2}<\sigma \leq C_{3} \\
& C_{2}=6000 \text { psi (default), } C_{3}=25000 \text { psi (default) }
\end{aligned}
$$

$\mathrm{s}, \mathrm{r}, \dot{\varepsilon}_{\mathrm{m}}, \mathrm{G}$, and $\mathrm{H}=$ functions of temperature and stress as described in the reference.
This double exponential equation is valid for Annealed 304 Stainless Steel over a temperature range from 800 to 1100°. The equation, known as the Blackburn creep equation when $C_{1}=1$, is described completely
in the [1] (p. 1445). The first two terms describe the primary creep strain and the last term describes the secondary creep strain.

To use this equation, input a nonzero value for $C_{1}, C_{6}=9.0$, and $C_{7}=0.0$. Temperatures should be in ${ }^{\circ} R$ (or ${ }^{\circ} \mathrm{F}$ with $\mathrm{T}_{\text {offset }}=460.0$). Conversion to ${ }^{\circ} \mathrm{K}$ for the built-in property tables is done internally. If the temperature is below the valid range, no creep is computed. Time should be in hours and stress in psi. The valid stress range is $6,000-25,000 \mathrm{psi}$.

2.5.13.2.4.2. Rational Polynomial Creep Equation with Metric Units (C4 =1)

To use the following standard Rational Polynomial creep equation (with metric units) to calculate ε_{c}, enter $\mathrm{C}_{4}=1.0$:

$$
\varepsilon_{\mathrm{c}}+\frac{\mathrm{cpt}}{1+\mathrm{pt}}+\dot{\varepsilon}_{\mathrm{m}} \mathrm{t}
$$

where:
$\mathrm{c}=$ limiting value of primary creep strain
$\mathrm{p}=$ primary creep time factor
$\dot{\varepsilon}_{\mathrm{m}}=$ secondary (minimum) creep strain rate
This standard rational polynomial creep equation is valid for Annealed 304 SS over a temperature range from $427^{\circ} \mathrm{C}$ to $704^{\circ} \mathrm{C}$. The equation is described completely in the [1] (p. 1445). The first term describes the primary creep strain. The last term describes the secondary creep strain. The average "lot constant" is used to calculate $\dot{\varepsilon}_{\mathrm{m}}$.

To use this equation, input $C_{1}=1.0, C_{4}=1.0, C_{6}=9.0$, and $C_{7}=0.0$. Temperature must be in ${ }^{\circ} \mathrm{C}$ and $\mathrm{T}_{\text {offset }}$ must be 273 (because of the built-in property tables). If the temperature is below the valid range, no creep is computed. Also, time must be in hours and stress in Megapascals (MPa).

Various hardening rules governing the rate of change of creep strain during load reversal may be selected with the C_{5} value: 0.0 - time hardening, 1.0 - total creep strain hardening, 2.0 - primary creep strain hardening. These options are available only with the standard rational polynomial creep equation.

2.5.13.2.4.3. Rational Polynomial Creep Equation with English Units $(C 4=2)$

To use the above standard Rational Polynomial creep equation (with English units), enter $C_{4}=2.0$.
This standard rational polynomial equation is the same as described above except that temperature must be in ${ }^{\circ} \mathrm{F}, \mathrm{T}_{\text {offset }}$ must be 460 , and stress must be in psi. The equivalent valid temperature range is $800-1300^{\circ} \mathrm{F}$.

2.5.13.2.5. Primary Explicit Creep Equation for C6 = $\mathbf{1 0}$

Annealed 316 Stainless Steel:

$\dot{\varepsilon}_{\mathrm{cr}}=\mathrm{C}_{1} \frac{\partial \varepsilon_{\mathrm{c}}}{\partial \mathrm{t}}$

2.5.13.2.5.1. Double Exponential Creep Equation $(C 4=0)$

To use the same form of the Double Exponential creep equation as described for Annealed $304 \mathrm{SS}\left(\mathrm{C}_{6}=9.0\right.$, $\left.C_{4}=0.0\right)$ in Primary Explicit Creep Equation for C6 $=9(p .70)$ to calculate ε_{C}, enter $C_{4}=0.0$.

This equation, also described in [1] (p. 1445), differs from the Annealed 304 SS equation in that the built-in property tables are for Annealed 316 SS , the valid stress range is $4000-30,000 \mathrm{psi}, \mathrm{C}_{2}$ defaults to 4000 psi , C_{3} defaults to $30,000 \mathrm{psi}$, and the equation is called with $\mathrm{C}_{6}=10.0$ instead of $\mathrm{C}_{6}=9.0$.

2.5.13.2.5.2. Rational Polynomial Creep Equation with Metric Units (C4 =1)

To use the same form of the standard Rational Polynomial creep equation with metric units as described for Annealed 304 SS ($C_{6}=9.0, C_{4}=1.0$) in Primary Explicit Creep Equation for $C 6=9(p .70)$, enter $C_{4}=1.0$.

This standard rational polynomial equation, also described in [1] (p. 1445), differs from the Annealed 304 SS equation in that the built-in property tables are for Annealed 316 SS , the valid temperature range is 482 $704^{\circ} \mathrm{C}$, and the equation is called with $\mathrm{C}_{6}=10.0$ instead of $\mathrm{C}_{6}=9.0$. The hardening rules for load reversal described for the $C_{6}=9.0$ standard Rational Polynomial creep equation are also available. The average "lot constant" from [1] (p. 1445) is used in the calculation of $\dot{\varepsilon}_{\mathrm{m}}$.

2.5.13.2.5.3. Rational Polynomial Creep Equation with English Units $(C 4=2)$

To use the previous standard Rational Polynomial creep equation with English units, enter $\mathrm{C}_{4}=2.0$.
This standard rational polynomial equation is the same as described above except that the temperatures must be in ${ }^{\circ}{ }^{\mathrm{F}}, \mathrm{T}_{\text {offset }}$ must be 460 , and the stress must be in psi (with a valid range from 0.0 to 24220 psi). The equivalent valid temperature range is $900-1300^{\circ} \mathrm{F}$.

2.5.13.2.6. Primary Explicit Creep Equation for C6 = 11

Annealed 2 1/4 Cr-1 Mo Low Alloy Steel:

$\dot{\varepsilon}_{\mathrm{cr}}=\mathrm{C}_{1} \frac{\partial \varepsilon_{\mathrm{C}}}{\partial \mathrm{t}}$

2.5.13.2.6.1. Modified Rational Polynomial Creep Equation ($C 4=0$)

To use the following Modified Rational Polynomial creep equation to calculate $\varepsilon_{C^{\prime}}$ enter $C_{4}=0.0$:
$\varepsilon_{C}=\frac{t}{A+B t}+\dot{\varepsilon}_{m} t$
A, B, and $\dot{\varepsilon}_{\mathrm{m}}$ are functions of temperature and stress as described in the reference.
This modified rational polynomial equation is valid for Annealed $21 / 4 \mathrm{Cr}-1$ Mo Low Alloy steel over a temperature range of $700-1100^{\circ}$. The equation is described completely in the [2] (p. 1445). The first term describes the primary creep strain and the last term describes the secondary creep strain. No modification is made for plastic strains.

To use this equation, input $C_{1}=1.0, C_{6}=11.0$, and $C_{7}=0.0$. Temperatures must be in ${ }^{\circ} \mathrm{R}$ (or ${ }^{\circ} \mathrm{F}$ with $\mathrm{T}_{\text {offset }}$ $=460.0$). Conversion to ${ }^{\circ} \mathrm{K}$ for the built-in property tables is done internally. If the temperature is below the valid range, no creep is computed. Time should be in hours and stress in psi. Valid stress range is 1000 65,000 psi.

2.5.13.2.6.2. Rational Polynomial Creep Equation with Metric Units (C4 = 1)

To use the following standard Rational Polynomial creep equation (with metric units) to calculate ε_{C}, enter $\mathrm{C}_{4}=1.0$:

$$
\varepsilon_{\mathrm{c}}+\frac{\mathrm{cpt}}{1+\mathrm{pt}}+\dot{\varepsilon}_{\mathrm{m}} \mathrm{t}
$$

where:
$\mathrm{c}=$ limiting value of primary creep strain
$p=$ primary creep time factor
$\dot{\varepsilon}_{\mathrm{m}}=$ secondary (minimum) creep strain rate
This standard rational polynomial creep equation is valid for Annealed $21 / 4 \mathrm{Cr}-1$ Mo Low Alloy Steel over a temperature range from $371^{\circ} \mathrm{C}$ to $593^{\circ} \mathrm{C}$. The equation is described completely in the [2] (p.1445). The first term describes the primary creep strain and the last term describes the secondary creep strain. No tertiary creep strain is calculated. Only Type I (and not Type II) creep is supported. No modification is made for plastic strains.

To use this equation, input $C_{1}=1.0, C_{4}=1.0, C_{6}=11.0$, and $C_{7}=0.0$. Temperatures must be in ${ }^{\circ} \mathrm{C}$ and $\mathrm{T}_{\text {offset }}$ must be 273 (because of the built-in property tables). If the temperature is below the valid range, no creep is computed. Also, time must be in hours and stress in Megapascals (MPa). The hardening rules for load reversal described for the $\mathrm{C}_{6}=9.0$ standard Rational Polynomial creep equation are also available.

2.5.13.2.6.3. Rational Polynomial Creep Equation with English Units ($C 4=2$)

To use the above standard Rational Polynomial creep equation with English units, enter C ${ }_{4}=2.0$.
This standard rational polynomial equation is the same as described above except that temperatures must be in ${ }^{\circ} \mathrm{F}, \mathrm{T}_{\text {offset }}$ must be 460 , and stress must be in psi. The equivalent valid temperature range is $700-1100^{\circ} \mathrm{F}$.

2.5.13.2.7. Primary Explicit Creep Equation for $C 6=12$

$\dot{\varepsilon}_{\text {cr }}=M K\left(\mathrm{C}_{1} \sigma\right)^{\mathrm{N}_{\mathrm{t}}(\mathrm{M}-1)}$
where:
$\mathrm{C}_{1}=$ Scaling constant
$\mathrm{M}, \mathrm{N}, \mathrm{K}=$ Function of temperature (determined by linear interpolation within table) as follows:

$$
\begin{array}{ll}
\mathrm{C}_{5} & \begin{array}{l}
\text { Number of temperature values to describe } \\
\mathrm{M}, \mathrm{~N}, \text { or } \mathrm{K} \text { function (2 minimum, } 6 \text { maximum })
\end{array} \\
\mathrm{C}_{49} & \text { First absolute temperature value } \\
\mathrm{C}_{50} & \text { Second absolute temperature value }
\end{array}
$$

$C_{48}+C_{5}$	C_{5} th absolute temperature value
$C_{48}+C_{5}+1$	First M value
\ldots	
$C_{48}+2 C_{5}$	C_{5} th M value
$C_{48}+2 C_{5}$	C_{5} th M value
\ldots	
$C_{48}+2 C_{5}$	C_{5} th M value
$C_{48}+2 C_{5}+1$	First N value
\ldots	
$C_{48}+3 C_{5}$	C_{5} th N value
$C_{48}+3 C_{5}+1$	First K value

This power function creep law having temperature dependent coefficients is similar to Equation $\mathrm{C}_{6}=1.0$ except with $C_{1}=f_{1}(T), C_{2}=f_{2}(T), C_{3}=f_{3}(T)$, and $C_{4}=0$. Temperatures must not be input in decreasing order.

2.5.13.2.8. Primary Explicit Creep Equation for C6 Equals 13

Sterling Power Function:

$\dot{\varepsilon}_{\mathrm{cr}}=\frac{\varepsilon_{\mathrm{acc}}}{\mathrm{B} \varepsilon_{\mathrm{acc}}^{\mathrm{B}} \sigma^{\mathrm{A}} 10^{(3 \mathrm{~A}+2 \mathrm{~B}+\mathrm{C})}}$
where:
$\varepsilon_{\text {acc }}=$ creep strain accumulated to this time (calculated by the program). Internally set to 1×10^{-5} at the first substep with nonzero time to prevent division by zero.

$$
\begin{aligned}
& \mathrm{A}=\mathrm{C}_{1} / \mathrm{T} \\
& \mathrm{~B}=\mathrm{C}_{2} / \mathrm{T}+\mathrm{C}_{3} \\
& \mathrm{C}=\mathrm{C}_{4} / \mathrm{T}+\mathrm{C}_{5}
\end{aligned}
$$

This equation is often referred to as the Sterling Power Function creep equation. Constant C_{7} should be 0.0. Constant C_{1} should not be 0.0 , unless no creep is to be calculated.

2.5.13.2.9. Primary Explicit Creep Equation for C6 = 14

$\dot{\varepsilon}_{\mathrm{cr}}=\mathrm{C}_{1} \frac{\partial \varepsilon_{\mathrm{C}}}{\partial \mathrm{t}}$
where:

$$
\begin{aligned}
& \varepsilon_{\mathrm{c}}=\mathrm{cpt} /(1+\mathrm{pt})+\dot{\varepsilon}_{\mathrm{m}} \\
& \ln \mathrm{c}=-1.350-5620 / \mathrm{T}-50.6 \times 10^{-6} \sigma+1.918 \ln (\sigma / 1000)
\end{aligned}
$$

$$
\begin{aligned}
& \text { In } \mathrm{p}=31.0-67310 / \mathrm{T}+330.6 \times 10^{-6} \sigma-1885.0 \times 10^{-12} \sigma^{2} \\
& \ln \dot{\varepsilon}_{\mathrm{m}}=43.69-106400 / \mathrm{T}+294.0 \times 10^{-6} \sigma+2.596 \ln (\sigma / 1000)
\end{aligned}
$$

This creep law is valid for Annealed 316 SS over a temperature range from $800^{\circ} \mathrm{F}$ to $1300^{\circ} \mathrm{F}$. The equation is similar to that given for $C_{6}=10.0$ and is also described in [1] (p. 1445).

To use equation, input $C_{1}=1.0$ and $C_{6}=14.0$. Temperatures should be in ${ }^{\circ} \mathrm{R}$ (or ${ }^{\circ} \mathrm{F}$ with $\mathrm{T}_{\text {offset }}=460$). Time should be in hours. Constants are only valid for English units (pounds and inches). Valid temperature range: $800^{\circ}-1300^{\circ} \mathrm{F}$. Maximum stress allowed for e_{c} calculation: $45,000 \mathrm{psi}$; minimum stress: 0.0 psi . If $\mathrm{T}+\mathrm{T}_{\text {offset }}<$ 1160 , no creep is computed.

2.5.13.2.10. Primary Explicit Creep Equation for $\mathbf{C 6}=15$

General Material Rational Polynomial:

$\dot{\varepsilon}_{\mathrm{cr}}=\mathrm{C}_{1} \frac{\partial \varepsilon_{\mathrm{C}}}{\partial \mathrm{t}}$
where:

$$
\begin{aligned}
& \varepsilon_{\mathrm{C}}+\frac{\mathrm{cpt}}{1+\mathrm{pt}}+\dot{\varepsilon}_{\mathrm{m}}^{\mathrm{t}} \\
& \dot{\varepsilon}_{\mathrm{m}}=\mathrm{C}_{2} 10^{\mathrm{C}_{3} \sigma} \sigma^{\mathrm{C}_{4}} \quad \text { (C }{ }_{2} \text { must not be negative) } \\
& \mathrm{C}=\mathrm{C}_{7} \dot{\varepsilon}_{\mathrm{m}} \mathrm{C}_{8} \sigma^{\mathrm{C}_{9}} \\
& \mathrm{p}=\mathrm{C}_{10} \dot{\varepsilon}_{\mathrm{m}} \mathrm{C}_{11} \sigma^{\mathrm{C}_{12}}
\end{aligned}
$$

This rational polynomial creep equation is a generalized form of the standard rational polynomial equations given as $C_{6}=9.0,10.0$, and $11.0\left(C_{4}=1.0\right.$ and 2.0). This equation reduces to the standard equations for isothermal cases. The hardening rules for load reversal described for the $C_{6}=9.0$ standard Rational Polynomial creep equation are also available.

2.5.13.2.11. Primary Explicit Creep Equation for $\mathbf{C 6}=\mathbf{1 0 0}$

A user-defined creep equation is used. See the Guide to ANSYS User Programmable Features for more information.

2.5.13.2.12. Secondary Explicit Creep Equation for C12 = 0

$\dot{\varepsilon}_{\mathrm{cr}}=\mathrm{C}_{7} \mathrm{e}^{\sigma / \mathrm{C}_{8}} \mathrm{e}^{-\mathrm{C}_{10} / \mathrm{T}}$
where:
$\sigma=$ equivalent stress
$\mathrm{T}=$ temperature (absolute). The offset temperature (from TOFFST), is internally added to all temperatures for convenience.
$\mathrm{t}=$ time
$e=$ natural logarithm base

2.5.13.2.13. Secondary Explicit Creep Equation for C12 = 1

$\dot{\varepsilon}_{\mathrm{Cr}}=\mathrm{C}_{7} \sigma^{\mathrm{C}_{8}} \mathrm{e}^{-\mathrm{C}_{10} / \mathrm{T}}$

2.5.13.2.14. Irradiation Induced Explicit Creep Equation for C66 = 5

$\dot{\varepsilon}_{\mathrm{cr}}=\mathrm{C}_{55} \sigma \dot{\phi} \mathrm{e}^{-\phi \mathrm{t}_{0.5} / \mathrm{C}_{56}}+\mathrm{C}_{61} \mathrm{~B} \sigma \dot{\phi}$
where:

$$
\begin{aligned}
& \mathrm{B}=\mathrm{FG}+\mathrm{C}_{63} \\
& \mathrm{~F}=\frac{\mathrm{e}^{-\mathrm{C}_{58} / \mathrm{T}}}{\mathrm{C}_{59}+\mathrm{C}_{60} \mathrm{e}^{-\mathrm{C}_{57} / \mathrm{T}}} \\
& \mathrm{G}=1-\mathrm{e}^{-\phi \mathrm{tt}_{0.5} / \mathrm{C}_{62} \mathrm{a}} \\
& \sigma=\text { equivalent stress } \\
& \mathrm{T}=\text { temperature (absolute). The offset temperature (from TOFFST) is internally added to all temperatures } \\
& \text { for convenience. } \\
& \Phi_{\mathrm{t}_{0.5}}=\text { neutron fluence (input on } \mathbf{B F} \text { or } \mathbf{B F E} \text { command) } \\
& \mathrm{e}=\text { natural logarithm base } \\
& \mathrm{t}=\text { time }
\end{aligned}
$$

This irradiation induced creep equation is valid for 20% Cold Worked 316 SS over a temperature range from 700° to 1300°. Constants $56,57,58$ and 62 must be positive if the B term is included.

See the TB command for a listing of the elements that can be used with this material option.
See Creep in the Structural Analysis Guide for more information on this material option.

2.5.14. Shape Memory Alloy Material Model (TB,SMA)

Use the TB,SMA option to model the superelastic behavior of shape memory alloys. Use this with the MP command to define the elastic behavior in the austenite state. The SMA model can be used with these elements: PLANE182, PLANE183, SOLID185, SOLID186, SOLID187, and SOLSH190.

The SMA option is described by six constants that define the stress-strain behavior in loading and unloading for the uniaxial stress-state.

Initialize the data table with TB,SMA. For each data set, define the temperature using TBTEMP, then define constants C1 through C6 using TBDATA. You may define up to six sets of temperature-dependent constants in this manner. See Shape Memory Alloy Material Model or more information and an example.

Table 2.5 Shape Memory Alloy Constants

Constant		Meaning
SIG-SAS $(C 1)$	$\sigma_{\mathrm{s}}^{\text {AS }}$	Starting stress value for the forward phase transformation
SIG-FAS $(C 2)$	$\sigma_{\mathrm{f}}^{\mathrm{AS}}$	Final stress value for the forward phase transformation

Constant		Meaning
SIG-SSA (C3)	$\sigma_{\mathrm{s}}^{\mathrm{SA}}$	Starting stress value for the reverse phase transformation
SIG-FSA (C4)	$\sigma_{\mathrm{f}}^{\mathrm{SA}}$	Final stress value for the reverse phase transformation
EPSILON (C5)	$\overline{\mathrm{e}}_{\mathrm{L}}$	Maximum residual strain
ALPHA (C6)	α	Parameter measuring the difference between material re- sponses in tension and compression

Figure 2.1 Shape Memory Alloy Phases

2.5.15. Swelling Equation Constants (TB,SWELL)

If Table 4.n-1 lists "swelling" as a "Special Feature," then the element can model swelling behavior. Swelling is a material enlargement due to neutron bombardment and other effects (see the Theory Reference for the Mechanical APDL and Mechanical Applications). The swelling strain rate may be a function of temperature, time, neutron flux level, and stress.

The fluence (which is the flux x time) is input on the BF or BFE command. A linear stepping function is used to calculate the change in the swelling strain within a load step:
$\Delta \varepsilon_{s w}=\frac{d \varepsilon_{s w}}{d(\phi t)}(\Delta(\phi t))$
where Φt is the fluence and the swelling strain rate equation is as defined in subroutine USERSW.

Because of the many empirical swelling equations available, the programming of the actual swelling equation is left to the user. In fact, the equation and the "fluence" input may be totally unrelated to nuclear swelling. See the Guide to ANSYS User Programmable Features for user programmable features.

For highly nonlinear swelling strain vs. fluence curves a small fluence step should be used. Note that since fluence ($\Phi \mathrm{t}$), and not flux (Φ), is input, a constant flux requires that a linearly changing fluence be input if time is changing. Temperatures used in the swelling equations should be based on an absolute scale (TOFFST). Temperature and fluence values are entered with the BF or BFE command. Swelling calculations for the current substep are based upon the previous substep results.

Initialize the swelling table with TB,SWELL. The constants entered on the TBDATA commands (6 per command) are:

```
Constant Meaning
    C1-CN Constants \(\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}\), etc. (as required by the user swelling
    equations). \(\mathrm{C}_{72}\) must equal 10 .
```

See the TB command for a listing of the elements that can be used with this material option.
See Swelling in the Structural Analysis Guide for more information on this material option.

2.5.16. MPC184 Joint Material Models (TB,JOIN)

The TB,JOIN option allows you to impose linear and nonlinear elastic stiffness and damping behavior or Coulomb friction behavior on the available components of relative motion of an MPC184 joint element. The stiffness and damping behaviors described here apply to all joint elements except the weld, orient, and spherical joints. The Coulomb friction behavior described here applies only to the revolute, slot, and translational joints.

The TB command may be repeated with the same material ID number to specify both the stiffness and damping behavior.

The following joint material models are available:
2.5.16.1.Linear Elastic Stiffness and Damping Behavior Constants
2.5.16.2. Nonlinear Elastic Stiffness and Damping Behavior Constants
2.5.16.3. Frictional Behavior

2.5.16.1. Linear Elastic Stiffness and Damping Behavior Constants

Input the linear stiffness or damping behavior for the relevant components of relative motion of a joint element by specifying the terms as part of a 6×6 matrix with data table commands as described below.

The 6×6 matrix for linear stiffness or damping behavior is as follows:
$\left[\begin{array}{llllll}D_{11} & & & & & \\ D_{21} & D_{22} & & & & \\ D_{31} & D_{32} & D_{33} & & & \\ D_{41} & D_{42} & D_{43} & D_{44} & & \\ D_{51} & D_{52} & D_{53} & D_{54} & D_{55} & \\ D_{61} & D_{62} & D_{63} & D_{64} & D_{65} & D_{66}\end{array}\right]$

Enter the stiffness or damping coefficient of the matrix in the data table with TB set of commands. Initialize the constant table with TB, JOIN, ,,STIF (for stiffness behavior) or TB,JOIN,,,DAMP (for damping behavior). Define the temperature with TBTEMP, followed by the relevant constants input with TBDATA commands. Matrix terms are linearly interpolated between temperature points. Based on the joint type, the relevant constant specification is as follows:

Joint Element	Constant	Meaning
x-axis Revolute joint	C 16	Term D_{44}
z-axis Revolute joint	C 21	Term D_{66}
Universal joint	$\mathrm{C} 16, \mathrm{C} 18, \mathrm{C} 21$	Terms $\mathrm{D}_{44}, \mathrm{D}_{64}, \mathrm{D}_{66}$
Slot joint	C 1	Term D_{11}
Point-in-plane joint	$\mathrm{C} 7, \mathrm{C}, \mathrm{C} 12$	Terms $\mathrm{D}_{22}, \mathrm{D}_{32}, \mathrm{D}_{33}$
Translational joint	C 1	Term D_{11}
x-axis Cylindrical joint	$\mathrm{C} 1, \mathrm{C} 4, \mathrm{C} 16$	Terms $\mathrm{D}_{11}, \mathrm{D}_{41}, \mathrm{D}_{44}$
z-axis Cylindrical joint	$\mathrm{C} 12, \mathrm{C} 15, \mathrm{C} 21$	Terms $\mathrm{D}_{33}, \mathrm{D}_{63}, \mathrm{D}_{66}$
x-axis Planar joint	$\mathrm{C} 7, \mathrm{C}, \mathrm{C}, \mathrm{C} 12, \mathrm{C} 13, \mathrm{C} 16$	Terms $\mathrm{D}_{22}, \mathrm{D}_{32}, \mathrm{D}_{42}, \mathrm{D}_{33}, \mathrm{D}_{43}, \mathrm{D}_{44}$
z-axis Planar joint	$\mathrm{C} 1, \mathrm{C} 2, \mathrm{C}, \mathrm{C}, \mathrm{C} 11, \mathrm{C} 21$	Terms $\mathrm{D}_{11}, \mathrm{D}_{21}, \mathrm{D}_{61}, \mathrm{D}_{22}, \mathrm{D}_{62}, \mathrm{D}_{66}$
General joint	Use appropriate entries based on unconstrained	
degrees of freedom.		
Screw joint	$\mathrm{C} 12, \mathrm{C} 15, \mathrm{C} 21$	Terms $\mathrm{D}_{33}, \mathrm{D}_{63}, \mathrm{D}_{66}$

The following example shows how you would define the uncoupled linear elastic stiffness behavior for a universal joint at the two available components of relative motion, with two temperature points:

```
TB,JOIN,1,2,,STIF ! Activate JOIN material model with linear elastic stiffness
TBTEMP,100.0 ! Define first temperature
TBDATA,16,D44 ! Define constant D44 in the local ROTX direction
TBDATA,21,D66 ! Define constant D66 in the local ROTZ direction
TBTEMP,200.0 ! Define second temperature
TBDATA,16,D44 ! Define constant D44 in the local ROTX direction.
TBDATA,21,D66 ! Define constant D66 in the local ROTZ direction.
```


2.5.16.2. Nonlinear Elastic Stiffness and Damping Behavior Constants

You can specify nonlinear elastic stiffness as a displacement (rotation) versus force (moment) curve using the TB,JOIN command with a suitable TBOPT setting.

Use the TBPT command to specify the data points or specify the name of a function that defines the curve on the TB command. (Use the ANSYS Function Tool to generate the specified function.) The values may be temperature-dependent.

You can specify nonlinear damping behavior in a similar manner by supplying velocity versus damping force (or moment).

The appropriate $T B O P T$ labels for each joint element type are shown in the following tables. For a description of each TBOPT label, see JOIN Specifications in the TB command documentation.

Nonlinear Stiffness Behavior	
Joint Element	TBOPT on TB command
x-axis Revolute joint	JNSA, JNS4

Nonlinear Stiffness Behavior	
Joint Element	TBOPT on TB command
z-axis Revolute joint	JNSA, JNS6
Universal joint	JNSA, JNS4, and JNS6
Slot joint	JNSA and JNS1
Point-in-plane joint	JNSA, JNS2, and JNS3
Translational joint	JNSA and JNS1
x-axis Cylindrical joint	JNSA, JNS1, and JNS4
z-axis Cylindrical joint	JNSA, JNS3, and JNS6
x-axis Planar joint	JNSA, JNS2, JNS3, and JNS4
z-axis Planar joint	JNSA, JNS1, JNS2, and JNS6
General joint	USe appropriate entries based on unconstrained degrees of freedom
Screw joint	JNSA, JNS3, and JNS6

Nonlinear Damping Behavior	
Joint Element	тBOPT on TB command
x-axis Revolute joint	JNDA, JND4
z-axis Revolute joint	JNDA, JND6
Universal joint	JNDA, JND4, and JND6
Slot joint	JNDA and JND1
Point-in-plane joint	JNDA, JND2, and JND3
Translational joint	JNDA and JND1
x-axis Cylindrical joint	JNDA, JND1, and JND4
z-axis Cylindrical joint	JNDA, JND3, and JND6
x-axis Planar joint	JNDA, JND2, JND3, and JND4
z-axis Planar joint	JNDA, JND1, JND2, and JND6
General joint	Use appropriate entries based on unconstrained degrees of freedom
Screw joint	JNDA, JND3, and JND6

The following example illustrates the specification of nonlinear stiffness behavior for a revolute joint that has only one available component of relative motion (the rotation around the axis of revolution). Two temperature points are specified.

```
TB,JOIN,1,2,2,JNS4
TBTEMP,100.
TBPT,,rotation_value_1,moment_value_1
TBPT,,rotation_value_2,moment_value_2
TBTEMP,200.0
TBPT,,rotation_value_1,moment_value_1
TBPT,,rotation_value_2,moment_value_2
```


2.5.16.2.1. Specifying a Function Describing Nonlinear Stiffness Behavior

When specifying a function that describes the nonlinear stiffness behavior, the Function Tool allows the force to be defined as a function of temperature and relative displacement; the two independent variables are named as TEMP and DJU. Similarly, when specifying a function that describes the nonlinear damping behavior, the Function Tool allows the damping force to be defined as a function of temperature and relative velocity; the two independent variables are identified as TEMP and DJV.

Example Consider a function where the damping force varies with temperature and relative velocity:

$$
F=(-0.005 * \text { Temperature }+0.25) * \text { Relative Velocity }
$$

Define the function using the Function Editor, then retrieve and load it using the Function Loader. (The editor and the loader are both components of the Function Tool.)

Assuming a function name of dampfunc, you can then use the TB command to define the joint material:

```
TB, JOIN, 1, , , JND4, , %dampfunc%
```

For more information about the Function Tool utility, see "Using the Function Tool" in the Basic Analysis Guide.

2.5.16.3. Frictional Behavior

Frictional behavior along the unrestrained components of relative motion influences the overall behavior of the Joints. You can model Coulomb friction for joint elements via the TB,JOIN command with an appropriate $T B O P T$ label. The joint frictional behavior can be specified only for the following joints: Revolute joint, Slot joint, and Translational joint.

The friction parameters are described below.

Coulomb Friction Coefficient Specification

There are three options for defining the Coulomb friction coefficient.

- Define a single value of the Coulomb friction coefficient by specifying $T B O P T=M_{x}$, where the value of x depends on the joint under consideration. Use the TBDATA command to specify the value of the friction coefficient.
- Define the Coulomb friction coefficient as a function of the sliding velocity. Use $T B O P T=$ MUS x (as stated above) and use the TBPT command to specify the data values.
- Use the exponential law for friction behavior. Specify $T B O P T=E X P x$, where the value of x depends on the joint under consideration, and use the TBDATA command to specify the values required for the exponential law. In this case, the TBDATA command format is:

TBDATA, $\mu_{s^{\prime}} \mu_{\mathrm{d}^{\prime}} \mathrm{C}$
where μ_{s} is the coefficient of friction in the static regime, μ_{d} is the coefficient of friction in the dynamic regime, and c is the decay coefficient.

Maximum or Critical Force/Moment

- The maximum allowable value of critical force/moment can be specified using $T B O P T=T M X x$, where x depends on the joint under consideration.

Elastic Slip

- The elastic slip can be specified by setting $T B O P T=S L x$, where x depends on the joint under consideration.
- If the stick-stiffness value is not specified, then this value along with the critical force/moment is used to determine the stick-stiffness.
- If the elastic slip is not specified, then a default value is computed for stick-stiffness calculations if necessary.

Stick-Stiffness

- A stick-stiffness value can be specified for controlling the behavior in the stick regime when friction behavior is specified. Use TBOPT $=\operatorname{SK}_{x}$, where x depends on the joint under consideration.
- If the stick-stiffness value is not specified, then the following procedure is adopted:
- If both maximum force/moment and elastic slip are specified, then the stick-stiffness is calculated from these values.
- If only maximum force/moment is specified, then a default elastic slip is computed and then the stick-stiffness is calculated.
- If only the elastic slip is specified, then the stick-stiffness value is computed based on the current normal force/moment (Friction Coefficient * Normal Force or Moment/elastic-slip).

Interference Fit Force/Moment

- If the forces that are generated during a joint assembly have to be modeled, the interference fit force/moment can be specified using $T B O P T=\mathrm{FI}_{x}$, where x depends on the joint under consideration. This force/moment will contribute to the normal force/moment in friction calculations.

The appropriate $T B O P T$ labels (TB command) for each joint element type are shown in the table below:

TBOPT Labels for Elements Supporting Coulomb Friction				
Friction Parameter	x-axis Revolute Joint	$\mathbf{z - a x i s ~ R e v o l u t e ~}$ Joint	Slot Joint	Translational Joint
Static Friction	MUS4	MUS6	MUS1	MUS1
Exponential Friction Law	TMX4	EXP6	EXP1	EXP1
Max.Allowable Shear Force/Moment	SL4X6	TMX1	TMX1	
Elastic Slip	FI4	SL6	SL1	SL1
Interference Fit Force/Moment	SK4	SI6	FI1	FI1
Stick-Stiffness	SK6	SK1	SK1	

The following examples illustrate how to specify Coulomb friction parameters for various scenarios.
Example 1 Specifying a single value of coefficient of friction and other friction parameters for an x-axis revolute joint.

```
TB, JOIN, 1, , MUS4 ! Label for friction coefficient
TBDATA, 1, 0.1 ! Value of coefficient of friction
TB, JOIN, 1, , SK4 ! Label for stick-stiffness
TBDATA, 1, 3.0E4 ! Value for stick-stiffness
TB, JOIN, 1, , FI4 ! Label for interference fit force
TBDATA, 1, 10000.00 ! Value for interference fit force
```

Example 2 Specifying temperature dependent friction coefficient and other friction parameters for a zaxis revolution joint.

```
TB, JOIN, 1,2 , 1, MUS6 ! 2 temp points, 2 data points and label for friction coefficient
TBTEMP, 10
    ! 1st temperature
TBDATA, 1, 0.15 ! Value of coefficient of friction
TBTEMP, 20 ! 2nd temperature
TBDATA, 1, 0.1
TB, JOIN, 1, , , SK4
! Value for stick-stiffness
TB, JOIN, 1, , FI4 ! Label for interference fit force
TBDATA, 1, 10000.00 ! Value for interference fit force
```

Example 3 Specifying the exponential law for friction and other friction parameters for a z-axis revolute joint.

```
TB, JOIN, 1, , , EXP6 ! Label for friction coefficient
TBDATA, 1, 0.4, 0.2, 0.5 ! Static friction coeff, dynamic friction coeff, decay constant
TB, JOIN, 1, , SK6 ! Label for stick-stiffness
TBDATA, 1, 3.0E4 ! Value for stick-stiffness
```

Example 4 Specifying friction as a function of sliding velocity for a slot joint.

```
TB, JOIN, 1, , 3, MUS1 ! Label for friction coefficient
TBPT, 1.0, 0.15 ! Sliding velocity, coefficient of friction
TBPT, , 5.0, 0.10 ! Sliding velocity, coefficient of friction
TBPT, 10.0, 0.09 ! Sliding velocity, coefficient of friction
!
TB, JOIN, 1, , TMX1 ! Label for max allowable frictional force
TBDATA, 1, 3.0E4 ! Value for max allowable frictional force
TB, JOIN, 1, , SL1 ! Label for elastic slip
TBDATA, 1, 0.04 ! Value of elastic slip
```


2.5.17. Contact Friction (TB,FRIC)

Contact friction (TB,FRIC) is a material property used with contact elements CONTA171, CONTA172, CONTA173, CONTA174, CONTA175, CONTA176, CONTA177, and CONTA178. It may be specified either through the coefficient of friction (MU) for isotropic or orthotropic friction models or as user defined friction properties.

2.5.17.1. Isotropic Friction (TB,FRIC,I/ו/SO)

Isotropic friction is applicable to 2-D and 3-D contact and is available for all contact elements. Use the TB,FRIC command with $T B O P T$ = ISO to define isotropic friction, and specify the coefficient of friction MU on the TBDATA command. This is the recommended method for defining isotropic friction.

To define a coefficient of friction that is dependent on temperature, time, normal pressure, sliding distance, or sliding relative velocity, use the TBFIELD command. Suitable combinations of up to two fields can be used to define dependency, for example, temperature and sliding distance as shown below:

```
TB,FRIC,1,,,ISO ! Activate isotropic friction model
TBFIELD,TEMP,100.0 ! Define first value of temperature
TBFIELD,SLDI,0.1 ! Define first value of sliding distance
TBDATA,1,MU ! Define coefficient of friction
TBFIELD,SLDI,0.5 ! Define second value of sliding distance
TBDATA,1,MU ! Define coefficient of friction
TBFIELD,TEMP,200.0 ! Define second value of temperature
TBFIELD,SLDI,0.2 ! Define first value of sliding distance
TBDATA,1,MU ! Define coefficient of friction
TBFIELD,SLDI,0.7 ! Define second value of sliding distance
TBDATA,1,MU ! Define coefficient of friction
```

See Understanding Field Variable Interpolation (p. 90) for more information on the interpolation scheme used for field-dependent material properties defined using TBFIELD.

To define a coefficient of friction that is dependent on temperature only, use the TBTEMP command as shown below:

TB,FRIC, 1,2,.ISO	! Activate isotropic friction model
TBTEMP,100.0	! Define first temperature
TBDATA, 1,MU	! Define coefficient of friction at temp 100.0
TBTEMP,200.0	! Define second temperature
TBDATA, 1,MU	! Define coefficient of friction at temp 200.0

Alternatively, you can use MU on the MP command to specify the isotropic friction. Use the MPTEMP command to define MU as a function of temperature. See Linear Material Properties (p. 16) for details.

2.5.17.2. Orthotropic Friction (TB,FRIC, $, \ldots, O R T H O)$

The orthotropic friction model uses two different coefficients of friction in two principal directions (see Frictional Model in the Theory Reference for the Mechanical APDL and Mechanical Applications for details). It is applicable only to 3-D contact and is available for elements CONTA173, CONTA174, CONTA175, CONTA176, and CONTA177. Use the TB,FRIC command with TBOPT = ORTHO to define orthotropic friction, and specify the coefficients of friction, MU1 and MU2, on the TBDATA command.

To define a coefficient of friction that is dependent on temperature, time, normal pressure, sliding distance, or sliding relative velocity, use the TBFIELD command. Suitable combinations of up to two fields can be used to define dependency, for example, sliding relative velocity and normal pressure as shown below:

```
TB,FRIC,1,,,ORTHO ! Activate orthotropic friction model
TBFIELD,SLRV,10.0 ! Define first value of sliding relative velocity
TBFIELD,NPRE,200.0 ! Define first value of normal pressure
TBDATA,1,MU1,MU2 ! Define coefficients of friction
TBFIELD,NPRE,250.0 ! Define second value of normal pressure
TBDATA,1,MU1,MU2 ! Define coefficients of friction
TBFIELD,SLRV,20.0 ! Define second value of sliding relative velocity
TBFIELD,NPRE,150.0 ! Define first value of normal pressure
TBDATA,1,MU1,MU2 ! Define coefficients of friction
TBFIELD,NPRE,300.0 ! Define second value of normal pressure
TBDATA,1,MU1,MU2 ! Define coefficients of friction
```

See Understanding Field Variable Interpolation (p. 90) for more information on the interpolation scheme used for field-dependent material properties defined using TBFIELD.

To define a coefficient of friction that is dependent on temperature only, use the TBTEMP command as shown below:

TB, FRIC, 1,2, ORTHO	! Activate orthotropic friction model
TBTEMP,100.0	! Define first temperature
TBDATA, 1,MU1,MU2	! Define coefficients of friction at temp 100.0
TBTEMP,200.0	! Define second temperature
TBDATA, 1,MU1,MU2	! Define coefficients of friction at temp 200.0

2.5.17.3. Redefining Friction Between Load Steps

If the friction behavior changes between initial loading and secondary loading (for example, during cyclic loading of seabed pipelines), you can reissue the TB,FRIC command between load steps to define new values for the coefficient of friction. This is true for both temperature-dependent friction (isotropic or orthotropic) defined via the TBTEMP command and field-dependent friction (isotropic or orthotropic) defined via the TBFIELD command. The following example shows the latter case:

```
TB,FRIC,1,,,ORTHO !Activate orthotropic friction model
TBFIELD,SLDI,0. !Define initial curve for coefficient of friction
```

```
TBDATA,1,0.0,0.0
TBFIELD,SLDI,0.25
TBDATA,1,0.0,1.25
TBFIELD,SLDI,0.5
TBDATA,1,0.0,1.0
TBFIELD,SLDI,20.
TBDATA,1,0.0,1.1
/SOLUTION
!* LOAD STEP 1
TIME,1
SOLVE
TB,FRIC,1,,,ORTHO !Activate orthotropic friction model
TBFIELD,SLDI,0. !Define secondary curve for coefficient of friction
TBDATA,1,0.0,20.0
TBFIELD,SLDI,1.1
TBFIELD,SLDI,20.25
TBDATA,1,0.0,0.0
TBFIELD,SLDI,20.5
TBDATA,1,0.0,0.8
TBFIELD,SLDI,21
TBDATA,1,0.0,0.7
TBFIELD,SLDI,35
TBDATA,1,0.0,0.75
!* LOAD STEP 2
...
TIME,2
SOLVE
```


2.5.17.4. User-Defined Friction (TB,FRIC,, ,ISER)

You can define your own friction model with the user programmable friction subroutine USERFRIC. (See the Guide to ANSYS User Programmable Features for a detailed description of the USERFRIC subroutine.) User-defined friction is applicable to 2-D and 3-D contact and is available for elements CONTA171, CONTA172, CONTA173, CONTA174, CONTA175, CONTA176, CONTA177, and CONTA178. The USERFRIC subroutine can only be used with penalty-based tangential contact (i.e., $\operatorname{KEYOPT}(2)=0,1$, or 3 on the contact element).

To specify user-defined friction, use the TB,FRIC command with $T B O P T=$ USER and specify the friction properties on the TBDATA command, as shown below. Also, use the USERFRIC subroutine to program the friction model.

```
TB,FRIC,1,,2,USER ! Activate user defined friction model
TBDATA,1,PROP1,PROP2 ! Define friction properties
```

Field variables specified with the TBFIELD command are not available for TB,FRIC,,,,USER.

2.5.18. Cohesive Zone Material Constants (TB,CZM)

Cohesive zone materials can be used with interface elements (INTERnnn) and contact elements (CONTAnnn): 2.5.18.1. Cohesive Zone Material Constants for Interface Elements (TB,CZM,,,,EXPO) 2.5.18.2. Cohesive Zone Material Constants for Contact Elements (TB,CZM,,,,CBDD and TB,CZM,,,,CBDE)

For theoretical background on cohesive zone materials, see Cohesive Zone Material Model in the Theory Reference for the Mechanical APDL and Mechanical Applications.

2.5.18.1. Cohesive Zone Material Constants for Interface Elements (TB,CZM, ונ,, EXPO)

The interface elements allow cohesive zone materials to be used for simulating interface delamination and other fracture phenomenon. Use the TB,CZM command with TBOPT = EXPO to define exponential material behavior, and specify the following material constants using the TBDATA command.

Constant	Symbol	Meaning
C1	$\sigma_{\max }$	maximum normal traction at the interface
C2	δ_{n}	normal separation across the interface where the maximum normal traction is attained
C3	δ_{t}	shear separation where the maximum shear traction is attained

To define a temperature dependent material, use the TBTEMP command as shown below:

```
TB,CZM,1,2,,EXPO ! Activate exponential material model
TBTEMP,100.0 ! Define first temperature
TBDATA,1, max, n, t ! Define material constants at temp 100.0
TBTEMP,200.0 ! Define second temperature
TBDATA,1, max, n, t ! Define material constants at temp 200.0
```


2.5.18.2. Cohesive Zone Material Constants for Contact Elements (TB,CZM, ונו,CBDD and TB,CZM,,,,CBDE)

To model interface delamination, also known as debonding, the contact elements support a cohesive zone material model with bilinear behavior. This model allows two ways to specify material data.

Bilinear Material Behavior with Tractions and Separation Distances

Use the TB,CZM command with TBOPT = CBDD to define bilinear material behavior with tractions and separation distances, and specify the following material constants using the TBDATA command.

Constant	Symbol	Meaning
C 1	$\sigma_{\max }$	maximum normal contact stress
C 2	$\mathrm{u}_{\mathrm{n}}^{\mathrm{c}}$	contact gap at the completion of debonding
C 3	$\tau_{\max }$	maximum equivalent tangential contact stress
C 4	$\mathrm{u}_{\mathrm{t}}^{\mathrm{c}}$	tangential slip at the completion of debond- ing
C 5	η	artificial damping coefficient
C 6	β	flag for tangential slip under compressive normal contact stress

To define a temperature dependent material, use the TBTEMP command as shown below:

```
TB,CZM,1,2,,CBDD
    ! Activate bilinear material model with tractions
    ! and separation distances
TBTEMP,100.0 ! Define first temperature
TBDATA,1, max, }\mp@subsup{U}{n}{C},\operatorname{max},\mp@subsup{U}{t}{C},\quad, Define material constants at temp 100.0
TBTEMP,200.0
    ! Define second temperature
TBDATA,1, max, }\mp@subsup{\textrm{U}}{n}{C},\operatorname{max},\mp@subsup{U}{t}{C}, , ! Define material constants at temp 200.0
```


Bilinear Material Behavior with Tractions and Critical Fracture Energies

Use the TB,CZM command with $T B O P T=$ CBDE to define bilinear material behavior with tractions and critical fracture energies, and specify the following material constants using the TBDATA command.

Constant	Symbol	Meaning
C 1	$\sigma_{\max }$	maximum normal contact stress
C 2	G_{cn}	critical fracture energy for normal separation
C 3	$\tau_{\max }$	maximum equivalent tangential contact stress
C 4	G_{ct}	critical fracture energy for tangential slip
C 5	η	artificial damping coefficient
C 6	β	flag for tangential slip under compressive normal contact stress

To define a temperature dependent material, use the TBTEMP command as shown below:

```
TB,CZM,1,2,,CBDE ! Activate bilinear material model with
    tractions and facture energies
TBTEMP,100.0 ! Define first temperature
TBDATA,1, max,Gcn, max,Gct, , ! Define material constants at temp 100.0
TBTEMP,200.0 ! Define second temperature
TBDATA,1, max,Gcn, max,Gct, , ! Define material constants at temp 200.0
```


2.5.19. Fluid Material Models (TB,FLUID)

Fluid material models can be used with hydrostatic fluid elements (HSFLD241 and HSFLD242) to model compressible fluids. For theoretical background on these materials, see Fluid Material Models in the Theory Reference for the Mechanical APDL and Mechanical Applications. For more information on using these fluid material models with the hydrostatic fluid elements, see "Modeling Hydrostatic Fluids" in the Structural Analysis Guide.

There are three ways to define material data for compressible fluids: liquid, gas, or pressure-volume data.

Liquid

Use the TB,FLUID command with $T B O P T$ = LIQUID to define material behavior for a liquid, and specify the following material constants using the TBDATA command:

Constant	Symbol	Meaning
C 1	K	Bulk modulus
C 2	α	Coefficient of thermal expansion
C 3	$\rho_{\text {of }}$	Initial density

You can define a temperature dependent liquid material with up to 20 temperatures (NTEMP $=20$ max on the TB command) by using the TBTEMP command, as shown in the example below:

```
TB,FLUID,1,2,,LIQUID ! Activate liquid material model
TBTEMP,100.0 ! Define first temperature
TBDATA,1,K, , Of ! Define material constants at temp 100.0
TBTEMP,200.0 ! Define second temperature
TBDATA,1,K, , 0f ! Define material constants at temp 200.0
```

When specifying temperature dependent density values for a liquid, keep in mind that the current density $\left(\rho_{f}\right)$ for hydrostatic fluid elements is computed at each iteration as a function of pressure change ($\Delta \mathrm{P}$), bulk
modulus (K), coefficient of thermal expansion (α), and temperature change ($\Delta \mathrm{T}$). A reference temperature may be input using the TREF or MP,REFT command. For details on how the current density is calculated, refer to Liquid in the Theory Reference for the Mechanical APDL and Mechanical Applications.

Gas

Use the TB,FLUID command with $T B O P T=$ GAS to define material behavior for a gas, and specify the following material constant using the TBDATA command:

Constant	Symbol	Meaning
C 1	$\rho_{0 f}$	Initial density

You can define a temperature dependent gas material with up to 20 temperatures (NTEMP $=20 \mathrm{max}$ on the TB command) by using the TBTEMP command, as shown in the example below:

```
TB,FLUID,1,2,,GAS ! Activate gas material model
TBTEMP,100.0 ! Define first temperature
TBDATA,1, 0f ! Define material constants at temp 100.0
TBTEMP,200.0 ! Define second temperature
TBDATA,1, 0f ! Define material constants at temp 200.0
```

When specifying temperature dependent density values for a gas, keep in mind that the current density (ρ_{f}) for hydrostatic fluid elements is computed at each iteration based on the Ideal Gas Law. For details on how the current density is calculated, refer to Gas in the Theory Reference for the Mechanical APDL and Mechanical Applications.

To use the Ideal Gas Law, you also need to define a reference pressure (input as real constant PREF) and a reference temperature (input with the TREF or MP,REFT command) with temperature offset (input with the TOFFST command).

Pressure-Volume Data

Use the TB,FLUID command with $T B O P T$ = PVDATA to define compressible fluid behavior in terms of a pressure-volume curve. You can specify up to 20 temperature-dependent pressure-volume curves (NTEMP $=20$ max on the TB command). The temperature for the first curve is input with TBTEMP, followed by TBPT commands for up to 100 pressure-volume data points. The data points (X, Y) entered on TBPT are:

Constant	Meaning
X	Pressure value
Y	Corresponding volume value

The pressure-volume data point must be defined in terms of total pressure and total volume of the fluid in the containing vessel.

2.5.20. Material Strength Limits (TB,FCLI)

Material strength limits represent maximum stresses or strains that a material can sustain. This data table defines the strength limits and other related constants required for computing failure criteria (FC) index of a material under various loading conditions. Specify a TBOPT value on the TB,FCLI command to correspond to the stress limits ($T B O P T=1$) or strain limits ($T B O P T=2$). The following table lists the coefficient values that are addressed for the available $T B O P T$ values:

Strength Limit Constants	TBOPT = 1	TBOPT = 2
	Stress Limits (NPTS = 16)	Strain Limits (NPTS = 9)
C1	XTEN -- Allowable tensile stress in material X-direction (must be positive)	XTEN -- Allowable tensile strain in material X-direction (must be positive)
C2	XCMP -- Allowable compressive stress in material X -direction (default to the negative of XTEN)	XCMP -- Allowable compressive strain in material X-direction (default to the negative of XTEN)
C3	YTEN -- Allowable tensile stress in material Y-direction (must be positive)	YTEN -- Allowable tensile strain in material Y-direction (must be positive)
C4	YCMP -- Allowable compressive stress in material Y -direction (default to the negative of YTEN)	YCMP -- Allowable compressive strain in material Y -direction (default to the negative of YTEN)
C5	ZTEN -- Allowable tensile stress in material Z-direction (must be positive)	ZTEN -- Allowable tensile strain in material Z-direction (must be positive)
C6	ZCMP -- Allowable compressive stress in material Z-direction (default to the negative of ZTEN)	ZCMP -- Allowable compressive strain in material Z-direction (default to the negative of ZTEN)
C7	XY -- Allowable XY shear stress (must be positive)	XY -- Allowable XY shear strain (must be positive)
C8	YZ -- Allowable YZ shear stress (must be positive)	YZ -- Allowable YZ shear strain (must be positive)
C9	XZ -- Allowable XZ shear stress (must be positive)	XZ -- Allowable XZ shear strain (must be positive)
C10	XYCP -- XY coupling coefficient for Tsai-Wu strength index (default =1.0)	--
C11	YZCP -- YZ coupling coefficient for Tsai-Wu failure index (default =-1.0)	--
C12	XZCP -- XZ coupling coefficient for Tsai-Wu failure index (default =-1.0)	--
C13	XZIT -- XZ tensile inclination parameter for Puck failure index (default $=0.0$)	--
C14	XZIC -- XZ compressive inclination parameter for Puck failure index (default $=0.0$)	--
C15	YZIT -- YZ tensile inclination parameter for Puck failure index (default $=0.0$)	--
C16	YZIC -- YZ compressive inclination parameter for Puck failure index (default $=0.0$)	--

To determine physical failure criteria in unidirectional fiber-reinforced composite materials, including Puck and Hashin criteria, always define the reinforced fiber direction as the material X direction.

The following table summarizes the applicable strength-limit constants for each failure criterion:

Strength LimitCon- stants	Maximum Strain Cri- terion	Maximum Stress Cri- terion	Tsai-Wu Strength Ratio	Puck Cri- terion	Hashin Criterion	User- Defined
C1	Y	Y	Y	Y	Y	Y
C2	Y	Y	Y	Y	Y	Y
C3	Y	Y	Y	Y	Y	Y
C4	Y	Y	Y	Y	Y	Y
C5	Y	Y	Y	--	--	Y
C6	Y	Y	Y	Y	Y	Y
C7	Y	Y	Y	--	Y	Y
C8	Y	Y	Y	--	--	Y
C9	Y	Y	Y	--	--	Y
C10	--	--	Y	--	--	Y
C11	--	--	Y	--	--	Y
C12	--	--	Y	--	--	Y
C13	--	--	--	Y	--	Y
C14	--	--	--	Y	--	Y
C15	--	--	--	Y	--	Y
C16	--	--	--	Y	--	Y

2.5.21. Understanding Field Variable Interpolation

When you define field-dependent material properties via the TBFIELD and related TB commands, ANSYS uses linear interpolation between the data points you provide to determine specific material property values. To do so, ANSYS first creates a grid using your defined field data values. Next, ANSYS assumes that you have defined curve-based data and automatically provides the missing grid data points. Finally, ANSYS performs linear interpolation on this populated grid to find material property values.

2.5.21.1. Data Processing

Consider a case where isotropic friction (TB,FRIC) field data is dependent on both temperature and sliding distance. Assume the following command input:

```
TB,FRIC,1,2, ,ISO
TBFIELD,TEMP,100.0
TBFIELD,SLDI,0.1
TBDATA,1,0.3
TBFIELD,SLDI,0.5
TBDATA,1,0.5
TBFIELD,TEMP,200.0
TBFIELD,SLDI,0.2
TBDATA,1,0.2
TBFIELD,SLDI,0.7
TBDATA,1,0.1
```

Listing the data shows a user-defined 4×2 grid:

```
(FRIC) Table For Material 1
```

 Data for Isotropic friction
    ```
TEMPERATURE = 100.00
SLIDE DIST = 0.10000
FRICTION DIR. FRICTION COEFF.
    1 0.30000
TEMPERATURE = 100.00
SLIDE DIST = 0.50000
FRICTION DIR. FRICTION COEFF.
    1 0.50000
TEMPERATURE = 200.00
SLIDE DIST = 0.20000
FRICTION DIR. FRICTION COEFF.
    1
    0.20000
TEMPERATURE = 200.00
SLIDE DIST = 0.70000
FRICTION DIR. FRICTION COEFF.
    1 0.10000
```

A tabular format represents the data in the 4×2 grid as shown:

| | Sliding Distance | | | |
| :--- | :--- | :--- | :--- | :--- |
| Temperature | $\mathbf{0 . 1}$ | $\mathbf{0 . 2}$ | $\mathbf{0 . 5}$ | $\mathbf{0 . 7}$ |
| $\mathbf{1 0 0}$ | 0.3 | | 0.5 | |
| $\mathbf{2 0 0}$ | | 0.2 | | 0.1 |

When defining tabular data, the first specified field variable forms the rows of the table. The subsequent variables form the columns. In this example, Temperature is the first defined field variable.

In this case, the user defined only four out of a possible eight grid locations.
To populate the interpolation search space, ANSYS fills the missing grid points in each row from left to right. If the first or subsequent grid locations of a row are not defined, ANSYS uses the first defined value within the row to backfill the grid. ANSYS then fills any undefined locations within the grid by linearly interpolating between defined points in each row. If the last value(s) along a row are not defined, ANSYS gives them the last previously defined value within that row.

Therefore, based on the defined field-dependent friction values, ANSYS generates the following grid automatically (where values in italics represent those provided by ANSYS):

| | Sliding Distance | | | |
| :--- | :--- | :--- | :--- | :--- |
| Temperature | $\mathbf{0 . 1}$ | $\mathbf{0 . 2}$ | $\mathbf{0 . 5}$ | $\mathbf{0 . 7}$ |
| $\mathbf{1 0 0}$ | 0.3 | 0.35 | 0.5 | 0.5 |
| $\mathbf{2 0 0}$ | 0.2 | 0.2 | 0.14 | 0.1 |

2.5.21.2. Example: One-Dimensional Interpolation

To demonstrate the interpolation of data in a sparsely defined grid, consider the results of a 2-D interpolation at a temperature of 100 and a sliding distance of 0.40 . In this case, ANSYS performs only a 1-D interpolation because the defined temperature value (100) lies directly on the defined grid field. For this case, ANSYS obtains a friction coefficient value of 0.45 based on the following calculations:

$$
y=y_{0}+\alpha\left(y_{1}-y_{0}\right)
$$

Equation (1)

where

$$
\alpha=\frac{x-x_{0}}{x_{1}-x_{0}}
$$

Equation (2)

Substituting the tabular values

$$
\begin{array}{lll}
x=0.4, & x_{0}=0.2, & x_{1}=0.5 \\
y_{0}=0.35 & y_{1}=0.5 &
\end{array}
$$

Substituting these values into Equation (2):

$$
\alpha=\frac{0.4-0.2}{0.5-0.2}=\frac{2}{3}
$$

Equation (3)

and solving for the interpolated values using Equation (1), we obtain

$$
y=.35+\frac{2}{3}(0.5-0.35)=0.45
$$

Equation (4)

2.5.21.3. Example: Two-Dimensional Interpolation

Consider the case where a true 2-D interpolation is required at a temperature of 180 and a sliding distance of 0.40 . ANSYS performs three different linear interpolations to determine the property value within the grid. When performing two-dimensional interpolation, ANSYS always interpolates first along the two relevant rows of the grid (Temperature in this case), then between the rows. In this example, ANSYS performs the first interpolation at a temperature of 100 and a sliding distance of 0.4 , yielding the result of 0.45 (as shown in Equation (4)).

ANSYS performs the second interpolation for a temperature of 200 and a sliding distance of 0.4 . In this case, we find that

$$
\begin{array}{lll}
x=0.4, & x_{0}=0.2, & x_{1}=0.5 \\
y_{0}=0.2 & y_{1}=0.14 &
\end{array}
$$

Substituting these values into Equation (2):

$$
\alpha=\frac{0.4-0.2}{0.5-0.2}=\frac{2}{3}
$$

Equation (5)

and solving for the interpolated values using Equation (1), we obtain

$$
y=.2+\frac{2}{3}(0.14-0.2)=0.16
$$

Equation (6)

Finally, ANSYS performs a third interpolation between the temperature value of 100 and 200 at a sliding distance of 0.4 .

$$
\begin{array}{lll}
x=180, & x_{0}=100, & x_{1}=200 \\
y_{0}=0.45 & y_{1}=0.16 &
\end{array}
$$

Substituting these values into Equation (2):

$$
\alpha=\frac{180-100}{200-100}=\frac{4}{5}
$$

Equation (7)

and solving for the interpolated values using Equation (1), we obtain

$$
y=.45+\frac{4}{5}(0.16-0.45)=0.218
$$

Equation (8)

2.5.22. GUI-Inaccessible Material Properties

The following material properties are not available via the material property menus of the interactive GUI. You can specify them from the command line, and subsequent graphic display and postprocessing will still be displayed.

| Material Property | TB Command Lab Value |
| :--- | :--- |
| Anisotropic Hyperelasticity | AHYPER |
| Bergstrom-Boyce | BB |
| Mullins Effect | CDM |
| Cohesive Zone Separation | CZM |
| Extended Drucker-Prager | EDP |
| Contact Friction | FRIC |

2.6. Material Model Combinations

You can combine several of the material model options discussed in this chapter to simulate various material behaviors. Table 2.6: Material Model Combination Possibilities (p. 93) presents the model options you can combine along with the associated TB command labels, and links to sample input listings located under Material Model Combinations in the Structural Analysis Guide.

Table 2.6 Material Model Combination Possibilities

| Model | With ... | Combina-
 tion Type | Command, Label | Link to Example |
| :--- | :--- | :--- | :--- | :--- |
| Plasticity | Combined
 Hardening | Bilinear | TB,BISO + TB,CHAB | BISO and CHAB Ex-
 ample |
| Plasticity | Combined
 Hardening | Multilinear | TB,MISO + TB,CHAB | MISO and CHAB Ex-
 ample |
| Plasticity | Combined
 Hardening | Multilinear | TB, PLAS,,,,MISO +
 TB,CHAB | PLAS (Multilinear Iso-
 tropic Hardening)
 and CHAB Example |

| Model | With ... | Combination Type | Command, Label | Link to Example |
| :---: | :---: | :---: | :---: | :---: |
| Plasticity | Combined Hardening | Nonlinear | TB,NLISO + TB,CHAB | NLISO and CHAB Example |
| Plasticity | Combined Hardening | Multilinear | $\begin{aligned} & \text { TB,PLAS }, \text {,,MISO + } \\ & \text { TB,EDP } \end{aligned}$ | PLAS (MISO) and EDP Example |
| Plasticity | Combined Hardening | Multilinear | TB,MISO+ TB,EDP | MISO and EDP Example |
| Viscoplasticity | Isotropic Hardening | Bilinear | $\begin{aligned} & \text { TB,PLAS,,,,BISO + } \\ & \text { TB,EDP } \end{aligned}$ | BISO and RATE Example |
| Viscoplasticity | Isotropic Hardening | Multilinear | TB,MISO + TB,RATE | MISO and RATE Example |
| Viscoplasticity | Isotropic Hardening | Multilinear | $\begin{aligned} & \text { TB,PLAS,,,,MISO + } \\ & \text { TB,RATE } \end{aligned}$ | PLAS (MISO) and RATE Example |
| Viscoplasticity | Isotropic Hardening | Nonlinear | TB,NLISO + TB,RATE | NLISO and RATE Example |
| Viscoplasticity | Combined Hardening | Nonlinear | TB,CHAB+
 TB,RATE+TB,BISO | CHAB and RATE and BISO Example |
| Viscoplasticity | Combined Hardening | Nonlinear | TB,CHAB+
 TB,RATE+TB,MISO | CHAB and RATE and MISO Example |
| Viscoplasticity | Combined Hardening | Nonlinear | TB,CHAB+
 TB,RATE+TB,PLASTIC | CHAB and RATE and PLASTIC Example |
| Viscoplasticity | Combined Hardening | Nonlinear | $\begin{aligned} & \text { TB,CHAB+ } \\ & \text { TB,RATE }+ \text { TB,NLISO } \end{aligned}$ | CHAB and RATE and NLISO Example |
| Gurson Plasticity | Isotropic Hardening | Bilinear | TB,GURS + TB,BISO | GURSON and BISO Example |
| Gurson Plasticity | Isotropic Hardening | Multilinear | TB,GURS + TB,MISO | GURSON and MISO Example |
| Gurson Plasticity | Isotropic Hardening | Multilinear | $\begin{aligned} & \text { TB,GURS + TB,PLAS,, } \\ & \text { MISO } \end{aligned}$ | GURSON and PLAS (MISO) Example |
| Gurson Plasticity | Isotropic Hardening | Nonlinear | TB,GURS + TB,NLISO | GURSON and NLISO Example |
| Plasticity and Creep (Implicit) | Isotropic Hardening | Bilinear | TB,BISO + TB,CREEP | BISO and CREEP Example |
| Plasticity and Creep (Implicit) | Isotropic Hardening | Multilinear | TB,MISO + TB,CREEP | MISO and CREEP Example |
| Plasticity and Creep (Implicit) | Isotropic Hardening | Multilinear | $\begin{aligned} & \text { TBPLAS,,,,MISO + } \\ & \text { TB,CREEP } \end{aligned}$ | PLAS (MISO) and CREEP Example |
| Plasticity and Creep (Implicit) | Isotropic Hardening | Nonlinear | TB,NLISO + TB,CREEP | NLISO and CREEP Example |
| Plasticity and Creep (Implicit) | Kinematic Hardening | Bilinear | TB,BKIN + TB,CREEP | BKIN and CREEP Example |
| Anisotropic Plasticity | Isotropic Hardening | Bilinear | TB,HILL + TB,BISO | HILL and BISO Example |

| Model | With ... | Combination Type | Command, Label | Link to Example |
| :---: | :---: | :---: | :---: | :---: |
| Anisotropic Plasticity | Isotropic Hardening | Multilinear | TB,HILL + TB,MISO | HILL and MISO Example |
| Anisotropic Plasticity | Isotropic Hardening | Multilinear | $\begin{aligned} & \text { TB,HILL + } \\ & \text { TBPLAS,,,,MISO } \end{aligned}$ | HILL and PLAS (MISO) Example |
| Anisotropic Plasticity | Isotropic Hardening | Nonlinear | TB,HILL + TB,NLSIO | HILL and NLISO Example |
| Anisotropic Plasticity | Kinematic Hardening | Bilinear | TB,HILL + TB,BKIN | HILL and BKIN Example |
| Anisotropic Plasticity | Kinematic Hardening | Multilinear | TB,HILL + TB,MKIN | HILL and MKIN Example |
| Anisotropic Plasticity | Kinematic Hardening | Multilinear | TB,HILL + TB,/ KINH | HILL and KINH Example |
| Anisotropic Plasticity | Kinematic Hardening | Multilinear | $\begin{aligned} & \text { TB,HILL + TBPLAS,,,, } \\ & \text { KINH } \end{aligned}$ | HILL and PLAS (KINH) Example |
| Anisotropic Plasticity | Kinematic Hardening | Chaboche | TB,HILL + TB,CHAB | HILL and CHAB Example |
| Anisotropic Plasticity | Combined Hardening | Bilinear Isotropic and Chaboche | $\begin{aligned} & \text { TB,HILL + TB,BISO + } \\ & \text { TB,CHAB } \end{aligned}$ | HILL and BISO and CHAB Example |
| Anisotropic Plasticity | Combined Hardening | Multilinear Isotropic and Chaboche | $\begin{aligned} & \text { TB,HILL + TB,MISO + } \\ & \text { TB,CHAB } \end{aligned}$ | HILL and MISO and CHAB Example |
| Anisotropic Plasticity | Combined Hardening | Multilinear Isotropic and Chaboche | TB,HILL +
 TB,PLAS,,,,MISO +
 TB,CHAB | HILL and PLAS (MISO) and CHAB Example |
| Anisotropic Plasticity | Combined Hardening | Nonlinear Isotropic and Chaboche | $\begin{aligned} & \text { TB,HILL + TB,NLISO + } \\ & \text { TB,CHAB } \end{aligned}$ | HILL and NLISO and CHAB Example |
| Anisotropic Viscoplasticity | Isotropic Hardening | Bilinear | $\begin{aligned} & \text { TB,HILL + TB,RATE + } \\ & \text { TB,BISO } \end{aligned}$ | HILL and RATE and BISO Example |
| Anisotropic Viscoplasticity | Isotropic Hardening | Multilinear | $\begin{aligned} & \text { TB,HILL + TB,RATE + } \\ & \text { TB,MISO } \end{aligned}$ | HILL and RATE and MISO Example |
| Anisotropic Viscoplasticity | Isotropic Hardening | Nonlinear | $\begin{aligned} & \text { TB,HILL + TB,RATE + } \\ & \text { TB,NLISO } \end{aligned}$ | HILL and RATE and NLISO Example |
| Anisotropic Creep (Implicit) | | | TB,HILL + TB,CREEP | HILL and CREEP Example |
| Anisotropic Creep and Plasticity (Implicit) | Isotropic Hardening | Bilinear | $\begin{aligned} & \text { TB,HILL + TB,CREEP } \\ & + \text { TB,BISO } \end{aligned}$ | HILL and CREEP and BISO Example |

| Model | With ... | Combina-
 tion Type | Command, Label | Link to Example |
| :--- | :--- | :--- | :--- | :--- |
| Anisotropic
 Creep and Plasti-
 city (Implicit) | Isotropic
 Hardening | Multilinear | TB,HILL + TB,CREEP
 + TB,MISO | HILL and CREEP and
 MISO Example |
| Anisotropic
 Creep and Plasti-
 city (Implicit) | Isotropic
 Hardening | Multilinear | TB,HILL + TB,CREEP
 + TB,MISO | HILL and CREEP and
 PLAS (MISO) Example |
| Anisotropic
 Creep and Plasti-
 city (Implicit) | Isotropic
 Hardening | Nonlinear | TB,HILL + TB,CREEP
 + TB,NLISO | HILL and CREEP and
 NLISO Example |
| Anisotropic
 Creep and Plasti-
 city (Implicit) | Kinematic
 Hardening | Bilinear | TB,HILL + | HILL and CREEP and
 BKIN Example |
| Hyperelasticity
 and Viscoelasti-
 city (Implicit) | Finite Strain
 Viscoelasticity | Nonlinear | TB,HYPER + TB,VISCO | HYPERELASTICITY
 and VISCOELASTICITY
 Example |
| Extended Druck-
 er-Prager (EDP)
 and Creep (Impli-
 cit) | Isotropic
 Hardening | Bilinear,
 Multilinear,
 or Nonlinear | TB,EDP + TB,CREEP +
 TB,BISO or TB,MISO
 or TB,NLISO | EDP and CREEP and
 PLAS (MISO) Example |
| Cap and Creep
 (Implicit) | Isotropic
 Hardening | Bilinear,
 Multilinear,
 or Nonlinear | TB,EDP + TB,CREEP +
 TB,BISO or TB,MISO
 or TB,NLISO | CAP and CREEP and
 PLAS (MISO) Example |

Presented below are cross-reference links to other sections in this chapter, and to other locations in the documentation that provide descriptions of the individual material model options represented in the table above.

- Bilinear Isotropic Hardening (TB,BISO) - Bilinear Isotropic Hardening Constants (TB,BISO) (p. 27) [1 (p. 96)].
- Bilinear Kinematic Hardening (TB,BKIN) - Bilinear Kinematic Hardening Constants (TB,BKIN) (p. 24) [1 (p.96)].
- Chaboche Nonlinear Kinematic Hardening (TB,CHAB) - Nonlinear Kinematic Hardening Constants (TB,CHABOCHE) (p. 26) [1 (p. 96)].
- Creep (Implicit) (TB,CREEP) - Creep Equations (TB,CREEP) (p. 66); Creep in the Structural Analysis Guide.
- Hill Anisotropy (TB,HILL] - Hill's Anisotropy Constants (TB,HILL) (p. 29) [1 (p. 96)].
- Multilinear Isotropic Hardening (TB,MISO) - Multilinear Isotropic Hardening Constants (TB,MISO) (p. 27) [1 (p. 96)].
- Multilinear Kinematic Hardening (TB,MKIN or KINH) - Multilinear Kinematic Hardening Constants (TB,KINH or TB,MKIN) (p. 24) [1 (p. 96)].
- Nonlinear Isotropic Hardening (TB,NLISO) - Nonlinear Isotropic Hardening Constants (TB,NLISO) (p. 28) [1 (p. 96)].
- Rate-Dependent Plasticity (TB,RATE) - Rate-Dependent Plastic (Viscoplastic) Material Models (TB,RATE) (p. 62); Viscoplasticity in the Structural Analysis Guide.

1. Further information on this option is available under Plastic Material Options in the Structural Analysis Guide.

2.7. Explicit Dynamics Materials

Material properties used in explicit dynamic analyses (ANSYS LS-DYNA User's Guide program) differ somewhat from those used in ANSYS implicit analyses. (Those used in ANSYS implicit analyses are discussed in Linear Material Properties (p.16) and Material Data Tables (Implicit Analysis) (p. 22).) Most explicit dynamics material models require data table input. A data table is a series of constants that are interpreted when they are used. Data tables are always associated with a material number and are most often used to define nonlinear material data (that is, stress-strain curves). The form of the data table (referred to as the TB table) depends on the material model being defined.

For a complete description of all explicit dynamics material models, including detailed data table input, see Material Models in the ANSYS LS-DYNA User's Guide.

2.8. Node and Element Loads

Loadings are defined to be of two types: nodal and element. Nodal loads are defined at the nodes and are not directly related to the elements. These nodal loads are associated with the degrees of freedom at the node and are typically entered with the \mathbf{D} and \mathbf{F} commands (such as nodal displacement constraints and nodal force loads). Element loads are surface loads, body loads, and inertia loads. Element loads are always associated with a particular element (even if the input is at the nodes). Certain elements may also have "flags."

Flags are not actually loads, but are used to indicate that a certain type of calculation is to be performed. For example, when the FSI (fluid-structure interaction) flag is turned on, a specified face of an acoustic element is treated as an interface between a fluid portion and a structural portion of the model. Similarly, MXWF and MVDI are flags used to trigger magnetic force (Maxwell surface) and Jacobian force (virtual displacement) calculations, respectively, in certain magnetics elements. Details of these flags are discussed under the applicable elements in Element Library (p. 147).

Flags are associated either with a surface (FSI and MXWF) and are applied as surface loads (below), or with an element (MVDI) and are applied as body loads (below). For the FSI and MXWF flags, values have no meaning - these flags are simply turned on by specifying their label on the appropriate command. For the MVDI flag, its value (which can range from zero to one) is specified, along with the label, on the appropriate command. Flags are always step-applied (i.e., the KBC command does not affect them).

Surface loads (pressures for structural elements, convections for thermal element, etc.) may be input in a nodal format or an element format. For example, surface loading may be applied to an element face or, for convenience, to the face nodes of an element (which are then processed like face input). Nodal input of surface loads also allows a more general entry of tapered values. Surface loads are typically input with the SF and SFE commands. Some elements allow multiple types of surface loads (as shown with the load labels listed under "Surface Loads" in the input table for each element type). Also, some elements allow multiple loads on a single element face (as indicated with the load numbers after the load labels). Load numbers are shown on the element figures (within circles) and point in the direction of positive load to the face upon which the load acts. A surface load applied on the edge of a shell element is on a per unit length basis, not per unit area.

Surface loads are designated by a label and a key. The label indicates the type of surface load and the key indicates where on the element the load acts.

The surface load can be defined on element faces with the SFE command by using key (i.e., LKEY), the load label (Lab), and the load value. The SF command can be used to define surface loads by using nodes to identify element faces. The CONV load label requires two values, the first value being the film coefficient and the second being the bulk temperature.

A tapered surface load, which allows different values to be defined at the nodes of an element, may be entered with the SFE command. Tapered loads are input in the same order that the face nodes are listed.

Table 2.7: Surface Loads Available in Each Discipline (p. 98) shows surface loads available in each discipline and their corresponding ANSYS labels.

Table 2.7 Surface Loads Available in Each Discipline

| Discipline | Surface Load | ANSYS Label |
| :--- | :--- | :--- |
| Structural | Pressure | PRES[1] |
| Thermal | Convection, Heat Flux, Infinite Surface | CONV, HFLUX, INF |
| Magnetic | Maxwell Surface, Infinite Surface | MXWF, INF |
| Electric | Maxwell Surface, Surface Charge Density, Infinite Surface,
 Temperature | MXWF, CHRGS, INF,
 TEMP |
| Fluid | Fluid-Structure Interface, Impedance | FSI, IMPD |
| All | Superelement Load Vector | SELV |

1. Not to be confused with the PRES degree of freedom

Body loads (temperatures for structural elements, heat generation rates for thermal elements, etc.) may be input in a nodal format or an element format. For some structural elements, the temperature does not contribute to the element load vector but is only used for material property evaluation. For thermal elements using the diagonalized specified heat matrix option in a transient analyses, a spatially varying heat generation rate is averaged over the element. Heat generation rates are input per unit volume unless otherwise noted with the element. The element format is usually in terms of the element nodes but may be in terms of fictitious corner points as described for each element. Corner point numbers are shown on the element figures where applicable. Either the nodal or the element loading format may be used for an element, with the element format taking precedence. Nodal body loads are internally converted to element body loads. Body loads are typically entered with the BF, BFE, and BFUNIF commands. See also Body Loads (p. 7) for additional details.

Table 2.8: Body Loads Available in Each Discipline (p.98) shows all body loads available in each discipline and their corresponding ANSYS labels.

Table 2.8 Body Loads Available in Each Discipline

| Discipline | Body Load | ANSYS Label |
| :--- | :--- | :--- |
| Structural | Temperature, Fluence | TEMP[1], FLUE |
| Thermal | Heat Generation Rate | HGEN |
| Magnetic | Temperature, Current Density, Virtual Displacement, Voltage
 Drop | TEMP[1], JS, MVDI,
 VLTG |
| Electric | Temperature, Charge Density | TEMP[1], CHRGD |
| Fluid[1] | Heat Generation Rate, Force Density | HGEN, FORC |

1. Not to be confused with the TEMP degree of freedom

Inertial loads (gravity, spinning, etc.), are applicable to all elements with structural degrees of freedom and having mass (i.e., elements having mass as an input real constant or having a density (DENS) material property). Inertia loads are typically entered with the ACEL and OMEGA commands.

Initial stresses can be set as constant or read in from a file for the following element types: LINK180, SHELL181, PLANE182, PLANE183, SOLID185, SOLID186, SOLID187, SOLSH190, BEAM188, BEAM189, SHELL208, SHELL209, and SHELL281. The INISTATE command allows you to set constant initial stress for selected elements and, optionally, only for specified materials. This command also allows you to read in a file specifying the initial stresses. The stresses specified in the input file can be applied to the element centroids or element integration points, and can be applied to the same points for all selected elements or can be applied differently for each element. The stresses can also be a written to an external file. See the INISTATE command, and Initial State Loading in the Basic Analysis Guide for more information on the new INISTATE capability.

2.9.Triangle, Prism, and Tetrahedral Elements

Degenerated elements are elements whose characteristic face shape is quadrilateral, but is modeled with at least one triangular face.

Degenerated elements are often used for modeling transition regions between fine and coarse meshes, for modeling irregular and warped surfaces, etc. Degenerated elements formed from quadrilateral and brick elements without midside nodes are much less accurate than those formed from elements with midside nodes and should not be used in high stress gradient regions. If used elsewhere, they should be used with caution.

An exception where triangular shell elements are preferred is for severely skewed or warped elements. Quadrilateral shaped elements should not be skewed such that the included angle between two adjacent faces is outside the range of $90^{\circ} \pm 45^{\circ}$ for non-midside-node elements $90^{\circ} \pm 60^{\circ}$ for midside-node elements. Warping occurs when the 4 nodes of a quadrilateral shell element (or solid element face) are not in the same plane, either at input or during large deflection. Warping is measured by the relative angle between the normals to the face at the nodes. A flat face (no warping) has all normals parallel (zero relative angle). A warning message is output if warping is beyond a small, but tolerable value. If warping is excessive, the problem will abort. See the Theory Reference for the Mechanical APDL and Mechanical Applications for element warping details and other element checking details. Triangular (or prism) elements should be used in place of a quadrilateral (or brick) element with large warping.

When using triangular elements in a rectangular array of nodes, best results are obtained from an element pattern having alternating diagonal directions. Also, for shell elements, since the element coordinate system is relative to the $\mathrm{I}-\mathrm{J}$ line, the stress results are most easily interpreted if the $\mathrm{I}-\mathrm{J}$ lines of the elements are all parallel.

Degenerated triangular 2-D solid and shell elements may be formed from 4-node quadrilateral elements by defining duplicate node numbers for the third and fourth (K and L) node locations. The node pattern then becomes I, J, K, K. If the L node is not input, it defaults to node K. If extra shape functions are included in the element, they are automatically suppressed (degenerating the element to a lower order). Element loads specified on a nodal basis should have the same loads specified at the duplicate node locations. When forming a degenerated triangular element by repeating node numbers, the face numbering remains the same. Face 3, however, condenses to a point. The centroid location printed for a degenerated triangular element is usually at the geometric centroid of the element. Elements should be oriented with alternating diagonals, if possible.

Degenerated triangular prism elements may be formed from 8-node 3-D solid elements by defining duplicate node numbers for the third and fourth (K and L) and the seventh and eighth (O and P) node locations. The node pattern then becomes $\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{K}, \mathrm{M}, \mathrm{N}, \mathrm{O}, \mathrm{O}$. When forming a degenerated prism element by repeating node numbers, the face numbering remains the same. Face 4, however, condenses to a line. The centroid location printed for a degenerated element is not at the geometric centroid but is at an average nodal location. The integration points are proportionately rearranged within the element. Elements should be oriented with alternating diagonals, if possible. If extra shape functions are included in the element, they are partially suppressed. Element loads should have the same loads specified at the duplicate node locations.

A degenerated tetrahedral element may be formed from a triangular prism element by a further condensation of face 6 to a point. The input node pattern should be I, J, K, K, M, M, M, M. If extra shape functions are included in the element, they are automatically suppressed. Element nodal loads should have the same loads specified at the duplicate node locations.

Warning

Surface stress (or convection heat flow) printout (see Surface Solution (p. 10)) should not be requested on a condensed face. Also, pressures (or convection conditions) should not be defined on a condensed face.

2.10. Shell Elements

Shell elements are a special class of elements that are designed to efficiently model thin structures. They take advantage of the fact that the only shear on the free surfaces is in-plane. Normals to the shell middle surface stay straight, but not necessarily normal. As a result, the in-plane strain variation through the thickness cannot be more complex than linear.

The assumption of linear in-plane strain variation through the thickness is definitely not valid at the edges of layered composite shell elements that have different material properties at each layer. For accurate stresses in this area, you should use submodeling.

There are no hard rules as to when is it valid to use shell elements. But if the structure acts like a shell, then you may use shell elements. The program does not check to see if the element thickness exceeds its width (or many times its width) since such an element may be part of a fine mesh of a larger model that acts as a shell. If the initial shape of the model is curved, then the radius/thickness ratio is important since the strain distribution through the thickness will depart from linear as the ratio decreases. With the exception of SHELL61, all shell elements allow shear deformation. This is important for relatively thick shells.

The element coordinate system for all shell elements has the z-axis normal to the plane. The element x-axis is in the plane, with its orientation determined by one of the following: the ESYS command, side I-J of the element, or real constants.

Various shell element types tolerate a different degree of warping before their results become questionable (see Warping Factor in the Theory Reference for the Mechanical APDL and Mechanical Applications). Four-node shell elements that do not have all their nodes in the same plane are considered to be warped. Eight-node shell elements can accept a much greater degree of warping, but unlike other midside-node elements, their midside nodes cannot be dropped.

The in-plane rotational (drill) stiffness is added at the nodes for solution stability, as shell elements do not have a true in-plane stiffness. Consequently, you should never expect the in-plane rotational stiffness to carry a load.

Nodes are normally located on the center plane of the element. You can offset nodes from the center plane using one of the following: the SECOFFSET command, an element KEYOPT, or a rigid link (MPC184) that connects a middle surface node to an out-of-plane node. You must use node offsets with care when modeling initially curved structures with either flat or curved elements. For curved elements, an increased mesh density in the circumferential direction may improve the results.

2.11.Generalized Plane Strain (Current-Technology Solid Element Option)

The generalized plane strain option is a feature developed for PLANE182 and PLANE183. The generalized plane strain feature assumes a finite deformation domain length in the Z direction, as opposed to the infinite value assumed for standard plane strain. Generalized plane strain, therefore, will give more practical results for deformation problems where the Z-direction dimension is not long enough. It will also give users a more efficient way to simulate certain 3-D deformations using 2-D element options.

The deformation domain or structure is formed by extruding a plane area along a curve with a constant curvature, as shown in Figure 2.2 (p. 101). The extruding begins at the starting (or reference) plane and stops at the ending plane. The curve direction along the extrusion path is called the fiber direction. The starting and ending planes must be perpendicular to this fiber direction at the beginning and ending intersections. If the boundary conditions and loads in the fiber direction do not change over the course of the curve, and if the starting plane and ending plane remain perpendicular to the fiber direction during deformation, then the amount of deformation of all cross sections will be identical throughout the curve, and will not vary at any curve position in the fiber direction. Therefore, any deformation can be represented by the deformation on the starting plane, and the 3-D deformation can be simulated by solving the deformation problem on the starting plane. The existing plane strain and axisymmetric options will be particular cases of the generalized plane strain option.

Figure 2.2 Generalized Plane Strain Deformation

All inputs and outputs are in the global Cartesian coordinate system. The starting plane must be the $\mathrm{X}-\mathrm{Y}$ plane, and must be meshed. The applied nodal force on the starting plane is the total force along the fiber length. The geometry in the fiber direction is specified by the rotation about X and Y of the ending plane and the fiber length passing through a user-specified point on the starting plane called the starting or reference point. The starting point creates an ending point on the ending plane through the extrusion process. The boundary conditions and loads in the fiber direction are specified by applying displacements or forces at the ending point. This ending point can be different from regular nodes, in that it is designated by the same $\mathrm{X}-\mathrm{Y}$ coordinates that are fixed in plane during deformation.

The generalized plane strain option introduces three new degrees of freedom for each element. Two internal nodes will be created automatically at the solution stage for the generalized plane strain option to carry the extra three degrees of freedom. Users can apply boundary conditions and loads and check the results of the fiber length and rotation angle changes, and reaction forces, using the commands GSBDATA, GSGDATA, GSSOL, and GSLIST. The results of the fiber length change, rotation angle change, and reaction forces can also be viewed through OUTPR.

The fiber length change is positive when the fiber length increases. The sign of the rotation angle or angle change is determined by how the fiber length changes when the coordinates of the ending point change. If the fiber length decreases when the X coordinate of the ending point increases, the rotation angle about Y is positive. If the fiber length increases when the Y coordinate of the ending point increases, the rotation angle about X is positive.

In Eigenvalue analyses, such as Eigen buckling and modal analysis, the generalized plane strain option usually reports fewer Eigenvalues and Eigenvectors than you would obtain in a 3-D analysis. Because it reports only homogenous deformation in the fiber direction, generalized plane strain employs only three degrees of freedom to account for these deformations. The same 3-D analysis would incorporate many more degrees of freedom in the fiber direction.

Because the mass matrix terms relating to degrees of freedom in the fiber direction are approximated for modal and transient analyses, you cannot use the lumped mass matrix for these types of analyses, and the solution may be slightly different from regular 3-D simulations when any of the three designated degrees of freedom is not restrained.

2.12. Harmonic Axisymmetric Elements

An axisymmetric structure can be represented by a plane (X, Y) finite-element model. The use of an axisymmetric model greatly reduces the modeling and analysis time compared to that of an equivalent 3-D model.

ANSYS recommends general axisymmetric elements SOLID272 and SOLID273 for such applications because they can accept any type of load and can support nonlinear analyses. However, you can also use a special class of axisymmetric elements called harmonic elements: PLANE25, SHELL61, PLANE75, PLANE78, FLUID81, and PLANE83. The harmonic elements allow a nonaxisymmetric load and support linear analyses.

Axisymmetric elements are modeled on a 360° basis, so all input and output nodal heat flows, forces, moments, fluid flows, current flows, electric charges, magnetic fluxes, and magnetic current segments must be input in this manner. Similarly, input real constants representing volumes, convection areas, thermal capacitances, heat generations, spring constants, and damping coefficients must also be input in on a 360° basis.

Unless otherwise stated, the model must be defined in the $\mathrm{Z}=0.0$ plane. The global Cartesian Y -axis is assumed to be the axis of symmetry. Further, the model is developed only in the +X quadrants. Hence, the radial direction is in the +X direction.

The boundary conditions are described in terms of the structural elements. The forces (FX, FY, etc.) and displacements (UX, UY, etc.) for the structural elements are input and output in the nodal coordinate system. All nodes along the y-axis centerline (at $x=0.0$) should have the radial displacements ($U X$ if not rotated) specified as zero, unless a pinhole effect is desired. At least one value of UY should be specified or constrained to prevent rigid body motions. Torsion, while axisymmetric, is available only for a few element types. If an element type allows torsion, all UZ degrees of freedom should be set to 0.0 on the centerline, and one node with a positive X coordinate must also have a specified or constrained value of UZ. Pressures and temperatures may be applied directly. Acceleration, if any, is usually input only in the axial (Y) direction. Similarly, angular velocity, if any, is usually input only about the Y axis.

For more information, see Harmonic Axisymmetric Elements with Nonaxisymmetric Loads (p. 103).

2.12.1. Harmonic Axisymmetric Elements with Nonaxisymmetric Loads

An axisymmetric structure (defined with the axial direction along the global Y axis and the radial direction parallel to the global X axis) can be represented by a plane (X, Y) finite-element model. The use of an axisymmetric model greatly reduces the modeling and analysis time compared to that of an equivalent 3-D model. The ANSYS harmonic axisymmetric elements allow nonaxisymmetric loads. For these elements (PLANE25, SHELL61, PLANE75, PLANE78, FLUID81, and PLANE83) , the load is defined as a series of harmonic functions (Fourier series). For example, a load F is given by:

$$
F(\theta)=A_{0}+A_{1} \cos \theta+B_{1} \sin \theta+A_{2} \cos 2 \theta+B_{2} \sin 2 \theta+A_{3} \cos 3 \theta+B_{3} \sin 3 \theta+\ldots
$$

Each term of the above series must be defined as a separate load step. A term is defined by the load coefficient ($\mathrm{A} \ell$ or $\mathrm{B} \ell$), the number of harmonic waves (ℓ), and the symmetry condition ($\cos \ell \theta$ or $\sin \ell \theta$). The number of harmonic waves, or the mode number, is input with the MODE command. Note that $\ell=0$ represents the axisymmetric term $\left(A_{0}\right) . \theta$ is the circumferential coordinate implied in the model. The load coefficient is determined from the standard ANSYS boundary condition input (i.e., displacements, forces, pressures, etc.). Input values for temperature, displacement, and pressure should be the peak value. The input value for force and heat flow should be a number equal to the peak value per unit length times the circumference. The symmetry condition is determined from the ISYM value also input on the MODE command. The description of the element given in Element Library (p. 147) and in the appropriate sections of the Theory Reference for the Mechanical APDL and Mechanical Applications should be reviewed to see which deformation shape corresponds to the symmetry conditions.

Results of the analysis are written to the results file. The deflections and stresses are output at the peak value of the sinusoidal function. The results may be scaled and summed at various circumferential (θ) locations with POST1. This may be done by storing results data at the desired θ location using the ANGLE argument of the SET command. A load case may be defined with LCWRITE. Repeat for each set of results, then combine or scale the load cases as desired with LCOPER. Stress (and temperature) contour displays and distorted shape displays of the combined results can also be made.

Caution should be used if the harmonic elements are mixed with other, nonharmonic elements. The harmonic elements should not be used in nonlinear analyses, such as large deflection and/or contact analyses.

The element matrices for harmonic elements are dependent upon the number of harmonic waves (MODE) and the symmetry condition (ISYM). For this reason, neither the element matrices nor the triangularized matrix is reused in succeeding substeps if the MODE and ISYM parameters are changed. In addition, a superelement generated with particular MODE and ISYM values must have the same values in the "use" pass.

For stress stiffened (prestressed) structures, the ANSYS program uses only the stress state of the most recent previous $M O D E=0$ load case, regardless of the current value of $M O D E$.

Loading Cases - The following cases are provided to aid the user in obtaining a physical understanding of the MODE parameter and the symmetric (ISYM=1) and antisymmetric (ISYM=-1) loading conditions. The loading cases are described in terms of the structural elements. The forces (FX, FY, etc.) and displacements (UX, UY, etc.) for the structural elements are input and output in the nodal coordinate system. In all cases illustrated, it is assumed that the nodal coordinate system is parallel to the global Cartesian coordinate system. The loading description may be extended to any number of modes. The harmonic thermal elements (PLANE75 and PLANE78) are treated the same as PLANE25 and PLANE83, respectively, with the following substitutions: UY to TEMP, and FY to HEAT. The effects of UX, UZ, ROTZ, FX, FZ and MZ are all ignored for thermal elements.

Case A : (MODE $=0$, ISYM not used) - This is the case of axisymmetric loading except that torsional effects are included. Figure 2.3 (p. 104) shows the various axisymmetric loadings. Pressures and temperatures may
be applied directly. Acceleration, if any, is usually input only in the axial (Y) direction. Similarly, angular velocity, if any, is usually input only about the Y axis.

Figure 2.3 Axisymmetric Radial, Axial, Torsion and Moment Loadings

The total force (F) acting in the axial direction due to an axial input force (FY) is:
$\mathrm{F}=\int_{0}^{2 \pi}$ (force per unit length) ${ }^{\star}$ (increment length)
$\mathrm{F}=\int_{0}^{2 \pi}(\mathrm{FY} / 2 \pi \mathrm{R})^{*}(\mathrm{Rd} \theta)=\mathrm{FY}$
where FY is on a full 360° basis.
The total applied moment (M) due to a tangential input force (FZ) acting about the global axis is:
$M=\int_{0}^{2 \pi}$ (force per unit length) ${ }^{*}\left(\right.$ lever arm) ${ }^{*}$ (increment length)
$\mathrm{M}=\int_{0}^{2 \pi}(-\mathrm{FZ} / 2 \pi \mathrm{R})^{*}(\mathrm{R}){ }^{*}(\mathrm{Rd} \theta)=-\mathrm{R}^{*} \mathrm{FZ}$
where FZ is on a full 360° basis. Calculated reaction forces are also on a full 360° basis and the above expressions may be used to find the total force. Nodes at the centerline ($X=0.0$) should have UX and UZ (and ROTZ, for SHELL61) specified as zero, unless a pinhole effect is desired. At least one value of UY should be specified or constrained to prevent rigid body motions. Also, one node with a nonzero, positive X coordinate must have a specified or constrained value of UZ if applicable. When Case A defines the stress state used in stress stiffened analyses, torsional stress is not allowed.

Case $B:(M O D E=1, I S Y M=1)$ - An example of this case is the bending of a pipe. Figure 2.4 (p. 105) shows the corresponding forces or displacements on a nodal circle. All functions are based on $\sin \theta$ or $\cos \theta$. The input and output values of UX, FX, etc., represent the peak values of the displacements or forces. The peak values of UX, UY, FX and FY (and ROTZ and MZ for SHELL61) occur at $\theta=0^{\circ}$, whereas the peak values of UZ and FZ occur at $\theta=90^{\circ}$. Pressures and temperatures are applied directly as their peak values at $\theta=0^{\circ}$. The thermal load vector is computed from $T_{\text {peak, }}$ where $T_{\text {peak }}$ is the input element or nodal temperature. The reference temperature for thermal strain calculations (TREF) is internally set to zero in the thermal strain calculation for the harmonic elements if MODE >0. Gravity (g) acting in the global X direction should be input (ACEL) as $A C E L X=\mathrm{g}, A C E L Y=0.0$, and $A C E L Z=-\mathrm{g}$. The peak values of $\sigma_{\mathrm{x}}, \sigma_{\mathrm{y}}, \sigma_{\mathrm{z}}$ and σ_{xy} occur at $\theta=$ 0°, whereas the peak values of $\sigma_{y z}$ and $\sigma_{x z}$ occur at 90°.

Figure 2.4 Bending and Shear Loading (ISYM = 1)

The total applied force in the global X direction (F) due to both an input radial force (FX) and a tangential force (FZ) is:
$\mathrm{F}=\int_{0}^{2 \pi}$ (force per unit length) ${ }^{\star}$ (directional cosine) $)^{\star}$ (increment length)
$F=\int_{0}^{2 \pi}\left((\mathrm{FX}(\cos \theta) / 2 \pi \mathrm{R})^{*}(\cos \theta)+\left(\mathrm{FZ}(\sin \theta / 2 \pi \mathrm{R})^{*}(-\sin \theta)\right)^{*}(\mathrm{Rd} \theta)\right.$
$F=(F X-F Z) / 2$
where FX and FZ are the peak forces on a full 360° basis. Calculated reaction forces are also the peak values on a full 360° basis and the above expression may be used to find the total force. These net forces are independent of radius so that they may be applied at any radius (including $X=0.0$) for the same net effect.

An applied moment (M) due to an axial input force (FY) for this case can be computed as follows:
$\mathrm{M}=\int_{0}^{2 \pi}$ (force per unit length)*(lever arm)${ }^{*}$ (increment length)
$M=\int_{0}^{2 \pi}(F Y(\cos \theta) / 2 \pi R)^{*}(R \cos \theta)^{*}(R d \theta)=(F Y) R / 2$
An additional applied moment (M) is generated based on the input moment (MZ):
$\mathrm{M}=\int_{0}^{2 \pi}$ (force per unit length) ${ }^{*}$ (directional cosine) ${ }^{*}$ (increment length)
$M=\int_{0}^{2 \pi}(M Z(\cos \theta) / 2 v R)^{*}(\cos \theta)(R d \theta)=(M Z) / 2$
If it is desired to impose a uniform lateral displacement (or force) on the cross section of a cylindrical structure in the global X direction, equal magnitudes of UX and UZ (or FX and FZ) may be combined as shown in Figure 2.5 (p. 106).

Figure 2.5 Uniform Lateral Loadings

When UX and UZ are input in this manner, the nodal circle moves in an uniform manner. When FX and FZ are input in this manner, a uniform load is applied about the circumference, but the resulting UX and UZ will not, in general, be the same magnitude. If it is desired to have the nodal circle moving in a rigid manner, it can be done by using constraint equations (CE) so that $U X=-U Z$.

Node points on the centerline ($\mathrm{X}=0.0$) should have UY specified as zero. Further, UX must equal -UZ at all points along the centerline, which may be enforced with constraint equations. In practice, however, it seems necessary to do this only for the harmonic fluid element, FLUID81, since this element has no static shear stiffness. To prevent rigid body motions, at least one value of UX or UZ, as well as one value of UY (not at the centerline), or ROTZ, should be specified or constrained in some manner. For SHELL61, if plane sections ($\mathrm{Y}=$ constant) are to remain plane, ROTZ should be related to UY by means of constraint equations at the loaded nodes.

Case C: (MODE = 1, ISYM =-1) - This case (shown in Figure 2.6 (p. 106)) represents a pipe bending in a direction 90° to that described in Case B.

Figure 2.6 Bending and Shear Loading (ISYM =-1)

The same description applying to Case B applies also to Case C, except that the negative signs on UZ, FZ, and the direction cosine are changed to positive signs. Also, the location of the peak values of various quantities are switched between the 0° and 90° locations.

Case $D:(M O D E=2, I S Y M=1)$ - The displacement and force loadings associated with this case are shown in Figure 2.7 (p. 106). All functions are based on $\sin 2 \theta$ and $\cos 2 \theta$.

Figure 2.7 Displacement and Force Loading Associated with MODE = 2 and ISYM = 1

Additional Cases: There is no programmed limit to the value of MODE. Additional cases may be defined by the user.

2.13. General Axisymmetric Elements

Different from harmonic axisymmetric elements, general axisymmetric elements (such as SOLID272, SOLID273, SURF159) introduce the Fourier series into the interpolation functions to describe the change of displacements in the circumferential (θ) direction. The elements can therefore apply to any analysis type, including geometric nonlinear analyses, and can support any load and deformation mode. For more information, see SOLID272 - General Axisymmetric Solid with 4 Base Nodes and SOLID273 - General Axisymmetric Solid with 8 Base Nodes in the Theory Reference for the Mechanical APDL and Mechanical Applications.

The elements can have any axis as the axisymmetric axis (defined via SECTYPE and SECDATA commands). You need only define base elements on a flat plane.

General Axisymmetric Element Terminology

The plane on which quadrilaterals or triangles are defined is called the master plane. The quadrilaterals, triangles, or lines on the master plane are called base elements, and the nodes of the quadrilaterals, triangles, and lines are called base nodes.

A nodal plane (copied from the master plane) is a radial plane of Fourier nodes. There are n nodal planes (where $\operatorname{KEYOPT}(2)=n$), equally spaced around the circumference.

An integration plane is a plane which sits equally between any two adjacent nodal planes. Integration points in the circumferential direction are located on both the nodal and integration planes. For more information, see SOLID272 - General Axisymmetric Solid with 4 Base Nodes in the Theory Reference for the Mechanical APDL and Mechanical Applications.

The NAXIS command automatically creates a full 3-D finite-element model using the base elements, the axisymmetric axis, and the number of Fourier nodes specified via $\operatorname{KEYOPT}(2)$. The axisymmetric axis must be on the master plane, and the base elements must be on one side of the axis. A base element or base node must be associated with one axisymmetric axis before issuing the NAXIS command. All generated nodes are equally distributed circumferentially.

The default element coordinate system is a cylindrical coordinate system having the axisymmetric axis as z, the origin defined via the SECDATA command, and $\theta=0$ at the master plane. ANSYS uses the right-hand rule to determine the direction of θ, resulting in $x(r), y(\theta)$, and z from the right-hand coordinate system, as shown:

Figure 2.8 General Axisymmetric Elements and Their Coordinate Systems (KEYOPT(2) = 3)

The displacements in the r, θ, and z directions, however, are interpolated by
$u_{i}=h_{i}(s, t)\left(c_{1}+a_{1} \cos \theta+b_{1} \sin \theta+a_{2} \cos 2 \theta+b_{2} \sin 2 \theta+a_{3} \cos 3 \theta+b_{3} \sin 3 \theta \ldots\right)$
where
$i=r, \theta, z$
and
$h_{i}(s, t)$ is the standard interpolation function for 2-D elements.
The nodes can have their own coordinate systems defined in any direction, as is the case with the nodes of any other solid element. For more detailed information, see General Axisymmetric Solids in the Theory Reference for ANSYS and ANSYS Workbench.

General axisymmetric elements differ from harmonic axisymmetric elements in that you do not specify the symmetric and unsymmetric terms, input peak values of loads, and solve for each term as one load step. Instead, you apply all physical loads (forces and displacements) at the nodes and solve the problem only once to obtain the solution.

The order of $\mathrm{h}_{\mathrm{i}}(\mathrm{s}, \mathrm{t})$ is determined by the element type. (SOLID272 is a lower-order element and SOLID273 is a higher-order element.) The order of Fourier terms is determined by the number of Fourier nodes, or the number of nodes created in the circumferential direction for one base node (including the base node itself). This number is also the number of nodal planes in the circumferential direction, which you input via the element's KEYOPT(2). The KEYOPT(2) setting, the number of Fourier nodes, and the Fourier terms are shown in Table 2.9: Fourier Terms for General Axisymmetric Elements (p. 109). Generally, each Fourier term has different
coefficients except when KEYOPT(2) is an even number (in which case the highest terms of the sine and cosine have the same coefficient).

Table 2.9 Fourier Terms for General Axisymmetric Elements

| KEYOPT(2) Value | Number of Fourier Nodes (and Nodal Planes) | Fourier Terms | Degrees Between Nodal Planes |
| :---: | :---: | :---: | :---: |
| 1 | 1 | c_{1} | 360 |
| 3 | 3 | $c_{1}, a_{1} \cos \theta, b_{1} \sin \theta$ | 120 |
| 4 | 4 | $\begin{aligned} & \mathrm{c}_{1}, \mathrm{a}_{1} \cos \theta, \mathrm{~b}_{1} \sin \theta, a_{2} \cos 2 \theta, \\ & \mathrm{a}_{2} \sin 2 \theta \end{aligned}$ | 90 |
| 5 | 5 | $\begin{aligned} & \mathrm{c}_{1}, \mathrm{a}_{1} \cos \theta, \mathrm{~b}_{1} \sin \theta, \mathrm{a}_{2} \cos 2 \theta, \\ & \mathrm{~b}_{2} \sin 2 \theta \end{aligned}$ | 72 |
| 6 | 6 | $\begin{aligned} & c_{1}, a_{1} \cos \theta, b_{1} \sin \theta, a_{2} \cos 2 \theta, \\ & b_{2} \sin 2 \theta, a_{3} \cos 3 \theta, a_{3} \sin 3 \theta \end{aligned}$ | 60 |
| 7 | 7 | $\begin{aligned} & c_{1}, a_{1} \cos \theta, b_{1} \sin \theta, a_{2} \cos 2 \theta, \\ & b_{2} \sin 2 \theta, a_{3} \cos 3 \theta, b_{3} \sin 3 \theta \end{aligned}$ | 51.43 |
| 8 | 8 | $\begin{aligned} & c_{1}, a_{1} \cos \theta, b_{1} \sin \theta, \ldots, a_{4} \cos 4 \theta, \\ & a_{4} \sin 4 \theta \end{aligned}$ | 45 |
| 9 | 9 | $\begin{aligned} & \mathrm{c}_{1}, \mathrm{a}_{1} \cos \theta, \mathrm{~b}_{1} \sin \theta, \ldots, \mathrm{a}_{4} \cos 4 \theta, \\ & \mathrm{~b}_{4} \sin 4 \theta \end{aligned}$ | 40 |
| 10 | 10 | $\begin{aligned} & c_{1}, a_{1} \cos \theta, b_{1} \sin \theta, \ldots, a_{5} \cos 5 \theta, \\ & a_{5} \sin 5 \theta \end{aligned}$ | 36 |
| 11 | 11 | $\begin{aligned} & \mathrm{c}_{1}, \mathrm{a}_{1} \cos \theta, \mathrm{~b}_{1} \sin \theta, \ldots, \mathrm{a}_{5} \cos 5 \theta, \\ & \mathrm{~b}_{5} \sin 5 \theta \end{aligned}$ | 32.73 |
| 12 | 12 | $\begin{aligned} & \mathrm{c}_{1}, \mathrm{a}_{1} \cos \theta, \mathrm{~b}_{1} \sin \theta, \ldots, a_{6} \cos 6 \theta, \\ & \mathrm{a}_{6} \sin 6 \theta \end{aligned}$ | 30 |

For $\operatorname{KEYOPT}(2)=1$, the deformation is also axisymmetric but, unlike the axisymmetric option of 2-D elements such as PLANE182, the general axisymmetric elements allow torsion. If no torsion load exists, it is more efficient to use the axisymmetric elements.

To simulate unsymmetric deformation, set KEYOPT(2) > 1. The greater the number of Fourier nodes, the more accurate the simulation of complicated deformation modes.

Solve localized deformation problems with a greater number of Fourier nodes (higher-order Fourier terms). Be aware that the deformation will not be as localized as it would be when using standard 3-D solid elements; with general axisymmetric elements, displacements are interpolated using Fourier terms in the circumferential direction (rather than being interpolated piecewise using linear/quadratic functions as in 3-D solid elements).

Contact is usually a local phenomenon. Higher-order Fourier terms are normally needed.
The maximum allowed number of Fourier nodes is 12 . If more than 12 nodes are necessary, a general axisymmetric element may not be computationally efficient; therefore, it is better to use a standard 3-D solid element for such cases.

2.13.1. Example: 3-D General Axisymmetric Model

The following example input file shows how to use ANSYS commands and the SOLID272 element to generate a 3-D general axisymmetric model. The model represents a simple thread connection made of two parts, a bolt and a nut, both modeled with 12 Fourier nodes $(\operatorname{KEYOPT}(2)=12)$ and the global Y axis as the axis of symmetry.

```
/batch,list
/title, Sample input for generating general axisymmetric solid elements
/prep7
!
et,1,272,,12 !define general axisymmetric SOLID272 with 12 nodes along circumferential direction
et,2,272,,12
!
sect,1,axis !define general axisymmetric section
secd,2,0,2
!
mp,ex,1,2.0e5
!define elastic material properties
mp,nuxy,1,0.3
!
! Create 2D geometry of thread connection (bolt/nut)
!
k,1,1.0,0
k,2,4.0,0
k,3,4,1.5
k,4,5.0,2.5
k,5,5.0,3.5
k,6,4.0,4.5
k,7,4.0,5.5
k,8,5.0,6.5
k,9,5.0,7.5
k,10,4.0,8.5
k,11,4.0,10
k,12,1.0,10
k,13,7.0,0
k,14,7.0,10
!
k,15,4.0,0
k,16,4,1.5
k,17,5.0,2.5
k,18,5.0,3.5
k,19,4.0,4.5
k,20,4.0,5.5
k,21,5.0,6.5
k,22,5.0,7.5
k,23,4.0,8.5
k,24,4.0,10
!
a,1,2,3,4,5,6,7,8,9,10,11,12
a,15,16,17,18,19,20,21,22,23,24,14,13
!
!
!Mesh 2D geometry
!
esize,0.5
type,1 !use type 1 for bolt component
mat,1
secn,1 !use general axisymmetric section
amesh,1 !generate the master plane nodes and elements for bolt component
!
esize,1 !use different mesh
type,2 !use type 2 for nut component
mat,1
secn,1 !use general axisymmetric section
amesh,2 !generate the master plane nodes and elements for nut component
!
/PNUM,TYPE,1 !display element type numbers
/NUMBER,1 !numbering shown with colors only
eplot !visualise the 2D model
```

```
!
!Generate full 3D axisymmetric model of bolt and nut using 12 planes
!
naxis
!
/view,1,1,1,1
!
nplot !display the 12 nodal planes along circumferential direction
!
/eshape,1
!
esel,s,type,,1
eplot
!
esel,s,type,,2
eplot
!
esel,all
!
eplot !display full 3D axisymmetric model of bolt and nut
!
fini
```

The input listing generates the following 2-D and 3-D meshes:

The general axisymmetric elements representing the bolt and nut are shown separately in the figures below:

2.14. Shear Deflection

Shear deflection effects are often significant in the lateral deflection of short beams. The significance decreases as the ratio of the radius of gyration of the beam cross-section to the beam length becomes small compared to unity. Shear deflection effects are activated in the stiffness matrices of ANSYS beam elements by including a nonzero shear deflection constant (SHEAR_) in the real constant list for that element type.

The shear deflection constant is defined as the ratio of the actual beam cross-sectional area to the effective area resisting shear deformation. The shear constant should be zero or equal to or greater than one. The element shear stiffness decreases with increasing values of the shear deflection constant. A zero shear deflection constant may be used to neglect shear deflection. Shear deflection constants for several common sections are as follows: rectangle (6/5), solid circle (10/9), hollow (thin-walled) circle (2), hollow (thin-walled) square ($12 / 5$). Shear deflection constants for other cross-sections can be found in structural handbooks.

2.15. Geometric Nonlinearities

Geometric nonlinearities refer to the nonlinearities in the structure or component due to the changing geometry as it deflects. That is, the stiffness $[\mathrm{K}]$ is a function of the displacements $\{\mathbf{u}\}$. The stiffness changes because the shape changes and/or the material rotates. The program can account for five types of geometric nonlinearities:

1. Large strain assumes that the strains are no longer infinitesimal (they are finite). Shape changes (e.g., area, thickness, etc.) are also taken into account. Deflections and rotations may be arbitrarily large.
2. Large rotation assumes that the rotations are large but the mechanical strains (those that cause stresses) are evaluated using linearized expressions. The structure is assumed not to change shape except for rigid body motions. The elements of this class refer to the original configuration.
3. Stress stiffening assumes that both strains and rotations are small. A first order approximation to the rotations is used to capture some nonlinear rotation effects.
4. Spin softening also assumes that both strains and rotations are small. This option accounts for the radial motion of a body's structural mass as it is subjected to an angular velocity. Hence it is a type of large deflection but small rotation approximation.
5. Pressure load stiffness accounts for the change of stiffness caused by the follower load effect of a rotating pressure load. In a large deflection run, this can affect the convergence rate.

All elements support the spin softening capability, while only some of the elements support the other options. Table 2.10: Elements Having Nonlinear Geometric Capability (p. 114) lists the elements that have large strain, large deflection, stress-stiffening capability, and/or pressure load stiffness. Explicit Dynamics elements (160 to 167) are not included in this table.

Table 2.10 Elements Having Nonlinear Geometric Capability

| Element Name - Description | NLGEOM=ON | Stress Stiffening | Pressure Load Stiffness |
| :---: | :---: | :---: | :---: |
| SOLID5-3-D Coupled-Field Solid | $\mathrm{LR}^{[1]}$ | $\mathrm{AN}^{[2]}$ | - |
| LINK11-Linear Actuator | LR | x | - |
| PLANE13-2-D Coupled-Field Solid | LS | $\mathrm{AN}^{[2]}$ | - |
| COMBIN14-Spring-Damper | LR | x | - |
| MASS21-Structural Mass | LR | - | - |
| PLANE25-4-Node Axisymmetric-Harmonic Structural Solid | - | x | - |
| SHELL28-Shear/Twist Panel | - | AN | - |
| COMBIN39 - Nonlinear Spring | LR | x | - |
| SHELL41-Membrane Shell | LR | AN | - |
| MATRIX50-Superelement | LR | - | - |
| SHELL61 - Axisymmetric-Harmonic Structural Shell | - | x | - |
| SOLID62-3-D Magneto-Structural Solid | LS | x | - |
| SOLID65-3-D Reinforced Concrete Solid | LS | AN | x |
| PLANE83-8-Node Axisymmetric-Harmonic Structural Solid | - | x | - |
| SOLID98-Tetrahedral Coupled-Field Solid | $\mathrm{LR}^{[1]}$ | $\mathrm{AN}^{[2]}$ | - |
| SURF153-2-D Structural Surface Effect | SC | x | x |
| SURF154-3-D Structural Surface Effect | SC | x | x |
| SURF156-3-D Structural Surface Line Load Effect | SC | AN | x |
| SURF159-General Axisymmetric Surface | SC | AN | x |
| TARGE169-2-D Target Segment | SC | - | - |
| TARGE170-3-D Target Segment | SC | - | - |
| CONTA171-2-D Surface-to-Surface Contact | SC | - | - |

| Element Name - Description | NLGEOM=ON | Stress Stiffening | Pressure Load Stiffness |
| :---: | :---: | :---: | :---: |
| CONTA172-2-D 3-Node Surface-to-Surface Contact | SC | - | - |
| CONTA173-3-D Surface-to-Surface Contact | SC | - | - |
| CONTA174-3-D 8-Node Surface-to-Surface Contact | SC | - | - |
| CONTA175-2-D/3-D Point-to-Surface and Edge-to-Surface Contact | SC | - | - |
| CONTA176-3-D Line-to-Line Contact | SC | - | - |
| CONTA177-3-D Line-to-Surface Contact | SC | - | - |
| LINK180-3-D Finite Strain Spar | LS | AB | ${ }^{-}$ |
| SHELL181-Finite Strain Shell | LS | AB | $\mathrm{x}^{[3]}$ |
| PLANE182-2-D Structural Solid | LS | AB | x |
| PLANE183-2-D 8-Node Structural Solid | LS | AB | x |
| SOLID185-3-D 8-Node Structural Solid | LS | AB | x |
| SOLID186-3-D 20-Node Structural Solid | LS | AB | x |
| SOLID187-3-D 10-Node Tetrahedral Structural Solid | LS | AB | X |
| BEAM188-3-D Finite Strain Beam | LS | AB | x |
| BEAM189-3-D Finite Strain Beam | LS | AB | x |
| SOLSH190-3-D 8-Node Structural Solid-Shell | LS | AB | x |
| SHELL208-2-Node Finite Strain Axi. Shell | LS | AB | x |
| SHELL209-3-Node Finite Strain Axi. Shell | LS | AB | X |
| SHELL281-8-Node Finite Strain Shell | LS | AB | $\mathrm{x}^{[3]}$ |

Codes associated with NLGEOM = ON:

LS = large strain element
LR = Element that can do a rigid body rotation. The NLGEOM = ON option provides only a rigid body rotation. Strains, if any, are linear.
$L R^{[1]}=$ Same as LR, and applies to both structural and piezoelectric analysis.
SC = Surface or contact element. The element follows the underlying element.
Codes associated with stress stiffening:
$x=$ Has option of computing stress stiffness matrix
AN = If NLGEOM $=\mathrm{ON}$, stress stiffening is automatically included. However, the element is not capable of linear buckling using ANTYPE,BUCKLE.
$\mathrm{AN}^{[2]}=$ Same as AN, applies to structural analyses only.
$A B=$ If NLGEOM $=O N$, stress stiffening is automatically included, and the element is also capable of linear buckling using ANTYPE,BUCKLE.

Code associated with pressure load stiffness:

$x=$ Has option of computing symmetric or unsymmetric pressure load stiffness matrix using SOLCONTROL,,INCP. Symmetry or unsymmetry is handled on the NROPT command.
$x^{[3]}=$ Same as x, but does not apply to edge loading.

2.16. Mixed u-P Formulation Elements

Mixed u-P elements use both displacement and hydrostatic pressure as primary unknown variables. Mixed u-P formulation is available in SOLID285, and in most other current-technology elements where KEYOPT(6) > 0, such as: PLANE182, PLANE183, SOLID185, SOLID186, SOLID187, SOLSH190, SOLID272, and SOLID273.

The following related topics are available:
2.16.1. Overview of Mixed u-P Element Technologies
2.16.2. Mixed u-P Element Summary
2.16.3. Applications of Mixed u-P Formulations
2.16.4. Mixed u-P Models and Overconstraint or No Unique Solution

2.16.1. Overview of Mixed u-P Element Technologies

Incompressible material behavior may lead to some difficulties in numerical simulation, such as volumetric locking, inaccuracy of solution, checkerboard pattern of stress distributions, or, occasionally, divergence. Mixed u-P elements are intended to overcome these problems.

Lagrange multiplier based mixed u-P elements (current-technology solid elements with KEYOPT(6) >0 and SOLID285) can also be used to overcome incompressible material problems. They are designed to model material behavior with high incompressibility such as fully or nearly incompressible hyperelastic materials and nearly incompressible elastoplastic materials (high Poisson ratio or undergoing large plastic strain). Lagrange multipliers extend the internal virtual work so that the volume constraint equation is included explicitly. This introduces hydrostatic pressure (or volume change rate for nearly incompressible hyperelastic materials) as a new independent variable. Unlike the hyperelastic elements, the hydrostatic pressure variables are not condensed on the element level, but are solved at the global level. See the Theory Reference for the Mechanical APDL and Mechanical Applications for further details.

The mixed u-P formulation of the current-technology solid elements offers options for handling incompressible material behavior. You can combine the mixed u-P formulation with other element technologies such as the \bar{B} method (also known as the selective reduced integration method) and the uniform reduced integration method. With current-technology elements, you can combine the mixed u - P formulation with the enhanced strain formulation method. Furthermore, the mixed u-P formulation is associated with hyperelastic models, such as Mooney-Rivlin, Neo-Hookean, Ogden, Arruda-Boyce, polynomial form, and user-defined.

2.16.2. Mixed u-P Element Summary

The number of independent hydrostatic pressure degrees of freedom depends on the element type, element technology, and the value of KEYOPT(6), as shown in Table 2.11: Number of Independent Pressure Degrees of Freedom in One Element (p. 117).

Table 2.11 Number of Independent Pressure Degrees of Freedom in One Element

| Element | Basic Element Technology | KEYOPT(6) | Number of Pressure DOFs | Interpolation Function |
| :---: | :---: | :---: | :---: | :---: |
| PLANE182 | $\overline{\mathrm{B}}$ method (selective reduced integration) or uniform reduced integration | 1 | 1 | Constant |
| PLANE182 | Enhanced strain formulation | 1 | 3 | Linear |
| PLANE183 | Uniform reduced integration (KEYOPT(1) = 0) | 1 | 3 | Linear |
| PLANE183 | 3 -point integration (KEYOPT $(1)=1)$ | 1 | 3 | Linear |
| SOLID185 | $\overline{\mathrm{B}}$ method (selective reduced integration) or uniform reduced integration | 1 | 1 | Constant |
| SOLID185 | Enhanced strain formulation | 1 | 4 | Linear |
| SOLID186 | Uniform reduced integration | 1 | 4 | Linear |
| SOLID186 | Full integration | 1 | 4 | Linear |
| SOLID187 | 4-point integration | 1 | 1 | Constant |
| SOLID187 | 4-point integration | 2 | 4 | Linear |
| SOLSH190 | Enhanced strain formulation | 1 | 4 | Linear |
| SOLID272 | Full integration in the r-z plane. | 1 | $\begin{gathered} \text { KEY- } \\ \text { OPT(2) } \end{gathered}$ | Constant in the r-z plane and Fourier interpolation in the circumferential (θ) direction |
| SOLID273 | Uniform integration in the r-z plane. | 1 | $\begin{gathered} \text { KEY- } \\ \text { OPT(2) } x \\ 3 \end{gathered}$ | Linear in the r-z plane and Fourier interpolation in the circumferential (θ) direction |
| SOLID285 | Stabilized pressure formulation | --- | 4 | Linear |

The hydrostatic pressure has an interpolation function one order lower than the one for volumetric strain. Therefore, elastic strain only agrees with stress in an element on the average instead of point-wise.

For current-technology mixed u-P elements, the volume constraint equation is checked for each element of a nonlinear analysis. The number of elements in which the constraint equation is not satisfied is reported
in the output file. The default tolerance for the volumetric compatibility or volume constraint check is 1.0 x 10^{-5}. You can change this value via the SOLCONTROL command. For more details, see the Theory Reference for the Mechanical APDL and Mechanical Applications.

For the SOLID285 element, hydrostatic pressure is added as a degree of freedom at each node. Therefore, the incompressibility is checked at each node (similar to forces). For more information, see the documentation for the CNVTOL command.

The mixed u-P formulation is not needed in plane stress; the incompressibility condition is assumed, and the thickness is adjusted based on this incompressible assumption. For 2-D elements PLANE182 and PLANE183, using the mixed u-P formulation with either of the plane stress options (KEYOPT(3) $=0$ or 3), ANSYS automatically resets any $\operatorname{KEYOPT}(6)$ setting to 0 for pure displacement formulation.

2.16.3. Applications of Mixed u-P Formulations

Incompressible material behavior can be divided into two categories: fully incompressible materials and nearly incompressible materials. Typical fully incompressible materials are hyperelastic materials. You must use a current-technology element with mixed u-P formulation or SOLID285 to model this material behavior. For element SOLID187, set $\operatorname{KEYOPT}(6)=1$.

Nearly incompressible materials include hyperelastic materials and elastoplastic materials. The currenttechnology elements with mixed u-P formulation and SOLID285 are available for nearly incompressible hyperelastic materials.

The best element choice varies from problem to problem. The general guidelines are:

- For material behavior with very small compressibility, use a current-technology element with mixed uP formulation or SOLID285.
- For moderate compressibility, you can use PLANE182/SOLID185 with $\overline{\mathrm{B}}$ (most efficient), a currenttechnology element with mixed u-P formulation, or SOLID285.
- When deformation is highly confined, using a current-technology element with mixed u-P formulation is recommended.

Nearly incompressible elastoplastic materials are materials with Poisson's ratio close to 0.5 , or elastoplastic materials undergoing very large plastic deformation. For such cases, especially when the deformation is close to being fully incompressible, the mixed u-P formulation of the current-technology elements and SOLID285 is more robust, yielding better performance. However, you should try pure displacement formulation $(\operatorname{KEYOPT}(6)=0)$ first because the extra pressure degrees of freedom are involved in mixed formulation. If you are using mixed formulation with element SOLID187, it is recommended that you use KEYOPT(6) $=2$.

2.16.4. Mixed u-P Models and Overconstraint or No Unique Solution

Avoid overconstrained models when using current-technology elements with mixed u-P formulation. An overconstrained model means that globally or locally, the number of displacement degrees of freedom without any prescribed values ($N d$) is less than the number of hydrostatic pressure degrees of freedom ($N p$). $N p$ can be calculated by the number of elements times the number of pressure degrees of freedom within each element. (See Table 2.11: Number of Independent Pressure Degrees of Freedom in One Element (p. 117) for the specific numbers used with the current-technology elements.) If different type elements are included, $N p$ is the summation of the products over each type of mixed formulation element. The overconstrained problem can be overcome by increasing the number of nodes without any displacement boundary conditions, or by refining the mesh. The optimal values for $N p$ and $N d$ are $N d / N p=2$ for 2-D problems and $N d / N p=$ 3 for 3-D problems.

On the other hand, SOLID285 is not likely to be overconstrained. At each node, it has one pressure degree of freedom and three degrees of freedom (UX, UY, and UZ). These are the best values for $N d / N p$.

When the mixed u-P formulation of the current-technology plane and solid elements is applied to fully incompressible hyperelastic materials, you must also avoid the "no unique solution" situation. No unique solution occurs if all boundary nodes have prescribed displacements in each direction and the material is fully incompressible. Since hydrostatic pressure is independent from deformation, it should be determined by the force/pressure boundary condition. If no force/pressure boundary condition is applied, the hydrostatic pressure cannot be determined, or the solution is not unique. In this case, any stress field in equilibrium would be still in equilibrium and not cause any further deformation by adding an arbitrary value of hydrostatic pressure. This problem can be solved simply by having at least one node on the boundary in at least one direction without a prescribed displacement boundary condition. This direction cannot be the tangential direction of the boundary at this node. That means the solution is the particular one with zero force at the node in that direction where no displacement is prescribed.

2.17. Elements Supporting Linear Perturbation Analysis

Most current-technology elements support linear perturbation analysis (see Linear Perturbation Analysis in the Theory Reference for the Mechanical APDL and Mechanical Applications). Since linear perturbation is based on a solution at a particular time from a linear or nonlinear analysis, known as the base (or prior) analysis, the element behaviors are based on the properties and behavior of the base analysis, but are different from the base analysis.

The following elements can be used in a linear perturbation analysis as well as any of its downstream analyses:
Table 2.12 Elements that Support Linear Perturbation

| Category | Element Name(s) |
| :--- | :--- |
| Spars | LINK180 |
| Beams | BEAM188, BEAM189 |
| Pipes | PIPE288, PIPE289 |
| 2-D Solids | SLANE182, PLANE183 |
| 3-D Solids | SHELL181, SHELL208, SHELL209, SHELL281 |
| Shells | SOLSH190 |
| Solid-Shell | INTER192, INTER193, INTER194, INTER195 |
| Interface | TARGE169, TARGE170, CONTA171, CONTA172, CONTA173, CONTA174,
 CONTA175, CONTA176, CONTA177, CONTA178 |
| Contact | COMBIN14, MASS21, MATRIX27, SURF153, SURF154, SURF156, PRETS179,
 MPC184, MESH200, FOLLW201, COMBI214 |
| Specialty | |

2.17.1. Material Behavior of Structural Elements in Linear Perturbation

In general, the base analysis of the linear perturbation can be a nonlinear analysis with nonlinear materials, geometric nonlinearity, or contact elements included in the model. In the linear perturbation analysis, the geometric nonlinearity at the substep where linear perturbation is initiated is completely inherited in $\left[K_{i}^{T}\right]$ of Equation 17-195 in the Theory Reference for the Mechanical APDL and Mechanical Applications. This includes large deformation, large rotation, and contact effects. The linear perturbation analysis can be understood
as an iteration in the nonlinear base analysis. In the linear perturbation analysis, all of the nonlinear effects are taken into consideration and "frozen" so that the loading and deformation is linear. The nonlinear effects are also carried to the stress expansion pass and the following downstream analysis, if any.

Any nonlinear material must behave linearly in the linear perturbation analysis. For hyperelastic materials in the base analysis, the material properties are assumed to be linear elastic, and the material property data (or material Jacobian) is obtained based on the tangent of the hyperelastic material's constitutive law at the point where restart or linear perturbation is initiated. For any nonlinear materials other than hyperelastic materials in the base analysis, the material properties are assumed to be linear elastic, and the material data is the same as the linear portion of the nonlinear materials (that is, the parts defined by MP commands). This assumption holds for the linear perturbation analysis as well as any downstream analysis after the linear perturbation analysis.

2.17.2. Interpretation of Structural Element Results after a Linear Perturbation Analysis

After a linear perturbation analysis, the reported stress and elastic strain are the values due to the linear perturbation analysis; for example, for linear perturbation modal analysis, the stress and elastic strain are the values due to the mode shapes. As discussed above, the effects of any geometric nonlinearity are taken into consideration in the stress expansion.

Since linear perturbation can be understood as an extra "iteration" of a base analysis, all the history-dependent results of the base analysis are inherited in the results of the linear perturbation analysis. Therefore, any plastic strains, creep strains, swelling strains, thermal strains, and contact results from the base analysis are available in the result data of the linear perturbation analysis. Note that the total strain will be the sum of all the strains (for example, PLNSOL,EPTO). The nonlinear solution quantities such as equivalent stress, stress state ratio, and plastic state variable (for example, PLESOL,NL,...) are also available. The one exception is that hydrostatic pressure is the value from the linear perturbation analysis instead of from the base analysis.

For hyperelastic materials, the strain after the linear perturbation analysis is the elastic strain due to the linear perturbation analysis, and the total strain will be the same as the elastic strain. For plane stress cases, the direct strain in the Z direction is calculated with the incompressible condition for hyperelastic materials, and with linear elastic material properties for any material other than hyperelastic materials.

The energy densities (for example, PLESOL,SEND,...) are inherited from the base analysis, except for the elastic energy density which is energy density calculated in the linear perturbation analysis. However, the reported strain energy (for example, PRESOL,SENE) includes the elastic part due to linear perturbation and others inherited from the base analysis (if any).

If the base analysis includes geometric nonlinearity, the Euler angles or the geometric nonlinear effects of the base analysis are available in the results file. Thus, all the output quantities of the linear perturbation analysis are reported consistently in global, local, and rotated local coordinate systems, as in the base analysis.

2.17.3. Loads, Initial Conditions, and Other Limitations in Linear Perturbation

The following restrictions apply to linear perturbation analysis:

- Perturbation loads cannot be non-mechanical loading such as initial conditions (INISTATE command), thermal loading, and swelling effects. These loads are not allowed to be modified or deleted during the linear perturbation analysis.
- No element can be activated or deactivated using the birth and death feature during a the second phase of a linear perturbation analysis; however, this is allowed in the first phase of linear perturbation.
- Linear perturbation analyses do not support user materials (user subroutine UserMat).

2.18. Legacy vs. Current Element Technologies

If you are a long-time user, your models may still employ some legacy element types. As technology advances, however, ANSYS, Inc. continues to develop robust new element types. ANSYS, Inc. recommends using currenttechnology elements (sometimes called new-generation elements) rather than legacy elements in your analysis wherever possible. Current element types are more feature-rich and use more advanced technologies than legacy elements. (For more information, see Current-Technology Element Benefits (p. 122).)

The following table lists many legacy elements and suggests current-technology elements to use instead. In some cases, an element KEYOPT setting, degree-of-freedom constraint, or command may be necessary to closely reproduce the behavior of a given legacy element.

| Legacy Element Type [1] | Suggested Current Element Type [2] | Suggested Setting(s) to Approximate Legacy Element Behavior [3] | |
| :---: | :---: | :---: | :---: |
| | | Element KEYOPT | Comments |
| FLUID141 | ANSYS CFX-Flo | --- | --- |
| FLUID142 | ANSYS CFX-Flo | --- | --- |
| INFIN9 | INFIN110 | --- | --- |
| INFIN47 | INFIN111 | --- | --- |
| PLANE13 | PLANE223 | --- | --- |
| PLANE25 | SOLID272 | KEYOPT(6) $=0$ | |
| PLANE53 | PLANE233 | --- | See the Low-Frequency Electromagnetic Analysis Guide |
| PLANE83 | SOLID273 | KEYOPT(6) $=0$ | --- |
| SHELL41 | SHELL181 | $\begin{aligned} & \operatorname{KEYOPT}(1)=1, \\ & \operatorname{KEYOPT}(3)=2 \end{aligned}$ | --- |
| SOLID5 | SOLID226 | --- | --- |
| SOLID117 | SOLID236 | --- | See Legacy vs. Current-Technology Edge-Based Elements in the Low-Frequency Electromagnetic Analysis Guide |

1. After considering element redundancy and consistency issues, ANSYS, Inc. may in future releases move legacy element documentation to the Feature Archive or undocument those elements altogether; however, the table does not imply that all legacy elements listed are immediate targets for such action.
2. The table is not a definitive listing of legacy-to-current element equivalents in terms of either formulation or use of shape functions; for example, a suggested current element may require a more refined mesh in some cases, or may require adaptation via appropriate constraints for specific 2-D analyses.
3. While a given KEYOPT setting can allow you to approximate the behavior of a legacy element, it may not be the most desirable KEYOPT for the current element. For structural-only analyses, try the ETCONTROL command for element and KEYOPT recommendations. For more information, see Automatic Selection of Element Technologies (p. 122).

2.18.1. Current-Technology Element Benefits

Current element technologies are more advanced and feature-rich than legacy elements. For example, support for the following capabilities is available only in applicable current-technology elements:

- A vast array of material constitutive options (such as anisotropic hyperelasticity, cast iron plasticity, enhanced Drucker-Prager plasticity, Hill plasticity, hyperelasticity, shape memory alloy, plasticity, rate-dependent plasticity, viscoelasticity, and others).
- Association of a single element with several material constitutive options (such as a combination of hyperelasticity and viscoelasticity with Prony series expansion).
- A curve-fitting tool (TBFT) for calibrating material parameters through experimental data, which currently supports creep, hyperelasticity, and viscoelasticity.
- Fracture mechanics parameter calculation (CINT), which uses the domain-integration approach to calculate the J-Integrals for both linear and elastoplastic material behavior at a designated tip location (2D) or at specific location along the crack front (3-D) through a structure component.
- Variational Technology for optimization analysis, which quickly evaluates response surfaces for various type of applications (such as structural and frequency sweep analysis).
- Initial state conditions (INISTATE) that may exist in the structure (available in the elements listed in Initial State Element Support).
- Custom user-defined material models created via the UserMat subroutine.
- 3-D smeared reinforcing, provided by elements such as REINF265 when used with 3-D solid and shell elements (referred to as the base elements) to achieve the effect of extra reinforcement to those elements.
- Nonlinear stabilization, a viscous-based algorithm for improving convergence behavior when instabilities are expected.
- Manual rezoning for solid elements.
- Control of the element technologies (ETCONTROL) used in element formulation for applicable elements.
- A layered section option (via SECDATA and other section commands) for shell and solid elements.

2.19. Automatic Selection of Element Technologies

With the variety of technologies available in many elements, choosing the best settings to solve your problem efficiently can be challenging. Particularly in the newer structural and solid elements for stress analysis, an element might offer two to four technologies.

ANSYS can offer suggestions (or reset the technology settings) to help you achieve the best solution via the ETCONTROL command. The command helps you to select the appropriate element technologies by considering the stress state, the options set on the element type, and the associated constitutive models of the element type. ETCONTROL supports all applicable current-technology elements.

The materials associated with each element type are detected at the solution stage and are classified as:

- Elastoplastic materials, including:
- Linear elastic materials with Poisson's ratio <=0.49
- Linear elastic materials with Poisson's ratio >0.49
- Anisotropic materials
- Elastoplastic materials (other nonlinear materials except hyperelastic materials)
- Hyperelastic materials, including:
- Nearly incompressible hyperelastic materials
- Fully incompressible hyperelastic materials

In practical application, one element type could be associated with more than one constitutive model, for example, linear elastic and elastoplastic materials. For this case, the suggestions/resettings are based on elastoplastic materials, which need more complicated element technology. The list of constitutive models above is organized in order of complexity, with the bottom ones more difficult to solve numerically. When an element type is associated with multiple constitutive models, the more complex one is used in the automatic selection of the element technology.

When using ETCONTROL, the suggestions given or settings changed are described in the tables below.
Table 2.13 Recommendation Criteria for Element Technology (Linear Material)

| Linear Materials Only | | | |
| :---: | :---: | :---: | :---: |
| Element | Stress State / Option | Poisson's ratio (ν) <= 0.49 | Poisson's ratio (ν) > 0.49 (or anisotropic materials) |
| SHELL181 | Default | KEYOPT(3) $=2$ for higher accuracy of membrane stress, otherwise, $\operatorname{KEYOPT}(3)=0 ; \operatorname{KEYOPT}(8)=2$ for all cases | |
| | Membrane-only option $(\operatorname{KEYOPT}(1)=1)$ | KEYOPT(3) $=2$ for higher accuracy of stress, otherwise, $\operatorname{KEYOPT}(3)=0 ; \operatorname{KEYOPT}(8)=0$ for all cases | |
| SOLID272 | | KEYOPT(6) $=0$ | KEYOPT(6) = 1 |
| SOLID273 | | No change. (Default element settings are best.) | |
| SOLID285 | | No change. (Default element settings are best.) | |
| PLANE182 | Plane stress | KEYOPT(1) = 2 | |
| | Not plane stress | KEYOPT(1) = 3 | KEYOPT(1) = 2 |
| PLANE183 | Plane stress | No change. (Default element settings are best.) | |
| | Not plane stress | No change. (Default element settings are best.) | |
| SOLID185 | | KEYOPT(2) = 3 | KEYOPT(2) = 2 |
| SOLID186 | | KEYOPT(2) = 0 | |
| SOLID187 | | No change. (Default element settings are best.) | |
| BEAM188 | | $\operatorname{KEYOPT}(3)=2, \operatorname{KEYOPT}(1)=1[1]$ | |
| BEAM189 | | $\operatorname{KEYOPT}(1)=1[1]$ | |
| SHELL208 | | KEYOPT(8) = 2 | |
| SHELL209 | | KEYOPT(8) = 2 | |
| SHELL281 | | No change. (Default element settings are best.) | |
| PIPE288 | | $\begin{aligned} & \operatorname{KEYOPT(3)=2} \\ & \operatorname{KEYOPT}(4)=2 \\ & \operatorname{KEYOPT}(15)=1[2(\text { p. 124)] } \end{aligned}$ | $\begin{aligned} & \operatorname{KEYOPT}(3)=2 \\ & \operatorname{KEYOPT}(4)=1 \\ & \operatorname{KEYOPT}(15)=1 \text { [2 (p. 124)] } \end{aligned}$ |
| PIPE289 | | $\begin{aligned} & \operatorname{KEYOPT(4)=2} \\ & \operatorname{KEYOPT}(15)=1[2(\text { p. 124)] } \end{aligned}$ | $\begin{aligned} & \operatorname{KEYOPT}(4)=1 \\ & \operatorname{KEYOPT}(15)=1[2(\text { p. 124)] } \end{aligned}$ |

1. Only when the element section is not circular; otherwise, $\operatorname{KEYOPT}(1)=0$
2. Only when the element cross section is composite; otherwise, $\operatorname{KEYOPT}(15)=0$

Table 2.14 Recommendation Criteria for Element Technology (Nonlinear Materials)

| Nonlinear Materials | | | |
| :---: | :---: | :---: | :---: |
| Element | Stress State / Option | Elastoplastic materials (may also have hyperelastic materials) | Hyperelastic materials only |
| SHELL181 | Default | KEYOPT(3) $=2$ for higher accuracy of membrane stress, otherwise, KEYOPT(3) $=0 ; \operatorname{KEYOPT}(8)=2$ for all cases | $\operatorname{KEYOPT}(3)=0, \operatorname{KEYOPT}(8)=0$ |
| | Membrane-only option $(\operatorname{KEYOPT}(1)=1)$ | KEYOPT(3) $=2$ for higher accuracy of stress, otherwise, $\operatorname{KEYOPT}(3)=0$; KEY$\mathrm{OPT}(8)=0$ for all cases | $\operatorname{KEYOPT}(3)=0, \operatorname{KEYOPT}(8)=0$ |
| PLANE182 | Plane stress | $\operatorname{KEYOPT}(1)=2$ | $\operatorname{KEYOPT}(1)=0$ |
| | Not plane stress | $\operatorname{KEYOPT}(1)=2[1]$ | $\operatorname{KEYOPT}(1)=0[1]$ |
| PLANE183 | Plane stress | No change. (Default element settings are best.) | |
| | Not plane stress | no change (default element settings are best)[1] | |
| SOLID185 | | KEYOPT(2) = 2[1] | KEYOPT(2) $=0$ [1] |
| SOLID186 | | KEYOPT(2) $=0[1]$ | |
| SOLID187 | | No change. (Default element settings are best.)[1] | |
| SOLID272 | | KEYOPT(6) $=1$ | |
| SOLID273 | | No change. (Default element settings are best.)[1] | |
| SOLID285 | | No change. (Default element settings are best.) | |
| BEAM188 | | $\operatorname{KEYOPT}(3)=2, \operatorname{KEYOPT}(1)=1[2]$ | |
| BEAM189 | | $\operatorname{KEYOPT}(1)=1[2]$ | |
| SHELL208 | | $\operatorname{KEYOPT}(8)=2$ | KEYOPT(8) $=0$ |
| SHELL209 | | KEYOPT(8) $=2$ | KEYOPT $(8)=0$ |
| SHELL281 | | No change. (Default element settings are best.) | |
| PIPE288 | | $\begin{aligned} & \hline \operatorname{KEYOPT}(3)=2 \\ & \operatorname{KEYOPT}(4)=2 \\ & \operatorname{KEYOPT}(15)=1[3(p .125)] \end{aligned}$ | |
| PIPE289 | | $\begin{aligned} & \operatorname{KEYOPT}(4)=2 \\ & \operatorname{KEYOPT}(15)=1[3(\text { p. 125)] } \end{aligned}$ | |

1. If even only one of your hyperelastic materials is fully incompressible, then $\operatorname{KEYOPT}(6)=1$ is required. Therefore, ANSYS recommends using a different element type for such materials to avoid using the more costly mixed u - P formulation where it is not needed.
2. Only when the element section is not circular, otherwise $\operatorname{KEYOPT}(1)=0$.
3. Only when the element cross section is composite; otherwise, $\operatorname{KEYOPT}(15)=0$

For the solid elements listed above, ETCONTROL provides suggestions or resets the KEYOPTs for the element technology settings (i.e., KEYOPT(1) for PLANE182, KEYOPT(2) for SOLID185 and SOLID186). The Mixed u-P formulation KEYOPT(6) is reset when necessary; that is, when fully incompressible hyperelastic materials are associated with non-plane stress states.

For BEAM188 and BEAM189, KEYOPT(1) is always suggested for non-circular cross section beams and should be reset when ETCONTROL,SET,.. is issued. However, the KEYOPT setting changes the number of degrees of freedom at each node, so it must be set before you issue any D, DK, DA, and similar commands. Because the ETCONTROL reset is done at the beginning of the solution stage, ANSYS displays a message stating that you should change $\operatorname{KEYOPT}(1)$ to 1 , but it does not make the change automatically.

For SHELL181, the setting for KEYOPT(3) depends on your problem and your purpose if the element type is associated with any non-hyperelastic materials. In this case, ANSYS cannot reset it automatically, but it displays a message with the recommended setting (even if you used ETCONTROL,SET,..). You should reset this manually if the defined criteria matches your problem.

If an element type is defined but not associated with any material, no suggestions or resets are done for that element type. The stress states and options are mentioned only when they affect the suggestions or settings. The suggestions are available in output.

All nonlinear stress/strain data should be input as true-stress/true-(logarithmic-) strain. Accordingly, all output data is also indicated as true-stress/true-strain. For small strains, the true-stress/true-strain data and engin-eering-stress/engineering-strain data are essentially identical.

2.20. User-Defined Elements

ANSYS offers a convenient way create your own custom element named USER300. You can create virtually any element type.

For more information about creating a custom element, see the documentation for the USER300 element. For detailed instructions, see "Creating a New Element via the User-Defined Element API" in the Guide to ANSYS User Programmable Features, available on the ANSYS product distribution media.

Chapter 3: Element Characteristics

The ANSYS Mechanical APDL program has a large library of element types. Some of the characteristics of the element types, and their groupings, are described in this chapter to make element type selection easier. The detailed element type descriptions are given in Element Library (p. 147).

The following element characteristic topics are available:

3.1.Element Classifications

3.2. Pictorial Summary
3.3. GUI-Inaccessible Elements

The element library consists of almost 200 different element formulations or types. An element type is identified by a name (eight characters maximum), such as PIPE288, consisting of a group label (PIPE) and a unique identifying number (188). The element descriptions in Element Library (p. 147) are arranged in order of these identification numbers. The element is selected from the library for use in the analysis by inputting its name on the element type command (ET).

2-D vs. 3-D Models

ANSYS models may be either 2-D or 3-D depending upon the element types used.
A 2-D model must be defined in an X-Y plane. They are easier to set up, and run faster than equivalent 3-D models. Axisymmetric models are also considered to be 2-D.

If any 3-D element type is included in the element type (ET) set, the model becomes 3-D. Some element types (such as COMBIN14) may be 2-D or 3-D, depending upon the KEYOPT value selected. Other element types (such as COMBIN40) have no influence in determining the model dimensions. A 2-D element type may be used (with caution) in 3-D models.

Element Characteristic Shape

In general, four shapes are possible: point, line, area, or volume. A point element is typically defined by one node, e.g., a mass element. A line element is typically represented by a line or arc connecting two or three nodes. Examples are beams, spars, pipes, and axisymmetric shells. An area element has a triangular or quadrilateral shape and may be a 2-D solid element or a shell element. A volume element has a tetrahedral or brick shape and is usually a 3-D solid element.

Degrees of Freedom and Discipline

The degrees of freedom of the element determine the discipline for which the element is applicable: structural, thermal, fluid, electric, magnetic, or coupled-field. The element type should be chosen such that the degrees of freedom are sufficient to characterize the model's response. Including unnecessary degrees of freedom increases the solution memory requirements and running time. Similarly, selecting element types with unnecessary features, such as using an element type with plastic capability in an elastic solution, also unnecessarily increases the analysis run time.

User Elements

You may also create your own element type and use it in an analysis as a user-defined element. User elements and other user programmable features (UPFs) are described in the Guide to ANSYS User Programmable Features.

3.1. Element Classifications

Table 3.1 List of Elements by Classification

| Classification | | Elements |
| :--- | :--- | :--- |
| Structural Point | | MASS21 |
| Structural Line | 3-D | LINK11, LINK180 |
| Structural Beam | 3-D | BEAM188, BEAM189 |
| Structural Solid | 2-D | PLANE25, PLANE83, PLANE182, PLANE183 |
| | 3-D | SOLID65, SOLID185, SOLID186, SOLID187, SOLID285 |
| | | General axisymmetric: SOLID272, SOLID273 |
| Structural Shell | 2-D | SHELL61, SHELL208, SHELL209 |
| 3-D | SHELL28, SHELL41, SHELL181, SHELL281 | |
| Structural Solid
 Shell | 3-D | SOLSH190 |
| Structural Pipe | | PIPE288, PIPE289, ELBOW290 |
| Structural Interface | | INTER192, INTER193, INTER194, INTER195, INTER202, INTER203,
 INTER204, INTER205 |
| Structural Multi-
 point Constraint
 Elements | | MPC184, MPC184-Link/Beam, MPC184-Slider, MPC184-Revolute,
 MPC184-Universal, MPC184-Slot, MPC184-Point, MPC184Translation-
 al, MPC184Cylindrical, MPC184-Planar, MPC184-Weld, MPC184-Ori-
 ent, MPC184-Spherical, MPC184-General, MPC184-Screw |
| Structural Layered
 Composite | | SOLID185 Layered Solid, SOLID186 Layered Structural Solid,
 SOLSH190 |
| Explicit Dynamics | | LINK160, BEAM161, PLANE162, SHELL163, SOLID164, COMBI165,
 MASS166, LINK167, SOLID168 |
| Thermal Point | | MASS71 |
| Thermal Line | | LINK31, LINK33, LINK34 |
| Thermal Solid | 2-D | PLANE35, PLANE55, PLANE75, PLANE77, PLANE78 |
| 3-D | SOLID70, SOLID87, SOLID90, SOLID278, SOLID279 | |
| Thermal Shell | | SHELL131, SHELL132 |
| Thermal Layered
 Solid | | SOLID278, SOLID279 |
| Thermal Electric | | LINK68, SHELL157 |
| Fcoustic | | FLUID29, FLUID30, FLUID129, FLUID130 |
| Fluid - CFD | | FLUID141, FLUID142 |
| Pipe | | FLUID116 |

| Classification | | Elements | | | | | |
|---|---|---|---|---|---|---|---|
| Fluid - Gap | | FLUID38, FLUID136, FLUID138, FLUID139 |
| Magnetic Electric | | PLANE53, SOLID96, SOLID97, INTER115, SOLID117, HF118, HF119,
 HF120, PLANE121, SOLID122, SOLID123, PLANE230, SOLID231,
 SOLID232, PLANE233, SOLID236, SOLID237 |
| Electric Circuit | | SOURC36, CIRCU94, CIRCU124, CIRCU125 |
| Electromechanical | | TRANS109, TRANS126 |
| Coupled-Field | | SOLID5, PLANE13, SOLID62, SOLID98, ROM144, CPT212, CPT213,
 CPT215, CPT216, CPT217,PLANE223, SOLID226, SOLID227 |
| Contact | | TARGE169, TARGE170, CONTA171, CONTA172, CONTA173, CON-
 TA174, CONTA175, CONTA176, CONTA177, CONTA178 |
| Combination | | COMBIN14, COMBIN37, COMBIN39, COMBIN40, COMBI214, PRETS179 |$|$| Matrix | | MATRIX27, MATRIX50 |
| :--- | :--- | :--- |
| Infinite | | INFIN9, INFIN47, INFIN110, INFIN1111
 FURF151, SURF152, SURF153, SURF154, SURF156, SURF159,
 FOLLW201, SURF251, SURF252 |
| Load | MESH200 | |
| Meshing | REINF263, REINF264, REINF265 | |
| Reinforcing | USER300 | |
| User-Defined | | |

3.2. Pictorial Summary

The following tables contain numerically listed elements by group name with graphic pictorial and element description.

| BEAM Elements | HF Elements | MESH Elements | SHELL Elements |
| :--- | :--- | :--- | :--- |
| CIRCU Elements | HSFLD Elements | MPC Elements | SOLID Elements |
| COMBIN Elements | INFIN Elements | PIPE Elements | SOLSH Elements |
| CONTAC Elements | INTER Elements | PLANE Elements | SOURC Elements |
| CPT Elements | LINK Elements | PRETS Elements | SURF Elements |
| FLUID Elements | MASS Elements | REINF Elements | TARGE Elements |
| FOLLW Elements | MATRIX Elements | ROM Elements | TRANS Elements |

| BEAM Elements | Graphic Pictorials |
| :--- | :--- |
| BEAM161 | |
| Explicit Dynamics 3-D Beam | |
| 3 nodes 3-D space | |
| DOF: UX, UY, UZ, ROTX, ROTY, ROTZ, VX, VY, AX, | |
| AY, AZ | |
| BEAM188 | |
| Structural 3-D 2-Node Beam | |
| 2 nodes 3-D space | |
| DOF: UX, UY, UZ, ROTX, ROTY, ROTZ | |

| BEAM Elements | Graphic Pictorials |
| :--- | :--- |
| BEAM189 | 0 |
| Structural 3-D 3-Node Beam | 3 |
| 3 nodes 3-D space | |
| DOF: UX, UY, UZ, ROTX, ROTY, ROTZ | |

| CIRCU Elements | Graphic Pictorials |
| :--- | :--- |
| CIRCU94 | |
| Coupled-Field Piezoelectric Circuit | |
| 2 or 3 nodes 2-D space | |
| DOF: VOLT, CURR | |
| CIRCU124 | |
| Magnetic Electric Circuit | |
| 2-6 nodes 3-D space | |
| DOF: VOLT, CURR, EMF | |
| CIRCU125 | |
| Magnetic Electric Diode | |
| 2 nodes 3-D space | |
| DOF: VOLT | |

| COMBIN Elements | Graphic Pictorials |
| :--- | :--- |
| COMBIN14
 Combination Spring-Damper
 2 nodes 3-D space
 DOF: UX, UY, UZ, ROTX, ROTY, ROTZ | |
| COMBIN37
 Combination Control
 4 nodes 3-D space
 DOF: UX, UY, UZ, ROTX, ROTY, ROTZ, PRES, TEMP | |
| COMBIN39
 Combination Nonlinear Spring
 2 nodes 3-D space
 DOF: UX, UY, UZ, ROTX, ROTY, ROTZ, PRES, TEMP | |
| COMBIN40
 Combination
 2 nodes 3-D space
 DOF: UX, UY, UZ, ROTX, ROTY, ROTZ, PRES, TEMP | |
| COMBI165
 Explicit Dynamics Spring-Damper
 2 nodes 3-D space
 DOF: UX, UY, UZ, ROTX, ROTY, ROTZ, VX, VY, VZ,
 AX, AV, AZ | |

| COMBIN Elements | Graphic Pictorials |
| :--- | :--- |
| COMBI214 | |
| Combination Spring-Damper Bearing | |
| 2 nodes 2-D space | |
| DOF: UX, UY, UZ, | |

| CONTAC Elements | Craphic Pictorials |
| :--- | :--- |
| CONTA171 | |
| 2-D 2-Node Surface-to-Surface Contact | |
| 2 nodes 2-D space | |
| DOF: UX, UY, TEMP, VOLT, AZ | |
| CONTA172 | |
| 2-D 3-Node Surface-to-Surface Contact | |
| 3 nodes 2-D space | |
| DOF: UX, UY, TEMP, VOLT, AZ | |
| CONTA173 | |
| 3-D 4-Node Surface-to-Surface Contact | |
| 4 nodes 3-D space | |
| DOF: UX, UY, UZ, TEMP, VOLT, MAG | |
| CONTA174 | |
| 3-D 8-Node Surface-to-Surface Contact | |
| 8 nodes 3-D space | |
| DOF: UX, UY, UZ, TEMP, VOLT, MAG | |
| CONTA175
 2-D/3-D Node-to-Surface Contact
 1 node 2-D/3-D space
 DOF: UX, UY, UZ, TEMP, VOLT, AX, MAG | |
| CONTA176
 3-D Line-to-Line Contact
 3 nodes 3-D space
 DOF: UX, UY, UZ | |
| CONTA177 | |
| 3-D Line-to-Surface Contact | |
| 3 nodes 3-D space | |
| DOF: UX, UY, UZ | |

| CPT Elements | Graphic Pictorials | | |
|---|---|---|---|
| CPT213 | |
| 2-D 8-Node Coupled Pore-Pressure Mechanical | |
| Solid | |
| 8 nodes 2-D space | |
| DOF: UX, UY, PRES | | CPT215 | 3-D 8-Node Coupled Pore-Pressure Mechanical |
| :--- |
| Solid |
| 8 nodes 3-D space |
| DOF: UX, UY, UZ, PRES |
| CPT216 |
| 3-D 20-Node Coupled Pore-Pressure Mechanical |
| Solid |
| 20 nodes 3-D space |
| DOF: UX, UY, UZ, PRES |

| FLUID Elements |
| :--- | :--- |
| FLUID29 |
| 2-D Acoustic Fluid |
| 4 nodes 2-D space |
| DOF: UX, UY, PRES |
| FLUID30 |
| 3-D Acoustic Fluid |
| 8 nodes 3-D space |
| DOF: UX, UY, UZ, PRES |
| FLUID38 |
| Dynamic Fluid Coupling |
| 2 nodes 3-D space |
| DOF: UX, UY, UZ |
| FLUID79 |
| 2-D Contained Fluid |
| 4 nodes 2-D space |
| DOF: UX, UY |

| FLUID Elements |
| :--- |
| FLUID116 |
| Coupled Thermal-Fluid Pipe |
| 2 nodes 3-D space |
| DOF: PRES, TEMP |
| FLUID129 |
| 2-D Infinite Acoustic |
| 2 nodes 2-D space |
| DOF: PRES | | FLUID130 |
| :--- |
| 3-D Infinite Acoustic |
| 4 nodes 3-D space |
| DOF: PRES |
| FLUID136 |
| 3-D Squeeze Film Fluid |
| 4, 8 nodes 3-D space |
| DOF: PRES |
| FLUID138 |
| 3-D Viscous Fluid Link |
| 2 nodes 3-D space |
| DOF: PRES |
| FLUID139 |
| 3-D Slide Film Fluid |
| 2, 32 nodes 3-D space |
| DOF: UX, UY, UZ |
| FLUID141 |
| 2-D Fluid-Thermal |
| 4 nodes 2-D space |
| DOF: VX, VY, VZ, PRES, TEMP, ENKE, ENDS |
| FLUID142 |
| 3-D Fluid-Thermal |
| 8 nodes 3-D space |
| DOF: VX, VY, VZ, PRES, TEMP, ENKE, ENDS |
| FLUID220 |
| 3-D Acoustic Fluid |
| 20 nodes 3-D space |
| DOF: UX, UY, UZ, PRES |
| FLUID221 |
| 3-D Acoustic Fluid |
| 10 nodes 3-D space |
| DOF: UX, UY, UZ, PRES |

| FOLLW Elements | Graphic Pictorials |
| :--- | :--- |
| FOLLW201 | \bullet |
| 3-D Follower Load | |

| FOLLW Elements | Graphic Pictorials |
| :--- | :--- |
| 1 node 3-D space | |
| DOF: UX, UY, UZ, ROTX, ROTY, ROTZ | |

| HF Elements | Graphic Pictorials | | |
|---|---|---|---|
| HF118 | |
| 2-D High-Frequency Magnetic Electric Quadrilat- | |
| eral Solid | |
| 8 nodes 2-D space | |
| DOF: AX | | HF119 | 3-D High-Frequency Magnetic Electric Tetrahed- |
| :--- |
| ral Solid |
| 10 nodes 3-D space |
| DOF: AX |

| HSFLD Elements | Graphic Pictorials |
| :--- | :--- |
| HSFLD241 | |
| 2-D Hydrostatic Fluid | |
| 4 nodes 2-D space | |
| DOF: UX, UY, HDSP, PRES | |
| HSFLD242 | |
| 3-D Hydrostatic Fluid | |
| 9 nodes 3-D space | |
| DOF: UX, UY, UZ, HDSP, PRES | |

| INFIN Elements | Graphic Pictorials |
| :--- | :--- |
| INFIN9 | |
| 2-D Infinite Boundary | |
| 2 nodes 2-D space | |
| DOF: AZ, TEMP | |
| INFIN47 | |
| 3-D Infinite Boundary | |
| 4 nodes 3-D space | |
| DOF: MAG, TEMP | |
| INFIN110 | |
| 2-D Infinite Solid | |
| 4 or 8 nodes 2-D space | |
| DOF: AZ, VOLT, TEMP | |

| INFIN Elements | Graphic Pictorials |
| :--- | :--- |
| INFIN111 | |
| 3-D Infinite Solid | |
| 8 or 20 nodes 3-D space | |
| DOF: MAG, AX, AY, AZ, VOLT, TEMP | |

| INTER Elements |
| :--- | :--- |
| INTER115 |
| 3-D Magnetic Electric Interface |
| 4 nodes 3-D space |
| DOF: AX, AY, AZ, MAG |
| INTER192 |
| Structural 2-D Interface 4-Node Gasket |
| 4 nodes 2-D space |
| DOF: UX, UY |
| INTER193 |
| Structural 2-D Interface 6-Node Gasket |
| 6 nodes 2-D space |
| DOF: UX, UY |
| INTER194 |
| Structural 3-D Interface 16-Node Gasket |
| 16 nodes 3-D space |
| DOF: UX, UY, UZ |
| INTER195 |
| Structural 3-D Interface 8-Node Gasket |
| 8 nodes 3-D space |
| DOF: UX, UY, UZ |
| INTER202 |
| Structural 2-D Interface 4-Node Cohesive |
| 4 nodes 2-D space |
| DOF: UX, UY |

| LINK Elements | Graphic Pictorials |
| :---: | :---: |
| LINK11
 Structural 3-D Linear Actuator 2 nodes 3-D space DOF: UX, UY, UZ | |
| LINK31
 Radiation Link 2 nodes 3-D space DOF:TEMP | ممّا جمسم |
| LINK33
 Thermal 3-D Conduction Bar 2 nodes 3-D space DOF:TEMP | |
| LINK34
 Convection Link 2 nodes 3-D space DOF:TEMP | |
| LINK68
 Coupled Thermal-Electric Line 2 nodes 3-D space DOF: TEMP, VOLT | |
| LINK160
 Explicit 3-D Spar (or Truss)
 3 nodes 3-D space
 DOF: UX, UY, UZ, VX, VY, VZ, AX, AY, AZ | |
| LINK167
 Explicit Tension-Only Spar 3 nodes 3-D space DOF: UX, UY, UZ, VX, VY, VZ, AX, AY, AZ | |
| LINK180
 Structural 3-D Spar (or Truss) 2 nodes 3-D space DOF: UX, UY, UZ | |
| MASS Elements | Graphic Pictorials |
| MASS21
 Structural Mass
 1 node 3-D space
 DOF: UX, UY, UZ, ROTX, ROTY, ROTZ | - |
| MASS71
 Thermal Mass 1 node 3-D space DOF:TEMP | - |
| MASS166
 Explicit 3-D Structural Mass
 1 node 3-D space
 DOF: UX, UY, UZ, VX, VY, VZ, AX, AY, AZ | - |

| MATRIX Elements | Graphic Pictorials | |
| :--- | :--- | :--- |
| MATRIX27 | | |
| Stiffness, Damping, or Mass Matrix | | |
| 2 | | |
| 2 nodes 3-D space | | |
| DOF: UX, UY, UZ, ROTX, ROTY, ROTZ | | |

| MESH Elements | Graphic Pictorials |
| :--- | :--- |
| MESH200 | |
| Meshing Facet | |
| 2-20 nodes 2-D/3-D space | |
| DOF: None | |
| KEYOPT Dependent | |

| MPC Elements | Graphic Pictorials |
| :--- | :--- |
| MPC184 | |
| Structural Multipoint Constraint | |
| 2 or 3 nodes 3-D space | |
| DOF: UX, UY, UZ, ROTX, ROTY, ROTZ | |
| KEYOPT Dependent | |

| PIPE Elements | Graphic Pictorials |
| :--- | :--- |
| PIPE288 | |
| 3-D 2-Node Pipe | |
| 3 nodes 3-D space | |
| DOF: UX, UY, UZ, ROTX, ROTY, ROTZ | |
| PIPE289 | |
| 3-D 3-Node Pipe | |
| 4 nodes 3-D space | |
| DOF: UX, UY, UZ, ROTX, ROTY, ROTZ | |
| ELBOW290 | |
| 3-D 3-Node Elbow | |
| 3 nodes 3-D space | |
| DOF: UX, UY, UZ, ROTX, ROTY, ROTZ | |

| PLANE Elements | Graphic Pictorials |
| :--- | :--- |
| PLANE13 | |
| 2-D Coupled-Field Solid | |
| 4 nodes 2-D space | |
| DOF: TEMP, AZ, UX, UY, VOLT | |
| PLANE25 | |
| Axisymmetric-Harmonic 4-Node Structural Solid | |
| 4 nodes 2-D space | |
| DOF: UX, UY, UZ | |

| PLANE Elements |
| :--- |
| PLANE35 |
| 2-D 6-Node Triangular Thermal Solid |
| 6 nodes 2-D space |
| DOF: TEMP |
| PLANE53 |
| 2-D 8-Node Magnetic Solid |
| 8 nodes 2-D space |
| DOF: VOLT, AZ, CURR, EMF |
| PLANE55 |
| 2-D Thermal Solid |
| 4 nodes 2-D space |
| DOF:TEMP |
| PLANE75 |
| 2-D Axisymmetric-Harmonic 4-Node Thermal |
| Solid |
| 4 nodes 2-D space |
| DOF:TEMP |
| PLANE77 |
| 2-D 8-Node Thermal Solid |
| 8 nodes 2-D space |
| DOF: TEMP |
| PLANE78 |
| 2-D Axisymmetric - Harmonic 8-Node Thermal |
| Solid |
| 8 nodes 2-D space |
| DOF: TEMP |
| PLANE83 |
| 2-D Axisymmetric - Harmonic 8-Node Structural |
| Solid |
| 8 nodes 2-D space |
| DOF: UX, UY, UZ |
| PLANE121 |
| 2-D 8-Node Electrostatic Solid |
| 8 nodes 2-D space |
| DOF: VOLT |
| PLANE162 |
| Explicit 2-D Structural Solid |
| 4 nodes 2-D space |
| DOF: UX, UY, VX, VY, AX, AY |
| PLANE182 |
| 2-D 4-Node Structural Solid |
| 4 nodes 2-D space |
| DOF: UX, UY |

| PLANE Elements | PLANE183 |
| :--- | :--- |
| 2-D 8-Node Structural Solid | |
| 8 nodes 2-D space | |
| DOF: UX, UY | |

| PRETS Elements | Graphic Pictorials | |
| :--- | :--- | :---: |
| PRETS179 | | |
| 2-D/3-D Pretension Combination | | |
| 3 nodes 2-D/3-D space | \circ | |
| DOF: UX | | |

| REINF Elements |
| :--- |
| REINF263 |
| 2-D Smeared Reinforcing |
| Up to 8 nodes 2-D space |
| DOF: UX, UY, UZ, ROTZ |
| REINF264 |
| 3-D Discrete Reinforcing |
| Up to 20 nodes 3-D space |
| DOF: UX, UY, UZ, ROTX, ROTY, ROTZ |
| REINF265 |
| 3-D Smeared Reinforcing |
| Up to 20 nodes 3-D space |
| DOF: UX, UY, UZ, ROTX, ROTY, ROTZ |
| ROM Elements ROMictorial
 ROM144
 Reduced Order Electrostatic-Structural Coupled-
 Field
 20 or 30 nodes 3-D space
 DOF: EMF, VOLT, UX |

| SHELL Elements | Graphic Pictorials |
| :---: | :---: |
| SHELL28
 Structural 3-D Shear/Twist Panel 4 nodes 3-D space DOF: UX, UY, UZ, ROTX, ROTY, ROTZ | |
| SHELL41
 Structural 3-D Membrane Shell 4 nodes 3-D space DOF: UX, UY, UZ | |
| SHELL61
 2-D Axisymmetric - Harmonic Structural Shell 2 nodes 2-D space DOF: UX, UY, UZ, ROTZ | |
| SHELL131
 4-Node Thermal Shell 4 nodes 3-D space DOF: TBOT, TE2, TE3, TE4, . . .TTOP | |
| SHELL132
 8-Node Thermal Shell 8 nodes 3-D space DOF: TBOT, TE2, TE3, TE4, ...TTOP | |
| SHELL157
 Thermal-Electric Shell 4 nodes 3-D space DOF: TEMP, VOLT | |
| SHELL163
 Explicit Thin Structural Shell 4 nodes 3-D space DOF: UX, UY, UZ, VX, VY, VZ, AX, AY, AZ, ROTX, ROTY, ROTZ, | |
| SHELL181
 4-Node Structural Shell 4 nodes 3-D space DOF: UX, UY, UZ, ROTX, ROTY, ROTZ | |
| SHELL208
 2-Node Axisymmetric Shell 2 nodes 2-D space DOF: UX, UY, ROTZ | |
| SHELL209
 3-Node Axisymmetric Shell 3 nodes 2-D space DOF: UX, UY, ROTZ | |
| SHELL281
 8-Node Structural Shell 8 nodes 3-D space DOF: UX, UY, UZ, ROTX, ROTY, ROTZ | |

| SOLID Elements |
| :--- |
| SOLID5 |
| 3-D Coupled-Field Solid |
| 8 nodes 3-D space |
| DOF: UX, UY, UZ, TEMP, VOLT, MAG |
| SOLID62 |
| 3-D Magneto-Structural Coupled-Field Solid |
| 8 nodes 3-D space |
| DOF: UX, UY, UZ, AX, AY, AZ, VOLT |
| SOLID65 |
| 3-D Reinforced Concrete Structural Solid |
| 8 nodes 3-D space |
| DOF: UX, UY, UZ |
| SOLID70 |
| 3-D Thermal Solid |
| 8 nodes 3-D space |
| DOF: TEMP |
| SOLID87 |
| 3-D 10-Node Tetrahedral Thermal Solid |
| 10 nodes 3-D space |
| DOF: TEMP |
| SOLID90 |
| 3-D 20-Node Thermal Solid |
| 20 nodes 3-D space |
| DOF: TEMP |
| SOLID96 |
| 3-D Magnetic Scalar Solid |
| 8 nodes 3-D space |
| DOF: MAG |
| SOLID97 |
| 3-D Magnetic Solid |
| 8 nodes 3-D space |
| DOF: AX, AY, AZ, VOLT, CURR, EMF |
| SOLID98 |
| Tetrahedral Coupled-Field Solid |
| 10 nodes 3-D space |
| DOF: UX, UY, UZ, TEMP, VOLT, MAG |
| SOLID117 |
| 3-D 20-Node Magnetic Edge |
| 20 nodes 3-D space |
| DOF: AZ |

| SOLID Elements |
| :--- |
| SOLID122 |
| 3-D 20-Node Electrostatic Solid |
| 20 nodes 3-D space |
| DOF: VOLT |
| SOLID123 |
| 3-D 10-Node Tetrahedral Electrostatic Solid |
| 10 nodes 3-D space |
| DOF: VOLT |
| SOLID164 |
| Explicit 3-D Structural Solid |
| 8 nodes 3-D space |
| DOF: UX, UY, UZ, VX, VY, VZ, AX, AY, AZ |
| SOLID168 |
| Explicit 3-D 10-Node Tetrahedral Structural Solid |
| 10 nodes 3-D space |
| DOF: UX, UY, UZ, VX, VY, VZ, AX, AY, AZ |
| SOLID185 |
| 3-D 8-Node Structural Solid |
| 8 nodes 3-D space |
| DOF: UX, UY, UZ |
| SOLID186 |
| 3-D 20-Node Structural Solid |
| 20 nodes 3-D space |
| DOF: UX, UY, UZ |
| SOLID187 |
| 3-D 10-Node Tetrahedral Structural Solid |
| 10 nodes 3-D space |
| DOF: UX, UY, UZ |
| SOLID226 |
| 3-D 20-Node Coupled-Field Solid |
| 20 nodes 3-D space |
| DOF: UX, UY, UZ, TEMP, VOLT |
| SOLID227 |
| 3-D 10-Node Coupled-Field Solid |
| 10 nodes 3-D space |
| DOF: UX, UY, UZ, |

| SOLID Elements |
| :--- |
| SOLID236 |
| 3-D 20-Node Electromagnetic Solid |
| 20 nodes 3-D space |
| DOF: AZ, VOLT |
| SOLID237 |
| 3-D 10-Node Electromagnetic Solid |
| 10 nodes 3-D space |
| DOF: AZ, VOLT |
| SOLID272 |
| 4- to 48-Node General Axisymmetric Solid |
| (KEYOPT(2) = 3) |
| DOF: UX, UY, UZ |

| SOLSH Elements | Graphic Pictorials |
| :--- | :--- |
| SOLSH190 | |
| Structural Solid Shell | |
| 8 nodes 3-D space | |
| DOF: UX, UY, UZ | |

| SOURC Elements | Graphic Pictorials |
| :--- | :--- |
| SOURC36 | |
| Magnetic Electric Current Source | |
| 3 nodes 3-D space | |
| DOF: None | |

| SURF Elements |
| :--- | :--- |
| SURF151 |
| 2-D Thermal Surface Effect |
| 2 or 4 nodes 2-D space |
| DOF: TEMP |
| SURF152 |
| 3-D Thermal Surface Effect |
| 4 to 10 nodes 3-D space |
| DOF: TEMP |

| TARGE Elements | Graphic Pictorials |
| :--- | :--- |
| TARGE169 | |
| Contact 2-D Target Segment | |
| 3 nodes 2-D space | |
| DOF: UX, UY, ROTZ, TEMP | |

| TARGE Elements | Graphic Pictorials |
| :--- | :--- |
| TARGE170 | |
| Contact 3-D Target Segment | |
| 8 nodes 3-D space | |
| DOF: UX, UY, UZ, TEMP | |

| TRANS Elements | Graphic Pictorials |
| :--- | :--- |
| TRANS109 | |
| 2-D Electromechanical Solid | |
| 3 nodes 2-D space | |
| DOF: UX, UY, VOLT | |
| TRANS126 | |
| Electromechanical Transducer | |
| 2 nodes 3-D space | |
| DOF: UX-VOLT, UY-VOLT, UZ-VOLT | |

3.3. GUI-Inaccessible Elements

These elements are available via the ET family of commands only and are inaccessible from within the ANSYS GUI:

| REINF263 | 2-D Smeared Reinforcing |
| :--- | :--- |
| REINF264 | 3-D Discrete Reinforcing |
| REINF265 | 3-D Smeared Reinforcing |
| SURF251 | 2-D Radiosity Surface |
| SURF252 | 3-D Thermal Radiosity Surface |
| SOLID278 | 3-D Thermal Solid |
| SOLID279 | 3-D Thermal Solid |

Chapter 4: Element Library

This chapter describes each element, in numerical order. Descriptions common to several elements appear in separate sections of General Element Features (p.5) and are referenced where applicable. Read About This Reference (p.1) and General Element Features (p. 5) before reading the element descriptions in Part I:Element Library (p. 149).

More detailed information about each element is available in the Theory Reference for the Mechanical APDL and Mechanical Applications, which describes how the element input items (such as the real constants, material properties, KEYOPT switches, etc.) are used to produce the element output.

SOLID5 Element Description

Although this legacy element is available for use in your analysis, ANSYS recommends using a current-technology element such as SOLID226.

SOLID5 has a 3-D magnetic, thermal, electric, piezoelectric, and structural field capability with limited coupling between the fields. The element has eight nodes with up to six degrees of freedom at each node. Scalar potential formulations (reduced RSP, difference DSP, or general GSP) are available for modeling magnetostatic fields in a static analysis. When used in structural and piezoelectric analyses, SOLID5 has large deflection and stress stiffening capabilities. See SOLID5 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element. Coupled field elements with similar field capabilities are PLANE13, SOLID62, and SOLID98.

Figure 1 SOLID5 Geometry

(Prism Option)

SOLID5 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 1 (p.151). The element is defined by eight nodes and the material properties. The type of units (MKS or user defined) is specified through the EMUNIT command. EMUNIT also determines the value of MUZERO. The EMUNIT defaults are MKS units and MUZERO $=4 \pi \times 10^{-7}$ Henries/meter. In addition to MUZERO, orthotropic relative permeability is specified through the MURX, MURY, and MURZ material property labels.

MGXX, MGYY, and MGZZ represent vector components of the coercive force for permanent magnet materials. The magnitude of the coercive force is the square root of the sum of the squares of the components. The direction of polarization is determined by the components MGXX, MGYY, and MGZZ. Permanent magnet polarization directions correspond to the element coordinate directions. Orthotropic material directions
correspond to the element coordinate directions. The element coordinate system orientation is as described in Coordinate Systems (p. 14). Nonlinear magnetic, piezoelectric, and anisotropic elastic properties are entered with the TB command as described in Material Data Tables (Implicit Analysis) (p. 22). Nonlinear orthotropic magnetic properties may be specified with a combination of a B-H curve and linear relative permeability. The B-H curve will be used in each element coordinate direction where a zero value of relative permeability is specified. Only one B-H curve may be specified per material.

Various combinations of nodal loading are available for this element (depending upon the KEYOPT(1) value). Nodal loads are defined with the \mathbf{D} and the F commands. With the \mathbf{D} command, the Lab variable corresponds to the degree of freedom (UX, UY, UZ, TEMP, VOLT, MAG) and VALUE corresponds to the value (displacements, temperature, voltage, scalar magnetic potential). With the \mathbf{F} command, the Lab variable corresponds to the force (FX, FY, FZ, HEAT, AMPS, FLUX) and VALUE corresponds to the value (force, heat flow, current or charge, magnetic flux).

Element loads are described in Node and Element Loads (p. 97). Pressure, convection or heat flux (but not both), radiation, and Maxwell force flags may be input on the element faces indicated by the circled numbers in Figure 1 (p. 151) using the SF and SFE commands. Positive pressures act into the element. Surfaces at which magnetic forces are to be calculated may be identified by using the MXWF label on the surface load commands (no value is required.) A maxwell stress tensor calculation is performed at these surfaces to obtain the magnetic forces. These forces are applied in solution as structural loads. The surface flag should be applied to "air" elements adjacent to the body for which forces are required. Deleting the MXWF specification removes the flag.

The body loads, temperature, heat generation rate and magnetic virtual displacement may be input based on their value at the element's nodes or as a single element value [BF and BFE]. When the temperature degree of freedom is active $(\operatorname{KEYOPT}(1)=0,1$ or 8$)$, applied body force temperatures $[B F, B F E]$ are ignored. In general, unspecified nodal values of temperature and heat generation rate default to the uniform value specified with the BFUNIF or TUNIF commands. Calculated Joule heating (JHEAT) is applied in subsequent iterations as heat generation rate.

If the temperature degree of freedom is present, the calculated temperatures override any input nodal temperatures.

Air elements in which Local Jacobian forces are to be calculated may be identified by using nodal values of 1 and 0 for the MVDI label [BF]. See the Low-Frequency Electromagnetic Analysis Guide for details. These forces are not applied in solution as structural loads.

Current for the scalar magnetic potential options is defined with the SOURC36 element the command macro RACE, or through electromagnetic coupling. The various types of scalar magnetic potential solution options are defined with the MAGOPT command.

A summary of the element input is given in "SOLID5 Input Summary" (p. 152). A general description of element input is given in Element Input (p. 5).

SOLID5 Input Summary

Nodes

I, J, K, L, M, N, O, P

Degrees of Freedom

```
UX, UY, UZ, TEMP, VOLT, MAG if KEYOPT (1) = 0
TEMP, VOLT, MAG if KEYOPT (1) = 1
```

UX, UY, UZ if KEYOPT (1) = 2
UX, UY, UZ, VOLT if KEYOPT(1) $=3$
TEMP if KEYOPT (1) = 8
VOLT if KEYOPT $(1)=9$
MAG if KEYOPT $(1)=10$

Real Constants

None

Material Properties

EX, EY, EZ, (PRXY, PRYZ, PRXZ or NUXY, NUYZ, NUXZ), ALPX, ALPY, ALPZ (or CTEX, CTEY, CTEZ or THSX, THSY, THSZ), DENS, GXY, GYZ, GXZ, DAMP, KXX, KYY, KZZ, C, ENTH, MUZERO, MURX, MURY, MURZ, RSVX, RSVY, RSVZ, MGXX, MGYY, MGZZ, PERX, PERY, PERZ, plus BH, ANEL, and PIEZ data tables (see Material Data Tables (Implicit Analysis) (p. 22))

Surface Loads

Pressure, Convection or Heat Flux (but not both), Radiation (using Lab = RDSF), and Maxwell Force Flags --
face 1 (J-I-L-K), face 2 (I-J-N-M), face 3 (J-K-O-N), face 4 (K-L-P-O), face 5 (L-I-M-P), face 6 (M-N-O-P)

Body Loads

Temperatures --

$\mathrm{T}(\mathrm{I}), \mathrm{T}(\mathrm{J}), \mathrm{T}(\mathrm{K}), \mathrm{T}(\mathrm{L}), \mathrm{T}(\mathrm{M}), \mathrm{T}(\mathrm{N}), \mathrm{T}(\mathrm{O}), \mathrm{T}(\mathrm{P})$
Heat Generations --
HG(I), HG(J), HG(K), HG(L), HG(M), HG(N), HG(O), HG(P)
Magnetic Virtual Displacements --
$\mathrm{VD}(\mathrm{I}), \mathrm{VD}(\mathrm{J}), \mathrm{VD}(\mathrm{K}), \mathrm{VD}(\mathrm{L}), \mathrm{VD}(\mathrm{M}), \mathrm{VD}(\mathrm{N}), \mathrm{VD}(\mathrm{O}), \mathrm{VD}(\mathrm{P})$

Electric Field --

EFX, EFY, EFZ. See "SOLID5 Assumptions and Restrictions" (p. 158).

Special Features

Requires an iterative solution for field coupling (displacement, temperature, electric, magnetic, but not piezoelectric)
Large deflection
Stress stiffening
Birth and death
Adaptive descent

KEYOPT(1)

Element degrees of freedom:
0 --
UX, UY, UZ, TEMP, VOLT, MAG
1 --
TEMP, VOLT, MAG
2 --
UX, UY, UZ

3 --
UX, UY, UZ, VOLT
8 --
TEMP
9 --
VOLT
10 --
MAG

KEYOPT(3)

Extra shapes:
0 --
Include extra shapes
1 --
Do not include extra shapes

KEYOPT(5)

Extra element output:
0 --
Basic element printout
2 --
Nodal stress or magnetic field printout

SOLID5 Output Data

The solution output associated with the element is in two forms

- Nodal degree of freedom results included in the overall nodal solution
- Additional element output as shown in Table 1: SOLID5 Element Output Definitions (p. 155).

Several items are illustrated in Figure 2 (p. 154). The element stress directions are parallel to the element coordinate system. The reaction forces, heat flow, current, and magnetic flux at the nodes can be printed with the OUTPR command. A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

Figure 2 SOLID5 Element Output

The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 1 SOLID5 Element Output Definitions

| Name | Definition | 0 | R |
| :---: | :---: | :---: | :---: |
| EL | Element Number | Y | Y |
| NODES | Element nodes - I, J, K, L, M, N, O, P | Y | Y |
| MAT | Element material number | Y | Y |
| VOLU: | Element volume | Y | Y |
| XC, YC, ZC | Location where results are reported | Y | 3 |
| PRES | P1 at nodes J, I, L, K; P2 at I, J, N, M; P3 at J, K, O, N; P4 at K, L, P, O; P5 at L, I, M, P; P6 at M, N, O, P | Y | Y |
| TEMP | Input Temperatures: $\mathrm{T}(\mathrm{I}), \mathrm{T}(\mathrm{J}), \mathrm{T}(\mathrm{K}), \mathrm{T}(\mathrm{L}), \mathrm{T}(\mathrm{M}), \mathrm{T}(\mathrm{N})$, T(O), T(P) | Y | Y |
| HGEN | Input Heat Generations: HG(I), HG(J), HG(K), HG(L), HG(M), HG(N), HG(O), HG(P) | Y | Y |
| S:X, Y, Z, XY, YZ, XZ | Component stresses | 1 | 1 |
| S:1, 2, 3 | Principal stresses | 1 | 1 |
| S:INT | Stress intensity | 1 | 1 |
| S:EQV | Equivalent stress | 1 | 1 |
| $\begin{aligned} & \text { EPEL:X,Y, Z, XY, YZ, } \\ & \text { XZ } \end{aligned}$ | Elastic strains | 1 | 1 |
| EPEL:1, 2, 3 | Principal elastic strains | 1 | - |
| EPEL:EQV | Equivalent elastic strains [4] | 1 | 1 |
| $\begin{aligned} & \text { EPTH:X, Y, Z, XY, YZ, } \\ & X Z \end{aligned}$ | Thermal strains | 1 | 1 |
| EPTH:EQV | Equivalent thermal strains [4] | 1 | 1 |
| LOC | Output location (X, Y, Z) | 1 | 1 |
| MUX, MUY, MUZ | Magnetic permeability | 1 | 1 |
| H: X, Y, Z | Magnetic field intensity components | 1 | 1 |
| H:SUM | Vector magnitude of H | 1 | 1 |
| B:X, Y, Z | Magnetic flux density components | 1 | 1 |
| B:SUM | Vector magnitude of B | 1 | 1 |
| FJB | Lorentz magnetic force components ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$) | 1 | - |
| FMX | Maxwell magnetic force components (X, Y, Z) | 1 | - |
| FVW | Virtual work force components (X, Y, Z) | 1 | 1 |

| Name | Definition | $\mathbf{0}$ | \mathbf{R} |
| :--- | :--- | :--- | :--- |
| FMAG:X, Y, Z | Combined (FJB or FMX) force components | - | 1 |
| EF:X, Y, Z | Electric field components (X, Y, Z) | 1 | 1 |
| EF:SUM | Vector magnitude of EF | 1 | 1 |
| JS:X, Y, Z | Source current density components | 1 | 1 |
| JSSUM | Vector magnitude of JS | 1 | 1 |
| JHEAT: | Joule heat generation per unit volume | 1 | 1 |
| D:X, Y, Z | Electric flux density components | 1 | 1 |
| D:SUM | Vector magnitude of D | 1 | 1 |
| UE, UD, UM | Elastic (UE), dielectric (UD), and electromechanical
 coupled (UM) energies | 1 | 1 |
| TG:X, Y, Z | Thermal gradient components | 1 | 1 |
| TG:SUM | Vector magnitude of TG | 1 | 1 |
| TF:X, Y, Z | Thermal flux components | 1 | 1 |
| TF:SUM | Vector magnitude of TF (heat flow rate/unit cross-
 section area) | 1 | 1 |
| FACE | Face label | 2 | 2 |
| AREA | Face area | 2 | 2 |
| NODES | Face nodes | 2 | - |
| HFILM | Film coefficient at each node of face | 2 | - |
| TBULK | Bulk temperature at each node of face | 2 | - |
| TAVG | Average face temperature | 2 | 2 |
| HEAT RATE | Heat flow rate across face by convection | 2 | 2 |
| HEAT RATE/AREA | Heat flow rate per unit area across face by convec-
 tion | 2 | - |
| HFLUX | Heat flux at each node of face | 2 | - |
| HFAVG | Average film coefficient of the face | 2 | |
| TBAVG | Average face bulk temperature | 2 | |
| HFLXAVG | Heat flow rate per unit area across face caused by
 input heat flux | - | 2 |

1. Element solution at the centroid printed out only if calculated (based on input data).
2. Nodal stress or magnetic field solution (only if $\operatorname{KEYOPT}(5)=2$). The solution results are repeated at each node and only if a surface load is input.
3. Available only at centroid as a *GET item.
4. The equivalent strains use an effective Poisson's ratio: for elastic and thermal this value is set by the user (MP,PRXY).

Table 2: SOLID5 Item and Sequence Numbers (p. 157) lists output available through the ETABLE command using the Sequence Number method. The following notation is used in Table 2: SOLID5 Item and Sequence Numbers (p .157):

Name

output quantity as defined in the Table 1: SOLID5 Element Output Definitions (p. 155)

Item

predetermined Item label for ETABLE command
E
sequence number for single-valued or constant element data
I,J,...,P
sequence number for data at nodes I, J, \ldots, P
FCn
sequence number for solution items for element Face n
Table 2 SOLID5 Item and Sequence Numbers

| Output Quantity Name | ETABLE and ESOL Command Input | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Item | E | I | J | K | L | M | N | 0 | P |
| P1 | SMISC | - | 2 | 1 | 4 | 3 | - | - | - | - |
| P2 | SMISC | - | 5 | 6 | - | - | 8 | 7 | - | - |
| P3 | SMISC | - | - | 9 | 10 | - | - | 12 | 11 | - |
| P4 | SMISC | - | - | - | 13 | 14 | - | - | 16 | 15 |
| P5 | SMISC | - | 18 | - | - | 17 | 19 | - | - | 20 |
| P6 | SMISC | - | - | - | - | - | 21 | 22 | 23 | 24 |
| MUX | NMISC | 1 | - | - | - | - | - | - | - | - |
| MUY | NMISC | 2 | - | - | - | - | - | - | - | - |
| MUZ | NMISC | 3 | - | - | - | - | - | - | - | - |
| FVWX | NMISC | 4 | - | - | - | - | - | - | - | - |
| FVWY | NMISC | 5 | - | - | - | - | - | - | - | - |
| FVWZ | NMISC | 6 | - | - | - | - | - | - | - | - |
| FVWSUM | NMISC | 7 | - | - | - | - | - | - | - | - |
| UE | NMISC | 16 | - | - | - | - | - | - | - | - |
| UD | NMISC | 17 | - | - | - | - | - | - | - | - |
| UM | NMISC | 18 | - | - | - | - | - | - | - | - |

| Output
 Quantity
 Name | ETABLE and ESOL Command Input | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Item | FC1 | FC2 | FC3 | FC4 | FC5 | FC6 |
| AREA | NMISC | 19 | 25 | 31 | 37 | 43 | 49 |
| HFAVG | NMISC | 20 | 26 | 32 | 38 | 44 | 50 |
| TAVG | NMISC | 21 | 27 | 33 | 39 | 45 | 51 |
| TBAVG | NMISC | 22 | 28 | 34 | 40 | 46 | 52 |
| HEAT RATE | NMISC | 23 | 29 | 35 | 41 | 47 | 53 |

| Output
 Quantity
 Name | ETABLE and ESOL Command Input | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Item | FC1 | FC2 | FC3 | FC4 | FC5 | FC6 | |
| HFLXAVG | NMISC | 24 | 30 | 36 | 42 | 48 | 54 | |

SOLID5 Assumptions and Restrictions

- When using SOLID5 with SOURC36 elements, the source elements must be placed so that the resulting Hs field fulfills boundary conditions for the total field.
- The element must not have a zero volume or a zero length side. This occurs most frequently when the element is not numbered properly.
- Elements may be numbered either as shown in Figure 1 (p. 151) or may have the planes IJKL and MNOP interchanged.
- A prism shaped element may be formed by defining duplicate node numbers as described in Triangle, Prism, and Tetrahedral Elements (p. 99).
- The difference scalar magnetic potential option is restricted to singly-connected permeable regions, so that as $\mu \rightarrow \infty$ in these regions, the resulting field $\mathrm{H} \rightarrow 0$. The reduced scalar and general scalar potential options do not have this restriction.
- At a free surface of the element (i.e., not adjacent to another element and not subjected to a boundary constraint), the normal component of magnetic flux density (B) is assumed to be zero.
- Temperatures and heat generation rates, if internally calculated, include any user defined heat generation rates.
- The thermal, electrical, magnetic, and structural terms are coupled through an iterative procedure.
- Large deflection capabilities available for $\operatorname{KEYOPT}(1)=2$ and 3 are not available for $\operatorname{KEYOPT}(1)=0$.
- Stress stiffening is available for KEYOPT(1) $=0,2$, and 3 .
- Do not constrain all VOLT DOFs to the same value in a piezoelectric analysis (KEYOPT(1) = 0 or 3). Perform a pure structural analysis instead $(\operatorname{KEYOPT}(1)=2)$.
- This element may not be compatible with other elements with the VOLT degree of freedom. To be compatible, the elements must have the same reaction solution for the VOLT DOF. Elements that have an electric charge reaction solution must all have the same electric charge reaction sign. For more information, see Element Compatibility in the Low-Frequency Electromagnetic Analysis Guide.
- The electric field body load is not used during solution and is applicable only to POST1 charged particle tracing.
- In an MSP analysis, avoid using a closed domain and use an open domain, closed with natural flux parallel boundary conditions on the MAG degree of freedom, or infinite elements. If you use a closed domain, you may see incorrect results when the formulation is applied using SOLID5, SOLID96, or SOLID98 elements and the boundary conditions are not satisfied by the Hs field load calculated by the BiotSavart procedure based on SOURC36 current source primitive input.
- If you used the MAG degree of freedom, you cannot restart a job in ANSYS Mechanical using Jobname. DB and Jobname. ESAV files that were created by ANSYS Multiphysics.
- This element cannot be used in a distributed solution.

SOLID5 Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

ANSYS Mechanical

Unless the Emag option is enabled, the following restrictions apply:

- This element does not have magnetic capability.
- The MAG degree of freedom is not active.
- KEYOPT(1) cannot be set to 10 . If $\operatorname{KEYOPT}(1)=0$ (default) or 1 , the MAG degree of freedom is inactive.
- The magnetic material properties (MUZERO, MUR_MG_, and the BH data table) are not allowed.
- The Maxwell force flags and magnetic virtual displacements body loads are not applicable.

ANSYS Emag

- This element has only magnetic and electric field capability, and does not have structural, thermal, or piezoelectric capability.
- The only active degrees of freedom are MAG and VOLT.
- KEYOPT(1) settings of $0,1,2,3$ and 8 are invalid.
- The only allowable material properties are the magnetic and electric properties (MUZRO through PERZ, plus the BH data table).
- The only applicable surface loads are Maxwell force flags. The only applicable body loads are temperatures (for material property evaluation only) and magnetic virtual displacements.
- The element does not have stress stiffening or birth and death features.
- KEYOPT(3) is not applicable.

INFIN9

2-D Infinite Boundary

MP ME <> <> <> <> <> <> EM <> <> PP <> EME <>

INFIN9 Element Description

Although this legacy element is available for use in your analysis, ANSYS recommends using a current-technology element such as INFIN110.

INFIN9 is used to model an open boundary of a 2-D planar unbounded field problem. The element has two nodes with a magnetic vector potential or temperature degree of freedom at each node. The enclosed element type can be the PLANE13 or PLANE53 magnetic elements, or the PLANE55, PLANE77, and PLANE35 thermal elements. With the magnetic degree of freedom (AZ) the analysis may be linear or nonlinear, static or dynamic. With the thermal degree of freedom steady-state or transient analysis (linear or nonlinear) may be done. See INFIN9 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

Figure 1 INFIN9 Geometry

INFIN9 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 1 (p. 161), and a typical application is shown in Figure 2 (p. 163). The element is defined by two nodes and the material properties. Nonzero material properties must be defined. The element x-axis is oriented along the length of the element from node I toward node J.

The coefficient matrix of this boundary element is, in general, unsymmetric. The matrix is made symmetric by averaging the off-diagonal terms to take advantage of a symmetric solution with a slight decrease in accuracy. $\operatorname{KEYOPT}(2)$ can be used to prevent an unsymmetric matrix from being made symmetric.

A summary of the element input is given in "INFIN9 Input Summary" (p. 162). A general description of element input is given in Element Input (p. 5).

INFIN9 Input Summary

Nodes

I, J
Degrees of Freedom
AZ if KEYOPT (1) = 0
TEMP if KEYOPT (1) = 1

Real Constants

None

Material Properties

MUZRO if KEYOPT (1) $=0$ (has default value for MKS units or can be set with the EMUNIT command) KXX if KEYOPT (1) = 1

Surface Loads

None

Body Loads

None

Special Features

None

KEYOPT(1)

Element degree of freedom:
0 --
Magnetic option (AZ degree of freedom)
1 --
Thermal option (TEMP degree of freedom)

KEYOPT(2)

Coefficient matrix formation:
0 --
Make the coefficient matrix symmetric
1 --
Coefficient matrix is used as generated (symmetric or unsymmetric, depending on the problem)

INFIN9 Output Data

The boundary element has no output of its own since it is used only to provide a semi-infinite boundary condition to a model consisting of other elements.

Figure 2 INFIN9 Element Usage

INFIN9 Assumptions and Restrictions

- The boundary element assumes a straight line segment, the length of which must be nonzero.
- The semi-infinite sector is assumed to be bound on three sides by the boundary element, by a semiinfinite radial line from the global coordinate system origin through node I, and by a semi-infinite radial line from the global coordinate system origin through node J. The boundary element should be as normal as possible to the radial lines.
- Acute or wide intersection angles should be avoided by "filling-in" the model with the other elements so that the line of boundary elements around the model is smooth and concave when viewed from the global coordinate system origin.
- The boundary element must lie "against" an enclosed element (that is, share the same nodes).
- The origin of the global coordinate system must be inside the model and as centrally located as possible.
- The line of boundary elements should be located away from the region of interest of the enclosed elements for better accuracy.
- The line of boundary elements need not totally surround the model.
- The exterior semi-infinite domain is assumed to be homogeneous, isotropic, and linear without containing any sources or sinks.
- An axisymmetric option is not available.
- The element cannot be deactivated with the EKILL command.
- The element assumes that the degree of freedom (DOF) value at infinity is always zero (0.0). That is, the DOF value at infinity is not affected by TUNIF, D, or other load commands.
- When used in a model with the higher-order elements PLANE53, PLANE77, or PLANE35, the midside nodes of these elements must be removed at the interface with INFIN9 [EMID].
- If $\operatorname{KEYOPT}(2)=1$, the matrices are presumed to be unsymmetric.
- This element cannot be used in a distributed solution.

INFIN9 Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

ANSYS Mechanical

Unless the Emag option is enabled, the following restrictions apply:

- This element does not have magnetic field capability.
- The AZ degree of freedom is not active.
- KEYOPT(1) defaults to 1 (TEMP) instead of 0 and cannot be changed.
- The material property MUZRO is not allowed.

ANSYS Emag

- This element has only magnetic field capability, and does not have thermal capability.
- The only active degree of freedom is AZ.
- The only allowable material property is MUZERO.
- KEYOPT(1) can only be set to 0 (default).

LINK11

Linear Actuator

MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS
Product Restrictions

LINK11 Element Description

LINK11 may be used to model hydraulic cylinders and other applications undergoing large rotations. The element is a uniaxial tension-compression element with three degrees of freedom at each node: translations in the nodal x, y, and z directions. No bending or twist loads are considered. See LINK11 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

Figure 1 LINK11 Geometry

LINK11 Input Data

The geometry and node locations for the element are shown in Figure 1 (p.165). The element is defined by two nodes, a stiffness, viscous damping, and mass. The element initial length L_{o} and orientation are determined from the node locations.

Element loads are described in Node and Element Loads (p. 97). The stroke (length) is defined through the surface load input using the PRES label. The stroke is relative to the zero force position of the element. A force may be defined in the same manner as an alternate to the stroke.

A summary of the element input is given below. A general description of element input is given in Element Input (p. 5).

LINK11 Input Summary

Nodes

I, J

Degrees of Freedom

UX, UY, UZ

Real Constants

K - Stiffness (force/length)
C - Viscous damping coefficient (force*time/length)
M - Mass (force*time ${ }^{2} /$ length)

Material Properties

DAMP

Surface Loads

Pressures --

face 1 - Stroke
face 2 - Axial Force

Body Loads

None

Special Features

Stress stiffening Large deflection Birth and death

KEYOPTs

None

LINK11 Output Data

The solution output associated with the element is in two forms:

- Nodal displacements included in the overall nodal displacement solution
- Additional element output as shown in Table 1: LINK11 Element Output Definitions (p. 166).

A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and " - " indicates that the item is not available.

Table 1 LINK11 Element Output Definitions

| Name | Definition | \mathbf{O} | R |
| :--- | :--- | :---: | :---: |
| EL | Element Number | Y | Y |
| NODES | Nodes - I, J | Y | Y |
| ILEN | Initial element length | Y | Y |
| CLEN | Current element length (this time step) | Y | Y |
| FORCE | Axial force (spring force) | Y | Y |
| DFORCE | Damping force | Y | Y |
| STROKE | Applied stroke (element load) | Y | Y |
| MSTROKE | Measured stroke | Y | Y |

Table 2: LINK11 Item and Sequence Numbers (p. 167) lists output available through the ETABLE command using the Sequence Number method. The following notation is used in Table 2: LINK11 Item and Sequence Numbers (p. 167):

Name

output quantity as defined in Table 1: LINK11 Element Output Definitions (p. 166)

Item

predetermined Item label for ETABLE command
E
sequence number for single-valued or constant element data
Table 2 LINK11 Item and Sequence Numbers

| Output
 Quant-
 ity
 Name | ETABLE and
 ESOL Command
 Input | |
| :--- | :--- | :--- |
| | Item | E |
| FORCE | SMISC | 1 |
| ILEN | NMISC | 1 |
| CLEN | NMISC | 2 |
| STROKE | NMISC | 3 |
| MSTROKE | NMISC | 4 |
| DFORCE | NMISC | 5 |

LINK11 Assumptions and Restrictions

- The element must not have a zero length.
- The element assumes a straight line, axially loaded at the ends.
- A twist (torsion) about the element x-axis (defined from node I to node J) has no effect.
- No bending of the element is considered, as in a pin-jointed structure.
- The mass is equally divided between the nodes.
- Only the lumped mass matrix is available.
- Surface load pressure indicators are not displayed for element or node plots.

LINK11 Product Restrictions

There are no product-specific restrictions for this element.

MP ME <> <> <> <> <> <> EM <> <> PP <> EME MFS

PLANE13 Element Description

Although this legacy element is available for use in your analysis, ANSYS recommends using a current-technology element such as PLANE223.

PLANE13 has a 2-D magnetic, thermal, electrical, piezoelectric, and structural field capability with limited coupling between the fields. PLANE13 is defined by four nodes with up to four degrees of freedom per node. The element has nonlinear magnetic capability for modeling B-H curves or permanent magnet demagnetization curves. PLANE13 has large deflection and stress stiffening capabilities. When used in purely structural analyses, PLANE13 also has large strain capabilities. See PLANE13 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element. Other coupled-field elements are SOLID5, SOLID98, and SOLID62.

Figure 1 PLANE13 Geometry

PLANE13 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 1 (p. 169). The element input data includes four nodes and magnetic, thermal, electrical, and structural material properties. The type of units (MKS or user defined) is specified through the EMUNIT command. EMUNIT also determines the value of MUZERO. The EMUNIT defaults are MKS units and MUZRO $=4 \pi \times 10^{-7}$ henries/meter. In addition to MUZERO, orthotropic relative permeability is specified through the MURX and MURY material property labels.

MGXX and MGYY represent vector components of the coercive force for permanent magnet materials. The magnitude of the coercive force is the square root of the sum of the squares of the components. The direction of polarization is determined by the components MGXX and MGYY. Permanent magnet polarization and orthotropic material directions correspond to the element coordinate directions. The element coordinate system orientation is as described in Coordinate Systems (p. 14). Nonlinear magnetic B-H, piezoelectric, and anisotropic elastic properties are entered with the TB command as described in Material Data Tables (Implicit Analysis) (p .22). Nonlinear orthotropic magnetic properties may be specified with a combination of a B-H curve and linear relative permeability. The B-H curve will be used in each element coordinate direction where a zero value of relative permeability is specified. Only one B-H curve may be specified per material.

Various combinations of nodal loading are available for this element (depending upon the KEYOPT(1) value). Nodal loads are defined with the \mathbf{D} and the \mathbf{F} commands. Nodal forces, if any, should be input per unit of depth for a plane analysis and on a full 360° basis for an axisymmetric analysis.

Element loads are described in Node and Element Loads (p. 97). Pressure, convection or heat flux (but not both), radiation, and Maxwell force flags may be input on the element faces indicated by the circled numbers in Figure 1 (p. 169) using the SF and SFE commands. Positive pressures act into the element. Surfaces at which magnetic forces are to be calculated are identified by using the MXWF label on the surface load commands (no value is required). A maxwell stress tensor calculation is performed at these surfaces to obtain the magnetic forces. These forces are applied in solution as structural loads. The surface flag should be applied to "air" elements adjacent to the body for which forces are required. Deleting the MXWF specification removes the flag.

Body loads - temperature, heat generation rate, and magnetic virtual displacement - may be input at the element's nodes or as a single element value [BF, BFE]. Source current density loads may be applied to an area [BFA] or input as an element value [BFE]. When the temperature degree of freedom is active (KEYOPT(1) $=2$ or 4), applied body force temperatures $[\mathbf{B F}, \mathbf{B F E}]$ are ignored. In general, unspecified nodal temperatures and heat generation rates default to the uniform value specified with the BFUNIF or TUNIF command. Heat generation from Joule heating is applied in Solution as thermal loading for static and transient analyses.

If the temperature degree of freedom is present, the calculated temperatures override any input nodal temperatures.

Air elements in which local Jacobian forces are to be calculated may be identified by using nodal values of 1 and 0 for the MVDI label [BF]. See the Low-Frequency Electromagnetic Analysis Guide for details. These forces are not applied in solution as structural loads.

A summary of the element input is given in "PLANE13 Input Summary" (p. 170). A general description of element input is given in Element Input (p. 5). For axisymmetric applications see Harmonic Axisymmetric Elements (p. 102).

PLANE13 Input Summary

Nodes
 I, J, K, L
 Degrees of Freedom

AZ if KEYOPT (1) = 0
TEMP if KEYOPT (1) = 2
UX, UY if KEYOPT (1) = 3
UX, UY, TEMP, AZ if KEYOPT (1) = 4
VOLT, AZ if KEYOPT (1) = 6
UX, UY, VOLT if KEYOPT (1) = 7

Real Constants

None

Material Properties

EX, EY, EZ, (PRXY, PRYZ, PRXZ or NUXY, NUYZ, NUXZ),
ALPX, ALPY, ALPZ, (or CTEX, CTEY,CTEZ or THSX, THSY,THSZ),
DENS, GXY, DAMP,
KXX, KYY, C, ENTH, MUZERO, MURX,

MURY, RSVZ, MGXX, MGYY, PERX, PERY,
plus BH, ANEL, and Piezoelectric data tables (see Material Data Tables (Implicit Analysis) (p. 22))

Surface Loads

Pressure, Convection or Heat Flux (but not both), Radiation (using Lab = RDSF), and Maxwell Force Flags--
face 1 ($\mathrm{J}-\mathrm{I}$), face 2 (K-J), face 3 (L-K), face 4 (I-L)

Body Loads

Temperatures --

$\mathrm{T}(\mathrm{I}), \mathrm{T}(\mathrm{J}), \mathrm{T}(\mathrm{K}), \mathrm{T}(\mathrm{L})$
Heat Generations --
HG(I), HG(J), HG(K), HG(L)
Magnetic Virtual Displacements -$\mathrm{VD}(\mathrm{I}), \mathrm{VD}(\mathrm{J}), \mathrm{VD}(\mathrm{K}), \mathrm{VD}(\mathrm{L})$

Source Current Density --
spare, spare, JSZ(I), PHASE(I), spare, spare,
JSZ(J), PHASE(J), spare, spare, JSZ(K), PHASE(K), spare, spare, JSZ(L), PHASE(L)

Special Features

Requires an iterative solution for field coupling (displacement, temperature, electric, magnetic, but not piezoelectric)
Large deflection
Large strain
Stress stiffening
Birth and death
Adaptive descent

KEYOPT(1)

Element degrees of freedom:

0 --

AZ degree of freedom
2 --
TEMP degree of freedom
3 --
UX, UY degrees of freedom
4 --
UX, UY, TEMP, AZ degrees of freedom
6 --
VOLT, AZ degrees of freedom
7 --
UX, UY, VOLT degrees of freedom

KEYOPT(2)

Extra shapes:

0 --

Include extra shapes
1 --
Do not include extra shapes

KEYOPT(3)

Element behavior:
0 --
Plane strain (with structural degrees of freedom)
1 --
Axisymmetric
2 --
Plane stress (with structural degrees of freedom)

KEYOPT(4)

Element coordinate system defined:
0 --
Element coordinate system is parallel to the global coordinate system
1 --
Element coordinate system is based on the element I-J side

KEYOPT(5)

Extra element output:
0 --
Basic element printout
1 --
Repeat basic solution for all integration points
2 --
Nodal stress printout

PLANE13 Output Data

The solution output associated with the element is in two forms:

- Nodal degrees of freedom included in the overall nodal solution
- Additional element output as shown in Table 1: PLANE13 Element Output Definitions (p. 173).

Several items are illustrated in Figure 2 (p. 173). The element output directions are parallel to the element coordinate system. A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

Figure 2 PLANE13 Element Output

Because of different sign conventions for Cartesian and polar coordinate systems, magnetic flux density vectors point in opposite directions for planar $(\operatorname{KEYOPT}(3)=0)$ and axisymmetric (KEYOPT $(3)=1)$ analyses.

The Element Output Definitions table uses the following notation:
A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 1 PLANE13 Element Output Definitions

| Name | Definition | 0 | R |
| :---: | :---: | :---: | :---: |
| EL | Element Number | Y | Y |
| NODES | Nodes - I, J, K, L | Y | Y |
| MAT | Material number | Y | Y |
| VOLU: | Volume | Y | Y |
| XC, YC | Location where results are reported | Y | 3 |
| PRES | P1 at nodes J, I; P2 at K, J; P3 at L, K; P4 at I, L | Y | Y |
| TEMP | Input temperatures $\mathrm{T}(\mathrm{I}), \mathrm{T}(\mathrm{J}), \mathrm{T}(\mathrm{K}), \mathrm{T}(\mathrm{L})$ | Y | Y |
| HGEN | Input heat generations HG(I), HG(J), HG(K), HG(L) | Y | - |
| S:X, Y, Z, XY | Stresses ($\mathrm{SZ}=0.0$ for plane stress elements) | 1 | 1 |
| S:1, 2, 3 | Principal stresses | 1 | 1 |
| S:INT | Stress intensity | 1 | 1 |
| S:EQV | Equivalent stress | 1 | 1 |
| EPEL:X, Y, Z, XY | Elastic strains | 1 | 1 |
| EPEL:1, 2, 3 | Principal elastic strains | 1 | - |
| EPEL:EQV | Equivalent elastic strain [4] | - | 1 |
| EPTH:X, Y, Z, XY | Average thermal strains | 1 | 1 |
| EPTH:EQV | Equivalent thermal strain [4] | - | 1 |
| TG:X, Y, SUM | Thermal gradient components and vector sum | 1 | 1 |

PLANE13

| Name | Definition | 0 | R |
| :---: | :---: | :---: | :---: |
| TF:X, Y, SUM | Thermal flux (heat flow rate/cross-sectional area) components and vector sum | 1 | 1 |
| EF:X, Y | Electric field components (X, Y) | 1 | 1 |
| EF:SUM | Vector magnitude of EF | 1 | 1 |
| D: X, Y | Electric flux density components (X, Y) | 1 | 1 |
| D:SUM | Vector magnitude of D | 1 | 1 |
| UE, UD, UM | Elastic (UE), dielectric (UD), and electromechanical coupled (UM) energies | 1 | 1 |
| LOC | Output location (X,Y) | 1 | - |
| MUX, MUY | Magnetic permeability | 1 | 1 |
| $\mathrm{H}: \mathrm{X}, \mathrm{Y}$ | Magnetic field intensity components | 1 | 1 |
| H:SUM | Vector magnitude of H | 1 | 1 |
| B:X, Y | Magnetic flux density components | 1 | 1 |
| B:SUM | Vector magnitude of B | 1 | 1 |
| JSZ | Source current density, available for static analysis only | 1 | 1 |
| JTZ | Total current density | 1 | 1 |
| JHEAT: | Joule heat generation per unit volume | 1 | 1 |
| FJB(X, Y) | Lorentz force components | 1 | 1 |
| $\operatorname{FMX}(\mathrm{X}, \mathrm{Y})$ | Maxwell force components | 1 | 1 |
| FVW(X, Y) | Virtual work force components | 1 | 1 |
| FMAG:X, Y | Combined (FJB and FMX) force components | - | 1 |
| FACE | Face label | 2 | 2 |
| AREA | Face area | 2 | 2 |
| NODES | Face nodes | 2 | - |
| HFILM | Film coefficient at each node of face | 2 | - |
| TBULK | Bulk temperature at each node of face | 2 | - |
| TAVG | Average face temperature | 2 | 2 |
| HEAT RATE | Heat flow rate across face by convection | 2 | 2 |
| HEAT RATE/AREA | Heat flow rate per unit area across face by convection | 2 | - |
| HFLUX | Heat flux at each node of face | 2 | - |
| HFAVG | Average film coefficient of the face | 2 | 2 |
| TBAVG | Average face bulk temperature | - | 2 |
| HFLXAVG | Heat flow rate per unit area across face caused by input heat flux | - | 2 |
| TJB(Z) | Lorentz torque about global Cartesian +Z axis | 1 | 1 |
| TMX(Z) | Maxwell torque about global Cartesian $+Z$ axis | 1 | 1 |
| TVW(Z) | Virtual work torque about global Cartesian $+Z$ axis | 1 | 1 |

1. Solution values are output only if calculated (based on input data).

Note

For harmonic analysis, joule losses (JHEAT), forces (FJB(X,Y), FMX(X,Y), FVW(X,Y)), and torque (TJB(Z), TMX(Z), TVW(Z)) represent time-average values. These values are stored in the "Real" data set. The macros POWERH, FMAGSUM, and TORQSUM can be used to retrieve this data.
2. Available only if a surface load is input.
3. Available only at centroid as a *GET item.
4. The equivalent strains use an effective Poisson's ratio: for elastic and thermal this value is set by the user (MP,PRXY).

Table 2 PLANE13 Miscellaneous Element Output

| Description | Names of Items Output | $\mathbf{0}$ | \mathbf{R} |
| :--- | :--- | :---: | :---: |
| Integration Pt. Solution | SINT, SEQV, EPEL, S, MUX, MUY, H, HSUM, B,
 BSUM | 1 | - |
| Nodal Solution | SINT, SEQV, S, H, HSUM, B, BSUM | 2 | - |

1. Output at each integration point, if $\operatorname{KEYOPT}(5)=1$.
2. Output at each node, if $\operatorname{KEYOPT}(5)=2$.

Note

JT represents the total measurable current density in a conductor, including eddy current effects, and velocity effects if calculated.

For axisymmetric solutions with $\operatorname{KEYOPT}(4)=0$, the X and Y directions correspond to the radial and axial directions, respectively. The $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$, and XY stress output correspond to the radial, axial, hoop, and in-plane shear stresses, respectively.

For harmonic analysis, joule losses (JHEAT), forces (FJB(X,Y), FMX(X,Y), FVW(X,Y)), and torque (TJB(Z), TMX(Z), TVW(Z)) represent time-average values. These values are stored in the "Real" data set. The macros POWERH, FMAGSUM, and TORQSUM can be used to retrieve this data.

Table 3: PLANE13 Item and Sequence Numbers (p. 176) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) of the Basic Analysis Guide and The Item and Sequence Number Table (p .9) of this manual for more information. The following notation is used in Table 3: PLANE13 Item and Sequence Numbers (p. 176):

Name

output quantity as defined in the Table 1: PLANE13 Element Output Definitions (p. 173)

Item

predetermined Item label for ETABLE command
E
sequence number for single-valued or constant element data

I,J,K,L

sequence number for data at nodes I, J, K, L

FCN

sequence number for solution items for element Face N
Table 3 PLANE13 Item and Sequence Numbers

| Output
 Quantity
 Name | ETABLE and ESOL Command Input | | | | | |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| | Item | E | \mathbf{I} | \mathbf{J} | K | \mathbf{L} |
| JSZ | SMISC | 1 | - | - | - | - |
| P1 | SMISC | - | 4 | 3 | - | - |
| P2 | SMISC | - | - | 6 | 5 | - |
| P3 | SMISC | - | - | - | 8 | 7 |
| P4 | SMISC | - | 9 | - | - | 10 |
| MUX | NMISC | 1 | - | - | - | - |
| MUY | NMISC | 2 | - | - | - | - |
| FVWX | NMISC | 3 | - | - | - | - |
| FVWY | NMISC | 4 | - | - | - | - |
| FVWSUM | NMISC | 5 | - | - | - | - |
| JTZ | NMISC | 7 | - | - | - | - |
| UE | NMISC | 8 | - | - | - | - |
| UD | NMISC | 9 | - | - | - | - |
| UM | NMISC | 10 | - | - | - | - |
| TJB(Z) | NMISC | 35 | - | - | - | - |
| TMX(Z) | NMISC | 36 | - | - | - | - |
| TVW(Z) | NMISC | 37 | - | - | - | - |

| Output
 Quantity
 Name | ETABLE and ESOL Command Input | | | | |
| :---: | :--- | :--- | :--- | :--- | :--- |
| | Item | FC1 | FC2 | FC3 | FC4 |
| AREA | NMISC | 11 | 17 | 23 | 29 |
| HFAVG | NMISC | 12 | 18 | 24 | 30 |
| TAVG | NMISC | 13 | 19 | 25 | 31 |
| TBAVG | NMISC | 14 | 20 | 26 | 32 |
| HEAT RATE | NMISC | 15 | 21 | 27 | 33 |
| HFLXAVG | NMISC | 16 | 22 | 28 | 34 |

PLANE13 Assumptions and Restrictions

- The area of the element must be positive.
- The element must lie in a global $X-Y$ plane as shown in Figure 1 (p. 169) and the Y -axis must be the axis of symmetry for axisymmetric analyses.
- An axisymmetric structure should be modeled in the $+X$ quadrants.
- For structural and piezoelectric problems, the extra displacement and VOLT shapes are automatically deleted for triangular elements so that a constant strain element results.
- Transient magnetic analyses should be performed in a nonlinear transient dynamic analysis.
- A skin-effect analysis (where eddy current formation is permitted in conducting regions with impressed current loading) is performed by using $\operatorname{KEYOPT}(1)=6$, specifying a resistivity, and coupling all VOLT degrees of freedom for elements in each of such regions. This is valid for both planar and axisymmetric models.
- Current density loading (BFE,,JS) is only valid for the AZ option (KEYOPT(1) = 0). For the VOLT, AZ option ($\operatorname{KEYOPT}(1)=6$) use \mathbf{F}, ,AMPS.
- When this element does not have the VOLT degree of freedom (KEYOPT $(1)=4)$, for a harmonic or transient analysis, its behavior depends on the applied load. For a BFE,JS load, the element acts as a stranded conductor. Without BFE,,JS loads, it acts as a solid conductor modeling eddy current effects.

Note

In this respect, PLANE13 (and PLANE53) are not like the 3-D elements SOLID97, SOLID117, SOLID236, and SOLID237. When SOLID97, SOLID117, SOLID236, and SOLID237 do not have the VOLT degree of freedom, they act as stranded conductors.

- Do not constrain all VOLT DOFs to the same value in a piezoelectric analysis (KEYOPT $(1)=7$). Perform a pure structural analysis instead $(\operatorname{KEYOPT}(1)=3)$.
- Permanent magnets are not permitted in a harmonic analysis.
- If a model has at least one element with piezoelectric degrees of freedom (displacements and VOLT) activated, then all elements where a VOLT degree of freedom is needed must be one of the piezoelectric types, and they must all have the piezoelectric degrees of freedom activated. If the piezoelectric effect is not desired in these elements, simply define very small piezoelectric material properties for them.
- This element may not be compatible with other elements with the VOLT degree of freedom. To be compatible, the elements must have the same reaction solution for the VOLT DOF. Elements that have an electric charge reaction solution must all have the same electric charge reaction sign. For more information, see Element Compatibility in the Low-Frequency Electromagnetic Analysis Guide.
- This element cannot be used in a distributed solution.

PLANE13 Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

ANSYS Mechanical

Unless the Emag option is enabled, the following restrictions apply:

- This element has only structural, thermal, or piezoelectric capability, and does not have magnetic capability.
- The AZ degree of freedom is not active.
- KEYOPT(1) defaults to 4 (UX, UY, TEMP) instead of 0 , and cannot be set to 0 . If set to 4 or 6 , the $A Z$ degree of freedom is not active.
- The magnetic and electric material properties (MUZERO, MUR_, MG \qquad , and the BH data table) are not allowed.
- The Maxwell force flags surface loads are not applicable.

ANSYS Emag

- This element has only magnetic and electric field capability, and does not have structural, thermal, or piezoelectric capability.
- The only active degrees of freedom are AZ and VOLT.
- The only allowable material properties are the magnetic and electric properties (MUZRO through PERY, plus the BH data table).
- The only applicable surface loads are Maxwell force flags. The heat generation body loads are not applicable. The temperature body load is only used for material property evaluation.
- The element does not allow any special features.
- $\operatorname{KEYOPT}(1)$ can only be set to 0 (default) or 6 . $\operatorname{KEYOPT}(3)=2$ is not applicable.

COMBIN14 Element Description

COMBIN14 has longitudinal or torsional capability in 1-D, 2-D, or 3-D applications. The longitudinal springdamper option is a uniaxial tension-compression element with up to three degrees of freedom at each node: translations in the nodal x, y, and z directions. No bending or torsion is considered. The torsional springdamper option is a purely rotational element with three degrees of freedom at each node: rotations about the nodal x, y, and z axes. No bending or axial loads are considered.

The spring-damper element has no mass. Masses can be added by using the appropriate mass element (see MASS21). The spring or the damping capability may be removed from the element. See COMBIN14 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element. A general spring or damper is also available in the stiffness matrix element (MATRIX27). Another springdamper element (having its direction of action determined by the nodal coordinate directions) is COMBIN40.

Figure 1 COMBIN14 Geometry

2-D elements must lie in a $z=$ constant plane

COMBIN14 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 1 (p. 179). The element is defined by two nodes, a spring constant (k) and damping coefficients $\left(c_{v}\right)_{1}$ and $\left(c_{v}\right)_{2}$. The damping capability is not used for static or undamped modal analyses. The longitudinal spring constant should have units of Force / Length, the damping coefficient units are Force * Time / Length. The torsional spring constant and damping coefficient have units of Force * Length / Radian and Force * Length * Time / Radian, respectively. For a 2-D axisymmetric analysis, these values should be on a full 360° basis.

The damping portion of the element contributes only damping coefficients to the structural damping matrix. The damping force (F) or torque (T) is computed as:
$F_{\mathrm{x}}=-\mathrm{c}_{\mathrm{v}} \mathrm{du}_{\mathrm{x}} / \mathrm{dt}$ or $\mathrm{T}_{\theta}=-\mathrm{c}_{\mathrm{v}} \mathrm{d} \theta / \mathrm{dt}$
where c_{v} is the damping coefficient given by $c_{v}=\left(c_{v}\right)_{1}+\left(c_{v}\right)_{2} v$.
v is the velocity calculated in the previous substep. The second damping coefficient $\left(c_{v}\right)_{2}$ is available to produce a nonlinear damping effect characteristic of some fluid environments. If $\left(c_{v}\right)_{2}$ is input (as real constant CV2), KEYOPT(1) must be set to 1 .
$\operatorname{KEYOPT}(2)=1$ through 6 is used for defining the element as a one-dimensional element. With these options, the element operates in the nodal coordinate system (see Elements that Operate in the Nodal Coordinate System (p.15)). The $\operatorname{KEYOPT}(2)=7$ and 8 options allow the element to be used in a thermal or pressure analysis.

A preload in the spring may be specified in one of two ways, either through an initial (force-free) length (ILENGTH) or an initial force (IFORCE) input. Only 2-D or 3-D springs support this input (KEYOPT(2) $=0$). Only one of the input options may be used to define the preload. If the initial length is different than the input length defined by the nodal coordinates, a preload is presumed to exist. If an initial force is given, a negative value indicates the spring is initially in compression and a positive value indicates tension. For the 3-D torsional spring option $(\operatorname{KEYOPT}(3)=1)$, ILENGTH is interpreted as the initial number of turns (rotations) in the spring (the spring is pre-wound) and IFORCE is the torque preload in the spring. The right-hand rule from node I to node J is used to define positive and negative turns as well as positive and negative torque. In a nonlinear analysis, the preload is ramped in the first load step if $\mathbf{K B C}, 0$ is set.

A summary of the element input is given in "COMBIN14 Input Summary" (p. 180). A general description of element input is given in Element Input (p. 5).

COMBIN14 Input Summary

Nodes

I, J
Degrees of Freedom
UX, UY, UZ if KEYOPT (3) = 0
ROTX, ROTY, ROTZ if KEYOPT (3) = 1
UX, UY if KEYOPT (3) = 2
see list below if KEYOPT(2) >0

Real Constants

K, CV1, CV2, (Blank), (Blank), ILENGTH, IFORCE
See Table 1: COMBIN14 Real Constants (p. 181) for a description of the real constants.

Material Properties

DAMP

Surface Loads

None

Body Loads

None

Special Features

Nonlinear (if CV2 is not zero)
Stress stiffening
Large deflection
Birth and death
Linear perturbation

KEYOPT(1)

Solution type:
0 --
Linear Solution (default)
1 --
Nonlinear solution (required if CV2 is nonzero)

KEYOPT(2)

Degree of freedom selection for 1-D behavior:
0 --
Use KEYOPT(3) options
1 --
1-D longitudinal spring-damper (UX degree of freedom)
2 --
1-D longitudinal spring-damper (UY degree of freedom)
3 --
1-D longitudinal spring-damper (UZ degree of freedom)
4 --
1-D Torsional spring-damper (ROTX degree of freedom)
5 --
1-D Torsional spring-damper (ROTY degree of freedom)
6 --
1-D Torsional spring-damper (ROTZ degree of freedom)
7 --
Pressure degree of freedom element
8 --
Temperature degree of freedom element

Note

KEYOPT(2) overrides KEYOPT(3)

KEYOPT(3)

Degree of freedom selection for 2-D and 3-D behavior:
0 --
3-D longitudinal spring-damper
1 --
3-D torsional spring-damper
2 --
2-D longitudinal spring-damper (2-D elements must lie in an $X-Y$ plane)
Table 1 COMBIN14 Real Constants

| No. | Name | Description |
| :--- | :--- | :--- |
| 1 | K | Spring constant |

| No. | Name | Description |
| :--- | :--- | :--- |
| 2 | CV1 | Damping coefficient |
| 3 | CV2 | Damping coefficient (KEYOPT(1) must be set to 1) |
| 4,5 | (Blank) | -- |
| 6 | ILENGTH | Initial force-free length (Initial number of turns if torsional
 spring (KEYOPT(3) 1$)$) |
| 7 | IFORCE | Initial force (or torque if torsional spring (KEYOPT(3) $=1)$) |

COMBIN14 Output Data

The solution output associated with the element is in two forms:

- Nodal displacements included in the overall nodal solution
- Additional element output as shown in Table 2: COMBIN14 Element Output Definitions (p. 182).

Several items are illustrated in Figure 2 (p. 182). A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

Figure 2 COMBIN14 Stress Output

The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 2 COMBIN14 Element Output Definitions

| Name | Definition | \mathbf{O} | \mathbf{R} |
| :--- | :--- | :---: | :---: |
| EL | Element Number | Y | Y |
| NODES | Nodes $-\mathrm{I}, \mathrm{J}$ | Y | Y |
| XC, YC, ZC | Location where results are reported | Y | 1 |

| Name | Definition | O | R |
| :--- | :--- | :--- | :--- |
| FORC or TORQ | Spring force or moment | Y | Y |
| STRETCH or
 TWIST | Stretch of spring or twist of spring (radians) | Y | Y |
| RATE | Spring constant | Y | Y |
| VELOCITY | Velocity | - | Y |
| DAMPING
 FORCE or
 TORQUE | Damping force or moment (zero unless AN-
 TYPE,TRANS and damping present) | Y | Y |

1. Available only at centroid as a *GET item.

Table 3: COMBIN14 Item and Sequence Numbers (p. 183) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) of the Basic Analysis Guide and The Item and Sequence Number Table (p.9) of this manual for more information. The following notation is used in Table 3: COMBIN14 Item and Sequence Numbers (p. 183):

Name

output quantity as defined in the Table 2: COMBIN14 Element Output Definitions (p. 182)

Item

predetermined Item label for ETABLE command
E
sequence number for single-valued or constant element data
Table 3 COMBIN14 Item and Sequence Numbers

| Output
 Quantity
 Name | ETABLE and
 ESOL Command
 Input | |
| :---: | :--- | :--- |
| | Item | E |
| FORC | SMISC | 1 |
| STRETCH | NMISC | 1 |
| VELOCITY | NMISC | 2 |
| DAMPING
 FORCE | NMISC | 3 |

COMBIN14 Assumptions and Restrictions

- If KEYOPT(2) is zero, the length of the spring-damper element must not be zero (that is, nodes I and J should not be coincident, since the node locations determine the spring orientation).
- The longitudinal spring element stiffness acts only along its length. The torsion spring element stiffness acts only about its length, as in a torsion bar.
- The element allows only a uniform stress in the spring.
- In a thermal analysis, the temperature or pressure degree of freedom acts in a manner analogous to the displacement.
- Only the $\operatorname{KEYOPT}(2)=0$ option supports stress stiffening or large deflection. Also, if $\operatorname{KEYOPT}(3)=1$ (torsion) is used with large deflection, the coordinates will not be updated.
- The spring or the damping capability may be deleted from the element by setting K or CV equal to zero, respectively.
- If CV2 is not zero, the element is nonlinear and requires an iterative solution (KEYOPT $(1)=1)$.
- The preload may not change after the first load step. Any changes are ignored.

The restrictions described below only apply if KEYOPT(2) is greater than zero.

- If $\operatorname{KEYOPT}(2)$ is greater than zero, the element has only one degree of freedom. This degree of freedom is specified in the nodal coordinate system and is the same for both nodes (see Elements that Operate in the Nodal Coordinate System (p.15)). If the nodal coordinate systems are rotated relative to each other, the same degree of freedom may be in different directions (thereby giving possibly unexpected results). The element, however, assumes only a 1-D action. Nodes I and J, then, may be anywhere in space (preferably coincident).
- For noncoincident nodes and $\operatorname{KEYOPT}(2)=1,2$, or 3 , no moment effects are included. That is, if the nodes are offset from the line of action, moment equilibrium may not be satisfied.
- The element is defined such that a positive displacement of node J relative to node I tends to stretch the spring. If, for a given set of conditions, nodes I and J are interchanged, a positive displacement of node J relative to node I tends to compress the spring.

COMBIN14 Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

ANSYS Professional

Structural Analysis:

- No damping capability; CV1 and CV2 are not allowed.
- Only stress stiffening and large deflections are allowed.
- KEYOPT(2) $=7$ or 8 is not allowed.
- The DAMP material property is not allowed.

ANSYS Professional

Thermal Analysis:

- KEYOPT(2) defaults to 8.
- KEYOPT(3) is not applicable.

DesignSpace

- $\operatorname{KEYOPT}(2)=7$ is not applicable.
- In the Mechanical application, $\operatorname{KEYOPT}(2)=7$ and $\operatorname{KEYOPT}(2)=8$ are not applicable .

MASS21

Structural Mass

MP ME ST PR PRN DS DSS <> <> <> <> PP VT EME MFS

MASS21 Element Description

MASS21 is a point element having up to six degrees of freedom: translations in the nodal x, y, and z directions and rotations about the nodal x, y, and z axes. A different mass and rotary inertia may be assigned to each coordinate direction. See MASS21 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

Another element with a full mass matrix capability (off-diagonal terms) is MATRIX27.

Figure 1 MASS21 Geometry

MASS21 Input Data

The mass element is defined by a single node, concentrated mass components (Force*Time ${ }^{2} /$ Length) in the element coordinate directions, and rotary inertias (Force*Length*Time ${ }^{2}$) about the element coordinate axes. The element coordinate system may be initially parallel to the global Cartesian coordinate system or to the nodal coordinate system (KEYOPT(2)). The element coordinate system rotates with the nodal coordinate rotations during a large deflection analysis. Options are available to exclude the rotary inertia effects and to reduce the element to a 2-D capability (KEYOPT(3)). If the element requires only one mass input, it is assumed to act in all appropriate coordinate directions. The coordinate system for this element is shown in Figure 1 (p. 185).

KEYOPT(1) = 1 defines the mass in volume*density form, which allows plotting of the mass using /ESHAPE, as well as the use of a temperature-dependent density.

A summary of the element input is given in "MASS21 Input Summary" (p. 185). Element Input (p. 5) gives a general description of element input.

MASS21 Input Summary

Nodes

I
Degrees of Freedom
UX, UY, UZ, ROTX, ROTY, ROTZ if KEYOPT (3) = 0
UX, UY, UZ if KEYOPT (3) = 2
UX, UY, ROTZ if KEYOPT (3) = 3

UX, UY if KEYOPT (3) = 4
(degrees of freedom are in the nodal coordinate system)

Real Constants

MASSX, MASSY, MASSZ, IXX, IYY, IZZ, if KEYOPT (3) = 0
MASS, if KEYOPT (3) = 2
MASS, IZZ, if KEYOPT (3) = 3
MASS, if KEYOPT (3) = 4
(MASSX, MASSY, and MASSZ are concentrated mass components in the element coordinate directions.
IXX, IYY, and IZZ are rotary inertias about the element coordinate axes. See also KEYOPT(2)).

Material Properties

DENS (if $\operatorname{KEYOPT}(1)=1)$

Surface Loads

None

Body Loads

None

Special Features

Large deflection
Birth and death
Linear perturbation

KEYOPT(1)

Real constant interpretation (mass/volume or rotary inertia/density):
0 --
Interpret real constants as masses and rotary inertias
1 --
Interpret real constants as volumes and rotary inertias/density (Density must be input as a material property)

KEYOPT(2)

Initial element coordinate system:
0 --
Element coordinate system is initially parallel to the global Cartesian coordinate system
1 --
Element coordinate system is initially parallel to the nodal coordinate system

KEYOPT(3)

Rotary inertia options:
0 --
3-D mass with rotary inertia
2 --
3-D mass without rotary inertia
3 --
2-D mass with rotary inertia
4 --
2-D mass without rotary inertia

MASS21 Output Data

Nodal displacements are included in the overall displacement solution. There is no element solution output associated with the element unless element reaction forces and/or energies are requested.

MASS21 Assumptions and Restrictions

- 2-D elements are assumed to be in a global Cartesian $Z=$ constant plane.
- The mass element has no effect on the static analysis solution unless acceleration or rotation is present, or inertial relief is selected [IRLF].
- The standard mass summary printout is based on the average of MASSX, MASSY, and MASSZ if (KEYOPT(3) $=0$).
- In an inertial relief analysis, the full matrix is used. All terms are used during the analysis.

MASS21 Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

ANSYS Professional

- The only special feature allowed is large deflection.

PLANE25

Axisymmetric-Harmonic 4-Node Structural Solid

MP ME ST <> <> <>> <> <> <> <> <> PP <> EME MFS
Product Restrictions

PLANE25 Element Description

Although this legacy element is available for use in your analysis, ANSYS recommends using a current-technology element such as SOLID272 $(\operatorname{KEYOPT}(6)=0)$.

PLANE25 is used for 2-D modeling of axisymmetric structures with nonaxisymmetric loading. Examples of such loading are bending, shear, or torsion. The element is defined by four nodes having three degrees of freedom per node: translations in the nodal x, y, and z direction. For unrotated nodal coordinates, these directions correspond to the radial, axial, and tangential directions, respectively.

See Harmonic Axisymmetric Elements with Nonaxisymmetric Loads (p. 103) for a description of various loading cases. See PLANE25 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element. See PLANE83 for a multi-node version of this element.

Figure 1 PLANE25 Geometry

PLANE25 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 1 (p. 189). The element input data includes four nodes, the number of harmonic waves (MODE on the MODE command), the symmetry condition (ISYM on the MODE command) and the orthotropic material properties. The MODE and ISYM parameters are discussed in detail in Harmonic Axisymmetric Elements with Nonaxisymmetric Loads (p. 103).

The material may be orthotropic, with directions corresponding to the element coordinate directions. The element coordinate system orientation is as described in Coordinate Systems (p. 14). Harmonically varying nodal forces, if any, should be input on a full 360° basis.

Element loads are described in Node and Element Loads (p. 97). Harmonically varying pressures may be input as surface loads on the element faces as shown by the circled numbers on Figure 1 (p. 189). Positive pressures act into the element.

Harmonically varying temperatures may be input as element body loads at the nodes. The node I temperature $\mathrm{T}(\mathrm{I})$ defaults to TUNIF. If all other temperatures are unspecified, they default to $\mathrm{T}(\mathrm{I})$. For any other input pattern, unspecified temperatures default to TUNIF.

KEYOPT(2) is used to include or suppress the extra displacement shapes. KEYOPT(3) is used for temperature loading with MODE greater than zero and temperature-dependent material properties. Material properties may only be evaluated at a constant (nonharmonically varying) temperature. If MODE equals zero, material properties are always evaluated at the average element temperature.

KEYOPT(4), (5), and (6) provide various element printout options (see Element Solution (p. 9)).
A summary of the element input is given in "PLANE25 Input Summary" (p. 190). Element Input (p. 5) gives a general description of element input.

PLANE25 Input Summary

Nodes

I, J, K, L

Degrees of Freedom

UX, UY, UZ

Real Constants

None

Material Properties

EX, EY, EZ, PRXY, PRYZ, PRXZ (or NUXY, NUYZ, NUXZ), ALPX, ALPY, ALPZ (or CTEX, CTEY, CTEZ or THSX, THSY, THSZ), DENS, GXY, GYZ, GXZ, DAMP

Surface Loads

Pressures --

face 1 (J-I), face 2 (K-J), face 3 (L-K), face 4 (I-L)

Body Loads

Temperatures --
$\mathrm{T}(\mathrm{I}), \mathrm{T}(\mathrm{J}), \mathrm{T}(\mathrm{K}), \mathrm{T}(\mathrm{L})$

Mode Number

Number of harmonic waves around the circumference (MODE)

Loading Condition

Symmetry condition (MODE)

Special Features

Stress stiffening
Birth and death

KEYOPT(1)

Element coordinate system:

0 --

Element coordinate system is parallel to the global coordinate system
1 --
Element coordinate system is based on the element l-J side.

KEYOPT(2)

Extra displacement shapes:
0 --
Include extra displacement shapes
1 --
Suppress extra displacement shapes

KEYOPT(3)

If MODE is greater than zero, use temperatures for:
0 --
Use temperatures only for thermal bending (evaluate material properties at TREF)
1 --
Use temperatures only for material property evaluation (thermal strains are not computed)

KEYOPT(4)

Extra stress output:
0 --
Basic element solution
1 --
Repeat basic solution for all integration points
2 --
Nodal Stress Solution

KEYOPT(5)

Combined stress output:
0 --
No combined stress solution
1 --
Combined stress solution at centroid and nodes

KEYOPT(6)

Include extra surface output (surface solution valid only for isotropic materials):
0 --
Basic element solution
1 --
Surface solution for face I-J also
2 --
Surface solution for both faces I-J and K-L also

PLANE25 Output Data

The solution output associated with the element is in two forms:

- Nodal displacements included in the overall nodal solution
- Additional element output as shown in Table 1: PLANE25 Element Output Definitions (p. 192).

Several items are illustrated in Figure 2 (p. 192).
In the displacement printout, the UZ component is out-of-phase with the UX and UY components. For example, in the MODE $=1$, ISYM $=1$ loading case, $U X$ and $U Y$ are the peak values at $\theta=0^{\circ}$ and $U Z$ is the peak value at $\theta=90^{\circ}$. The same occurs for the reaction forces ($F X, F Y$, etc.). The element stress directions are parallel to the element coordinate system. We recommend that you always use the angle field on the SET command when postprocessing the results. For more information about harmonic elements, see Harmonic Axisymmetric Elements with Nonaxisymmetric Loads (p. 103)

The sign convention on the surface shears is such that for a rectangular element that is lined up parallel to the axes with node J in the positive Y direction from node I , the shear stresses on surfaces I-J and K-L are analogous to the centroidal SYZ in both definition and sign. Stress components which are inherently zero for a load case are printed for clarity. Solution Output (p.8) gives a general description of solution output. See the Basic Analysis Guide for ways to view results.

Figure 2 PLANE25 Stress Output

The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 1 PLANE25 Element Output Definitions

| Name | Definition | \mathbf{O} | \mathbf{R} |
| :--- | :--- | :---: | :---: |
| EL | Element Number | Y | Y |
| NODES | Nodes $-\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}$ | Y | Y |
| MAT | Material number | Y | Y |
| ISYM | Loading key: $1=$ symmetric, $-1=$ antisymmetric | Y | - |

| Name | Definition | 0 | R |
| :---: | :---: | :---: | :---: |
| MODE | Number of waves in loading | Y | - |
| VOLU: | Volume | Y | Y |
| PRES | Pressure P1 at nodes J,I; P2 at K,J; P3 at L,K; P4 at I,L | Y | Y |
| TEMP | Temperatures T(I), T(J), T(K), T(L) | Y | Y |
| PK ANG | Angle where component stresses have peak values: 0 and 90/MODE degrees. Blank if MODE $=0$. | Y | Y |
| XC, YC | Location where results are reported | Y | 3 |
| S:X, Y, Z | Direct stresses (radial, axial, hoop) at PK ANG locations | Y | Y |
| S:XY, YZ, XZ | Shear stresses (radial-axial, axial-hoop, radial-hoop) at PK ANG locations | Y | Y |
| S:1, 2, 3 | Principal stresses at both PK ANG locations as well as where extreme occurs (EXTR); if MODE $=0$, only one location is given. | 1 | 1 |
| S:INT | Stress intensity at both PK ANG locations as well as where extreme occurs (EXTR); if MODE $=0$, only one location is given. | 1 | 1 |
| S:EQV | Equivalent stress at both PK ANG locations as well as where extreme occurs (EXTR); if MODE $=0$, only one location is given. | 1 | 1 |
| EPEL:X, Y, Z, XY | Elastic strain | Y | Y |
| EPEL:EQV | Equivalent elastic strain [4] | - | Y |
| EPTH: $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{XY}$ | Average thermal strains | 1 | 1 |
| EPTH:EQV | Equivalent thermal strain [4] | - | 1 |
| FACE | Face label | 2 | 2 |
| TEMP | Surface average temperature | 2 | 2 |
| $\begin{aligned} & \text { EPEL(PAR, PER, Z, } \\ & \text { SH) } \end{aligned}$ | Surface strains (parallel, perpendicular, hoop, shear) at PK ANG locations and where extreme occurs (EXTR) | 2 | 2 |
| S(PAR, PER, Z, SH) | Surface stresses (parallel, perpendicular, hoop, shear) at PK ANG locations and where extreme occurs (EXTR) | 2 | 2 |

1. These items are output only if $\operatorname{KEYOPT}(5)=1$.
2. These items are printed only if KEYOPT(6) is greater than zero.
3. Available only at centroid as a *GET item.
4. The equivalent strains use an effective Poisson's ratio: for elastic and thermal this value is set by the user (MP,PRXY).

Table 2: PLANE25 Item and Sequence Numbers (p. 194) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) of the Basic Analysis Guide and The Item and Sequence Number Table (p.9) of this manual for more information. The following notation is used in Table 2: PLANE25 Item and Sequence Numbers (p. 194):

Name

output quantity as defined in the Table 1: PLANE25 Element Output Definitions (p. 192)

Item

predetermined Item label for ETABLE command
E
sequence number for single-valued or constant element data

I,J,K,L

sequence number for data at nodes $\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}$
Table 2 PLANE25 Item and Sequence Numbers

| Output
 Quant-
 ity
 Name | ETABLE and ESOL Command Input | | | | |
| :---: | :--- | :--- | :--- | :--- | :--- |
| P1 | Item | I | \mathbf{J} | K | \mathbf{L} |
| P2 | SMISC | 2 | 1 | - | - |
| P3 | SMISC | - | - | 6 | 5 |
| P4 | SMISC | 7 | - | - | 8 |
| THETA = 0 | | | | | |
| S1 | NMISC | 1 | 16 | 31 | 46 |
| S2 | NMISC | 2 | 17 | 32 | 47 |
| S3 | NMISC | 3 | 18 | 33 | 48 |
| SINT | NMISC | 4 | 19 | 34 | 49 |
| SEQV | NMISC | 5 | 20 | 35 | 50 |
| THETA = 90/MODE | | | | | |
| S1 | NMISC | 6 | 21 | 36 | 51 |
| S2 | NMISC | 7 | 22 | 37 | 52 |
| S3 | NMISC | 8 | 23 | 38 | 53 |
| SINT | NMISC | 9 | 24 | 39 | 54 |
| SEQV | NMISC | 10 | 25 | 40 | 55 |
| EXTR Values | | | | | |
| S1 | NMISC | 11 | 26 | 41 | 56 |
| S2 | NMISC | 12 | 27 | 42 | 57 |
| S3 | NMISC | 13 | 28 | 43 | 58 |
| SINT | NMISC | 14 | 29 | 44 | 59 |
| SEQV | NMISC | 15 | 30 | 45 | 60 |

Note

The NMISC items (1 thru 60) in the above table represent the combined stress solution, KEYOPT(5) $=1$. If MODE $=0$, their values are zero at THETA $=90 /$ MODE and at EXTR.

See Surface Solution (p. 10) of this manual for the item and sequence numbers for surface output for the ETABLE command.

PLANE25 Assumptions and Restrictions

- The area of the element must be positive.
- The element must be defined in the global X-Y plane as shown in Figure 1 (p.189) and the global X-axis must be the radial direction. Negative X coordinates should not be used.
- The element assumes a linear elastic material. Post-analysis superposition of results is valid only with other linear elastic solutions. The element should not be used with the large deflection option.
- A triangular element may be formed by defining duplicate K and L node numbers (see Triangle, Prism, and Tetrahedral Elements (p. 99)). The extra shapes are automatically deleted for triangular elements so that a constant strain element results.
- Surface stress printout is valid only if the conditions described in Element Solution (p. 9) are met.
- You can use only axisymmetric (MODE,0) loads without significant torsional stresses to generate the stress state used for stress stiffened modal analyses using this element.
- This element does not support spectrum analysis.
- Modeling hint: If shear effects are important in a shell-like structure, you should use at least two elements through the thickness.

PLANE25 Product Restrictions

There are no product-specific restrictions for this element.

MATRIX27

Stiffness, Damping, or Mass Matrix

MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS
Product Restrictions

MATRIX27 Element Description

MATRIX27 represents an arbitrary element whose geometry is undefined but whose elastic kinematic response can be specified by stiffness, damping, or mass coefficients in matrix form. The matrix is assumed to relate two nodes, each with six degrees of freedom per node: translations in the nodal x, y, and z directions and rotations about the nodal x, y, and z axes. See MATRIX27 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element. Other similar, but less general, elements are the spring-damper element (COMBIN14), and the mass element (MASS21).

Figure 1 MATRIX27 Schematic

MATRIX27 Input Data

The node locations and the coordinate system for this element are shown in Figure 1 (p. 197). The element is defined by two nodes and the matrix coefficients. The stiffness, damping, or mass matrix constants are input as real constants. The units of the stiffness constants are Force/Length or Force*Length/Radian and the damping constants, Force*Time/Length and Force*Length*Time/Radian. The mass constants should have units of Force ${ }^{*}$ Time ${ }^{2} /$ Length or Force*Time ${ }^{2 *}$ Length/Radian.

All matrices generated by this element are 12 by 12. The degrees of freedom are ordered as UX, UY, UZ, ROTX, ROTY, ROTZ for node I followed by the same for node J. If one node is not used, simply let all rows and columns relating to that node default to zero.

A structural matrix that combines the effects of many elements is normally positive or zero definite, as are the element matrices that contribute to it. There may be unusual circumstances where an element matrix is negative definite, and this is okay if there are other matrices connected to the same nodes that are positive definite, resulting in a final system of equations is still positive or zero definite. A simple example of such a circumstance is a beam element loaded with half of the buckling load. The stress stiffness matrix is negative definite, but the combined regular and stress stiffness matrix is positive definite.

When using MATRIX27 with symmetric element matrices ($\operatorname{KEYOPT}(2)=0)$, positive or zero definite matrices should be input using $\operatorname{KEYOPT}(1)=0$, the default. If it is desired to input a negative definite element matrix, the user should set $\operatorname{KEYOPT}(1)=1$ so that the negative definite checking will be bypassed. However, when using an unsymmetric or skew-symmetric element matrix, (KEYOPT(2) = 2 or 3), there are no limits on the form of the matrix, as the unsymmetric solvers are designed to solve any system of equations, as long as it is not singular.

The matrix constants should be input according to the matrix diagrams shown in "MATRIX27 Output Data" (p . 199). For example, if a simple spring of stiffness K in the nodal x direction is desired, the input constants would be $\mathrm{C}_{1}=\mathrm{C}_{58}=\mathrm{K}$ and $\mathrm{C}_{7}=-\mathrm{K}$ for $\operatorname{KEYOPT}(2)=0$ and $\operatorname{KEYOPT}(3)=4$.

A summary of the element input is given in "MATRIX27 Input Summary" (p. 198). Element Input (p. 5) gives a general description of element input.

MATRIX27 Input Summary

Nodes

I, J
Degrees of Freedom
UX, UY, UZ, ROTX, ROTY, ROTZ

Real Constants

$\mathrm{C} 1, \mathrm{C} 2, \ldots \mathrm{C} 78$ - Define the upper triangular portion of the symmetric matrix (if $\operatorname{KEYOPT}(2)=0$)
$\mathrm{C} 1, \mathrm{C} 2, \ldots \mathrm{C} 144$ - Define all terms of the unsymmetric matrix (if $\operatorname{KEYOPT}(2)=2$)
C1, C2, ... C66-Define upper triangular portion (less diagonal terms) if skew symmetric (KEYOPT(2) $=3$)

Material Properties

DAMP

Surface Loads

None

Body Loads

None

Special Features

Birth and death
Linear perturbation

KEYOPT(1)

Matrix form (only works with $\operatorname{KEYOPT}(2)=0$):
0 --
Input positive or zero definite matrices only
1 --
Input positive, zero, or negative definite matrices

KEYOPT(2)

Matrix formulation:
0 --
Symmetric matrices (78 constants required)
2 --
Unsymmetric matrices(144 constants required)
3 --
Skew symmetric matrices (66 constants required)

KEYOPT(3)

Real constant input data:
2 --
Defines a 12×12 mass matrix

4 --

Defines a 12×12 stiffness matrix
5 --
Defines a 12×12 damping matrix

KEYOPT(4)

Element matrix output:
0 --
Do not print element matrix
1 --
Print element matrix at beginning of solution phase

MATRIX27 Output Data

The solution output associated with the element consists of node displacements included in the overall nodal solution. There is no element solution output associated with the element unless element reaction forces and/or energies are requested. KEYOPT(4) = 1 causes the element matrix to be printed (for the first substep of the first load step only). Solution Output (p.8) gives a general description of solution output.

For $\operatorname{KEYOPT}(2)=\mathbf{0}$, the symmetric matrix has the form:

For $\operatorname{KEYOPT}(2)=\mathbf{2}$, the unsymmetric matrix has the form:
$\left[\begin{array}{cccccc|cccccc}C_{1} & C_{2} & C_{3} & \cdot & C_{12} \\ C_{13} & C_{14} & C_{15} & \cdot & C_{24} \\ C_{25} & C_{26} & C_{27} & \cdot & C_{36} \\ \cdot & \cdot \\ \cdot & \cdot \\ \cdot & \cdot \\ \hline \cdot & \cdot \\ \cdot & \cdot \\ \cdot & \cdot \\ \cdot & \cdot \\ \cdot & \cdot \\ C_{133} & C_{134} & C_{135} & \cdot & C_{144}\end{array}\right]$

For $\operatorname{KEYOPT}(2)=3$, the skew symmetric matrix has the form:

MATRIX27 Assumptions and Restrictions

- Nodes may be coincident or noncoincident.
- Since element matrices should normally not be negative definite, a note is printed for those cases where this can be easily detected.
- With a lumped mass matrix [LUMPM,ON] all off-diagonal terms must be zero.
- The matrix terms are associated with the nodal degrees of freedom and are assumed to act in the nodal coordinate directions (see Elements that Operate in the Nodal Coordinate System (p. 15)).

MATRIX27 Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

ANSYS Professional

- Damping and unsymmetric matrices are not allowed.
- Real constants C79 through C144, for unsymmetric matrices, are not applicable.
- The birth and death special feature is not allowed.
- KEYOPT(2) can only be set to 0 (default). $\operatorname{KEYOPT}(3)=5$ is not allowed.
- The DAMP material property is not allowed.

SHELL28

Shear/Twist Panel
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS
Product Restrictions

SHELL28 Element Description

SHELL28 is used to carry shear load in a frame structure. The element has three degrees of freedom at each node: translations in the nodal x, y, and z directions, or rotations about the nodal x, y, and z axes. See SHELL28 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

Figure 1 SHELL28 Geometry

SHELL28 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 1 (p. 203). The element is defined by four nodes, a thickness, and material properties. The only material properties actually used are GXY and DENS. GXY may be entered directly or calculated from EX and either NUXY or PRXY. Also, EX must be input, whether or not GXY is entered. The element coordinate system orientation is as described in Coordinate Systems (p. 14). Real constant SULT is the ultimate shear stress used for the margin of safety calculation. ADMSUA is the added mass per unit area. $\operatorname{KEYOPT}(1)$ is used to select whether the element should be used as a shear panel or as a twist panel. Only the lumped mass matrix is available.

Element loads are described in Node and Element Loads (p. 97). Temperatures may be input as element body loads at the nodes. The node I temperature $T(I)$ defaults to TUNIF. If all other temperatures are unspecified, they default to $T(I)$. For any other input pattern, unspecified temperatures default to TUNIF. Temperatures are used only for material property evaluation.

A summary of the element input is given in "SHELL28 Input Summary" (p. 203). Element Input (p. 5) gives a general description of element input.

SHELL28 Input Summary

Nodes

I, J, K, L

Degrees of Freedom

UX, UY, UZ if KEYOPT(1) $=0$
ROTX, ROTY, ROTZ if $\operatorname{KEYOPT}(1)=1$

Real Constants

THCK - Panel thickness
SULT - Ultimate shear stress
ADMSUA - Added mass/unit area

Material Properties

EX, PRXY (or NUXY), GXY, DENS, DAMP

Surface Loads

None

Body Loads

Temperatures --
$\mathrm{T}(\mathrm{I}), \mathrm{T}(\mathrm{J}), \mathrm{T}(\mathrm{K}), \mathrm{T}(\mathrm{L})$

Special Features

Stress stiffening

KEYOPT(1)

Element behavior:
0 --
Shear panel
1 --
Twist panel

SHELL28 Output Data

The solution output associated with the element is in two forms:

- Nodal displacements included in the overall nodal solution
- Additional element output as shown in Table 1: SHELL28 Element Output Definitions (p. 205)

Several items are illustrated in Figure 2 (p. 205). Solution Output (p.8) gives a general description of solution output. See the Basic Analysis Guide for ways to view results.

Figure 2 SHELL28 Stress Output

The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 1 SHELL28 Element Output Definitions

| Name | Definition | \mathbf{O} | R |
| :--- | :--- | :---: | :---: |
| EL | Element Number | Y | Y |
| NODES | Nodes $-\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}$ | Y | Y |
| MAT | Material number | Y | Y |
| VOLU: | Volume | Y | Y |
| SXY | Average of four corner shear stresses | Y | Y |
| XC, YC, ZC | Location where results are reported | Y | 3 |
| TEMP | Temperatures T(I), T(J), T(K), T(L) | Y | Y |
| SXY(I,J,K,L) | Shear stresses at corner nodes | Y | Y |
| SXY(MAX) | Maximum of four corner shear stresses | Y | Y |
| SMARGN | Margin of safety on shear | Y | Y |
| FDIK, FDJL | Forces along diagonals I-K and J-L | 1 | 1 |
| FLI, FJI | Forces at node I from node L and node J | 1 | 1 |
| FIJ, FKJ | Forces at node J from node I and node K | 1 | 1 |
| FJK, FLK | Forces at node K from node J and node L | 1 | 1 |
| FKL, FIL | Forces at node L from node K and node I | 1 | 1 |
| SFLIJ | Shear flow on edge I - J | 1 | 1 |
| SFLJK | Shear flow on edge J - K | 1 | 1 |
| SFLKL | Shear flow on edge K - L | 1 | 1 |
| SFLLI | Shear flow on edge L - I | 1 | 1 |

| Name | Definition | \mathbf{O} | \mathbf{R} |
| :--- | :--- | :---: | :---: |
| FZI | Z - Force at node I | 1 | 1 |
| FZJ | Z - Force at node J | 1 | 1 |
| FZK | Z - Force at node K | 1 | 1 |
| FZL | Z - Force at node L | 1 | 1 |
| MDIK, MDJL | Moments about diagonals I-K and J-L | 2 | 2 |

1. The values are output only if $\operatorname{KEYOPT}(1)=0$
2. The values are output in place of FDIK and FDJL only if $\operatorname{KEYOPT}(1)=1$
3. Available only at centroid as a *GET item.

Table 2: SHELL28 Item and Sequence Numbers (p. 206) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p.9) of this manual for more information. The following notation is used in Table 2: SHELL28 Item and Sequence Numbers (p. 206):

Name

output quantity as defined in the Table 1: SHELL28 Element Output Definitions (p. 205)

Item

predetermined Item label for ETABLE command
E
sequence number for single-valued or constant element data
Table 2 SHELL28 Item and Sequence Numbers

| Output
 Quantity
 Name | ETABLE and
 ESOL Command
 Input | |
| :---: | :--- | :---: |
| | Item | E |
| FDIK (MDIK) | SMISC | 1 |
| FDJL (MDJL) | SMISC | 2 |
| FLI | SMISC | 3 |
| FJI | SMISC | 4 |
| FIJ | SMISC | 5 |
| FKJ | SMISC | 6 |
| FJK | SMISC | 7 |
| FLK | SMISC | 8 |
| FKL | SMISC | 9 |
| FIL | SMISC | 10 |
| FZI | SMISC | 11 |
| FZJ | SMISC | 12 |
| FZK | SMISC | 13 |
| FZL | SMISC | 14 |

| Output
 Quantity
 Name | ETABLE and
 ESOL Command
 Input | |
| :---: | :--- | :--- |
| | Item | E |
| SXY | SMISC | 15 |
| SXYI | SMISC | 16 |
| SXYJ | SMISC | 17 |
| SXYK | SMISC | 18 |
| SXYL | SMISC | 19 |
| SXYMAX | SMISC | 20 |
| SMARGN | SMISC | 21 |
| SFLIJ | SMISC | 22 |
| SFLJK | SMISC | 23 |
| SFLKL | SMISC | 24 |
| SFLLI | SMISC | 25 |

SHELL28 Assumptions and Restrictions

- Zero area elements are not allowed. This condition occurs most often when the elements are numbered improperly.
- This element is most often used with a latticework of beam or spar elements. If this element is used alone it is almost always unstable, because it carries only shear (and not tension or compression) loading.
- This element is not recommended for general use. Its use should be restricted to applications which have historically used such an element. For all other applications, you should use other shell elements such as SHELL41, SHELL181, and SHELL281, which automatically combine tension, compression, bending, shear, and twisting effects.
- This element is based on the premise of having only shear, but no normal stress along the edges. Since this is possible only for rectangles, you can expect the accuracy of the element to degrade if nonrectangular shapes are used.

SHELL28 Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

ANSYS Professional

- The DAMP material property is not allowed.
MP ME <> <> <> <> <> <> <> <> <> PP <> EME MFS

FLUID29 Element Description

FLUID29 is used for modeling the fluid medium and the interface in fluid/structure interaction problems. Typical applications include sound wave propagation and submerged structure dynamics. The governing equation for acoustics, namely the 2-D wave equation, has been discretized taking into account the coupling of acoustic pressure and structural motion at the interface. The element has four corner nodes with three degrees of freedom per node: translations in the nodal x and y directions and pressure. The translations, however, are applicable only at nodes that are on the interface. Acceleration effects, such as in sloshing problems, may be included.

The element has the capability to include damping of sound absorbing material at the interface. The element can be used with other 2-D structural elements to perform unsymmetric or damped modal, full harmonic response and full transient method analyses (see the description of the TRNOPT command). When there is no structural motion, the element is also applicable to static, modal and reduced harmonic response analyses. See FLUID29 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

Figure 1 FLUID29 Geometry

FLUID29 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 1 (p. 209). The element is defined by four nodes, the number of harmonic waves (MODE on the MODE command), the symmetry condition (ISYM on the MODE command), a reference pressure, and the isotropic material properties. The MODE and ISYM parameters are discussed in detail in Harmonic Axisymmetric Elements with Nonaxisymmetric Loads (p. 103). The reference pressure (PREF) is used to calculate the element sound pressure level (defaults to $20 \times 10^{-6} \mathrm{~N} / \mathrm{m}^{2}$). The speed of sound ($\sqrt{\mathrm{k} / \rho_{0}}$) in the fluid is input by SONC where k is the bulk modulus of the fluid (Force/Area) and ρ_{o} is the mean fluid density (Mass/Volume) (input as DENS). The dissipative effect due to fluid viscosity is neglected, but absorption of sound at the interface is accounted for by generating a damping matrix using the surface area and boundary admittance at the interface. Experimentally measured values of the boundary admittance for the sound absorbing material may be input as
material property MU. We recommend MU values from 0.0 to 1.0 ; however, values greater than 1.0 are allowed. $\mathrm{MU}=0.0$ represents no sound absorption and $\mathrm{MU}=1.0$ represents full sound absorption. DENS, SONC and MU are evaluated at the average of the nodal temperatures.

Nodal flow rates, if any, may be specified using the \mathbf{F} command where both the real and imaginary components may be applied. Nodal flow rates should be input per unit of depth for a plane analysis and on a 360° basis for an axisymmetric analysis.

Element loads are described in Node and Element Loads (p. 97). Fluid-structure interfaces (FSI) may be flagged by surface loads at the element faces as shown by the circled numbers on Figure 1 (p. 209). Specifying the FSI label (without a value) [SF, SFA, SFE] will couple the structural motion and fluid pressure at the interface. Deleting the FSI specification [SFDELE, SFADELE, SFEDELE] removes the flag. The flag specification should be on the fluid elements at the interface. See Acoustics in the Coupled-Field Analysis Guide for more information on the use of the fluid-structure interaction flag. The surface load label IMPD with a value of unity should be used to include damping that may be present at a structural boundary with a sound absorption lining. A zero value of IMPD removes the damping calculation. The displacement degrees of freedom (UX and UY) at the element nodes not on the interface should be set to zero to avoid zero-pivot warning messages.

Temperatures may be input as element body loads at the nodes. The node I temperature $T(I)$ defaults to TUNIF. If all other temperatures are unspecified, they default to $T(I)$. For any other input pattern, unspecified temperatures default to TUNIF.

KEYOPT(2) is used to specify the absence of a structure at the interface and, therefore, the absence of coupling between the fluid and structure. Since the absence of coupling produces symmetric element matrices, a symmetric eigensolver [MODOPT] may be used within the modal analysis. However, for the coupled (unsymmetric) problem, a corresponding unsymmetric eigensolver [MODOPT] must be used.

Vertical acceleration (ACELY on the ACEL command) is needed for the gravity regardless of the value of MODE, even for a modal analysis.

A summary of the element input is given in "FLUID29 Input Summary" (p. 210). A general description of element input is given in Element Input (p. 5). For axisymmetric applications see Harmonic Axisymmetric Ele-
ments (p. 102).

FLUID29 Input Summary

Nodes

I, J, K, L
Degrees of Freedom
UX, UY, PRES if KEYOPT (2) $=0$
PRES if KEYOPT (2) = 1

Real Constants

PREF - Reference pressure

Material Properties

DENS, SONC, MU

Surface Loads

Fluid-structure Interface Flag --
face $1(\mathrm{~J}-\mathrm{I})$, face $2(\mathrm{~K}-\mathrm{J})$, face $3(\mathrm{~L}-\mathrm{K})$, face $4(\mathrm{I}-\mathrm{L})$

Impedance --

face 1 (J-I), face 2 (K-J), face 3 (L-K), face 4 (I-L)

Mode Number

Input mode number on MODE command

Loading Condition

Input for ISYM on MODE command
1 --
Symmetric loading
-1 --
Antisymmetric loading

Special Features

None

KEYOPT(2)

Structure at element interface:
0 --
Structure present at interface (unsymmetric element matrix)
1 --
No structure at interface (symmetric element matrix)

KEYOPT(3)

Element behavior:
0 --
Planar
1 --
Axisymmetric
2 --
Axiharmonic

KEYOPT(7)

Free surface effect:
0 --
Do not include sloshing effect
1 --
Include sloshing effect on face of elements located on $Y=0.0$ plane (elements must not have positive Y coordinates)

FLUID29 Output Data

The solution output associated with the element is in two forms:

- Nodal displacements and pressures included in the overall nodal solution
- Additional element output as shown in Table 1: FLUID29 Element Output Definitions (p. 212).

Solution Output (p.8) gives a general description of solution output. See the Basic Analysis Guide for ways to view results.

The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 1 FLUID29 Element Output Definitions

| Name | Definition | \mathbf{O} | R |
| :--- | :--- | :--- | :--- |
| EL | Element Number | Y | Y |
| NODES | Nodes - I, J, K, L | Y | Y |
| MAT | Material number | Y | Y |
| VOLU: | Volume | Y | Y |
| XC, YC | Location where results are reported | Y | 2 |
| TEMP | Temperatures T(I), T(J), T(K), T(L) | Y | Y |
| PRESSURE | Average pressure | Y | Y |
| PG(X, Y, SUM) | Pressure gradient components and vector sum | Y | Y |
| VL(X, Y, SUM) | Fluid velocity components and vector sum | 1 | 1 |
| SOUND
 PR.LEVEL | Sound pressure level (in decibels) | 1 | 1 |

1. Output only if ANTYPE,HARMIC
2. Available only at centroid as a *GET item.

Table 2: FLUID29 Item and Sequence Numbers (p. 212) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p.9) of this manual for more information. The following notation is used in Table 2: FLUID29 Item and Sequence Numbers (p. 212):

Name

output quantity as defined in the Table 1: FLUID29 Element Output Definitions (p. 212)

Item

predetermined Item label for ETABLE command
E
sequence number for single-valued or constant element data

Table 2 FLUID29 Item and Sequence Numbers

| Output Quant-
 ity Name | ETABLE and
 ESOL Command
 Input | |
| :---: | :--- | :---: |
| | Item | E |
| PGX | SMISC | 1 |
| PGY | SMISC | 2 |
| VLX | SMISC | 3 |

| Output Quant-
 ity Name | ETABLE and
 ESOL Command
 Input | |
| :---: | :--- | :---: |
| | Item | E |
| VLY | SMISC | 4 |
| PRESSURE | NMISC | 1 |
| PGSUM | NMISC | 2 |
| VLSUM | NMISC | 3 |
| SOUND PR.
 LEVEL | NMISC | 4 |

FLUID29 Assumptions and Restrictions

- The area of the element must be positive.
- The element must lie in a global X-Y plane as shown in Figure 1 (p. 209).
- All elements must have 4 nodes. A triangular element may be formed by defining duplicate K and L nodes (see Triangle, Prism, and Tetrahedral Elements (p. 99)).
- The acoustic pressure in the fluid medium is determined by the wave equation with the following assumptions:
- The fluid is compressible (density changes due to pressure variations).
- Inviscid fluid (no dissipative effect due to viscosity).
- There is no mean flow of the fluid.
- The mean density and pressure are uniform throughout the fluid. Note that the acoustic pressure is the excess pressure from the mean pressure.
- Analyses are limited to relatively small acoustic pressures so that the changes in density are small compared with the mean density.

The lumped mass matrix formulation [LUMPM,ON] is not allowed for this element.

FLUID29 Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

ANSYS Multiphysics

- $\operatorname{KEYOPT}(3)=2$ is valid only in ANSYS Multiphysics
- KEYOPT(7) is valid only in ANSYS Multiphysics

FLUID30

3-D Acoustic Fluid

MP ME <> <> <> <> <> <> <> <> <> PP <> EME MFS

FLUID30 Element Description

FLUID30 is used for modeling the fluid medium and the interface in fluid/structure interaction problems. Typical applications include sound wave propagation and submerged structure dynamics. The governing equation for acoustics, namely the 3-D wave equation, has been discretized taking into account the coupling of acoustic pressure and structural motion at the interface. The element has eight corner nodes with four degrees of freedom per node: translations in the nodal x, y and z directions and pressure. The translations, however, are applicable only at nodes that are on the interface. Acceleration effects, such as in sloshing problems, may be included.

The element has the capability to include damping of sound absorbing material at the interface. The element can be used with other 3-D structural elements to perform unsymmetric or damped modal, full harmonic response and full transient method analyses (see the description of the TRNOPT command). When there is no structural motion, the element is also applicable to static, modal and reduced harmonic response analyses. See FLUID30 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element. See FLUID220 for a higher order hexahedral option and FLUID221 for a higher order tetrahedral option

Figure 1 FLUID30 Geometry

Tetrahedral Option

Pyramid Option

FLUID30 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 1 (p. 215). The element is defined by eight nodes, a reference pressure, and the isotropic material properties. The reference pressure (PREF) is used to calculate the element sound pressure level (defaults to $20 \times 10^{-6} \mathrm{~N} / \mathrm{m}^{2}$). The speed of sound ($\sqrt{k / \rho_{o}}$) in the fluid is input by SONC where k is the bulk modulus of the fluid (Force/Area) and ρ_{o} is the mean fluid density (Mass/Volume) (input as DENS). The dissipative effect due to fluid viscosity is neglected, but absorption of sound at the interface is accounted for by generating a damping matrix using the surface area and boundary admittance at the interface. Experimentally measured values of the boundary admittance for the sound absorbing material may be input as material property MU. We recommend MU values from 0.0 to 1.0 ; however, values greater than 1.0 are allowed. $\mathrm{MU}=0.0$ represents no sound absorption, where MU is the ratio of chosen impedance to sound plane wave impedance in media. DENS, SONC and MU are evaluated at the average of the nodal temperatures.

Nodal flow rates may be specified using the F command where both the real and imaginary components may be applied.

Element loads are described in Node and Element Loads (p. 97). Fluid-structure interfaces (FSI) may be flagged by surface loads at the element faces as shown by the circled numbers on Figure 1 (p. 215). Specifying the FSI label (without a value) [SF, SFA, SFE] will couple the structural motion and fluid pressure at the interface. Deleting the FSI specification [SFDELE, SFADELE, SFEDELE] removes the flag. The flag specification should be on the fluid elements at the interface. See Acoustics in the Coupled-Field Analysis Guide for more information on the use of the fluid-structure interaction flag. The surface load label IMPD with a given complex impedance value can be used to include damping that may be present at a structural boundary with a sound absorption lining, when $M U=0$. A zero value of IMPD removes the damping calculation, if $M U=0$. The displacement degrees of freedom (UX, UY and UZ) at the element nodes not on the interface should be set to zero to avoid zero-pivot warning messages.

Temperatures may be input as element body loads at the nodes. The node I temperature $T(I)$ defaults to TUNIF. If all other temperatures are unspecified, they default to $\mathrm{T}(\mathrm{I})$. For any other input pattern, unspecified temperatures default to TUNIF.

KEYOPT(2) is used to specify the absence of a structure at the interface and, therefore, the absence of coupling between the fluid and structure. Since the absence of coupling produces symmetric element matrices, a symmetric eigensolver [MODOPT] may be used within the modal analysis. However, for the coupled (unsymmetric) problem, a corresponding unsymmetric eigensolver [MODOPT] must be used.

KEYOPT(4) is used to specify the existence of perfectly matched layers (PML) to absorb the outgoing sound waves. Refer to Perfectly Matched Layers (PML) in the Mechanical APDL High-Frequency Electromagnetic Analysis Guide for more information about using PML.

Vertical acceleration (ACELZ on the ACEL command) is needed for the gravity, even for a modal analysis.
A summary of the element input is given in "FLUID30 Input Summary" (p. 216). A general description of element input is given in Element Input (p. 5).

FLUID30 Input Summary

Nodes

I, J, K, L, M, N, O, P

Degrees of Freedom

UX, UY, UZ, PRES if KEYOPT (2) $=0$
PRES if KEYOPT (2) = 1

Real Constants

PREF - Reference pressure

Material Properties

DENS, SONC, MU

Surface Loads

Fluid-structure interface flag:
face 1 (J-I-L-K), face 2 (I-J-N-M), face 3 (J-K-O-N), face 4 (K-L-P-O), face 5 (L-I-M-P), face 6 (M-N-O-P)

Impedance:
face 1 (J-I-L-K), face 2 (I-J-N-M), face 3 (J-K-O-N), face 4 (K-L-P-O), face 5 (L-I-M-P), face 6 (M-N-O-P)

Special Features

None

KEYOPT(2)

Structure at element interface:
0 --
Structure present at interface (unsymmetric element matrix)
1 --
No structure at the interface (symmetric element matrix)

KEYOPT(4)

PML absorbing condition:
0 --
Do not include PML absorbing condition
1 --
Include PML absorbing condition

KEYOPT(7)

Free surface effect:
0 --
Do not include sloshing effect
1 --
Include sloshing effect on face of elements located on $Z=0.0$ plane (elements must not have positive Z coordinates)

FLUID30 Output Data

The solution output associated with the element is in two forms:

- Nodal displacements and pressures included in the overall nodal solution
- Additional element output as shown in Table 1: FLUID30 Element Output Definitions (p. 218).

A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 1 FLUID30 Element Output Definitions

| Name | Definition | \mathbf{O} | R |
| :--- | :--- | :--- | :--- |
| EL | Element Number | Y | Y |
| NODES | Nodes - I, J, K, L, M, N, O, P | Y | Y |
| MAT | Material number | Y | Y |
| VOLU: | Volume | Y | Y |
| XC, YC, ZC | Location where results are reported | Y | 2 |
| TEMP | $\mathrm{T}(\mathrm{I}), \mathrm{T}(\mathrm{J}), \mathrm{T}(\mathrm{K}), \mathrm{T}(\mathrm{L}), \mathrm{T}(\mathrm{M}), \mathrm{T}(\mathrm{N}), \mathrm{T}(\mathrm{O}), \mathrm{T}(\mathrm{P})$ | Y | Y |
| PRESSURE | Average pressure | Y | Y |
| PG(X,Y,Z,SUM) | Pressure gradient components and vector sum | Y | Y |
| VL(X,Y,Z,SUM) | Fluid velocity components and vector sum | 1 | 1 |
| SOUND PR.
 LEVEL | Sound pressure level (in decibels) | 1 | 1 |

1. Output only if ANTYPE,HARMIC
2. Available only at centroid as a *GET item.

Table 2: FLUID30 Item and Sequence Numbers (p. 219) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p. 9) of this manual for more information. The following notation is used in Table 2: FLUID30 Item and Sequence Numbers (p. 219):

Name

output quantity as defined in the Table 1: FLUID30 Element Output Definitions (p. 218)

Item

predetermined Item label for ETABLE command

E

sequence number for single-valued or constant element data
Table 2 FLUID30 Item and Sequence Numbers

| Output Quant-
 ity Name | ETABLE and
 ESOL Command
 Input | |
| :---: | :--- | :---: |
| | Item | E |
| PGX | SMISC | 1 |
| PGY | SMISC | 2 |
| PGZ | SMISC | 3 |
| VLX | SMISC | 4 |
| VLY | SMISC | 5 |
| VLZ | SMISC | 6 |
| PRESSURE | NMISC | 1 |
| PGSUM | NMISC | 2 |
| VLSUM | NMISC | 3 |
| SOUND PR.
 LEVEL | NMISC | 4 |

FLUID30 Assumptions and Restrictions

- The element must not have a zero volume.
- Element nodes may be numbered either as shown in Figure 1 (p. 215) or may have planes IJKL and MNOP interchanged.
- The element may not be twisted such that it has two separate volumes. This occurs usually when the element nodes are not in the correct sequence.
- All elements must have 8 nodes. A prism-shaped element may be formed by defining duplicate K and L and duplicate O and P nodes (see Triangle, Prism, and Tetrahedral Elements (p. 99)). A tetrahedron shape is also available.
- We do not recommend using degenerate shapes with $\operatorname{KEYOPT}(7)=1$.
- The acoustic pressure in the fluid medium is determined by the wave equation with the following assumptions:
- The fluid is compressible (density changes due to pressure variations).
- Inviscid fluid (no dissipative effect due to viscosity).
- There is no mean flow of the fluid.
- The mean density and pressure are uniform throughout the fluid. Note that the acoustic pressure is the excess pressure from the mean pressure.
- Analyses are limited to relatively small acoustic pressures so that the changes in density are small compared with the mean density.
- The lumped mass matrix formulation [LUMPM,ON] is not allowed for this element.

FLUID30 Product Restrictions

ANSYS Multiphysics

- KEYOPT(7) is valid only in ANSYS Multiphysics

LINK31

Radiation Link

MP ME <> PR PRN <> <> <> <> <> <> PP <> EME MFS

LINK31 Element Description

LINK31 is a uniaxial element which models the radiation heat flow rate between two points in space. The link has a single degree of freedom, temperature, at each node. The radiation element is applicable to a 2 D (plane or axisymmetric) or 3-D, steady-state or transient thermal analysis.

An empirical relationship allowing the form factor and area to multiply the temperatures independently is also available. The emissivity may be temperature dependent. If the model containing the radiation element is also to be analyzed structurally, the radiation element should be replaced by an equivalent (or null) structural element. See LINK31 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

Figure 1 LINK31 Geometry

LINK31 Input Data

The geometry, node locations, and the coordinate system for this radiation element are shown in Figure 1 (p.221). The element is defined by two nodes, a radiating surface area, a geometric form factor, the emissivity, and the Stefan-Boltzmann constant (SBC). For axisymmetric problems, the radiation area should be input on a full 360° basis.

The emissivity may be constant or temperature (absolute) dependent. If it is constant, the value is input as a real constant. If it is temperature dependent, the values are input for the material property EMIS and the real constant value is used only to identify the material property number. In this case the MAT value associated with element is not used. EMIS defaults to 1.0.

The standard radiation function is defined as follows:

$$
\mathrm{q}=\sigma \varepsilon \mathrm{FA}\left(\mathrm{~T}(\mathrm{I})^{4}-\mathrm{T}(\mathrm{~J})^{4}\right)
$$

where:

```
\(\sigma=\) Stefan-Boltzmann Constant (SBC)
(defaults to \(0.119 \times 10^{-10}\) (BTU/Hr* \(\mathrm{in}^{2 *}{ }^{\circ} \mathrm{R}^{4}\) )
\(\varepsilon=\) emissivity
\(F=\) geometric form factor
\(\mathrm{A}=\operatorname{area}(\text { Length })^{2}\)
\(\mathrm{q}=\) heat flow rate (Heat/Time)
```

The nonlinear temperature equation is solved by a Newton-Raphson iterative solution based on the form:

$$
\left[\left(T(I)^{2}+T(J)^{2}\right)(T(I)+T(J))\right]_{p}(T(I)-T(J))
$$

where the [] term is evaluated at the temperature of the previous substep. The initial temperature should be near the anticipated solution and should not be zero (i.e., both TUNIF and TOFFST should not be zero).

An empirical radiation function of the following form may also be selected with KEYOPT(3):

$$
\mathrm{q}=\sigma \varepsilon\left(\mathrm{FT}(\mathrm{I})^{4}-\mathrm{AT}(\mathrm{~J})^{4}\right)
$$

where F and A are arbitrary input constants.
A summary of the element input is given in "LINK31 Input Summary" (p. 222). A general description of element input is given in Element Input (p.5).

LINK31 Input Summary

Nodes

I, J

Degrees of Freedom

TEMP

Real Constants

AREA - Radiating surface area
FORM FACTOR - Geometric form factor
EMISSIVITY - Emissivity (If EMISSIVITY $=-n$, use material n for emissivity vs. temperature definition) SBC - Stefan-Boltzmann constant

Material Properties

EMIS (required only if EMISSIVITY $=-\mathrm{N}$)

Surface Loads

None

Body Loads

None

Special Features

Nonlinear
Birth and death

KEYOPT(3)

Radiation equation:
0 --
Use standard radiation equation
1 --
Use empirical radiation equation

Note

The Stefan-Boltzmann constant (SBC) defaults to $0.1190 \mathrm{E}-10$ with units of $\mathrm{Btu}, \mathrm{hr}, \mathrm{in},{ }^{\circ} \mathrm{R}$ (or ${ }^{\circ} \mathrm{F}$ if TOFFST is used)

LINK31 Output Data

The solution output associated with the element is in two forms:

- Nodal temperatures included in the overall nodal solution
- Additional element output as shown in Table 1: LINK31 Element Output Definitions (p. 223)

The heat flow rate is positive from node I to node J. A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 1 LINK31 Element Output Definitions

| Name | Definition | \mathbf{O} | R |
| :--- | :--- | :---: | :---: |
| EL | Element Number | Y | Y |
| NODES | Nodes $-\mathrm{I}, \mathrm{J}$ | Y | Y |
| MAT | Material number | Y | Y |
| AREA | AREA | Y | Y |
| XC, YC, ZC | Location where results are reported | Y | 1 |
| EMIS(I, J) | Emissivity $-\mathrm{I}, \mathrm{J}$ | Y | Y |
| TEMP(I, J) | Temperatures - I, J | Y | Y |
| HEAT RATE | Heat flow rate from node I to node J | Y | Y |

1. Available only at centroid as a *GET item.

Table 2: LINK31 Item and Sequence Numbers (p. 224) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p. 9) of this manual for more information. The following notation is used in Table 2: LINK31 Item and Sequence Numbers (p. 224):

Name

output quantity as defined in the Table 1: LINK31 Element Output Definitions (p. 223)

Item

predetermined Item label for ETABLE command

E
sequence number for single-valued or constant element data
Table 2 LINK31 Item and Sequence Numbers

| Output
 Quantity
 Name | ETABLE and
 ESOL Command
 Input | |
| :---: | :--- | :--- |
| | Item | E |
| HEAT RATE | SMISC | 1 |
| TEMPI | SMISC | 2 |
| TEMPJ | SMISC | 3 |
| EMISI | NMISC | 1 |
| EMISJ | NMISC | 2 |
| AREA | NMISC | 3 |
| FORM
 FACTOR | NMISC | 4 |

LINK31 Assumptions and Restrictions

- If the default Stefan-Boltzmann constant is used, the units associated with this element are Btu, inches, hours and ${ }^{\circ} \mathrm{R}$ (or ${ }^{\circ} \mathrm{F}+$ TOFFST). Other data input for this analysis must be consistent with this set of units or an appropriate conversion factor should be included in the radiation element's real constants.
- Nodes may or may not be coincident.
- An iterative solution is required with this element.

LINK31 Product Restrictions

There are no product-specific restrictions for this element.

LINK33

3-D Conduction Bar

MP ME <> PR PRN DS <> <> <> <> <> PP <> EME MFS
Product Restrictions

LINK33 Element Description

LINK33 is a uniaxial element with the ability to conduct heat between its nodes. The element has a single degree of freedom, temperature, at each node point. The conducting bar is applicable to a steady-state or transient thermal analysis.

If the model containing the conducting bar element is also to be analyzed structurally, the bar element should be replaced by an equivalent structural element. See LINK33 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

Figure 1 LINK33 Geometry

LINK33 Input Data

The geometry, node locations, and the coordinate system for this conducting bar are shown in Figure 1 (p. 225). The element is defined by two nodes, a cross-sectional area, and the material properties. Specific heat and density are ignored for steady-state solutions. The thermal conductivity is in the element longitudinal direction.

Element loads are described in Node and Element Loads (p. 97). Heat generation rates may be input as element body loads at the nodes. The node J heat generation rate $\mathrm{HG}(J)$ defaults to the node I heat generation rate HG(I).

A summary of the element input is given in "LINK33 Input Summary" (p. 225). A general description of element input is given in Element Input (p. 5).

LINK33 Input Summary

Nodes

I, J
Degrees of Freedom
TEMP

Real Constants

AREA - Cross-sectional area

Material Properties

KXX, DENS, C, ENTH

Surface Loads

None

Body Loads

Heat Generation --

HG(I), HG(J)

Special Features

Birth and death

KEYOPTS

None

LINK33 Output Data

The solution output associated with the element is in two forms:

- Nodal temperatures included in the overall nodal solution
- Additional element output as shown in Table 1: LINK33 Element Output Definitions (p. 226)

The heat flow rate is in units of Heat/Time and is positive from node I to node J. A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 1 LINK33 Element Output Definitions

| Name | Definition | 0 | R |
| :---: | :---: | :---: | :---: |
| EL | Element Number | Y | Y |
| NODES | Nodes - I, J | Y | Y |
| MAT | Material number | Y | Y |
| VOLU: | Volume | Y | Y |
| XC, YC, ZC | Location where results are reported | Y | 1 |
| LENGTH | Length | Y | Y |
| AREA | Input area | Y | Y |
| TEMP(I, J) | Temperatures - I, J | Y | Y |
| HEAT RATE | Heat flow rate from node I to node J | Y | Y |
| THERMAL FLUX | Thermal flux (heat flow rate/cross-sectional area) | Y | Y |

1. Available only at centroid as a *GET item.

Table 2: LINK33 Item and Sequence Numbers (p. 227) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p.9) of this manual for more information. The following notation is used in Table 2: LINK33 Item and Sequence Numbers (p. 227):

Name

output quantity as defined in the Table 1: LINK33 Element Output Definitions (p. 226)

Item

predetermined Item label for ETABLE command
E
sequence number for single-valued or constant element data
Table 2 LINK33 Item and Sequence Numbers

| Output Quant-
 ity Name | ETABLE and
 ESOL Command
 Input | |
| :---: | :--- | :--- |
| | Item | E |
| HEAT RATE | SMISC | 1 |
| TEMPI | SMISC | 2 |
| TEMPJ | SMISC | 3 |
| THERMAL FLUX | SMISC | 4 |
| LENGTH | NMISC | 1 |
| AREA | NMISC | 2 |

LINK33 Assumptions and Restrictions

- Heat is assumed to flow only in the longitudinal element direction.
- The element must not have a zero length, so nodes I and J must not be coincident.
- A free end of the element (i.e., not adjacent to another element and not subjected to a boundary constraint) is assumed to be adiabatic.

LINK33 Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

ANSYS Professional

- The birth and death special feature is not allowed.

LINK34

Convection Link

MP ME <> PR PRN $<><><><><><>$ PP $<>$ EME MFS
Product Restrictions

LINK34 Element Description

LINK34 is a uniaxial element with the ability to convect heat between its nodes. The element has a single degree of freedom, temperature, at each node point. The convection element is applicable to a 2-D (plane or axisymmetric) or 3-D, steady-state or transient thermal analysis.

If the model containing the convection element is also to be analyzed structurally, the convection element should be replaced by an equivalent (or null) structural element. The element may have a nonlinear film coefficient which may also be a function of temperature or time. See LINK34 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

Figure 1 LINK34 Geometry

LINK34 Input Data

The geometry and node locations for this convection element are shown in Figure 1 (p. 229). The element is defined by two nodes, a convection surface area, two empirical terms, and a film coefficient. In an axisymmetric analysis the convection area must be expressed on a full 360° basis. The empirical terms n (input as EN) and CC determine the form of the convection equation in conjunction with $\operatorname{KEYOPT}(3)$.

The convection function is defined as follows:

$$
q=h_{f}^{*} A^{*} E^{*}(T(I)-T(J))
$$

where:

```
\(\mathrm{q}=\) heat flow rate (Heat/Time)
\(\mathrm{h}_{\mathrm{f}}=\) film coefficient (Heat/Length \({ }^{2}{ }^{2}\) Time \({ }^{*}\) Deg)
\(A=\operatorname{area}\left(\right.\) Length \({ }^{2}\) )
\(\mathrm{T}=\) temperature (this substep) (Deg)
\(\mathrm{E}=\) empirical convection term \(=\mathrm{F}^{*}\left|T_{p}(\mathrm{I})-\mathrm{T}_{\mathrm{p}}(\mathrm{J})\right|^{\mathrm{n}}+\mathrm{CC} / \mathrm{h}_{\mathrm{f}}\)
\(T_{p}=\) temperature (previous substep) (Deg)
\(\mathrm{n}=\) empirical coefficient (EN)
CC = input constant
```


Note

$\mathrm{E}=\mathrm{F}$ if n and $\mathrm{CC}=0.0 . \mathrm{F}=1.0$ unless $\operatorname{KEYOPT}(3)=2$. If $\operatorname{KEYOPT}(3)=3, \mathrm{E}$ equals the larger of $\mathrm{IT}_{\mathrm{p}}(\mathrm{I})$ - $T_{p}(J) I^{n}$ or $C C / h_{f}$.

A special option obtained with $\operatorname{KEYOPT}(3)=2$ allows an alternate input for h_{f} and an input scale factor (F). This option uses the VAL1 field of the SFE command with $K V A L=0$ for the h_{f} value and $K V A L=2$ for the F value. If the h_{f} value is zero (or blank), the HF material property is used for h_{f}. If the F value is zero (or blank) or negative, a value of 1.0 is assumed for F . Note, the F value input in this field will ramp within a load step if $K B C=0$. An SFE command must be included (even if the values are left blank) for all LINK34 elements having $\operatorname{KEYOPT}(3)=2$.

Heat generation rates may be input as element body loads at the nodes. The node J heat generation rate $H G(J)$ defaults to the node I heat generation rate $\mathrm{HG}(\mathrm{I})$.

A summary of the element input is given in "LINK34 Input Summary" (p. 230). A general description of element input is given in Element Input (p. 5).

LINK34 Input Summary

Nodes

I, J
Degrees of Freedom
TEMP

Real Constants

AREA - Convection surface area
EN - Empirical coefficient
CC - Input constant

Material Properties

HF

Surface Loads

Convections --

1 - Alternate input of HF and F if KEYOPT(3) = 2 (see text above)

Body Loads

Heat Generation

HG(I), HG(J)

Special Features

Nonlinear if real constant EN is not equal to zero or if $\operatorname{KEYOPT}(3)=3$
Birth and death

KEYOPT(2)

Evaluation of film coefficient:
0 --
Use average of $T(I)$ and $T(J)$ to evaluate $H F$

1 --

Use greater of $\mathrm{T}(\mathrm{I})$ or $\mathrm{T}(\mathrm{J})$ to evaluate HF
2 --
Use lesser of $\mathrm{T}(\mathrm{I})$ or $\mathrm{T}(\mathrm{J})$ to evaluate HF
3 --
Use differential $|\mathrm{T}(\mathrm{I})-\mathrm{T}(\mathrm{J})|$ to evaluate HF

KEYOPT(3)

Film coefficient and scale factor:
0 --
Standard element input and empirical term
2 --
Use alternate input for HF and F (input with SFE command)
3 --
Use discontinuous empirical term

LINK34 Output Data

The solution output associated with the element is in two forms:

- Nodal temperatures included in the overall nodal solution
- Additional element output as shown in Table 1: LINK34 Element Output Definitions (p. 231)

The heat flow rate is in units of Heat/Time and is positive from node I to node J. In an axisymmetric analysis, the heat flow is on a full 360° basis. A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and " ${ }^{-}$" indicates that the item is not available.

Table 1 LINK34 Element Output Definitions

| Name | Definition | \mathbf{O} | R |
| :--- | :--- | :---: | :---: |
| EL | Element Number | Y | Y |
| NODES | Nodes $-\mathrm{I}, \mathrm{J}$ | Y | Y |
| XC, YC | Location where results are reported | Y | 1 |
| H | Film coefficient (includes empirical term) | Y | Y |
| AREA | Input area | Y | Y |
| TEMP | Temperature at node I and node J | Y | Y |
| HEAT RATE | Heat flow rate from node I to node J | Y | Y |

1. Available only at centroid as a *GET item.

Table 2: LINK34 Item and Sequence Numbers (p. 232) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p. 9) of this manual for more information. The following notation is used in Table 2: LINK34 Item and Sequence Numbers (p. 232):

Name

output quantity as defined in the Table 1: LINK34 Element Output Definitions (p. 231)

Item

predetermined Item label for ETABLE command
E
sequence number for single-valued or constant element data
I,J
sequence number for data at nodes I and J
Table 2 LINK34 Item and Sequence Numbers

| Output
 Quantity
 Name | ETABLE and ESOL Command | | | |
| :---: | :--- | :--- | :--- | :--- |
| | Item | E | \mathbf{I} | \mathbf{J} |
| HEAT RATE | SMISC | 1 | - | - |
| TEMP | SMISC | - | 2 | 3 |
| H | NMISC | 1 | - | - |
| AREA | NMISC | 2 | - | - |

LINK34 Assumptions and Restrictions

- If $T_{p}(I)=T_{p}(J)$ and n are nonzero, the first term of E is defined to be zero.
- Since all unspecified nodal temperatures are initially set to the uniform temperature, a nonzero value of n may result in no heat flowing through the element in the first substep of a thermal solution.
- Nodes may or may not be coincident.
- The element is nonlinear if n is nonzero or $\operatorname{KEYOPT}(3)=3$. However, the solver always assumes the element is nonlinear and, therefore, always performs an iterative solution. (Only 2 iterations are performed if the element is linear.)

LINK34 Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

ANSYS Professional

- The birth and death special feature is not allowed.

PLANE35

2-D 6-Node Triangular Thermal Solid

MP ME <> PR PRN <> <> <> <> <> <> PP <> EME MFS

PLANE35 Element Description

PLANE35 is a 6-node triangular element compatible with the 8-node PLANE77 element. The triangular shape makes it well suited to model irregular meshes (such as produced from various CAD/CAM systems). The element has one degree of freedom, temperature, at each node.

The 6-node thermal element is applicable to a 2-D, steady-state or transient thermal analysis. If the model containing this element is also to be analyzed structurally, the element should be replaced by an equivalent structural element (such as PLANE183). The element may be used as a plane element or as an axisymmetric ring element. See PLANE35 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

Figure 1 PLANE35 Geometry

PLANE35 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 1 (p.233).
Orthotropic material directions correspond to the element coordinate directions. The element coordinate system orientation is as described in Coordinate Systems (p. 14). Specific heat and density are ignored for steady-state solutions. Properties not input default as described in Linear Material Properties (p. 16).

Element loads are described in Node and Element Loads (p. 97). Convection or heat flux (but not both) and radiation may be input as surface loads at the element faces as shown by the circled numbers on Figure 1 (p. 233). Heat generation rates may be input as element body loads at the nodes. If the node I heat generation rate $\mathrm{HG}(\mathrm{I})$ is input, and all others are unspecified, they default to $\mathrm{HG}(\mathrm{I})$. If all corner node heat generation rates are specified, each midside node heat generation rate defaults to the average heat generation rate of its adjacent corner nodes. An edge with a removed midside node implies that the temperature varies linearly, rather than parabolically, along that edge. See Quadratic Elements (Midside Nodes) in the Modeling and Meshing Guide for more information about the use of midside nodes.

A summary of the element input is given in "PLANE35 Input Summary" (p. 234). A general description of element input is given in Element Input (p. 5). For axisymmetric applications see Harmonic Axisymmetric Elements (p. 102).

PLANE35 Input Summary

Nodes

I, J, K, L, M, N

Degrees of Freedom

TEMP

Real Constants

None

Material Properties

KXX, KYY, DENS, C, ENTH

Surface Loads

Convection or Heat Flux (but not both) and Radiation (using Lab = RDSF) -face $1(\mathrm{~J}-\mathrm{I})$, face $2(\mathrm{~K}-\mathrm{J})$, face $3(\mathrm{I}-\mathrm{K})$

Body Loads

Heat Generations --
$H G(I), H G(J), H G(K), H G(L), H G(M), H G(N)$

Special Features

Birth and death

KEYOPT(1)

Specific heat matrix:
0 -Consistent specific heat matrix

1 --
Diagonalized specific heat matrix

KEYOPT(3)

Element behavior:
0 --
Plane
1 --
Axisymmetric

PLANE35 Output Data

The solution output associated with the element is in two forms:

- Nodal temperatures included in the overall nodal solution
- Additional element output as shown in Table 1: PLANE35 Element Output Definitions (p. 235)

For an axisymmetric analysis the face area and the heat flow rate are on a full 360° basis. Convection heat flux is positive out of the element; applied heat flux is positive into the element. The element output directions are parallel to the element coordinate system. A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 1 PLANE35 Element Output Definitions

| Name | Definition | \mathbf{O} | \mathbf{R} |
| :--- | :--- | :--- | :--- |
| EL | Element Number | Y | Y |
| NODES | Nodes $-\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}, \mathrm{M}, \mathrm{N}$ | Y | Y |
| MAT | Material number | Y | Y |
| VOLU: | Volume | Y | Y |
| XC, YC | Location where results are reported | Y | 2 |
| HGEN | Heat generations HG(I), HG(J), HG(K), HG(L), HG(M),
 HG(N) | Y | - |
| TG:X, Y, SUM | Thermal gradient components and vector sum at
 centroid | Y | Y |
| TF:X, Y, SUM | Thermal flux (heat flow rate/cross-sectional area) com-
 ponents and vector sum at centroid | Y | Y |
| FACE | Face label | 1 | 1 |
| AREA | Face area | 1 | 1 |
| NODES | Face nodes | 1 | 1 |
| HFILM | Film coefficient | 1 | 1 |
| TAVG | Average face temperature | 1 | 1 |
| TBULK | Fluid bulk temperature | 1 | - |
| HEAT RATE | Heat flow rate across face by convection | 1 | 1 |
| HEAT
 RATE/AREA | Heat flow rate per unit area across face by convection | 1 | - |
| HFLUX | Heat flux at each node of face | 1 | - |
| HFAVG | Average film coefficient of the face | - | 1 |
| TBAVG | Average face bulk temperature | - | 1 |
| HFLXAVG | Heat flow rate per unit area across face caused by input
 heat flux | - | 1 |

1. If a surface load has been input
2. Available only at centroid as a *GET item.

Table 2: PLANE35 Item and Sequence Numbers (p. 236) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p .9) of this manual for more information. The following notation is used in Table 2: PLANE35 Item and Sequence Numbers (p. 236):

Name

output quantity as defined in the Table 1: PLANE35 Element Output Definitions (p. 235)

Item

predetermined Item label for ETABLE command
FCN
sequence number for solution items for element Face N

Table 2 PLANE35 Item and Sequence Numbers

| Output
 Quantity
 Name | ETABLE and ESOL Command | | | | | | | |
|---|---|---|---|---|---|---|---|---|
| | | | | | Item \quad FC1 \quad FC2 \quad FC3 | AREA | NMISC | 1 |
| :---: | :---: | :---: |
| 7 | 13 | |
| HFAVG | NMISC | 2 |
| 8 | 14 | |
| TAVG | NMISC | 3 |
| 9 | 15 | |
| TBAVG | NMISC | 4 |
| 10 | 16 | |
| HEAT RATE | NMISC | 5 |
| HFLXAVG | NMISC | 6 |
| 11 | 17 | |

PLANE35 Assumptions and Restrictions

- The area of the element must be positive.
- The element must lie in an X - Y plane as shown in Figure 1 (p.233) and the Y -axis must be the axis of symmetry for axisymmetric analyses.
- An axisymmetric structure should be modeled in the $+X$ quadrants.
- A face with a removed midside node implies that the temperature varies linearly, rather than parabolically, along that face.
- The specific heat and enthalpy are evaluated at each integration point to allow for abrupt changes (such as melting) within a coarse grid of elements.
- A free surface of the element (i.e., not adjacent to another element and not subjected to a boundary constraint) is assumed to be adiabatic.
- Thermal transients having a fine integration time step and a severe thermal gradient at the surface will require a fine mesh at the surface.

PLANE35 Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

ANSYS Professional

- The birth and death special feature is not allowed.

SOURC36

Current Source

MP <> <> <> <> <> <> <> EM <> <> PP <> EME <>

SOURC36 Element Description

SOURC36 is a primitive (consisting of predefined geometries) used to supply current source data to magnetic field problems. The element represents a distribution of current in a model employing a scalar potential formulation (degree of freedom MAG). The currents are used to calculate a source magnetic field intensity $\left(\mathrm{H}_{s}\right)$ using a numerical integration technique involving the Biot-Savart law. The H_{s} term is used in the formulation as a magnetic load on the model. See SOURC36 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

Figure 1 SOURC36 Geometry

SOURC36 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 1 (p. 237). The element input data includes three nodes and the following real constants (see "SOURC36 Input Summary" (p. 238)):

TYPE

Source type - use 1 for Coil, 2 for Bar, 3 for Arc.

CUR

Total current flowing through source (i.e., number of turns times current per turn).

DY

Characteristic y dimension for source type.
DZ
Characteristic z dimension for source type.
EPS
Convergence criterion for source field $\left(\mathrm{H}_{5}\right)$ calculations for arc and coils. Defaults to 0.001 . EPS represents the relative maximum difference in the field H_{s} calculated at any node during the iterative calculation of the source field. EPS does not apply for bar sources.

Characteristic dimensions described above are in the element coordinate system. In the case of circular sources (coils, arcs) the radius is determined from the first and third nodes (I, K). For bar sources, the length is determined from the first two nodes (l, J).

As a modeling aid, a magnetic command macro, RACE, is available within the ANSYS command set. This macro enables the user to build a racetrack conductor from SOURC36 primitives. The macro is discussed in further detail in the Command Reference and in the Low-Frequency Electromagnetic Analysis Guide.

A summary of the element input is given in "SOURC36 Input Summary" (p. 238). A general description of element input is given in Element Input (p. 5).

SOURC36 Input Summary

Nodes

I, J, K (nodes I, J and K define the characteristic length, current flow direction, and orient the source)

Degrees of Freedom

None

Real Constants

TYPE, CUR, DY, DZ, (Blank), (Blank), (Blank), (Blank), EPS
See Table 1: SOURC36 Real Constants (p. 238) for a description of the real constants.

Material Properties

None

Surface Loads

None

Body Loads

None

Special Features

None

KEYOPTS

None
Table 1 SOURC36 Real Constants

| No. | Name | Description |
| :---: | :--- | :--- |
| 1 | TYPE | Source type |
| 2 | CUR | Total current through source |

| No. | Name | Description |
| :---: | :--- | :--- |
| 3 | DY | Characteristic Y dimension |
| 4 | DZ | Characteristic Z dimension |
| $5 \ldots 8$ | (Blank) | |
| 9 | EPS | Convergence criteria for H_{5} calculations |

As a modeling aid, a magnetic command macro, RACE, is available within the ANSYS command set. This macro enables the user to build a racetrack conductor from SOURC36 primitives. The macro is discussed in further detail in the Command Reference and in the Low-Frequency Electromagnetic Analysis Guide.

SOURC36 Output Data

The source element has no output of its own since it is used only to supply current source data to magnetic field problems.

SOURC36 Assumptions and Restrictions

- The source element must have characteristic DY or DZ values that are greater than zero.
- The third node must not be colinear with the first two nodes.
- The nodes for this element need not be attached to any other elements.
- For the coil and the arc (types 1 and 3), the K-I line determines the radius (and the x axis) and the J node orients the $x-y$ plane.
- For the arc (type 3) the subtended angle must be less than 180°. When you specify an arc using three points, ANSYS will always use the angle that is less than 180°.
- All source element nodes should be located a least 1E-6 units apart.
- Source element cannot have a zero inside radius (Radius $\neq \mathrm{DY} / 2$ for types 1 and 3).
- The EPS convergence criterion is a measure of the relative difference in the calculated H_{s} field used during an iterative numerical integration procedure for coil and arc source primitives. The default value (.001) provides for good accuracy in regions outside of the source primitive location. For highly accurate calculations within the source primitive domain, the criteria may have to be tightened (i.e., a factor of 20 increase would be represented by EPS $=.00005$).
- Tightening the convergence criteria will significantly increase the solution run time.
- Users concerned with accurate calculations within the coil and arc source primitive domain should experiment with the criteria until satisfied with the degree of accuracy obtained.
- All currents for a magnetostatic model employing the scalar potential formulation must be specified. Whereas symmetry conditions on the finite element model may be employed, no symmetry may be employed on the current source elements.

SOURC36 Product Restrictions

There are no product-specific restrictions for this element.

COMBIN37 Element Description

COMBIN37 is a unidirectional element with the capability of turning on and off during an analysis. The element has one degree of freedom at each node, either a translation in a nodal coordinate direction, rotation about a nodal coordinate axis, pressure, or temperature. Similar unidirectional elements (without remote control capability) are COMBIN14, COMBIN39, and COMBIN40. The element has many applications, such as controlling heat flow as a function of temperature (thermostat), controlling damping as a function of velocity (mechanical snubber), controlling flow resistance as a function of pressure (relief valve), controlling friction as a function of displacement (friction clutch), etc. See COMBIN37 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

Figure 1 COMBIN37 Geometry

Operates in nodal coordinate system
$\operatorname{KEYOPT}(3)=2$ shown

COMBIN37 Input Data

The functioning of this element is shown in Figure 1 (p.241). The element is defined by two pairs of nodes, these being active nodes (I, J) and optional control nodes (K, L). Generally in the cases using UX, UY, or UZ as the active degrees of freedom, it is recommended to have the active nodes be coincident as this eliminates the possibility of moment disequilibrium. However, for visualization purposes, it may be useful to give node J a slightly greater coordinate value than node I . The element is defined such that a positive displacement of node J relative to node I will stretch the spring. Thus, if nodes I and J are interchanged, the same nodal motions will compress the spring.

Certain parameters associated with the control nodes are used to determine whether the control element is part of the structure (on) or not (off) and, thus, can be used to disconnect regions of the model during time dependent or iterative analyses. Other input values are stiffness (STIF), damping coefficient (DAMP), concentrated nodal masses (MASI, MASJ), on/off control values (ONVAL, OFFVAL), element load (AFORCE: positive pulls node I in the positive nodal coordinate direction, and pulls node J in the negative nodal coordinate direction), initial on/off element status (START:-1 if explicitly off, 0 if determined from starting value of control parameter, 1 if explicitly on), several nonlinear constants (C1, C2, C3, C4), and a limiting sliding force (FSLIDE).

The FSLIDE value represents the absolute value of the spring force that must be exceeded before sliding occurs. If FSLIDE is 0.0 , the sliding capability of the element is removed, that is, a rigid connection is assumed. For structural analyses, units are force/length or moment/rotation for stiffness, force*time/length or moment ${ }^{*}$ time/rotation for damping, force ${ }^{*}$ time ${ }^{2} /$ length or moment*time ${ }^{2} /$ rotation for mass, and force or moment for element load. For thermal analyses with temperature degrees of freedom, stiffness represents conductance and has units of heat/time*degrees, mass represents thermal capacitance with units of heat/degrees, and element load represents heat flow with units of heat/time. Also, in analyses with pressure degrees of freedom, stiffness represents flow conductance with units of length ${ }^{2} /$ time. Stiffness, damping, mass, and element load should be defined on a full 360° basis for axisymmetric analyses.

The active nodes (I, J) have only one degree of freedom each, selected with the KEYOPT(3) option. The control nodes (K, L) can have the same, or a different, degree of freedom as specified with KEYOPT(2). The $\operatorname{KEYOPT}(1)$ option assigns to the parameters of the control nodes either the value of the degree of freedom, the first or second derivative of the value, the integral of the value, or time, for example:
$C P A R=U X_{K}-U X_{L}$
CPAR $=\mathrm{d}\left(\mathrm{T}_{\mathrm{K}}-\mathrm{T}_{\mathrm{L}}\right) / \mathrm{dt}$
CPAR $=d^{2}\left(\right.$ ROTZ $_{K}-$ ROTZ $\left._{L}\right) / d t^{2}$
CPAR $=\int_{0}^{t}\left(U Y_{K}-U Y_{L}\right) d t$
CPAR $=t$

Control nodes need not be connected to any other element. If node L is not defined, the control parameter is based only upon node K. If time is the control parameter (KEYOPT(1)), control nodes K and L need not be defined.

When the element is active and used in structural analyses, the element acts like any other spring/damper/mass element (such as COMBIN14, MASS21, and COMBIN40). In addition, the element can exhibit nonlinear behavior according to the function: RVMOD $=R V A L+C 1|C P A R|^{C 2}+C 3|C P A R|^{C 4}$, where RVMOD is the modified value of an input real constant value RVAL (identified by KEYOPT(6)), C1 through C4 are other real constants, and CPAR is the control parameter (see KEYOPT(1)). RVMOD may also be defined by user subroutine USERRC and is accessed by KEYOPT(9) = 1. Note, FSLIDE modified to a negative value is set to zero. In a field analysis, the temperature or pressure degree of freedom acts in a manner analogous to the displacement.

As illustrated in Figure 2 (p. 246), the KEYOPT(4) and KEYOPT(5) options, when used in combination with ONVAL and OFFVAL, set the control behavior of the element. The element is either on or off depending on the position of the control parameter with respect to the values of ONVAL and OFFVAL. Also, note that when $\operatorname{KEYOPT}(4)=0$ and the control parameter (CPAR) is within the ONVAL/OFFVAL interval, the element's status depends on the direction of the CPAR (i.e., on going from on to off, and vice-versa). If ONVAL $=$ OFFVAL $=$ 0.0 (or blank), the on/off capability is ignored and the element is always active.

A summary of the element input is given in "COMBIN37 Input Summary" (p. 242). A general description of element input is given in Element Input (p. 5).

COMBIN37 Input Summary

Nodes

I, J, K, L (or I, J, K or I, J)

Degrees of Freedom

UX, UY, UZ, ROTX, ROTY, ROTZ, PRESS, or TEMP (depending on KEYOPT(2) and KEYOPT (3) below)

Real Constants

STIF, DAMP, MASJ, ONVAL, OFFVAL, AFORCE, MASI, START, C1, C2, C3, C4,
FSLIDE
See Table 1: COMBIN37 Real Constants (p. 245) for a description of the real constants

Note

The DAMP real constant represents the damping coefficient for the damper component of the element, and should not be confused with the DAMP material property listed below.

Material Properties

DAMP

Surface Loads

None

Body Loads

None

Special Features

Nonlinear
Adaptive descent

KEYOPT(1)

Control parameter:
0, 1 --
Control on value (UK-UL) (or UK if L not defined)
2 --
Control on first derivative of value with respect to time
3 --
Control on second derivative of value with respect to time
4 --
Control on integral of value with respect to time (zero initial condition assumed)
5 --
Control on time value (KEYOPT(2) and nodes K and L ignored)

KEYOPT(2)

Degree of freedom for control nodes (K and L):
N --
Use degree of freedom N as listed for KEYOPT(3) (defaults to KEYOPT(3))

KEYOPT(3)

Degree of freedom for active nodes (I and J):
0, 1 --
UX (Displacement along nodal X axes)

2 --

UY (along nodal Y)
3 --
UZ (along nodal Z)
4 --
ROTX (rotation about nodal X axes)
5 --
ROTY (about nodal Y)
6 --
ROTZ (about nodal Z)
7 --
PRESS
8 --
TEMP

KEYOPT(4)

ON-OFF range behavior (see Figure 2 (p. 246)):
0 --
Overlapping ranges
1 --
Unique ranges

KEYOPT(5)

ON-OFF position behavior (see Figure 2 (p. 246)):
0 --
OFF-either-ON (or OFF-ON-OFF if unique)
1 --
ON-either-OFF (or ON-OFF-ON if unique)

KEYOPT(6)

Real constants used for RVMOD function (used if C1 or C3 is not equal to zero; see "COMBIN37 Input Data" (p. 241)):

0, 1 --
Use STIF for nonlinear function. (Both STIF and FSLIDE cannot be zero).
2 --
Use DAMP
3 --
Use MASJ
4 --
Use ONVAL
5 --
Use OFFVAL
6 --
Use AFORCE
7 --
Use MASI

8 --
 Use FSLIDE

KEYOPT(9)

Method to define nonlinear behavior:
0 --
Use RVMOD expression for real constant modifications
1 --
Real constants modified by user subroutine USERRC

Note

See the Guide to ANSYS User Programmable Features information about user written subroutines

Table 1 COMBIN37 Real Constants

| No. | Name | |
| :---: | :--- | :--- |
| 1 | STIF | Spring stiffness |
| 2 | DAMP | Damping coefficient |
| 3 | MASJ | Nodal mass at node J |
| 4 | ONVAL | "ON" control value |
| 5 | OFFVAL | "OFF" control value |
| 6 | AFORCE | Element load |
| 7 | MASI | Nodal mass at node I |
| 8 | START | Initial on/off element status |
| 9 | C1 | First scalar in RVMOD equation |
| 10 | C2 | First exponent in RVMOD equation |
| 11 | C3 | Second scalar in RVMOD equation |
| 12 | C4 | Second exponent in RVMOD equation |
| 13 | FSLIDE | Limiting sliding force |

COMBIN37 Output Data

The solution output associated with the element is in two forms:

- Nodal degree of freedom results included in the overall nodal solution
- Additional element output as shown in Table 2: COMBIN37 Element Output Definitions (p. 246).

The active nodal displacements and forces correspond to the degree of freedom selected with the KEYOPT(3) option. For axisymmetric analysis, the element forces are expressed on a full 360° basis.

The element value STRETCH is the relative deflection at the end of the substep less the amount of sliding (e.g., UJ-UI-SLIDE). STATUS and OLDST indicate if the element is on or off at the end of the current and previous substeps, respectively. A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

Figure 2 COMBIN37 Behavior as a Function of Control Parameter

Case of OFFVAL \leq ONVAL
Case of OFFVAL > ONVAL

The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 2 COMBIN37 Element Output Definitions

| Name | Definition | \mathbf{O} | \mathbf{R} |
| :--- | :--- | :--- | :--- |
| EL | Element Number | Y | Y |

| Name | Definition | \mathbf{O} | R |
| :--- | :--- | :--- | :--- |
| ACTIVE NODES | Nodes - I, J | Y | Y |
| CONTROL
 NODES | Nodes - K, L | Y | |
| XC, YC, ZC | Location where results are reported | Y | 5 |
| CONTROL
 PARAM | CPAR value (see KEYOPT(1)) of the control nodes | Y | Y |
| STAT | Element status | 1 | 1 |
| OLDST | STAT value of the previous time step | 1 | 1 |
| UI | Displacement of node I | 2 | 2 |
| UJ | Displacement of node J | 2 | 2 |
| UK | Displacement of node K | 2 | 2 |
| UL | Relative displacement | 2 | 2 |
| STRETCH | Spring force in element | 2 | 2 |
| SFORCE | Applied force in the element | 2 | 2 |
| AFORCE | Sliding status | 3 | 3 |
| SLSTAT | Sliding status value of the previous time step | 3 | 3 |
| OLDSLS | Amount of sliding | 4 | 4 |
| SLIDE | | 2 | 2 |

1. If the value of the element status is:

0 - OFF

1 - ON
2. For the thermal and fluid options, analogous items are output. Thermal option output items TEMPI, TEMPJ, TEMPK, TEMPL, DELTEMP, SHEAT, and AHEAT and fluid option output items PRESI, PRESJ, PRESK, PRESL, DELPRES, SFLOW, and AFLOW are respectively analogous to output items UI, UJ, UK, UL, STRETCH, SFORCE, and AFORCE.
3. Output only if FSLIDE is greater than zero. If the value of the sliding status is:

0 - No sliding
1 - Sliding right (node J moving to right of node I)
-1- Sliding left (node J moving to left of node I)
4. If FSLIDE is greater than zero
5. Available only at centroid as a *GET item.

Table 3: COMBIN37 Item and Sequence Numbers (p. 248) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p .9) of this manual for more information. The following notation is used in Table 3: COMBIN37 Item and Sequence Numbers (p. 248):

Name

output quantity as defined in the Table 2: COMBIN37 Element Output Definitions (p. 246)

Item

predetermined Item label for ETABLE command
E
sequence number for single-valued or constant element data
Table 3 COMBIN37 Item and Sequence Numbers

| Output
 Quant-
 ity
 Name | ETABLE and
 ESOL Command
 Input | |
| :---: | :--- | :--- |
| | Item | E |
| SFORCE | SMISC | 1 |
| AFORCE | SMISC | 2 |
| STAT | NMISC | 1 |
| OLDST | NMISC | 2 |
| SLSTAT | NMISC | 3 |
| OLDSLS | NMISC | 4 |
| STRETCH | NMISC | 5 |
| UI | NMISC | 6 |
| UJ | NMISC | 7 |
| UK | NMISC | 8 |
| UL | NMISC | 9 |
| CPAR | NMISC | 10 |
| SLIDE | NMISC | 11 |

Analogous thermal and fluid option output items use the same item and sequence numbers. See footnote 2 (p. 247) of Table 2: COMBIN37 Element Output Definitions (p. 246).

COMBIN37 Assumptions and Restrictions

- The element may have only one degree of freedom per node which is specified in the nodal coordinate system (see Elements that Operate in the Nodal Coordinate System (p. 15)).
- The element assumes only a one-dimensional action.
- Nodes I and J may be anywhere in space (preferably coincident).
- No moment effects are included due to noncoincident nodes. That is, if the nodes are offset from the line of action, moment equilibrium may not be satisfied.
- The nonlinear capabilities of the element operate only in static and nonlinear transient dynamic analyses.
- If used in other analysis types, the element maintains its initial status (on or off), throughout the analysis.
- The real constants for this element are not allowed to be changed from their initial values.
- The element can not be deactivated with the EKILL command.
- Only the lumped mass matrix is available.

COMBIN37 Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

ANSYS Structural

- $\operatorname{KEYOPT}(2)=8$ is not allowed.
- $\operatorname{KEYOPT}(3)=8$ is not allowed.

FLUID38

Dynamic Fluid Coupling

MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS

FLUID38 Element Description

FLUID38 is used to represent a dynamic coupling between two points of a structure. The coupling is based on the dynamic response of two points connected by a constrained mass of fluid. The points represent the centerlines of concentric cylinders. The fluid is contained in the annular space between the cylinders. The cylinders may be circular or have an arbitrary cross-section. The element has two degrees of freedom per node: for example, translations in the nodal x and z directions. The axes of the cylinders are then assumed to be in the nodal y directions. The element may be used in any structural dynamic analysis. For certain cases the axisymmetric harmonic fluid element, FLUID81 (with MODE = 1), can also be used. See FLUID38 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

Figure 1 FLUID38 Geometry

FLUID38 Input Data

The node locations and the coordinate system for this element are shown in Figure 1 (p. 251). The element is defined by two nodes and several real constants. The real constants are defined in Table 1: FLUID38 Real Constants (p. 253).

KEYOPT(3) is used to select the form of the fluid coupling element. The form of the element determines the real constants required, the material properties (if any), and the matrices calculated. The density is input as material property DENS and is evaluated at the average of the two node temperatures. The damping matrix is calculated only if F is nonzero. $\operatorname{KEYOPT}(6)$ is used to select the direction of operation for the element. If $\operatorname{KEYOPT}(6)=1$, the X and Y labels used in this description should be interchanged. Similarly, if $\operatorname{KEYOPT}(6)=$ 3, interchange the Z and Y labels.

A summary of the element input is given in "FLUID38 Input Summary" (p. 252). A general description of element input is given in Element Input (p. 5).

FLUID38 Input Summary

Nodes

I, J
Degrees of Freedom
UX, UZ if KEYOPT(6) $=0$ or 2, or
$U Y, U Z$ if KEYOPT(6) $=1$, or
UX, UY if KEYOPT(6) $=3$

Real Constants

If $\operatorname{KEYOPT}(3)=0$:
R2, R1, L, F, DX, DZ, WX, WZ

If $\operatorname{KEYOPT}(3)=2$:
M2, M1, MHX, MHZ, DX, DZ,
WX, WZ, CX, CZ
See Table 1: FLUID38 Real Constants (p. 253) for a description of the real constants

Material Properties

DENS if KEYOPT (3) = 0
None if KEYOPT (3) = 2

Surface Loads

None

Body Loads

Temperature --
$\mathrm{T}(\mathrm{I}), \mathrm{T}(\mathrm{J})$

Special Features

None

KEYOPT(3)

Cross-section of cylinders:
0 --
Concentric circular cylinders
2 --
Concentric arbitrary cylinders

KEYOPT(6)

Flow axis parallel to:
0, 2 --
Nodal Y axis (UX, UZ degrees of freedom)
1 --
Nodal X axis (UX, UZ degrees of freedom)

3 --

Flow axis parallel to nodal Z axis (UX, UY degrees of freedom)
Table 1 FLUID38 Real Constants

| No. | Name | Description |
| :---: | :--- | :--- |
| Concentric Circular Cylinders: KEYOPT(3) = 0 | | |
| 1 | R2 | Radius of outer cylinder (length); node J refers to outer boundary |
| 2 | R1 | Radius of inner cylinder (length); node I refers to inner boundary |
| 3 | L | Length of cylinders |
| 4 | F | Darcy friction factor for turbulent flow |
| 5 | DX | Estimate of maximum relative amplitude DX |
| 6 | DZ | Estimate of maximum relative amplitude DZ |
| 7 | WX | Estimate of resonant X frequency (Rad/Time) |
| 8 | WZ | Estimate of resonant Z frequency (Rad/Time) |
| Concentric Arbitrary Cylinders: KEYOPT(3) = 2 | | |
| 1 | M2 | Mass of fluid that could be contained within the outer boundary
 (Boundary 2) in absence of inner boundary.
 2 |
| 3 | M1 | MHX |
| 4 | MHZ | Hydrodynamic mass in X direction |
| 5 | DX | Hydrodynamic mass in Z direction |
| 6 | DZ | Estimate of maximum relative amplitude DX |
| 7 | WX | Estimate of maximum relative amplitude DZ |
| 8 | WZ | Estimate of resonant Z frequency (Rad/Time) |
| 9 | CX | Flow and geometry constant for X motion (mass/lenght) |
| 10 | CZ | Flow and geometry constant for Z motion (mass/length) |

FLUID38 Output Data

There is no element solution output associated with the element unless element reaction forces and/or energies are requested.

FLUID38 Assumptions and Restrictions

- The element operates in the nodal coordinate system (see Elements that Operate in the Nodal Coordinate System (p. 15)).
- No fluid coupling exists in the flow axis direction.
- The element has no nodal coordinate system transformation to account for nonparallel nodal coordinate systems.
- Nodes I and J may be located anywhere in space (preferably coincident).
- The lumped mass option [LUMPM] is not available with this element.

FLUID38 Product Restrictions

There are no product-specific restrictions for this element.

COMBIN39

Nonlinear Spring

MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS
Product Restrictions

COMBIN39 Element Description

COMBIN39 is a unidirectional element with nonlinear generalized force-deflection capability that can be used in any analysis. The element has longitudinal or torsional capability in 1-D, 2-D, or 3-D applications. The longitudinal option is a uniaxial tension-compression element with up to three degrees of freedom at each node: translations in the nodal x, y, and z directions. No bending or torsion is considered. The torsional option is a purely rotational element with three degrees of freedom at each node: rotations about the nodal x, y, and z axes. No bending or axial loads are considered.

The element has large displacement capability for which there can be two or three degrees of freedom at each node.

See COMBIN39 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element. The element has no mass or thermal capacitance. These may be added by using the appropriate elements (see MASS21 and MASS71). A bilinear force-deflection element with damping and gaps is also available (COMBIN40).

Figure 1 COMBIN39 Geometry

COMBIN39 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 1 (p. 255). The element is defined by two (preferably coincident) node points and a generalized force-deflection curve. The points on this curve (D1, F1, etc.) represent force (or moment) versus relative translation (or rotation) for structural analyses, and heat (or flow) rate versus temperature (or pressure) difference for a thermal analyses. The loads should be defined on a full 360° basis for an axisymmetric analysis.

The force-deflection curve should be input such that deflections are increasing from the third (compression) to the first (tension) quadrants. Adjacent deflections should not be nearer than 1E-7 times total input deflection range. The last input deflection must be positive. Segments tending towards vertical should be avoided. If the force-deflection curve is exceeded, the last defined slope is maintained, and the status remains equal to the last segment number. If the compressive region of the force-deflection curve is explicitly defined (and not reflected), then at least one point should also be at the origin (0,0) and one point in the first (tension) quadrant. If $\operatorname{KEYOPT}(2)=1$ (no compressive resistance), the force-deflection curve should not extend into the third quadrant. Note that this tension-only behavior can cause convergence difficulties similar to those that can be experienced by contact elements. See the Contact Technology Guide, as well as various contact element descriptions, for guidelines on overcoming convergence difficulties. Note that the number of points defining the loading curve (20 points) can be effectively doubled by using the reflective option.

Slopes of segments may be either positive or negative, except that the slopes at the origin must be positive and, if $\operatorname{KEYOPT}(1)=1$, slopes at the ends may not be negative. Also, if $\operatorname{KEYOPT}(1)=1$, force-deflection points may not be defined in the second or fourth quadrants and the slope of any segment may not be greater than the slope of the segment at the origin in that quadrant.

The KEYOPT(1) option allows either unloading along the same loading curve or unloading along the line parallel to the slope at the origin of the curve. This second option allows modeling of hysteretic effects. As illustrated in Figure 2 (p. 259), the KEYOPT(2) option provides several loading curve capabilities.

The KEYOPT(3) option selects one degree of freedom. This may be a translation, a rotation, a pressure or a temperature.

Alternately, the element may have more than one type of degree of freedom (KEYOPT(4) > 0). The two nodes defining the element should not be coincident, since the load direction is colinear with the line joining the nodes. The longitudinal option (KEYOPT $(4)=1$ or 3) creates a uniaxial tension-compression element with two or three translational degrees of freedom at each node. No bending or torsion is considered. The torsional option $(\operatorname{KEYOPT}(4)=2)$ creates a purely rotational element with three rotational degrees of freedom at each node. No bending or axial loads are considered. The stress stiffening capability is applicable when forces are applied, but not when torsional loads are applied.

The element has large displacement capability with two or three degrees of freedom for each node when you use $\operatorname{KEYOPT}(4)=1$ or 3 in combination with NLGEOM,ON.

Convergence difficulties caused by moving through rapid changes of the slope (tangent) of the force-deflection diagram are sometimes helped by use of line search (LNSRCH,ON).

A summary of the element input is given in "COMBIN39 Input Summary" (p. 256). A general description of element input is given in Element Input (p. 5).

COMBIN39 Input Summary

Nodes
 I, J
 Degrees of Freedom

UX, UY, UZ, ROTX, ROTY, ROTZ, PRES, or TEMP.
Make 1-D choices with KEYOPT(3).
Make limited 2- or 3-D choices with KEYOPT(4).

Real Constants

D1, F1, D2, F2, D3, F3,
D4, F4, ..., D20, F20
See Table 1: COMBIN39 Real Constants (p. 258) for a description of the real constants

Material Properties

DAMP

Surface Loads

None

Body Loads

None

Special Features

Nonlinear
Stress stiffening
Large displacement

KEYOPT(1)

Unloading path:
0 --
Unload along same loading curve
1 --
Unload along line parallel to slope at origin of loading curve

KEYOPT(2)

Element behavior under compressive load:
0 --
Compressive loading follows defined compressive curve (or reflected tensile curve if not defined)
1 --
Element offers no resistance to compressive loading
2 --
Loading initially follows tensile curve then follows compressive curve after buckling (zero or negative stiffness)

KEYOPT(3)

Element degrees of freedom (1-D) (KEYOPT(4) overrides KEYOPT(3)):
0, 1 --
UX (Displacement along nodal X axes)
2 --
UY (Displacement along nodal Y axes)
3 --
UZ (Displacement along nodal Z axes)
4 --
ROTX (Rotation about nodal X axes)
5 --
ROTY (Rotation about nodal Y axes)

6 --

ROTZ (Rotation about nodal Z axes)
7 --
PRES
8 --
TEMP

KEYOPT(4)

Element degrees of freedom (2-D or 3-D):
0 --
Use any KEYOPT(3) option
1 --
3-D longitudinal element (UX, UY and UZ)
2 --
3-D torsional element (ROTX, ROTY and ROTZ)
3 --
2-D longitudinal element. (UX and UY) Element must lie in an X-Y plane

KEYOPT(6)

Element output:
0 --
Basic element printout
1 --
Also print force-deflection table for each element (only at first iteration of problem)

Table 1 COMBIN39 Real Constants

| No. | Name | Description |
| :---: | :--- | :--- |
| 1 | D1 | D value for the first point on force-deflection curve |
| 2 | F1 | F value for the first point on force-deflection curve |
| 3 | D2 | D value for the second point on force-deflection curve |
| 4 | F2 | F value for the second point on force-deflection curve |
| $5, \ldots 40$ | D3, F3,
 etc. | Continue input of D and F values up to a maximum of 20 points on
 the force-deflection curve |

COMBIN39 Output Data

The solution output associated with the element is in two forms:

- Nodal degree of freedom results included in the overall nodal solution
- Additional element output as shown in Table 2: COMBIN39 Element Output Definitions (p. 259)

The nodal displacements and forces correspond to the degrees of freedom selected with KEYOPT(3). For an axisymmetric analysis, the element forces are expressed on a full 360° basis. The element value STRETCH is the relative deflection at the end of the substep (e.g., UX(J) - UX(I) - UORIG, etc.). STAT and OLDST describe the curve segment number at the end of the current and previous substeps, respectively. STAT or OLDST = 0 indicates nonconservative unloading (KEYOPT $(1)=1)$. A status of 99 or -99 (as shown in Figure 1 (p. 255))
indicates that the active load point on the curve is outside of the supplied data. The slope of the last segment that is provided is simply continued beyond the last data point.

A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

Figure 2 COMBIN39 Force-Deflection Curves

KEYOPT(1) = 0 (conservative)
KEYOPT(2) $=0$

KEYOPT(1) = 1 (nonconservative)
KEYOPT(2) $=0$

KEYOPT(1) $=0$
KEYOPT(2) = 1

KEYOPT(1) = 1
KEYOPT(2) = 1

KEYOPT(1) $=0$
KEYOPT(2) $=2$

KEYOPT(1) = 1
KEYOPT(2) $=2$

The Element Output Definitions table uses the following notation:
A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and " - " indicates that the item is not available.

Table 2 COMBIN39 Element Output Definitions

| Name | Definition | \mathbf{O} | \mathbf{R} |
| :--- | :--- | :--- | :--- |
| EL | Element Number | Y | Y |

| Name | Definition | \mathbf{O} | R |
| :--- | :--- | :--- | :--- |
| NODES | Nodes - I, J | Y | Y |
| XC, YC, ZC | Location where results are reported | Y | 4 |
| UORIG | Origin shift upon reversed loading | 1 | 1 |
| FORCE | Force in element | Y | Y |
| STRETCH | Relative displacement (includes origin shift) | Y | Y |
| STAT | Status at end of this time step | 2 | 2 |
| OLDST | Same as STAT except status assumed at beginning of
 this time step | 2 | 2 |
| UI | Displacement of node I | Y | Y |
| UJ | Displacement of node J | Y | Y |
| CRUSH | Status of the force deflection curve after buckling | 3 | - |
| SLOPE | Current slope | Y | - |

1. If $\operatorname{KEYOPT}(1)=1$
2. If the value of STAT is:

0 - Indicates nonconservative unloading
1-20 - Curve segment number at end of time step
99 - Beyond last segment (last segment is extrapolated) (negative STAT values indicate compressive segments)
3. If $\operatorname{KEYOPT}(2)=2$ and if the value of CRUSH is:

0 - Use defined tensile curve
1 - Use reflected compressive curve in tension (element has been compressed)
4. Available only at centroid as a *GET item.

Table 3: COMBIN39 Item and Sequence Numbers (p. 261) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p.9) of this manual for more information. The following notation is used in Table 3: COMBIN39 Item and Sequence Numbers (p. 261):

Name

output quantity as defined in the Table 2: COMBIN39 Element Output Definitions (p. 259)

Item

predetermined Item label for ETABLE command

E

sequence number for single-valued or constant element data
Table 3 COMBIN39 Item and Sequence Numbers

| Output
 Quant-
 ity
 Name | ETABLE and
 ESOL Command
 Input | |
| :---: | :--- | :--- |
| | SMISC | E |
| STRETCH | NMISC | 1 |
| UI | NMISC | 2 |
| UJ | NMISC | 3 |
| UORIG | NMISC | 4 |
| STAT | NMISC | 5 |
| OLDST | NMISC | 6 |

COMBIN39 Assumptions and Restrictions

- If you specify $\operatorname{KEYOPT}(4)=0$, the element has only one degree of freedom per node. This degree of freedom defined by KEYOPT(3), is specified in the nodal coordinate system and is the same for both nodes (see Elements that Operate in the Nodal Coordinate System (p. 15)). KEYOPT(3) also defines the direction of the force. Nodes I and J may be anywhere in space (preferably coincident).
- If you specify $\operatorname{KEYOPT}(4) \neq 0$, the element has two or three displacement degrees of freedom per node. Nodes I and J should not be coincident, since the line joining the nodes defines the direction of the force.
- The element is defined such that a positive displacement of node J relative to node I tends to put the element in tension.
- The element is nonlinear and requires an iterative solution.
- The nonlinear behavior of the element operates only in static and nonlinear transient dynamic analyses.
- As with most nonlinear elements, loading and unloading should occur gradually.
- When the element is also nonconservative, loads should be applied along the actual load history path and in the proper sequence.
- The element can not be deactivated with the EKILL command.
- The real constants for this element can not be changed from their initial values.
- Whenever the force that the element carries changes sign, UORIG is reset, and the origin of the forcedeflection curve effectively shifts over to the point where the force changed sign. If $\operatorname{KEYOPT}(2)=1$ and the force tends to become negative, the element "breaks" and no force is transmitted until the force tends to become positive again.
- When $\operatorname{KEYOPT}(1)=1$, the element is both nonlinear and nonconservative.
- In a thermal analysis, the temperature or pressure degree of freedom acts in a manner analogous to the displacement.

COMBIN39 Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

ANSYS Structural

- $\operatorname{KEYOPT}(3)=8$ (temperature DOF) is not allowed.

Combination

MP ME ST PR PRN DS <> <> <> <> <> PP <> EME MFS
Product Restrictions

COMBIN40 Element Description

COMBIN40 is a combination of a spring-slider and damper in parallel, coupled to a gap in series. A mass can be associated with one or both nodal points. The element has one degree of freedom at each node, either a nodal translation, rotation, pressure, or temperature. The mass, springs, slider, damper, and/or the gap may be removed from the element. The element may be used in any analysis. See COMBIN40 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element. Other elements having damper, slider, or gap capabilities are COMBIN14, MATRIX27, COMBIN37, and COMBIN39.

Figure 1 COMBIN40 Geometry

COMBIN40 Input Data

The combination element is shown in Figure 1 (p. 263). The element is defined by two nodes, two spring constants K1 and K2 (Force/Length), a damping coefficient C (Force*Time/Length), a mass M (Force*Time ${ }^{2} /$ Length), a gap size GAP (Length), and a limiting sliding force FSLIDE (Force). (Units listed here apply only to $\operatorname{KEYOPT}(3)=0,1,2$, or 3 .)

If the element is used in an axisymmetric analysis, these values (except GAP) should be on a full 360° basis. A spring constant of 0.0 (for either K1 or K2, but not both) or a damping coefficient of 0.0 will remove these capabilities from the element. The mass, if any, may be applied at node I or node J or it may be equally distributed between the nodes.

The gap size is defined by the fourth element real constant. If positive, a gap of this size exists. If negative, an initial interference of this amount exists. If GAP $=0.0$, the gap capability is removed from the element. The FSLIDE value represents the absolute value of the spring force that must be exceeded before sliding occurs. If FSLIDE is 0.0 , the sliding capability of the element is removed, that is, a rigid connection is assumed.

A "breakaway" feature is available to allow the element stiffness (K1) to drop to zero once a limiting force |FSLIDE| has been reached. The limit is input as -|FSLIDE| and is applicable to both tensile breaking and compressive crushing. A "lockup" feature may be selected with KEYOPT(1). This feature removes the gap opening capability once the gap has closed.

The force-deflection relationship for the combination element is as shown in Figure 2 (p. 266) (for no damping). If the initial gap is identically zero, the element responds as a spring-damper-slider element having both tension and compression capability. If the gap is not initially zero, the element responds as follows: when the spring force (F1+F2) is negative (compression), the gap remains closed and the element responds as a spring-damper parallel combination. As the spring force (F1) increases beyond the FSLIDE value, the element slides and the F1 component of the spring force remains constant. If FSLIDE is input with a negative sign, the stiffness drops to zero and the element moves with no resisting F1 spring force. If the spring force becomes positive (tension), the gap opens and no force is transmitted. In a thermal analysis, the temperature or pressure degree of freedom acts in a manner analogous to the displacement.

The element has only the degrees of freedom selected with $\operatorname{KEYOPT}(3)$. The $\operatorname{KEYOPT}(3)=7$ and 8 options (pressure and temperature DOFs) allow the element to be used in a thermal analysis (with thermal equivalent real constants).

A summary of the element input is given in "COMBIN40 Input Summary" (p. 264). A general description of element input is given in Element Input (p. 5).

COMBIN40 Input Summary

Nodes

Degrees of Freedom
UX, UY, UZ, ROTX, ROTY, ROTZ, PRES, or TEMP (depending on KEYOPT(3) below)

Real Constants

Units for real constants will depend on the KEYOPT(3) setting.
K1 - Spring constant
C - Damping coefficient
M - Mass
GAP - Gap size
FSLIDE - Limiting sliding force
K2 - Spring constant (par to slide)

Note

If GAP is exactly zero, the interface cannot open. If GAP is negative, there is an initial interference. If FSLIDE is exactly zero, the sliding capability is removed. If FSLIDE is negative, the "breakaway" feature is used.

Material Properties

DAMP

Surface Loads

None

Body Loads

None

Special Features

Nonlinear (unless both GAP and FSLIDE equal zero)
Adaptive descent

KEYOPT(1)

Gap behavior:
0 --
Standard gap capability
1 --
Gap remains closed after initial contact ("lockup")

KEYOPT(3)

Element degrees of freedom:
0, 1 --
UX (Displacement along nodal X axes)
2 --
UY (Displacement along nodal Y axes)
3 --
UZ (Displacement along nodal Z axes)
4 --
ROTX (Rotation about nodal X axes)
5 --
ROTY (Rotation about nodal Y axes)
6 --
ROTZ (Rotation about nodal Z axes)
7 --
PRES
8 --
TEMP

KEYOPT(4)

Element output:
0 --
Produce element printout for all status conditions
1 --
Suppress element printout if gap is open $($ STAT $=3)$

KEYOPT(6)

Mass location:
0 --
Mass at node I
1 --
Mass equally distributed between nodes I and J
2 --
Mass at node J

COMBIN40 Output Data

The solution output associated with the element is in two forms:

- Nodal degree of freedom results included in the overall nodal solution
- Additional element output as shown in Figure 2 (p. 266)

Several items are illustrated in Figure 2 (p. 266). The displacement direction corresponds to the nodal coordinate direction selected with $\operatorname{KEYOPT}(3)$. The value STR is the spring displacement at the end of this substep, STR $=U(J)-U(I)+G A P-S L I D E$. This value is used in determining the spring force. For an axisymmetric analysis, the element forces are expressed on a full 360° basis. The value SLIDE is the accumulated amount of sliding at the end of this substep relative to the starting location.

STAT describes the status of the element at the end of this substep for use in the next substep. If STAT $=1$, the gap is closed and no sliding occurs. If STAT $=3$, the gap is open. If STAT $=3$ at the end of a substep, an element stiffness of zero is being used. A value of STAT $=+2$ indicates that node J moves to the right of node I. STAT = -2 indicates a negative slide. A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

Figure 2 COMBIN40 Behavior

The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 1 COMBIN40 Element Output Definitions

| Name | Definition | \mathbf{O} | R |
| :--- | :--- | :---: | :---: |
| EL | Element Number | Y | Y |
| NODES | Nodes - I, J | Y | Y |
| XC, YC, ZC | Location where results are reported | Y | 2 |
| SLIDE | Amount of sliding | Y | Y |
| F1 | Force in spring 1 | Y | Y |

| Name | Definition | O | R |
| :--- | :--- | :---: | :---: |
| STR1 | Relative displacement of spring 1 | Y | Y |
| STAT | Element status | 1 | 1 |
| OLDST | STAT value of the previous time step | 1 | 1 |
| UI | Displacement of node I | Y | Y |
| UJ | Displacement of node J | Y | Y |
| F2 | Force in spring 2 | Y | Y |
| STR2 | Relative displacement of spring 2 | Y | Y |

1. If the value of STAT is:

1 - Gap closed (no sliding)
2 - Sliding right (node J moving to right of node I)
-2 - Sliding left (node J moving to left of node I)
3 - Gap open
2. Available only at centroid as a *GET item.

Table 2: COMBIN40 Item and Sequence Numbers (p. 267) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p .9) of this manual for more information. The following notation is used in Table 2: COMBIN40 Item and Sequence Numbers (p. 267):

Name

output quantity as defined in the Table 1: COMBIN40 Element Output Definitions (p. 266)

Item

predetermined Item label for ETABLE command
E
sequence number for single-valued or constant element data
Table 2 COMBIN40 Item and Sequence Numbers

| Output
 Quant-
 ity
 Name | ETABLE and
 ESOL Command
 Input | |
| :---: | :--- | :---: |
| | Item | E |
| F1 | SMISC | 1 |
| F2 | SMISC | 2 |
| STAT | NMISC | 1 |
| OLDST | NMISC | 2 |
| STR1 | NMISC | 3 |
| STR2 | NMISC | 4 |
| UI | NMISC | 5 |
| UJ | NMISC | 6 |

| Output
 Quant-
 ity
 Name | ETABLE and
 ESOL Command
 Input | |
| :---: | :---: | :---: |
| | E | |
| SLIDE | NMISC | 7 |

COMBIN40 Assumptions and Restrictions

- The element has only one degree of freedom per node which is specified in the nodal coordinate system (see Elements that Operate in the Nodal Coordinate System (p. 15)).
- The element assumes only a 1-D action.
- Nodes I and J may be anywhere in space (preferably coincident).
- The element is defined such that a positive displacement of node J relative to node I tends to open the gap. If, for a given set of conditions, nodes I and J are interchanged, the gap element acts as a hook element, i.e., the gap closes as the nodes separate.
- The real constants for this element can not be changed from their initial values.
- The element can not be deactivated with the EKILL command.
- The nonlinear options of the element operate only in static and nonlinear transient dynamic (TRNOPT,FULL) analyses.
- If used in other analysis types, the element maintains its initial status throughout the analysis.
- A 0.0 value for GAP or FSLIDE removes the gap or sliding capability, respectively, from the element.
- The mass, if any, is 1-D.
- The element requires an iterative solution if GAP and/or FSLIDE are nonzero.
- A stiffness (K1 or K2) must be defined if the gap capability is used. Unreasonably high stiffness values should be avoided.
- The rate of convergence may decrease as the stiffness increases. If FSLIDE is not equal to zero, the element is nonconservative as well as nonlinear. Nonconservative elements require that the load be applied very gradually, along the actual load history path, and in the proper sequence (if multiple loadings exist).
- Only the lumped mass matrix is available.

COMBIN40 Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

ANSYS Professional

Structural Analysis:

- No damping capability; CV1 and CV2 are not allowed.
- Only stress stiffening and large deflections are allowed.
- KEYOPT(3) $=7$ or 8 is not allowed.
- The DAMP material property is not allowed.
- FSLIDE and K2 not allowed.

ANSYS Structural

- $\operatorname{KEYOPT}(3)=7$ and 8 (pressure and temperature DOFs) are not allowed.

SHELL41

Membrane Shell
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS
Product Restrictions

SHELL41 Element Description

Although this legacy element is available for use in your analysis, ANSYS recommends using a current-technology element such as SHELL181 $(\operatorname{KEYOPT}(1)=1$ or $\operatorname{KEYOPT}(3)=2)$.

SHELL41 is a 3-D element having membrane (in-plane) stiffness but no bending (out-of-plane) stiffness. It is intended for shell structures where bending of the elements is of secondary importance. The element has three degrees of freedom at each node: translations in the nodal x, y, and z directions.

The element has variable thickness, stress stiffening, large deflection, and a cloth option. See SHELL41 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

Figure 1 SHELL41 Geometry

$x_{I J}=$ Element x-axis if ESYS is not supplied.
$\mathrm{x}=$ Element x -axis if ESYS is supplied.

SHELL41 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 1 (p. 271). The element is defined by four nodes, four thicknesses, a material direction angle and the orthotropic material properties. Orthotropic material directions correspond to the element coordinate directions. The element coordinate system orientation is as described in Coordinate Systems (p. 14). The element x-axis may be rotated by an angle THETA (in degrees).

The element may have variable thickness. The thickness is assumed to vary smoothly over the area of the element, with the thickness input at the four nodes. If the element has a constant thickness, only TK(I) need be input. If the thickness is not constant, all four thicknesses must be input. The elastic foundation stiffness (EFS) is defined as the pressure required to produce a unit normal deflection of the foundation. The elastic foundation capability is bypassed if EFS is less than, or equal to, zero. ADMSUA is the added mass per unit area.

Element loads are described in Node and Element Loads (p. 97). Pressures may be input as surface loads on the element faces as shown by the circled numbers on Figure 1 (p. 271). Positive pressures act into the element. Because shell edge pressures are input on a per-unit-length basis, per-unit-area quantities must be multiplied by the shell thickness. The pressure loading is converted to equivalent element loads applied at the nodes. Temperatures may be input as element body loads at the nodes. The node I temperature $T(I)$ defaults to TUNIF. If all other temperatures are unspecified, they default to $T(I)$. For any other input pattern, unspecified temperatures default to TUNIF.

Use KEYOPT(1) for a tension-only option. This nonlinear option acts like a cloth in that tension loads will be supported but compression loads will cause the element to wrinkle.

You should not use this "cloth" option to model cloth materials, since real cloth materials do contain some bending stiffness. You can use the cloth option to efficiently model regions where wrinkling is to be approximated, such as for shear panels in aircraft structures. Wrinkling for this type of application may be in one (or both) orthogonal directions. If you do need to model a real cloth material, you can use the cloth option to simulate the tension part of the loading, but you will need to superimpose a very thin regular shell element to include a bending stiffness for the material. Superimposing a thin shell may also aid solution stability.

Any out-of-planeness within the element or round off-error in nodal location may cause an instability in the displacement solution. To counteract this, a slight normal stiffness may be added to the element with the EFS real constant. KEYOPT(2) is used to include or suppress the extra displacement shapes. KEYOPT(4) provides various element printout options (see Element Solution (p. 9)).

A summary of the element input is given in "SHELL41 Input Summary" (p. 272). A general description of element input is given in Element Input (p. 5).

SHELL41 Input Summary

Nodes

I, J, K, L

Degrees of Freedom

UX, UY, UZ

Real Constants

TK(I), TK(J), TK(K), TK(L), THETA, EFS,
ADMSUA
See Table 1: SHELL41 Real Constants (p. 274) for a description of the real constants

Material Properties

EX, EY, PRXY or NUXY, ALPX, ALPY (or CTEX, CTEY or THSX,THSY), DENS, GXY, DAMP (X-direction defined by THETA real constant)

Surface Loads

Pressures --

face 1 (I-J-K-L) (bottom, in +Z direction), face 2 (I-J-K-L) (top, in -Z direction),
face 3 (J-I), face 4 (K-J), face 5 (L-K), face 6 (I-L)

Body Loads

Temperatures --
$T(I), T(J), T(K), T(L)$

Special Features

Stress Stiffening
Large Deflection
Nonlinear (if KEYOPT(1) = 2)
Birth and death
Adaptive descent

KEYOPT(1)

Element stiffness behavior:
0 --
Stiffness acts in both tension and compression
2 --
Stiffness acts in tension, collapses in compression ("cloth" option)

KEYOPT(2)

Extra displacement shapes:
0 --
Include extra displacement shapes
1 --
Suppress extra displacement shape

KEYOPT(4)

Extra stress output:
0 --
Basic element printout
1 --
Repeat basic printout at integration points
2 --
Nodal stress printout

KEYOPT(5)

Member force output:
0 --
No member force printout
1 --
Print member forces in the element coordinate system

KEYOPT(6)

Edge output (isotropic material):
0 --
No edge printout
1 --
Edge printout for midpoint of side I-J

2 --
Edge printout for midpoints of both sides I-J and K-L

Note

Edge printout valid only for isotropic materials
Table 1 SHELL41 Real Constants

| No. | Name | Description |
| :---: | :--- | :--- |
| 1 | TK(I) | Shell thickness at node I |
| 2 | TK(J) | Shell thickness at node J (defaults to TK(I)) |
| 3 | TK(K) | Shell thickness at node K (defaults to TK(I)) |
| 4 | TK(L) | Shell thickness at node L (defaults to TK(I)) |
| 5 | THETA | Element x-axis rotation |
| 6 | EFS | Elastic foundation stiffness |
| 7 | ADMSUA | Added mass/unit area |

SHELL41 Output Data

The solution output associated with the element is in two forms:

- Nodal degree of freedom results included in the overall nodal solution
- Additional element output as shown in Table 2: SHELL41 Element Output Definitions (p. 275)

Several items are illustrated in Figure 2 (p. 274). The element stress directions correspond to the element coordinate directions. Edge stresses are defined parallel and perpendicular to the IJ edge (and the KL edge). A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

Figure 2 SHELL41 Stress Output

$x_{I J}=$ Element x-axis if ESYS is not supplied.
$x=$ Element x-axis if ESYS is supplied.

The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and " - " indicates that the item is not available.

Table 2 SHELL41 Element Output Definitions

| Name | Definition | 0 | R |
| :---: | :---: | :---: | :---: |
| EL | Element Number | Y | Y |
| NODES | Nodes - I, J, K, L | Y | Y |
| MAT | Material number | Y | Y |
| AREA | Surface area | Y | Y |
| XC, YC, ZC | Location where results are reported | Y | 4 |
| PRES | Pressures P1 at nodes I, J, K, L; P2 at I, J, K, L; P3 at J, I; P4 at K, J; P5 at L, K; P6 at I, L | Y | Y |
| TEMP | Temperatures T(I), T(J), T(K), T(L) | Y | Y |
| S:X, Y, Z, XY | Stresses | Y | Y |
| S:1, 2, 3 | Principal stress | Y | Y |
| S:INT | Stress intensity | Y | Y |
| S:EQV | Equivalent stress | Y | Y |
| EPEL:X, Y, Z, XY | Average elastic strain | Y | Y |
| EPEL:EQV | Equivalent elastic strain | Y | Y |
| EPTH:X, Y, Z, XY | Average thermal strain | Y | Y |
| EPTH:EQV | Equivalent thermal strain | Y | Y |
| ANGLES | Diagonal tension angles (degrees) between element x-axis and tensile stress directions | 1 | 1 |
| CURRENT STATS. | Element statuses at end of this time step | 2 | 2 |
| OLD STATUSES | Element statuses at end of previous time step | 2 | 2 |
| TEMP | Edge average temperature | 3 | 3 |
| EPEL(PAR, PER, Z) | Edge elastic strains (parallel, perpendicular, Z) | 3 | 3 |
| S(PAR, PER, Z) | Edge stresses (parallel, perpendicular, Z) | 3 | 3 |
| SINT | Edge stress intensity | 3 | 3 |
| SEQV | Edge equivalent stress | 3 | 3 |
| FX, FY, FZ | Nodal forces | - | Y |

1. Output at the integration points only if $\operatorname{KEYOPT}(1)=2$ (meaningful only if STAT $=1$)
2. Output at the integration points only if $\operatorname{KEYOPT}(1)=2$. The element status is given by the following values:

0 - Tension in both (orthogonal) directions
1 - Tension in one direction, collapse in other direction
2 - Collapse in both directions
3. Edge $\mathrm{I}-\mathrm{J}$ output, if $\mathrm{KEYOPT}(6)$ is greater than zero.
4. Available only at centroid as a *GET item.

Table 3 SHELL41 Miscellaneous Element Output

| Description | Names of Items Output | $\mathbf{0}$ | \mathbf{R} |
| :--- | :--- | :---: | :---: |
| Integration Point Stress
 Solution | TEMP, S(X, Y, Z, XY), SINT,
 SEQV | 1 | - |
| Nodal Stress Solution | TEMP, S(X, Y, Z, XY), SINT,
 SEQV | 2 | - |
| Edge K-L | TEMP, EPEL(PAR, PER, Z),
 S(PAR, PER, Z), SINT, SEQV | 3 | - |
| Member Forces | FX, FY, FZ | 4 | - |

1. Output at each integration point, if $\operatorname{KEYOPT}(4)=1$
2. Output at each node, if $\operatorname{KEYOPT}(4)=2$
3. Output if $\operatorname{KEYOPT}(6)=2$
4. Output at each node (in the element coordinate system) if $\operatorname{KEYOPT}(5)=1$

Table 4: SHELL41 Item and Sequence Numbers (p. 276) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p.9) of this manual for more information. The following notation is used in Table 4: SHELL41 Item and Sequence Numbers (p. 276):

Name

output quantity as defined in the Table 2: SHELL41 Element Output Definitions (p. 275)
Item
predetermined Item label for ETABLE command

I,J,K,L

sequence number for data at nodes $\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}$
Table 4 SHELL41 Item and Sequence Numbers

| Output
 Quant-
 ity
 Name | ETABLE and ESOL Command Input | | | | |
| :---: | :--- | :---: | :---: | :---: | :---: |
| | Item | \mathbf{I} | \mathbf{J} | \mathbf{K} | \mathbf{L} |
| FX | SMISC | 1 | 4 | 7 | 10 |
| FY | SMISC | 2 | 5 | 8 | 11 |
| FZ | SMISC | 3 | 6 | 9 | 12 |
| P1 | SMISC | 13 | 14 | 15 | 16 |
| P2 | SMISC | 17 | 18 | 19 | 20 |

| Output
 Quant-
 ity
 Name | ETABLE and ESOL Command Input | | | | | |
| :---: | :--- | :--- | :--- | :--- | :--- | :---: |
| | Item | I | \mathbf{J} | K | \mathbf{L} | |
| P3 | SMISC | 22 | 21 | - | - | |
| P4 | SMISC | - | 24 | 23 | - | |
| P5 | SMISC | - | - | 26 | 25 | |
| P6 | SMISC | 27 | - | - | 28 | |
| S:1 | NMISC | 1 | 6 | 11 | 16 | |
| S:2 | NMISC | 2 | 7 | 12 | 17 | |
| S:3 | NMISC | 3 | 8 | 13 | 18 | |
| S:INT | NMISC | 4 | 9 | 14 | 19 | |
| S:EQV | NMISC | 5 | 10 | 15 | 20 | |

| Output | ETABLE and ESOL Command Input | | | | | |
| :---: | :--- | :--- | :--- | :--- | :--- | :---: |
| Quant-
 ity
 Name | Item | Corner Location | | | | |
| | | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | |
| ANGLE | NMISC | 21 | 23 | 25 | 27 | |
| STAT | NMISC | 22 | 24 | 26 | 28 | |

SHELL41 Assumptions and Restrictions

- The four nodes defining the element should lie in an exact flat plane; however, a small out-of-plane tolerance is permitted so that the element may have a slightly warped shape.
- A slightly warped element will produce a warning message. If the warping is too severe, a fatal message results and a triangular element should be used (see Triangle, Prism, and Tetrahedral Elements (p. 99)).
- Zero area elements are not allowed.
- TK(I) must not be zero.
- The element must not taper down to a zero thickness at any corner.
- A triangular element may be formed by defining duplicate K and L node numbers (see Triangle, Prism, and Tetrahedral Elements (p. 99)).
- The extra shapes are automatically deleted for triangular elements so that a constant strain element results.
- The triangular shape is required for large deflection analyses since a four-node element may warp during deflection.
- Edge stress printout is valid only if the conditions described in Element Solution (p. 9) are met.

Modeling hints:

- An assembly of SHELL41 elements describing a flat plane should be exactly flat; otherwise singularities may develop in the direction perpendicular to the plane.
- Stress stiffening will help stabilize the solution after the first substep if the membrane element is in a tension field.
- An assemblage of flat elements can produce an approximation to a curved surface, but each flat element should not extend over more than a 15° arc.

SHELL41 Product Restrictions

There are no product-specific restrictions for this element.

INFIN47 Element Description

Although this legacy element is available for use in your analysis, ANSYS recommends using a current-technology element such as INFIN111.

INFIN47 is used to model an open boundary of a 3-D unbounded field problem. The element may be a 4node quadrilateral or a 3-node triangle with a magnetic potential or temperature degree of freedom at each node. The enveloped (or enclosed) element types may be the SOLID5, SOLID96, or SOLID98 magnetic elements or the SOLID70, SOLID90 or SOLID87 thermal solid elements. With the magnetic degree of freedom the analysis may be linear or nonlinear static. With the thermal degree of freedom steady-state or transient analyses (linear or nonlinear) may be done. See INFIN47 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

Figure 1 INFIN47 Geometry

INFIN47 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 1 (p. 279). The element is defined by 4 nodes, and the material properties. Nonzero material properties must be defined. A triangular element may be formed by defining duplicate K and L node numbers as described in Triangle, Prism, and Tetrahedral Elements (p. 99). The element x -axis is parallel to the $\mathrm{I}-\mathrm{J}$ side of the element.

The coefficient matrix of this boundary element is, in general, unsymmetric. The matrix is made symmetric by averaging the off-diagonal terms to take advantage of a symmetric solution with a slight decrease in accuracy. KEYOPT(2) can be used to keep an unsymmetric matrix from being made symmetric.

A summary of the element input is given in "INFIN47 Input Summary" (p. 280). A general description of element input is given in Element Input (p. 5).

INFIN47 Input Summary

Nodes

I, J, K, L
Degrees of Freedom
MAG if $\operatorname{KEYOPT}(1)=0$
TEMP if $\operatorname{KEYOPT}(1)=1$

Real Constants

None

Material Properties

MUZRO if $\operatorname{KEYOPT}(1)=0$, (has default value for MKS units or can be set with the EMUNIT command).
KXX if KEYOPT(1) = 1

Surface Loads

None

Body Loads

None

Element Printout

None
Special Features
None

KEYOPT(1)

Element degree(s) of freedom:
0 --
Magnetic option
1 --
Thermal option

KEYOPT(2)

Coefficient matrix:
0 --
Make the coefficient matrix symmetric
1 --
Coefficient matrix is used as generated (symmetric or unsymmetric, depending on the problem)

INFIN47 Output Data

The boundary element has no output of its own since it is used only to provide a semi-infinite boundary condition to a model consisting of other elements.

INFIN47 Assumptions and Restrictions

- The 4 nodes defining the element should lie as close as possible to a flat plane; however, a moderate out-of-plane tolerance is permitted so that the element may have a somewhat warped shape.
- An excessively warped element will produce a warning message. In the case of warping errors, triangular elements should be used (see Triangle, Prism, and Tetrahedral Elements (p. 99)).
- Shell element warping tests are described in detail in the tables of Applicability of Warping Tests and Warping Factor Limits in the Theory Reference for the Mechanical APDL and Mechanical Applications.
- Zero area elements are not allowed.
- The semi-infinite volume is assumed to be bound on five sides (four, if triangular) by the boundary element and by four semi-infinite radial surfaces (three, if triangular) defined from the global coordinate system origin through nodes I and J, J and K, K and L , and L and I (nodes I and J, J and K , and K and I if triangular).
- The boundary element should be as normal as possible to the radial surfaces.
- Acute or wide intersection angles should be avoided by "filling-in" the model with the other elements so that the line of boundary elements around the model is smooth and concave when viewed from the global coordinate system origin.
- The element assumes that the degree of freedom (DOF) value at infinity is always zero (0.0). That is, the DOF value at infinity is not affected by TUNIF, D, or other load commands.
- The boundary element must lie "against" an enclosed element (that is, share the same nodes).
- The exterior semi-infinite domain is assumed to be homogeneous, isotropic, and linear without containing any sources or sinks.
- The origin of the global coordinate system must be inside the model and as centrally located as possible.
- The surface of boundary elements should be located away from the region of interest of the enclosed elements for better accuracy. The surface of boundary elements need not totally surround the model.
- The element may not be deactivated with the EKILL command.
- When used in a model with higher order elements SOLID90, SOLID87, and SOLID98, the midside nodes of these elements must be removed at the interface with INFIN47 [EMID].
- If $\operatorname{KEYOPT}(2)=1$, the matrices are presumed to be unsymmetric.
- This element cannot be used in a distributed solution.

INFIN47 Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

ANSYS Mechanical

Unless the Emag option is enabled, the following restrictions apply:

- This element does not have magnetic field capability.
- The MAG degree of freedom is not active.
- KEYOPT(1) defaults to 1 (TEMP) instead of 0 and cannot be changed.
- The material property MUZRO is not allowed.

ANSYS Emag

- This element has only magnetic field capability, and does not have thermal capability.
- The only active degree of freedom is MAG.
- The only allowable material property is MUZERO.
- KEYOPT(1) can only be set to 0 (default).

MATRIX50

Superelement (or Substructure)

$$
\begin{array}{r}
\text { MP ME ST PR PRN <> <> <> EM <> <> PP <> EME MFS } \\
\text { Product Restrictions }
\end{array}
$$

MATRIX50 Element Description

MATRIX50 is a group of previously assembled ANSYS elements that is treated as a single element. The superelement, once generated, may be included in any ANSYS model and used in any analysis type for which it is applicable. The superelement can greatly decrease the cost of many analyses. Once the superelement matrices have been formed, they are stored in a file and can be used in other analyses the same way any other ANSYS elements are used. Multiple load vectors may also be stored with the superelement matrices, thereby allowing various loading options. See MATRIX50 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

Figure 1 MATRIX50 Schematic

MATRIX50 Input Data

The superelement, which is a mathematical matrix representation of an arbitrary structure, has no fixed geometrical identity and is conceptually shown in Figure 1 (p.283). Any analysis using a superelement as one of its element types is called a superelement use pass (or run). The degrees of freedom are the master degrees of freedom specified during the generation pass.

The element name is MATRIX50 (the number 50 or the name MATRIX50 should be input for the variable ENAME on the ET command). The SE command is used to define a superelement. SE reads the superelement from Jobname. SUB (defaults to File. SUB) in the working directory. The material number [MAT] is only used when material dependent damping [MP,DAMP] or electrical permittivity [MP,PERX] is an input. The real constant table number [REAL] is not used. However, the appropriate element type number [TYPE] must be entered.

An element load vector is generated along with the element at each load step of the superelement generation pass. Up to 31 load vectors may be generated. Load vectors may be proportionately scaled in the use pass. The scale factor is input on the element surface load command [SFE]. The load label is input as SELV, the load key is the load vector number, KVAL determines whether the load vector is real or imaginary, and the load value is the scale factor. The load vector number is determined from the load step number associated with the superelement generation. If a superelement load vector has a zero scale factor (or is not scaled at all), this load vector is not included in the analysis. Any number of load vector-scale factor combinations may be used in the use pass.

In a large rotation analysis (NLGEOM,ON), you can use KEYOPT(3) to specify whether the load vectors associated with this element type rotates with the element (as you would for a pressure load) or remains in the original (unrotated) direction (as you would for a non-follower force load); all load vectors (if multiple load vectors) are rotated or left unrotated. You can use KEYOPT(4) to indicate that the superelement was generated with constraints (D) so that it cannot translate or rotate freely in the use pass as expected (although you can apply constraints in the use pass to the master degrees of freedom to prevent such motion.)

The KEYOPT(1) option is for the special case where the superelement is to be used with a T^{4} nonlinearity, such as for radiation. The File. SUB for this case may be constructed directly by the user or may be generated by AUX12, the radiation matrix generator.

A summary of the element input is given in "MATRIX50 Input Summary" (p. 284). A general description of element input is given in Element Input (p. 5).

MATRIX50 Input Summary

Nodes

None input (supplied by element)

Degrees of Freedom

As determined from the included element types (a mixture of multi-field degrees of freedom is not allowed)

Real Constants

None

Material Properties

DAMP, PERX

Surface Loads

Surface load effects may be applied through a generated load vector and scale factors. Use the SFE command to supply scale factors with $L A B=$ SELV, $L K E Y=$ load vector number (31 maximum), KVAL $=$ real or imaginary, and VAL1 = scale factor.

Body Loads

Body loads may be applied through a generated load vector and scale factors as described for surface loads.

Special Features

Radiation (if $\operatorname{KEYOPT}(1)=1$), Large rotation

KEYOPT(1)

Element behavior:
0 --
Normal substructure
1 --
Special radiation substructure

KEYOPT(3)

Load vector update with large rotations (NLGEOM,ON):
0 --
Load vector(s) rotate with the substructure as it rotates
1 --
Load vector(s) do not rotate and remain in their original direction

KEYOPT(4)

Constrained substructure with large rotations (NLGEOM,ON):
0 --
Substructure was unconstrained in the generation pass
1 --
Substructure was constrained in the generation pass

KEYOPT(6)

Nodal force output:
0 --
Do not print nodal forces
1 --
Print nodal forces

MATRIX50 Output Data

Displacements and forces may be printed for each (master) degree of freedom in a structural superelement in the "use" pass. Energies are also available when requested. The nodal forces may be output if KEYOPT(6) $=1$. The stress distribution within the superelement and the expanded nodal displacements can be obtained from a subsequent stress pass. In addition to the database and substructure files from the generation run, File. DSUB must be saved from the superelement "use" pass and input to the expansion pass (if an expansion pass is desired). A general description of solution output is given in Solution Output (p.8).

MATRIX50 Assumptions and Restrictions

- A superelement may contain elements of any type except Lagrange multiplier-based elements (such as MPC184, PLANE182 with $\operatorname{KEYOPT}(6)=1$, and CONTA171 with $\operatorname{KEYOPT}(2)=3)$.
- See the \mathbf{D} command for degree of freedom field groups.
- Superelements of different field types may be mixed within the use run.
- The nonlinear portion of any element included in a superelement will be ignored and any bilinear element will maintain its initial status throughout the analysis.
- Superelements may contain other superelements.
- The relative locations of the superelement attachment points in the nonsuperelement portion of the model (if any) should match the initial superelement geometry.
- If the superelement contains a mass matrix, acceleration [ACEL] defined in the use run will be applied to the superelement.
- If a load vector containing acceleration effects is also applied in the use run, both accelerations (the ACEL command and the load vector) will be applied to the superelement.
- Similarly, if the superelement contains a damping matrix (as specified in the generation run) and α and β damping multipliers [ALPHA and BETA] are defined in the use run, additional damping effects will be applied to the superelement.
- You should be careful to avoid duplicating acceleration and damping effects.
- Pressure and thermal effects may be included in a superelement only through its load vectors.
- The dimensionality of the superelement corresponds to the maximum dimensionality of any element used in its generation. A 2-D superelement should only be used in 2-D analyses, and 3-D superelements in 3-D analyses.
- See Substructuring Analysis in the Theory Reference for the Mechanical APDL and Mechanical Applications for a discussion of the substructure matrix procedure.

MATRIX50 Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

ANSYS Structural

- $\operatorname{KEYOPT}(1)=0$
- The PERX material property is not applicable.

ANSYS Professional

- This element may be used as a radiation substructure only. $\operatorname{KEYOPT}(1)$ defaults to 1 instead of 0 and cannot be changed.
- The DAMP material property, PERX material property, surface loads, and body loads are not applicable.
- The large rotation special feature is not applicable.

ANSYS Emag

- This element may be used as a Trefftz substructure only.
- The DAMP material property is not applicable.
- The large rotation special feature is not applicable.

PLANE53

2-D 8-Node Magnetic Solid

$$
\begin{array}{r}
\mathrm{MP}<><><><><><><>\mathrm{EM}<><>\mathrm{PP} \text { <> EME <> } \\
\text { Product Restrictions }
\end{array}
$$

PLANE53 Element Description

Although this legacy element is available for use in your analysis, ANSYS recommends using a current-technology element such as PLANE233.

PLANE53 models 2-D (planar and axisymmetric) magnetic fields. The element is defined by 8 nodes and has up to 4 degrees of freedom per node: z component of the magnetic vector potential (AZ), time-integrated electric scalar potential (VOLT), electric current (CURR), and electromotive force (EMF). PLANE53 is based on the magnetic vector potential formulation and is applicable to the following low-frequency magnetic field analyses: magnetostatics, eddy currents (AC time harmonic and transient analyses), voltage forced magnetic fields (static, AC time harmonic and transient analyses), and electromagnetic-circuit coupled fields (static, AC time harmonic and transient analyses). The element has nonlinear magnetic capability for modeling B-H curves or permanent magnet demagnetization curves. See PLANE53 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element. A similar 4 node element (without voltage forced and magnetic-circuit coupled capability) is PLANE13.

Degree of freedom and force labels for this element are shown in the following table.
Table 1 DOF and Force Labels

| Degree of Freedom | | Force (reaction solution) | |
| :--- | :--- | :--- | :--- |
| Label | Label Description | Label | Label Description |
| AZ [1] | Magnetic Vector Potential | CSGZ [2] | Magnetic Current Segment |
| VOLT | Voltage | AMPS | Current Flow |
| CURR | Current Flow | VLTG | Voltage Drop |
| EMF | Electromotive Force | CURT | Current Flow |

1. The label used with the CNVTOL command is A.
2. The label used with the CNVTOL command is CSG.

Figure 1 PLANE53 Geometry

PLANE53 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 1 (p. 287). The element input data includes 8 nodes and the magnetic material properties. The type of units (MKS or user defined) is specified through the EMUNIT command. EMUNIT also determines the value of MUZRO. The EMUNIT defaults are MKS units and MUZRO $=4 \pi \times 10^{-7}$ henries/meter. In addition to MUZRO, orthotropic relative permeability is specified through the MURX and MURY material property labels.

MGXX and MGYY represent vector components of the coercive force for permanent magnet materials. The magnitude of the coercive force is the square root of the sum of the squares of the components. The direction of polarization is determined by the components MGXX and MGYY. Permanent magnet polarization and orthotropic material directions correspond to the element coordinate directions. The element coordinate system orientation is as described in Coordinate Systems (p. 14). Properties not input default as described in Linear Material Properties (p. 16). Nonlinear magnetic B-H properties are entered with the TB command as described in Material Data Tables (Implicit Analysis) (p. 22). Nonlinear orthotropic magnetic properties may be specified with a combination of a B-H curve and linear relative permeability. The B-H curve will be used in each element coordinate direction where a zero value of relative permeability is specified. Only one B-H curve may be specified per material.

Various combinations of nodal loading are available for this element, depending upon the KEYOPT(1) value. Nodal loads are defined with the \mathbf{D} and the \mathbf{F} commands. With the \mathbf{D} command, the Lab variable corresponds to the degree of freedom (VOLT or AZ) and VALUE corresponds to the value (time-integrated electric scalar potential or vector magnetic potential). With the \mathbf{F} command, the Lab variable corresponds to the force (AMPS or CSGZ) and VALUE corresponds to the value (current or magnetic current segment). The nodal forces, if any, should be input per unit of depth for a plane analysis and on a full 360° basis for an axisymmetric analysis.

Element loads are described in Node and Element Loads (p. 97). Maxwell force flags may be input on the element faces indicated by the circled numbers in Figure 1 (p. 287) using the SF and SFE commands. Surfaces at which magnetic forces are to be calculated may be identified by using the MXWF label on the surface load commands (no value is required.) A Maxwell stress tensor calculation is performed at these surfaces to obtain the magnetic forces. The surface flag should be applied to "air" elements adjacent to the body for which forces are required. Deleting the MXWF specification removes the flag. Lorentz and Maxwell forces may be made available for a subsequent structural analysis with companion elements [LDREAD].

The temperature (for material property evaluation only) and magnetic virtual displacement body loads may be input based on their value at the element's nodes or as a single element value [BF, BFE]. Source current density and voltage body loads may be applied to an area [BFA] or input as an element value [BFE]. In general, unspecified nodal values of temperatures default to the uniform value specified with the BFUNIF or TUNIF commands. Calculated Joule heating (JHEAT) may be made available for a subsequent thermal analysis with companion elements [LDREAD].

Air elements in which local Jacobian forces are to be calculated may be identified by using nodal values of 1 and 0 for the MVDI label [BF]. See the Low-Frequency Electromagnetic Analysis Guide for details.

A summary of the element input is given in "PLANE53 Input Summary" (p. 289). A general description of element input is given in Element Input (p. 5). For axisymmetric applications see Harmonic Axisymmetric Elements (p. 102).

PLANE53 Input Summary

Nodes

I, J, K, L, M, N, O, P

Degrees of Freedom

AZ if $\operatorname{KEYOPT}(1)=0$
AZ, VOLT if $\operatorname{KEYOPT}(1)=1$
AZ, CURR if $\operatorname{KEYOPT}(1)=2$
AZ, CURR, EMF if KEYOPT(1) $=3$ or 4

Real Constants

CARE, TURN, LENG, DIRZ, FILL, VELOX, VELOY, OMEGAZ, XLOC, YLOC

See Table 2: PLANE53 Real Constants (p. 291) for descriptions of the real constants.

Material Properties

MUZERO, MURX, MURY, RSVX, MGXX, MGYY, plus BH data table (see Material Data Tables (Implicit Analys-
is) (p. 22))

Surface Loads

Maxwell Force flag --

face 1 (J-I), face 2 (K-J), face 3 (L-K), face $4(I-L)$

Body Loads

Temperature --

$\mathrm{T}(\mathrm{I}), \mathrm{T}(\mathrm{J}), \mathrm{T}(\mathrm{K}), \mathrm{T}(\mathrm{L}), \mathrm{T}(\mathrm{M}), \mathrm{T}(\mathrm{N}), \mathrm{T}(\mathrm{O}), \mathrm{T}(\mathrm{P})$
Magnetic Virtual Displacement --
$\mathrm{VD}(\mathrm{I}), \mathrm{VD}(\mathrm{J}), \mathrm{VD}(\mathrm{K}), \mathrm{VD}(\mathrm{L}), \mathrm{VD}(\mathrm{M}), \mathrm{VD}(\mathrm{N})$, $\mathrm{VD}(\mathrm{O}), \mathrm{VD}(\mathrm{P})$

Source Current Density, if KEYOPT(1) = 0 --
spare, spare, JSZ(I), PHASE(I), spare, spare, JSZ(J), PHASE(J), spare, spare, JSZ(K), PHASE(K), spare, spare, JSZ(L), PHASE(L) spare, spare, JSZ(M), PHASE(M), spare, spare, JSZ(N), PHASE(N), spare, spare, JSZ(O), PHASE(O), spare, spare, JSZ(P), PHASE(P)

Voltage Loading, if $\operatorname{KEYOPT}(1)=\mathbf{2}$--
VLTG(I), PHASE(I), VLTG(J), PHASE(J), VLTG(K), PHASE(K), VLTG(L), PHASE(L), VLTG(M), PHASE(M), VLTG(N), PHASE(N), VLTG(O), PHASE(O), VLTG(P), PHASE(P)

Special Features

Birth and death
Adaptive descent

KEYOPT(1)

Element degrees of freedom:
0 --
AZ degree of freedom: static domain, induced eddy current domain
1 --
AZ, VOLT degrees of freedom: current-fed massive conductor
2 --
AZ, CURR degrees of freedom: voltage-fed stranded coil
3 --
AZ, CURR, EMF degrees of freedom: circuit-coupled stranded coil
4 --
AZ, CURR, EMF degrees of freedom: circuit-coupled massive conductor

KEYOPT(2)

Element conventional velocity:
0 --
Velocity effects ignored
1 --
Conventional velocity formulation (not available if $\operatorname{KEYOPT}(1)=2,3$, or 4)

KEYOPT(3)

Element behavior:
0 --
Plane
1 --
Axisymmetric

KEYOPT(4)

Element coordinate system:
0 --
Element coordinate system is parallel to the global coordinate system
1 --
Element coordinate system is based on the element l-J side

KEYOPT(5)

Extra element output:
0 --
Basic element printout
1 --
Integration point printout
2 --
Nodal magnetic field printout

KEYOPT(7)

Store magnetic forces for coupling with elements:
0 --
Midside node (higher-order) structural elements

1 --

Non-midside node structural elements
Table 2 PLANE53 Real Constants

| No. | Name | Description |
| :--- | :--- | :--- |
| KEYOPT($\mathbf{1})$
 massive conductors) | | |
| 1 | CARE | Coil cross-sectional area; required when KEYOPT(1) $=2,3,4$ |
| 2 | TURN | Total number of coil turns (stranded coil only), default is 1; KEY-
 OPT(1) $=2,3$ |
| 3 | LENG | Coil length in Z-direction, (required for planar models only), de-
 fault is 1 meter; KEYOPT(1) $=2,3,4$ |
| 4 | DIRZ | 1 for current in positive z-axis, -1 for current in negative z-axis;
 KEYOPT(1) $=2,3,4$ |
| 5 | FILL | Coil fill factor *; KEYOPT(1) = 2, 3 |
| KEYOPT(2) = 1 (and KEYOPT(1) = 0 or 1) - Velocity effects of a conducting body | | |
| 6 | VELOX | Velocity component in X-direction (global Cartesian) |
| 7 | VELOY | Velocity component in Y-direction (global Cartesian) |
| 8 | OMEGAZ | Angular (rotational) velocity (Hz, cycles/sec) about the Z-axis
 (global Cartesian), at the pivot point |
| 9 | XLOC | Pivot point X-location (global Cartesian coordinate) |
| 10 | YLOC | Pivot point Y-location (global Cartesian coordinate) |

* The ratio between the actual conductor area and the area of the coil or element geometry. Often, the element approximation will differ from the profile of the conductor, especially in multi-strand coils.

PLANE53 Output Data

The solution output associated with the element is in two forms:

- Nodal degrees of freedom included in the overall nodal solution
- Additional element output as shown in Table 3: PLANE53 Element Output Definitions (p. 292)

Several items are illustrated in Figure 2 (p. 292). The element output directions are parallel to the element coordinate system. A general description of solution output is given in Solution Output (p.8). See the Basic Analysis Guide for ways to view results.

Figure 2 PLANE53 Magnetic Element Output

Because of different sign conventions for Cartesian and polar coordinate systems, magnetic flux density vectors point in opposite directions for planar $(\operatorname{KEYOPT}(3)=0)$ and axisymmetric ($\operatorname{KEYOPT}(3)=1$) analyses.

The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 3 PLANE53 Element Output Definitions

| Name | Definition | \mathbf{O} | \mathbf{R} |
| :--- | :--- | :---: | :---: |
| EL | Element Number | Y | Y |
| NODES | Nodes $-\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}, \mathrm{M}, \mathrm{N}, \mathrm{O}, \mathrm{P}$ | Y | Y |
| MAT | Material number | Y | Y |
| VOLU: | Volume | Y | Y |
| XC, YC | Location where results are reported | Y | 2 |
| CENT:X, Y | Global location XC, YC | Y | Y |
| TEMP | Temperatures T(I), T(J), T(K), T(L), T(M), T(N), T(O), T(P) | Y | Y |
| LOC | Output location (X, Y) | 1 | - |
| MUX, MUY | Magnetic secant permeability | 1 | 1 |
| H:X, Y | Magnetic field intensity components | 1 | 1 |
| H:SUM | Vector magnitude of H | 1 | 1 |
| B:X, Y | Magnetic flux density components (X, Y) | 1 | 1 |
| B:SUM | Vector magnitude of B | 1 | 1 |
| JSZ | Source current density, valid for static analysis only | 1 | 1 |
| JTZ | Total current density | 1 | 1 |
| JHEAT: | Joule heat generation per unit volume | 1 | 1 |

| Name | Definition | \mathbf{O} | R |
| :--- | :--- | :--- | :--- |
| FJB(X, Y) | Lorentz force components | 1 | 1 |
| FMX(X,Y) | Maxwell force components | 1 | 1 |
| FVW(X, Y, SUM) | Virtual work force components | 1 | 1 |
| FMAG:X, Y | Combined (FJB or FMX) force components | - | 1 |
| ERES | Element resistance value (for stranded coils only) | - | 1 |
| EIND | Element inductance value (for stranded coils only) | - | 1 |
| DMUXX, DMUYY | Differential permeability | 1 | 1 |
| V:X, Y, SUM | Velocity components | 1 | 1 |
| MRE | Magnetic Reynolds number | 1 | 1 |
| TJB(Z) | Lorentz torque about global Cartesian +Z-axis | 1 | 1 |
| TMX(Z) | Maxwell torque about global Cartesian +Z-axis | 1 | 1 |
| TVW(Z) | Virtual work torque about global Cartesian +Z-axis | 1 | 1 |

1. The solution value is output only if calculated (based upon input data). The element solution is at the centroid.

Note

JT represents the total measurable current density in a conductor, including eddy current effects, and velocity effects if calculated.

For axisymmetric solutions with $\operatorname{KEYOPT}(4)=0$, the X and Y directions correspond to the radial and axial directions, respectively.

For harmonic analysis, Joule losses (JHEAT), forces (FJB(X, Y), FMX(X, Y), FVW(X, Y)), and torque (TJB(Z), TMX(Z), TVW(Z)) represent time-average values. These values are stored in both the "Real" and "Imaginary" data sets. The macros POWERH, FMAGSUM, and TORQSUM can be used to retrieve this data.

Inductance values (EIND) obtained for $\operatorname{KEYOPT}(1)=2,3$, or 4 are only valid under the following conditions: the problem is linear (constant permeability), there are no permanent magnets in the model, and only a single coil exists in the model.

For KEYOPT(1)=2 and 3, JT represents the effective current density (including non-conducting material represented by the FILL factor). JHEAT represents the effective Joule heat generation rate (including non-conducting material represented by the FILL factor).
2. Available only at centroid as a *GET item.

Table 4 PLANE53 Miscellaneous Element Output

| Description | Names of Items Output | O | R |
| :---: | :--- | :---: | :---: |
| Nodal Solution | H, HSUM, B, BSUM, FJB, FMX,
 V, VSUM | 1 | - |

1. Output at each node, if $\operatorname{KEYOPT}(5)=2$

Table 5: PLANE53 Item and Sequence Numbers (p. 294) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p.9) of this manual for more information. The following notation is used in Table 5: PLANE53 Item and Sequence Numbers (p. 294):

Name

output quantity as defined in the Table 3: PLANE53 Element Output Definitions (p. 292)

Item

predetermined Item label for ETABLE command
E
sequence number for single-valued or constant element data
Table 5 PLANE53 Item and Sequence Numbers

| Output
 Quant-
 ity
 Name | ETABLE and
 ESOL Command
 Input | |
| :---: | :--- | :---: |
| | E | |
| JSZ | SMISC | 1 |
| MUX | NMISC | 1 |
| MUY | NMISC | 2 |
| FVWX | NMISC | 3 |
| FVWY | NMISC | 4 |
| FVWSUM | NMISC | 5 |
| JTZ | NMISC | 7 |
| ERES | NMISC | 8 |
| EIND | NMISC | 9 |
| DMUXX | NMISC | 10 |
| DMUYY | NMISC | 11 |
| VX | NMISC | 12 |
| VY | NMISC | 13 |
| MRE | NMISC | 15 |
| TJB(X Y) | NMISC | 16 |
| TMX(X,
 Y) | NMISC | 17 |
| TVW(X,
 Y) | NMISC | 18 |

PLANE53 Assumptions and Restrictions

- The area of the element must be positive.
- The element must lie in a global X-Y plane as shown in Figure 1 (p. 287), and the Y -axis must be the axis of symmetry for axisymmetric analyses. An axisymmetric structure should be modeled in the $+X$ quadrants.
- A face with a removed midside node implies that the potential varies linearly, rather than parabolically, along that face. See Quadratic Elements (Midside Nodes) in the Modeling and Meshing Guide for more information about the use of midside nodes.
- Current density loading (BFE,JS) is only valid for the AZ option (KEYOPT(1) = 0). For the VOLT, AZ option (KEYOPT(1) = 1) use F,,AMPS.
- When this element does not have the VOLT degree of freedom (KEYOPT $(1)=0$), for a harmonic or transient analysis, its behavior depends on the applied load. For a BFE,JS load, the element acts as a stranded conductor. Without BFE,,JS loads, it acts as a solid conductor modeling eddy current effects.
- In this respect, PLANE53 (and PLANE13) are not like the 3-D elements SOLID97, SOLID117, SOLID236, and SOLID237. When SOLID97, SOLID117, SOLID236, and SOLID237 do not have the VOLT degree of freedom, they act as stranded conductors.
- Permanent magnets are not permitted in a harmonic analysis.
- For magnetostatic analyses, the VOLT, AZ option is not allowed.
- For harmonic and transient (time-varying) analyses, the ANSYS product does not support the analysis of coupled velocity and circuit effects.
- Reduced transient methods cannot be used. A 2-D planar or axisymmetric skin-effect analysis (where eddy current formation is permitted in conducting regions with impressed current loading) is performed by setting $\operatorname{KEYOPT}(1)=1$, specifying a resistivity, and coupling all VOLT degrees of freedom for elements in each of such regions.
- For voltage forced magnetic field $(\operatorname{KEYOPT}(1)=2)$ and circuit coupled problems (KEYOPT(1) $=3,4)$, note the following additional restrictions:
- Only MKS units are allowed.
- The permeability and conductivity are isotropic and constant.
- All CURR degrees of freedom in a coil region must be coupled (CP command).
- All EMF degrees of freedom in a coil region must be coupled (CP command).
- For circuit coupled transient analyses, use THETA = 1.0, the default value, on the TINTP command to specify the backward Euler method. For more information, refer to the Theory Reference for the Mechanical APDL and Mechanical Applications, as well as the description of the TINTP command in the Command Reference.

For velocity effects $(\operatorname{KEYOPT}(2)=1)$, note the following restrictions:

- Velocity effects are valid only for AZ or AZ-VOLT DOF options.
- Isotropic resistivity.
- Solution accuracy may degrade if the element magnetic Reynolds number is much greater than 1.0. (See the discussion of magnetic field analysis in the Low-Frequency Electromagnetic Analysis Guide.)
- If $\operatorname{KEYOPT}(1) \geq 2$ or $\operatorname{KEYOPT}(2) \geq 1$, unsymmetric matrices are produced.
- This element may not be compatible with other elements with the VOLT degree of freedom. To be compatible, the elements must have the same reaction force (see Element Compatibility in the LowFrequency Electromagnetic Analysis Guide).

PLANE53 Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

ANSYS Emag

- The birth and death special feature is not allowed.

PLANE55

2-D Thermal Solid

MP ME <> PR PRN DS <> <> <> <> <> PP <> EME MFS

PLANE55 Element Description

PLANE55 can be used as a plane element or as an axisymmetric ring element with a 2-D thermal conduction capability. The element has four nodes with a single degree of freedom, temperature, at each node.

The element is applicable to a 2-D, steady-state or transient thermal analysis. The element can also compensate for mass transport heat flow from a constant velocity field. If the model containing the temperature element is also to be analyzed structurally, the element should be replaced by an equivalent structural element (such as PLANE182).

A similar element with midside node capability is PLANE77. A similar axisymmetric element which accepts nonaxisymmetric loading is PLANE75.

An option exists that allows the element to model nonlinear steady-state fluid flow through a porous medium. With this option the thermal parameters are interpreted as analogous fluid flow parameters. See PLANE55 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

Figure 1 PLANE55 Geometry

PLANE55 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 1 (p. 297). The element is defined by four nodes and the orthotropic material properties. Orthotropic material directions correspond to the element coordinate directions. The element coordinate system orientation is as described in Coordinate Systems (p. 14). Specific heat and density are ignored for steady-state solutions. Properties not input default as described in Linear Material Properties (p. 16).

Element loads are described in Node and Element Loads (p. 97). Convection or heat flux (but not both) and radiation may be input as surface loads at the element faces as shown by the circled numbers on Figure 1 (p.297).

Heat generation rates may be input as element body loads at the nodes. If the node I heat generation rate $\mathrm{HG}(\mathrm{I})$ is input, and all others are unspecified, they default to $\mathrm{HG}(\mathrm{I})$.

A mass transport option is available with KEYOPT(8). With this option the velocities VX and VY must be input as real constants (in the element coordinate system). Also, temperatures should be specified along the entire inlet boundary to assure a stable solution. With mass transport, you should use specific heat (C) and density (DENS) material properties instead of enthalpy (ENTH).

The nonlinear porous flow option is selected with $\operatorname{KEYOPT}(9)=1$. For this option, temperature is interpreted as pressure and the absolute permeabilities of the medium are input as material properties KXX and KYY. Properties DENS and VISC are used for the mass density and viscosity of the fluid. See the Theory Reference for the Mechanical APDL and Mechanical Applications for a description of the properties C and MU, which are used in calculating the coefficients of permeability, with reference to the Z terms ignored. Temperature boundary conditions input with the \mathbf{D} command are interpreted as pressure boundary conditions, and heat flow boundary conditions input with the \mathbf{F} command are interpreted as mass flow rate (mass/time).

This element can also have a Z-depth specified by KEYOPT(3) and real constant THK. Be careful when using this option with other physics, especially radiation. Radiation view factors will be based on a unit Z-depth (only).

A summary of the element input is given in "PLANE55 Input Summary" (p. 298). A general description of element input is given in Element Input (p. 5). For axisymmetric applications see Harmonic Axisymmetric Elements (p. 102).

PLANE55 Input Summary

Nodes

I, J, K, L
Degrees of Freedom
TEMP

Real Constants

THK, VX, VY
THK $=$ Thickness (used only if $\operatorname{KEYOPT}(3)=3$)
VX = Mass transport velocity in X (used only if KEYOPT(8) > 0)
$\mathrm{VY}=$ Mass transport velocity in Y (used only if $\operatorname{KEYOPT}(8)>0$)

Material Properties

KXX, KYY, DENS, C, ENTH, VISC, MU (VISC and MU used only if KEYOPT (9) = 1 . Do not use ENTH with $\operatorname{KEYOPT}(8)=1$ or 2).

Surface Loads

Convection or Heat Flux (but not both) and Radiation (using Lab = RDSF) --
face $1(\mathrm{~J}-\mathrm{I})$, face $2(\mathrm{~K}-\mathrm{J})$, face $3(\mathrm{~L}-\mathrm{K})$, face $4(\mathrm{I}-\mathrm{L})$

Body Loads

Heat Generations --
HG(I), HG(J), HG(K), HG(L)

Special Features

Birth and death

KEYOPT(1)

How to evaluate film coefficient:

0 --

Evaluate film coefficient (if any) at average film temperature, (TS + TB)/2
1 --
Evaluate at element surface temperature, TS
2 --
Evaluate at fluid bulk temperature, TB
3 --
Evaluate at differential temperature, |TS - TB|

KEYOPT(3)

Element behavior:
0 --
Plane
1 --
Axisymmetric
3 --
Plane with Z-depth, specified via real constant THK.

KEYOPT(4)

Element coordinate system:
0 --
Element coordinate system is parallel to the global coordinate system
1 --
Element coordinate system is based on the element I-J side.

KEYOPT(8)

Mass transport effects:
0 --
No mass transport effects
1 --
Mass transport with VX and VY
2 --
Same as 1 but also print mass transport heat flow

KEYOPT(9)

Nonlinear fluid flow option:
0 --
Standard heat transfer element
1 --
Nonlinear steady-state fluid flow analogy element (temperature degree of freedom interpreted as pressure)

PLANE55 Output Data

The solution output associated with the element is in two forms:

- Nodal temperatures included in the overall nodal solution
- Additional element output as shown in Table 1: PLANE55 Element Output Definitions (p. 300)

For an axisymmetric analysis the face area and the heat flow rate are on a full 360° basis. Convection heat flux is positive out of the element; applied heat flux is positive into the element. If $\operatorname{KEYOPT}(9)=1$, the standard thermal output should be interpreted as the analogous fluid flow output. The element output directions are parallel to the element coordinate system. A general description of solution output is given in Solution Output (p. 8) and of postprocessing data in Triangle, Prism, and Tetrahedral Elements (p. 99). See the Basic Analysis Guide for ways to view results.

The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and " - " indicates that the item is not available.

Table 1 PLANE55 Element Output Definitions

| Name | Definition | \mathbf{O} | R |
| :--- | :--- | :--- | :--- |
| EL | Element Number | Y | Y |
| NODES | Nodes $-\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}$ | Y | Y |
| MAT | Material number | Y | Y |
| VOLU: | Volume | Y | Y |
| XC, YC | Location where results are reported | Y | 4 |
| HGEN | Heat generations HG(I), HG(J), HG(K), HG(L) | Y | - |
| TG:X, Y, SUM | Thermal gradient components and vector sum at
 centroid | Y | Y |
| TF:X, Y, SUM | Thermal flux (heat flow rate/cross-sectional area) com-
 ponents and vector sum at centroid | Y | Y |
| FACE | Face label | 1 | - |
| AREA | Face area | 1 | 1 |
| NODES | Face nodes | 1 | 1 |
| HFILM | Film coefficient at each node of face | 1 | - |
| TBULK | Bulk temperature at each node of face | 1 | - |
| TAVG | Average face temperature | 1 | 1 |
| HEAT RATE | Heat flow rate across face by convection | 1 | 1 |
| HFAVG | Average film coefficient of the face | - | 1 |
| TBAVG | Average face bulk temperature | - | 1 |
| HFLXAVG | Heat flow rate per unit area across face caused by input
 heat flux | - | 1 |
| HEAT
 RATE/AREA | Heat flow rate per unit area across face by convection | 1 | - |
| HFLUX | Heat flux at each node of face | 1 | - |

| Name | Definition | $\mathbf{0}$ | \mathbf{R} |
| :--- | :--- | :---: | :---: |
| HEAT FLOW BY
 MASS TRANS-
 PORT | Heat flow rate across face by mass transport | 2 | - |
| PRESSURE GRAD | Total pressure gradient and its X and Y components | 3 | - |
| MASS FLUX | Mass flow rate per unit cross-sectional area | 3 | - |
| FLUID VELOCITY | Total fluid velocity and its X and Y components | 3 | - |

1. If a surface load is input
2. If $\operatorname{KEYOPT}(8)=2$
3. If $\operatorname{KEYOPT}(9)=1$
4. Available only at centroid as a *GET item.

Table 2: PLANE55 Item and Sequence Numbers (p. 301) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p .9) of this manual for more information. The following notation is used in Table 2: PLANE55 Item and Sequence Numbers (p. 301):

Name

output quantity as defined in the Table 1: PLANE55 Element Output Definitions (p. 300)

Item

predetermined Item label for ETABLE command

FCn

sequence number for solution items for element Face n
Table 2 PLANE55 Item and Sequence Numbers

| Output
 Quantity
 Name | ETABLE and ESOL Command Input | | | | |
| :---: | :--- | :--- | :--- | :--- | :--- |
| | Item | FC1 | FC2 | FC3 | FC4 |
| AREA | NMISC | 1 | 7 | 13 | 19 |
| HFAVG | NMISC | 2 | 8 | 14 | 20 |
| TAVG | NMISC | 3 | 9 | 15 | 21 |
| TBAVG | NMISC | 4 | 10 | 16 | 22 |
| HEAT RATE | NMISC | 5 | 11 | 17 | 23 |
| HFLXAVG | NMISC | 6 | 12 | 18 | 24 |

PLANE55 Assumptions and Restrictions

- The element must not have a negative or a zero area.
- The element must lie in an X-Y plane as shown in Figure 1 (p. 297) and the Y -axis must be the axis of symmetry for axisymmetric analyses. An axisymmetric structure should be modeled in the $+X$ quadrants.
- A triangular element may be formed by defining duplicate K and L node numbers as described in Triangle, Prism, and Tetrahedral Elements (p. 99).
- The specific heat and enthalpy are evaluated at each integration point to allow for abrupt changes (such as melting) within a coarse grid of elements.
- If the thermal element is to be replaced by a PLANE182 structural element with surface stresses requested, the thermal element should be oriented with face IJ or face KL as a free surface. A free surface of the element (that is, not adjacent to another element and not subjected to a boundary constraint) is assumed to be adiabatic.
- Thermal transients having a fine integration time step and a severe thermal gradient at the surface will also require a fine mesh at the surface.
- If KEYOPT(8) >0, unsymmetric matrices are produced.
- When mass flow is activated $(\operatorname{KEYOPT}(8)=1$ or 2), the element Peclet number should be less than 1 :
$\operatorname{Pe}=\rho^{*} v^{*} L^{*} C p /\left(2^{*} \mathrm{k}\right)<1.0$
Where L is an element length scale based on the flow direction and element geometry. See PLANE55 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details.

PLANE55 Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

ANSYS Professional

- This element does not have the mass transport or fluid flow options. KEYOPT(8) and KEYOPT(9) can only be set to 0 (default).
- The VX and VY real constants are not applicable.
- The VISC and MU material properties are not applicable.
- The element does not have the birth and death feature.

SHELL61

Axisymmetric-Harmonic Structural Shell

MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS

SHELL61 Element Description

SHELL61 has four degrees of freedom at each node: translations in the nodal x, y, and z directions and a rotation about the nodal z-axis. The loading may be axisymmetric or nonaxisymmetric. Various loading cases are described in Harmonic Axisymmetric Elements with Nonaxisymmetric Loads (p. 103).

Extreme orientations of the conical shell element result in a cylindrical shell element or an annular disc element. The shell element may have a linearly varying thickness. See SHELL61 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

Figure 1 SHELL61 Geometry

SHELL61 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 1 (p.303). The element is defined by two nodes, two end thicknesses, the number of harmonic waves (MODE on the MODE command), a symmetry condition (ISYM on the MODE command), and the orthotropic material properties. The element coordinate system is shown in Figure 2 (p.306). θ is in the tangential (hoop) direction. The MODE or ISYM parameters are discussed in detail in Harmonic Axisymmetric Elements with Nonaxisymmetric Loads (p. 103)

The material may be orthotropic, with nine elastic constants required for its description. The element loading may be input as any combination of harmonically varying temperatures and pressures. Harmonically varying nodal forces, if any, should be input on a full 360° basis.

The element may have variable thickness. The thickness is assumed to vary linearly between the nodes. If the element has a constant thickness, only TK(I) is required. Real constant ADMSUA is used to define an added mass per unit area.

Element loads are described in Node and Element Loads (p. 97). Harmonically varying pressures may be input as surface loads on the element faces as shown by the circled numbers on Figure 1 (p. 303). Positive pressures act into the element. The pressures are applied at the surface of the element rather than at the centroidal plane so that some thickness effects can be considered. These include the increase or decrease in size of surface area the load is acting on and (in the case of a nonzero Poisson's ratio) an interaction effect causing the element to grow longer or shorter under equal pressures on both surfaces. Material properties EY, PRXY, and PRYZ (or EY, NUXY, and NUYZ) are required for this effect.

Harmonically varying temperatures may be input as element body loads at the four corner locations shown in Figure 1 (p. 303). The first corner temperature T 1 defaults to TUNIF. If all other temperatures are unspecified, they default to T 1 . If only T 1 and T 2 are input, T 3 defaults to T 2 and T 4 defaults to T 1 . For any other input pattern, unspecified temperatures default to TUNIF.
$\operatorname{KEYOPT}(1)$ is used for temperature loading with MODE greater than zero and temperature-dependent material properties. Material properties may only be evaluated at a constant (nonharmonically varying) temperature. If $M O D E$ equals zero, the material properties are always evaluated at the average element temperature. KEYOPT(3) is used to include or suppress the extra displacement shapes.

A summary of the element input is given in "SHELL61 Input Summary" (p. 304). A general description of element input is given in Element Input (p. 5).

SHELL61 Input Summary

Nodes

I, J

Degrees of Freedom

UX, UY, UZ, ROTZ

Real Constants

TK(I) - Shell thickness at node I
TK(J) - Shell thickness at node J (TK(J) defaults to TK(I))
ADMSUA - Added mass/unit area

Material Properties

EX, EY, EZ, PRXY, PRYZ, PRXZ (or NUXY, NUYZ, NUXZ), ALPX, ALPZ (or CTEX, CTEY, CTEZ or THSX, THSY, THSZ), DENS, GXZ, DAMP. (X is meridional, Y is through-the-thickness, and Z is circumferential.)

Surface Loads

Pressures --

face 1 (I-J) (top, in -Y direction)
face 2 ($\mathrm{I}-\mathrm{J}$) (bottom, in +Y direction)

Body Loads

Temperatures --
T1, T2, T3, T4

Mode Number

Number of harmonic waves around the circumference (MODE)

Loading Condition

Symmetry condition (MODE)

Special Features

Stress stiffening

KEYOPT(1)

If MODE is greater than zero, use temperatures for:
0 --
Use temperatures only for thermal bending (evaluate material properties at TREF)
1 --
Use temperatures only for material property evaluation (thermal strains are not computed)

KEYOPT(3)

Extra displacement shapes:
0 --
Include extra displacement shapes
1 --
Suppress extra displacement shapes

KEYOPT(4)

Member force and moment output:
0 --
No printout of member forces and moments
1 --
Print out member forces and moments in the element coordinate system

KEYOPT(6)

Location of element solution output:
0 --
Output solution at mid-length only
N --
Output solution at N equally spaced interior points and at end points (where $N=1,3,5,7$ or 9)

SHELL61 Output Data

The solution output associated with the element is in two forms:

- Nodal displacements included in the overall nodal solution
- Additional element output as shown in Table 1: SHELL61 Element Output Definitions (p. 306)

Several items are illustrated in Figure 2 (p. 306). The printout may be displayed at the centroid, at the end points and at N equally spaced interior points, where N is the KEYOPT(6) value. For example, if $N=3$, printout will be produced at end I, $1 / 4$ length, mid-length (centroid), $3 / 4$ length, and at end J. Printout location number 1 is always at end I. Stress components which are inherently zero are printed for clarity.

In the displacement printout, the UZ components are out-of-phase with the UX and UY components. For example, in the MODE $=1, I S Y M=1$ loading case, $U X$ and $U Y$ are the peak values at $\theta=0^{\circ}$ and $U Z$ is the peak value at $\theta=90^{\circ}$. We recommend that you always use the angle field on the SET command when postprocessing the results. For more information about harmonic elements, see Harmonic Axisymmetric Elements with Nonaxisymmetric Loads (p. 103)

A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

Figure 2 SHELL61 Stress Output

The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 1 SHELL61 Element Output Definitions

| Name | Definition | \mathbf{O} | R |
| :--- | :--- | :--- | :--- |
| EL | Element Number | Y | Y |
| NODES | Nodes - I, J | Y | Y |
| MAT | Material number | Y | Y |
| LENGTH | Distance between node I and node J | Y | Y |
| XC, YC | Location where results are reported | Y | 2 |
| TEMP | Temperatures T1, T2, T3, T4 | Y | Y |
| PRES | Pressures P1 (top) at nodes I,J; P2 (bottom) at nodes I,J | Y | Y |
| MODE | Number of waves in loading | Y | Y |
| ISYM | Loading key: $1=$ symmetric, -1 = antisymmetric | Y | Y |
| $\mathrm{T}(\mathrm{X}, \mathrm{Z}, \mathrm{XZ})$ | In-plane element X, Z, and XZ forces at KEYOPT(6) loca-
 tion(s) | Y | Y |
| M(X, Z, XZ $)$ | Out-of-plane element X, Z, and XZ moments at KEY-
 OPT(6) location(s) | Y | Y |

| Name | Definition | 0 | R |
| :---: | :---: | :---: | :---: |
| MFOR(X, Y, Z),
 MMOMZ | Member forces and member moment for each node in the element coordinate system | 1 | Y |
| PK ANG | Angle where stresses have peak values: 0 and $90 / \mathrm{MODE}^{\circ}$. Blank if MODE $=0$. | Y | Y |
| $\begin{aligned} & \mathrm{S}(\mathrm{M}, \mathrm{THK}, \mathrm{H}, \\ & \mathrm{MH}) \end{aligned}$ | Stresses (meridional, through-thickness, hoop, meridi-onal-hoop) at PK ANG locations, repeated for top, middle, and bottom of shell | Y | Y |
| $\begin{aligned} & \text { EPEL(M, THK, H, } \\ & \text { MH) } \end{aligned}$ | Elastic strains (meridional, through-thickness, hoop, meridional-hoop) at PK ANG locations, repeated for top, middle, and bottom of shell | Y | Y |
| $\begin{aligned} & \text { EPTH(M, THK, H, } \\ & \text { MH) } \end{aligned}$ | Thermal strains (meridional, through-thickness, hoop, meridional-hoop) at PK ANG locations, repeated for top, middle, and bottom of shell | Y | Y |

1. \quad These items are printed only if $\operatorname{KEYOPT}(4)=1$.
2. Available only at centroid as a *GET item.

Table 2: SHELL61 Item and Sequence Numbers (KEYOPT(6) = 0 or 1) (p. 307) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p. 9) in this manual for more information. The following notation is used in Table 2: SHELL61 Item and Sequence Numbers $(\operatorname{KEYOPT}(6)=0$ or 1) $(\mathrm{p} .307)$:

Name

output quantity as defined in the Table 1: SHELL61 Element Output Definitions (p. 306)

Item

predetermined Item label for ETABLE command
I,J
sequence number for data at nodes I and J
ILn
sequence number for data at Intermediate Location n
Table 2 SHELL61 Item and Sequence Numbers (KEYOPT(6) =0 or 1)

| Output
 Quant-
 ity
 Name | Top | | | | | Input | | | |
| :---: | :---: | :---: | :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| | Item | I | IL1 | J | | | | | |
| SM | LS | 1 | 13 | 25 | | | | | |
| STHK | LS | 2 | 14 | 26 | | | | | |
| SH | LS | 3 | 15 | 27 | | | | | |
| SMH | LS | 4 | 16 | 28 | | | | | |
| EPELM | LEPEL | 1 | 13 | 25 | | | | | |
| EPELTHK | LEPEL | 2 | 14 | 26 | | | | | |
| EPELH | LEPEL | 3 | 15 | 27 | | | | | |

| Output Quantity Name | ETABLE and ESOL Command Input | | | |
| :---: | :---: | :---: | :---: | :---: |
| | Item | I | IL1 | J |
| EPELMH | LEPEL | 4 | 16 | 28 |
| EPTHM | LEPTH | 1 | 13 | 25 |
| $\begin{aligned} & \text { EPTH- } \\ & \text { THK } \end{aligned}$ | LEPTH | 2 | 14 | 26 |
| EPTHH | LEPTH | 3 | 15 | 27 |
| EPTHMH | LEPTH | 4 | 16 | 28 |
| Mid | | | | |
| SM | LS | 5 | 17 | 29 |
| STHK | LS | 6 | 18 | 30 |
| SH | LS | 7 | 19 | 31 |
| SMH | LS | 8 | 20 | 32 |
| EPELM | LEPEL | 5 | 17 | 29 |
| EPELTHK | LEPEL | 6 | 18 | 30 |
| EPELH | LEPEL | 7 | 19 | 31 |
| EPELMH | LEPEL | 8 | 20 | 32 |
| EPTHM | LEPTH | 5 | 17 | 29 |
| $\begin{aligned} & \text { EPTH- } \\ & \text { THK } \end{aligned}$ | LEPTH | 6 | 18 | 30 |
| EPTHH | LEPTH | 7 | 19 | 31 |
| EPTHMH | LEPTH | 8 | 20 | 32 |
| Bot | | | | |
| SM | LS | 9 | 21 | 33 |
| STHK | LS | 10 | 22 | 34 |
| SH | LS | 11 | 23 | 35 |
| SMH | LS | 12 | 24 | 36 |
| EPELM | LEPEL | 9 | 21 | 33 |
| EPELTHK | LEPEL | 10 | 22 | 34 |
| EPELH | LEPEL | 11 | 23 | 35 |
| EPELMH | LEPEL | 12 | 24 | 36 |
| EPTHM | LEPTH | 9 | 21 | 33 |
| EPTH-
 THK | LEPTH | 10 | 22 | 34 |
| EPTHH | LEPTH | 11 | 23 | 35 |
| EPTHMH | LEPTH | 12 | 24 | 36 |
| Element | | | | |
| MFORX | SMISC | 1 | - | 7 |

| Output
 Quant-
 ity
 Name | ETABLE and ESOL Command | | | |
| :---: | :--- | :--- | :--- | :--- |
| | Item | I | IL1 | J |
| MFORY | SMISC | 2 | - | 8 |
| MFORZ | SMISC | 3 | - | 9 |
| MMOMZ | SMISC | 6 | - | 12 |
| TX | SMISC | 13 | 19 | 25 |
| TZ | SMISC | 14 | 20 | 26 |
| TXZ | SMISC | 15 | 21 | 27 |
| MX | SMISC | 16 | 22 | 28 |
| MZ | SMISC | 17 | 23 | 29 |
| MXZ | SMISC | 18 | 24 | 30 |
| P1 | SMISC | 31 | - | 32 |
| P2 | SMISC | 35 | - | 36 |

| | | Corner Location | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ |
| TEMP | LBFE | 1 | 2 | 3 | 4 |

Table 3 SHELL61 Item and Sequence Numbers (KEYOPT(6) = 3)

| Output Quantity Name | ETABLE and ESOL Command Input | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Item | I | IL1 | IL2 | IL3 | J |
| Top | | | | | | |
| SM | LS | 1 | 13 | 25 | 37 | 49 |
| STHK | LS | 2 | 14 | 26 | 38 | 50 |
| SH | LS | 3 | 15 | 27 | 39 | 51 |
| SMH | LS | 4 | 16 | 28 | 40 | 52 |
| EPELM | LEPEL | 1 | 13 | 25 | 37 | 49 |
| EPELTHK | LEPEL | 2 | 14 | 26 | 38 | 50 |
| EPELH | LEPEL | 3 | 15 | 27 | 39 | 51 |
| EPELMH | LEPEL | 4 | 16 | 28 | 40 | 52 |
| EPTHM | LEPTH | 1 | 13 | 25 | 37 | 49 |
| $\begin{gathered} \text { EPTH- } \\ \text { THK } \end{gathered}$ | LEPTH | 2 | 14 | 26 | 38 | 50 |
| EPTHH | LEPTH | 3 | 15 | 27 | 39 | 51 |
| EPTHMH | LEPTH | 4 | 16 | 28 | 40 | 52 |
| Mid | | | | | | |
| SM | LS | 5 | 17 | 29 | 41 | 53 |

| Output Quantity Name | ETABLE and ESOL Command Input | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Item | I | IL1 | IL2 | IL3 | J |
| STHK | LS | 6 | 18 | 30 | 42 | 54 |
| SH | LS | 7 | 19 | 31 | 43 | 55 |
| SMH | LS | 8 | 20 | 32 | 44 | 56 |
| EPELM | LEPEL | 5 | 17 | 29 | 41 | 53 |
| EPELTHK | LEPEL | 6 | 18 | 30 | 42 | 54 |
| EPELH | LEPEL | 7 | 19 | 31 | 43 | 55 |
| EPELMH | LEPEL | 8 | 20 | 32 | 44 | 56 |
| EPTHM | LEPTH | 5 | 17 | 29 | 41 | 53 |
| $\begin{aligned} & \text { EPTH- } \\ & \text { THK } \end{aligned}$ | LEPTH | 6 | 18 | 30 | 42 | 54 |
| EPTHH | LEPTH | 7 | 19 | 31 | 43 | 55 |
| EPTHMH | LEPTH | 8 | 20 | 32 | 44 | 56 |
| Bot | | | | | | |
| SM | LS | 9 | 21 | 33 | 45 | 57 |
| STHK | LS | 10 | 22 | 34 | 46 | 58 |
| SH | LS | 11 | 23 | 35 | 47 | 59 |
| SMH | LS | 12 | 24 | 36 | 48 | 60 |
| EPELM | LEPEL | 9 | 21 | 33 | 45 | 57 |
| EPELTHK | LEPEL | 10 | 22 | 34 | 46 | 58 |
| EPELH | LEPEL | 11 | 23 | 35 | 47 | 59 |
| EPELMH | LEPEL | 12 | 24 | 36 | 48 | 60 |
| EPTHM | LEPTH | 9 | 21 | 33 | 45 | 57 |
| EPTH-
 THK | LEPTH | 10 | 22 | 34 | 46 | 58 |
| EPTHH | LEPTH | 11 | 23 | 35 | 47 | 59 |
| EPTHM | LEPTH | 12 | 24 | 36 | 48 | 60 |
| Element | | | | | | |
| MFORX | SMISC | 1 | - | - | - | 7 |
| MFORY | SMISC | 2 | - | - | - | 8 |
| MFORZ | SMISC | 3 | - | - | - | 9 |
| MMOMZ | SMISC | 6 | - | - | - | 12 |
| TX | SMISC | 13 | 19 | 25 | 31 | 37 |
| TZ | SMISC | 14 | 20 | 26 | 32 | 38 |
| TXZ | SMISC | 15 | 21 | 27 | 33 | 39 |
| MX | SMISC | 16 | 22 | 28 | 34 | 40 |
| MZ | SMISC | 17 | 23 | 29 | 35 | 41 |

| Output
 Quant-
 ity
 Name | ETABLE and ESOL Command Input | | | | | |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| | Item | I | IL1 | IL2 | IL3 | \mathbf{J} |
| MXZ | SMISC | 18 | 24 | 30 | 36 | 42 |
| P1 | SMISC | 43 | - | - | - | 44 |
| P2 | SMISC | 47 | - | - | - | 48 |

| | | Corner Location | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ |
| TEMP | LBFE | 1 | 2 | 3 | 4 |

Table 4 SHELL61 Item and Sequence Numbers (KEYOPT(6) = 5)

| Output | ETABLE and ESOL Command Input | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Quant- } \\ & \text { ity } \\ & \text { Name } \end{aligned}$ | Item | I | IL1 | IL2 | IL3 | IL4 | IL5 | J |
| Top | | | | | | | | |
| SM | LS | 1 | 13 | 25 | 37 | 49 | 61 | 73 |
| STHK | LS | 2 | 14 | 26 | 38 | 50 | 62 | 74 |
| SH | LS | 3 | 15 | 27 | 39 | 51 | 63 | 75 |
| SMH | LS | 4 | 16 | 28 | 40 | 52 | 64 | 76 |
| EPELM | LEPEL | 1 | 13 | 25 | 37 | 49 | 61 | 73 |
| EPELTHK | LEPEL | 2 | 14 | 26 | 38 | 50 | 62 | 74 |
| EPELH | LEPEL | 3 | 15 | 27 | 39 | 51 | 63 | 75 |
| EPELMH | LEPEL | 4 | 16 | 28 | 40 | 52 | 64 | 76 |
| EPTHM | LEPTH | 1 | 13 | 25 | 37 | 49 | 61 | 73 |
| $\begin{gathered} \hline \text { EPTH- } \\ \text { THK } \end{gathered}$ | LEPTH | 2 | 14 | 26 | 38 | 50 | 62 | 74 |
| EPTHH | LEPTH | 3 | 15 | 27 | 39 | 51 | 63 | 75 |
| EPTHMH | LEPTH | 4 | 16 | 28 | 40 | 52 | 64 | 76 |
| Mid | | | | | | | | |
| SM | LS | 5 | 17 | 29 | 41 | 53 | 65 | 77 |
| STHK | LS | 6 | 18 | 30 | 42 | 54 | 66 | 78 |
| SH | LS | 7 | 19 | 31 | 43 | 55 | 67 | 79 |
| SMH | LS | 8 | 20 | 32 | 44 | 56 | 68 | 80 |
| EPELM | LEPEL | 5 | 17 | 29 | 41 | 53 | 65 | 77 |
| EPELTHK | LEPEL | 6 | 18 | 30 | 42 | 54 | 66 | 78 |
| EPELH | LEPEL | 7 | 19 | 31 | 43 | 55 | 67 | 79 |
| EPELMH | LEPEL | 8 | 20 | 32 | 44 | 56 | 68 | 80 |
| EPTHM | LEPTH | 5 | 17 | 29 | 41 | 53 | 65 | 77 |

| Output Quantity Name | ETABLE and ESOL Command Input | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Item | I | IL1 | IL2 | IL3 | IL4 | IL5 | J |
| $\begin{aligned} & \text { EPTH- } \\ & \text { THK } \end{aligned}$ | LEPTH | 6 | 18 | 30 | 42 | 54 | 66 | 78 |
| EPTHH | LEPTH | 7 | 19 | 31 | 43 | 55 | 67 | 79 |
| EPTHMH | LEPTH | 8 | 20 | 32 | 44 | 56 | 68 | 80 |
| Bot | | | | | | | | |
| SM | LS | 9 | 21 | 33 | 45 | 57 | 69 | 81 |
| STHK | LS | 10 | 22 | 34 | 46 | 58 | 70 | 82 |
| SH | LS | 11 | 23 | 35 | 47 | 59 | 71 | 83 |
| SMH | LS | 12 | 24 | 36 | 48 | 60 | 72 | 84 |
| EPELM | LEPEL | 9 | 21 | 33 | 45 | 57 | 69 | 81 |
| EPELTHK | LEPEL | 10 | 22 | 34 | 46 | 58 | 70 | 82 |
| EPELH | LEPEL | 11 | 23 | 35 | 47 | 59 | 71 | 83 |
| EPELMH | LEPEL | 12 | 24 | 36 | 48 | 60 | 72 | 84 |
| EPTHM | LEPTH | 9 | 21 | 33 | 45 | 57 | 69 | 81 |
| $\begin{aligned} & \text { EPTH- } \\ & \text { THK } \end{aligned}$ | LEPTH | 10 | 22 | 34 | 46 | 58 | 70 | 82 |
| EPTHH | LEPTH | 11 | 23 | 35 | 47 | 59 | 71 | 83 |
| EPTHMH | LEPTH | 12 | 24 | 36 | 48 | 60 | 72 | 84 |
| Element | | | | | | | | |
| MFORX | SMISC | 1 | - | - | - | - | - | 7 |
| MFORY | SMISC | 2 | - | - | - | - | - | 8 |
| MFORZ | SMISC | 3 | - | - | - | - | - | 9 |
| MMOMZ | SMISC | 6 | - | - | - | - | - | 12 |
| TX | SMISC | 13 | 19 | 25 | 31 | 37 | 43 | 49 |
| TZ | SMISC | 14 | 20 | 26 | 32 | 38 | 44 | 50 |
| TXZ | SMISC | 15 | 21 | 27 | 33 | 39 | 45 | 51 |
| MX | SMISC | 16 | 22 | 28 | 34 | 40 | 46 | 52 |
| MZ | SMISC | 17 | 23 | 29 | 35 | 41 | 47 | 53 |
| MXZ | SMISC | 18 | 24 | 30 | 36 | 42 | 48 | 54 |
| P1 | SMISC | 55 | - | - | - | - | - | 56 |
| P2 | SMISC | 59 | - | - | - | - | - | 60 |

| | | Corner Location | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ |
| TEMP | LBFE | 1 | 2 | 3 | 4 |

Table 5 SHELL61 Item and Sequence Numbers (KEYOPT(6) = 7)

| Output Quantity Name | ETABLE and ESOL Command Input | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Item | I | IL1 | IL2 | IL3 | IL4 | IL5 | IL6 | IL7 | J |
| Top | | | | | | | | | | |
| SM | LS | 1 | 13 | 25 | 37 | 49 | 61 | 73 | 85 | 97 |
| STHK | LS | 2 | 14 | 26 | 38 | 50 | 62 | 74 | 86 | 98 |
| SH | LS | 3 | 15 | 27 | 39 | 51 | 63 | 75 | 87 | 99 |
| SMH | LS | 4 | 16 | 28 | 40 | 52 | 64 | 76 | 88 | 100 |
| EPELM | LEPEL | 1 | 13 | 25 | 37 | 49 | 61 | 73 | 85 | 97 |
| EPELTHK | LEPEL | 2 | 14 | 26 | 38 | 50 | 62 | 74 | 86 | 98 |
| EPELH | LEPEL | 3 | 15 | 27 | 39 | 51 | 63 | 75 | 87 | 99 |
| EPELMH | LEPEL | 4 | 16 | 28 | 40 | 52 | 64 | 76 | 88 | 100 |
| EPTHM | LEPTH | 1 | 13 | 25 | 37 | 49 | 61 | 73 | 85 | 97 |
| EPTHTHK | LEPTH | 2 | 14 | 26 | 38 | 50 | 62 | 74 | 86 | 98 |
| EPTHH | LEPTH | 3 | 15 | 27 | 39 | 51 | 63 | 75 | 87 | 99 |
| EPTHMH | LEPTH | 4 | 16 | 28 | 40 | 52 | 64 | 76 | 88 | 100 |
| Mid | | | | | | | | | | |
| SM | LS | 5 | 17 | 29 | 41 | 53 | 65 | 77 | 89 | 101 |
| STHK | LS | 6 | 18 | 30 | 42 | 54 | 66 | 78 | 90 | 102 |
| SH | LS | 7 | 19 | 31 | 43 | 55 | 67 | 79 | 91 | 103 |
| SMH | LS | 8 | 20 | 32 | 44 | 56 | 68 | 80 | 92 | 104 |
| EPELM | LEPEL | 5 | 17 | 29 | 41 | 53 | 65 | 77 | 89 | 101 |
| EPELTHK | LEPEL | 6 | 18 | 30 | 42 | 54 | 66 | 78 | 90 | 102 |
| EPELH | LEPEL | 7 | 19 | 31 | 43 | 55 | 67 | 79 | 91 | 103 |
| EPELMH | LEPEL | 8 | 20 | 32 | 44 | 56 | 68 | 80 | 92 | 104 |
| EPTHM | LEPTH | 5 | 17 | 29 | 41 | 53 | 65 | 77 | 89 | 101 |
| $\begin{aligned} & \text { EPTH- } \\ & \text { THK } \end{aligned}$ | LEPTH | 6 | 18 | 30 | 42 | 54 | 66 | 78 | 90 | 102 |
| EPTHH | LEPTH | 7 | 19 | 31 | 43 | 55 | 67 | 79 | 91 | 103 |
| EPTHMH | LEPTH | 8 | 20 | 32 | 44 | 56 | 68 | 80 | 92 | 104 |
| Bot | | | | | | | | | | |
| SM | LS | 9 | 21 | 33 | 45 | 57 | 69 | 81 | 93 | 105 |
| STHK | LS | 10 | 22 | 34 | 46 | 58 | 70 | 82 | 94 | 106 |

| Output Quantity Name | ETABLE and ESOL Command Input | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Item | I | IL1 | IL2 | IL3 | IL4 | IL5 | IL6 | IL7 | J |
| SH | LS | 11 | 23 | 35 | 47 | 59 | 71 | 83 | 95 | 107 |
| SMH | LS | 12 | 24 | 36 | 48 | 60 | 72 | 84 | 96 | 108 |
| EPELM | LEPEL | 9 | 21 | 33 | 45 | 57 | 69 | 81 | 93 | 105 |
| EPELTHK | LEPEL | 10 | 22 | 34 | 46 | 58 | 70 | 82 | 94 | 106 |
| EPELH | LEPEL | 11 | 23 | 35 | 47 | 59 | 71 | 83 | 95 | 107 |
| EPELMH | LEPEL | 12 | 24 | 36 | 48 | 60 | 72 | 84 | 96 | 108 |
| EPTHM | LEPTH | 9 | 21 | 33 | 45 | 57 | 69 | 81 | 93 | 105 |
| $\begin{aligned} & \text { EPTH- } \\ & \text { THK } \end{aligned}$ | LEPTH | 10 | 22 | 34 | 46 | 58 | 70 | 82 | 94 | 106 |
| EPTHH | LEPTH | 11 | 23 | 35 | 47 | 59 | 71 | 83 | 95 | 107 |
| EPTHMH | LEPTH | 12 | 24 | 36 | 48 | 60 | 72 | 84 | 96 | 108 |
| Element | | | | | | | | | | |
| MFORX | SMISC | 1 | - | - | - | - | - | - | - | 7 |
| MFORY | SMISC | 2 | - | - | - | - | - | - | - | 8 |
| MFORZ | SMISC | 3 | - | - | - | - | - | - | - | 9 |
| MMOMZ | SMISC | 6 | - | - | - | - | - | - | - | 12 |
| TX | SMISC | 13 | 19 | 25 | 31 | 37 | 43 | 49 | 55 | 61 |
| TZ | SMISC | 14 | 20 | 26 | 32 | 38 | 44 | 50 | 56 | 62 |
| TXZ | SMISC | 15 | 21 | 27 | 33 | 39 | 45 | 51 | 57 | 63 |
| MX | SMISC | 16 | 22 | 28 | 34 | 40 | 46 | 52 | 58 | 64 |
| MZ | SMISC | 17 | 23 | 29 | 35 | 41 | 47 | 53 | 59 | 65 |
| MXZ | SMISC | 18 | 24 | 30 | 36 | 42 | 48 | 54 | 60 | 66 |
| P1 | SMISC | 67 | - | - | - | - | - | - | - | 68 |
| P2 | SMISC | 71 | - | - | - | - | - | - | - | 72 |

| | | Corner Location | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ |
| TEMP | LBFE | 1 | 2 | 3 | 4 |

Table 6 SHELL61 Item and Sequence Numbers (KEYOPT(6) = 9)

| Output | ETABLE and ESOL Command Input | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Quantity Label | Item | 1 | IL1 | IL2 | IL3 | IL4 | IL5 | IL6 | IL7 | IL8 | IL9 | J |
| Top | | | | | | | | | | | | |
| SM | LS | 1 | 13 | 25 | 37 | 49 | 61 | 73 | 85 | 97 | 109 | 121 |
| STHK | LS | 2 | 14 | 26 | 38 | 50 | 62 | 74 | 86 | 98 | 110 | 122 |

| Output Quantity Label | ETABLE and ESOL Command Input | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Item | I | IL1 | IL2 | IL3 | IL4 | IL5 | IL6 | IL7 | IL8 | IL9 | J |
| SH | LS | 3 | 15 | 27 | 39 | 51 | 63 | 75 | 87 | 99 | 111 | 123 |
| SMH | LS | 4 | 16 | 28 | 40 | 52 | 64 | 76 | 88 | 100 | 112 | 124 |
| EPELM | LEPEL | 1 | 13 | 25 | 37 | 49 | 61 | 73 | 85 | 97 | 109 | 121 |
| EPELTHK | LEPEL | 2 | 14 | 26 | 38 | 50 | 62 | 74 | 86 | 98 | 110 | 122 |
| EPELH | LEPEL | 3 | 15 | 27 | 39 | 51 | 63 | 75 | 87 | 99 | 111 | 123 |
| EPELMH | LEPEL | 4 | 16 | 28 | 40 | 52 | 64 | 76 | 88 | 100 | 112 | 124 |
| EPTHM | LEPTH | 1 | 13 | 25 | 37 | 49 | 61 | 73 | 85 | 97 | 109 | 121 |
| $\begin{aligned} & \text { EPTH- } \\ & \text { THK } \end{aligned}$ | LEPTH | 2 | 14 | 26 | 38 | 50 | 62 | 74 | 86 | 98 | 110 | 122 |
| EPTHH | LEPTH | 3 | 15 | 27 | 39 | 51 | 63 | 75 | 87 | 99 | 111 | 123 |
| EPTHM | LEPTH | 4 | 16 | 28 | 40 | 52 | 64 | 76 | 88 | 100 | 112 | 124 |
| Mid | | | | | | | | | | | | |
| SM | LS | 5 | 17 | 29 | 41 | 53 | 65 | 77 | 89 | 101 | 113 | 125 |
| STHK | LS | 6 | 18 | 30 | 42 | 54 | 66 | 78 | 90 | 102 | 114 | 126 |
| SH | LS | 7 | 19 | 31 | 43 | 55 | 67 | 79 | 91 | 103 | 115 | 127 |
| SMH | LS | 8 | 20 | 32 | 44 | 56 | 68 | 80 | 92 | 104 | 116 | 128 |
| EPELM | LEPEL | 5 | 17 | 29 | 41 | 53 | 65 | 77 | 89 | 101 | 113 | 125 |
| EPELTHK | LEPEL | 6 | 18 | 30 | 42 | 54 | 66 | 78 | 90 | 102 | 114 | 126 |
| EPELH | LEPEL | 7 | 19 | 31 | 43 | 55 | 67 | 79 | 91 | 103 | 115 | 127 |
| EPELMH | LEPEL | 8 | 20 | 32 | 44 | 56 | 68 | 80 | 92 | 104 | 116 | 128 |
| EPTHM | LEPTH | 5 | 17 | 29 | 41 | 53 | 65 | 77 | 89 | 101 | 113 | 125 |
| $\begin{aligned} & \text { EPTH- } \\ & \text { THK } \end{aligned}$ | LEPTH | 6 | 18 | 30 | 42 | 54 | 66 | 78 | 90 | 102 | 114 | 126 |
| EPTHH | LEPTH | 7 | 19 | 31 | 43 | 55 | 67 | 79 | 91 | 103 | 115 | 127 |
| EPTHMH | LEPTH | 8 | 20 | 32 | 44 | 56 | 68 | 80 | 92 | 104 | 116 | 128 |
| Bot | | | | | | | | | | | | |
| SM | LS | 9 | 21 | 33 | 45 | 57 | 69 | 81 | 93 | 105 | 117 | 129 |
| STHK | LS | 10 | 22 | 34 | 46 | 58 | 70 | 82 | 94 | 106 | 118 | 130 |
| SH | LS | 11 | 23 | 35 | 47 | 59 | 71 | 83 | 95 | 107 | 119 | 131 |
| SMH | LS | 12 | 24 | 36 | 48 | 60 | 72 | 84 | 96 | 108 | 120 | 132 |
| EPELM | LEPEL | 9 | 21 | 33 | 45 | 57 | 69 | 81 | 93 | 105 | 117 | 129 |
| EPELTHK | LEPEL | 10 | 22 | 34 | 46 | 58 | 70 | 82 | 94 | 106 | 118 | 130 |
| EPELH | LEPEL | 11 | 23 | 35 | 47 | 59 | 71 | 83 | 95 | 107 | 119 | 131 |
| EPELMH | LEPEL | 12 | 24 | 36 | 48 | 60 | 72 | 84 | 96 | 108 | 120 | 132 |
| EPTHM | LEPTH | 9 | 21 | 33 | 45 | 57 | 69 | 81 | 93 | 105 | 117 | 129 |

| Output Quantity Label | ETABLE and ESOL Command Input | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Item | I | IL1 | IL2 | IL3 | IL4 | IL5 | IL6 | IL7 | IL8 | IL9 | J |
| $\begin{aligned} & \text { EPTH- } \\ & \text { THK } \end{aligned}$ | LEPTH | 10 | 22 | 34 | 46 | 58 | 70 | 82 | 94 | 106 | 118 | 130 |
| EPTHH | LEPTH | 11 | 23 | 35 | 47 | 59 | 71 | 83 | 95 | 107 | 119 | 131 |
| EPTHM | LEPTH | 12 | 24 | 36 | 48 | 60 | 72 | 84 | 96 | 108 | 120 | 132 |
| Element | | | | | | | | | | | | |
| MFORX | SMISC | 1 | - | - | - | - | - | - | - | - | - | 7 |
| MFORY | SMISC | 2 | - | - | - | - | - | - | - | - | - | 8 |
| MFORZ | SMISC | 3 | - | - | - | - | - | - | - | - | - | 9 |
| MMOMZ | SMISC | 6 | - | - | - | - | - | - | - | - | - | 12 |
| TX | SMISC | 13 | 19 | 25 | 31 | 37 | 43 | 49 | 55 | 61 | 67 | 73 |
| TZ | SMISC | 14 | 20 | 26 | 32 | 38 | 44 | 50 | 56 | 62 | 68 | 74 |
| TXZ | SMISC | 15 | 21 | 27 | 33 | 39 | 45 | 51 | 57 | 63 | 69 | 75 |
| MX | SMISC | 16 | 22 | 28 | 34 | 40 | 46 | 52 | 58 | 64 | 70 | 76 |
| MZ | SMISC | 17 | 23 | 29 | 35 | 41 | 47 | 53 | 59 | 65 | 71 | 77 |
| MXZ | SMISC | 18 | 24 | 30 | 36 | 42 | 48 | 54 | 60 | 66 | 72 | 78 |
| P1 | SMISC | 79 | - | - | - | - | - | - | - | - | - | 80 |
| P2 | SMISC | 83 | - | - | - | - | - | - | - | - | - | 84 |

| | | Corner Location | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ |
| TEMP | LBFE | 1 | 2 | 3 | 4 |

SHELL61 Assumptions and Restrictions

- The axisymmetric shell element must be defined in the global $X-Y$ plane and must not have a zero length. Both ends must have nonnegative X coordinate values and the element must not lie along the global Y -axis.
- If the element has a constant thickness, only TK(I) need be defined. TK(I) must not be zero.
- The element thickness is assumed to vary linearly from node I to node J. Some thick shell effects have been included in the formulation of SHELL61 but it cannot be properly considered to be a thick shell element. If these effects are important, it is recommended to use PLANE25.
- The element assumes a linear elastic material.
- Post analysis superposition of results is valid only with other linear elastic solutions.
- Strain energy does not consider thermal effects.
- The element should not be used with the large deflection option.
- The element may not be deactivated with the EKILL command.
- You can use only axisymmetric (MODE,0) loads without significant torsional stresses to generate the stress state used for stress stiffened modal analyses using this element.

SHELL61 Product Restrictions

There are no product restrictions for this element.

SOLID62

3-D Magneto-Structural Solid
MP <> <> <> <> <> <> <> <> <> <> PP <> EME <>

SOLID62 Element Description

SOLID62 has the capability of modeling 3-D coupled magneto-structural fields. The magnetic formulation uses a vector potential (AX, AY, AZ) in static analysis and a vector potential combined with a time-integrated scalar potential (VOLT) for harmonic and transient analysis. The structural formulation is similar to that in the SOLID45 element. The element has plasticity, creep, swelling, stress stiffening, large deflection, and large strain capabilities. Other elements with magneto-structural capability are PLANE13, SOLID5, and SOLID98. Magneto-structural coupling is not available for harmonic analysis. See SOLID62 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

The element has nonlinear magnetic harmonic capability for modeling B-H curves or permanent magnet demagnetization curves.

Figure 1 SOLID62 Geometry

SOLID62 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 1 (p. 319). The element is defined by eight nodes and the material properties. A tetrahedral-shaped element may be formed by defining the same node numbers for nodes M, N, O, and P; and nodes K and L. A wedge-shaped element and a pyramid-shaped element may also be formed as shown in Figure 1 (p. 319). The type of units (MKS or user defined) for magnetic field analysis is specified through the EMUNIT command. EMUNIT also determines
the value of MUZRO. The EMUNIT defaults are MKS units and MUZRO $=4 \pi \times 10^{-7}$ henries/meter. In addition to MUZRO, orthotropic relative permeability is available and is specified through the MURX, MURY, and MURZ material property labels. Orthotropic resistivity is specified through the RSVX, RSVY, and RSVZ material labels.

MGXX, MGYY, and MGZZ represent vector components of the coercive force for permanent magnet materials. The magnitude of the coercive force is the square root of the sum of the squares of the components. The direction of polarization is determined by the components MGXX, MGYY, and MGZZ. Permanent magnet polarization directions correspond to the element coordinate directions. The element coordinate system orientation is as described in Coordinate Systems (p. 14). Nonlinear magnetic properties are entered with the TB command as described in Material Data Tables (Implicit Analysis) (p. 22). Nonlinear orthotropic magnetic properties may be specified with a combination of a B-H curve and linear relative permeability. The BH curve will be used in each element coordinate direction where a zero value of relative permeability is specified. Only one B-H curve may be specified per material.

Nodal loads are defined with the \mathbf{D} and the \mathbf{F} commands. With the \mathbf{D} command, the Lab variable corresponds to the degree of freedom (UX, UY, UZ, AX, AY, AZ, VOLT) and VALUE corresponds to the value (displacement, magnetic vector potential, and time-integrated electric scalar potential). With the \mathbf{F} command, the Lab variable corresponds to the force (FX, FY, FZ, CSGX, CSGY, CSGZ, AMPS) and VALUE corresponds to the value (force, magnetic current segments, and current).

Element loads are described in Node and Element Loads (p. 97). The surface loads; pressure and Maxwell force flags may be input on the element faces indicated by the circled numbers in Figure 1 (p.319) using the SF and SFE commands. Surfaces at which magnetic forces are to be calculated may be identified by using the MXWF label on the surface load commands (no value is required). A Maxwell stress tensor calculation is performed at these surfaces to obtain the magnetic forces. These forces are applied in solution as structural loads. The surface flag should be applied to "air" elements adjacent to the body for which forces are required. Deleting the MXWF specification removes the flag.

The body loads; temperature (structural), magnetic virtual displacement, fluence, and source current density may be input based on their value at the element's nodes or as a single element value (BF and BFE commands.) In general, unspecified nodal values of temperatures and fluence default to the uniform value specified with the BFUNIF or TUNIF commands. The vector components of the current density are with respect to the element coordinate system. Calculated Joule heating (JHEAT) may be made available for a subsequent thermal analysis with companion elements (LDREAD command).

Air elements in which Local Jacobian forces are to be calculated may be identified by using nodal values of 1 and 0 for the MVDI (Magnetic Virtual Displacements) label (BF command). See the Low-Frequency Electromagnetic Analysis Guide for details.

A summary of the element input is given in "SOLID62 Input Summary" (p. 320). A general description of element input is given in Element Input (p. 5).

SOLID62 Input Summary

Nodes

I, J, K, L, M, N, O, P
Degrees of Freedom
UX, UY, UZ, AX, AY, AZ, VOLT

Real Constants

None

Material Properties

MUZERO, MURX, MURY, MURZ, RSVX, RSVY, RSVZ,
MGXX, MGYY, MGZZ plus BH data table (see Material Data Tables (Implicit Analysis) (p. 22)),
EX, EY, EZ, ALPX, ALPY, ALPZ (or CTEX, CTEY, CTEZ or THSX, THSY, THSZ),
(PRXY, PRYZ, PRXZ or NUXY, NUYZ, NUXZ),
DENS, GXY, GXZ, GYZ, DAMP

Surface Loads

Maxwell Force Flags --

face 1 (J-I-L-K), face 2 (I-J-N-M), face 3 (J-K-O-N), face 4 (K-L-P-O), face 5 (L-I-M-P), face 6 (M-N-O-P)
Pressures --
face 1 (J-I-L-K), face 2 (I-J-N-M), face 3 (J-K-O-N), face 4 (K-L-P-O), face 5 (L-I-M-P), face 6 (M-N-O-P)

Body Loads

Temperatures --

$\mathrm{T}(\mathrm{I}), \mathrm{T}(\mathrm{J}), \mathrm{T}(\mathrm{K}), \mathrm{T}(\mathrm{L}), \mathrm{T}(\mathrm{M}), \mathrm{T}(\mathrm{N}), \mathrm{T}(\mathrm{O}), \mathrm{T}(\mathrm{P})$
MVDI --
$\mathrm{VD}(\mathrm{I}), \mathrm{VD}(\mathrm{J}), \mathrm{VD}(\mathrm{K}), \mathrm{VD}(\mathrm{L}), \mathrm{VD}(\mathrm{M}), \mathrm{VD}(\mathrm{N}), \mathrm{VD}(\mathrm{O}), \mathrm{VD}(\mathrm{P})$
Fluences --
$F L(I), F L(J), F L(K), F L(L), F L(M), F L(N), F L(O), F L(P)$

Source Current Density --

JSX(I), JSY(I), JSZ(I), PHASE(I), JSX(J), JSY(J), JSZ(J), PHASE(J), JSX(K), JSY(K), JSZ(K), PHASE(K), JSX(L), JSY(L), JSZ(L), PHASE(L), JSX(M), JSY(M), JSZ(M), PHASE(M), JSX(N), JSY (N), JSZ(N), PHASE(N), JSX(O), JSY(O), JSZ(O), PHASE(O), JSX(P), JSY(P), JSZ(P), PHASE(P)

Special Features

Plasticity (BISO, MISO, BKIN, MKIN, KINH, DP, ANISO)
Creep (CREEP)
Swelling (SWELL)
Stress stiffening Large deflection
Large strain Magneto-structural coupling -- requires an iterative solution for field coupling Birth and death Adaptive descent

Items in parentheses refer to data tables associated with the TB command.

KEYOPT(1)

Extra displacement shapes:
0 --
Include extra displacement shapes
1 --
Suppress extra displacement shapes

KEYOPT(5)

Extra element output:
0 --
Basic element printout

1 --
Integration point printout
2 --
Nodal magnetic field and stress printout

KEYOPT(6)

Extra surface output:
0 --
Basic element solution
1 --
Structural surface solution for face I-J-N-M also
2 --
Structural surface solution for face I-J-N-M and face K-L-P-O (Surface solution available for linear materials only)

3 --
Structural nonlinear solution at each integration point also
4 --
Structural surface solution for faces with nonzero pressure

SOLID62 Output Data

The solution output associated with the element is in two forms:

- Nodal displacements and potentials included in the overall nodal solution
- Additional element output as shown in Table 1: SOLID62 Structural Element Output Definitions (p. 322)

The element output directions are parallel to the element coordinate system.
The element stress directions are parallel to the element coordinate system. The surface stress outputs are in the surface coordinate systems and are available for any face (KEYOPT(6)). The coordinate systems for faces IJNM and KLPO are shown in Figure 1 (p.319). The other surface coordinate systems follow similar orientations as indicated by the pressure face node description. Surface stress printout is valid only if the conditions described in Element Solution (p. 9) are met. A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 1 SOLID62 Structural Element Output Definitions

| Name | Definition | \mathbf{O} | \mathbf{R} |
| :--- | :--- | :---: | :---: |
| EL | Element Number | Y | Y |
| NODES | Nodes $-\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}, \mathrm{M}, \mathrm{N}, \mathrm{O}, \mathrm{P}$ | Y | Y |

| Name | Definition | 0 | R |
| :---: | :---: | :---: | :---: |
| MAT | Material number | Y | Y |
| VOLU: | Volume | Y | Y |
| XC, YC, ZC | Location where results are reported | Y | 3 |
| PRES | Pressures P1 at nodes J, I, L, K; P2 at I, J, N, M; P3 at J, K, O, N; P4 at K, L, P, O; P5 at L, I, M, P; P6 at M, N, O, P | Y | Y |
| TEMP | Input temperatures $\mathrm{T}(\mathrm{I}), \mathrm{T}(\mathrm{J}), \mathrm{T}(\mathrm{K}), \mathrm{T}(\mathrm{L}), \mathrm{T}(\mathrm{M}), \mathrm{T}(\mathrm{N})$, $\mathrm{T}(\mathrm{O}), \mathrm{T}(\mathrm{P})$ | Y | Y |
| FLUEN | Input fluences $\mathrm{FL}(\mathrm{I}), \mathrm{FL}(\mathrm{J}), \mathrm{FL}(\mathrm{K}), \mathrm{FL}(\mathrm{L}), \mathrm{FL}(\mathrm{M}), \mathrm{FL}(\mathrm{N})$, FL(O), FL(P) | Y | - |
| S:X, Y, Z, XY, YZ, XZ | Stresses (X, Y, Z, XY, YZ, XZ) | Y | Y |
| S:1, 2, 3 | Principal stresses | Y | Y |
| S:INT | Stress intensity | Y | Y |
| S:EQV | Equivalent stress | Y | Y |
| $\begin{aligned} & \text { EPEL:X,Y, Z, XY, YZ, } \\ & \text { XZ } \end{aligned}$ | Elastic strains | Y | Y |
| EPEL:1, 2, 3 | Principal elastic strains | Y | - |
| EPEL:EQV | Equivalent elastic strain [4] | Y | Y |
| $\begin{aligned} & \text { EPTH:X, Y, Z, XY, YZ, } \\ & X Z \end{aligned}$ | Average thermal strains | 1 | 1 |
| EPTH:EQV | Equivalent thermal strain [4] | 1 | 1 |
| $\begin{aligned} & \text { EPPL:X,Y, Z, XY, YZ, } \\ & X Z \end{aligned}$ | Average plastic strain | 1 | 1 |
| EPPL:EQV | Equivalent plastic strain [4] | 1 | 1 |
| $\begin{aligned} & \text { EPCR:X, Y, Z, XY, YZ, } \\ & X Z \end{aligned}$ | Average creep strain | 1 | 1 |
| EPCR:EQV | Equivalent creep strain [4] | 1 | 1 |
| EPSW: | Average swelling strain | 1 | 1 |
| NL:EPEQ | Average equivalent plastic strain | 1 | 1 |
| NL:SRAT | Ratio of trial stress to stress on yield surface | 1 | 1 |
| NL:SEPL | Average equivalent stress from stress-strain curve | 1 | 1 |
| NL:HPRES | Hydrostatic pressure | - | 1 |
| FACE | Face label | 2 | 2 |
| AREA | Face area | 2 | 2 |
| TEMP | Surface average temperature | 2 | 2 |
| EPEL (X, Y, XY) | Surface elastic strains | 2 | 2 |
| PRESS | Surface pressure | 2 | 2 |
| S(X, Y, XY) | Surface stresses (X-axis parallel to line defined by first two nodes which define the face) | 2 | 2 |
| $S(1,2,3)$ | Surface principal stresses | 2 | 2 |

| Name | Definition | O | R |
| :--- | :--- | :--- | :--- |
| SINT | Surface stress intensity | 2 | 2 |
| SEQV | Surface equivalent stress | 2 | 2 |

1. Nonlinear solution (if the element has a nonlinear material)
2. Face printout (if $\operatorname{KEYOPT}(6)$ is 1,2 , or 4)
3. Available only at centroid as a *GET item.
4. The equivalent strains use an effective Poisson's ratio: for elastic and thermal this value is set by the user (MP,PRXY); for plastic and creep this value is set at 0.5 .

Table 2 SOLID62 Miscellaneous Structural Element Output

| Description | Names of Items Output | $\mathbf{0}$ | \mathbf{R} |
| :--- | :--- | :--- | :--- |
| Nonlinear Integration Pt. Solu-
 tion | EPPL, EPEQ, SRAT, SEPL, HPRES, EPCR, EPSW | 1 | - |
| Integration Point Stress Solution | TEMP, S(X, Y, Z, XY, YZ, XZ), SINT, SEQV, EPEL | 2 | - |
| Nodal Stress Solution | TEMP, S(X, Y, Z, XY, YZ, XZ), SINT, SEQV, EPEL | 3 | - |

1. Output at each of eight integration points, if the element has a nonlinear material and $\operatorname{KEYOPT}(6)=3$
2. Output at each integration point, if $\operatorname{KEYOPT}(5)=1$
3. Output at each node, if $\operatorname{KEYOPT}(5)=2$

Table 3 SOLID62 Magnetic Element Output Definitions

| Name | Definition | 0 | R |
| :---: | :---: | :---: | :---: |
| EL | Element Number | Y | Y |
| NODES | Nodes - I, J, K, L, M, N, O, P | Y | Y |
| MAT | Material number | Y | Y |
| VOLU: | Volume | Y | Y |
| CENT: X, Y, Z | Global location XC, YC, ZC | Y | Y |
| TEMP | Input temperatures $\mathrm{T}(\mathrm{I}), \mathrm{T}(\mathrm{J}), \mathrm{T}(\mathrm{K}), \mathrm{T}(\mathrm{L}), \mathrm{T}(\mathrm{M}), \mathrm{T}(\mathrm{N})$, $\mathrm{T}(\mathrm{O}), \mathrm{T}(\mathrm{P})$ | Y | Y |
| LOC | Output location (X, Y, Z) | 1 | - |
| MU(X, Y, Z) | Magnetic permeability | 1 | 1 |
| H:X, Y, Z | Magnetic field intensity components | 1 | 1 |
| H:SUM | Vector magnitude of H | 1 | 1 |
| B:X, Y, Z | Magnetic flux density components | 1 | 1 |
| B:SUM | Vector magnitude of B | 1 | 1 |
| JS:X, Y, Z | Source current density, valid for static analysis only | 1 | 1 |
| JT(X, Y, Z) | Total current density components | 1 | 1 |
| JHEAT: | Joule heat generation per unit volume | 1 | 1 |

| Name | Definition | \mathbf{O} | \mathbf{R} |
| :--- | :--- | :--- | :--- |
| FJB (X, Y, Z) | Lorentz magnetic force components | 1 | - |
| FMX(X, Y, Z) | Maxwell magnetic force components | 1 | - |
| FVW(X, Y, Z) | Virtual work force components | 1 | 1 |
| Combined (FJB
 or FMX) force
 components | Combined (FJB or FMX) force components | - | 1 |

1. The solution value is output only if calculated (based on input data). The element solution is at the centroid.

Table 4 SOLID62 Miscellaneous Magnetic Element Output

| Description | Names of Items Output | $\mathbf{0}$ | \mathbf{R} |
| :--- | :--- | :---: | :---: |
| Integration Point Solution | LOC, MUX, MUY, MUZ, H, HSUM, B, BSUM | 1 | - |
| Nodal Magnetic Field Solu-
 tion | H, HSUM, B, BSUM | 2 | - |

1. Output at each integration point, if $\operatorname{KEYOPT}(5)=1$
2. Output at each corner node, if $\operatorname{KEYOPT}(5)=2$

Note

JT represents the total measurable current density in a conductor, including eddy current effects, and velocity effects if calculated.

Table 5: SOLID62 Item and Sequence Numbers (p. 325) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p.9) in this manual for more information. The following notation is used in Table 5: SOLID62 Item and Sequence Numbers (p. 325):

Name

output quantity as defined in the Table 1: SOLID62 Structural Element Output Definitions (p. 322)

Item

predetermined Item label for ETABLE command
E
sequence number for single-valued or constant element data
Table 5 SOLID62 Item and Sequence Numbers

| Output
 Quant-
 ity
 Name | ETABLE and
 ESOL Command
 Input | |
| :---: | :---: | :---: |
| | Item | E |
| JSX | SMISC | 1 |
| JSY | SMISC | 2 |
| JSZ | SMISC | 3 |

| Output
 Quant-
 ity
 Name | ETABLE and
 ESOL Command
 Input | |
| :---: | :--- | :--- |
| | E | |
| JS(SUM) | SMISC | 4 |
| MUX | NMISC | 1 |
| MUY | NMISC | 2 |
| MUZ | NMISC | 3 |
| FVWX | NMISC | 4 |
| FVWY | NMISC | 5 |
| FVWZ | NMISC | 6 |
| FVW(SUM) | NMISC | 7 |
| JTX | NMISC | 12 |
| JTY | NMISC | 13 |
| JTZ | NMISC | 14 |
| JT(SUM) | NMISC | 15 |

SOLID62 Assumptions and Restrictions

- The element must not have a zero volume or a zero length side. This occurs most frequently when the element is not numbered properly. Elements may be numbered either as shown in Figure 1 (p.319) or may have the planes IJKL and MNOP interchanged.
- The PCG solver does not support SOLID62 elements.
- For models containing materials with different permeabilities, the 3-D nodal-based vector potential formulation (either static or time-dependent) is not recommended. The solution has been found to be incorrect when the normal component of the vector potential is significant at the interface between elements of different permeability. To obtain the normal component of the vector potential in postprocessing, issue PLVECT,A or PRVECT,A in a rotated coordinate system [RSYS] that orients one of the vector potential components normal to the material interface.
- For static analysis, the VOLT degree of freedom is not used.
- For transient analyses, the following restrictions apply: The VOLT degree of freedom is required in all regions with a specified nonzero resistivity. The VOLT degree of freedom should be set to zero in nonconducting regions where it is not required. For conducting regions (RSVX $\neq 0$), current loading should be applied as nodal loads (AMPS); current density loading (JS) is not allowed.
- No coupling is introduced for harmonic analysis. The magneto-structural coupling is invoked only for static and transient analyses. No reduced transient analysis capability is available. Structural coupling is introduced automatically in current carrying conductors (either those with an applied current density, JS, or induced current density, JT). Structural coupling is also introduced by specifying a Maxwell surface on the "air" elements adjacent to the structure.

Note

Applying MVDI does not introduce magneto-structural coupling. The coupling is highly nonlinear if large deflection is involved. Ramp load slowly and converge at intermediate time substeps.

- Degeneration to the form of pyramid should be used with caution. The element sizes, when degenerated, should be small in order to minimize the stress gradients and field gradients.
- Pyramid elements are best used as filler elements or in meshing transition zones.
- This element may not be compatible with other elements with the VOLT degree of freedom. To be compatible, the elements must have the same reaction force (see Element Compatibility in the LowFrequency Electromagnetic Analysis Guide).
- This element cannot be used in a distributed solution.

SOLID62 Product Restrictions

There are no product-specific restrictions for this element.

SOLID65

3-D Reinforced Concrete Solid

MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS
Product Restrictions

SOLID65 Element Description

SOLID65 is used for the 3-D modeling of solids with or without reinforcing bars (rebar). The solid is capable of cracking in tension and crushing in compression. In concrete applications, for example, the solid capability of the element may be used to model the concrete while the rebar capability is available for modeling reinforcement behavior. Other cases for which the element is also applicable would be reinforced composites (such as fiberglass), and geological materials (such as rock). The element is defined by eight nodes having three degrees of freedom at each node: translations in the nodal x, y, and z directions. Up to three different rebar specifications may be defined.

The concrete element is similar to a 3-D structural solid but with the addition of special cracking and crushing capabilities. The most important aspect of this element is the treatment of nonlinear material properties. The concrete is capable of cracking (in three orthogonal directions), crushing, plastic deformation, and creep. The rebar are capable of tension and compression, but not shear. They are also capable of plastic deformation and creep. See SOLID65 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

Figure 1 SOLID65 Geometry

Tetrahedral Option
(not recommended)

SOLID65 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 1 (p. 329). The element is defined by eight nodes and the isotropic material properties. The element has one solid material and up to three rebar materials. Use the MAT command to input the concrete material properties. Rebar specifications, which are input as real constants, include the material number (MAT), the volume ratio (VR),
and the orientation angles (THETA, PHI). The rebar orientations can be graphically verified with the /ESHAPE command.

The volume ratio is defined as the rebar volume divided by the total element volume. The orientation is defined by two angles (in degrees) from the element coordinate system. The element coordinate system orientation is as described in Coordinate Systems (p.14). A rebar material number of zero or equal to the element material number removes that rebar capability.

Additional concrete material data, such as the shear transfer coefficients, tensile stresses, and compressive stresses are input in the data table, for convenience, as described in Table 1: SOLID65 Concrete Material Data (p. 333). Typical shear transfer coefficients range from 0.0 to 1.0 , with 0.0 representing a smooth crack (complete loss of shear transfer) and 1.0 representing a rough crack (no loss of shear transfer). This specification may be made for both the closed and open crack. When the element is cracked or crushed, a small amount of stiffness is added to the element for numerical stability. The stiffness multiplier CSTIF is used across a cracked face or for a crushed element, and defaults to $1.0 \mathrm{E}-6$.

Element loads are described in Node and Element Loads (p. 97). Pressures may be input as surface loads on the element faces as shown by the circled numbers on Figure 1 (p. 329). Positive pressures act into the element. Temperatures and fluences may be input as element body loads at the nodes. The node I temperature $T(I)$ defaults to TUNIF. If all other temperatures are unspecified, they default to $T(I)$. For any other input pattern, unspecified temperatures default to TUNIF. Similar defaults occurs for fluence except that zero is used instead of TUNIF.

Use the BETAD command to supply the global value of damping. If MP,DAMP is defined for the material number of the element (assigned with the MAT command), it is used for the element instead of the value from the BETAD command. Similarly, use the TREF command to supply the global value of reference temperature. If MP,REFT is defined for the material number of the element, it is used for the element instead of the value from the TREF command. But if MP,REFT is defined for the material number of the rebar, it is used instead of either the global or element value.
$\operatorname{KEYOPT}(1)$ is used to include or suppress the extra displacement shapes. $\operatorname{KEYOPT}(5)$ and $\operatorname{KEYOPT}(6)$ provide various element printout options (see Element Solution (p. 9)).

The stress relaxation associated with $\operatorname{KEYOPT}(7)=1$ is used only to help accelerate convergence of the calculations when cracking is imminent. (A multiplier for the amount of tensile stress relaxation can be input as constant C9 in the data table; see Table 1: SOLID65 Concrete Material Data (p. 333)) The relaxation does not represent a revised stress-strain relationship for post-cracking behavior. After the solution converges to the cracked state, the modulus normal to the crack face is set to zero. Thus, the stiffness is zero normal to the crack face. See the Theory Reference for the Mechanical APDL and Mechanical Applications for details.

The program warns when each unreinforced element crushes at all integration points. If this warning is unwanted, it can be suppressed with $\operatorname{KEYOPT}(8)=1$.

If solution convergence is a problem, it is recommended to set $\operatorname{KEYOPT}(3)=2$ and apply the load in very small load increments.

You can include the effects of pressure load stiffness in a geometric nonlinear analysis using SOLCONTROL,,,INCP. Pressure load stiffness effects are included in linear eigenvalue buckling automatically. If an unsymmetric matrix is needed for pressure load stiffness effects, use NROPT,UNSYM.

A summary of the element input is given in "SOLID65 Input Summary" (p. 331). A general description of element input is given in Element Input (p.5).

SOLID65 Input Summary

Nodes

I, J, K, L, M, N, O, P

Degrees of Freedom

UX, UY, UZ

Real Constants

MAT1, VR1, THETA1, PHI1, MAT2, VR2,
THETA2, PHI2, MAT3, VR3, THETA3, PHI3, CSTIF
(where MATn is material number, VRn is volume ratio, and THETAn and PHIn are orientation angles for up to 3 rebar materials)

Material Properties

EX, ALPX (or CTEX or THSX), PRXY or NUXY, DENS (for concrete)
EX, ALPX (or CTEX or THSX), DENS (for each rebar)
Supply DAMP only once for the element (use MAT command to assign material property set). REFT may be supplied once for the element, or may be assigned on a per rebar basis. See the discussion in "SOLID65 Input Data" (p. 329) for more details.

Surface Loads

Pressures --
face 1 (J-I-L-K), face 2 (I-J-N-M), face 3 (J-K-O-N), face 4 (K-L-P-O), face 5 (L-I-M-P), face 6 (M-N-O-P)

Body Loads

Temperatures --

$\mathrm{T}(\mathrm{I}), \mathrm{T}(\mathrm{J}), \mathrm{T}(\mathrm{K}), \mathrm{T}(\mathrm{L}), \mathrm{T}(\mathrm{M}), \mathrm{T}(\mathrm{N}), \mathrm{T}(\mathrm{O}), \mathrm{T}(\mathrm{P})$

Fluences --

$F L(I), F L(J), F L(K), F L(L), F L(M), F L(N), F L(O), F L(P)$

Special Features

Plasticity (BISO, MISO, BKIN, MKIN, KINH, DP, ANISO)
Creep (CREEP)
Swelling (SWELL)
Elasticity (MELAS)
Other material (USER)
Concrete (CONC)
Cracking
Crushing
Large deflection
Large strain
Stress stiffening
Birth and death
Adaptive descent

Note

Items in parentheses refer to data tables associated with the TB command.

KEYOPT(1)

Extra displacement shapes:
0 --
Include extra displacement shapes
1 --
Suppress extra displacement shapes

KEYOPT(3)

Behavior of totally crushed unreinforced elements:
0 --
Base
1 --
Suppress mass and applied loads, and warning message (see KEYOPT(8))
2 --
Features of 1 and apply consistent Newton-Raphson load vector.

KEYOPT(5)

Concrete linear solution output:
0 --
Print concrete linear solution only at centroid
1 --
Repeat solution at each integration point
2 --
Nodal stress printout

KEYOPT(6)

Concrete nonlinear solution output:
0 --
Print concrete nonlinear solution only at centroid
3 --
Print solution also at each integration point

KEYOPT(7)

Stress relaxation after cracking:
0 --
No tensile stress relaxation after cracking
1 --
Include tensile stress relaxation after cracking to help convergence

KEYOPT(8)

Warning message for totally crushed unreinforced element:
0 --
Print the warning

1 --
 Suppress the warning

SOLID65 Concrete Information

The data listed in Table 1: SOLID65 Concrete Material Data (p. 333) is entered in the data table with the TB commands. Data not input are assumed to be zero, except for defaults described below. The constant table is started by using the TBcommand (with Lab = CONCR). Up to eight constants may be defined with the TBDATA commands following a temperature definition on the TBTEMP command. Up to six temperatures (NTEMP = 6 maximum on the TB command) may be defined with the TBTEMP commands. The constants (C1-C9) entered on the TBDATA commands (6 per command), after each TBTEMP command, are:

Table 1 SOLID65 Concrete Material Data

| Constant | Meaning |
| :---: | :--- |
| 1 | Shear transfer coefficients for an open crack. |
| 2 | Shear transfer coefficients for a closed crack. |
| 3 | Uniaxial tensile cracking stress. |
| 4 | Uniaxial crushing stress (positive). |
| 5 | Biaxial crushing stress (positive). |
| 6 | Ambient hydrostatic stress state for use with constants 7 and 8. |
| 7 | Biaxial crushing stress (positive) under the ambient hydrostatic stress state
 (constant 6). |
| 8 | Uniaxial crushing stress (positive) under the ambient hydrostatic stress
 state (constant 6). |
| 9 | Stiffness multiplier for cracked tensile condition, used if KEYOPT(7) = 1
 (defaults to 0.6). |

Absence of the data table removes the cracking and crushing capability. A value of -1 for constant 3 or 4 also removes the cracking or crushing capability, respectively. If constants 1-4 are input and constants 5-8 are omitted, the latter constants default as discussed in the Theory Reference for the Mechanical APDL and Mechanical Applications. If any one of Constants 5-8 are input, there are no defaults and all 8 constants must be input.

SOLID65 Output Data

The solution output associated with the element is in two forms:

- Nodal displacements included in the overall nodal solution
- Additional element output as shown in Table 2: SOLID65 Element Output Definitions (p. 334)

Several items are illustrated in Figure 2 (p. 334). The element stress directions are parallel to the element coordinate system. Nonlinear material printout appears only if nonlinear properties are specified. Rebar printout appears only for the rebar defined. If cracking or crushing is possible, printout for the concrete is also at the integration points, since cracking or crushing may occur at any integration point. The PLCRACK command can be used in POST1 to display the status of the integration points. A general description of solution output is given in Solution Output (p.8). See the Basic Analysis Guide for ways to view results.

Figure 2 SOLID65 Stress Output

The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 2 SOLID65 Element Output Definitions

| Name | Definition | \mathbf{O} | R |
| :--- | :--- | :--- | :--- |
| EL | Element number | Y | Y |
| NODES | Nodes - I, J, K, L, M, N, O, P | Y | Y |
| MAT | Material number | Y | Y |
| NREINF | Number of rebar | Y | - |
| VOLU: | Volume | Y | Y |
| PRES | Pressures P1 at nodes J, I, L, K; P2 at I, J, N, M; P3 at
 J, K, O, N; P4 at K, L, P, O; P5 at L, I, M, P; P6 at M, N,
 O, P | Y | Y |
| TEMP | Temperatures T(I), T(J), T(K), T(L), T(M), T(N), T(O), T(P) | Y | Y |
| FLUEN | Fluences FL(I), FL(J), FL(K), FL(L), FL(M), FL(N), FL(O),
 FL(P) | Y | Y |
| $\mathrm{XC}, \mathrm{YC} ZC$, | Location where results are reported | Y | 6 |
| $\mathrm{~S}: \mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{XY}, \mathrm{YZ} XZ$, | Stresses | 1 | 1 |
| $\mathrm{~S}: 1,2,3$ | Principal stresses | Stress intensity | 1 |
| S:INT | | 1 | |

| Name | Definition | 0 | R |
| :---: | :---: | :---: | :---: |
| S:EQV | Equivalent stress | 1 | 1 |
| $\begin{aligned} & \text { EPEL:X,Y, Z, XY, YZ, } \\ & X Z \end{aligned}$ | Elastic strains | 1 | 1 |
| EPEL:1, 2, 3 | Principal elastic strains | 1 | - |
| EPEL:EQV | Equivalent elastic strains [7] | 1 | 1 |
| $\begin{aligned} & \text { EPTH:X, Y, Z, XY, YZ, } \\ & \text { XZ } \end{aligned}$ | Average thermal strains | 1 | 1 |
| EPTH:EQV | Equivalent thermal strains [7] | 1 | 1 |
| $\begin{aligned} & \text { EPPL:X, Y, Z, XY, YZ, } \\ & X Z \end{aligned}$ | Average plastic strains | 4 | 4 |
| EPPL:EQV | Equivalent plastic strains [7] | 4 | 4 |
| $\begin{aligned} & \text { EPCR:X,Y, Z, XY, YZ, } \\ & X Z \end{aligned}$ | Average creep strains | 4 | 4 |
| EPCR:EQV | Equivalent creep strains [7] | 4 | 4 |
| NL:EPEQ | Average equivalent plastic strain | 4 | 4 |
| NL:SRAT | Ratio of trial stress to stress on yield surface | 4 | 4 |
| NL:SEPL | Average equivalent stress from stress-strain curve | 4 | 4 |
| NL:HPRES | Hydrostatic pressure | - | 4 |
| THETCR, PHICR | THETA and PHI angle orientations of the normal to the crack plane | 1 | 1 |
| STATUS | Element status | 2 | 2 |
| IRF | Rebar number | 3 | - |
| MAT | Material number | 3 | - |
| VR | Volume ratio | 3 | - |
| THETA | Angle of orientation in $\mathrm{X}-\mathrm{Y}$ plane | 3 | - |
| PHI | Angle of orientation out of $X-Y$ plane | 3 | - |
| EPEL | Uniaxial elastic strain | 3 | - |
| S | Uniaxial stress | 3 | - |
| EPEL | Average uniaxial elastic strain | 5 | 5 |
| EPPL | Average uniaxial plastic strain | 5 | 5 |
| SEPL | Average equivalent stress from stress-strain curve | 5 | 5 |
| EPCR | Average uniaxial creep strain | 5 | 5 |

1. Concrete solution item (output for each integration point (if $\operatorname{KEYOPT}(5)=1$) and the centroid)
2. The element status table (Table 4: SOLID65 Element Status Table (p. 336)) uses the following terms:

- Crushed - solid is crushed.
- Open - solid is cracked and the crack is open.
- Closed - solid is cracked but the crack is closed.
- Neither - solid is neither crushed nor cracked.

3. Rebar solution item repeats for each rebar
4. Concrete nonlinear integration point solution (if $\operatorname{KEYOPT}(6)=3$ and the element has a nonlinear material)
5. Rebar nonlinear integration point solution (if $\operatorname{KEYOPT}(6)=3$ and the rebar has a nonlinear material)
6. Available only at centroid as a *GET item.
7. The equivalent strains use an effective Poisson's ratio: for elastic and thermal this value is set by the user (MP,PRXY); for plastic and creep this value is set at 0.5.

Table 3 SOLID65 Miscellaneous Element Output

| Description | Names of Items Output | $\mathbf{0}$ | \mathbf{R} |
| :---: | :--- | :--- | :--- |
| Nodal Stress Solution | TEMP, $\mathrm{S}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{XY}, \mathrm{YZ}, \mathrm{XZ}), \mathrm{SINT}$,
 SEQV | 1 | - |

1. Output at each node, if $\operatorname{KEYOPT}(5)=2$

Table 4 SOLID65 Element Status Table

| Status | Status in Direction
 $\mathbf{1}$ | Status in Direction
 $\mathbf{2}$ | Status in Direction
 $\mathbf{3}$ |
| :--- | :--- | :--- | :--- |
| 1 | Crushed | Crushed | Crushed |
| 2 | Open | Neither | Neither |
| 3 | Closed | Neither | Neither |
| 4 | Open | Open | Neither |
| 5 | Open | Open | Open |
| 6 | Closed | Open | Open |
| 7 | Closed | Open | Neither |
| 8 | Open | Closed | Open |
| 9 | Closed | Closed | Open |
| 10 | Open | Closed | Neither |
| 11 | Open | Open | Closed |
| 12 | Closed | Open | Closed |
| 13 | Closed | Closed | Neither |
| 14 | Open | Closed | Closed |
| 15 | Closed | Closed | Closed |
| 16 | Neither | Neither | Neither |

Table 5: SOLID65 Item and Sequence Numbers (p. 337) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p.9) in this manual for more information. The following notation is used in Table 5: SOLID65 Item and Sequence Numbers (p. 337):

Name

output quantity as defined in the Table 2: SOLID65 Element Output Definitions (p. 334)

Item

predetermined Item label for ETABLE command
$\mathbf{I}, \mathbf{J}, \ldots, \mathrm{P}$
sequence number for data at nodes $\mathrm{I}, \mathrm{J}, \ldots, \mathrm{P}$
IP
sequence number for Integration Point solution items
Table 5 SOLID65 Item and Sequence Numbers

| Output
 Quant-
 ity
 Name | ETABLE and ESOL Command Input | | | |
| :---: | :---: | :---: | :---: | :---: |
| | Item | Rebar
 $\mathbf{1}$ | Rebar
 $\mathbf{2}$ | Rebar
 $\mathbf{3}$ |
| EPEL | SMISC | 1 | 3 | 5 |
| SIG | SMISC | 2 | 4 | 6 |
| EPPL | NMISC | 41 | 45 | 49 |
| EPCR | NMISC | 42 | 46 | 50 |
| SEPL | NMISC | 43 | 47 | 51 |
| SRAT | NMISC | 44 | 48 | 52 |

| Output Quantity Name | ETABLE and ESOL Command Input | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Item | I | J | K | L | M | N | 0 | P |
| P1 | SMISC | 8 | 7 | 10 | 9 | - | - | - | - |
| P2 | SMISC | 11 | 12 | - | - | 14 | 13 | - | - |
| P3 | SMISC | - | 15 | 16 | - | - | 18 | 17 | - |
| P4 | SMISC | - | - | 19 | 20 | - | - | 22 | 21 |
| P5 | SMISC | 24 | - | - | 23 | 25 | - | - | 26 |
| P6 | SMISC | - | - | - | - | 27 | 28 | 29 | 30 |
| S:1 | NMISC | 1 | 6 | 11 | 16 | 21 | 26 | 31 | 36 |
| S:2 | NMISC | 2 | 7 | 12 | 17 | 22 | 27 | 32 | 37 |
| S:3 | NMISC | 3 | 8 | 13 | 18 | 23 | 28 | 33 | 38 |
| S:INT | NMISC | 4 | 9 | 14 | 19 | 24 | 29 | 34 | 39 |
| S:EQV | NMISC | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 |
| FLUEN | NMISC | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 |

| | Output
 Quantity Name | ETABLE and ESOL Command Input | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Item | Integration Point | | | | | | | |
| | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| Dir 2 | THETCR | NMISC | 56 | 63 | 70 | 77 | 84 | 91 | 98 | 105 |
| | PHICR | NMISC | 57 | 64 | 71 | 78 | 85 | 92 | 99 | 106 |
| Dir 3 | THETCR | NMISC | 58 | 65 | 72 | 79 | 86 | 93 | 100 | 107 |
| | PHICR | NMISC | 59 | 66 | 73 | 80 | 87 | 94 | 101 | 108 |

SOLID65 Assumptions and Restrictions

- Zero volume elements are not allowed.
- Elements may be numbered either as shown in Figure 1 (p. 329) or may have the planes IJKL and MNOP interchanged. Also, the element may not be twisted such that the element has two separate volumes. This occurs most frequently when the elements are not numbered properly.
- All elements must have eight nodes.
- A prism-shaped element may be formed by defining duplicate K and L and duplicate O and P node numbers (see Triangle, Prism, and Tetrahedral Elements (p. 99)). A tetrahedron shape is also available. The extra shapes are automatically deleted for tetrahedron elements.
- Whenever the rebar capability of the element is used, the rebar are assumed to be "smeared" throughout the element. The sum of the volume ratios for all rebar must not be greater than 1.0.
- The element is nonlinear and requires an iterative solution.
- When both cracking and crushing are used together, care must be taken to apply the load slowly to prevent possible fictitious crushing of the concrete before proper load transfer can occur through a closed crack. This usually happens when excessive cracking strains are coupled to the orthogonal uncracked directions through Poisson's effect. Also, at those integration points where crushing has occurred, the output plastic and creep strains are from the previous converged substep. Furthermore, when cracking has occurred, the elastic strain output includes the cracking strain. The lost shear resistance of cracked and/or crushed elements cannot be transferred to the rebar, which have no shear stiffness.
- The following two options are not recommended if cracking or crushing nonlinearities are present:
- Stress-stiffening effects.
- Large strain and large deflection. Results may not converge or may be incorrect, especially if significantly large rotation is involved.

SOLID65 Product Restrictions

There are no product-specific restrictions for this element.

LINK68

Coupled Thermal-Electric Line

MP ME <> PR PRN <> <> <> <> <> <> PP <> EME MFS

LINK68 Element Description

LINK68 is a uniaxial element in 3-D space with the ability to conduct heat and electrical current between its nodes. Joule heat generated by the current flow is also included in the heat balance. The element has two degrees of freedom, temperature and voltage, at each node. The thermal-electrical line element may be used in a steady-state or transient thermal analysis, although no transient electrical capacitance or inductance effects are included in the element.

The element is linear but requires an iterative solution to include the Joule heating effect in the thermal solution. If no electrical effects are present, the conducting bar element (LINK33) may be used. If the model containing the thermal-electrical element is also to be analyzed structurally, the element should be replaced by an equivalent structural element. See LINK68 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

Figure 1 LINK68 Geometry

LINK68 Input Data

The geometry, node locations, and the coordinate system for this thermal-electrical line element are shown in Figure 1 (p. 339). The element is defined by two nodes, the cross-sectional area, and the material properties. In an axisymmetric analysis the area should be input on a full 360° basis. The thermal conductivity and electrical resistivity are in the element longitudinal direction. The specific heat and density may be assigned any values for steady-state solutions.

The electrical material property, RSVX, is the resistivity of the material. The resistance of the element is calculated from RSVX*length/AREA. The resistivity, like any other material property, may be input as a function of temperature. Properties not input default as described in Linear Material Properties (p.16).

The word VOLT should be input for the Lab variable on the \mathbf{D} command and the voltage input for the value. The word AMPS should be input for the Lab variable on the \mathbf{F} command and the current into the node input for the value.

Element loads are described in Node and Element Loads (p. 97). Element body loads may be input as heat generation rates at the nodes. The node J heat generation rate $\mathrm{HG}(\mathrm{J})$ defaults to the node I heat generation rate $\mathrm{HG}(\mathrm{I})$. This rate is in addition to the Joule heat generated by the current flow.

The current being calculated via this element can be directly coupled into a 3-D magnetostatic analysis [BIOT].

A summary of the element input is given in "LINK68 Input Summary" (p. 340). A general description of element input is given in Element Input (p. 5).

LINK68 Input Summary

Nodes

I, J

Degrees of Freedom

TEMP, VOLT

Real Constants

AREA - Cross-sectional area

Material Properties

KXX, DENS, C, ENTH, RSVX

Surface Loads

None

Body Loads

Heat Generations --

HG(I), HG(J)

Special Features

Requires an iterative solution for electrical-thermal coupling Birth and death

KEYOPTS

None

LINK68 Output Data

The solution output associated with the element is in two forms:

- Nodal temperatures and voltages included in the overall nodal solution
- Additional element output as shown in Table 1: LINK68 Element Output Definitions (p. 341)

The heat flow and the current flow into the nodes may be printed with the OUTPR command. The Joule heat generated this substep is used to determine the temperature distribution calculated for the next substep. A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 1 LINK68 Element Output Definitions

| Name | Definition | \mathbf{O} | \mathbf{R} |
| :--- | :--- | :---: | :---: |
| EL | Element Number | Y | Y |
| NODES | Nodes - I, J | Y | Y |
| MAT | Material number | Y | Y |
| VOLU: | Volume | Y | Y |
| XC, YC, ZC | Location where results are reported | Y | 1 |
| HGEN | Heat generations HG(I), HG(J) | Y | - |
| TG | Thermal gradient at centroid | Y | Y |
| TF | Thermal flux at centroid (heat flow/cross-section-
 al area) | Y | Y |
| EF | Electric field (voltage gradient) | Y | Y |
| JS | Current density (voltage flux) | Y | Y |
| CUR | Current | Y | Y |
| JHEAT: | Joule heat generation per unit volume | Y | Y |

1. Available only at centroid as a *GET item.

Table 2: LINK68 Item and Sequence Numbers (p. 341) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p. 9) in this manual for more information. The following notation is used in Table 2: LINK68 Item and Sequence Numbers (p. 341):

Name

output quantity as defined in the Table 1: LINK68 Element Output Definitions (p. 341)
Item
predetermined Item label for ETABLE command
E
sequence number for single-valued or constant element data
Table 2 LINK68 Item and Sequence Numbers

| Output
 Quant-
 ity
 Name | ETABLE and
 ESOL Command
 Input | |
| :---: | :---: | :---: |
| | E | |
| TG | NMISC | 1 |
| TF | NMISC | 2 |
| EF | NMISC | 3 |
| JS | NMISC | 4 |
| CUR | NMISC | 5 |

LINK68 Assumptions and Restrictions

- Heat and current are assumed to flow only in the element longitudinal direction.
- The element must not have a zero length, that is, nodes I and J may not be coincident.
- A free end of the element (that is, not adjacent to another element and not subjected to a boundary constraint) is assumed to adiabatic.
- No conversion is included between electrical heat units and mechanical heat units.
- The resistivity may be divided by a conversion factor, such as 3.415 Btu/Hr per Watt, to get Joule heat in mechanical units. Current (input and output) should also be converted for consistent units.
- If a current is specified at the same node that a voltage is specified, the current is ignored.
- The electrical and the thermal solutions are coupled through an iterative procedure.
- There is no conversion required when consistent units are used.
- This element may not be compatible with other elements with the VOLT degree of freedom. To be compatible, the elements must have the same reaction force (see Element Compatibility in the LowFrequency Electromagnetic Analysis Guide).
- This element cannot be used in a distributed solution.

LINK68 Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

ANSYS Professional

- The birth and death special feature is not allowed.

ANSYS Emag 3-D

- This element has only electric field capability, and does not have thermal capability.
- The element may only be used in a steady-state electric analysis.
- The only active degree of freedom is VOLT.
- The only allowable material property is RSVX.
- No body loads are applicable.
- The birth and death special feature is not allowed.

SOLID70 Element Description

SOLID70 has a 3-D thermal conduction capability. The element has eight nodes with a single degree of freedom, temperature, at each node. The element is applicable to a 3-D, steady-state or transient thermal analysis. The element also can compensate for mass transport heat flow from a constant velocity field. If the model containing the conducting solid element is also to be analyzed structurally, the element should be replaced by an equivalent structural element (such as SOLID185). See SOLID90 for a similar thermal element, with mid-edge node capability.

An option exists that allows the element to model nonlinear steady-state fluid flow through a porous medium. With this option, the thermal parameters are interpreted as analogous fluid flow parameters. For example, the temperature degree of freedom becomes equivalent to a pressure degree of freedom. See SOLID70 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

Figure 1 SOLID70 Geometry

SOLID70 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 1 (p.343). The element is defined by eight nodes and the orthotropic material properties. A prism-shaped element, a tetra-hedral-shaped element, and a pyramid-shaped element may also be formed as shown in Figure 1 (p. 343). Orthotropic material directions correspond to the element coordinate directions. The element coordinate
system orientation is as described in Coordinate Systems (p. 14). Specific heat and density are ignored for steady-state solutions. Properties not input default as described in Linear Material Properties (p. 16).

Element loads are described in Node and Element Loads (p. 97). Convection or heat flux (but not both) and radiation may be input as surface loads at the element faces as shown by the circled numbers on Figure 1 (p. 343).

Heat generation rates may be input as element body loads at the nodes. If the node I heat generation rate $\mathrm{HG}(\mathrm{I})$ is input, and all others are unspecified, they default to $\mathrm{HG}(\mathrm{I})$.

The nonlinear porous flow option is selected with $\operatorname{KEYOPT}(7)=1$. For this option, temperature is interpreted as pressure and the absolute permeability of the medium are input as material properties KXX, KYY, and KZZ. Properties DENS and VISC are used for the mass density and viscosity of the fluid. Properties C and MU are used in calculating the coefficients of permeability as described in the Theory Reference for the Mechanical APDL and Mechanical Applications. Temperature boundary conditions input with the \mathbf{D} command are interpreted as pressure boundary conditions, and heat flow boundary conditions input with the \mathbf{F} command are interpreted as mass flow rate (mass/time).

A mass transport option is available with KEYOPT(8). With this option the velocities VX, VY, and VZ must be input as real constants (in the element coordinate system). Also, temperatures should be specified along the entire inlet boundary to assure a stable solution. With mass transport, you should use specific heat (C) and density (DENS) material properties instead of enthalpy (ENTH).

A summary of the element input is given in "SOLID70 Input Summary" (p. 344). A general description of element input is given in Element Input (p. 5).

SOLID70 Input Summary

Nodes

I, J, K, L, M, N, O, P
Degrees of Freedom
TEMP

Real Constants

Mass transport effects $(\operatorname{KEYOPT}(8)=1)$:
VX - X direction of mass transport velocity
VY - Y direction of mass transport velocity
VZ - Z direction of mass transport velocity

Material Properties

KXX, KYY, KZZ, DENS, C, ENTH, VISC, MU (VISC and MU used only if KEYOPT(7) = 1. Do not use ENTH with $\operatorname{KEYOPT}(8)=1)$.

Surface Loads

Convection or Heat Flux (but not both) and Radiation (using Lab = RDSF) --

face 1 (J-I-L-K), face 2 (I-J-N-M), face 3 (J-K-O-N), face 4 (K-L-P-O), face 5 (L-I-M-P), face 6 (M-N-O-P)

Body Loads

Heat Generations --

$H G(I), H G(J), H G(K), H G(L), H G(M), H G(N), H G(O), H G(P)$

Special Features

Birth and death

KEYOPT(2)

Evaluation of film coefficient:
0 --
Evaluate film coefficient (if any) at average film temperature, (TS + TB)/2
1 --
Evaluate at element surface temperature, TS
2 --
Evaluate at fluid bulk temperature, TB
3 --
Evaluate at differential temperature |TS-TB|

KEYOPT(4)

Element coordinate system defined:
0 --
Element coordinate system is parallel to the global coordinate system
1 --
Element coordinate system is based on the element I-J side

KEYOPT(7)

Nonlinear fluid flow option:
0 --
Standard heat transfer element
1 --
Nonlinear steady-state fluid flow analogy element

Note

Temperature degree of freedom interpreted as pressure.

KEYOPT(8)

Mass transport effects:
0 --
No mass transport effects
1 --
Mass transport with $\mathrm{VX}, \mathrm{VY}, \mathrm{VZ}$

SOLID70 Output Data

The solution output associated with the element is in two forms:

- Nodal temperatures included in the overall nodal solution
- Additional element output as shown in Table 1: SOLID70 Element Output Definitions (p. 346)

Convection heat flux is positive out of the element; applied heat flux is positive into the element. If $\operatorname{KEYOPT}(7)$ $=1$, the standard thermal output should be interpreted as the analogous fluid flow output. The element
output directions are parallel to the element coordinate system. A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and " - " indicates that the item is not available.

Table 1 SOLID70 Element Output Definitions

| Name | Definition | \mathbf{O} | R |
| :--- | :--- | :--- | :--- |
| EL | Element Number | Y | Y |
| NODES | Nodes $-\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}, \mathrm{M}, \mathrm{N}, \mathrm{O}, \mathrm{P}$ | Y | Y |
| MAT | Material number | Y | Y |
| VOLU: | Volume | Y | Y |
| XC, YC, ZC | Location where results are reported | Y | 3 |
| HGEN | Heat generations HG(I), HG(J), HG(K), HG(L), HG(M),
 HG(N), HG(O), HG(P) | Y | - |
| TG:X, Y, Z, SUM | Thermal gradient components and vector sum at
 centroid | Y | Y |
| TF:X, Y, Z, SUM | Thermal flux (heat flow rate/cross-sectional area) com-
 ponents and vector sum at centroid | Y | Y |
| FACE | Face label | 1 | - |
| AREA | Face area | 1 | 1 |
| NODES | Face nodes | 1 | - |
| HFILM | Film coefficient at each node of face | 1 | - |
| TBULK | Bulk temperature at each node of face | 1 | - |
| TAVG | Average face temperature | 1 | 1 |
| HEAT RATE | Heat flow rate across face by convection | 1 | 1 |
| HEAT
 RATE/AREA | Heat flow rate per unit area across face by convection | 1 | - |
| HFAVG | Average film coefficient of the face | - | 1 |
| TBAVG | Average face bulk temperature | - | 1 |
| HFLXAVG | Heat flow rate per unit area across face caused by input
 heat flux | - | 1 |
| HFLUX | Heat flux at each node of face | 2 | - |
| PRESSURE GRAD | Total pressure gradient and its X, Y, and Z components | 2 | - |
| MASS FLUX | Mass flow rate per unit cross-sectional area | 2 | - |
| FLUID VELOCITY | Total fluid velocity and its X, Y, and Z components | 2 | - |

1. Output if a surface load is input
2. Output if $\operatorname{KEYOPT}(7)=1$
3. Available only at centroid as a *GET item.

Table 2: SOLID70 Item and Sequence Numbers (p. 347) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p.9) in this manual for more information. The following notation is used in Table 2: SOLID70 Item and Sequence Numbers (p. 347):

Name

output quantity as defined in the Table 1: SOLID70 Element Output Definitions (p. 346)

Item

predetermined Item label for ETABLE command

FCn

sequence number for solution items for element Face n
Table 2 SOLID70 Item and Sequence Numbers

| Output
 Quantity
 Name | ETABLE and ESOL Command Input | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Item | FC1 | FC2 | FC3 | FC4 | FC5 | FC6 |
| AREA | NMISC | 1 | 7 | 13 | 19 | 25 | 31 |
| HFAVG | NMISC | 2 | 8 | 14 | 20 | 26 | 32 |
| TAVG | NMISC | 3 | 9 | 15 | 21 | 27 | 33 |
| TBAVG | NMISC | 4 | 10 | 16 | 22 | 28 | 34 |
| HEAT RATE | NMISC | 5 | 11 | 17 | 23 | 29 | 35 |
| HFLXAVG | NMISC | 6 | 12 | 18 | 24 | 30 | 36 |

SOLID70 Assumptions and Restrictions

- The element must not have a zero volume. This occurs most frequently when the element is not numbered properly.
- Elements may be numbered either as shown in Figure 1 (p.343) or may have the planes IJKL and MNOP interchanged.
- A prism or tetrahedron shaped element may be formed by defining duplicate node numbers as described in Triangle, Prism, and Tetrahedral Elements (p. 99).
- The specific heat and enthalpy are evaluated at each integration point to allow for abrupt changes (such as for melting) within a coarse grid.
- If the thermal element is to be replaced by a SOLID185 structural element with surface stresses requested, the thermal element should be oriented such that face I-J-N-M and/or face K-L-P-O is a free surface.
- A free surface of the element (that is, not adjacent to another element and not subjected to a boundary constraint) is assumed to be adiabatic.
- Thermal transients having a fine integration time step and a severe thermal gradient at the surface will also require a fine mesh at the surface.
- If $\operatorname{KEYOPT}(8)>0$, unsymmetric matrices are produced.
- When mass flow is activated $(\operatorname{KEYOPT}(8)=1)$, the element Peclet number should be less than 1 :

$$
\mathrm{Pe}=\rho^{*} v^{*} L^{*} \mathrm{C} p /\left(2^{*} \mathrm{k}\right)<1.0
$$

Where L is an element length scale based on the element geometry. See SOLID70 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details.

SOLID70 Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

ANSYS Professional

- This element does not have the mass transport or fluid flow options. KEYOPT(7) and KEYOPT(8) can only be set to 0 (default).
- The VX, VY, and VZ real constants are not applicable.
- The VISC and MU material properties are not applicable.
- The element does not have the birth and death feature.

MASS71

Thermal Mass
MP ME ST PR PRN DS <> <> <> <> <> PP <> EME MFS
Product Restrictions

MASS71 Element Description

MASS71 is a point element having one degree of freedom, temperature, at the node. The element may be used in a transient thermal analysis to represent a body having thermal capacitance capability but negligible internal thermal resistance, that is, no significant temperature gradients within the body. The element also has a temperature-dependent heat generation rate capability. The lumped thermal mass element is applicable to a 1-D, 2-D, or 3-D steady-state or transient thermal analysis. See MASS71 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

In a steady-state solution the element acts only as a temperature-dependent heat source or sink. Other elements having special thermal applications are the COMBIN14 and COMBIN40 elements. These elements, which are normally used in structural models, may be used for thermally analogous situations.

If the model containing the thermal mass element is also to be analyzed structurally, the thermal element should be replaced by an equivalent structural element (such as MASS21)

Figure 1 MASS71 Geometry

- I

MASS71 Input Data

The lumped thermal mass element is defined by one node (as shown in Figure 1 (p.349)) and a thermal capacitance (Heat/Degree). When used with axisymmetric elements, the thermal capacitance should be input on a full 360° basis. The thermal capacitance (CON1) may be input as a real constant or calculated (KEYOPT(3)) from the real constant volume (CON1) and either the DENS and C or ENTH material properties. KEYOPT(3) determines whether CON1 is interpreted as volume or thermal capacitance.

The heat generation is applied directly as a nodal load and is not first multiplied by the volume. Thus, if $\operatorname{KEYOPT}(3)=0$ (that is, when using the specific heat matrix), the heat generation rate must be adjusted to account for the volume. For an axisymmetric analysis the heat generation rate should be input on a full 360° basis. A temperature-dependent heat generation rate of the following polynomial form may be input:
$\dddot{q}(T)=A_{1}+A_{2} T+A_{3} T^{A_{4}}+A_{5} T^{A_{6}}$
where T is the absolute temperature from the previous substep. The constants, A_{1} through A_{6}, should be entered as real constants. If any of the constants A_{2} through A_{6} are nonzero, KEYOPT(4) must be set to 1 . Also, if temperatures are not absolute, the offset conversion [TOFFST] must be specified.

Alternately, the heat generation expression may be defined as a temperature-dependent material property (QRATE) with the MP commands. QRATE can be input as numerical values or as tabular inputs evaluated as a function of temperature, time, and location.

A summary of the element input is given in "MASS71 Input Summary" (p. 350). A general description of element input is given in Element Input (p. 5). See Harmonic Axisymmetric Elements (p. 102) for more details.

MASS71 Input Summary

Nodes

I

Degrees of Freedom

TEMP

Real Constants

CON1, A1, A2, A3, A4, A5
A6
See Table 1: MASS71 Real Constants (p. 350) for a description of the real constants

Material Properties

QRATE, DENS, C, ENTH if KEYOPT(3) $=0$, or QRATE if $\operatorname{KEYOPT}(3)=1$

Surface Loads

None

Body Loads

None (heat generation rates may be defined as a function of temperature by using real constants A1, A2, ... or by the QRATE material property definition.)

Special Features

Nonlinear if heat generation is defined as a function of temperature Birth and death

KEYOPT(3)

Interpretation of real constant CON1:
0 --
Interpret CON1 as volume (with either DENS and C or ENTH supplied as material properties)
1 --
Interpret CON1 as thermal capacitance (DENS* ${ }^{*}$ *volume)

KEYOPT(4)

Temperature dependent heat generation:
0 --
No temperature-dependent heat generation (required if all real constants A2-A6 are zero)
1 --
Include temperature-dependent heat generation (required if any real constants A2-A6 are nonzero)

Table 1 MASS71 Real Constants

| No. | Name | Description |
| :---: | :--- | :--- |
| 1 | CON1 | Volume or thermal capacitance (see KEYOPT(3)) |

| No. | Name | |
| :---: | :--- | :--- |
| 2 | A1 | Constant for temperature function |
| 3 | A2 | Constant for temperature function |
| 4 | A3 | Constant for temperature function |
| 5 | A4 | Constant for temperature function |
| 6 | A5 | Constant for temperature function |
| 7 | A6 | Constant for temperature function |

MASS71 Output Data

The solution output associated with the element is in two forms:

- Nodal temperatures included in the overall nodal solution
- Additional element output as shown in Table 2: MASS71 Element Output Definitions (p. 351)

The heat generation rate is in units of Heat/Time and is positive into the node. A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and " - " indicates that the item is not available.

Table 2 MASS71 Element Output Definitions

| Name | Definition | \mathbf{O} | \mathbf{R} |
| :--- | :--- | :---: | :---: |
| EL | Element Number | Y | Y |
| NODE | Node I | Y | Y |
| XC, YC, ZC | Location where results are reported | Y | 1 |
| TEMP | Element (node) temperature | Y | Y |
| HEAT RATE | Heat generation rate into node | Y | Y |

1. Available only at centroid as a *GET item.

Table 3: MASS71 Item and Sequence Numbers (p. 352) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p.9) in this manual for more information. The following notation is used in Table 3: MASS71 Item and Sequence Numbers (p. 352):

Name

output quantity as defined in the Table 2: MASS71 Element Output Definitions (p. 351)

Item

predetermined Item label for ETABLE command

E

sequence number for single-valued or constant element data
Table 3 MASS71 Item and Sequence Numbers

| Output
 Quant-
 ity
 Name | ETABLE and
 ESOL Command
 Input | |
| :--- | :--- | :--- |
| | Item | E |
| HEAT
 RATE | SMISC | 1 |
| TEMP | SMISC | 2 |

MASS71 Assumptions and Restrictions

- When using the element with a temperature-dependent heat generation rate in a steady-state solution, an iterative solution is required.
- The heat generation is calculated at the uniform temperature for the first substep.

MASS71 Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

ANSYS Professional

- The birth and death special feature is not allowed.

PLANE75

Axisymmetric-Harmonic 4-Node Thermal Solid
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS
Product Restrictions

PLANE75 Element Description

PLANE75 is used as an axisymmetric ring element with a 3-D thermal conduction capability. The element has four nodes with a single degree of freedom, temperature, at each node. The element is a generalization of the axisymmetric version of PLANE55 in that it allows nonaxisymmetric loading. Various loading cases are described in Harmonic Axisymmetric Elements with Nonaxisymmetric Loads (p. 103).

The element is applicable to an axisymmetric geometry for steady-state or transient thermal analyses. See PLANE75 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element. If the model containing the element is also to be analyzed structurally, the element should be replaced by the equivalent structural element (such as PLANE25). A similar thermal element with midside node capability is PLANE78.

Figure 1 PLANE75 Geometry

PLANE75 Input Data

The geometry, node locations, and the coordinate system for this axisymmetric thermal solid element are shown in Figure 1 (p. 353). The data input is essentially the same as for PLANE55 and is described in "PLANE55 Input Data" (p .297). The element input data also includes the number of harmonic waves (MODE) and the symmetry condition (ISYM) on the MODE command. If MODE $=0$ and $I S Y M=1$, the element behaves similarly to the axisymmetric case of PLANE55. The MODE and ISYM parameters describe the type of temperature distribution and are discussed in detail in Harmonic Axisymmetric Elements with Nonaxisymmetric Loads (p. 103).

Element loads are described in Node and Element Loads (p. 97). Harmonically varying bulk temperatures or heat fluxes (but not both) may be input as surface loads on the element faces as shown by the circled
numbers on Figure 1 (p.353). Harmonically varying heat generation rates may be input as element body loads at the nodes. If the node I heat generation rate $\mathrm{HG}(\mathrm{I})$ is input and all others are unspecified, they default to $\mathrm{HG}(\mathrm{I})$.

A summary of the element input is given in "PLANE75 Input Summary" (p. 354). A general description of element input is given in Element Input (p. 5).

PLANE75 Input Summary

Nodes

I, J, K, L

Degrees of Freedom

TEMP

Real Constants

None

Material Properties

KXX, KYY, KZZ, DENS, C, ENTH

Surface Loads

Convections --

face 1 (J-I), face $2(\mathrm{~K}-\mathrm{J})$, face 3 (L-K), face $4(\mathrm{I}-\mathrm{L})$
Heat Fluxes --
face 1 (J-I), face 2 (K-J), face 3 (L-K), face 4 (I-L)

Body Loads

Heat Generations --

$\mathrm{HG}(\mathrm{I}), \mathrm{HG}(\mathrm{J}), \mathrm{HG}(\mathrm{K}), \mathrm{HG}(\mathrm{L})$

Mode Number

Number of harmonic waves around the circumference (MODE)

Loading Condition

Symmetry condition (MODE)

Special Features

Birth and death

KEYOPTS

None

PLANE75 Output Data

The solution output associated with the element is in two forms:

- Nodal temperatures included in the overall nodal solution
- Additional element output as shown in Table 1: PLANE75 Element Output Definitions (p. 355)

Convection heat flux is positive out of the element; applied heat flux is positive into the element. The element output directions are parallel to the element coordinate system. The face area and the heat flow rate are on a full 360° basis. For more information about harmonic elements, see Harmonic Axisymmetric Elements with Nonaxisymmetric Loads (p. 103). A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 1 PLANE75 Element Output Definitions

| Name | Definition | \mathbf{O} | R |
| :--- | :--- | :--- | :--- |
| EL | Element number | Y | Y |
| NODES | Nodes - I, J, K, L | Y | Y |
| MAT | Material number | Y | Y |
| VOLU: | Volume | Y | Y |
| XC, YC | Location where results are reported | Y | 3 |
| HGEN | Heat generations HG(I), HG(J), HG(K), HG(L) | Y | - |
| MODE | Number of waves in loading | Y | - |
| TG:X, Y, SUM, Z | Thermal gradient components and vector sum (X and
 Y) at centroid | 1 | 1 |
| TF:X, Y, SUM, Z | Thermal flux (heat flow rate/cross-sectional area) com-
 ponents and vector sum (X and Y) at centroid | 1 | 1 |
| FACE | Face label | 2 | - |
| NODES | Face nodes | 2 | - |
| AREA | Face area | 2 | 2 |
| TAVG, TBULK | Average of the two end nodal temperatures evaluated
 at peak value, fluid bulk temperature evaluated at peak
 value | 2 | 2 |
| HEAT RATE | Heat flow rate across face by convection | 2 | 2 |
| HEAT
 RATE/AREA | Heat flow rate per unit area across face by convection | 2 | - |
| HFAVG | Average film coefficient of the face | - | 2 |
| TBAVG | Average face bulk temperature | - | 2 |
| HFLXAVG | Heat flow rate per unit area across face caused by input
 heat flux | - | 2 |
| HFLUX | Heat flux at each node of face | 2 | - |

1. Gradient and flux peak at THETA $=0$ and THETA $=90 \div$ MODE degrees
2. Output if a surface load is input
3. Available only at centroid as a *GET item.

Table 2: PLANE75 Item and Sequence Numbers (p. 356) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and

The Item and Sequence Number Table (p.9) in this manual for more information. The following notation is used in Table 2: PLANE75 Item and Sequence Numbers (p. 356):

Name

output quantity as defined in the Table 1: PLANE75 Element Output Definitions (p. 355)

Item

predetermined Item label for ETABLE command
FCn
sequence number for solution items for element Face n
Table 2 PLANE75 Item and Sequence Numbers

| Output
 Quantity
 Name | ETABLE and ESOL Command Input | | | | |
| :---: | :--- | :---: | :---: | :---: | :---: |
| | Item | FC1 | FC2 | FC3 | FC4 |
| AREA | NMISC | 1 | 7 | 13 | 19 |
| HFAVG | NMISC | 2 | 8 | 14 | 20 |
| TAVG | NMISC | 3 | 9 | 15 | 21 |
| TBAVG | NMISC | 4 | 10 | 16 | 22 |
| HEAT RATE | NMISC | 5 | 11 | 17 | 23 |
| HFLXAVG | NMISC | 6 | 12 | 18 | 24 |

PLANE75 Assumptions and Restrictions

- The element must not have a negative or a zero area.
- The element must lie in the global X-Y plane as shown in Figure 1 (p. 353) and the Y -axis must be the axis of symmetry for axisymmetric analyses.
- An axisymmetric structure should be modeled in the $+X$ quadrants.
- A triangular element may be formed by defining duplicate K and L node numbers as described in Triangle, Prism, and Tetrahedral Elements (p. 99).
- If the thermal element is to be replaced by the analogous structural element (PLANE25) with surface stresses requested, the thermal element should be oriented so that face $\mathrm{I}-\mathrm{J}$ (and also face K -L, if applicable) is a free surface.
- A free surface of the element (that is, not adjacent to another element and not subjected to a boundary constraint) is assumed to be adiabatic.
- Thermal transients having a fine integration time step and a severe thermal gradient at the surface will also require a fine mesh at the surface.
- Temperature-dependent material properties (including the film coefficient) are assumed to be axisymmetric even if the temperature varies harmonically.
- If MODE $=0$, properties are evaluated at the temperatures calculated in the previous substep (or at TUNIF if for the first substep).
- If MODE >0, properties are evaluated at temperatures calculated from the previous MODE $=0$ substep; if no MODE $=0$ substep exists, then evaluation is done at 0.0 degrees.

PLANE75 Product Restrictions

There are no product restrictions for this element.

PLANE77

2-D 8-Node Thermal Solid

MP ME <> PR PRN DS <> <> <> <> <> PP <> EME MFS

PLANE77 Element Description

PLANE77 is a higher order version of the 2-D, 4-node thermal element (PLANE55). The element has one degree of freedom, temperature, at each node. The 8-node elements have compatible temperature shapes and are well suited to model curved boundaries.

The 8-node thermal element is applicable to a 2-D, steady-state or transient thermal analysis. See PLANE77 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element. If the model containing this element is also to be analyzed structurally, the element should be replaced by an equivalent structural element (such as PLANE183). A similar axisymmetric thermal element which accepts nonaxisymmetric loading is PLANE78.

Figure 1 PLANE77 Geometry

PLANE77 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 1 (p. 359). The element is defined by eight nodes and orthotropic material properties. A triangular-shaped element may be formed by defining the same node number for nodes K, L and O.

Orthotropic material directions correspond to the element coordinate directions. The element coordinate system orientation is as described in Coordinate Systems (p. 14). Specific heat and density are ignored for steady-state solutions. Properties not input default as described in Linear Material Properties (p. 16).

Element loads are described in Node and Element Loads (p. 97). Convection or heat flux (but not both) and radiation may be input as surface loads at the element faces as shown by the circled numbers on Figure 1 (p. 359). Heat generation rates may be input as element body loads at the nodes. If the node I heat generation rate $\mathrm{HG}(\mathrm{I})$ is input, and all others are unspecified, they default to $\mathrm{HG}(\mathrm{I})$. If all corner node heat generation rates are specified, each midside node heat generation rate defaults to the average heat generation rate of its adjacent corner nodes.

This element can also have a Z-depth specified by KEYOPT(3) and real constant THK. Be careful when using this option with other physics, especially radiation. Radiation view factors will be based on a unit Z-depth (only).

A summary of the element input is given in "PLANE77 Input Summary" (p. 360). A general description of element input is given in Element Input (p. 5). For axisymmetric applications see Harmonic Axisymmetric Elements (p. 102).

PLANE77 Input Summary

Nodes

I, J, K, L, M, N, O, P

Degrees of Freedom

TEMP

Real Constants

THK
THK = Thickness (used only if $\operatorname{KEYOPT}(3)=3$)

Material Properties

KXX, KYY, DENS, C, ENTH

Surface Loads

Convection or Heat Flux (but not both) and Radiation (using Lab = RDSF) -face $1(\mathrm{~J} \mathrm{I})$, face $2(\mathrm{~K}-\mathrm{J})$, face $3(\mathrm{~L}-\mathrm{K})$, face $4(\mathrm{I}-\mathrm{L})$

Body Loads

Heat Generations --

HG(I), HG(J), HG(K), HG(L), HG(M), HG(N), HG(O), HG(P)

Special Features

Birth and death

KEYOPT(1)

Specific heat matrix:
0 --
Consistent specific heat matrix
1 --
Diagonalized specific heat matrix

KEYOPT(3)

Element behavior:
0 --
Plane
1 --
Axisymmetric
3 --
Plane with Z-depth, specified via real constant THK.

PLANE77 Output Data

The solution output associated with the element is in two forms:

- Nodal temperatures included in the overall nodal solution
- Additional element output as shown in Table 1: PLANE77 Element Output Definitions (p. 361)

The element output directions are parallel to the element coordinate system. For an axisymmetric analysis the face area and the heat flow rate are on a full 360° basis. Convection heat flux is positive out of the element; applied heat flux is positive into the element. A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 1 PLANE77 Element Output Definitions

| Name | Definition | \mathbf{O} | R |
| :--- | :--- | :--- | :--- |
| EL | Element Number | Y | Y |
| NODES | Nodes $\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}, \mathrm{M}, \mathrm{N}, \mathrm{O}, \mathrm{P}$ | Y | Y |
| MAT | Material number | Y | Y |
| VOLU: | Volume | Y | Y |
| XC, YC | Location where results are reported | Y | 2 |
| HGEN | Heat generations HG(I), HG(J), HG(K), HG(L), HG(M),
 HG(N), HG(O), HG(P) | Y | - |
| TG:X, Y, SUM | Thermal gradient components and vector sum at
 centroid | Y | Y |
| TF:X, Y, SUM | Thermal flux (heat flow rate/cross-sectional area)
 components and vector sum at centroid | Y | Y |
| FACE | Face label | 1 | - |
| NODES | Face nodes | 1 | - |
| AREA | Face area | 1 | 1 |
| HFILM | Film coefficient | 1 | - |
| TAVG | Average face temperature | 1 | 1 |
| TBULK | Fluid bulk temperature | 1 | - |
| HEAT RATE | Heat flow rate across face by convection | 1 | 1 |
| HEAT RATE/AREA | Heat flow rate per unit area across face by convec-
 tion | 1 | - |
| HFAVG | Average film coefficient of the face | - | 1 |
| TBAVG | Average face bulk temperature | -- | 1 |
| HFLXAVG | Heat flow rate per unit area across face caused by
 input heat flux | - | 1 |
| HFLUX | Heat flux at each node of face | 1 | - |

1. Output only if a surface load is input
2. Available only at centroid as a *GET item.

Table 2: PLANE77 Item and Component Labels (p. 362) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table ($p .9$) in this manual for more information. The following notation is used in Table 2: PLANE77 Item and Component Labels (p. 362):

Name

output quantity as defined in the Table 1: PLANE77 Element Output Definitions (p. 361)

Item

predetermined Item label for ETABLE command

FCn

sequence number for solution items for element Face n
Table 2 PLANE77 Item and Component Labels

| Output
 Quantity
 Name | ETABLE and ESOL Command Input | | | | |
| :---: | :--- | :--- | :--- | :--- | :--- |
| | Item | FC1 | FC2 | FC3 | FC4 |
| AREA | NMISC | 1 | 7 | 13 | 19 |
| HFAVG | NMISC | 2 | 8 | 14 | 20 |
| TAVG | NMISC | 3 | 9 | 15 | 21 |
| TBAVG | NMISC | 4 | 10 | 16 | 22 |
| HEAT RATE | NMISC | 5 | 11 | 17 | 23 |
| HFLXAVG | NMISC | 6 | 12 | 18 | 24 |

PLANE77 Assumptions and Restrictions

- The area of the element must be positive.
- The 2-D element must lie in an X-Y plane as shown in Figure 1 (p.359) and the Y -axis must be the axis of symmetry for axisymmetric analyses.
- An axisymmetric structure should be modeled in the $+X$ quadrants.
- A face with a removed midside node implies that the temperature varies linearly, rather than parabolically, along that face. See Quadratic Elements (Midside Nodes) in the Modeling and Meshing Guide for more information about the use of midside nodes.
- The specific heat and enthalpy are evaluated at each integration point to allow for abrupt changes (such as melting) within a coarse grid.
- If the thermal element is to be replaced by a PLANE183 structural element with surface stresses requested, the thermal element may be oriented such that face $I J$ and/or face KL is a free surface. A free surface of the element (that is, not adjacent to another element and not subjected to a boundary constraint) is assumed to be adiabatic.
- Thermal transients having a fine integration time step and a severe thermal gradient at the surface will require a fine mesh at the surface.

PLANE77 Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

ANSYS Professional

- The birth and death special feature is not allowed.

PLANE78

Axisymmetric-Harmonic 8-Node Thermal Solid

$$
\begin{array}{r}
\text { MP ME <> <> <> <> <> <> <> <> <> PP <> EME MFS } \\
\text { Product Restrictions }
\end{array}
$$

PLANE78 Element Description

PLANE78 is used as an axisymmetric ring element with a 3-D thermal conduction capability. The element has one degree of freedom, temperature, at each node. PLANE78 is a generalization of PLANE77 in that it allows nonaxisymmetric loading. Various loading cases are described in Harmonic Axisymmetric Elements with Nonaxisymmetric Loads (p. 103).

The 8-node elements have compatible temperature shapes and are well suited to model curved boundaries.
The element is applicable to an axisymmetric geometry for steady-state or transient thermal analyses. See PLANE78 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element. If the model containing the element is also to be analyzed structurally, the element should be replaced by the equivalent structural element (such as PLANE83).

Figure 1 PLANE78 Geometry

PLANE78 Input Data

The geometry, node locations, and the coordinate system for this axisymmetric thermal solid element are shown in Figure 1 (p. 365). The data input is essentially the same as for PLANE77 and is described in "PLANE77 Input Data" (p. 359). The element input data also includes the number of harmonic waves (MODE on the MODE command) and the symmetry condition (ISYM on the MODE command). If MODE $=0$ and ISYM $=$ 1, the element behaves similarly to the axisymmetric case of PLANE77. If $M O D E$ equals 1 , the temperature is assumed to be 0° along an entire diameter. The MODE and ISYM parameters describe the type of temperature distribution and are discussed in detail in Harmonic Axisymmetric Elements with Nonaxisymmetric Loads (p. 103).

Element loads are described in Node and Element Loads (p. 97). Harmonically varying bulk temperatures or heat fluxes (but not both) may be input as surface loads on the element faces as shown by the circled numbers on Figure 1 (p. 365). Harmonically varying heat generation rates may be input as element body loads at the nodes. If the node I heat generation rate $\mathrm{HG}(\mathrm{I})$ is input and all others are unspecified, they default
to $\mathrm{HG}(\mathrm{I})$. If all corner node heat generation rates are specified, each midside node heat generation rate defaults to the average heat generation rate of its adjacent corner nodes.

A summary of the element input is given in "PLANE78 Input Summary" (p. 366). A general description of element input is given in Element Input (p.5).

PLANE78 Input Summary

Nodes

I, J, K, L, M, N, O, P
Degrees of Freedom
TEMP

Real Constants

None

Material Properties

KXX, KYY, KZZ, DENS, C, ENTH

Surface Loads

Convections --

face $1(\mathrm{~J}-\mathrm{I})$, face $2(\mathrm{~K}-\mathrm{J})$, face $3(\mathrm{~L}-\mathrm{K})$, face $4(\mathrm{I}-\mathrm{L})$

Heat Fluxes --

face 1 (J-I), face 2 (K-J), face 3 (L-K), face 4 (I-L)

Body Loads

Heat Generations --

$H G(I), H G(J), H G(K), H G(L), H G(M), H G(N), H G(O), H G(P)$

Mode Number

Number of harmonic waves around the circumference (MODE)

Special Features

Birth and death

Loading Condition

Symmetry condition (MODE)

KEYOPT(1)

Specific heat matrix:
0 --
Consistent specific heat matrix
1 --
Diagonalized specific heat matrix

PLANE78 Output Data

The solution output associated with the element is in two forms:

- Nodal temperatures included in the overall nodal solution
- Additional element output as shown in Table 1: PLANE78 Element Output Definitions (p. 367)

Convection heat flux is positive out of the element; applied heat flux is positive into the element. The element output directions are parallel to the element coordinate system. The face area and the heat flow rate are
on a full 360° basis. For more information about harmonic elements, see Harmonic Axisymmetric Elements with Nonaxisymmetric Loads (p. 103). A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 1 PLANE78 Element Output Definitions

| Name | Definition | 0 | R |
| :---: | :---: | :---: | :---: |
| EL | Element number | Y | Y |
| NODES | Nodes - I, J, K, L, M, N, O, P | Y | Y |
| MAT | Material number | Y | Y |
| MODE | Number of waves in loading | Y | Y |
| VOLU: | Volume | Y | Y |
| XC, YC | Location where results are reported | Y | 3 |
| HGEN | Heat generations $\mathrm{HG}(\mathrm{I}), \mathrm{HG}(\mathrm{J}), \mathrm{HG}(\mathrm{K}), \mathrm{HG}(\mathrm{L}), \mathrm{HG}(\mathrm{M}), \mathrm{HG}(\mathrm{N})$, HG(O), HG(P) | Y | - |
| $\begin{aligned} & \mathrm{TG}: X, Y, S U M, \\ & Z \end{aligned}$ | Thermal gradient components and vector sum (X and Y) at centroid | 1 | 1 |
| $\begin{aligned} & \mathrm{TF}: X, Y, \text { SUM, } \\ & Z \end{aligned}$ | Thermal flux (heat flow rate/cross-sectional area) components and vector sum (X and Y) at centroid | 1 | 1 |
| FACE | Face label | 2 | 2 |
| NODES | Face nodes | 2 | 2 |
| AREA | Face area | 2 | 2 |
| HFILM | Film coefficient | 2 | 2 |
| TAVG, TBULK | Average of the two end nodal temperatures evaluated at peak value, fluid bulk temperature at peak value | 2 | 2 |
| HEAT RATE | Heat flow rate across face by convection | 2 | 2 |
| $\begin{aligned} & \hline \text { HEAT } \\ & \text { RATE/AREA } \end{aligned}$ | Heat flow rate per unit area across face by convection | 2 | 2 |
| HFAVG | Average film coefficient of the face | - | 2 |
| TBAVG | Average face bulk temperature | - | 2 |
| HFLXAVG | Heat flow rate per unit area across face caused by input heat flux | - | 2 |
| HFLUX | Heat flux at each node of face | 2 | 2 |

1. Gradient and flux peak at THETA $=0$ and THETA $=90 \div$ Mode degrees
2. Output only if a surface load is input
3. Available only at centroid as a *GET item.

Table 2: PLANE78 Item and Sequence Numbers (p. 368) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p.9) in this manual for more information. The following notation is used in Table 2: PLANE78 Item and Sequence Numbers (p. 368):

Name

output quantity as defined in the Table 1: PLANE78 Element Output Definitions (p. 367)

Item

predetermined Item label for ETABLE command

FCn

sequence number for solution items for element Face n
Table 2 PLANE78 Item and Sequence Numbers

| Output
 Quantity
 Name | ETABLE and ESOL Command Input | | | | |
| :---: | :--- | :--- | :--- | :--- | :--- |
| | Item | FC1 | FC2 | FC3 | FC4 |
| AREA | NMISC | 1 | 7 | 13 | 19 |
| HFAVG | NMISC | 2 | 8 | 14 | 20 |
| TAVG | NMISC | 3 | 9 | 15 | 21 |
| TBAVG | NMISC | 4 | 10 | 16 | 22 |
| HEAT RATE | NMISC | 5 | 11 | 17 | 23 |
| HFLXAVG | NMISC | 6 | 12 | 18 | 24 |

PLANE78 Assumptions and Restrictions

- The element must not have a negative or a zero area.
- The element must lie in the global X-Y plane as shown in Figure 1 (p. 365) and the Y-axis must be the axis of symmetry for axisymmetric analyses.
- An axisymmetric structure should be modeled in the $+X$ quadrants.
- A face with a removed midside node implies that the temperature varies linearly, rather than parabolically, along that face. See Quadratic Elements (Midside Nodes) in the Modeling and Meshing Guide for more information about the use of midside nodes.
- If the thermal element is to be replaced by the analogous structural element (PLANE83) with surface stresses requested, the thermal element should be oriented so that face IJ (and also face KL, if applicable) is a free surface. A free surface of the element (that is, not adjacent to another element and not subjected to a boundary constraint) is assumed to be adiabatic.
- Thermal transients having a fine integration time step and a severe thermal gradient at the surface will also require a fine mesh at the surface.
- Temperature-dependent material properties (including the film coefficient) are assumed to be axisymmetric even if the temperature varies harmonically.
- If $M O D E=0$, properties are evaluated at the temperatures calculated in the previous substep (or at TUNIF if for the first substep).
- If $M O D E>0$, properties are evaluated at temperatures calculated from the previous $M O D E=0$ substep; if no MODE $=0$ substep exists, then evaluation is done at 0.0 degrees.

PLANE78 Product Restrictions

There are no product-specific restrictions for this element.

FLUID79

2-D Contained Fluid

MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS

FLUID79 Element Description

FLUID79 is used to model fluids contained within vessels having no net flow rate. Another fluid element (FLUID116) is available to model fluids flowing in pipes and channels. The fluid element is particularly well suited for calculating hydrostatic pressures and fluid/solid interactions. Acceleration effects, such as in sloshing problems, as well as temperature effects, may be included.

The fluid element is defined by four nodes having two degrees of freedom at each node: translation in the nodal x and y directions. The element may be used in a structural analysis as a plane element or as an axisymmetric ring element. See FLUID79 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element. See FLUID80 for a 3-D version of this element.

Note

The reduced method is the only acceptable method for modal analyses using the ANSYS fluid elements.

Figure 1 FLUID79 Geometry

FLUID79 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 1 (p.371). The element input data includes four nodes and the isotropic material properties. EX, which is interpreted as the "fluid elastic modulus", should be the bulk modulus of the fluid (approximately 300,000 psi for water). The viscosity property (VISC) is used to compute a damping matrix for dynamic analyses (typical viscosity
value for water is $1.639 \times 10^{-7} \mathrm{lb}-\mathrm{sec} / \mathrm{in}^{2)}$. The use of $\operatorname{KEYOPT}(2)$ for gravity springs is discussed in "FLUID80 Input Data" (p. 375). Vertical acceleration (ACELY on the ACEL command) is needed for the gravity springs.

Element loads are described in Node and Element Loads (p. 97). Pressures may be input as surface loads on the element faces as shown by the circled numbers on Figure 1 (p.371). Positive pressures act into the element. Temperatures may be input as element body loads at the nodes. The node I temperature $\mathrm{T}(\mathrm{I})$ defaults to TUNIF. If all other temperatures are unspecified, they default to $T(I)$. For any other input pattern, unspecified temperatures default to TUNIF.

A summary of the element input is given in "FLUID79 Input Summary" (p.372). A general description of element input is given in Element Input (p. 5). For axisymmetric applications see Harmonic Axisymmetric Elements (p. 102).

FLUID79 Input Summary

Nodes

I, J, K, L
Degrees of Freedom
UX, UY

Real Constants

None

Material Properties

EX, ALPX (or CTEX or THSX), DENS, VISC, DAMP

Surface Loads

Pressures --

face $1(\mathrm{~J}-\mathrm{I})$, face $2(\mathrm{~K}-\mathrm{J})$, face $3(\mathrm{~L}-\mathrm{K})$, face $4(\mathrm{I}-\mathrm{L})$

Body Loads

Temperatures --

$\mathrm{T}(\mathrm{I}), \mathrm{T}(\mathrm{J}), \mathrm{T}(\mathrm{K}), \mathrm{T}(\mathrm{L})$

Special Features

None

KEYOPT(2)

Location of gravity springs:
0 --
Place gravity springs on all sides of all elements
1 --
Place gravity springs only on face of elements located on $\mathrm{Y}=0.0$ plane (elements must not have positive Y coordinates)

KEYOPT(3)

Element behavior:
0 --
Plane
1 --
Axisymmetric

FLUID79 Output Data

The solution output associated with the element is in two forms:

- Degree of freedom results included in the overall nodal solution
- Additional element output as shown in Table 1: FLUID79 Element Output Definitions (p. 373)

The pressure and temperature are evaluated at the element centroid. Nodal forces and reaction forces are on a full 360° basis for axisymmetric models. A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 1 FLUID79 Element Output Definitions

| Name | Definition | \mathbf{O} | \mathbf{R} |
| :--- | :--- | :---: | :---: |
| EL | Element Number | Y | Y |
| NODES | Nodes - I, J, K, L | Y | Y |
| MAT | Material number | Y | Y |
| VOLU: | Volume | Y | Y |
| XC, YC | Location where results are reported | Y | 1 |
| PRES | Pressures P1 at nodes J, I; P2 at K, J; P3 at L, K;
 P4 at I, L | Y | Y |
| TEMP | Temperatures T(I), T(J), T(K), T(L) | Y | Y |
| TAVG | Average temperature | Y | - |
| PAVG | Average pressure | Y | Y |

1. Available only at centroid as a *GET item.

Table 2: FLUID79 Item and Sequence Numbers (p. 374) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p.9) in this manual for more information. The following notation is used in Table 2: FLUID79 Item and Sequence Numbers (p. 374):

Name

output quantity as defined in the Table 1: FLUID79 Element Output Definitions (p. 373)

Item

predetermined Item label for ETABLE command
E
sequence number for single-valued or constant element data

$\mathbf{I}, \mathbf{J}, \ldots, \mathrm{L}$

sequence number for data at nodes $\mathrm{I}, \mathrm{J}, \ldots, \mathrm{L}$
Table 2 FLUID79 Item and Sequence Numbers

| Output
 Quant-
 ity
 Name | ETABLE and ESOL Command Input | | | | | |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| | Item | E | \mathbf{I} | \mathbf{J} | \mathbf{K} | \mathbf{L} |
| PRES | SMISC | 1 | - | - | - | - |
| P1 | SMISC | - | 3 | 2 | - | - |
| P2 | SMISC | - | - | 5 | 4 | - |
| P3 | SMISC | - | - | - | 7 | 6 |
| P4 | SMISC | - | 8 | - | - | 9 |

FLUID79 Assumptions and Restrictions

- The area of the element must be positive.
- The fluid element must lie in an $X-Y$ plane as shown in Figure 1 (p. 371) and the Y-axis must be the axis of symmetry for axisymmetric analyses.
- An axisymmetric structure should be modeled in the $+X$ quadrants.
- Radial motion should be constrained at the centerline.
- Usually the Y-axis is oriented in the vertical direction with the top surface at $Y=0.0$.
- The element temperature is taken to be the average of the nodal temperatures.
- Elements should be rectangular whenever possible, as results are known to be of lower quality for some cases using nonrectangular shapes.
- Axisymmetric elements should always be rectangular.
- The nonlinear transient dynamic analysis should be used instead of the linear transient dynamic analysis for this element.
- A very small stiffness ($\mathrm{EX} \times 1.0 \mathrm{E}-9$) is associated with the shear and rotational strains to ensure static stability. See FLUID80 for more assumptions and restrictions.
- Only the lumped mass matrix is available.

FLUID79 Product Restrictions

There are no product-specific restrictions for this element.

FLUID80

3-D Contained Fluid

MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS

FLUID80 Element Description

FLUID80 is used to model fluids contained within vessels having no net flow rate. Another fluid element (FLUID116) is available to model fluids flowing in pipes and channels. The fluid element is particularly well suited for calculating hydrostatic pressures and fluid/solid interactions. Acceleration effects, such as in sloshing problems, as well as temperature effects, may be included.

The fluid element is defined by eight nodes having three degrees of freedom at each node: translation in the nodal x, y, and z directions. See FLUID80 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element. See FLUID79 for a 2-D version of this element.

Note

The reduced method is the only acceptable method for modal analyses using the ANSYS fluid elements.

Figure 1 FLUID80 Geometry

FLUID80 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 1 (p. 375). The element input data includes eight nodes and the isotropic material properties. EX, which is interpreted as the "fluid elastic modulus", should be the bulk modulus of the fluid (approximately 300,000 psi for water). The viscosity property (VISC) is used to compute a damping matrix for dynamic analyses. A typical viscosity value for water is $1.639 \times 10^{-7} \mathrm{lb}-\mathrm{sec} / \mathrm{in}^{2}$.

Element loads are described in Node and Element Loads (p. 97). Pressures may be input as surface loads on the element faces as shown by the circled numbers on Figure 1 (p.375). Positive pressures act into the element. Temperatures may be input as element body loads at the nodes. The node I temperature $T(I)$ defaults to TUNIF. If all other temperatures are unspecified, they default to $T(I)$. For any other input pattern, unspecified temperatures default to TUNIF.

The element also includes special surface effects, which may be thought of as gravity springs used to hold the surface in place. This is performed by adding springs to each node, with the spring constants being positive on the top of the element, and negative on the bottom. Gravity effects [ACEL] must be included if a free surface exists. For an interior node, the positive and negative effects cancel out, and at the bottom, where the fluid must be contained to keep the fluid from leaking out, the negative spring has no effect (as long as all degrees of freedom on the bottom are fixed). If the bottom consists of a flexible container, or if the degrees of freedom tangential to a curved surface are released, these negative springs may cause erroneous results and "negative pivot" messages. In this case, use of $\operatorname{KEYOPT}(2)=1$ is recommended.

These surface springs, while necessary to keep the free surface in place, artificially reduce the hydrostatic motion of the free surface. The error for a tank with vertical walls, expressed as a ratio of the computed answer over the correct answer is $1.0 /(1.0+$ (bottom pressure/bulk modulus)), which is normally very close to 1.0 . Hydrodynamic results are not affected by this overstiffness.

A summary of the element input is given in "FLUID80 Input Summary" (p. 376). A general description of element input is given in Element Input (p. 5).

FLUID80 Input Summary

Nodes

I, J, K, L, M, N, O, P

Degrees of Freedom

UX, UY, UZ

Real Constants

None

Material Properties

EX, ALPX (or CTEX or THSX), DENS, VISC, DAMP

Surface Loads

Pressures --

face 1 (J-I-L-K), face 2 (I-J-N-M), face 3 (J-K-O-N), face 4 (K-L-P-O), face 5 (L-I-M-P), face 6 (M-N-O-P)

Body Loads

Temperatures --
$\mathrm{T}(\mathrm{I}), \mathrm{T}(\mathrm{J}), \mathrm{T}(\mathrm{K}), \mathrm{T}(\mathrm{L}), \mathrm{T}(\mathrm{M}), \mathrm{T}(\mathrm{N}), \mathrm{T}(\mathrm{O}), \mathrm{T}(\mathrm{P})$

Special Features

None

KEYOPT(2)

Location of gravity springs:
0 --
Place gravity springs on all sides of all elements

1 --

Place gravity springs only on face of elements located on $Z=0.0$ plane (elements must not have positive Z coordinates)

FLUID80 Output Data

The solution output associated with the element is in two forms:

- Degree of freedom results included in the overall nodal solution
- Additional element output as shown in Table 1: FLUID80 Element Output Definitions (p. 377)

The pressure and temperature are evaluated at the element centroid. A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and " - " indicates that the item is not available.

Table 1 FLUID80 Element Output Definitions

| Name | Definition | \mathbf{O} | R |
| :--- | :--- | :---: | :---: |
| EL | Element Number | Y | Y |
| NODES | Nodes - I, J, K, L, M, N, O, P | Y | Y |
| MAT | Material number | Y | Y |
| VOLU: | Volume | Y | Y |
| XC, YC, ZC | Location where results are reported | Y | 1 |
| PRES | Pressures P1 at nodes J, I, L, K; P2 at I, J, N, M; P3 at J,
 K, O, N; P4 at K, L, P, O; P5 at L, I, M, P; P6 at M, N, O, P | Y | Y |
| TEMP | Temperatures T(I), T(J), T(K), T(L), T(M), T(N), T(O), T(P) | Y | Y |
| TAVG | Average temperature | Y | - |
| PAVG | Average pressure | Y | Y |

1. Available only at centroid as a *GET item.

Table 2: FLUID80 Item and Sequence Numbers (p. 378) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p.9) in this manual for more information. The following notation is used in Table 2: FLUID80 Item and Sequence Numbers (p. 378):

Name

output quantity as defined in the Table 1: FLUID80 Element Output Definitions (p. 377)

Item

predetermined Item label for ETABLE command

E

sequence number for single-valued or constant element data
$\mathbf{I}, \mathbf{J}, \ldots, \mathrm{P}$
sequence number for data at nodes $\mathrm{I}, \mathrm{J}, \ldots, \mathrm{P}$
Table 2 FLUID80 Item and Sequence Numbers

| Output Quantity Name | ETABLE and ESOL Command Input | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Item | E | I | J | K | L | M | N | 0 | P |
| PRES | SMISC | 1 | - | - | - | - | - | - | - | - |
| P1 | SMISC | - | 3 | 2 | 5 | 4 | - | - | - | - |
| P2 | SMISC | - | 6 | 7 | - | - | 9 | 8 | - | - |
| P3 | SMISC | - | - | 10 | 11 | - | - | 13 | 12 | - |
| P4 | SMISC | - | - | - | 14 | 15 | - | - | 17 | 16 |
| P5 | SMISC | - | 19 | - | - | 18 | 20 | - | - | 21 |
| P6 | SMISC | - | - | - | - | - | 22 | 23 | 24 | 25 |

FLUID80 Assumptions and Restrictions

- Zero volume elements are not allowed.
- Elements may be numbered either as shown in Figure 1 (p.375) or may have the planes IJKL and MNOP interchanged.
- The element may not be twisted such that the element has two separate volumes. This occurs most frequently when the elements are not numbered properly.
- Structures are usually modeled with the Z-axis oriented in the vertical direction and the top surface at $Z=0.0$.
- The element temperature is taken to be the average of the nodal temperatures.
- Elements should be rectangular (brick shaped) whenever possible, as results are known to be of lower quality for some cases using nonrectangular shapes.
- The nonlinear transient dynamic analysis should be used instead of the linear transient dynamic analysis for this element.
- For the case of a modal analysis with irregular meshes, one can expect one or more low frequency eigenvectors, representing internal fluid motions, without significantly affecting the vertical motion of the free surface.
- The amount of flow permitted is limited to that which will not cause gross distortions in the element.
- The large deflection option should not be used with this element.
- In a reduced analysis, master degrees of freedom should be selected at all nodes on the free fluid surface in the direction normal to the free surface. Other master degrees of freedom, if any, should only be selected normal to one or more flat planes within the fluid, with all nodes on these planes being included. Other selections may produce large internal rotations.
- When used for a static application, the free surface must be input flat. Gravity must be input if there is a free surface. The element gives valid nodal forces representing hydrostatic pressure and also valid
vertical displacements at the free surface. Other nodal displacements, which may be large, represent energy-free internal motions of the fluid.
- Fluid element at a boundary should not be attached directly to structural elements but should have separate, coincident nodes that are coupled only in the direction normal to the interface.
- Arbitrarily small numbers are included to give the element some shear and rotational stability.
- Only the lumped mass matrix is available.

FLUID80 Product Restrictions

There are no product-specific restrictions for this element.

FLUID81

Axisymmetric-Harmonic Contained Fluid

MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS
Product Restrictions

FLUID81 Element Description

FLUID81 is a modification of the axisymmetric structural solid element (PLANE25). The element is used to model fluids contained within vessels having no net flow rate. It is defined by four nodes having three degrees of freedom at each node: translations in the nodal x, y, and z directions. The element is used in a structural analysis as an axisymmetric ring element.

The element is a generalization of the axisymmetric version of FLUID79, the 2-D fluid element, in that the loading need not be axisymmetric. Various loading cases are described in Harmonic Axisymmetric Elements with Nonaxisymmetric Loads (p.103). The fluid element is particularly well suited for calculating hydrostatic pressures and fluid/solid interactions. Acceleration effects, such as in sloshing problems, as well as temperature effects, may be included. See FLUID81 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element. Another fluid element (FLUID116) is available to model fluids flowing in pipes and channels.

Note

The reduced method is the only acceptable method for modal analyses using the ANSYS fluid elements.

Figure 1 FLUID81 Geometry

FLUID81 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 1 (p. 381). The element input data includes four nodes, the number of harmonic waves (MODE on the MODE command), the symmetry condition (ISYM on the MODE command), and the isotropic material properties. If MODE $=0$
and ISYM $=1$, the element behaves similar to the axisymmetric case of FLUID79. The MODE and ISYM parameters are discussed in detail in Harmonic Axisymmetric Elements with Nonaxisymmetric Loads (p. 103). EX, which is interpreted as the "fluid elastic modulus," should be the bulk modulus of the fluid (approximately 300,000 psi for water). The viscosity property (VISC) is used to compute a damping matrix for dynamic analyses. A typical viscosity value for water is $1.639 \times 10^{-7} \mathrm{lb}-\mathrm{sec} / \mathrm{in}^{2}$. Density (DENS) must be input as a positive number.

The use of KEYOPT(2) for gravity springs is discussed in "FLUID80 Input Data" (p. 375). Vertical acceleration ($A C E L Y$ on the ACEL command) is needed for the gravity springs regardless of the value of MODE, even for a modal analysis. Harmonically varying nodal forces, if any, should be input on a full 360° basis.

Element loads are described in Node and Element Loads (p. 97). Harmonically varying pressures may be input as surface loads on the element faces as shown by the circled numbers on Figure 1 (p.381). Positive pressures act into the element.

Harmonically varying temperatures may be input as element body loads at the nodes. The node I temperature $\mathrm{T}(\mathrm{I})$ defaults to TUNIF. If all other temperatures are unspecified, they default to $\mathrm{T}(\mathrm{I}$. For any other input pattern, unspecified temperatures default to TUNIF.

A summary of the element input is given in "FLUID81 Input Summary" (p. 382). A general description of element input is given in Element Input (p. 5).

FLUID81 Input Summary

Nodes

I, J, K, L

Degrees of Freedom

UX, UY, UZ

Real Constants

None

Material Properties

EX, ALPX (or CTEX or THSX), DENS, VISC, DAMP

Surface Loads

Pressures --

face $1(\mathrm{~J}-\mathrm{I})$, face $2(\mathrm{~K}-\mathrm{J})$, face $3(\mathrm{~L}-\mathrm{K})$, face $4(\mathrm{I}-\mathrm{L})$

Body Loads

Temperatures --

$\mathrm{T}(\mathrm{I}), \mathrm{T}(\mathrm{J}), \mathrm{T}(\mathrm{K}), \mathrm{T}(\mathrm{L})$

Mode Number

Number of harmonic waves around the circumference (MODE)

Loading Condition

Symmetry condition (MODE)

Special Features

None

KEYOPT(2)

Location of gravity springs:

0 --

Place gravity springs on all sides of all elements
1 --
Place gravity springs only on face of elements located on $\mathrm{Y}=0.0$ plane (element must not have positive Y coordinates)

FLUID81 Output Data

The solution output associated with the element is in two forms:

- Degree of freedom results included in the overall nodal solution
- Additional element output as shown in Table 1: FLUID81 Element Output Definitions (p. 383)

The pressure and temperature are evaluated at the element centroid. Nodal forces and reaction forces are on a full 360° basis.

In the displacement printout, the UZ component is out-of-phase with the UX and UY components. For example, in the MODE $=1$, ISYM $=1$ loading case, $U X$ and $U Y$ are the peak values at $\theta=0^{\circ}$ and $U Z$ is the peak value at $\theta=90^{\circ}$. Printout for combined loading cases may be obtained from the POST1 routine. We recommend that you always use the angle field on the SET command when postprocessing the results. For more information about harmonic elements, see Harmonic Axisymmetric Elements with Nonaxisymmetric Loads (p. 103).

A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

The following notation is used in Table 1: FLUID81 Element Output Definitions (p. 383):

The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 1 FLUID81 Element Output Definitions

| Name | Definition | \mathbf{O} | R |
| :--- | :--- | :---: | :---: |
| EL | Element Number | Y | Y |
| NODES | Nodes $-\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}$ | Y | Y |
| MAT | Material number | Y | Y |
| ISYM | Loading Key | 1 | 1 |
| MODE | Number of waves in loading | Y | Y |
| VOLU: | Volume | Y | Y |
| XC, YC | Location where results are reported | Y | 2 |
| PRES | Pressures P1 at nodes J,I; P2 at K,J; P3 at L,K; P4
 at I,L | Y | Y |
| TEMP | Temperatures T(I),T(J),T(K),T(L) | Y | Y |

| Name | Definition | \mathbf{O} | \mathbf{R} |
| :--- | :--- | :---: | :---: |
| TAVG | Average temperature | Y | - |
| PAVG | Average pressure | Y | Y |

1. If ISYM is:

1 - Symmetric loading
-1 - Antisymmetric loading
2. Available only at centroid as a *GET item.

Table 2: FLUID81 Item and Sequence Numbers (p. 384) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p.9) in this manual for more information. The following notation is used in Table 2: FLUID81 Item and Sequence Numbers (p. 384):

Name

output quantity as defined in the Table 1: FLUID81 Element Output Definitions (p. 383)

Item

predetermined Item label for ETABLE command
E
sequence number for single-valued or constant element data
$\mathbf{I}, \mathbf{J}, \ldots, L$
sequence number for data at nodes $\mathrm{I}, \mathrm{J}, \ldots, \mathrm{L}$
Table 2 FLUID81 Item and Sequence Numbers

| Output
 Quant-
 ity
 Name | ETABLE and ESOL Command Input | | | | | |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| | Item | E | \mathbf{I} | \mathbf{J} | \mathbf{K} | \mathbf{L} |
| PRES | SMISC | 1 | - | - | - | - |
| P1 | SMISC | - | 3 | 2 | - | - |
| P2 | SMISC | - | - | 5 | 4 | - |
| P3 | SMISC | - | - | - | 7 | 6 |
| P4 | SMISC | - | 8 | - | - | 9 |

FLUID81 Assumptions and Restrictions

- The area of the element must be positive.
- The fluid element must lie in an $X-Y$ plane as shown in Figure 1 (p. 381) and the Y-axis must be the axis of symmetry for axisymmetric analyses.
- An axisymmetric structure should be modeled in the $+X$ quadrants.
- The Y -axis should be oriented in the vertical direction and the top surface is usually at $\mathrm{Y}=0.0$.
- The element temperature is taken to be the average of the nodal temperatures.
- Temperature-dependent material properties, if any, are evaluated at the reference temperature [TREF].
- Elements should be rectangular since results are known to be of lower quality for nonrectangular shapes.
- The nonlinear transient dynamic analysis should be used instead of the linear transient dynamic analysis for this element.
- A lumped mass matrix may be obtained for this element with the LUMPM command.
- See FLUID80 for more assumptions and restrictions.

FLUID81 Product Restrictions
There are no product-specific restrictions for this element.

PLANE83

Axisymmetric-Harmonic 8-Node Structural Solid

MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS

PLANE83 Element Description

Although this legacy element is available for use in your analysis, ANSYS recommends using a current-technology element such as SOLID273 $(\operatorname{KEYOPT}(6)=0)$.

PLANE83 is used for 2-D modeling of axisymmetric structures with nonaxisymmetric loading. Examples of such loading are bending, shear, or torsion. The element has three degrees of freedom per node: translations in the nodal x, y, and z directions. For unrotated nodal coordinates, these directions correspond to the radial, axial, and tangential directions, respectively.

This element is a higher order version of the 2-D, four-node element (PLANE25). It provides more accurate results for mixed (quadrilateral-triangular) automatic meshes and can tolerate irregular shapes without as much loss of accuracy. The loading need not be axisymmetric. Various loading cases are described in Harmonic Axisymmetric Elements with Nonaxisymmetric Loads (p. 103).

The 8 -node elements have compatible displacement shapes and are well suited to model curved boundaries. See PLANE83 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

Figure 1 PLANE83 Geometry

PLANE83 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 1 (p. 387). Orthotropic material directions correspond to the element coordinate directions. The element coordinate system orientation is as described in Coordinate Systems (p. 14). Z-direction material properties (EZ, ALPZ, etc.) may be input. MODE and ISYM are used to describe the harmonic loading condition. (See Harmonic Axisymmetric Elements with Nonaxisymmetric Loads (p. 103) for more details.)

Element loads are described in Node and Element Loads (p. 97). Harmonically varying pressures may be input as surface loads on the element faces as shown by the circled numbers on Figure 1 (p.387). Positive pressures act into the element. Harmonically varying temperatures may be input as element body loads at the nodes. The node I temperature $\mathrm{T}(\mathrm{I})$ defaults to TUNIF. If all other temperatures are unspecified, they default to $\mathrm{T}(\mathrm{I})$. If all corner node temperatures are specified, each midside node temperature defaults to the average temperature of its adjacent corner nodes. For any other input temperature pattern, unspecified temperatures default to TUNIF.

The KEYOPT(3) parameter is used for temperature loading with MODE greater than zero and temperaturedependent material properties. Material properties may only be evaluated at a constant (nonharmonically varying) temperature. If MODE equals zero, the material properties are always evaluated at the average element temperature. $\operatorname{KEYOPT}(4)$, (5), and (6) provide various element printout options (see Element Solution (p. 9)).

A summary of the element input is given in "PLANE83 Input Summary" (p. 388). A general description of element input is given in Element Input (p. 5).

PLANE83 Input Summary

Nodes

I, J, K, L, M, N, O, P
Degrees of Freedom
UX, UY, UZ

Real Constants

None

Material Properties

EX, EY, EZ, PRXY, PRYZ, PRXZ (or NUXY, NUYZ, NUXZ),
ALPX, ALPY, ALPZ (or CTEX, CTEY, CTEZ or THSX, THSY, THSZ), DENS, GXY, GYZ, GXZ, DAMP

Surface Loads

Pressures --

face 1 ($\mathrm{J}-\mathrm{I}$), face 2 (K-J), face 3 (L-K), face 4 (I-L)

Body Loads

Temperatures --

$\mathrm{T}(\mathrm{I}), \mathrm{T}(\mathrm{J}), \mathrm{T}(\mathrm{K}), \mathrm{T}(\mathrm{L}), \mathrm{T}(\mathrm{M}), \mathrm{T}(\mathrm{N}), \mathrm{T}(\mathrm{O}), \mathrm{T}(\mathrm{P})$

Mode Number

Number of harmonic waves around the circumference (MODE)

Loading Condition

Symmetry condition (MODE)

Special Features

Stress stiffening
Birth and death

KEYOPT(1)

Element coordinate system:
0 --
Element coordinate system is parallel to the global coordinate system

1 --

Element coordinate system is based on the element I-J side

KEYOPT(3)

If MODE is greater than zero, use temperatures for:
0 --
Use temperatures only for thermal bending (evaluate material properties at TREF)
1 --
Use temperatures only for material property evaluation (thermal strains are not computed)

KEYOPT(4)

Extra stress output:
0 --
Basic element solution (not extra output)
1 --
Repeat basic solution for all integration points
2 --
Nodal stress solution

KEYOPT(5)

Combined stress output:
0 --
No combined stress solution
1 --
Combined stress solution at centroid and nodes

KEYOPT(6)

Extra surface output (surface solution is valid only for isotropic materials):
0 --
Basic element solution (no extra output)
1 --
Surface solution for face I-J also
2 --
Surface solution for both faces I-J and K-L also

PLANE83 Output Data

The solution output associated with the element is in two forms:

- Nodal displacements included in the overall nodal solution
- Additional element output as shown in Table 1: PLANE83 Element Output Definitions (p. 390)

Several items are illustrated in Figure 2 (p. 390).
In the displacement printout, the UZ component is out-of-phase with the UX and UY components. For example, in the MODE $=1, I S Y M=1$ loading case, $U X$ and $U Y$ are the peak values at $\theta=0^{\circ}$ and $U Z$ is the peak value at $\theta=90^{\circ}$. The same occurs for the reaction forces (FX, FY, etc.). We recommend that you always use the angle field on the SET command when postprocessing the results. For more information about harmonic elements, see Harmonic Axisymmetric Elements with Nonaxisymmetric Loads (p. 103).

The element stress directions are parallel to the element coordinate system. The sign convention on the surface shears is such that for a rectangular element that is lined up parallel to the axes with node J in the positive Y direction from node I, the shear stresses on surfaces I-J and K-L are analogous to the centroidal SYZ in both definition and sign. Stress components which are inherently zero for a load case are printed for clarity. A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

Figure 2 PLANE83 Stress Output

The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 1 PLANE83 Element Output Definitions

| Name | Definition | \mathbf{O} | R |
| :--- | :--- | :--- | :--- |
| EL | Element Number | Y | Y |
| NODES | Corner nodes $-\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}$ | Y | Y |
| MAT | Material number | Y | Y |
| ISYM | Loading key: 1 = symmetric, -1 = antisymmetric | Y | - |
| MODE | Number of waves in loading | Y | Y |
| VOLU: | Volume | Y | Y |
| PRES | Pressures P1 at nodes J,I; P2 at K,J; P3 at L,K; P4 at
 I,L | Y | Y |
| TEMP | Temperatures T(I), T(J), T(K), T(L), T(M), T(N), T(O), T(P) | Y | Y |
| S:X, Y, Z | Direct stresses (radial, axial, hoop) at PK ANG loca-
 tions | Y | Y |
| S:XY, YZ, XZ | Shear stresses (radial-axial, axial-hoop, radial-hoop)
 at PK ANG locations | Y | Y |

| Name | Definition | 0 | R |
| :---: | :---: | :---: | :---: |
| S:1, 2, 3 | Principal stresses at both PK ANG locations as well as where extreme occurs (EXTR); if MODE $=0$, only one location is given. | 1 | 1 |
| S:INT | Stress intensity at both PK ANG locations as well as where extreme occurs (EXTR); if MODE $=0$, only one location is given. | 1 | 1 |
| S:EQV | Equivalent stress at both PK ANG locations as well as where extreme occurs (EXTR); if MODE $=0$, only one location is given. | 1 | 1 |
| EPEL:X, Y, Z, XY | Elastic strain | Y | Y |
| EPEL:EQV | Equivalent elastic strain [4] | - | Y |
| EPTH:X, Y, Z, XY | Average thermal strains | Y | Y |
| EPTH:EQV | Equivalent thermal strain [4] | - | Y |
| PK ANG | Angle where stresses have peak values: 0 and $90 /$ MODE $^{\circ}$. Blank if MODE $=0$. | Y | Y |
| XC, YC | Location where results are reported | Y | 3 |
| FACE | Face label | 2 | 2 |
| TEMP | Surface average temperature | 2 | 2 |
| $\begin{aligned} & \text { EPEL(PAR, PER, Z, } \\ & \text { SH) } \end{aligned}$ | Surface strains (parallel, perpendicular, hoop, shear) at PK ANG locations and where extreme occurs (EXTR) | 2 | 2 |
| S(PAR, PER, Z, SH) | Surface stresses (parallel, perpendicular, hoop, shear) at PK ANG locations and where extreme occurs (EXTR) | 2 | 2 |

1. \quad These items are output only if $\operatorname{KEYOPT}(5)=1$.
2. These items are printed only if $\operatorname{KEYOPT}(6)$ is greater than zero.
3. Available only at centroid as a *GET item.
4. The equivalent strains use an effective Poisson's ratio: for elastic and thermal this value is set by the user (MP,PRXY).

Table 2: PLANE83 Item and Sequence Numbers (p. 392) lists output available through the ETABLE command using the Sequence Number method. See Creating an Element Table in the Basic Analysis Guide and The Item and Sequence Number Table (p. 9) in this manual for more information. The following notation is used in Table 2: PLANE83 Item and Sequence Numbers (p. 392):

Name

output quantity as defined in the Table 1: PLANE83 Element Output Definitions (p. 390)

Item

predetermined Item label for ETABLE command

I,J,K,L

sequence number for data at nodes $\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}$
Table 2 PLANE83 Item and Sequence Numbers

| Output
 Quant-
 ity
 Name | ETABLE and ESOL Command Input | | | | |
| :---: | :--- | :--- | :--- | :--- | :--- |
| | Item | I | \mathbf{J} | \mathbf{K} | \mathbf{L} |
| P1 | SMISC | 2 | 1 | - | - |
| P2 | SMISC | - | 4 | 3 | - |
| P3 | SMISC | - | - | 6 | 5 |
| P4 | SMISC | 7 | - | - | 8 |
| THETA = 0 | | | | | |
| S1 | NMISC | 1 | 16 | 31 | 46 |
| S2 | NMISC | 2 | 17 | 32 | 47 |
| S3 | NMISC | 3 | 18 | 33 | 48 |
| SINT | NMISC | 4 | 19 | 34 | 49 |
| SEQV | NMISC | 5 | 20 | 35 | 50 |
| THETA $=90 /$ MODE | | | | | |
| S1 | NMISC | 6 | 21 | 36 | 51 |
| S2 | NMISC | 7 | 22 | 37 | 52 |
| S3 | NMISC | 8 | 23 | 38 | 53 |
| SINT | NMISC | 9 | 24 | 39 | 54 |
| SEQV | NMISC | 10 | 25 | 40 | 55 |
| EXTR Values | | | | | |
| S1 | NMISC | 11 | 26 | 41 | 56 |
| S2 | NMISC | 12 | 27 | 42 | 57 |
| S3 | NMISC | 13 | 28 | 43 | 58 |
| SINT | NMISC | 14 | 29 | 44 | 59 |
| SEQV | NMISC | 15 | 30 | 45 | 60 |

Note

The NMISC items (1 thru 60) in the above table represent the combined stress solution, KEYOPT(5) $=1$. If MODE $=0$, their values are zero at THETA $=90 /$ MODE and at EXTR.

See Surface Solution (p.10) in this manual for the item and sequence numbers for surface output for the ETABLE command.

PLANE83 Assumptions and Restrictions

- The area of the element must be positive.
- The element must be defined in the global X-Y plane as shown in Figure 1 (p. 387) and the Y-axis must be the axis of symmetry for axisymmetric analyses. An axisymmetric structure should be modeled in the $+X$ quadrants.
- A face with a removed midside node implies that the displacement varies linearly, rather than parabolically, along that face. See Quadratic Elements (Midside Nodes) in the Modeling and Meshing Guide for more information about the use of midside nodes.
- The element assumes a linear elastic material.
- Post-analysis superposition of results is valid only with other linear elastic solutions.
- The element should not be used with the large deflection option.
- The element may not be deactivated with the EKILL command.
- The element temperature is taken to be the average of the nodal temperatures.
- Surface stress printout is valid only if the conditions described in Element Solution (p. 9) are met.

Modeling hints:

- If shear effects are important in a shell-like structure, at least two elements through the thickness should be used.
- You can use only axisymmetric (MODE,0) loads without significant torsional stresses to generate the stress state used for stress stiffened modal analyses using this element.

PLANE83 Product Restrictions

There are no product-specific restrictions for this element.

SOLID87

3-D 10-Node Tetrahedral Thermal Solid
MP ME <> PR PRN DS <> <> <> <> <> PP VT EME MFS

SOLID87 Element Description

SOLID87 is well suited to model irregular meshes (such as produced from various CAD/CAM systems). The element has one degree of freedom, temperature, at each node.

The element is applicable to a 3-D, steady-state or transient thermal analysis. See SOLID87 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element. If the model containing this element is also to be analyzed structurally, the element should be replaced by the equivalent structural element (such as SOLID187). A 20-node thermal solid element, SOLID90, is also available.

Figure 1 SOLID87 Geometry

SOLID87 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 1 (p. 395).
Orthotropic material directions correspond to the element coordinate directions. The element coordinate system orientation is as described in Coordinate Systems (p. 14). Specific heat and density are ignored for steady-state solutions. Properties not input default as described in Linear Material Properties (p. 16).

Element loads are described in Node and Element Loads (p. 97). Convection or heat flux (but not both) and radiation may be input as surface loads at the element faces as shown by the circled numbers on Figure 1 (p. 395). Heat generation rates may be input as element body loads at the nodes. If the node I heat generation rate $\mathrm{HG}(\mathrm{I})$ is input, and all others are unspecified, they default to $\mathrm{HG}(\mathrm{I})$. If all corner node heat generation rates are specified, each midside node heat generation rate defaults to the average heat generation rate of its adjacent corner nodes.

For phase change problems, use $\operatorname{KEYOPT}(1)=1$ (diagonalized specific heat matrix). For convection regions with strong thermal gradients, use $\operatorname{KEYOPT}(5)=1$ (consistent convection matrix).

A summary of the element input is given in "SOLID87 Input Summary" (p. 396). A general description of element input is given in Element Input (p.5).

SOLID87 Input Summary

Nodes

I, J, K, L, M, N, O, P, Q, R
Degrees of Freedom
TEMP

Real Constants

None

Material Properties

KXX, KYY, KZZ, DENS, C, ENTH

Surface Loads

Convection or Heat Flux (but not both) and Radiation (using Lab = RDSF) --
face 1 (J-I-K), face 2 (I-J-L), face 3 (J-K-L), face 4 (K-I-L)

Body Loads

Heat Generations --

HG(I), HG(J), HG(K), HG(L), HG(M), HG(N), HG(O), HG(P), HG(Q), HG(R)

Special Features

Birth and death

KEYOPT(1)

Specific heat matrix:
0 --
Consistent specific heat matrix
1 --
Diagonalized specific heat matrix

KEYOPT(5)

Surface convection matrix:
0 --
Diagonalized convection matrix
1 --
Consistent convection matrix

SOLID87 Output Data

The solution output associated with the element is in two forms:

- Nodal temperatures included in the overall nodal solution
- Additional element output as shown in Table 1: SOLID87 Element Output Definitions (p. 397).

Convection heat flux is positive out of the element; applied heat flux is positive into the element. The element output directions are parallel to the element coordinate system. A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 1 SOLID87 Element Output Definitions

| Name | Definition | 0 | R |
| :---: | :---: | :---: | :---: |
| EL | Element Number | Y | Y |
| NODES | Nodes - I, J, K, L, M, N, O, P, Q, R | Y | Y |
| MAT | Material number | Y | Y |
| VOLU: | Volume | Y | Y |
| XC, YC, ZC | Location where results are reported | Y | 2 |
| HGEN | Heat generations HG(I), HG(J), HG(K), HG(L), HG(M), HG(N), HG(O), HG(P), HG(Q), HG(R) | Y | - |
| TG:X, Y, Z, SUM | Thermal gradient components and vector sum at centroid | Y | Y |
| TF:X, Y, Z, SUM | Thermal flux (heat flow rate/cross-sectional area) components and vector sum at centroid | Y | Y |
| FACE | Convection face label | 1 | - |
| NODES | Convection face corner nodes | 1 | - |
| AREA | Convection face area | 1 | 1 |
| HFILM | Film coefficient | 1 | - |
| TAVG | Average face temperature | 1 | 1 |
| TBULK | Fluid bulk temperature | 1 | - |
| HEAT RATE | Heat flow rate across face by convection | 1 | 1 |
| HEAT RATE/AREA | Heat flow rate per unit area across face by convection | 1 | - |
| HFAVG | Average film coefficient of the face | - | 1 |
| TBAVG | Average face bulk temperature | - | 1 |
| HFLXAVG | Heat flow rate per unit area across face caused by input heat flux | - | 1 |
| HFLUX | Heat flux at each node of face | 1 | - |

1. Output if a surface load is input
2. Available only at centroid as a *GET item.

Table 2: SOLID87 Item and Sequence Numbers (p. 398) lists output available through the ETABLE command using the Sequence Number method. See Creating an Element Table in the Basic Analysis Guide and The Item and Sequence Number Table (p. 9) of this manual for more information. The following notation is used in Table 2: SOLID87 Item and Sequence Numbers (p. 398):

Name

output quantity as defined in the Table 1: SOLID87 Element Output Definitions (p. 397)

Item

predetermined Item label for ETABLE command
FCn
sequence number for solution items for element Face n
Table 2 SOLID87 Item and Sequence Numbers

| Output
 Quantity
 Name | ETABLE and ESOL Command Input | | | | |
| :---: | :--- | :--- | :--- | :--- | :--- |
| | Item | FC1 | FC2 | FC3 | FC4 |
| AREA | NMISC | 1 | 7 | 13 | 19 |
| HFAVG | NMISC | 2 | 8 | 14 | 20 |
| TAVG | NMISC | 3 | 9 | 15 | 21 |
| TBAVG | NMISC | 4 | 10 | 16 | 22 |
| HEAT RATE | NMISC | 5 | 11 | 17 | 23 |
| HFLXAVG | NMISC | 6 | 12 | 18 | 24 |

SOLID87 Assumptions and Restrictions

- The element must not have a zero volume.
- Elements may be numbered either as shown in Figure 1 (p. 395) or may have node L below the IJK plane.
- An edge with a removed midside node implies that the temperature varies linearly, rather than parabolically, along that edge.
- See Quadratic Elements (Midside Nodes) in the Modeling and Meshing Guide for more information about the use of midside nodes.
- The specific heat and enthalpy are evaluated at each integration point to allow for abrupt changes (such as melting) within a coarse grid of elements.
- A free surface of the element (i.e., not adjacent to another element and not subjected to a boundary constraint) is assumed to be adiabatic.

SOLID87 Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

ANSYS Professional

- The birth and death special feature is not allowed.

SOLID90 Element Description

SOLID90 is a higher order version of the 3-D eight node thermal element (SOLID70). The element has 20 nodes with a single degree of freedom, temperature, at each node. The 20 -node elements have compatible temperature shapes and are well suited to model curved boundaries.

The 20-node thermal element is applicable to a 3-D, steady-state or transient thermal analysis. See SOLID90 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element. If the model containing this element is also to be analyzed structurally, the element should be replaced by the equivalent structural element (such as SOLID186).

Figure 1 SOLID90 Geometry

Tetrahedral Option

Prism Option

SOLID90 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 1 (p. 399). The element is defined by 20 node points and the material properties. A prism-shaped element may be formed by defining duplicate K, L, and S ; A and B ; and O, P, and W node numbers. A tetrahedral-shaped element and a pyramid-shaped element may also be formed as shown in Figure 1 (p. 399).

Orthotropic material directions correspond to the element coordinate directions. The element coordinate system orientation is as described in Coordinate Systems (p. 14). Specific heat and density are ignored for steady-state solutions. Properties not input default as described in Linear Material Properties (p. 16).

Element loads are described in Node and Element Loads (p. 97). Convection or heat flux (but not both) and radiation may be input as surface loads at the element faces as shown by the circled numbers on Figure 1 (p. 399). Heat generation rates may be input as element body loads at the nodes. If the node I heat generation rate $\mathrm{HG}(\mathrm{I})$ is input, and all others are unspecified, they default to $\mathrm{HG}(\mathrm{I})$. If all corner node heat generation rates are specified, each midside node heat generation rate defaults to the average heat generation rate of its adjacent corner nodes.

For phase change problems, use $\operatorname{KEYOPT}(1)=1$ (diagonalized specific heat matrix).
A summary of the element input is given in "SOLID90 Input Summary" (p. 400). A general description of element input is given in Element Input (p. 5).

SOLID90 Input Summary

Nodes

I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, A, B
Degrees of Freedom
TEMP

Real Constants

None

Material Properties

KXX, KYY, KZZ, DENS, C, ENTH

Surface Loads

Convection or Heat Flux (but not both) and Radiation (using Lab = RDSF) --
face 1 (J-I-L-K), face 2 (I-J-N-M), face 3 (J-K-O-N), face 4 (K-L-P-O), face 5 (L-I-M-P), face 6 (M-N-O-P)

Body Loads

Heat Generations --

HG(I), HG(J), HG(K), HG(L), HG(M), HG(N), HG(O), HG(P), HG(Q), HG(R),
HG(S), HG(T), HG(U), HG(V), HG(W), HG(X), HG(Y), HG(Z), HG(A), HG(B)

Special Features

Birth and death

KEYOPT(1)

Specific heat matrix:
0 --
Consistent specific heat matrix
1 --
Diagonalized specific heat matrix

SOLID90 Output Data

The solution output associated with the element is in two forms:

- Nodal temperatures included in the overall nodal solution
- Additional element output as shown in Table 1: SOLID90 Element Output Definitions (p. 401)

Convection heat flux is positive out of the element; applied heat flux is positive into the element. The element output directions are parallel to the element coordinate system. A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 1 SOLID90 Element Output Definitions

| Label | Definition | \mathbf{O} | \mathbf{R} |
| :--- | :--- | :--- | :--- |
| EL | Element Number | Y | Y |
| NODES | Nodes $-\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}, \mathrm{M}, \mathrm{N}, \mathrm{O}, \mathrm{P}$ | Y | Y |
| MAT | Material number | Y | Y |
| VOLU: | Volume | Y | Y |
| XC, YC, ZC | Location where results are reported | Y | 2 |
| HGEN | Heat generations $\mathrm{HG}(\mathrm{I}), \mathrm{HG}(\mathrm{J}), \mathrm{HG}(\mathrm{K}), \mathrm{HG}(\mathrm{L}), \mathrm{HG}(\mathrm{M})$,
 HG(N), HG(O), HG(P), HG(Q), ..., HG(Z), HG(A), HG(B) | Y | - |
| TG:X, Y, Z, SUM | Thermal gradient components and vector sum at
 centroid | Y | Y |
| TF:X, Y, Z, SUM | Thermal flux (heat flow rate/cross-sectional area) com-
 ponents and vector sum at centroid | Y | Y |
| FACE | Face label | 1 | - |
| NODES | Corner nodes on this face | 1 | - |
| AREA | Face area | 1 | 1 |
| HFILM | Film coefficient | 1 | - |
| TAVG | Average face temperature | 1 | 1 |
| TBULK | Fluid bulk temperature | 1 | - |
| HEAT RATE | Heat flow rate across face by convection | 1 | 1 |
| HEAT
 RATE/AREA | Heat flow rate per unit area across face by convection | 1 | - |
| HFLUX | Heat flux at each node of face | 1 | - |
| HFAVG | Average film coefficient of the face | - | 1 |
| TBAVG | Average face bulk temperature | - | 1 |
| HFLXAVG | Heat flow rate per unit area across face caused by input
 heat flux | - | 1 |

1. Output only if a surface load is input
2. Available only at centroid as a *GET item.

Table 2: SOLID90 Item and Sequence Numbers (p. 402) lists output available through the ETABLE command using the Sequence Number method. See Creating an Element Table in the Basic Analysis Guide and The Item and Sequence Number Table (p. 9) of this manual for more information. The following notation is used in Table 2: SOLID90 Item and Sequence Numbers (p. 402):

Name

output quantity as defined in the Table 1: SOLID90 Element Output Definitions (p. 401)

Item

predetermined Item label for ETABLE command
FCn
sequence number for solution items for element Face n
Table 2 SOLID90 Item and Sequence Numbers

| Output
 Quantity
 Name | ETABLE and ESOL Command Input | | | | | | |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | Item | FC1 | FC2 | FC3 | FC4 | FC5 | FC6 |
| AREA | NMISC | 1 | 7 | 13 | 19 | 25 | 31 |
| HFAVG | NMISC | 2 | 8 | 14 | 20 | 26 | 32 |
| TAVG | NMISC | 3 | 9 | 15 | 21 | 27 | 33 |
| TBAVG | NMISC | 4 | 10 | 16 | 22 | 28 | 34 |
| HEAT RATE | NMISC | 5 | 11 | 17 | 23 | 29 | 35 |
| HFLXAVG | NMISC | 6 | 12 | 18 | 24 | 30 | 36 |

SOLID90 Assumptions and Restrictions

- The element must not have a zero volume. This occurs most frequently when the element is not numbered properly.
- Elements may be numbered either as shown in Figure 1 (p. 399) or may have the planes IJKL and MNOP interchanged.
- The condensed face of a prism-shaped element should not be defined as a convection face.
- The specific heat and enthalpy are evaluated at each integration point to allow for abrupt changes (such as melting) within a coarse grid of elements.
- If the thermal element is to be replaced by a SOLID186 structural element with surface stresses requested, the thermal element should be oriented such that face IJNM and/or face KLPO is a free surface.
- A free surface of the element (i.e., not adjacent to another element and not subjected to a boundary constraint) is assumed to be adiabatic.
- Thermal transients having a fine integration time step and a severe thermal gradient at the surface will also require a fine mesh at the surface.
- An edge with a removed midside node implies that the temperature varies linearly, rather than parabolically, along that edge.
- See Quadratic Elements (Midside Nodes) in the Modeling and Meshing Guide for more information about the use of midside nodes.
- For transient solutions using the THOPT,QUASI option, the program removes the midside nodes from any face with a convection load. A temperature solution is not available for them. Do not use the midside nodes on these faces in constraint equations or with contact. If you use these faces for those situations, remove the midside nodes first.
- Degeneration to the form of pyramid should be used with caution.
- The element sizes, when degenerated, should be small in order to minimize the field gradients.
- Pyramid elements are best used as filler elements or in meshing transition zones.

SOLID90 Product Restrictions

ANSYS Professional

- No Birth and Death.

CIRCU94

Piezoelectric Circuit

MP ME <> <> <> <> <> <> <> <> <> PP <> EME MFS

CIRCU94 Element Description

CIRCU94 is a circuit element for use in piezoelectric-circuit analyses. The element has two or three nodes to define the circuit component and one or two degrees of freedom to model the circuit response. The element may interface with the following piezoelectric elements:

PLANE13, $\operatorname{KEYOPT}(1)=7$ coupled-field quadrilateral solid
SOLID5, $\operatorname{KEYOPT}(1)=0$ or 3 coupled-field brick
SOLID98, $\operatorname{KEYOPT}(1)=0$ or 3 coupled-field tetrahedron
PLANE223, $\operatorname{KEYOPT}(1)=1001$, coupled-field 8 -node quadrilateral
SOLID226, $\operatorname{KEYOPT}(1)=1001$, coupled-field 20 -node brick
$\operatorname{SOLID} 227, \operatorname{KEYOPT}(1)=1001$, coupled-field 10 -node tetrahedron
CIRCU94 is applicable to full harmonic and transient analyses. For these types of analyses, you can also use CIRCU94 as a general circuit element. See CIRCU94 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

CIRCU94 Input Data

The geometry, node definition, and degree of freedom options are shown in Figure 1 (p. 406) . Active nodes I and J define the resistor, inductor, capacitor and independent current source. They are connected to the electric circuit. Active nodes I and J and a passive node K define the independent voltage source. The passive node is not connected to the electric circuit. It is associated with the CURR degree of freedom (which represents electric charge for this element).

KEYOPT(1) settings and the corresponding real constants define the circuit components. Real constant input is dependent on the element circuit option used. A summary of the element input options is given in "CIRCU94 Input Summary" (p. 406). Real constants 15 (Graphical offset, GOFFST) and 16 (Element identification number, ID) are created for all components.

Figure 1 CIRCU94 Circuit Options

KEYOPT(1) $=0$
DOF = VOLT
Independent
Current Source

KEYOPT(1) = 1
DOF = VOLT
Independent
Voltage Source

$\operatorname{KEYOPT}(1)=3 \quad \operatorname{KEYOPT}(1)=4$
DOF = VOLT

Capacitor

KEYOPT(1) = 2
DOF = VOLT

The independent current and voltage sources (KEYOPT(1) = 3 or 4) may be excited by constant load (transient) or constant amplitude load (harmonic), sinusoidal, pulse, exponential, or piecewise linear load functions as defined by KEYOPT(2); see Figure 2 (p. 408).

The time-step size for a transient analysis is controlled by the DELTIM or NSUBST commands. The CIRCU94 element does not respond to automatic time stepping (AUTOTS command), but AUTOTS can be used as a mechanism for ramping the time step to its final value.

CIRCU94 is only compatible with elements having a VOLT DOF and an electric charge reaction solution. Electric charge reactions must all be positive or negative. KEYOPT(6) sets the electric charge reaction sign. See Element Compatibility in the Low-Frequency Electromagnetic Analysis Guide for more information.

CIRCU94 Input Summary

Nodes

I, J, K

Degrees of Freedom

VOLT, CURR (charge) (see Figure 1 (p. 406))

Real Constants

Dependent on KEYOPT(1) and KEYOPT(2) settings. See Table 1: CIRCU94 Real Constants (p. 408) for details.

Material Properties

None

Surface Loads

None

Body Loads

See KEYOPT(2)

Special Features

This element works with the large deflection and stress stiffening capabilities of PLANE13, SOLID5, SOLID98, PLANE223, SOLID226, and SOLID227.

KEYOPT(1)

Circuit component type:
0 --
Resistor
1 --
Inductor
2 --
Capacitor
3 --
Independent Current Source
4 --
Independent Voltage Source

KEYOPT(2)

Body loads (only used for $\operatorname{KEYOPT}(1)=3$ and 4):
0 --
Constant load (transient) or constant amplitude load (harmonic)
1 --
Sinusoidal load
2 --
Pulse load
3 --
Exponential load
4 --
Piecewise Linear load

KEYOPT(6)

Electric charge reaction sign:
0 --
Negative

1 --
Positive
Table 1 CIRCU94 Real Constants

| Circuit Component and Graphics Label | KEYOPT(1) | Real Constants |
| :---: | :---: | :---: |
| Resistor (R) | 0 | R1 = Resistance (RES) |
| Inductor (L) | 1 | $\begin{aligned} & \text { R1 = Inductance (IND) } \\ & \text { R2 = Initial inductor current (ILO) } \end{aligned}$ |
| Capacitor (C) | 2 | $\begin{aligned} & \text { R1 = Capacitance (CAP) } \\ & \text { R2 = Initial Capacitor Voltage (VCO) } \end{aligned}$ |
| Independent Current Source (I) | 3 | For $\operatorname{KEYOPT}(2)=0$:
 R1 = Amplitude (AMPL)
 R2 $=$ Phase angle (PHAS)
 For KEYOPT(2) > 0 , see Figure 2. |
| Independent Voltage Source (V) | 4 | For $\operatorname{KEYOPT}(2)=0$:
 R1 = Amplitude (AMPL)
 R2 $=$ Phase angle (PHAS)
 For KEYOPT(2) > 0 , see Figure 2. |

Note

For all above Circuit options, the GOFFST and ID real constants (numbers 15 and 16) are created by the Circuit Builder automatically:

Figure 2 Load Functions and Corresponding Real Constants for Independent Current and Voltage Sources

(a) Sinusoidal load, $\operatorname{KEYOPT}(2)=1$

CIRCU94 Output Data

The element output for this element is dependent on the circuit option selected. Table 2: CIRCU94 Element Output Definitions (p.410) summarizes the element output data.

The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and " - " indicates that the item is not available.

Table 2 CIRCU94 Element Output Definitions

| Name | Definition | 0 | R |
| :---: | :---: | :---: | :---: |
| For KEYOPT(1) = 0: Resistor | | | |
| EL | Element Number | Y | Y |
| NODES | Nodes-I,J | Y | Y |
| RES | Resistance | Y | Y |
| VOLTAGE | Voltage drop between node I and node J | Y | Y |
| CURRENT | Current | Y | Y |
| POWER | Power loss | Y | Y |
| For KEYOPT(1) = 1: Inductor | | | |
| EL | Element Number | Y | Y |
| NODES | Nodes-I,J | Y | Y |
| IND | Inductance | Y | Y |
| ILO | Initial current | Y | Y |
| VOLTAGE | Voltage drop between node I and node J | Y | Y |
| CURRENT | Current | Y | Y |
| POWER | Power absorption | Y | Y |
| For KEYOPT(1) = 2: Capacitor | | | |
| EL | Element Number | Y | Y |
| NODES | Nodes-I,J | Y | Y |
| CAP | Capacitance | Y | Y |
| VC0 | Initial voltage | Y | Y |
| VOLTAGE | Voltage drop between node I and node J | Y | Y |
| CURRENT | Current | Y | Y |
| POWER | Power absorption | Y | Y |
| For KEYOPT(1) = 3: Independent Current Source | | | |
| EL | Element Number | Y | Y |
| NODES | Nodes-I,J | Y | Y |
| CURRENT SOURCE | Real or imaginary component of applied current | Y | Y |
| VOLTAGE | Voltage drop between node I and node J | Y | Y |
| CURRENT | Current | Y | Y |
| POWER | Power (loss if positive, output if negative) | Y | Y |

| Name | | Definition | O |
| :--- | :--- | :--- | :--- |
| For KEYOPT(1) = 4: Independent VoItage Source | | | |
| EL | Element Number | Y | Y |
| NODES | Nodes-I,J,K | Y | Y |
| VOLTAGE
 SOURCE | Real or imaginary component of applied voltage | Y | Y |
| VOLTAGE | Voltage drop between node I and node J | Y | Y |
| CURRENT | Current at node K | Y | Y |
| POWER | Power (loss if positive, output if negative) | Y | Y |

Table 3: CIRCU94 Item and Sequence Numbers (p. 411) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p.9) in this manual for more information. The following notation is used in Table 3: CIRCU94 Item and Sequence Numbers (p. 411):

Name

output quantity as defined in Table 2: CIRCU94 Element Output Definitions (p. 410)

Item

predetermined Item label for ETABLE command
E
sequence number for single-valued or constant element data
Table 3 CIRCU94 Item and Sequence Numbers

| Output Quantity
 Name | ETABLE and
 ESOL Command
 Input | |
| :---: | :---: | :---: |
| | Item | E |
| VOLTAGE | SMISC | 1 |
| CURRENT | SMISC | 2 |
| POWER | NMISC | 1 |
| SOURCE (real) | NMISC | 2 |
| SOURCE (imaginary) | NMISC | 3 |

CIRCU94 Assumptions and Restrictions

- CIRCU94 is applicable only to full harmonic and transient analyses. You cannot use CIRCU94 in a static analysis or in a transient analysis with time integration effects turned off (TIMINT,OFF).
- Only MKS units are allowed (EMUNIT command).
- Only the sparse solver is available for problems using the independent voltage source circuit option.
- This element may not be compatible with other elements with the VOLT degree of freedom. For example, it is not compatible with CIRCU124 or CIRCU125. To be compatible, the elements must have the same reaction solution for the VOLT DOF. Elements that have an electric charge reaction solution must all have the same electric charge reaction sign. For more information, see Element Compatibility in the Low-Frequency Electromagnetic Analysis Guide.

CIRCU94 Product Restrictions

There are no product-specific restrictions for this element.

SOLID96

3-D Magnetic Scalar Solid

$$
\begin{array}{r}
\text { MP <> <> <> <> <> <> <> EM <> <> PP <> EME <> } \\
\text { Product Restrictions }
\end{array}
$$

SOLID96 Element Description

SOLID96 has the capability of modeling 3-D magnetic fields. Scalar potential formulations (reduced (RSP), difference (DSP), or general (GSP)) are available [MAGOPT] for modeling magnetic fields in a static analysis. See SOLID96 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

Figure 1 SOLID96 Geometry

SOLID96 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 1 (p. 413). The element is defined by eight nodes and the material properties. A tetrahedral-shaped element may be formed by defining the same node numbers for nodes M, N, O, and P; and nodes K and L. A wedge-shaped element and a pyramid-shaped element may also be formed as shown in Figure 1 (p. 413). The type of units (MKS or user defined) is specified through the EMUNIT command. EMUNIT also determines the value of MUZRO.
The EMUNIT defaults are MKS units and MUZRO $=4 \pi \times 10^{-7}$ henries/meter. In addition to MUZRO, orthotropic relative permeability is available and is specified through the MURX, MURY, and MURZ material options.

MGXX, MGYY, and MGZZ represent vector components of the coercive force for permanent magnet materials. The magnitude of the coercive force is the square root of the sum of the squares of the components. The direction of polarization is determined by the components MGXX, MGYY, and MGZZ. Permanent magnet
polarization directions correspond to the element coordinate directions. The element coordinate system orientation is as described in Coordinate Systems (p. 14). Nonlinear magnetic B-H properties are entered with the TB command as described in Material Data Tables (Implicit Analysis) (p. 22). Nonlinear orthotropic magnetic properties may be specified with a combination of a B-H curve and linear relative permeability. The BH curve will be used in each element coordinate direction where a zero value of relative permeability is specified. Only one B-H curve may be specified per material.

Nodal loads are defined with the \mathbf{D} and the \mathbf{F} commands. With the \mathbf{D} command, the Lab variable corresponds to the degree of freedom (MAG) and VALUE corresponds to the value (magnetic scalar potential). With the F command, the Lab variable corresponds to the force (FLUX) and VALUE corresponds to the value (magnetic flux).

Element loads are described in Node and Element Loads (p. 97). Maxwell force flags may be input on the element faces indicated by the circled numbers in Figure 1 (p. 413) using the SF and SFE commands. Surfaces at which magnetic forces are to be calculated may be identified by using the MXWF label on the surface load commands (no value is required.) A maxwell stress tensor calculation is performed at these surfaces to obtain the magnetic forces. The surface flag should be applied to "air" elements adjacent to the body for which forces are required. Deleting the MXWF specification removes the flag. Maxwell forces may be made available for a subsequent structural analysis with companion elements (LDREAD command).

The temperature (for material property evaluation only) and magnetic virtual displacement body loads may be input based on their value at the element's nodes or as a single element value [BF and BFE]. In general, unspecified nodal values of temperature default to the uniform value specified with the BFUNIF or TUNIF commands.

Air elements in which Local Jacobian forces are to be calculated may be identified by using nodal values of 1 and 0 for the MVDI label [BF]. See the Low-Frequency Electromagnetic Analysis Guide for details.

Current for the magnetic scalar potential options are defined with the SOURC36 element, the command macro RACE, or through electromagnetic coupling. The various types of magnetic scalar potential solution options are defined with the MAGOPT command.

A summary of the element input is given in "SOLID96 Input Summary" (p.414). A general description of element input is given in Element Input (p. 5).

SOLID96 Input Summary

Nodes

I, J, K, L, M, N, O, P

Degrees of Freedom

MAG

Real Constants

None

Material Properties

MUZERO, MURX, MURY, MURZ, MGXX, MGYY, MGZZ plus BH data table (see Material Data Tables (Implicit Analysis) (p. 22))

Surface Loads

Maxwell Force Flags --

face 1 (J-I-L-K), face 2 (I-J-N-M), face 3 (J-K-O-N), face 4 (K-L-P-O), face 5 (L-I-M-P), face 6 (M-N-O-P)

Body Loads

Temperatures --

$T(I), T(J), T(K), T(L), T(M), T(N), T(O), T(P)$
MVDI --
$\mathrm{VD}(\mathrm{I}), \mathrm{VD}(\mathrm{J}), \mathrm{VD}(\mathrm{K}), \mathrm{VD}(\mathrm{L}), \mathrm{VD}(\mathrm{M}), \mathrm{VD}(\mathrm{N}), \mathrm{VD}(\mathrm{O}), \mathrm{VD}(\mathrm{P})$
EF --
EFX, EFY, EFZ. See "SOLID96 Assumptions and Restrictions" (p. 417).

Special Features

Requires an iterative solution if nonlinear material properties are defined Birth and death
Adaptive descent

KEYOPT(5)

Extra element output:

0 --

Basic element printout
1 --
Integration point printout
2 --
Nodal magnetic field printout

SOLID96 Output Data

The solution output associated with the element is in two forms:

- Nodal potentials included in the overall nodal solution
- Additional element output as shown in Table 1: SOLID96 Element Output Definitions (p. 415)

The element output directions are parallel to the element coordinate system. A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 1 SOLID96 Element Output Definitions

| Name | Definition | \mathbf{O} | \mathbf{R} |
| :--- | :--- | :---: | :---: |
| EL | Element Number | Y | Y |
| NODES | Nodes - I, J, K, L, M, N, O, P | Y | Y |
| MAT | Material number | Y | Y |
| VOLU: | Volume | Y | Y |

| Name | Definition | \mathbf{O} | \mathbf{R} |
| :--- | :--- | :--- | :--- |
| XC, YC, ZC | Location where results are reported | Y | 2 |
| TEMP | Temperatures T(I), T(J), T(K), T(L), T(M), T(N), T(O), T(P) | Y | Y |
| LOC | Output location (X, Y, Z) | 1 | - |
| MUX, MUY, MUZ | Magnetic permeability | 1 | 1 |
| H:X, Y, Z | Magnetic field intensity components | 1 | 1 |
| H:SUM | Vector magnitude of H | 1 | 1 |
| B:X, Y, Z | Magnetic flux density components | 1 | 1 |
| B:SUM | Vector magnitude of B | 1 | 1 |
| FMX | Maxwell magnetic force components (X,Y,Z) | 1 | - |
| FVW | Virtual work force components (X,Y, Z) | 1 | 1 |
| Combined (FJB or
 FMX) force compon-
 ents | Combined force components | - | 1 |

1. The solution value is printed only if calculated (based upon input data). The element solution is at the centroid.
2. Available only at centroid as a *GET item.

Table 2 SOLID96 Miscellaneous Element Output

| Description | Names of Items Output | $\mathbf{0}$ | \mathbf{R} |
| :--- | :--- | :---: | :---: |
| Integration Point Solution | LOC, MUX, MUY, MUZ, H, HSUM, B,
 BSUM | 1 | - |
| Nodal Magnetic Field Solution | H, HSUM, B, BSUM | 2 | - |

1. Output at each integration point, if $\operatorname{KEYOPT}(5)=1$
2. Output at each corner node, if $\operatorname{KEYOPT}(5)=2$

Table 3: SOLID96 Item and Sequence Numbers (p. 417) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p.9) in this manual for more information. The following notation is used in Table 3: SOLID96 Item and Sequence Numbers (p. 417):

Name

output quantity as defined in Table 1: SOLID96 Element Output Definitions (p. 415)

Item

predetermined Item label for ETABLE command

E

sequence number for single-valued or constant element data
Table 3 SOLID96 Item and Sequence Numbers

| Output
 Quant-
 ity
 Name | ETABLE and
 ESOL Command
 Input | |
| :---: | :--- | :---: |
| | E | |
| MUX | NMISC | 1 |
| MUY | NMISC | 2 |
| MUZ | NMISC | 3 |
| FVWX | NMISC | 4 |
| FVWY | NMISC | 5 |
| FVWZ | NMISC | 6 |
| FVWSUM | NMISC | 7 |

SOLID96 Assumptions and Restrictions

- When using SOLID96 with SOURC36 elements, the source elements must be placed so that the resulting Hs field fulfills boundary conditions for the total field.
- The element must not have a zero volume or a zero length side. This occurs most frequently when the element is not numbered properly. Elements may be numbered either as shown in Figure 1 (p.413) or may have the planes IJKL and MNOP interchanged.
- The difference magnetic scalar potential option is restricted to singly-connected permeable regions, so that as $\mu \rightarrow \infty$ in these regions, the resulting field $\mathrm{H} \rightarrow 0$. The reduced scalar, and general scalar potential options do not have this restriction.
- Degeneration to the form of pyramid should be used with caution. The element sizes, when degenerated, should be small in order to minimize the field gradients. Pyramid elements are best used as filler elements or in meshing transition zones.
- The solenoidal current density is required for a solution, or for any postprocessing operations.
- The electric field body load is not used during solution and is applicable only to POST1 charged particle tracing.
- In an MSP analysis, avoid using a closed domain and use an open domain, closed with natural flux parallel boundary conditions on the MAG degree of freedom, or infinite elements. If you use a closed domain, you may see incorrect results when the formulation is applied using SOLID5, SOLID96, or SOLID98 elements and the boundary conditions are not satisfied by the Hs field load calculated by the BiotSavart procedure based on SOURC36 current source primitive input.

SOLID96 Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

ANSYS Emag

- The birth and death special feature is not allowed.

SOLID97

3-D Magnetic Solid

$$
\begin{array}{r}
\mathrm{MP} \text { <> <> <> <> <> <> <> EM <> <> PP <> EME <> } \\
\text { Product Restrictions }
\end{array}
$$

SOLID97 Element Description

SOLID97 models 3-D magnetic fields. The element is defined by eight nodes, and has up to five degrees of freedom per node out of six defined DOFs; that is, the magnetic vector potential ($A X, A Y, A Z$), the time-integrated electric potential (VOLT - classical formulation) or the electric potential (VOLT - solenoidal formulation), the electric current (CURR), and the electromotive force (EMF). SOLID97 is based on the magnetic vector potential formulation with the Coulomb gauge, and is applicable to the following low-frequency magnetic field analyses: magnetostatics, eddy currents (AC time harmonic and transient analyses), voltage forced magnetic fields (static, AC time harmonic and transient analyses), and electromagnetic-circuit coupled fields (static, AC time harmonic and transient analyses). The element has nonlinear magnetic capability for modeling B-H curves or permanent magnet demagnetization curves. See SOLID97 in the Theory Reference for the Mechanical APDL and Mechanical Applications for details about this element. Elements with similar capability are PLANE53, SOLID62 (but without voltage forced and magnetic-circuit coupled capability), SOLID117, SOLID236, and SOLID237.

Degree of freedom and force labels for this element are shown in the following table.

Table 1 DOF and Force Labels

| Degree of Freedom | | Force (reaction solution) | |
| :--- | :--- | :--- | :--- |
| Label | Label Description | Label | Label Description |
| AX, AY, AZ [1] | Magnetic Vector Poten-
 tial | CSGX, CSGY, CSGZ
 [2] | Magnetic Current Seg-
 ment |
| VOLT | Voltage | AMPS | Current Flow |
| CURR | Current Flow | VLTG | Voltage Drop |
| EMF | Electromotive Force | CURT | Current Flow |

1. The label used with the CNVTOL command is A.
2. The label used with the CNVTOL command is CSG.

Formulations

SOLID97 has two formulation options: classical and solenoidal. The classical formulation requires you to specify current density for current source loading. You must ensure that solenoidal conditions (div J=0) are satisfied, otherwise an erroneous solution might develop. The solenoidal formulation automatically satisfies the solenoidal condition by directly solving for current (density) using a coupled current conduction and electromagnetic field solution. The solenoidal formulation is applicable to sources that are eddy current free (such as stranded coils).

Note

Both formulations may be used simultaneously, depending on the physics requirements of the model. See 3-D Nodal-Based Analyses (Static, Harmonic, and Transient) in the Low-Frequency Electromagnetic Analysis Guide for information on applying these formulations to different physics regions of a model.

The SOLID97 solenoidal option is compatible with CIRCU124, CIRCU125, and TRANS126 elements allowing circuit coupling. The nonlinear symmetric solenoidal formulation is applicable to static and transient analyses. The linear unsymmetric solenoidal formulation is applicable to harmonic analysis. For more information, see 3-D Circuit Coupled Solid Source Conductor in the Coupled-Field Analysis Guide

Figure 1 SOLID97 Geometry

SOLID97 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 1 (p. 420). The element is defined by eight nodes and the material properties. A tetrahedral-shaped element may be formed by defining the same node numbers for nodes M, N, O, and P; and nodes K and L. A wedge-shaped element and a pyramid-shaped element may also be formed as shown in Figure 1 (p.420). The type of units (MKS or user defined) is specified through the EMUNIT command. EMUNIT also determines the value of MUZRO.
The EMUNIT defaults are MKS units and MUZRO $=4 \pi \times 10^{-7}$ henries/meter. In addition to MUZRO, orthotropic relative permeability is available and is specified through the MURX, MURY, and MURZ material options. Orthotropic resistivity is specified through RSVX, RSVY, and RSVZ material property labels.

MGXX, MGYY, and MGZZ represent vector components of the coercive force for permanent magnet materials. The magnitude of the coercive force is the square root of the sum of the squares of the components. The direction of polarization is determined by the components MGXX, MGYY, and MGZZ. Permanent magnet
polarization directions correspond to the element coordinate directions. The element coordinate system orientation is as described in Coordinate Systems (p. 14). Nonlinear magnetic B-H properties are entered with the TB command as described in Material Data Tables (Implicit Analysis) (p. 22). Nonlinear orthotropic magnetic properties may be specified with a combination of a B-H curve and linear relative permeability. The BH curve will be used in each element coordinate direction where a zero value of relative permeability is specified. Only one B-H curve may be specified per material.

When SOLID97 is used for voltage forced or magnetic-circuit coupled analyses, the following real constants apply for coils or massive conductors:

CARE

Coil cross-sectional area.

TURN

Total number of coil turns, required for stranded coil only. Defaults to 1 .

VOLU

Modeled coil volume, required for stranded coil only.

DIRX, DIRY, DIRZ

x, y, and z components of a unit vector (in the element coordinate system) representing the direction of current. Required for a stranded coil only.

CSYM

Coil symmetry factor: CSYM*VOLU = total volume of the coil. Required for stranded coil only. Defaults to 1 .

FILL

Coil fill factor, required for stranded coil only. Defaults to 1 .
When velocity effects of a conducting body $(\operatorname{KEYOPT}(2)=1)$ are considered, the following real constants apply:

VELOX, VELOY, VELOZ

Velocity components in the Global Cartesian Coordinate system X, Y, and Z direction respectively.

OMEGAX, OMEGAY, OMEGAZ

Angular (rotational) velocity ($\mathrm{Hz}, \mathrm{cycles} / \mathrm{sec}$) about the Global Cartesian system X, Y, and Z-axes respectively, located at the pivot point location (XLOC, YLOC, ZLOC).

XLOC, YLOC, ZLOC

Global Cartesian coordinate point locations of the rotating body in the X, Y, and Z directions respectively.
Nodal loads are defined with the \mathbf{D} and the \mathbf{F} commands. With the \mathbf{D} command, the $L a b$ variable corresponds to the degree of freedom (A_{-}and VOLT) and VALUE corresponds to the value (vector magnetic potential or the time-integrated electric potential (classical formulation) or the electric potential (solenoidal formulation). The electric potential may or may not be time integrated depending on the KEYOPT(1) selection. With the F command, the Lab variable corresponds to the force (CSG or Amps) and VALUE corresponds to the value (magnetic current segment or current).

Element loads are described in Node and Element Loads (p. 97). Maxwell force flags may be input on the element faces indicated by the circled numbers in Figure 1 (p. 420) using the SF and SFE commands. Surfaces at which magnetic forces are to be calculated may be identified by using the MXWF label on the surface load commands (no value is required.) A Maxwell stress tensor calculation is performed at these surfaces to obtain the magnetic forces. The surface flag should be applied to "air" elements adjacent to the body for which forces are required. Deleting the MXWF specification removes the flag. Lorentz and Maxwell forces may be made available for a subsequent structural analysis with companion elements [LDREAD].

The temperature (for material property evaluation only) and magnetic virtual displacement body loads may be input based on their value at the element's nodes or as a single element value [BF and BFE]. Source current density (classical formulation) and voltage body loads may be applied to an area or volume [BFA or BFV] or input as an element value [BFE]. In general, unspecified nodal values of temperatures default to the uniform value specified with the BFUNIF or TUNIF commands. The vector components of the current density are with respect to the element coordinate system (see "SOLID97 Assumptions and Restrictions" (p. 428) for solenoidal restriction). Joule heating may be made available for a subsequent thermal analysis with companion elements [LDREAD].

Air elements in which Local Jacobian forces are to be calculated may be identified by using nodal values of 1 and 0 for the MVDI label [BF]. See the Low-Frequency Electromagnetic Analysis Guide for details.

A summary of the element input is given in "SOLID97 Input Summary" (p. 422). A general description of element input is given in Element Input (p. 5).

SOLID97 Input Summary

Nodes

I, J, K, L, M, N, O, P

Degrees of Freedom

See KEYOPT(1)

Real Constants

None if $\operatorname{KEYOPT}(1)=0$ and $\operatorname{KEYOPT}(2)=0$.
For $\operatorname{KEYOPT}(1)=2,3,5$, or 6 , and $\operatorname{KEYOPT}(2)=0$:
CARE, TURN, VOLU, DIRX, DIRY, DIRZ, CSYM, FILL

For $\operatorname{KEYOPT}(1)=4$ and $\operatorname{KEYOPT}(2)=0$:
CARE - Coil cross-sectional area
For $\operatorname{KEYOPT}(1)=0$ or 1 and $\operatorname{KEYOPT}(2)=1$:
(blank), (blank), (blank), (blank), (blank), (blank), (blank), (blank), VELOX, VELOY, VELOZ, OMEGAX, OMEGAY OMEGAZ, XLOC, YLOC, ZLOC

See Table 2: SOLID97 Real Constants (p. 424) for a description of the real constants.

Material Properties

MUZERO, MURX, MURY, MURZ, RSVX, RSVY, RSVZ, MGXX, MGYY, MGZZ plus BH data table (see Material
Data Tables (Implicit Analysis) (p. 22))

Surface Loads

Maxwell Force Flags --
face 1 (J-I-L-K), face 2 (I-J-N-M), face 3 (J-K-O-N), face 4 (K-L-P-O), face 5 (L-I-M-P), face 6 (M-N-O-P)

Magnetic-Circuit Interface Flags, if $\operatorname{KEYOPT}(1)=4$:
face 1 (J-I-L-K), face 2 (I-J-N-M), face 3 (J-K-O-N), face 4 (K-L-P-O), face 5 (L-I-M-P), face 6 ($\mathrm{M}-\mathrm{N}-\mathrm{O}-\mathrm{P}$)

Body Loads

Temperatures --

$T(I), T(J), T(K), T(L), T(M), T(N), T(O), T(P)$
MVDI --
$\mathrm{VD}(\mathrm{I}), \mathrm{VD}(\mathrm{J}), \mathrm{VD}(\mathrm{K}), \mathrm{VD}(\mathrm{L}), \mathrm{VD}(\mathrm{M}), \mathrm{VD}(\mathrm{N})$,
$\mathrm{VD}(\mathrm{O}), \mathrm{VD}(\mathrm{P})$

Source Current Density, if KEYOPT(1) = 0 (See "SOLID97 Assumptions and Restrictions" (p.428) for

 solenoidal restriction) --JSX(I), JSY(I), JSZ(I), PHASE(I), JSX(J), JSY(J), JSZ(J), PHASE(J), JSX(K), JSY(K), JSZ(K), PHASE(K), JSX(L), JSY(L), JSZ(L), PHASE(L), JSX(M), JSY(M), JSZ(M), PHASE(M), JSX(N), JSY(N), JSZ(N), PHASE(N), JSX(O), JSY(O), JSZ(O), PHASE(O), JSX(P), JSY(P), JSZ(P), PHASE(P)

Voltage Loading, if KEYOPT(1) = 2 --
VLTG(I), PHASE(I), VLTG(J), PHASE(J), VLTG(K), PHASE(K), VLTG(L), PHASE(L), VLTG(M), PHASE(M), VLTG(N), PHASE(N), VLTG(O), PHASE(O), VLTG(P), PHASE(P)

EF --
EFX, EFY, EFZ. See "SOLID97 Assumptions and Restrictions" (p. 428).

Special Features

Requires an iterative solution if nonlinear material properties are defined Birth and death
Adaptive descent

KEYOPT(1)

Element degrees of freedom and formulation selection:

Classical Formulation

0 --
AX, AY, AZ degrees of freedom: static domain, source domain
1 --
$A X, A Y, A Z, V O L T$ degrees of freedom: eddy current domain, velocity effect domain
2 --
$A X, A Y, A Z, C U R R$ degrees of freedom: voltage-fed stranded coil
3 --
AX, AY, AZ, CURR, EMF degrees of freedom: circuit-coupled stranded coil
4 --
AX, AY, AZ, VOLT, CURR degrees of freedom: circuit-coupled massive conductor

Solenoidal Formulation

5 --
AX, AY, AZ, VOLT degrees of freedom: nonlinear symmetric solenoidal formulation applicable to static and transient analyses

6 --
AX, AY, AZ, VOLT degrees of freedom: linear unsymmetric solenoidal formulation applicable to harmonic analyses

Note

For $\operatorname{KEYOPT}(1)=1$ and 4, the VOLT degree of freedom is time integrated (classical formulation). For $\operatorname{KEYOPT}(1)=5$ and 6 , the VOLT degree of freedom is not time integrated (solenoidal formulation).

KEYOPT(2)

Element conventional velocity:
0 --
Velocity effects ignored
1 --
Conventional velocity formulation (not available if $\operatorname{KEYOPT}(1)=2,3$, or 4)

KEYOPT(5)

Extra element output:
0 --
Basic element printout
1 --
Integration point printout
2 --
Nodal magnetic field printout
Table 2 SOLID97 Real Constants

| No. | Name | Description |
| :---: | :---: | :---: |
| $\operatorname{KEYOPT}(1)=2,3,5,6$ and $\operatorname{KEYOPT}(2)=0$ | | |
| 1 | CARE | Coil cross-sectional area |
| 2 | TURN | Total number of coil turns |
| 3 | VOLU | Modeled coil volume |
| 4 | DIRX | Directional cosine for X component of the current |
| 5 | DIRY | Directional cosine for Y component of the current |
| 6 | DIRZ | Directional cosine for Z component of the current |
| 7 | CSYM | Coil symmetry factor |
| 8 | FILL | Coil fill factor * |
| $\operatorname{KEYOPT}(1)=0$ or 1 and $\operatorname{KEYOPT}(2)=1$ | | |
| 1,..., 8 | (blank) | Unused for these settings |
| 9, 10, 11 | VELOX, VELOY, VELOZ | Velocity specification in the x, y and z directions |
| $\begin{gathered} 12,13, \\ 14 \end{gathered}$ | OMEGAX, OMEGAY, OMEGAZ | Angular velocity about the X, Y, and Z axes |

| No. | Name | Description |
| :---: | :--- | :--- |
| 15,16, | XLOC, YLOC, | Pivot point location (x, y, z) |
| 17 | ZLOC | |

* The ratio between the actual conductor area and the area of the coil or element geometry. Often, the element approximation will differ from that of the conductor, especially in multi-strand coils.

SOLID97 Output Data

The solution output associated with the element is in two forms:

- Nodal potentials included in the overall nodal solution
- Additional element output as shown in Table 3: SOLID97 Element Output Definitions (p. 425)

The element output directions are parallel to the element coordinate system. A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 3 SOLID97 Element Output Definitions

| Name | Definition | \mathbf{O} | R |
| :--- | :--- | :--- | :--- |
| EL | Element Number | Y | Y |
| NODES | Nodes - I, J, K, L, M, N, O, P | Y | Y |
| MAT | Material number | Y | Y |
| VOLU: | Volume | Y | Y |
| XC, YC, ZC | Location where results are reported | Y | 2 |
| TEMP | Input temperatures T(I), T(J), T(K), T(L), T(M), T(N),
 T(O), T(P) | Y | Y |
| LOC | Output location (X, Y, Z) | 1 | - |
| MUX, MUY, MUZ | Magnetic secant permeability | 1 | 1 |
| H:X, Y, Z | Magnetic field intensity components | 1 | 1 |
| H:SUM | Vector magnitude of H | 1 | 1 |
| B:X, Y, Z | Magnetic flux density components | 1 | 1 |
| B:SUM | Vector magnitude of B | 1 | 1 |
| SS:X, Y, Z | Source current density components in the global
 Cartesian coordinate system, valid for static analysis
 only | 1 | 1 |
| JT(X, Y, Z) | Total current density components in the global
 Cartesian coordinate system. | 1 | 1 |

| Name | Definition | \mathbf{O} | \mathbf{R} |
| :--- | :--- | :---: | :---: |
| JHEAT: | Joule heat generation per unit volume | 1 | 1 |
| FJB(X, Y, Z) | Lorentz magnetic force components | 1 | - |
| FMX(X, Y, Z) | Maxwell magnetic force components | 1 | - |
| FVW(X, Y, Z) | Virtual work force components | 1 | 1 |
| Combined (FJB or
 FMX) force compon-
 ents | Combined (FJB or FMX) force components | - | 1 |
| ERES | Element resistance value (for stranded coils only) | - | 1 |
| EIND | Element inductance value (for stranded coils only) | - | 1 |
| DMUXX, DMUYY,
 DMUZZ | Differential permeability | 1 | 1 |
| V:X, Y, Z | Velocity components | 1 | 1 |
| V:SUM | Vector magnitude of V | 1 | - |
| MRE | Magnetic Reynolds number | 1 | 1 |

1. The solution value is output only if calculated (based upon input data). The element solution is at the centroid.

Note

JT represents the total measurable current density in a conductor, including eddy current effects, and velocity effects if calculated.

For harmonic analysis, Joule losses (JHEAT) and forces (FJB(X,Y, Z), FMX(X, Y, Z), FVW(X,Y, Z)) represent time-average values. These values are stored in both the "Real" and "Imaginary" data sets. The macros POWERH and FMAGSUM can be used to retrieve this data.

Inductance values (EIND) obtained for $\operatorname{KEYOPT}(1)=2,3$, or 4 are only valid under the following conditions: the problem is linear (constant permeability), there are no permanent magnets in the model, and only a single coil exists in the model.

For KEYOPT(1)=2 and 3, JT represents the effective current density (including non-conducting material represented by the FILL factor). JHEAT reprsents the effective Joule heat generation rate (including non-conducting material represented by the FILL factor).
2. Available only at centroid as a *GET item.

Table 4 SOLID97 Miscellaneous Element Output

| Description | Names of Items Output | $\mathbf{0}$ | R |
| :--- | :--- | :---: | :---: |
| Integration Point Solution | LOC, MUX, MUY, MUZ, H, HSUM, B,
 BSUM | 1 | - |
| Nodal Magnetic Field Solution | H, HSUM, B, BSUM | 2 | - |

1. Output at each integration point, if $(\operatorname{KEYOPT}(5)=1)$
2. Output at each corner node, if $(\operatorname{KEYOPT}(5)=2)$

Table 5: SOLID97 Item and Sequence Numbers (p. 427) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p.9) in this manual for more information. The following notation is used in Table 5: SOLID97 Item and Sequence Numbers (p. 427):

Name

output quantity as defined in Table 3: SOLID97 Element Output Definitions (p. 425)
Item
predetermined Item label for ETABLE command
E
sequence number for single-valued or constant element data
Table 5 SOLID97 Item and Sequence Numbers

| Output
 Quant-
 ity
 Name | $\|c\|$
 ESOLABLE and
 Input | |
| :---: | :---: | :---: |
| | E | |
| JSX | SMISC | 1 |
| JSY | SMISC | 2 |
| JSZ | SMISC | 3 |
| JSSUM | SMISC | 4 |
| MUX | NMISC | 1 |
| MUY | NMISC | 2 |
| MUZ | NMISC | 3 |
| FVWX | NMISC | 4 |
| FVWY | NMISC | 5 |
| FVWZ | NMISC | 6 |
| FVWSUM | NMISC | 7 |
| JTX | NMISC | 12 |
| JTY | NMISC | 13 |
| JTZ | NMISC | 14 |
| JTSUM | NMISC | 15 |
| ERES | NMISC | 16 |
| EIND | NMISC | 17 |
| DMUXX | NMISC | 18 |
| DMUYY | NMISC | 19 |
| DMUZZ | NMISC | 20 |
| VX | NMISC | 21 |
| VY | NMISC | 22 |
| VZ | NMISC | 23 |
| | | |

| Output
 Quant-
 ity
 Name | ETABLE and
 ESOL Command
 Input | |
| :---: | :---: | :---: |
| | Item | E |
| MRE | NMISC | 28 |

SOLID97 Assumptions and Restrictions

- The element must not have a zero volume or a zero length side. This occurs most frequently when the element is not numbered properly. Elements may be numbered either as shown in Figure 1 (p.420) or may have the planes IJKL and MNOP interchanged.
- The continuity equation must be satisfied for a proper electromagnetic analysis as explained in the Theory Reference for the Mechanical APDL and Mechanical Applications. For this reason the source current density, JS, must be solenoidal (that is, $\nabla . J S=0$). You should verify that this condition is satisfied when prescribing the source current density load. If this condition is not satisfied SOLID97 can produce erroneous solutions without warning. Refer to Source Current Density (JS) in the Low-Frequency Electromagnetic Analysis Guide for information on how to obtain solenoidal currents when the source current density is not constant. To have ANSYS compute the current density for voltage or circuit coupled problems, apply the solenoidal formulation $(\operatorname{KEYOPT}(1)=5$ or 6$)$.
- For models containing materials with different permeabilities, the 3-D nodal-based vector potential formulation (either static or time-dependent) is not recommended. The solution has been found to be inaccurate when the normal component of the vector potential is significant at the interface between elements of different permeability. To obtain the normal component of the vector potential in postprocessing, issue PLVECT,A or PRVECT,A in a rotated coordinate system [RSYS] that orients one of the vector potential components normal to the material interface.
- Current density loading (BFE,,JS) is only valid for the AX, AY, AZ option (KEYOPT(1) = 0). For the AX, AY, AZ, VOLT option (KEYOPT $(1)=1,5$, or 6) use \mathbf{F},,AMPS. Solenoidal loading is recommended. For more information, see 3-D Magnetostatics and Fundamentals of Edge-Based Analysis and 3-D Nodal-Based Analyses (Static, Harmonic, and Transient) in the Low-Frequency Electromagnetic Analysis Guide.
- The solenoidal current density is required for a solution, or for any postprocessing operations.
- When this element does not have the VOLT degree of freedom, for a harmonic or transient analysis, it acts as a stranded conductor.
- Permanent magnets are not permitted in a harmonic analysis.
- You cannot use this element in a nonlinear harmonic analysis.
- The VOLT degree of freedom $(\operatorname{KEYOPT}(1)=1)$ is required in all non-source regions with a specified nonzero resistivity. This allows eddy currents to be computed.
- For source conducting regions ($\mathrm{RSVX} \neq 0$), current loading should be applied as nodal loads (AMPS) using the solenoidal formulation. Current density loading (JS) is allowed (classical formulation), but solenoidal loading is recommended. Node coupling of the VOLT DOF may be required at symmetry planes and locations where the current is applied.
- The ANSYS product does not support the analysis of coupled velocity and circuit effects.
- For voltage forced magnetic field $(\operatorname{KEYOPT}(1)=2)$ and circuit coupled problems ($\operatorname{KEYOPT}(1)=3,4)$, note the following additional restrictions:
- Only MKS units are allowed.
- The permeability and conductivity are isotropic and constant.
- The element coordinate system is used for specifying the current direction vector (DIRX, DIRY, DIRZ) for a stranded coil. Also, the cross sectional area of the stranded coil should not change.
- For $(\operatorname{KEYOPT}(1)=2$ or 3$)$, all CURR degrees of freedom in a coil region must be coupled (CP command), and all EMF degrees of freedom in a coil region must be coupled.
- For ($\operatorname{KEYOPT}(1)=4)$, all CURR degrees of freedom on the input face and output face of a massive conductor must be coupled.
- For circuit coupled transient analyses, use THETA $=1.0$, the default value, on the TINTP command to specify the backward Euler method. For more information, refer to the Theory Reference for the Mechanical APDL and Mechanical Applications, as well as the description of the TINTP command in the Command Reference.
- For velocity effects ($\operatorname{KEYOPT}(2)=1$), note the following restrictions:
- Velocity effects are valid only for the AX, AY, AZ, VOLT DOF option.
- Velocity effects cannot be included in a static analysis. To simulate a static analysis, execute a harmonic analysis at a very low frequency and retrieve the "real" results for the solution.
- Velocity effects are available only in a linear analysis.
- Isotropic resistivity.
- Solution accuracy may degrade if the element magnetic Reynolds number is much greater than 1.0. (See the discussion of magnetic fields in the Low-Frequency Electromagnetic Analysis Guide.)
- If $(\operatorname{KEYOPT}(1)=2,3,4$, or 6$)$ or ($\operatorname{KEYOPT}(2) \geq 1)$, unsymmetric matrices are produced.
- Degeneration to the form of pyramid should be used with caution. The element sizes, when degenerated, should be small in order to minimize the field gradients. Pyramid elements are best used as filler elements or in meshing transition zones.
- This element may not be compatible with other elements with the VOLT degree of freedom. To be compatible, the elements must have the same reaction force (see Element Compatibility in the LowFrequency Electromagnetic Analysis Guide).
- The solenoidal formulations do not model eddy current effects.
- The electric field body load is not used during solution and is applicable only to POST1 charged particle tracing.

SOLID97 Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

ANSYS Emag

- The birth and death special feature is not allowed.

SOLID98

Tetrahedral Coupled-Field Solid

MP ME <> <> <> <> <> <> EM <> <> PP <> EME MFS

SOLID98 Element Description

Although this legacy element is available for use in your analysis, ANSYS recommends using a current-technology element such as SOLID227.

SOLID98 is a 10 -node tetrahedral version of the 8 -node SOLID5 element. The element has a quadratic displacement behavior and is well suited to model irregular meshes (such as produced from various CAD/CAM systems). When used in structural and piezoelectric analyses, SOLID98 has large deflection and stress stiffening capabilities.

The element is defined by ten nodes with up to six degrees of freedom at each node (see KEYOPT(1)). See SOLID98 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element. The 3-D magnetic, thermal, electric, piezoelectric, and structural field capability is similar to that described for SOLID5.

Figure 1 SOLID98 Geometry

SOLID98 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 1 (p. 431). The element input data is essentially the same as for SOLID5 except that there are 10 nodes instead of 8.

Various combinations of nodal loading are available for this element (depending upon the KEYOPT(1) value). Nodal loads are defined with the \mathbf{D} and the \mathbf{F} commands. With the \mathbf{D} command, the Lab variable corresponds to the degree of freedom (UX, UY, UZ, TEMP, VOLT, MAG) and VALUE corresponds to the value (displacements, temperature, voltage, scalar magnetic potential). With the \mathbf{F} command, the Lab variable corresponds to the force (FX, FY, FZ, HEAT, AMPS, FLUX) and VALUE corresponds to the value (force, heat flow, current or charge, magnetic flux). Nonlinear magnetic B-H, piezoelectric, and anisotropic elastic properties are entered with the TB command as described in Material Data Tables (Implicit Analysis) (p. 22). Nonlinear orthotropic magnetic properties may be specified with a combination of a B-H curve and linear relative permeability. The B-
H curve will be used in each element coordinate direction where a zero value of relative permeability is specified. Only one B-H curve may be specified per material.

Element loads are described in Node and Element Loads (p. 97). Pressure, convection or heat flux (but not both), radiation, and Maxwell force flags may be input on the element faces indicated by the circled numbers in Figure 1 (p.431) using the SF and SFE commands. Positive pressures act into the element. Surfaces at which magnetic forces are to be calculated may be identified by using the MXWF label on the surface load commands (no value is required.) A Maxwell stress tensor calculation is performed at these surfaces to obtain the magnetic forces. These forces are applied in solution as structural loads. The surface flag should be applied to "air" elements adjacent to the body for which forces are required. Deleting the MXWF specification removes the flag.

The body loads; temperature, heat generation rate and magnetic virtual displacement may be input based on their value at the element's nodes or as a single element value [BF and BFE]. When the temperature degree of freedom is active $(\operatorname{KEYOPT}(1)=0,1$ or 8$)$, applied body force temperatures $[\mathbf{B F}, \mathbf{B F E}]$ are ignored. In general, unspecified nodal values of temperatures and heat generation rate default to the uniform value specified with the BFUNIF or TUNIF commands. Calculated Joule heating (JHEAT) is applied in subsequent iterations as heat generation rate loading.

If the temperature degree of freedom is present, the calculated temperatures override any input nodal temperatures.

Air elements in which Local Jacobian forces are to be calculated may be identified by using nodal values of 1 and 0 for the MVDI label [BF]. See the Low-Frequency Electromagnetic Analysis Guide for details. These forces are not applied in solution as structural loads.

A summary of the element input is given in "SOLID98 Input Summary" (p. 432). A general description of element input is given in Element Input (p.5).

SOLID98 Input Summary

Nodes

I, J, K, L, M, N, O, P, Q, R

Degrees of Freedom

UX, UY, UZ, TEMP, VOLT, MAG if $\operatorname{KEYOPT}(1)=0$
TEMP, VOLT, MAG if KEYOPT(1) = 1
UX, UY, UZ if $\operatorname{KEYOPT}(1)=2$
UX, UY, UZ, VOLT if KEYOPT(1) $=3$
TEMP if $\operatorname{KEYOPT}(1)=8$
VOLT if $\operatorname{KEYOPT}(1)=9$
MAG if $\operatorname{KEYOPT}(1)=10$

Real Constants

None
Material Properties
EX, EY, EZ, (PRXY, PRYZ, PRXZ or NUXY, NUYZ, NUXZ),
ALPX, ALPY, ALPZ (or CTEX, CTEY, CTEZ or THSX, THSY, THSZ), DENS, GXY, GYZ, GXZ, DAMP, KXX, KYY, KZZ, C,
ENTH, MUZERO, MURX, MURY, MURZ, RSVX, RSVY, RSVZ,

MGXX, MGYY, MGZZ, PERX, PERY, PERZ, plus BH, ANEL, and PIEZ data tables (see Material Data Tables (Implicit Analysis) (p. 22))

Surface Loads

Pressure, Convection or Heat Flux (but not both), Radiation (using Lab = RDSF), and Maxwell Force Flags --
face 1 (J-I-K), face 2 (I-J-L), face 3 (J-K-L), face 4 (K-I-L)

Body Loads

Temperatures --

$T(I), T(J), T(K), T(L), T(M), T(N), T(O), T(P), T(Q), T(R)$
Heat Generations --
HG(I), HG(J), HG(K), HG(L), HG(M), HG(N), HG(O), HG(P), HG(Q), HG(R)
MVDI --
$\mathrm{VD}(\mathrm{I}), \mathrm{VD}(\mathrm{J}), \mathrm{VD}(\mathrm{K}), \mathrm{VD}(\mathrm{L}), \mathrm{VD}(\mathrm{M}), \mathrm{VD}(\mathrm{N}), \mathrm{VD}(\mathrm{O}), \mathrm{VD}(\mathrm{P}), \mathrm{VD}(\mathrm{Q}), \mathrm{VD}(\mathrm{R})$
EF --
EFX, EFY, EFZ. See "SOLID98 Assumptions and Restrictions" (p. 438).

Special Features

Requires an iterative solution for field coupling (displacement, temperature, electric, magnetic, but not piezoelectric) Large deflections
Stress stiffening
Birth and death
Adaptive descent

KEYOPT(1)

Degree of freedom selection:
0 --
UX, UY, UZ, TEMP, VOLT, MAG
1 --
TEMP, VOLT, MAG
2 --
UX, UY, UZ
3 --
UX, UY, UZ, VOLT
8 --
TEMP
9 --
VOLT
10 --
MAG

KEYOPT(3)

Specific heat matrix:
0 --
Consistent specific heat matrix

1 --
Diagonalized specific heat matrix

KEYOPT(5)

Extra element output:
0 --
Basic element printout
2 --
Nodal stress or magnetic field printout

SOLID98 Output Data

The solution output associated with the element is in two forms:

- Nodal degree of freedom results included in the overall nodal solution
- Additional element output as shown in Table 1: SOLID98 Element Output Definitions (p. 435)

Several items are illustrated in Figure 2 (p. 434). The component output directions are parallel to the element coordinate system. The reaction forces, heat flow, current, and magnetic flux at the nodes can be printed with the OUTPR command. A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

Figure 2 SOLID98 Element Output

The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 1 SOLID98 Element Output Definitions

| Name | Definition | 0 | R |
| :---: | :---: | :---: | :---: |
| EL | Element Number | Y | Y |
| NODES | Corner nodes - I, J, K, L | Y | Y |
| MAT | Material number | Y | Y |
| VOLU: | Volume | Y | Y |
| XC, YC, ZC | Location where results are reported | Y | 3 |
| PRES | Pressures P1 at nodes J, I, K; P2 at I, J, L; P3 at J, K, L; P4 at K, I, L | Y | Y |
| TEMP(INPUT) | Temperatures $\mathrm{T}(\mathrm{I}), \mathrm{T}(\mathrm{J}), \mathrm{T}(\mathrm{K}), \mathrm{T}(\mathrm{L}), \mathrm{T}(\mathrm{M}), \mathrm{T}(\mathrm{N}), \mathrm{T}(\mathrm{O})$, $T(P), T(Q), T(R)$ | Y | Y |
| HGEN(INPUT) | Heat generations $\mathrm{HG}(\mathrm{I}), \mathrm{HG}(\mathrm{J}), \mathrm{HG}(\mathrm{K}), \mathrm{HG}(\mathrm{L}), \mathrm{HG}(\mathrm{M})$, HG(N), HG(O), HG(P), HG(Q), HG(R) | Y | - |
| S:X, Y, Z, XY, YZ, XZ | Stresses | 1 | 1 |
| S:1, 2, 3 | Principal stresses | 1 | 1 |
| S:INT | Stress intensity | 1 | 1 |
| S:EQV | Equivalent stress | 1 | 1 |
| $\begin{aligned} & \text { EPEL:X,Y, Z, XY, YZ, } \\ & \text { XZ } \end{aligned}$ | Elastic strains | 1 | 1 |
| EPEL:1, 2, 3 | Principal elastic strains | 1 | - |
| EPEL:EQV | Equivalent elastic strains [4] | 1 | 1 |
| $\begin{aligned} & \text { EPTH:X, Y, Z, XY, YZ, } \\ & X Z \end{aligned}$ | Thermal strains | 1 | 1 |
| EPTH:EQV | Equivalent thermal strain [4] | 1 | 1 |
| LOC | Output location (X, Y, Z) | 1 | 1 |
| MUX, MUY, MUZ | Magnetic permeability | 1 | 1 |
| H:X, Y, Z | Magnetic field intensity components | 1 | 1 |
| H:SUM | Vector magnitude of H | 1 | 1 |
| B:X, Y, Z | Magnetic flux density components | 1 | 1 |
| B:SUM | Vector magnitude of B | 1 | 1 |
| FJB | Lorentz magnetic force components ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$) | 1 | - |
| FMX | Maxwell magnetic force components ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$) | 1 | - |
| FVW | Virtual work force components ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$) | 1 | 1 |
| Combined (FJB or FMX) force components | Combined (FJB or FMX) force components | - | 1 |
| EF:X, Y, Z | Electric field components | 1 | 1 |
| EF:SUM | Vector magnitude of EF | 1 | 1 |

| Name | Definition | $\mathbf{0}$ | R |
| :--- | :--- | :--- | :--- |
| JS:X, Y, Z | Source current density components | 1 | 1 |
| JSSUM | Vector magnitude of JS | 1 | 1 |
| JHEAT: | Joule heat generation per unit volume | 1 | 1 |
| D:X, Y, Z | Electric flux density components | 1 | 1 |
| D:SUM | Vector magnitude of D | 1 | 1 |
| U(E, D, M) | Elastic (UE), dielectric (UD), and electromechanical
 coupled (UM) energies | 1 | 1 |
| TG:X, Y, Z | Thermal gradient components | 1 | 1 |
| TG:SUM | Vector magnitude of TG | 1 | 1 |
| TF:X, Y, Z | Thermal flux components | 1 | 1 |
| TF:SUM | Vector magnitude of TF (Heat flow rate/unit cross-
 section area) | 1 | 1 |
| FACE | Face label | 2 | 2 |
| AREA | Face area | 2 | 2 |
| NODES | Face nodes | 2 | - |
| HFILM | Film coefficient at each node of face | 2 | - |
| TBULK | Bulk temperature at each node of face | 2 | - |
| TAVG | Average face temperature | 2 | 2 |
| HEAT RATE | Heat flow rate across face by convection | 2 | 2 |
| HEAT RATE/AREA | Heat flow rate per unit area across face by convec-
 tion | 2 | - |
| HFLUX | Heat flux at each node of face | 2 | - |
| HFAVG | Average film coefficient of the face | 2 | 2 |
| TBAVG | Average face bulk temperature | - | 2 |
| HFLXAVG | Heat flow rate per unit area across face caused by
 input heat flux | - | 2 |

1. The solution value is output only if calculated (based upon input data). The element solution is at the centroid.
2. Output only if a surface load is input.
3. Available only at centroid as a *GET item.
4. The equivalent strains use an effective Poisson's ratio: for elastic and thermal this value is set by the user (MP,PRXY).

Table 2 SOLID98 Miscellaneous Element Output

| Description | Names of Items Output | 0 | R |
| :---: | :---: | :---: | :---: |
| Nodal Stress Solution | LOC, SINT, SEQV, EPEL(X, Y, Z, XY, $Y Z, X Z), E P E L(1,2,3), S(X, Y, Z, X Y$, YZ, XZ), S(1, 2, 3) | 1 | - |
| Nodal Magnetic Field Solution | H, HSUM, B, BSUM | 2 | - |

1. Output at each vertex node, if $\operatorname{KEYOPT}(5)=2$ and structural DOF
2. Output at each vertex node, if $\operatorname{KEYOPT}(5)=2$ and magnetic DOF

Table 3: SOLID98 Item and Sequence Numbers (p. 437) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p.9) in this manual for more information. The following notation is used in Table 3: SOLID98 Item and Sequence Numbers (p. 437):

Name

output quantity as defined in Table 1: SOLID98 Element Output Definitions (p. 435)
Item
predetermined Item label for ETABLE command
E
sequence number for single-valued or constant element data
$\mathrm{I}, \mathrm{J}, \ldots, \mathrm{L}$
sequence number for data at nodes $\mathrm{I}, \mathrm{J}, \ldots, \mathrm{L}$
FCn -
sequence number for solution items for element Face n
Table 3 SOLID98 Item and Sequence Numbers

| Output
 Quant-
 ity
 Name | ETABLE and ESOL Command Input | | | | | |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| | Item | E | I | \mathbf{J} | K | \mathbf{L} |
| P1 | SMISC | - | 2 | 1 | 3 | - |
| P2 | SMISC | - | 4 | 5 | - | 6 |
| P3 | SMISC | - | - | 7 | 8 | 9 |
| P4 | SMISC | - | 11 | - | 10 | 12 |
| MUX | NMISC | 1 | - | - | - | - |
| MUY | NMISC | 2 | - | - | - | - |
| MUZ | NMISC | 3 | - | - | - | - |
| FVWX | NMISC | 4 | - | - | - | - |
| FVWY | NMISC | 5 | - | - | - | - |
| FVWZ | NMISC | 6 | - | - | - | - |
| FVWSUM | NMISC | 7 | - | - | - | - |
| UE | NMISC | 16 | - | - | - | - |
| UD | NMISC | 17 | - | - | - | - |
| UM | NMISC | 18 | - | - | - | - |

| Output
 Quantity
 Name | ETABLE and ESOL Command Input | | | | |
| :---: | :--- | :--- | :--- | :--- | :--- |
| | Item | FC1 | FC2 | FC3 | FC4 |
| AREA | NMISC | 19 | 25 | 31 | 37 |

| Output
 Quantity
 Name | ETABLE and ESOL Command Input | | | | |
| :---: | :--- | :--- | :--- | :--- | :--- |
| | Item | FC1 | FC2 | FC3 | FC4 |
| HFAVG | NMISC | 20 | 26 | 32 | 38 |
| TAVG | NMISC | 21 | 27 | 33 | 39 |
| TBAVG | NMISC | 22 | 28 | 34 | 40 |
| HEAT RATE | NMISC | 23 | 29 | 35 | 41 |
| HFLXAVG | NMISC | 24 | 30 | 36 | 42 |

SOLID98 Assumptions and Restrictions

- When using SOLID98 with SOURC36 elements, the source elements must be placed so that the resulting Hs field fulfills boundary conditions for the total field.
- The element must not have a zero volume. Elements may be numbered either as shown in Figure 1 (p. 431) or may have node L below the IJK plane. in the Modeling and Meshing Guide
- An edge with a removed midside node implies that the displacement varies linearly, rather than parabolically, along that edge. See Quadratic Elements (Midside Nodes) for more information about the use of midside nodes.
- The difference scalar magnetic potential option is restricted to singly-connected permeable regions, so that as $\mu \rightarrow \infty$ in these regions, the resulting field $\mathrm{H} \rightarrow 0$. The reduced scalar and general scalar potential options do not have this restriction.
- Temperatures and heat generation rates, if internally calculated, include any user defined heat generation rates.
- Large deflection capabilities available for $\operatorname{KEYOPT}(1)=2$ and 3 are not available for $\operatorname{KEYOPT}(1)=0$. Stress stiffening is available for $\operatorname{KEYOPT}(1)=0,2$ and 3 .
- This element may not be compatible with other elements with the VOLT degree of freedom. To be compatible, the elements must have the same reaction solution for the VOLT DOF. Elements that have an electric charge reaction solution must all have the same electric charge reaction sign. For more information, see Element Compatibility in the Low-Frequency Electromagnetic Analysis Guide.
- The electric field body load is not used during solution and is applicable only to POST1 charged particle tracing.
- In an MSP analysis, avoid using a closed domain and use an open domain, closed with natural flux parallel boundary conditions on the MAG degree of freedom, or infinite elements. If you use a closed domain, you may see incorrect results when the formulation is applied using SOLID5, SOLID96, or SOLID98 elements and the boundary conditions are not satisfied by the Hs field load calculated by the BiotSavart procedure based on SOURC36 current source primitive input.
- If you used the MAG degree of freedom, you cannot restart a job in ANSYS Mechanical using Jobname. DB and Jobname. ESAV files that were created by ANSYS Multiphysics.
- This element cannot be used in a distributed solution.

SOLID98 Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

ANSYS Mechanical

Unless the Emag option is enabled, the following restrictions apply:

- This element does not have magnetic capability.
- The MAG degree of freedom is not active.
- KEYOPT(1) cannot be set to 10 . If KEYOPT(1) = 0 (default) or 1 , the MAG degree of freedom is inactive.
- The magnetic material properties (MUZERO, MUR_MG_, and the BH data table) are not allowed.
- The Maxwell force flags and magnetic virtual displacements body loads are not applicable.

ANSYS Emag

- This element has only magnetic and electric field capability, and does not have structural, thermal, or piezoelectric capability.
- The only active degrees of freedom are MAG and VOLT.
- If $\operatorname{KEYOPT}(1)=1$, the TEMP degree of freedom is inactive. $\operatorname{KEYOPT}(1)$ settings of $0,2,3$ and 8 are not allowed.
- The only allowable material properties are the magnetic and electric properties (MUZRO through PERZ, plus the BH data table).
- The only applicable surface loads are Maxwell force flags. The only applicable body loads are temperatures (for material property evaluation only) and magnetic virtual displacements.
- The element does not have stress stiffening or birth and death features.
- KEYOPT(3) is not applicable.

TRANS109

2-D Electromechanical Transducer

TRANS109 Element Description

TRANS109 is a triangular element used in fully coupled electromechanical analysis. It has three degrees of freedom at each node: translation in the nodal x and y directions (UX and UY) and electric potential (VOLT). This element is useful for simulating the electromechanical response of micro-electromechanical systems (MEMS) such as electrostatic comb drives and optical switches. TRANS109 is applicable to large signal static and transient analyses, but not to small signal modal or harmonic analyses (prestressed). See TRANS109 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

Figure 1 TRANS109 Geometry

TRANS109 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 1 (p. 441). Element input data includes the relative isotropic permittivity, which must be temperature independent.

TRANS109 uses a segregated solution algorithm to morph the initial mesh. $\operatorname{KEYOPT}(1)$ provides the morphing options. If $\operatorname{KEYOPT}(1)=0$, morphing is unweighted. If $\operatorname{KEYOPT}(1)=1$, morphing is area weighted.
$\operatorname{KEYOPT}(3)$ allows you to input a thickness. If $\operatorname{KEYOPT}(3)=0$, the thickness is input as unity. If $\operatorname{KEYOPT}(3)=$ 3 , the thickness is input as the real constant THICKNESS.

The element supports nodal displacements and voltage (\mathbf{D} command) as well as nodal forces (\mathbf{F} command). Nodal forces should be input per unit of depth. When applying a nonzero initial starting voltage, use both the \mathbf{D} command and the IC command to input the value.

Free-space permittivity must be set using the EMUNIT command. See System of Units for free-space permittivity values and conversion factors useful for micro-electromechanical systems (MEMS).

The next table summarizes the element input. Element Input (p. 5) gives a general description of element input.

TRANS109 Input Summary

Nodes

I, J, K

Degrees of Freedom

UX, UY, VOLT

Real Constants

None, if KEYOPT (3) = 0
THICKNESS - if KEYOPT (3) = 3

Material Properties

PERX (must be 1.0)

Surface Loads

None

Body Loads

None

Special Features

Large deflection
Large strain

KEYOPT(1)

Select Laplacian morphing:
0 --
Use unweighted morphing
1 --
Use area weighted morphing

KEYOPT(3)

Element behavior:
0 --
Use a thickness of unity
2 --
Plane strain $(Z$ strain $=0.0)$
3 --
Use a thickness equal to the real constant THICKNESS

TRANS109 Output Data

The solution output associated with the element is shown in Table 1:TRANS109 Element Output Definitions (p. 443).

The element output directions are parallel to the element coordinate system. A general description of solution output is given in Solution Output (p. 8) in the Element Reference. See the Basic Analysis Guide for ways to view results.

The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and " - " indicates that the item is not available.

Table 1 TRANS109 Element Output Definitions

| Name | Definition | \mathbf{O} | \mathbf{R} |
| :--- | :--- | :--- | :--- |
| EL | Element number | Y | Y |
| NODES | Nodes $-\mathrm{I}, \mathrm{J}, \mathrm{K}$ | Y | Y |
| MAT | Material Number | Y | Y |
| EF:X, Y | Electric field components | Y | Y |
| EF:SUM | Vector magnitude of EF | Y | Y |
| D:X,Y | Electric flux density components | Y | Y |
| D:SUM | Vector magnitude of D | Y | Y |

TRANS109 Assumptions and Restrictions

- You cannot use TRANS109 in small signal modal or harmonic analyses.
- You cannot generate a superelement from TRANS109 elements.
- The only allowable relative permittivity value (PERX) is 1.0.
- The element works with 2-D mechanical elements assuming negligible strain in the thickness direction (plane strain).
- TRANS109 will not work with TRANS126, PLANE121, INFIN110, CIRCU94, CIRCU124, or CIRCU125.
- This element cannot be used in a distributed solution.

TRANS109 Product Restrictions

There are no product-specific restrictions for this element.

INFIN110

2-D Infinite Solid
MP ME <> <> <> <> <> <> EM <> <> PP <> EME <>

INFIN110 Element Description

INFIN110 models an open boundary of a 2-D unbounded field problem. A single layer of elements is used to represent an exterior sub-domain of semi-infinite extent. The layer models the effect of far-field decay in magnetic, electrostatic, thermal, or electric current conduction analyses. For information about enclosed elements and analysis types, see Table 1: INFIN110 Analyses (p. 447). INFIN110 may be used for planar and axisymmetric analyses. See INFIN110 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

Figure 1 INFIN110 Geometry

INFIN110 Input Data

The geometry, node locations, and the coordinate system for the element are shown in Figure 1 (p. 445). KEYOPT(1) specifies the degree of freedom to be used. $\operatorname{KEYOPT}(2)$ specifies whether a 4 -node or 8 -node element is used.

Only one layer of INFIN110 elements should be used between the finite element model and the exterior (infinite) surface. The nodes may be input starting at any corner node, but the face opposite of the finite element model (the exterior face) must be flagged as an infinite surface. This is usually done by selecting the nodes at the outer surface and issuing the $\mathbf{S F}$, all,INF command. The other faces have no meaning. For best results, edges connecting the inner and outer surfaces of the infinite element should be radial from the center of the model.

A summary of the element input is given in "INFIN110 Input Summary" (p. 446). A general description of element input is given in Element Input (p.5). For axisymmetric applications see Harmonic Axisymmetric Elements (p. 102).

INFIN1 10 Input Summary

Nodes

I, J, K, L (if KEYOPT(2) = 0)
I, J, K, L, M, N, O, P (if KEYOPT(2) = 1)

Degrees of Freedom

Set by KEYOPT(1). See Table 1: INFIN110 Analyses (p. 447).

Real Constants

None

Material Properties

See Table 2: INFIN110 Material Properties (p. 447).

Surface Loads

Infinite Surface Flags --
face 1 (J-I), face 2 (K-J), face 3 (L-K), face 4 (I-L)

Body Loads

None

Special Features

None

KEYOPT(1)

Element degrees of freedom. See Table 1: INFIN110 Analyses (p. 447).

KEYOPT(2)

Element definition:
0 --
4-node quadrilateral
1 --
8-node quadrilateral

KEYOPT(3)

Element behavior:
0 --
Plane
1 --
Axisymmetric

KEYOPT(6)

Electric charge reaction sign:
0 --
Positive
1 --
Negative

Analysis categories are shown in the following table. KEYOPT(1) specifies the element degree of freedom.
Table 1 INFIN110 Analyses

| Analysis
 Category | KEY-
 OPT(1) | DOF La-
 bel | Reaction Solu-
 tion | Enclosed Ele-
 ments | Analysis
 Type |
| :--- | :---: | :--- | :--- | :--- | :--- |
| Magnetic | 0 | AZ | Magnetic Cur-
 rent Segment
 (F label = CSG) | PLANE13
 PLANE53 | Static
 Harmonic
 Electrostatic |
| Thermal | 2 | TEMP | Heat Flow
 (F label = HEAT) | PLANE55 | Transient |

INFIN110 material properties are shown in the following table. Nonzero material properties must be defined. Material properties are defined with the MP, MPDATA and EMUNIT commands.

Table 2 INFIN110 Material Properties

| Analysis Category | KEYOPT(1) | Material Properties |
| :--- | :---: | :--- |
| Magnetic | 0 | MUZERO |
| Electrostatic | 1 | PERX, PERY, LSST, RSVX, RSVY |
| Thermal | 2 | KXX, KYY, DENS, C |
| Electric Current Conduction | 3 | RSVX, RSVY, LSST, PERX, PERY |

INFIN110 Output Data

The solution output associated with the element is in two forms:

- Nodal degrees of freedom included in the overall nodal solution
- Additional element output as shown in Table 3: Element Output Definitions (p. 448)

Several items are illustrated in Figure 2 (p. 448). The element output directions are parallel to the element coordinate system. A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

Figure 2 INFIN110 Element Output

The following notation is used in Table 3: Element Output Definitions (p. 448):

The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 3 Element Output Definitions

| Name | Definition | \mathbf{O} | R |
| :--- | :--- | :--- | :--- |
| EL | Element Number | Y | Y |
| NODES | Nodes $-\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}(\mathrm{KEYOPT}(2)=0)$
 Nodes $-\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}, \mathrm{M}, \mathrm{N}, \mathrm{O}, \mathrm{P}(\mathrm{KEYOPT}(2)=1)$ | Y | Y |
| MAT | Material number | Y | Y |
| VOLU: | Volume | Y | Y |
| XC, YC | Location where results are reported | Y | 4 |
| MUZERO | Magnetic permeability of free space | 1 | 1 |
| PERX, PERY | Electric relative permittivity (element coordinates) | 2 | 2 |
| KXX, KYY | Thermal conductivity (element coordinates) | 3 | 3 |

1. If $\operatorname{KEYOPT}(1)=0$
2. If $\operatorname{KEYOPT}(1)=1$
3. If $\operatorname{KEYOPT}(1)=2$
4. Available only at centroid as a *GET item.

Table 4: INFIN110 Item and Sequence Numbers (p. 449) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p.9) in this manual for more information. The following notation is used in Table 4: INFIN110 Item and Sequence Numbers (p. 449):

Name

output quantity as defined in the Table 3: Element Output Definitions (p. 448)

Item

predetermined Item label for ETABLE command
E
sequence number for single-valued or constant element data

Table 4 INFIN110 Item and Sequence Numbers

| Output
 Quant-
 ity
 Name | ETABLE and
 ESOL Command
 Input | |
| :---: | :---: | :---: |
| | Item | E |
| MUZERO | NMISC | 1 |
| PERX | NMISC | 1 |
| PERY | NMISC | 2 |
| KXX | NMISC | 1 |
| KYY | NMISC | 2 |

INFIN110 Assumptions and Restrictions

- The area of the quadrilateral infinite element must be nonzero.
- The element cannot degenerate to a triangle.
- The exterior surface (for example, KL or KOL in Figure 1 (p. 445)) of the element must be flagged using the INF option on the SF family of commands.
- Only one layer of infinite elements can be used on the exterior boundary of the finite element model.
- The lines JK and IL of the infinite element IJKL (in Figure 2 (p. 448)) should either be parallel or divergent from each other. That is, the enclosed surface should be convex and the infinite domain must be represented by one layer of infinite elements without overlap or gap. Ideally, the length OJ should equal JK , and Ol should equal IL. The point " O " is the "pole" of mapping for the infinite element. The pole is chosen arbitrarily, and may or may not coincide with the origin of the coordinate system. For best results, the poles should be placed at the centers of disturbances (loads). There can be multiple poles for a problem. See the Theory Reference for the Mechanical APDL and Mechanical Applications for more about poles.
- Although this element can have 8 nodes $(\operatorname{KEYOPT}(2)=1)$, for theoretical reasons (see the Theory Reference for the Mechanical APDL and Mechanical Applications), only 5 nodes are included in the solution.
- The element assumes that the degree of freedom (DOF) value at infinity is always zero (0.0). That is, the DOF value at infinity is not affected by TUNIF, D, or other load commands.
- The infinite elements are not included in solution result displays but may be viewed in element displays [EPLOT].
- There are considerations in the application of INFIN110 that will lead to optimal performance in the analysis of your model. These consideration are covered in detail in the Low-Frequency Electromagnetic Analysis Guide.
- When used in a model with the higher-order elements PLANE35, PLANE53, PLANE77, PLANE121, and PLANE230 use the higher-order setting for INFIN110 $(\operatorname{KEYOPT}(2)=1)$.
- This element may not be compatible with other elements with the VOLT degree of freedom. To be compatible, elements must have the same reaction solution for the VOLT DOF. Elements that have an electric charge reaction solution must all have the same electric charge reaction sign. KEYOPT(6) sets the electric charge reaction sign. For more information, see Element Compatibility in the Low-Frequency Electromagnetic Analysis Guide.

INFIN110 Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

ANSYS Mechanical

These restrictions apply unless the Emag option is enabled.

- This element does not have magnetic, electrostatic, or electric current conduction capability.
- The AZ and VOLT degrees of freedom are not active. KEYOPT(1) defaults to 2 (TEMP) instead of 0 and cannot be changed.
- The material properties MUZERO, PERX, PERY, RSVX, RSVY, and LSST are not allowed.

ANSYS Emag

- This element has only magnetic, electrostatic, and electric current conduction capability, and does not have thermal capability.
- The only active degrees of freedom are AZ and VOLT. KEYOPT(1) can only be set to 0 or 1 .
- The only allowable material properties are MUZERO, PERX, PERY, RSVX, RSVY, and LSST.

INFIN111

3-D Infinite Solid
MP ME ST <> <> <> <> <> EM <> <> PP <> EME MFS
Product Restrictions

INFIN111 Element Description

INFIN111 models an open boundary of a 3-D unbounded field problem. A single layer of elements is used to represent an exterior sub-domain of semi-infinite extent. The layer models the effect of far-field decay in magnetic, electrostatic, thermal, or electric current conduction analyses. For information about enclosed elements and analysis types, see Table 1: INFIN111 Analyses (p. 452). See INFIN111 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

Figure 1 INFIN111 Geometry

INFIN111 Input Data

The geometry, node locations, and the coordinate system for the element are shown in Figure 1 (p. 451). KEYOPT(1) specifies the degree(s) of freedom to be used. KEYOPT(2) specifies whether a 8-node or 20-node element is used.

Only one layer of INFIN111 elements should be used between the finite element model and the exterior (infinite) surface. The nodes may be input starting at any corner node, but the face opposite of the finite element model (the exterior face) must be flagged as an infinite surface. This is usually done by selecting the nodes at the outer surface and issuing the $\mathbf{S F}$,all,INF command. The other faces have no meaning. For best results, edges connecting the inner and outer surfaces of the infinite element should be radial from the center of the model.

A summary of the element input is given in "INFIN111 Input Summary" (p. 452). A general description of element input is given in Element Input (p. 5).

INFIN111 Input Summary

Nodes

I, J, K, L, M, N, O, P (if KEYOPT(2) = 0)
I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, A, B (if KEYOPT(2) = 1)

Degrees of Freedom

Set by KEYOPT(1). See Table 1: INFIN111 Analyses (p. 452).

Real Constants

None

Material Properties

See Table 2: INFIN111 Material Properties (p. 453).

Surface Loads

Infinite Surface Flags --

face 1 (J-I-L-K), face 2 (I-J-N-M), face 3 (J-K-O-N), face 4 (K-L-P-O), face 5 (L-I-M-P), face 6 (M-N-O-P)

Body Loads

None

Special Features

None

KEYOPT(1)

Element degree of freedom. See Table 1: INFIN111 Analyses (p. 452).

KEYOPT(2)

Element definition:
0 --
8-node brick
1 --
20-node brick

KEYOPT(6)

Electric charge reaction sign:
0 --
Negative
1 --
Positive
Analysis categories are shown in the following table. KEYOPT(1) specifies the element degree of freedom.
Table 1 INFIN111 Analyses

| Analysis Category | KEY-
 OPT(1) | DOF La-
 bel | Reaction Solu-
 tion | Enclosed Ele-
 ments | Analysis
 Type |
| :--- | :---: | :--- | :--- | :--- | :--- |
| Magnetic | 0 | MAG | Magnetic Flux | SOLID5 | Static |
| | | | (F label = FLUX) | SOLID96 | |

| Analysis Category | $\begin{gathered} \hline \text { KEY- } \\ \text { OPT(1) } \end{gathered}$ | DOF La- | Reaction Solution | Enclosed Elements | Analysis Type |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | SOLID98 | |
| Magnetic | 1 | $\begin{aligned} & \mathrm{AX}, \mathrm{AY}, \\ & \mathrm{AZ} \end{aligned}$ | Magnetic Current Segments (F label = CSG) | $\begin{aligned} & \text { SOLID62 } \\ & \text { SOLID97 } \end{aligned}$ | Static
 Harmonic
 Transient |
| Electrostatic | 2 | VOLT | Electric Charge
 (F label $=\mathrm{CHRG}$) | SOLID122
 SOLID123 | Static
 Harmonic |
| Thermal | 3 | TEMP | Heat Flow
 (F label = HEAT) | SOLID70
 SOLID87
 SOLID90 | Steady-state
 Transient |
| Electric Current Conduction | 4 | VOLT | Electric Current
 (F label $=$ AMPS $)$ | SOLID231
 SOLID232 | Steady-state
 Harmonic
 Transient |

INFIN111 material properties are shown in the following table. Nonzero material properties must be defined. Material properties are defined with the MP, MPDATA and EMUNIT commands.

Table 2 INFIN111 Material Properties

| Analysis Category | KEYOPT(1) | Material Properties |
| :--- | :---: | :--- |
| Magnetic | 0 | MUZERO |
| Magnetic | 1 | MUZERO |
| Electrostatic | 2 | PERX, PERY, PERZ, LSST, RSVX, RSVY, RSVZ |
| Thermal | 3 | KXX, KYY, KZZ, DENS, C |
| Electric Current Conduction | 4 | RSVX, RSVY, RSVZ, LSST, PERX, PERY, PERZ |

INFIN111 Output Data

The solution output associated with the element is in two forms:

- Nodal potentials included in the overall nodal solution
- Additional element output as shown in Table 3: INFIN111 Element Output Definitions (p. 454)

The element output directions are parallel to the element coordinate system. A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

The Element Output Definitions table uses the following notation:
A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and " - " indicates that the item is not available.

Table 3 INFIN111 Element Output Definitions

| Name | Definition | \mathbf{O} | R |
| :--- | :--- | :--- | :--- |
| EL | Element Number | Y | Y |
| NODES | Nodes $-\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}, \mathrm{M}, \mathrm{N}, \mathrm{O}, \mathrm{P}$ (if KEYOPT(2) = 0); Nodes -
 I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, A, B (if
 KEYOPT(2) = 1) | Y | Y |
| MAT | Material number | Y | Y |
| VOLU: | Volume | Y | Y |
| XC, YC, ZC | Location where results are reported | Y | 4 |
| MUZERO | Magnetic permeability of free space | 1 | 1 |
| PERX, PERY,
 PERZ | Electric relative permittivity | 2 | 2 |
| KXX, KYY, KZZ | Thermal conductivity | 3 | 3 |

1. If $\operatorname{KEYOPT}(1)=0$ or 1
2. If $\operatorname{KEYOPT}(1)=2$
3. If $\operatorname{KEYOPT}(1)=3$
4. Available only at centroid as a *GET item.

Table 4: INFIN111 Item and Sequence Numbers (p. 454) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p.9) in this manual for more information. The following notation is used in Table 4: INFIN111 Item and Sequence Numbers (p. 454):

Name

output quantity as defined in the Table 3: INFIN111 Element Output Definitions (p. 454)

Item

predetermined Item label for ETABLE command
E
sequence number for single-valued or constant element data
Table 4 INFIN111 Item and Sequence Numbers

| Output
 Quant-
 ity
 Name | ETABLE and
 ESOL Command
 Input | |
| :---: | :---: | :---: |
| | Item | E |
| MUZERO | NMISC | 1 |
| PERX | NMISC | 1 |
| PERY | NMISC | 2 |
| PERZ | NMISC | 3 |

| Output
 Quant-
 ity
 Name | ETABLE and
 ESOL Command
 Input | |
| :--- | :--- | :--- |
| | Item | E |
| KXX | NMISC | 1 |
| KYY | NMISC | 2 |
| KZZ | NMISC | 3 |

INFIN111 Assumptions and Restrictions

- Assumptions and restrictions listed for INFIN110 elements also apply to INFIN111 elements (see INFIN110 Assumptions and Restrictions).
- There are considerations in the application of INFIN111 that will lead to optimal performance in the analysis of your model. These consideration are covered in detail in the Low-Frequency Electromagnetic Analysis Guide.
- When used in a model with the higher-order elements SOLID87, SOLID90, SOLID98, SOLID122, SOLID123, SOLID231, and SOLID232, use the higher-order setting for $\operatorname{INFIN} 111(\operatorname{KEYOPT}(2)=1)$.
- This element may not be compatible with other elements with the VOLT degree of freedom. To be compatible, elements must have the same reaction solution for the VOLT DOF. Elements that have an electric charge reaction solution must all have the same electric charge reaction sign. KEYOPT(6) sets the electric charge reaction sign. For more information, see Element Compatibility in the Low-Frequency Electromagnetic Analysis Guide.

INFIN111 Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

ANSYS Mechanical

These restrictions apply unless the Emag option is enabled.

- This element does not have magnetic, electrostatic, or electric current conduction capability.
- The MAG, AX, AY, AZ, and VOLT degrees of freedom are not active. KEYOPT(1) defaults to 3 (TEMP) instead of 0 and cannot be changed.
- The material properties MUZERO, PERX, PERY, PERZ, RSVX, RSVY, RSVZ, and LSST are not allowed.

ANSYS Emag

- This element has only magnetic, electrostatic, and electric current conduction capability, and does not have thermal capability.
- TEMP is not allowed as a degree of freedom. $\operatorname{KEYOPT}(1)$ can only be set to 0,1 or 2 .
- The only allowable material properties are MUZERO, PERX, PERY, PERZ, RSVX, RSVY, RSVZ, and LSST.

INTER115

3-D Magnetic Interface
MP <> <> <> <> <> <> <> EM <> <> PP <> EME <>

INTER115 Element Description

INTER115 is used to couple magnetic vector and scalar potentials in the same analysis. It is a 4-node interface element, capable of collapsing to a 3-node interface element, that is defined on the interface between vector and scalar potential finite element regions. The element has four degrees of freedom per node: AX, AY, AZ and MAG. The element does not have a thickness. It can be used with scalar elements SOLID5, SOLID96, SOLID98, and vector element SOLID97. All of these are 3-D magnetic elements which are used to perform linear, nonlinear, static and dynamic analyses, and coupled field analysis. See INTER115 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

Figure 1 INTER115 Geometry

INTER115 Input Data

The geometry, node locations, and the coordinate system for this element are shown in the Figure 1 (p. 457). The element is defined by four nodes and no material property is required. The element x -axis is oriented along the length of the element from node I toward node J.

A summary of the element input is given in "INTER115 Input Summary" (p. 457). A general description of element input is given in Element Input (p. 5).

INTER115 Input Summary

Nodes

I, J, K, L
Degrees of Freedom
AX, AY, AZ, MAG

Real Constants

None

Material Properties

None

Surface Loads

None

Special Features

None

KEYOPTS

None

INTER115 Output Data

The interface element has no output of its own since it is used only to couple vector and scalar potential finite element regions.

INTER115 Assumptions and Restrictions

- The element should not be located at the interface of an air-iron boundary. Such a placement will lead to inaccurate coupling across the vector/scalar potential interface leading to a loss of accuracy in the solution. It is recommended that the interface between vector/scalar domains occur within a single homogenous material (for example, air).
- The normal component of the vector potential at the vector/scalar interface, where the INTER115 element is located, should be set to zero. By setting $\mathrm{A} \times \mathrm{n}=0$ at the interface, the Coulomb gauge condition is satisfied and the vector potential solution is assured to be unique. Node rotation [NROTAT] can be easily achieved for Cartesian, cylindrical, spherical, and toroidal boundaries from which the normal component can be set to zero.
- In the vector potential region, if a multiply-connected conductor exits, it may not be "cut" by a vector/scalar interface. For example, a closed loop conductor is multiply-connected. The air "hole" inside the conductor cannot contain a vector/scalar interface. In this case, enclose the entire conductor and "hole" region with vector potential elements, then encase the entire region with a scalar domain.
- The INTER115 element cannot lie on a free-surface; however, an element edge may exist at a free-surface.
- When using a scalar source primitive (SOURC36), it is recommended that a small cushion of air surround the primitive before interfacing to a vector potential domain. Having the primitive boundary located at the vector/scalar interface boundary can lead to solution inaccuracies.
- The scalar potential region of a problem using an INTER115 boundary is limited to the Reduced Scalar Potential (RSP) formulation [MAGOPT,0]. For accurate solutions, this region should be free from high permeability materials (that is, iron).
- The solenoidal current density is required for a solution, or for any postprocessing operations.
- Zero area elements are not allowed. This occurs most often if the elements are not numbered properly.
- A triangular element may be formed by defining duplicate K and L node numbers as described in Triangle, Prism, and Tetrahedral Elements (p. 99).
- The 4 nodes defining the element should lie as close as possible to a flat plane; however, a moderate out-of-plane tolerance is permitted so that the element may have a somewhat warped shape. An excessively warped element will produce a warning message. In the case of warping errors, triangular elements should be used (see Triangle, Prism, and Tetrahedral Elements (p. 99)).
- Shell element warping tests are described in detail in tables of Applicability of Warping Tests and Warping Factor Limits in the Theory Reference for the Mechanical APDL and Mechanical Applications.
- All units used in INTER115 must be expressed in the MKS system.
- This element cannot be used in a distributed solution.

INTER115 Product Restrictions

There are no product-specific restrictions for this element.

Coupled Thermal-Fluid Pipe

MP ME <> PR PRN <> <> <> <> <> <> PP <> EME MFS
Product Restrictions

FLUID116 Element Description

FLUID116 is a 3-D element with the ability to conduct heat and transmit fluid between its two primary nodes. Heat flow is due to the conduction within the fluid and the mass transport of the fluid. Convection may be accounted for either with additional nodes and convection areas or with surface elements SURF151 and SURF152. In both cases, the film coefficient may be related to the fluid flow rate. The element may have two different types of degrees of freedom, temperature and/or pressure.

The thermal-flow element may be used in a steady-state or transient thermal analysis. If the model containing the thermal-flow element is also to be analyzed structurally, the element should be replaced by an equivalent (or null) structural element. See FLUID116 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

Figure 1 FLUID116 Geometry

FLUID116 Input Data

The geometry, node locations, and the coordinate system for this thermal-flow pipe element are shown in Figure 1 (p .461). The element is defined by two primary nodes, two additional nodes if convection is desired, several real constants (see Table 1: FLUID116 Element Real Constants (p. 465)), and the material properties. The length L of the element is determined from the two primary node locations.

The material properties can be input as numerical values or as tabular inputs evaluated as a function of pressure, temperature, velocity, time, and location. If temperature or pressure, you need to activate the appropriate pressure or temperature degrees of freedom. Tabular material properties are calculated before the first iteration (i.e., using initial values [IC]).

The fluid mass density ρ (Mass/Length ${ }^{3}$) is input as property DENS or computed following the ideal gas law if the real constant $R_{\text {gas }}$ is present. If $\operatorname{KEYOPT}(2)=2,3$, or 4 , the convection film coefficient h_{f}
(Heat/Length ${ }^{2 *}{ }^{2}$ Time ${ }^{*}$ Deg) is input by the options defined by $\operatorname{KEYOPT}(4)$. If $\operatorname{KEYOPT}(2)=1$, convection surfaces using FLUID116 velocities and other information are stored and can be used by SURF151 or SURF152 and optionally the user programmable feature USRSURF116 in order to determine film coefficients and bulk temperatures as a function of velocities and other parameters. The input tables are explained in detail in Table 2: FLUID116 Empirical Data Table (Optional) (p. 467). The thermal conductivity k_{xx} (Heat/Length*time*Deg) acts in the element longitudinal direction and is input as property KXX. The specific heat c_{p} (Heat/Mass*Deg or Heat*Length/Force*Time ${ }^{2 *}$ Deg) is input as property C. The fluid viscosity μ is input as property VISC. In an axisymmetric analysis, such as for annular flow, the flow area, the convection areas, and all other input should be on a full 360° basis.
$\operatorname{KEYOPT}(2)=3$ and 4 are variations of $\operatorname{KEYOPT}(2)=2$ used to avoid an artificial reduction of the change in temperature in the last element next to an inlet or outlet with no specified temperature. If such an inlet or outlet is at node I , use $\operatorname{KEYOPT}(2)=3$ and if it is at node J , use $\operatorname{KEYOPT}(2)=4$. All elements of a run of pipe should use the same KEYOPT, not just the end one. For networks where the usage of KEYOPT(2) is not obvious and the detailed temperature distribution is important, use $\operatorname{KEYOPT}(2)=2$ with a relatively fine mesh (small elements). The effect of $\operatorname{KEYOPT}(2)=3$ and 4 could be alternatively achieved by adjusting the convection areas (Real Constants 7 and 8) but it is not as convenient.

The coefficient of friction (input as property MU) is the starting value of the Moody friction factor (f). The friction factor for the first iteration is always assumed to be MU. The smooth-pipe empirical correlations are a function of Reynolds number (Re) and depend on whether the flow is laminar or turbulent ($\mathrm{Re}>2500$). If a friction table is supplied (TB,FCON), the friction factor is recomputed each substep from the table (using linear interpolation where necessary). The table is also explained in detail in Table 2: FLUID116 Empirical Data Table (Optional) (p. 467).

The word PRES (or TEMP) should be input for the Lab variable on the \mathbf{D} command and the pressure (or temperature) value input for the value. If a nodal heat (or fluid) flow rate is defined with the \mathbf{F} command, input the word HEAT (or FLOW) for the Lab variable and input the flow rate for the value. If temperature is the only degree of freedom, $(\operatorname{KEYOPT}(1)=1)$, you can input a known flow rate in units of mass/time via an $\mathbf{S F E}$, ,,HFLUX command (rather than \mathbf{F},,FLOW). Fluid weight effects are activated by specifying a nonzero acceleration and/or rotation vector [ACEL and/or OMEGA].

When using the rotational speed and slip factor real constants (real constants 7-10 in Table 1: FLUID116 Element Real Constants (p .465)), you can specify either numerical values or table inputs. If specifying table inputs, enclose the table name in \% signs (for example, \%tabname\%). Also, if using table inputs for rotational speed, either both real constants 7 and 8 should have the same table name reference, or real constant 8 should be unspecified. Similarly, if using table inputs for slip factor, either both real constants 9 and 10 should have the same table name reference, or real constant 10 should be unspecified. Both rotational speed and the slip factor can vary with time and location.

If tabular real constants are used, then any node in a FLUID116 network must refer to a single table name. For correct results, at any node, the table names from different elements must all be the same and a table name cannot be used along with any numerical real constant from a different element.

See Steady-State Thermal Analysis in the Thermal Analysis Guide for more information on using table inputs.
Element loads are described in Node and Element Loads (p. 97). Element body loads may be input as heat generation rates at the nodes. The node J heat generation rate $\mathrm{HG}(\mathrm{J})$ defaults to the node I heat generation rate $\mathrm{HG}(\mathrm{I})$.

KEYOPT(8) is used for inputting flow losses (see Table 1: FLUID116 Element Real Constants (p. 465)). Momentum losses in pipes due to bends, elbows, joints, valves, etc., may be represented by a fictitious (equivalent)
length of pipe L_{a}. This equivalent length may be input directly or calculated from an input constant K, the hydraulic diameter D, and the friction factor f.

FLUID116 elements can be used to model fluid flow between hydrostatic fluid elements, (HSFLD241 or HSFLD242). A single FLUID116 element connecting the pressure nodes of two different hydrostatic fluid elements is sufficient to model the flow. However, more FLUID116 elements can be added if the actual geometry of the connection needs to be modeled. For FLUID116 elements that are directly or indirectly connected to hydrostatic fluid element, you must set $\operatorname{KEYOPT}(1)=3$ to convert the fluid element mass flow rate to volume change (for compatibility with the hydrostatic fluid elements).

A summary of the element input is given in "FLUID116 Input Summary" (p. 463). A general description of element input is given in Element Input (p. 5).

FLUID116 Input Summary

Nodes

I, J or I, J, K, L (see KEYOPT(2))

Degrees of Freedom

PRES, TEMP if $\operatorname{KEYOPT}(1)=0$
TEMP if KEYOPT(1) = 1
PRES if KEYOPT(1) $=2$ or 3

Real Constants

See Table 1: FLUID116 Element Real Constants (p. 465)

Material Properties

KXX, C, DENS, MU, VISC, HF

Surface Loads

You can specify imposed mass flow via an SFE,,,HFLUX command. Valid only when $\operatorname{KEYOPT}(1)=1$.

Body Loads

Heat Generations --

HG(I), HG(J)

Special Features

Nonlinear

KEYOPT(1)

Pressure and temperature degrees of freedom:
0 --
PRES and TEMP degrees of freedom
1 --
TEMP degrees of freedom only
2 --
PRES degrees of freedom only. This option is not valid when FLUID116 is connected to HSFLD241 or HSFLD242.

3 --
PRES degrees of freedom only. This option is only valid when FLUID116 is directly or indirectly connected to HSFLD241 or HSFLD242.

KEYOPT(2) (used only if KEYOPT(1) = 0 or 1)

0 --
2 nodes and no convection surface or convection information
1 --
2 nodes and convection information passed to SURF151/SURF152
2 --
4 nodes and convection surface logic included with this element, convection area shared between nodes I and J

3 --
4 nodes and convection surface logic included with this element, convection area only at node I
4 --
4 nodes and convection surface logic included with this element, convection area only at node J
$\operatorname{KEYOPT}(4)$ (used only if $\operatorname{KEYOPT}(2)=2,3$, or 4)
Film coefficient $\left(h_{f}\right)$ definition
0 --
Use MP,HF
1 --
Use real constants 9 thru 12 (see Table 1: FLUID116 Element Real Constants (p. 465))
2 --
Use TB,HFLM for h_{f} as a function of temperature and average velocity
3 --
Use TB,HFLM for h_{f} as a function of temperature and Reynold's number
4 --
Use TB,HFLM for Nu as a function of temperature and Reynold's number ($\mathrm{h}_{\mathrm{f}}=\mathrm{K}_{\mathrm{xx}}{ }^{*} \mathrm{Nu} / \mathrm{diam}$)
5 --
Use call to User116Hf

KEYOPT(5) (used only if $\operatorname{KEYOPT}(4)=0,2,3,4$, or 5)

Evaluation of film coefficient:
0 --
Average fluid temperature ($\mathrm{TI}+\mathrm{TJ}$)/2
1 --
Average wall temperature ($\mathrm{TK}+\mathrm{TL}$)/2
2 --
Average film temperature ($\mathrm{TI}+\mathrm{TJ}+\mathrm{TK}+\mathrm{TL}$)/4
3 --
Differential temperature ($\mathrm{TI}+\mathrm{TJ}$)/2-(TK + TL)/2
$\operatorname{KEYOPT}(6)$ (used only if $\operatorname{KEYOPT}(1)=0$ or 2)
Fluid conductance coefficient definition:
0 --
Use conductance formula
1 --
Use real constant C

2 --

Use TB,FCON as a function of temperature and average velocity
3 --
Use TB,FCON as a function of temperature and Reynold's number
4 --
Use call to User116Cond

KEYOPT(7) (used only if KEYOPT(6) = 0)

Friction factor calculation:
0 --
Use smooth pipe empirical correlations
1 --
Use MP,MU
2 --
Use TB,FCON with friction factor being a function of temperature and average velocity
3 --
Use TB,FCON with friction factor being a function of temperature and Reynold's number

$\operatorname{KEYOPT}(8)$ (used only if $\operatorname{KEYOPT}(6)=0$)

Flow losses specified by input:
0 --
Use real constant L_{a} as the additional length
1 --
Use real constant K as loss coefficient

KEYOPT(9)

Discretization scheme:
0 --
Upwind difference linear shape function (default). This scheme has lower order accuracy than the other schemes.
1 --
Central difference linear shape function. This scheme has higher order accuracy but it can lead to oscillations near bends.
2 --
Upwind difference exponential shape function. This scheme has high accuracy and does not produce oscillations near bends.

Table 1 FLUID116 Element Real Constants

| (Given in the order required for input in the real constant table) | | | |
| :---: | :--- | :--- | :--- |
| No. | Name | Definition | Units |
| $\mathbf{1}$ | D | Hydraulic diameter. | Length |
| $\mathbf{2}$ | A | Flow cross-sectional area. | Length 2 |
| $\mathbf{3}$ | $\mathbf{N}_{\mathbf{c}}$ | Number of flow channels (defaults to 1). If greater than 1,
 real constants and element output are on a per channel
 basis. | |
| $\mathbf{4 - 6}$ | | not currently used | |

| (Given in the order required for input in the real constant table) | | | |
| :---: | :---: | :---: | :---: |
| No. | Name | Definition | Units |
| 7 | $\left(A_{n}\right)_{1}$ | If KEYOPT(2) $=1$, angular velocity associated with node I. If $\operatorname{KEYOPT}(2)=2,3$, or 4 , convection area between nodes I and K. Defaults to $\pi \mathrm{DL} / 2$ if $\operatorname{KEYOPT}(2)=2$, defaults to $\pi \mathrm{DL}$ if $\operatorname{KEYOPT}(2)=3$
 where:
 $\mathrm{L}=$ element length | Length ${ }^{2}$ |
| 8 | $\left(A_{n}\right)_{J}$ | If KEYOPT(2) $=1$, angular velocity associated with node J. Defaults to value at node I.
 If $\operatorname{KEYOPT}(2)=2,3$, or 4 , convection area between nodes J and L. Defaults to $\pi D L / 2$ if $\operatorname{KEYOPT}(2)=2$, defaults to $\pi D L$ if $\operatorname{KEYOPT}(2)=4$ | Length ${ }^{2}$ |
| 9 | SLIPFAI | If $\operatorname{KEYOPT}(2)=1$, slip factor at node I. | |
| 10 | SLIPFAJ | If $\operatorname{KEYOPT}(2)=1$, slip factor at node J. Defaults to value at node I. | |
| 9-12 | $\begin{aligned} & \text { N1, N2, } \\ & \text { N3, N4 } \end{aligned}$ | (Used if $\operatorname{KEYOPT}(4)=1$ and $\operatorname{KEYOPT}(2)=2,3$, or 4)
 $\mathrm{Nu}=\mathrm{N} 1+\mathrm{N} 2 \mathrm{Re}^{\mathrm{N} 3} \mathrm{Pr}^{\mathrm{N} 4}$
 where:
 $\operatorname{Re}=$ Reynolds number (WD/ $\mu \mathrm{A}$)
 $\operatorname{Pr}=$ Prandtl number ($\left.C_{p} \mu / K X X\right)$
 $C_{p}=$ specific heat
 For example, the Dittus-Boelter correlation for full-developed turbulent flow in smooth pipes may be input with $\mathrm{N} 1=0.0, \mathrm{~N} 2=0.023, \mathrm{~N} 3=0.8$, and $\mathrm{N} 4=0.4$ (heating). | |
| 13 | \mathbf{P}_{p} | Pump pressure. | Force / Length ${ }^{2}$ |
| 14 | | Used to compute conductance coefficient C where: $\begin{aligned} & W=C \sqrt{\Delta p} \\ & \Delta p=\text { pressure drop } \end{aligned}$ | |
| | C_{r} | If $\operatorname{KEYOPT}(6)=1$, conductance coefficient is used to calculate flow. Hence, $C=C_{r} \frac{\sqrt{\text { Weight * Length }}}{\text { Time }}$ | |
| | $L_{\text {a }}$ | If $\operatorname{KEYOPT}(6)=0$, and $\operatorname{KEYOPT}(8)=0$, additional Length of pipe to account for flow losses (for example, valves, orifices, etc.) Hence, $C=A \sqrt{2 \rho D /\left(F\left(L+L_{a}\right)\right)}$ where: $\rho=\text { DENS }$
 $F=$ friction coefficient | |
| | K | If $\operatorname{KEYOPT}(6)=0$ and $\operatorname{KEYOPT}(8)=1$, this real constant is the loss coefficient K. Hence, $C=A \sqrt{2 \rho D /(F L+K D)}$ | |
| 15-18 | | not currently used | |

| (Given in the order required for input in the real constant table) | | | | |
| :---: | :---: | :--- | :---: | :---: |
| No. | Name | Definition | Units | |
| $\mathbf{1 9}$ | $\mathbf{R}_{\text {gas }}$ | Gas constant in ideal gas law $\left(\rho=\mathrm{p} /\left(\mathrm{R}_{\text {gas }} T_{\text {abs }}\right)\right)$, where $\mathrm{T}_{\text {abs }}$
 is the absolute temperature and $\mathrm{p}=$ average pressure. If
 zero, use ρ as specified by the DENS material property. | Length $^{2} /$
 Deg * Time 2 | |
| $\mathbf{2 0}$ | $\mathbf{V}_{\mathbf{D F}}$ | Viscous damping multiplier. Default 0.0 | | |
| $\mathbf{2 1}$ | $\mathbf{C}_{\text {ver }}$ | Units conversion factor for viscous damping. Default $=1.0$
 $\mathrm{Q}_{\mathrm{V}}=\mathrm{V}_{\mathrm{DF}} \mathrm{C}_{\text {ver }} \mathrm{F} \pi \mathrm{VISC}(\mathrm{VELOC})^{2} \mathrm{~L}=$ viscous heating for element,
 with $\mathrm{F}=8.0$ for laminar and 0.21420 for turbulent flow. | | |

Note

Real constants 7 through 12 and 20 and 21 are used only if $\operatorname{KEYOPT}(1)=0$ or 1 and real constants 13 through 19 are used only if $\operatorname{KEYOPT}(1)=0$ or 2 .

The data in Table 2: FLUID116 Empirical Data Table (Optional) (p. 467) is entered in the data table with the TB commands. The curves are initialized by using the TB command. The temperature for the first curve is input with the TBTEMP command, followed by TBPT commands for up to 100 points. Up to 20 temperature-dependent curves ($\mathrm{NTEMP}=20$ maximum on the TB command) may be defined in this manner. The constants (X, Y) entered on the TBPT command (two per command).

Table 2 FLUID116 Empirical Data Table (Optional)

| Con-
 stant | Meaning |
| :---: | :--- |
| Film Coefficient The film coefficient table is initialized with the TB,HFLM command. The | |
| TBPT data are: | |

FLUID116 Output Data

The solution output associated with the element is in two forms:

- Nodal degrees of freedom included in the overall nodal solution
- Additional element output as shown in Table 3: FLUID116 Element Output Definitions (p. 468)

The fluid flow rate is expressed in units of Mass/Time and is positive from node I to node J. In an axisymmetric analysis these flow rates and all other output are on a full 360° basis. The fluid flow rate and the heat flow
rate at the nodes may be printed with the OUTPR command. A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

The following notation is used in Table 3: FLUID116 Element Output Definitions (p. 468):

The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and " - " indicates that the item is not available.

Table 3 FLUID116 Element Output Definitions

| Name | Definition | \mathbf{O} | R |
| :--- | :--- | :---: | :---: |
| EL | Element Number | Y | Y |
| NODES | Nodes - I, J, K, L | Y | Y |
| MAT | Material number | Y | Y |
| XC, YC, ZC | Location where results are reported | Y | 4 |
| VELOC | Average velocity | Y | Y |
| RE | Reynolds number | Y | Y |
| FLOW RATE | Flow rate from node I to node J | Y | Y |
| HT COND RATE | Heat flow rate from node I to node J due to conduc-
 tion | 1 | 1 |
| HT TRANSP RATE | Heat flow rate at node I due to mass transport | 1 | 1 |
| CONV AREAS (I, J) | Convection areas at nodes I and J | 3 | 3 |
| HFILM | Film coefficient | 3 | 3 |
| NUS | Nusselt number | 3 | 3 |
| PR | Prandtl number | 3 | 3 |
| HT CONV RATES
 (I, J) | Heat flow rates from nodes I to K and from nodes J
 to L due to convection | 3 | 3 |
| HGVD | Heat generation due to direct input and viscous
 damping | 1 | 1 |
| TEMP | Temperature | - | 1 |
| PUMP PR | Pump pressure | 2 | 2 |
| FRICTION | Friction factor | 2 | 2 |
| PRES | Pressure | - | 2 |

1. If $\operatorname{KEYOPT}(1)=0$ or 1
2. If $\operatorname{KEYOPT}(1)=0$ or 2
3. If $\operatorname{KEYOPT}(2)=2,3$, or 4
4. Available only at centroid as a *GET item.

Table 4: FLUID116 Item and Sequence Numbers (p. 469) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p.9) in this manual for more information. The following notation is used in Table 4: FLUID116 Item and Sequence Numbers (p. 469):

Name

output quantity as defined in the Table 3: FLUID116 Element Output Definitions (p. 468)

Item

predetermined Item label for ETABLE command
E
sequence number for single-valued or constant element data

$\mathbf{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}$

sequence number for data at nodes $\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}$
Table 4 FLUID116 Item and Sequence Numbers

| Output Quant-
 ity Name | ETABLE and ESOL Command Input | | | | | |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| | Item | E | \mathbf{I} | \mathbf{J} | \mathbf{K} | \mathbf{L} |
| VELOC | NMISC | 1 | - | - | - | - |
| RE | NMISC | 2 | - | - | - | - |
| FLOW RATE | NMISC | 3 | - | - | - | - |
| HEAT COND
 RATE | NMISC | 4 | - | - | - | - |
| HEAT TRANSP
 RATE | NMISC | 5 | - | - | - | - |
| CONV AREA | NMISC | - | 6 | 7 | - | - |
| HFILM | NMISC | 8 | - | - | - | - |
| NUS | NMISC | 9 | - | - | - | - |
| PR | NMISC | 10 | - | - | - | - |
| HEAT CONV
 RATE | NMISC | - | 11 | 12 | - | - |
| HGVD | NMISC | - | 13 | 14 | - | - |
| TEMP | NMISC | - | 15 | 16 | 17 | 18 |
| PUMP PR | NMISC | 19 | - | - | - | - |
| FRICTION | NMISC | 20 | - | - | - | - |
| PRES | NMISC | - | 21 | 22 | - | - |

FLUID116 Assumptions and Restrictions

- The element must not have a zero length, so nodes I and J must not be coincident.
- Nodes K and L may be located anywhere in space, even coincident with I and J, respectively.
- D must always be nonzero.
- A defaults to $\pi D^{2} / 4.0$ and is assumed to remain constant for the element.
- Compressibility and flow inertia effects of the fluid are not included in the element formulation.
- If temperatures are degrees of freedom, the resulting unsymmetric matrix requires twice as much memory storage for the solution as other ANSYS elements.
- HF must be nonzero for the four node element.
- MU and DENS must be nonzero if a flow solution is desired and KEYOPT(6) is not zero.
- If the flow is specified at a node also having a specified pressure, the flow constraint is ignored.
- In general, flow is usually specified at the inlet, pressure at the outlet.
- For problems involving pressure specification on inlets and outlets, the solution may converge too soon (i.e., the PRES degree of freedom has converged but FLOW has not due to a loose convergence criterion). Be sure to check your results carefully. To force more iterations, you can tighten the convergence criteria (i.e., CNVTOL,flow,,1e-30), or you can specify a nonzero initial condition on pressure, which could be an average of the specified inlet and outlet pressures (i.e., IC,all,pres,pavg). You can use both options together; however, ANSYS recommends using a nonzero initial condition. Tightening the convergence requires you to estimate a suitable tolerance.
- More substeps are required for convergence as the flow approaches zero.
- See the CNVTOL command for convergence control.
- If pressure is a degree of freedom, the element is nonlinear and requires an iterative solution.

FLUID116 Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

ANSYS Professional

These restrictions apply when using this element with the ANSYS Professional product.

- The PRES degree of freedom (KEYOPT $(1)=0,2)$ is not available with the ANSYS Professional product.

SOLID117

3-D 20-Node Magnetic Solid

$$
\begin{array}{r}
\text { MP <> <> <> <> <> <> <> EM <> <> PP <> EME <> } \\
\text { Product Restrictions }
\end{array}
$$

SOLID117 Element Description

Although this legacy element is available for use in your analysis, ANSYS recommends using a currenttechnology element such as SOLID236.

SOLID117 models 3-D magnetic fields. The element is defined by 20 nodes. It has 12 edge-flux DOFs (AZ), one at each midside node. The eight corner nodes carry the time-integrated electric potential DOF, VOLT (classical formulation) or the electric potential DOF, VOLT (solenoidal formulation).

SOLID117 is based on the edge-flux formulation, and applies to the low-frequency magnetic field analyses: magnetostatics, eddy currents (AC time harmonic and transient analyses). The element has nonlinear magnetic capability for modeling B-H curves or permanent magnet demagnetization curves for static and transient analyses. See SOLID117 in the Theory Reference for the Mechanical APDL and Mechanical Applications, as well as 3-D Magnetostatics and Fundamentals of Edge-based Analysis, 3-D Harmonic Magnetic Analysis (EdgeBased), and 3-D Transient Magnetic Analysis (Edge-Based), in the Low-Frequency Electromagnetic Analysis Guide, for details about using this element's different formulations.

SOLID117 has two formulation options for non-eddy current regions: classical and solenoidal.
The classical formulation is used to model air, iron, or nonferrous materials, and permanent magnets. Current for the classical formulation can be defined as body loads using the BFE,,JS command.

Use the solenoidal formulation to model solid conductors without eddy current effects. The SOLID117 solenoidal formulation uses voltage-fed loading, current-fed loading, or circuit coupling capabilities with the CIRCU124, CIRCU125, and TRANS126 elements. The nonlinear symmetric solenoidal formulation is applicable to static and transient analyses. The linear unsymmetric solenoidal formulation is applicable to harmonic analysis. The electric scalar potential VOLT DOF is not time-integrated. For more information, see 3-D Circuit Coupled Solid Source Conductor in the Coupled-Field Analysis Guide.

Eddy currents in solid conductors use the edge element method with time-integrated electric potential VOLT. See SOLID117 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more information on the theoretical formulation.

Figure 1 SOLID117 Geometry

SOLID117 Input Data

Figure 1 (p. 472) shows the geometry, node locations, and the coordinate system for this element. The element is defined by 20 nodes and the material properties. A prism-shaped element may be formed by defining duplicate K, L, and S ; A and B ; and O, P, and W node numbers. A tetrahedral-shaped element and a pyramidshaped element may also be formed as shown in Figure 1 (p.472). The positive orientation of an edge points from lower to higher corner nodes of the edge.

SOLID117 Real Constants

The real constants associated with SOLID117 apply when considering velocity effects of a conducting body (KEYOPT(2) = 1), and start in real constant location nine (one through eight are blank).

VELOX, VELOY, and VELOZ are the velocity components in the global Cartesian coordinate system X, Y , and Z direction. OMEGAX, OMEGAY, OMEGAZ describe the angular (rotational) velocity (Hz , cycles $/ \mathrm{sec}$) about the global Cartesian coordinate system X, Y, and Z-axes. The real constants XLOC, YLOC, ZLOC specify the pivot point location of the rotating body.

SOLID117 Units

Specify the type of units (MKS or user defined) using the EMUNIT command. EMUNIT also determines the value of MUZRO (free-space permeability). The EMUNIT defaults are MKS units and MUZRO $=4 \pi \times 10^{-7}$ Henries/meters.

Note

The minimum allowable element edge length for this element is $1.0 \mathrm{e}-6$. Choose units accordingly if model dimensions are on the order of microns.

SOLID117 Material Properties

In addition to MUZERO, orthotropic relative permeability is available; specify it via the MURX, MURY, and MURZ material options.

Specify nonlinear magnetic B-H properties with the TB command. You can specify nonlinear orthotropic magnetic properties with a combination of a B-H curve and linear relative permeability. The B-H curve will be used in each element coordinate direction where a zero value of relative permeability is specified. For isotropic nonlinear behavior, you do not need to specify any relative permeability. You can specify only one B-H curve per material.

You can specify orthotropic resistivity through RSVX, RSVY, and RSVZ material property labels. MGXX, MGYY, and MGZZ represent vector components of the coercive force for permanent magnet materials. The magnitude of the coercive force is the square root of the sum of the squares of the components. The vector components MGXX, MGYY, and MGZZ determine the direction of polarization. Permanent magnet polarization directions correspond to the element coordinate directions. The element coordinate system orientation is as described in Coordinate Systems (p. 14).

SOLID117 Loads

You define nodal loads using the \mathbf{D} and the \mathbf{F} commands for solid conductors. With the \mathbf{D} command, only the $L a b=$ VOLT option is valid. Use the VALUE variable to define the time-integrated electric potential (classical formulation) or electric potential (solenoidal formulation). With the \mathbf{F} command, the Lab variable corresponds to the force (Amps) and VALUE corresponds to the value (current) applied with respect to the VOLT DOF.

For stranded conductors, use the BFE command to prescribe source current density body loads (classical formulation) based on their value at the element's centroid location. Alternatively, use the BFV command to apply source current density body loads to volumes. The vector components of the current density are with respect to the element coordinate system (see "SOLID117 Assumptions and Restrictions" (p.479) for solenoidal restriction).

For edge-based analyses, the label AZ (when set to zero) applies the flux-parallel boundary condition. No prescription is required to set flux-normal, because it is the natural boundary condition. In the rare case when the $A Z=0$ condition is not general enough for flux-parallel conditions, you can prescribe constraints using individual \mathbf{D} commands.

You can use constraint equations to define cyclic symmetry.
See 3-D Magnetostatics and Fundamentals of Edge-based Analysis in the Low-Frequency Electromagnetic Analysis Guide for more information on loading in an edge-based analysis.

SOLID117 Flags

Node and Element Loads (p. 97) describes element loads.

For static analyses, no flags are required. Any existing flags are ignored. Select the nodes and elements for which you want to summarize the electromagnetic force, and issue the EMFT or FMAGSUM command.

For harmonic or transient analyses, you can specify Maxwell force flags on the element faces indicated by the circled numbers in Figure 1 (p. 472) using the SF and SFE commands. To identify surfaces at which magnetic forces are to be calculated, use the MXWF label on the surface load commands. (No value is required.) A Maxwell stress tensor calculation is performed at these surfaces to obtain the magnetic forces. You should apply the surface flag to "air" elements adjacent to the body for which forces are required. Deleting the MXWF specification removes the flag. Use the FMAGBC command to automatically apply Maxwell surface flags to a named element component.

SOLID117 Field-Coupling

You can use the LDREAD command to read electromagnetic forces and Joule heating in a subsequent structural analysis with companion structural elements or heat transfer with companion thermal elements. When using the classical formulation, you can read element current densities from an electric current conduction analysis using the LDREAD command. In addition, you can specify the temperature (for material property evaluation only).

In general, unspecified nodal values of temperatures default to the uniform value specified with the BFUNIF or TUNIF commands.

SOLID117 Gauging

The ANSYS program gauges the problem domain automatically at solution time, using a Tree gauging technique. (See the description of the GAUGE command.) This produces additional constraints on nodes in the model by setting AZ to zero. The additional constraints are removed after solution. Thus, gauging is transparent to users.

The table below summarizes the element input. Element Input (p.5) provides a general description of element input.

SOLID117 Input Summary

Nodes

$I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, A, B$

Degrees of Freedom

See KEYOPT(1).

Real Constants

For $\operatorname{KEYOPT}(2)=1$:
(Blank), (Blank), (Blank), (Blank), (Blank), (Blank), (Blank), (Blank), VELOX, VELOY, VELOZ, OMEGAX, OMEGAY, OMEGAZ, XLOC, YLOC, ZLOC
See Table 1: SOLID117 Real Constants (p. 476) for a description of the real constants

Material Properties

MUZERO, MURX, MURY, MURZ, RSVX, RSVY, RSVZ, MGXX, MGYY, MGZZ plus BH data table (see Material Data Tables (Implicit Analysis) (p. 22))

Surface Loads

Maxwell Force Flags -- (harmonic and transient analyses only; ignored for static analyses)
face 1 (J-I-L-K), face 2 (I-J-N-M), face 3 (J-K-O-N),
face 4 (K-L-P-O), face 5 (L-I-M-P), face 6 (M-N-O-P)

Body Loads

Temperatures --
$T(I), T(J), T(K), T(L), T(M), T(N), T(O), T(P)$

Source Current Density --

If KEYOPT(1) $=0$: (See "SOLID117 Assumptions and Restrictions" (p .479) for solenoidal restriction)
JSX(I), JSY(I), JSZ(I), PHASE(I), JSX(J), JSY(J),
JSZ(J), PHASE(J), JSX(K), JSY(K), JSZ(K), PHASE(K),
JSX(L), JSY(L), JSZ(L), PHASE(L), JSX(M), JSY(M),
JSZ(M), PHASE(M), JSX(N), JSY(N), JSZ(N), PHASE(N),
JSX(O), JSY(O), JSZ(O), PHASE(O), JSX(P), JSY(P),
JSZ(P), PHASE(P)
EF --
EFX, EFY, EFZ. See "SOLID117 Assumptions and Restrictions" (p. 479).

Special Features

Requires an iterative solution if nonlinear material properties are defined

KEYOPT(1)

Element degree of freedom and formulation selection:

Classical Formulation

0 -- Stranded Conductors

AZ degrees of freedom

1 -- Solid Conductors (Eddy Current)

AZ, VOLT degrees of freedom (time-integrated VOLT); harmonic and transient analyses only

Solenoidal Formulation

5 -- Solid Conductors (DC Current)

AZ, VOLT degrees of freedom: nonlinear symmetric solenoidal formulation applicable to static and transient analyses.

6 -- Solid Conductors (DC Current)

AZ, VOLT degrees of freedom: linear unsymmetric solenoidal formulation applicable to harmonic analyses.

KEYOPT(2)

Element conventional velocity:
0 --
Velocity effects ignored
1 --
Conventional velocity formulation (not available if $\operatorname{KEYOPT}(1)=0,2,3$ or 4)

KEYOPT(5)

Extra element output:

```
0 --
    Basic element printout
1 --
    Integration point printout
2 --
    Nodal magnetic field printout
```


Table 1 SOLID117 Real Constants

| No. | Name | Description |
| :---: | :--- | :--- |
| $1, \ldots, 8$ | (Blank) | -- |
| $9,10,11$ | VELOX, VELOY, VELOZ | Velocity in X, Y, and Z-directions |
| $12,13,14$ | OMEGAX, OMEGAY, OMEGAZ | Angular velocity about X, Y, and Z-axes |
| $15,16,17$ | XLOC, YLOC, ZLOC | Pivot point $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$-locations |

SOLID117 Solution Considerations

You can choose the analysis type (static, transient, or harmonic) using the ANTYPE command.
In a harmonic analysis, the output field quantities are peak values. The ANSYS program performs a complex solution and computes two sets of data: real and imaginary. The measurable field quantities can be computed as the real step with a cosine time change minus the imaginary step with a sine time change. You can set the frequency of the time change via the HARFRQ command. The measurable magnetic energy, the Joule heat, and average Lorentz forces can be computed as a sum of the calculated real and imaginary data. RMS time averaging is applied to Joule heat and average forces. Energy is computed to reflect peak values. The Theory Reference for the Mechanical APDL and Mechanical Applications details complex formalism for harmonic analyses.

Use the GAUGE command to control automatic gauging of the problem domain. The default is Tree gauging, which removes constraints after the SOLVE or MAGSOLV command is issued.

To choose a solver, specify one on the EQSLV command. The sparse solver is recommended.
To define transient and nonlinear options, you can use the MAGSOLV command (which defines the options and solves the problem automatically) or you can issue the CNVTOL, NEQIT, and NSUBST commands. Use the OUTPR command to control printout and the OUTRES command to control database storage.

SOLID117 Output Data

The solution output associated with the element is in two forms:

- Nodal DOFs included in the overall nodal solution
- Additional element output as shown in Table 2: SOLID117 Element Output Definitions (p. 477) and Table 3: SOLID117 Miscellaneous Element Output (p. 478)

The element output directions are parallel to the element coordinate system. Solution Output (p. 8) provides a general description of solution output. See the Basic Analysis Guide for ways to view results.

Table 2: SOLID117 Element Output Definitions (p. 477) uses the following notation:

The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 2 SOLID117 Element Output Definitions

| Name | Definition | 0 | R |
| :---: | :---: | :---: | :---: |
| EL | Element Number | Y | Y |
| NODES | Nodes - I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, A, B | Y | Y |
| MAT | Material number | Y | Y |
| VOLU | Volume | Y | Y |
| XC, YC, ZC | Location where results are reported | Y | 2 |
| TEMP | Input temperatures $\mathrm{T}(\mathrm{I}), \mathrm{T}(\mathrm{J}), \mathrm{T}(\mathrm{K}), \mathrm{T}(\mathrm{L}), \mathrm{T}(\mathrm{M}), \mathrm{T}(\mathrm{N}), \mathrm{T}(\mathrm{O}), \mathrm{T}(\mathrm{P})$ | Y | Y |
| LOC | Output location (X, Y, Z) | 1 | - |
| MUX, MUY, MUZ | Magnetic secant permeability (B/H) | 1 | 1 |
| H:X, Y, Z, SUM | Magnetic field intensity components and vector magnitude | 1 | 1 |
| $B: X, Y, Z, S U M$ | Magnetic flux density components and vector magnitude | 1 | 1 |
| JS:X, Y, Z | Source current density components in the global Cartesian coordinate system, valid for static analysis only | 1 | 1 |
| JT(X, Y, Z) | Total current density components in the global Cartesian coordinate system | 1 | 1 |
| JHEAT | Joule heat generation per unit volume | 1 | 1 |
| FJB(X, Y, Z) | Lorentz magnetic force components (harmonic and transient analyses only) | 1 | - |
| FMX(X, Y, Z) | Maxwell magnetic force components (harmonic and transient analyses only) | 1 | - |
| FVW(X, Y, Z) | Virtual work force components (harmonic and transient analyses only) | 1 | 1 |
| $\begin{aligned} & \text { FMAG:X, Y, Z, } \\ & \text { SUM } \end{aligned}$ | Electromagnetic force | - | 1 |
| MRE: | Magnetic Reynold's Number | 3 | 3 |

1. The solution is output if its value is not zero. The element solution is at the centroid.

Note

JT represents the total measurable current density that is induced in a conductor, including eddy current effects, and velocity effects if calculated. Components are also available: JS component from VOLT, JE component from A, JT = JS + JE. In a static analysis, JS represents the source current density.

For harmonic analysis, joule losses (JHEAT), forces (FJB(X, Y, Z), FMX(X, Y, Z), FVW(X, Y, Z)) represent time-average values. These values are stored in both the "Real" and "Imaginary" data sets. The macros POWERH and FMAGSUM can be used to retrieve this data.
2. Available only at centroid as a *GET item.
3. Available only with harmonic or transient analyses. The solution value is output only if calculated (based upon input data). The element solution is at the centroid.

Table 3 SOLID117 Miscellaneous Element Output

| Description | Names of Items Output | $\mathbf{0}$ | \mathbf{R} |
| :--- | :--- | :---: | :---: |
| Integration Point Solution | LOC, MUX, MUY, MUZ, H, HSUM, B,
 BSUM | 1 | - |
| Nodal Magnetic Field Solution | H, HSUM, B, BSUM | 2 | - |

1. Output at each integration point, if $\operatorname{KEYOPT}(5)=1$
2. Output at each corner node, if $\operatorname{KEYOPT}(5)=2$

Table 4: SOLID117 Item and Sequence Numbers (p. 478) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p.9) in this manual for more information. The following notation is used in Table 4: SOLID117 Item and Sequence Numbers (p. 478):

Name

output quantity as defined in Table 2: SOLID117 Element Output Definitions (p. 477)

Item

predetermined Item label for ETABLE command
E
sequence number for single-valued or constant element data

Table 4 SOLID117 Item and Sequence Numbers

| Output Quantity
 Name | ETABLE and ESOL
 Command Input | |
| :---: | :---: | :---: |
| | Item | E |
| Source Current Density (static analysis),
 or time-varying component due to elec-
 tric potential (VOLT) | | |
| JSX | SMISC | 1 |
| JSY | SMISC | 2 |

| Output Quantity Name | ETABLE and ESOL Command Input | |
| :---: | :---: | :---: |
| | Item | E |
| JSZ | SMISC | 3 |
| JSSUM | SMISC | 4 |
| Secant Permeability B/H | | |
| MUX | NMISC | 1 |
| MUY | NMISC | 2 |
| MUZ | NMISC | 3 |
| Lorentz Forces/Virtual Work Force | | |
| FVWX | NMISC | 4 (2) |
| FVWY | NMISC | 5 (2) |
| FVWZ | NMISC | 6 (2) |
| FVWSUM | NMISC | 7 (2) |
| Total (Measurable) Current Density | | |
| JTX | NMISC | 12 |
| JTY | NMISC | 13 |
| JTZ | NMISC | 14 |
| JTSUM | NMISC | 15 |
| Differential Permeability dB/dH | | |
| DMUX | NMISC | 18 |
| DMUY | NMISC | 19 |
| DMUZ | NMISC | 20 |
| VX (1) | NMISC | 21 |
| VY (1) | NMISC | 22 |
| VZ (1) | NMISC | 23 |

1. $V X, V Y$, and $V Z$ are available only with harmonic and transient analyses.
2. For static analyses, these values are Lorentz forces. For all other analysis types, these values are virtual work forces. See Calculating Magnetic Force and Torque in the Low-Frequency Electromagnetic Analysis Guide for more information.

SOLID117 Assumptions and Restrictions

- The element must not have a zero volume or a zero length side.
- An error occurs frequently when the element is not numbered properly. Elements may be numbered either as shown in Figure 1 (p.472) or may have the planes IJKL and MNOP interchanged.
- Midside nodes may not be removed from this element. See Quadratic Elements (Midside Nodes) in the Modeling and Meshing Guide for more information about the use of midside nodes.
- The prism option is available for all standard mesh extrusion operations if the triangular source elements have straight edges. Issuing MSHMID,1 places the midside nodes so the triangular element edges are straight.
- The continuity equation must be satisfied for a proper electromagnetic analysis as explained in the Theory Reference for the Mechanical APDL and Mechanical Applications. For this reason the source current density, JS, must be solenoidal (that is, $\nabla . J S=0$). You should verify that this condition is satisfied when prescribing the source current density load. If this condition is not satisfied SOLID117 can produce erroneous solutions without warning. Refer to Performing a Static Edge-based Analysis in the Low-Frequency Electromagnetic Analysis Guide for information on how to obtain solenoidal currents when the source current density is not constant. If you use a solenoidal formulation (KEYOPT $(1)=5$ or 6), ANSYS will compute the current density. The solenoidal formulations are applicable to voltage and circuit coupled problems as well.
- You cannot use this element in a nonlinear harmonic analysis.
- When this element does not have the VOLT degree of freedom for a harmonic or transient analysis, it acts as a stranded conductor.
- Permanent magnets are not permitted in a harmonic analysis.
- The VOLT degree of freedom $\operatorname{(KEYOPT}(1)=1)$ is required in all non-source regions with a specified nonzero resistivity. This allows eddy currents to be computed.
- Other elements in the model are restricted to the AX, AY, AZ, or VOLT degrees of freedom only. No other DOFs are allowed in the model when running an edge-based analysis using SOLID117.
- For specific recommendations and restrictions on current loading, see 3-D Magnetostatics and Fundamentals of Edge-Based Analysis and 3-D Nodal-Based Analyses (Static, Harmonic, and Transient) in the Low-Frequency Electromagnetic Analysis Guide.
- You cannot use this element with circuit element CIRCU124 if $\operatorname{KEYOPT}(1)=0$ or 1.
- For velocity effects ($\operatorname{KEYOPT}(2)=1$), note the following restrictions:
- Velocity effects are valid only for the AZ, VOLT DOF option.
- Velocity effects cannot be included in a static analysis. To simulate a static analysis, execute a harmonic analysis at a very low frequency and retrieve the "real" results for the solution.
- Velocity effects are available only in a linear analysis.
- Velocity effects are valid only for isotropic resistivity.
- Solution accuracy may degrade if the element magnetic Reynolds number is much greater than 1.0. (See the discussion of magnetic fields in the Low-Frequency Electromagnetic Analysis Guide.)
- For harmonic and transient (time-varying) analyses the following restrictions apply:
- You should use hexahedral elements in current carrying regions because hexahedral elements are more accurate than the degenerate shaped elements (tetrahedral and pyramid). You can expect comparable accuracy with all element shapes in noncurrent carrying regions.
- Time-average Lorentz forces are calculated automatically for all current carrying elements. Harmonic forces are available only in conducting regions. You cannot calculate Maxwell or virtual work forces.
- You cannot use this element with other nodal-based electromagnetic elements (for example, SOLID5, SOLID96, SOLID97, SOLID98, SOURC36, INFIN111, INTER115).
- This element may not be compatible with other elements with the VOLT degree of freedom. To be compatible, the elements must have the same reaction force (see Element Compatibility in the LowFrequency Electromagnetic Analysis Guide).
- This element is not compatible with other edge-based electromagnetic elements (SOLID236 and SOLID237).
- The solenoidal formulations do not model eddy current effects.
- The electric field body load is not used during solution and is applicable only to POST1 charged particle tracing.
- The solenoidal current density is required for a solution, or for any postprocessing operations.
- You cannot use NFORCE, PRRFOR, or PRRSOL with SOLID117.
- You should avoid using pyramid shapes in critical regions.
- Warping should be minimized when using this element.
- You cannot use coupling with this element.
- This element cannot be used in a distributed solution.

SOLID117 Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

ANSYS Emag

- The birth and death special feature is not allowed.

HF118

2-D High-Frequency Quadrilateral Solid

HF118 Element Description

HF118 is a high-frequency element which models 2-D electromagnetic fields and waves governed by the full set of Maxwell's equations in linear media. It is based on a full-wave formulation of Maxwell's equations in terms of the time-harmonic electric field E (exponent $j \omega t$ dependence assumed). See High-Frequency Electromagnetic Field Simulation in the Theory Reference for the Mechanical APDL and Mechanical Applications for more information on Maxwell's equations and full-wave formulations, respectively.

HF118 applies only to modal analyses. You can use it to compute dispersion characteristics of high-frequency transmission lines, including cutoff frequencies and propagating constants for multiple modes. It is a mixed node-scalar edge-vector element. Physically the AX DOF mean the projection of the electric field E on edges and faces. The AX DOF also represents the E_{z} component of the electric field E at the nodes.

Figure 1 HF118 Geometry

A first order or second order element option is available using KEYOPT(1). The first order quadrilateral and triangular elements have one AX DOF on each edge and at each corner node. The total number of DOFs is 8 for a first order quadrilateral element $\{1$ (4 edges) +1 (4 corner nodes) $\}$ and 6 for a first order triangular element \{1 (3 edges) +1 (3 corner nodes)\}.

Figure 2 HF118 First Order Element

The second order quadrilateral element has two AX DOFs on each edge, four AX DOFs on the face for the tangential component of the electric field E , and one AX DOF at each corner and midside node. The total number of DOFs is 20 for a second order quadrilateral element $\{2$ (4 edges) +4 (1 face) +1 (8 nodes) \}. The second order triangular element has two AX DOFs on each edge, two AX DOFs on the face for the tangential component of the electric field E , and one AX DOF at each corner and midside node. The total number of DOFs is 14 for a second order triangular element \{2 (3 edges) +2 (1 face) +1 (6 nodes) .

Figure 3 HF118 Second Order Element

HF118 Input Data

Figure 1 (p. 483) shows the geometries, node locations, and the coordinate system for the element. The element supports two geometric shapes: a quadrilateral shape with a degeneracy to a triangular shape.

The only unit system supported for high-frequency analysis is the MKS unit, where the free-space permeability MUZRO $=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}$ and the free-space permittivity EPZERO $=8.854 \times 10^{-12} \mathrm{~F} / \mathrm{m}$ (see the EMUNIT command).

HF118 requires two sets of material constants; that is, relative permeability and permittivity tensors (in the element coordinate system if any). To specify a diagonal relative permeability tensor use the MURX, MURY, and MURZ labels on the MP command. Use the TB,MUR and TBDATA commands to specify the terms of an anisotropic permeability matrix. To specify a diagonal relative permittivity tensor use the PERX, PERY, and

PERZ labels on the MP command. Use the TB,DPER and TBDATA commands to specify the terms of an anisotropic permittivity matrix.

To define nodal constraints on geometric nodes, use the \mathbf{D} command. With the \mathbf{D} command, the Lab variable corresponds to the only degree of freedom AX and the VALUE corresponds to the AX value. AX is not the x component in the global Cartesian coordinate system. In most cases, the AX value is zero, which corresponds to a perfect electric conductor or "Electric Wall" (tangential component of $\bar{E}=0$) condition. If both end nodes and the mid-node on an element edge are constrained, DOFs on the edge are also constrained. Similarly, if all edges on an element face are constrained, DOFs on the face are also constrained. If you leave the nodes on a surface unspecified, the boundary assumes a "Magnetic Wall" condition (tangential component of $\overline{\mathrm{H}}=0$).

To define constraints on lines, use the DL command. The Lab variable corresponds to the degree of freedom AX and the Value1 corresponds to the AX value. Upon initiation of the solution calculations (SOLVE), the solid model DOF constraints transfer automatically to the finite element model.
"HF118 Input Summary" (p. 485) summarizes the element input. Element Input (p. 5) in the Element Reference provides a general description of element input.

HF1 18 Input Summary

Nodes

I, J, K, L, M, N, O, P

Degrees of Freedom

AX

Real Constants

None

Material Properties

MUZERO, MURX, MURY, MURZ, EPZRO, PERX, PERY, PERZ, MUR, DPER

Surface Loads

None

Body Loads

None

Special Features

None

KEYOPT(1)

Element polynomial order selection:

0,1 --

First order element
2 --
Second order element

KEYOPT(5)

Extra element output:

```
0 --
    Basic element printout
1 --
    Centroid point printout
2 --
    Nodal field printout
```


HF118 Solution Considerations

For modal analysis, choose a frequency shift point just below the anticipated eigenfrequency of interest (via the MODOPT command). Select an upper end frequency as well. Use the Method argument to choose the Block Lanczos solver. To visualize the electric and magnetic field modes, use the MXPAND command to expand the mode shapes.

HF118 Output Data

The solution output associated with this element is in two forms:

- Degrees of freedom (AX) included in the overall nodal solution
- Additional element output as shown in Table 1: HF118 Element Output Definitions (p. 486)

The element output direction is parallel to the element coordinate system (if any). Solution Output (p. 8) in the Element Reference provides a general description of solution output. See the Basic Analysis Guide for ways to view results.

The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and " - " indicates that the item is not available.

Table 1 HF118 Element Output Definitions

| Name | Definition | \mathbf{O} | R |
| :--- | :--- | :---: | :---: |
| EL | Element Number | Y | Y |
| NODES | Nodes $-\mathrm{I}, \mathrm{J}, \ldots, \mathrm{B}$ | Y | Y |
| MAT | Material number | Y | Y |
| VOLU | Volume | Y | Y |
| XC, YC, ZC | Location where results are reported | Y | 2 |
| LOC | Output location | 1 | - |
| MURX, MURY,
 MURZ | Relative permeability | 1 | - |
| PERX, PERY,
 PERZ | Relative permittivity | 1 | - |
| EF:X, Y, Z | Electric field intensity E | 1 | Y |

| Name | Definition | \mathbf{O} | \mathbf{R} |
| :--- | :--- | :---: | :---: |
| EF:SUM | Magnitude of E | 1 | - |
| H:X, Y, Z | Magnetic field intensity H | 1 | Y |
| H:SUM | Magnitude of H | 1 | - |
| JHEAT | Joule heat generation per unit volume (time-average
 value) | - | - |
| PX, PY, PZ | Pointing vector (time-average value) | - | Y |
| ALPHA | Real part of propagating constant | - | Y |
| BETA | Imaginary part of propagating constant | - | Y |
| PF | Poynting flow through cross-section | - | Y |

1. The solution value is output only if calculated (based upon input data). The element solution is at the centroid.
2. Available only at centroid as a *GET command item.

Table 2 HF118 Miscellaneous Element Output

| Description | Names of Items Output | $\mathbf{0}$ | \mathbf{R} |
| :--- | :--- | :---: | :---: |
| Centroid Point Solution | LOC, MUX, MUY, MUZ, PERX, PERY,
 PERZ, E, ESUM, H, HSUM | 1 | - |
| Nodal Electric and Magnetic Field Solutions | E, ESUM, H, HSUM | 2 | - |

1. Output at each centroid point, if $\operatorname{KEYOPT}(5)=1$
2. Output at each corner node, if $\operatorname{KEYOPT}(5)=2$

Table 3: HF118 Item and Sequence Numbers (p. 487) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p. 9) in this manual for more information. The following notation is used in Table 3: HF120 Item and Sequence Numbers (p. 503):

Name

output quantity as defined in Table 1: HF120 Element Output Definitions (p. 501)

Item

predetermined Item label for ETABLE command
E
sequence number for single-valued or constant element data

Table 3 HF118 Item and Sequence Numbers

| Output
 Quant-
 ity
 Name | ETABLE Com-
 mand Input | |
| :---: | :--- | :---: |
| | Item | I |
| $P X$ | NMISC | 1 |
| $P Y$ | NMISC | 2 |
| $P Z$ | NMISC | 3 |

| Output
 Quant-
 ity
 Name | ETABLE Com-
 mand Input | |
| :---: | :--- | :---: |
| | Item | \mathbf{I} |
| ALPHA | NMISC | 4 |
| BETA | NMISC | 5 |
| PF | NMISC | 6 |

HF118 Assumptions and Restrictions

- HF118 is only applicable to modal analyses.
- The element must not have a zero volume.
- The required material properties (MURX, MURY, MURZ, PERX, PERY, PERZ) must be input as relative values.
- Midside nodes must not be removed from this element. See Quadratic Elements (Midside Nodes) in the Modeling and Meshing Guide for more information on the use of midside nodes.
- The second order element is not available for the solution of propagating constant with fixed frequency.
- Distributed ANSYS is only available for the first order element.

HF118 Product Restrictions

There are no product-specific restrictions for this element.

HF119

3-D High-Frequency Tetrahedral Solid

HF119 Element Description

HF119 is a high-frequency tetrahedral element which models 3-D electromagnetic fields and waves governed by the full set of Maxwell's equations in linear media. It is based on a full-wave formulation of Maxwell's equations in terms of the time-harmonic electric field E (exponent $j \omega t$ dependence assumed). A companion brick element, HF120, has similar full-wave capability. See HF119 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more information on Maxwell's equations and full-wave formulations, respectively.

HF119 applies to the full-harmonic and modal analysis types, but not to the transient analysis type. It is defined by up to 10 geometric nodes with AX DOF on element edges and faces. The physical meaning of the $A X$ DOF in this element is a projection of the electric field E on edges and faces.

Figure 1 HF119 Geometry

A first order or second order element option is available using KEYOPT(1). The first order element has one AX DOF on each edge for a total of 6 DOFs.

Figure 2 HF119 First Order Element

The second order element has two AX DOFs on each edge and face for a total of 20 DOFs \{2(6 edges) $+2(4$ faces) .

Figure 3 HF119 Second Order Element

HF119 Input Data

Figure 1 (p. 489) shows the geometries, node locations, and the coordinate system for the element.
The only unit system supported for high-frequency analysis is the MKS unit, where the free-space permeability MUZRO $=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}$ and the free-space permittivity EPZERO $=8.854 \times 10^{-12} \mathrm{~F} / \mathrm{m}$ (see the EMUNIT command).
$\operatorname{KEYOPT}(4)$ provides options for the element formulation. $\operatorname{KEYOPT}(4)=0$ activates the normal full-wave formulation, which solves for the total field. $\operatorname{KEYOPT}(4)=1$ activates the perfectly matched layers (PML) formulation, which absorbs the field at the open boundary or at the port of a waveguide. KEYOPT(4) $=2$ activates the scattering formulation, which is only required in the regions of a domain receiving a reflected wave from an imposed soft source magnetic field excitation (BF,,H option).

HF119 requires two sets of material constants; that is, relative permeability and permittivity tensors (in the element coordinate system if any). To specify a diagonal relative permeability tensor use the MURX, MURY, and MURZ labels on the MP command. Use the TB,MUR and TBDATA commands to specify the terms of an anisotropic permeability matrix. To specify a diagonal relative permittivity tensor use the PERX, PERY, and PERZ labels on the MP command. Use the TB,DPER and TBDATA commands to specify the terms of an anisotropic permittivity matrix.

You can specify an optional diagonal resistivity tensor (inverse of the conductivity tensor) using the RSVX, RSVY, and RSVZ labels on the MP command. To specify the terms of an anisotropic electric current conductivity tensor or anisotropic magnetic current conductivity tensor use TBDATA and TB,CNDE or TB,CNDM, respectively.

For an isotropic lossy material, you can define the lossy characteristics of the material by either the electric loss tangent (MP,LSST) or magnetic loss tangent (MP,LSSM). To calculate a specific absorption rate (SAR), you must input a mass density using the DENS label on the MP command.

To define nodal constraints on geometric nodes, use the \mathbf{D} command. With the \mathbf{D} command, the Lab variable corresponds to the only degree of freedom AX and the VALUE corresponds to the $A X$ value. $A X$ is not the x component in the global Cartesian coordinate system. In most cases, the AX value is zero, which corresponds to a perfect electric conductor (PEC) or "Electric Wall" (tangential component of $\overline{\mathrm{E}}=0$) condition. If both end nodes and the mid-node on an element edge are constrained, DOFs on the edge are also constrained. Similarly, if all edges on an element face are constrained, DOFs on the face are also constrained. The DOFs
based on volume are not constrained. If you leave the nodes on a surface unspecified, the boundary assumes a perfect magnetic conductor (PMC) or "Magnetic Wall" condition (tangential component of $\overline{\mathrm{H}}=0$).

To define constraints on lines and areas, use the DL and DA commands, respectively. The Lab variable corresponds to the degree of freedom AX and the Value1 corresponds to the AX value.

Node and Element Loads (p. 97) describes element loads. You can specify an exterior waveguide port, surface impedance boundary conditions, infinite boundary surface flags, and Maxwell surface flags on the element faces indicated by the circled numbers in Figure 1 (p.489) using the SF and SFE commands or on the solid model using the SFA command. You can use the infinite boundary surface flag for a radiating open boundary in lieu of PML elements. You should use the Maxwell surface flag to determine an equivalent source surface for near and far field calculations performed in POST1.

You can apply current density, magnetic field, and electric field body loads to the finite element model using the BF and BFE commands or to the solid model using the BFK. BFL, BFA, and BFV commands. To specify a interior waveguide port, use the BF and BFA commands.

You can input the temperature (for material property evaluation only) body loads based on their value at the element's nodes or as a single element value [BF and BFE]. In general, unspecified nodal values of temperatures default to the uniform value specified with the BFUNIF and TUNIF commands. Element heat loss (JHEAT) represents the time-average Joule heat generation rate ($\mathrm{W} / \mathrm{m}^{3}$), and may be made available for a subsequent thermal analysis with companion elements (See the discussion of the LDREAD command).

Upon initiation of the solution calculations (SOLVE), the solid model loads and boundary conditions transfer automatically to the finite element model.

HF1 19 Input Summary

Nodes

I, J, K, L, M, N, O, P, Q, R

Degrees of Freedom

AX

Real Constants

None

Material Properties

MUZERO, MURX, MURY, MURZ, EPZRO, PERX, PERY, PERZ, RSVX, RSVY, RSVZ, MUR, DPER, CNDE, CNDM, LSST, LSSM, DENS

Surface Loads

Waveguide Port Surface Loads --
face 1 (J-I-K), face 2 (I-J-L), face 3 (J-K-L), face 4 (K-I-L)
Impedance Surface Loads --
face 1 (J-I-K), face 2 (I-J-L), face 3 (J-K-L), face 4 (K-I-L)
Infinite Boundary Surface Flags --
face 1 (J-I-K), face 2 (I-J-L), face 3 (J-K-L), face 4 (K-I-L)
Maxwell Surface Flags for Equivalent Source Surface --
face 1 (J-I-K), face 2 (I-J-L), face 3 (J-K-L), face 4 (K-I-L)

Body Loads

Temperature --

$\mathrm{T}(\mathrm{I}), \mathrm{T}(\mathrm{J}), \ldots, \mathrm{T}(\mathrm{R})$

Current Density, Magnetic Field, Electric Field, and Waveguide Port --

JS, H, EF, PORT

Special Features

None

KEYOPT(1)

Used for element polynomial order selection:

0, 1 --

First order element
2 --
Second order element

KEYOPT(4)

Used for element type selection:
0 --
Normal element
1 --
Perfectly matched layers (PML) element
2 --
Scattering region element behind a soft source magnetic field excitation

KEYOPT(5)

Extra element output:
0 --
Basic element printout
1 --
Centroid point printout
2 --
Nodal field printout

HF119 Solution Considerations

To choose the modal or full harmonic analysis type, issue the ANTYPE command.
In a harmonic analysis, the ANSYS program performs a complex solution and computes two sets of results data: real and imaginary. The measurable field quantities can be computed as the real step with a cosine time change and the imaginary set with a sine time change. You can set the frequency of the time change via the HARFRQ command. The measurable power terms and Joule losses are computed as rms (time-average) values and are stored with the real data set. You can choose a solver via the EQSLV command (the ICCG or sparse solvers are recommended).

For modal analysis, choose a frequency shift point just below the anticipated eigenfrequency of interest (via the MODOPT command). Select an upper end frequency as well. Use the Method argument to choose the Block Lanczos solver (the default). To visualize the electric and magnetic field modes, use the MXPAND command to expand the mode shapes.
"HF119 Input Summary" (p. 491) summarizes the element input. Element Input (p. 5) of the Element Reference gives a general description of element input.

HF119 Output Data

The solution output associated with this element is in two forms:

- Degrees of freedom (AX) included in the overall nodal solution
- Additional element output as shown in Table 1: HF119 Element Output Definitions (p. 493)

The element output direction is parallel to the element coordinate system (if any). Solution Output (p. 8) in the Element Reference provides a general description of solution output.See the Basic Analysis Guide for ways to view results.

Table 1: HF119 Element Output Definitions (p. 493) uses the following notation:

The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 1 HF119 Element Output Definitions

| Name | Definition | \mathbf{O} | \mathbf{R} |
| :--- | :--- | :---: | :---: |
| EL | Element Number | Y | Y |
| NODES | Nodes $-\mathrm{I}, \mathrm{J}, \ldots, \mathrm{B}$ | Y | Y |
| MAT | Material number | Y | Y |
| VOLU | Volume | Y | Y |
| XC, YC, ZC | Location where results are reported | Y | 3 |
| TEMP | Input temperatures T(I), T(J), ..., T(R) | Y | Y |
| LOC | Output location | 1 | - |
| MURX, MURY,
 MURZ | Relative permeability | 1 | - |
| PERX, PERY,
 PERZ | Relative permittivity | 1 | - |
| CNDX, CNDY,
 CNDZ | Conductivity | 1 | - |
| EF:X, Y, Z | Electric field intensity E | 1 | Y |
| EF:SUM | Magnitude of E | 1 | - |
| H:X, Y, Z | Magnetic field intensity H | 1 | Y |
| H:SUM | Magnitude of H | 1 | - |
| JC:X, Y, Z | Current density JC | 1 | Y |
| JC:SUM | Magnitude of JC | 1 | - |

| Name | Definition | $\mathbf{0}$ | R |
| :--- | :--- | :--- | :--- |
| JHEAT | Joule heat generation per unit volume (time-average
 value) | - | - |
| PX, PY, PZ | Pointing vector (time-average value) | - | Y |
| PSCT | Reflected or transmitted power (time-average value) | 1 | - |
| PINC | Input power (time-average value) | - | - |
| VLOSS | Volumetric Joule losses (time-average value) | - | - |
| SFLOSS | Surface Joule losses (time-average value) | - | - |
| ENERGY | Stored energy (time-average value) | - | - |
| FACE1 | 1st element face number containing heat flux | - | 2 |
| HFLXAVG1 | Heat flux across FACE1 caused by surface losses | - | 2 |
| FACE2 | 2nd element face number containing heat flux | - | 2 |
| HFLXAVG2 | Heat flux across FACE2 caused by surface losses | - | 2 |
| FACE3 | 3rd element face number containing heat flux | - | 2 |
| HFLXAVG3 | Heat flux across FACE3 caused by surface loses | - | 2 |
| ETINCR | Real part of tangential incident electric field | - | 2 |
| ETINCI | Imaginary part of tangential incident electric field | - | 2 |
| ETOUTR | Real part of tangential outgoing electric field | - | 2 |
| ETOUTI | Imaginary part of tangential outgoing electric field | - | 2 |
| ETDOT | Dot product of waveguide eigen tangential electric field | - | 2 |
| SAR | Specific absorption rate | - | 2 |
| RADPAVG1 | Radiation pressure across FACE1 with surface losses | - | 2 |
| RADPAVG2 | Radiation pressure across FACE2 with surface losses | - | 2 |
| RADPAVG3 | Radiation pressure across FACE3 with surface losses | - | 2 |

1. The solution value is output only if calculated (based upon input data). The element solution is at the centroid.
2. The solution value is output only if calculated.
3. Available only at centroid as a *GET item.

Table 2 HF119 Miscellaneous Element Output

| Description | Names of Items Output | $\mathbf{0}$ | \mathbf{R} |
| :--- | :--- | :---: | :---: |
| Centroid Point Solution | LOC, MUX, MUY, MUZ, PERX, PERY,
 PERZ, E, ESUM, H, HSUM | 1 | - |
| Nodal Electric and Magnetic Field Solutions | E, ESUM, H, HSUM | 2 | - |

1. Output at each centroid point, if $\operatorname{KEYOPT}(5)=1$
2. Output at each corner node, if $\operatorname{KEYOPT}(5)=2$

Table 3: HF119 Item and Sequence Numbers (p. 495) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The

Item and Sequence Number Table (p. 9) in this manual for more information. The following notation is used in Table 3: HF119 Item and Sequence Numbers (p. 495):

Name

output quantity as defined in Table 1: HF119 Element Output Definitions (p. 493)

Item

predetermined Item label for ETABLE command
E
sequence number for single-valued or constant element data
Table 3 HF119 Item and Sequence Numbers

| Output
 Quantity
 Name | ETABLE Com-
 mand Input | |
| :---: | :--- | :---: |
| | SMISC | \mathbf{E} |
| RADPAVG2 | SMISC | 2 |
| RADPAVG3 | SMISC | 3 |
| PX | NMISC | 1 |
| PY | NMISC | 2 |
| PZ | NMISC | 3 |
| PSCT | NMISC | 4 |
| PINC | NMISC | 5 |
| ENERGY | NMISC | 6 |
| VLOSS | NMISC | 7 |
| SFLOSS | NMISC | 8 |
| FACE1 | NMISC | 9 |
| HFLXAVG1 | NMISC | 10 |
| FACE2 | NMISC | 11 |
| HFLXAVG2 | NMISC | 12 |
| FACE3 | NMISC | 13 |
| HFLXAVG3 | NMISC | 14 |
| ETINCR | NMISC | 15 |
| ETINCI | NMISC | 16 |
| ETOUTR | NMISC | 17 |
| ETOUTI | NMISC | 18 |
| ETDOT | NMISC | 19 |
| SAR | NMISC | 20 |
| | | |

HF119 Assumptions and Restrictions

- The element must not have a zero volume.
- The element may be numbered either as shown in Figure 1 (p. 489) or may have the plane IJKL and MNOP interchanged.
- The required material properties (MURX, MURY, MURZ, PERX, PERY, PERZ) must be input as relative values.
- You cannot use the element in a transient analysis.
- Midside nodes must not be removed from this element. See Quadratic Elements (Midside Nodes) in the Modeling and Meshing Guide for more information about the use of midside nodes.
- The solenoidal current density is required for a solution, or for any postprocessing operations.
- Distributed ANSYS is only available for the first order element.

HF119 Product Restrictions

There are no product-specific restrictions for this element.

3-D High-Frequency Brick Solid

MP <> <> <> <> <> <> <> <> EH <> PP <> <> <>

HF120 Element Description

HF120 is a high-frequency brick element which models 3-D electromagnetic fields and waves governed by the full set of Maxwell's equations in linear media. It is based on a full-wave formulation of Maxwell's equations in terms of the time-harmonic electric field E (exponent $j \omega t$ dependence assumed). A companion tetrahedral element, HF119, has similar full-wave capability. See HF120 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more information on Maxwell's equations and full-wave formulations, respectively.

HF120 applies to the full-harmonic and modal analysis types, but not to the transient analysis type. It is defined by up to 20 geometric nodes with AX DOF on element edges and faces and inside the volume. The physical meaning of the AX DOF in this element is a projection of the electric field E on edges and faces, as well as normal components to the element faces.

Figure 1 HF120 Geometry

Pyramid Option

A first order or second order element option is available for the hexahedral and prism-shaped elements using KEYOPT(1). The pyramid-shaped element is only available as a first order element. The first order element has one AX DOF on each edge. The first order hexahedral element has a total of 12 AX DOFs.

Figure 2 HF120 First Order Hexahedral Element

The second order hexahedral element has two AX DOFs on each edge, four AX DOFs on each face, and six AX DOFs inside the volume for a total of 54 DOFs $\{2(12$ edges $)+4(6$ faces $)+6$ (1 volume) $\}$.

The first order prism and pyramid elements have a total of 9 AX and 8 AX DOFs, respectively. The second order prism element has a total of 42 DOFs \{2(9 edges) $+4(5$ faces $)+4(1$ volume $)\}$.

HF120 Input Data

Figure 1 (p. 497) shows the geometries, node locations, and the coordinate system for the element. The element supports three geometric shapes: a hexahedral (brick) shape defined by twenty geometric nodes with degeneracies to prism and pyramid shapes.

The only unit system supported for high-frequency analysis is the MKS unit, where the free-space permeability MUZRO $=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}$ and the free-space permittivity EPZERO $=8.854 \times 10^{-12} \mathrm{~F} / \mathrm{m}$ (see the EMUNIT command).

KEYOPT(4) provides options for the element formulation. $\operatorname{KEYOPT}(4)=0$ activates the normal full-wave formulation, which solves for the total field. $\operatorname{KEYOPT}(4)=1$ activates the perfectly matched layers (PML) formulation, which absorbs the field at the open boundary or at the port of a waveguide. $\operatorname{KEYOPT}(4)=2$ activates the scattering formulation, which is only required in the regions of a domain receiving a reflected wave from an imposed soft source magnetic field excitation (BF,,H option).

HF120 requires two sets of material constants; that is, relative permeability and permittivity tensors (in the element coordinate system if any). To specify a diagonal relative permeability tensor use the MURX, MURY, and MURZ labels on the MP command. Use the TB,MUR and TBDATA commands to specify the terms of an anisotropic permeability matrix. To specify a diagonal relative permittivity tensor use the PERX, PERY, and PERZ labels on the MP command. Use the TB,DPER and TBDATA commands to specify the terms of an anisotropic permittivity matrix.

You can specify an optional diagonal resistivity tensor (inverse of the conductivity tensor) using the RSVX, RSVY, and RSVZ labels on the MP command. To specify the terms of an anisotropic electric current conductivity tensor or anisotropic magnetic current conductivity tensor use TBDATA and TB,CNDE or TB,CNDM, respectively.

For an isotropic lossy material, you can define the lossy characteristics of the material by either the electric loss tangent (MP,LSST) or magnetic loss tangent (MP,LSSM). To calculate a specific absorption rate (SAR), you must input a mass density using the DENS label on the MP command.

To define nodal constraints on geometric nodes, use the \mathbf{D} command. With the \mathbf{D} command, the Lab variable corresponds to the only degree of freedom AX and the VALUE corresponds to the AX value. AX is not the x component in the global Cartesian coordinate system. In most cases, the AX value is zero, which corresponds
to a perfect electric conductor (PEC) or "Electric Wall" (tangential component of $\bar{E}=0$) condition. If both end nodes and the mid-node on an element edge are constrained, DOFs on the edge are also constrained. Similarly, if all edges on an element face are constrained, DOFs on the face are also constrained. The DOFs based on volume are not constrained. If you leave the nodes on a surface unspecified, the boundary assumes a perfect magnetic conductor (PMC) or "Magnetic Wall" condition (tangential component of $\mathrm{H}^{-}=0$).

To define constraints on lines and areas, use the DL and DA commands, respectively. The Lab variable corresponds to the degree of freedom $A X$ and the Value 1 corresponds to the $A X$ value.

Node and Element Loads (p. 97) describes element loads. You can specify an exterior waveguide port, surface impedance boundary conditions, infinite boundary surface flags, and Maxwell surface flags on the element faces indicated by the circled numbers in Figure 1 (p. 497) using the SF and SFE commands or on the solid model using the SFA command. You can use the infinite boundary surface flag for a radiating open boundary in lieu of PML elements. You should use the Maxwell surface flag to determine an equivalent source surface for near and far field calculations performed in POST1.

To define surface loads on areas of the model, use the SFA command.
You can apply current density, magnetic field, and electric field body loads to the finite element model using the BF and BFE commands or to the solid model using the BFK. BFL, BFA, and BFV commands. To specify a interior waveguide port, use the BF and BFA commands.

You can input the temperature (for material property evaluation only) body loads based on their value at the element's nodes or as a single element value (BF and BFE commands). In general, unspecified nodal values of temperatures default to the uniform value specified with the BFUNIF and TUNIF commands. Element heat loss (JHEAT) may be made available for a subsequent thermal analysis with companion elements. (See the description of the LDREAD command.)

Upon initiation of the solution calculations (SOLVE), the solid model loads and boundary conditions transfer automatically to the finite element model.

HF120 Input Summary

Nodes

I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, A, B
Degrees of Freedom
AX

Real Constants

None

Material Properties

MUZERO, MURX, MURY, MURZ, EPZRO, PERX, PERY, PERZ, RSVX, RSVY, RSVZ, MUR, DPER, CNDE, CNDM, LSST, LSSM, DENS

Surface Loads

Waveguide Port Surface Loads --
face 1 (J-I-L-K), face 2 (I-J-N-M), face 3 (J-K-O-N), face 4 (K-L-P-O), face 5 (L-I-M-P), face 6 (M-N-O-P)

Impedance Surface Loads --

face 1 (J-I-L-K), face 2 (I-J-N-M), face 3 (J-K-O-N), face 4 (K-L-P-O), face 5 (L-I-M-P), face 6 (M-N-O-P)
Infinite Boundary Surface Flags --
face 1 (J-I-L-K), face 2 (I-J-N-M), face 3 (J-K-O-N), face 4 (K-L-P-O), face 5 (L-I-M-P), face 6 (M-N-O-P)
Maxwell Surface Flags for Equivalent Source Surface --
face $1(\mathrm{~J}-\mathrm{I}-\mathrm{K})$, face $2(\mathrm{I}-\mathrm{J}-\mathrm{L})$, face $3(\mathrm{~J}-\mathrm{K}-\mathrm{L})$, face 4 (K-I-L)

Body Loads

Temperatures --
$\mathrm{T}(\mathrm{I}), \mathrm{T}(\mathrm{J}), \ldots, \mathrm{T}(\mathrm{B})$
Current Density, Magnetic Field, Electric Field, and Waveguide Port --
JS, H, EF, PORT

Special Features

None

KEYOPT(1)

Element polynomial order selection:
0, 1 --
First order element
2 --
Second order element

Note

This option is only available for the hexahedral and prism-shaped elements. The pyramidshaped element is only available as a first order element.

KEYOPT(4)

Element description options:
0 --
Normal element
1 --
Perfectly matched layers (PML) element
2 --
Scattering region element behind a soft source magnetic field excitation

KEYOPT(5)

Extra element output:
0 --
Basic element printout
1 --
Centroid point printout

```
2 --
Nodal field printout
```


HF120 Solution Considerations

To choose the modal or full harmonic analysis type, issue the ANTYPE command.
In a harmonic analysis, the ANSYS program performs a complex solution and computes two sets of results data: real and imaginary. The measurable field quantities can be computed as the real step with a cosine time change and the imaginary set with a sine time change. You can set the frequency of the time change via the HARFRQ command. The measurable power terms and Joule losses are computed as rms (time-average) values and are stored with the real data set. You can choose a solver via the EQSLV command (the ICCG or sparse solvers are recommended).

For modal analysis, choose a frequency shift point just below the anticipated eigenfrequency of interest (via the MODOPT command). Select an upper end frequency as well. Use the Method argument to choose the Block Lanczos solver (the default). To visualize the electric and magnetic field modes, use the MXPAND command to expand the mode shapes.
"HF120 Input Summary" (p. 499) summarizes the element input. Element Input (p. 5) in the Element Reference provides a general description of element input.

HF120 Output Data

The solution output associated with this element is in two forms:

- Degrees of freedom (AX) included in the overall nodal solution
- Additional element output as shown in Table 1: HF120 Element Output Definitions (p. 501)

The element output direction is parallel to the element coordinate system (if any). Solution Output (p. 8) in the Element Reference provides a general description of solution output. See the Basic Analysis Guide for ways to view results.

Table 1: HF120 Element Output Definitions (p. 501) uses the following notation:

The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 1 HF120 Element Output Definitions

| Name | Definition | \mathbf{O} | \mathbf{R} |
| :--- | :--- | :---: | :---: |
| EL | Element Number | Y | Y |
| NODES | Nodes $-\mathrm{I}, \mathrm{J}, \ldots, \mathrm{B}$ | Y | Y |
| MAT | Material number | Y | Y |
| VOLU | Volume | Y | Y |

| Name | Definition | 0 | R |
| :---: | :---: | :---: | :---: |
| XC, YC, ZC | Location where results are reported | Y | 3 |
| TEMP | Input temperatures $\mathrm{T}(\mathrm{I}), \mathrm{T}(\mathrm{J}), \ldots, \mathrm{T}(\mathrm{B})$ | Y | Y |
| LOC | Output location | 1 | - |
| MURX, MURY, MURZ | Relative permeability | 1 | - |
| PERX, PERY, PERZ | Relative permittivity | 1 | - |
| $\begin{array}{\|l} \text { CNDX, CNDY, } \\ \text { CNDZ } \end{array}$ | Conductivity | 1 | - |
| EF:X, Y, Z | Electric field intensity E | 1 | Y |
| EF:SUM | Magnitude of E | 1 | - |
| H:X, Y, Z | Magnetic field intensity H | 1 | Y |
| H:SUM | Magnitude of H | 1 | - |
| JC:X, Y, Z | Current density JC | 1 | Y |
| JC:SUM | Magnitude of JC | 1 | - |
| JHEAT | Joule heat generation per unit volume (time-average value) | - | - |
| PX, PY, PZ | Pointing vector (time-average value) | - | Y |
| PSCT | Reflected or transmitted power (time-average value) | 1 | - |
| PINC | Input power (time-average value) | - | - |
| VLOSS | Volumetric Joule losses (time-average value) | - | - |
| SFLOSS | Surface Joule losses (time-average value) | - | - |
| ENERGY | Stored energy (time-average value) | - | - |
| FACE1 | 1st element face number containing heat flux | - | 2 |
| HFLXAVG1 | Heat flux across FACE1 caused by surface losses | - | 2 |
| FACE2 | 2nd element face number containing heat flux | - | 2 |
| HFLXAVG2 | Heat flux across FACE2 caused by surface losses | - | 2 |
| FACE3 | 3rd element face number containing heat flux | - | 2 |
| HFLXAVG3 | Heat flux across FACE3 caused by surface losses | - | 2 |
| ETINCR | Real part of tangential incident electric field | - | 2 |
| ETINCI | Imaginary part of tangential incident electric field | - | 2 |
| ETOUTR | Real part of tangential outgoing electric field | - | 2 |
| ETOUTI | Imaginary part of tangential outgoing electric field | - | 2 |
| ETDOT | Dot product of waveguide eigen tangential electric field | - | 2 |
| SAR | Specific absorption rate | - | 2 |
| RADPAVG1 | Radiation pressure across FACE1 with surface losses | - | 2 |
| RADPAVG2 | Radiation pressure across FACE2 with surface losses | - | 2 |
| RADPAVG3 | Radiation pressure across FACE3 with surface losses | - | 2 |

1. The solution value is output only if calculated (based upon input data). The element solution is at the centroid.
2. The solution is output only if calculated.
3. Available only at centroid as a *GET item.

Table 2 HF120 Miscellaneous Element Output

| Description | Names of Items Output | $\mathbf{0}$ | R |
| :--- | :--- | :---: | :---: |
| Centroid Point Solution | LOC, MUX, MUY, MUZ, PERX, PERY,
 PERZ, E, ESUM, H, HSUM | 1 | - |
| Nodal Electric and Magnetic Field
 Solutions | E, ESUM, H, HSUM | 2 | - |

1. Output at each integration point, if $\operatorname{KEYOPT}(5)=1$
2. Output at each corner node, if $\operatorname{KEYOPT}(5)=2$

Table 3: HF120 Item and Sequence Numbers (p. 503) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p. 9) in this manual for more information. The following notation is used in Table 3: HF120 Item and Sequence Numbers (p. 503):

Name

output quantity as defined in Table 1: HF120 Element Output Definitions (p. 501)

Item

predetermined Item label for ETABLE command
E
sequence number for single-valued or constant element data
Table 3 HF120 Item and Sequence Numbers

| Output
 Quantity
 Name | ETABLE Com-
 mand Input | |
| :---: | :--- | :---: |
| | I | |
| RADPAVG1 | SMISC | 1 |
| RADPAVG2 | SMISC | 2 |
| RADPAVG3 | SMISC | 3 |
| PX | NMISC | 1 |
| PY | NMISC | 2 |
| PZ | NMISC | 3 |
| PSCT | NMISC | 4 |
| PINC | NMISC | 5 |
| ENERGY | NMISC | 6 |
| VLOSS | NMISC | 7 |
| SFLOSS | NMISC | 8 |
| FACE1 | NMISC | 9 |

| Output
 Quantity
 Name | ETABLE Com-
 mand Input | |
| :---: | :--- | :---: |
| | I | |
| HFLXAVG1 | NMISC | 10 |
| FACE2 | NMISC | 11 |
| HFLXAVG2 | NMISC | 12 |
| FACE3 | NMISC | 13 |
| HFLXAVG3 | NMISC | 14 |
| ETINCR | NMISC | 15 |
| ETINCI | NMISC | 16 |
| ETOUTR | NMISC | 17 |
| ETOUTI | NMISC | 18 |
| ETDOT | NMISC | 19 |
| SAR | NMISC | 20 |

HF120 Assumptions and Restrictions

- The element must not have a zero volume.
- The element may be numbered either as shown in Figure 1 (p. 497) or may have the plane IJKL and MNOP interchanged.
- The required material properties (MURX, MURY, MURZ, PERX, PERY, PERZ) must be input as relative values.
- You cannot use the element in a transient analysis.
- The solenoidal current density is required for a solution, or for any postprocessing operations.
- Midside nodes must not be removed from this element. See Quadratic Elements (Midside Nodes) in the Modeling and Meshing Guide for more information on the use of midside nodes.
- Distributed ANSYS is only available for the first order element.

HF120 Product Restrictions

There are no product-specific restrictions for this element.

PLANE121

2-D 8-Node Electrostatic Solid

$$
\begin{array}{r}
\mathrm{MP} \text { <> <> <> <> <> <> <> EM <> <> PP <> EME <> } \\
\text { Product Restrictions }
\end{array}
$$

PLANE121 Element Description

PLANE121 is a 2-D, 8-node, charge-based electric element. The element has one degree of freedom, voltage, at each node. The 8 -node elements have compatible voltage shapes and are well suited to model curved boundaries.

This element is based on the electric scalar potential formulation, and it is applicable to 2-D electrostatic and time-harmonic quasistatic electric field analyses. Various printout options are also available. See PLANE121 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

Figure 1 PLANE121 Geometry

PLANE121 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 1 (p. 505). The element is defined by eight nodes and orthotropic material properties. A triangular-shaped element may be formed by defining the same node number for nodes K, L and O.

Orthotropic material directions correspond to the element coordinate directions. The element coordinate system orientation is as described in Coordinate Systems (p. 14). Properties not input default as described in Linear Material Properties (p. 16).

Nodal loads are defined with the $\mathbf{D}(L a b=V O L T)$ and $\mathbf{F}(L a b=C H R G)$ commands. The nodal forces, if any, should be input per unit of depth for a plane analysis and on a full 360° basis for an axisymmetric analysis.

Element loads are described in Node and Element Loads (p. 97). Surface charge densities may be input as surface loads at the element faces as shown by the circled numbers in Figure 1 (p. 505). Charge densities may be input as element body loads at the nodes. If the node I charge density CHRGD(I) is input, and all others are unspecified, they default to CHRGD(I). If all corner node charge densities are specified, each midside node charge density defaults to the average charge density of its adjacent corner nodes.

The temperature (for material property evaluation only) body loads may be input based on their value at the element's nodes or as a single element value [BF, BFE]. In general, unspecified nodal values of temperatures default to the uniform value specified with the BFUNIF or TUNIF commands.

A summary of the element input is given in "PLANE121 Input Summary" (p. 506). A general description of element input is given in Element Input (p. 5). For axisymmetric applications see Harmonic Axisymmetric Elements (p. 102).

PLANE121 Input Summary

Nodes

I, J, K, L, M, N, O, P

Degrees of Freedom

VOLT

Real Constants

THK - Thickness (used only if $\operatorname{KEYOPT}(3)=3$)

Material Properties

PERX, PERY, LSST, RSVX, RSVY

Surface Loads

Surface charge densities --

CHRGS face 1 (J-I), face 2 (K-J), face 3 (L-K), face 4 (I-L)

Body Loads

Temperature --

$\mathrm{T}(\mathrm{I}), \mathrm{T}(\mathrm{J}), \mathrm{T}(\mathrm{K}), \mathrm{T}(\mathrm{L}), \mathrm{T}(\mathrm{M}), \mathrm{T}(\mathrm{N}), \mathrm{T}(\mathrm{O}), \mathrm{T}(\mathrm{P})$

Volume charge densities --

CHRGD(I), CHRGD(J), CHRGD(K), CHRGD(L), CHRGD(M), CHRGD(N), CHRGD(O), CHRGD(P)

Special Features

Birth and death

KEYOPT(3)

Element behavior:
0 --
Plane
1 --
Axisymmetric
3 --
Plane with thickness input, specified via real constant THK.

KEYOPT(4)

Element coordinate system defined:
0 --
Element coordinate system is parallel to the global coordinate system
1 --
Element coordinate system is based on the element $\mathrm{I}-\mathrm{J}$ side

KEYOPT(5)

Extra element output:

0 --

Basic element printout

1 --

Repeat basic solution for all integration points
2 --
Nodal fields printout

KEYOPT(6)

Electric charge reaction sign:

0 --
 Positive

1 --
Negative

PLANE121 Output Data

The solution output associated with the element is in two forms:

- Nodal degrees of freedom included in the overall nodal solution
- Additional element output as shown in Table 1: PLANE121 Element Output Definitions (p. 508)

Several items are illustrated in Figure 2 (p. 507). The element output directions are parallel to the element coordinate system. A general description of solution output is given in Solution Output (p.8). See the Basic Analysis Guide for ways to view results.

Figure 2 PLANE121 Output

The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.
Table 1 PLANE121 Element Output Definitions

| Name | Definition | \mathbf{O} | R |
| :--- | :--- | :--- | :--- |
| EL | Element Number | Y | Y |
| NODES | Nodes $-\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}, \mathrm{M}, \mathrm{N}, \mathrm{O}, \mathrm{P}$ | Y | Y |
| MAT | Material number | Y | Y |
| VOLU: | Volume | Y | Y |
| XC, YC | Location where results are reported | Y | 2 |
| TEMP | Temperatures T(I), T(J), T(K), T(L), T(M), T(N), T(O), T(P) | Y | Y |
| LOC | Output location (X, Y) | 1 | 1 |
| PERX, PERY | Electric relative permittivity | 1 | 1 |
| EF:X, Y | Electric field components | 1 | 1 |
| EF:SUM | Vector magnitude of EF | 1 | 1 |
| D:X, Y | Electric flux density components | 1 | 1 |
| D:SUM | Vector magnitude of D | 1 | 1 |
| JS:X, Y, SUM | Current density components and vector magnitude [3] | 1 | 1 |
| JT:X, Y, SUM | Conduction current density components and magnitude
 [3] | 1 | 1 |
| JHEAT: | Joule heat generation rate per unit volume [4] [5] [6] | 1 | 1 |
| SENE: | Stored electric energy [6] | 1 | 1 |
| FMAG:X, Y | Electrostatic force [7] | - | 1 |
| CHRGD | Applied charge density | - | Y |

1. The solution value is output only if calculated (based upon input data). The element solution is at the centroid.
2. Available only at centroid as a *GET item.
3. For a time-harmonic analysis, JS represents the sum of element conduction and displacement current densities. JT represents the element conduction current density. The element displacement current density (JD) can be derived from JS and JT as JD = JS-JT.
4. For a time-harmonic analysis, calculated Joule heat generation rate per unit volume (JHEAT) includes conduction heating and dielectric heating due to the loss tangent.
5. Calculated Joule heat generation rate per unit volume (JHEAT) may be made available for a subsequent thermal analysis with companion elements [LDREAD].
6. For a time-harmonic analysis, Joule losses (JHEAT) and stored energy (SENE) represent time-average values. These values are stored in both the real and imaginary data sets.
7. Use the EMFT macro to calculate the force distribution over the body. See the discussion on Electrostatic Forces in the Low-Frequency Electromagnetic Analysis Guide.

Table 2 PLANE121 Miscellaneous Element Output

| Description | Names of Items Output | $\mathbf{0}$ | R |
| :--- | :--- | :---: | :---: |
| Integration Point Solution | LOC, PERX, PERY, PERZ, EF, EFSUM, D,
 DSUM | 1 | - |
| Nodal Solution | EF, EFSUM, D, DSUM | 2 | - |

1. Output at each integration point, if $\operatorname{KEYOPT}(5)=1$
2. Output at each node, if $\operatorname{KEYOPT}(5)=2$

Note

For axisymmetric solutions with $\operatorname{KEYOPT}(4)=0$, the X and Y directions correspond to the radial and axial directions, respectively.

Table 3: PLANE121 Item and Sequence Numbers (p. 509) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p.9) in this manual for more information. The following notation is used in Table 3: PLANE121 Item and Sequence Numbers (p. 509):

Name

output quantity as defined in the Table 1: PLANE121 Element Output Definitions (p. 508)

Item

predetermined Item label for ETABLE command
E
sequence number for single-valued or constant element data
Table 3 PLANE121 Item and Sequence Numbers

| Output
 Quant-
 ity
 Name | ETABLE and
 ESOL Command
 Input | |
| :--- | :--- | :--- |
| | Item | E |
| CHRGD | SMISC | 1 |
| PERX | NMISC | 1 |
| PERY | NMISC | 2 |
| JTX | NMISC | 4 |
| JTY | NMISC | 5 |
| JTSUM | NMISC | 6 |

PLANE121 Assumptions and Restrictions

- The area of the element must be positive.
- The element must lie in a global X - Y plane as shown in Figure 2 (p .507), and the Y -axis must be the axis of symmetry for axisymmetric analyses.
- An axisymmetric structure should be modeled in the $+X$ quadrants.
- A face with a removed midside node implies that the potential varies linearly, rather than parabolically, along that face. See Quadratic Elements (Midside Nodes) in the Modeling and Meshing Guide for more information about the use of midside nodes.
- This element is only compatible with elements having a VOLT DOF and an electric charge reaction solution. Electric charge reactions must all be positive or negative. KEYOPT(6) sets the electric charge reaction sign. See Element Compatibility in the Low-Frequency Electromagnetic Analysis Guide for more information.

PLANE121 Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

ANSYS Emag

- The birth and death special feature is not allowed.

SOLID122

3-D 20-Node Electrostatic Solid
MP <> <> <> <> <> <> <> EM <> <> PP <> EME <>

SOLID122 Element Description

SOLID122 is a 3-D, 20-node, charge-based electric element. The element has one degree of freedom, voltage, at each node. It can tolerate irregular shapes without much loss of accuracy. SOLID122 elements have compatible voltage shapes and are well suited to model curved boundaries.

This element is applicable to 3-D electrostatic and time-harmonic quasistatic electric field analyses. Various printout options are also available. See SOLID122 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

Figure 1 SOLID122 Geometry

Tetrahedral Option

Pyramid Option

Prism Option

SOLID122 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 1 (p. 511). The element is defined by 20 node points and the material properties. A prism-shaped element may be formed by defining duplicate K, L, and $\mathrm{S} ; \mathrm{A}$ and B ; and O, P, and W node numbers. A pyramid-shaped element and a tetrahedral-shaped element may also be formed as shown in Figure 1 (p. 511).

Orthotropic material directions correspond to the element coordinate directions. The element coordinate system orientation is as described in Coordinate Systems (p. 14). Properties not input default as described in Linear Material Properties (p.16). Nodal loads are defined with the D (Lab= VOLT) and F (Lab=CHRG) commands.

Element loads are described in Node and Element Loads (p. 97). Surface charge densities may be input as surface loads at the element faces as shown by the circled numbers on Figure 1 (p. 511). Charge density may be input as element body loads at the nodes. If the node I charge densities CHRGD(I) is input, and all others are unspecified, they default to CHRGD(I). If all corner node charge densities are specified, each midside node charge density defaults to the average charge density of its adjacent corner nodes.

The temperature (for material property evaluation only) body loads may be input based on their value at the element's nodes or as a single element value [BF, BFE]. In general, unspecified nodal values of temperatures default to the uniform value specified with the BFUNIF or TUNIF commands.

A summary of the element input is given in "SOLID122 Input Summary" (p. 512). A general description of element input is given in Element Input (p. 5).

SOLID122 Input Summary

Nodes

I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, A, B
Degrees of Freedom
VOLT

Real Constants

None

Material Properties

PERX, PERY, PERZ, LSST, RSVX, RSVY, RSVZ

Surface Loads

Surface charge densities --

CHRGS face 1 (J-I-L-K), face 2 (I-J-N-M), face 3 (J-K-O-N), face 4 (K-L-P-O), face 5 (L-I-M-P), face 6 (M-N-O-P)

Body Loads

Temperature --
$\mathrm{T}(\mathrm{I}), \mathrm{T}(\mathrm{J}), \ldots, \mathrm{T}(\mathrm{Z}), \mathrm{T}(\mathrm{A}), \mathrm{T}(\mathrm{B})$
Volume charge densities --
CHRGD(I), CHRGD(J), ..., CHRGD(Z), CHRGD(A), CHRGD(B)

Special Features

Birth and death

KEYOPT(4)

Element coordinate system defined:
0 --
Element coordinate system is parallel to the global coordinate system
1 --
Element coordinate system is based on the element I-J side

KEYOPT(5)

Extra element output:
0 --
Basic element printout
1 --
Repeat basic solution for all integration points
2 --
Nodal fields printout

KEYOPT(6)

Electric charge reaction sign:
0 --
Positive
1 --
Negative

SOLID122 Output Data

The solution output associated with the element is in two forms:

- Nodal potentials included in the overall nodal solution
- Additional element output as shown in Table 1: SOLID122 Element Output Definitions (p. 513)

The element output directions are parallel to the element coordinate system. A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 1 SOLID122 Element Output Definitions

| Name | Definition | \mathbf{O} | \mathbf{R} |
| :--- | :--- | :---: | :---: |
| EL | Element Number | Y | Y |
| NODES | Nodes $-\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}, \mathrm{M}, \mathrm{N}, \mathrm{O}, \mathrm{P}$ | Y | Y |
| MAT | Material number | Y | Y |
| VOLU: | Volume | Y | Y |
| XC, YC, ZC | Location where results are reported | Y | 2 |
| TEMP | Temperatures T(I), T(J), ... T(Z), T(A), T(B) | Y | Y |
| LOC | Output location $(\mathrm{X}, \mathrm{Y}, \mathrm{Z})$ | 1 | 1 |
| PERX, PERY,
 PERZ | Electric relative permittivity | 1 | 1 |

| Name | Definition | \mathbf{O} | R |
| :--- | :--- | :---: | :---: |
| EF:X, Y, Z | Electric field components | 1 | 1 |
| EF:SUM | Vector magnitude of EF | 1 | 1 |
| D:X, Y, Z | Electric flux density components | 1 | 1 |
| D:SUM | Vector magnitude of D | 1 | 1 |
| JS:X, Y, Z, SUM | Current density components and vector magnitude [3] | 1 | 1 |
| JT:X, Y, Z, SUM | Conduction current density components and magnitude
 [3] | 1 | 1 |
| JHEAT: | Joule heat generation rate per unit volume [4] [6] [5] | 1 | 1 |
| SENE: | Stored electric energy [5] | 1 | 1 |
| FMAG:X, Y, Z | Electrostatic force [7] | - | 1 |
| CHRGD | Applied charge density | - | Y |

1. The solution value is output only if calculated (based upon input data). The element solution is at the centroid.
2. Available only at centroid as a *GET item.
3. For a time-harmonic analysis, JS represents the sum of element conduction and displacement current densities. JT represents the element conduction current density. The element displacement current density (JD) can be derived from JS and JT as JD=JS-JT. JS can be used as a source current density for a subsequent magnetostatic analysis with companion elements [LDREAD].
4. For a time-harmonic analysis, calculated Joule heat generation rate per unit volume (JHEAT) includes conduction heating and dielectric heating due to the loss tangent.
5. Calculated Joule heat generation rate per unit volume (JHEAT) may be made available for a subsequent thermal analysis with companion elements [LDREAD].
6. For a time-harmonic analysis, Joule losses (JHEAT) and stored energy (SENE) represent time-average values. These values are stored in both the real and imaginary data sets.
7. Use the EMFT macro to calculate the force distribution over the body. See the discussion on Electrostatic Forces in the Low-Frequency Electromagnetic Analysis Guide.

Table 2 SOLID122 Miscellaneous Element Output

| Description | Names of Items Output | $\mathbf{0}$ | R |
| :--- | :--- | :---: | :---: |
| Integration Point Solution | LOC, PERX, PERY, PERZ, EF, EFSUM,
 D, DSUM | 1 | - |
| Nodal Solution | EF, EFSUM, D, DSUM | 2 | - |

1. Output at each integration point, if $\operatorname{KEYOPT}(5)=1$
2. Output at each corner node, if $\operatorname{KEYOPT}(5)=2$

Table 3: SOLID122 Item and Sequence Numbers (p. 515) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p.9) in this manual for more information. The following notation is used in Table 3: SOLID122 Item and Sequence Numbers (p. 515):

Name

output quantity as defined in the Table 1: SOLID122 Element Output Definitions (p. 513)

Item

predetermined Item label for ETABLE command
E
sequence number for single-valued or constant element data

Table 3 SOLID122 Item and Sequence Numbers

| Output
 Quant-
 ity
 Name | ETABLE and
 ESOL Command
 Input | |
| :---: | :---: | :---: |
| | Item | E |
| CHRGD | SMISC | 1 |
| EFX | SMISC | 2 |
| EFY | SMISC | 3 |
| EFZ | SMISC | 4 |
| PERX | NMISC | 1 |
| PERY | NMISC | 2 |
| PERZ | NMISC | 3 |
| JTX | NMISC | 5 |
| JTY | NMISC | 6 |
| JTZ | NMISC | 7 |
| JTSUM | NMISC | 8 |

SOLID122 Assumptions and Restrictions

- The element must not have a zero volume or a zero length side. This occurs most frequently when the element is not numbered properly. Elements may be numbered either as shown in Figure 1 (p. 511) or in an opposite fashion.
- An edge with a removed midside node implies that the potential varies linearly, rather than parabolically, along that edge. See Quadratic Elements (Midside Nodes) in the Modeling and Meshing Guide for more information on the use of midside nodes.
- Degeneration to the form of pyramid should be used with caution. The element sizes, when degenerated, should be small in order to minimize the field gradients. Pyramid elements are best used as filler elements or in meshing transition zones.
- This element is only compatible with elements having a VOLT DOF and an electric charge reaction solution. Electric charge reactions must all be positive or negative. $\operatorname{KEYOPT}(6)$ sets the electric charge reaction sign. See Element Compatibility in the Low-Frequency Electromagnetic Analysis Guide for more information.
- The solenoidal current density is required for a solution, or for any postprocessing operations.

SOLID122 Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

ANSYS Emag

- The Birth and death special feature is not allowed.

SOLID123

3-D 10-Node Tetrahedral Electrostatic Solid

$$
\begin{array}{r}
\text { MP <> <> <> <> <> <> <> EM <> <> PP <> EME <> } \\
\text { Product Restrictions }
\end{array}
$$

SOLID123 Element Description

SOLID123 is a 3-D, 10-node, charge-based electric element. It is well suited to model irregular meshes (such as produced from various CAD/CAM systems). The element has one degree of freedom, voltage, at each node.

This element is applicable to 3-D electrostatic and time-harmonic quasistatic electric field analyses. Various printout options are also available. See SOLID123 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

Figure 1 SOLID123 Geometry

SOLID123 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 1 (p. 517).
Orthotropic material directions correspond to the element coordinate directions. The element coordinate system orientation is as described in Coordinate Systems (p. 14). Properties not input default as described in Linear Material Properties (p.16). Nodal loads are defined with the $\mathbf{D}(L a b=V O L T)$ and \mathbf{F} (Lab =CHRG) commands.

Element loads are described in Node and Element Loads (p. 97). Surface charge densities may be input as surface loads at the element faces as shown by the circled numbers on Figure 1 (p. 517). Charge densities may be input as element body loads at the nodes. If the node I charge density $\operatorname{CHRGD}(\mathrm{I})$ is input, and all others are unspecified, they default to CHRGD(I). If all corner node charge densities are specified, each midside node charge density defaults to the average charge density of its adjacent corner nodes.

The temperature (for material property evaluation only) body loads may be input based on their value at the element's nodes or as a single element value [BF, BFE]. In general, unspecified nodal values of temperatures default to the uniform value specified with the BFUNIF or TUNIF commands.

A summary of the element input is given in "SOLID123 Input Summary" (p. 518). A general description of element input is given in Element Input (p. 5).

SOLID123 Input Summary

Nodes

I, J, K, L, M, N, O, P, Q, R
Degrees of Freedom
VOLT

Real Constants

None

Material Properties

PERX, PERY, PERZ, LSST, RSVX, RSVY, RSVZ

Surface Loads

Surface charge densities --

CHRGS face 1 (J-I-K), face 2 (I-J-L), face 3 (J-K-L), face 4 (K-I-L)

Body Loads

Temperature --
$T(I), T(J), T(K), T(L), T(M), T(N), T(O), T(P), T(Q), T(R)$
Volume charge densities --
CHRGD(I), CHRGD(J), CHRGD(K), CHRGD(L), CHRGD(M), CHRGD(N), CHRGD(O), CHRGD(P), CHRGD(Q), CHRGD(R)

Special Features

Birth and death

KEYOPT(4)

Element coordinate system defined:
0 --
Element coordinate system is parallel to the global coordinate system
1 --
Element coordinate system is based on the element I-J side

KEYOPT(5)

Extra element output:
0 --
Basic element printout
1 --
Repeat basic solution for all integration points
2 --
Nodal fields printout

KEYOPT(6)

Electric charge reaction sign:
0 --
Positive

1 --
 Negative

SOLID123 Output Data

The solution output associated with the element is in two forms:

- Nodal potentials included in the overall nodal solution
- Additional element output as shown in Table 1: SOLID123 Element Output Definitions (p. 519)

The element output directions are parallel to the element coordinate system. A general description of solution output is given in Solution Output (p. 8) in the Element Reference. See the Basic Analysis Guide for ways to view results.

The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 1 SOLID123 Element Output Definitions

| Name | Definition | \mathbf{O} | R |
| :--- | :--- | :---: | :---: |
| EL | Element Number | Y | Y |
| NODES | Nodes $-\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}, \mathrm{M}, \mathrm{N}, \mathrm{O}, \mathrm{P}$ | Y | Y |
| MAT | Material number | Y | Y |
| VOLU: | Volume | Y | Y |
| XC, YC, ZC | Location where results are reported | Y | 2 |
| TEMP | Temperatures T(I), T(J), T(K), T(L), T(M), T(N), T(O), T(P),
 T(Q), T(R) | Y | Y |
| LOC | Output location (X, Y, Z) | 1 | 1 |
| PERX, PERY,
 PERZ | Electric relative permittivity | 1 | 1 |
| EF:X, Y, Z | Electric field components (X, Y, Z) | 1 | 1 |
| EF:SUM | Vector magnitude of EF | 1 | 1 |
| D:X, Y, Z | Electric flux density components | 1 | 1 |
| D:SUM | Vector magnitude of D | 1 | 1 |
| JS:X, Y, Z, SUM | Current density components and vector magnitude [3] | 1 | 1 |
| JT:X, Y, Z, SUM | Conduction current density components and magnitude
 [3] | 1 | 1 |
| JHEAT: | Joule heat generation rate per unit volume [4] [6] [5] | 1 | 1 |
| SENE: | Stored electric energy [5] | 1 | 1 |
| FMAG:X, Y, Z | Electrostatic force [7] | - | 1 |

| Name | Definition | $\mathbf{0}$ | \mathbf{R} |
| :--- | :--- | :--- | :--- |
| CHRGD | Applied charge density | - | Y |

1. The solution value is output only if calculated (based upon input data). The element solution is at the centroid.
2. Available only at centroid as a *GET item.
3. For a time-harmonic analysis, JS represents the sum of element conduction and displacement current densities. JT represents the element conduction current density. The element displacement current density (JD) can be derived from JS and JT as JD=JS-JT. JS can be used as a source current density for a subsequent magnetostatic analysis with companion elements [LDREAD].
4. For a time-harmonic analysis, calculated Joule heat generation rate per unit volume (JHEAT) includes conduction heating and dielectric heating due to the loss tangent.
5. Calculated Joule heat generation rate per unit volume (JHEAT) may be made available for a subsequent thermal analysis with companion elements [LDREAD].
6. For a time-harmonic analysis, Joule losses (JHEAT) and stored energy (SENE) represent time-average values. These values are stored in both the real and imaginary data sets.
7. Use the EMFT macro to calculate the force distribution over the body. See the discussion on Electrostatic Forces in the Low-Frequency Electromagnetic Analysis Guide.

Table 2 SOLID123 Miscellaneous Element Output

| Description | Names of Items Output | $\mathbf{0}$ | R |
| :--- | :--- | :---: | :---: |
| Integration Point Solution | LOC, PERX, PERY, PERZ, EF, EFSUM,
 D, DSUM | 1 | - |
| Nodal Solution | EF, EFSUM, D, DSUM | 2 | - |

1. Output at each integration point, if $\operatorname{KEYOPT}(5)=1$
2. Output at each corner node, if $\operatorname{KEYOPT}(5)=2$

Table 3: SOLID123 Item and Sequence Numbers (p. 521) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p.9) in this manual for more information. The following notation is used in Table 3: SOLID123 Item and Sequence Numbers (p. 521):

Name

output quantity as defined in the Table 1: SOLID123 Element Output Definitions (p. 519)

Item

predetermined Item label for ETABLE command

E
sequence number for single-valued or constant element data
Table 3 SOLID123 Item and Sequence Numbers

| Output
 Quant-
 ity
 Name | ETABLE and
 ESOL Command
 Input | |
| :---: | :---: | :---: |
| | E | |
| CHRGD | SMISC | 1 |
| EFX | SMISC | 2 |
| EFY | SMISC | 3 |
| EFZ | SMISC | 4 |
| PERX | NMISC | 1 |
| PERY | NMISC | 2 |
| PERZ | NMISC | 3 |
| JTX | NMISC | 5 |
| JTY | NMISC | 6 |
| JTZ | NMISC | 7 |
| JTSUM | NMISC | 8 |

SOLID123 Assumptions and Restrictions

- The element must not have a zero volume or a zero length side. This occurs most frequently when the element is not numbered properly. Elements may be numbered either as shown in Figure 1 (p. 517) or in an opposite fashion.
- An edge with a removed midside node implies that the potential varies linearly, rather than parabolically, along that edge. See Quadratic Elements (Midside Nodes) in the Modeling and Meshing Guide for more information on the use of midside nodes.
- This element is only compatible with elements having a VOLT DOF and an electric charge reaction solution. Electric charge reactions must all be positive or negative. KEYOPT(6) sets the electric charge reaction sign. See Element Compatibility in the Low-Frequency Electromagnetic Analysis Guide for more information.
- The solenoidal current density is required for a solution, or for any postprocessing operations.

SOLID123 Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

ANSYS Emag 3-D

- The birth and death special feature is not allowed.

CIRCU124

Electric Circuit

MP ME <> <> <> <> <> <> EM <> <> PP <> EME MFS

CIRCU124 Element Description

CIRCU124 is a general circuit element applicable to circuit simulation. The element may also interface with electromagnetic finite elements to simulate coupled electromagnetic-circuit field interaction. The element has up to 6 nodes to define the circuit component and up to three degrees of freedom per node to model the circuit response. For electromagnetic-circuit field coupling, the element may interface with PLANE53 and SOLID97 using coupled circuit source options $\operatorname{KEYOPT}(1)=5,6$, or 7 (see Figure 3 (p. 525)). CIRCU124 can be directly coupled to the electromagnetic or stranded coil analysis options of PLANE233, SOLID236, and SOLID237 through the VOLT degree of freedom. CIRCU124 is applicable to static, harmonic, and transient analyses.

CIRCU124 Input Data

The geometry, node definition, and degree of freedom options are shown in Figure 1 (p. 524) (circuit components), Figure 2 (p. 524) (circuit source options), and Figure 3 (p. 525) (coupled circuit source options). The element is defined by active and passive circuit nodes. Active nodes are those connected to an overall electric circuit, and passive nodes are those used internally by the element and not connected to the circuit. For the coupled circuit source options, the passive nodes are actual nodes of a source conductor modeled in the electromagnetic field domain.

Element circuit components, sources, and coupled sources are defined by KEYOPT(1) settings and its corresponding real constants. Real constant input is dependent on the element circuit option used. A summary of the element input options is given in "CIRCU124 Input Summary" (p. 525). Real constants numbers 15 and 16 are created by the GUI Circuit Builder (see the Modeling and Meshing Guide), and are not required input for analysis purposes. The element is characterized by up to three degrees of freedom:

- VOLT (voltage)
- CURR (current)
- EMF (potential drop)

Figure 1 CIRCU124 Circuit Element Options

KEYOPT(1) $=0$
$\operatorname{KEYOPT}(1)=1 \quad \operatorname{KEYOPT}(1)=2$
$\operatorname{KEYOPT}(1)=8$
DOF = VOLT
DOF = VOLT
DOF = VOLT
DOF = VOLT
Figure 2 CIRCU124 Circuit Source Options

$\operatorname{KEYOPT}(1)=3$
DOF = VOLT

Independent Voltage Source

$\operatorname{KEYOPT}(1)=4$ DOF = VOLT (I, J),
CURR (K)

Voltage-controlled Current Source

KEYOPT(1) $=9$
DOF = VOLT

Voltage-controlled Voltage Source

$\operatorname{KEYOPT}(1)=10$
DOF = VOLT (I,J,L,M)
CURR (K)

Current-controlled Current Source

$\operatorname{KEYOPT}(1)=12$
DOF = VOLT (I,J,L,M), CURR (K,N)

Current-controlled Voltage Source

$\operatorname{KEYOPT}(1)=11$
DOF = VOLT (I,J,L,M),
CURR (K,N)

Figure 3 CIRCU124 Coupled Circuit Source Options

Stranded Coil, 2-D or 3-D

KEYOPT(1) $=5$
DOF $=\operatorname{VOLT}(\mathrm{I}, \mathrm{J}), \operatorname{CURR}(\mathrm{K}), \mathrm{EMF}(\mathrm{K})$

Massive Conductor, 2-D

$\operatorname{KEYOPT}(1)=6$
DOF $=\operatorname{VOLT}(\mathrm{I}, \mathrm{J}), \operatorname{CURR}(\mathrm{K}), \operatorname{EMF}(\mathrm{K})$

Massive Conductor, 3-D

KEYOPT(1) = 7
DOF $=$ VOLT (I,J,K,L), CURR (K,L)
\bullet indicates common node
Independent voltage and current sources (KEYOPT(1) = 3 or 4) may be excited by AC/DC, sinusoidal, pulse, exponential, or piecewise linear load functions as defined by KEYOPT(2); see Figure 4 (p. 528).

The time-step size for a transient analysis is controlled by the DELTIM or NSUBST commands. The CIRCU124 element does not respond to automatic time stepping (AUTOTS command), but AUTOTS can be used as a mechanism for ramping the time step to its final value. For coupled electromagnetic-circuit problems, automatic time stepping may be used if controls are placed on degrees of freedom other than VOLT, CURR, or EMF, or loads associated with those degrees of freedom.

For problems using the CIRCU124 element, the sparse direct solver is chosen by default.

CIRCU124 Input Summary

Nodes

```
    I, J, K, L, M, N
```


Degrees of Freedom

VOLT, CURR, EMF (see Figure 1 (p. 524))

Real Constants

Dependent on KEYOPT(1) and KEYOPT(2) settings. See Table 1: CIRCU124 Real Constants (p. 527) for details.

Material Properties

None

Surface Loads

None

Body Loads

See KEYOPT(2)

Special Features

Magnetic Field Coupling
KEYOPT(1)
Circuit component type:
0 --
Resistor
1 --
Inductor
2 --
Capacitor
3 --
Independent Current Source
4 --
Independent Voltage Source
5 --
Stranded Coil Current Source
6 --
2-D Massive Conductor Voltage Source
7 --
3-D Massive Conductor Voltage Source
8 --
Mutual Inductor
9 --
Voltage-Controlled Current Source
10 --
Voltage-Controlled Voltage Source
11 --
Current-Controlled Voltage Source
12 --
Current-Controlled Current Source

KEYOPT(2)

Body loads available if $\operatorname{KEYOPT}(1)=3$ or 4 :

0 --

DC or AC Harmonic load
1 --
Sinusoidal load
2 --
Pulse load
3 --
Exponential load
4 --
Piecewise Linear load
Table 1 CIRCU124 Real Constants

| Circuit Option and Graph-
 ics Label | KEYOPT(1) | Real Constants |
| :--- | :---: | :--- |
| Resistor (R) | 0 | R1 = Resistance (RES) |
| Inductor (L) | 2 | R1 = Inductance (IND)
 R2 $=$ Initial inductor current (ILO) |
| Capacitor (C) | R1 = Capacitance (CAP)
 R2 = Initial Capacitor Voltage (VCO) | |
| Mutual Inductor (K) | R1 = Primary Inductance (IND1)
 R2 = Secondary Inductance (IND2)
 R3 = Coupling Coefficient (K) | |
| Independent Current Source
 (I) | 3 | For KEYOPT(2) = 0:
 R1 = Amplitude (AMPL)
 R2 = Phase angle (PHAS) |
| Voltage-Controlled Current
 Source (G) | 9 | R1 = Transconductance (GT) |

| Circuit Option and Graph-
 ics Label | KEYOPT(1) | Real Constants |
| :--- | :---: | :--- |
| 3-D Massive Conductor
 Voltage Source (P) | $7[1]$ | R1 = Symmetry Factor (SCAL) |

1. Applies only to a FEA domain modeled with PLANE53 or SOLID97 elements.

Note

For all above Circuit options, the GOFFST and ID real constants (numbers 15 and 16) are created by the Circuit Builder automatically:

Figure 4 Load Functions and Corresponding Real Constants for Independent Current and Voltage Sources

(a) Sinusoidal load, $\operatorname{KEYOPT}(2)=1$

(b) Pulse load, $\operatorname{KEYOPT}(2)=2$

(c) Exponential load, $\operatorname{KEYOPT}(2)=3$
(R1) $T_{1}=$ Time-point 1
(R2) $\mathrm{V}_{1}=$ Voltage or current at time-point 1
(R3) $T_{2}=$ Time-point 2
$(\mathrm{R} 4) \mathrm{V}_{2}=$ Voltage or current at time-point 2

(R11) $\mathrm{T}_{6}=$ Time-point 6
(R12) $\mathrm{V}_{6}=$ Voltage or current at time-point 6
$\xrightarrow[\text { Time }]{ }$
(d) Piecewise linear load, $\operatorname{KEYOPT}(2)=4$

CIRCU124 Output Data

The element output for this element is dependent on the circuit option selected. Table 2: CIRCU124 Element Output Definitions (p.529) summarizes the element output data.

The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 2 CIRCU124 Element Output Definitions

| Name | Definition | \mathbf{O} | R |
| :--- | :--- | :---: | :---: |
| For KEYOPT(1) = 0: Resistor | | | |
| EL | Element Number | Y | Y |
| NODES | Nodes - I, J | Y | Y |
| RES | Resistance | Y | Y |

| Name | Definition | 0 | R |
| :---: | :---: | :---: | :---: |
| VOLTAGE | Voltage drop between node I and node J | Y | Y |
| CURRENT | Current | Y | Y |
| POWER | Power loss | Y | Y |
| For KEYOPT(1) = 1: Inductor | | | |
| EL | Element Number | Y | Y |
| NODES | Nodes - I, J | Y | Y |
| IND | Inductance | Y | Y |
| ILO | Initial current | Y | Y |
| VOLTAGE | Voltage drop between node I and node J | Y | Y |
| CURRENT | Current | Y | Y |
| POWER | Power absorption | Y | Y |
| For KEYOPT(1) = 2: Capacitor | | | |
| EL | Element Number | Y | Y |
| NODES | Nodes - I, J | Y | Y |
| CAP | Capacitance | Y | Y |
| VC0 | Initial voltage | Y | Y |
| VOLTAGE | Voltage drop between node I and node J | Y | Y |
| CURRENT | Current | Y | Y |
| POWER | Power absorption | Y | Y |
| For KEYOPT(1) = 3: Independent Current Source | | | |
| EL | Element Number | Y | Y |
| NODES | Nodes - I, J | Y | Y |
| CURRENT SOURCE | Real or imaginary component of applied current | Y | Y |
| VOLTAGE | Voltage drop between node I and node J | Y | Y |
| CURRENT | Current | Y | Y |
| POWER | Power (loss if positive, output if negative) | Y | Y |
| For KEYOPT(1) = 4: Independent Voltage Source | | | |
| EL | Element Number | Y | Y |
| NODES | Nodes - I, J, K | Y | Y |
| VOLTAGE SOURCE | Real or imaginary component of applied voltage | Y | Y |
| VOLTAGE | Voltage drop between node I and node J | Y | Y |
| CURRENT | Current at node K | Y | Y |
| POWER | Power (loss if positive, output if negative) | Y | Y |
| For KEYOPT(1) = 5: Stranded Coil Current Source | | | |
| EL | Element Number | Y | Y |
| NODES | Nodes - I, J, K | Y | Y |

| Name | Definition | 0 | R |
| :---: | :---: | :---: | :---: |
| SCAL | Scaling factor defining voltage symmetry in 2D or 3-D analyses | Y | Y |
| VOLTAGE | Voltage drop between node I and node J | Y | Y |
| CURRENT | Current at node K | Y | Y |
| POWER | Power loss or absorption | Y | Y |
| For KEYOPT(1) = 6: 2-D Massive Conductor Voltage Source | | | |
| EL | Element Number | Y | Y |
| NODES | Nodes - I, J, K | Y | Y |
| SCAL | Scaling factor defining voltage symmetry in 2D or 3-D analyses | Y | Y |
| VOLTAGE | Voltage drop between node I and node J | Y | Y |
| CURRENT | Current at node K | Y | Y |
| POWER | Power loss or absorption | Y | Y |
| For KEYOPT(1) = 7: 3-D Massive Conductor Voltage Source | | | |
| EL | Element Number | Y | Y |
| NODES | Nodes - I, J, K, L | Y | Y |
| SCAL | Scaling factor defining voltage symmetry in 2D or 3-D analyses | Y | Y |
| VOLTAGE | Voltage drop between node I and node J | Y | Y |
| CURRENT | Current at node K and L | Y | Y |
| CONTROL VOLT | Voltage drop between node K and node L | Y | Y |
| POWER | Power loss or absorption | Y | Y |
| For KEYOPT(1) = 8: 3-D Mutual Inductor (Transformer) | | | |
| EL | Element Number | Y | Y |
| NODES | Nodes - I, J, K, L | Y | Y |
| IND1 | Primary inductance | Y | Y |
| IND2 | Secondary inductance | Y | Y |
| INDM | Mutual inductance | Y | Y |
| VOLTAGE | Voltage drop between node I and node J | Y | Y |
| CURRENT | Current in I-J branch | Y | Y |
| CONTROL VOLT | Voltage drop between node K and node L | Y | Y |
| CONTROL CURR | Current in K-L branch | Y | Y |
| POWER | Power absorption | Y | Y |
| For KEYOPT(1) = 9: Voltage Controlled Current Source | | | |
| EL | Element Number | Y | Y |
| NODES | Nodes - I, J, K, L | Y | Y |
| GT | Transconductance | Y | Y |
| VOLTAGE | Voltage drop between node I and node J | Y | Y |

| Name | Definition | 0 | R |
| :---: | :---: | :---: | :---: |
| CURRENT | Current in I-J branch | Y | Y |
| CONTROL VOLT | Voltage drop between node K and node L | Y | Y |
| POWER | Power (loss if positive, output if negative) | Y | Y |
| For KEYOPT(1) = 10: Voltage Controlled Voltage Source | | | |
| EL | Element Number | Y | Y |
| NODES | Nodes - I, J, K, L, M | Y | Y |
| AV | Voltage gain | Y | Y |
| VOLTAGE | Voltage drop between node I and node J | Y | Y |
| CURRENT | Current at node K | Y | Y |
| CONTROL VOLT | Voltage drop between node L and node M | Y | Y |
| POWER | Power (loss if positive, output if negative) | Y | Y |
| For KEYOPT(1) = 11: Current Controlled Voltage Source | | | |
| EL | Element Number | Y | Y |
| NODES | Nodes - I, J, K, L, M, N | Y | Y |
| GT | Transresistance | Y | Y |
| VOLTAGE | Voltage drop between node I and node J | Y | Y |
| CURRENT | Current at node K | Y | Y |
| CONTROL VOLT | Voltage drop between node L and node M | Y | Y |
| CONTROL CURR | Current at node N | Y | Y |
| POWER | Power (loss if positive, output if negative) | Y | Y |
| For KEYOPT(1) = 12: Current Controlled Current Source | | | |
| EL | Element Number | Y | Y |
| NODES | Nodes - I, J, K, L, M, N | Y | Y |
| AI | Current gain | Y | Y |
| VOLTAGE | Voltage drop between node I and node J | Y | Y |
| CURRENT | Current at node K | Y | Y |
| CONTROL VOLT | Voltage drop between node L and node M | Y | Y |
| CONTROL CURR | Current at node N | Y | Y |
| POWER | Power (loss if positive, output if negative) | Y | Y |

Table 3: CIRCU124 Item and Sequence Numbers (p. 533) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p .9) in this manual for more information. The following notation is used in Table 3: CIRCU124 Item and Sequence Numbers (p. 533):

Name

output quantity as defined in the Table 2: CIRCU124 Element Output Definitions (p. 529)

Item

predetermined Item label for ETABLE command

E

sequence number for single-valued or constant element data
Table 3 CIRCU124 Item and Sequence Numbers

| Output Quantity
 Name | ETABLE and
 ESOL Command
 Input | |
| :---: | :--- | :--- |
| | Item | E |
| VOLTAGE | SMISC | 1 |
| CURRENT | SMISC | 2 |
| CONTROL VOLT | SMISC | 3 |
| CONTROL CURR | SMISC | 4 |
| POWER | NMISC | 1 |
| SOURCE (real) | NMISC | 2 |
| SOURCE (imaginary) | NMISC | 3 |

CIRCU124 Assumptions and Restrictions

- For static analyses, a capacitor circuit element is treated as an open-circuit and an inductor circuit element is treated as a short-circuit.
- Only MKS units are allowed (EMUNIT command).
- The resistor, inductor, capacitor, independent current source, and mutual inductor circuit options produce symmetric coefficient matrices while the remaining options produce unsymmetric matrices.
- The sparse solver is the default for problems using the CIRCU124 element. Even if you choose a different solver, ANSYS will switch to the sparse solver when CIRCU124 elements are present.
- This element may not be compatible with other elements with the VOLT degree of freedom. To be compatible, the elements must have the same reaction force (see Element Compatibility in the LowFrequency Electromagnetic Analysis Guide).
- $\operatorname{KEYOPT}(1)=5,6$ or 7 should not be used with PLANE233, SOLID236, or SOLID227. These elements can be coupled to CIRCU124 components directly through the VOLT degree of freedom.

CIRCU124 Product Restrictions

There are no product-specific restrictions for this element.

CIRCU125

Diode

MP ME <> <> <> <> <> <> EM <> <> PP <> EME MFS
Product Restrictions

CIRCU125 Element Description

CIRCU125 is a diode element normally used in electric circuit analysis. The element may also interface with electromagnetic and mechanical finite elements to simulate fully coupled electromechanical analyses at the lumped parameter level. The element has 2 nodes to define the circuit component and one degree of freedom per node to model the circuit response. The element may interface with the electric circuit element CIRCU124, with the mechanical elements MASS21, COMBIN14, and COMBIN39, and with the electromechanical transducer element TRANS126. CIRCU125 is applicable to static analyses and transient analyses with restart.

CIRCU125 Input Data

The geometry, node definition, and degree of freedom options are shown in Figure 1 (p. 535).
The diode element is defined by the KEYOPT(1) setting and its corresponding real constants. Real constant input is dependent on the diode option used. A summary of the element input options is given in "CIRCU125 Input Summary" (p. 536). Real constants numbers 1 and 2 are created by the GUI Circuit Builder (see the Modeling and Meshing Guide), and are not required input for analysis purposes. The element is characterized by one degree of freedom, VOLT (voltage).

Figure 1 CIRCU125 Element Options

The I-U characteristics of the diodes are approximated by the piecewise linear functions shown in Figure 2 (p. 536). The characteristic of a common (non-Zener) diode consists of line segments corresponding to the closed and open states. The characteristic of a Zener diode consists of three segments corresponding to the Zener, closed, and open states. The diode characteristic can be ideal or lossy depending on the values of the real constants.

Figure 2 CIRCU125 I-U Characteristics

Legend
VLTF - Forward voltage
VLTZ - Zener voltage
RESF - Slope is forward resistance
RESB - Slope is blocking resistance
RESZ - Slope is Zener resistance

CIRCU125 Input Summary

Nodes

I, J

Degrees of Freedom

VOLT

Real Constants

Dependent on KEYOPT(1) settings.
For KEYOPT(1) = 0:
GOFFST, ID, (blank), RESF, VLTF, RESB, (blank), (blank)
For $\operatorname{KEYOPT}(1)=1$:
GOFFST, ID, (blank), RESF, VLTF, RESB, RESZ, VLTZ
See Table 1: CIRCU125 Real Constants (p. 537).

Material Properties

None

Surface Loads

None

Body Loads

None

Special Features

None

KEYOPT(1)

Select diode options:
0 --
Common Diode
1 --
Zener Diode
If you are using the Circuit Builder to construct your model, the real constants GOFFST and ID are provided automatically.

Note

The real constant default values may not be appropriate to analyze micro devices (i.e., devices with extremely small dimensions) in MKSA units.

Table 1 CIRCU125 Real Constants

| Real
 Con-
 stant
 No. | Name | |
| :---: | :---: | :--- |
| Common Diode (D) (KEYOPT(1) = 0) | | |
| 1 | GOFFST | Graphical offset |
| 2 | ID | Element identification number |
| 3 | -- | (blank) |
| 4 | RESF | Forward resistance (if not entered, defaults to 1.0e-12
 Ohm) |
| 5 | VLTF | Forward voltage (if not entered, defaults to 0.0e0 Volt) |
| 6 | RESB | Blocking resistance (if not entered, defaults to 1.0e+12
 Ohm) |
| 7,8 | -- | (blank) |
| Zener Diode (Z) (KEYOPT(1) = 2) - use real constants 1 through 6 as above, then: | | |
| 7 | RESZ | Zener resistance (if not entered, defaults to 1.0e+12 Ohm) |
| 8 | VLTZ | Zener voltage (if not entered, defaults to 1.0e-12 Volt) |

CIRCU125 Solution Considerations

CIRCU125 is a highly nonlinear element. To obtain convergence, you may have to define convergence criteria, instead of using the default values. Use CNVTOL,VOLT,,0.001,2,1.0E-6 if you need to change the convergence criteria.

CIRCU125 Output Data

The element output for this element is dependent on the circuit option selected. Table 2: CIRCU125 Element Output Definitions (p. 538) summarizes the element output data.

The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 2 CIRCU125 Element Output Definitions

| Name | Definition | 0 | R |
| :---: | :---: | :---: | :---: |
| For KEYOPT(1) = 0: Common Diode | | | |
| EL | Element Number | Y | Y |
| NODES | Nodes - I, J | Y | Y |
| REST | Tangent Resistance | Y | Y |
| VOLTAGE | Voltage drop between node I and node J | Y | Y |
| CURRENT | Current | Y | Y |
| POWER | Power loss | Y | Y |
| STAT | Diode status | 1 | 1 |
| DYNRES | Dynamic resistance at operating point | Y | Y |
| AMPGEN | Norton equivalent current generator | Y | Y |
| For KEYOPT(1) = 1: Zener Diode | | | |
| EL | Element Number | Y | Y |
| NODES | Nodes - I, J | Y | Y |
| REST | Tangent resistance | Y | Y |
| VOLTAGE | Voltage drop between node I and node J | Y | Y |
| CURRENT | Current | Y | Y |
| POWER | Power loss | Y | Y |
| STAT | Diode status | 2 | 2 |
| DYNRES | Dynamic resistance at operating point | Y | Y |
| AMPGEN | Norton equivalent current generator | Y | Y |

1. Common Diode Status Values

1 - Forward, open
2 - Reverse, blocked
2. Zener Diode Status Values

1 - Forward, open
2 - Reverse, blocked
3 - Zener, breakdown
Table 3: CIRCU125 Item and Sequence Numbers (p. 539) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p.9) in this manual for more information. The following notation is used in Table 3: CIRCU125 Item and Sequence Numbers (p. 539):

Name

output quantity as defined in Table 2: CIRCU125 Element Output Definitions (p. 538)

Item

predetermined Item label for ETABLE command
E
sequence number for single-valued or constant element data
Table 3 CIRCU125 Item and Sequence Numbers

| Output
 Quant-
 ity
 Name | ETABLE and
 ESOL Command
 Input | |
| :--- | :--- | :--- |
| | E | |
| VOLTAGE | SMISC | 1 |
| CUR-
 RENT | SMISC | 2 |
| POWER | NMISC | 1 |
| blank | NMISC | 2 |
| blank | NMISC | 3 |
| DYNRES | NMISC | 4 |
| AMPGEN | NMISC | 5 |
| STAT | NMISC | 6 |

CIRCU125 Assumptions and Restrictions

- If either the Zener voltage or Zener resistance is blank or very small, the Zener diode will be replaced with a common diode, and a warning will be issued.
- Only MKS units are allowed (EMUNIT command).
- If the Zener Voltage is entered as a positive number, the element will negate the value that is entered. If the Forward Voltage is entered as a negative number, the element will replace it with its absolute value. All resistance must be positive. Any negative resistance value is replaced by its absolute value.
- The element issues an error message if applied in harmonic analysis.
- This element does not work with the CIRCU94 piezoelectric element.
- This element may not be compatible with other elements with the VOLT degree of freedom. To be compatible, the elements must have the same reaction force (see Element Compatibility in the LowFrequency Electromagnetic Analysis Guide).
- This element cannot be used in a distributed solution.

CIRCU125 Product Restrictions

There are no product-specific restrictions for this element.

TRANS126

Electromechanical Transducer

$$
\begin{array}{r}
\text { MP <> <> <> <> <> <> <> <> <> <> PP <> EME <> } \\
\text { Product Restrictions }
\end{array}
$$

TRANS126 Element Description

TRANS126 represents a transducer element that converts energy from an electrostatic domain into a structural domain (and vice versa), while also allowing for energy storage. The element fully couples the electromechanical domains and represents a reduced-order model suitable for use in structural finite element analysis as well as electromechanical circuit simulation. The element has up to two degrees of freedom at each node: translation in the nodal x, y, or z direction and electric potential (VOLT). The element is suitable for simulating the electromechanical response of micro-electromechanical devices (MEMS) such as electrostatic comb drives, capacitive transducers, and RF switches for example.

The characteristics of the element are derived from electrostatic field simulations of the electromechanical device using the electrostatic elements PLANE121, SOLID122, and SOLID123, as well as the CMATRIX macro. The TRANS126 element represents the capacitive response of the device to motion in one direction. Running a series of electrostatic simulations and extracting capacitance (CMATRIX command) as a function of stroke (or deflection) provides the necessary input for this element. The capacitance versus stroke represents a "reduced-order" characterization of the device suitable for simulation in this transducer element. Up to three characterizations (in X, Y, or Z) can be made from sets of electrostatic simulations to create three independent transducer elements to characterize a full translational response of the device. See TRANS126 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

Figure 1 TRANS126 Geometry

$$
\delta=G A P+u_{J}-u_{I}
$$

TRANS126 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 1 (p. 541). Nodes I and J define the element. The nodes need not be coincident. The element may lie along any one
of the three global Cartesian axes as shown in Figure 1 (p.541), or it may exist in any arbitrary coordinate system as long as the nodes are rotated into the arbitrary coordinate system in such a manner that one of the axes lies along the element's I-J direction. Use the degree of freedom option (KEYOPT(2)) to select the appropriate structural displacement degree of freedom (corresponding to the element's I-J direction) and electric potential. Orientation of the element with respect to nodal displacements (node J relative to node I) is critical. Orient the element such that a positive movement of node J relative to node I produces a positive displacement (see Figure 1 (p. 541)). Figure 4 (p. 549) illustrates valid and invalid orientations of the element for a UX-VOLT degree of freedom set.

The capacitance vs. stroke data for the element is entered through the real constant table. Use KEYOPT(3) to select from two different methods of input. For $\operatorname{KEYOPT}(3)=0$, the real constant data (R7-R11) represent the coefficients of an equation (see Figure 2 (p. 542)). Use as many terms as are required to represent the curve. For $\operatorname{KEYOPT}(3)=1$, the real constant data (R7-R46) represent discrete pairs of capacitance and stroke data. Up to 20 pairs of data may be input. The minimum required is 5 data point sets. A curve is fit to the discrete data sets represented by the equation shown in Figure 2 (p. 542).

Figure 2 TRANS126 Capacitance Relationship

Capacitance vs. Stroke Representation

The initial gap distance GAP (R3) represents the initial distance between conducting walls of the electromechanical device (that is, plates of a parallel capacitor, beams of a comb drive, etc.). The initial gap value should fall within the range of the capacitance vs. stroke data as shown in Figure 2 (p. 542). The minimum gap distance GAPMIN (R4) represents the physical location where the gap is closed. If the gap closes to GAPMIN, the element behaves like a contact element with a normal stiffness KN represented by real constant R5. GAP and GAPMIN default to near-zero if not defined. Figure 3 (p.543) illustrates the force vs. stroke for the transducer element. The curve highlights the capacitive force (which is compressive and acts to close the gap), and the contact force (which restrains the motion once the gap reaches GAPMIN). KN defaults to a stiffness represented by the slope from the capacitive force at GAPMIN to the origin as shown in Figure 3 (p. 543).

Figure 3 TRANS126 Force Relationship

The element supports nodal voltage and displacements (D) as well as nodal current and force (F). Use IC to input an initial starting value of voltage or displacement for a transient analysis, or an initial guess for a static analysis. The element produces an unsymmetric matrix unless you prescribe both nodal voltages. Prescribing the nodal voltages and setting $\operatorname{KEYOPT}(4)=1$ produces a symmetric matrix which can yield more efficient solution run times. The $\operatorname{KEYOPT}(4)=1$ option is valid for any analysis except a transient analysis. The element supports static, prestressed harmonic, transient, and prestressed modal analysis. Prestress effects must be applied for both modal and harmonic analysis (for example, a prestress static analysis with an applied DC voltage, followed by a small-signal (AC voltage) harmonic analysis, or a prestress static analysis with an applied DC voltage followed by a modal analysis). The element is nonlinear for static and transient analysis and requires an iterative solution to converge. The element supports tension only.

The transducer element by nature has both stable and unstable solutions. If the system stiffness is negative, convergence problems can occur near unstable solutions. This typically occurs at small gap distances near GAPMIN. Use $\operatorname{KEYOPT}(6)=1$ to select the augmented stiffness method if you encounter convergence problems. In this method, the electrostatic stiffness is set to zero to guarantee a positive system stiffness. After convergence is reached, the electrostatic stiffness is automatically reestablished for postprocessing and subsequent analyses.

The next table summarizes the element input. Element Input (p. 5) gives a general description of element input.

TRANS126 Input Summary

Nodes

I, J
Degrees of Freedom
UX-VOLT, UY-VOLT, OR UZ-VOLT

Real Constants

$$
\text { If } \operatorname{KEYOPT}(3)=0 \text {, then: }
$$

GOFFST, EID, GAP, GAPMIN, KN, (Blank), C0, C1, C2, C3, C4

If $\operatorname{KEYOPT}(3)=1$, then:
GOFFST, EID, GAP, GAPMIN, KN, (Blank),
GAP1, CAP1, GAP2, CAP2, ..., GAP20, CAP20
See Table 1: TRANS126 Real Constants (p. 545) for details.

Material Properties

None

Surface Loads

None

Body Loads

None

Special Features

Nonlinear
Prestress

KEYOPT(2)

Select DOF set:
0,1 --
UX-VOLT
2 --
UY-VOLT
3 --
UZ-VOLT

KEYOPT(3)

Capacitance-Gap option:
0 --
Use capacitance-gap curve input coefficients: C0, C1, C2, C3, and C4
1 --
Use capacitance versus gap data points: GAP1, CAP1, GAP2, CAP2 ... GAP20, CAP20

KEYOPT(4)

DC voltage drop option:

0 --

DC voltage drop is unknown (produces unsymmetric matrix)
1 --
DC voltage drop is fully constrained (produces symmetric matrix)

KEYOPT(6)

Stiffness method:
0 --
Full stiffness method (default)
1 --
Augmented stiffness method
The first six real constants for this element are the same, whether you set $\operatorname{KEYOPT}(3)=0$ or 1 . From number 7 on, the real constants differ between the two settings, as shown in the table below.

Table 1 TRANS126 Real Constants

| Number | Name | Description |
| :---: | :---: | :---: |
| Basic Set | | |
| 1 | GOFFST | Graphical offset |
| 2 | EID | ID number |
| 3 | GAP | Initial gap |
| 4 | GAPMIN | Minimal gap |
| 5 | KN | Gap Normal Stiffness |
| 6 | (blank) | unused |
| For KEYOPT(3) $=0$; Capacitance (Cap) vs. gap (x) function:$\text { Cap }=C 0 / x+C 1+C 2^{*} x+C 3^{*} x^{* *} 2+C 4^{*} x^{* *} 3$ | | |
| 7 | C0 | Equation constant C0 |
| 8 | C1 | Equation constant C1 |
| 9 | C2 | Equation constant C2 |
| 10 | C3 | Equation constant C3 |
| 11 | C4 | Equation constant C4 |
| For KEYOPT(3) = 1 (Capacitance-gap curve data) | | |
| 7 | GAP1 | Gap 1 |
| 8 | CAP1 | Capacitance 1 |
| 9, ..., 46 | $\begin{aligned} & \text { GAP2, CAP2, ..., } \\ & \text { GAP20, CAP20 } \end{aligned}$ | Gap2 and Capacitance 2 through Gap 20 and Capacitance 20 |

TRANS126 Output Data

The solution output associated with the element is shown in Table 2: TRANS126 Element Output Definitions (p. 546).

The element output directions are parallel to the element coordinate system. A general description of solution output is given in Solution Output (p. 8) in the Element Reference. See the Basic Analysis Guide for ways to view results.

If this element is used in a harmonic analysis, all variables will be stored in two-column arrays as complex variables. The first column will be titled real component and the second column will be titled imaginary component. If the variable is not complex, the same value will be stored in both columns.

The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and " - " indicates that the item is not available.

Table 2 TRANS126 Element Output Definitions

| Name | Definition | 0 | R |
| :---: | :---: | :---: | :---: |
| EL | Element number | Y | Y |
| NODES | Nodes - I, J | Y | Y |
| EFORCE | Electrostatic Force | Y | Y |
| ESTIFF | Electrostatic stiffness (dEFORCE/dU) | Y | Y |
| CONDUCT | Motion conductance (dCap/dU) (RELVEL) | Y | Y |
| DVDT | Time rate of change of Voltage (dVOLT/dt) | Y | Y |
| RELDISP | Relative displacement node I to node J | Y | Y |
| RELVEL | Relative velocity node I to node J | Y | Y |
| VOLTAGE | Voltage drop between node I and node J | Y | Y |
| CURRENT | Current | Y | Y |
| CAP | Capacitance | Y | Y |
| MECHPOWER | Mechanical power, (force x velocity) | Y | Y |
| ELECPOWER | Electrical power, (voltage drop x current) | Y | Y |
| CENERGY | Electrostatic energy stored in capacitor | Y | Y |
| GAP | Actual gap, $\mathrm{U}_{J}-\mathrm{U}_{1}+\mathrm{GAP}$ (nominal) (real constant input) | Y | Y |
| KUU | Coupled system stiffness, dF/dU | Y | Y |
| KUV | Coupled system stiffness, dF/dV | Y | Y |
| KVU | Coupled system stiffness, dl/dU | Y | Y |
| KVV | Coupled system stiffness, dl/dV | Y | Y |
| DUU | Coupled system damping, dF/dVEL | Y | Y |
| DUV | Coupled system damping, dF/dVRATE | Y | Y |
| DVU | Coupled system damping, dI/dVEL | Y | Y |
| DVV | Coupled system damping, dl/dVRATE | Y | Y |
| DISPR, DISPI | Real and imaginary components of displacement | 1 | 1 |

| Name | Definition | O | R |
| :--- | :--- | :---: | :---: |
| FORCR, FORCI | Real and imaginary components of electrostatic force | 1 | 1 |
| VOLTR, VOLTI | Real and imaginary components of voltage drop | 1 | 1 |
| CURRR, CURRI | Real and imaginary components of current | 1 | 1 |

1. The item is only available for prestress harmonic analysis.

Table 3: TRANS126 Item and Sequence Numbers (p. 547) lists output available through ETABLE using the Sequence Number method. See Element Table for Variables Identified By Sequence Number in the Basic Analysis Guide and The Item and Sequence Number Table (p. 9) in this manual for more information. The following notation is used in Table 3: TRANS126 Item and Sequence Numbers (p. 547):

Name

output quantity as defined in the Table 3: TRANS126 Item and Sequence Numbers (p. 547)

Item

predetermined Item label for ETABLE command
E
sequence number for single-valued or constant element data
Table 3 TRANS126 Item and Sequence Numbers

| Output
 Quantity
 Name | ETABLE and
 ESOL Command
 Input | |
| :---: | :--- | :---: |
| | E | |
| MECH-
 POWER | SMISC | 1 |
| ELECPOWER | SMISC | 2 |
| CENERGY | SMISC | 3 |
| GAP | NMISC | 1 |
| RELVEL | NMISC | 2 |
| EFORCE | NMISC | 3 |
| VOLTAGE | NMISC | 4 |
| DVDT | NMISC | 5 |
| CURRENT | NMISC | 6 |
| CAP | NMISC | 7 |
| ESTIFF | NMISC | 8 |
| UCT | NMISC | 9 |
| KUU | NMISC | 10 |
| KUV | NMISC | 11 |
| KVU | NMISC | 12 |
| KVV | NMISC | 13 |
| DUU | NMISC | 14 |
| DUV | NMISC | 15 |

| Output
 Quantity
 Name | ETABLE and
 ESOL Command
 Input | |
| :---: | :--- | :---: |
| | Item | E |
| DVU | NMISC | 16 |
| DVV | NMISC | 17 |
| DISPR | NMISC | 18 |
| DISPI | NMISC | 19 |
| FORCR | NMISC | 20 |
| FORCI | NMISC | 21 |
| VOLTR | NMISC | 22 |
| VOLTI | NMISC | 23 |
| CURRR | NMISC | 24 |
| CURRI | NMISC | 25 |

TRANS126 Assumptions and Restrictions

- The transducer element must be aligned such that the element IJ direction points along the active structural degree of freedom in the nodal coordinate system. In addition, a positive movement in the nodal coordinate system of node J relative to node I should act to open the gap (Stroke = GAP $+\mathrm{U}_{\mathrm{j}}$ U_{i}). Figure 4 (p .549) illustrates valid and invalid orientations of the element for a UX-VOLT degree of freedom set.
- Nodes I and J may be coincident since the orientation is defined by the relative motion of node J to node I. No moment effects due to noncoincident nodes are included. That is, if the nodes are offset from a line perpendicular to the element axis, moment equilibrium may not be satisfied.
- Unreasonable high stiffness (KN) values should be avoided. The rate of convergence decreases as the stiffness increases.
- The element may not be deactivated with EKILL.
- Harmonic and modal analyses are valid only for small-signal analyses after a static prestress calculation.
- This element may not be compatible with other elements with the VOLT degree of freedom. To be compatible, the elements must have the same reaction force (see Element Compatibility in the LowFrequency Electromagnetic Analysis Guide).
- A minimum of two load steps must be used to obtain valid electrostatic force calculations.

Figure 4 TRANS126 Valid/Invalid Orientations

Valid orientations for UX,VOLT DOF set:

Invalid orientations for UX,VOLT DOF set:

TRANS126 Product Restrictions

The TRANS126 element is only available in the ANSYS Multiphysics, ANSYS ED, and ANSYS PrepPost products.

FLUID129

2-D Infinite Acoustic
MP ME <> <> <> <> <> <> <> <> <> PP <> EME MFS

FLUID129 Element Description

FLUID129 has been developed as a companion element to FLUID29. It is intended to be used as an envelope to a model made of FLUID29 finite elements. It simulates the absorbing effects of a fluid domain that extends to infinity beyond the boundary of FLUID29 finite element domain. FLUID129 realizes a second-order absorbing boundary condition so that an outgoing pressure wave reaching the boundary of the model is "absorbed" with minimal reflections back into the fluid domain. The element can be used to model the boundary of 2D (planar or axisymmetric) fluid regions and as such, it is a line element; it has two nodes with one pressure degree of freedom per node. FLUID129 may be used in transient, harmonic, and modal analyses. Typical applications include structural acoustics, noise control, underwater acoustics, etc. See FLUID129 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

Figure 1 FLUID129 Geometry

FLUID129 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 1 (p. 551). The element is defined by two nodes (I, J), the material properties and the real constants (defined in "FLUID129 Input Summary" (p. 552)). The element must be circular with radius RAD and center located at or near the center of the structure. The radius RAD should be supplied through the real constants.

The element is characterized by a pair of symmetric stiffness and damping matrices.
In a typical meshing procedure, you should mesh the interior fluid domain that is bounded by a circular boundary with FLUID29 elements, select the nodes on the circular boundary, select the type associated with the FLUID129 and then issue the ESURF command. The latter will automatically add the FLUID129 elements on the boundary of the finite domain.

FLUID129 Input Summary

Nodes

I, J

Degrees of Freedom

PRES

Real Constants

RAD - Radius
X_{0} - Center of enclosing circle, X value
Y_{0} - Center of enclosing circle, Y value

Material Properties

SONC - velocity of sound

Surface Loads

None

Body Loads

None

Special Features

None

KEYOPT(3)

Element behavior:
0 --
Planar
1 --
Axisymmetric

FLUID129 Output Data

The solution output associated with the element is in two forms:

- Nodal degrees of freedom included in the overall nodal solution
- Additional element output as shown in Table 1: FLUID129 Element Output Definitions (p. 553)

A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 1 FLUID129 Element Output Definitions

| Name | Definition | \mathbf{O} | \mathbf{R} |
| :--- | :--- | :---: | :---: |
| EL | Element Number | Y | Y |
| NODES | Nodes $-\mathrm{I}, \mathrm{J}$ | Y | Y |
| MAT | Material number | Y | Y |
| LINE: | Length | Y | Y |
| XC, YC | Location where results are reported | Y | 1 |
| SONC | Speed of sound | Y | Y |

1. Available only at centroid as a *GET item.

Table 2: FLUID129 Item and Sequence Numbers (p. 553) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p. 9) in this manual for more information. The following notation is used in Table 2: FLUID129 Item and Sequence Numbers (p. 553):

Name

output quantity as defined in the Table 1: FLUID129 Element Output Definitions (p. 553)

Item

predetermined Item label for ETABLE command
E
sequence number for single-valued or constant element data
Table 2 FLUID129 Item and Sequence Numbers

| Output
 Quant-
 ity
 Name | ETABLE and
 ESOL Command
 Input | |
| :--- | :---: | :---: |
| | Item | E |
| SONC | NMISC | 1 |

FLUID129 Assumptions and Restrictions

- FLUID129 must lie on a boundary circular in shape and should completely enclose the domain meshed with FLUID29 elements.
- The radius RAD of the circular boundary of the finite domain should be specified as a real constant. If the coordinates $\left(\mathrm{X}_{0}, \mathrm{Y}_{0}\right)$ of the center of the circle are not supplied through the real constant input, the center will be assumed to be at the origin. The center of the circle should be as close to the center of the model as possible.
- It is recommended that the enclosing circular boundary is placed at a distance of at least 0.2^{*} lambda from the boundary of any structure that may be submerged in the fluid, where lambda $=c / f$ is the dominant wavelength of the pressure waves; c is the speed of sound (SONC) in the fluid, and f is the dominant frequency of the pressure wave. For example, in the case of a submerged circular cylindrical shell of diameter D, the radius of the enclosing boundary, RAD, should be at least ($D / 2$) $+0.2^{*}$ lambda.
- FLUID129 uses an extra DOF, labeled XTR1, that is not available to the user. This DOF is solely for ANSYS' internal use, although it may appear in DOF listings or in program messages.
- The only applicable modal analysis method is the Damped method.

FLUID129 Product Restrictions

There are no product-specific restrictions for this element.

3-D Infinite Acoustic
MP ME <> <> <> <> <> <> <> <> <> PP <> EME MFS

FLUID130 Element Description

FLUID130 has been developed as a companion element to FLUID30. It is intended to be used as an envelope to a model made of FLUID30 finite elements. It simulates the absorbing effects of a fluid domain that extends to infinity beyond the boundary of the finite element domain that is made of FLUID30 elements. FLUID130 realizes a second-order absorbing boundary condition so that an outgoing pressure wave reaching the boundary of the model is "absorbed" with minimal reflections back into the fluid domain. The element can be used to model the boundary of 3-D fluid regions and as such, it is a plane surface element; it has four nodes with one pressure degrees of freedom per node. FLUID130 may be used in transient, harmonic, and modal analyses. Typical applications include structural acoustics, noise control, underwater acoustics, etc. See FLUID130 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

Figure 1 FLUID130 Geometry

FLUID130 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 1 (p. 555). The element is defined by four nodes ($\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}$), the material property SONC (speed of sound) and the real constants shown in "FLUID130 Input Summary" (p. 556). A triangular element may be formed by defining duplicate K and L node numbers. The element must be at the spherical boundary of an acoustic fluid domain, meshed using FLUID30 elements, with radius RAD and center located at or near the center of the structure. The radius RAD should be supplied through the real constants.

The element is characterized by a symmetric stiffness and a damping matrix.
In a typical meshing procedure the user should mesh the interior fluid domain that is bounded by a spherical boundary with FLUID30 elements, select the nodes on the spherical boundary, select the type associated with the FLUID130 and then issue the ESURF command. The latter will automatically add the FLUID130 elements on the boundary of the finite domain.

FLUID130 Input Summary

Nodes

I, J, K, L

Degrees of Freedom

PRES

Real Constants

RAD - Radius
X_{0} - Center of enclosing circle, X value Y_{0} - Center of enclosing circle, Y value Z_{0} - Center of enclosing circle, Z value

Material Properties

 SONC
Surface Loads

None

Body Loads

None

Special Features

None

KEYOPTS

None

FLUID130 Output Data

The solution output associated with the element is in two forms:

- Nodal degrees of freedom included in the overall nodal solution
- Additional element output as shown in Table 1: FLUID130 Element Output Definitions (p. 557)

A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 1 FLUID130 Element Output Definitions

| Name | Definition | \mathbf{O} | \mathbf{R} |
| :--- | :--- | :---: | :---: |
| EL | Element Number | Y | Y |
| NODES | Nodes $-\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}$ | Y | Y |
| MAT | Material number | Y | Y |
| AREA: | AREA | Y | Y |
| XC, YC | Location where results are reported | Y | 1 |
| SONC | Speed of sound | Y | Y |

1. Available only at centroid as a *GET item.

Table 2: FLUID130 Item and Sequence Numbers (p. 557) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p. 9) in this manual for more information. The following notation is used in Table 2: FLUID130 Item and Sequence Numbers (p. 557):

Name

output quantity as defined in the Table 1: FLUID130 Element Output Definitions (p. 557)

Item

predetermined Item label for ETABLE command
E
sequence number for single-valued or constant element data
Table 2 FLUID130 Item and Sequence Numbers

| Output
 Quant-
 ity
 Name | ETABLE and
 ESOL Command
 Input | |
| :--- | :---: | :---: |
| | Item | E |
| SONC | NMISC | 1 |

FLUID130 Assumptions and Restrictions

- FLUID130 must lie on a boundary spherical in shape and should completely enclose the domain meshed with FLUID30 elements.
- The radius RAD of the spherical boundary of the finite domain should be specified as a real constant. If the coordinates (X_{0}, Y_{0}, Z_{0}) of the center of the sphere are not supplied through the real constant input, the center will be assumed to be at the origin of the global coordinate system. The center of the sphere should be as close to the center of the model as possible.
- It is recommended that the enclosing spherical boundary is placed at a distance of at least $0.2 *$ lambda from the boundary of any structure that may be submerged in the fluid, where lambda $=c / f$ is the dominant wavelength of the pressure waves. c is the speed of sound (SONC) in the fluid and f is the dominant frequency of the pressure wave. For example, in the case of a submerged spherical shell of diameter D, the radius of the enclosing boundary, RAD, should be at least ($D / 2$) $+0.2^{*}$ lambda.
- FLUID130 uses extra DOFs, labeled XTR1 and XTR2, that are not available to the user. These DOFs are solely for ANSYS' internal use, although they may appear in DOF listings or in program messages.
- The only applicable modal analysis method is the Damped method.

FLUID130 Product Restrictions

There are no product-specific restrictions for this element.

SHELL131

4-Node Thermal Shell

MP ME <> PR PRN <> <> <> <> <> <> PP <> EME MFS

SHELL131 Element Description

SHELL131 is a 3-D layered shell element having in-plane and through-thickness thermal conduction capability. The element has four nodes with up to 32 temperature degrees of freedom at each node. The conducting shell element is applicable to a 3-D, steady-state or transient thermal analysis. SHELL131 generates temperatures that can be passed to structural shell elements in order to model thermal bending. See SHELL131 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

If the model containing the conducting shell element is to be analyzed structurally, use an equivalent structural shell element instead, such as SHELL181 or SHELL281.

Figure 1 SHELL131 Geometry

$x_{o}=$ element x-axis if ESYS is not supplied.
$x=$ element x-axis if ESYS is supplied.

SHELL131 Input Data

The geometry, node locations, and coordinates systems for this element are shown in Figure 1 (p. 559). The element is defined by four nodes, one thickness per layer, a material angle for each layer, and the material properties. If the material is uniform and the analysis has no transient effects, only one layer is needed with a linear temperature variation through the thickness.

The cross-sectional properties are input using the SECTYPE,,SHELL and SECDATA commands. These properties are the thickness, material number, and orientation of each layer. Tapered thicknesses may be input using the SECFUNCTION command. The number of integration points from the SECDATA command is not used; rather it is determined for all layers with KEYOPT(3). In the GUI, the ShellTool provides a convenient way to
define section data for this element (see Shell Analysis and Cross Sections in the Structural Analysis Guide). Real constants are not used for this element.

Generally, the quadratic variation in temperature through each layer $(\operatorname{KEYOPT}(3)=0)$ is used for transient analysis or for strongly temperature dependent materials, and the linear variation in temperature through each layer $(\operatorname{KEYOPT}(3)=1)$ is used for steady state analysis with materials that are either not temperature dependent or weakly temperature dependent. Layers may be used to model the physical changes of properties through the thickness or the effect of a through-thickness transient in greater detail.

KEYOPT(4) duplicates the number of layers input on the SECDATA commands. If KEYOPT(4) is 0 or blank, the program will query each element during definition in PREP7 as to which section information is being used, and then reassign the element to a different type. More element types are created as needed. The result can be seen using ETLIST and ELIST after all elements are defined. To ensure that the program can do this redefinition, the user is required to define the section information before the element is defined.

If KEYOPT(6) (also referred to as the paint option) is used, TBOT is replaced with TEMP, allowing the element to be directly attached to an underlying solid to avoid the use of constraint equations. When this option is used, surface loads cannot be applied to face 1 .

As this is a thermal shell element, the direction of the element z-axis and the presence of the SECOFFSET command have no effect on the solution. However, to get correct plots when using the /ESHAPE command:

- The element z-axis should be defined with the same care as for a structural shell element.
- If $\operatorname{KEYOPT}(6)=1$ (the paint option) is set, SECOFFSET,BOT should be input.

Element loads are described in Node and Element Loads (p. 97). Convection or heat flux (but not both) and radiation (using the RDSF surface load label) may be input as surface loads at the element faces as shown by the circled numbers on Figure 1 (p. 559). Because shell edge convection and flux loads are input on a per-unit-length basis, per-unit-area quantities must be multiplied by the total shell thickness. Radiation is not available on the edges. You can also generate film coefficients and bulk temperatures using the surface effect element SURF152. SURF152 can also be used with FLUID116.

Heat generation rates may be input as element body loads on a per layer basis. One heat generation value is applied to the entire layer. If the first layer heat generation rate $\mathrm{HG}(1)$ is input, and all others are unspecified, they default to $\mathrm{HG}(1)$. Nodal values are averaged over the entire element.

A summary of the element input is given in "SHELL131 Input Summary" (p. 560). A general description of element input is given in Element Input (p. 5).

SHELL131 Input Summary

Nodes I, J, K, L
 Degrees of Freedom Quadratic:

```
If KEYOPT(3) = 0
If KEYOPT(4) = 0 or 1:TBOT,TE2,TTOP
If KEYOPT(4) = 2:TBOT,TE2,TE3,TE4,TTOP
If KEYOPT(4) = 3:TBOT,TE2,TE3,TE4,TE5,TE6, TTOP
Etc.
If KEYOPT(4) = 15:TBOT, TE2, TE3, TE4, TE5, TE6, TE7, TE8, TE9, TE10, TE11,TE12,TE13, TE14, TE15,
TE16, TE17, TE18, TE19, TE20, TE21, TE22, TE23, TE24,TE25, TE26, TE27, TE28, TE29, TE30, TTOP
```


Linear:

If $\operatorname{KEYOPT}(3)=1$
If KEYOPT(4) $=0$ or $1:$ TBOT, TTOP
If KEYOPT(4) $=2$: TBOT, TE2, TTOP
If KEYOPT(4) = 3: TBOT, TE2, TE3, TTOP
Etc.
If KEYOPT(4) = 31: TBOT, TE2, TE3, TE4, TE5, TE6, TE7, TE8, TE9, TE10, TE11, TE12, TE13, TE14, TE15, TE16, TE17, TE18, TE19, TE20, TE21, TE22, TE23, TE24, TE25, TE26, TE27, TE28, TE29, TE30, TE31, TTOP

Constant:
If $\operatorname{KEYOPT}(3)=2:$ TEMP (one layer only)

Real Constants

None

Material Properties

KXX, KYY, KZZ, DENS, C, ENTH

Surface Loads

Convections --
Face 1 (I-J-K-L) (bottom, -z side)
Face 2 (I-J-K-L) (top, +z side)
Face 3 ($\mathrm{J}-\mathrm{I}$), Face 4 (K-J), Face 5 (L-K), Face 6 (I-L)
Heat Fluxes --
Face 1 (I-J-K-L) (bottom, -z side)
Face 2 (I-J-K-L) (top, +z side)
Face 3 (J-I), Face 4 (K-J), Face 5 (L-K), Face 6 (I-L)

Radiation --

Face 1 (I-J-K-L) (bottom, -z side)
Face 2 (I-J-K-L) (top, +z side)

Body Loads

Heat Generations --

HG(1), HG(2), HG(3), HG(KEYOPT(4))

Special Features

Birth and death

KEYOPT(2)

Film coefficient evaluation (if any):
0 --
Evaluate at an average film temperature, (TS+TB)/2
1 --
Evaluate at element surface temperature, TS
2 --
Evaluate at fluid bulk temperature, TB

3 --

Evaluate at differential temperature, |TS-TB|

KEYOPT(3)

Temperature variation through layer:
0 --
Quadratic temperature variation through-layer (maximum number of layers =15)
1 --
Linear temperature variation through-layer (maximum number of layers $=31$)
2 --
No temperature variation through-layer (number of layers $=1$)

KEYOPT(4)

Number of layers (input a value to match SECDATA commands, or leave blank to default). Maximum number of layers allowed depends on $\operatorname{KEYOPT}(3)$ setting (see above).

KEYOPT(6)

Application:
0 --
Thermal shell application
1 --
Paint application

SHELL131 Output Data

The solution output associated with the element is in two forms:

- Nodal temperatures included in the overall nodal solution
- Additional element output shown in Table 1: SHELL131 Element Output Definitions (p. 563)

Output temperatures may be read by structural shell elements using the LDREAD,TEMP command.
If the structural shell element uses only one temperature through the thickness, such as SHELL41, only TEMP can be used.

If the structural shell element uses two temperatures through the thickness, such as for SHELL181 (with only one layer) or SHELL281 (with only one layer), only TBOT and TTOP are used and any internal temperatures such as TE2 are ignored.

If the structural shell element uses more than two temperatures through the thickness, such as for SHELL181 (with multiple layers), all temperatures are transferred over. In this case, the corner nodes of each SHELL131 element must have identical temperature degrees of freedom.

The number of temperature points at a node generated in the thermal shell must match the number of temperature points at a node needed by the structural shell. For example, a two-layer SHELL181 element using the same material and thickness for both layers can get its temperatures from a SHELL131 element using either two layers with $\operatorname{KEYOPT}(3)=1$ (linear variation) or one layer with $\operatorname{KEYOPT}(3)=0$ (quadratic variation). Temperatures passed from this element to the stress analysis via LDREAD,TEMP can be viewed using BFELIST, as opposed to the usual BFLIST.

Heat flowing out of the element is considered to be positive. Heat flows are labeled HBOT, HE2, ... HTOP, similar to the temperature labels. Gradient and flux information is provided at the midthickness of each
layer. The element output directions are parallel to the element coordinate system. A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

To see the temperature distribution through the thickness for this element as well as all other thermal elements, use /GRAPHICS,POWER and /ESHAPE, 1 followed by PLNSOL,TEMP.

The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 1 SHELL131 Element Output Definitions

| Name | Definition | 0 | R |
| :---: | :---: | :---: | :---: |
| EL | Element Number | Y | Y |
| NODES | Nodes - I, J, K, L | Y | Y |
| MAT | Element material number (from MAT command) | Y | Y |
| AREA | Area of element | Y | Y |
| XC, YC, ZC | Location where results are reported | Y | 2 |
| HGEN | Heat generations: HG(1), HG(2), HG(3), . . . | Y | - |
| TG:X, Y, Z | Thermal gradient components at midlayer | Y | Y |
| TF:X, Y, Z | Thermal flux components at midlayer | Y | Y |
| FACE | Face label | 1 | 1 |
| AREA | Face area (same as element area) | 1 | 1 |
| NODES | Face nodes (same as element nodes) | 1 | 1 |
| HFILM | Face film coefficient | 1 | 1 |
| TAVG | Average face temperature | 1 | 1 |
| TBULK | Fluid bulk temperature | 1 | - |
| HEAT RATE | Heat flow rate across face by convection | 1 | 1 |
| HFAVG | Average film coefficient of the face | - | 1 |
| TBAVG | Average face bulk temperature | - | 1 |
| HFLXAVG | Heat flow rate per unit area across face caused by input heat flux | - | 1 |
| HEAT RATE/AREA | Heat flow rate per unit area across face by convection | 1 | - |
| HEAT FLUX | Heat flux at each node of the face | 1 | - |

1. If a surface load is input.
2. Available only at the centroid as a *GET item.

Table 4: SHELL41 Item and Sequence Numbers (p. 276) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and

The Item and Sequence Number Table (p.9) of this manual for more information. The following notation is used in Table 2: SHELL131 Item and Sequence Numbers for ETABLE and ESOL Command Input (p. 564):

Name

output quantity as defined in Table 1: SHELL131 Element Output Definitions (p. 563)

Item

predetermined Item label for ETABLE command
Table 2 SHELL131 Item and Sequence Numbers forETABLE and ESOL Command Input

| Output
 Quantity
 Name | Item | Face 1 | Face 2 | I | J | K | L |
| :---: | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Top | Corners | | | | |
| AREA | NMISC | 1 | 7 | -- | -- | -- | -- |
| HFAVG | NMISC | 2 | 8 | -- | -- | -- | -- |
| TAVG | NMISC | 3 | 9 | -- | -- | -- | -- |
| TBAVG | NMISC | 4 | 10 | -- | -- | -- | -- |
| HEAT RATE | NMISC | 5 | 11 | -- | -- | -- | -- |
| HFLXAVG | NMISC | 6 | 12 | -- | -- | -- | -- |
| THICKNESS | NMISC | -- | -- | 37 | 38 | 39 | 40 |

SHELL131 Assumptions and Restrictions

- Zero area elements are not allowed. This occurs most frequently when the element is not numbered properly.
- Zero thickness layers are not allowed.
- A triangular element may be formed by defining duplicate K and L node numbers as described in Triangle, Prism, and Tetrahedral Elements (p. 99).
- The cut boundary interpolation command (CBDOF) does not work with this element.
- When using thermal contact, the TEMP degree of freedom must be present (KEYOPT(3) $=2$ or $\operatorname{KEYOPT}(6)$ $=1$).
- There should not be a large variation in the ratio of through-thickness conductivity (KZZ) to layer thickness for all layers within the element. If the highest and lowest values for this ratio differ by a large factor (for example, $1 e 5$), then the results for the element may be unreliable.
- No check is made to ensure either that the number of layers between adjacent elements match or that the effective location of a degree of freedom (for example, TE7 from a 10 layer element) between elements sharing the same node is the same to a tolerance. If this is a concern, study the area using the /ESHAPE command. For cases where the layering intentionally changes, such as at a joint or at the runout of a tapered layer, use constraint equations (CE family of commands) with or without double nodes to connect the two sides.
- The program removes all imposed degrees of freedom and nodal loads (i.e., internally issues DDELE,all,all and FDELE,all,all commands) when elements that use TTOP, TBOT, etc. as degrees of freedom:
- are defined or redefined using the ET or KEYOPT commands.
- are changed (or deleted) using the ET, ETCHG, or ETDELE commands to an element type that does not use these degrees of freedom.

If your model contained SHELL131 elements with \mathbf{D} and \mathbf{F} loads, and you deleted these elements via ETDELE, the \mathbf{D} and \mathbf{F} loads will automatically be deleted and reapplied to the new DOF list. You do, however, need to check other loads and verify if they need to be deleted and reapplied.

SHELL131 Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

ANSYS Professional

- The birth and death special feature is not allowed.

ANSYS ED

- Section definitions are not allowed if more than one material is referenced.

SHELL132

8-Node Thermal Shell
MP ME <> PR PRN <> <> <> <> <> <> PP <> EME MFS
Product Restrictions

SHELL132 Element Description

SHELL132 is a 3-D layered shell element having in-plane and through-thickness thermal conduction capability. The element has eight nodes with up to 32 temperature degrees of freedom at each node. The conducting shell element is applicable to a 3-D, steady-state or transient thermal analysis. SHELL132 generates temperatures that can be passed to structural shell elements in order to model thermal bending. See SHELL132 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

If the model containing the conducting shell element is to be analyzed structurally, use an equivalent structural shell element instead, such as SHELL281.

Figure 1 SHELL132 Geometry

$x_{o}=$ element x-axis if ESYS is not supplied.
$x=$ element x-axis if ESYS is supplied.

SHELL132 Input Data

The geometry, node locations, and coordinates systems for this element are shown in Figure 1 (p. 567). The element is defined by four/eight nodes, one thickness per layer, a material angle for each layer, and the material properties. If the material is uniform and the analysis has no transient effects, only one layer is needed with a linear temperature variation through the thickness.

The cross-sectional properties are input using the SECTYPE,,SHELL and SECDATA commands. These properties are the thickness, material number, and orientation of each layer. Tapered thicknesses may be input using
the SECFUNCTION command. The number of integration points from the SECDATA command is not used; rather it is determined for all layers with KEYOPT(3). In the GUI, the ShellTool provides a convenient way to define section data for this element (see Shell Analysis and Cross Sections in the Structural Analysis Guide). Real constants are not used for this element.

Generally, the quadratic variation in temperature through each layer ($\operatorname{KEYOPT}(3)=0)$ is used for transient analysis or for strongly temperature dependent materials, and the linear variation in temperature through each layer $(\operatorname{KEYOPT}(3)=1)$ is used for steady state analysis with materials that are either not temperature dependent or weakly temperature dependent. Layers may be used to model the physical changes of properties through the thickness or the effect of a thru-thickness transient in greater detail.

KEYOPT(4) duplicates the number of layers input on the SECDATA commands. If KEYOPT(4) is 0 or blank, the program will query each element during definition in PREP7 as to which section information is being used, and then reassign the element to a different type. More element types are created as needed. The result can be seen using ETLIST and ELIST after all elements are defined. To ensure that the program can do this redefinition, the user is required to define the section information before the element is defined.

If KEYOPT(6) (also referred to as the paint option) is used, TBOT is replaced with TEMP, allowing the element to be directly attached to an underlying solid to avoid the use of constraint equations. When this option is used, surface loads cannot be applied to face 1.

As this is a thermal shell element, the direction of the element z-axis and the presence of the SECOFFSET command have no effect on the solution. However, to get correct plots when using the /ESHAPE command:

- The element z-axis should be defined with the same care as for a structural shell element.
- If $\operatorname{KEYOPT}(6)=1$ (the paint option) is set, SECOFFSET,BOT should be input.

Element loads are described in Node and Element Loads (p. 97). Convection or heat flux (but not both) and radiation (using the RDSF surface load label) may be input as surface loads at the element faces as shown by the circled numbers on Figure 1 (p. 567). Because shell edge convection and flux loads are input on a per-unit-length basis, per-unit-area quantities must be multiplied by the total shell thickness. Radiation is not available on the edges. You can also generate film coefficients and bulk temperatures using the surface effect element SURF152. SURF152 can also be used with FLUID116.

Heat generation rates may be input as element body loads on a per layer basis. One heat generation value is applied to the entire layer. If the first layer heat generation rate $\mathrm{HG}(1)$ is input, and all others are unspecified, they default to $\mathrm{HG}(1)$. Nodal values are averaged over the entire element.

A summary of the element input is given in "SHELL132 Input Summary" (p. 568). A general description of element input is given in Element Input (p. 5).

SHELL132 Input Summary

Nodes

I, J, K, L, M, N, O, P

Degrees of Freedom

 Quadratic:```
If \(\operatorname{KEYOPT}(3)=0\)
If \(\operatorname{KEYOPT}(4)=0\) or \(1:\) TBOT, TE2, TTOP
If \(\operatorname{KEYOPT}(4)=2:\) TBOT, TE2, TE3, TE4, TTOP
If KEYOPT(4) = 3: TBOT, TE2, TE3, TE4, TE5, TE6, TTOP
Etc.
```

If KEYOPT(4) = 15: TBOT, TE2, TE3, TE4, TE5, TE6, TE7, TE8, TE9, TE10, TE11, TE12, TE13, TE14, TE15, TE16, TE17, TE18, TE19, TE20, TE21, TE22, TE23, TE24, TE25, TE26, TE27, TE28, TE29, TE30, TTOP

## Linear:

If $\operatorname{KEYOPT}(3)=1$
If $\operatorname{KEYOPT}(4)=0$ or $1:$ TBOT, TTOP
If $\operatorname{KEYOPT}(4)=2$ : TBOT, TE2, TTOP
If $\operatorname{KEYOPT}(4)=3:$ TBOT, TE2, TE3, TTOP
Etc.
If KEYOPT(4) = 31: TBOT, TE2, TE3, TE4, TE5, TE6, TE7, TE8, TE9, TE10, TE11, TE12, TE13, TE14, TE15, TE16, TE17, TE18, TE19, TE20, TE21, TE22, TE23, TE24, TE25, TE26, TE27, TE28, TE29, TE30, TE31, TTOP

## Constant:

If $\operatorname{KEYOPT}(3)=2:$ TEMP (one layer only)

## Real Constants

None

## Material Properties

KXX, KYY, KZZ, DENS, C, ENTH

## Surface Loads

Convections --
Face 1 (I-J-K-L) (bottom, -z side)
Face 2 (I-J-K-L) (top, +z side)
Face 3 ( $\mathrm{J}-\mathrm{I}$ ), Face 4 (K-J), Face 5 (L-K), Face 6 (I-L)
Heat Fluxes --
Face 1 (I-J-K-L) (bottom, -z side)
Face 2 (I-J-K-L) (top, +z side)
Face 3 (J-I), Face 4 (K-J), Face 5 (L-K), Face 6 (I-L)
Radiation --
Face 1 (I-J-K-L) (bottom, -z side)
Face 2 (I-J-K-L) (top, +z side)

## Body Loads

## Heat Generations --

HG(1), HG(2), HG(3), ..., HG(KEYOPT(4))

## Special Features

Birth and death

## KEYOPT(2)

Film coefficient evaluation (if any):
0 --
Evaluate at an average film temperature, (TS+TB)/2
1 --
Evaluate at element surface temperature, TS

```
2 --
 Evaluate at fluid bulk temperature,TB
3--
 Evaluate at differential temperature, |TS-TB|
```


## KEYOPT(3)

Temperature variation through layer:
0 --
Quadratic temperature variation through layer (maximum number of layers = 15)
1 --
Linear temperature variation through layer (maximum number of layers $=31$ )
2 --
No temperature variation through layer (number of layers $=1$ )

## KEYOPT(4)

Number of layers (input a value to match SECDATA commands, or leave blank to default). Maximum number of layers allowed depends on $\operatorname{KEYOPT}(3)$ setting (see above).

## KEYOPT(6)

Application:
0 --
Thermal shell application
1 --
Paint application

## SHELL132 Output Data

The solution output associated with the element is in two forms:

- Nodal temperatures included in the overall nodal solution
- Additional element output as shown in Table 1: SHELL132 Element Output Definitions (p. 571).

Output nodal temperatures may be read by structural shell elements (such as SHELL281) using the LDREAD,TEMP capability. If the structural shell element uses two temperatures through the thickness, only TBOT and TTOP are used, and any internal temperatures such as TE2 are ignored. If the structural shell element uses more than two temperatures through the thickness, all temperatures are transferred over. In this case, the corner nodes of each SHELL132 element must have identical temperature degrees of freedom. Also, the number of temperature points at a node generated in the thermal shell must match the number of temperature points at a node needed by the structural shell. For example, a two layer shell element using the same material and thickness for both layers can get its temperatures from a SHELL132 element using either two layers with $\operatorname{KEYOPT}(3)=1$ (linear variation) or one layer with $\operatorname{KEYOPT}(3)=0$ (quadratic variation). Temperatures passed from this element to the stress analysis via LDREAD,TEMP can be viewed using BFELIST, as opposed to the usual BFLIST.

Heat flowing out of the element is considered to be positive. Heat flows are labeled HBOT, HE2, ...HTOP, similar to the temperature labels. Gradient and flux information is provided at the midthickness of each layer. The element output directions are parallel to the element coordinate system. A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

To see the temperature distribution thru the thickness for this element as well as all other thermal elements, use /GRAPHICS,POWER and /ESHAPE,1 followed by PLNSOLL,TEMP.

## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " $Y$ " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 1 SHELL132 Element Output Definitions

Name		$\mathbf{0}$ Definition	R
EL	Element Number	Y	Y
NODES	Nodes -I, J, K, L	Y	Y
MAT	Element material number (from MAT command)	Y	Y
AREA	Area of element	Y	Y
XC, YC, ZC	Location where results are reported	Y	2
HGEN	Heat generations: HG(1), HG(2), HG(3), ..	Y	-
TG:X, Y, Z	Thermal gradient components at midlayer	Y	Y
TF:X, Y, Z	Thermal flux components at midlayer	Y	Y
FACE	Face label	1	1
AREA	Face area (same as element area)	1	1
NODES	Face nodes (same as element nodes)	1	1
HFILM	Face film coefficient	1	1
TAVG	Average face temperature	1	1
TBULK	Fluid bulk temperature	1	-
HEAT RATE	Heat flow rate across face by convection	1	1
HFAVG	Average film coefficient of the face	-	1
TBAVG	Average face bulk temperature	-	1
HFLXAVG	Heat flow rate per unit area across face caused by in-   put heat flux	-	1
HEAT RATE/AREA	Heat flow rate per unit area across face by convection	1	-
HEAT FLUX	Heat flux at each node of the face	1	-

1. If a surface load is input.
2. Available only at the centroid as a *GET item.

Table 4: SHELL41 Item and Sequence Numbers (p. 276) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table ( p .9 ) of this manual for more information. The following notation is used in Table 2: SHELL132 Item and Sequence Numbers for ETABLE and ESOL Command Input (p. 572):

## Name

output quantity as defined in the Table 1: SHELL132 Element Output Definitions (p. 571)

## Item

predetermined Item label for ETABLE command
Table 2 SHELL132 Item and Sequence Numbers forETABLE and ESOL Command Input

| Output <br> Quantity <br> Name | Item | Face 1 | Face 2 | I | J | K | L |
| :---: | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Top | Corners |  |  |  |  |
| AREA | NMISC | 1 | 7 | -- | -- | -- | -- |
| HFAVG | NMISC | 2 | 8 | -- | -- | -- | -- |
| TAVG | NMISC | 3 | 9 | -- | -- | -- | -- |
| TBAVG | NMISC | 4 | 10 | -- | -- | -- | -- |
| HEAT RATE | NMISC | 5 | 11 | -- | -- | -- | -- |
| HFLXAVG | NMISC | 6 | 12 | -- | -- | -- | -- |
| THICKNESS | NMISC | -- | -- | 37 | 38 | 39 | 40 |

## SHELL132 Assumptions and Restrictions

- Zero area elements are not allowed. This occurs most frequently when the element is not numbered properly.
- Zero thickness layers are not allowed.
- A triangular element may be formed by defining duplicate $\mathrm{K}, \mathrm{L}$, and O node numbers as described in Triangle, Prism, and Tetrahedral Elements (p. 99).
- Midside nodes may not be dropped.
- The cut boundary interpolation command (CBDOF) does not work with this element.
- When using thermal contact, the TEMP degree of freedom must be present (KEYOPT(3) $=2$ or $\operatorname{KEYOPT}(6)$ $=1$ ).
- There should not be a large variation in the ratio of through-thickness conductivity (KZZ) to layer thickness for all layers within the element. If the highest and lowest values for this ratio differ by a large factor (for example, 1e5), then the results for the element may be unreliable.
- No check is made to ensure either that the number of layers between adjacent elements match or that the effective location of a degree of freedom (for example, TE7 from a 10 layer element) between elements sharing the same node is the same to a tolerance. If this is a concern, study the area using the /ESHAPE command. For cases where the layering intentionally changes, such as at a joint or at the runout of a tapered layer, use constraint equations (CE family of commands) with or without double nodes to connect the two sides.
- This element may not be used with THOPT,QUASI if convection or radiation surfaces are present.
- This element may not be used with the /EFACET command for PowerGraphics displays.
- The program removes all imposed degrees of freedom and nodal loads (i.e., internally issues DDELE,all,all and FDELE,all,all commands) when elements that use TTOP, TBOT, etc. as degrees of freedom:
- are defined or redefined using the ET or KEYOPT commands.
- are changed (or deleted) using the ET, ETCHG, or ETDELE commands to an element type that does not use these degrees of freedom.

If your model contained SHELL132 elements with $\mathbf{D}$ and $\mathbf{F}$ loads, and you deleted these elements via ETDELE, the $\mathbf{D}$ and $\mathbf{F}$ loads will automatically be deleted and reapplied to the new DOF list. You do, however, need to check other loads and verify if they need to be deleted and reapplied.

## SHELL132 Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

## ANSYS Professional

- The birth and death special feature is not allowed.


## ANSYS ED

- Section definitions are not allowed if more than one material is referenced.


## 3-D Squeeze Film Fluid Element

MP ME <> <> <> <> <> <> <> <> <> PP <> EME MFS

Product Restrictions

## FLUID136 Element Description

FLUID136 models viscous fluid flow behavior in small gaps between fixed surfaces and structures moving perpendicular to the fixed surfaces. The element behavior is based on the Reynolds squeeze film theory and the theory of rarefied gases. As such, it is limited to structures with lateral dimensions much greater than the gap size. In addition, the pressure change must be small relative to the ambient pressure, and any viscous heating is neglected. FLUID136 is particularly applicable to modeling squeeze-film effects in microstructures. However, it can also model thin-film fluid behavior in macrostructures.

As a fluid-only element (PRES dof), the element can be used to determine the stiffening and damping effects that a fluid exerts on a moving structure by applying a known normal velocity. The velocity normal to the element surface is specified as a body force. If the velocity of the moving surface is not known, FLUID136 can determine the fluid response from the eigenmodes of the structure using the Modal Projection Method.

FLUID136 is applicable to static, harmonic, and transient analyses. A static analysis is used to determine the damping effects for low operating frequencies where fluid stiffening effects are negligible. A harmonic analysis is used to determine the fluid stiffening and damping effects for high operating frequencies where fluid stiffening effects are not negligible. A transient analysis is used to determine the fluid stiffening and damping effects for non-harmonic loadings. The Modal Projection Method can also be used to extract fre-quency-dependent damping ratios for use with the MDAMP and DMPRAT commands; and Alpha and Beta damping parameters for use with the ALPHAD and BETAD commands.

As a fluid-structure element (PRES, UX, UY, UZ), the element can be combined with solid structural elements in a coupled-field solution where pressure effects are computed from the structure's motion. In this mode, the element is applicable to a static or transient analysis. Compressibility options are available when considering large displacements and/or large pressure changes. Contact options are also available when the structural degrees of freedom are active in order to model opening and closing contact conditions.

FLUID136 can be used to model three different flow regimes: continuum theory, high Knudsen number, and high Knudsen number with accommodation factors.

See FLUID136 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

## FLUID136 Input Data

The element is defined by four corner nodes with an option to include mid-side nodes (KEYOPT(2) = 1). The element should be oriented such that the element normal is pointing toward the fluid domain. If solid elements are used for the structural domain, the fluid element normal vector is automatically computed. If necessary, the fluid element normal vector can be flipped using ENSYM.

## Figure 1 FLUID136 Geometry



KEYOPT (1) specifies the flow regime. The Knudsen number can be calculated from the mean free fluid path at a reference pressure, the operating or absolute pressure, and the gap.

For a PRES degree of freedom $(\operatorname{KEYOPT}(3)=0)$ and a linearized Reynolds equation ( $\operatorname{KEYOPT}(4)=0$ or 2$)$,

$$
K_{n}=(M F P * P R E F) /(P A M B * G A P)
$$

For PRES, UX, UY, UZ degrees of freedom (KEYOPT(3) = 1 or 2) and a nonlinear Reynolds equation (KEYOPT(4) $=1$ ),

$$
\mathrm{K}_{\mathrm{n}}=(\text { MFP*PREF }) /\left(\mathrm{P}_{\mathrm{abs}}{ }^{*} \mathrm{GAP}\right) \text { if } \mathrm{P}_{\mathrm{abs}}>\text { minpabs }
$$

$$
K_{n}=(\text { MFP*PREF }) /\left(\text { minpabs* }{ }^{*} A P\right) \text { if } P_{a b s}<\text { minpabs }
$$

where:
$\mathrm{P}_{\mathrm{abs}}=\mathrm{PAMB}+\mathrm{PRES}$
minpabs $=$ minimum absolute pressure determined by real constant MINPABSF
For continuum theory to be valid $(\operatorname{KEYOPT}(1)=0)$, the Knudsen number should be less than 0.01 . If the Knudsen number is greater than $0.01(\operatorname{KEYOPT}(1)=1$ or 2$)$, the dynamic viscosity is adjusted to account for the slip flow boundary. See Flow Regime Considerations in the Fluids Analysis Guide for a complete discussion of flow regimes and calculation of the Knudsen number.

The type of reflection of the gas molecules at the wall interface is specified using accommodation factors. Squeeze film models assume diffuse reflection of the gas molecules at the wall interface (accommodation factor $=1$ ). This assumption is valid for most metals, but is less accurate for micromachined surfaces, particularly those fabricated from silicon. Materials, such as silicon, cause specular reflection. Typical accommodation factors for silicon are between 0.80 and 0.90 .

KEYOPT (3) sets the element degrees of freedom. Setting KEYOPT (3) to 1 or 2 activates the displacement degrees of freedom. When displacement DOFs are active both fluidic and mechanical contact pressures can be generated. FLUID136 can only be used for static and transient analyses when the displacement DOFs are activated.

If $\operatorname{KEYOPT}(5)=2$, the element is ignored from a fluid pressure standpoint when the fluid gap goes below a specified minimum fluid gap (fluid_mingap). If KEYOPT(6) $=1$ or 2 , mechanical contact pressure is applied to a structure if the fluid height goes below a specified minimum mechanical gap (mech_mingap).

For the fluid-only option (PRES dof), the fluid velocity normal to the surface may be specified using nodal or element loading with the FLUE body load label on the BF or BFE commands. If FLUID136 is used in conjunction with the Modal Projection Method, the fluid velocities are obtained from the modal displacements and applied using the DMPEXT command.

## FLUID136 Input Summary

## Nodes

I, J, K, L (KEYOPT(2) = 0)
I, J, K, L, M, N, O, P (KEYOPT(2) = 1)

## Degrees of Freedom

See KEYOPT(3)

## Real Constants

See Table 1: FLUID136 Real Constants (p. 579).

## Material Properties

VISC - dynamic viscosity

## Surface Loads

None

## Body Loads

FLUE (velocity) (For KEYOPT(3) $=0$ only)

## Special Features

None

## KEYOPT(1)

Continuous flow options
0 --
Continuum theory
1 --
High Knudsen numbers (greater than 0.01)
2 --
High Knudsen numbers and accommodation factors

## KEYOPT(2)

Element geometry
0 --
Four node element
1 --
Eight node element (not available if $\operatorname{KEYOPT}(3)=1$ or 2 )

## KEYOPT(3)

Degrees of Freedom
0 --
PRES (Valid for static, harmonic, and transient analyses.)

## 1 --

PRES, UX, UY, UZ - explicit treatment of cross-coupling terms. Produces a symmetric matrix. Valid for static and transient analyses only. Convergence issues may be experienced if the fluid gap approaches zero.

## 2 --

PRES, UX, UY, UZ - implicit treatment of cross-coupling terms. Produces an unsymmetric matrix. Valid for static and transient analyses only.

## KEYOPT(4)

Compressibility. If PRES is the only degree of freedom ( $\operatorname{KEYOPT}(3)=0$ ), the compressible linearized Reynold equation is used $(\operatorname{KEYOPT}(4)=0)$. The following are valid when degrees of freedom are PRES, UX, UY, and UZ (KEYOPT(3) = 1 or 2).

0 --
Compressible linearized Reynolds equation. (large displacement and small pressure changes)
1 --
Compressible nonlinear Reynolds equation. (large displacement and large pressure changes)
2 --
Incompressible linearized Reynolds equation. (large displacement and small pressure changes)
For more information on the linearized Reynolds equation, refer to Flow Between Flat Surfaces in the Theory Reference for the Mechanical APDL and Mechanical Applications.

## KEYOPT(5)

If the element gap goes below fluid_mingap:
0 --
Trap it as an error.
1 --
Reset it to fluid_mingap.
2 --
Ignore this element from a fluid pressure standpoint. This element is considered dead from a fluids standpoint. However, for postprocessing, a fluid pressure can be specified. See real constants PENP and SPRES.

For $\operatorname{KEYOPT}(5)=1$ or 2 , mechanical contact may be included by KEYOPT(6) or TARGE170 and CONTA174 elements.

If the element gap is above fluid_mingap, fluid pressure is applied on the structure.

## KEYOPT(6)

If the element gap goes below mech_mingap:
0 --
Do not apply mechanical contact pressure on the structure. This element is considered mechanically dead.

1 --
Apply mechanical contact pressure on the structure using the penalty method. Specify a stiffness parameter (real constant STIFFP). Damping is input by real constant DAMPP and it defaults to zero.

2 --
Apply mechanical contact pressure on the structure using the augmented Lagrangian method. Specify an initial stiffness (real constant STIFFP) and a penetration tolerance (real constant MPTF). Damping is input by real constant DAMPP and it defaults to zero.

The fluid environment is defined by the following set of real constants.
Table 1 FLUID136 Real Constants

No.	Name	Description
1	GAP	Element gap separation
2	blank	-
3	blank	-
4	PAMB	Ambient (i.e., surrounding) pressure
5	ACF1	Accommodation factor for top moving surface.
6	ACF2	Accommodation factor for bottom fixed surface.
7	PREF	Reference pressure for the mean free fluid path
8	MFP	Mean free fluid path at reference pressure PREF
9	GAPX	Gap vector global Cartesian component X
10	GAPY	Gap vector global Cartesian component $Y$
11	GAPZ	Gap vector global Cartesian component $Z$
12	MMGF	mech_mingapf (minimum mechanical gap as a fraction of GAP)
13	FMGF	fluid_mingapf (minimum fluid gap as a fraction of GAP)
14	PENP	Penalty parameter for fluid dead element $(\operatorname{KEYOPT}(5)=2)$
15	SPRES	Specified pressure for fluid dead element $(\operatorname{KEYOPT}(5)=2)$
16	STIFFP	Stiffness parameter for mechanical contact $(\operatorname{KEYOPT}(6)=1$ or 2$)$
17	DAMPP	Damping parameter for mechanical contact $(\operatorname{KEYOPT}(6)=1$ or 2$)$
18	MPTF	mech_pen_tolf $(\operatorname{KEYOPT}(6)=2)$ (mechanical penetration tolerance as a fraction of mech_mingap)
19	MINPABSF	minpabsf (minimum absolute pressure as a fraction of $\mathrm{P}_{\mathrm{amb}}$ )

For continuum theory $(\operatorname{KEYOPT}(1)=1)$, GAP and PAMB must be specified.

For high Knudsen numbers ( $\operatorname{KEYOPT}(1)=1$ ), GAP, PAMB, PREF, and MFP must be specified. PREF and MFP are used to adjust the dynamic viscosity. ACF1 and ACF2 are assumed to be 1.

For high Knudsen numbers with accommodation factors (KEYOPT $(1)=2$ ), GAP, PAMB, PREF, MFP, ACF1, and ACF2 must be specified. Different accommodation factors may be specified for each surface.

For small deflections, GAP is assumed to be constant. For the fluid-only option (PRES dof) and large deflections, GAP can be updated using SETFGAP.

Real constants GAPX, GAPY, and GAPZ are the unit vector components of the normal gap vector $g$ in the global Cartesian system (see figure below).

Figure 2 Moving Structure with Thin Film of FLUID136 Elements


Real constants FMGF and MMGF determine the minimum fluid gap (fluid_mingap) and minimum mechanical gap (mech_mingap) as shown below:

Figure 3 Minimum Fluid and Minimum Mechanical Gaps


Real constant MPTF determines the mechanical penetration tolerance as shown below:

## Figure 4 Mechanical Penetration



Figure 5 Fluid Penetration


Real constant MINPABSFA determines the minimum absolute pressure as shown below. The minimum absolute pressure is used in the definition of Knudson number.
minpabs $= \begin{cases}\mathrm{Pamb}^{*}{ }^{*} \text { MINPABSF } & \text { if MINPABSF }>0 \\ \mid \text { MINPABSF } \mid & \text { if MINPABSF }<0\end{cases}$
Stiffness is input by real constant STIFFP and it is typically large. Damping is input by real constant DAMPP and it is typically zero.

## FLUID136 Output Data

The solution output associated with the element is in two forms:

- Nodal degrees of freedom included in the overall nodal solution
- Additional element output as shown in Table 2: FLUID136 Element Output Definitions (p. 582)

A general description of solution output is given in Table 2: FLUID136 Element Output Definitions (p. 582). See the Basic Analysis Guide for ways to view results.

The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " $Y$ " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 2 FLUID136 Element Output Definitions

Name	Definition	$\mathbf{O}$	$\mathbf{R}$
PRES	Pressure change with regard to ambient temperature		Y
PG (X, Y, Z)	Mid-surface fluid velocity	Y	Y
EL	Element Number	Y	Y
NODES	Nodes - I, J, K, L	Y	Y
MAT	Material number	Y	Y
AREA:	Area	Y	Y
FLUE	Velocity (normal to surface)	Y	Y
SNORMAL(YX, Y,   Z)Y	Components of unit surface normal n	-	-
VELC(X, Y, Z)	Components of mechanical velocity at centroid	-	-
DISPC(X, Y, Z)	Components of displacement at centroid	-	-
PRESC	Fluid pressure at centroid	-	-
GAPDIR(X, Y, Z)	Components of gap vector g	-	-
FLUIDDEAD	Fluid alive or dead (1 = alive; 0 = dead)	-	-
FLUIDPEN	Fluid penetration	-	-
MECHDEAD	Mechanical alive or dead (1 = alive; 0 = dead)	-	-
MECHPEN	Mechanical penetration at centroid	-	-
STIFF	Element stiffness	-	-
CONTPRES	Contact pressure at centroid	-	
KN	Knudsen number	-	

Contact pressure is computed as an element centroidal quantity:
CONTPRES= STIFFP*mech_penetration + DAMPP*mech_velocity
Table 3: FLUID136 Item and Sequence Numbers (p. 583) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p.9) in this manual for more information. The following notation is used in Table 3: FLUID136 Item and Sequence Numbers (p. 583):

## Name

output quantity as defined in the Table 2: FLUID136 Element Output Definitions (p. 582)

## Item

predetermined Item label for ETABLE command

E
sequence number for single-valued or constant element data
Table 3 FLUID136 Item and Sequence Numbers

Output Quantity Name	ETABLE and ESOL Command Input	
	Item	E
Effective viscosity	NMISC	1
GAP	NMISC	2
$\operatorname{KEYOPT}(3)=1$ or 2		
AREA	NMISC	3
SNORMALX	NMISC	4
SNORMALY	NMISC	5
SNORMALZ	NMISC	6
VELCX	NMISC	7
VELCX	NMISC	8
VELCX	NMISC	9
DISPCX	NMISC	10
DISPCY	NMISC	11
DISPCZ	NMISC	12
PRESC (Zero if KEYOPT(5) $=$ 2)	NMISC	13
GAPDIRCX	NMISC	14
GAPDIRCY	NMISC	15
GAPDIRCZ	NMISC	16
FLUIDDEAD   ( 0 if $\operatorname{KEYOPT}(5)=2$ )   ( 1 if KEYOPT(5) $\neq 2$ )	NMISC	17
FLUIDPEN   ( 0 if KEYOPT(5) $\neq 2$ )	NMISC	18
$\begin{gathered} \text { MECHDEAD } \\ (0 \text { if } \operatorname{KEYOPT}(6)=0) \\ (1 \text { if } \operatorname{KEYOPT}(6) \neq 0) \end{gathered}$	NMISC	19
$\begin{gathered} \text { MECHPEN } \\ (0 \text { if } \mathrm{KEYOPT}(6)=0) \end{gathered}$	NMISC	20


Output Quantity Name	ETABLE and ESOL Command Input	
	Item	E
STIFF   ( 0 if KEYOPT(6) $=0$ )	NMISC	21
CONTPRES   ( 0 if KEYOPT(6) $=0$ )	NMISC	22
KN	NMISC	23

## FLUID136 Assumptions and Restrictions

- Knudsen numbers larger than 880 are not supported.
- The gas flow is assumed to be isothermal.
- The fluid gap is small compared to the lateral width of the underlying structure.
- The element assumes isothermal viscous flow. All the fluid properties are at a constant temperature (TUNIF) within a load step, even if you specify material properties with temperature dependencies (using MP). See Squeeze Film Theory in the Theory Reference for the Mechanical APDL and Mechanical Applications for more information on the governing equations.
- This element cannot be used in a distributed solution.


## FLUID136 Product Restrictions

There are no product-specific restrictions for this element.

## FLUID138

3-D Viscous Fluid Link Element
MP ME <> <> <> <> <> <> <> <> <> PP <> EME MFS

## FLUID138 Element Description

FLUID138 models the viscous fluid flow behavior through short channels (i.e., holes) in microstructures moving perpendicular to fixed surfaces. FLUID138 can be used in conjunction with FLUID136 elements to determine the stiffening and damping effects that the fluid exerts on the moving perforated microstructure.

FLUID138 assumes isothermal flow at low Reynolds numbers. The channel length must be small relative to the acoustic wave length, and the pressure change must be small relative to the ambient pressure. FLUID138 accounts for gas rarefaction effects and fringe effects due to the short channel length.

As with FLUID136, FLUID138 is applicable to static, harmonic, and transient analyses. FLUID138 can be used to model two different flow regimes: continuum theory and high Knudsen number.

In contrast to FLUID116, this element is more accurate for channels of rectangular cross section, allows channel dimensions to be small compared to the mean free path, allows modeling of evacuated systems, and considers fringe effects at the inlet and outlet. These effects can considerably increase the damping force in the case of short channel length. See FLUID138-3-D Viscous Fluid Link Element in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

## FLUID138 Input Data

The element is defined by two nodes. The I node is located at the center of the cross-section of the hole region on the same plane as the nodes used to model the squeeze film fluid region (FLUID136 elements). The J node is located at the opposite face of the structure through the channel depth.

## Figure 1 FLUID138 Geometry



KEYOPT(1) specifies the flow regime. The Knudsen number can be calculated from the mean free fluid path at a reference pressure, the operating pressure, and the lateral dimensions.

$$
\mathrm{K}_{\mathrm{n}}=(\text { MFP*PREF) } /(\text { PAMB } * \text { DIM })
$$

For rectangular channels, DIM is the smallest lateral dimension. For circular channels, DIM is the radius.

For continuum theory to be valid $(\operatorname{KEYOPT}(1)=0)$, the Knudsen number should be less than 0.01 . If the Knudsen number is greater than $0.01(\operatorname{KEYOPT}(1)=1$ or 2$)$, the dynamic viscosity is adjusted to account for the slip flow boundary.

The fluid environment is defined by a set of real constants:
For rectangular channels, DIM1 and DIM2 specify the lateral dimensions of the channel. For circular channels, DIM1 specifies the radius of the channel and DIM2 is not used, PAMB specifies the ambient (i.e., surrounding) pressure, PREF specifies the reference pressure for the mean free fluid path, and MFP specifies the mean free fluid path at reference pressure PREF.

For continuum theory ( $\operatorname{KEYOPT}(1)=1$ ), DIM1, DIM2 (if rectangular channel), and PAMB must be specified.
For high Knudsen numbers ( $\operatorname{KEYOPT}(1)=1$ ), DIM1, DIM2 (if rectangular channel), PAMB, PREF and MFP must be specified. PREF and MFP are used to adjust the dynamic viscosity.

FLUID138 does not support any loadings. To preserve the pressure drop through the hole, the PRES degree of freedom for the nodes of the FLUID136 elements at the periphery of the hole must be coupled to the PRES degree of freedom for node I of the FLUID138 element representing the hole, and the pressure degree of freedom for node J must be set to the surrounding ambient pressure.

## FLUID138 Input Summary

## Nodes

I, J

## Degrees of Freedom

 PRES
## Real Constants

DIM1, DIM2, (blank), PAMB, (blank), (blank),
PREF, MFP

## Material Properties

VISC - dynamic viscosity

## Surface Loads

None

## Body Loads

None

## Special Features

None

## KEYOPT(1)

Continuous flow options
0 --
Continuum theory
1 --
High Knudsen numbers

## KEYOPT(3)

Cross section definition

```
0 --
 Circular cross section
1 --
 Rectangular cross section
```


## FLUID138 Output Data

The solution output associated with the element is in two forms:

- Nodal degrees of freedom included in the overall nodal solution
- Additional element output as shown in Table 1: FLUID129 Element Output Definitions (p. 553)

A general description of solution output is given in Table 2: FLUID136 Element Output Definitions (p. 582). See the Basic Analysis Guide for ways to view results.

## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " $Y$ " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

## Table 1 FLUID138 Element Output Definitions

Name	Definition	$\mathbf{O}$	R
PRES	Pressure change with regard to ambient pressure		Y
EL	Element Number	Y	Y
NODES	Nodes - I, J	Y	Y
MAT	Material number	Y	Y
VOL	Volume	Y	Y
FLUE	Fluences	Y	Y
LENGTH	Channel Length	Y	Y
AREA	Area	Y	Y
PRES (I, J)	P1 at node I, P2 at node J	Y	Y
FLOW	Flow rate	Y	
VELOCITY	Average velocity	Y	

Table 2: FLUID138 Item and Sequence Numbers (p. 588) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p.9) in this manual for more information. The following notation is used in Table 2: FLUID129 Item and Sequence Numbers (p. 553):

## Name

output quantity as defined in the Table 1: FLUID129 Element Output Definitions (p. 553)

## Item

predetermined Item label for ETABLE command

## E

sequence number for single-valued or constant element data
Table 2 FLUID138 Item and Sequence Numbers

Output Quantity   Name	ETABLE and   ESOL Command   Input	
	Item	E
Effective viscosity	NMISC	1
Effective length	NMISC	2
Fluid resistance	NMISC	3
Cross sectional area	NMISC	4

## FLUID138 Assumptions and Restrictions

- Knudsen numbers larger than 880 are not supported.
- The gas flow is assumed to be isothermal.
- The pressure change must be small compared to ambient pressure.
- The element assumes isothermal viscous flow. All the fluid properties are at a constant temperature (TUNIF) within a load step, even if you specify material properties with temperature dependencies (using MP). See Squeeze Film Theory in the Theory Reference for the Mechanical APDL and Mechanical Applications for more information on the governing equations.


## FLUID138 Product Restrictions

There are no product-specific restrictions for this element.

## FLUID139

## 3-D Slide Film Fluid Element

MP ME <> <> <> <> <> <> <> <> <> PP <> EME MFS

## FLUID139 Element Description

FLUID139 is a uniaxial element which models the fluid behavior between a sliding surface and a fixed wall. The viscous flow between surfaces is represented by a series connection of mass-damper elements whereby each node corresponds to a local fluid layer. The element has applications for modeling the fluid damping effects in microsystems such as comb drive fingers, large horizontally moving plates in seismic devices, etc. The element can be used in conjunction with other elements to model complete structural-fluid damping interaction, or stand-alone to add damping effects in a lumped sense to a structure. For low frequency applications, Couette flow assumptions is used. At higher frequencies where inertial effects become important, Stokes flow theory is used. First and second order slip flow models can be activated for systems which operate at high Knudsen numbers. The element is applicable to large deflection cases where the surface area exposed to a fixed wall changes with displacement (such as in comb fingers). See FLUID139 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

## FLUID139 Input Data

The element is defined by two nodes. The I node is connected to the first "wall" and the J (or I+32) node is attached to the second "wall". Either wall may be constrained from moving, or both walls may move with respect to one another.

Figure 1 FLUID139 Geometry
KEYOPT(2)=0 and KEYOPT(3)=0

$\operatorname{KEYOPT}(2)=1$ and $\operatorname{KEYOPT}(3)=0$


The 2-node option $(\operatorname{KEYOPT}(2)=0)$ is recommended for systems which operate at frequencies below the cut-off frequency.

The 32-node option $(\operatorname{KEYOPT}(2)=1)$ is necessary for Stokes flow models where only a small fluid layer at the wall is accelerated due to fluid inertia. For the 32 node option $(\operatorname{KEYOPT}(2)=1)$, the first node is node I, and the 32 nd node is node J. The intermediate node numbers (2-31) must be defined, but their location may be arbitrary. The geometric location of node $I$ and $J$ is not important as their separation distance is computed from the real constant gap separation GAP.

The fluid environment is defined by the real constants.
Gap is the local gap separation (i.e., width of fluid domain). AREA is the surface area. DADU is the change in the overlap area with respect to the surface displacement. That is, DADU is the first derivative of AREA with respect to displacement. If the surface area is constant, then DADU is the width of the overlap surface. PAMB is the ambient (i.e., surrounding) pressure. PREF is the reference pressure for which the mean free path of the fluid is defined. MFP is the mean free path of the fluid at PREF.

FLUID139 can be used to model continuous flow or slip flow boundary conditions. If the Knudsen number is less than 0.01 , then continuous flow boundary conditions are valid. If the Knudsen number is greater than 0.01 , but not near 1 , then first order slip flow boundary conditions are valid. If the Knudsen number is near

1, then extended slip flow boundary conditions are valid. $\operatorname{KEYOPT}(3)$ is used to specify fluid blow boundary conditions. $\operatorname{KEYOPT}(3)=0$ specifies continuous flow. $\operatorname{KEYOPT}(3)=1$ specifies first order slip flow boundary conditions. $\operatorname{KEYOPT}(3)=2$ specifies extended slip flow boundary conditions. See Flow Regime Considerations in the Fluids Analysis Guide for a complete discussion of flow regimes and calculation of the Knudsen number.

FLUID139 can be loaded by nodal displacements at the interface nodes using the D command or by nodal forces using the $\mathbf{F}$ command. A combination of FLUID139 and structural elements allows a simultaneous fluid-structure domain simulation.

## FLUID139 Input Summary

## Nodes

I, J (KEYOPT(2) = 0)
I, J, node $32(\operatorname{KEYOPT}(2)=1)$

## Degrees of Freedom

UX, UY, UZ (Depending on KEYOPT(1))

## Real Constants

GAP, AREA, DADU, PAMB, (blank), (blank)
PREF, MFP

## Material Properties

DENS - density
VISC - dynamic viscosity

## Surface Loads

None

## Body Loads

None

## Special Features

None

## KEYOPT(1)

Operating Directions
0,1 --x-direction (UX DOF)

2 --
y-direction (UY DOF)
3 --
z-direction (UZ DOF)

## KEYOPT(2)

Flow model
0 --
2-node element (Couette flow)
1 --
32-node element (Stokes flow)

## KEYOPT(3)

Continuous flow options
0 --
Continuum theory
1 --
First order slip flow
2 --
Extended slip flow theory

## FLUID139 Output Data

The solution output associated with the element is in two forms:

- Nodal degrees of freedom included in the overall nodal solution
- Additional element output as shown in Table 1: FLUID129 Element Output Definitions (p. 553)

A general description of solution output is given in Table 2: FLUID136 Element Output Definitions (p. 582). See the Basic Analysis Guide for ways to view results.

## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " $Y$ " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

## Table 1 FLUID139 Element Output Definitions

Name	Definition	$\mathbf{O}$	$\mathbf{R}$
EL	Element Number	Y	Y
NODES	Nodes $-\mathrm{I}, \mathrm{J}$	Y	Y
MAT	Material number	Y	Y
VOL	Volume	Y	Y
GAP	Gap separation	Y	Y
AREA	Area	Y	Y
PRES $(I, J)$	P1 at node I, P2 at node J	Y	Y

Table 2: FLUID138 Item and Sequence Numbers (p. 588) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p.9) in this manual for more information. The following notation is used in Table 2: FLUID129 Item and Sequence Numbers (p. 553):

## Name

output quantity as defined in the Table 1: FLUID129 Element Output Definitions (p. 553)

## Item

predetermined Item label for ETABLE command

## E

sequence number for single-valued or constant element data
Table 2 FLUID139 Item and Sequence Numbers

Output Quantity   Name	ETABLE and   ESOL Command   Input	
	Item	E
Effective viscosity	NMISC	1
GAP	NMISC	2
AREA	NMISC	3

## FLUID139 Assumptions and Restrictions

The element assumes isothermal viscous flow. All the fluid properties are at a constant temperature (TUNIF) within a load step, even if you specify material properties with temperature dependencies (using MP). See Slide Film Theory in the Theory Reference for the Mechanical APDL and Mechanical Applications for more information on the governing equations.

This element cannot be used in a distributed solution.

## FLUID139 Product Restrictions

There are no product-specific restrictions for this element.

## 2-D Fluid-Thermal



Product Restrictions

## FLUID141 Element Description

Although this legacy element is available for use in your analysis, ANSYS recommends using the ANSYS CFXFlo product instead.

You can use FLUID141 to model transient or steady state fluid/thermal systems that involve fluid and/or non-fluid regions. The conservation equations for viscous fluid flow and energy are solved in the fluid region, while only the energy equation is solved in the non-fluid region. Use this FLOTRAN CFD element to solve for flow and temperature distributions within a region, as opposed to elements that model a network of one-dimensional regions hooked together (such as FLUID116). You can also use FLUID141 in a fluid-solid interaction analysis. See FLUID141 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

For the FLOTRAN CFD elements, the velocities are obtained from the conservation of momentum principle, and the pressure is obtained from the conservation of mass principle. (The temperature, if required, is obtained from the law of conservation of energy.) A segregated sequential solver algorithm is used; that is, the matrix system derived from the finite element discretization of the governing equation for each degree of freedom is solved separately. The flow problem is nonlinear and the governing equations are coupled together. The sequential solution of all the governing equations, combined with the update of any temperature- or pressuredependent properties, constitutes a global iteration. The number of global iterations required to achieve a converged solution may vary considerably, depending on the size and stability of the problem. Transport equations are solved for the mass fractions of up to six species.

You may solve the system of equations in a constant angular velocity rotating coordinate system. The degrees of freedom are velocities, pressure, and temperature. Two turbulence quantities, the turbulent kinetic energy and the turbulent kinetic energy dissipation rate, are calculated if you invoke an optional turbulence model. For axisymmetric models, you can calculate an optional swirl - velocity VZ normal to the plane. You also can specify swirl at the inlet or a boundary (moving wall).

Figure 1 FLUID141 Geometry


## FLUID141 Input Data

Figure 1 (p. 595) shows the geometry, node locations, and the coordinate system for this element. The element is defined by three nodes (triangle) or four nodes (quadrilateral) and by isotropic material properties. The coordinate system is selected according to the value of $\operatorname{KEYOPT}(3)$, and may be either Cartesian, axisymmetric, or polar.

Node and Element Loads (p. 97) describes element loads. For a fluid-solid interaction analysis, you can apply a fluid-solid interaction flag using the SF family of commands (SF, SFA, SFE, or SFL) and the FSIN surface load label. You must also apply the same interface number to the solid interface where load transfer takes place. See Sequentially Coupled Physics Analysis in the Coupled-Field Analysis Guide for more information on the use of the fluid-solid interaction flag.

The Fluids Analysis Guide includes a discussion of which ANSYS commands are unavailable or inappropriate for FLUID141.

## FLUID141 Fluid Elements

If the material number [MAT] of a FLUID141 element is 1 , it is assumed to be a fluid element. Its properties - density, viscosity, thermal conductivity and specific heat - are defined with a series of FLDATA commands. You can analyze only one fluid, and it must be in a single phase. Thermal conductivity and specific heat are relevant (and necessary) only if the problem is thermal in nature. The properties can be a function of temperature through relationships specified by the FLDATA7,PROT command or through a property database (the file floprp.ans). In addition, the density may vary with pressure (per the ideal gas law) if the fluid is specified to be air or a gas.

Six turbulence models are available. You can activate turbulence modeling with the FLDATA1,SOLU,TURB,T command. The Standard $\mathrm{k}-\varepsilon$ Model and the Zero Equation Turbulence Model are available along with four extensions of the Standard $k-\varepsilon$ Model. See Turbulence in the Theory Reference for the Mechanical APDL and Mechanical Applications and Turbulence Models in the Fluids Analysis Guide for more information on the models.

KEYOPT(1) activates multiple species transport, which allows you to track the transport of up to six different fluids (species) in the main fluid. KEYOPT(4) allows you to use displacement DOFs to specify motion of boundaries when using the Arbitrary Lagrangian-Eulerian (ALE) formulation.

Real constants, shown in Table 1: FLUID141 Real Constants (p. 599), are required only if a distributed resistance ("FLUID141 Distributed Resistance" (p. 596)), a fan model ("FLUID141 Fan Model" (p. 597)), a wall roughness ("FLUID141 Wall Roughness" (p. 597)), or an ALE formulation is to be included.

## FLUID141 Distributed Resistance

A distributed resistance provides a convenient way to approximate the effect of porous media (such as a filter) or other such flow domain features without actually modeling the geometry of those features. It is an artificially imposed, unrecoverable loss associated with geometry not explicitly modeled. Any fluid element with a distributed resistance will have a real constant set number [REAL] greater than 1 assigned to it.

The resistance to flow, modeled as a distributed resistance, may be due to one or a combination of these factors: a localized head loss (K), a friction factor (f), or a permeability (C). The total pressure gradient is the sum of these three terms, as shown below for the X direction.

$$
\frac{\partial p}{\partial x}_{\text {resistance }}=\left\{-K \rho V_{x}|V|+\frac{f}{D_{h}} \rho V x|V|+C \mu V_{x}\right\}
$$

where:
$\rho=$ is the density (mass/length ${ }^{3}$ )
$\mu=$ is the viscosity (mass/(length*time))
$R E=$ is the local value of the Reynolds Number (calculated by the program): $R E=\left(\rho \vee D_{h}\right) / \mu$
$f=$ is a friction coefficient (calculated by the program): $f=a E^{-b}$
$\mathrm{C}=$ is the FLOTRAN permeability (1/length2). FLOTRAN permeability is the inverse of the intrinsic or physical permeability.

If large gradients exist in the velocity field within a distributed resistance region, you should deactivate the turbulence model by setting ENKE to 0 and ENDS to 1.0 in this region.

Non-Newtonian viscosity models also are available for this element. Currently, ANSYS provides a Power Law model, a Bingham model, and a Carreau model.

In addition, ANSYS provides a user-definable subroutine to compute viscosity. Viscosity of the Theory Reference for the Mechanical APDL and Mechanical Applications and Using User-Programmable Subroutines in the Fluids Analysis Guide describe these models and how to use them. The subroutine, called UserVisLaw, is documented in the Guide to ANSYS User Programmable Features.

## FLUID141 Fan Model

The fan model provides a convenient way to approximate the effect of a fan or pump in the flow domain. It is an artificially imposed momentum source that provides momentum source terms associated with a fan or a pump not explicitly modeled.

The pressure rise associated with a fan model is given by the pressure gradient times the flow length through the elements with the fan model real constants. For a one-directional fan model, (real constant TYPE = 4), three coefficients are input. The pressure gradient can be treated as a quadratic function of velocity, as shown below for the X direction.

$$
\frac{\partial p}{\partial x_{\operatorname{fan}}}=C_{1}+C_{2}\left|V_{x}\right|+C_{3} V_{x}^{2}
$$

$V$ is the fluid velocity and $C_{1}, C_{2}$, and $C_{3}$ are the coefficients specified as real constants. For an arbitrary direction fan model (real constant TYPE $=5$ ), the three coefficients are the components of the actual coefficients along a coordinate direction. See also the Fluids Analysis Guide.

## FLUID141 Wall Roughness

The FLOTRAN default condition is smooth walls. For information on applying roughness values, see Flow Boundary Conditions in the Fluids Analysis Guide.

## FLUID141 Non-Fluid Elements

If the material number [MAT] of the element is greater than 1 , it is assumed to be a non-fluid element. Only the energy equation is solved in the non-fluid elements. You can define up to 100 different non-fluid mater-
ials. To specify density, specific heat, and thermal conductivity for the non-fluid elements, use the MP command. Temperature variation of the non-fluid properties is permitted, and you specify it via the MP or MPDATA commands. Orthotropic variation also is permitted, with the restriction that the spatial variation is always with respect to the global coordinate system. Note that element real constants have no meaning for non-fluid FLUID141 elements.
"FLUID141 Input Summary" (p. 598) summarizes the element input. Element Input (p. 5) gives a general description of element input. For axisymmetric applications see Harmonic Axisymmetric Elements (p. 102).

## FLUID141 Input Summary

## Nodes

I, J, K, L

## Degrees of Freedom

VX, VY, VZ, PRES, TEMP, ENKE, ENDS

## Real Constants

See Table 1: FLUID141 Real Constants (p. 599)

## Material Properties

Non-fluid: KXX, KYY, C, DENS
Fluid: Density, viscosity, thermal conductivity, specific heat (use FLDATA commands) or MPTEMP and MPDATA.

## Surface Loads

HFLUX, CONV, RAD, RDSF, FSIN

## Body Loads

HGEN, FORC

## Special Features

Nonlinear
Six turbulence models
Incompressible or compressible algorithm
Transient or steady state algorithm
Rotating or stationary coordinate system
Algebraic solvers particular to FLOTRAN
Optional distributed resistance and fan models
Multiple species transport

## KEYOPT(1)

Number of species:
0 --
Species transport is not activated.
2-6--
Number of species transport equations to be solved.

## KEYOPT(3)

Element coordinate system:
0 --
Cartesian coordinates (default)

## 1 --

Axisymmetric about Y -axis
2 --
Axisymmetric about X-axis
3 --
Polar Coordinates

## KEYOPT(4)

Support mesh displacement DOFs:
0 --
Do not include displacement DOFs.
1 --
Include displacement DOFs (UX and UY).
Table 1 FLUID141 Real Constants

No.	Name	Definition and Type no.	Units
1	TYPE	Type of distributed resistance or fan model:   1 = Distributed resistance: isotropic   2 = Distributed resistance: one-directional   3 = Distributed resistance: direction-dependent   4 = Fan model: aligned with a coordinate axis   5 = Fan model: arbitrary direction	
2	(Blank) DIR (Blank)	1, 2, 3 - Not used   4 - Fan orientation: $1=\mathrm{X}, 2=\mathrm{Y}, 3=\mathrm{Z}$   5 - Not Used	
3	$\begin{aligned} & \mathrm{K} \\ & \mathrm{~K}_{\mathrm{x}} \\ & \mathrm{C}_{1} \\ & \mathrm{C}_{1 \mathrm{x}} \\ & \hline \end{aligned}$	1, 2 - Dimensionless head loss / length   3 - Head loss in X direction   4 - Constant term   5 - Vector component of $C_{1}$ in $X$ direction	$\begin{gathered} 1 / \mathrm{L} \\ 1 / \mathrm{L} \\ \mathrm{M} / \mathrm{L}^{2} \mathrm{t}^{2} \\ \mathrm{M} / \mathrm{L}^{2} \mathrm{t}^{2} \end{gathered}$
4	$\begin{aligned} & C \\ & C_{x} \\ & C_{2} \\ & C_{2 x} \end{aligned}$	1, 2 - Permeability   3 - Permeability in X direction   4 - Linear coefficient   5 - Vector component of $C_{2}$ in $X$ direction	$\begin{gathered} 1 / L^{2} \\ 1 / L^{2} \\ M / L^{3} t \\ M / L^{3} t \end{gathered}$
5	$\begin{aligned} & D_{h} \\ & D_{h x} \\ & C_{3} \\ & C_{3 x} \end{aligned}$	1,2-Hydraulic diameter   3 - Hydraulic diameter in $X$ direction   4 - Quadratic coefficient   5 - Vector component of $C_{3}$ in $X$ direction	$\begin{gathered} \mathrm{L} \\ \mathrm{~L} \\ M / L^{4} \\ M / L^{4} \end{gathered}$
6	a   $a_{x}$   (Blank)	1, 2 - Coefficient of Reynolds number, used in friction factor calculations   3 - Coefficient a in X direction   4, 5 - Not Used	


No.	Name	Definition and Type no.	Units
7	b   $b_{x}$   (Blank)	1, 2 - Exponent of Reynolds number, used in friction factor calculations   3 - Exponent b in X direction   4, 5 - Not Used	
8	(Blank)   FLDIR   $K_{y}$   (Blank)   $\mathrm{C}_{1 \mathrm{y}}$	1 - Not Used   2 - Flow direction: $1=X, 2=Y, 3=Z$   3 - Head loss in $Y$ direction   4 - Not Used   5 - Vector component of $C_{1}$ in $Y$ direction	$\begin{gathered} 1 / \mathrm{L} \\ - \\ M / L^{2} \mathrm{t}^{2} \end{gathered}$
9	(Blank)   Cy   (Blank) $\mathrm{C}_{2 y}$	1, 2 - Not Used   3 - Permeability in $Y$ direction   4 - Not Used   5 - Vector component of $\mathrm{C}_{2}$ in $Y$ direction	$1 / L^{2}$   $\mathrm{M} / \mathrm{L}^{3} \mathrm{t}$
10	(Blank)   $D_{\text {hy }}$   (Blank)   $C_{3 y}$	1, 2 - Not Used   3 - Hydraulic diameter in $Y$ direction   4 - Not Used   5 - Vector component of $C_{3}$ in $Y$ direction	$\begin{gathered} \mathrm{L} \\ - \\ \mathrm{M} / \mathrm{L}^{4} \end{gathered}$
11	(Blank)   $a_{y}$   (Blank)	1, 2 - Not Used   3 - Coefficient of Reynolds number in $Y$ direction   4, 5 - Not Used	
12	(Blank) $b_{y}$ (Blank)	1, 2 - Not Used   3 - Exponent of Reynolds number in $Y$ direction   4, 5 - Not Used	
13	$\begin{array}{\|l} \hline \text { (Blank) } \\ \mathrm{K}_{\mathrm{z}} \\ \text { (Blank) } \\ \mathrm{C}_{1 \mathrm{z}} \\ \hline \end{array}$	1, 2 - Not Used   3 - Head loss in Z (swirl) direction   4 - Not Used   5 - Vector component of $\mathrm{C}_{1}$ in Z (swirl) direction	$\begin{gathered} 1 / \mathrm{L} \\ - \\ M / \mathrm{L}^{2} \mathrm{t}^{2} \end{gathered}$
14	(Blank)	1, 2 - Not Used	-
	$\mathrm{C}_{\mathrm{z}}$	3 - Permeability in Z (swirl) direction	1/L ${ }^{2}$
	(Blank)	4 - Not Used	-
	$\mathrm{C}_{2 z}$	5 - Vector component of $\mathrm{C}_{2}$ in Z (swirl) direction	$\mathrm{M} / \mathrm{L}^{3} \mathrm{t}$
15	(Blank)   $\mathrm{D}_{\mathrm{hz}}$   (Blank)   $C_{3 z}$	1, 2 - Not Used   3 - Hydraulic diameter in Z (swirl) direction   4 - Not Used   5 - Vector component of $C_{3}$ in $Z$ (swirl) direction	$\begin{gathered} L \\ - \\ M / L^{4} \end{gathered}$
16	(Blank) $\mathrm{a}_{\mathrm{z}}$	1, 2 - Not Used   3 - Coefficient of Reynolds number in Z (swirl) direction	


No.	Name	Definition and Type no.	Units
	(Blank)	$4,5-$ Not Used	-
17	(Blank)   $\mathrm{b}_{\mathrm{z}}$   (Blank)	$1,2-$ Not Used   $3-$ Exponent of Reynolds number in Z (swirl) direc-   tion   $4,5-$ Not Used	-
18	BDTOL	Element birth/death tolerance	-
19	MMFAC	Mesh morphing multiplier	L
20	$\mathrm{~K}_{\mathrm{s}}$	Local uniform wall roughness	-
21	$\mathrm{CK}_{\mathrm{s}}$	An empirical dimensionless factor between 0.5 and   1.0 that specifies the degree of nonuniformity of   the surface.	-

## FLUID141 Output Data

The solution output associated with the element takes the form of nodal quantities. Additional intermediate properties and derived quantities supplement the degrees of freedom. See the Basic Analysis Guide for ways to view results.

Table 2: FLUID141 Element Output Definitions (p. 602) describes quantities that are output on a nodal basis. Some quantities are not output if the relevant options are not activated. Once an option is used, the relevant DOF quantities are always stored. For example, if a temperature field has been obtained and upon restart the energy equation is no longer to be solved, the temperatures are stored anyway. You control the storage of derived properties such as effective viscosity by issuing the FLDATA5,OUTP command.

The Jobname.PFL file provides additional output. This file contains periodic tabulations of the maximum, minimum, and average values of the velocities, pressure, temperature, turbulence quantities, and properties. The file also records the convergence monitoring parameters calculated at every global iteration. The Jobname. PFL file also tabulates the mass flow at all the inlets and outlets and the heat transfer information at all the boundaries.

A wall results file (Jobname.RSW) contains information associated with the boundary faces of wall elements. Average pressure, temperature, shear stress, Y -plus values and wall heat fluxes are stored, along with vectors denoting the normal direction from the surface (Normal Vector) and the direction of the velocity immediately adjacent to the wall (Tangent Vector).

An optional residual file (Jobname.RDF) shows how well the current solution satisfies the implied matrix equations for each DOF.

The Element Output Definitions table uses the following notation:
A colon (:) in the Name column indicates the item can be accessed by the Component Name method [ETABLE, ESOL]. The R column indicates the availability of the items in the results file.

A $Y$ in the $R$ column indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and a-indicates that the item is not available.

## Table 2 FLUID141 Element Output Definitions

Name	Definition	R
UX	Displacement in the X direction (Cartesian coordinates); Displacement along axis of symmetry (Axisymmetric about X); Displacement in the radial direction (Axisymmetric about Y )	10
UY	Displacement in the $Y$ direction (Cartesian coordinates); Displacement along radial direction (Axisymmetric about X); Displacement along the axis of symmetry (Axisymmetric about Y )	10
VX:	Velocity in the $X$ direction (Cartesian coordinates); Velocity in the radial direction (Polar coordinates); Velocity along axis of symmetry (Axisymmetric about X ); Velocity in the radial direction (Axisymmetric about Y )	Y
VY:	Velocity in the Y direction (Cartesian coordinates); Velocity in the tangential direction (Polar coordinates); Velocity in the radial direction (Axisymmetric about X); Velocity along the axis of symmetry (Axisymmetric about Y )	Y
VZ:	Velocity in the swirl direction (Axisymmetric problems)	8
PRES:	Relative Pressure	Y
ENKE:	Turbulent kinetic energy	2
ENDS:	Turbulence dissipation rate	2
TEMP:	Temperature	1
DENS:	Nodal fluid density	8
VISC:	Nodal fluid viscosity	8
COND:	Nodal fluid thermal conductivity	8
SPHT:	Nodal fluid specific heat	8
EVIS:	Effective viscosity (includes effects of turbulence)	8
ECON:	Effective thermal conductivity (includes the effects of turbulence)	2
CMUV:	Turbulent viscosity coefficient	2
TTOT:	Stagnation (Total) Temperature (Only relevant to compressible analyses)	7
HFLU:	Heat Flux at external surface nodes (per unit area)	1
HFLM:	Heat Transfer (film) coefficient at external surface nodes	1
RDFL:	Radiation Heat Flux	1
STRM:	Stream Function (2-D)	Y
MACH:	Mach Number (must be requested if incompressible)	6
PTOT:	Stagnation (Total) Pressure	Y
PCOE:	Pressure Coefficient	3
YPLU:	Y+ a turbulent law of the wall parameter	3
TAUW:	Shear Stress at the wall	3
SPON:	Mass fraction of species $N$, where $N=1$ to 6 (FLOTRAN). If a species is given a user-defined name [MSSPEC], use that name instead of SPON.	4


Name	Definition	R
LMDN:	Laminar mass diffusion coefficient for species $N$, where $N=1$ to 6. (Not   relevant unless species defined.)	3
EMD $N:$	Effective mass diffusion coefficient for species $N$, where $N=1$ to 6. (Not   relevant unless species defined.)	2

1. Available if thermal is on.
2. Available if turbulence is on.
3. Must be requested.
4. Available if species defined.
5. Available if property is variable.
6. Available if compressible.
7. Available if compressible and thermal.
8. Available if swirl is turned on.
9. For solid material elements in FLOTRAN, when nodes are connected only to solid nodes, the column for the density (DENS) label within the Jobname. RFL results file, stores the product of the solid material's density and its specific heat.
10. Available if $\operatorname{KEYOPT}(4)=1$.

## FLUID141 Assumptions and Restrictions

- The element must not have a negative or a zero area.
- You must define the connectivity of an element with the nodes in counterclockwise order.
- The element must lie in the X-Y plane.
- When triangles are formed by duplicating the third node, the FLOTRAN element will ignore the duplicate node and treat nodes I, J, and K.
- Only linear elements are supported.
- You cannot use FLUID141 with any other ANSYS elements.
- Not all ANSYS commands are relevant to the use of FLUID141. The Fluids Analysis Guide documents these command usage restrictions.
- FLOTRAN CFD analyses are highly nonlinear.
- In some cases, convergence is difficult to achieve and requires the use of stability and relaxation parameters.
- Highly turbulent cases may benefit from preconditioning (the initialization of the flow field with a laminar analysis), particularly if a coarse finite element mesh is being used.
- You must determine if use of the turbulence and/or compressible option is warranted. The turbulence option requires a fine mesh near the walls and a fine mesh is recommended near any regions where shock waves occur. If the larger gradients occur in regions with the coarsest mesh, rerun the problems with adjusted meshes.
- Surface-to-surface radiation (RDSF) is not supported for compressible flow thermal analysis and R- $\theta$ and R- $\theta-Z$ coordinate systems.
- The FLOTRAN element must be in counterclockwise order for a 2-D FSI analysis (for Figure 1 (p.595), I, $\mathrm{J}, \mathrm{K}, \mathrm{L}$ order) and it must be in positive volume order for a 3-D FSI analysis (for Figure 1 (p.606), I, J, K, $L, M, N, O$ order). If the element order is not proper, you will need to recreate the mesh to reverse it.

The following assumptions have been made in the formulation:

- The nodal coordinate system and the global coordinate system must remain the same.
- The problem domain and the finite element mesh may not change during an analysis.
- The fluid is a single phase fluid.
- Non-fluid thermal conductivities can vary with temperature. Orthotropic variation of non-fluid thermal conductivity also is supported. For more information, see MP, MPDATA, and related commands in the Command Reference.
- Free surfaces are not permitted.
- The equation of state of gases is the ideal gas law. This is the case regardless of whether the incompressible or compressible algorithm is invoked. The ideal gas law is not valid at Mach numbers above 5.
- In the incompressible option, work done on the fluid by pressure forces, viscous dissipation, and kinetic energy terms are neglected in the energy equation. The incompressible energy equation is a thermal transport equation.
- In the compressible adiabatic case, the stagnation (total) temperature is assumed constant and the static temperature is calculated from it by subtracting a kinetic energy term.
- Load case operations are not permitted with the FLOTRAN elements.


## FLUID141 Product Restrictions

There are no product-specific restrictions for this element.


## FLUID142 Element Description

Although this legacy element is available for use in your analysis, ANSYS recommends using the ANSYS CFXFlo product instead.

You can use FLUID142 to model transient or steady state fluid/thermal systems that involve fluid and/or non-fluid regions. The conservation equations for viscous fluid flow and energy are solved in the fluid region, while only the energy equation is solved in the non-fluid region. Use this FLOTRAN CFD element to solve for flow and temperature distributions within a region, as opposed to elements that model a network of one-dimensional regions hooked together (such as FLUID116). You can also use FLUID142 in a fluid-solid interaction analysis. See FLUID142 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

For the FLOTRAN CFD elements, the velocities are obtained from the conservation of momentum principle, and the pressure is obtained from the conservation of mass principle. (The temperature, if required, is obtained from the law of conservation of energy.) A segregated sequential solver algorithm is used; that is, the matrix system derived from the finite element discretization of the governing equation for each degree of freedom is solved separately. The flow problem is nonlinear and the governing equations are coupled together. The sequential solution of all the governing equations, combined with the update of any temperature- or pressuredependent properties, constitutes a global iteration. The number of global iterations required to achieve a converged solution may vary considerably, depending on the size and stability of the problem. Transport equations are solved for the mass fractions of up to six species.

You can solve the system of equations in a constant angular velocity rotating coordinate system. The degrees of freedom are velocities, pressure, and temperature. Two turbulence quantities, the turbulent kinetic energy and the turbulent kinetic energy dissipation rate, are calculated if you invoke an optional turbulence model.

Figure 1 FLUID142 Geometry


## FLUID142 Input Data

Figure 1 (p.606) shows the geometry, node locations, and the coordinate system for this element. The element is defined by eight nodes and the material properties. A tetrahedral-shaped element may be formed by defining the same node numbers for nodes $M, N, O$, and $P$; and nodes $K$ and $L$. A wedge-shaped element and a pyramid-shaped element may also be formed as shown in Figure 1 (p. 606). The coordinate system, selected according to the value of KEYOPT(3), may be either Cartesian or cylindrical.

Node and Element Loads (p. 97) describes element loads. For a fluid-solid interaction analysis, you can apply a fluid-solid interaction flag using the SF family of commands (SF, SFA, SFE, or SFL) and the FSIN surface load label. You must also apply the same interface number to the solid interface where load transfer takes place. See Sequentially Coupled Physics Analysis in the Coupled-Field Analysis Guide for more information on the use of the fluid-solid interaction flag.

The Fluids Analysis Guide includes a discussion of which ANSYS commands are unavailable or inappropriate for FLUID142.

## FLUID142 Fluid Elements

If the material number [MAT] of a FLUID142 element is 1 , it is assumed to be a fluid element. You define its properties - density, viscosity, thermal conductivity and specific heat - with a series of FLDATA commands. Only one fluid can be analyzed, and it must be in a single phase. Thermal conductivity and specific heat are relevant (and necessary) only if the problem is thermal in nature. The properties can be a function of temperature through relationships specified by the FLDATA7,PROT command or through a property database (the file floprp.ans). In addition, the density may vary with pressure (per the ideal gas law) if the fluid is specified to be air or a gas.

Six turbulence models are available. You can activate turbulence modeling with the FLDATA1,SOLU,TURB,T command. The Standard $\mathrm{k}-\varepsilon$ Model and the Zero Equation Turbulence Model are available along with four extensions of the Standard $k-\varepsilon$ Model. See Turbulence in the Theory Reference for the Mechanical APDL and Mechanical Applications and Turbulence Models in the Fluids Analysis Guide for more information on the models.

KEYOPT(1) activates multiple species transport, which allows you to track the transport of up to six different fluids (species) in the main fluid. KEYOPT(4) allows you to use displacement DOFs to specify motion of boundaries when using the Arbitrary Lagrangian-Eulerian (ALE) formulation.

Real constants, shown in Table 1: FLUID142 Real Constants (p. 609), are required only if a distributed resistance ("FLUID142 Distributed Resistance" (p. 607)), a fan model ("FLUID142 Fan Model" (p. 608)), a wall roughness ("FLUID142 Wall Roughness" (p. 608)), or an ALE formulation is to be included.

## FLUID142 Distributed Resistance

A distributed resistance is a convenient way to approximate the effect of porous media (such as a filter) or other such flow domain features without actually modeling the geometry of those features. It is an artificially imposed, unrecoverable loss associated with geometry not explicitly modeled. Any fluid element with a distributed resistance will have a real constant set number greater than 1 .

The resistance to flow, modeled as a distributed resistance, may be due to one or a combination of these factors: a localized head loss ( K ), a friction factor ( f ), or a permeability (C). The total pressure gradient is the sum of these three terms, as shown below for the X direction.

## where:

$\rho=$ is the density (mass/length ${ }^{3}$ )
$\mu=$ is the viscosity (mass/(length*time))
$R E=$ is the local value of the Reynolds Number (calculated by the program): RE $=\left(\rho \vee D_{h}\right) / \mu$
$f=$ is a friction coefficient (calculated by the program): $f=a R E^{-b}$
$\mathrm{C}=$ is the FLOTRAN permeability (1/length2). FLOTRAN permeability is the inverse of the intrinsic or physical permeability.

The ANSYS program also offers non-Newtonian viscosity models for this element. Currently, Power Law, Bingham, and Carreau models are available.

In addition, ANSYS provides a user-defined subroutine for computing viscosity. Viscosity in the Theory Reference for the Mechanical APDL and Mechanical Applications and Using User-Programmable Subroutines in the Fluids Analysis Guide describes these models and how to use them. The Guide to ANSYS User Programmable Features describes how to use the user-defined subroutine, called UserVisLaw.

If large velocity gradients exist in the velocity field within a distributed resistance region, deactivate the turbulence model by setting the ENKE DOF to 0 and the ENDS DOF to 1 in this region.

## FLUID142 Fan Model

The fan model provides a convenient way to approximate the effect of a fan or pump in the flow domain. It is an artificially imposed pressure source that provides momentum source terms associated with a fan or a pump not explicitly modeled.

The pressure rise associated with a fan model is given by the pressure gradient times the flow length through the elements with the fan model real constants. The pressure gradient can be treated as a quadratic function of velocity, as shown below for the $X$ direction:

$$
\frac{\partial \mathrm{p}}{\partial x_{\text {fan }}}=C_{1}+C_{2}\left|V_{x}\right|+C_{3} V_{x}^{2}
$$

$V$ is the fluid velocity and $C_{1}, C_{2}$, and $C_{3}$ are the coefficients specified as real constants. For an arbitrary direction fan model (real constant TYPE $=5$ ), the three coefficients are the components of the actual coefficients along a coordinate direction. See also the Fluids Analysis Guide.

## FLUID142 Wall Roughness

The FLOTRAN default condition is smooth walls. For information on applying roughness values, see Flow Boundary Conditions in the Fluids Analysis Guide.

## FLUID142 Non-Fluid Elements

If the material number [MAT] of the element is greater than 1 , it is assumed to be a non-fluid element. Only the energy equation is solved in the non-fluid elements. You can define up to 100 different non-fluid materials. To specify density, specific heat, and thermal conductivity for the non-fluid elements, issue the MP command. Temperature variation of the non-fluid properties is permitted, and you specify it using MP or MPDATA. Orthotropic variation also is allowed, with the restriction that the spatial variation is always with respect to the global coordinate system. Note that element real constants have no meaning for non-fluid FLUID142 elements.
"FLUID142 Input Summary" (p. 608) summarizes the element input. Element Input (p. 5) gives a general description of element input.

## FLUID142 Input Summary

## Nodes

I, J, K, L, M, N, O, P

## Degrees of Freedom

VX, VY, VZ, PRES, TEMP, ENKE, ENDS

## Real Constants

See Table 1: FLUID142 Real Constants (p. 609)

## Material Properties

Non-fluid: KXX, KYY, KZZ, C, DENS
Fluid: Density, viscosity, thermal conductivity, specific heat (use FLDATA commands)

## Surface Loads

HFLU, CONV, RAD, RDSF, FSIN

## Body Loads

HGEN, FORC

## Special Features

Nonlinear
Six turbulence models
Incompressible or compressible algorithm
Transient or steady state algorithm
Rotating or stationary coordinate system
Algebraic solvers particular to FLOTRAN
Optional distributed resistance and fan models
Multiple species transport

## KEYOPT(1)

Number of species:
0 --
Species transport is not activated.
2-6--
Number of species transport equations to be solved.

## KEYOPT(3)

Element coordinate system:
0 --
Cartesian coordinates (default)
3 --
Cylindrical coordinates

## KEYOPT(4)

Support mesh displacement DOFs:
0 --
Do not include displacement DOFs.
1 --
Include displacement DOFs (UX, UY, and UZ).
Table 1 FLUID142 Real Constants

No.	Name	Definition	Units
1	TYPE	Type of distributed resistance or fan model:   1 = Distributed resistance: isotropic   2 = Distributed resistance: one-directional   3 = Distributed resistance: direction-dependent   4 = Fan model: aligned with a coordinate axis   5 = Fan model: arbitrary direction	
2	(Blank)   DIR   (Blank)	1, 2, 3 - Not used   4 - Fan orientation: $1=X, 2=Y, 3=Z$   5 - Not Used	
3	K	1,2-Dimensionless head loss / length	1/L


No.	Name	Definition	Units
	$\begin{aligned} & \mathrm{K}_{\mathrm{x}} \\ & \mathrm{C}_{1} \\ & \mathrm{C}_{1 \mathrm{x}} \end{aligned}$	3 - Head loss in X direction   4 - Constant term   5 - Vector component of $\mathrm{C}_{1}$ in X direction	$\begin{gathered} 1 / L \\ M / L^{2} t^{2} \\ M / L^{2} t^{2} \end{gathered}$
4	$\begin{aligned} & C \\ & C_{x} \\ & C_{2} \\ & C_{2 x} \end{aligned}$	1, 2 - Permeability   3 - Permeability in $X$ direction   4 - Linear coefficient   5 - Vector component of $C_{2}$ in $X$ direction	$\begin{gathered} 1 / L^{2} \\ 1 / L^{2} \\ M / L^{3} t \\ M / L^{3} t \end{gathered}$
5	$\begin{aligned} & D_{h} \\ & D_{h x} \\ & C_{3} \\ & C_{3 x} \end{aligned}$	1,2-Hydraulic diameter   3 - Hydraulic diameter in X direction   4 - Quadratic coefficient   5 - Vector component of $\mathrm{C}_{3}$ in X direction	$\begin{gathered} \mathrm{L} \\ \mathrm{~L} \\ M / L^{4} \\ M / L^{4} \end{gathered}$
6	a   $a_{x}$   (Blank)	1, 2 - Coefficient of Reynolds number, used in friction factor calculations   3 - Coefficient a in X direction   4,5-Not Used	
7	b   $b_{x}$   (Blank)	1, 2 - Exponent of Reynolds number, used in friction factor calculations   3 - Exponent b in X direction   4, 5 - Not Used	
8	(Blank)   FLDIR   $K_{y}$   (Blank)   $\mathrm{C}_{1 \mathrm{y}}$	1 - Not Used   2 - Flow direction: $1=X, 2=Y, 3=Z$   3 - Head loss in $Y$ direction   4 - Not Used   5 - Vector component of $\mathrm{C}_{1}$ in Y direction	1/L   $M / L^{2} t^{2}$
9	(Blank)   Cy   (Blank)   $\mathrm{C}_{2 y}$	1, 2 - Not Used   3 - Permeability in $Y$ direction   4 - Not Used   5 - Vector component of $\mathrm{C}_{2}$ in $Y$ direction	$1 / L^{2}$   $M / L^{3} t$
10	(Blank)   $D_{\text {hy }}$   (Blank)   $\mathrm{C}_{3 y}$	1, 2 - Not Used   3 - Hydraulic diameter in $Y$ direction   4 - Not Used   5 - Vector component of $\mathrm{C}_{3}$ in Y direction	$\begin{gathered} L \\ - \\ M / L^{4} \end{gathered}$
11	(Blank)   $a_{y}$   (Blank)	1, 2 - Not Used   3 - Coefficient of Reynolds number in $Y$ direction   4,5-Not Used	
12	(Blank)   $b_{y}$   (Blank)	1, 2 - Not Used   3 - Exponent of Reynolds number in $Y$ direction   4, 5 - Not Used	


No.	Name	Definition	Units
13	(Blank)   $\mathrm{K}_{\mathrm{z}}$   (Blank)   $C_{1 z}$	1, 2 - Not Used   3 - Head loss in Z (swirl) direction   4 - Not Used   5 - Vector component of $\mathrm{C}_{1}$ in Z (swirl) direction	$\begin{gathered} 1 / \mathrm{L} \\ - \\ M / L^{2} \mathrm{t}^{2} \end{gathered}$
14	(Blank)	1,2-Not Used	-
	$\mathrm{C}_{\mathrm{z}}$	3 - Permeability in Z (swirl) direction	1/L ${ }^{2}$
	(Blank)	4 - Not Used	-
	$\mathrm{C}_{2 z}$	5 - Vector component of $\mathrm{C}_{2}$ in Z (swirl) direction	$\mathrm{M} / \mathrm{L}^{3} \mathrm{t}$
15	(Blank)   $\mathrm{D}_{\mathrm{hz}}$   (Blank)   $C_{3 z}$	1, 2 - Not Used   3 - Hydraulic diameter in Z (swirl) direction   4 - Not Used   5 - Vector component of $C_{3}$ in $Z$ (swirl) direction	$\begin{gathered} \mathrm{L} \\ - \\ \mathrm{M} / \mathrm{L}^{4} \end{gathered}$
16	(Blank) $\mathrm{a}_{\mathrm{z}}$   (Blank)	1, 2 - Not Used   3 - Coefficient of Reynolds number in Z (swirl) direction   4, 5 - Not Used	
17	(Blank)   $\mathrm{b}_{\mathrm{z}}$   (Blank)	1, 2 - Not Used   3 - Exponent of Reynolds number in Z (swirl) direction   4, 5 - Not Used	
18	BDTOL	Element birth/death tolerance	L
19	MMFAC	Mesh morphing multiplier	-
20	$\mathrm{K}_{5}$	Local uniform wall roughness	L
21	$\mathrm{CK}_{5}$	An empirical dimensionless factor between 0.5 and 1.0 that specifies the degree of nonuniformity of the surface.	-

## FLUID142 Output Data

The solution output associated with the element takes the form of nodal quantities. Additional intermediate properties and derived quantities supplement the degrees of freedom. See the Basic Analysis Guide for ways to view results.

Table 1: FLUID142 Real Constants (p. 609) describes quantities that are output on a nodal basis. Some quantities are not output if the relevant options are not activated. Once an option is used, the relevant DOF quantities are always stored. For example, if a temperature field has been obtained and upon restart the energy equation is no longer to be solved, the temperatures are stored anyway. You control the storage of derived properties such as effective viscosity by issuing the FLDATA5,OUTP command.

The Jobname.PFL file provides additional output. This file contains periodic tabulations of the maximum, minimum, and average values of the velocities, pressure, temperature, turbulence quantities, and properties. The file also records the convergence monitoring parameters calculated at every global iteration. The Job-
name. PFL file also tabulates the mass flow at all the inlets and outlets and the heat transfer information at all the boundaries.

A wall results file (Jobname . RSW) contains information associated with the boundary faces of wall elements. Average pressure, temperature, shear stress, $Y$-plus values and wall heat fluxes are stored, along with vectors denoting the normal direction from the surface (Normal Vector) and the direction of the velocity immediately adjacent to the wall (Tangent Vector).

An optional residual file (Jobname.RDF) shows how well the current solution satisfies the implied matrix equations for each DOF.

The Element Output Definitions table uses the following notation:
A colon (:) in the Name column indicates the item can be accessed by the Component Name method [ETABLE, ESOL]. The R column indicates the availability of the items in the results file.

A $Y$ in the $R$ column indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and a-indicates that the item is not available.

Table 2 FLUID142 Element Output Definitions

Name	Definition	R
UX	Displacement in the X direction (Cartesian coordinates)	9
UY	Displacement in the Y direction (Cartesian coordinates)	9
UZ	Displacement in the Z direction (Cartesian coordinates)	9
VX:	Velocity in the X direction (Cartesian coordinates); Velocity in the radial   direction (Cylindrical coordinates)	Y
VY:	Velocity in the Y direction (Cartesian coordinates); Velocity in the tangential   direction (Cylindrical coordinates)	Y
VZ:	Velocity in the Z direction (Cartesian coordinates); Velocity in the axial   direction (Cylindrical coordinates)	Y
PRES:	Relative Pressure	Y
ENKE:	Turbulent kinetic energy	2
ENDS:	Turbulence dissipation rate	2
TEMP:	Temperature	1
DENS:	Nodal fluid density	8
VISC:	Nodal fluid viscosity	8
COND:	Nodal fluid thermal conductivity	8
SPHT:	Nodal fluid specific heat	8
EVIS:	Effective viscosity (includes effects of turbulence)	8
ECON:	Effective thermal conductivity (includes the effects of turbulence)	2
CMUV:	Turbulent viscosity coefficient	7
TTOT:	Stagnation (Total) Temperature (Only relevant to compressible analyses)	7
HFLU:	Heat Flux at external surfaces nodes (per unit area)	8   HFLM:   Heat Transfer (film) coefficient at external surface nodes


Name	Definition	R
MACH:	Mach Number (must be requested if incompressible)	6
PTOT:	Stagnation (Total) Pressure	Y
PCOE:	Pressure Coefficient	3
YPLU:	Y+ a turbulent law of the wall parameter	3
TAUW:	Shear Stress at the wall	3
SP0N:	Mass fraction of species $N$, where $N=1$ to 6 (FLOTRAN). If a species is   given a user-defined name [MSSPEC], use that name instead of SP0N.	4
LMDN:	Laminar mass diffusion coefficient for species $N$, where $N=1$ to 6. (Only   relevant if species defined.)	3
EMDN:	Effective mass diffusion coefficient for species $N$, where $N=1$ to 6. (Only   relevant if species defined.)	2

1. Available if thermal is on.
2. Available if turbulence is on.
3. Must be requested.
4. Available if species defined.
5. Available if compressible.
6. Available if compressible and thermal.
7. For solid material elements in FLOTRAN, when nodes are connected only to solid nodes, the column for density (DENS) in the Jobname. RFL results file actually stores the product of the solid material's density and its specific heat.
8. Available if property is variable.
9. Available if $\operatorname{KEYOPT}(4)=1$.

## FLUID142 Assumptions and Restrictions

- The element must not have a negative or a zero volume.
- You must define the connectivity of an element such that the normal defined by the right hand rule associated with the first four nodes (hexahedral elements) or three nodes (tetrahedral elements) must point into the element.
- When a tetrahedron is formed by specifying duplicate nodes, the FLOTRAN element will ignore the duplicate nodes and base the geometry on nodes I, J, K, and M.
- Only linear elements are supported.
- You cannot use FLUID142 with any other ANSYS elements.
- Not all ANSYS commands are relevant to the use of FLUID142. See the Fluids Analysis Guide for a description of the command restrictions.
- FLOTRAN CFD analyses are highly nonlinear.
- In some cases, convergence is difficult to achieve and requires the use of stability and relaxation parameters.
- Highly turbulent cases may benefit from preconditioning (the initialization of the flow field with a laminar analysis), particularly if a coarse finite element mesh is being used.
- You must determine if use of the turbulence and/or compressible option is warranted. The turbulence option requires a fine mesh near the walls and a fine mesh is recommended near any regions where shock waves occur. If the larger gradients occur in regions with the coarsest mesh, rerun the problems with adjusted meshes.
- For a flow analysis, especially turbulent, you should not use pyramid elements near the walls because it may lead to inaccuracies in the solution.
- Surface-to-surface radiation (RDSF) is not supported for compressible flow thermal analysis and R- $\theta$ and R- $\theta-Z$ coordinate systems.
- The FLOTRAN element must be in counterclockwise order for a 2-D FSI analysis (for Figure 1 (p.595), I, J, K, L order) and it must be in positive volume order for a 3-D FSI analysis (for Figure 1 (p. 606), I, J, K, $L, M, N, O$ order). If the element order is not proper, you will need to recreate the mesh to reverse it.

The following assumptions have been made in the formulation:

- The nodal coordinate system and the global coordinate system must remain the same.
- The problem domain and the finite element mesh may not change during an analysis.
- The fluid is a single phase fluid.
- Non-fluid thermal conductivities can vary with temperature. Orthotropic variation of non-fluid thermal conductivity also is supported. For more information, see the descriptions of MP, MPDATA, and related commands.
- Free surfaces are not permitted.
- The equation of state of gases is the ideal gas law. This is the case regardless of whether the incompressible or compressible algorithm is invoked. The ideal gas law is not valid at Mach numbers above 5.
- In the incompressible option, work done on the fluid by pressure forces, viscous dissipation, and kinetic energy terms are neglected in the energy equation. The incompressible energy equation is a thermal transport equation.
- In the compressible adiabatic case, the stagnation (total) temperature is assumed constant and the static temperature is calculated from it by subtracting a kinetic energy term.
- Load case operations are not permitted with the FLOTRAN elements.


## FLUID142 Product Restrictions

There are no product-specific restrictions for this element.

## Reduced Order Electrostatic-Structural

$$
\begin{array}{r}
\text { MP <> <> <> <> <> <> <> <> <> <> PP <> EME <> } \\
\text { Product Restrictions }
\end{array}
$$

## ROM144 Element Description

ROM144 represents a 2-D or 3-D reduced order model of a coupled electrostatic-structural system. The element fully couples the electromechanical domains and represents a reduced order model suitable for use in finite element analysis as well as electromechanical circuit simulations. The element has ten modal degrees of freedom relating modal forces and modal displacements (EMF), ten voltage degrees of freedom relating electrical current and potential (VOLT) and, optionally, 10 master nodes relating nodal forces to nodal displacements (UX). Only nine of the 10 modal degrees of freedom and five of the 10 voltage degrees of freedom are actually used. The element is suitable for simulating the electromechanical response of micro-electromechanical devices (MEMS) such as clamped beams, micromirror actuators, and RF switches.

The element is derived from a series of uncoupled structural and electrostatic domain simulations using the electrostatic elements (such as PLANE121, SOLID122, SOLID123, and INFIN111) and structural elements which are compatible with electrostatic elements. The ROM144 element represents a complicated flexible structure whose nodes move mainly in one direction either X, Y or Z referred to the global Cartesian axes. For instance, torsional systems with angles less than ten degree or flexible bending of cantilevers or membranes obey those restrictions (pressure sensors, cantilever for AF microscopy, RF filter). Geometrical nonlinearities caused by stress stiffening or initial prestress are considered as well as multiple conductor systems. See ROM144 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

## Figure 1 ROM144 Schematic



## ROM144 Input Data

The element is defined by $20(\operatorname{KEYOPT}(1)=0)$ or 30 nodes $(\operatorname{KEYOPT}(1)=1)$. A reduced order model file filename. rom and the appropriate polynomial coefficients for the strain energy and capacitance functions
stored in jobname_ijk.pcs must be available in the working directory. Furthermore, the model database filename. db and the reduced solution file (.rdsp) generated by the Use Pass are required to perform an Expansion Pass.

Real constant number 1 (R1) is the element identification number (ID). It is automatically created by the circuit builder (see Using the Circuit Builder in the Low-Frequency Electromagnetic Analysis Guide), and is not required input for analysis purposes. The element supports nodal forces F and displacements D applied at ROM master nodes (21 to 30). The UX degree of freedom must be chosen independent from the physical direction of the original master node. Electrode current and voltage can be applied only to the first five active voltage nodes (11-15). Modal displacements may be set by the EMF degree of freedom using the $\mathbf{D}$ command. Element loads defined in the Generation Pass may be scaled and superimposed by the RMLVSCALE command. ROM144 can be attached to other finite elements such as COMBIN14 and COMBIN40 at the master DOF. The "reaction force" for the modal displacement degree of freedom (EMF) is a modal force, labeled CURT, and should be used when defining the solution convergence criteria (CNVTOL command). The "reaction force" for the electric potential degree of freedom (VOLT) is current, labeled AMPS. The element is compatible with the electric circuit elements CIRCU124 and CIRCU125 and the electromechanical transducer element TRANS126.

Modal damping ratios may be altered by the RMMRANGE command. Save the ROM database before using the changed data in the Use Pass.

A summary of the element input is given in "ROM144 Input Summary" (p. 616).

## ROM144 Input Summary

## Nodes

20 nodes if $\operatorname{KEYOPT}(1)=0$ :
I, J, K, L, M, N, O, P, Q, Blank, S, T, U, V, W, Blank, Blank, Blank, Blank, Blank
30 nodes if $\operatorname{KEYOPT}(1)=1$ :
I, J, K, L, M, N, O, P, Q, Blank, S, T, U, V, W, Blank, Blank, Blank, Blank, Blank, C, D, E, F, G, H, II, JJ, KK, LL

## Degrees of Freedom

EMF, VOLT, UX

## Real Constants

R1 - Element identification number

## Material Properties

None

## Surface Loads

 via RMLVSCALE command
## Body Loads

 via RMLVSCALE command
## Special Features

Nonlinear
Prestress

## KEYOPT(1)

Select DOF set:

## 0 --

No ROM master nodes will be used (default).
1 --
ROM master nodes are used.

## KEYOPT(2)

Select matrix option:
0 --
Unsymmetric matrix option (default).
1 --
Symmetric matrix option (must be activated in case of ANTYPE = MODAL).

## ROM144 Output Data

The solution output associated with the element is in two forms:

- Nodal degrees of freedom included in the overall nodal solution.
- Additional element output as shown in the following table.


## Table 1 ROM144 Element Output Definitions

Name	Definition
SENG	Strain energy
CAP1	First capacitance defined by RMCAP
CAP2	Second capacitance defined by RMCAP
CAP3	Third capacitance defined by RMCAP
CAP4	Forth capacitance defined by RMCAP
CAP5	Fifth capacitance defined by RMCAP
CAP6	Sixth capacitance defined by RMCAP
CAP7	Seventh capacitance defined by RMCAP
CAP8	Eighth capacitance defined by RMCAP
CAP9	Ninth capacitance defined by RMCAP
CAP10	Tenth capacitance defined by RMCAP

Table 2: ROM Item and Sequence Numbers (p. 618) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table in the Element Reference for more information. The following notation is used in Table 2: ROM Item and Sequence Numbers (p. 618):

## Name

output quantity as defined in the Table 1: ROM144 Element Output Definitions (p. 617)

## Item

predetermined Item label for ETABLE command

## E

sequence number for single-valued or constant element data
Table 2 ROM Item and Sequence Numbers

Output Quantity   Name	ETABLE and ESOL Command Input	
	Item	$\mathbf{E}$
SENG	NMISC	1
CAP1	NMISC	2
CAP2	NMISC	3
CAP3	NMISC	4
CAP4	NMISC	5
CAP5	NMISC	6
CAP6	NMISC	7
CAP7	NMISC	8
CAP8	NMISC	9
CAP9	NMISC	10
CAP10	NMISC	11

## ROM144 Assumptions and Restrictions

- Modal forces may not be applied to the ROM element.
- Harmonic and modal analyses are valid only for small-signal analyses after a static prestress calculation.
- Using different ROM elements (i.e., based on different ROM database and polynomial coefficient files) in the same Use Pass is not supported.
- This element cannot be used in a distributed solution.


## ROM144 Product Restrictions

There are no product-specific restrictions for this element.

## SURF151

## 2-D Thermal Surface Effect

MP ME <> PR PRN DS <> <> <> <> <> PP VT EME MFS

## SURF151 Element Description

SURF151 may be used for various load and surface effect applications. It may be overlaid onto a face of any 2-D thermal solid element (except axisymmetric harmonic elements PLANE75 and PLANE78). The element is applicable to 2-D thermal analyses. Various loads and surface effects may exist simultaneously. See SURF151 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

Figure 1 SURF151 Geometry


## SURF151 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 1 (p.619). The element is defined by two to five node points and the material properties. An extra node (away from the base element) may be used for convection or radiation effects. Two extra nodes (away from the base element) may be used to more accurately capture convection effects.

The mass, volume, and heat generation calculations use the in-plane element thicknesses at nodes I and J (real constants TKI and TKJ, respectively). Thickness TKI defaults to 0.0 , and thickness TKJ defaults to TKI. If $\operatorname{KEYOPT}(3)=3$, the out-of-plane thickness is input as the real constant TKPS (defaults to 1.0 ). The mass calculation uses the density (material property DENS).

See Node and Element Loads (p. 97) for a description of element loads. Convections or heat fluxes may be input as surface loads on the element.

The convection surface conductivity matrix calculation uses the film coefficient (input on the SFE command with $K V A L=0$ and CONV as the label). If the extra node option is used, its temperature becomes the bulk temperature. If the extra node is not used, the CONV value input with $K V A L=2$ becomes the bulk temperature. The convection surface heat flow vector calculation uses the bulk temperature. On a given face, either a heat flux or a convection may be specified, but not both simultaneously.

For the extra node option ( $\operatorname{KEYOPT}(5)=1$ ), film effectiveness and free stream temperatures may also be input for convection surface loads (input on the SFE command with the CONV label and KVAL = 3 and 4, respectively). If film effectiveness is input, bulk temperature is ignored.

Setting $\operatorname{KEYOPT}(7)=1$ multiplies the evaluated film coefficient by the empirical term ITS-TBI ${ }^{n}$, where TS is the element surface temperature, $T B$ is the fluid bulk temperature, and n is an empirical coefficient (real constant ENN).

If $\operatorname{KEYOPT}(5)=1$ and flow information is available from FLUID116 with $\operatorname{KEYOPT}(2)=1$, the bulk temperature may be adjusted to the adiabatic wall temperature using $\operatorname{KEYOPT}(6)=1$, real constants OMEG (rotational speed) and NRF (recovery factor), and the logic described in the Theory Reference for the Mechanical APDL and Mechanical Applications. For this adjustment, the global Y Cartesian coordinate axis is used as the axis of rotation (KEYOPT $(3)=1$ ). When using the OMEG real constant, you can specify either numerical values or table inputs. If specifying table inputs, enclose the table name in \% signs (for example, \%tabname\%). Rotational speed (OMEG) can vary with time and location. Use the *DIM command to dimension the table and identify the variables. For more information and examples on using table inputs, see Array Parameters of the ANSYS Parametric Design Language Guide, Applying Loads Using TABLE Type Array Parameters in the Basic Analysis Guide and Doing a Thermal Analysis Using Tabular Boundary Conditions in the Thermal Analysis Guide, as well as the description of *DIM in the Command Reference.

A film coefficient specified by the SFE command may be modified by activating the user subroutine USERCV with the USRCAL command. USERCV may be used to modify the film coefficient of a surface element with or without an extra node. It may be used if the film coefficient is a function of temperature and/or location.

If the surface element has an extra node $(\operatorname{KEYOPT}(5)=1)$, the bulk temperature and/or the film coefficient may be redefined in a general way by user programmable routine USRSURF116. USRSURF116 may be used if the bulk temperature and/or the film coefficient is a function of fluid properties, velocity and/or wall temperature. If a bulk temperature is determined by USRSURF116, it overrides any value specified by SFE or according to KEYOPT(6). Also, if a film coefficient is determined by USRSURF116, it overrides any values specified by SFE or USRCAL, USERCV. USRSURF116 calculation are activated by modifying the USRSURF116 subroutine and creating a customized version of ANSYS; there will be no change in functionality without modifying USRSURF116. For more information, see User-Programmable Features (UPFs).

Heat generation rates are input on a per unit volume basis and may be input as an element body load at the nodes, using the BFE command. Element body loads are not applied to other elements connected at the same nodes. The node I heat generation $\mathrm{HG}(\mathrm{I})$ defaults to zero. The node $J$ heat generation defaults to $\mathrm{HG}(\mathrm{I})$. The heat generation load vector calculation uses the heat generation rate values.

As an alternative to using the BFE command, you can specify heat generation rates directly at the nodes using the BF command. For more information on body loads, see Body Loads in the Basic Analysis Guide.

SURF151 allows for radiation between the surface and the extra node. The emissivity of the surface (input as material property EMIS for the material number of the element) is used for the radiation surface conductivity matrix. The form factor FORMF and the Stefan-Boltzmann constant SBCONST are also used for the radiation surface conductivity matrix. The form factor can be either input as a real constant (defaults to 1 ) using $\operatorname{KEYOPT}(9)=1$ or it can be calculated automatically as a cosine effect using $\operatorname{KEYOPT}(9)=2$ or 3 . For information on how the cosine effect depends on basic element orientation and the extra node location, see the Theory Reference for the Mechanical APDL and Mechanical Applications. There is no distance effect included in the cosine effect. For axisymmetric analyses, the automatic form factor calculation is used only with the extra node on the Y -axis. The Stefan-Boltzmann constant defaults to $0.119 \times 10^{-10}\left(\mathrm{Btu} / \mathrm{hr}^{*} \mathrm{in}^{2 *}{ }^{\circ} \mathrm{R}^{4}\right)$.

When $\operatorname{KEYOPT}(4)=0$, an edge with a removed midside node implies that the temperature varies linearly, rather than parabolically, along that edge. See Quadratic Elements (Midside Nodes) in the Modeling and Meshing Guide for more information about the use of midside nodes.

If a single PLANE element lies beneath SURF151, you can automatically set the element behavior (plane stress, axisymmetric, or plane stress with thickness [including TKPS if applicable]) to that of the underlying solid element using $\operatorname{KEYOPT}(3)=10$. This option is valid only when a single PLANE element lies beneath the SURF element. For example, if you apply a SURF151 element over a PLANE77 (thermal) element whose nodes are also used in the definition of a PLANE183 (structural) element, a warning appears and the load is not applied to the element.

A summary of the element input is given in "SURF151 Input Summary" (p.621). A general description of element input is given in Element Input (p. 5). For axisymmetric applications see Harmonic Axisymmetric Elements (p. 102).

## SURF151 Input Summary

## Nodes

$\mathrm{I}, \mathrm{J}$ if KEYOPT (4) $=1$, and $\operatorname{KEYOPT}(5)=0$
$\mathrm{I}, \mathrm{J}, \mathrm{K}$ if KEYOPT (4) $=1$, and $\operatorname{KEYOPT}(5)=1$
$\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}$ if $\operatorname{KEYOPT}(4)=1$, and $\operatorname{KEYOPT}(5)=2$
I, J, K if KEYOPT (4) $=0$, and $\operatorname{KEYOPT}(5)=0$
$\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}$ if KEYOPT (4) $=0$, and $\operatorname{KEYOPT}(5)=1$
$\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}, \mathrm{M}$ if KEYOPT (4) = 0, and KEYOPT(5) = 2

## Degrees of Freedom

TEMP

## Real Constants

FORMF, SBCONST, (Blank), OMEG, NRF, VABS, TKI, TKJ, (Blank), (Blank), (Blank), TKPS, ENN, GC, JC
See Table 1: SURF151 Real Constants (p. 623) for a description of the real constants

## Material Properties

DENS (for density)
EMIS (for emissivity, if KEYOPT(9) > 0)

## Surface Loads

## Convections --

face 1 ( I J) if $\operatorname{KEYOPT}(8)>1$

## Heat Fluxes --

face $1(1-J)$ if $\operatorname{KEYOPT}(8)=1$

## Body Loads

## Heat Generation --

$\mathrm{HG}(\mathrm{I}), \mathrm{HG}(\mathrm{J})$; also $\mathrm{HG}(\mathrm{K})$ if $\operatorname{KEYOPT}(4)=0$

## Special Features

Birth and death

## KEYOPT(1)

Adiabatic wall temperature option:

## 0, 1, 2 --

See Adiabatic Wall Temperature as Bulk Temperature for information on these options.

## KEYOPT(2)

Recovery factor ( $\mathrm{F}_{\mathrm{R}}$ ) option:
0,1 , or 2 --
See Adiabatic Wall Temperature as Bulk Temperature for information on these options.

## KEYOPT(3)

Element behavior:
0 --
Plane
1 --
Axisymmetric
3 --
Plane with thickness input (TKPS)
10 --
Use the element behavior--plane, axisymmetric, or plane with thickness input (including TKPS if ap-plicable)--of the underlying solid element.

## KEYOPT(4)

Midside nodes:
0 --
Has midside node (that matches the adjacent solid element)
1 --
No midside node

## KEYOPT(5)

Extra node for radiation and/or convection calculations:
0 --
No extra nodes
1 --
Has extra node (optional if $\operatorname{KEYOPT}(8)>1$; required if $\operatorname{KEYOPT}(9)>0$ )
2 --
Two extra nodes (optional if KEYOPT (8) > 1). Only valid for convection calculations. Use this option if the bulk temperature is unknown. The extra nodes get bulk temperatures from the two nodes of a FLUID116 element. This is generally more accurate than the one extra node option.

## KEYOPT(6) (used only if KEYOPT(5) = 1 and KEYOPT(8) > 1)

Use of bulk temperatures:
0 --
Extra node temperature used as bulk temperature
1 --
Adiabatic wall temperature used as bulk temperature

## KEYOPT(7)

Empirical term:

## 0 --

Do not multiply film coefficient by empirical term.

## 1 --

Multiply film coefficient by empirical term $|T S-T B|^{n}$.

## KEYOPT(8)

Heat flux and convection loads:
0 --
Ignore heat flux and convection surface loads (if any)
1 --
Include heat flux, ignore convection
Use the following to include convection (ignore heat flux):
2 --
Evaluate film coefficient $h_{f}$ (if any) at average film temperature, (TS +TB)/2
3 --
Evaluate $h_{f}$ at element surface temperature, $T S$
4 --
Evaluate $h_{f}$ at fluid bulk temperature, $T B$
5 --
Evaluate $h_{f}$ at differential temperature, $\mid$ TS - TB |

## KEYOPT(9)

Radiation form factor calculation:
0 --
Do not include radiation
1 --
Use radiation with the form factor real constant
2 --
Use radiation with cosine effect computed as an absolute value (ignore real constant)
3 --
Use radiation with cosine effect computed as zero if negative (ignore real constant)
Table 1 SURF151 Real Constants

No.	Name	
1	FORMF	Form factor
2	SBCONT	Stefan-Boltzmann constant
3	(Blank)	--
4	OMEGA	Angular velocity
5	NRF	Recovery factor
6	VABS	Absolute value of fluid velocity (KEYOPT(1) $=0$ )
7	TKI	In-plane thickness at node I
8	TKJ	In-plane thickness at node J (defaults to TKI)


No.	Name	Description
$9-11$	(Blank)	--
12	TKPS	Out-of-plane thickness (if KEYOPT(3) $=3$ )
13	ENN	Empirical coefficient
14	GC	Gravitational constant used for units consistency
15	JC	Joule constant used to convert work units to heat units

## SURF151 Output Data

The solution output associated with the element is in two forms:

- Nodal degree of freedom results included in the overall nodal solution
- Additional element output as shown in Table 2: SURF151 Element Output Definitions (p. 624)

Convection heat flux is positive out of the element; applied heat flux is positive into the element. A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " $Y$ " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and " - " indicates that the item is not available.

Table 2 SURF151 Element Output Definitions

Name	Definition	$\mathbf{O}$	$\mathbf{R}$
EL	Element Number	Y	Y
SURFACE NODES	Nodes - I, J	Y	Y
EXTRA NODE	Extra node (if present)	Y	Y
MAT	Material number	Y	Y
AREA	Surface area	Y	Y
VOLU:	Volume	Y	Y
XC, YC	Location where results are reported	Y	7
VN(X, Y)	Components of unit vector normal to center of ele-   ment	-	Y
DENSITY	Density	-	1
MASS	Mass of Element	-	1
HGEN	Heat generations HG(I), HG(J), HG(K)	2	-
HEAT GEN. RATE	Heat generation rate over entire element (HGTOT)	2	2
HFLUX	Input heat flux at nodes I, J	3	-


Name	Definition	$\mathbf{0}$	R
HEAT FLOW RATE	Input heat flux heat flow rate over element surface   area (HFCTOT)	3	3
HFILM	Film coefficient at each face node	4	4
TBULK	Bulk temperature at each face node or temperature   of extra node	4	4
TAVG	Average surface temperature	4	4
TAW	Adiabatic wall temperature	5	5
RELVEL	Relative velocity	5	5
SPHTFL	Specific heat of the fluid	5	5
RECFAC	Recovery factor	5	5
CONV. HEAT RATE	Convection heat flow rate over element surface area   (HFCTOT)	4	4
CONV. HEAT   RATE/AREA	Average convection heat flow rate per unit area	4	-
EMISSUR	Average emissivity of surface (for element material   number)	6	6
EMISEXT	Emissivity of extra node	6	6
TEMPSUR	Average temperature of surface	6	6
TEMPEXT	Temperature of extra node	6	6
FORM FACTOR	Average form factor of element	6	6
RAD. HEAT RATE	Radiation heat flow rate over entire element (HRTOT)	6	6
RAD. HEAT   RATE/AREA	Average radiation heat flow rate per unit area	6	-

1. If dens $>0$
2. If heat generation load is present
3. If $\operatorname{KEYOPT}(8)=1$
4. If $\operatorname{KEYOPT}(8)>1$
5. If $\operatorname{KEYOPT}(6)=1$ and $\operatorname{KEYOPT}(8)>1$
6. If KEYOPT(9) $>0$
7. Available only at centroid as a *GET item.

Table 3: SURF151 Item and Sequence Numbers (p. 626) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p.9) in this manual for more information. The following notation is used in Table 3: SURF151 Item and Sequence Numbers (p. 626):

## Name

output quantity as defined in Table 2: SURF151 Element Output Definitions (p. 624)

## Item

predetermined Item label for ETABLE command

## E

sequence number for single-valued or constant element data
I,J
sequence number for data at nodes I and J
Table 3 SURF151 Item and Sequence Numbers

Output   Quant-   ity   Name	ETABLE and   ESOL Command   Input	
	E	
HGTOT	SMISC	1
HFCTOT	SMISC	2
HRTOT	SMISC	3
AREA	NMISC	1
VNX	NMISC	2
VNY	NMISC	3
HFILM	NMISC	5
TAVG	NMISC	6
TBULK	NMISC	7
TAW	NMISC	8
RELVEL	NMSC	9
SPHTFL	NMSC	10
RECFAC	NMSC	11
EMISSUR	NMISC	12
EMISEXT	NMISC	13
TEMPSUR	NMISC	14
TEMPEXT	NMISC	15
FORM   FACTOR	NMISC	16
DENS	NMISC	17
MASS	NMISC	18

## SURF151 Assumptions and Restrictions

- The element must not have a zero length.
- If KEYOPT(9) $>0$ (radiation is used):
- element is nonlinear and requires an iterative solution
- extra node must be present.
- if $\operatorname{KEYOPT}(4)=0$, midside nodes may not be dropped.


## SURF151 Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

## ANSYS Professional

- KEYOPT(3) $=3$ is not applicable.
- The TKPS real constant (R12) is not applicable.
- The only allowable material property is EMIS.
- No special features are allowed.


## SURF152

## 3-D Thermal Surface Effect

MP ME <> PR PRN DS <> <> <> <> <> PP VT EME MFS

## SURF152 Element Description

SURF152 may be used for various load and surface effect applications. It may be overlaid onto an area face of any 3-D thermal element. The element is applicable to 3-D thermal analyses. Various loads and surface effects may exist simultaneously. See SURF152 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

Figure 1 SURF152 Geometry


## SURF152 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 1 (p.629). The element is defined by four to ten nodes and the material properties. An extra node (away from the base element) may be used for convection or radiation effects. Two extra nodes (away from the base element) may be used to more accurately capture convection effects. A triangular element may be formed by defining duplicate K and L node numbers as described in Triangle, Prism, and Tetrahedral Elements (p. 99). The element x -axis is parallel to the $\mathrm{I}-\mathrm{J}$ side of the element.

The mass, volume, and heat-generation calculations use the element thicknesses at node I, J, K, and L (real constants TKI, TKJ, TKK, and TKL, respectively). Thickness TKI defaults to 0.0 , and thicknesses TKJ, TKK, and TKL default to TKI. The mass calculation uses the density (material property DENS).

See Node and Element Loads (p. 97) for a description of element loads. Convections or heat fluxes may be input as surface loads on the element.

The convection surface conductivity matrix calculation uses the film coefficient (input on the SFE command with $K V A L=0$ and CONV as the label). If the extra node is used, its temperature becomes the bulk temperature. If the extra node is not used, the CONV value input with $K V A L=2$ becomes the bulk temperature. The convection surface heat flow vector calculation uses the bulk temperature. On a given face, either a heat flux or a convection may be specified, but not both simultaneously.

For the extra node option ( $\operatorname{KEYOPT}(5)=1$ ), film effectiveness and free stream temperatures may also be input for convection surface loads (input on the SFE command with the CONV label and KVAL $=3$ and 4, respectively). If film effectiveness is input, bulk temperature is ignored.

Setting $\operatorname{KEYOPT}(7)=1$ multiplies the evaluated film coefficient by the empirical term ITS - TBI ${ }^{\mathrm{n}}$, where TS is the element surface temperature, TB is the fluid bulk temperature, and n is an empirical coefficient (real constant ENN).

If $\operatorname{KEYOPT}(5)=1$ and flow information is available from FLUID116 with $\operatorname{KEYOPT}(2)=1$, the bulk temperature may be adjusted to the adiabatic wall temperature using $\operatorname{KEYOPT}(6)=1$, real constants OMEG (rotational speed) and NRF (recovery factor), and the logic described in the Theory Reference for the Mechanical APDL and Mechanical Applications. For this adjustment, the axis of rotation may be defined as the global Cartesian X, Y or Z coordinate axis (KEYOPT(3)). When using the OMEG real constant, you can specify either numerical values or table inputs. If specifying table inputs, enclose the table name in \% signs (for example, \%tabname\%). Rotational speed (OMEG) can vary with time and location. Use the *DIM command to dimension the table and identify the variables. For more information and examples on using table inputs, see Array Parameters of the ANSYS Parametric Design Language Guide, Applying Loads Using TABLE Type Array Parameters in the Basic Analysis Guide, and Doing a Thermal Analysis Using Tabular Boundary Conditions in the Thermal Analysis Guide, as well as the description of the *DIM command in the Command Reference.

A film coefficient specified by the SFE command may be modified by activating the user subroutine USERCV with the USRCAL command. USERCV may be used to modify the film coefficient of a surface element with or without an extra node. It may be used if the film coefficient is a function of temperature and/or location.

If the surface element has an extra node $(\operatorname{KEYOPT}(5)=1)$, the bulk temperature and/or the film coefficient may be redefined in a general way by user programmable routine USRSURF116. USRSURF116 may be used if the bulk temperature and/or the film coefficient is a function of fluid properties, velocity and/or wall temperature. If a bulk temperature is determined by USRSURF116, it overrides any value specified by SFE or according to KEYOPT(6). Also, if a film coefficient is determined by USRSURF116, it overrides any values specified by SFE or USRCAL, USERCV. USRSURF116 calculation are activated by modifying the USRSURF116 subroutine and creating a customized version of ANSYS; there will be no change in functionality without modifying USRSURF116. For more information, see User-Programmable Features (UPFs).

Heat generation rates are input on a per unit volume basis and may be input as an element body load at the nodes, using the BFE command. Element body loads are not applied to other elements connected at the same nodes. The node I heat generation $\mathrm{HG}(\mathrm{I})$ defaults to zero. If all other heat generations are unspecified, they default to $\mathrm{HG}(\mathrm{I})$. If all corner node heat generations are specified, each midside node heat generation defaults to the average heat generation of its adjacent corner nodes. For any other input heat generation pattern, unspecified heat generations default to zero. The heat generation load vector calculation uses the heat generation rate values.

As an alternative to using the BFE command, you can specify heat generation rates directly at the nodes using the BF command. For more information on body loads, see Body Loads in the Basic Analysis Guide.

SURF152 allows for radiation between the surface and the extra node. The emissivity of the surface (input as material property EMIS for the material number of the element) is used for the radiation surface conduct-
ivity matrix. The form factor FORMF and the Stefan-Boltzmann constant SBCONST are also used for the radiation surface conductivity matrix. The form factor can be either input as a real constant (defaults to 1 ) using $\operatorname{KEYOPT}(9)=1$ or it can be calculated automatically as a cosine effect using $\operatorname{KEYOPT}(9)=2$ or 3 . For information on how the cosine effect depends on basic element orientation and the extra node location, see the Theory Reference for the Mechanical APDL and Mechanical Applications. There is no distance effect included in the cosine effect. The Stefan-Boltzmann constant defaults to $0.119 \times 10^{-10}\left(\mathrm{Btu} / \mathrm{hr} * \mathrm{in}^{2} *{ }^{\circ} \mathrm{R}^{4}\right)$ ).

When $\operatorname{KEYOPT}(4)=0$, an edge with a removed midside node implies that the temperature varies linearly, rather than parabolically, along that edge. See Quadratic Elements (Midside Nodes) in the Modeling and Meshing Guide for more information about the use of midside nodes.

A summary of the element input is given in "SURF152 Input Summary" (p. 631). A general description of element input is given in Element Input (p.5).

## SURF152 Input Summary

## Nodes

$\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}$ if KEYOPT (4) = 1 and KEYOPT (5) $=0$
$\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}, \mathrm{M}$ if $\operatorname{KEYOPT}(4)=1$ and KEYOPT (5) = 1
I, J, K, L, M, N if KEYOPT (4) = 1 and KEYOPT (5) = 2
I, J, K, L, M, N, O, P if KEYOPT (4) $=0$ and KEYOPT (5) $=0$
$\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}, \mathrm{M}, \mathrm{N}, \mathrm{O}, \mathrm{P}, \mathrm{Q}$ if KEYOPT (4) $=0$ and KEYOPT (5) $=1$
$\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}, \mathrm{M}, \mathrm{N}, \mathrm{O}, \mathrm{P}, \mathrm{Q}, \mathrm{R}$ if KEYOPT (4) $=0$ and $\operatorname{KEYOPT}(5)=2$

## Degrees of Freedom

KEYOPT(11)   Setting	DOF for all nodes except   extra node(s)	DOF for extra node(s) (KEY-   OPT(5) = 1 or 2)
0	TEMP	TEMP
1	TTOP	TEMP
2	TBOT	TEMP

## Real Constants

FORMF, SBCONST, (Blank), OMEG, NRF, VABS,
TKI, TKJ, TKK, TKL, (Blank), (Blank),
ENN, GC, JC
See Table 1: SURF152 Real Constants (p. 634) for a description of the real constants

## Material Properties

DENS (for density)
EMIS (for emissivity, if KEYOPT(9) > 0 )

## Surface Loads

Convections --
face $1(\mathrm{I}-\mathrm{J}-\mathrm{K}-\mathrm{L})$ if $\mathrm{KEYOPT}(8)>1$
Heat Fluxes --
face $1(I-J-K-L)$ if $\operatorname{KEYOPT}(8)=1$

## Body Loads

## Heat Generation --

HG(I), HG(J), HG(K), HG(L), and, if KEYOPT(4) = 0, HG(M), HG(N), HG(O), HG(P)

## Special Features

Birth and death

## KEYOPT(1)

Adiabatic wall temperature option:
0, 1, 2 --
See Adiabatic Wall Temperature as Bulk Temperature for information on these options.

## KEYOPT(2)

Recovery factor ( $\mathrm{F}_{\mathrm{R}}$ ) option:

## 0,1 , or 2 --

See Adiabatic Wall Temperature as Bulk Temperature for information on these options.

## KEYOPT(3)

Axis of symmetry:
0 --
OMEG used about global Cartesian X-axis
1 --
OMEG used about global Cartesian Y-axis
2 --
OMEG used about global Cartesian Z-axis

## KEYOPT(4)

Midside nodes:
0 --
Has midside nodes (that match the adjacent solid element)
1 --
Does not have midside nodes

## KEYOPT(5)

Extra nodes:
0 --
No extra nodes. Use this option if the bulk temperature is known.
1 --
One extra node (optional if KEYOPT (8) $>1$; required if KEYOPT ( 9 ) $>0$ ). Valid for convection and radiation calculations. Use this option if the bulk temperature is unknown. The extra node gets the bulk temperature from a FLUID116 element.

2 --
Two extra nodes (optional if KEYOPT (8) > 1). Only valid for convection calculations. Use this option if the bulk temperature is unknown. The extra nodes get bulk temperatures from the two nodes of a FLUID116 element. This is generally more accurate than the one extra node option.

## KEYOPT(6) (used only if $\operatorname{KEYOPT(5)=1} \mathbf{1}$ and $\operatorname{KEYOPT}(8)>1$ )

Use of bulk temperature:
0 --
Extra node temperature used as bulk temperature

## 1 --

Adiabatic wall temperature used as bulk temperature

## KEYOPT(7)

Empirical term:
0 --
Do not multiply film coefficient by empirical term.
1 --
Multiply film coefficient by empirical term $|T S-T B|^{n}$.

## KEYOPT(8)

Heat flux and convection loads:
0 --
Ignore heat flux and convection surface loads (if any)
1 --
Include heat flux, ignore convection
Use the following to include convection (ignore heat flux):
2 --
Evaluate film coefficient $h_{f}$ (if any) at average film temperature, (TS +TB)/2
3 --
Evaluate $h_{f}$ at element surface temperature, $T S$
4 --
Evaluate $h_{f}$ at fluid bulk temperature, $T B$
5 --
Evaluate $h_{f}$ at differential temperature, | TS - TB |

## KEYOPT(9)

Radiation form factor calculation:
0 --
Do not include radiation
1 --
Use radiation with the form factor real constant
2 --
Use radiation with cosine effect calculated as an absolute value (ignore real constant)
3 --
Use radiation with cosine effect calculated as zero if negative (ignore real constant)

## KEYOPT(11)

Label used for all nodal degrees of freedom (except for the extra node):
0 --
TEMP
1 --
TTOP
2 --
TBOT

The extra node, if requested with $\operatorname{KEYOPT}(5)=1$, is always TEMP.
Table 1 SURF152 Real Constants

No.	Name	Description
1	FORMF	Form factor
2	SBCONT	Stefan-Boltzmann constant
3	(Blank)	--
4	OMEGA	Angular velocity (KEYOPT(6) = 1)
5	NRF	Recovery factor
6	VABS	Absolute value of fluid velocity (KEYOPT(1) = 0)
7	TKI	Thickness at node I
8	TKJ	Thickness at node J (defaults to TKI)
9	TKK	Thickness at node K (defaults to TKI)
10	TKL	Thickness at node L (defaults to TKI)
$11-12$	(Blank)	--
13	ENN	Empirical coefficient
14	GC	Gravitational constant used for units consistency
15	JC	Joule constant used to convert work units to heat units

## SURF152 Output Data

The solution output associated with the element is in two forms:

- Nodal degree of freedom results included in the overall nodal solution
- Additional element output as shown in Table 2: SURF152 Element Output Definitions (p. 634)

Convection heat flux is positive out of the element; applied heat flux is positive into the element. A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " $Y$ " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 2 SURF152 Element Output Definitions

Name	Definition	$\mathbf{O}$	$\mathbf{R}$
EL	Element Number	Y	Y
SURFACE NODES	Nodes $-\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}$	Y	Y
EXTRA NODE	Extra node (if present)	Y	Y


Name	Definition	0	R
MAT	Material number	Y	Y
AREA	Surface area	Y	Y
VOLU:	Volume	Y	Y
XC, YC, ZC	Location where results are reported	Y	7
VN(X, Y, Z)	Components of unit vector normal to center of element	-	Y
DENSITY	Density	-	1
MASS	Mass of element	-	1
HGEN	Heat generations $\mathrm{HG}(\mathrm{I}), \mathrm{HG}(\mathrm{J}), \mathrm{HG}(\mathrm{K}), \mathrm{HG}(\mathrm{L}), \mathrm{HG}(\mathrm{M})$, HG(N), HG(O), HG(P)	2	-
HEAT GEN. RATE	Heat generation rate over entire element (HGTOT)	2	2
HFLUX	Input heat flux at nodes I, J, K, L	3	-
HEAT FLOW RATE	Input heat flux heat flow rate over element surface area (HFCTOT)	3	3
HFILM	Film coefficient at each face node	4	4
TBULK	Bulk temperature at each face node or temperature of extra node	4	4
TAVG	Average surface temperature	4	4
TAW	Adiabatic wall temperature	5	5
RELVEL	Relative velocity	5	5
SPHTFL	Specific heat of the fluid	5	5
RECFAC	Recovery factor	5	5
CONV. HEAT RATE	Convection heat flow rate over element surface area (HFCTOT)	4	4
CONV. HEAT RATE/AREA	Average convection heat flow rate per unit area	4	-
EMISSUR	Average emissivity of surface (for element material number)	6	6
EMISEXT	Emissivity of extra node	6	6
TEMPSUR	Average temperature of surface	6	6
TEMPEXT	Temperature of extra node	6	6
FORM FACTOR	Average form factor of element	6	6
RAD. HEAT RATE	Radiation heat flow rate over entire element (HRTOT)	6	6
RAD. HEAT RATE/AREA	Average radiation heat flow rate per unit area	6	-

1. If dens $>0$
2. If heat generation load is present
3. If $\operatorname{KEYOPT}(8)=1$
4. If $\operatorname{KEYOPT}(8)>1$
5. If $\operatorname{KEYOPT}(6)=1$ and $\operatorname{KEYOPT}(8)>1$
6. If $\operatorname{KEYOPT}(9)>0$
7. Available only at centroid as a *GET item.

Table 3: SURF152 Item and Sequence Numbers (p. 636) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p.9) in this manual for more information. The following notation is used in Table 3: SURF152 Item and Sequence Numbers (p. 636):

## Name

output quantity as defined in Table 2: SURF152 Element Output Definitions (p. 634)

## Item

predetermined Item label for ETABLE command
E
sequence number for single-valued or constant element data

## I,J,K,L

sequence number for data at nodes I, J, K, L
Table 3 SURF152 Item and Sequence Numbers

Output   Quant-   ity   Name	ETABLE and   ESOL Command   Input	
	Item	E
HGTOT	SMISC	1
HFCTOT	SMISC	2
HRTOT	SMISC	3
AREA	NMISC	1
VNX	NMISC	2
VNY	NMISC	3
VNZ	NMISC	4
HFILM	NMISC	5
TAVG	NMISC	6
TBULK	NMISC	7
TAW	NMISC	8
RELVEL	NMISC	9
SPHTFL	NMISC	10
RECFAC	NMISC	11
EMISSUR	NMISC	12
EMISEXT	NMISC	13
TEMPSUR	NMISC	14
TEMPEXT	NMISC	15


Output   Quant-   ity   Name	ETABLE and   ESOL Command   Input	
Item   FORM   FACTOR	E EMISC	16
DENS	NMISC	17
MASS	NMISC	18

## SURF152 Assumptions and Restrictions

- The element must not have a zero area.
- If KEYOPT(9) $>0$ (radiation is used):
- element is nonlinear and requires an iterative solution
- extra node must be present.
- if $\operatorname{KEYOPT}(4)=0$, midside nodes may not be dropped.


## SURF152 Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

## ANSYS Professional

- The only allowable material property is EMIS.
- No special features are allowed.


## SURF153

## 2-D Structural Surface Effect

MP ME ST PR PRN DS DSS <> <> <> <> PP VT EME MFS
Product Restrictions

## SURF153 Element Description

SURF153 may be used for various load and surface effect applications. It may be overlaid onto a face of any 2-D structural solid element (except axisymmetric harmonic elements PLANE25, PLANE83, and FLUID81). The element is applicable to 2-D structural analyses. See SURF153 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

Figure 1 SURF153 Geometry


## SURF153 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 1 (p. 639). The element is defined by two or three node points and the material properties. The element $x$-axis is along to the I-J line of the element.

The mass and volume calculations use the in-plane element thicknesses at nodes I and J (real constants TKI and TKJ, respectively). Thickness TKI defaults to 0.0 , and thickness TKJ defaults to TKI. If KEYOPT( 3 ) $=3$, the out-of-plane thickness is input as the real constant TKPS (defaults to 1.0). The mass calculation uses the density (material property DENS, mass per unit volume) and the real constant ADMSUA, the added mass per unit area.

The stress stiffness matrix and load vector calculations use the in-plane force per unit length (input as real constant SURT) and the elastic foundation stiffness (input as real constant EFS); the EFS uses pressure-perlength (or force-per-length-cubed) units. The foundation stiffness can be damped, either by using the material property DAMP as a multiplier on the stiffness or by directly using the material property VISC.

See Node and Element Loads (p. 97) for a description of element loads. Pressures may be input as surface loads as force-per-length-squared on the element faces as shown by the circled numbers on Figure 2 (p. 640). SURF153 allows complex pressure loads.

## Figure 2 Pressures



KEYOPT(2) $=0$
KEYOPT(2) = 1
Faces 1 and $2[\operatorname{KEYOPT}(2)=0] \quad$ Positive values of pressure on the first two faces act in the positive element coordinate directions (except for the normal pressure which acts in the negative $z$ direction). For face 1 , positive or negative values may be removed as requested with $\operatorname{KEYOPT}(6)$ to simulate the discontinuity at the free surface of a contained fluid.

Faces 1 and $2[\operatorname{KEYOPT}(\mathbf{2})=1] \quad$ Pressure loads are applied to the element faces according to the local coordinate system as follows: face 1 in the local $x$ direction and face 2 in the local $y$ direction. A local coordinate system must be defined, and the element must be set to that coordinate system via the ESYS command. KEYOPT(6) does not apply.

Face 3 The magnitude of the pressure at each integration point is $P_{I}+X P_{J}+Y P_{K}$, where $P_{I}$ through $P_{K}$ are input as VAL1 through VAL3 on the SFE command, and $X$ and $Y$ are the global Cartesian coordinates at the current location of the point. No input values can be blank. The SFFUN and SFGRAD commands do not work with face 3.

Face 4 The magnitude of the pressure is $P_{1}$, and the direction is $\left(P_{j} i+P_{K} j\right) /\left(P_{J}^{2}+P_{K}^{2}\right)^{1 / 2}$ where $i$ and $j$ are unit vectors in the global Cartesian directions. The load magnitude can be adjusted with KEYOPTS(11) and (12). No input values can be blank. When using the SFFUN or SFGRAD commands, the load direction is not altered, but the load magnitude is the average of the computed corner node magnitudes. SFCUM,ADD should be used with caution, as this command also causes the load direction components to be added.

The effects of pressure load stiffness are automatically included for this element for real pressure on face 1 if KEYOPT(2) $=0$ or on face 3 . If an unsymmetric matrix is needed for pressure load stiffness effects, use NROPT,UNSYM.

Temperatures may be input as element body loads at the nodes. Element body load temperatures are not applied to other elements connected at the same nodes. The node I temperature $T(I)$ defaults to TUNIF. The node J temperature defaults to $\mathrm{T}(\mathrm{I}$. Temperatures are used for material property evaluation only.

When $\operatorname{KEYOPT}(4)=0$, a removed midside node implies that the displacement varies linearly, rather than parabolically. See Quadratic Elements (Midside Nodes) in the Modeling and Meshing Guide for more information about the use of midside nodes.

If a single PLANE element lies beneath SURF153, you can automatically set the element behavior (plane stress, axisymmetric, or plane stress with thickness [including TKPS if applicable]) to that of the underlying solid element using $\operatorname{KEYOPT}(3)=10$. This option is valid only when a single PLANE element lies beneath the

SURF element. For example, if you apply a SURF153 element over a PLANE77 (thermal) element whose nodes are also used in the definition of a PLANE183 (structural) element, a warning appears and the load is not applied to the element.
$\operatorname{KEYOPT}(7)=1$ is useful when the element is used to represent a force. When $\operatorname{KEYOPT}(7)=0$, the force is input as a pressure times an area; however, if the area changes due to large deflections, the force also changes. When $\operatorname{KEYOPT}(7)=1$, the force remains unchanged even if the area changes.

A summary of the element input is given in "SURF153 Input Summary" (p. 641). A general description of element input is given in Element Input (p. 5). For axisymmetric applications see Harmonic Axisymmetric Elements (p. 102).

If using SURF153 with VTGEOM parameters, see Element Support.

## SURF153 Input Summary

## Nodes

I, J if KEYOPT (4) = 1 ,
$\mathrm{I}, \mathrm{J}, \mathrm{K}$ if $\operatorname{KEYOPT}(4)=0$

## Degrees of Freedom

UX, UY

## Real Constants

(Blank), (Blank), (Blank), EFS, SURT, ADMSUA,
TKI, TKJ, (Blank), (Blank), (Blank), TKPS
See Table 1: SURF153 Real Constants (p. 643) for a description of the real constants

## Material Properties

DENS, VISC, DAMP

## Surface Loads

Pressures --
face 1 (I-J) (in -y normal direction)
face $2(1-J)$ (in $+x$ tangential direction)
face 3 (I-J) (in -y normal direction, global taper)
face $4(\mathrm{I}-\mathrm{J})$ (oriented by input vector)

## Body Loads

## Temperatures --

$\mathrm{T}(\mathrm{I}), \mathrm{T}(\mathrm{J})$; also $\mathrm{T}(\mathrm{K})$ if $\operatorname{KEYOPT}(4)=0$

## Special Features

Stress stiffening
Large deflection
Birth and death
Linear perturbation

## KEYOPT(2)

Pressure applied to faces 1 and 2 according to coordinate system:

## 0 --

Apply face loads in the element coordinate system
1 --
Apply face loads in the local coordinate system

## KEYOPT(3)

Element behavior:
0 --
Plane stress
1 --
Axisymmetric
2 --
Plane strain
3 --
Plane stress with thickness input (TKPS)
5 --
Generalized plane strain
10 --
Use the element behavior--plane stress, axisymmetric, plain strain, plane stress with thickness input (including TKPS if applicable), or generalized plane strain--of the underlying solid element.

## KEYOPT(4)

Midside nodes:
0 --
Has midside node (that matches the adjacent solid element)
1 --
No midside node

## KEYOPT(6)

Applicable only to normal direction pressure (faces 1 and 3 ):
0 --
Use pressures as calculated (positive and negative)
1 --
Use positive pressures only (negative set to zero)
2 --
Use negative pressures only (positive set to zero)

## KEYOPT(7)

Loaded area during large-deflection analyses:
0 --
Use new area
1 --
Use original area

## KEYOPT(11)

Pressure applied by vector orientation (face 4):
0 --
On projected area and includes tangential component

## 1 --

On projected area and does not include tangential component
2 --
On full area and includes the tangential component

## KEYOPT(12)

Effect of the direction of the element normal (element $y$-axis) on vector-oriented (face 4) pressure:
0 --
Pressure load is applied regardless of the element normal orientation
1 --
Pressure load is not used if the element normal is oriented in the same general direction as the pressure vector

Table 1 SURF153 Real Constants

No.	Name	Description
$1 \ldots 3$	(Blank)	--
4	EFS	Foundation stiffness
5	SURT	Surface tension
6	ADMSUA	Added mass/unit area
7	TKI	In-plane thickness at node I
8	TKJ	In-plane thickness at node J (defaults to TKI)
$9 \ldots 11$	(Blank)	--
12	TKPS	Out-of-plane thickness if KEYOPT(3) $=3$ (defaults to 1.0)

## SURF153 Output Data

The solution output associated with the element is in two forms:

- Nodal degree of freedom results included in the overall nodal solution
- Additional element output as shown in Table 2: SURF153 Element Output Definitions (p. 643)

A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " $Y$ " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and " - " indicates that the item is not available.

## Table 2 SURF153 Element Output Definitions

Name	Definition	$\mathbf{O}$	$\mathbf{R}$
EL	Element Number	Y	Y


Name	Definition	O	R
SURFACE NODES	Nodes - I, J	Y	Y
EXTRA NODE	Extra node (if present)	Y	Y
MAT	Material number	Y	Y
AREA	Surface area	Y	Y
VOLU:	Volume	Y	Y
XC, YC	Location where results are reported	Y	6
VN(X, Y)	Components of unit vector normal to center of element	-	Y
PRES	Pressures P1, P2, P3, P4 at nodes I, J	1	-
PY, PX	Pressures at nodes in element coordinate system (P4   uses an average element coordinate system)	-	1
AVG. FACE PRESSURE	Average normal pressure (P1AVG), Average tangential   pressure (P2AVG), Average tapered normal pressure   (P3AVG), Effective value of vector oriented pressure   (P4EFF)	1	1
DVX, DVY	Direction vector of pressure P4	1	1
TEMP	Surface temperatures T(I), T(J), T(K)	2	2
DENSITY	Density (input as DENS)	3	3
MASS	Mass of Element	3	3
FOUNDATION STIFFNESS	Foundation Stiffness (input as EFS)	4	4
FOUNDATION PRESSURE	Foundation Pressure	4	4
SURFACE TENSION	Surface Tension (input as SURT)	5	5

1. If pressure load
2. If temperature load
3. If DENS $>0$
4. If $\mathrm{EFS}>0$
5. If SURT $>0$
6. Available only at centroid as a *GET item.

Table 3: SURF153 Item and Sequence Numbers (p. 645) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table ( p .9 ) in this manual for more information. The following notation is used in Table 3: SURF153 Item and Sequence Numbers (p. 645):

## Name

output quantity as defined in the Table 2: SURF153 Element Output Definitions (p. 643)

## Item

predetermined Item label for ETABLE command
E
sequence number for single-valued or constant element data

I,J
sequence number for data at nodes I and J
Table 3 SURF153 Item and Sequence Numbers

Output Quant-   ity Name	ETABLE and ESOL Command			
	Item	E	I	J
PY (real)	SMISC	-	1	2
PX (real)	SMISC	-	3	4
PY (imaginary)	SMISC		27	28
PX (imaginary)	SMISC		29	30
P1AVG (real)	SMISC	13	-	-
P2AVG (real)	SMISC	14	-	-
P3AVG (real)	SMISC	15	-	-
P4EFF (real)	SMISC	16	-	-
P1AVG (imagin-   ary)	SMISC	39	-	-
P2AVG (imagin-   ary)	SMISC	40	-	-
P3AVG (imagin-   ary)	SMISC	41	-	-
P4EFF (imagin-   ary)	SMISC	42	-	-
FOUNPR	SMISC	21	-	-
AREA	NMISC	1	-	-
VNX	NMISC	2	-	-
VNY	NMISC	3	-	-
EFS	NMISC	5	-	-
SURT	NMISC	6	-	-
DENS	NMISC	7	-	-
MASS	NMISC	8	-	-
DVX	NMISC	9	-	-
DVY	NMISC	10	-	-

## SURF153 Assumptions and Restrictions

- The element must not have a zero length.
- The surface tension load vector acts along the line connecting nodes I and J as a force applied to the nodes seeking to minimize the length of the line. If the nodes of the element are not coplanar when using surface tension, equilibrium may be lost.
- For structural large deflection analyses, the loads are applied to the current size of the element, not the initial size.
- Surface printout and foundation stiffness are not valid for elements deactivated [EKILL] and then reactivated [EALIVE]. Surface printout does not include large strain effects.


## SURF153 Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

## ANSYS Professional

- The only special features allowed are stress stiffening and large deflections.
- The VISC and DAMP material properties are not applicable.


## ANSYS Structural

- The only allowable material property is DENS.


## SURF154

3-D Structural Surface Effect
MP ME ST PR PRN DS DSS <> <> <> <> PP VT EME MFS
Product Restrictions

## SURF154 Element Description

SURF154 may be used for various load and surface effect applications. It may be overlaid onto an area face of any 3-D element. The element is applicable to 3-D structural analyses. Various loads and surface effects may exist simultaneously. See SURF154 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

Figure 1 SURF154 Geometry


## SURF154 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 1 (p.647). The element is defined by four to eight nodes and the material properties. A triangular element may be formed by defining duplicate K and L node numbers as described in Triangle, Prism, and Tetrahedral Elements (p. 99). The default element x -axis is parallel to the $\mathrm{I}-\mathrm{J}$ side of the element.

The mass and volume calculations use the element thicknesses at nodes I, J, K, and L (real constants TKI, TKJ, TKK, and TKL, respectively). Thickness TKI defaults to 0.0 , and thicknesses TKJ, TKK, and TKL default to TKI. The mass calculation uses the density (material property DENS, mass per unit volume) and the real constant ADMSUA, the added mass per unit area.

The stress stiffness matrix and load vector calculations use the in-plane force per unit length (input as real constant SURT) and the elastic foundation stiffness (input as real constant EFS); the EFS uses pressure-perlength (or force-per-length-cubed) units. The foundation stiffness can be damped, either by using the material property DAMP as a multiplier on the stiffness or by directly using the material property VISC.

See Node and Element Loads (p. 97) for a description of element loads. Pressures may be input as surface loads on the element faces as shown by the circled numbers on Figure 2 (p. 648). SURF154 allows complex pressure loads.

Faces 1, 2, and $\mathbf{3}[\operatorname{KEYOPT}(\mathbf{2})=\mathbf{0}] \quad$ Positive values of pressure on the first three faces act in the positive element coordinate directions (except for the normal pressure which acts in the negative $z$ direction). For face 1, positive or negative values may be removed as requested with $\operatorname{KEYOPT}(6)$ to simulate the discontinuity at the free surface of a contained fluid. For faces 2 and 3 , the direction of the load is controlled by the element coordinate system; therefore, the ESYS command is normally needed.

Faces 1, 2, and 3 [KEYOPT(2) = 1] Pressure loads are applied to the element faces according to the local coordinate system, as follows: face 1 in the local $x$ direction, face 2 in the local $y$ direction, and face 3 in the local $z$ direction. A local coordinate system must be defined, and the element must be set to that coordinate system via the ESYS command. KEYOPT(6) does not apply.

Figure 2 Pressures


KEYOPT(2) $=0$
$\operatorname{KEYOPT}(2)=1$
Face 4 The direction is normal to the element and the magnitude of the pressure at each integration point is $P_{I}+X P_{J}+Y P_{K}+Z P_{L}$, where $P_{I}$ through $P_{L}$ are input as VALI through VAL4 on the SFE command, and $X, Y, Z$ are the global Cartesian coordinates at the current location of the point. No input values can be blank. Positive or negative values may be removed as requested with KEYOPT(6) to simulate the discontinuity at the free surface of a contained fluid. The SFFUN and SFGRAD commands do not work with face 4.

Face 5 The magnitude of the pressure is $P_{l}$, and the direction is $\left(P_{j} i+P_{k} j+P_{L} k\right) /\left(P_{J}^{2}+P_{K}^{2}+P_{L}^{2}\right)^{1 / 2}$ where $\mathrm{i}, \mathrm{j}$, and k are unit vectors in the global Cartesian directions. The load magnitude may be adjusted with KEYOPT(11) and KEYOPT(12). No input values can be blank. When using the SFFUN or SFGRAD commands, the load direction is not altered but the load magnitude is the average of the computed corner node magnitudes. SFCUM,ADD should be used with caution, as this command also causes the load direction components to be added.

The effects of pressure load stiffness are automatically included for this element for real pressure on face 1 if $\operatorname{KEYOPT}(2)=0$ or on face 4 . If an unsymmetric matrix is needed for pressure load stiffness effects, issue a NROPT,UNSYM command.

Temperatures may be input as element body loads at the nodes. Element body load temperatures are not applied to other elements connected at the same nodes. The node I temperature $T(I)$ defaults to TUNIF. If all other temperatures are unspecified, they default to $T(I)$. If all corner node temperatures are specified, each midside node temperature defaults to the average temperature of its adjacent corner nodes. For any
other input temperature pattern, unspecified temperatures default to TUNIF. Temperatures are used for material property evaluation only.

When $\operatorname{KEYOPT}(4)=0$, an edge with a removed midside node implies that the displacement varies linearly, rather than parabolically, along that edge. See Quadratic Elements (Midside Nodes) in the Modeling and Meshing Guide for more information about the use of midside nodes.
$\operatorname{KEYOPT}(7)=1$ is useful when the element is used to represent a force. When $\operatorname{KEYOPT}(7)=0$, the force is input as a pressure times an area; however, if the area changes due to large deflections, the force also changes. When $\operatorname{KEYOPT}(7)=1$, the force remains unchanged even if the area changes.

A summary of the element input is given in "SURF154 Input Summary" (p. 649). A general description of element input is given in Element Input (p. 5).

If using SURF154 with VTGEOM parameters, see Element Support.

## SURF154 Input Summary

## Nodes

I, J, K, L if KEYOPT (4) = 1
I, J, K, L, M, N, O, P if KEYOPT (4) = 0

## Degrees of Freedom

UX, UY, UZ

## Real Constants

(Blank), (Blank), (Blank), EFS, SURT, ADMSUA,
TKI, TKJ, TKK, TKL
See Table 1: SURF154 Real Constants (p. 651) for a description of the real constants

## Material Properties

DENS, VISC, DAMP

## Surface Loads

Pressures --
face 1 (I-J-K-L) (in -z normal direction)
face 2 (I-J-K-L) (tangential (+x))
face 3 (I-J-K-L) (tangential (+y))
face 4 (I-J-K-L) (in -z normal direction, global taper)
face 5 (I-J-K-L) (oriented by input vector)

## Body Loads

## Temperatures --

$\mathrm{T}(\mathrm{I}), \mathrm{T}(\mathrm{J}), \mathrm{T}(\mathrm{K}), \mathrm{T}(\mathrm{L})$; also $\mathrm{T}(\mathrm{M}), \mathrm{T}(\mathrm{N}), \mathrm{T}(\mathrm{O}), \mathrm{T}(\mathrm{P})$ if $\mathrm{KEYOPT}(4)=0$

## Special Features

Stress stiffening
Large deflection
Birth and death
Linear perturbation

## KEYOPT(2)

Pressure applied to faces 1,2 , and 3 according to coordinate system:
0 --
Apply face loads in the element coordinate system
1 --
Apply face loads in the local coordinate system

## KEYOPT(4)

Midside nodes:
0 --
Has midside nodes (that match the adjacent solid element)
1 --
Does not have midside nodes

## KEYOPT(6)

Applicable only to normal direction pressure (faces 1 and 4). This KEYOPT is valid only when KEYOPT(2) $=0$.

0 --
Use pressures as calculated (positive and negative)
1 --
Use positive pressures only (negative set to zero)
2 --
Use negative pressures only (positive set to zero)

## KEYOPT(7)

Loaded area during large-deflection analyses:
0 --
Use new area
1 --
Use original area

## KEYOPT(8)

Determines how ocean loading is applied:
0 --
No ocean loading (default).
1+--
Apply ocean loading based on user subroutine userPanelHydFor computations. KEYOPT(8) is the oceanID value for the subroutine. To activate the subroutine, the KWAVE value on the OCDATA command must be 101 or greater.

## KEYOPT(11)

Pressure applied by vector orientation (face 5):
0 --
On projected area and includes tangential component
1 --
On projected area and does not include tangential component
2 --
On full area and includes the tangential component

## KEYOPT(12)

Effect of the direction of the element normal (element $z$-axis) on vector oriented (face 5) pressure:
0 --
Pressure load is applied regardless of the element normal orientation
1 --
Pressure load is not used if the element normal is oriented in the same general direction as the pressure vector.

Table 1 SURF154 Real Constants

No.	Name	
$1 \ldots 3$	(Blank)	--
4	EFS	Foundation stiffness
5	SURT	Surface tension
6	ADMSUA	Added mass/unit area
7	TKI	Thickness at node I
8	TKJ	Thickness at node J (defaults to TKI)
9	TKK	Thickness at node K (defaults to TKI)
10	TKL	Thickness at node L (defaults to TKI)

## SURF154 Output Data

The solution output associated with the element is in two forms:

- Nodal degree of freedom results included in the overall nodal solution
- Additional element output as shown in Table 2: SURF154 Element Output Definitions (p. 651)

A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " $Y$ " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 2 SURF154 Element Output Definitions

Name	Definition	$\mathbf{O}$	$\mathbf{R}$
EL	Element Number	Y	Y
SURFACE NODES	Nodes - I, J, K, L	Y	Y
EXTRA NODE	Extra node (if present)	Y	Y
MAT	Material number	Y	Y
AREA	Surface area	Y	Y


Name	Definition	$\mathbf{O}$	R
VOLU:	Volume	Y	Y
XC, YC	Location where results are reported	Y	6
VN(X, Y, Z)	Components of unit vector normal to center of element	-	Y
PRES	Pressures P1, P2, P3, P4, P5 at nodes I, J, K, L	1	-
PZ, PX, PY	Pressures at nodes in element coordinate system (P5   uses an average element coordinate system)	-	1
DVX, DVY, DVZ	Direction vector of pressure P5	1	1
AVG. FACE PRESSURE	Average normal pressure (P1AVG), Average tangential-   X pressure (P2AVG), Average tangential-Y pressure   (P3AVG), Average tapered normal pressure (P4AVG),   Effective value of vector oriented pressure (P5EFF)	1	1
TEMP	Surface temperatures T(I), T(J), T(K), T(L), T(M), T(N), T(O),   T(P)	2	2
DENSITY	Density	3	3
MASS	Mass of element	3	3
FOUNDATION STIFFNESS	Foundation Stiffness (input as EFS)	4	4
FOUNDATION PRESSURE	Foundation Pressure	4	4
SURFACE TENSION	Surface Tension (input as SURT)	5	5

1. If pressure load
2. If temperature load
3. If dens $>0$
4. If EFS $>0$
5. If SURT $>0$
6. Available only at centroid as a *GET item.

Table 3: SURF154 Item and Sequence Numbers (p. 653) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (/POST1) of the Basic Analysis Guide and The Item and Sequence Number Table (p. 9) of this manual for more information. The following notation is used in Table 3: SURF154 Item and Sequence Numbers (p. 653):

## Name

output quantity as defined in the Table 2: SURF154 Element Output Definitions (p. 651)

## Item

predetermined Item label for ETABLE command
E
sequence number for single-valued or constant element data

## I,J,K,L

sequence number for data at nodes I, J, K, L
Table 3 SURF154 Item and Sequence Numbers

Output Quant-   ity Name	ETABLE and ESOL Command Input					
	Item	E	I	J	K	L
PZ (real)	SMISC	-	1	2	3	4
PX (real)	SMISC	-	5	6	7	8
PY (real)	SMISC	-	9	10	11	12
PZ (imaginary)	SMISC	-	27	28	29	30
PX (imaginary)	SMISC	-	31	32	33	34
PY (imaginary)	SMISC	-	35	36	37	38
P1AVG (real)	SMISC	13	-	-	-	-
P2AVG (real)	SMISC	14	-	-	-	-
P3AVG (real)	SMISC	15	-	-	-	-
P4AVG (real)	SMISC	16	-	-	-	-
P5EFF (real)	SMISC	17	-	-	-	-
P1AVG (imagin-   ary)	SMISC	39	-	-	-	-
P2AVG (imagin-   ary)	SMISC	40	-	-	-	-
P3AVG (imagin-   ary)	SMISC	41	-	-	-	-
P4AVG (imagin-   ary)	SMISC	42	-	-	-	-
P5EFF (imagin-   ary)	SMISC	43	-	-	-	-
FOUNPR	SMISC	21	-	-	-	-
AREA	NMISC	1	-	-	-	-
VNX	NMISC	2	-	-	-	-
VNY	NMISC	3	-	-	-	-
VNZ	NMISC	4	-	-	-	-
EFS	NMISC	5	-	-	-	-
SURT	NMISC	6	-	-	-	-
DENS	NMISC	7	-	-	-	-
MASS	NMISC	8	-	-	-	-
DVX	NMISC	9	-	-	-	-
DVY	NMISC	10	-	-	-	-
DVZ	NMISC	11	-	-	-	-

## SURF154 Assumptions and Restrictions

- The element must not have a zero area.
- The surface-tension load vector acts in the plane of the element as a constant force applied to the nodes seeking to minimize the area of the surface. If the nodes of the element are not coplanar when using surface tension, equilibrium may be lost.
- For structural large-deflection analyses, the loads are applied to the current size of the element, not the initial size.
- Surface printout and foundation stiffness are not valid for elements deactivated (EKILL) and then reactivated (EALIVE). Surface printout does not include large strain effects.


## SURF154 Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

## ANSYS Professional

- The only special features allowed are stress stiffening and large deflections.
- The VISC and DAMP material properties are not applicable.


## ANSYS Structural

- The only allowable material property is DENS.


## SURF156

3-D Structural Surface Line Load Effect
MP ME ST PR PRN DS DSS <> <> <> <> PP VT EME MFS
Product Restrictions

## SURF156 Element Description

SURF156 may be used for applying line pressure loads on structures. It may be overlaid onto the edge of any 3-D element. The element is applicable to 3-D structural analyses. Various loads and surface effects may exist simultaneously. See SURF156-3-D Structural Surface Line Load Effect in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

## Figure 1 SURF156 Geometry



## SURF156 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 1 (p. 655). The element is defined by two to four nodes ( $\operatorname{KEYOPT}(4)=0$ or 1 ). The orientation node lies in the element $x-z$ plane and is required for orientation of the element loads. The element $x$-axis is parallel to the line connecting nodes I and J of the element.

See Node and Element Loads (p. 97) for a description of element loads. Pressures may be input as surface loads on the element faces as shown by the circled numbers on Figure 2 (p. 656). SURF156 allows complex pressure loads. The input units are force per length.

Faces 1, 2, and $\mathbf{3}$ [KEYOPT(2)]=0 Positive values of pressure on the first three faces act in the positive element coordinate directions. For faces 2 and 3 , the direction of the load is controlled by the element coordinate system which is oriented via the orientation node; therefore, the ESYS command has no effect. When using large deflection (NLGEOM,ON), the orientation of the loads may change based on the new location of the nodes. If the orientation node is on another element that moves, the orientation node will move with it. If the orientation node is not on another element, the node cannot move.

Faces 1, 2, and $\mathbf{3}$ [KEYOPT(2)]=1 Pressure loads are applied to the element faces according to the local coordinate system, as follows: face 1 in the $x$ direction, face 2 in the local $y$ direction, and face 3 in the local z direction. A local coordinate system must be defined, and the element must be set to that coordinate system via the ESYS command.

Figure 2 Pressures


Face 4 The magnitude of the pressure is $P_{l}$, and the direction is $\left(P_{j} i+P_{K} j+P_{L} k\right) /\left(P_{J}^{2}+P_{K}^{2}+P_{L}^{2}\right)^{1 / 2}$ where $\mathrm{i}, \mathrm{j}$, and k are unit vectors in the global Cartesian directions. No input values can be blank. When using the SFFUN or SFGRAD commands, the load direction is not altered but the load magnitude is the average of the computed corner node magnitudes. SFCUM,ADD should be used with caution, as this command also causes the load direction components to be added.

Face 5 The magnitude of the pressure is $P_{1}$, the load point is node $I$, and the direction is the element $x$ axis.

Face 6 The magnitude of the pressure is $P_{1}$, the load point is node $J$, and the direction is the element negative $x$-axis.

The effects of pressure load stiffness are automatically included for this element for real pressure on faces 2 and 3 if $\operatorname{KEYOPT}(2)=0$. If an unsymmetric matrix is needed for pressure load stiffness effects, issue a NROPT,UNSYM command.
$\operatorname{KEYOPT}(7)=1$ is useful when the element is used to represent a force. When $\operatorname{KEYOPT}(7)=0$, the force is input as a pressure times a unit length; however, if the length changes due to large deflections, the force also changes. When $\operatorname{KEYOPT}(7)=1$, the force remains unchanged even if the length changes.

A summary of the element input is given in "SURF156 Input Summary" (p. 656). A general description of element input is given in Element Input (p.5).

## SURF156 Input Summary

## Nodes

$\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}$, if KEYOPT (4) $=0$ and $\operatorname{KEYOPT}(5)=0$
$\mathrm{I}, \mathrm{J}, \mathrm{K}$, if $\operatorname{KEYOPT}(4)=1$ and $\operatorname{KEYOPT}(5)=0$, or if $\operatorname{KEYOPT}(4)=0$ and $\operatorname{KEYOPT}(5)=1$
$\mathrm{I}, \mathrm{J}$, if $\operatorname{KEYOPT}(4)=1$ and $\operatorname{KEYOPT}(5)=1$

## Degrees of Freedom

UX, UY, UZ

## Real Constants

None

## Material Properties

None

## Surface Loads

## Pressures --

face 1 (parallel to $x$ direction)
face 2 (parallel to y direction)
face 3 (parallel to $z$ direction)
face 4 (oriented by input vector)
face 5 (parallel to $x$ direction)
face 6 (parallel to $x$ direction)

## Body Loads

None

## Special Features

Stress stiffening
Large deflection
Linear perturbation

## KEYOPT(2)

Pressure applied to faces 1,2 , and 3 according to coordinate system:
0 --
Apply face loads in the element coordinate system
1 --
Apply face loads in the local coordinate system

## KEYOPT(4)

Midside node:
0 --
Has a midside node
1 --
Does not have a midside node

## KEYOPT(5)

Orientation node:
0 --
Has an orientation node
1 --
Does not have an orientation node. Use only for load on face 1 or face 4.

## KEYOPT(7)

Loaded area during large-deflection analyses:
0 --
Use new area
1 --
Use original area

## SURF156 Output Data

The solution output associated with the element is in two forms:

- Nodal degree of freedom results included in the overall nodal solution
- Additional element output as shown in Table 1: SURF156 Element Output Definitions (p. 658)

A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " $Y$ " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 1 SURF156 Element Output Definitions

Name	Definition	$\mathbf{O}$	$\mathbf{R}$
EL	Element Number	Y	Y
NODES	Nodes - I, J, K	Y	Y
ORIENTATION   NODE	Orientation node	Y	Y
PRESSURES	Pressures P1, P2, P3, P4 at nodes I, J	1	-
VECTOR DIRECTION	Direction vector of pressure P4	1	1

1. If pressure load

Table 2: SURF156 Item and Sequence Numbers (p. 659) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (/POST1) of the Basic Analysis Guide and The Item and Sequence Number Table (p. 9) in this manual for more information. The following notation is used in Table 2: SURF156 Item and Sequence Numbers (p. 659):

## Name

output quantity as defined in the Table 1: SURF156 Element Output Definitions (p. 658)
Item
predetermined Item label for ETABLE command
E
sequence number for single-valued or constant element data

## I, J

sequence number for data at nodes I, J
Table 2 SURF156 Item and Sequence Numbers

Output Quantity Name	ETABLE and ESOL Command			
	Input			
P1 (real)	SMISC	-	1	2
P2 (real)	SMISC	-	3	4
P3 (real)	SMISC	-	5	6
P4 (real)	SMISC	7	-	-
P1 (imaginary)	SMISC	-	8	9
P2 (imaginary)	SMISC	-	10	11
P3 (imaginary)	SMISC	-	12	13
P4 (imaginary)	SMISC	14	-	-
P4 (real) VECTOR DIREC-   TION	NMISC	$1-3$	-	-
P4 (imaginary) VECTOR   DIRECTION	NMISC	$4-6$	-	-

## SURF156 Assumptions and Restrictions

- The element must not have a zero length, and the orientation node (when used) cannot be colinear with nodes I and J.


## SURF156 Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

## ANSYS Professional

- The only special features allowed are stress stiffening and large deflections.


## SHELL157

Thermal-Electric Shell
MP ME <> PR PRN <> <> <> <> <> <> PP <> EME MFS
Product Restrictions

## SHELL157 Element Description

SHELL157 is a 3-D element having in-plane thermal and electrical conduction capability. The element has four nodes with two degrees of freedom, temperature and voltage, at each node. The element applies to a 3-D, steady-state or transient thermal analysis, although the element includes no transient electrical capacitance or inductance effects. The element requires an iterative solution to include the Joule heating effect in the thermal solution. See SHELL157 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element. If no electrical effects are present, the 3-D thermal shell (SHELL131) may be used.

If the model containing the thermal-electrical element is also to be analyzed structurally, replace the element with an equivalent structural element (such as SHELL181). If both in-plane and transverse thermal-electric conduction are needed, use a thermal-electric solid element (SOLID226 with $\operatorname{KEYOPT}(1)=110)$.

Figure 1 SHELL157 Geometry


## SHELL157 Input Data

The geometry, node locations, and coordinate systems for this element are shown in Figure 1 (p. 661). The element is defined by four nodes, four thicknesses, a material direction angle, and the orthotropic material properties.

The element may have variable thickness. The thickness is assumed to vary smoothly over the area of the element, with the thickness input at the four nodes. If the element has a constant thickness, you need to specify only $\mathrm{TK}(\mathrm{I})$. If the thickness is not constant, you must specify all four thicknesses.

Orthotropic material directions correspond to the element coordinate directions. The element coordinate system orientation is as described in Coordinate Systems (p.14). The element $x$-axis may be rotated by an angle THETA (in degrees). You can assign the specific heat and density any values for steady-state solutions. The electrical material property, RSV_, is the resistivity of the material. You can specify the resistivity, like
any other material property, as a function of temperature. Properties not specified default as described in Linear Material Properties (p. 16).

Specify the word VOLT for the Lab variable on the D command and the voltage input for the value. Specify the word AMPS for the Lab variable on the $\mathbf{F}$ command and the current into the node input for the value.

Element loads are described in Node and Element Loads (p. 97). Convection or heat flux (but not both) and radiation may be specified as surface loads at the element faces as shown by the circled numbers on Figure 1 (p.661). Because shell edge convection and flux loads are input on a per-unit-length basis, per-unit-area quantities must be multiplied by the shell thickness.

Heat generation rates may be specified as element body loads at the nodes. If the node I heat generation rate $\mathrm{HG}(\mathrm{I})$ is input, and all others are unspecified, they default to $\mathrm{HG}(\mathrm{I})$. This rate is in addition to the Joule heat generated by the current flow.
"SHELL157 Input Summary" (p. 662) summarizes the element input. A general description of element input appears in Element Input (p. 5).

## SHELL157 Input Summary

## Nodes

I, J, K, L

## Degrees of Freedom

TEMP, VOLT

## Real Constants

TK(I) - Shell thickness at node I
TK(J) - Shell thickness at node J; defaults to TK(I)
TK(K) - Shell thickness at node K; defaults to TK(I)
TK(L) - Shell thickness at node L; defaults to TK(I)
THETA - Element X-axis rotation

## Material Properties

KXX, KYY, DENS, C, ENTH, RSVX, RSVY

## Surface Loads

Convection or Heat Flux (but not both) and Radiation (using Lab = RDSF)--
face 1 (I-J-K-L) (bottom, -Z side), face 2 (I-J-K-L) (top, +Z side), face $3(\mathrm{~J}-\mathrm{I})$, face 4 (K-J), face 5 ( $\mathrm{L}-\mathrm{K}$ ), face 6 (I-L)

## Body Loads

## Heat Generations --

HG(I), HG(J), HG(K), HG(L)

## Special Features

Requires an iterative solution for electrical-thermal coupling Birth and death

## KEYOPT(2)

Evaluation of film coefficient:

## 0 --

Evaluate film coefficient (if any) at average film temperature, (TS + TB)/2
1 --
Evaluate at element surface temperature, TS
2 --
Evaluate at fluid bulk temperature, TB
3 --
Evaluate at differential temperature, |TS - TB|

## SHELL157 Output Data

The solution output associated with the element is in two forms:

- Nodal temperatures and voltages included in the overall nodal solution
- Additional element output as shown in Table 1: SHELL157 Element Output Definitions (p. 663)

Heat flowing out of the element is considered to be positive. The element output directions are parallel to the element coordinate system. The heat flow and the current flow into the nodes may be printed with the OUTPR command. The Joule heat generated this substep is used in the temperature distribution calculated for the next substep. A general description of solution output is given in Solution Output (p. 8). See The General Postprocessor (POST1) in the Basic Analysis Guide for ways to view results.

## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " $Y$ " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 1 SHELL157 Element Output Definitions

Name	Definition	$\mathbf{O}$	R
EL	Element Number	Y	Y
NODES	Nodes $-\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}$	Y	Y
MAT	Material number	Y	Y
AREA	Convection face area	Y	Y
XC, YC, ZC	Location where results are reported	Y	2
HGEN	Heat generations HG(I), HG(J), HG(K), HG(L)	Y	-
TG:X, Y, SUM	Thermal gradient components and vector sum   at centroid	Y	Y
TF:X, Y, SUM	Thermal flux (heat flow rate/cross-sectional area)   components and vector sum at centroid	Y	Y
EF:X, Y, SUM	Component electric fields and vector sum	Y	Y
JS:X, Y	Component current densities	Y	Y
JSSUM	Component current density vector sum	Y	-


Name	Definition	O	R
JHEAT:	Joule heat generation per unit volume	Y	Y
FACE	Face label	1	1
AREA	Face area	1	1
NODES	Face nodes	1	1
HFILM	Film coefficient	1	1
TAVG	Average face temperature	1	1
TBULK	Fluid bulk temperature	1	-
HEAT RATE	Heat flow rate across face by convection	1	1
HFAVG	Average film coefficient of the face	-	1
TBAVG	Average face bulk temperature	-	1
HFLXAVG	Heat flow rate across face caused by input heat   flux	-	1
HEAT   RATE/AREA	Heat flow rate/area across face by convection	1	-
HEAT FLUX	Heat flux at each node of face	1	-

1. If a surface load is input
2. Available only at centroid as a *GET item.

Table 2: SHELL157 Item and Sequence Numbers (p. 664) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p.9) in this manual for more information. The following notation is used in Table 2: SHELL157 Item and Sequence Numbers (p. 664):

## Name

output quantity as defined in the Table 1: SHELL157 Element Output Definitions (p. 663)

## Item

predetermined Item label for ETABLE command
Table 2 SHELL157 Item and Sequence Numbers

Output   Quant-   ity   Name	ETABLE and ESOL Command Input						
	Item	FACE   $\mathbf{1}$   (BOT)	FACE   $\mathbf{2}$   (TOP)	FACE   $\mathbf{3}$ (J-I)	FACE   $\mathbf{4}$ (K-   $\mathbf{J}$	FACE   $\mathbf{5}$ (L-   K)	FACE   $\mathbf{6}(\mathbf{I - L )}$
AREA	NMISC	1	7	13	19	25	31
HFAVG	NMISC	2	8	14	20	26	32
TAVG	NMISC	3	9	15	21	27	33
TBAVG	NMISC	4	10	16	22	28	34
HEAT   RATE	NMISC	5	11	17	23	29	35
HFLXAVG	NMISC	6	12	18	24	30	36

## SHELL157 Assumptions and Restrictions

- Zero area elements are not allowed. This occurs most frequently when the elements are not numbered properly. The element must not taper down to a zero thickness at any corner. A triangular element may be formed by defining duplicate K and L node numbers as described in Triangle, Prism, and Tetrahedral Elements (p. 99). The specific heat and enthalpy are evaluated at each integration point to allow for abrupt changes (such as for melting) within a coarse grid. If a current is specified at the same node that a voltage is specified, the current is ignored. The electrical and the thermal solutions are coupled through an iterative procedure.
- No conversion is included between electrical heat units and mechanical heat units. The resistivity may be divided by a conversion factor, such as $3.415 \mathrm{BTU} / \mathrm{Hr}$ per Watt, to get Joule heat in mechanical units. Current (input and output) should also be converted for consistent units.
- This element may not be compatible with other elements with the VOLT degree of freedom. To be compatible, the elements must have the same reaction force (see Element Compatibility in the LowFrequency Electromagnetic Analysis Guide).
- This element cannot be used in a distributed solution.


## SHELL157 Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

## ANSYS Professional

- The birth and death special feature is not allowed.


## ANSYS Emag

- This element has only electric field capability, and does not have thermal capability.
- The element may only be used in a steady-state electric analysis.
- The only valid degree of freedom is VOLT.
- The only allowable material properties are RSVX and RSVY.
- No surface loads or body loads are applicable.
- The birth and death special feature is not allowed.


## SURF159

## General Axisymmetric Surface

MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS
Product Restrictions

## SURF159 Element Description

Use SURF159 to model axisymmetric solid surface loads acting on general axisymmetric solid elements (SOLID272 or SOLID273). The element has linear or quadratic displacement behavior on the master plane and is well suited to modeling irregular meshes on the master plane. It is defined by two or three nodes on the master plane, and nodes created automatically in the circumferential direction based on the master plane nodes. The total number of nodes depends on the number of nodal planes (KEYOPT(2)). The element area between nodal planes is called a facet. Each node has three degrees of freedom: translations in the nodal $x, y$ and $z$ directions. Various loads and surface effects can exist simultaneously.

In addition to the SURF159 element information provided here, the following topics are available in the Theory Reference for the Mechanical APDL and Mechanical Applications:

- SURF159-General Axisymmetric Surface with 2 or 3 Nodes
- General Axisymmetric Surfaces

For related information (concerning the elements used with SURF159), see General Axisymmetric Elements ( $p$. 107) in this document.

Figure 1 SURF159 Geometry (KEYOPT(2) = 3)


## SURF159 Input Data

The geometry and node locations for this element (when $\operatorname{KEYOPT}(2)=3$ ) are shown in Figure 1 (p.667). The element input data includes nodes, real constants, and the material properties. The total number of nodes is the two or three base nodes times the number of nodal planes. (For information about how Fourier nodes are generated, see the NAXIS command documentation.) SURF159 elements can be generated via the ESURF command before generating nodes for general axisymmetric element sections (NAXIS).

The element has the $x$-axis as normal to the element surface, the $y$-axis in the meridional direction, and the $z$-axis in the circumferential direction.

The mass and volume calculations use the element thicknesses (real constants TKI, and TKJ). Thickness TKJ defaults to TKI. The mass calculation uses the density (material property DENS, mass per unit volume) and the real constant ADMSUA, the added mass per unit area.

The stress stiffness matrix and load vector calculations use the in-plane force per unit length (input as real constant SURT) and the elastic foundation stiffness (input as real constant EFS); the EFS uses pressure-perlength (or force-per-length-cubed) units. The foundation stiffness can be damped, either by using the material property DAMP as a multiplier on the stiffness or by directly using the material property VISC.
"SURF159 Input Summary" (p. 670) contains a summary of the element input. See Node and Element Loads (p. 97) for a general description of element input.

## Pressure Loads

Pressures must be input as element surface loads (as force-per-length squared) on the element faces as shown by the circled numbers in Figure 2 (p. 669). For SURF159, applying surface loads to the element (SFE) or nodes (SF) is very different in comparison to the SOLID272 and SOLID273 elements. An SF command, if issued, applies loads to faces 1 through K only (where $\mathrm{K}=\mathrm{KEYOPT}(2)$, the number of nodal planes).

SURF159 allows complex loads.

## Defaults for Pressures on Faces 1 through 3K

If the first pressure for a face is specified (SFE) and the other three remain blank, the other three pressures default to the first.

If values are specified (and perhaps supplemented by the aforementioned default) to the first face of each of the three face families ( 1 through $K, K+1$ through 2 K , or $2 \mathrm{~K}+1$ to 3 K ), the same values are assigned to all other faces around the circumference. (The SFELIST command does not reflect this defaulting behavior.)

Example 1 To obtain a uniform pressure across the element and around the circumference, only one specified pressure is necessary on the first face of the face family.

Example 2 To obtain a pressure that tapers in the radial direction and is constant around the circumference, all four values must be specified on the first face of the face family.

Faces 1 through 3K [KEYOPT(3) = 0] Positive values of pressure on these faces act in the positive element coordinate directions, as follows: faces 1 through K in the element x (normal) direction, faces $\mathrm{K}+1$ through 2 K in the element y (tangent, meridional) direction, and faces $2 \mathrm{~K}+1$ through 3 K in the element z (tangent, circumferential) direction. For faces 1 through K , positive or negative values may be removed as requested
via $\operatorname{KEYOPT}(6)$ to simulate the discontinuity at the free surface of a contained fluid. For faces $\mathrm{K}+1$ through 3 K , the direction of the load is controlled by the element coordinate system; therefore, the ESYS command may be needed.

Faces 1 through 3K [KEYOPT(3) = 1] Pressure loads are applied to the element faces according to the local coordinate system, as follows: faces 1 through $K$ in the local $x$ direction, faces $K+1$ through 2 K in the local $y$ direction, and faces $2 \mathrm{~K}+1$ through 3 K in the local $z$ direction. A local coordinate system must be defined, and the element must be set to that coordinate system via the ESYS command. KEYOPT(6) does not apply.

## Figure 2 SURF159 Pressures



Specified element coordina
where K = KEYOPT (2)

Face $\mathbf{3 K + 1}$ The direction is normal to the element and the magnitude of the pressure at each integration point is $P_{1}+X P_{J}+Y P_{K}+Z P_{L}$, where $P_{1}$ through $P_{L}$ are input as VAL1 through VAL4 on the SFE command, and $X, Y, Z$ are the global Cartesian coordinates at the current location of the integration point. No input values can be blank. Positive or negative values may be removed as requested with KEYOPT(6) to simulate the discontinuity at the free surface of a contained fluid. The SFFUN and SFGRAD commands do not work with face $3 \mathrm{~K}+1$.

Face $\mathbf{3 K + 2}$ The magnitude of the pressure is $P_{l}$, and the direction is $\left(P_{j} i+P_{K} j+P_{L} k\right) /\left(P_{J}^{2}+P_{K}^{2}+P_{L}^{2}\right)^{1 / 2}$ where $\mathrm{i}, \mathrm{j}$, and k are unit vectors in the global Cartesian directions. The load magnitude may be adjusted with $\operatorname{KEYOPT}(11)$ and $\operatorname{KEYOPT}(12)$. No input values can be blank.

Temperatures may be input as element body loads at the nodes. For the nodes on the master plane, the node $I_{1}$ temperature $T\left(I_{1}\right)$ defaults to TUNIF. If all other temperatures are unspecified, they default to $T\left(I_{1}\right)$. If both corner node temperatures are specified, the midside node temperature defaults to the average temperature of the adjacent corner nodes. For any other input pattern, unspecified temperatures default to TUNIF. For the nodes generated in the circumferential direction based on the master node, if all other temperatures are unspecified, they default to the value of their base nodes $\left(T\left(I_{1}\right), T\left(~_{1}\right)\right.$, and $T\left(K_{1}\right)$, depending on their location). For any other input pattern, unspecified temperatures default to TUNIF.

The effects of pressure load stiffness are automatically included for this element. If an unsymmetric matrix is needed for pressure load stiffness effects, issue a NROPT,UNSYM command. For a geometric nonlinear analysis when convergence is an issue, use an unsymmetric matrix.

## SURF159 Input Summary

## Nodes

$I_{1}, J_{1}, K_{1}, I_{2}, J_{2}, K_{2}, \ldots, I_{n}, J_{n}, K_{n}$ (where $n=\operatorname{KEYOPT}(2)$, the number of nodal planes)

## Degrees of Freedom

UX, UY, UZ

## Real Constants

(Blank), (Blank), (Blank), EFS, SURT, ADMSUA,
TKI, TKJ

## Material Properties

DENS, VISC, DAMP

## Surface Loads

Pressures --
In the following table, K represents the number of nodal planes (specified via $\operatorname{KEYOPT}(2)$ ):

Pressure Face	Nodes	Pressure Load Type
face 1	$\mathrm{J}_{1}, \mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{~J}_{2}$	Normal
face 2	$J_{2}, I_{2}, I_{3}, J_{3}$	
...	$\ldots$	
face K	$J_{K},{ }_{\text {K }}, I_{1}, J_{1}$	
face K+1	$\mathrm{J}_{1}, \mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{~J}_{2}$	Meridional tangent
face K+2	$J_{2}, l_{2}, I_{3}, J_{3}$	
...	$\ldots$	
face 2 K	$\mathrm{J}_{K^{\prime}} \mathrm{I}_{\mathrm{k},} \mathrm{I}_{1}, \mathrm{~J}_{1}$	
face $2 \mathrm{~K}+1$	$\mathrm{J}_{1}, \mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{~J}_{2}$	Circumferential tangent
face $2 \mathrm{~K}+2$	$J_{2}, \prime_{2}, l_{3}, J_{3}$	
$\ldots$	$\cdots$	
face 3K	$\mathrm{J}_{\mathrm{K},} \mathrm{I}_{\mathrm{K},} \mathrm{I}_{1}, \mathrm{~J}_{1}$	
face $3 \mathrm{~K}+1$	All	Global taper
face $3 \mathrm{~K}+2$	All	Oriented vector

## Body Loads

## Temperatures --

$T\left(I_{1}\right), T\left(J_{1}\right), T\left(K_{1}\right), T\left(I_{2}\right), T\left(J_{2}\right), T\left(K_{2}\right), \ldots, T\left(I_{n}\right), T\left(J_{n}\right), T\left(K_{n}\right)$

## Special Features

Stress stiffening

Large deflection
Birth and death

## KEYOPT(2)

Number of Fourier nodes in the circumferential direction (that is, the number of nodal planes):
1 --
Axisymmetric deformation (with or without torsion).
3-12--
General 3-D deformation.
This KEYOPT has no default. You must specify a valid value. (0 is not valid.) The value must match the KEYOPT(2) value of the underlying SOLID272 or SOLID273 element.

For information about specifying the number Fourier nodes, see General Axisymmetric Elements in this document.

For information about how Fourier nodes are generated, see the NAXIS command documentation.

## KEYOPT(3)

Pressure applied to faces 1 through 3 K ( $3 \times \mathrm{KEYOPT}(2)$ ), according to the coordinate system:
0 --
Apply face loads in the default element coordinate system (that is, the first K faces act normal to the surface).

1 --
Apply face loads in the specified element coordinate system (that is, the first $K$ faces act in the $x$ direction as defined via the ESYS command).

## KEYOPT(4)

Midside nodes:
0 --
Has midside nodes. Use with SOLID273. This value is the default.
1 --
No midside nodes. Use with SOLID272.

## KEYOPT(6)

Applicable only to normal direction pressure (faces 1 through K and $3 \mathrm{~K}+1$ ):
0 --
Use pressures as calculated (positive and negative).
1 --
Use positive pressures only (negative set to zero).
2 --
Use negative pressures only (positive set to zero).
To use KEYOPT(6), KEYOPT(3) must be set to 0 .

## KEYOPT(7)

Loaded area during large-deflection analyses:
0 --
Use new area.

1 --
Use original area.

## KEYOPT(11)

Pressure applied by vector orientation (face $3 \mathrm{~K}+2$ ):
0 --
On projected area and includes tangential component.
1 --
On projected area and does not include tangential component.
2 --
On full area and includes the tangential component.

## KEYOPT(12)

Effect of the direction of the element normal (element x -axis) on vector oriented (face $3 \mathrm{~K}+2$ ) pressure:
0 --
Pressure load is applied regardless of the element normal orientation.
1 --
Pressure load is not used if the element normal is oriented in the same general direction as the pressure vector.

Table 1 SURF159 Real Constants

No.	Name	
$1 \ldots 3$	(Blank)	--
4	EFS	Foundation stiffness
5	SURT	Surface tension
6	ADMSUA	Added mass/unit area
7	TKI	In-plane thickness at node I
8	TKJ	In-plane thickness at node J (defaults to TKI)

## SURF159 Output Data

The solution output associated with the element is in two forms:

- Nodal displacements included in the overall nodal solution
- Additional element output as shown in Table 2: SURF159 Element Output Definitions (p. 673)

A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

To view 3-D mode shapes for a modal or eigenvalue buckling analysis, expand the modes with element results calculation active (via the MXPAND command's Elcalc = YES option).

## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " $Y$ " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 2 SURF159 Element Output Definitions

Name	Definition	$\mathbf{O}$	$\mathbf{R}$
ELEMID	Element number	Y	Y
NODES	Nodes $-\mathrm{I}, \mathrm{J}, \ldots, \mathrm{K}$ (nodes in master plane)	Y	Y
NNP	Number of nodal planes	Y	Y
AREA	Total area	Y	Y
VOLU	Total volume	Y	Y
MAT	Material number	Y	Y
DENS	Density	Y	Y
ADMSUA	Added mass per unit area	Y	Y
MASS	Element mass	Y	Y
EFS	Elastic foundation stiffness	Y	Y
SURT	Surface tension	Y	Y
PRES	Pressures	Y	Y

Table 3: SURF159 Item and Sequence Numbers (p. 673) lists output available through ETABLE using the Sequence Number method. See Creating an Element Table in the Basic Analysis Guide and The Item and Sequence Number Table (p.9) in this document for more information. The following notation is used in the output table:

## Name

output quantity as defined in the Table 2: SURF159 Element Output Definitions (p. 673)

## Item

predetermined Item label for ETABLE
$\mathbf{I}_{1}, J_{1}, I_{2}, J_{2}, \ldots$
sequence number for data at nodes $I_{1}, J_{1}, I_{2}, J_{2}, \ldots$
Table 3 SURF159 Item and Sequence Numbers

Output Quantity Name	ETABLE and ESOL Command Input ( $\mathrm{K}=$ KEYOPT(2))										
	Item	E	$\mathrm{I}_{1}$	$\mathrm{J}_{1}$	$\mathrm{I}_{2}$	$\mathrm{J}_{2}$	$\mathrm{I}_{3}$	$\mathrm{J}_{3}$	...	$I_{K}$	$J_{K}$
$\mathrm{P}_{1}$	SMISC	-	2	1	3	4	-	-	-	-	-
$\mathrm{P}_{2}$	SMISC	-	-	-	6	5	7	8	-	-	-
$\ldots$	...	...	...	...	...	...	...	...	...	...	...
$\mathrm{P}_{\mathrm{K}}$	SMISC	-	4K-1	4K	-	-	-	-	-	4K-2	4K-3
$\mathrm{P}_{\mathrm{K}+1}$	SMISC	-	4K+2	4K+1	4K+3	$4 \mathrm{~K}+4$	-	-	-	-	-
$\mathrm{P}_{\mathrm{K}+2}$	SMISC	-	-	-	4K+6	4K+5	4K+7	4K+8	-	-	-
...	...	...	...	...	...	...	...	...	...	...	...
$\mathrm{P}_{2 \mathrm{~K}}$	SMISC	-	8K-1	8K	-	-	-	-	-	8K-2	8K-3


Output Quantity Name	ETABLE and ESOL Command Input ( $\mathrm{K}=\mathrm{KEYOPT}(2)$ )										
	Item	E	$\mathrm{I}_{1}$	$\mathrm{J}_{1}$	$\mathrm{I}_{2}$	$\mathrm{J}_{2}$	$\mathrm{I}_{3}$	$\mathrm{J}_{3}$	...	$\mathrm{I}_{\mathrm{K}}$	$J_{K}$
$\mathrm{P}_{2 \mathrm{~K}+1}$	SMISC	-	$8 \mathrm{~K}+2$	$8 \mathrm{~K}+1$	8K+3	$8 \mathrm{~K}+4$	-	-	-	-	-
$\mathrm{P}_{2 \mathrm{~K}+2}$	SMISC	-	-	-	8K+6	8K+5	8K+7	8K+8	-	-	-
...	...	...	...	...	...	...	...	...	...	...	...
$\mathrm{P}_{3 \mathrm{~K}}$	SMISC	-	$\begin{gathered} \hline 12 \mathrm{~K}- \\ 1 \end{gathered}$	12K	-	-	-	-	-	$\begin{gathered} 12 \mathrm{~K}- \\ 2 \end{gathered}$	$\begin{array}{\|c} \hline 12 \mathrm{~K}- \\ 3 \end{array}$
$\begin{gathered} \mathrm{P}_{3 \mathrm{~K}+1 \text { (mag- }} \\ \text { nitude) } \end{gathered}$	SMISC	$12 \mathrm{~K}+1$	-	-	-	-	-	-	-	-	-
X gradient	SMISC	$12 \mathrm{~K}+2$	-	-	-	-	-	-	-	-	-
Y gradient	SMISC	$12 \mathrm{~K}+3$	-	-	-	-	-	-	-	-	-
Z gradient	SMISC	$12 \mathrm{~K}+4$	-	-	-	-	-	-	-	-	-
$\begin{gathered} \mathrm{P}_{3 \mathrm{~K}+2 \text { (mag- }} \begin{array}{c} \text { nitude) } \end{array} \\ \hline \end{gathered}$	SMISC	$12 \mathrm{~K}+5$	-	-	-	-	-	-	-	-	-
X component	SMISC	12K+6	-	-	-	-	-	-	-	-	-
Y component	SMISC	$12 \mathrm{~K}+7$	-	-	-	-	-	-	-	-	-
$\begin{gathered} Z \text { compon- } \\ \text { ent } \end{gathered}$	SMISC	$12 \mathrm{~K}+8$	-	-	-	-	-	-	-	-	-

The item and sequence numbers shown are for real pressures. Imaginary pressures are represented in the same way but have $12 \mathrm{~K}+8$ added to them.

## SURF159 Assumptions and Restrictions

- The length of the base element must be nonzero.
- The base element must lie on one side of the axisymmetric axis, and the axisymmetric axis must be on the same plane as the base element (master plane).
- A base element or base node must be associated with one axisymmetric axis (defined via SECTYPE and SECDATA commands) before generating nodes for general axisymmetric element sections (NAXIS) or defining an element by node connectivity (E).
- An edge with a removed midside node implies that the displacement varies linearly, rather than parabolically, along that edge. For more information about the use of midside nodes, see Quadratic Elements (Midside Nodes) in the Modeling and Meshing Guide.
- You cannot apply a pressure load by applying a surface load to selected areas (SFA).
- The contribution of the element to the mass moment inertia of the whole model is calculated by element mass multiplied by the square of the coordinates of the elemental centroid. The moment of inertia may therefore be inaccurate.
- The element does not support the expansion pass of a superelement with large rotation.
- Issuing an /ESHAPE,1 command while PowerGraphics is active causes the program to plot the elements in 3-D and the results on both nodal planes and all integration planes in the circumferential direction; otherwise, the program plots the elements in 2-D and the results on the master plane.
- You cannot display surface load symbols (/PSF) for this element.
- When listing the surface loads for elements (SFELIST), only information for the first facet is returned.
- When plotting contour values via /ESHAPE,1, expanded SURF159 elements are assigned zeroes; you should therefore deselect SURF159 elements when plotting results such as stresses and strains.
- In postprocessing, print commands return the nodal plane results only.
- Stress stiffening is always included in geometrically nonlinear analyses (NLGEOM,ON). Prestress effects can be activated via the PSTRES command.


## SURF159 Product Restrictions

No product-specific restrictions exist for this element.

## LINK160

## Explicit 3-D Spar (or Truss)



## LINK160 Element Description

LINK160 has three degrees of freedom at each node and carries an axial force.
This element is used in explicit dynamic analyses only. Refer to the LS-DYNA Theoretical Manual for more information.

Figure 1 LINK160 Geometry


## LINK160 Input Data

The geometry and node locations are shown in Figure 1 (p. 677). Node K determines the initial orientation of the cross section. For this element, you can choose three materials: isotropic elastic, plastic kinematic, and bilinear kinematic.

The element is defined by nodes I and J in the global coordinate system. Node K defines a plane (with I and J) containing the element $s$-axis. The element $r$-axis runs parallel to the length of the element and through nodes I and J. Node K is always required to define the element axis system and it must not be colinear with nodes I and J. The location of node K is used only to initially orient the element.

Use the EDLOAD command to apply nodal loads (displacements, forces, etc.). Also use EDLOAD to apply loads on rigid bodies. For more information on how to apply loads in an explicit dynamic analysis, see Loading in the ANSYS LS-DYNA User's Guide.

A summary of the element input is given in "LINK160 Input Summary" (p. 678). A general description of element input is given in Element Input (p. 5).

## LINK160 Input Summary

## Nodes

$\mathrm{I}, \mathrm{J}, \mathrm{K}$ ( K is the orientation node)
Degrees of Freedom
UX, UY, UZ, VX, VY, VZ, AX, AY, AZ

## Note

For explicit dynamics analyses, $\mathrm{V}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})$ refers to nodal velocity, and $\mathrm{A}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})$ refers to nodal acceleration. Although $\mathrm{V}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})$ and $\mathrm{A}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})$ appear as DOFs, they are not actually physical DOFs. However, these quantities are computed as DOF solutions and stored for postprocessing.

## Real Constants

Area - Cross-sectional area

## Material Properties

EX, NUXY, DENS, DAMP (MP command)
RIGID (EDMP command)
BKIN, PLAW (TB command; see Material Models in the ANSYS LS-DYNA User's Guide)

## Surface Loads

None

## Body Loads

None

## Special Features

This element supports all nonlinear features allowed for an explicit dynamic analysis.

## KEYOPTS

None

## LINK160 Output Data

Output data for LINK160 consists of the following: Axial force
To output the data, you must use the ETABLE command. For the ITEM label, specify SMISC. For the COMP label, specify 1 for axial force. Then, you can use the PRETAB command to print the output data.

## LINK160 Assumptions and Restrictions

- The spar element assumes a straight bar, axially loaded at its ends with uniform properties from end to end.
- The length of the spar must be greater than zero, so nodes I and J must not be coincident.
- The cross-sectional area must be greater than zero.
- The displacement shape function implies a uniform stress in the spar.


## LINK160 Product Restrictions

There are no product-specific restrictions for this element.

## BEAM161

## Explicit 3-D Beam

```
<> <> <> <> <> <> <> <> <> <> DY <> <> <> <>
```


## BEAM161 Element Description

BEAM161 has several characteristics:

- It is incrementally objective (rigid body rotations do not generate strains), allowing for the treatment of finite strains that occur in many practical applications.
- It is simple for computational efficiency and robustness.
- It is compatible with the brick elements.
- It includes finite transverse shear strains. However, the added computations needed to retain this strain component, compared to those for the assumption of no transverse shear strain, are significant.

The Belytschko beam element formulation $(\operatorname{KEYOPT}(1)=2,4,5)$ is part of a family of structural finite elements that use a "co-rotational technique" for treating large rotation.

This element is used in explicit dynamic analyses only. Refer to the LS-DYNA Theoretical Manual for more information.

## Figure 1 BEAM161 Geometry



## BEAM161 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 1 (p. 681). Node K determines the initial orientation of the cross section.

The element is defined by nodes I and J in the global coordinate system. Node K defines a plane (with I and J) containing the element $s$-axis. The element $r$-axis runs parallel to the centroidal line of the element and through nodes I and J. Node K is always required to define the element axis system and it must not be colinear with nodes I and J. The location of node K is used only to initially orient the element. (For information about orientation nodes and beam meshing, see Meshing Your Solid Model in the Modeling and Meshing Guide.)

Use the EDLOAD command to apply nodal loads and other load types described below. For detailed information on how to apply loads in an explicit dynamic analysis, see the ANSYS LS-DYNA User's Guide.

Pressures can be input as surface loads on the element faces as shown by the circled numbers in Figure 1 (p. 681). Note, however, that pressure is actually a traction load applied to the center line of the element. Use the EDLOAD command to apply the pressure load, and input the pressure as a force per unit length value. Positive normal pressures act into the element.

Base accelerations and angular velocities in the $x, y$, and $z$ directions can be applied at the nodes using the EDLOAD command. To apply these loads, you need to first select the nodes and create a component. The load is then applied to that component.

You can also use the EDLOAD command to apply loads (displacements, forces, etc.) on rigid bodies.
You can choose from the following materials when working with BEAM161, with the restrictions as noted:

- Isotropic Elastic
- Bilinear Kinematic (Except $\operatorname{KEYOPT}(1)=2)$
- Plastic Kinematic (Except KEYOPT(1) = 2)
- Viscoelastic (KEYOPT(1) = 1 only)
- Power Law Plasticity $(\operatorname{KEYOPT}(1)=1$ only)
- Piecewise Linear Plasticity (KEYOPT(1) = 1 only)

KEYOPT(1) allows you to specify one of four element formulations for BEAM161 (see "BEAM161 Input Summary" ( p .685 )). For details of real constants to be specified for each element formulation, see Table 1: BEAM161 Real Constants (p. 686).
$\operatorname{KEYOPT}(2)$ is valid only with rectangular element formulations $(\operatorname{KEYOPT}(1)=0,1,4)$.
The following illustrations show the valid standard beam cross sections when KEYOPT(4)>0, and KEYOPT(5) $=2$ (standard beam cross section).

## Figure 2 Standard Beam Cross Sections

```
\(\mathrm{w}=\) flange width
\(\mathrm{t}_{\mathrm{f}}=\) flange thickness
d = depth
\(t_{w}=\) web thickness
Sref = location of reference surface normal to s, Hughes-Liu beam only
\(t_{\text {ref }}=\) location of reference surface normal to \(t\), Hughes-Liu beam only
```

Type 1: W-section
Type 2: C-section


Type 3: Angle section


Figure 3 Standard Beam Cross Sections (continued)
Type 5: Rectangular tubing


Type 6: Z-section


Type 7: Trapezoidal section

$\operatorname{KEYOPT}(5)$ is not valid when $\operatorname{KEYOPT}(1)=2$.
A summary of the element input is given in "BEAM161 Input Summary" (p. 685). Additional information about real constants for this element is provided in Table 1: BEAM161 Real Constants (p. 686). For more information about this element, see the ANSYS LS-DYNA User's Guide.

## BEAM161 Input Summary

## Nodes

$\mathrm{I}, \mathrm{J}, \mathrm{K}$ ( K is the orientation node)

## Degrees of Freedom

UX, UY, UZ, VX, VY, VZ, AX, AY, AZ, ROTX, ROTY, ROTZ

## Note

For explicit dynamics analyses, $\mathrm{V}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})$ refers to nodal velocity, and $\mathrm{A}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})$ refers to nodal acceleration. Although $\mathrm{V}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})$ and $\mathrm{A}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})$ appear as DOFs, they are not actually physical DOFs. However, these quantities are computed as DOF solutions and stored for postprocessing.

## Real Constants

See Table 1: BEAM161 Real Constants (p. 686) for a description of the real constants.

## Material Properties

EX, NUXY, DENS, DAMP (MP command)
RIGID (KEYOPT(1) = 1,2) (EDMP command)
BKIN, EVISC, PLAW (TB command; see Material Models in the ANSYS LS-DYNA User's Guide)

## Surface Loads

Pressure --
face 1 (I-J) (+r tangential direction), face 2 (I-J) (-s normal direction), face 3 (I) (-t normal direction)

## Body Loads

None

## Special Features

This element supports all nonlinear features allowed for an explicit dynamic analysis.

## KEYOPT(1)

Element formulation:
0, 1 --
Hughes-Liu with cross section integration (default)
2 --
Belytschko-Schwer resultant beam (resultant)
4 --
Belytschko-Schwer full cross section integration
5 --
Belytschko-Schwer circular beam with cross section integration

## KEYOPT(2)

Quadrature rule:
1 --
One integration point
0, 2 --
$2 \times 2$ Gauss quadrature (default)

```
3 --
 3 x 3 Gauss quadrature
4--
 3\times3 Lobatto quadrature
5 --
 4 x 4 Gauss quadrature
```


## Note

KEYOPT(2) is valid only with rectangular element formulations (KEYOPT(1) $=0,1,4)$.

## KEYOPT(4)

Integration rule for section:
0 --
Standard integration option
n --
User-defined integration rule ID (valid range: 1 to 9999)

## KEYOPT(5)

Cross section type:
0 --
Rectangular cross section
1 --
Circular cross section
2 --
Arbitrary cross section (user defined integration rule) or standard beam cross section, if KEYOPT (4) $>0$.

Table 1 BEAM161 Real Constants

No.	Name	Description	Use if...
1	SHRF	Shear factor.   Default $=1.0$   Recommended for rectangular sections   $=5 / 6$.	KEYOPT (1) $=0,1,4$, or 5
2	TS1	Beam thickness in s direction at node   $1 ;$   if KEYOPT $(5)=2$, then use for arbitrary   cross section only.	KEYOPT $(1)=0,1$, or 4   KEYOPT $(5)=0$ or 2
3	TS2	Beam thickness in s direction at node   $2 ;$   if KEYOPT $(5)=2$, then use for arbitrary   cross section only.	KEYOPT $(1)=0,1$, or 4   KEYOPT $(5)=0$ or 2


No.	Name	Description	Use if...
4	TT1	Beam thickness in $t$ direction at node 1; if KEYOPT (5) $=2$, then use for arbitrary cross section only.	$\begin{aligned} & \text { KEYOPT }(1)=0,1 \text {, or } 4 \\ & \text { KEYOPT }(5)=0 \text { or } 2 \end{aligned}$
5	TT2	Beam thickness in t direction at node 2; if KEYOPT (5) = 2, then use for arbitrary cross section only.	$\begin{aligned} & \operatorname{KEYOPT}(1)=0,1 \text {, or } 4 \\ & \text { KEYOPT }(5)=0 \text { or } 2 \end{aligned}$
2	DS1	Beam outer diameter at node 1[1 (p. 689)]	$\begin{aligned} & \operatorname{KEYOPT}(1)=0,1, \text { or } 5 \\ & \text { KEYOPT (4) }=0 \\ & \operatorname{KEYOPT}(5)=1 \end{aligned}$
3	DS2	Beam outer diameter at node 2[1 (p. 689)]	$\begin{aligned} & \operatorname{KEYOPT}(1)=0,1, \text { or } 5 \\ & \operatorname{KEYOPT}(4)=0 \\ & \operatorname{KEYOPT}(5)=1 \end{aligned}$
4	DT1	Beam inner diameter at node 1[1 (p. 689)]	$\begin{aligned} & \operatorname{KEYOPT}(1)=0,1, \text { or } 5 \\ & \text { KEYOPT }(4)=0 \\ & \operatorname{KEYOPT}(5)=1 \end{aligned}$
5	DT2	Beam inner diameter at node 2[1 (p. 689)]	$\begin{aligned} & \operatorname{KEYOPT}(1)=0,1, \text { or } 5 \\ & \operatorname{KEYOPT}(4)=0 \\ & \operatorname{KEYOPT}(5)=1 \end{aligned}$
6	NSLOC	Location of reference surface normal to s -axis $=1 \text { side at } s=1$   = 0 center   $=-1$ side at $\mathrm{s}=-1$	$\begin{aligned} & \text { KEYOPT (1) }=0,1,4 \text {, or } 5 \\ & \text { KEYOPT (4) }=0 \end{aligned}$
7	NTLOC	Location of reference surface normal to t-axis $=1 \text { side at } \mathrm{t}=1$   = 0 center   $=-1$ side at $\mathrm{t}=-1$	$\begin{aligned} & \text { KEYOPT (1) }=0,1,4 \text {, or } 5 \\ & \text { KEYOPT (4) }=0 \end{aligned}$
8	A	Cross sectional area See Figure 4 (p. 690)	$\begin{aligned} & \operatorname{KEYOPT}(4)=0 \\ & \operatorname{KEYOPT}(1)=2 \end{aligned}$
9	ISS	Moment of inertia about $s$-axis   See Figure 4 (p. 690)	$\begin{aligned} & \operatorname{KEYOPT}(4)=0 \\ & \operatorname{KEYOPT}(1)=2 \end{aligned}$


No.	Name	Description	Use if...
10	ITT	Moment of inertia about t -axis   See Figure 4 (p. 690)	$\begin{aligned} & \text { KEYOPT (4) }=0 \\ & \text { KEYOPT (1) }=2 \end{aligned}$
11	IRR	Polar moment of inertia See Figure 4 (p. 690)	$\begin{aligned} & \operatorname{KEYOPT}(4)=0 \\ & \text { KEYOPT (1) }=2 \end{aligned}$
12	SA	Shear area   See Figure 4 (p. 690)	$\begin{aligned} & \operatorname{KEYOPT}(4)=0 \\ & \operatorname{KEYOPT}(1)=2 \end{aligned}$
13	NIP	Number of integration points   See Figure 6 (p. 691)	KEYOPT (4) > 0 and KEYOPT $(5)=2$
14	RA	Relative area of cross section; that is, the actual cross-sectional area divided by the area defined by the product of the specified thickness in the s direction and the thickness in the $t$ direction.   See Figure 5 (p. 691).	KEYOPT (4) > 0 and KEYOPT $(5)=2$
15	ICST	Standard cross section type.   Note   If this type is nonzero, then NIP and RA should be zero.   Cross section types are:   1-W-section   2-C-section   3 - Angle section   4 - T-section   5 - Rectangular tubing   6 - Z-section   7 - Trapezoidal section   See Figure 2 (p. 683), Figure 3 (p. 684).	KEYOPT (4) > 0 [2 (p. 689)] and KEYOPT (5) $=2$ (standard cross section only)
16	W	Flange width	ICST $>0$, and NIP $=$ RA $=0$
17	TF	Flange thickness	ICST $>0$, and NIP $=$ RA $=0$
18	D	Depth	ICST $>0$, and NIP $=$ RA $=0$
19	TW	Web thickness	ICST $>0$, and NIP $=$ RA $=0$
20	SREF	Location of reference surface normal to s	ICST $>0$, and NIP $=$ RA $=0$


No.	Name	Description	Use if...
		Note   If KEYOPT (1) = 1 only	
21	TREF	Location of reference surface normal to t   Note   If KEYOPT (1) = 1 only	ICST $>0$, and NIP $=$ RA $=0$
$\begin{aligned} & 22,25, \\ & 28, \ldots 79 \end{aligned}$	S(i)	$\begin{aligned} & \text { s coordinate of integration point } \\ & i=1 \text {, NIP }(\text { NIP }=20 \text { max })[3(\text { p. 689 })] \end{aligned}$	KEYOPT (4) > 0   KEYOPT (5) = 2, arbitrary cross section only $\text { NIP }>0, R A>0, I C S T=0$
$\begin{aligned} & 23,26, \\ & 29, \ldots . .80 \end{aligned}$	T(i)	t coordinate of integration point $\mathrm{i}=1, \text { NIP }(\mathrm{NIP}=20 \text { max })[3 \text { (p. 689)] }$	KEYOPT (4) >0   KEYOPT (5) = 2, arbitrary cross section only $\text { NIP }>0, \text { RA }>0, \text { ICST }=0$
$\begin{aligned} & 24,27, \\ & 30, \ldots 81 \end{aligned}$	WF(i)	Weighting factor; that is, the area associated with the integration point divided by the actual cross-section area. $\text { i = 1, NIP (NIP = } 20 \max )[3 \text { (p. 689)] }$   See Figure 4 (p. 690)	KEYOPT (4) >0   KEYOPT (5) = 2, arbitrary cross section only $\text { NIP }>0, R A>0, I C S T=0$

1. DS1, DS2, DT1, and DT2 are used only if $\operatorname{KEYOPT}(5)=1$. If $\operatorname{KEYOPT}(5)=0$ or 2 , then use TS1, TS2, TT1, and TT2.
2. For KEYOPT (5) = 2, standard cross-section type, the integration point ID (KEYOPT (4) >0) is not used since NIP $=$ RA $=0$. However, you must provide this input in any case.
3. Specify $S(\mathrm{i}), \mathrm{T}(\mathrm{i})$, and $\mathrm{WF}(\mathrm{i})$ for each integration point. For example, for 20 integration points, specify $\mathrm{S}(1), \mathrm{T}(1), \mathrm{WF}(1), \mathrm{S}(2), \mathrm{T}(2), \mathrm{WF}(2), \ldots \mathrm{S}(20), \mathrm{T}(20), \mathrm{WF}(20)$.

Figure 4 Properties of Beam Cross Sections for Several Common Cross Sections
(

$$
\text { Shear area }=\frac{A}{f}=\mu A
$$

Figure 5 Definition of Relative Area for User Defined Integration Rule


Relative area $=\frac{A}{S_{t} t_{t}}$
$t_{t}=$ input as TT1 or TT2 on R command
$S_{t}=$ input as TS1 or TS2 on R command
Figure 6 Definition of Integration Points for User Defined Integration Rule


## BEAM161 Output Data

To store output data for this element, you first need to specify the number of integration points for which you want output data. Use the EDINT,,BEAMIP command during the solution phase of your analysis to specify the number of integration points. By default, output is written for 4 integration points. For the resultant beam formulation (KEYOPT $(1)=2$ ), there is no stress output (regardless of the BEAMIP setting). If you set $B E A M I P=0$, no stress output is written for any of the beam elements. In this case, the beams will not appear in any POST1 plots because the program assumes they are failed elements.

To display the data for BEAM161, you must use the ETABLE command. Then, you can use the PRETAB command to print the output data. The RSYS command has no effect when postprocessing output for this element.

The following items are available on the results file.

## Table 2 BEAM161 Element Output Definitions

Name	Definition
S (r, rs, rt)	Stresses
EPEQ	Equivalent plastic strain
EPTO	Axial strain
MFORr	Member force in the element coordinate system, r direction
$\mathrm{N}(\mathrm{s}, \mathrm{t})$	Out-of-plane $(\mathrm{s}, \mathrm{t})$ shear
$\mathrm{M}(\mathrm{s}, \mathrm{t})$	Element $(\mathrm{s}, \mathrm{t})$ moments
TORQ	Torsional resultant

For each of these output data, one set of values, given at the centroid, is output for the entire beam.
Table 3: BEAM161 Item and Sequence Numbers (p. 693) lists output available through the ETABLE and ESOL commands using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p.9) in this manual for more information. The following notation is used in Table 3: BEAM161 Item and Sequence Numbers (p. 693):

## Name

output quantity as defined in the Table 2: BEAM161 Element Output Definitions (p. 692)

## Item

predetermined Item label for ETABLE or ESOL command
E
sequence number for single-valued or constant element data

## 1st IP

sequence number for the first integration point

## nth IP

sequence number for the $n$th integration point as defined by the EDINT command.
Table 3 BEAM161 Item and Sequence Numbers

Output Quant-   ity Name	ETABLE and ESOL Command Input			
	Item	E	1st IP	nth IP
MFORr	SMISC	1	-	-
Ns	SMISC	2	-	-
Nt	SMISC	3	-	-
Ms	SMISC	4	-	-
Mt	SMISC	5	-	-
TORQ	SMISC	6	-	-
Sr	LS	-	1	$5 \times(n-1)+1$
Srs	LS	-	2	$5 \times(n-1)+2$
Srt	LS	-	3	$5 \times(n-1)+3$
EPEQ	LS	-	4	$5 \times(n-1)+4$
EPTO	LS	-	5	$5 \times(n-1)+5$

1. In this table, $n$ refers to the current integration point for which you want output data.

## BEAM161 Assumptions and Restrictions

- The beam must not have a zero length.
- The beam can have any open or single-cell closed cross-sectional shape for which the area and moments of inertia are nonzero.
- Warping torsion is assumed negligible and the warping moment of inertia is not used in the stiffness computation.
- Warping of the cross section is unconstrained and is the same for all cross-sections; therefore, the torsional rotation of the cross-section is assumed to vary linearly along the length. However, warping is not applicable to the resultant beam formulation $(\operatorname{KEYOPT}(1)=2)$.


## BEAM161 Product Restrictions

There are no product-specific restrictions for this element.

## PLANE162

## Explicit 2-D Structural Solid

$$
\begin{array}{r}
\text { <> <> <> <> <> <> <> <> <> <> DY <> <> <> <> } \\
\text { Product Restrictions }
\end{array}
$$

## PLANE162 Element Description

PLANE162 is used for modeling 2-D solid structures in ANSYS LS-DYNA. The element can be used either as a planer or as an axisymmetric element. The element is defined by four nodes having six degrees of freedom at each node: translations, velocities, and accelerations in the nodal $x$ and $y$ directions. A three-node triangle option is also available, but not recommended.

The element is used in explicit dynamic analyses only. When using this element, the model must only contain PLANE162 elements - you cannot mix 2-D and 3-D explicit elements in the same model. Furthermore, all PLANE162 elements in the model must be the same type (plane stress, plane strain, or axisymmetric). Refer to the LS-DYNA Theoretical Manual for more information.

## Figure 1 PLANE162 Geometry



## PLANE162 Input Data

The geometry, node locations, and coordinate system for this element are shown in Figure 1 (p. 695). Use KEYOPT(3) to specify whether the element is a plane stress, plane strain, or axisymmetric element. For the axisymmetric option $(\operatorname{KEYOPT}(3)=1)$, you may also use $\operatorname{KEYOPT}(2)$ to specify either area or volume weighted axisymmetric elements.

KEYOPT(5) defines the element continuum treatment. Two different formulations are available: Lagrangian (default) and Arbitrary Lagrangian-Eulerian (ALE). In addition to setting $\operatorname{KEYOPT}(5)=1$, you must also set appropriate parameters on the EDALE and EDGCALE commands in order for the ALE formulation to take affect. See Arbitrary Lagrangian-Eulerian Formulation in the ANSYS LS-DYNA User's Guide for more information.

Use the EDLOAD command to apply nodal loads and other types of loads described below. For detailed information on how to apply loads in an explicit dynamic analysis, see Loading in the ANSYS LS-DYNA User's Guide. Note that when the axisymmetric option $(\operatorname{KEYOPT}(3)=1)$ is selected and $\operatorname{KEYOPT}(2)=0$ (area weighted option), nodal loads should be input per unit length of circumference. Likewise, when KEYOPT(3) = 1 and KEYOPT(2) = 1 (volume weighted option), nodal loads should be input per radian. Other aspects of axisymmetric elements are covered in Harmonic Axisymmetric Elements (p. 102). Pressures are always on a $360^{\circ}$ basis, irrespective of the KEYOPT(2) setting.

Pressures can be input as surface loads on the element faces (edges) as shown by the circled numbers in Figure 1 (p.695). Positive normal pressures act into the element.

Other loads that can be applied using the EDLOAD command include base accelerations and angular velocities in the x and y directions, and displacements and forces on rigid bodies.

Several types of temperature loading are also available for this element. See Temperature Loading in the ANSYS LS-DYNA User's Guide.

The material models available to use with this element will depend on the KEYOPT(3) setting. KEYOPT(3) controls whether the element is a plane stress, plane strain, or axisymmetric element. For all three of these options (KEYOPT(3) $=0,1$, or 2 ), you can choose the following materials:

- Isotropic Elastic
- Orthotropic Elastic
- Elastic Fluid
- Viscoelastic
- Bilinear Isotropic
- Temperature Dependent Bilinear Isotropic
- Bilinear Kinematic
- Plastic Kinematic
- Power Law Plasticity
- Rate Sensitive Power Law Plasticity
- Strain Rate Dependent Plasticity
- Piecewise Linear Plasticity
- Composite Damage
- Johnson-Cook Plasticity
- Bamman

For the plane stress option $(\operatorname{KEYOPT}(3)=0)$, you can also choose the following materials:

- 3-Parameter Barlat Plasticity
- Barlat Anisotropic Plasticity
- Transversely Anisotropic Elastic Plastic
- Transversely Anisotropic FLD

For the axisymmetric and plane strain options $(\operatorname{KEYOPT}(3)=1$ or 2 ), you can also choose the following materials:

- Blatz-Ko Rubber
- Mooney-Rivlin Rubber
- Elastic-Plastic Hydrodynamic
- Closed Cell Foam
- Low Density Foam
- Crushable Foam
- Honeycomb
- Null
- Zerilli-Armstrong
- Steinberg


## PLANE162 Input Summary

## Nodes

I, J, K, L

## Degrees of Freedom

UX, UY, VX, VY, AX, AY

## Note

For explicit dynamic analyses, $\mathrm{V}(\mathrm{X}, \mathrm{Y})$ refers to nodal velocity, and $\mathrm{A}(\mathrm{X}, \mathrm{Y})$ refers to nodal acceleration. Although $\mathrm{V}(\mathrm{X}, \mathrm{Y})$ and $\mathrm{A}(\mathrm{X}, \mathrm{Y})$ appear as DOFs, they are not actually physical DOFs. However, these quantities are computed as DOF solutions and stored for postprocessing.

## Real Constants

None

## Material Properties

EX, EY, PRXY or NUXY, ALPX (or CTEX or THSX), DENS, GXY, DAMP (MP command),
RIGID, HGLS, ORTHO, FLUID (EDMP command),
BKIN, BISO, MOONEY, EVISC, PLAW, FOAM, HONEY, COMP, EOS (TB command; see Material Models in the ANSYS LS-DYNA User's Guide)

## Surface Loads

Pressures --
face $1(\mathrm{~J}-\mathrm{I})$, face $2(\mathrm{~K}-\mathrm{J})$, face $3(\mathrm{~L}-\mathrm{K})$, face $4(\mathrm{I}-\mathrm{L})$

## Body Loads

Temperatures (see Temperature Loading in the ANSYS LS-DYNA User's Guide.

## Special Features

This element supports all nonlinear features allowed for an explicit dynamic analysis.

## KEYOPT(2)

Weighting option (used for axisymmetric elements, $\operatorname{KEYOPT}(3)=1$ ):
0 --
Area weighted axisymmetric element
1 --
Volume weighted axisymmetric element

## KEYOPT(3)

Element behavior:
0 --
Plane stress

1 --
Axisymmetric
2 --
Plane strain (Z strain $=0.0$ )

## KEYOPT(5)

Element continuum treatment:
0 --
Lagrangian (default)
1 --
ALE (Arbitrary Lagrangian-Eulerian)

## PLANE162 Output Data

The solution output associated with the element is in two forms:

- Nodal displacements included in the overall nodal solution
- Additional element output as shown in Table 1: PLANE162 Element Output Definitions (p. 698)

Several items are illustrated in Figure 2 (p. 698). The element stresses are output in terms of the global Cartesian coordinate system by default. A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

Figure 2 PLANE162 Stress Output


You can rotate stress results for PLANE162 into a defined coordinate system using the RSYS command. However, RSYS cannot be used to rotate strain results for this element type.

The following items are available on the results file.
Table 1 PLANE162 Element Output Definitions

Name	Definition
$S(X, Y, X Y)$	Stresses
$S(1,2,3)$	Principal stresses
SINT	Stress intensity
SEQV	Equivalent stress
EPTO $(X, Y, X Y)$	Total strains


Name	Definition
EPTO(1, 2, 3)	Total principle strains
EPTO(INT)	Total strain intensity
EPTO(EQV)	Total equivalent strain
EPEL(X, Y, XY)	Elastic strains
EPEL(1, 2, 3)	Principle elastic strains
EPEL(INT)	Elastic strain intensity
EPEL(EQV)	Equivalent elastic strain
EPPL(EQV)	Equivalent plastic strain

## Note

Stress and total strain are always available. Some components of stress and strain (for example, $y z$ and $z x$ components) are always zero. The availability of elastic strain and equivalent plastic strain depends on the material model used for the element (see Element Output Data in the ANSYS LS-DYNA User's Guide for details).

Table 2: PLANE162 Item and Sequence Numbers (p. 699) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p.9) in this manual for more information. The following notation is used in Table 2: PLANE162 Item and Sequence Numbers (p. 699):

## Name

output quantity

## Item

predetermined Item label for ETABLE command
E
sequence number for single-valued or constant element data
Table 2 PLANE162 Item and Sequence Numbers

Output Quantity Name	ETABLE and   ESOL Command   Input	
	Item	E
EPEQ (equivalent plastic   strain)	NMISC	1

## PLANE162 Assumptions and Restrictions

- The area of the element must be nonzero.
- The element must lie in the global $X-Y$ plane as shown in Figure 1 (p. 695), and the Y -axis must be the axis of symmetry for axisymmetric analyses.
- An axisymmetric structure should be modeled in the $+X$ quadrants.
- A triangular element may be formed by defining duplicate K and L node numbers (see Triangle, Prism, and Tetrahedral Elements (p. 99)).


## PLANE162 Product Restrictions

There are no product-specific restrictions for this element.

## SHELL163

## Explicit Thin Structural Shell

$$
\begin{array}{r}
\text { <> <> <> <> <> <> <> <> <> <> DY <> <> <> <> } \\
\text { Product Restrictions }
\end{array}
$$

## SHELL163 Element Description

SHELL163 is a 4-node element with both bending and membrane capabilities. Both in-plane and normal loads are permitted. The element has 12 degrees of freedom at each node: translations, accelerations, and velocities in the nodal $x, y$, and $z$ directions and rotations about the nodal $x, y$, and $z$-axes.

This element is used in explicit dynamic analyses only. Refer to the LS-DYNA Theoretical Manual for more information.

## Figure 1 SHELL163 Geometry



Note: $x$ and $y$ are in the plane of the element

## SHELL163 Input Data

The following real constants are provided for SHELL163. SHRF is the shear factor. NIP is the number of integration points through the thickness of the element, up to a maximum of 100 . If NIP is input as 0 or blank, ANSYS defaults the value to 2 . T1 - T4 indicate the shell thickness at each of the 4 nodes. NLOC specifies the location of the reference surface for $\operatorname{KEYOPT}(1)=1,6$, or 7 . The reference surface is used in the formulation of the element stiffness matrix. (NLOC does not define the location of the contact surface.) If you set NLOC $=1$ or -1 (top or bottom surface), you must set $S H N U=-2$ on the EDSHELL command.

ESOP is the option for the spacing of integration points, and can be either 0 or 1 . ESOP is used only if KEYOPT(4) $>0$. If you set ESOP $=0$, you must define real constants $S(i)$, and $W F(i)$ to define the integration point locations. If $\operatorname{KEYOPT}(3)=1$, then you must also define BETA(i) and MAT(i) for each integration point. Set ESOP = 1 if the integration points are equally spaced through the thickness such that the shell is subdivided into NIP layers of equal thickness (up to 100 layers).

The thickness is assumed to vary smoothly over the area of the element, with the thickness input at the 4 nodes. If the element has a constant thickness, only $\operatorname{TK}(1)$ need be input. If the thickness is not constant, all four thicknesses must be input.

If you set ESOP = 0 and define the integration points using $S(i)$, and $W F(i)$, and possibly $\operatorname{BETA}(\mathrm{i})$ and MAT(i), note the following:

- If $\operatorname{KEYOPT}(1)=1,6,7$, or 11 , then the thicknesses you define will remain defined through the results determination.
- If $\operatorname{KEYOPT}(1)=2,3,4,5,8,9,10$, or 12 , then the ANSYS program overrides any thickness values you specify and averages the thicknesses for the results determination.
$\mathrm{S}(\mathrm{i})$ is the relative coordinate of the integration point and must be within the range -1 to 1 .WF(i) is the weighting factor for the i-th integration point. It is calculated by dividing the thickness associated with the integration point by the actual shell thickness (that is, $\left.\Delta t_{i} / t\right)$; see Figure 2 (p. 702). In the user defined shell integration rule, the ordering of the integration points is arbitrary. If using these real constants to define integration points, then $S(i)$ and $W F(i)$ must both be specified for each integration point (maximum of 100). BETA(i) is the material angle (in degrees) at the i-th integration point and must be specified for each integration point. The material model (BKIN, MKIN, MISO, etc.) is not allowed to change within an element, although the material properties (EX, NUXY, etc.), as defined per MAT(i), can change. However, the density may not vary through the thickness of the shell element. If more than one material is used, and the densities vary between materials, the density of the material of the first layer will be used for the entire element.

If $\operatorname{KEYOPT}(4)=0$, the integration rule is defined by $\operatorname{KEYOPT}(2)$. The Gauss rule ( $\operatorname{KEYOPT}(2)=0)$ is valid for up to five layers (integration points). The trapezoidal rule $(\operatorname{KEYOPT}(2)=1)$ allows up to 100 layers, but is not recommended for less than 20 layers, especially if bending is involved.

Figure 2 Arbitrary Ordering of Integration Points for User Defined Shell Integration Rule


Use the EDLOAD command to apply nodal loads and other load types described below. For detailed information on how to apply loads in an explicit dynamic analysis, see Loading in the ANSYS LS-DYNA User's Guide.

Pressures can be input as surface loads on the element midsurfaces. Positive normal pressures act into the element (that is, positive pressure acts in the negative $z$ direction). Note, however, that pressure is actually applied to the midsurface. See Figure 3 (p. 703).

## Figure 3 Nodal Numbering for Pressure Loads (Positive Pressure Acts in Negative Z Direction)



Base accelerations and angular velocities in the $x, y$, and $z$ directions can be applied at the nodes using the EDLOAD command. To apply these loads, you need to first select the nodes and create a component. The load is then applied to that component. Each node in the component will have the specified load.

You can also use the EDLOAD command to apply loads (displacements, forces, etc.) on rigid bodies.
Several types of temperature loading are also available for this element. See Temperature Loading in the ANSYS LS-DYNA User's Guide.

For this element, you can choose from the following materials:

- Isotropic Elastic
- Orthotropic Elastic
- Bilinear Kinematic
- Plastic Kinematic
- Blatz-Ko Rubber
- Bilinear Isotropic
- Temperature Dependent Bilinear Isotropic
- Power Law Plasticity
- Strain Rate Dependent Plasticity
- Composite Damage
- Piecewise Linear Plasticity
- Modified Piecewise Linear Plasticity
- Mooney-Rivlin Rubber
- Barlat Anisotropic Plasticity
- 3-Parameter Barlat Plasticity
- Transversely Anisotropic Elastic Plastic
- Rate Sensitive Power Law Plasticity
- Transversely Anisotropic FLD
- Elastic Viscoplastic Thermal
- Johnson-Cook Plasticity
- Bamman

The orthotropic elastic material model does not accept integration point angles (BETA(i)). Therefore, to model a composite material, you need to use the composite damage material model. If you do not wish to use the damage features of this material model, just set the required strength values to zero.

KEYOPT(1) allows you to specify 1 of 12 element formulations for SHELL163 (see "SHELL163 Input Summary" (p. 705)). A brief description about each element formulation follows:

The Hughes-Liu element formulation $(\operatorname{KEYOPT}(1)=1)$ is based on a degenerated continuum formulation. This formulation results in substantially large computational costs, but it is effective when very large deformations are expected. This formulation treats warped configurations accurately but does not pass the patch test. It uses one-point quadrature with the same hourglass control as the Belytschko-Tsay.

The Belytschko-Tsay (default) element formulation (KEYOPT(1)=0 or 2) is the fastest of the explicit dynamics shells. It is based on the Mindlin-Reissner assumption, so transverse shear is included. It does not treat warped configurations accurately, so it should not be used in coarse mesh models. One-point quadrature is used with hourglass control. A default value is set for the hourglass parameter. When hourglassing appears, you should increase this parameter to avoid hourglassing. It does not pass the patch test.

The BCIZ Triangular Shell element formulation $(\operatorname{KEYOPT}(1)=3)$ is based on a Kirchhoff plate theory and uses cubic velocity fields. Three sets of quadrature points are used in each element, so it is relatively slow. It passes the patch test only when the mesh is generated from three sets of parallel lines.

The $C^{0}$ Triangular Shell element formulation (KEYOPT $\left.(1)=4\right)$ is based on a Mindlin-Reissner plate theory and uses linear velocity fields. One quadrature point is used in the element formulation. This formulation is rather stiff, so it should not be used for constructing an entire mesh, only to transition between meshes.

The Belytschko-Tsay membrane element formulation $(\operatorname{KEYOPT}(1)=5)$ is the same as the Belytschko-Tsay but with no bending stiffness.

The S/R Hughes-Liu element formulation $(\operatorname{KEYOPT}(1)=6)$ is the same as the Hughes-Liu, but instead of using one-point quadrature with hourglass control, this formulation uses selective reduced integration. This increases the cost by a factor of 3 to 4 , but avoids certain hourglass modes; certain bending hourglass modes are still possible.

The S/R corotational Hughes-Liu element formulation $(\operatorname{KEYOPT}(1)=7)$ is the same as the S/R Hughes-Liu except it uses the corotational system.

The Belytschko-Leviathan shell formulation $(\operatorname{KEYOPT}(1)=8)$ is similar to the Belytschko-Wong-Chiang with one-point quadrature but it uses physical hourglass control, thus no user-set hourglass control parameters need to be set.

The fully-integrated Belytschko-Tsay membrane element formulation $(\operatorname{KEYOPT}(1)=9)$ is the same as the Belytschko-Tsay membrane except is uses a $2 \times 2$ quadrature instead of a one-point quadrature. This formulation is more robust for warped configurations.

The Belytschko-Wong-Chiang formulation $(\operatorname{KEYOPT}(1)=10)$ is the same as the Belytschko-Tsay except the shortcomings in warped configuration are avoided. Costs about 10\% more.

The fast (corotational) Hughes-Liu formulation $(\operatorname{KEYOPT}(1)=11)$ is the same as the Hughes-Liu except this formulation uses the corotational system.

The fully-integrated Belytschko-Tsay shell element formulation ( $\operatorname{KEYOPT}(1)=12$ ) uses a $2 \times 2$ quadrature in the shell plane and is about 2.5 times slower than $\operatorname{KEYOPT}(1)=2$. It is useful in overcoming hourglass modes. The shear locking is remedied by introducing an assumed strain for the transverse shear.

Of the twelve shell element formulations, only $\operatorname{KEYOPT}(1)=1,2,6,7,8,9,10,11$, and 12 are valid for an explicit-to-implicit sequential solution. For metal forming analyses, $\operatorname{KEYOPT}(1)=10$ and 12 are recommended in order to properly account for warping.

When the Mooney-Rivlin Rubber material model is used with SHELL163 elements, the LS-DYNA code will automatically use a total Lagrangian modification of the Belytschko-Tsay formulation instead of using the formulation you specify via $\operatorname{KEYOPT}(1)$. This program-chosen formulation is required to address the special needs of the hyperelastic material.

A summary of the element input is given in "SHELL163 Input Summary" (p. 705). A general description of element input is given in Element Input (p. 5).

## SHELL163 Input Summary

## Nodes

I, J, K, L

## Degrees of Freedom

UX, UY, UZ, VX, VY, VZ, AX, AY, AZ, ROTX, ROTY, ROTZ

## Note

For explicit dynamic analyses, $\mathrm{V}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})$ refers to nodal velocity, and $\mathrm{A}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})$ refers to nodal acceleration. Although $\mathrm{V}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})$ and $\mathrm{A}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})$ appear as DOFs, they are not actually physical DOFs. However, these quantities are computed as DOF solutions and stored for postprocessing.

## Real Constants

SHRF, NIP, T1, T2, T3, T4, NLOC, ESOP, BETA(i), S(i), WF(i), MAT(i) (BETA(i), S(i), WF(i), MAT(i) may repeat for each integration point, depending on the keyoption settings.) Specify NLOC only if $\operatorname{KEYOPT}(1)=1,6,7$, or 11 .
See Table 1: SHELL163 Real Constants (p. 707) for descriptions of the real constants.

## Material Properties

EX, EY, EZ, NUXY, NUYZ, NUXZ,
PRXY, PRXZ, PRYZ, ALPX (or CTEX or THSX), GXY, GYZ, GXZ,
DENS, DAMP (MP command)
RIGID, HGLS (except $\operatorname{KEYOPT}(1)=3,4,6,7,9$ and 12), ORTHO (EDMP command)
PLAW, BKIN, BISO, COMPOSITE, MOONEY, EOS (TB command; see Material Models in the ANSYS LS-DYNA User's Guide)

## Surface Loads

Pressure (applied on midsurface)

## Body Loads

Temperatures (see Temperature Loading in the ANSYS LS-DYNA User's Guide.

## Special Features

This element supports all nonlinear features allowed for an explicit dynamic analysis.

## KEYOPT(1)

Element formulation:
1 --
Hughes-Liu
0, 2 --
Belytschko-Tsay (default)
3 --
BCIZ triangular shell
4 --
$C^{0}$ triangular shell
5 --
Belytschko-Tsay membrane
6 --
S/R Hughes-Liu
7 --
S/R corotational Hughes-Liu
8 --
Belytschko-Levithan shell
9 --
Fully integrated Belytschko-Tsay membrane
10 --
Belytschko-Wong-Chiang
11 --
Fast (corotational) Hughes-Liu
12 --
Fully integrated Belytschko-Tsay shell

## KEYOPT(2)

Quadrature rule (used for standard integration rules, $\operatorname{KEYOPT}(4)=0$ ):
0 --
Gauss rule (up to five integration points are permitted)
1 --
Trapezoidal rule (up to 100 integration points are permitted)

## KEYOPT(3)

Flag for layered composite material mode:
0 --
Non-composite material mode

## 1 --

Composite material mode; a material angle is defined for each through thickness integration point

## KEYOPT(4)

Integration rule ID:
0 --
Standard integration option
n --
User-defined integration rule ID (valid range is 1 to 9999; if selected, it overrides the integration rule set by KEYOPT(2))

Table 1 SHELL163 Real Constants

No.	Name	Description
1	SHRF	Shear factor   Suggested value: 5/6; if left blank, defaults to 1
2	NIP	Number of integration points If input as 0 or blank, defaults to 2.
3	T1	Shell thickness at node I
4	T2	Shell thickness at node J
5	T3	Shell thickness at node K
6	T4	Shell thickness at node L
7	NLOC	Location of reference surface = 1 , top surface $=0$, middle surface $=-1$, bottom surface   Used only if $\operatorname{KEYOPT}(1)=1,6$, or 7 .
8	ESOP	Option for the spacing of integration points:   0 - Integration points are defined using real constants $\mathrm{S}(\mathrm{i})$ and WF(i).   1 - Integration points are equally spaced through the thickness such that the shell is subdivided into NIP layers of equal thickness.
$\begin{aligned} & 9,13, \\ & 17, \ldots \\ & 405 \end{aligned}$	BETA(i)	Material angle at the i-th integration point.[1]
$\begin{aligned} & 10,14, \\ & 18, \ldots \\ & 406 \end{aligned}$	S(i)	Coordinate of integration point in the range -1 to 1 . $i=1, \text { NIP }(\text { NIP }=100 \max )[1(p .708)]$


No.	Name	Description
11,15,   $19, \ldots$	WF(i)	Weighting factor; that is, the thickness associated with the   integration point divided by the actual shell thickness.
407		i = 1, NIP (NIP = 100 max$)[1(\mathrm{p} .708)]$
12,16,	MAT(i)	Material ID for each layer. [1]
$20, \ldots$		
408		

1. If $\operatorname{KEYOPT}(3)=1$, then $\operatorname{BETA}(i), S(i), \mathrm{WF}(\mathrm{i})$, and $\mathrm{MAT}(\mathrm{i})$ should be specified for each integration point. For example, for 20 integration points, you would specify BETA(1), S(1), WF(1), MAT(1), BETA(2), S(2), $\mathrm{WF}(2), \operatorname{MAT}(2), \ldots, \operatorname{BETA}(20), \mathrm{S}(20), \mathrm{WF}(20), \operatorname{MAT}(20)$. If $\operatorname{KEYOPT}(3)=0$, then only $S(\mathrm{i})$ and $\mathrm{WF}(\mathrm{i})$ need to be specified. The material used will be that specified by the MAT command.

## SHELL163 Output Data

To store output data for this element, you must specify the number of output locations for which you want data using the EDINT,SHELLIP command during solution. To review the stored data for a specified layer, use the LAYER,NUM command. However, be aware that the output location for this data is always at the integration point. "Top" and "bottom" refer to the top or bottom integration point, which is not necessarily the top or bottom surface.

Stress data is always output from the bottom of the shell to the top. See Figure 2 (p. 702).
In all cases (default and otherwise), strain is always output for two layers only: Layer $1=$ bottom and layer 2 = top.

The number of integration points specified by real constant NIP controls the output locations through the thickness of the shell. If NIP = SHELLIP, then each layer corresponds to an integration point, and those are the locations where you will get output data. If NIP>SHELLIP, then data is output only at the SHELLIP number of locations (first bottom layer, then layers 2 through $n$ moving up from the bottom). If NIP<SHELLIP (but NIP>2), then results are output only for NIP number of layers.

By default, the number of integration points (NIP) is 2, and the number of output locations/layers (SHELLIP) is 3 . In this case, stress data is output in the following order: Layer $1=$ bottom, layer $2=$ middle, and layer $3=$ top. When SHELLIP $=3$, the middle layer will be an interpolated value if NIP is an even number or an actual value at an integration point if NIP is an odd number.

If NIP $=1$, the integration point is at the element midplane, and only one stress and one strain value are output.

For elements with $2 \times 2$ integration points in the shell plane $(\operatorname{KEYOPT}(1)=6,7,9,12)$, LS-DYNA performs an averaging of any data output at those points in every layer so that the output is the same for all shell formulations.

For the default RSYS setting, strains (EPTO) and generalized stresses ( $M, T, N$ ) are output in the element coordinate system, and stresses ( S ) are output in the global Cartesian system for all formulations associated with SHELL163, except the Hughes-Liu formulation. Strain output (EPTO) for the Hughes-Liu formulation $(\operatorname{KEYOPT}(1)=1)$ is output in the global Cartesian system.

You can rotate stress results for this element into another coordinate system using the RSYS command. However, RSYS has no effect on the stress results for composite SHELL163 elements (KEYOPT(3) = 1). In addition, RSYS cannot be used to rotate strain results for any of the SHELL163 element formulations.

The following items are available in the results file.
Table 2 SHELL163 Element Output Definitions

Name	Definition
S(X, Y, Z, XY, YZ, XZ)	Stresses
S(1, 2, 3)	Principle stresses
SINT	Stress intensity
SEQV	Equivalent stress
EPTO(X, Y, Z, XY, YZ, XZ)	Total strain
EPTO(1, 2, 3)	Total principle strains strain intensity
EPTO(INT)	Total equivalent strain
EPTO(EQV)	Elastic strains
EPEL(X, Y, Z, XY, YZ, XZ)	Elastic strain intensity
EPEL(1, 2, 3)	Equivalent elastic strain
EPEL(INT)	Equivalent plastic strain
EPEL(EQV)	Element X, Y, and XY moments
EPPL(EQV)	Out-of-plane X, Y shear
$M(X, Y, X Y)$	In-plane element X, Y, and XY forces
N(X, Y)	Element thickness
T(X, Y, XY)	
Thick	

## Note

Stress and total strain are always available. The availability of elastic strain and equivalent plastic strain depends on the material model used for the element (see Element Output Data in the ANSYS LS-DYNA User's Guide for details).

Table 3: SHELL163 Item and Sequence Numbers (p. 710) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p. 9) in this manual for more information. The following notation is used in Table 3: SHELL163 Item and Sequence Numbers (p. 710):

## Name

output quantity as defined in the Table 2: SHELL163 Element Output Definitions (p. 709)

## Item

predetermined Item label for ETABLE command

## E

sequence number for single-valued or constant element data
Table 3 SHELL163 Item and Sequence Numbers

Output Quantity   Name	ETABLE and   ESOL Command   Input	
	Item	E
MX	SMISC	1
MY	SMISC	2
MXY	SMISC	3
NX	SMISC	4
NY	SMISC	5
TX	SMISC	6
TY	SMISC	7
TXY	SMISC	8
EPEQ (top)[1]	NMISC	1
EPEQ (middle)[1],   [2]	NMISC	2
EPEQ (bottom)[1]	NMISC	3
Thick[1]	NMISC	4

1. The sequence numbers for NMISC items in this table are based on the assumption that the number of integration points for output (SHELLIP on the EDINT command) is set to the default value of 3.
2. If the number of integration points (NIP) is even, the middle EPEQ value (NMISC,2) will be an interpolated value.

The SMISC quantities in the above table are independent of layers (that is, you will get one set of SMISC quantities output per element). However, the NMISC items are layer-dependent, and the order of the NMISC items is dependent on the SHELLIP and NIP values. The order shown in the table corresponds to the default SHELLIP value (SHELLIP = 3). If NIP > 3, it is strongly recommended that you set SHELLIP = NIP. In this case, the ETABLE output will go from top (NMISC,1) to bottom (NMISC, $n$ where $n$ is the total number of layers). If SHELLIP is not equal to NIP, the order of NMISC items will vary. Therefore, you should not use ETABLE to access the NMISC items when NIP > 3 and SHELLIP is not equal to NIP.

## SHELL163 Assumptions and Restrictions

- Zero area elements are not allowed. This occurs most often whenever the elements are not numbered properly.
- Zero thickness elements or elements tapering down to a zero thickness at any corner are not allowed.
- A triangular element may be formed by defining duplicate $K$ and $L$ node numbers as described in Triangle, Prism, and Tetrahedral Elements (p. 99). In this event, the $C^{0}$ triangular shell element $(\operatorname{KEYOPT}(1)=4)$ will be used.
- An assemblage of flat shell elements can produce a good approximation to a curved shell surface provided that each flat element does not extend over more than a $15^{\circ}$ arc.


## SHELL163 Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

## ANSYS ED

- Composite material shell elements are not allowed. KEYOPT(3) defaults to 0 .


## SOLID164

Explicit 3-D Structural Solid
<> <> <> <> <> <> <> <> <> <> DY <> <> <> <>
Product Restrictions

## SOLID164 Element Description

SOLID164 is used for the 3-D modeling of solid structures. The element is defined by eight nodes having the following degrees of freedom at each node: translations, velocities, and accelerations in the nodal $x, y$, and $z$ directions.

This element is used in explicit dynamic analyses only. Refer to the LS-DYNA Theoretical Manual for more information.

Figure 1 SOLID164 Geometry


Tetrahedral Option


Pyramid Option

## SOLID164 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 1 (p. 713). The element is defined by eight nodes. Orthotropic material properties may be defined. Use the EDMP command to specify an orthotropic material and the EDLCS command to define the orthotropic material directions.

By default, SOLID164 uses reduced (one point) integration plus viscous hourglass control for faster element formulation. A fully integrated solid formulation $(\operatorname{KEYOPT}(1)=2)$ is also available.

KEYOPT(5) defines the element continuum treatment. Two different formulations are available: Lagrangian (default) and Arbitrary Lagrangian-Eulerian (ALE). In addition to setting $\operatorname{KEYOPT}(5)=1$, you must also set
appropriate parameters on the EDALE and EDGCALE commands in order for the ALE formulation to take affect. See Arbitrary Lagrangian-Eulerian Formulation in the ANSYS LS-DYNA User's Guide for more information. Some material models that are normally available for this element type are not supported when the ALE formulation is used. See the material list below for details.

Use the EDLOAD command to apply nodal loads and other load types described below. For detailed information on how to apply loads in an explicit dynamic analysis, see the ANSYS LS-DYNA User's Guide.

Pressures can be input as surface loads on the element faces as shown by the circled numbers in Figure 1 (p.713). Positive normal pressures act into the element.

Base accelerations and angular velocities in the $x, y$, and $z$ directions can be applied at the nodes using the EDLOAD command. To apply these loads, you need to first select the nodes and create a component. The load is then applied to that component.

You can also use the EDLOAD command to apply loads (displacements, forces, etc.) on rigid bodies.
Several types of temperature loading are also available for this element. See Temperature Loading in the ANSYS LS-DYNA User's Guide.

For this element, you can choose from the materials listed below. The material models marked by an asterisk ${ }^{(*)}$ are not supported by the ALE formulation $(\operatorname{KEYOPT}(5)=1)$.

- Isotropic Elastic
- Orthotropic Elastic*
- Anisotropic Elastic*
- Bilinear Kinematic
- Plastic Kinematic
- Viscoelastic*
- Blatz-Ko Rubber*
- Bilinear Isotropic
- Temperature Dependent Bilinear Isotropic
- Power Law Plasticity
- Strain Rate Dependent Plasticity
- Composite Damage*
- Concrete Damage*
- Geological Cap
- Piecewise Linear Plasticity*
- Honeycomb*
- Mooney-Rivlin Rubber*
- Barlat Anisotropic Plasticity
- Elastic-Plastic Hydrodynamic
- Rate Sensitive Power Law Plasticity
- Elastic Viscoplastic Thermal
- Closed Cell Foam*
- Low Density Foam
- Viscous Foam*
- Crushable Foam
- Johnson-Cook Plasticity
- Null
- Zerilli-Armstrong
- Bamman*
- Steinberg
- Elastic Fluid


## SOLID164 Input Summary

## Nodes

I, J, K, L, M, N, O, P

## Degrees of Freedom

UX, UY, UZ, VX, VY, VZ, AX, AY, AZ

## Note

For explicit dynamic analyses, $\mathrm{V}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})$ refers to nodal velocity, and $\mathrm{A}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})$ refers to nodal acceleration. AlthoughV ( $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ ) and $\mathrm{A}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})$ appear as DOFs, they are not actually physical DOFs. However, these quantities are computed as DOF solutions and stored for postprocessing.

## Real Constants

None

## Material Properties

EX, EY, EZ, NUXY, NUYZ, NUXZ,
PRXY, PRXZ, PRYZ, ALPX (or CTEX or THSX), GXY, GYZ, GXZ,
DENS, DAMP (MP command)
RIGID, HGLS, ORTHO, FLUID (EDMP command)
ANEL, MOONEY, EVISC, BISO, BKIN, PLAW, FOAM, HONEY, COMPOSITE, CONCR, GCAP, EOS (TB command; see Material Models in the ANSYS LS-DYNA User's Guide)

## Surface Loads

Pressures --
face 1 (J-I-L-K), face 2 (I-J-N-M), face 3 (J-K-O-N), face 4 (K-L-P-O), face 5 (L-I-M-P), face 6 (M-N-O-P)

## Body Loads

Temperatures (see Temperature Loading in the ANSYS LS-DYNA User's Guide.

## Special Features

This element supports all nonlinear features allowed for an explicit dynamic analysis.

## KEYOPT(1)

Element formulation:

## 0, 1 --

Constant stress solid element (default)
2 --
Fully integrated selectively-reduced solid

## KEYOPT(5)

Element continuum treatment:
0 --
Lagrangian (default)
1 --
ALE (Arbitrary Lagrangian-Eulerian)

## SOLID164 Output Data

Output for SOLID164 is listed in Table 1: SOLID164 Element Output Definitions (p. 716). If you issue PRNSOL, a single set of stress and a single set of strain values is output at all eight nodes; that is, you will get the same sets of values at each node. If you issue PRESOL, you will get only a single set of values at the centroid.

You can rotate stress results for SOLID164 into a defined coordinate system using the RSYS command. However, RSYS cannot be used to rotate strain results for this element type.

The following items are available on the results file.
Table 1 SOLID164 Element Output Definitions

Name	Definition
$S(X, Y, Z, X Y, Y Z, X Z)$	Stresses
$S(1,2,3)$	Principal stresses
SINT	Stress intensity
SEQV	Equivalent stress
EPTO(X,Y, Z, XY, YZ, XZ)	Total strains
EPTO(1, 2, 3)	Total principle strains
EPTO(INT)	Total strain intensity
EPTO(EQV)	Total equivalent strain
EPEL(X,Y, Z, XY, YZ, XZ)	Elastic strains
EPEL(1, 2, 3)	Principle elastic strains
EPEL(INT)	Elastic strain intensity
EPEL(EQV)	Equivalent elastic strain
EPPL(EQV)	Equivalent plastic strain

## Note

Stress and total strain are always available. The availability of elastic strain and equivalent plastic strain depends on the material model used for the element (see Element Output Data in the ANSYS LS-DYNA User's Guide for details).

## SOLID164 Assumptions and Restrictions

- Zero volume elements are not allowed.
- The element may not be twisted such that it has two separate volumes. This occurs most frequently when the element is not numbered properly.
- The element must have eight nodes.
- A prism-shaped element may be formed by defining duplicate K and L and duplicate O and P node numbers (see Triangle, Prism, and Tetrahedral Elements (p. 99)). A tetrahedron shape is also available. When the degenerated elements are used, be careful in choosing the element formulations. For the tetrahedron shape, SOLID168 should be considered instead.


## SOLID164 Product Restrictions

There are no product-specific restrictions for this element.

## COMBI165

## Explicit Spring-Damper



Product Restrictions

## COMBI165 Element Description

COMBI165 allows you to model simple spring or damper systems, as well as the response of more complicated mechanisms such as the energy absorbers used in passenger vehicle bumpers. These mechanisms are often experimentally characterized in terms of force-displacement curves. This element provides a variety of discrete element formulations that can be used individually or in combination to model complex force-displacement relations.

COMBI165 is a two-node, 1-D element. You cannot define both spring and damper properties for the same element. Separate spring and damper elements are required, but they may use the same nodes (that is, you can overlay two different COMBI165 elements). A COMBI165 element can be attached to any of the other explicit elements.

This element is used in explicit dynamic analyses only. Refer to the LS-DYNA Theoretical Manual for more information.

## Figure 1 COMBI165 Geometry



Both figures above show two COMBI165 elements (a spring and a damper) attached to the same two nodes.

## COMBI165 Input Data

The real constants $\mathrm{K}_{\mathrm{d}}$ to TDL are optional and do not need to be defined.
For example, if $\mathrm{K}_{\mathrm{d}}$, the dynamic magnification factor, is nonzero, the forces computed from the spring elements are assumed to be the static values and are scaled by an amplification factor to obtain the dynamic value:
$F_{\text {dynamic }}=\left(1 .+K_{d} \frac{V}{V_{0}}\right) F_{\text {static }}$

For example, if it is known that a component shows a dynamic crush force at $15 \mathrm{~m} / \mathrm{s}$ equal to 2.5 times the static crush force, use $\mathrm{K}_{\mathrm{d}}=1.5$ and $\mathrm{V}_{0}=15$, where $\mathrm{V}_{0}$ is the test velocity.

Here, clearance (CL) defines a compressive displacement which the spring sustains before beginning the force-displacement relation given by the load curve. If a nonzero clearance is defined, the spring is compressive only.

The deflection limit in compression (CDL) and tension (TDL) is restricted in its application to no more than one spring per node subject to this limit, and to deformable bodies only. For example, in the former case, if three springs are in series, either the center spring or the two end springs may be subject to a limit, but not all three. When the limiting deflection (FD) is reached, momentum conservation calculations are performed and a common acceleration is computed in the appropriate direction. An error termination will occur if a rigid body node is used in a spring definition where compression is limited.

For this element, you can choose from the following materials:

- Linear Elastic Spring
- Linear Viscous Damper
- Elastoplastic Spring
- Nonlinear Elastic Spring
- Nonlinear Viscous Damper
- General Nonlinear Spring
- Maxwell Viscoelastic Spring
- Inelastic Tension or Compression-Only Spring

A summary of the element input is given in "COMBI165 Input Summary" (p. 720). A general description of element input is given in Element Input (p. 5).

## COMBI165 Input Summary

## Nodes

I, J

## Degrees of Freedom

> UX, UY, UZ, VX, VY, VZ, AX, AY, AZ $(\operatorname{KEYOPT}(1)=0)$
> $\operatorname{ROTX}, \operatorname{ROTY}, \operatorname{ROTZ}(\operatorname{KEYOPT}(1)=1)$

## Note

For explicit dynamic analyses, $V(X, Y, Z)$ refers to nodal velocity, and $A(X, Y, Z)$ refers to nodal acceleration. Although $\mathrm{V}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})$ and $\mathrm{A}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})$ appear as DOFs, they are not actually physical DOFs. However, these quantities are computed as DOF solutions and stored for postprocessing.

## Real Constants

Kd - Dynamic magnification factor,
Vo - Test velocity,
CL - Clearance,
FD - Failure deflection,

CDL - Deflection limit (compression),
TDL - Deflection limit (tension)

## Material Properties

DAMP (MP command), DISCRETE (TB command; see Material Models in the ANSYS LS-DYNA User's Guide)

## Surface Loads

None

## Body Loads

None

## Special Features

This element supports all nonlinear features allowed for an explicit dynamic analysis.

## KEYOPT(1)

Spring/damper type (translational or torsional):
0 --
The material describes a translational spring/damper
1 --
The material describes a torsional spring/damper

## COMBI165 Output Data

Output data for COMBI165 consists of the following:
Table 1 COMBI165 Item and Sequence Numbers

Output Quantity Name[1]	ETABLE and ESOL Command Input		
	Description	Item	Seq.   No.
MFORX/MMOMX	X-component of member force/moment	SMISC	1
MFORY/MMOMY	Y-component of member force/moment	SMISC	2
MFORZ/MMOMZ	Z-component of member force/moment	SMISC	3
MFORSUM/MMOMSUM	Vector sum of $X$, Y, and Z components   of member force/moment	SMISC	4

1. You must specify either force or moment via $\operatorname{KEYOPT}(1)$. Note that you cannot specify both force and moment.

MFOR: $\operatorname{KEYOPT}(1)=0$
MMOM: $\operatorname{KEYOPT}(1)=1$
To output the element data in POST1, you must use the ETABLE command. Then, you can use the PRETAB command to print the output data. The RSYS command has no effect when postprocessing output for this element.

In POST26, you can postprocess the element data using the ESOL command only when postprocessing the Jobname.RST file. The element results are not available on the Jobname. HIS file.

## COMBI165 Assumptions and Restrictions

- The time step size calculation is approximated by using the instantaneous stiffness and one-half the nodal mass of the nodes joined by the spring. If the global time step size is controlled by an explicit spring-damper element, instabilities can develop with the default time step size due to the approximations in the step size calculation.
- When used to interconnect under-integrated elements, the explicit spring-damper can sometimes excite the zero-energy hourglass modes.
- To ensure that parts are uniquely defined when using COMBI165, specify a unique set of real constants (R), the element type (ET), and the material properties (TB) for each part. Defining a unique material number (MAT) alone is insufficient.


## COMBI165 Product Restrictions

There are no product-specific restrictions for this element.

## MASS166

## Explicit 3-D Structural Mass



Product Restrictions

## MASS166 Element Description

MASS166 is a point element having up to nine degrees of freedom: translations, velocities, and accelerations in the nodal $x, y$, and $z$ directions.

## Figure 1 MASS166 Geometry



## MASS166 Input Data

The mass element is defined by a single node with concentrated mass components (Force*Time²/Length) in the element coordinate directions about the element coordinate axes. The element also has an option for rotary inertia (without mass) which allows the definition of lumped rotary inertia at a defined nodal point. For the inertia option (KEYOPT $(1)=1$ ), six polar moment of inertia values must be input instead of mass. To include both mass and rotary inertia, you must define two MASS166 elements at the same node.

A summary of the element input is given in "MASS166 Input Summary" (p.723). A general description of element input is given in Element Input (p.5).

## MASS166 Input Summary

## Nodes

I

## Degrees of Freedom

UX, UY, UZ, VX, VY, VZ, AX, AY, AZ

## Note

For explicit dynamic analyses, $V(X, Y, Z)$ refers to nodal velocity, and $A(X, Y, Z)$ refers to nodal acceleration. Although $V(X, Y, Z)$ and $A(X, Y, Z)$ appear as DOFs, they are not actually physical DOFs. However, these quantities are computed as DOF solutions and stored for postprocessing.

## Real Constants

If $\operatorname{KEYOPT}(1)=0$ :
MASS - Concentrated mass (Force*Time ${ }^{2} /$ Length) (must be $>0$ )

If $\operatorname{KEYOPT}(1)=1$ :
IXX - Moment of inertia (must be >0),
IXY - Moment of inertia,
IXZ - Moment of inertia,
IYY - Moment of inertia (must be >0),
IYZ - Moment of inertia,
IZZ - Moment of inertia (must be $>0$ )

## Material Properties

None, but you must define realistic dummy material properties to make this element behave correctly.

## Note

These dummy properties will not be used in any solution.

## Surface Loads

None

## Body Loads

None

## Special Features

This element supports all nonlinear features allowed for an explicit dynamic analysis.

## KEYOPT(1)

Rotary inertia option:
0 --
3-D mass without rotary inertia (default)
1 --
3-D rotary inertia (no mass)

## MASS166 Output Data

Nodal displacements are included in the overall displacement solution. There is no printed or post element data output for the mass element.

## MASS166 Assumptions and Restrictions

None.

## MASS166 Product Restrictions

There are no product-specific restrictions for this element.

## LINK167

## Explicit Tension-Only Spar



Product Restrictions

## LINK167 Element Description

LINK167 allows elastic cables to be realistically modeled; thus, no force will develop in compression.
This element is used in explicit dynamic analyses only.

## Figure 1 LINK167 Geometry



## LINK167 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 1 (p. 725). Node K determines the initial orientation of the cross section.

The element is defined by nodes I and J in the global coordinate system. Node K defines a plane (with I and $J$ ) containing the element $s$-axis. The element $r$-axis runs parallel to the length of the element and through nodes I and J. Node K is always required to define the element axis system and it must not be colinear with nodes I and J. The location of node K is used only to initially orient the element.

Real constants for this element are link area (AREA) and offset for cable (OFFSET). For a slack element, the offset should be input as a negative value. For an initial tensile force, the offset should be positive.

The force, $F$, generated by the link is nonzero if and only if the link is in tension. The force is given by:
$F=K \cdot \max (\Delta L, O$.
where $\Delta L$ is the change in length
$\Delta L=$ current length - (initial length - offset)
and the stiffness is defined as:
$K=\frac{E \times \text { area }}{\text { (initial length }- \text { offset })}$
You can use only the material type cable for this element. For this material, you need to define the density (DENS) and Young's modulus (EX) or load curve ID. If you specify a load curve ID (EDMP,CABLE,VAL1, where VAL1 is the load curve ID), the Young's modulus will be ignored and the load curve will be used instead.

The points on the load curve are defined as engineering stress versus engineering strain (that is, the change in length over the initial length). Use the EDCURVE command to define the load curve ID. The unloading behavior follows the loading.

Base accelerations and angular velocities in the $x, y$, and $z$ directions can be applied at the nodes using the EDLOAD command. To apply these loads, you need to first select the nodes and create a component. The load is then applied to that component.

A summary of the element input is given in "LINK167 Input Summary" (p. 726). Additional information about real constants for this element is provided in Table 1: BEAM161 Real Constants (p. 686). For more information about this element, see the LS-DYNA Theoretical Manual.

## LINK167 Input Summary

## Nodes

$\mathrm{I}, \mathrm{J}, \mathrm{K}$ ( K is the orientation node)

## Degrees of Freedom

UX, UY, UZ, VX, VY, VZ, AX, AY, AZ

## Note

For explicit dynamic analyses, $V(X, Y, Z)$ refers to nodal velocity, and $A(X, Y, Z)$ refers to nodal acceleration. Although $V(X, Y, Z)$ and $A(X, Y, Z)$ appear as DOFs, they are not actually physical DOFs. However, these quantities are computed as DOF solutions and stored for postprocessing.

## Real Constants

AREA - Cross-sectional area
OFFSET - Offset value for cable

## Material Properties

EX (MP command) or Load Curve ID (EDMP command),
DENS (MP command),
DAMP (MP command),
CABLE (EDMP command; see Material Models in the ANSYS LS-DYNA User's Guide)

## Surface Loads

None

## Body Loads

None

## Special Features

This element supports all nonlinear features allowed for an explicit dynamic analysis.

## KEYOPTs

None

## LINK167 Output Data

Output for LINK167 consists of the following: Axial force

To output the data, you must use the ETABLE command. For the ITEM label, specify SMISC. For the COMP label, specify 1 for axial force. Then, you can use the PRETAB command to print the output data.

## LINK167 Assumptions and Restrictions

- The sum of the element length plus the offset must be greater than zero.
- The cross-sectional area must be greater than zero.


## LINK167 Product Restrictions

There are no product-specific restrictions for this element.

## SOLID168

## Explicit 3-D 10-Node Tetrahedral Structural Solid



Product Restrictions

## SOLID168 Element Description

SOLID168 is a higher order 3-D, 10-node explicit dynamic element. It is well suited to modeling irregular meshes such as those produced from various CAD/CAM systems. The element is defined by ten nodes having three degrees of freedom at each node: translations in the nodal $x, y$, and $z$ directions.

By default, SOLID168 uses a quadratic displacement behavior with five point integration (KEYOPT(1) $=0$ or 1). A composite formulation which is an assemblage of linear sub-tetrahedral shapes ( $\operatorname{KEYOPT}(1)=2$ ) is also available. This second formulation effectively overcomes the difficulty of lumped mass calculations and volume locking inherent to the quadratic elements.

## Figure 1 SOLID168 Geometry



## SOLID168 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 1 (p.729). The element is defined by ten nodes. Orthotropic material properties may be defined. Use the EDMP command to specify an orthotropic material and the EDLCS command to define the orthotropic material directions.

Use the EDLOAD command to apply nodal loads and other load types described below. For detailed information on how to apply loads in an explicit dynamic analysis, see the ANSYS LS-DYNA User's Guide.

Pressures can be input as surface loads on the element faces as shown by the circled numbers in Figure 1 (p. 729). Positive normal pressures act into the element.

Base accelerations and angular velocities in the $x, y$, and $z$ directions can be applied at the nodes using the EDLOAD command. To apply these loads, you need to first select the nodes and create a component. The load is then applied to that component. You can also use the EDLOAD command to apply loads (displacements, forces, etc.) on rigid bodies.

Several types of temperature loading are also available for this element. See Temperature Loading in the ANSYS LS-DYNA User's Guide. For this element, you can choose from the materials listed below.

- Isotropic Elastic
- Orthotropic Elastic
- Anisotropic Elastic
- Bilinear Kinematic
- Plastic Kinematic
- Viscoelastic
- Blatz-Ko Rubber
- Bilinear Isotropic
- Temperature Dependent Bilinear Isotropic
- Power Law Plasticity
- Strain Rate Dependent Plasticity
- Composite Damage
- Concrete Damage
- Geological Cap
- Piecewise Linear Plasticity
- Honeycomb
- Mooney-Rivlin Rubber
- Barlat Anisotropic Plasticity
- Elastic-Plastic Hydrodynamic
- Rate Sensitive Power Law Plasticity
- Elastic Viscoplastic Thermal
- Closed Cell Foam
- Low Density Foam
- Viscous Foam
- Crushable Foam
- Johnson-Cook Plasticity
- Null
- Zerilli-Armstrong
- Bamman
- Steinberg
- Elastic Fluid


## SOLID168 Input Summary

## Nodes

I, J, K, L, M, N, O, P, Q, R

## Degrees of Freedom

UX, UY, UZ, VX, VY, VZ, AX, AY, AZ

## Note

For explicit dynamic analyses, $V(X, Y, Z)$ refers to nodal velocity, and $A(X, Y, Z)$ refers to nodal acceleration. Although $V(X, Y, Z)$ and $A(X, Y, Z)$ appear as DOFs, they are not actually physical DOFs. However, these quantities are computed as DOF solutions and stored for postprocessing.

## Real Constants

None

## Material Properties

EX, EY, EZ, NUXY, NUYZ, NUXZ,
PRXY, PRXZ, PRYZ, ALPX (or CTEX or THSX),
DENS, DAMP (MP command)
RIGID, HGLS, ORTHO, FLUID (EDMP command)
ANEL, MOONEY, EVISC, BISO, BKIN, PLAW,
FOAM, HONEY, COMPOSITE, CONCR, GCAP, EOS
(TB command; see "Material Models" in the ANSYS LS-DYNA User's Guide)

## Surface Loads

Pressures --
face $1(J-I-K)$, face $2(I-J-L)$, face $3(J-K-L)$, face $4(K-I-L)$

## Body Loads

Temperatures --
See Temperature Loading in the ANSYS LS-DYNA User's Guide

## Special Features

This element supports all nonlinear features allowed for an explicit dynamic analysis.

## KEYOPT(1)

Element formulation:
0, 1 --
Quadratic interpolation
2 --
Composite (assemblages of linear tetrahedral shapes)

## SOLID168 Output Data

Output for SOLID168 is listed in Table 1: SOLID168 Element Output Definitions (p. 732). If you issue PRNSOL, a single set of stress and a single set of strain values is output at all ten nodes; that is, you will get the same sets of values at each node. If you issue PRESOL, you will get only a single set of values at the centroid.

You can rotate stress results for SOLID168 into a defined coordinate system using the RSYS command. However, RSYS cannot be used to rotate strain results for this element type.

The following items are available on the results file.

## Table 1 SOLID168 Element Output Definitions

Name	
S:X,Y, $Z, X Y, Y Z, X Z$	Stresses
S:1, 2, 3	Principal stresses
S:INT	Stress intensity
S:EQV	Equivalent stress
EPTO:X, Y, Z, XY, YZ,   XZ	Total strains
EPTO:1, 2, 3	Total principle strains
EPTO:INT	Total strain intensity
EPTO:EQV	Total equivalent strain
EPEL:X, Y, $Z, X Y, Y Z, ~$   $X Z$	Elastic strains
EPEL:1, 2, 3	Principal elastic strains
EPEL:INT	Elastic strain intensity
EPEL:EQV	Equivalent elastic strains
EPPL:EQV	Equivalent plastic strains

## Note

Stress and total strain are always available. The availability of elastic strain and equivalent plastic strain depends on the material model used for the element (see Element Output Data in the ANSYS LS-DYNA User's Guide for details).

## SOLID168 Assumptions and Restrictions

- Zero volume elements are not allowed.
- The element may not be twisted such that it has two separate volumes. This occurs most frequently when the element is not numbered properly.
- The element must have ten nodes.


## SOLID168 Product Restrictions

There are no product-specific restrictions for this element.

## TARGE169

## 2-D Target Segment

MP ME ST PR PRN DS DSS <> EM <> <> PP <> EME MFS
Product Restrictions

## TARGE169 Element Description

TARGE169 is used to represent various 2-D "target" surfaces for the associated contact elements (CONTA171, CONTA172, and CONTA175). The contact elements themselves overlay the solid elements describing the boundary of a deformable body and are potentially in contact with the target surface, defined by TARGE169. This target surface is discretized by a set of target segment elements (TARGE169) and is paired with its associated contact surface via a shared real constant set. You can impose any translational or rotational displacement, temperature, voltage, and magnetic potential on the target segment element. You can also impose forces and moments on target elements. See TARGE169 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element. To represent 3-D target surfaces, use TARGE170, a 3-D target segment element. For rigid targets, these elements can easily model complex target shapes. For flexible targets, these elements will overlay the solid elements describing the boundary of the deformable target body.

Figure 1 TARGE169 Geometry


## TARGE169 Input Data

The target surface is modeled through a set of target segments, typically, several target segments comprise one target surface.

The target surface can either be rigid or deformable. For modeling rigid-flexible contact, the rigid surface must be represented by a target surface. For flexible-flexible contact, one of the deformable surfaces must be overlayed by a target surface. See the Contact Technology Guide for more information about designating contact and target surfaces.

The target and associated contact surfaces are identified by a shared real constant set. This real constant set includes all real constants for both the target and contact elements.

Each target surface can be associated with only one contact surface, and vice-versa. However, several contact elements could make up the contact surface and thus come in contact with the same target surface. Likewise, several target elements could make up the target surface and thus come in contact with the same contact surface. For either the target or contact surfaces, you can put many elements in a single target or contact surface, or you can localize the contact and target surfaces by splitting the large surfaces into smaller target and contact surfaces, each of which contain fewer elements.

If one contact surface may contact more than one target surface, you must define duplicate contact surfaces that share the same geometry but relate to separate targets, that is, have separate real constant set numbers.

For any target surface definition, the node ordering of the target segment element is critical for proper detection of contact. The nodes must be ordered so that, for a 2-D surface, the associated contact elements (CONTA171, CONTA172, or CONTA175) must lie to the right of the target surface when moving from target node I to target node J. For a rigid 2-D complete circle, contact must occur on the outside of the circle; internal contacting is not allowed.

## Considerations for Rigid Targets

Each target segment is a single element with a specific shape, or segment type. The segment types are defined by one, two, or three nodes and a target shape code, TSHAP, and are described in Table 1:TARGE169 2-D Segment Types, Target Shape Codes, and Nodes (p. 734). The TSHAP command indicates the geometry (shape) of the element. The segment dimensions are defined by a real constant (R1), and the segment location is determined by the nodes. ANSYS supports seven 2-D segment types; see Table 1:TARGE169 2-D Segment Types, Target Shape Codes, and Nodes (p. 734).

Table 1 TARGE169 2-D Segment Types, Target Shape Codes, and Nodes

TSHAP	Segment Type	Node1 (DOF)	Node 2 (DOF) ${ }^{[1]}$	Node 3 (DOF)	R1 ${ }^{[2]}$	R2
LINE	Straight line	1st corner pt (UX, UY) (TEMP) (VOLT) (AZ)	2nd corner   pt (UX, UY)   (TEMP)   (VOLT) (AZ)	None	None	None
ARC	Arc, clockwise	1st corner pt (UX, UY) (TEMP) (VOLT) (AZ)	2nd corner pt (UX, UY) (TEMP) (VOLT) (AZ)	Circle center pt (UX, UY) (TEMP) (VOLT) (AZ)	None	None
CARC	Arc, counter- clockwise	1st corner pt (UX, UY) (TEMP) (VOLT) (AZ)	2nd corner pt (UX, UY) (TEMP) (VOLT) (AZ)	Circle center pt (UX, UY) (TEMP) (VOLT) (AZ)	None	None
PARA	Parabola	1st corner pt (UX, UY) (TEMP) (VOLT) (AZ)	2nd corner pt (UX, UY) (TEMP) (VOLT) (AZ)	Midside pt   (UX, UY)   (TEMP)   (VOLT) (AZ)	None	None
CIRC	Circle	Circle center pt (UX, UY) (TEMP) (VOLT) (AZ)	None	None	Radius	None


TSHAP	Segment Type	Node1   (DOF)	Node 2   (DOF) ${ }^{[1]}$	Node 3   (DOF)	R1 $^{[2]}$	R2
PILO	Pilot node	1st point   (UX, UY,   ROTZ)   (TEMP)   (VOLT) (AZ)	None	None	None	None
POINT	Point $^{[3]}$	1st point   (UX, UY)	None	None	None	None

1. The DOF available depends on the setting of $\operatorname{KEYOPT}(1)$ for the associated contact element. For more information, see the element documentation for CONTA171, CONTA172, or CONTA175.
2. When creating a circle via direct generation, define the real constant R1 before creating the element.
3. Rigid surface node. This segment type is only used to apply boundary conditions to rigid target surfaces.

Figure 2 TARGE169 2-D Segment Types


For simple rigid target surfaces, you can define the target segment elements individually by direct generation. You must first specify the SHAPE argument for the TSHAP command. When creating circles through direct generation, you must also define the real constant R1 before creating the element. Real constant R1 (see

Table 1: TARGE169 2-D Segment Types, Target Shape Codes, and Nodes (p. 734)) defines the radius of the target circle.

For general 2-D rigid surfaces, target segment elements can be defined by line meshing (LMESH). You can also use keypoint meshing (KMESH) to generate the pilot node.

If the TARGE169 elements will be created via automatic meshing (LMESH or KMESH), then the TSHAP command is ignored and ANSYS chooses the correct shape automatically.

For rigid-to-flexible contact, by default, ANSYS automatically fixes the structural degree of freedom for rigid target nodes if they aren't explicitly constrained (KEYOPT $(2)=0$ ). If you wish, you can override the automatic boundary condition settings by setting $\operatorname{KEYOPT}(2)=1$ for the target elements. For flexible-to-flexible contact, no special boundary conditions treatment is performed, and the KEYOPT(2) $=0$ setting should be used.

For each rigid-flexible contact pair, you can assign only one pilot node to an entire rigid target surface (or none if it is not needed). The pilot node, unlike the other segment types, is used to define the degrees of freedom for the entire target surface. This node can be any of the target surface nodes, but it does not have to be. All possible rigid motions of the target surface will be a combination of a translation and a rotation around the pilot node. The pilot node provides a convenient and powerful way to assign boundary conditions such as rotations, translations, moments, temperature, voltage, and magnetic potential on an entire rigid target surface. By default ( $\operatorname{KEYOPT}(2)=0)$, you can assign the boundary conditions only to the pilot node, eliminating the need to assign boundary conditions to individual target nodes, thus reducing the chance of errors. ANSYS will also automatically fix the structural degrees of freedom on the pilot node if they aren't explicitly constrained.

By setting $\operatorname{KEYOPT}(2)=1$ for the target elements, you can apply boundary conditions on any rigid target nodes rather than only on the pilot node. It is your responsibility to make sure the rigid target surface is not under-constrained or over-constrained. It is still recommended that you apply all boundary conditions on the pilot node, even when $\operatorname{KEYOPT}(2)=1$.

## Considerations for Deformable Target Surfaces

For general deformable surfaces, you will normally use the ESURF command to overlay the target elements on the boundary of the existing mesh. Note that the segment types (TSHAP command) should not be used for this case.

## Considerations for Fluid Penetration Loading

To model fluid penetration loads, use the SFE command to specify the fluid pressure and fluid penetration starting points. For more information, see Applying Fluid Pressure-Penetration Loads in the Contact Technology Guide.

## Considerations for Thermal Contact Analysis

By default, the temperature is set to the value of TUNIF, and if this has no explicit value the temperature is set to zero. For thermal contact analysis, such as convection and radiation modeling, the behavior of a thermal contact surface (whether a "near-field" or "free" surface) is usually based on the contact status. Contact status affects the behavior of the contact surface as follows:

- If the contact surface is outside the pinball region, its behavior is as a far-field of free surface. In this instance, convection/radiation occurs with the ambient temperature.
- If the contact surface is inside the pinball region, the behavior is as a near-field surface.

However, the thermal contact surface status is ignored if $\operatorname{KEYOPT}(3)=1$ is set, and the surface is always treated as a free surface (see CONTA171, CONTA172, or CONTA175 for details).

A summary of the element input is given in "TARGE169 Input Summary" (p. 737). A general description of element input is given in Element Input (p. 5).

## TARGE169 Input Summary

## Nodes

$\mathrm{I}, \mathrm{J}, \mathrm{K}$ (J and K are not required for all segment types)

## Degrees of Freedom

UX, UY, ROTZ, TEMP, VOLT, AZ (ROTZ is used for the pilot node only )

## Real Constants

R1, R2, [the others are defined through the associated CONTA171, CONTA172, or CONTA175 element]

## Material Properties

None

## Surface Loads

Pressure, Face 1 (I-J) (opposite to target normal direction)

## Body Loads

None

## Special Features

Nonlinear
Birth and death
Fluid pressure penetration load
Linear perturbation

## KEYOPT(2)

Boundary conditions for rigid target nodes:
0 --
Automatically constrained by ANSYS
1 --
Specified by user

## KEYOPT(3)

Behavior of thermal contact surface
0 --
Based on contact status
1 --
Treated as free-surface

## KEYOPT(4)

DOF set to be constrained on dependent DOF for internally-generated multipoint constraints (MPCs). This option is used for these situations: solid-solid and shell-shell assemblies; surface-based constraints that use a single pilot node for the target element; and rigid target surfaces that use the $\operatorname{KEYOPT}(2)=$ 1 setting.
n --
Enter a three digit value that represents the DOF set to be constrained. The first to third digits represent ROTZ, UY, UX, respectively. The number 1 (one) indicates the DOF is active, and the number

0 (zero) indicates the DOF is not active. For example, 011 means that UX and UY will be used in the multipoint constraint. Leading zeros may be omitted; for example, you can enter 1 to indicate that UX is the only active DOF. If $\operatorname{KEYOPT}(4)=0$ (which is the default) or 111 , all DOF are constrained.

## TARGE169 Output Data

The solution output associated with the element is shown in Table 2: TARGE169 Element Output Definitions (p. 738). The following notation is used:

## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and " - " indicates that the item is not available.

## Table 2 TARGE169 Element Output Definitions

Name	Definition	$\mathbf{O}$	$\mathbf{R}$
EL	Element Number	Y	Y
NODES	Nodes I, J, and K	Y	Y
ITRGET	Target surface number (assigned by ANSYS)	Y	Y
TSHAP	Segment shape type	Y	Y
ISEG	Segment numbering	1	1
FPRS	Actual applied fluid penetration pressure	Y	Y

1. An internal segment number determined by ANSYS. ISEG for the target element has a different meaning than ISEG reported for the contact element.

You can display or list the actual fluid pressure applied to the target element through several POST1 postprocessing commands, as shown below:

```
PLESOL,CONT,FPRS
PLNSOL, CONT, FPRS
PRESOL,CONT
PRNSOL,CONT
```

Note that only the FPRS (fluid penetration pressure) output item is meaningful when the PRESOL and PRNSOL commands are used for target elements.

Table 3: TARGE169 Item and Sequence Numbers (p. 739) lists output available through the ETABLE command using the Sequence Number method. See Creating an Element Table in the Basic Analysis Guide and The Item and Sequence Number Table (p. 9) in this manual for more information. The following notation is used in Table 3: TARGE169 Item and Sequence Numbers (p. 739):

## Name

output quantity as defined in the Table 2: TARGE169 Element Output Definitions (p. 738)

## Item

predetermined Item label for ETABLE command

## E

sequence number for single-valued or constant element data
I,J
sequence number for data at nodes I, J

## Table 3 TARGE169 Item and Sequence Numbers

Output	ETABLE and ESOL Command					
Quant-						
ity						
Name					$\quad$	Item
:---						
FPRS						

## TARGE169 Assumptions and Restrictions

- The 2-D segment element must be defined in an X-Y plane.
- For each pilot node, ANSYS automatically defines an internal node and an internal constraint equation. The rotational DOF of the pilot node is connected to the translational DOF of the internal node by the internal constraint equation. ANSYS recommends against using external constraint equations or coupling on pilot nodes; if you do, conflicts may occur, yielding incorrect results.
- For circular arcs, the third node defines the actual center of the circle and must be defined accurately when the element is generated and must be moved consistently with the other nodes during the deformation process. If the third node is not moved consistently with the other nodes, the arc shape will change with that node's movement. To ensure the correct behavior, apply all boundary conditions to a pilot node.
- For parabolic segments, the third point must lie at the middle of the parabola.
- Generally speaking, you should not change the R1 real constant between load steps or during restart stages; otherwise ANSYS assumes the radius of the circle varies between the load steps. When using direct generation, the real constant R1 for circles may be defined before the input of the element nodes. If multiple rigid circles are defined, each having a different radius, they must be defined by different target surfaces.
- For rotation of a rigid body constrained only by a bonded, rigid-flexible contact pair with a pilot node, use the MPC algorithm or a surface-based constraint as described in "Multipoint Constraints and Assemblies" in the Contact Technology Guide. Penalty-based algorithms can create undesirable rotational energies in this situation.


## TARGE169 Product Restrictions

There are no product-specific restrictions for this element.

## TARGE170

3-D Target Segment

> MP ME ST PR PRN DS DSS <> EM <> <> PP <> EME MFS

Product Restrictions

## TARGE170 Element Description

TARGE170 is used to represent various 3-D "target" surfaces for the associated contact elements (CONTA173, CONTA174, CONTA175, CONTA176, and CONTA177). The contact elements themselves overlay the solid, shell, or line elements describing the boundary of a deformable body and are potentially in contact with the target surface, defined by TARGE170. This target surface is discretized by a set of target segment elements (TARGE170) and is paired with its associated contact surface via a shared real constant set. You can impose any translational or rotational displacement, temperature, voltage, and magnetic potential on the target segment element. You can also impose forces and moments on target elements. See TARGE170 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element. To represent 2-D target surfaces, use TARGE169, a 2-D target segment element.

For rigid target surfaces, these elements can easily model complex target shapes. For flexible targets, these elements will overlay the solid, shell, or line elements describing the boundary of the deformable target body.

Figure 1 TARGE170 Geometry


Contact Element
CONTA173 or CONTA174


## TARGE170 Input Data

The target surface is modeled through a set of target segments, typically, several target segments comprise one target surface.

The target surface can either be rigid or deformable. For modeling rigid-flexible contact, the rigid surface must be represented by a target surface. For flexible-flexible contact, one of the deformable surfaces must be overlayed by a target surface. See the Contact Technology Guide for more information about designating contact and target surfaces.

The target and associated contact surfaces are identified via a shared real constant set. This real constant set includes all real constants for both the target and contact elements.

Each target surface can be associated with only one contact surface, and vice-versa. However, several contact elements could make up the contact surface and thus come in contact with the same target surface. Likewise, several target elements could make up the target surface and thus come in contact with the same contact
surface. For either the target or contact surfaces, you can put many elements in a single target or contact surface, or you can localize the contact and target surfaces by splitting the large surfaces into smaller target and contact surfaces, each of which contain fewer elements.

If a contact surface may contact more than one target surface, you must define duplicate contact surfaces that share the same geometry but relate to separate targets, that is, that have separate real constant set numbers.

Figure 2 (p. 745) shows the available segment types for TARGE170. The general 3-D surface segments (3-node and 6 -node triangles, and 4 -node and 8 -node quadrilaterals) and the primitive segments (cylinder, cone, and sphere) can be paired with 3-D surface-to-surface contact elements, CONTA173 and CONTA174, the 3D node-to-surface contact element, CONTA175, and the 3-D line-to-surface contact element, CONTA177. The line segments (2-node line and 3-node parabola) can only be paired with the 3-D line-to-line contact element, CONTA176, to model 3-D beam-to-beam contact.

For any target surface definition, the node ordering of the target segment element is critical for proper detection of contact. For the general 3-D surface segments (triangle and quadrilateral segment types), the nodes must be ordered so that the outward normal to the target surface is defined by the right hand rule (see Figure 2 ( p .745 )). Therefore, for the surface target segments, the outward normal by the right hand rule is consistent to the external normal. For 3-D line segments (straight line and parabolic line), the nodes must be entered in a sequence that defines a continuous line. For a rigid cylinder, cone, or sphere, contact must occur on the outside of the elements; internal contacting of these segments is not allowed.

## Considerations for Rigid Target Surfaces

Each target segment of a rigid surface is a single element with a specific shape, or segment type.The segment types are defined by several nodes and a target shape code, TSHAP, and are described in Table 1: TARGE170 3-D Segment Types, Target Shape Codes, and Nodes (p. 743). The TSHAP command indicates the geometry (shape) of the element. The segment radii are defined by real constants (R1 and R2), and the segment location is determined by the nodes. ANSYS supports eleven 3-D segment types; see Table 1: TARGE170 3-D Segment Types, Target Shape Codes, and Nodes (p. 743).

Table 1 TARGE170 3-D Segment Types, Target Shape Codes, and Nodes

TSHAP	Segment Type	Nodes (DOF) ${ }^{[1]}$	R1	R2
TRIA	3-node triangle	1st - 3rd nodes are corner points (UX,   UY, UZ) (TEMP) (VOLT) (MAG)	None	None
QUAD	4-node quadrilater-   al	1st - 4th nodes are corner points (UX,   UY, UZ) (TEMP) (VOLT) (MAG)	None	None
TRI6	6-node triangle	1st - 3rd nodes are corner points, 4th -   6th are midside nodes (UX, UY, UZ)   (TEMP) (VOLT) (MAG)	None	None
QUA8	8-node quadrilater-   al	1st - 4th nodes are corner points, 5th -   8th are midside nodes (UX, UY, UZ)   (TEMP) (VOLT) (MAG)	None	None
LINE	2-node straight line	1st - 2nd nodes are line end points (UX,   UY, UZ)	Target   Radius	Contact   Radius
PARA	3-node parabola	1st - 2nd nodes are line end points, 3rd   is a midside node (UX, UY, UZ)	Target   Radius ${ }^{[4]}$	Contact   Radius ${ }^{[5] ~}$


TSHAP	Segment Type	Nodes (DOF) ${ }^{[1]}$	R1	R2
CYLI	Cylinder ${ }^{[2]}$	1st - 2nd nodes are axial end points (UX,   UY, UZ) (TEMP) (VOLT) (MAG)	Radius	None
CONE	Cone $^{[2]}$	1st - 2nd nodes are axial end points (UX,   UY, UZ) (TEMP) (VOLT) (MAG)	Radius   at node   1	Radius   at node   2
SPHE	Sphere $^{[2]}$	Sphere center point (UX, UY, UZ) (TEMP)   (VOLT) (MAG)	Radius	None
PILO	Pilot node $^{[3]}$	1st point: (UX, UY, UZ, ROTX, ROTY,   ROTZ) (TEMP) (VOLT) (MAG)	None	None
POINT	Point $^{6}$	1st point: (UX, UY, UZ)	None	None

1. The DOF available depends on the setting of KEYOPT(1) of the associated contact element. Refer to the element documentation for either CONTA173, CONTA174, or CONTA175 for more details.
2. When creating a cylinder, cone, or sphere via direct generation, define the real constant set before creating the element.
3. Only pilot nodes have rotational degrees of freedom (ROTX, ROTY, ROTZ).
4. Input the target radius as a negative value when modeling internal pipe-to-pipe contact (a pipe contacting/sliding inside another pipe). Input a positive value to model external 3-D beam-to-beam contact.
5. Input a positive contact radius when modeling internal pipe-to-pipe contact or external 3-D beam-tobeam contact.
6. Rigid surface node. This segment type is only used to apply boundary conditions to rigid target surfaces.

Figure 2 (p.745) shows the 3-D segment shapes.

Figure 2 TARGE170 Segment Types


For simple rigid target surfaces (including line segments), you can define the target segment elements individually by direct generation. You must first specify the SHAPE argument on the TSHAP command. When creating cylinders, cones, or spheres through direct generation, you must also define the real constant R1 (and R2 for cones) before creating the element. Real constants R1 and R2 (see Table 1: TARGE170 3-D Segment Types, Target Shape Codes, and Nodes (p. 743)) define the dimensions of the target shape.

For general 3-D rigid surfaces, target segment elements can be defined by area meshing (AMESH). Set $\operatorname{KEYOPT}(1)=0$ (the default) to generate low order target elements (3-node triangles and/or 4-node quadrilaterals) for rigid surfaces. Set $\operatorname{KEYOPT}(1)=1$ to generate target elements with midside nodes ( 6 -node triangles and/or 8-node quadrilaterals).

For 3-D rigid lines, target segment elements can be defined by line meshing (LMESH). Set KEYOPT(1) $=0$ (the default) to generate low order target elements (2-node straight lines). Set $\operatorname{KEYOPT}(1)=1$ to generate target elements with midside nodes (3-node parabolas).

You can also use keypoint meshing (KMESH) to generate the pilot node.
If the TARGE170 elements will be created via program meshing (AMESH, LMESH, or KMESH commands), then the TSHAP command is ignored and ANSYS chooses the correct shape automatically.

For rigid-to-flexible contact, by default, ANSYS automatically fixes the structural degree of freedom for rigid target nodes if they aren't explicitly constrained ( $\operatorname{KEYOPT}(2)=0$ ). If you wish, you can override the automatic boundary condition settings by setting KEYOPT(2) = 1 for the target elements. For flexible-to-flexible contact, no special boundary conditions treatment is performed, and the $\operatorname{KEYOPT}(2)=0$ setting should be used.

For each rigid-flexible contact pair, you can assign only one pilot node to an entire rigid target surface (or none if it is not needed). The pilot node, unlike the other segment types, is used to define the degrees of freedom for the entire target surface. This node can be any of the target surface nodes, but it does not have to be. All possible rigid motions of the target surface will be a combination of a translation and a rotation around the pilot node. The pilot node provides a convenient and powerful way to assign boundary conditions such as rotations, translations, moments, temperature, voltage, and magnetic potential on an entire rigid target surface. By default $(\operatorname{KEYOPT}(2)=0)$, you can assign the boundary conditions only to the pilot node, eliminating the need to assign boundary conditions to individual target nodes, thus reducing the chance of errors. ANSYS will also automatically fix the structural degrees of freedom on the pilot node if they aren't explicitly constrained.

By setting $\operatorname{KEYOPT}(2)=1$ for the target elements, you can apply boundary conditions on any rigid target nodes rather than only on the pilot node. It is your responsibility to make sure the rigid target surface is not under-constrained or over-constrained. It is still recommended that you apply all boundary conditions on the pilot node, even when $\operatorname{KEYOPT}(2)=1$.

## Considerations for Deformable Target Surfaces

For general deformable surfaces, use the ESURF command to overlay the target elements on the boundary of the existing mesh. By default, the command generates a target element with an external surface that has the same shape as the underlying element. You can issue ESURF,,,LINE to generate 3-D line or parabola segments on an exterior of selected 3-D elements (e.g., shell edges). Segment types (TSHAP command) should not be used prior to ESURF when generating target elements on deformable target surfaces.

The cylinder, cone, sphere, point, and pilot node target segments should not be used for deformable target surfaces. However, you can use geometry correction (see below) for deformable target surfaces that represent (or approximately represent) a sphere, cylinder, or cone.

## Considerations for Geometry Correction

In general, curved contact and target surfaces can be well approximated by linear or quadratic contact and target elements when the mesh is sufficiently refined. However, in certain circumstances (for example, when linear elements are used or when the midside nodes of quadratic elements do not lie exactly on the initial curved geometry because a third party mesh generator was used), using a faceted surface in place of the true curved geometry can significantly affect the accuracy of contact stresses. An optional geometric correction can be used for two types of curved surfaces (spherical and revolute) via SECTYPE and SECDATA section commands. The defined geometry correction can be applied to specific contact elements via a section ID
(SECNUM command). For details, see Geometry Correction for Contact and Target Surfaces in the Contact Technology Guide.

## Considerations for Fluid Penetration Loading

To model fluid penetration loads, use the SFE command to specify the fluid pressure and fluid penetration starting points. For more information, see Applying Fluid Pressure-Penetration Loads in the Contact Technology Guide.

## Considerations for Thermal Contact Analysis

By default, the temperature is set to the value of TUNIF, and if this has no explicit value the temperature is set to zero. For thermal contact analysis, such as convection and radiation modeling, the behavior of a thermal contact surface (whether a "near-field" or "free" surface) is usually based on the contact status. Contact status affects the behavior of the contact surface as follows:

- If the contact surface is outside the pinball region, its behavior is as a far-field of free surface. In this instance, convection/radiation occurs with the ambient temperature.
- If the contact surface is inside the pinball region, the behavior is as a near-field surface.

However, the thermal contact surface status is ignored if $\operatorname{KEYOPT}(3)=1$ is set, and the surface is always treated as a free surface (see CONTA173, CONTA174, or CONTA175 for details).

A summary of the element input is given in "TARGE170 Input Summary" (p. 747). A general description of element input is given in Element Input (p. 5).

## TARGE170 Input Summary

## Nodes

I, J, K, L, M, N, O, P (J - P are not required for all segment types)

## Degrees of Freedom

UX, UY, UZ, TEMP, VOLT, MAG (ROTX, ROTY, ROTZ for pilot nodes only)

## Real Constants

R1, R2, [the others are defined through the associated CONTA173, CONTA174, CONTA175, CONTA176, or CONTA177 elements]

## Material Properties

None

## Surface Loads

Pressure, Face 1 (I-J-K-L) (opposite to target normal direction)

## Body Loads

None

## Special Features

Nonlinear
Birth and death
Fluid pressure penetration load
Section definition used for geometry correction of spherical and revolute surfaces Linear perturbation

## KEYOPT(1)

Element order (used by AMESH and LMESH commands only):
0 --
Low order elements
1 --
High order elements

## KEYOPT(2)

Boundary conditions for rigid target nodes:
0 --
Automatically constrained by ANSYS
1 --
Specified by user

## KEYOPT(3)

Behavior of thermal contact surface:
0 --
Based on contact status
1 --
Treated as free-surface

## KEYOPT(4)

DOF set to be constrained on dependent DOF for internally-generated multipoint constraints (MPCs).
This option is used for these situations: solid-solid and shell-shell assemblies; surface-based constraints that use a single pilot node for the target element; and rigid target surfaces that use the KEYOPT(2) = 1 setting.
n --
Enter a six digit value that represents the DOF set to be constrained. The first to sixth digits represent ROTZ, ROTY, ROTX, UZ, UY, UX, respectively. The number 1 (one) indicates the DOF is active, and the number 0 (zero) indicates the DOF is not active. For example, 100011 means that UX, UY, and ROTZ will be used in the multipoint constraint. Leading zeros may be omitted; for example, you can enter 11 to indicate that UX and UY are the only active DOF. If $\operatorname{KEYOPT}(4)=0$ (which is the default) or 111111, all DOF are constrained.

## KEYOPT(5)

DOF set to be used in internally-generated multipoint constraints (MPCs), with the MPC algorithm and no separation or bonded behavior $(\operatorname{KEYOPT}(2)=2$ and $\operatorname{KEYOPT}(12)=4,5$, or 6 on the contact element). Note that this key option is not used for surface-based constraints. (See "Multipoint Constraints and Assemblies" in the Contact Technology Guide for more information):

0 --
Automatic constraint type detection (default)
1 --
Solid-solid constraint (no rotational DOFs are constrained)
2 --
Shell-shell constraint (both translational and rotational DOFs are constrained independently). Also used with penalty based shell-shell assembly $(\operatorname{KEYOPT}(2)=0$ or 1 and $\operatorname{KEYOPT}(12)=5$ or 6 on the contact element); see Bonded Contact for Shell-Shell Assemblies in the Contact Technology Guide for more information.

3 --
Shell-solid constraint - contact normal direction (both translational and rotational DOFs from the contact surface are included in the constraint set; only translational DOFs from the target surface are included in the constraint set).

4 --
Shell-solid constraint - all directions. This option acts the same as $\operatorname{KEYOPT}(5)=3$ if an intersection is found from the contact normal to the target surface. Otherwise, constraint equations are still built as long as contact node(s) and target segments are inside the pinball region.
5 --
Shell-solid constraint - anywhere inside pinball region. Constraint equations are always built as long as contact node(s) and target segments are inside the pinball region, regardless of whether an intersection exists between the contact normal and the target surface.

## Note

When the no separation option $(\operatorname{KEYOPT}(12)=4$ on the contact element) is used with the MPC approach, only the $\operatorname{KEYOPT}(5)=0$ and 1 options (auto detection or solid-solid constraint) described above are valid. If the auto detection option is set and the program finds a shellshell or shell-solid constraint in this situation, the solution will terminate.

## TARGE170 Output Data

The solution output associated with the element is shown in Table 2: TARGE170 Element Output Definitions (p. 749).

## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " $Y$ " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and " ${ }^{-}$" indicates that the item is not available.

Table 2 TARGE170 Element Output Definitions

Name	Definition	$\mathbf{O}$	$\mathbf{R}$
EL	Element Number	Y	Y
NODES	Nodes I, J, and K	Y	Y
ITRGET	Target surface number (assigned by ANSYS)	Y	Y
TSHAP	Segment shape type	Y	Y
ISEG	Segment numbering	1	1
FPRS	Actual applied fluid penetration pressure	Y	Y

1. An internal segment number determined by ANSYS. ISEG for the target element has a different meaning than ISEG reported for the contact element.

You can display or list the actual fluid pressure applied to the target element through several POST1 postprocessing commands, as shown below:

Note that only the FPRS (fluid penetration pressure) output item is meaningful when the PRESOL and PRNSOL commands are used for target elements.

Table 3: TARGE170 Item and Sequence Numbers (p. 750) lists output available through the ETABLE command using the Sequence Number method. See Creating an Element Table in the Basic Analysis Guide and The Item and Sequence Number Table (p. 9) in this manual for more information. The following notation is used in Table 3: TARGE170 Item and Sequence Numbers (p. 750):

## Name

output quantity as defined in the Table 2: TARGE170 Element Output Definitions (p. 749)

## Item

predetermined Item label for ETABLE command
E
sequence number for single-valued or constant element data

## $\mathbf{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}$

sequence number for data at nodes I, J, K, L

## Table 3 TARGE170 Item and Sequence Numbers

Output   Quant-   ity   Name	ETABLE and ESOL Command Input					
	Item	E	$\mathbf{I}$	J	K	$\mathbf{L}$
FPRS	SMISC	5	1	2	3	4

## TARGE170 Assumptions and Restrictions

- Generally speaking, you should not change real constants R1 or R2, either between load steps or during restart stages; otherwise ANSYS assumes the radii of the primitive segments varies between the load steps. When using direct generation, the real constants for cylinders, cones, and spheres may be defined before the input of the element nodes. If multiple rigid primitives are defined, each having different radii, they must be defined by different target surfaces.
- For each pilot node, ANSYS automatically defines an internal node and an internal constraint equation. The rotational DOF of the pilot node is connected to the translational DOF of the internal node by the internal constraint equation. ANSYS recommends against using external constraint equations or coupling on pilot nodes; if you do, conflicts may occur, yielding incorrect results.
- For rotation of a rigid body constrained only by a bonded, rigid-flexible contact pair with a pilot node, use the MPC algorithm or a surface-based constraint as described in "Multipoint Constraints and Assemblies" in the Contact Technology Guide. Penalty-based algorithms can create undesirable rotational energies in this situation.


## TARGE170 Product Restrictions

There are no product-specific restrictions for this element.

## CONTA171 Element Description

CONTA171 is used to represent contact and sliding between 2-D "target" surfaces (TARGE169) and a deformable surface, defined by this element. The element is applicable to 2-D structural and coupled field contact analyses. This element is located on the surfaces of 2-D solid, shell, or beam elements without midside nodes (such as PLANE13, PLANE55, PLANE182, MATRIX50, and SHELL208). It has the same geometric characteristics as the solid, shell, or beam element face with which it is connected (see Figure 1 (p. 751)). Contact occurs when the element surface penetrates one of the target segment elements (TARGE169) on a specified target surface. Coulomb friction, shear stress friction, and user defined friction with the USERFRIC subroutine are allowed. This element also allows separation of bonded contact to simulate interface delamination. See CONTA171 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element. Other surface-to-surface contact elements (CONTA172, CONTA173, CONTA174) are also available.

Figure 1 CONTA171 Geometry


## CONTA171 Input Data

The geometry and node locations are shown in Figure 1 (p.751). The element is defined by two nodes (the underlying solid, shell, or beam element has no midside nodes). If the underlying solid, shell, or beam elements do have midside nodes, use CONTA172. The element $x$-axis is along the I-J line of the element. The correct node ordering of the contact element is critical for proper detection of contact. The nodes must be ordered such that the target must lie to the right side of the contact element when moving from the first contact element node to the second contact element node as in Figure 1 (p.751). See Generating Contact Elements in the Contact Technology Guide for more information on generating elements automatically using the ESURF command.

The 2-D contact surface elements are associated with the 2-D target segment elements (TARGE169) via a shared real constant set. ANSYS looks for contact only between surfaces with the same real constant set. For modeling either rigid-flexible or flexible-flexible contact, one of the deformable surfaces must be represented by a contact surface. See Designating Contact and Target Surfaces in the Contact Technology Guide for more information.

If more than one target surface will make contact with the same boundary of solid elements, you must define several contact elements that share the same geometry but relate to separate targets (targets which have different real constant numbers), or you must combine the two target surfaces into one (targets that share the same real constant numbers).

To model separation of bonded contact with $\operatorname{KEYOPT}(12)=2,3,4,5$, or 6 , use the TB command with the CZM label. See "Debonding" in the Contact Technology Guide for more information.

To model proper momentum transfer and energy balance between contact and target surfaces, impact constraints should be used in transient dynamic analysis. See the description of KEYOPT(7) below and the contact element discussion in the Theory Reference for the Mechanical APDL and Mechanical Applications for details.

To model isotropic friction, use the TB,FRIC,,,,ISO command. You can define a coefficient of friction that is dependent on temperature, time, normal pressure, sliding distance, or sliding relative velocity by using the TBFIELD command along with TB,FRIC,,,ISO. See Contact Friction (TB,FRIC) (p. 83) for more information.

To implement a user-defined friction model, use the TB,FRIC command with $T B O P T=$ USER to specify friction properties and write a USERFRIC subroutine to compute friction forces. See User-Defined Friction (TB,FRIC,,,USER) (p. 85) for more information on how to use this feature. See also the Guide to ANSYS User Programmable Features for a detailed description of the USERFRIC subroutine.

To model fluid penetration loads, use the SFE command to specify the fluid pressure and fluid penetration starting points. For more information, see Applying Fluid Pressure-Penetration Loads in the Contact Technology Guide.

This element supports various 2-D stress states, including plane stress, plane strain, and axisymmetric states. The stress state is automatically detected according to the stress state of the underlying element. However, if the underlying element is a superelement, you must use $\operatorname{KEYOPT}(3)$ to specify the stress state.

A summary of the element input is given in "CONTA171 Input Summary" (p. 752). A general description of element input is given in Element Input (p. 5). For axisymmetric applications see Harmonic Axisymmetric Elements (p. 102).

## CONTA171 Input Summary

## Nodes

I, J

## Degrees of Freedom

UX, UY (if $\operatorname{KEYOPT}(1)=0)$
UX, UY, TEMP (if KEYOPT(1) = 1)
TEMP (if KEYOPT(1) = 2)
UX, UY, TEMP, VOLT (if KEYOPT(1) = 3)
TEMP, VOLT (if $\operatorname{KEYOPT}(1)=4$ )
UX, UY, VOLT (if $\operatorname{KEYOPT}(1)=5$ )
VOLT (if $\operatorname{KEYOPT}(1)=6$ )
AZ (if $\operatorname{KEYOPT}(1)=7$ )

## Real Constants

R1, R2, FKN, FTOLN, ICONT, PINB, PMAX, PMIN, TAUMAX, CNOF, FKOP, FKT,

COHE, TCC, FHTG, SBCT, RDVF, FWGT,
ECC, FHEG, FACT, DC, SLTO, TNOP,
TOLS, , PPCN, FPAT, COR, STRM
See Table 1: CONTA171 Real Constants (p. 757) for descriptions of the real constants.

## Material Properties

MU, EMIS (MP command)
FRIC (TB command; see Contact Friction (TB,FRIC) (p. 83))
CZM (TB command; see Cohesive Zone Materials Used for Debonding in the Contact Technology Guide)

## Surface Loads

Pressure, Face 1 (I-J) (opposite to contact normal direction); used for fluid pressure penetration loading. On the SFE command use $L K E Y=1$ to specify the pressure values, and use $L K E Y=2$ to specify starting points and penetrating points.
Convection, Face 1 (I-J)
Heat Flux, Face 1 (I-J)

## Special Features

Nonlinear
Large deflection
Isotropic friction; USERFRIC subroutine
Debonding
Birth and death
Fluid pressure penetration load
Linear perturbation

## KEYOPTs

Presented below is a list of KEYOPTS available for this element. Included are links to sections in the Contact Technology Guide where more information is available on a particular topic.

## KEYOPT(1)

Selects degrees of freedom:
0 --
UX, UY
1 --
UX, UY, TEMP
2 --
TEMP
3 --
UX, UY, TEMP, VOLT
4 --
TEMP, VOLT
5 --
UX, UY, VOLT
6 --
VOLT
7 --
AZ

## KEYOPT(2)

Contact algorithm:
0 --
Augmented Lagrangian (default)
1 --
Penalty function
2 --
Multipoint constraint (MPC); see "Multipoint Constraints and Assemblies" in the Contact Technology Guide for more information

3 --
Lagrange multiplier on contact normal and penalty on tangent
4 --
Pure Lagrange multiplier on contact normal and tangent

## KEYOPT(3)

Stress state when superelements are present:
0 --
Use with h-elements (no superelements)
1 --
Axisymmetric (use with superelements only)
2 --
Plane stress/Plane strain (use with superelements only)
3 --
Plane stress with thickness input (use with superelements only)

## KEYOPT(4)

Location of contact detection point:
0 --
On Gauss point (for general cases)
1 --
On nodal point - normal from contact surface
2 --
On nodal point - normal to target surface

## Note

When using the multipoint constraint (MPC) approach to define surface-based constraints, use KEYOPT(4) in the following way: set $\operatorname{KEYOPT}(4)=1$ for a force-distributed constraint, set KEYOPT $(4)=2$ for a rigid surface constraint. See Surface-based Constraints for more information.

## KEYOPT(5)

CNOF/ICONT Automated adjustment:
0 --
No automated adjustment
1 --
Close gap with auto CNOF

## 2 --

Reduce penetration with auto CNOF
3 --
Close gap/reduce penetration with auto CNOF
4 --
Auto ICONT

## KEYOPT(6)

Contact stiffness variation (used to enhance stiffness updating when $\operatorname{KEYOPT}(10)>0$ ):
0 --
Use default range for stiffness updating
1 --
Make a nominal refinement to the allowable stiffness range
2 --
Make an aggressive refinement to the allowable stiffness range

## KEYOPT(7)

Element level time incrementation control / impact constraints:
0 --
No control
1 --
Automatic bisection of increment
2 --
Change in contact predictions made to maintain a reasonable time/load increment
3 --
Change in contact predictions made to achieve the minimum time/load increment whenever a change in contact status occurs

4 --
Use impact constraints for standard or rough contact $(\operatorname{KEYOPT}(12)=0$ or 1$)$ in a transient dynamic analysis with automatic adjustment of time increment

## Note

$\operatorname{KEYOPT}(7)=2,3$, and 4 include an automatic adjustment of the time increment. This is activated only if the command SOLCONTROL,ON,ON was issued prior to the solution.

## KEYOPT(8)

Asymmetric contact selection:
0 --
No action
2 --
ANSYS internally selects which asymmetric contact pair is used at the solution stage (used only when symmetry contact is defined).

## KEYOPT(9)

Effect of initial penetration or gap:

0 --
Include both initial geometrical penetration or gap and offset
1 --
Exclude both initial geometrical penetration or gap and offset
2 --
Include both initial geometrical penetration or gap and offset, but with ramped effects
3 --
Include offset only (exclude initial geometrical penetration or gap)
4 --
Include offset only (exclude initial geometrical penetration or gap), but with ramped effects

## Note

The effects of KEYOPT(9) are dependent on settings for other KEYOPTs. See the discussion on using KEYOPT(9) in the Contact Technology Guide for more information.

## KEYOPT(10)

Contact stiffness update:
0 --
Each load step if FKN is redefined during load step (pair based).
2 --
Each iteration based on current mean stress of underlying elements (pair based).

## KEYOPT(11)

Beam/Shell thickness effect:
0 --
Exclude
1 --
Include

## KEYOPT(12)

Behavior of contact surface:
0 --
Standard
1 --
Rough
2 --
No separation (sliding permitted)
3 --
Bonded
4 --
No separation (always)
5 --
Bonded (always)

## 6 --

Bonded (initial contact)

## Note

When $\operatorname{KEYOPT}(12)=5$ or 6 is used with the MPC algorithm to model surface-based constraints, the KEYOPT(12) setting will have an impact on the local coordinate system of the contact element nodes. See Specifying a Local Coordinate System in the Contact Technology Guide for more information.

## KEYOPT(14)

Behavior of fluid pressure penetration load. KEYOPT(14) is valid only if a fluid pressure penetration load (SFE,,,PRES) is applied to the contact element:

0 --
Fluid pressure penetration load varies during iterations (default)
1 --
Fluid pressure penetration load remains constant over the substep
Table 1 CONTA171 Real Constants

No.	Name	Description	For more information, see   this section in the Contact   Technology Guide ...
1	R1	Target circle radius	Defining the Target Surface
2	R2	Superelement thickness	Defining the Target Surface
3	FKN	Normal penalty stiffness factor	Determining Contact Stiff-   ness and Penetration
4	FTOLN	Penetration tolerance factor	Determining Contact Stiff-   ness and Penetration
5	ICONT	Initial contact closure	Adjusting Initial Contact   Conditions
6	PINB	Pinball region	Determining Contact Status   and the Pinball Region   or
7	PMAX	Upper limit of initial allowable penetration	Defining Influence Range   (PINB)
Adjusting Initial Contact   Conditions			
8	PMIN	Lower limit of initial allowable penetration	Adjusting Initial Contact   Conditions
10	TAUMAX	Maximum friction stress	Choosing a Friction Model
11	Contact surface offset	Adjusting Initial Contact   Conditions	
Cong	ing	Celecting Surface Interaction   Models	


No.	Name	Description	For more information, see this section in the Contact Technology Guide . . .
12	FKT	Tangent penalty stiffness factor	Determining Contact Stiffness
13	COHE	Contact cohesion	Choosing a Friction Model
14	TCC	Thermal contact conductance	Modeling Conduction
15	FHTG	Frictional heating factor	Modeling Heat Generation Due to Friction
16	SBCT	Stefan-Boltzmann constant	Modeling Radiation
17	RDVF	Radiation view factor	Modeling Radiation
18	FWGT	Heat distribution weighing factor	Modeling Heat Generation Due to Friction (thermal) or   Heat Generation Due to Electric Current (electric)
19	ECC	Electric contact conductance	Modeling Surface Interaction
20	FHEG	Joule dissipation weight factor	Heat Generation Due to Electric Current
21	FACT	Static/dynamic ratio	Static and Dynamic Friction Coefficients
22	DC	Exponential decay coefficient	Static and Dynamic Friction Coefficients
23	SLTO	Allowable elastic slip	Using FKT and SLTO
24	TNOP	Maximum allowable tensile contact pressure	Chattering Control Parameters
25	TOLS	Target edge extension factor	Selecting Location of Contact Detection
27	PPCN	Pressure penetration criterion	Specifying a Pressure Penetration Criterion
28	FPAT	Fluid penetration acting time	Specifying a Fluid Penetration Acting Time
29	COR	Coefficient of restitution	Impact Between Rigid Bodies
30	STRM	Load step number for ramping penetration	Adjusting Initial Contact Conditions

## CONTA171 Output Data

The solution output associated with the element is in two forms:

- Nodal displacements included in the overall nodal solution
- Additional element output as shown in Table 2: CONTA171 Element Output Definitions (p. 759)

A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and " - " indicates that the item is not available.

Table 2: CONTA171 Element Output Definitions (p. 759) gives element output. In the results file, the nodal results are obtained from its closest integration point.

Table 2 CONTA171 Element Output Definitions

Name	Definition	0	R
EL	Element Number	Y	Y
NODES	Nodes I, J	Y	Y
XC, YC	Location where results are reported	Y	5
TEMP	Temperatures T(I), T(J)	Y	Y
LENGTH	Element length	Y	-
VOLU	AREA	Y	Y
NPI	Number of integration points	Y	-
ITRGET	Target surface number (assigned by ANSYS)	Y	-
ISOLID	Underlying solid, shell, or beam element number	Y	-
CONT:STAT	Current contact statuses	1	1
OLDST	Old contact statuses	1	1
NX, NY	Surface normal vector components	Y	-
ISEG	Current contacting target element number	Y	Y
OLDSEG	Underlying old target number	Y	-
CONT:PENE	Current penetration (gap $=0$; penetration = positive value)	Y	Y
CONT:GAP	Current gap (gap = negative value; penetration $=0$ )	Y	Y
NGAP	New or current gap at current converged substep (gap = negative value; penetration = positive value)	Y	-
OGAP	Old gap at previously converged substep (gap = negative value; penetration = positive value)	Y	-
IGAP	Initial gap at start of current substep (gap = negative value; penetration = positive value)	Y	Y
GGAP	Geometric gap at current converged substep (gap = negative value; penetration = positive value)	-	Y
CONT:PRES	Normal contact pressure	Y	Y
CONT:SFRIC	Tangential contact stress	Y	Y
KN	Current normal contact stiffness (Force/Length ${ }^{3}$ )	Y	Y


Name	Definition	0	R
KT	Current tangent contact stiffness (Force/Length ${ }^{3}$ )	Y	Y
MU	Friction coefficient	Y	-
CONT:SLIDE	Total accumulated sliding (algebraic sum)	3	3
ASLIDE	Total accumulated sliding (absolute sum)	3	3
TOLN	Penetration tolerance	Y	Y
CONT:STOTAL	Total stress SQRT (PRES**2+SFRIC**2)	Y	Y
FDDIS	Frictional energy dissipation	6	6
ELSI	Elastic slip distance for sticking contact within a substep	-	Y
VREL	Slip rate	-	Y
DBA	Penetration variation	Y	Y
PINB	Pinball Region	-	Y
CONT:CNOS	Total number of contact status changes during substep	Y	Y
TNOP	Maximum allowable tensile contact pressure	Y	Y
SLTO	Allowable elastic slip	Y	Y
CAREA	Contacting area	-	Y
CONT:FPRS	Actual applied fluid penetration pressure	-	Y
FSTART	Fluid penetration starting time	-	Y
DTSTART	Load step time during debonding	Y	Y
DPARAM	Debonding parameter	Y	Y
DENERI	Energy released due to separation in normal direction - mode I debonding	Y	Y
DENERII	Energy released due to separation in tangential direction mode II debonding	Y	Y
CNFX	Contact element force-x component	-	4
CNFY	Contact element force-Y component	-	Y
CONV	Convection coefficient	Y	Y
RAC	Radiation coefficient	Y	Y
TCC	Conductance coefficient	Y	Y
TEMPS	Temperature at contact point	Y	Y
TEMPT	Temperature at target surface	Y	Y
FXCV	Heat flux due to convection	Y	Y
FXRD	Heat flux due to radiation	Y	Y
FXCD	Heat flux due to conductance	Y	Y
CONT:FLUX	Total heat flux at contact surface	Y	Y
FXNP	Flux input	-	Y
CNFH	Contact element heat flow	-	Y
JCONT	Contact current density (Current/Unit Area)	Y	Y
CCONT	Contact charge density (Charge/Unit Area)	Y	Y


Name	Definition	$\mathbf{O}$	$\mathbf{R}$
HJOU	Contact power/area	Y	Y
ECURT	Current per contact element	-	Y
ECHAR	Charge per contact element	-	Y
ECC	Electric contact conductance (for electric current DOF), or   electric contact capacitance per unit area (for piezoelectric or   electrostatic DOFs)	Y	Y
VOLTS	Voltage on contact nodes	Y	Y
VOLTT	Voltage on associated target	Y	Y

1. The possible values of STAT and OLDST are:
$0=$ Open and not near contact
1 = Open but near contact
2 = Closed and sliding
3 = Closed and sticking
2. ANSYS will evaluate model to detect initial conditions.
3. Only accumulates the sliding when contact occurs.
4. Contact element forces are defined in the global Cartesian system.
5. Available only at centroid as a *GET item.
6. FDDIS $=($ contact friction stress)*(sliding distance of substep)/(time increment of substep)

## Note

If ETABLE is used for the CONT items, the reported data is averaged across the element.

## Note

Contact results (including all element results) are generally not reported for elements that have a status of "open and not near contact" (far-field).

Table 3: CONTA171 Item and Sequence Numbers (p. 762) lists output available through the ETABLE command using the Sequence Number method. See Creating an Element Table in the Basic Analysis Guide and The Item and Sequence Number Table (p. 9) in this manual for more information. The following notation is used in Table 3: CONTA171 Item and Sequence Numbers (p. 762):

## Name

output quantity as defined in the Table 2: CONTA171 Element Output Definitions (p. 759)

## Item

predetermined Item label for ETABLE command
E
sequence number for single-valued or constant element data

I,J
sequence number for data at nodes $\mathrm{I}, \mathrm{J}$
Table 3 CONTA171 Item and Sequence Numbers

Output   Quant-   ity   Name	ETABLE and ESOL Command			
Item	E	$\mathbf{I}$	$\mathbf{J}$	
PRES	SMISC	5	1	2
SFRIC	SMISC	-	3	4
FLUX	SMISC	-	6	7
FDDIS	SMISC	-	8	9
FXCV	SMISC	-	10	11
FXRD	SMISC	-	12	13
FXCD	SMISC	-	14	15
FXNP	SMISC	-	16	17
JCONT	SMISC	-	18	19
CCONT	SMISC	-	18	19
HJOU	SMISC	-	20	21
STAT[1]	NMISC	19	1	2
OLDST	NMISC	-	3	4
PENE[2]	NMISC	-	5	6
DBA	NMISC	-	7	8
SLIDE	NMISC	-	9	10
KN	NMISC	-	11	12
KT	NMISC	-	13	14
TOLN	NMISC	-	15	16
IGAP	NMISC	-	17	18
PINB	NMISC	20	-	-
CNFX	NMISC	21	-	-
CNFY	NMISC	22	-	-
ISEG	NMISC	-	23	24
ASLIDE	NMISC	-	25	26
CAREA	NMISC	27	-	-
MU	NMISC	-	29	30
DTSTART	NMISC	-	31	32
DPARAM	NMISC	-	33	34
FPRS	NMISC	-	35	36
TEMPS	NMISC	-	37	38
	NMISC	-	39	40


Output   Quant-   ity   Name	ETABLE and ESOL Command			
	Item	E	$\mathbf{I}$	$\mathbf{J}$
CONV	NMISC	-	41	42
RAC	NMISC	-	43	44
TCC	NMISC	-	45	46
CNFH	NMISC	47	-	-
ECURT	NMISC	48	-	-
ECHAR	NMISC	48	-	-
ECC	NMISC	-	49	50
VOLTS	NMISC	-	51	52
VOLTT	NMISC	-	53	54
CNOS	NMISC	-	55	56
TNOP	NMISC	-	57	58
SLTO	NMISC	-	59	60
ELSI	NMISC	-	67	68
DENERI	NMISC	-	69	70
DENERII	NMISC	-	71	72
FSTART	NMISC	-	73	74
GGAP	NMISC	-	75	76
VREL	NMISC	-	77	78

1. Element Status = highest value of status of integration points within the element
2. Penetration $=$ positive value, gap $=$ negative value

You can display or list contact results through several POST1 postprocessor commands. The contact specific items for the PLNSOL, PLESOL, PRNSOL, and PRESOL commands are listed below:

STAT	Contact status
PENE	Contact penetration
PRES	Contact pressure
SFRIC	Contact friction stress
STOT	Contact total stress (pressure plus friction)
SLIDE	Contact sliding distance
GAP	Total heat flux at contact surface
FLUX	Total number of contact status changes during sub-   step
CNOS	Actual applied fluid penetration pressure
FPRS	

## CONTA171 Assumptions and Restrictions

- The 2-D contact element must be defined in an $X-Y$ plane and the Y -axis must be the axis of symmetry for axisymmetric analyses.
- An axisymmetric structure should be modeled in the $+X$ quadrants.
- This 2-D contact element works with any 3-D elements in your model.
- Do not use this element in any model that contains axisymmetric harmonic elements.
- Node numbering must coincide with the external surface of the underlying solid, shell, or beam element, or with the original elements comprising the superelement.
- This element is nonlinear and requires a full Newton iterative solution, regardless of whether large or small deflections are specified. An exception to this is when MPC bonded contact is specified (KEYOPT(2) $=2$ and $\operatorname{KEYOPT}(12)=5$ or 6 ).
- The normal contact stiffness factor (FKN) must not be so large as to cause numerical instability.
- FTOLN, PINB, and FKOP can be changed between load steps or during restart stages.
- You can use this element in nonlinear static or nonlinear full transient analyses. In addition, you can use it in modal analyses, eigenvalue buckling analyses, and harmonic analyses. For these analysis types, the program assumes that the initial status of the element (i.e., the status at the completion of the static prestress analysis, if any) does not change.
- When nodal detection is used and the contact node is on the axis of symmetry in an axisymmetric analysis, the contact pressure on that node is not accurate since the area of the node is zero. The contact force is accurate in this situation.
- This element allows birth and death and will follow the birth and death status of the underlying solid, shell, beam, or target elements.
- The USERFRIC subroutine (user-defined friction) can only be used with penalty-based tangential contact (i.e., $\operatorname{KEYOPT}(2)=0,1$, or 3 ).


## CONTA171 Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

## ANSYS Professional

- The MU material property is not allowed.
- The birth and death special feature is not allowed.


## ANSYS Structural

- The VOLT DOF $(\operatorname{KEYOPT}(1)=3$ through 6$)$ is not allowed.
- The AZ DOF $(\operatorname{KEYOPT}(1)=7)$ is not allowed.


## ANSYS Mechanical

- The AZ DOF $(\operatorname{KEYOPT}(1)=7)$ is not allowed.

MP ME ST PR PRN DS DSS <> EM <> <> PP <> EME MFS
Product Restrictions

## CONTA172 Element Description

CONTA172 represents contact and sliding between 2-D "target" surfaces (TARGE169) and a deformable surface, defined by this element. The element is applicable to 2-D structural and coupled field contact analyses. This element is located on the surfaces of 2-D solid elements with midside nodes (PLANE35, PLANE77, PLANE53, PLANE121, PLANE183, SHELL209, PLANE223, PLANE230, or MATRIX50). It has the same geometric characteristics as the solid element face with which it is connected (see Figure 1 (p. 765)). Contact occurs when the element surface penetrates one of the target segment elements (TARGE169) on a specified target surface. Coulomb friction, shear stress friction, and user defined friction with the USERFRIC subroutine are allowed. This element also allows separation of bonded contact to simulate interface delamination. See CONTA172 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element. See Quadratic Elements (Midside Nodes) in the Modeling and Meshing Guide for a discussion concerning midside nodes. Other surface-to-surface contact elements (CONTA171, CONTA173, CONTA174) are also available.

## Figure 1 CONTA172 Geometry



## CONTA172 Input Data

The geometry and node locations are shown in Figure 1 (p.765). The element is defined by three nodes (the underlying solid element has midside nodes). If the underlying solid elements do not have midside nodes, use CONTA171 (you may still use CONTA172 but you must drop the midside nodes). The element $x$-axis is along the $\mathrm{I}-\mathrm{J}$ line of the element. The correct node ordering of the contact element is critical for proper detection of contact. The nodes must be ordered such that the target must lie to the right side of the contact element when moving from the first contact element node to the second contact element node as in Figure 1 (p. 765). See Generating Contact Elements in the Contact Technology Guide for more information on generating elements automatically using the ESURF command.

The 2-D contact surface elements are associated with the 2-D target segment elements (TARGE169) via a shared real constant set. ANSYS looks for contact only between surfaces with the same real constant set. For either rigid-flexible or flexible-flexible contact, one of the deformable surfaces must be represented by a contact surface. See Designating Contact and Target Surfaces in the Contact Technology Guide for more information.

If more than one target surface will make contact with the same boundary of solid elements, you must define several contact elements that share the same geometry but relate to separate targets (targets with different real constant numbers), or you must combine the two target surfaces into one (both having the same real constant number).

To model separation of bonded contact with $\operatorname{KEYOPT}(12)=2,3,4,5$, or 6 , use the TB command with the CZM label. See "Debonding" in the Contact Technology Guide for more information.

To model proper momentum transfer and energy balance between contact and target surfaces, impact constraints should be used in transient dynamic analysis. See the description of KEYOPT(7) below and the contact element discussion in the Theory Reference for the Mechanical APDL and Mechanical Applications for details.

To model isotropic friction, use the TB,FRIC,,,,ISO command. You can define a coefficient of friction that is dependent on temperature, time, normal pressure, sliding distance, or sliding relative velocity by using the TBFIELD command along with TB,FRIC,,,ISO. See Contact Friction (TB,FRIC) (p. 83) for more information.

To implement a user-defined friction model, use the TB,FRIC command with $T B O P T=$ USER to specify friction properties and write a USERFRIC subroutine to compute friction forces. See User-Defined Friction (TB,FRIC,,_USER) (p. 85) for more information on how to use this feature. See also the Guide to ANSYS User Programmable Features for a detailed description of the USERFRIC subroutine.

To model fluid penetration loads, use the SFE command to specify the fluid pressure and fluid penetration starting points. For more information, see Applying Fluid Pressure-Penetration Loads in the Contact Technology Guide.

This element supports various 2-D stress states, including plane stress, plane strain, and axisymmetric states. The stress state is automatically detected according to the stress state of the underlying element. However, if the underlying element is a superelement, you must use KEYOPT(3) to specify the stress state.

A summary of the element input is given in "CONTA172 Input Summary" (p. 766). A general description of element input is given in Element Input (p. 5).

## CONTA172 Input Summary

## Nodes

## I, J, K

## Degrees of Freedom

UX, UY (if KEYOPT(1) = 0 )
UX, UY, TEMP (if KEYOPT $(1)=1$ )
TEMP (if KEYOPT(1) = 2)
UX, UY, TEMP, VOLT (if KEYOPT(1) = 3)
TEMP, VOLT (if KEYOPT(1) = 4)
UX, UY, VOLT (if $\operatorname{KEYOPT}(1)=5$ )
VOLT (if $\operatorname{KEYOPT}(1)=6)$
AZ (if $\operatorname{KEYOPT}(1)=7$ )

## Real Constants

R1, R2, FKN, FTOLN, ICONT, PINB, PMAX, PMIN, TAUMAX, CNOF, FKOP, FKT,
COHE, TCC, FHTG, SBCT, RDVF, FWGT,

ECC, FHEG, FACT, DC, SLTO, TNOP,
TOLS, , PPCN, FPAT, COR, STRM
See Table 1: CONTA172 Real Constants (p. 771) for descriptions of the real constants.

## Material Properties

MU, EMIS (MP command)
FRIC (TB command; see Contact Friction (TB,FRIC) (p. 83))
CZM (TB command; see Cohesive Zone Materials Used for Debonding in the Contact Technology Guide)

## Surface Loads

Pressure, Face 1 (I-J) (opposite to contact normal direction); used for fluid pressure penetration loading. On the SFE command use $L K E Y=1$ to specify the pressure values, and use $L K E Y=2$ to specify starting points and penetrating points.
Convection, Face 1 (I-J-K)
Heat Flux, Face 1 (I-J-K)

## Special Features

Nonlinear
Large deflection
Isotropic friction; USERFRIC subroutine
Debonding
Birth and death
Fluid pressure penetration load
Linear perturbation

## KEYOPTs

Presented below is a list of KEYOPTS available for this element. Included are links to sections in the Contact Technology Guide where more information is available on a particular topic.

## KEYOPT(1)

Selects degrees of freedom:
0 --
UX, UY
1 --
UX, UY, TEMP
2 --
TEMP
3 --
UX, UY, TEMP, VOLT
4 --
TEMP, VOLT
5 --
UX, UY, VOLT
6 --
VOLT
7 --
AZ

## KEYOPT(2)

Contact algorithm:
0 --
Augmented Lagrangian (default)
1 --
Penalty function
2 --
Multipoint constraint (MPC); see "Multipoint Constraints and Assemblies" in the Contact Technology Guide for more information

3 --
Lagrange multiplier on contact normal and penalty on tangent
4 --
Pure Lagrange multiplier on contact normal and tangent

## KEYOPT(3)

Stress state when superelements are present:
0 --
Use with h-elements (no superelements)
1 --
Axisymmetric (use with superelements only)
2 --
Plane stress/Plane strain (use with superelements only)
3 --
Plane stress with thickness input (use with superelements only)

## KEYOPT(4)

Location of contact detection point:
0 --
On Gauss point (for general cases)
1 --
On nodal point - normal from contact surface
2 --
On nodal point - normal to target surface

## Note

When using the multipoint constraint (MPC) approach to define surface-based constraints, use KEYOPT(4) in the following way: set $\operatorname{KEYOPT}(4)=1$ for a force-distributed constraint, set KEYOPT $(4)=2$ for a rigid surface constraint. See Surface-based Constraints for more information.

## KEYOPT(5)

CNOF/ICONT Automated adjustment:
0 --
No automated adjustment
1 --
Close gap with auto CNOF

## 2 --

Reduce penetration with auto CNOF
3 --
Close gap/reduce penetration with auto CNOF
4 --
Auto ICONT

## KEYOPT(6)

Contact stiffness variation (used to enhance stiffness updating when $\operatorname{KEYOPT}(10)>0$ ):
0 --
Use default range for stiffness updating
1 --
Make a nominal refinement to the allowable stiffness range
2 --
Make an aggressive refinement to the allowable stiffness range

## KEYOPT(7)

Element level time incrementation control / impact constraints:
0 --
No control
1 --
Automatic bisection of increment
2 --
Change in contact predictions made to maintain a reasonable time/load increment
3 --
Change in contact predictions made to achieve the minimum time/load increment whenever a change in contact status occurs
4 --
Use impact constraints for standard or rough contact $(\operatorname{KEYOPT}(12)=0$ or 1$)$ in a transient dynamic analysis with automatic adjustment of time increment

## Note

$\operatorname{KEYOPT}(7)=2,3$, and 4 include an automatic adjustment of the time increment. This is activated only if the command SOLCONTROL,ON,ON was issued prior to the solution.

## KEYOPT(8)

Asymmetric contact selection:
0 --
No action
2 --
ANSYS internally selects which asymmetric contact pair is used at the solution stage (used only when symmetry contact is defined).

## KEYOPT(9)

Effect of initial penetration or gap:

0 --
Include both initial geometrical penetration or gap and offset
1 --
Exclude both initial geometrical penetration or gap and offset
2 --
Include both initial geometrical penetration or gap and offset, but with ramped effects
3 --
Include offset only (exclude initial geometrical penetration or gap)
4 --
Include offset only (exclude initial geometrical penetration or gap), but with ramped effects

## Note

The effects of KEYOPT(9) are dependent on settings for other KEYOPTs. See the discussion on using KEYOPT(9) in the Contact Technology Guide for more information.

## KEYOPT(10)

Contact stiffness update:
0 --
Each load step if FKN is redefined during load step (pair based).
2 --
Each iteration based on current mean stress of underlying elements (pair based).

## KEYOPT(11)

Beam/Shell thickness effect:
0 --
Exclude
1 --
Include

## KEYOPT(12)

Behavior of contact surface:
0 --
Standard
1 --
Rough
2 --
No separation (sliding permitted)
3 --
Bonded
4 --
No separation (always)
5 --
Bonded (always)

## 6 --

Bonded (initial contact)

## Note

When $\operatorname{KEYOPT}(12)=5$ or 6 is used with the MPC algorithm to model surface-based constraints, the KEYOPT(12) setting will have an impact on the local coordinate system of the contact element nodes. See Specifying a Local Coordinate System in the Contact Technology Guide for more information.

## KEYOPT(14)

Behavior of fluid pressure penetration load. KEYOPT(14) is valid only if a fluid pressure penetration load (SFE,,,PRES) is applied to the contact element:

0 --
Fluid pressure penetration load varies during iterations (default)
1 --
Fluid pressure penetration load remains constant over the substep
Table 1 CONTA172 Real Constants

No.	Name	Description	For more information, see   this section in the Contact   Technology Guide ...
1	R1	Target circle radius	Defining the Target Surface
2	R2	Superelement thickness	Defining the Target Surface
3	FKN	Normal penalty stiffness factor	Determining Contact Stiff-   ness and Penetration
4	FTOLN	Penetration tolerance factor	Determining Contact Stiff-   ness and Penetration
5	ICONT	Initial contact closure	Adjusting Initial Contact   Conditions
6	PINB	Pinball region	Determining Contact Status   and the Pinball Region   or   Defining Influence Range   (PINB)
7	PMAX	Upper limit of initial allowable penetration	Adjusting Initial Contact   Conditions
8	PMIN	Lower limit of initial allowable penetration	Adjusting Initial Contact   Conditions
9	TAUMAX	Maximum friction stress	Choosing a Friction Model
10	CNOF	Contact surface offset	Adjusting Initial Contact   Conditions
11	FKOP	Contact opening stiffness or contact damp-   ing	Selecting Surface Interaction   Models


No.	Name	Description	For more information, see this section in the Contact Technology Guide . . .
12	FKT	Tangent penalty stiffness factor	Determining Contact Stiffness
13	COHE	Contact cohesion	Choosing a Friction Model
14	TCC	Thermal contact conductance	Modeling Conduction
15	FHTG	Frictional heating factor	Modeling Heat Generation Due to Friction
16	SBCT	Stefan-Boltzmann constant	Modeling Radiation
17	RDVF	Radiation view factor	Modeling Radiation
18	FWGT	Heat distribution weighing factor	Modeling Heat Generation Due to Friction (thermal) or   Heat Generation Due to Electric Current (electric)
19	ECC	Electric contact conductance	Modeling Surface Interaction
20	FHEG	Joule dissipation weight factor	Heat Generation Due to Electric Current
21	FACT	Static/dynamic ratio	Static and Dynamic Friction Coefficients
22	DC	Exponential decay coefficient	Static and Dynamic Friction Coefficients
23	SLTO	Allowable elastic slip	Using FKT and SLTO
24	TNOP	Maximum allowable tensile contact pressure	Chattering Control Parameters
25	TOLS	Target edge extension factor	Selecting Location of Contact Detection
27	PPCN	Pressure penetration criterion	Specifying a Pressure Penetration Criterion
28	FPAT	Fluid penetration acting time	Specifying a Fluid Penetration Acting Time
29	COR	Coefficient of restitution	Impact Between Rigid Bodies
30	STRM	Load step number for ramping penetration	Adjusting Initial Contact Conditions

## CONTA172 Output Data

The solution output associated with the element is in two forms:

- Nodal displacements included in the overall nodal solution
- Additional element output as shown in Table 2: CONTA172 Element Output Definitions (p. 773)

A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " $Y$ " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 2: CONTA172 Element Output Definitions (p. 773) gives element output. In the results file, the nodal results are obtained from its closest integration point.

Table 2 CONTA172 Element Output Definitions

Name	Definition	0	R
EL	Element Number	Y	Y
NODES	Nodes I, J	Y	Y
XC, YC	Location where results are reported	Y	5
TEMP	Temperatures T(I), T(J)	Y	Y
LENGTH	Element length	Y	-
VOLU	AREA	Y	Y
NPI	Number of integration points	Y	-
ITRGET	Target surface number (assigned by ANSYS)	Y	-
ISOLID	Underlying solid, shell, or beam element number	Y	-
CONT:STAT	Current contact statuses	1	1
OLDST	Old contact statuses	1	1
NX, NY	Surface normal vector components	Y	-
ISEG	Current contacting target element number	Y	Y
OLDSEG	Underlying old target number	Y	-
CONT:PENE	Current penetration (gap $=0$; penetration = positive value)	Y	Y
CONT:GAP	Current gap (gap = negative value; penetration $=0$ )	Y	Y
NGAP	New or current gap at current converged substep (gap = negative value; penetration = positive value)	Y	-
OGAP	Old gap at previously converged substep (gap = negative value; penetration = positive value)	Y	-
IGAP	Initial gap at start of current substep (gap = negative value; penetration = positive value)	Y	Y
GGAP	Geometric gap at current converged substep (gap = negative value; penetration = positive value)	-	Y
CONT:PRES	Normal contact pressure	Y	Y
CONT:SFRIC	Tangential contact stress	Y	Y
KN	Current normal contact stiffness (Force/Length ${ }^{3}$ )	Y	Y


Name	Definition	0	R
KT	Current tangent contact stiffness (Force/Length ${ }^{3}$ )	Y	Y
MU	Friction coefficient	Y	-
CONT:SLIDE	Total accumulated sliding (algebraic sum)	3	3
ASLIDE	Total accumulated sliding (absolute sum)	3	3
TOLN	Penetration tolerance	Y	Y
CONT:STOTAL	Total stress SQRT (PRES**2+SFRIC**2)	Y	Y
FDDIS	Frictional energy dissipation	6	6
ELSI	Elastic slip distance for sticking contact within a substep	-	Y
VREL	Slip rate	-	Y
DBA	Penetration variation	Y	Y
PINB	Pinball Region	-	Y
CONT:CNOS	Total number of contact status changes during substep	Y	Y
TNOP	Maximum allowable tensile contact pressure	Y	Y
SLTO	Allowable elastic slip	Y	Y
CAREA	Contacting area	-	Y
CONT:FPRS	Actual applied fluid penetration pressure	-	Y
FSTART	Fluid penetration starting time	-	Y
DTSTART	Load step time during debonding	Y	Y
DPARAM	Debonding parameter	Y	Y
DENERI	Energy released due to separation in normal direction - mode I debonding	Y	Y
DENERII	Energy released due to separation in tangential direction mode II debonding	Y	Y
CNFX	Contact element force-x component	-	4
CNFY	Contact element force-Y component	-	Y
CONV	Convection coefficient	Y	Y
RAC	Radiation coefficient	Y	Y
TCC	Conductance coefficient	Y	Y
TEMPS	Temperature at contact point	Y	Y
TEMPT	Temperature at target surface	Y	Y
FXCV	Heat flux due to convection	Y	Y
FXRD	Heat flux due to radiation	Y	Y
FXCD	Heat flux due to conductance	Y	Y
CONT:FLUX	Total heat flux at contact surface	Y	Y
FXNP	Flux input	-	Y
CNFH	Contact element heat flow	-	Y
JCONT	Contact current density (Current/Unit Area)	Y	Y
CCONT	Contact charge density (Charge/Unit Area)	Y	Y


Name	Definition	$\mathbf{O}$	$\mathbf{R}$
HJOU	Contact power/area	Y	Y
ECURT	Current per contact element	-	Y
ECHAR	Charge per contact element	-	Y
ECC	Electric contact conductance (for electric current DOF), or   electric contact capacitance per unit area (for piezoelectric or   electrostatic DOFs)	Y	Y
VOLTS	Voltage on contact nodes	Y	Y
VOLTT	Voltage on associated target	Y	Y

1. The possible values of STAT and OLDST are:
$0=$ Open and not near contact
$1=$ Open but near contact
$2=$ Closed and sliding
3 = Closed and sticking
2. ANSYS will evaluate model to detect initial conditions.
3. Only accumulates the sliding when contact occurs.
4. Contact element forces are defined in the global Cartesian system.
5. Available only at centroid as a *GET item.
6. FDDIS $=($ contact friction stress)*(sliding distance of substep)/(time increment of substep)

## Note

If ETABLE is used for the CONT items, the reported data is averaged across the element.

## Note

Contact results (including all element results) are generally not reported for elements that have a status of "open and not near contact" (far-field).

Table 3: CONTA172 Item and Sequence Numbers (p. 776) lists output available through the ETABLE command using the Sequence Number method. See Creating an Element Table in the Basic Analysis Guide and The Item and Sequence Number Table (p.9) in this manual for more information. The following notation is used in Table 3: CONTA172 Item and Sequence Numbers (p. 776):

## Name

output quantity as defined in the Table 2: CONTA172 Element Output Definitions (p. 773)

## Item

predetermined Item label for ETABLE command
E
sequence number for single-valued or constant element data

I,J
sequence number for data at nodes $\mathrm{I}, \mathrm{J}$
Table 3 CONTA172 Item and Sequence Numbers

Output   Quant-   ity   Name	ETABLE and ESOL Command			
Item	E	$\mathbf{I}$	$\mathbf{J}$	
PRES	SMISC	5	1	2
SFRIC	SMISC	-	3	4
FLUX	SMISC	-	6	7
FDDIS	SMISC	-	8	9
FXCV	SMISC	-	10	11
FXRD	SMISC	-	12	13
FXCD	SMISC	-	14	15
FXNP	SMISC	-	16	17
JCONT	SMISC	-	18	19
CCONT	SMISC	-	18	19
HJOU	SMISC	-	20	21
STAT[1]	NMISC	19	1	2
OLDST	NMISC	-	3	4
PENE[2]	NMISC	-	5	6
DBA	NMISC	-	7	8
SLIDE	NMISC	-	9	10
KN	NMISC	-	11	12
KT	NMISC	-	13	14
TOLN	NMISC	-	15	16
IGAP	NMISC	-	17	18
PINB	NMISC	20	-	-
CNFX	NMISC	21	-	-
CNFY	NMISC	22	-	-
ISEG	NMISC	-	23	24
ASLIDE	NMISC	-	25	26
CAREA	NMISC	27	-	-
MU	NMISC	-	29	30
DTSTART	NMISC	-	31	32
DPARAM	NMISC	-	33	34
FPRS	NMISC	-	35	36
TEMPS	NMISC	-	37	38
	NMISC	-	39	40


Output   Quant-   ity   Name	ETABLE and ESOL Command			
	Item	E	$\mathbf{I}$	$\mathbf{J}$
CONV	NMISC	-	41	42
RAC	NMISC	-	43	44
TCC	NMISC	-	45	46
CNFH	NMISC	47	-	-
ECURT	NMISC	48	-	-
ECHAR	NMISC	48	-	-
ECC	NMISC	-	49	50
VOLTS	NMISC	-	51	52
VOLTT	NMISC	-	53	54
CNOS	NMISC	-	55	56
TNOP	NMISC	-	57	58
SLTO	NMISC	-	59	60
ELSI	NMISC	-	67	68
DENERI	NMISC	-	69	70
DENERII	NMISC	-	71	72
FSTART	NMISC	-	73	74
GGAP	NMISC	-	75	76
VREL	NMISC	-	77	78

1. Element Status = highest value of status of integration points within the element
2. Penetration $=$ positive value, gap $=$ negative value
3. Contact element forces are defined in the global Cartesian system

You can display or list contact results through several POST1 postprocessor commands. The contact specific items for the PLNSOL, PLESOL, PRNSOL, and PRESOL commands are listed below:

STAT	Contact status
PENE	Contact penetration
PRES	Contact pressure
SFRIC	Contact friction stress
STOT	Contact total stress (pressure plus friction)
SLIDE	Contact sliding distance
GAP	Contact gap distance
FLUX	Total heat flux at contact surface
CNOS	Total number of contact status changes during sub-   step
FPRS	Actual applied fluid penetration pressure

## CONTA172 Assumptions and Restrictions

- The 2-D contact element must be defined in an $X-Y$ plane and the Y -axis must be the axis of symmetry for axisymmetric analyses.
- An axisymmetric structure should be modeled in the $+X$ quadrants.
- This 2-D contact element works with any 3-D elements in your model.
- Do not use this element in any model that contains axisymmetric harmonic elements.
- Node numbering must coincide with the external surface of the underlying solid element or with the original elements comprising the superelement.
- This element is nonlinear and requires a full Newton iterative solution, regardless of whether large or small deflections are specified. An exception to this is when MPC bonded contact is specified (KEYOPT(2) $=2$ and $\operatorname{KEYOPT}(12)=5$ or 6 ).
- The normal contact stiffness factor (FKN) must not be so large as to cause numerical instability.
- FTOLN, PINB, and FKOP can be changed between load steps or during restart stages.
- You can use this element in nonlinear static or nonlinear full transient analyses. In addition, you can use it in modal analyses, eigenvalue buckling analyses, and harmonic analyses. For these analysis types, the program assumes that the initial status of the element (i.e., the status at the completion of the static prestress analysis, if any) does not change.
- When nodal detection is used and the contact node is on the axis of symmetry in an axisymmetric analysis, the contact pressure on that node is not accurate since the area of the node is zero. The contact force is accurate in this situation.
- This element allows birth and death and will follow the birth and death status of the underlying solid or target elements.
- The USERFRIC subroutine (user-defined friction) can only be used with penalty-based tangential contact (i.e., KEYOPT(2) $=0,1$, or 3).


## CONTA172 Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

## ANSYS Professional

- The MU material property is not allowed.
- The birth and death special feature is not allowed.


## ANSYS Structural

- The VOLT DOF $(\operatorname{KEYOPT}(1)=3$ through 6$)$ is not allowed.
- The AZ DOF $(\operatorname{KEYOPT}(1)=7)$ is not allowed.


## ANSYS Mechanical

- The AZ DOF $(\operatorname{KEYOPT}(1)=7)$ is not allowed.


## CONTA173 Element Description

CONTA173 is used to represent contact and sliding between 3-D "target" surfaces (TARGE170) and a deformable surface, defined by this element. The element is applicable to 3-D structural and coupled field contact analyses. This element is located on the surfaces of 3-D solid or shell elements without midside nodes (SOLID65, SOLID70, SOLID96, SOLID185, SOLID285, SOLSH190, SHELL28, SHELL41, SHELL131, SHELL157, SHELL181, and MATRIX50). It has the same geometric characteristics as the solid or shell element face with which it is connected (see Figure 1 (p.779)). Contact occurs when the element surface penetrates one of the target segment elements (TARGE170) on a specified target surface. Coulomb friction, shear stress friction, and user defined friction with the USERFRIC subroutine are allowed. This element also allows separation of bonded contact to simulate interface delamination. See CONTA173 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element. Other surface-to-surface contact elements (CONTA171, CONTA172, CONTA174) are also available.

Figure 1 CONTA173 Geometry

$R=$ Element $x$-axis for isotropic friction
$\mathrm{x}_{\mathrm{o}}=$ Element axis for orthotropic friction if ESYS is not supplied (parallel to global X-axis)
$x=$ Element axis for orthotropic friction if ESYS is supplied

## CONTA173 Input Data

The geometry and node locations are shown in Figure 1 (p. 779). The element is defined by four nodes (the underlying solid or shell element has no midside nodes). If the underlying solid or shell elements do have midside nodes, use CONTA174. The node ordering is consistent with the node ordering for the underlying solid or shell element. The positive normal is given by the right-hand rule going around the nodes of the element and is identical to the external normal direction of the underlying solid or shell element surface.

For shell elements, the same nodal ordering between shell and contact elements defines upper surface contact; otherwise, it represents bottom surface contact. Remember the target surfaces must always be on its outward normal direction. See Generating Contact Elements in the Contact Technology Guide for more information on generating elements automatically using the ESURF command.

The 3-D contact surface elements are associated with the 3-D target segment elements (TARGE170) via a shared real constant set. ANSYS looks for contact only between surfaces with the same real constant set. For either rigid-flexible or flexible-flexible contact, one of the deformable surfaces must be represented by a contact surface. See Designating Contact and Target Surfaces in the Contact Technology Guide for more information.

If more than one target surface will make contact with the same boundary of solid elements, you must define several contact elements that share the same geometry but relate to separate targets (targets which have different real constant numbers), or you must combine the two target surfaces into one (targets that share the same real constant numbers).

CONTA173 supports isotropic and orthotropic Coulomb friction. For isotropic friction, specify a single coefficient of friction, MU, using either TB command input (recommended) or the MP command. For orthotropic friction, specify two coefficients of friction, MU1 and MU2, in two principal directions using TB command input. (See Contact Friction (TB,FRIC) (p. 83) for more information.)

For isotropic friction, the applicable coordinate system is the default element coordinate system (noted by the $R$ and $S$ axes in the above figure).

For orthotropic friction, the principal directions are determined as follows. The global coordinate system is used by default, or you may define a local element coordinate system with the ESYS command. (These are depicted by the $x_{0}$ and $x$ axes in the above figure.) The first principal direction is defined by projecting the first direction of the chosen coordinate system onto the contact surface. The second principal direction is defined by taking a cross product of the first principal direction and the contact normal. These directions also follow the rigid body rotation of the contact element to correctly model the directional dependence of friction. Be careful to choose the coordinate system (global or local) so that the first direction of that system is within $45^{\circ}$ of the tangent to the contact surface.

If you want to set the coordinate directions for isotropic friction (to the global Cartesian system or another system via ESYS), you can define orthotropic friction and set MU1 = MU2.

To define a coefficient of friction for isotropic or orthotropic friction that is dependent on temperature, time, normal pressure, sliding distance, or sliding relative velocity, use the TBFIELD command along with TB,FRIC. See Contact Friction (TB,FRIC) (p. 83) for more information.

To implement a user-defined friction model, use the TB,FRIC command with $T B O P T=$ USER to specify friction properties and write a USERFRIC subroutine to compute friction forces. See User-Defined Friction (TB,FRIC,,,USER) (p. 85) for more information on how to use this feature. See also the Guide to ANSYS User Programmable Features for a detailed description of the USERFRIC subroutine.

To model fluid penetration loads, use the SFE command to specify the fluid pressure and fluid penetration starting points. For more information, see Applying Fluid Pressure-Penetration Loads in the Contact Technology Guide.

To model proper momentum transfer and energy balance between contact and target surfaces, impact constraints should be used in transient dynamic analysis. See the description of KEYOPT(7) below and the contact element discussion in the Theory Reference for the Mechanical APDL and Mechanical Applications for details.

To model separation of bonded contact with $\operatorname{KEYOPT}(12)=2,3,4,5$, or 6 , use the TB command with the CZM label. See "Debonding" in the Contact Technology Guide for more information.

In general, curved contact and target surfaces can be well approximated by faceted contact and target elements when the mesh is sufficiently refined. However, using a faceted surface in place of the true curved geometry can significantly affect the accuracy of contact stresses in some contact applications. An optional geometric correction can be used for two types of curved surfaces (spherical and revolute) via SECTYPE and SECDATA section commands. The defined geometry correction can be applied to specific contact elements via a section ID (SECNUM command). For details, see Geometry Correction for Contact and Target Surfaces in the Contact Technology Guide.

A summary of the element input is given in "CONTA173 Input Summary" (p. 781). A general description of element input is given in Element Input (p. 5).

## CONTA173 Input Summary

## Nodes

I, J, K, L
Degrees of Freedom
UX, UY, UZ (if KEYOPT(1) = 0)
UX, UY, UZ, TEMP (if $\operatorname{KEYOPT}(1)=1$ )
TEMP (if $\operatorname{KEYOPT}(1)=2$ )
UX, UY, UZ, TEMP, VOLT (if $\operatorname{KEYOPT}(1)=3$ )
TEMP, VOLT (if KEYOPT(1) = 4)
UX, UY, UZ, VOLT (if KEYOPT(1) = 5)
VOLT (if $\operatorname{KEYOPT}(1)=6)$
MAG (if $\operatorname{KEYOPT}(1)=7$ )

## Real Constants

R1, R2, FKN, FTOLN, ICONT, PINB, PMAX, PMIN, TAUMAX, CNOF, FKOP, FKT,
COHE, TCC, FHTG, SBCT, RDVF, FWGT, ECC, FHEG, FACT, DC, SLTO, TNOP, TOLS, MCC, PPCN, FPAT, COR, STRM
See Table 1: CONTA173 Real Constants (p. 786) for descriptions of the real constants.

## Material Properties

MU, EMIS (MP command)
FRIC (TB command; see Contact Friction (TB,FRIC) (p. 83))
CZM (TB command; see Cohesive Zone Materials Used for Debonding in the Contact Technology Guide)

## Surface Loads

Pressure, Face 1 (I-J-K-L) (opposite to contact normal direction); used for fluid pressure penetration loading. On the SFE command use $L K E Y=1$ to specify the pressure values, and use $L K E Y=2$ to specify starting points and penetrating points.
Convection, Face 1 (I-J-K-L)
Heat Flux, Face 1 (I-J-K-L)

## Special Features

Nonlinear

Large deflection
Isotropic or orthotropic friction; USERFRIC subroutine
Debonding
Birth and death
Fluid pressure penetration load
Section definition used for geometry correction of spherical and revolute surfaces
Linear perturbation

## KEYOPTs

Presented below is a list of KEYOPTS available for this element. Included are links to sections in the Contact Technology Guide where more information is available on a particular topic.

## KEYOPT(1)

Selects degrees of freedom:
0 -UX, UY, UZ

1 --
UX, UY, UZ, TEMP
2 --
TEMP
3 --
UX, UY, UZ, TEMP, VOLT
4 --
TEMP, VOLT
5 --
UX, UY, UZ, VOLT
6 --
VOLT
7 --
MAG

## KEYOPT(2)

Contact algorithm:
0 --
Augmented Lagrangian (default)
1 --
Penalty function
2 --
Multipoint constraint (MPC); see "Multipoint Constraints and Assemblies" in the Contact Technology Guide for more information

3 --
Lagrange multiplier on contact normal and penalty on tangent
4 --
Pure Lagrange multiplier on contact normal and tangent

## KEYOPT(4)

Location of contact detection point:

## 0 --

On Gauss point (for general cases)

## 1 --

On nodal point - normal from contact surface
2 --
On nodal point - normal to target surface
3 --
On nodal point - normal from contact surface (projection-based method)

## Note

When using the multipoint constraint (MPC) approach to define surface-based constraints, use KEYOPT(4) in the following way: set $\operatorname{KEYOPT}(4)=1$ for a force-distributed constraint, set $\operatorname{KEYOPT}(4)=2$ for a rigid surface constraint. See Surface-based Constraints for more information.

## Note

Certain restrictions apply when the surface projection based method $(\operatorname{KEYOPT}(4)=3)$ is defined. See Using the Surface Projection Based Contact Method $(\operatorname{KEYOPT}(4)=3)$ for more information.

## KEYOPT(5)

CNOF/ICONT automated adjustment:
0 --
No automated adjustment
1 --
Close gap with auto CNOF
2 --
Reduce penetration with auto CNOF
3 --
Close gap/reduce penetration with auto CNOF
4 --
Auto ICONT

## KEYOPT(6)

Contact stiffness variation (used to enhance stiffness updating when $\operatorname{KEYOPT}(10)>0$ ):
0 --
Use default range for stiffness updating
1 --
Make a nominal refinement to the allowable stiffness range
2 --
Make an aggressive refinement to the allowable stiffness range

## KEYOPT(7)

Element level time incrementation control / impact constraints:
0 --
No control

1 --
Automatic bisection of increment
2 --
Change in contact predictions made to maintain a reasonable time/load increment
3 --
Change in contact predictions made to achieve the minimum time/load increment whenever a change in contact status occurs

4 --
Use impact constraints for standard or rough contact $(\operatorname{KEYOPT}(12)=0$ or 1$)$ in a transient dynamic analysis with automatic adjustment of time increment

## Note

$\operatorname{KEYOPT}(7)=2,3$, and 4 include an automatic adjustment of the time increment. This is activated only if the command SOLCONTROL,ON,ON was issued prior to the solution.

## KEYOPT(8)

Asymmetric contact selection:
0 --
No action
2 --
ANSYS internally selects which asymmetric contact pair is used at the solution stage (used only when symmetry contact is defined).

## KEYOPT(9)

Effect of initial penetration or gap:
0 --
Include both initial geometrical penetration or gap and offset
1 --
Exclude both initial geometrical penetration or gap and offset
2 --
Include both initial geometrical penetration or gap and offset, but with ramped effects
3 --
Include offset only (exclude initial geometrical penetration or gap)
4 --
Include offset only (exclude initial geometrical penetration or gap), but with ramped effects

## Note

The effects of KEYOPT(9) are dependent on settings for other KEYOPTs. See the discussion on using KEYOPT(9) in the Contact Technology Guide for more information.

## KEYOPT(10)

Contact stiffness update:

## 0 --

Each load step if FKN is redefined during load step (pair based).
2 --
Each iteration based on current mean stress of underlying elements (pair based).

## KEYOPT(11)

Shell thickness effect:
0 --
Exclude
1 --
Include

## KEYOPT(12)

Behavior of contact surface:
0 --
Standard
1 --
Rough
2 --
No separation (sliding permitted)
3 --
Bonded
4 --
No separation (always)
5 --
Bonded (always)
6 --
Bonded (initial contact)

## Note

When $\operatorname{KEYOPT}(12)=5$ or 6 is used with the MPC algorithm to model surface-based constraints, the KEYOPT(12) setting will have an impact on the local coordinate system of the contact element nodes. See Specifying a Local Coordinate System in the Contact Technology Guide for more information.

## KEYOPT(14)

Behavior of fluid pressure penetration load. KEYOPT(14) is valid only if a fluid pressure penetration load (SFE,,,PRES) is applied to the contact element:

0 --
Fluid pressure penetration load varies during iterations (default)

1 --
Fluid pressure penetration load remains constant over the substep
Table 1 CONTA173 Real Constants

No.	Name	Description	For more information, see this section in the Contact Technology Guide . . .
1	R1	Target radius for cylinder, cone, or sphere	Defining the Target Surface
2	R2	Target radius at second node of cone	Defining the Target Surface
3	FKN	Normal penalty stiffness factor	Determining Contact Stiffness and Penetration
4	FTOLN	Penetration tolerance factor	Determining Contact Stiffness and Penetration
5	ICONT	Initial contact closure	Adjusting Initial Contact Conditions
6	PINB	Pinball region	Determining Contact Status and the Pinball Region or   Defining Influence Range (PINB)
7	PMAX	Upper limit of initial allowable penetration	Adjusting Initial Contact Conditions
8	PMIN	Lower limit of initial allowable penetration	Adjusting Initial Contact Conditions
9	TAUMAX	Maximum friction stress	Choosing a Friction Model
10	CNOF	Contact surface offset	Adjusting Initial Contact Conditions
11	FKOP	Contact opening stiffness or contact damping	Selecting Surface Interaction Models
12	FKT	Tangent penalty stiffness factor	Determining Contact Stiffness
13	COHE	Contact cohesion	Choosing a Friction Model
14	TCC	Thermal contact conductance	Modeling Conduction
15	FHTG	Frictional heating factor	Modeling Heat Generation Due to Friction
16	SBCT	Stefan-Boltzmann constant	Modeling Radiation
17	RDVF	Radiation view factor	Modeling Radiation
18	FWGT	Heat distribution weighing factor	Modeling Heat Generation Due to Friction (thermal) or   Heat Generation Due to Electric Current (electric)


No.	Name	Description	For more information, see   this section in the Contact   Technology Guide ...
19	ECC	Electric contact conductance	Modeling Surface Interaction
20	FHEG	Joule dissipation weight factor	Heat Generation Due to   Electric Current
21	FACT	Static/dynamic ratio	Static and Dynamic Friction   Coefficients
22	DC	Exponential decay coefficient	Static and Dynamic Friction   Coefficients
23	SLTO	Allowable elastic slip	Using FKT and SLTO
24	TNOP	Maximum allowable tensile contact pressure	Chattering Control Paramet-   ers
25	TOLS	Target edge extension factor	Selecting Location of Con-   tact Detection
26	MCC	Magnetic contact permeance	Modeling Magnetic Contact
27	PPCN	Pressure penetration criterion	Specifying a Pressure Penet-   ration Criterion
28	FPAT	Fluid penetration acting time	Specifying a Fluid Penetra-   tion Acting Time
29	COR	Coefficient of restitution	Impact Between Rigid Bod-   ies
30	STRM	Load step number for ramping penetration	Adjusting Initial Contact   Conditions

## CONTA173 Output Data

The solution output associated with the element is in two forms:

- Nodal displacements included in the overall nodal solution
- Additional element output as shown in Table 2: CONTA173 Element Output Definitions (p. 788)

A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and " - " indicates that the item is not available.

Table 2: CONTA173 Element Output Definitions (p. 788) gives element output at the element level. In the results file, the nodal results are obtained from its closest integration point.

## Table 2 CONTA173 Element Output Definitions

Name	Definition	0	R
EL	Element Number	Y	Y
NODES	Nodes I, J, K, L	Y	Y
XC, YC, ZC	Location where results are reported	Y	5
TEMP	Temperatures $\mathrm{T}(\mathrm{I}), \mathrm{T}(\mathrm{J}), \mathrm{T}(\mathrm{K}), \mathrm{T}(\mathrm{L})$	Y	Y
VOLU	AREA	Y	Y
NPI	Number of integration points	Y	-
ITRGET	Target surface number (assigned by ANSYS)	Y	-
ISOLID	Underlying solid or shell element number	Y	-
CONT:STAT	Current contact statuses	1	1
OLDST	Old contact statuses	1	1
ISEG	Current contacting target element number	Y	Y
OLDSEG	Underlying old target number	Y	-
CONT:PENE	Current penetration (gap = 0; penetration = positive value)	Y	Y
CONT:GAP	Current gap (gap = negative value; penetration = 0)	Y	Y
NGAP	New or current gap at current converged substep (gap = negative value; penetration = positive value)	Y	-
OGAP	Old gap at previously converged substep (gap = negative value; penetration = positive value)	Y	-
IGAP	Initial gap at start of current substep (gap = negative value; penetration = positive value)	Y	Y
GGAP	Geometric gap at current converged substep (gap = negative value; penetration = positive value)	-	Y
CONT:PRES	Normal contact pressure	Y	Y
TAUR/TAUS[7]	Tangential contact stresses	Y	Y
KN	Current normal contact stiffness (Force/Length ${ }^{3}$ )	Y	Y
KT	Current tangent contact stiffness (Force/Length ${ }^{\text {3 }}$ )	Y	Y
MU[8]	Friction coefficient	Y	-
TASS/TASR[7]	Total (algebraic sum) sliding in S and R directions	3	3
AASS/AASR[7]	Total (absolute sum) sliding in S and R directions	3	3
TOLN	Penetration tolerance	Y	Y
CONT:SFRIC	Frictional stress SQRT (TAUR**2+TAUS**2)	Y	Y
CONT:STOTAL	Total stress SQRT (PRES**2+TAUR**2+TAUS**2)	Y	Y
CONT:SLIDE	Total sliding SQRT (TASS**2+TASR**2)	Y	Y
FDDIS	Frictional energy dissipation	6	6
ELSI	Elastic slip distance for sticking contact within a substep	-	Y


Name	Definition	0	R
VREL	Slip rate	-	Y
DBA	Penetration variation	Y	Y
PINB	Pinball Region	-	Y
CONT:CNOS	Total number of contact status changes during substep	Y	Y
TNOP	Maximum allowable tensile contact pressure	Y	Y
SLTO	Allowable elastic slip	Y	Y
CAREA	Contacting area	-	Y
CONT:FPRS	Actual applied fluid penetration pressure	-	Y
FSTART	Fluid penetration starting time	-	Y
DTSTART	Load step time during debonding	Y	Y
DPARAM	Debonding parameter	Y	Y
DENERI	Energy released due to separation in normal direction - mode I debonding	Y	Y
DENERII	Energy released due to separation in tangential direction mode II debonding	Y	Y
CNFX[4]	Contact element force-X component	-	Y
CNFY	Contact element force-Y component	-	Y
CNFZ	Contact element force-Z component	-	Y
CONV	Convection coefficient	Y	Y
RAC	Radiation coefficient	Y	Y
TCC	Conductance coefficient	Y	Y
TEMPS	Temperature at contact point	Y	Y
TEMPT	Temperature at target surface	Y	Y
FXCV	Heat flux due to convection	Y	Y
FXRD	Heat flux due to radiation	Y	Y
FXCD	Heat flux due to conductance	Y	Y
CONT:FLUX	Total heat flux at contact surface	Y	Y
FXNP	Flux input	-	Y
CNFH	Contact element heat flow	-	Y
JCONT	Contact current density (Current/Unit Area)	Y	Y
CCONT	Contact charge density (Charge/Unit Area)	Y	Y
HJOU	Contact power/area	Y	Y
ECURT	Current per contact element	-	Y
ECHAR	Charge per contact element	-	Y
ECC	Electric contact conductance (for electric current DOF), or electric contact capacitance per unit area (for piezoelectric or electrostatic DOFs)	Y	Y
VOLTS	Voltage on contact nodes	Y	Y
VOLTT	Voltage on associated target	Y	Y


Name	Definition	$\mathbf{O}$	$\mathbf{R}$
MCC	Magnetic contact permeance	Y	Y
MFLUX	Magnetic flux density	Y	Y
MAGS	Magnetic potential on contact node	Y	Y
MAGT	Magnetic potential on associated target	Y	Y

1. The possible values of STAT and OLDST are:
$0=$ Open and not near contact
1 = Open but near contact
2 = Closed and sliding
3 = Closed and sticking
2. ANSYS will evaluate model to detect initial conditions.
3. Only accumulates the sliding when contact occurs.
4. Contact element forces are defined in the global Cartesian system
5. Available only at centroid as a *GET item.
6. FDDIS $=$ (contact friction stress)*(sliding distance of substep)/(time increment of substep)
7. For the case of orthotropic friction, components are defined in the global Cartesian system (default) or in the local element coordinate system specified by ESYS.
8. For orthotropic friction, an equivalent coefficient of friction is output.

## Note

If ETABLE is used for the CONT items, the reported data is averaged across the element.

## Note

Contact results (including all element results) are generally not reported for elements that have a status of "open and not near contact" (far-field).

Table 3: CONTA173 Item and Sequence Numbers (p. 791) lists output available through the ETABLE command using the Sequence Number method. See Creating an Element Table in the Basic Analysis Guide and The Item and Sequence Number Table (p. 9) in this manual for more information. The following notation is used in Table 3: CONTA173 Item and Sequence Numbers (p. 791):

## Name

output quantity as defined in the Table 2: CONTA173 Element Output Definitions (p. 788)

## Item

predetermined Item label for ETABLE command
E
sequence number for single-valued or constant element data

## I,J,K,L

sequence number for data at nodes I,J,K,L
Table 3 CONTA173 Item and Sequence Numbers

Output   Quant-   ity   Name	ETABLE and ESOL Command Input					
	Item	E	$\mathbf{I}$	$\mathbf{J}$	$\mathbf{K}$	$\mathbf{L}$
PRES	SMISC	13	1	2	3	4
TAUR	SMISC	-	5	6	7	8
TAUS	SMISC	-	9	10	11	12
FLUX	SMISC	-	14	15	16	17
FDDIS	SMISC	-	18	19	20	21
FXCV	SMISC		22	23	24	25
FXRD	SMISC	-	26	27	28	29
FXCD	SMISC	-	30	31	32	33
FXNP	SMISC	-	34	35	36	37
JCONT	SMISC	-	38	39	40	41
CCONT	SMISC	-	38	39	40	41
HJOU	SMISC	-	42	43	44	45
MFLUX	SMISC	-	46	47	48	49
STAT[1]	NMISC	41	1	2	3	4
OLDST	NMISC	-	5	6	7	8
PENE[2]	NMISC	-	9	10	11	12
DBA	NMISC	-	13	14	15	16
TASR	NMISC	-	17	18	19	20
TASS	NMISC	-	21	22	23	24
KN	NMISC	-	25	26	27	28
KT	NMISC	-	29	30	31	32
TOLN	NMISC	-	33	34	35	36
IGAP	NMISC	-	37	38	39	40
PINB	NMISC	42	-	-	-	-
CNFX	NMISC	43	-	-	-	-
CNFY	NMISC	44	-	-	-	-
CNFZ	NMISC	45	-	-	-	-
ISEG	NMISC	-	46	47	48	49
AASR	NMISC	-	50	51	52	53
AASS	NMISC	-	54	55	56	57
CAREA	NMISC	58	-	-	-	-
MU	NMISC	-	62	63	64	65


Output   Quant-   ity   Name	ETABLE and ESOL Command Input					
	Item	E	$\mathbf{I}$	$\mathbf{J}$	$\mathbf{K}$	$\mathbf{L}$
DTSTART	NMISC	-	66	67	68	69
DPARAM	NMISC	-	70	71	72	73
FPRS	NMISC	-	74	75	76	77
TEMPS	NMISC	-	78	79	80	81
TEMPT	NMISC	-	82	83	84	85
CONV	NMISC	-	86	87	88	89
RAC	NMISC	-	90	91	92	93
TCC	NMISC	-	94	95	96	97
CNFH	NMISC	98	-	-	-	-
ECURT	NMISC	99	-	-	-	-
ECHAR	NMISC	99	-	-	-	-
ECC	NMISC	-	100	101	102	103
VOLTS	NMISC	-	104	105	106	107
VOLTT	NMISC	-	108	109	110	111
CNOS	NMISC	-	112	113	114	115
TNOP	NMISC	-	116	117	118	119
SLTO	NMISC	-	120	121	122	123
MCC	NMISC	-	124	125	126	127
MAGS	NMISC	-	128	129	130	131
MAGT	NMISC	-	132	133	134	135
ELSI	NMISC	-	136	137	138	139
DENERI	NMISC	-	140	141	142	143
DENERII	NMISC	-	144	145	146	147
FSTART	NMISC	-	148	140	150	151
GGAP	NMISC	-	152	153	154	155
VREL	NMISC	-	156	157	158	159

1. Element Status $=$ highest value of status of integration points within the element
2. Penetration $=$ positive value, gap $=$ negative value

You can display or list contact results through several POST1 postprocessor commands. The contact specific items for the PLNSOL, PLESOL, PRNSOL, and PRESOL commands are listed below:

STAT	Contact status
PENE	Contact penetration
PRES	Contact pressure
SFRIC	Contact friction stress


STOT	Contact total stress (pressure plus friction)
SLIDE	Contact sliding distance
GAP	Contact gap distance
FLUX	Total heat flux at contact surface
CNOS	Total number of contact status changes during sub-   step
FPRS	Actual applied fluid penetration pressure

## CONTA173 Assumptions and Restrictions

- The 3-D contact element must coincide with the external surface of the underlying solid or shell element or with the original elements comprising the superelement.
- This element is nonlinear and requires a full Newton iterative solution, regardless of whether large or small deflections are specified. An exception to this is when MPC bonded contact is specified (KEYOPT(2) $=2$ and $\operatorname{KEYOPT}(12)=5$ or 6 ).
- The normal contact stiffness factor (FKN) must not be so large as to cause numerical instability.
- FTOLN, PINB, and FKOP can be changed between load steps or during restart stages.
- You can use this element in nonlinear static or nonlinear full transient analyses. In addition, you can use it in modal analyses, eigenvalue buckling analyses, and harmonic analyses. For these analysis types, the program assumes that the initial status of the element (i.e., the status at the completion of the static prestress analysis, if any) does not change.
- This element allows birth and death and will follow the birth and death status of the underlying solid, shell, beam, or target elements.
- The USERFRIC subroutine (user-defined friction) can only be used with penalty-based tangential contact (i.e., $\operatorname{KEYOPT}(2)=0,1$, or 3).


## CONTA173 Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

## ANSYS Professional

- The MU material property is not allowed
- The birth and death special feature is not allowed.


## ANSYS Structural

- The VOLT DOF (KEYOPT(1) = 3 through 6) is not allowed.
- The MAG DOF $(\operatorname{KEYOPT}(1)=7)$ is not allowed.


## ANSYS Mechanical

- The MAG DOF $(\operatorname{KEYOPT}(1)=7)$ is not allowed.


## CONTA174 Element Description

CONTA174 is used to represent contact and sliding between 3-D "target" surfaces (TARGE170) and a deformable surface, defined by this element. The element is applicable to 3-D structural and coupled field contact analyses.

The element is located on the surfaces of 3-D solid or shell elements with midside nodes (SOLID87, SOLID90, SOLID98, SOLID122, SOLID123, SOLID186, SOLID187, SOLID226, SOLID227, SOLID231, SOLID232, SHELL132, SHELL281, and MATRIX50).

The element has the same geometric characteristics as the solid or shell element face with which it is connected (see Figure 1 (p. 795) below). Contact occurs when the element surface penetrates one of the target segment elements (TARGE170) on a specified target surface. Coulomb friction, shear stress friction, and userdefined friction with the USERFRIC subroutine are allowed. The element also allows separation of bonded contact to simulate interface delamination.

See CONTA174 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element. Other surface-to-surface contact elements (CONTA171, CONTA172, CONTA173) are also available.

## Figure 1 CONTA174 Geometry


$R=$ Element $x$-axis for isotropic friction
$\mathrm{x}_{\mathrm{o}}=$ Element axis for orthotropic friction if ESYS is not supplied (parallel to global X-axis)
$x=$ Element axis for orthotropic friction if ESYS is supplied

## CONTA174 Input Data

The geometry and node locations are shown in Figure 1 (p. 795). The element is defined by eight nodes (the underlying solid or shell element has midside nodes). It can degenerate to a six node element depending on the shape of the underlying solid or shell elements. If the underlying solid or shell elements do not have midside nodes, use CONTA173 (you may still use CONTA174 but you must drop all midside nodes). See Quadratic Elements (Midside Nodes) in the Modeling and Meshing Guide for more information on the use of midside nodes. The node ordering is consistent with the node ordering for the underlying solid or shell element. The positive normal is given by the right-hand rule going around the nodes of the element and is identical to the external normal direction of the underlying solid or shell element surface. For shell elements, the same nodal ordering between shell and contact elements defines upper surface contact; otherwise, it represents bottom surface contact. Remember the target surfaces must always be on its outward normal direction. See Generating Contact Elements in the Contact Technology Guide for more information on generating elements automatically using the ESURF command.

The 3-D contact surface elements (CONTA173 and CONTA174) are associated with the 3-D target segment elements (TARGE170) via a shared real constant set. ANSYS looks for contact only between surfaces with the same real constant set. For either rigid-flexible or flexible-flexible contact, one of the deformable surfaces must be represented by a contact surface. See Designating Contact and Target Surfaces in the Contact Technology Guide for more information.

If more than one target surface will make contact with the same boundary of solid elements, you must define several contact elements that share the same geometry but relate to separate targets (targets which have different real constant numbers), or you must combine two target surfaces into one (targets that share the same real constant numbers).

CONTA174 supports isotropic and orthotropic Coulomb friction. For isotropic friction, specify a single coefficient of friction, MU, using either TB command input (recommended) or the MP command. For orthotropic friction, specify two coefficients of friction, MU1 and MU2, in two principal directions using TB command input. (See Contact Friction (TB,FRIC) (p. 83) for more information.)

For isotropic friction, the applicable coordinate system is the default element coordinate system (noted by the $R$ and $S$ axes in the above figure).

For orthotropic friction, the principal directions are determined as follows. The global coordinate system is used by default, or you may define a local element coordinate system with the ESYS command. (These are depicted by the $x_{0}$ and $x$ axes in the above figure.) The first principal direction is defined by projecting the first direction of the chosen coordinate system onto the contact surface. The second principal direction is defined by taking a cross product of the first principal direction and the contact normal. These directions also follow the rigid body rotation of the contact element to correctly model the directional dependence of friction. Be careful to choose the coordinate system (global or local) so that the first direction of that system is within $45^{\circ}$ of the tangent to the contact surface.

If you want to set the coordinate directions for isotropic friction (to the global Cartesian system or another system via ESYS), you can define orthotropic friction and set MU1 $=$ MU2 .

To define a coefficient of friction for isotropic or orthotropic friction that is dependent on temperature, time, normal pressure, sliding distance, or sliding relative velocity, use the TBFIELD command along with TB,FRIC. See Contact Friction (TB,FRIC) (p. 83) for more information.

To implement a user-defined friction model, use the TB,FRIC command with $T B O P T=$ USER to specify friction properties and write a USERFRIC subroutine to compute friction forces. See User-Defined Friction
(TB,FRIC, $\mathcal{C l}_{, 1,}$ USER) (p. 85) for more information on how to use this feature. See also the Guide to ANSYS User Programmable Features for a detailed description of the USERFRIC subroutine.

To model fluid penetration loads, use the SFE command to specify the fluid pressure and fluid penetration starting points. For more information, see Applying Fluid Pressure-Penetration Loads in the Contact Technology Guide.

To model proper momentum transfer and energy balance between contact and target surfaces, impact constraints should be used in transient dynamic analysis. See the description of KEYOPT(7) below and the contact element discussion in the Theory Reference for the Mechanical APDL and Mechanical Applications for details.

To model separation of bonded contact with $\operatorname{KEYOPT}(12)=2,3,4,5$, or 6 , use the TB command with the CZM label. See "Debonding" in the Contact Technology Guide for more information.

In general, curved contact and target surfaces can be well approximated by quadratic order contact and target elements. However, in certain circumstances (for example, when the midside nodes do not lie exactly on the initial curved geometry because a third party mesh generator was used), using a faceted surface in place of the true curved geometry can significantly affect the accuracy of contact stresses. An optional geometric correction can be used for two types of curved surfaces (spherical and revolute) via SECTYPE and SECDATA section commands. The defined geometry correction can be applied to specific contact elements via a section ID (SECNUM command). For details, see Geometry Correction for Contact and Target Surfaces in the Contact Technology Guide.

A summary of the element input is given in "CONTA174 Input Summary" (p. 797). A general description of element input is given in Element Input (p. 5). For axisymmetric applications see Harmonic Axisymmetric Elements (p. 102).

## CONTA174 Input Summary

## Nodes

I, J, K, L, M, N, O, P

## Degrees of Freedom

UX, UY, UZ (if KEYOPT(1) $=0$ )
UX, UY, UZ, TEMP (if $\operatorname{KEYOPT}(1)=1$ )
TEMP (if KEYOPT(1) = 2)
UX, UY, UZ, TEMP, VOLT (if KEYOPT(1) = 3)
TEMP, VOLT (if KEYOPT(1) = 4)
UX, UY, UZ, VOLT (if KEYOPT $(1)=5$ )
$\operatorname{VOLT}$ (if $\operatorname{KEYOPT}(1)=6)$
MAG (if $\operatorname{KEYOPT}(1)=7$ )

## Real Constants

R1, R2, FKN, FTOLN, ICONT, PINB, PMAX, PMIN, TAUMAX, CNOF, FKOP, FKT, COHE, TCC, FHTG, SBCT, RDVF, FWGT, ECC, FHEG, FACT, DC, SLTO, TNOP, TOLS, MCC, PPCN, FPAT, COR, STRM
See Table 1: CONTA174 Real Constants (p. 802) for descriptions of the real constants.

## Material Properties

MU, EMIS (MP command)
FRIC (TB command; see Contact Friction (TB,FRIC) (p. 83))
CZM (TB command; see Cohesive Zone Materials Used for Debonding in the Contact Technology Guide)

## Surface Loads

Pressure, Face 1 (I-J-K-L) (opposite to contact normal direction); used for fluid pressure penetration loading. On the SFE command use $L K E Y=1$ to specify the pressure values, and use $L K E Y=2$ to specify starting points and penetrating points.
Convection, Face 1 (I-J-K-L)
Heat Flux, Face 1 (I-J-K-L)

## Special Features

Nonlinear
Large deflection
Isotropic or orthotropic friction; USERFRIC subroutine
Debonding
Birth and death
Fluid pressure penetration load
Section definition used for geometry correction of spherical and revolute surfaces
Linear perturbation

## KEYOPTs

Presented below is a list of KEYOPTS available for this element. Included are links to sections in the Contact Technology Guide where more information is available on a particular topic.

## KEYOPT(1)

Selects degrees of freedom:
0 --
UX, UY, UZ
1 --
UX, UY, UZ, TEMP
2 --
TEMP
3 --
UX, UY, UZ, TEMP, VOLT
4 --
TEMP, VOLT
5 --
UX, UY, UZ, VOLT
6 --
VOLT
7 --
MAG

## KEYOPT(2)

Contact algorithm:

## 0 --

Augmented Lagrangian (default)
1 --
Penalty function
2 --
Multipoint constraint (MPC); see "Multipoint Constraints and Assemblies" in the Contact Technology Guide for more information

3 --
Lagrange multiplier on contact normal and penalty on tangent
4 --
Pure Lagrange multiplier on contact normal and tangent

## KEYOPT(4)

Location of contact detection point:
0 --
On Gauss point (for general cases)
1 --
On nodal point - normal from contact surface
2 --
On nodal point - normal to target surface
3 --
On nodal point - normal from contact surface (projection-based method)

## Note

When using the multipoint constraint (MPC) approach to define surface-based constraints, use KEYOPT(4) in the following way: set KEYOPT(4) = 1 for a force-distributed constraint, set $\operatorname{KEYOPT}(4)=2$ for a rigid surface constraint. See Surface-based Constraints for more information.

## Note

Certain restrictions apply when the surface projection based method (KEYOPT(4) = 3 ) is defined. See Using the Surface Projection Based Contact Method (KEYOPT $(4)=3)$ for more information.

## KEYOPT(5)

CNOF/ICONT Automated adjustment:
0 --
No automated adjustment
1 --
Close gap with auto CNOF
2 --
Reduce penetration with auto CNOF
3 --
Close gap/reduce penetration with auto CNOF

## 4 --

Auto ICONT

## KEYOPT(6)

Contact stiffness variation (used to enhance stiffness updating when $\operatorname{KEYOPT}(10)>0$ ):
0 --
Use default range for stiffness updating
1 --
Make a nominal refinement to the allowable stiffness range
2 --
Make an aggressive refinement to the allowable stiffness range

## KEYOPT(7)

Element level time incrementation control / impact constraints:
0 --
No control
1 --
Automatic bisection of increment
2 --
Change in contact predictions made to maintain a reasonable time/load increment
3 --
Change in contact predictions made to achieve the minimum time/load increment whenever a change in contact status occurs

4 --
Use impact constraints for standard or rough contact $(\operatorname{KEYOPT}(12)=0$ or 1$)$ in a transient dynamic analysis with automatic adjustment of time increment

## Note

$\operatorname{KEYOPT}(7)=2,3$, and 4 include an automatic adjustment of the time increment. This is activated only if the command SOLCONTROL,ON,ON was issued prior to the solution.

## KEYOPT(8)

Asymmetric contact selection:
0 --
No action
2 --
ANSYS internally selects which asymmetric contact pair is used at the solution stage (used only when symmetry contact is defined).

## KEYOPT(9)

Effect of initial penetration or gap:
0 --
Include both initial geometrical penetration or gap and offset
1 --
Exclude both initial geometrical penetration or gap and offset

## 2 --

Include both initial geometrical penetration or gap and offset, but with ramped effects
3 --
Include offset only (exclude initial geometrical penetration or gap)
4 --
Include offset only (exclude initial geometrical penetration or gap), but with ramped effects

## Note

The effects of KEYOPT(9) are dependent on settings for other KEYOPTs. See the discussion on using KEYOPT(9) in the Contact Technology Guide for more information.

## KEYOPT(10)

## Contact stiffness update:

0 --
Each load step if FKN is redefined during load step (pair based).
2 --
Each iteration based on current mean stress of underlying elements (pair based).

## KEYOPT(11)

Shell thickness effect:
0 --
Exclude
1 --
Include

## KEYOPT(12)

Behavior of contact surface:
0 --
Standard
1 --
Rough
2 --
No separation (sliding permitted)
3 --
Bonded
4 --
No separation (always)
5 --
Bonded (always)
6 --
Bonded (initial contact)

## Note

When $\operatorname{KEYOPT}(12)=5$ or 6 is used with the MPC algorithm to model surface-based constraints, the KEYOPT(12) setting will have an impact on the local coordinate system of the contact element nodes. See Specifying a Local Coordinate System in the Contact Technology Guide for more information.

## KEYOPT(14)

Behavior of fluid pressure penetration load. $\operatorname{KEYOPT}(14)$ is valid only if a fluid pressure penetration load (SFE,,,PRES) is applied to the contact element:

0 --
Fluid pressure penetration load varies during iterations (default)
1 --
Fluid pressure penetration load remains constant over the substep

## Table 1 CONTA174 Real Constants

No.	Name	Description	For more information, see   this section in the Contact   Technology Guide ...
1	R1	Target radius for cylinder, cone, or sphere	Defining the Target Surface
2	R2	Target radius at second node of cone	Defining the Target Surface
3	FKN	Normal penalty stiffness factor	Determining Contact Stiff-   ness and Penetration
4	FTOLN	Penetration tolerance factor	Determining Contact Stiff-   ness and Penetration
5	ICONT	Initial contact closure	Adjusting Initial Contact   Conditions
6	PINB	Pinball region	Determining Contact Status   and the Pinball Region   or   Defining Influence Range   (PINB)
7	PMAX	Upper limit of initial allowable penetration	Adjusting Initial Contact   Conditions
8	PMIN	Lower limit of initial allowable penetration	Adjusting Initial Contact   Conditions
9	TAUMAX	Maximum friction stress	Choosing a Friction Model
10	CNOF	Contact surface offset	Adjusting Initial Contact   Conditions
11	FKOP	Contact opening stiffness or contact damp-   ing	Selecting Surface Interaction   Models
12	FKT	Tangent penalty stiffness factor	Determining Contact Stiff-   ness
13	COHE	Contact cohesion	Choosing a Friction Model


No.	Name	Description	For more information, see this section in the Contact Technology Guide . . .
14	TCC	Thermal contact conductance	Modeling Conduction
15	FHTG	Frictional heating factor	Modeling Heat Generation Due to Friction
16	SBCT	Stefan-Boltzmann constant	Modeling Radiation
17	RDVF	Radiation view factor	Modeling Radiation
18	FWGT	Heat distribution weighing factor	Modeling Heat Generation Due to Friction (thermal) or   Heat Generation Due to Electric Current (electric)
19	ECC	Electric contact conductance	Modeling Surface Interaction
20	FHEG	Joule dissipation weight factor	Heat Generation Due to Electric Current
21	FACT	Static/dynamic ratio	Static and Dynamic Friction Coefficients
22	DC	Exponential decay coefficient	Static and Dynamic Friction Coefficients
23	SLTO	Allowable elastic slip	Using FKT and SLTO
24	TNOP	Maximum allowable tensile contact pressure	Chattering Control Parameters
25	TOLS	Target edge extension factor	Selecting Location of Contact Detection
26	MCC	Magnetic contact permeance	Modeling Magnetic Contact
27	PPCN	Pressure penetration criterion	Specifying a Pressure Penetration Criterion
28	FPAT	Fluid penetration acting time	Specifying a Fluid Penetration Acting Time
29	COR	Coefficient of restitution	Impact Between Rigid Bodies
30	STRM	Load step number for ramping penetration	Adjusting Initial Contact Conditions

## CONTA 174 Output Data

The solution output associated with the element is in two forms:

- Nodal displacements included in the overall nodal solution
- Additional element output as shown in Table 2: CONTA174 Element Output Definitions (p. 804)

A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " $Y$ " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and " - " indicates that the item is not available.

Table 2: CONTA174 Element Output Definitions (p. 804) gives element output. In the results file, the nodal results are obtained from its closest integration point.

## Table 2 CONTA 174 Element Output Definitions

Name	Definition	0	R
EL	Element Number	Y	Y
NODES	Nodes I, J, K, L, M, N, O, P	Y	Y
XC, YC, ZC	Location where results are reported	Y	5
TEMP	Temperatures $\mathrm{T}(\mathrm{I}), \mathrm{T}(\mathrm{J}), \mathrm{T}(\mathrm{K}), \mathrm{T}(\mathrm{L}), \mathrm{T}(\mathrm{M}), \mathrm{T}(\mathrm{N}), \mathrm{T}(\mathrm{O}), \mathrm{T}(\mathrm{P})$	Y	Y
VOLU	AREA	Y	Y
NPI	Number of integration points	Y	-
ITRGET	Target surface number (assigned by ANSYS)	Y	-
ISOLID	Underlying solid or shell element number	Y	-
CONT:STAT	Current contact statuses	1	1
OLDST	Old contact statuses	1	1
ISEG	Current contacting target element number	Y	Y
OLDSEG	Underlying old target number	Y	-
CONT:PENE	Current penetration (gap $=0$; penetration = positive value)	Y	Y
CONT:GAP	Current gap (gap = negative value; penetration = 0)	Y	Y
NGAP	New or current gap at current converged substep (gap = negative value; penetration = positive value)	Y	-
OGAP	Old gap from previously converged substep (gap = negative value; penetration = positive value)	Y	-
IGAP	Initial gap at start of current substep (gap = negative value; penetration = positive value)	Y	Y
GGAP	Geometric gap at current converged substep (gap = negative value; penetration = positive value)	-	Y
CONT:PRES	Normal contact pressure	Y	Y
TAUR/TAUS[7]	Tangential contact stresses	Y	Y
KN	Current normal contact stiffness (Force/Length ${ }^{3}$ )	Y	Y
KT	Current tangent contact stiffness (Force/Length ${ }^{\text {3 }}$ )	Y	Y
MU[8]	Friction coefficient	Y	-
TASS/TASR[7]	Total (algebraic sum) sliding in S and R directions	3	3
AASS/AASR[7]	Total (absolute sum) sliding in S and R directions	3	3


Name	Definition	0	R
TOLN	Penetration tolerance	Y	Y
CONT:SFRIC	Frictional stress SQRT (TAUR**2+TAUS**2)	Y	Y
CONT:STOTAL	Total stress SQRT (PRES**2+TAUR**2+TAUS**2)	Y	Y
CONT:SLIDE	Total sliding SQRT (TASS**2 + TASR**2)	Y	Y
FDDIS	Frictional energy dissipation	6	6
ELSI	Elastic slip distance for sticking contact within a substep	-	Y
VREL	Slip rate	-	Y
DBA	Penetration variation	Y	Y
PINB	Pinball Region	-	Y
CONT:CNOS	Total number of contact status changes during substep	Y	Y
TNOP	Maximum allowable tensile contact pressure	Y	Y
SLTO	Allowable elastic slip	Y	Y
CAREA	Contacting area	-	Y
CONT:FPRS	Actual applied fluid penetration pressure	-	Y
FSTART	Fluid penetration starting time	-	Y
DTSTART	Load step time during debonding	Y	Y
DPARAM	Debonding parameter	Y	Y
DENERI	Energy released due to separation in normal direction - mode I debonding	Y	Y
DENERII	Energy released due to separation in tangential direction mode II debonding	Y	Y
CNFX	Contact element force-X component	-	4
CNFY	Contact element force-Y component	-	Y
CNFZ	Contact element force-Z component	-	Y
CONV	Convection coefficient	Y	Y
RAC	Radiation coefficient	Y	Y
TCC	Conductance coefficient	Y	Y
TEMPS	Temperature at contact point	Y	Y
TEMPT	Temperature at target surface	Y	Y
FXCV	Heat flux due to convection	Y	Y
FXRD	Heat flux due to radiation	Y	Y
FXCD	Heat flux due to conductance	Y	Y
CONT:FLUX	Total heat flux at contact surface	Y	Y
FXNP	Flux input	-	Y
CNFH	Contact element heat flow	-	Y
JCONT	Contact current density (Current/Unit Area)	Y	Y
CCONT	Contact charge density (Charge/Unit Area)	Y	Y
HJOU	Contact power/area	Y	Y


Name	Definition	$\mathbf{O}$	$\mathbf{R}$
ECURT	Current per contact element	-	Y
ECHAR	Charge per contact element	-	Y
ECC	Electric contact conductance (for electric current DOF), or   electric contact capacitance per unit area (for piezoelectric or   electrostatic DOFs)	Y	Y
VOLTS	Voltage on contact nodes	Y	Y
VOLTT	Voltage on associated target	Y	Y
MCC	Magnetic contact permeance	Y	Y
MFLUX	Magnetic flux density	Y	Y
MAGS	Magnetic potential on contact node	Y	Y
MAGT	Magnetic potential on associated target	Y	Y

1. The possible values of STAT and OLDST are:
$0=$ Open and not near contact
1 = Open but near contact
2 = Closed and sliding
3 = Closed and sticking
2. ANSYS will evaluate model to detect initial conditions.
3. Only accumulates the sliding when contact occurs.
4. Contact element forces are defined in the global Cartesian system.
5. Available only at centroid as a *GET item.
6. FDDIS $=$ (contact friction stress)*(sliding distance of substep)/(time increment of substep)
7. For the case of orthotropic friction, components are defined in the global Cartesian system (default) or in the local element coordinate system specified by ESYS.
8. For orthotropic friction, an equivalent coefficient of friction is output.

## Note

If ETABLE is used for the CONT items, the reported data is averaged across the element.

## Note

Contact results (including all element results) are generally not reported for elements that have a status of "open and not near contact" (far-field).

Table 3: CONTA174 Item and Sequence Numbers (p. 807) lists output available through the ETABLE command using the Sequence Number method. See Creating an Element Table in the Basic Analysis Guide and The Item and Sequence Number Table (p. 9) in this manual for more information. The following notation is used in Table 3: CONTA174 Item and Sequence Numbers (p. 807):

## Name

output quantity as defined in the Table 2: CONTA174 Element Output Definitions (p. 804)

## Item

predetermined Item label for ETABLE command
E
sequence number for single-valued or constant element data

## I,J,K,L

sequence number for data at nodes $\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}$,
Table 3 CONTA174 Item and Sequence Numbers

Output Quantity Name	ETABLE and ESOL Command Input					
	Item	E	I	J	K	L
PRES	SMISC	13	1	2	3	4
TAUR	SMISC	-	5	6	7	8
TAUS	SMISC	-	9	10	11	12
FLUX	SMISC	-	14	15	16	17
FDDIS	SMISC	-	18	19	20	21
FXCV	SMISC		22	23	24	25
FXRD	SMISC	-	26	27	28	29
FXCD	SMISC	-	30	31	32	33
FXNP	SMISC	-	34	35	36	37
JCONT	SMISC	-	38	39	40	41
CCONT	SMISC	-	38	39	40	41
HJOU	SMISC	-	42	43	44	45
MFLUX	SMISC	-	46	47	48	49
STAT[1]	NMISC	41	1	2	3	4
OLDST	NMISC	-	5	6	7	8
PENE[2]	NMISC	-	9	10	11	12
DBA	NMISC	-	13	14	15	16
TASR	NMISC	-	17	18	19	20
TASS	NMISC	-	21	22	23	24
KN	NMISC	-	25	26	27	28
KT	NMISC	-	29	30	31	32
TOLN	NMISC	-	33	34	35	36
IGAP	NMISC	-	37	38	39	40
PINB	NMISC	42	-	-	-	-
CNFX	NMISC	43	-	-	-	-
CNFY	NMISC	44	-	-	-	-
CNFZ	NMISC	45	-	-	-	-
ISEG	NMISC	-	46	47	48	49


Output   Quant-   ity   Name	ETABLE and ESOL Command Input					
	Item	E	$\mathbf{l}$	$\mathbf{J}$	$\mathbf{K}$	$\mathbf{L}$
AASR	NMISC	-	50	51	52	53
AASS	NMISC	-	54	55	56	57
CAREA	NMISC	58	-	-	-	-
MU	NMISC	-	62	63	64	65
DTSTART	NMISC	-	66	67	68	69
DPARAM	NMISC	-	70	71	72	73
FPRS	NMISC	-	74	75	76	77
TEMPS	NMISC	-	78	79	80	81
TEMPT	NMISC	-	82	83	84	85
CONV	NMISC	-	86	87	88	89
RAC	NMISC	-	90	91	92	93
TCC	NMISC	-	94	95	96	97
CNFH	NMISC	98	-	-	-	-
ECURT	NMISC	99	-	-	-	-
ECHAR	NMISC	99	-	-	-	-
ECC	NMISC	-	100	101	102	103
VOLTS	NMISC	-	104	105	106	107
VOLTT	NMISC	-	108	109	110	111
CNOS	NMISC	-	112	113	114	115
TNOP	NMISC	-	116	117	118	119
SLTO	NMISC	-	120	121	122	123
MCC	NMISC	-	124	125	126	127
MAGS	NMISC	-	128	129	130	131
MAGT	NMISC	-	132	133	134	135
ELSI	NMISC	-	136	137	138	139
DENERI	NMISC	-	140	141	142	143
DENERII	NMISC	-	144	145	146	147
FSTART	NMISC	-	148	149	150	151
GGAP	NMISC	-	152	153	154	155
VREL	NMISC	-	156	157	158	159

1. Element Status $=$ highest value of status of integration points within the element
2. Penetration $=$ positive value, gap $=$ negative value

You can display or list contact results through several POST1 postprocessor commands. The contact specific items for the PLNSOL, PLESOL, PRNSOL, and PRESOL commands are listed below:

STAT	Contact status
PENE	Contact penetration
PRES	Contact pressure
SFRIC	Contact friction stress
STOT	Contact total stress (pressure plus friction)
SLIDE	Contact sliding distance
GAP	Contact gap distance
FLUX	Total heat flux at contact surface   step
CNOS	Actual applied fluid penetration pressure
FPRS	

## CONTA174 Assumptions and Restrictions

- The 3-D contact element must coincide with the external surface of the underlying solid or shell element.
- This element is nonlinear and requires a full Newton iterative solution, regardless of whether large or small deflections are specified. An exception to this is when MPC bonded contact is specified (KEYOPT(2) $=2$ and $\operatorname{KEYOPT}(12)=5$ or 6 ).
- The normal contact stiffness factor (FKN) must not be so large as to cause numerical instability.
- FTOLN, PINB, and FKOP can be changed between load steps or during restart stages.
- You can use this element in nonlinear static or nonlinear full transient analyses.
- In addition, you can use it in modal analyses, eigenvalue buckling analyses, and harmonic analyses. For these analysis types, the program assumes that the initial status of the element (i.e., the status at the completion of the static prestress analysis, if any) does not change.
- This element allows birth and death and will follow the birth and death status of the underlying solid, shell, beam or target elements.
- The USERFRIC subroutine (user-defined friction) can only be used with penalty-based tangential contact (i.e., $\operatorname{KEYOPT}(2)=0,1$, or 3 ).


## CONTA174 Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

## ANSYS Professional

- The MU material property is not allowed
- The birth and death special feature is not allowed.


## ANSYS Structural

- The VOLT DOF $(\operatorname{KEYOPT}(1)=3$ through 6$)$ is not allowed.
- The MAG DOF $(\operatorname{KEYOPT}(1)=7)$ is not allowed.


## ANSYS Mechanical

- The MAG DOF $(\operatorname{KEYOPT}(1)=7)$ is not allowed.

2-D/3-D Node-to-Surface Contact
MP ME ST PR PRN DS DSS <> EM <> <> PP <> EME MFS
Product Restrictions

## CONTA175 Element Description

CONTA175 may be used to represent contact and sliding between two surfaces (or between a node and a surface, or between a line and a surface) in 2-D or 3-D. The element is applicable to 2-D or 3-D structural and coupled field contact analyses. This element is located on the surfaces of solid, beam, and shell elements. 3-D solid and shell elements with midside nodes are supported for bonded and no separation contact. For other contact types, lower order solid and shell elements are recommended.

Contact occurs when the element surface penetrates one of the target segment elements (TARGE169, TARGE170) on a specified target surface. Coulomb friction, shear stress friction, and user defined friction with the USERFRIC subroutine are allowed. This element also allows separation of bonded contact to simulate interface delamination. See CONTA175 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

## Figure 1 CONTA175 Geometry



2-D associated target
surface (TARGE169)


3-D associated target
surface (TARGE170)

## CONTA175 Input Data

The geometry is shown in Figure 1 (p. 811). The element is defined by one node. The underlying elements can be 2-D or 3-D solid, shell, or beam elements. The 3-D underlying solid or shell elements must have no midside nodes. CONTA175 represents 2-D or 3-D contact depending on whether the associated 2-D (TARGE169) or 3-D (TARGE170) segments are used. Remember, contact can occur only when the outward normal direction of the 2-D or 3-D target surface points to the contact surface. See Generating Contact Elements in the Contact Technology Guide for more information on generating elements automatically using the ESURF command.

CONTA175 supports isotropic and orthotropic Coulomb friction. For isotropic friction, specify a single coefficient of friction, MU, using either TB command input (recommended) or the MP command. For orthotropic friction, specify two coefficients of friction, MU1 and MU2, in two principal directions using TB command input. (See Contact Friction (TB,FRIC) (p. 83) for more information.)

For isotropic friction, the default element coordinate system (based on node connectivity of the underlying elements) is used. For orthotropic friction, the global coordinate system is used by default, or you may define a local element coordinate system with the ESYS command. The principal directions are computed on the target surface and then projected onto the contact element (node). The first principal direction is defined
by projecting the first direction of the chosen coordinate system onto the target surface. The second principal direction is defined by taking a cross product of the first principal direction and the target normal. These directions also follow the rigid body rotation of the contact element to correctly model the directional dependence of friction. Be careful to choose the coordinate system (global or local) so that the first direction of that system is within $45^{\circ}$ of the tangent to the contact surface.

If you want to set the coordinate directions for isotropic friction (to the global Cartesian system or another system via ESYS), you can define orthotropic friction and set MU1 = MU2.

To define a coefficient of friction for isotropic or orthotropic friction that is dependent on temperature, time, normal pressure, sliding distance, or sliding relative velocity, use the TBFIELD command along with TB,FRIC. See Contact Friction (TB,FRIC) (p. 83) for more information.

To implement a user-defined friction model, use the TB,FRIC command with $T B O P T$ = USER to specify friction properties and write a USERFRIC subroutine to compute friction forces. See User-Defined Friction (TB,FRIC,,_USER) (p. 85) for more information on how to use this feature. See also the Guide to ANSYS User Programmable Features for a detailed description of the USERFRIC subroutine.

To model proper momentum transfer and energy balance between contact and target surfaces, impact constraints should be used in transient dynamic analysis. See the description of KEYOPT(7) below and the contact element discussion in the Theory Reference for the Mechanical APDL and Mechanical Applications for details.

The contact surface elements are associated with the target segment elements (TARGE169, TARGE170) via a shared real constant set. ANSYS looks for contact only between surfaces with the same real constant set. For either rigid-flexible or flexible-flexible contact, one of the deformable surfaces must be represented by a contact surface. See Designating Contact and Target Surfaces in the Contact Technology Guide for more information. If more than one target surface will make contact with the same boundary of solid elements, you must define several contact elements that share the same geometry but relate to separate targets (targets which have different real constant numbers), or you must combine the two target surfaces into one (targets that share the same real constant numbers).

To model separation of bonded contact with $\operatorname{KEYOPT}(12)=2,3,4,5$, or 6 , use the TB command with the CZM label. See "Debonding" in the Contact Technology Guide for more information.

See the Contact Technology Guide for a detailed discussion on contact and using the contact elements. "Node-to-Surface Contact" discusses CONTA175 specifically, including the use of real constants and KEYOPTs.

A summary of the element input is given in "CONTAC175 Input Summary" (p.812). A general description of element input is given in Element Input (p. 5).

## CONTAC175 Input Summary

## Nodes

I
Degrees of Freedom
UX, UY, (UZ) (if KEYOPT(1) = 0
UX, UY, (UZ), TEMP (if KEYOPT(1) = 1)
TEMP (if $\operatorname{KEYOPT}(1)=2$ )
UX, UY, (UZ), TEMP, VOLT (if $\operatorname{KEYOPT}(1)=3$ )
TEMP, VOLT (if KEYOPT(1) = 4)
UX, UY, (UZ), VOLT (if KEYOPT(1) = 5)
$\operatorname{VOLT}$ (if $\operatorname{KEYOPT}(1)=6)$
AZ (2-D), MAG (3-D) (if KEYOPT(1) = 7)

## Real Constants

R1, R2, FKN, FTOLN, ICONT, PINB,
PMAX, PMIN, TAUMAX, CNOF, FKOP, FKT,
COHE, TCC, FHTG, SBCT, RDVF, FWGT,
ECC, FHEG, FACT, DC, SLTO, TNOP,
TOLS, MCC, , , COR, STRM
See Table 1: CONTA175 Real Constants (p. 817) for descriptions of the real constants.

## Material Properties

MU, EMIS (MP command)
FRIC (TB command; see Contact Friction (TB,FRIC) (p. 83))
CZM (TB command; see Cohesive Zone Materials Used for Debonding in the Contact Technology Guide)

## Special Features

Nonlinear
Large deflection
Isotropic or orthotropic friction; USERFRIC subroutine
Debonding
Birth and death
Linear perturbation

## KEYOPTs

Presented below is a list of KEYOPTS available for this element. Included are links to sections in the Contact Technology Guide where more information is available on a particular topic.

## KEYOPT(1)

Selects degrees of freedom:
0 --
UX, UY, UZ
1 --
UX, UY, UZ, TEMP
2 --
TEMP
3 --
UX, UY, UZ, TEMP, VOLT
4 --
TEMP, VOLT
5 --
UX, UY, UZ, VOLT
6 --
VOLT
7 --
AZ (2-D) or MAG (3-D)

## KEYOPT(2)

Contact algorithm:

0 --
Augmented Lagrangian (default)
1 --
Penalty function
2 --
Multipoint constraint (MPC); see "Multipoint Constraints and Assemblies" in the Contact Technology Guide for more information

3 --
Lagrange multiplier on contact normal and penalty on tangent
4 --
Pure Lagrange multiplier on contact normal and tangent

## KEYOPT(3)

Contact model:
0 --
Contact force based model (default)
1 --
Contact traction model

## KEYOPT(4)

Contact normal direction:
0 --
Normal to target surface (default)
1 --
Normal from contact nodes
2 --
Normal from contact nodes (used for shell/beam bottom surface contact when shell/beam thickness is accounted for)

3 --
Normal to target surface (used for shell/beam bottom surface contact when shell/beam thickness is accounted for)

## Note

When using the multipoint constraint (MPC) approach to define surface-based constraints, use KEYOPT(4) in the following way: set KEYOPT(4) $=0$ for a rigid surface constraint, set KEYOPT(4) = 1 for a force-distributed constraint. See Surface-based Constraints for more information.

## KEYOPT(5)

CNOF/ICONT Automated adjustment:
0 --
No automated adjustment
1 --
Close gap with auto CNOF

## 2 --

Reduce penetration with auto CNOF
3 --
Close gap/reduce penetration with auto CNOF
4 --
Auto ICONT

## KEYOPT(6)

Contact stiffness variation (used to enhance stiffness updating when $\operatorname{KEYOPT}(10)>0$ ):
0 --
Use default range for stiffness updating
1 --
Make a nominal refinement to the allowable stiffness range
2 --
Make an aggressive refinement to the allowable stiffness range

## KEYOPT(7)

Element level time incrementation control / impact constraints:
0 --
No control
1 --
Automatic bisection of increment
2 --
Change in contact predictions are made to maintain a reasonable time/load increment
3 --
Change in contact predictions made to achieve the minimum time/load increment whenever a change in contact status occurs

4 --
Use impact constraints for standard or rough contact $(\operatorname{KEYOPT}(12)=0$ or 1$)$ in a transient dynamic analysis with automatic adjustment of time increment

## Note

$\operatorname{KEYOPT}(7)=2,3$, and 4 include an automatic adjustment of the time increment. This is activated only if the command SOLCONTROL,ON,ON was issued prior to the solution.

## KEYOPT(8)

Asymmetric contact selection:
0 --
No action
2 --
ANSYS internally selects which asymmetric contact pair is used at the solution stage (used only when symmetry contact is defined).

## KEYOPT(9)

Effect of initial penetration or gap:

0 --
Include both initial geometrical penetration or gap and offset
1 --
Exclude both initial geometrical penetration or gap and offset
2 --
Include both initial geometrical penetration or gap and offset, but with ramped effects
3 --
Include offset only (exclude initial geometrical penetration or gap)
4 --
Include offset only (exclude initial geometrical penetration or gap), but with ramped effects

## Note

The effects of KEYOPT(9) are dependent on settings for other KEYOPTs. See the discussion on using KEYOPT(9) in the Contact Technology Guide for more information.

## KEYOPT(10)

Contact Stiffness Update:
0 --
Each load step if FKN is redefined during load step (pair based).
2 --
Each iteration based on current mean stress of underlying elements (pair based).

## KEYOPT(11)

Shell Thickness Effect (only for real constant based thickness input):
0 --
Exclude
1 --
Include

## KEYOPT(12)

Behavior of contact surface:
0 --
Standard
1 --
Rough
2 --
No separation (sliding permitted)
3 --
Bonded
4 --
No separation (always)
5 --
Bonded (always)
6 --
Bonded (initial contact)

## Note

When $\operatorname{KEYOPT}(12)=5$ or 6 is used with the MPC algorithm to model surface-based constraints, the KEYOPT(12) setting will have an impact on the local coordinate system of the contact element nodes. See Specifying a Local Coordinate System in the Contact Technology Guide for more information.

Table 1 CONTA175 Real Constants

No.	Name	Description	For more information, see this section in the Contact Technology Guide . . .
1	R1	Target radius for cylinder, cone, or sphere	Defining the Target Surface
2	R2	Target radius at second node of cone	Defining the Target Surface
3	FKN	Normal penalty stiffness factor	Determining Contact Stiffness and Penetration
4	FTOLN	Penetration tolerance factor	Determining Contact Stiffness and Penetration
5	ICONT	Initial contact closure	Adjusting Initial Contact Conditions
6	PINB	Pinball region	Determining Contact Status and the Pinball Region or   Defining Influence Range (PINB)
7	PMAX	Upper limit of initial allowable penetration	Adjusting Initial Contact Conditions
8	PMIN	Lower limit of initial allowable penetration	Adjusting Initial Contact Conditions
9	TAUMAX	Maximum friction stress	Choosing a Friction Model
10	CNOF	Contact surface offset	Adjusting Initial Contact Conditions
11	FKOP	Contact opening stiffness or contact damping	Selecting Surface Interaction Models
12	FKT	Tangent penalty stiffness factor	Determining Contact Stiffness
13	COHE	Contact cohesion	Choosing a Friction Model
14	TCC	Thermal contact conductance	Modeling Conduction
15	FHTG	Frictional heating factor	Modeling Heat Generation Due to Friction
16	SBCT	Stefan-Boltzmann constant	Modeling Radiation
17	RDVF	Radiation view factor	Modeling Radiation
18	FWGT	Heat distribution weighing factor	Modeling Heat Generation Due to Friction (thermal)


No.	Name	Description	For more information, see   this section in the Contact   Technology Guide ...
			or   Heat Generation Due to   Electric Current (electric)
19	ECC	Electric contact conductance	Modeling Surface Interaction
20	FHEG	Joule dissipation weight factor	Heat Generation Due to   Electric Current
21	FACT	Static/dynamic ratio	Static and Dynamic Friction   Coefficients
22	DC	Exponential decay coefficient	Static and Dynamic Friction   Coefficients
23	SLTO	Allowable elastic slip	Using FKT and SLTO
24	TNOP	Maximum allowable tensile contact pressure   [1 (p. 818)]	Chattering Control Paramet-   ers
25	TOLS	Target edge extension factor	Selecting Location of Con-   tact Detection
26	MCC	Magnetic contact permeance	Modeling Magnetic Contact
29	COR	Coefficient of restitution	Impact Between Rigid Bod-   ies
30	STRM	Load step number for ramping penetration	Adjusting Initial Contact   Conditions

1. For the force-based model $(\operatorname{KEYOPT}(3)=0)$, TNOP is the allowable tensile contact force.

## CONTA175 Output Data

The solution output associated with the element is in two forms:

- Nodal displacements included in the overall nodal solution
- Additional element output as shown in Table 2: CONTA175 Element Output Definitions (p. 819).

A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " $Y$ " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 2 CONTA175 Element Output Definitions

Name	Definition	0	R
EL	Element Number	Y	Y
NODES	Nodes I	Y	Y
XC, YC, (ZC)	Location where results are reported (same as nodal location)	Y	Y
TEMP	Temperature T(I)	Y	Y
VOLU	AREA for 3-D, Length for 2-D	Y	Y
NPI	Number of integration points	Y	-
ITRGET	Target surface number (assigned by ANSYS)	Y	-
ISOLID	Underlying solid or shell element number	Y	-
CONT:STAT	Current contact statuses	1	1
OLDST	Old contact statuses	1	1
ISEG	Current contacting target element number	Y	Y
OLDSEG	Underlying old target number	Y	-
CONT:PENE	Current penetration (gap $=0$; penetration = positive value)	Y	Y
CONT:GAP	Current gap (gap = negative value; penetration = 0)	Y	Y
NGAP	New or current gap at current converged substep (gap = negative value; penetration = positive value)	Y	-
OGAP	Old gap at previously converged substep (gap = negative value; penetration = positive value)	Y	-
IGAP	Initial gap at start of current substep (gap = negative value; penetration = positive value)	Y	Y
GGAP	Geometric gap at current converged substep (gap = negative value; penetration = positive value)	-	Y
CONT:PRES	Normal contact pressure	2	2
TAUR/TAUS[8]	Tangential contact stresses	2	2
KN	Current normal contact stiffness (units: Force/Length for contact force model, units: Force/Length ${ }^{3}$ for contract traction model)	5	5
KT	Current tangent contact stiffness (same units as KN)	5	5
MU[9]	Friction coefficient	Y	-
TASS/TASR[8]	Total (algebraic sum) sliding in S and R directions (3-D only)	3	3
AASS/AASR[8]	Total (absolute sum) sliding in S and R directions (3-D only)	3	3
TOLN	Penetration tolerance	Y	Y
CONT:SFRIC	Frictional stress SQRT (TAUR**2+TAUS**2) (3-D only)	2	2
CONT:STOTAL	Total stress SQRT (PRES**2+TAUR**2+TAUS**2) (3-D only)	2	2
CONT:SLIDE	Total sliding SQRT (TASS**2+TASR**2) (3-D only)	Y	Y
NX, NY	Surface normal vector components (2-D only)	Y	-


Name	Definition	0	R
CONT:SFRIC	Tangential contact stress (2-D only)	2	2
CONT:SLIDE	Total accumulated sliding (algebraic sum) (2-D only)	3	3
ASLIDE	Total accumulated sliding (absolute sum) (2-D only)	3	3
FDDIS	Frictional energy dissipation	7	7
ELSI	Elastic slip distance for sticking contact within a substep	-	Y
VREL	Slip rate	-	Y
DBA	Penetration variation	Y	Y
PINB	Pinball Region	-	Y
CONT:CNOS	Total number of contact status changes during substep	Y	Y
TNOP	Maximum allowable tensile contact pressure	2	2
SLTO	Allowable elastic slip	Y	Y
CAREA	Contacting area	-	Y
DTSTART	Load step time during debonding	Y	Y
DPARAM	Debonding parameter	Y	Y
DENERI	Energy released due to separation in normal direction - mode I debonding	Y	Y
DENERII	Energy released due to separation in tangential direction mode II debonding	Y	Y
CNFX[4]	Contact element force-X component	-	Y
CNFY	Contact element force-Y component	-	Y
CNFZ	Contact element force-Z component (3-D only)	-	Y
CONV	Convection coefficient	Y	Y
RAC	Radiation coefficient	Y	Y
TCC	Conductance coefficient	6	6
TEMPS	Temperature at contact point	Y	Y
TEMPT	Temperature at target surface	Y	Y
FXCV	Heat flux due to convection	Y	Y
FXRD	Heat flux due to radiation	Y	Y
FXCD	Heat flux due to conductance	Y	Y
CONT:FLUX	Total heat flux at contact surface	Y	Y
FXNP	Flux input	-	Y
CNFH	Contact element heat flow	-	Y
JCONT	Contact current density (Current/Unit Area)	Y	Y
CCONT	Contact charge density (Charge/Unit Area)	Y	Y
HJOU	Contact power/area	Y	$Y$
ECURT	Current per contact element	-	Y
ECHAR	Charge per contact element	-	Y


Name	Definition	$\mathbf{O}$	$\mathbf{R}$
ECC	Electric contact conductance (for electric current DOF), or   electric contact capacitance per unit area (for piezoelectric or   electrostatic DOFs)	6	6
VOLTS	Voltage on contact nodes	Y	Y
VOLTT	Voltage on associated target	Y	Y
MCC	Magnetic contact permeance	6	6
MFLUX	Magnetic flux density	Y	Y
AZS/MAGS	2-D/3-D Magnetic potential on contact node	Y	Y
AZT/MAGT	2-D/3-D Magnetic potential on associated target	Y	Y

1. The possible values of STAT and OLDST are:
$0=$ Open and not near contact
$1=$ Open but near contact
$2=$ Closed and sliding
3 = Closed and sticking
2. For the force-based model $(\operatorname{KEYOPT}(3)=0)$, the unit of the quantities is FORCE. For the traction-based model $(\operatorname{KEYOPT}(3)=1)$, the unit is FORCE/AREA.
3. Only accumulates the sliding when contact occurs.
4. Contact element forces are defined in the global Cartesian system
5. For the force-based model, the unit of stiffness is FORCE/LENGTH. For the traction-ased model, the unit is FORCE/LENGTH ${ }^{3}$.
6. The units of TCC, ECC, and MCC in the traction-based model should be the units of TCC, ECC, and MCC of the force-based model per area.
7. FDDIS $=($ contact friction stress)*(sliding distance of substep)/(time increment of substep)
8. For the case of orthotropic friction, components are defined in the global Cartesian system (default) or in the local element coordinate system specified by ESYS.
9. For orthotropic friction, an equivalent coefficient of friction is output.

## Note

Contact results (including all element results) are generally not reported for elements that have a status of "open and not near contact" (far-field).

Table 3: CONTA175 (3-D) Item and Sequence Numbers (p. 822) and Table 4: CONTA175 (2-D) Item and Sequence Numbers (p.823) list outputs available through the ETABLE command using the Sequence Number method. See Creating an Element Table in the Basic Analysis Guide and The Item and Sequence Number Table (p. 9) in this manual for more information. The following notation is used in the tables below:

## Name

output quantity as defined in Table 2: CONTA175 Element Output Definitions (p. 819)

## Item

predetermined Item label for ETABLE command

## E

sequence number for single-valued or constant element data
I
sequence number for data at nodes I
Table 3 CONTA175 (3-D) Item and Sequence Numbers

Output Quantity Name	ETABLE and ESOL Command Input		
	Item	E	I
PRES	SMISC	13	1
TAUR	SMISC	-	5
TAUS	SMISC	-	9
FLUX	SMISC	-	14
FDDIS	SMISC	-	18
FXCV	SMISC		22
FXRD	SMISC	-	26
FXCD	SMISC	-	30
FXNP	SMISC	-	34
JCONT	SMISC	-	38
CCONT	SMISC	-	38
HJOU	SMISC	-	42
MFLUX	SMISC	-	46
STAT[1]	NMISC	41	1
OLDST	NMISC	-	5
PENE[2]	NMISC	-	9
DBA	NMISC	-	13
TASR	NMISC	-	17
TASS	NMISC	-	21
KN	NMISC	-	25
KT	NMISC	-	29
TOLN	NMISC	-	33
IGAP	NMISC	-	37
PINB	NMISC	42	-
CNFX	NMISC	43	-
CNFY	NMISC	44	-
CNFZ	NMISC	45	-
ISEG	NMISC	-	46
AASR	NMISC	-	50
AASS	NMISC	-	54


Output   Quant-   ity   Name	ETABLE and ESOL		
CAREA	NMISC	58	-
MU	NMISC	-	62
DTSTART	NMISC	-	66
DPARAM	NMISC	-	70
TEMPS	NMISC	-	78
TEMPT	NMISC	-	82
CONV	NMISC	-	86
RAC	NMISC	-	90
TCC	NMISC	-	94
CNFH	NMISC	98	-
ECURT	NMISC	99	-
ECHAR	NMISC	99	-
ECC	NMISC	-	100
VOLTS	NMISC	-	104
VOLTT	NMISC	-	108
CNOS	NMISC	-	112
TNOP	NMISC	-	116
SLTO	NMISC	-	120
MCC	NMISC	-	124
MAGS	NMISC	-	128
MAGT	NMISC	-	132
ELSI	NMISC	-	136
DENERI	NMISC	-	140
DENERII	NMISC	-	144
GGAP	NMISC	-	148
VREL	NMISC	-	152

Table 4 CONTA175 (2-D) Item and Sequence Numbers

Output   Quant-   ity   Name	ETABLE and ESOL   Command Input		
	Item	E	I
PRES	SMISC	5	1
SFRIC	SMISC	-	3
FLUX	SMISC	-	6
FDDIS	SMISC	-	8


Output Quantity Name	ETABLE and ESOL Command Input		
	Item	E	I
FXCV	SMISC	-	10
FXRD	SMISC	-	12
FXCD	SMISC	-	14
FXNP	SMISC	-	16
JCONT	SMISC	-	18
CCONT	SMISC	-	18
HJOU	SMISC	-	20
MFLUX	SMISC	-	22
STAT[1]	NMISC	19	1
OLDST	NMISC	-	3
PENE[2]	NMISC	-	5
DBA	NMISC	-	7
SLIDE	NMISC	-	9
KN	NMISC	-	11
KT	NMISC	-	13
TOLN	NMISC	-	15
IPENE	NMISC	-	17
PINB	NMISC	20	-
CNFX	NMISC	21	-
CNFY	NMISC	22	-
ISEG	NMISC	-	23
CAREA	NMISC	27	-
MU	NMISC	-	29
DTSTART	NMISC	-	31
DPARAM	NMISC	-	33
TEMPS	NMISC	-	37
TEMPT	NMISC	-	39
CONV	NMISC	-	41
RAC	NMISC	-	43
TCC	NMISC	-	45
CNFH	NMISC	47	-
ECURT	NMISC	48	-
ECHAR	NMISC	48	-
ECC	NMISC	-	49
VOLTS	NMISC	-	51


Output   Quant-   ity   Name	ETABLE and ESOL   Command Input		
	NMISC	-	53
CNOS	NMISC	-	55
TNOP	NMISC	-	57
SLTO	NMISC	-	59
MCC	NMISC	-	61
AZS	NMISC	-	63
AZT	NMISC	-	65
ELSI	NMISC	-	67
DENERI	NMISC	-	69
DENERII	NMISC	-	71
GGAP	NMISC	-	73
VREL	NMISC	-	75

1. Element Status $=$ highest value of status of integration points within the element
2. Penetration $=$ positive value, gap $=$ negative value

You can display or list contact results through several POST1 postprocessor commands. The contact specific items for the PLNSOL, PLESOL, PRNSOL, and PRESOL commands are listed below:

STAT	Contact status
PENE	Contact penetration
PRES	Contact pressure for the traction-based model. Con-   tact normal force for the force-based model.
SFRIC	Contact friction stress for the traction-based model.   Friction force for the force-based model.
STOT	Contact total stress (pressure plus friction) for the   traction-based model. Total contact force for the   force-based model.
SLIDE	Contact sliding distance
GAP	Contact gap distance
CNOS	Total number of contact status changes during sub-   step

## CONTA175 Assumptions and Restrictions

- This element is nonlinear and requires a full Newton iterative solution, regardless of whether large or small deflections are specified. An exception to this is when MPC bonded contact is specified (KEYOPT(2) $=2$ and $\operatorname{KEYOPT}(12)=5$ or 6 ).
- The normal contact stiffness factor (FKN) must not be so large as to cause numerical instability.
- FTOLN, PINB, and FKOP can be changed between load steps or during restart stages.
- You can use this element in nonlinear static or nonlinear full transient analyses.
- In addition, you can use it in modal analyses, eigenvalue buckling analyses, and harmonic analyses. For these analysis types, the program assumes that the initial status of the element (i.e., the status at the completion of the static prestress analysis, if any) does not change.
- This element allows birth and death and will follow the birth and death status of the underlying solid, shell, beam, or target elements.
- When the contact node is on the axis of symmetry in an axisymmetric analysis, the contact pressure on that node is not accurate since the area of the node is zero. The contact force is accurate in this situation.
- The USERFRIC subroutine (user-defined friction) can only be used with penalty-based tangential contact (i.e., $\operatorname{KEYOPT}(2)=0,1$, or 3).


## CONTA175 Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

## ANSYS Professional

- The MU material property is not allowed.
- The birth and death special feature is not allowed.


## ANSYS Structural

- The VOLT DOF $(\operatorname{KEYOPT}(1)=3$ through 6$)$ is not allowed.
- The AZ $(2-D)$ and MAG $(3-D)$ DOFs $(\operatorname{KEYOPT}(1)=7)$ are not allowed.


## ANSYS Mechanical

- The AZ $(2-D)$ and MAG (3-D) DOFs (KEYOPT $(1)=7)$ are not allowed.


## CONTA176 Element Description

CONTA176 is used to represent contact and sliding between 3-D line segments (TARGE170) and a deformable line segment, defined by this element. The element is applicable to 3-D beam-beam structural contact analyses. This element is located on the surfaces of 3-D beam or pipe elements with or without midside nodes (such as BEAM188 or BEAM189). Contact occurs when the element surface penetrates one of the 3-D straight line or parabolic line segment elements (TARGE170) on a specified target surface. Coulomb friction, shear stress friction, and user defined friction with the USERFRIC subroutine are allowed. This element also allows separation of bonded contact to simulate interface delamination. See CONTA176 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element. To model beam-to-surface contact, use the line-to-surface contact element, CONTA177.

Figure 1 CONTA176 Geometry


## CONTA176 Input Data

The geometry and node locations are shown in Figure 1 (p. 827). The element is defined by two nodes (if the underlying beam element does not have a midside node) or three nodes (if the underlying beam element has a midside node). The element x -axis is along the $\mathrm{I}-\mathrm{J}$ line of the element. Correct node ordering of the contact element is critical for proper detection of contact. The nodes must be ordered in a sequence that defines a continuous line. See Generating Contact Elements in the Contact Technology Guide for more information on generating elements automatically using the ESURF command.

Three different scenarios can be modeled by CONTA176:

- Internal contact where one beam (or pipe) slides inside another hollow beam (or pipe) (see Figure 2 (p. 828))
- External contact between two beams that lie next to each other and are roughly parallel (see Figure 3 (p. 828))
- External contact between two beams that cross (see Figure 4 (p. 829))

Use KEYOPT(3) $=0$ for the first two scenarios (internal contact and parallel beams). In both cases, the contact condition is only checked at contact nodes.

Use KEYOPT(3) = 1 for the third scenario (beams that cross). In this case, the contact condition is checked along the entire length of the beams. The beams with circular cross sections are assumed to come in contact in a point-wise manner. Each contact element can potentially contact no more than one target element.

Figure 2 Beam Sliding Inside a Hollow Beam


Figure 3 Parallel Beams in Contact


## Figure 4 Crossing Beams in Contact



The 3-D line-to-line contact elements are associated with the target line segment elements (LINE or PARA segment types for TARGE170) via a shared real constant set. The contact/target surface is assumed to be the surface of a cylinder. For a general beam cross section, use an equivalent circular beam (see Figure 5 (p. 829)). Use the first real constant, R1, to define the radius on the target side (target radius $r_{t}$ ). Use the second real constant, R2, to define the radius on the contact side (contact radius $r_{c}$ ). Follow these guidelines to define the equivalent circular cross section:

- Determine the smallest cross section along the beam axis.
- Determine the largest circle embedded in that cross section.

Figure 5 Equivalent Circular Cross Section


The target radius can be entered as either a negative or positive value. Use a negative value when modeling internal contact (a beam sliding inside a hollow beam, or pipe sliding inside another pipe), with the input value equal to the inner radius of the outer beam (see Figure 2 (p. 828)). Use a positive value when modeling contact between the exterior surfaces of two cylindrical beams.

For the case of internal contact, the inner beam should usually be considered the contact surface and the outer beam should be the target surface. The inner beam can be considered as the target surface only when the inner beam is much stiffer than the outer beam.

Contact is detected when two circular beams touch or overlap each other. The non-penetration condition for beams with a circular cross section can be defined as follows.

For internal contact:
$g=\left|r_{t}-r_{c}\right|-d \leq 0$
and for external contact:
$\mathrm{g}=\mathrm{d}-\left(\mathrm{r}_{\mathrm{c}}+\mathrm{r}_{\mathrm{t}}\right) \leq 0$
where $r_{c}$ and $r_{t}$ are the radii of the cross sections of the beams on the contact and target sides, respectively; and $d$ is the minimal distance between the two beams which also determines the contact normal direction (see Figure 4 (p. 829)). Contact occurs for negative values of g .

ANSYS looks for contact only between contact and target surfaces with the same real constant set. For either rigid-flexible or flexible-flexible contact, one of the deformable surfaces must be represented by a contact surface. See Designating Contact and Target Surfaces in the Contact Technology Guide for more information. If more than one target surface will make contact with the same boundary of beam elements, you must define several contact elements that share the same geometry but relate to separate targets (targets which have different real constant numbers), or you must combine the two target surfaces into one (targets that share the same real constant numbers).

CONTA176 supports isotropic and orthotropic Coulomb friction. For isotropic friction, specify a single coefficient of friction, MU, using either TB command input (recommended) or the MP command. For orthotropic friction, specify two coefficients of friction, MU1 and MU2, in two principal directions using TB command input. (See Contact Friction (TB,FRIC) (p. 83) for more information.)

For isotropic friction, local element coordinates based on the nodal connectivity are used to define principal directions. In the case of two crossing beams in contact $(\operatorname{KEYPT}(3)=1)$, the first principal direction is defined by $1 / 2\left(\mathbf{t}_{\mathbf{1}}+\mathbf{t}_{\mathbf{2}}\right)$. The first vector, $\mathbf{t}_{\mathbf{1}}$, points from the first contact node to the second contact node, and the second vector, $\mathbf{t}_{2}$, points from the first target node to the second target node. In the case of two parallel beams in contact $(\operatorname{KEYOPT}(3)=0)$, the first principal direction points from the first contact node to the second contact node. In both cases, the second principal direction is defined by taking a cross product of the first principal direction and the contact normal.

For orthotropic friction, the principal directions are determined as follows. The global coordinate system is used by default, or you may define a local element coordinate system with the ESYS command. The first principal direction is defined by projecting the first direction of the chosen coordinate system onto the contact element. The second principal direction is defined by taking a cross product of the first principal direction and the contact normal. These directions also follow the rigid body rotation of the contact element to correctly model the directional dependence of friction. Be careful to choose the coordinate system (global or local) so that the first direction of that system is within $45^{\circ}$ of the tangent to the contact surface.

If you want to set the coordinate directions for isotropic friction (to the global Cartesian system or another system via ESYS), you can define orthotropic friction and set MU1 = MU2.

To define a coefficient of friction for isotropic or orthotropic friction that is dependent on temperature, time, normal pressure, sliding distance, or sliding relative velocity, use the TBFIELD command along with TB,FRIC. See Contact Friction (TB,FRIC) (p. 83) for more information.

To implement a user-defined friction model, use the TB,FRIC command with $T B O P T$ = USER to specify friction properties and write a USERFRIC subroutine to compute friction forces. See User-Defined Friction (TB,FRIC,,,USER) (p. 85) for more information on how to use this feature. See also the Guide to ANSYS User Programmable Features for a detailed description of the USERFRIC subroutine.

To model proper momentum transfer and energy balance between contact and target surfaces, impact constraints should be used in transient dynamic analysis. See the description of KEYOPT(7) below and the contact element discussion in the Theory Reference for the Mechanical APDL and Mechanical Applications for details.

To model separation of bonded contact with $\operatorname{KEYOPT}(12)=2,3,4,5$, or 6 , use the TB command with the CZM label. See "Debonding" in the Contact Technology Guide for more information.

See the Contact Technology Guide for a detailed discussion on contact and using the contact elements. "3D Beam-to-Beam Contact" discusses CONTA176 specifically, including the use of real constants and KEYOPTs.

The following table summarizes the element input. Element Input (p. 5) gives a general description of element input.

## CONTA176 Input Summary

## Nodes

I, J, (K)

## Degrees of Freedom

UX, UY, UZ

## Real Constants

R1, R2, FKN, FTOLN, ICONT, PINB,
PMAX, PMIN, TAUMAX, CNOF, FKOP, FKT,
COHE, (Blank), (Blank), (Blank), (Blank), (Blank),
(Blank), (Blank), FACT, DC, SLTO, TNOP,
TOLS, (Blank), (Blank), (Blank), COR, STRM
See Table 1: CONTA176 Real Constants (p. 835) for descriptions of the real constants.

## Material Properties

MU (MP command)
FRIC (TB command; see Contact Friction (TB,FRIC) (p. 83))
CZM (TB command; see Cohesive Zone Materials Used for Debonding in the Contact Technology Guide)

## Special Features

Nonlinear
Large deflection
Isotropic or orthotropic friction; USERFRIC subroutine
Debonding
Birth and death
Linear perturbation

## KEYOPTs

Presented below is a list of KEYOPTS available for this element. Included are links to sections in the Contact Technology Guide where more information is available on a particular topic.

## KEYOPT(1)

Selects degrees of freedom. Currently, the default (UX, UY, UZ) is the only valid option:
0 --
UX, UY, UZ

## KEYOPT(2)

Contact algorithm:
0 --
Augmented Lagrangian (default)
1 --
Penalty function
2 --
Multipoint constraint (MPC); see "Multipoint Constraints and Assemblies" in the Contact Technology Guide for more information

3 --
Lagrange multiplier on contact normal and penalty on tangent
4 --
Pure Lagrange multiplier on contact normal and tangent

## KEYOPT(3)

Beam contact type:
0 --
Parallel beams or beam inside beam
1 --
Crossing beams

## KEYOPT(4)

Type of surface-based constraint (see Surface-based Constraints for more information):
0 --
Rigid surface constraint
1 --
Force-distributed constraint

## KEYOPT(5)

CNOF/ICONT Automated adjustment:
0 --
No automated adjustment
1 --
Close gap with auto CNOF
2 --
Reduce penetration with auto CNOF
3 --
Close gap/reduce penetration with auto CNOF

## 4 --

Auto ICONT

## KEYOPT(6)

Contact stiffness variation (used to enhance stiffness updating when $\operatorname{KEYOPT}(10)>0$ ):
0 --
Use default range for stiffness updating
1 --
Make a nominal refinement to the allowable stiffness range
2 --
Make an aggressive refinement to the allowable stiffness range

## KEYOPT(7)

Element level time incrementation control / impact constraints:
0 --
No control
1 --
Automatic bisection of increment
2 --
Change in contact predictions are made to maintain a reasonable time/load increment
3 --
Change in contact predictions made to achieve the minimum time/load increment whenever a change in contact status occurs

4 --
Use impact constraints for standard or rough contact (KEYOPT(12) = 0 or 1) in a transient dynamic analysis with automatic adjustment of time increment

## Note

$\operatorname{KEYOPT}(7)=2,3$, and 4 include an automatic adjustment of the time increment. This is activated only if the command SOLCONTROL,ON,ON was issued prior to the solution.

## KEYOPT(8)

Asymmetric contact selection:
0 --
No action
2 --
ANSYS internally selects which asymmetric contact pair is used at the solution stage (used only when symmetry contact is defined).

## KEYOPT(9)

Effect of initial penetration or gap:
0 --
Include both initial geometrical penetration or gap and offset
1 --
Exclude both initial geometrical penetration or gap and offset

## 2 --

Include both initial geometrical penetration or gap and offset, but with ramped effects
3 --
Include offset only (exclude initial geometrical penetration or gap)
4 --
Include offset only (exclude initial geometrical penetration or gap), but with ramped effects

## Note

The effects of KEYOPT(9) are dependent on settings for other KEYOPTs. See the discussion on using KEYOPT(9) in the Contact Technology Guide for more information.

## KEYOPT(10)

Contact Stiffness Update:
0 --
Each load step if FKN is redefined during load step (pair based).
2 --
Each iteration based on current mean stress of underlying elements (pair based).

## KEYOPT(12)

Behavior of contact surface:
0 --
Standard
1 --
Rough
2 --
No separation (sliding permitted)
3 --
Bonded
4 --
No separation (always)
5 --
Bonded (always)
6 --
Bonded (initial contact)

## Note

When $\operatorname{KEYOPT}(12)=5$ or 6 is used with the MPC algorithm to model surface-based constraints, the KEYOPT(12) setting will have an impact on the local coordinate system of the contact element nodes. See Specifying a Local Coordinate System in the Contact Technology Guide for more information.

## Table 1 CONTA176 Real Constants

No.	Name	Description	For more information, see   this section in the Contact   Technology Guide ..			
1	R1	Target radius	Real Constants R1, R2			
2	R2	Contact radius	Real Constants R1, R2			
3	FKN[1]	Normal penalty stiffness factor	Determining Contact Stiff-   ness and Penetration			
4	FTOLN	Penetration tolerance factor	Determining Contact Stiff-   ness and Penetration			
5	ICONT	Initial contact closure	Adjusting Initial Contact   Conditions			
6	PINB	Pinball region	Determining Contact Status   and the Pinball Region   or   Defining Influence Range   (PINB)			
7	PMAX	Upper limit of initial allowable penetration	Adjusting Initial Contact   Conditions			
8	PMIN	Lower limit of initial allowable penetration	Adjusting Initial Contact   Conditions			
9	TAUMAX	Maximum friction stress	Choosing a Friction Model			
10	CNOF	Contact surface offset	Adjusting Initial Contact   Conditions			
11	FKOP	Contact opening stiffness or contact damp-   ing	Selecting Surface Interaction   Models			
12	FKT[1]	Tangent penalty stiffness factor	Determining Contact Stiff-   ness			
21	COHE	Contact cohesion	ChCT			
23	Static/dynamic ratio	Static and Dynamic Friction   Coefficients				
24	TNOP	Maximum allowable tensile contact force	Static and Dynamic Friction   Coefficients			
Chattering Control Paramet-						
ers				$	$	Using FKT and SLTO
:---						
13						


No.	Name	Description	For more information, see   this section in the Contact   Technology Guide ...
25	TOLS	Target edge extension factor	Real Constant TOLS
29	COR	Coefficient of restitution	Impact Between Rigid Bod-   ies
30	STRM	Load step number for ramping penetration	Adjusting Initial Contact   Conditions

1. The units of real constants FKN and FKT have a factor of AREA with respect to those used in the surface-to-surface contact elements. See Performing a 3-D Beam-to-Beam Contact Analysis for more information.

## CONTA176 Output Data

The solution output associated with the element is in two forms:

- Nodal displacements included in the overall nodal solution
- Additional element output as shown in Table 2: CONTA176 Element Output Definitions (p. 836).

A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 2 CONTA176 Element Output Definitions

Name	Definition	$\mathbf{O}$	R
EL	Element Number	Y	Y
NODES	Nodes I, J, K	Y	Y
XC, YC, ZC	Location where results are reported (same as nodal location)	Y	Y
TEMP	Temperature T(I)	Y	Y
VOLU	Length	Y	Y
NPI	Number of integration points	Y	-
ITRGET	Target surface number (assigned by ANSYS)	Y	-
ISOLID	Underlying beam element number	Y	-
CONT:STAT	Current contact statuses	1	1
OLDST	Old contact statuses	1	1
ISEG	Current contacting target element number	Y	Y
OLDSEG	Underlying old target number	Y	-


Name	Definition	0	R
CONT:PENE	Current penetration (gap $=0$; penetration = positive value)	Y	Y
CONT:GAP	Current gap (gap = negative value; penetration $=0$ )	Y	Y
NGAP	New or current gap at current converged substep (gap = negative value; penetration = positive value)	Y	-
OGAP	Old gap at previously converged substep (gap = negative value; penetration = positive value)	Y	-
IGAP	Initial gap at start of current substep (gap = negative value; penetration = positive value)	Y	Y
GGAP	Geometric gap at current converged substep (gap = negative value; penetration = positive value)	-	Y
CONT:PRES	Normal contact force	2	2
TAUR/TAUS[7]	Tangential contact stresses	2	2
KN	Current normal contact stiffness (units: Force/Length)	5	5
KT	Current tangent contact stiffness (same units as KN)	5	5
MU[8]	Friction coefficient	Y	-
TASS/TASR[7]	Total (algebraic sum) sliding in S and R directions	3	3
AASS/AASR[7]	Total (absolute sum) sliding in S and R directions	3	3
TOLN	Penetration tolerance	Y	Y
CONT:SFRIC	Frictional stress SQRT (TAUR**2+TAUS**2)	2	2
CONT:STOTAL	Total stress SQRT (PRES**2+TAUR**2+TAUS**2)	2	2
CONT:SLIDE	Total sliding SQRT (TASS**2+TASR**2)	Y	Y
FDDIS	Frictional energy dissipation	6	6
ELSI	Elastic slip distance for sticking contact within a substep	-	Y
VREL	Slip rate	-	Y
DBA	Penetration variation	Y	Y
PINB	Pinball Region	-	Y
CONT:CNOS	Total number of contact status changes during substep	Y	Y
TNOP	Maximum allowable tensile contact force	2	2
SLTO	Allowable elastic slip	Y	Y
CAREA	Contacting area	-	Y
DTSTART	Load step time during debonding	Y	Y
DPARAM	Debonding parameter	Y	Y
DENERI	Energy released due to separation in normal direction - mode I debonding	Y	Y
DENERII	Energy released due to separation in tangential direction mode II debonding	Y	Y
CNFX[4]	Contact element force-X component	-	Y
CNFY	Contact element force-Y component	-	Y
CNFZ	Contact element force-Z component	-	Y

1. The possible values of STAT and OLDST are:
$0=$ Open and not near contact
1 = Open but near contact
2 = Closed and sliding
3 = Closed and sticking
2. The unit of the quantities is FORCE.
3. Only accumulates the sliding when contact occurs.
4. Contact element forces are defined in the global Cartesian system
5. The unit of stiffness is FORCE/LENGTH.
6. FDDIS $=$ (contact friction stress)*(sliding distance of substep)/(time increment of substep)
7. For the case of orthotropic friction in contact between beams, components are defined in the global Cartesian system.
8. For orthotropic friction, an equivalent coefficient of friction is output.

## Note

Contact results (including all element results) are generally not reported for elements that have a status of "open and not near contact" (far-field).

The following table lists output available through the ETABLE command using the Sequence Number method. See Creating an Element Table in the Basic Analysis Guide and The Item and Sequence Number Table ( p .9 ) in this manual for more information.

## Name

output quantity as defined in Table 2: CONTA176 Element Output Definitions (p. 836)

## Item

predetermined item label for ETABLE command
E
sequence number for single-valued or constant element data
NMISC

## I, J, K

sequence number for data at nodes I, J, K
Table 3 CONTA176 (3-D) Item and Sequence Numbers

Output   Quant-   ity   Name	ETABLE and ESOL Command Input				
	Item	$\mathbf{E}$	$\mathbf{I}$	$\mathbf{J}$	$\mathbf{K}$
PRES	SMISC	13	1	2	3
TAUR	SMISC	-	5	6	7
TAUS	SMISC	-	9	10	11
FDDIS	SMISC	-	18	19	20
STAT[1]	NMISC	41	1	2	3


Output   Quant-   ity   Name	ETABLE and ESOL Command Input				
	E	$\mathbf{I}$	$\mathbf{J}$	$\mathbf{K}$	
	NMISC	-	5	6	7
	NMISC	-	9	10	11
	NMISC	-	13	14	15
	NMISC	-	17	18	19
TASS	NMISC	-	21	22	23
KN	NMISC	-	25	26	27
KT	NMISC	-	29	30	31
TOLN	NMISC	-	33	34	35
IGAP	NMISC	-	37	38	39
PINB	NMISC	42	-	-	-
CNFX	NMISC	43	-	-	-
CNFY	NMISC	44	-	-	-
CNFZ	NMISC	45	-	-	-
ISEG	NMISC	-	46	47	48
AASR	NMISC	-	50	51	52
AASS	NMISC	-	54	55	56
CAREA	NMISC	58	-	-	-
MU	NMISC	-	62	63	64
DTSTART	NMISC	-	66	67	68
DPARAM	NMISC	-	70	71	72
CNOS	NMISC	-	112	113	114
TNOP	NMISC	-	116	117	118
SLTO	NMISC	-	120	121	122
ELSI	NMISC	-	136	137	138
DENERI	NMISC	-	140	141	142
DENERII	NMISC	-	144	145	146
GGAP	NMISC	-	148	149	150
VREL	NMISC	-	152	153	154

1. Element Status $=$ highest value of status of integration points within the element
2. Penetration $=$ positive value, gap $=$ negative value

## CONTA176 Assumptions and Restrictions

- The main restriction is the assumption of constant circular beam cross section. The contact radius is assumed to be the same for all elements in the contact pair.
- For $\operatorname{KEYOPT}(3)=1$ (crossing beams), contact between the beams is pointwise, and each contact element contacts no more than one target element.
- This element is nonlinear and requires a full Newton iterative solution, regardless of whether large or small deflections are specified. An exception to this is when MPC bonded contact is specified (KEYOPT(2) $=2$ and $\operatorname{KEYOPT}(12)=5$ or 6 ).
- The normal contact stiffness factor (FKN) must not be so large as to cause numerical instability.
- FTOLN, PINB, and FKOP can be changed between load steps or during restart stages.
- You can use this element in nonlinear static or nonlinear full transient analyses.
- In addition, you can use it in modal analyses, eigenvalue buckling analyses, and harmonic analyses. For these analysis types, the program assumes that the initial status of the element (i.e., the status at the completion of the static prestress analysis, if any) does not change.
- This element allows birth and death and will follow the birth and death status of the underlying beam, pipe, or target elements.
- The USERFRIC subroutine (user-defined friction) can only be used with penalty-based tangential contact (i.e., $\operatorname{KEYOPT}(2)=0,1$, or 3).


## CONTA176 Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

## ANSYS Professional

- The MU material property (input via MP,MU or TB,FRIC) is not allowed.
- The birth and death special feature is not allowed.


## CONTA177 Element Description

CONTA177 is used to represent contact and sliding between 3-D surface segments (TARGE170) and a deformable line segment, defined by this element. The element is applicable to 3-D beam-to-solid and 3-D shell edge-to-solid structural contact analyses. This element is located on the surfaces of 3-D beam or pipe elements with or without midside nodes (such as BEAM188, BEAM189, PIPE288, PIPE289, and ELBOW290). It can also be located on the edge of 3-D shell elements with or without midside nodes, such as SHELL181 and SHELL281. Contact occurs when the element surface penetrates one of the target segment elements (TARGE170) on a specified target surface. Coulomb friction, shear stress friction, and user defined friction with the USERFRIC subroutine are allowed. This element also allows separation of bonded contact to simulate interface delamination. See CONTA177 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element. To model beam-to-beam contact, use the line-to-line contact element, CONTA176.

Figure 1 CONTA177 Geometry

(TARGE170)

## CONTA177 Input Data

The geometry and node locations are shown in Figure 1 (p. 841). The element is defined by two nodes (if the underlying beam or shell element does not have a midside node) or three nodes (if the underlying beam or shell element has a midside node). The element x -axis is along the $\mathrm{I}-\mathrm{J}$ line of the element. Correct node ordering of the contact element is critical for proper detection of contact. The nodes must be ordered in a sequence that defines a continuous line. See Generating Contact Elements in the Contact Technology Guide for more information on generating elements automatically using the ESURF command.

ANSYS looks for contact only between contact and target surfaces with the same real constant set. For either rigid-flexible or flexible-flexible contact, one of the deformable "surfaces" (beam or shell edge) must be represented by a contact surface. See Designating Contact and Target Surfaces in the Contact Technology Guide for more information. If more than one target surface will make contact with the same boundary of
line elements, you must define several contact elements that share the same geometry but relate to separate targets (targets which have different real constant numbers), or you must combine the two target surfaces into one (targets that share the same real constant numbers).

CONTA177 supports isotropic and orthotropic Coulomb friction. For isotropic friction, specify a single coefficient of friction, MU, using either TB command input (recommended) or the MP command. For orthotropic friction, specify two coefficients of friction, MU1 and MU2, in two principal directions using TB command input. (See Contact Friction (TB,FRIC) (p. 83) for more information.)

For isotropic friction, local element coordinates based on the nodal connectivity are used as principal directions. The first principal direction points from node I to node J. The second principal direction is defined by taking a cross product of the first principal direction and the contact normal.

For orthotropic friction, the principal directions are determined as follows. The global coordinate system is used by default, or you may define a local element coordinate system with the ESYS command. The first principal direction is defined by projecting the first direction of the chosen coordinate system onto the contact element. The second principal direction is defined by taking a cross product of the first principal direction and the contact normal. These directions also follow the rigid body rotation of the contact element to correctly model the directional dependence of friction. Be careful to choose the coordinate system (global or local) so that the first direction of that system is within $45^{\circ}$ of the tangent to the contact surface.

If you want to set the coordinate directions for isotropic friction (to the global Cartesian system or another system via ESYS), you can define orthotropic friction and set MU1 = MU2.

To define a coefficient of friction for isotropic or orthotropic friction that is dependent on temperature, time, normal pressure, sliding distance, or sliding relative velocity, use the TBFIELD command along with TB,FRIC. See Contact Friction (TB,FRIC) (p. 83) for more information.

To implement a user-defined friction model, use the TB,FRIC command with $T B O P T=$ USER to specify friction properties and write a USERFRIC subroutine to compute friction forces. See User-Defined Friction (TB,FRIC,,,USER) (p. 85) for more information on how to use this feature. See also the Guide to ANSYS User Programmable Features for a detailed description of the USERFRIC subroutine.

To model proper momentum transfer and energy balance between contact and target surfaces, impact constraints should be used in transient dynamic analysis. See the description of KEYOPT(7) below and the contact element discussion in the Theory Reference for the Mechanical APDL and Mechanical Applications for details.

To model separation of bonded contact with $\operatorname{KEYOPT}(12)=2,3,4,5$, or 6 , use the TB command with the CZM label. See "Debonding" in the Contact Technology Guide for more information.

See the Contact Technology Guide for a detailed discussion on contact and using the contact elements. "Line-to-Surface Contact" discusses CONTA177 specifically, including the use of real constants and KEYOPTs.

The following table summarizes the element input. Element Input (p. 5) gives a general description of element input.

## CONTA177 Input Summary

## Nodes

I, J, (K)

## Degrees of Freedom

UX, UY, UZ

## Real Constants

R1, R2, FKN, FTOLN, ICONT, PINB, PMAX, PMIN, TAUMAX, CNOF, FKOP, FKT,
COHE, (Blank), (Blank), (Blank), (Blank), (Blank),
(Blank), (Blank), FACT, DC, SLTO, TNOP,
TOLS, (Blank), (Blank), (Blank), COR, STRM
See Table 1: CONTA177 Real Constants (p. 846) for descriptions of the real constants.

## Material Properties

MU (MP command)
FRIC (TB command; see Contact Friction (TB,FRIC) (p. 83))
CZM (TB command; see Cohesive Zone Materials Used for Debonding in the Contact Technology Guide)

## Special Features

Nonlinear
Large deflection
Isotropic or orthotropic friction; USERFRIC subroutine
Debonding
Birth and death
Linear perturbation

## KEYOPTs

Presented below is a list of KEYOPTS available for this element. Included are links to sections in the Contact Technology Guide where more information is available on a particular topic.

## KEYOPT(1)

Selects degrees of freedom. Currently, the default (UX, UY, UZ) is the only valid option:
0 --
UX, UY, UZ

## KEYOPT(2)

Contact algorithm:
0 --
Augmented Lagrangian (default)
1 --
Penalty function
2 --
Multipoint constraint (MPC); see "Multipoint Constraints and Assemblies" in the Contact Technology Guide for more information

3 --
Lagrange multiplier on contact normal and penalty on tangent
4 --
Pure Lagrange multiplier on contact normal and tangent

## KEYOPT(4)

Type of surface-based constraint (see Surface-based Constraints for more information):

0 --
Rigid surface constraint
1 --
Force-distributed constraint

## KEYOPT(5)

CNOF/ICONT Automated adjustment:
0 --
No automated adjustment
1 --
Close gap with auto CNOF
2 --
Reduce penetration with auto CNOF
3 --
Close gap/reduce penetration with auto CNOF

## 4 --

Auto ICONT

## KEYOPT(6)

Contact stiffness variation (used to enhance stiffness updating when $\operatorname{KEYOPT}(10)>0$ ):
0 --
Use default range for stiffness updating
1 --
Make a nominal refinement to the allowable stiffness range
2 --
Make an aggressive refinement to the allowable stiffness range

## KEYOPT(7)

Element level time incrementation control / impact constraints:
0 --
No control
1 --
Automatic bisection of increment
2 --
Change in contact predictions are made to maintain a reasonable time/load increment
3 --
Change in contact predictions made to achieve the minimum time/load increment whenever a change in contact status occurs
4 --
Use impact constraints for standard or rough contact $(\operatorname{KEYOPT}(12)=0$ or 1$)$ in a transient dynamic analysis with automatic adjustment of time increment

## Note

$\operatorname{KEYOPT}(7)=2,3$, and 4 include an automatic adjustment of the time increment. This is activated only if the command SOLCONTROL,ON,ON was issued prior to the solution.

## KEYOPT(9)

Effect of initial penetration or gap:
0 --
Include both initial geometrical penetration or gap and offset
1 --
Exclude both initial geometrical penetration or gap and offset
2 --
Include both initial geometrical penetration or gap and offset, but with ramped effects
3 --
Include offset only (exclude initial geometrical penetration or gap)
4 --
Include offset only (exclude initial geometrical penetration or gap), but with ramped effects

## Note

The effects of KEYOPT(9) are dependent on settings for other KEYOPTs. See the discussion on using KEYOPT(9) in the Contact Technology Guide for more information.

## KEYOPT(10)

Contact Stiffness Update:
0 --
Each load step if FKN is redefined during load step (pair based).
2 --
Each iteration based on current mean stress of underlying elements (pair based).

## KEYOPT(11)

Shell thickness effect (target side only):
0 --
Exclude
1 --
Include

## KEYOPT(12)

Behavior of contact surface:
0 --
Standard
1 --
Rough
2 --
No separation (sliding permitted)
3 --
Bonded
4 --
No separation (always)
5 --
Bonded (always)

## 6 --

Bonded (initial contact)

## Note

When $\operatorname{KEYOPT}(12)=5$ or 6 is used with the MPC algorithm to model surface-based constraints, the KEYOPT(12) setting will have an impact on the local coordinate system of the contact element nodes. See Specifying a Local Coordinate System in the Contact Technology Guide for more information.

## Table 1 CONTA177 Real Constants

No.	Name	Description	For more information, see this section in the Contact Technology Guide . . .
1	R1	Target radius for cylinder, cone, or sphere	Defining the Target Surface
2	R2	Target radius at second node of cone	Defining the Target Surface
3	FKN[1]	Normal penalty stiffness factor	Determining Contact Stiffness and Penetration
4	FTOLN	Penetration tolerance factor	Determining Contact Stiffness and Penetration
5	ICONT	Initial contact closure	Adjusting Initial Contact Conditions
6	PINB	Pinball region	Determining Contact Status and the Pinball Region or   Defining Influence Range (PINB)
7	PMAX	Upper limit of initial allowable penetration	Adjusting Initial Contact Conditions
8	PMIN	Lower limit of initial allowable penetration	Adjusting Initial Contact Conditions
9	TAUMAX	Maximum friction stress	Choosing a Friction Model
10	CNOF	Contact surface offset	Accounting for Thickness Effect (CNOF and KEYOPT(11))
11	FKOP	Contact opening stiffness or contact damping	Selecting Surface Interaction Models
12	FKT[1]	Tangent penalty stiffness factor	Determining Contact Stiffness
13	COHE	Contact cohesion	Choosing a Friction Model
21	FACT	Static/dynamic ratio	Static and Dynamic Friction Coefficients
22	DC	Exponential decay coefficient	Static and Dynamic Friction Coefficients


No.	Name	Description	For more information, see   this section in the Contact   Technology Guide ...
23	SLTO	Allowable elastic slip	Using FKT and SLTO
24	TNOP	Maximum allowable tensile contact force	Chattering Control Paramet-   ers
25	TOLS	Target edge extension factor	Real Constant TOLS
29	COR	Coefficient of restitution	Impact Between Rigid Bod-   ies
30	STRM	Load step number for ramping penetration	Adjusting Initial Contact   Conditions

1. The units of real constants FKN and FKT have a factor of AREA with respect to those used in the surface-to-surface contact elements. See Real Constants FKN and FKT for more information.

## CONTA177 Output Data

The solution output associated with the element is in two forms:

- Nodal displacements included in the overall nodal solution
- Additional element output as shown in Table 2: CONTA177 Element Output Definitions (p. 847).

A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

## Table 2 CONTA177 Element Output Definitions

Name		$\mathbf{O}$	Definition
EL	Element Number	Y	Y
NODES	Nodes I, J, K	Y	Y
XC, YC, ZC	Location where results are reported (same as nodal location)	Y	Y
TEMP	Temperature T(I)	Y	Y
VOLU	Length	Y	Y
NPI	Number of integration points	Y	-
ITRGET	Target surface number (assigned by ANSYS)	Y	-
ISOLID	Underlying beam or shell element number	Y	-
CONT:STAT	Current contact statuses	1	1
OLDST	Old contact statuses	1	1


Name	Definition	0	R
ISEG	Current contacting target element number	Y	Y
OLDSEG	Underlying old target number	Y	-
CONT:PENE	Current penetration (gap = 0; penetration = positive value)	Y	Y
CONT:GAP	Current gap (gap = negative value; penetration = 0)	Y	Y
NGAP	New or current gap at current converged substep (gap = negative value; penetration = positive value)	Y	-
OGAP	Old gap at previously converged substep (gap = negative value; penetration = positive value)	Y	-
IGAP	Initial gap at start of current substep (gap = negative value; penetration = positive value)	Y	Y
GGAP	Geometric gap at current converged substep (gap = negative value; penetration = positive value)	-	Y
CONT:PRES	Normal contact force	2	2
TAUR/TAUS[7]	Tangential contact stresses	2	2
KN	Current normal contact stiffness (units: Force/Length)	5	5
KT	Current tangent contact stiffness (same units as KN)	5	5
MU[8]	Friction coefficient	Y	-
TASS/TASR[7]	Total (algebraic sum) sliding in S and R directions	3	3
AASS/AASR[7]	Total (absolute sum) sliding in S and R directions	3	3
TOLN	Penetration tolerance	Y	Y
CONT:SFRIC	Frictional stress SQRT (TAUR**2+TAUS**2)	2	2
CONT:STOTAL	Total stress SQRT (PRES**2+TAUR**2+TAUS**2)	2	2
CONT:SLIDE	Total sliding SQRT (TASS**2+TASR**2)	Y	Y
FDDIS	Frictional energy dissipation	6	6
ELSI	Elastic slip distance for sticking contact within a substep	-	Y
VREL	Slip rate	-	Y
DBA	Penetration variation	Y	Y
PINB	Pinball Region	-	Y
CONT:CNOS	Total number of contact status changes during substep	Y	Y
TNOP	Maximum allowable tensile contact force	2	2
SLTO	Allowable elastic slip	Y	Y
CAREA	Contacting area	-	Y
DTSTART	Load step time during debonding	Y	Y
DPARAM	Debonding parameter	Y	Y
DENERI	Energy released due to separation in normal direction - mode I debonding	Y	Y
DENERII	Energy released due to separation in tangential direction mode II debonding	Y	Y
CNFX[4]	Contact element force-X component	-	Y


Name	Definition	$\mathbf{O}$	$\mathbf{R}$
CNFY	Contact element force-Y component	-	Y
CNFZ	Contact element force-Z component	-	Y

1. The possible values of STAT and OLDST are:
$0=$ Open and not near contact
1 = Open but near contact
2 = Closed and sliding
3 = Closed and sticking
2. The unit of the quantities is FORCE.
3. Only accumulates the sliding when contact occurs.
4. Contact element forces are defined in the global Cartesian system
5. The unit of stiffness is FORCE/LENGTH.
6. $\quad$ FDDIS $=($ contact friction stress)*(sliding distance of substep)/(time increment of substep)
7. For the case of orthotropic friction in contact between beams (or shell edges) and a 3-D surface, components are defined in the global Cartesian system.
8. For orthotropic friction, an equivalent coefficient of friction is output.

## Note

Contact results (including all element results) are generally not reported for elements that have a status of "open and not near contact" (far-field).

The following table lists output available through the ETABLE command using the Sequence Number method. See Creating an Element Table in the Basic Analysis Guide and The Item and Sequence Number Table (p. 9) in this manual for more information.

## Name

output quantity as defined in Table 2: CONTA177 Element Output Definitions (p. 847)

## Item

predetermined item label for ETABLE command
E
sequence number for single-valued or constant element data

## I, J, K

sequence number for data at nodes I, J, K

## Table 3 CONTA177 (3-D) Item and Sequence Numbers

Output   Quant-   ity   Name	ETABLE and ESOL Command Input				
	Item	$\mathbf{E}$	$\mathbf{I}$	$\mathbf{J}$	$\mathbf{K}$
PRES	SMISC	13	1	2	3
TAUR	SMISC	-	5	6	7


Output Quantity Name	ETABLE and ESOL Command Input				
	Item	E	I	J	K
TAUS	SMISC	-	9	10	11
FDDIS	SMISC	-	18	19	20
STAT[1]	NMISC	41	1	2	3
OLDST	NMISC	-	5	6	7
PENE[2]	NMISC	-	9	10	11
DBA	NMISC	-	13	14	15
TASR	NMISC	-	17	18	19
TASS	NMISC	-	21	22	23
KN	NMISC	-	25	26	27
KT	NMISC	-	29	30	31
TOLN	NMISC	-	33	34	35
IGAP	NMISC	-	37	38	39
PINB	NMISC	42	-	-	-
CNFX	NMISC	43	-	-	-
CNFY	NMISC	44	-	-	-
CNFZ	NMISC	45	-	-	-
ISEG	NMISC	-	46	47	48
AASR	NMISC	-	50	51	52
AASS	NMISC	-	54	55	56
CAREA	NMISC	58	-	-	-
MU	NMISC	-	62	63	64
DTSTART	NMISC	-	66	67	68
DPARAM	NMISC	-	70	71	72
CNOS	NMISC	-	112	113	114
TNOP	NMISC	-	116	117	118
SLTO	NMISC	-	120	121	122
ELSI	NMISC	-	136	137	138
DENERI	NMISC	-	140	141	142
DENERII	NMISC	-	144	145	146
GGAP	NMISC	-	148	149	150
VREL	NMISC	-	152	153	154

1. Element Status $=$ highest value of status of integration points within the element
2. Penetration $=$ positive value, gap $=$ negative value

## CONTA177 Assumptions and Restrictions

- The thickness effects of underlying beam elements on the contact side can be taken into account by specifying the contact surface offset CNOF.
- The thickness effects of underlying shell elements on the target side can be taken into account by setting $\operatorname{KEYOPT}(11)=1$.
- This element is nonlinear and requires a full Newton iterative solution, regardless of whether large or small deflections are specified. An exception to this is when MPC bonded contact is specified (KEYOPT(2) $=2$ and $\operatorname{KEYOPT}(12)=5$ or 6 ).
- The normal contact stiffness factor (FKN) must not be so large as to cause numerical instability.
- FTOLN, PINB, and FKOP can be changed between load steps or during restart stages.
- You can use this element in nonlinear static or nonlinear full transient analyses.
- In addition, you can use it in modal analyses, eigenvalue buckling analyses, and harmonic analyses. For these analysis types, the program assumes that the initial status of the element (i.e., the status at the completion of the static prestress analysis, if any) does not change.
- This element allows birth and death and will follow the birth and death status of the underlying beam, pipe, shell, or target elements.
- The USERFRIC (user-defined friction) subroutine can only be used with penalty-based tangential contact (KEYOPT(2) $=0,1$, or 3).


## CONTA177 Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

## ANSYS Professional

- The MU material property (input via MP,MU or TB,FRIC) is not allowed.
- The birth and death special feature is not allowed.


## CONTA178

## 3-D Node-to-Node Contact

MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS
Product Restrictions

## CONTA178 Element Description

CONTA178 represents contact and sliding between any two nodes of any types of elements. The element has two nodes with three degrees of freedom at each node with translations in the $X, Y$, and $Z$ directions. It can also be used in 2-D and axisymmetric models by constraining the UZ degree of freedom. The element is capable of supporting compression in the contact normal direction and Coulomb friction in the tangential direction. User-defined friction with the USERFRIC subroutine is also allowed. The element may be initially preloaded in the normal direction or it may be given a gap specification. A longitudinal damper option can also be included. See CONTA178 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element. Other contact elements, such as COMBIN40, are also available.

Figure 1 CONTA178 Geometry


## CONTA178 Input Data

The geometry, node locations, and the coordinate system for this element are shown in the CONTA178 figure above. The element is defined by two nodes, an initial gap or interference (GAP), an initial element status (START), and damping coefficients CV1 and CV2. The orientation of the interface is defined by the node locations (I and J) or by a user specified contact normal direction. The interface is assumed to be perpendicular to the I-J line or to the specified gap direction. The element coordinate system has its origin at node I and the x -axis is directed toward node J or in the user specified gap direction. The interface is parallel to the element y-z plane. See Generating Contact Elements in the Contact Technology Guide for more information on generating elements automatically using the EINTF command.

To model proper momentum transfer and energy balance between contact and target surfaces, impact constraints should be used in transient dynamic analysis. See the description of KEYOPT(7) in the Input Summary and the contact element discussion in the Theory Reference for the Mechanical APDL and Mechanical Applications for details.

## Contact Algorithms

Four different contact algorithms can be selected:

- Pure Lagrange multiplier method (KEYOPT(2) = 4)
- Lagrange multiplier on contact normal and penalty on frictional (tangential) direction (KEYOPT(2) = 3)
- Augmented Lagrange method (KEYOPT(2) = 0)
- Pure Penalty method $(\operatorname{KEYOPT}(2)=1)$

The following sections outline these four algorithms.

## Pure Lagrange Multiplier

The pure Lagrange multiplier method does not require contact stiffness FKN, FKS. Instead it requires chattering control parameters TOLN, FTOL, by which ANSYS assumes that the contact status remains unchanged. TOLN is the maximum allowable penetration and FTOL is the maximum allowable tensile contact force.

## Note

A negative contact force occurs when the contact status is closed. A tensile contact force (positive) refers to a separation between the contact surfaces, but not necessarily and open contact status.

The behavior can be described as follows:

- If the contact status from the previous iteration is open and the current calculated penetration is smaller than TOLN, then contact remains open. Otherwise the contact status switches to closed and another iteration is processed.
- If the contact status from the previous iteration is closed and the current calculated contact force is positive, but smaller than FTOL, then contact remains closed. If the tensile contact force is larger than FTOL, then the contact status changes from closed to open and ANSYS continues to the next iteration.

ANSYS will provide reasonable defaults for TOLN and FTOL. Keep in mind the following when providing values for TOLN and FTOL:

- A positive value is a scaling factor applied to the default values.
- A negative value is used as an absolute value (which overrides the default).

The objective of TOLN and FTOL is to provide stability to models which exhibit contact chattering due to changing contact status. If the values you use for these tolerances are too small, the solution will require more iterations. However, if the values are too big it will affect the accuracy of the solution, since a certain amount of penetration or tensile contact force are allowed.

Theoretically, the pure Lagrange multiplier method enforces zero penetration when contact is closed and "zero slip" when sticking contact occurs. However the pure Lagrange multiplier method adds additional degrees of freedom to the model and requires additional iterations to stabilize contact conditions. This will
increase the computational cost and may even lead to solution divergence if many contact points are oscillating between sticking and sliding conditions during iterations.

## Lagrange Multiplier on Normal and Penalty on Tangent Plane

An alternative algorithm is the Lagrange multiplier method applied on the contact normal and the penalty method (tangential contact stiffness) on the frictional plane. This method only allows a very small amount of slip for a sticking contact condition. It requires chattering control parameters TOLN, FTOL as well as the maximum allowable elastic slip parameter SLTOL. Again, ANSYS provides default tolerance values which work well in most cases. You can override the default value for SLTOL by defining a scaling factor (positive value) or an absolute value (negative value). Based on the tolerance, current normal contact force, and friction coefficient, the tangential contact stiffness FKS can be obtained automatically. In a few cases, you can override FKS by defining a scaling factor (positive input) or absolute value (negative input). Use care when specifying values for SLTOL and FKS. If the value for SLTOL is too large and the value for FKS too small, too much elastic slip can occur. If the value for SLTOL is too small or the value for FKS too large, the problem may not converge.

## Augmented Lagrange Method

The third contact algorithm is the augmented Lagrange method, which is basically the penalty method with additional penetration control. This method requires contact normal stiffness FKN, maximum allowable penetration TOLN, and maximum allowable slip SLTOL. FKS can be derived based on the maximum allowable slip SLTOL and the current normal contact force. ANSYS provides a default normal contact stiffness FKN which is based on the Young's modulus $E$ and the size of the underlying elements. If Young's modulus $E$ is not found, $E=1 \times 10^{9}$ will be assumed.

You can override the default normal contact stiffness FKN by defining a scaling factor (positive input) or absolute value (negative input with unit force/length). If you specify a large value for TOLN, the augmented Lagrange method works as the penalty method. Use care when specifying values for FKN and TOLN. If the value for FKN is too small and the value for TOLN too large, too much penetration can occur. If the value for FKN is too large or the value for TOLN too small, the problem may not converge.

## Penalty Method

The last algorithm is the pure penalty method. This method requires both contact normal and tangential stiffness values FKN, FKS. Real constants TOLN, FTOLN, and SLTOL are not used and penetration is no longer controlled in this method. Default FKN is provided as the one used in the augmented Lagrange method. The default FKS is given by MU x FKN. You can override the default values for FKN and FKS by inputting a scaling factor (positive input) or absolute value (negative input) for these real constants.

## Contact Normal Definition

The contact normal direction is of primary importance in a contact analysis. By default [KEYOPT(5) $=0$ and $N X, N Y, N Z=0]$, ANSYS will calculate the contact normal direction based on the initial positions of the I and $J$ nodes, such that a positive displacement (in the element coordinate system) of node J relative to node I opens the gap. However, you must specify the contact normal direction for any of the following conditions:

- If nodes I and J have the same initial coordinates.
- If the model has an initial interference condition in which the underlying elements' geometry overlaps.
- If the initial open gap distance is very small.

In the above cases, the ordering of nodes I and $J$ is critical. The correct contact normal usually points from node I toward node J unless contact is initially overlapped.

You can specify the contact normal by means of real constants NX, NY, NZ (direction cosines related to the global Cartesian system) or element KEYOPT(5). The following lists the various options for KEYOPT(5):

## KEYOPT(5) $=0$

The contact normal is either based on the real constant values of NX, NY, NZ or on node locations when $N X, N Y, N Z$ are not defined. For 2-D contact, $N Z=0$.

## $\operatorname{KEYOPT}(5)=1(2,3)$

The contact normal points in a direction which averages the direction cosines of the $X(Y, Z)$ axis of the nodal coordinates on both nodes I and J. The direction cosines on nodes I and J should be very close. This option may be supported by the NORA and NORL commands, which rotate the X axis of the nodal coordinate system to point to the surface normal of solid models.

## KEYOPT(5) = $4(5,6)$

The contact normal points to $X(Y, Z)$ of the element coordinate system issued by the ESYS command. If you use this option, make sure that the element coordinate system specified by ESYS is the Cartesian system. Otherwise, the global Cartesian system is assumed.

## Contact Status

The initial gap defines the gap size (if positive) or the displacement interference (if negative). If KEYOPT(4) $=0$, the default, the gap size can be automatically calculated from the GAP real constant and the node locations (projection of vector points from node I to $J$ on the contact normal), that is, the gap size is determined from the additive effect of the geometric gap and the value of GAP.

If $\operatorname{KEYOPT}(4)=1$, the initial gap size is only based on real constant GAP (node locations are ignored).
By default KEYOPT(9) is set to 0 , which means the initial gap size is applied in the first load step. To ramp the initial gap size with the first load step (to model initial interference problems, for example), set KEYOPT(9) $=1$. Also, set KBC, 0 and do not specify any external loads over the first load step.

The force deflection relationships for the contact element can be separated into the normal and tangential (sliding) directions. In the normal direction, when the normal force (FN) is negative, the contact status remains closed (STAT $=3$ or 2). In the tangential direction, for $\mathrm{FN}<0$ and the absolute value of the tangential force (FS) less than $\mu \mid$ FN $\mid$, contact "sticks" (STAT = 3). For FN $<0$ and FS $=\mu \mid$ FN|, sliding occurs (STAT = 2). As FN becomes positive, contact is broken ( $\mathrm{STAT}=1$ ) and no force is transmitted ( $\mathrm{FN}=0, \mathrm{FS}=0$ ).

The contact condition at the beginning of the first substep can be determined from the START parameter. The initial element status (START) is used to define the "previous" condition of the interface at the start of the first substep. This value overrides the condition implied by the interference specification and can be useful in anticipating the final interface configuration and reducing the number of iterations required for convergence. However, specifying unrealistic START values can sometimes degrade the convergence behavior.

If START $=0.0$ or blank, the initial status of the element is determined from either the GAP value or the KEYOPT(4) setting. If START $=3.0$, contact is initially closed and not sliding ( $\mu \neq 0$ ), or sliding (if $\mu=0.0$ ). If START $=2.0$, contact is initially closed and sliding. If START $=1.0$, contact is initially open.

## Friction

The only material property used is the interface coefficient of friction $\mu(\mathrm{MU})$. A zero value should be used for frictionless surfaces. Temperatures may be specified at the element nodes (for material property evaluation only). The coefficient of friction $\mu$ is evaluated at the average of the two node temperatures. The node I temperature $\mathrm{T}(\mathrm{I})$ defaults to TUNIF. The node J temperature defaults to $\mathrm{T}(\mathrm{I})$.

For analyses involving friction, using NROPT,UNSYM is useful (and, in fact, sometimes required if the coefficient of friction $\mu$ is $>0.2$ ) for problems where the normal and tangential (sliding) motions are strongly coupled.

To define a coefficient of friction for isotropic friction that is dependent on temperature, time, normal pressure, sliding distance, or sliding relative velocity, use the TBFIELD command along with TB,FRIC. See Contact Friction (TB,FRIC) (p. 83) for more information.

This element also supports user-defined friction. To implement a user-defined friction model, use the TB,FRIC command with $T B O P T=$ USER to specify friction properties and write a USERFRIC subroutine to compute friction forces. See User-Defined Friction (TB,FRIC,I,IUSER) (p. 85) for more information on how to use this feature. See also the Guide to ANSYS User Programmable Features for a detailed description of the USERFRIC subroutine.

## Weak Spring

KEYOPT(3) can be used to specify a "weak spring" across an open or free sliding interface, which is useful for preventing rigid body motion that could occur in a static analysis. The weak spring stiffness is computed by multiplying the normal stiffness KN by a reduction factor if the real constant REDFACT is positive (which defaults to $1 \times 10^{-6}$ ). The weak spring stiffness can be overridden if REDFACT has a negative value. Set KEYOPT(3) $=1$ to add weak spring stiffness only to the contact normal direction when contact is open. Set $\operatorname{KEYOPT}(3)=2$ to add weak spring stiffness to the contact normal direction for open contact and tangent plane for frictionless or open contact.

The weak spring only contributes to global stiffness, which prevents a "singularity" condition from occurring during the solution phase if $\operatorname{KEYOPT}(3)=1,2$. By setting $\operatorname{KEYOPT}(3)=3,4$, the weak spring will contribute both to the global stiffness and the internal nodal force which holds two separated nodes.

## Note

The weak spring option should never be used in conjunction with either the no-separation or bonded contact options defined by KEYOPT(10).

## Contact Behavior

Use KEYOPT(10) to model the following different contact surface behaviors:

## KEYOPT(10) = 0

Models standard unilateral contact; that is, normal pressure equals zero if separation occurs.

## $\operatorname{KEYOPT}(10)=1$

Models rough frictional contact where there is no sliding. This case corresponds to an infinite friction coefficient and ignores the material property input MU.

## $\operatorname{KEYOPT}(10)=2$

Models no separation contact, in which two gap nodes are tied (although sliding is permitted) for the remainder of the analysis once contact is established.

## KEYOPT(10) = 3

Models bonded contact, in which two gap nodes are bonded in all directions (once contact is established) for the remainder of the analysis.

## KEYOPT(10) = 4

Models no separation contact, in which two gap nodes are always tied (sliding is permitted) throughout the analysis.

## KEYOPT(10) = 5

Models bonded contact, in which two gap nodes are bonded in all directions throughout the analysis.

## $\operatorname{KEYOPT}(10)=6$

Models bonded contact, in which two gap nodes that are initially in a closed state will remain closed and two gap nodes that are initially in an open state will remain open throughout the analysis.

## Cylindrical Gap

The cylindrical gap option $(\operatorname{KEYOPT}(1)=1)$ is useful where the final contact normal is not fixed during the analysis, such as in the interaction between concentric pipes. With this option, you define the real constants
$N X, N Y, N Z$ as the direction cosines of the cylindrical axis $(\vec{N})$ in the global Cartesian coordinate system. The contact normal direction lies in a cross section that is perpendicular to the cylindrical axis. The program measures the relative distance $|X J-X I|$ between the current position of node $I$ and the current position of node J projected onto the cross section. NX, NY, NZ defaults to ( $0,0,1$ ) , which is the case for a 2-D circular gap. With the cylindrical gap option, $\operatorname{KEYOPT}(4)$ and $\operatorname{KEYOPT}(5)$ are ignored and node ordering can be arbitrary. Real constant GAP is no long referred as the initial gap size and a zero value is not allowed. The following explanation defines the model based on the sign of the GAP value.

Figure 2 CONTA178 Gap and Nodes


- A positive GAP value models contact when one smaller cylinder inserted into another parallel larger cylinder. GAP is equal to the difference between the radii of the cylinders (|RJ - RI|) and it represents the maximum allowable distance projected on the cross-section. The contact constraint condition can be written as : $|\mathrm{XJ}-\mathrm{XI}| \leq|\mathrm{GAP}|$
- A negative GAP value models external contact between two parallel cylinders. GAP is equal to the sum of the radii of the cylinders ( $|\mathrm{RJ}+\mathrm{RI}|$ ) and it represents the minimum allowable distance projected on the cross-section. The contact constraint condition can be written as: $|X J-X I| \geq|G A P|$


## Damper

The damping capability is only used for modal and transient analyses. By default, the damping capability is removed from the element. Damping is only active in the contact normal direction when contact is closed. The damping coefficient units are Force (Time/Length). For a 2-D axisymmetric analysis, the coefficient should

$$
F_{x}=-C v \frac{d u_{x}}{d t}
$$

be on a full $360^{\circ}$ basis. The damping force is computed as $\mathrm{F}_{\mathrm{x}}=\mathrm{dt}$, where Cv is the damping coefficient given by $\mathrm{C}_{\mathrm{v}}=\mathrm{C}_{\mathrm{v} 1}+\mathrm{C}_{\mathrm{v} 2} \times \mathrm{V}$. V is the velocity calculated in the previous substep. The second damping coefficient $\left(C_{\mathrm{v} 2}\right)$ is available to produce a nonlinear damping effect.

## Monitoring Contact Status

By default, ANSYS will not print out contact status and contact stiffness for each individual element. Use $\operatorname{KEYOPT}(12)=1$ to print out such information, which may help in solving problems that are difficult to converge.

A summary of the element input is given in "CONTA178 Input Summary" (p. 860). A general description of element input is given in Element Input (p. 5).

## CONTA178 Input Summary

## Nodes

I, J

## Degrees of Freedom

UX, UY, UZ

## Real Constants

FKN, GAP, START, FKS, REDFACT, NX, NY, NZ, TOLN, FTOL, SLTOL, CV1,
CV2, COR
See Table 1: CONTA178 Real Constants (p. 862) for a description of the real constants

## Material Properties

MU (MP command)
FRIC (TB command; see Contact Friction (TB,FRIC) (p. 83))

## Surface Loads

None

## Body Loads

Temperatures - $\mathrm{T}(\mathrm{I}), \mathrm{T}(\mathrm{J})$

## Special Features

Nonlinear gap type
Isotropic friction; USERFRIC subroutine
Linear perturbation

## KEYOPT(1)

Gap type:
0 --
Unidirectional gap
1 --
Cylindrical gap

## KEYOPT(2)

Contact algorithm:
0 --
Augmented Lagrange method (default)
1 --
Pure Penalty method

## 3 --

Lagrange multiplier on contact normal and penalty on tangent (uses U/P formulation for normal contact, non-U/P formulation for tangential contact)

4 --
Lagrange multiplier method

## KEYOPT(3)

Weak Spring:
0 --
Not used
1 --
Acts across an open contact (only contributes to stiffness)
2 --
Acts across an open contact or free sliding plane (only contributes to stiffness)
3 --
Acts across an open contact (contributes to stiffness and internal force)
4 --
Acts across an open contact or free sliding plane (contributes to stiffness and force)

## KEYOPT(4)

Gap size:
0 --
Gap size based on real constant GAP + initial node locations
1 --
Gap size based on real constant GAP (ignore node locations)

## KEYOPT(5)

Basis for contact normal:
0 --
Node locations or real constants NX, NY, NZ
1 --
X - component of nodal coordinate system (averaging on two contact nodes)
2 --
Y - component of nodal coordinate system (averaging on two contact nodes)
3 --
Z - component of nodal coordinate system (averaging on two contact nodes)
4 --
X - component of defined element coordinate system (ESYS)
5 --
Y - component of defined element coordinate system (ESYS)
6 --
Z - component of defined element coordinate system (ESYS)

## KEYOPT(7)

Element level time incrementation control / impact control:
0 --
No control.

## 1 --

Change in contact predictions are made to maintain a reasonable time/load increment. This option is activated only if the command SOLCONTROL,ON,ON was issued prior to the solution.

2 --
Change in contact predictions are made to achieve the minimum time/load increment whenever a change in contact status occurs. This option is activated only if the command SOLCONTROL,ON,ON was issued prior to the solution.

4 --
Use impact constraints for standard or rough contact $(\operatorname{KEYOPT}(12)=0$ or 1$)$ in a transient dynamic analysis with automatic adjustment of the time increment. Automatic adjustment of the time increment is performed only if the command SOLCONTROL,ON,ON was issued prior to the solution.

## KEYOPT(9)

Initial gap step size application:
0 --
Initial gap size is step applied
1 --
Initial gap size is ramped in the first load step

## KEYOPT(10)

Behavior of contact surface:
0 --
Standard
1 --
Rough
2 --
No separation (sliding permitted)
3 --
Bonded
4 --
No separation (always)
5 --
Bonded (always)
6 --
Bonded (initial)

## KEYOPT(12)

Contact Status:
0 --
Does not print contact status
1 --
Monitor and print contact status, contact stiffness

## Table 1 CONTA178 Real Constants

No.	Name	
1	FKN	Normal stiffness


No.	Name	
2	GAP	Initial gap size
3	START	Initial contact status
4	FKS	Sticking stiffness
5	REDFACT	KN/KS reduction factor
6	NX	Defined gap normal - X component
7	NY	Defined gap normal - Y component
8	NZ	Defined gap normal - Z component
9	TOLN	Penetration tolerance
10	FTOL	Maximum tensile contact force
11	SLTOL	Maximum elastic slip
12	CV1	Damping coefficient
13	CV2	Nonlinear damping coefficient
14	COR	Coefficient of restitution

## CONTA178 Output Data

The solution output associated with the element is in two forms:

- Nodal displacements included in the overall nodal solution.
- Additional element output as shown in Element Output Definitions.

The value of USEP is determined from the normal displacement (UN), in the element x-direction, between the contact nodes at the end of a substep. This value is used in determining the normal force, FN. The values represented by $\mathrm{UT}(\mathrm{Y}, \mathrm{Z})$ are the total translational displacements in the element y and z directions. The maximum value printed for the sliding force, FS , is $\mu|\mathrm{FN}|$. Sliding may occur in both the element $y$ and $z$ directions. STAT describes the status of the element at the end of a substep.

- If STAT $=3$, contact is closed and no sliding occurs
- If STAT $=1$, contact is open
- If STAT $=2$, node J slides relative to node I

For a frictionless surface ( $\mu=0.0$ ), the converged element status is either STAT $=2$ or 1 .
The element coordinate system orientation angles $\alpha$ and $\beta$ (shown in Figure 1 (p. 853)) are computed by the program from the node locations. These values are printed as ALPHA and BETA respectively. $\alpha$ ranges from $0^{\circ}$ to $360^{\circ}$ and $\beta$ from $-90^{\circ}$ to $+90^{\circ}$. Elements lying along the $Z$-axis are assigned values of $\alpha=0^{\circ}, \beta= \pm 90^{\circ}$, respectively. Elements lying off the Z-axis have their coordinate system oriented as shown for the general $\alpha, \beta$ position.

## Note

For $\alpha=90^{\circ}, \beta \rightarrow 90^{\circ}$, the element coordinate system flips $90^{\circ}$ about the $Z$-axis. The value of ANGLE represents the principal angle of the friction force in the element $y$-z plane. A general description of solution output is given in Element Solution (p. 9). See the Basic Analysis Guide for ways to view results.

## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " $Y$ " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and " - " indicates that the item is not available.

Table 2 CONTA178 Element Output Definitions

Name	Definition	$\mathbf{O}$	$\mathbf{R}$
EL	Element Number	Y	Y
NODES	Nodes - I, J	Y	Y
XC, YC, ZC	Location where results are reported	Y	3
TEMP	T(I), T(J)	Y	Y
USEP	Gap size	Y	Y
FN	Normal force (along I-J line)	Y	Y
STAT	Element status	1	1
OLDST	Old contact status	1	1
ALPHA, BETA	Element orientation angles	Y	Y
MU	Coefficient of friction	2	2
UT(Y, Z)	Displacement (node J - node I) in element y and z directions	2	2
FS(Y, Z)	Tangential (friction) force in element y and z directions	2	2
ANGLE	Principal angle of friction force in element y-z plane	2	2

1. If the value of STAT is:

1 - Open contact
2 - Sliding contact
3 - Sticking contact (no sliding)
2. If $\mathrm{MU}>0.0$
3. Available only at centroid as a *GET item.

Table 3: CONTA178 Item and Sequence Numbers (p. 865) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide for more information. The following notation is used in Table 3: CONTA178 Item and Sequence Numbers (p. 865) :

Name
output quantity as defined in the Element Output Definition

## Item

predetermined Item label for ETABLE command

## E

sequence number for single-valued or constant element data
Table 3 CONTA178 Item and Sequence Numbers

Output   Quant-   ity   Name	ETABLE and   ESOL Command   Input	
	E	
FN	SMISC	1
FSY	SMISC	2
FSZ	SMISC	3
STAT	NMISC	1
OLDST	NMISC	2
USEP	NMISC	3
ALPHA	NMISC	4
BETA	NMISC	5
UTY	NMISC	6
UTZ	NMISC	7
MU	NMISC	8
ANGLE	NMISC	9
KN	NMISC	10
KS	NMISC	11
TOLN	NMISC	12
FTOL	NMISC	13
SLTOL	NMISC	14

## CONTA178 Assumptions and Restrictions

- The element operates bilinearly only in static and nonlinear transient dynamic analyses. If used in other analysis types, the element maintains its initial status throughout the analysis.
- The element is nonlinear and requires an iterative solution.
- Nonconverged substeps are not in equilibrium.
- Unless the contact normal direction is specified by (NX, NY, NZ) or KEYOPT(5), nodes I and J must not be coincident or overlapped since the nodal locations define the interface orientation. In this case the node ordering is not an issue. On the other hand, if the contact normal is not defined by nodal locations, the node ordering is critical. Use /PSYMB, ESYS to verify the contact normal and use EINTF,,,REVE to reverse the normal if wrong ordering is detected. To determine which side of the interface contains the nodes, use ESEL,,ENAM,,178 and then NSLE,,POS,1.
- The element maintains its original orientation in either a small or a large deflection analysis unless the cylindrical gap option is used.
- For real constants FKN, REDFACT, TOLN, FTOL, SLTOL and FKS, you can specify either a positive or negative value. ANSYS interprets a positive value as a scaling factor and interprets a negative value as the absolute value. These real constants can be changed between load steps or during restart stages.
- The Lagrange multiplier methods introduce zero diagonal terms in the stiffness matrix. The PCG solver may encounter precondition matrix singularity. The Lagrange multiplier methods often overconstrain the model if boundary conditions, coupling, and constraint equations applied on the contact nodes overlay the contact constraints. Chattering is most likely to occur due to change of contact status, typically for contact impact problems. The Lagrange multipliers also introduce more degrees of freedom which may result in spurious modes for modal and linear eigenvalue bucking analysis. Therefore, the augmented Lagrange method option is the best choice for: PCG iterative solver, transient analysis for impact problems, modal, and eigenvalue bucking analysis.
- The element may not be deactivated with the EKILL command.
- The USERFRIC subroutine (user-defined friction) can only be used with penalty-based tangential contact (i.e., $\operatorname{KEYOPT}(2)=0,1$, or 3 ).


## CONTA178 Product Restrictions

There are no product-specific restrictions for this element.

## PRETS179

## Pretension

MP ME ST PR PRN DS DSS <> <> <> <> PP <> EME MFS
Product Restrictions

## PRETS179 Element Description

PRETS179 is used to define a 2-D or 3-D pretension section within a meshed structure. The structure can be built from any 2-D or 3-D structural elements (solid, beam, shell, pipe, or link). The PRETS179 element has one translation degree of freedom, UX. (UX represents the defined pretension direction. ANSYS transforms the geometry of the problem so that, internally, the pretension force is applied in the specified pretension load direction, regardless of how the model is defined.) Loads can be applied using the SLOAD command. These loads will overwrite any F or D command specifications on the same nodes at solution time. Only tension loads can be applied; bending or torsion loads are ignored. See PRETS179 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about the element. See Defining Pretension in a Joint Fastener in the Basic Analysis Guide for a discussion of how to generate PRETS179 elements automatically using the PSMESH command. Keep in mind when creating the PRETS179 elements that the pretension load direction is specified relative to surface A. (For backward compatibility, it is also possible to generate such elements using the EINTF command.)

## Figure 1 PRETS179 Geometry



After Adjustment


## PRETS 179 Input Data

The pretension section is modeled by a set of pretension elements. The geometry, node locations, and the coordinate system for the pretension element are shown in Figure 1 (p. 867). The pretension element is defined by three nodes I, J, K and the section data NX, NY, NZ which define the pretension load direction relative to surface $A$. The pretension load direction is constant and is not updated for large displacements. Although it is not recommended, the pretension load direction can be changed between load steps by changing the section data. For large-deflection problems, you could track the deflection and change the pretension load direction accordingly.

Nodes I and J are initially coincident and they should be defined in the same nodal coordinate system. No boundary conditions apply on node J. For each pretension section, the node ordering of the pretension elements is critical. The I and J nodes must be ordered so that all nodes I are on surface A and all nodes J are on surface $B$.

Node K is the pretension node. This pretension node provides a convenient way to assign boundary conditions on an entire pretension section. Node K can be anywhere in space; however, its nodal coordinate system must be global Cartesian. Each pretension section has only one pretension node associated with it. Node K should only connect to pretension elements that use the same section number.

The pretension node K has only one translation degree of freedom UX, which defines the relative displacement between the two sections A and B in the pretension load direction. Sliding motion is prevented automatically. If the pretension node and the bolted structure are not well constrained, rigid body motion can occur. Therefore, in the beginning of each load step, you should verify the boundary conditions for bolt structures carefully.

The following table summarizes the element input. Element Input (p. 5) gives a general description of element input.

## PRETS179 Input Summary

## Nodes

I, J, K

## Degrees of Freedom

UX (tightening adjustment of the pretension section)

## Real Constants

None

## Material Properties

DAMP

## Surface Loads

None

## Body Loads

None

## Special Features

Nonlinear
Linear perturbation

## KEYOPTs

None

## PRETS179 Output Data

Nodal displacements are included in the overall displacement solution. There is no printed or post element data output for the pretension element. ANSYS automatically determines the deformations of the bolt structure. The underlying elements connected to both sides of cutting surfaces appear overlap under the pretension load. The displacement of the pretension node gives the adjustment of the pretension. Use PRNSOL to list the adjustment. The reaction force on the pretension node provides the total normal force across the pretension section. Use PRRSOL or PRRFOR command to list the tension force. The stress distribution of underlying elements provides a good estimation of the stress across the pretension section.

## PRETS179 Assumptions and Restrictions

- The nodal coordinate system of the pretension node K must be global Cartesian.
- You cannot apply any constraint equations (or coupling) on any pretension element nodes.
- The NROTAT command can not be applied on pretension node K. NROTAT can be applied to the other nodes I and $J$ in such way that they are rotated into the same nodal coordinate system. If $K$ has been mistakenly rotated into another coordinate system, ANSYS will issue a warning and will automatically rotate it back into the global Cartesian system. Similarly, if I and J are rotated into different coordinate systems, ANSYS will issue a warning and will automatically rotate $J$ to be consistent with I.
- The pretension normal NX, NY, NZ must be specified through section data. You should not change section data either between load steps or during restart stages; otherwise ANSYS assumes the pretension normal varies between the load steps.
- The pretension force is actually applied in the direction of the pretension section normal. However, the pretension force is always specified and displayed in the global $X$ direction since the element has only one degree of freedom, UX.
- The structure can be composed of superelements. However, all the pretension nodes must remain as the master nodes.
- The element may not be deactivated with the EKILL command.
- Use of this element is limited to structural analyses only.


## PRETS179 Product Restrictions

There are no product-specific restrictions for this element.

## LINK180

## 3-D Spar (or Truss)

MP ME ST PR PRN <> <> <> <> <> <> PP VT EME MFS

## LINK180 Element Description

LINK180 is a spar that can be used in a variety of engineering applications. This element can be used to model trusses, sagging cables, links, springs, etc. This 3-D spar element is a uniaxial tension-compression element with three degrees of freedom at each node: translations in the nodal $x, y$, and $z$ directions. Tensiononly (cable) and compression-only (gap) options are supported. As in a pin-jointed structure, no bending of the element is considered. Plasticity, creep, rotation, large deflection, and large strain capabilities are included.

By default, LINK180 includes stress stiffness terms in any analysis with NLGEOM,ON. Elasticity, isotropic hardening plasticity, kinematic hardening plasticity, Hill anisotropic plasticity, Chaboche nonlinear hardening plasticity, and creep are supported.

See LINK180 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

## Figure 1 LINK180 Geometry



## LINK180 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 1 (p. 871). The element is defined by two nodes, the cross-sectional area (AREA), added mass per unit length (ADDMAS), and the material properties. The element X -axis is oriented along the length of the element from node I toward node J.

Element loads are described in Node and Element Loads (p. 97). Temperatures may be input as element body loads at the nodes. The node I temperature $T(I)$ defaults to TUNIF. The node $J$ temperature $T(J)$ defaults to $T(I)$.

LINK180 allows a change in cross-sectional area as a function of axial elongation. By default, the cross-sectional area changes such that the volume of the element is preserved, even after deformation. The default is suitable for elastoplastic applications. By using KEYOPT(2), you may choose to keep the cross section constant or rigid.

LINK180 offers tension-only or compression-only options. You can specify the desired behavior via the third real constant. (See "LINK180 Input Summary" (p. 872) for details.) A nonlinear solution procedure is necessary for these options; for more information, see the documentation for the SOLCONTROL command.

You can apply an initial stress state to this element via the INISTATE command. For more information, see "Initial State" in the Basic Analysis Guide.

The "LINK180 Input Summary" (p. 872) table summarizes the element input. Element Input (p. 5) gives a general description of element input.

## LINK180 Input Summary

## Nodes

I, J
Degrees of Freedom
UX, UY, UZ

## Real Constants

AREA - Cross-sectional area
ADDMAS - Added mass (mass/length)
TENSKEY - Tension- or compression-only option:
$\mathbf{0}$-- Tension and compression (default)
1 -- Tension only
-1 -- Compression only

## Material Properties

EX, (PRXY or NUXY), ALPX (or CTEX or THSX), DENS, GXY, DAMP

## Surface Loads

None

## Body Loads

Temperatures --
$\mathrm{T}(\mathrm{I}), \mathrm{T}(\mathrm{J})$

## Special Features

Plasticity (PLASTIC, BISO, MISO, NLISO, BKIN, MKIN, KINH, CHABOCHE, HILL)
Viscoelasticity (PRONY, SHIFT)
Viscoplasticity/Creep (CREEP, RATE)
Other material (USER)
Stress stiffening
Large deflection
Large strain
Initial state
Nonlinear stabilization
Birth and death
Linear perturbation
Items in parentheses refer to data tables associated with the TB command. See Material Data Tables (Implicit Analysis) (p. 22) for details of the material models.

## KEYOPT(2)

Cross-section scaling (applies only if large-deflection effects [NLGEOM,ON] apply ):
0 --
Enforce incompressibility; cross section is scaled as a function of axial stretch (default).

## 1 --

Section is assumed to be rigid.

## LINK180 Output Data

The solution output associated with the element is in two forms:

- Nodal displacements included in the overall nodal solution
- Additional element output as shown in Table 1: LINK180 Element Output Definitions (p. 873).

Several items are illustrated in Figure 2 (p. 873). A general description of solution output is given in Solution Output (p. 8). Element results can be viewed in POST1 with PRESOL,ELEM. See the Basic Analysis Guide for details.

## Figure 2 LINK180 Stress Output



## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " $Y$ " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

## Table 1 LINK180 Element Output Definitions

Name	Definition	0	R
EL	Element number	Y	Y
NODES	Nodes - I, J	Y	Y
MAT	Material number	Y	Y
REAL	Real constant number	Y	Y
XC, YC, ZC	Center location	Y	1
TEMP	Temperatures T(I), T(J)	Y	Y
AREA	Cross-sectional area	Y	Y
FORCE	Member force in the element coordinate system	Y	Y
Sxx	Axial stress	Y	Y


Name	Definition	$\mathbf{O}$	R
EPELxx	Axial elastic strain	Y	Y
EPTOxx	Total strain	Y	Y
EPEQ	Plastic equivalent strain	2	2
Cur.Yld.Flag	Current yield flag	2	2
Plwk	Plastic strain energy density	2	2
Pressure	Hydrostatic pressure	2	2
Creq	Creep equivalent strain	2	2
Crwk_Creep	Creep strain energy density	2	2
EPPLxx	Axial plastic strain	2	2
EPCRxx	Axial creep strain	2	2
EPTHxx	Axial thermal strain	3	3

1. Available only at the centroid as a *GET item.
2. Available only if the element has an appropriate nonlinear material.
3. Available only if the element temperatures differ from the reference temperature.

The element printout also includes 'INT, SEC PTS' (which are always '1, $Y$ Z' where $Y$ and $Z$ both have values of 0.0). These values are printed to maintain formatting consistency with the output printouts of the BEAM188, BEAM189, PIPE288, and PIPE289 elements.

Table 2: LINK180 Item and Sequence Numbers (p. 874) lists output available through ETABLE using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p.9) in this manual for more information. The following notation is used in Table 2: LINK180 Item and Sequence Numbers (p. 874):

## Name

output quantity as defined in Table 1: LINK180 Element Output Definitions (p. 873)

## Item

predetermined Item label for ETABLE and

ESOL
E
sequence number for single-valued or constant element data
I,J
sequence number for data at nodes I and J
Table 2 LINK180 Item and Sequence Numbers

Output   Quant-   ity   Name	ETABLE and ESOL Command			
	Item	E	I	J
Sxx	LS	-	1	2
EPELxx	LEPEL	-	1	2


Output   Quant-   ity   Name	ETABLE and ESOL Command			
Input				
Item	E	I	J	
EPTOxx	LEPTO	-	1	2
EPPLxx	LEPTH	-	1	2
EPCRxx	LEPC	-	1	2
FORCE	SMISC	-	1	2
AREA	SMISC	2	-	-
TEMP	LBFE	-	1	2

## LINK180 Assumptions and Restrictions

- The spar element assumes a straight bar, axially loaded at its ends, and of uniform properties from end to end.
- The length of the spar must be greater than zero, so nodes I and J must not be coincident.
- The cross-sectional area must be greater than zero.
- The temperature is assumed to vary linearly along the length of the spar.
- The displacement shape function implies a uniform stress in the spar.
- Stress stiffening is always included in geometrically nonlinear analyses (NLGEOM,ON). Prestress effects can be activated by the PSTRES command.
- To simulate the tension-/compression-only options, a nonlinear iterative solution approach is necessary.


## LINK180 Product Restrictions

There are no product-specific restrictions for this element.

## SHELL181

4-Node Structural Shell
MP ME ST PR PRN DS DSS <> <> <> <> PP VT EME MFS

## SHELL181 Element Description

SHELL181 is suitable for analyzing thin to moderately-thick shell structures. It is a four-node element with six degrees of freedom at each node: translations in the $x, y$, and $z$ directions, and rotations about the $x, y$, and $z$-axes. (If the membrane option is used, the element has translational degrees of freedom only). The degenerate triangular option should only be used as filler elements in mesh generation.

SHELL181 is well-suited for linear, large rotation, and/or large strain nonlinear applications. Change in shell thickness is accounted for in nonlinear analyses. In the element domain, both full and reduced integration schemes are supported. SHELL181 accounts for follower (load stiffness) effects of distributed pressures.

SHELL181 may be used for layered applications for modeling composite shells or sandwich construction. The accuracy in modeling composite shells is governed by the first-order shear-deformation theory (usually referred to as Mindlin-Reissner shell theory).

The element formulation is based on logarithmic strain and true stress measures. The element kinematics allow for finite membrane strains (stretching). However, the curvature changes within a time increment are assumed to be small.

See SHELL181 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

## SHELL181 Input Data

The following figure shows the geometry, node locations, and the element coordinate system for this element. The element is defined by shell section information and by four nodes (I, J, K, and L).

Figure 1 SHELL181 Geometry

$\mathrm{x}_{\mathrm{o}}=$ Element x -axis if ESYS is not provided.
$x=$ Element $x$-axis if ESYS is provided.

## Single-Layer Definition

To define the thickness (and other information), use section definition, as follows:
SECTYPE,SHELL
SECDATA,THICKNESS, ...
A single-layer shell section definition provides flexible options. For example, you can specify the number of integration points used and the material orientation.

## Multilayer Definition

The shell section commands allow for layered shell definition. Options are available for specifying the thickness, material, orientation, and number of integration points through the thickness of the layers.

You can designate the number of integration points ( $1,3,5,7$, or 9 ) located through the thickness of each layer when using section input. When only one, the point is always located midway between the top and bottom surfaces. If three or more points, two points are located on the top and bottom surfaces respectively and the remaining points are distributed equal distance between the two points. The default number of integration points for each layer is three; however, when a single layer is defined and plasticity is present, the number of integration points is changed to a minimum of five during solution.

The following additional capabilities are available when defining shell layers:

- SHELL181 accepts the preintegrated shell section type (SECTYPE,,GENS).

When the element is associated with the GENS section type, thickness or material definitions are not required.

- You can use the function tool to define thickness as a function of global/local coordinates or node numbers (SECFUNCTION).
- You can specify offsets (SECOFFSET).
- A section can be partially defined using data from a FiberSIM . xml file (SECTYPE,,SHELL,FIBERSIM).


## Other Input

The default orientation for this element has the $S_{1}$ (shell surface coordinate) axis aligned with the first parametric direction of the element at the center of the element, which connects the midsides of edges LI and JK and is shown as $\mathrm{x}_{\mathrm{o}}$ in Figure 1 (p.878). In the most general case, the axis can be defined as:

$$
\mathrm{S}_{1}=\frac{\partial\{x\}}{\partial s} /\left(\left|\frac{\partial\{x\}}{\partial s}\right|\right)
$$

where:

$$
\begin{aligned}
& \{x\}=\sum_{i=1}^{8} h^{i}(s, r)\{x\}^{i} \\
& \{x\}^{\prime},\{x\}^{J},\{x\}^{K},\{x\}^{L}=\text { global nodal coordinates }
\end{aligned}
$$

For undistorted elements, the default orientation is the same as described in Coordinate Systems (p. 14) (the first surface direction is aligned with the IJ side). For spatially warped or otherwise distorted elements, the default orientation represents the stress state better because the element uses a single point of quadrature (by default) in the element domain.

The first surface direction $S_{1}$ can be rotated by angle $\theta$ (in degrees) for the layer via the SECDATA command. For an element, you can specify a single value of orientation in the plane of the element. Layer-wise orientation is supported.

You can also define element orientation via the ESYS command. See Coordinate Systems (p. 14).
The element supports degeneration into a triangular form; however, use of the triangular form is not recommended, except when used as mesh filler elements or with the membrane option (KEYOPT(1) = 1). The triangle form is generally more robust when using the membrane option with large deflections.

To evaluate stresses and strains on exterior surfaces, use $\operatorname{KEYOPT}(1)=2$. When used as overlaid elements on the faces of 3-D elements, this option is similar to the surface stress option (described in the Theory Reference for the Mechanical APDL and Mechanical Applications), but is more general and applicable to nonlinear analysis. The element used with this option does not provide any stiffness, mass, or load contributions. This option should only be used in single-layer shells. Irrespective of other settings, SHELL181 provides stress and strain output at the center of the layer.

SHELL181 uses a penalty method to relate the independent rotational degrees of freedom about the normal (to the shell surface) with the in-plane components of displacements. The program chooses an appropriate penalty stiffness by default. A drill stiffness factor can be specified via the SECCONTROLS command.

Element loads are described in Node and Element Loads (p. 97). Pressures may be input as surface loads on the element faces as shown by the circled numbers on Figure 1 (p. 878). Positive pressures act into the element.

Because shell edge pressures are input on a per-unit-length basis, per-unit-area quantities must be multiplied by the shell thickness.

Temperatures may be input as element body loads at the corners of the outside faces of the element and at the corners of the interfaces between layers. The first corner temperature T1 defaults to TUNIF. If all other temperatures are unspecified, they default to T 1 . If $\operatorname{KEYOPT}(1)=0$ and if exactly $\mathrm{NL}+1$ temperatures are input, one temperature is used for the four bottom corners of each layer, and the last temperature is used for the four top corner temperatures of the top layer. If $\operatorname{KEYOPT}(1)=1$ and if exactly NL temperatures are input, one temperature is used for the four corners of each layer. That is, T 1 is used for $\mathrm{T} 1, \mathrm{~T} 2, \mathrm{~T} 3$, and $\mathrm{T} 4 ; \mathrm{T} 2$ (as input) is used for $\mathrm{T} 5, \mathrm{~T}, \mathrm{~T} 7$, and T 8 , etc. For any other input pattern, unspecified temperatures default to TUNIF.

Using KEYOPT(3), SHELL181 supports uniform reduced integration and full integration with incompatible modes. By default, this element uses the uniform reduced integration for performance reasons in nonlinear applications.

Using reduced integration with hourglass control creates some usage restrictions, although minimal. For example, to capture the in-plane bending of a cantilever or a stiffener (see Figure 2 (p.881)), a number of elements through the thickness direction is necessary. The performance gains achieved by using uniform reduced integration are significant enough to offset the need to use more elements. In relatively well-refined meshes, hourglassing issues are largely irrelevant.

When the reduced integration option is used, you can check the accuracy of the solution by comparing the total energy (SENE label in ETABLE) and the artificial energy (AENE label in ETABLE) introduced by hourglass control. If the ratio of artificial energy to total energy is less than $5 \%$, the solution is generally acceptable. The total energy and artificial energy can also be monitored by using OUTPR,VENG in the solution phase.

Bilinear elements, when fully integrated, are too stiff in in-plane bending.SHELL181 uses the method of incompatible modes to enhance the accuracy in bending-dominated problems. This approach is also called "extra shapes" or "bubble" modes approach. SHELL181 uses the formulation that ensures satisfaction of the patch test (J. C. Simo and F. Armero, "Geometrically nonlinear enhanced strain mixed methods and the method of incompatible modes," IJNME, Vol. 33, pp. 1413-1449, 1992).

When including incompatible modes in the analysis, you must use full integration. KEYOPT(3) $=2$ implies the inclusion of incompatible modes and the use of full $(2 \times 2)$ quadrature.

SHELL181, with KEYOPT(3) $=2$ specified, does not have any spurious energy mechanisms. This specific form of SHELL181 is highly accurate, even with coarse meshes. We recommend that you use $\operatorname{KEYOPT}(3)=2$ if you encounter any hourglass-related difficulties with the default options. $\operatorname{KEYOPT}(3)=2$ is also necessary if the mesh is coarse and in-plane bending of the elements dominate the response. We recommend this option with all layered applications.

KEYOPT(3) $=2$ imposes the fewest usage restrictions. You can always choose this option. However, you can improve element performance by choosing the best option for your problem. Consider the problems illustrated in Figure 2 (p.881)

## Figure 2 SHELL181 Typical Bending Applications



KEYOPT(3) = 2 required for in-plane bending if only one element through thickness is used.

$\operatorname{KEYOPT}(3)=0$ may be used for in-plane bending if at least four elements through thickness are used.


The cantilever beam and the beam cross-section to be modeled with shells are typical examples of in-plane bending-dominated problems. The use of $\operatorname{KEYOPT}(3)=2$ is the most effective choice in these circumstances. Reduced integration would require refined meshes. For example, reduced integration for the cantilever beam problem requires four elements through the thickness, whereas the full integration with incompatible modes only requires one element through the thickness.

For the stiffened shell, the most effective choice is to use $\operatorname{KEYOPT}(3)=0$ for the shell and $\operatorname{KEYOPT}(3)=2$ for the stiffener.

When $\operatorname{KEYOPT}(3)=0$ is specified, SHELL181 uses an hourglass control method for membrane and bending modes. By default, SHELL181 calculates the hourglass parameters for both metal and hyperelastic applications. To specify the hourglass stiffness scaling factors, use the SECCONTROLS command.

SHELL181 includes the linear effects of transverse shear deformation. An assumed shear strain formulation of Bathe-Dvorkin is used to alleviate shear locking. The transverse shear stiffness of the element is a $2 \times 2$ matrix as shown below:

## $E=\left[\begin{array}{ll}E_{11} & E_{12} \\ \operatorname{sym} & E_{22}\end{array}\right]$

To define transverse shear stiffness values, use the SECCONTROLS command.
For a single-layer shell with isotropic material, default transverse shear stiffnesses are:

$$
E=\left[\begin{array}{cc}
k G h & 0 \\
0 & k G h
\end{array}\right]
$$

In the above matrix, $\mathrm{k}=5 / 6, \mathrm{G}=$ shear modulus, and $\mathrm{h}=$ thickness of the shell.
SHELL181 can be associated with linear elastic, elastoplastic, creep, or hyperelastic material properties. Only isotropic, anisotropic, and orthotropic linear elastic properties can be input for elasticity. The von Mises isotropic hardening plasticity models can be invoked with BISO (bilinear isotropic hardening), MISO (multilinear isotropic hardening), and NLISO (nonlinear isotropic hardening) options. The kinematic hardening plasticity models can be invoked with BKIN (bilinear kinematic hardening), MKIN and KINH (multilinear kinematic hardening), and CHABOCHE (nonlinear kinematic hardening). Invoking plasticity assumes that the elastic properties are isotropic (that is, if orthotropic elasticity is used with plasticity, ANSYS assumes the isotropic elastic modulus $=E X$ and Poisson's ratio $=$ NUXY $)$.

Hyperelastic material properties (2,3,5, or 9 parameter Mooney-Rivlin material model, Neo-Hookean model, Polynomial form model, Arruda-Boyce model, and user-defined model) can be used with this element. Poisson's ratio is used to specify the compressibility of the material. If less than 0 , Poisson's ratio is set to 0 ; if greater than or equal to 0.5 , Poisson's ratio is set to 0.5 (fully incompressible).

Both isotropic and orthotropic thermal expansion coefficients can be input using MP,ALPX. When used with hyperelasticity, isotropic expansion is assumed.

Use the BETAD command to specify the global value of damping. If MP,DAMP is defined for the material number of the element (assigned with the MAT command), it is used for the element instead of the value from the BETAD command. Similarly, use the TREF command to specify the global value of reference temperature. If MP,REFT is defined for the material number of the element, it is used for the element instead of the value from the TREF command. But if MP,REFT is defined for the material number of the layer, it is used instead of either the global or element value.

With reduced integration and hourglass control $(\operatorname{KEYOPT}(3)=0)$, low frequency spurious modes may appear if the mass matrix employed is not consistent with the quadrature rule. SHELL181 uses a projection scheme that effectively filters out the inertia contributions to the hourglass modes of the element. To be effective, a consistent mass matrix must be used. We recommend setting LUMPM,OFF for a modal analysis using this element type. The lumped mass option can, however, be used with the full integration options (KEYOPT(3) $=2$ ).
$\operatorname{KEYOPT}(8)=2$ stores midsurface results in the results file for single or multi-layer shell elements. If you use SHELL,MID, you will see these calculated values, rather than the average of the TOP and BOTTOM results. You should use this option to access these correct midsurface results (membrane results) for those analyses where averaging TOP and BOTTOM results is inappropriate; examples include midsurface stresses and strains with nonlinear material behavior, and midsurface results after mode combinations that involve squaring operations such as in spectrum analyses.
$\operatorname{KEYOPT}(9)=1$ reads initial thickness data from a user subroutine.
You can apply an initial stress state to this element via the INISTATE command. For more information, see "Initial State" in the Basic Analysis Guide.

The effects of pressure load stiffness are automatically included for this element. If an unsymmetric matrix is needed for pressure load stiffness effects, use NROPT,UNSYM.

A summary of the element input is given in "SHELL181 Input Summary" (p. 883). A general description of element input is given in Element Input (p. 5).

## SHELL181 Input Summary

## Nodes

I, J, K, L

## Degrees of Freedom

UX, UY, UZ, ROTX, ROTY, ROTZ if $\operatorname{KEYOPT}(1)=0$
UX, UY, UZ if $\operatorname{KEYOPT}(1)=1$

## Material Properties

EX, EY, EZ, (PRXY, PRYZ, PRXZ, or NUXY, NUYZ, NUXZ),
ALPX, ALPY, ALPZ (or CTEX, CTEY, CTEZ or THSX, THSY, THSZ),
DENS, GXY, GYZ, GXZ
Specify DAMP only once for the element (use MAT command to assign material property set). REFT may be provided once for the element, or may be assigned on a per layer basis. See the discussion in "SHELL181 Input Summary" (p. 883) for more details.

## Surface Loads

## Pressures --

face 1 (I-J-K-L) (bottom, in +N direction),
face 2 (I-J-K-L) (top, in -N direction),
face 3 (J-I), face 4 (K-J), face 5 (L-K), face 6 (I-L)

## Body Loads

## Temperatures --

For $\operatorname{KEYOPT}(1)=0$ (Bending and membrane stiffness):
T1, T2, T3, T4 (at bottom of layer 1), T5, T6, T7, T8 (between layers 1-2); similarly for between next layers, ending with temperatures at top of layer $\mathrm{NL}\left(4^{*}(\mathrm{NL}+1)\right.$ maximum). Hence, for one-layer elements, 8 temperatures are used.

For $\operatorname{KEYOPT}(1)=1$ (Membrane stiffness only):
T1, T2, T3, T4 for layer 1, T5, T6, T7, T8 for layer 2, similarly for all layers (4*NL maximum). Hence, for one-layer elements, 4 temperatures are used.

## Special Features

Plasticity (PLASTIC, BISO, MISO, NLISO, BKIN, MKIN, KINH, CHABOCHE, HILL) Hyperelasticity (AHYPER, HYPER, BB, CDM)

Viscoelasticity (PRONY, SHIFT)
Viscoplasticity/Creep (CREEP, RATE)
Elasticity (ELASTIC, ANEL)
Other material (USER, SDAMP)
Stress stiffening
Large deflection
Large strain
Initial state
Nonlinear stabilization
Automatic selection of element technology
Birth and death
Section definition for layered shells and preintegrated shell sections for input of homogenous section stiffnesses
Linear perturbation
Items in parentheses refer to data tables associated with the TB command. See "Structures with Material Nonlinearities" in the Theory Reference for the Mechanical APDL and Mechanical Applications for details of the material models.

See Automatic Selection of Element Technologies (p. 122) and ETCONTROL for more information about selecting element technologies.

## KEYOPT(1)

Element stiffness:
0 --
Bending and membrane stiffness (default)
1 --
Membrane stiffness only
2 --
Stress/strain evaluation only

## KEYOPT(3)

Integration option:
0 --
Reduced integration with hourglass control (default)
2 --
Full integration with incompatible modes

## KEYOPT(8)

Specify layer data storage:
0 --
Store data for bottom of bottom layer and top of top layer (multi-layer elements) (default)
1 --
Store data for TOP and BOTTOM, for all layers (multi-layer elements)

## Note

Volume of data may be excessive.

## 2 --

Store data for TOP, BOTTOM, and MID for all layers; applies to single- and multi-layer elements

## KEYOPT(9)

User thickness option:
0 --
No user subroutine to provide initial thickness (default)
1 --
Read initial thickness data from user subroutine UTHICK

## Note

See the Guide to ANSYS User Programmable Features for user written subroutines

## SHELL181 Output Data

The solution output associated with the element is in two forms:

- Nodal displacements included in the overall nodal solution
- Additional element output as shown in Table 1: SHELL181 Element Output Definitions (p. 886)

Several items are illustrated in Figure 3 (p. 886).
KEYOPT(8) controls the amount of data output to the results file for processing with the LAYER command. Interlaminar shear stress is available as SYZ and SXZ evaluated at the layer interfaces. KEYOPT(8) must be set to either 1 or 2 to output these stresses in POST1. A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to review results.

The element stress resultants (N11, M11, Q13, etc.) are parallel to the element coordinate system, as are the membrane strains and curvatures of the element. Such generalized strains are available through the SMISC option at the element centroid only. The transverse shear forces Q13, Q23 are available only in resultant form: that is, use SMISC, 7 (or 8). Likewise, the transverse shear strains, $\gamma_{13}$ and $\gamma_{23}$, are constant through the thickness and are only available as SMISC items (SMISC,15 and SMISC,16, respectively).

ANSYS computes moments (M11, M22, M12) with respect to the shell reference plane. By default, ANSYS adopts the shell midplane as the reference plane. To offset the reference plane to any other specified location, issue the SECOFFSET command. When there is a nonzero offset ( L ) from the reference plane to the midplane, moments with respect to the midplane ( $\overline{\mathrm{M} 11, ~ \overline{\mathrm{M} 22}, \overline{\mathrm{M} 12} \text { ) can be recovered from stress resultants with respect }}$ to the reference plane as follows:

$$
\begin{aligned}
& \overline{\mathrm{M} 11}=\mathrm{M} 11-\mathrm{L} \times \mathrm{N} 11 \\
& \overline{\mathrm{M} 22}=\mathrm{M} 22-\mathrm{L} \times \mathrm{N} 22 \\
& \overline{\mathrm{M} 12}=\mathrm{M} 12-\mathrm{L} \times \mathrm{N} 12
\end{aligned}
$$

SHELL181 does not support extensive basic element printout. POST1 provides more comprehensive output processing tools; therefore, ANSYS suggests using the OUTRES command to ensure that the required results are stored in the database.

Figure 3 SHELL181 Stress Output

$x_{0}=$ Element $x$-axis if ESYS is not provided.
$x=$ Element $x$-axis if ESYS is provided.

## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " $Y$ " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and " - " indicates that the item is not available.

Table 1 SHELL181 Element Output Definitions

Name	Definition	$\mathbf{O}$	$\mathbf{R}$
EL	Element number and name	Y	Y


Name	Definition	0	R
NODES	Nodes - I, J, K, L	-	Y
MAT	Material number	-	Y
THICK	Average thickness	-	Y
VOLU:	Volume	-	Y
XC, YC, ZC	Location where results are reported	-	4
PRES	Pressures P1 at nodes I, J, K, L; P2 at I, J, K, L; P3 at $\mathrm{J}, \mathrm{I} ; \mathrm{P} 4$ at $\mathrm{K}, \mathrm{J} ; \mathrm{P} 5$ at L,K; P6 at I,L	-	Y
TEMP	T1, T2, T3, T4 at bottom of layer 1, T5, T6, T7, T8 between layers $1-2$, similarly for between next layers, ending with temperatures at top of layer $\mathrm{NL}\left(4^{*}(\mathrm{NL}+1)\right.$ maximum)	-	Y
LOC	TOP, MID, BOT, or integration point location	-	1
S:X, Y, Z, XY, YZ, XZ	Stresses	3	1
S:1, 2, 3	Principal stresses	-	1
S:INT	Stress intensity	-	1
S:EQV	Equivalent stress	-	1
EPEL:X, Y, Z, XY	Elastic strains	3	1
EPEL:EQV	Equivalent elastic strains [7]	-	1
EPTH:X, Y, Z, XY	Thermal strains	3	1
EPTH:EQV	Equivalent thermal strains [7]	-	1
EPPL: $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{XY}$	Average plastic strains	3	2
EPPL:EQV	Equivalent plastic strains [7]	-	2
EPCR:X, Y, Z, XY	Average creep strains	3	2
EPCR:EQV	Equivalent creep strains [7]	-	2
EPTO:X, Y, Z, XY	Total mechanical strains (EPEL + EPPL + EPCR)	3	-
EPTO:EQV	Total equivalent mechanical strains (EPEL + EPPL + EPCR)	-	-
NL:EPEQ	Accumulated equivalent plastic strain	-	2
NL:CREQ	Accumulated equivalent creep strain	-	2
NL:SRAT	Plastic yielding ( $1=$ actively yielding, $0=$ not yielding)	-	2
NL:PLWK	Plastic work	-	2
NL:HPRES	Hydrostatic pressure	-	2
SEND:ELASTIC, PLASTIC, CREEP	Strain energy densities	-	2
N11, N22, N12	In-plane forces (per unit length)	-	Y
M11, M22, M12	Out-of-plane moments (per unit length)	-	8
Q13, Q23	Transverse shear forces (per unit length)	-	8
$\varepsilon_{11}, \varepsilon_{22}, \varepsilon_{12}$	Membrane strains	-	Y


Name	Definition	$\mathbf{O}$	$\mathbf{R}$
$\mathrm{k}_{11}, \mathrm{k}_{22}, \mathrm{k}_{12}$	Curvatures	-	8
$\gamma_{13}, \gamma_{23}$	Transverse shear strains	-	8
LOCI:X, Y, Z	Integration point locations	-	5
SVAR:1, 2,, N	State variables	-	6
ILSXZ	SXZ interlaminar shear stress	-	Y
ILSYZ	SYZ interlaminar shear stress	-	Y
ILSUM	Magnitude of the interlaminar shear stress vector	-	Y
ILANG	Angle of interlaminar shear stress vector (measured   from the element x-axis toward the element y-axis   in degrees)	-	Y
Sm: $11,22,12$	Membrane stresses		
Sb: $11,22,12$	Bending stresses	-	Y
Sp: $11,22,12$	Peak stresses	-	Y
St: 13,23	Averaged transverse shear stresses	Y	

1. The following stress solution repeats for top, middle, and bottom surfaces.
2. Nonlinear solution output for top, middle, and bottom surfaces, if the element has a nonlinear material.
3. Stresses, total strains, plastic strains, elastic strains, creep strains, and thermal strains in the element coordinate system are available for output (at all section points through thickness). If layers are in use, the results are in the layer coordinate system.
4. Available only at centroid as a *GET item.
5. Available only if OUTRES,LOCI is used.
6. Available only if the USERMAT subroutine and TB,STATE are used.
7. The equivalent strains use an effective Poisson's ratio: for elastic and thermal this value is set by the user (MP,PRXY); for plastic and creep this value is set at 0.5 .
8. Not available if the membrane element option is used $(\operatorname{KEYOPT}(1)=1)$.

Table 2: SHELL181 Item and Sequence Numbers (p. 889) lists output available through ETABLE using the Sequence Number method. See Creating an Element Table in the Basic Analysis Guide and The Item and Sequence Number Table (p.9) in this manual for more information. The following notation is used in Table 2: SHELL181 Item and Sequence Numbers (p. 889):

## Name

output quantity as defined in the Table 1: SHELL181 Element Output Definitions (p. 886)

## Item

predetermined Item label for ETABLE
E
sequence number for single-valued or constant element data

## I,J,K,L

sequence number for data at nodes I, J, K, L
Table 2 SHELL181 Item and Sequence Numbers

Output Quantity Name	ETABLE and ESOL Command Input					
	Item	E	I	J	K	L
N11	SMISC	1	-	-	-	-
N22	SMISC	2	-	-	-	-
N12	SMISC	3	-	-	-	-
M11	SMISC	4	-	-	-	-
M22	SMISC	5	-	-	-	-
M12	SMISC	6	-	-	-	-
Q13	SMISC	7	-	-	-	-
Q23	SMISC	8	-	-	-	-
$\varepsilon_{11}$	SMISC	9	-	-	-	-
$\varepsilon_{22}$	SMISC	10	-	-	-	-
$\varepsilon_{12}$	SMISC	11	-	-	-	-
$\mathrm{k}_{11}$	SMISC	12	-	-	-	-
$\mathrm{k}_{22}$	SMISC	13	-	-	-	-
$\mathrm{k}_{12}$	SMISC	14	-	-	-	-
$\gamma_{13}$	SMISC	15	-	-	-	-
$\gamma_{23}$	SMISC	16	-	-	-	-
THICK	SMISC	17	-	-	-	-
P1	SMISC	-	18	19	20	21
P2	SMISC	-	22	23	24	25
P3	SMISC	-	27	26	-	-
P4	SMISC	-	-	29	28	-
P5	SMISC	-	-	-	31	30
P6	SMISC	-	32	-	-	33
Sm: 11	SMISC	34	-	-	-	-
Sm: 22	SMISC	35	-	-	-	-
Sm: 12	SMISC	36	-	-	-	-
Sb: 11	SMISC	37	-	-	-	-
Sb: 22	SMISC	38	-	-	-	-
Sb: 12	SMISC	39	-	-	-	-
Sp: 11 (at shell bottom)	SMISC	40	-	-	-	-


Output   Quant-   ity   Name	ETABLE and ESOL Command Input					
	Item	E	I	J	K	L
Sp: 22   (at shell   bottom)	SMISC	41	-	-	-	-
Sp: 12   (at shell   bottom)	SMISC	42	-	-	-	-
Sp: 11   (at shell   top)	SMISC	43	-	-	-	-
Sp: 22   (at shell   top)	SMISC	44	-	-	-	-
Sp: 12   (at shell   top)	SMISC	45	-	-	-	-
St: 13	SMISC	46	-	-	-	-
St: 23	SMISC	47	-	-	-	-


Output   Quant-   ity   Name	ETABLE and ESOL Command Input		
	Item	Bottom of Layer   i	Top of Layer NL
ILSXZ	SMISC	$8^{*}(\mathrm{i}-1)+51$	$8^{*}(\mathrm{NL}-1)+52$
ILSYZ	SMISC	$8^{*}(\mathrm{i}-1)+53$	$8^{*}(\mathrm{NL}-1)+54$
ILSUM	SMISC	$8^{*}(\mathrm{i}-1)+55$	$8^{*}(\mathrm{NL}-1)+56$
ILANG	SMISC	$8^{*}(\mathrm{i}-1)+57$	$8^{*}(\mathrm{NL}-1)+58$

## SHELL181 Assumptions and Restrictions

- ANSYS recommends against using this element in triangular form, except as a filler element. Avoid triangular form especially in areas with high stress gradients.
- Zero-area elements are not allowed. (Zero-area elements occur most often whenever the elements are numbered improperly.)
- Zero thickness elements or elements tapering down to a zero thickness at any corner are not allowed (but zero thickness layers are allowed).
- If multiple load steps are used, the number of layers may not change between load steps.
- When the element is associated with preintegrated shell sections (SECTYPE,,GENS), additional restrictions apply. For more information, see Considerations for Using Preintegrated Shell Sections.
- If reduced integration is used $(\operatorname{KEYOPT}(3)=0)$ SHELL181 ignores rotary inertia effects when an unbalanced laminate construction is used, and all inertial effects are assumed to be in the nodal plane (that is, an unbalanced laminate construction and offsets have no effect on the mass properties of the element).
- For most composite analyses, ANSYS recommends setting $\operatorname{KEYOPT}(3)=2$ (necessary to capture the stress gradients).
- No slippage is assumed between the element layers. Shear deflections are included in the element; however, normals to the center plane before deformation are assumed to remain straight after deformation.
- Transverse shear stiffness of the shell section is estimated by an energy equivalence procedure (of the generalized section forces \& strains vs. the material point stresses and strains). The accuracy of this calculation may be adversely affected if the ratio of material stiffnesses (Young's moduli) between adjacent layers is very high.
- The calculation of interlaminar shear stresses is based on simplifying assumptions of unidirectional, uncoupled bending in each direction. If accurate edge interlaminar shear stresses are required, shell-tosolid submodeling should be used.
- The section definition permits use of hyperelastic material models and elastoplastic material models in laminate definition. However, the accuracy of the solution is primarily governed by fundamental assumptions of shell theory. The applicability of shell theory in such cases is best understood by using a comparable solid model.
- The layer orientation angle has no effect if the material of the layer is hyperelastic.
- Before using this element in a simulation containing curved thick shell structures with unbalanced laminate construction or shell offsets, validate the usage via full 3-D modeling with a solid element in a simpler representative model. This element may underestimate the curved thick shell stiffness, particularly when the offset is large and the structure is under torsional load.
- The through-thickness stress, SZ , is always zero.
- This element works best with the full Newton-Raphson solution scheme (NROPT,FULL,ON).
- Stress stiffening is always included in geometrically nonlinear analyses (NLGEOM,ON). Prestress effects can be activated by the PSTRES command.
- In a nonlinear analysis, the solution process terminates if the thickness at any integration point that was defined with a nonzero thickness vanishes (within a small numerical tolerance).
- If a shell section has only one layer and the number of section integration points is equal to one, or if $\operatorname{KEYOPT}(1)=1$, then the shell has no bending stiffness, a condition that can result in solver and convergence problems.


## SHELL181 Product Restrictions

## ANSYS Professional

- The only special features allowed are stress stiffening, large deflections, and plasticity (BISO, BKIN).


## PLANE182

## 2-D 4-Node Structural Solid

MP ME ST PR PRN DS DSS <> <> <> <> PP VT EME MFS

## PLANE182 Element Description

PLANE182 is used for 2-D modeling of solid structures. The element can be used as either a plane element (plane stress, plane strain or generalized plane strain) or an axisymmetric element. It is defined by four nodes having two degrees of freedom at each node: translations in the nodal $x$ and $y$ directions. The element has plasticity, hyperelasticity, stress stiffening, large deflection, and large strain capabilities. It also has mixed formulation capability for simulating deformations of nearly incompressible elastoplastic materials, and fully incompressible hyperelastic materials.

See PLANE182 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

## Figure 1 PLANE182 Geometry



(Triangular Option not recommended)

## PLANE182 Input Data

The geometry and node locations for this element are shown in Figure 1 (p. 893). The element input data includes four nodes, a thickness (for the plane stress option only), and the orthotropic material properties. The default element coordinate system is along global directions. You may define an element coordinate system using ESYS, which forms the basis for orthotropic material directions.

Element loads are described in Node and Element Loads (p. 97). Pressures may be input as surface loads on the element faces as shown by the circled numbers on Figure 1 (p. 893). Positive pressures act into the element. Temperatures may be input as element body loads at the nodes. The node I temperature $\mathrm{T}(\mathrm{I})$ defaults to TUNIF. If all other temperatures are unspecified, they default to $T(I)$. For any other input pattern, unspecified temperatures default to TUNIF.

Input the nodal forces, if any, per unit of depth for a plane analysis (except for KEYOPT(3) $=3$ or KEYOPT(3) $=5$ ) and on a full $360^{\circ}$ basis for an axisymmetric analysis.

KEYOPT(3) = 5 is used to enable generalized plane strain. For more information about the generalized plane strain option, see Generalized Plane Strain (Current-Technology Solid Element Option) (p. 101) in the Element Reference.
$\operatorname{KEYOPT}(6)=1$ sets the element for using mixed formulation. For details on the use of mixed formulation, see Applications of Mixed u-P Formulations (p. 118) in the Element Reference.

You can apply an initial stress state to this element via the INISTATE command. For more information, see "Initial State" in the Basic Analysis Guide.

As described in Coordinate Systems (p. 14), you can use ESYS to orient the material properties and strain/stress output. Use RSYS to choose output that follows the material coordinate system or the global coordinate system. For the case of hyperelastic materials, the output of stress and strain is always with respect to the global Cartesian coordinate system rather than following the material/element coordinate system.

The effects of pressure load stiffness are automatically included for this element. If an unsymmetric matrix is needed for pressure load stiffness effects, use NROPT,UNSYM.
"PLANE182 Input Summary" (p. 894) contains a summary of the element input. For a general description of element input, see Element Input (p. 5). For axisymmetric applications see Harmonic Axisymmetric Elements (p. 102).

## PLANE182 Input Summary

## Nodes

I, J, K, L

## Degrees of Freedom

UX, UY

## Real Constants

THK - Thickness (used only if $\operatorname{KEYOPT}(3)=3$ )
HGSTF - Hourglass stiffness scaling factor (used only if $\operatorname{KEYOPT}(1)=1$ ); default is 1.0 (if you input 0.0, the default value is used)

## Material Properties

EX, EY, EZ, PRXY, PRYZ, PRXZ (or NUXY, NUYZ, NUXZ), ALPX, ALPY, ALPZ (or CTEX, CTEY, CTEZ or THSX, THSY, THSZ), DENS, GXY, GYZ, GXZ, DAMP

## Surface Loads

## Pressures --

face $1(\mathrm{~J}-\mathrm{I})$, face $2(\mathrm{~K}-\mathrm{J})$, face $3(\mathrm{~L}-\mathrm{K})$, face $4(\mathrm{I}-\mathrm{L})$

## Body Loads

Temperatures --
$\mathrm{T}(\mathrm{I}), \mathrm{T}(\mathrm{J}), \mathrm{T}(\mathrm{K}), \mathrm{T}(\mathrm{L})$
Body force densities --
The element values in the global $X, Y$, and $Z$ directions.

## Special Features --

Plasticity (PLASTIC, BISO, MISO, NLISO, BKIN, MKIN, KINH, CHABOCHE, HILL)
Hyperelasticity (AHYPER, HYPER, BB, CDM)
Viscoelasticity (PRONY, SHIFT)
Viscoplasticity/Creep (CREEP, RATE)
Elasticity (ELASTIC, ANEL)

Other material (USER, SDAMP, SMA, CAST, EDP, GURSON)
Stress stiffening
Large deflection
Large strain
Initial state
Nonlinear stabilization
Manual rezoning
Automatic selection of element technology
Birth and death
Linear perturbation
Items in parentheses refer to data tables associated with the TB command. CAST, EDP, SMA, and UNIAXIAL are not applicable for plane stress. See the Theory Reference for the Mechanical APDL and Mechanical Applications for details of the material models.

See Automatic Selection of Element Technologies (p. 122) and ETCONTROL for more information on selection of element technologies.

## KEYOPT(1)

Element technology:
0 --
Full integration with B-bar method
1 --
Uniform reduced integration with hourglass control
2 --
Enhanced strain formulation
3 --
Simplified enhanced strain formulation

## KEYOPT(3)

Element behavior:
0 --
Plane stress
1 --
Axisymmetric
2 --
Plane strain $(Z$ strain $=0.0)$
3 --
Plane stress with thickness input
5 --
Generalized plane strain

## KEYOPT(6)

Element formulation:
0 --
Use pure displacement formulation (default)
1 --
Use mixed u-P formulation (not valid with plane stress)

## PLANE182 Element Technology

PLANE182 uses the $\overline{\mathrm{B}}$ method (also known as the selective reduced integration method), the uniform reduced integration method, or the enhanced strain formulation method, as follows:

## - $\bar{B}$ method (selective reduced integration)

Helps to prevent volumetric mesh locking in nearly incompressible cases. This option replaces volumetric strain at the Gauss integration point with the average volumetric strain of the elements. This method cannot, however, prevent any shear locking in bending dominated problems. In such situations, use the enhanced strain formulation of this element. If it is not clear if the deformation is bending dominated, enhanced strain formulation is recommended. For more information, see the Theory Reference for the Mechanical APDL and Mechanical Applications.

## - Uniform reduced integration

Also helps to prevent volumetric mesh locking in nearly incompressible cases. Because it has only one integration point, this option is more efficient than the $\bar{B}$ method (selective reduced integration) option. However, the artificial energy introduced to control the hourglass effect may affect solution accuracy adversely.

When using this option, check the solution accuracy by comparing the total energy (SENE label in ETABLE) and the artificial energy (AENE label in ETABLE) introduced by hourglass control. If the ratio of artificial energy to total energy is less than $5 \%$, the solution is generally acceptable. If the ratio exceeds five percent, refine the mesh. You can also monitor the total energy and artificial energy by issuing the OUTPR,VENG command in the solution phase.

For more information about uniform reduced integration, see the Theory Reference for the Mechanical APDL and Mechanical Applications.

## - Enhanced strain formulation

Prevents shear locking in bending-dominated problems and volumetric locking in nearly incompressible cases. The formulation introduces 4 internal DOFs (inaccessible to ANSYS users) to overcome shear locking in plane strain, axisymmetric problems, and generalized plane strain problems (all with mixed u-P formulations), and plane stress. For plane strain, axisymmetric problems, and generalized plane strain (all with pure displacement formulations), an additional internal DOF is introduced for volumetric locking (for a total of 5 internal DOFs). All internal DOFs are introduced automatically at the element level and condensed out.

Because of the extra internal DOFs and static condensation, this option is less efficient than either the $\bar{B}$ method (selective reduced integration) option or the uniform reduced integration option.

For more information about enhanced strain formulation, see the Theory Reference for the Mechanical APDL and Mechanical Applications.

## - Simplified enhanced strain formulation

Prevents shear locking in bending-dominated problems. This is a special case of the enhanced strain formulation and always introduces four internal DOFs (inaccessible to ANSYS users). For the plane stress state, this formulation is the same as the enhanced strain formulation, so only $\operatorname{KEYOPT}(1)=2$ is allowed. Because there are no internal DOFs to handle volumetric locking, this formulation should not be used
when the material is nearly incompressible, except when the Mixed u-P formulation is also used. When used with the Mixed u-P formulation, the simplified enhanced strain formulation gives the same results as the enhanced strain formulation. All internal DOFs are introduced automatically at the element level and condensed out.

Because of the extra internal DOFs and static condensation, this option is less efficient than either the $\overline{\mathrm{B}}$ method (selective reduced integration) option or the uniform reduced integration option, but is more efficient than the enhanced strain formulation due to using fewer internal DOFs.

For more information about the simplified enhanced strain formulation, see the Theory Reference for the Mechanical APDL and Mechanical Applications.

## PLANE182 Output Data

The solution output associated with the element is in two forms:

- Nodal displacements included in the overall nodal solution
- Additional element output as shown in Table 1: PLANE182 Element Output Definitions (p. 898)

Several items are illustrated in Figure 2 (p. 897).
The element stress directions are parallel to the element coordinate system. A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

Figure 2 PLANE182 Stress Output


Stress directions are shown for Global.

## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " $Y$ " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and " ${ }^{-}$" indicates that the item is not available.

Table 1 PLANE182 Element Output Definitions

Name	Definition	0	R
EL	Element number	-	Y
NODES	Nodes - I, J, K, L	-	Y
MAT	Material number	-	Y
THICK	Thickness	-	Y
VOLU:	Volume	-	Y
XC, YC	Location where results are reported	Y	3
PRES	Pressures P1 at nodes J,l; P2 at K,J; P3 at L,K; P4 at I,L	-	Y
TEMP	Temperatures $\mathrm{T}(\mathrm{I}), \mathrm{T}(\mathrm{J}), \mathrm{T}(\mathrm{K}), \mathrm{T}(\mathrm{L})$	-	Y
S:X, Y, Z, XY	Stresses (SZ = 0.0 for plane stress elements)	Y	Y
S:1, 2, 3	Principal stresses	-	Y
S:INT	Stress intensity	-	Y
S:EQV	Equivalent stress	Y	Y
EPEL:X, Y, Z, XY	Elastic strains	Y	Y
EPEL:EQV	Equivalent elastic strain [6]	Y	Y
EPTH:X, Y, Z, XY	Thermal strains	2	2
EPTH:EQV	Equivalent thermal strain [6]	2	2
EPPL:X, Y, Z, XY	Plastic strains[7]	1	1
EPPL:EQV	Equivalent plastic strain [6]	1	1
EPCR:X, Y, Z, XY	Creep strains	1	1
EPCR:EQV	Equivalent creep strains [6]	1	1
EPTO:X, Y, Z, XY	Total mechanical strains (EPEL + EPPL + EPCR)	Y	-
EPTO:EQV	Total equivalent mechanical strains (EPEL + EPPL + EPCR)	Y	-
NL:EPEQ	Accumulated equivalent plastic strain	1	1
NL:CREQ	Accumulated equivalent plastic strain	1	1
NL:SRAT	Plastic yielding ( $1=$ actively yielding, $0=$ not yielding)	1	1
NL:PLWK	Plastic work	1	1
NL:HPRES	Hydrostatic pressure	1	1
SEND:ELASTIC, PLASTIC, CREEP	Strain energy densities	-	1
LOCI:X, Y, Z	Integration point locations	-	4
SVAR:1, 2, ... , N	State variables	-	5

1. Nonlinear solution, output only if the element has a nonlinear material.
2. Output only if element has a thermal load.
3. Available only at centroid as a *GET item.
4. Available only if OUTRES,LOCI is used.
5. Available only if the USERMAT subroutine and TB,STATE are used.
6. The equivalent strains use an effective Poisson's ratio: for elastic and thermal this value is set by the user (MP,PRXY); for plastic and creep this value is set at 0.5.
7. For the shape memory alloy material model, transformation strains are reported as plasticity strain EPPL.

## Note

For axisymmetric solutions in a global coordinate system, the $X, Y, Z$, and $X Y$ stress and strain outputs correspond to the radial, axial, hoop, and in-plane shear stresses and strains, respectively.

Table 2: PLANE182 Item and Sequence Numbers (p. 899) lists output available through ETABLE using the Sequence Number method. See Creating an Element Table in the Basic Analysis Guide and The Item and Sequence Number Table (p. 9) in this manual for more information. The following notation is used in Table 2: PLANE182 Item and Sequence Numbers (p. 899):

## Name

output quantity as defined in the Table 1: PLANE182 Element Output Definitions (p. 898)

## Item

predetermined Item label for ETABLE
E
sequence number for single-valued or constant element data

## I,J,K,L

sequence number for data at nodes I, J, K, L
Table 2 PLANE182 Item and Sequence Numbers

Output   Quant-   ity   Name	ETABLE and ESOL Command Input					
	Item	$\mathbf{E}$	$\mathbf{I}$	$\mathbf{J}$	$\mathbf{K}$	$\mathbf{L}$
P1	SMISC	-	2	1	-	-
P2	SMISC	-	-	4	3	-
P3	SMISC	-	-	-	6	5
P4	SMISC	-	7	-	-	8
THICK	NMISC	1	-	-	-	-

## PLANE182 Assumptions and Restrictions

- The area of the element must be nonzero.
- The element must lie in a global X - Y plane as shown in Figure 1 (p. 893) and the Y -axis must be the axis of symmetry for axisymmetric analyses. An axisymmetric structure should be modeled in the +X quadrants.
- You can form a triangular element by defining duplicate K and L node numbers (see Triangle, Prism, and Tetrahedral Elements (p. 99)). For triangular elements where the $\overline{\mathrm{B}}$ or enhanced strain formulations are specified, degenerated shape functions and a conventional integration scheme are used.
- If you use the mixed formulation ( $\operatorname{KEYOPT}(6)=1$ ), you must use the sparse solver.
- For modal cyclic symmetry analyses, ANSYS recommends using enhanced strain formulation.
- Stress stiffening is always included in geometrically nonlinear analyses (NLGEOM,ON). Prestress effects can be activated by the PSTRES command.


## PLANE182 Product Restrictions

There are no product-specific restrictions for this element.

## PLANE183

## 2-D 8-Node or 6-Node Structural Solid

MP ME ST PR PRN DS DSS <> <> <> <> PP VT EME MFS
Product Restrictions

## PLANE183 Element Description

PLANE183 is a higher order 2-D, 8-node or 6-node element. PLANE183 has quadratic displacement behavior and is well suited to modeling irregular meshes (such as those produced by various CAD/CAM systems).

This element is defined by 8 nodes or 6 nodes having two degrees of freedom at each node: translations in the nodal $x$ and $y$ directions. The element may be used as a plane element (plane stress, plane strain and generalized plane strain) or as an axisymmetric element. This element has plasticity, hyperelasticity, creep, stress stiffening, large deflection, and large strain capabilities. It also has mixed formulation capability for simulating deformations of nearly incompressible elastoplastic materials, and fully incompressible hyperelastic materials. Initial state is supported. Various printout options are also available. See PLANE183 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

Figure 1 PLANE183 Geometry


$\operatorname{KEYOPT}(1)=1$

## PLANE183 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 1 (p. 901).
Although a degenerated triangular-shaped element may be formed by defining the same node number for nodes $\mathrm{K}, \mathrm{L}$ and O when $\operatorname{KEYOPT}(1)=1$, it is better to use $\operatorname{KEYOPT}(1)=1$ for triangular shaped elements. In addition to the nodes, the element input data includes a thickness (TK) (for the plane stress option only) and the orthotropic material properties. Orthotropic material directions correspond to the element coordinate directions. The element coordinate system orientation is described in Coordinate Systems (p. 14).

Element loads are described in Node and Element Loads (p. 97). Pressures may be input as surface loads on the element faces as shown by the circled numbers in Figure 1 (p.901). Positive pressures act into the element.

Temperatures may be input as element body loads at the nodes. The node I temperature $T(I)$ defaults to TUNIF. If all other temperatures are unspecified, they default to $T(I)$. If all corner node temperatures are specified, each midside node temperature defaults to the average temperature of its adjacent corner nodes. For any other input temperature pattern, unspecified temperatures default to TUNIF.

The nodal forces, if any, should be input per unit of depth for a plane analysis (except for KEYOPT(3) $=3$ or $\operatorname{KEYOPT}(3)=5)$ and on a full $360^{\circ}$ basis for an axisymmetric analysis.

As described in Coordinate Systems (p. 14), you can use ESYS to orient the material properties and strain/stress output. Use ESYS to choose output that follows the material coordinate system or the global coordinate system. For the case of hyperelastic materials, the output of stress and strain is always with respect to the global Cartesian coordinate system rather than following the material/element coordinate system.
$\operatorname{KEYOPT}(3)=5$ is used to enable generalized plane strain. For more information about the generalized plane strain option, see Generalized Plane Strain (Current-Technology Solid Element Option) (p. 101) in the Element Reference.
$\operatorname{KEYOPT}(6)=1$ sets the element for using mixed formulation. For details on the use of mixed formulation, see Applications of Mixed $u$-P Formulations (p. 118) in the Element Reference.

You can apply an initial stress state to this element via the INISTATE command. For more information, see "Initial State" in the Basic Analysis Guide.

The effects of pressure load stiffness are automatically included for this element. If an unsymmetric matrix is needed for pressure load stiffness effects, use NROPT,UNSYM.

The next table summarizes the element input. Element Input (p. 5) gives a general description of element input. For axisymmetric applications see Harmonic Axisymmetric Elements (p. 102).

## PLANE183 Input Summary

## Nodes

I, J, K, L, M, N, O, P when KEYOPT(1) $=0$
$\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}, \mathrm{M}, \mathrm{N}$ when $\operatorname{KEYOPT}(1)=1)$

## Degrees of Freedom

UX, UY

## Real Constants

None, if KEYOPT (3) $=0,1$, or 2
THK - Thickness if KEYOPT (3) $=3$

## Material Properties

EX, EY, EZ, PRXY, PRYZ, PRXZ (or NUXY, NUYZ, NUXZ), ALPX, ALPY, ALPZ (or CTEX, CTEY, CTEZ or THSX, THSY, THSZ), DENS, GXY, GYZ, GXZ, DAMP

## Surface Loads

## Pressures --

face $1(\mathrm{~J}-\mathrm{I})$, face $2(\mathrm{~K}-\mathrm{J})$, face $3(I-K)$, face $4(I-L)$ when $\operatorname{KEYOPT}(1)=0$
face $1(\mathrm{~J}-\mathrm{I})$, face $2(\mathrm{~K}-\mathrm{J})$, face $3(\mathrm{I}-\mathrm{K})$ when $\operatorname{KEYOPT}(1)=1$

## Body Loads

Temperatures --
$T(I), T(J), T(K), T(L), T(M), T(N), T(O), T(P)$ when KEYOPT(1) $=0$
$\mathrm{T}(\mathrm{I}), \mathrm{T}(\mathrm{J}), \mathrm{T}(\mathrm{K}), \mathrm{T}(\mathrm{L}), \mathrm{T}(\mathrm{M}), \mathrm{T}(\mathrm{N})$ when $\mathrm{KEYOPT}(1)=1$

## Body force densities --

The element values in the global $X, Y$, and $Z$ directions.

## Special Features

Plasticity (PLASTIC, BISO, MISO, NLISO, BKIN, MKIN, KINH, CHABOCHE, HILL)
Hyperelasticity (AHYPER, HYPER, BB, CDM)
Viscoelasticity (PRONY, SHIFT)
Viscoplasticity/Creep (CREEP, RATE)
Elasticity (ELASTIC, ANEL)
Other material (USER, SDAMP, SMA, CAST, EDP, GURSON)
Stress stiffening
Large deflection
Large strain
Initial state
Nonlinear stabilization
Manual rezoning
Automatic selection of element technology
Birth and death
Linear perturbation

Items in parentheses refer to data tables associated with the TB command. CAST, EDP, SMA, and UNIAXIAL are not applicable for plane stress. See "Structures with Material Nonlinearities" in the Theory Reference for the Mechanical APDL and Mechanical Applications for details of the material models.

See Automatic Selection of Element Technologies (p. 122) and ETCONTROL for more information about selecting element technologies.

## KEYOPT(1)

Element shape:
0 --
8-node quadrilateral
1 --
6-node triangle

## KEYOPT(3)

Element behavior:
0 --
Plane stress
1 --
Axisymmetric
2 --
Plane strain $(Z$ strain $=0.0)$

## 3 --

Plane stress with thickness (TK) real constant input
5 --
Generalized plane strain

## KEYOPT(6)

Element formulation:
0 --
Use pure displacement formulation (default)
1 --
Use mixed u-P formulation (not valid with plane stress)

## PLANE183 Output Data

The solution output associated with the element is in two forms:

- Nodal displacements included in the overall nodal solution
- Additional element output as shown in Table 1: PLANE183 Element Output Definitions (p. 904).

Several items are illustrated in Figure 2 (p. 904).
The element stress directions are parallel to the element coordinate system. A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

Figure 2 PLANE183 Stress Output


## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " $Y$ " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 1 PLANE183 Element Output Definitions

Name	Definition	$\mathbf{O}$	$\mathbf{R}$
EL	Element number	-	Y


Name	Definition	0	R
NODES	Nodes - I, J, K, L (for KEYOPT(1) = 0 and I, J, K (for $\operatorname{KEYOPT}(1)=1)$	-	Y
MAT	Material number	-	Y
THICK	Thickness	-	Y
VOLU:	Volume	-	Y
XC, YC	Location where results are reported	Y	4
PRES	Pressures P1 at nodes J, I; P2 at K, J; P3 at L, K; P4 at I, L (P4 only for KEYOPT(1) = 0	-	Y
TEMP	```Temperatures T(I),T(J),T(K),T(L) (T(L) only when KEYOPT(1) = 0)```	-	Y
S:X, Y, Z, XY	Stresses (SZ $=0.0$ for plane stress elements)	Y	Y
S:1, 2, 3	Principal stresses	-	Y
S: INT	Stress intensity	-	Y
S:EQV	Equivalent stress	-	Y
EPEL:X, Y, Z, XY	Elastic strains	Y	Y
EPEL:EQV	Equivalent elastic strain [7]	-	Y
EPTH:X, Y, Z, XY	Thermal strains	3	3
EPTH:EQV	Equivalent thermal strain [7]	-	3
EPPL:X, Y, Z, XY	Plastic strains[8]	1	1
EPPL:EQV	Equivalent plastic strain [7]	-	1
EPCR:X, Y, Z, XY	Creep strains	2	2
EPCR:EQV	Equivalent creep strains [7]	2	2
EPTO:X, Y, Z, XY	Total mechanical strains (EPEL + EPPL + EPCR)	Y	-
EPTO:EQV	Total equivalent mechanical strains (EPEL + EPPL + EPCR)	Y	-
NL:EPEQ	Accumulated equivalent plastic strain	1	1
NL:CREQ	Accumulated equivalent creep strain	1	1
NL:SRAT	Plastic yielding ( $1=$ actively yielding, $0=$ not yielding)	1	1
NL:PLWK	Plastic work	1	1
NL:HPRES	Hydrostatic pressure	1	1
SEND:ELASTIC, PLASTIC, CREEP	Strain energy densities	-	1
LOCI:X, Y, Z	Integration point locations	-	5
SVAR:1, 2, ... , N	State variables	-	6

1. Nonlinear solution, output only if the element has a nonlinear material.
2. Output only if element has a creep load.
3. Output only if element has a thermal load.
4. Available only at centroid as a *GET item.
5. Available only if OUTRES,LOCI is used.
6. Available only if the USERMAT subroutine and TB,STATE are used.
7. The equivalent strains use an effective Poisson's ratio: for elastic and thermal this value is set by the user (MP,PRXY); for plastic and creep this value is set at 0.5.
8. For the shape memory alloy material model, transformation strains are reported as plasticity strain EPPL.

## Note

For axisymmetric solutions, the $X, Y, X Y$, and $Z$ stress and strain outputs correspond to the radial, axial, in-plane shear, and hoop stresses and strains.

Table 2: PLANE183 Item and Sequence Numbers (p. 906) lists output available through ETABLE using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p. 9) in this manual for more information. The following notation is used in Table 2: PLANE183 Item and Sequence Numbers (p. 906):

## Name

output quantity as defined in Table 1: PLANE183 Element Output Definitions (p. 904)

## Item

predetermined Item label for ETABLE
E
sequence number for single-valued or constant element data
$\mathbf{I}, \mathrm{J}, \ldots, \mathrm{P}$
sequence number for data at nodes I, J, .., P

## Table 2 PLANE183 Item and Sequence Numbers

Output Quantity Name	ETABLE and ESOL Command Input									
	Item	E	I	J	K	L	M	N	0	P
P1	SMISC	-	2	1	-	-	-	-	-	-
P2	SMISC	-	-	4	3	-	-	-	-	-
P3	SMISC	-	-	-	6	5	-	-	-	-
P4[1]	SMISC	-	7	-	-	8	-	-	-	-
THICK	NMISC	1	-	-	-	-	-	-	-	-

1. P 4 is only for $\operatorname{KEYOPT}(1)=0$

## PLANE183 Assumptions and Restrictions

- The area of the element must be positive.
- The element must lie in a global $\mathrm{X}-\mathrm{Y}$ plane as shown in Figure 1 (p. 901) and the Y -axis must be the axis of symmetry for axisymmetric analyses. An axisymmetric structure should be modeled in the $+X$ quadrants.
- A face with a removed midside node implies that the displacement varies linearly, rather than parabolically, along that face. See Quadratic Elements (Midside Nodes) in the Modeling and Meshing Guide for more information about the use of midside nodes.
- Use at least two elements to avoid hourglass mode for $\operatorname{KEYOPT}(1)=0$.
- A triangular element may be formed by defining duplicate K-L-O node numbers (see Triangle, Prism, and Tetrahedral Elements (p. 99)). For these degenerated elements, the triangular shape function is used and the solution is the same as for the regular triangular 6-node elements, but might be slightly less efficient for $\operatorname{KEYOPT}(1)=0$. Since these degenerated elements are less efficient, the triangle shape option (KEYOPT $(1)=1)$ is suggested for this case.
- When mixed formulation is used ( $\operatorname{KEYOPT}(6)=1$ ), no midside nodes can be missed. If you use the mixed formulation $(\operatorname{KEYOPT}(6)=1$ ), you must use the sparse solver (default).
- Stress stiffening is always included in geometrically nonlinear analyses (NLGEOM,ON). Prestress effects can be activated by the PSTRES command.


## PLANE183 Product Restrictions

There are no product-specific restrictions for this element.

## MPC184

## Multipoint Constraint Element

> MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

Product Restrictions

## MPC184 Element Description

MPC184 comprises a general class of multipoint constraint elements that apply kinematic constraints between nodes. The elements are loosely classified here as "constraint elements" (rigid link, rigid beam, etc.) and "joint elements" (revolute, universal, etc.). The constraint may be as simple as that of identical displacements between nodes. Constraints can also be more complicated, such as those modeling rigid parts, or those transmitting motion between flexible bodies in a particular way. For example, a structure may consist of rigid parts and moving parts connected together by rotational or sliding connections. The rigid part of the structure may be modeled with the MPC184 link/beam elements, while the moving parts may be connected with any of the MPC184 joint elements.

The kinematic constraints are imposed using one of the following two methods:

- The direct elimination method, wherein the kinematic constraints are imposed by internally generated constraint equations. The degrees of freedom of a dependent node in the equations are eliminated in favor of an independent node.
- The dependent degrees of freedom are eliminated. Therefore, the constraint forces and moments are not available from the element output table (ETABLE) for output purposes. However, the global constraint reaction forces are available at independent nodes in the results file, Jobname.rst (PRRSOL command, etc.).
- The direct elimination method should be used whenever it is available since the degrees of freedom at the dependent nodes are eliminated, thereby reducing the problem size and solution time.
- The Lagrange multiplier method, wherein the kinematic constraints are imposed using Lagrange multipliers. In this case, all the participating degrees of freedom are retained.
- The Lagrange multiplier method should be used when the direct elimination method is not available or not suitable for the analysis purposes.
- In this method, the constraint forces and moments are available from the element output table (ETABLE).
- The disadvantage of the Lagrange multiplier method is that the Lagrange multipliers are additional solution variables and, hence, the problem size and solution time become larger when compared with the direct elimination method.

Currently, the MPC184 rigid link/beam elements can use the direct elimination method or the Lagrange multiplier method. All other MPC184 element options use the Lagrange multiplier method only.

## Constraint Elements

The following types of constraint elements are available:
Rigid link/beam
Slider

## Joint Elements

Numerical simulations often involve modeling of joints between two parts. These joints or connections may need simple kinematic constraints such as identical displacements between the two parts at the junction or more complicated kinematic constraints that allow for transmission of motion between two flexible bodies. These complex joints may also include some sort of control mechanism like limits or stops, and locks on the components of relative motion between the two bodies. In many instances, these joints may also have stiffness, damping, or friction forces based on the unconstrained components of relative motion between the two bodies. For detailed information on how to use joint elements, see Connecting Multibody Components with Joint Elements in the Multibody Analysis Guide.

The following types of joint elements are available:

```
x-axis Revolute joint
z-axis Revolute joint
Universal joint
Slot joint
Point-in-plane joint
Translational joint
x-axis Cylindrical joint
z-axis Cylindrical joint
x-axis Planar joint
z-axis Planar joint
Weld joint
Orient joint
Spherical joint
General joint
Screw joint
```

These elements are well suited for linear, large rotation, and/or large strain nonlinear applications. If finite rotations and/or large strain effects are to be considered, the NLGEOM,ON command must be used; otherwise, linear behavior is assumed. For example, if a revolute joint element is used in an analysis and NLGEOM,ON is not set, the calculations are carried out in the original configuration and the end result may not reflect the expected deformed configuration. However, if the NLGEOM,ON command is used, the calculations will take into account the rotation of the revolute joint element.

Two nodes define these joint elements. Depending on the joint to be defined, the kinematic constraints are imposed on some of the quantities that define the relative motion between the two nodes. These kinematic constraints are applied using Lagrange multipliers. In some instances, one of the nodes is required to be "grounded" or attached to "ground" or some other reference location that is not moving. In such cases, only one of the two nodes may be specified. The specified node and the "grounded" node are assumed to be coincident in the element calculations.

The joint element has six degrees of freedom at each node, defining six components of relative motion: three relative displacements and three relative rotations. These six components of relative motion are of primary interest in simulations that involve joint elements. Some of these components may be constrained by the kinematic constraints relevant to a particular joint element, while the other components are "free" or "unconstrained". For example, in the case of universal and revolute joint elements the two nodes are assumed to be connected, and thus the relative displacements are zero. For the revolute joint only one rotational component of the relative motion (rotation about the revolute axis) is unconstrained, while for the universal joint two such components are available.

The capabilities of these elements include certain control features such as stops, locks, and actuating loads/boundary conditions that can be imposed on the components of relative motion between the two nodes of the element. For example, in a revolute joint, stops can be specified for the rotation about the revolute axis. This limits the rotation around the revolute axis to be within a certain range. Displacement, force, velocity, and acceleration boundary conditions may be imposed on the components of relative motion between the two nodes allowing for "actuation" of the joints. The driving force or displacements arise from the actuating mechanisms like an electric or hydraulic system that drives these joints.

You can impose linear and nonlinear elastic stiffness and damping behavior or hysteretic friction behavior on the available components of relative motion of a joint element. The properties can be made temperature dependent if necessary.

In addition to the existing output options available in ANSYS, outputs related to the components of relative motion are available for joint elements.

## Joint Input Data

Certain input requirements are common to most MPC184 joint elements. Any specific requirements for individual joint elements are highlighted in the description for that element.

The following types of input data should be considered:

- Element Connectivity Definition - A joint element is typically defined by specifying two nodes, I and J. One of these nodes may be a "grounded" node.
- Section Definition - Each joint element must have an associated section definition (SECTYPE command).
- Local Coordinate System Specification - Local coordinate systems at the nodes are often required to define the kinematic constraints of a joint element (SECJOINT command).
- Stops or Limits - You can impose stops or limits on the available components of relative motion between the two nodes of a joint element (SECSTOP command).
- Locks - Locking limits may also be imposed on the available components of relative motion between the two nodes of a joint element to "freeze" the joint in a desired configuration (SECLOCK command).
- Material Behavior - The JOIN material option on the TB command allows you to impose linear and nonlinear elastic stiffness and damping behavior or hysteretic friction behavior on the available components of relative motion of a joint element.
- Reference Lengths and Angles - These correspond to the free relative degrees of freedom in a joint element for which constitutive calculations are performed and are used when stiffness, damping, or hysteretic friction are specified for the joint elements (SECDATA command).
- Boundary Conditions - You can impose boundary conditions (DJ command) or apply concentrated forces (FJ command) on the available components of relative motion of the joint element.


## MPC184 Input Data

Use KEYOPT(1) to specify the type of MPC184 constraint or joint element you want to use. The remaining input data will vary depending on the type of constraint or joint element specified. The individual MPC184 element descriptions each contain an input summary that applies only to that particular element. It is recommended that you review these element-specific input summaries after you determine which constraint or joint element you will be using.

## KEYOPT(1)

Element behavior:

0 --
Rigid link (default)
1 --
Rigid beam
3 --
Slider element
6 --
x -axis or z -axis revolute joint element
7 --
Universal joint element
8 --
Slot joint element
9 --
Point-in-plane joint element
10 --
Translational joint element
11 --
$x$-axis or $z$-axis cylindrical joint element
12 --
x-axis or z-axis planar joint element
13 --
Weld joint element
14 --
Orient joint element
15 --
Spherical joint element
16 --
General joint element
17 --
Screw joint element

## MPC184 Output Data

The solution output associated with the constraint and joint elements is in two forms:

- Nodal displacements included in the overall nodal solution.
- Additional element output as shown in the individual constraint and joint element descriptions. This output is available via the ETABLE command using the Sequence Number method.

Refer to the individual element descriptions for complete listings of the output for each element.

## MPC184 Assumptions and Restrictions

The following restrictions apply to all forms of the MPC184element:

- For MPC184, the element coordinate system (/PSYMB,ESYS) is not relevant.
- This element cannot be used with the arc-length method (ARCLEN).

There are additional assumptions and restrictions for each type of constraint and joint element. For details, see the Assumptions and Restrictions section in the individual constraint and joint element descriptions.

## MPC184 Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

## ANSYS Professional

- The DAMP material property is not allowed.
- No special features are allowed.


## MPC184-Link/Beam

## Multipoint Constraint Element: Rigid Link or Rigid Beam

MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS
Product Restrictions

## MPC184 Rigid Link/Beam Element Description

The MPC184 rigid link/beam element can be used to model a rigid constraint between two deformable bodies or as a rigid component used to transmit forces and moments in engineering applications. This element is well suited for linear, large rotation, and/or large strain nonlinear applications.

The kinematic constraints are imposed using one of the following two methods:

- The direct elimination method, wherein the kinematic constraints are imposed by internally generated MPC (multipoint constraint) equations. The degrees of freedom of a dependent node in the MPC equations are eliminated in favor of an independent node.
- The Lagrange multiplier method, wherein the kinematic constraints are imposed using Lagrange multipliers. In this case, all the participating degrees of freedom are retained.

Figure 1 MPC184 Rigid Link/Beam Geometry


## MPC184 Rigid Link/Beam Input Data

Figure 1 (p. 915) shows the geometry, node locations, and the coordinate system for this element. Two nodes define the element. The element x -axis is oriented from node I toward node J. The cross-sectional area of the element is assumed to be one unit. ANSYS selects the cross-section coordinate system automatically. The cross-section coordinate system is relevant only for the output of bending moments when the element is used as a rigid beam.

If $\operatorname{KEYOPT}(1)=0$ (default), the element is a rigid link with two nodes and three degrees of freedom at each node ( $\mathrm{UX}, \mathrm{UY}, \mathrm{UZ}$ ). If $\operatorname{KEYOPT}(1)=1$, the element is a rigid beam with two nodes and six degrees of freedom at each node (UX, UY, UZ, ROTX, ROTY, ROTZ).

If $\operatorname{KEYOPT}(2)=0$ (default), then the constraints are implemented using the direct elimination method. If $\operatorname{KEYOPT}(2)=1$, then the Lagrange multiplier method is used to impose the constraints.

The MPC184 rigid link/beam element with $\operatorname{KEYOPT}(2)=1$ can also be used in applications that call for thermal expansion on an otherwise rigid structure. The direct elimination method cannot be used for thermal expansion problems.

Because the element models a rigid constraint or a rigid component, material stiffness properties are not required. When thermal expansion effects are desired, the coefficient of thermal expansion must be specified. Density must be specified if the mass of the rigid element is to be accounted for in the analysis. If density is specified, ANSYS calculates a lumped mass matrix for the element.

The element supports the birth and death options using EALIVE and EKILL.
Node and Element Loads (p. 97) describes element loads. You can input temperatures as element body loads at the nodes. The node I temperature $\mathrm{T}(\mathrm{I})$ defaults to TUNIF. The node J temperature defaults to $\mathrm{T}(\mathrm{I})$.

## MPC184 Rigid Link/Beam Input Summary

This input summary applies to the rigid link and rigid beam options of MPC184: KEYOPT(1) $=0$ and 1 .

## Nodes

I, J

## Degrees of Freedom

UX, UY, UZ if $\operatorname{KEYOPT}(1)=0$
UX, UY, UZ, ROTX, ROTY, ROTZ if $\operatorname{KEYOPT}(1)=1$

## Real Constants

None

## Material Properties

ALPX (or CTEX or THSX), DENS

## Surface Loads

None

## Body Loads

## Temperatures --

$\mathrm{T}(\mathrm{I}), \mathrm{T}(\mathrm{J})$

## Element Loads

None

## Special Features

Large deflection
Birth and death
Linear perturbation

## KEYOPT(1)

Element behavior:
0 --
Rigid link (default)
1 --
Rigid beam

## KEYOPT(2)

Reduction method:
0 --
Direct elimination method (default)
1 --
Lagrange multiplier method

## MPC184 Rigid Link/Beam Output Data

The solution output associated with the element is in two forms:

- Nodal displacements included in the overall nodal solution
- Additional element output as shown in Table 1: MPC184 Rigid Link/Beam Element Output Definitions (p. 917).

Table 1: MPC184 Rigid Link/Beam Element Output Definitions (p. 917) uses the following notation:
A colon (:) in the Name column indicates the item can be accessed by the Component Name method [ETABLE, ESOL]. The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, Y indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and a - indicates that the item is not available.

## Table 1 MPC184 Rigid Link/Beam Element Output Definitions

Name	Definition	O	R
Link/Beam Elements (KEYOPT(1) = 0 or 1, and KEYOPT(2) = 0 or 1)			
EL	Element number	-	Y
NODES	Element node numbers (I and J)	-	Y
Link/Beam Elements (KEYOPT(1) = 0 or 1, and KEYOPT(2) = 1)			
MAT	Material number for the element	-	Y
TEMP	Temperature at nodes I and J	-	Y
FX	Axial force	-	Y
MY, MZ	Bending moments	-	Y
SF:Y, Z	Section shear forces	-	Y
MX	Torsional moment	-	Y

Table 2: MPC184 Rigid Link/Beam Item and Sequence Numbers (p. 918) lists output available via the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p. 9) for further information. The table uses the following notation:

## Name

output quantity as defined in the Element Output Definitions table.

## Item

predetermined Item label for ETABLE command

## E

sequence number for single-valued or constant element data
Table 2 MPC184 Rigid Link/Beam Item and Sequence Numbers

Output Quantity Name	ETABLE and ESOL Command Input	
	Item	E
Link/Beam Constraint (with KEYOPT(2) = 1)		
FX	SMISC	1
MY	SMISC	2
MZ	SMISC	3
MX	SMISC	4
SFZ	SMISC	5
SFY	SMISC	6

## MPC184 Rigid Link/Beam Assumptions and Restrictions

The following restrictions apply to both the direct elimination method and the Lagrange multiplier method $(\operatorname{KEYOPT}(2)=0$ and 1$)$ :

- A finite element model cannot be made up of only rigid elements in a static analysis. At a minimum, a deformable element (or elements) must be connected to one of the end nodes of a rigid element.
- The cross-sectional area of the element is assumed to be unity.
- The element coordinate system (/PSYMB,ESYS) is not relevant.
- This element cannot be used with the arc-length method (ARCLEN).

Direct Elimination Method $(\operatorname{KEYOPT}(2)=0)$
These additional restrictions apply to the direct elimination method:

- The MPC184 rigid link/beam using the direct elimination method can be used in static, transient, modal, and buckling analyses.
- This element can be used with the SPARSE, PCG, JCG, ICCG, and AMG solvers (EQSLV), but cannot be used with Distributed ANSYS when the direct elimination method $(\operatorname{KEYOPT}(2)=0)$ is used.
- Displacement boundary conditions on the nodes of rigid link/beams must be applied prudently. In a rigid linkage (structure) made of a number of rigid link/beam elements, if displacement boundary conditions are applied at more than one location, ANSYS will use the first encountered displacement boundary condition to constrain the entire rigid linkage according to rigid kinematic conditions. In some cases where the applied displacements may be redundant or self-contradictory, ANSYS will issue warning or error messages.
- The direct elimination method cannot be used in problems involving thermal expansion. Use the Lagrange Multiplier method instead.
- Reaction forces at the constrained nodes of a rigid link/beam may not always be available since the dependent and independent nodes are determined by ANSYS internally. We recommend that you check the interface nodes which connect rigid and deformable elements since reaction forces are available on these nodes.
- The nodes of a rigid link/beam using the direct elimination method should not be linked with a node of an element implemented via the Lagrange multiplier method. For example, a rigid beam implemented using the direct elimination method $(\operatorname{KEYOPT}(2)=0)$ should not be linked to a rigid beam implemented via the Lagrange multiplier method (KEYOPT $(2)=1)$. Or, a rigid beam implemented via the direct elimination method should not be linked to a node of a contact element that is implemented via the Lagrange multiplier method ( $\operatorname{KEYOPT}(2)=2$ on the contact element).
- Coupling constraints (CP command) cannot be applied to nodes of rigid links/beams using the direct elimination method.
- Nodes of rigid links/beams cannot be part of the retained nodes (nodes specified by the $\mathbf{M}$ command) in a substructure. However, the rigid links/beams can be entirely within the substructure.
- Rigid links/beams should be not used in cyclic symmetry analyses.
- Rigid links/beams cannot be used with Distributed ANSYS.


## Lagrange Multiplier Method (KEYOPT(2) = 1)

These additional restrictions apply to the Lagrange Multiplier method:

- To employ this feature successfully, use as few of these elements as possible. For example, it may be sufficient to overlay rigid line elements on a perimeter of a rigid region modeled with shell elements, as opposed to overlaying rigid line elements along each element boundary of the interior.
- Modeling that avoids overconstraining the problem is necessary. Overconstrained models may result in trivial solutions, zero pivot messages (in a properly restrained system), or nonlinear convergence difficulties.
- The temperature is assumed to vary linearly along the spar of the rigid link or rigid beam element.
- If constraint equations are specified for the DOFs of a rigid element, it may be an overconstrained system. Similarly, prescribed displacements on both ends of the element is an indication of overconstraint.
- When used as a link element, exercise the same precautions that you would when using a truss element (for example, LINK180).
- In most cases, the equation solver (EQSLV) must be the sparse solver.
- The element is valid for static and transient analyses (linear and nonlinear), and rigid beam is valid for harmonic response analyses. The element is not supported for buckling analyses or reduced transient analyses.


## MPC184 Rigid Link/Beam Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

## ANSYS Professional

- No special features are allowed.


## MPC184-Slider

Multipoint Constraint Element: Slider
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS
Product Restrictions

## MPC184 Slider Element Description

The MPC184 slider element can be used to model a slider constraint. The element has three nodes with three degrees of freedom (translations in $X, Y$, and $Z$ ) at each node. The slider element imposes a kinematic constraint such that a "dependent" node (I) must always lie on a line joining two other "independent" nodes ( J and K ). The I node is allowed to slide on the line joining J and K nodes. The kinematic constraints are imposed using the Lagrange multiplier method.

## Figure 1 MPC184 Slider Geometry



## MPC184 Slider Input Data

Set $\operatorname{KEYOPT}(1)=3$ to define a three-node slider element.
Figure 1 ( p .921 ) shows the geometry and node locations for this element. Three nodes ( $\mathrm{I}, \mathrm{J}$, and K ) define the element. The node $I$ is expected to lie initially on the line joining the nodes $J$ and $K$.

Material stiffness properties are not required for this element. The element currently does not support birth or death options.

## MPC184 Slider Input Summary

This input summary applies to the slider element option of MPC184: $\operatorname{KEYOPT}(1)=3$.

## Nodes

I, J, K
Degrees of Freedom
UX, UY, UZ

## Real Constants

None

## Material Properties

None

## Surface Loads

None

## Body Loads

None

## Element Loads

None

## Special Features

Large deflection
Linear perturbation

## KEYOPT(1)

Element behavior:
3 --
Slider element

## MPC184 Slider Output Data

The solution output associated with the element is in two forms:

- Nodal displacements included in the overall nodal solution
- Additional element output as shown in Table 1: MPC184 Slider Element Output Definitions (p. 922).

Table 1: MPC184 Slider Element Output Definitions (p. 922) uses the following notation:
A colon (:) in the Name column indicates the item can be accessed by the Component Name method [ETABLE, ESOL]. The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, Y indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and a - indicates that the item is not available.

## Table 1 MPC184 Slider Element Output Definitions

Name	Definition	$\mathbf{O}$	$\mathbf{R}$
EL	Element Number	-	Y
NODES	Element node numbers (I, J, K)	-	Y
FY	Constraint Force 1	-	Y
FZ	Constraint Force 2	-	Y

Table 2: MPC184 Slider Item and Sequence Numbers (p. 923) lists output available via the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p.9) for further information. The table uses the following notation:

## Name

output quantity as defined in the Element Output Definitions table.

## Item

predetermined Item label for ETABLE command

## E

sequence number for single-valued or constant element data
Table 2 MPC184 Slider Item and Sequence Numbers

Output Quantity Name	ETABLE and ESOL Command Input	
	Item	E
FY	SMISC	1
FZ	SMISC	2

## MPC184 Slider Assumptions and Restrictions

- The distance between nodes I and J must be greater than zero.
- Node I must initially lie between the J and K nodes.
- Displacement boundary conditions cannot be applied on the nodes forming the slider element.
- The element currently does not support birth or death options.
- The equation solver (EQSLV) must be the sparse solver.
- The element coordinate system (/PSYMB,ESYS) is not relevant.
- This element cannot be used with the arc-length method (ARCLEN).


## MPC184 Slider Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

## ANSYS Professional

- No special features are allowed.


## MPC184-Revolute

## Multipoint Constraint Element: Revolute Joint

MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS
Product Restrictions

## MPC184 Revolute Joint Element Description

The MPC184 revolute joint is a two-node element that has only one primary degree of freedom, the relative rotation about the revolute (or hinge) axis. This element imposes kinematic constraints such that the nodes forming the element have the same displacements. Additionally, only a relative rotation is allowed about the revolute axis, while the rotations about the other two directions are fixed.

Figure 1 MPC184 Revolute Joint Geometry


## MPC184 Revolute Joint Input Data

Set $\operatorname{KEYOPT}(1)=6$ to define a two-node revolute joint element.
Figure 1 (p. 925) shows the geometry and node locations for this element. Two nodes (I and J) define the element. The two nodes are expected to have identical spatial coordinates initially.

If $\operatorname{KEYOPT}(4)=0$, then element is an $x$-axis revolute joint with the local $e_{1}$ axis as the revolute axis.
If $\operatorname{KEYOPT}(4)=1$, then element is a $z$-axis revolute joint with the local $e_{3}$ axis as the revolute axis.
A local Cartesian coordinate system must be specified at the first node, I, of the element. The specification of the second local coordinate system at node $J$ is optional. If the local coordinate system is not specified at node J , then the local coordinate system at node J is assumed to be the same as that at node I .

Either the local $e_{1}$ or local $e_{3}$ direction may be specified as the axis of rotation at the nodes. The specification of the other two local directions is not critical, but it will be used to determine the relative rotation between the two nodes during the course of deformation. The orientation of local directions must follow the convention specified in Figure 1 (p. 925). These local coordinate systems evolve with the rotations at the respective nodes (if any). Use the SECJOINT command to specify the identifiers of the local coordinate systems.

The constraints imposed in a revolute joint element with the local $e_{1}$ axis as the revolute axis are described below. Similar constraint conditions are set up when the local $e_{3}$ axis is the revolute axis.

Consider the two local coordinate systems (Cartesian) attached to node I and node J (see Figure 1 (p. 925)). At any given instant of time, the constraints imposed in a revolute joint are as described below.

Displacement constraints:

$$
u^{\prime}=u^{J}
$$

Where, $u^{\prime}$ is the displacement vector at node I and $u^{J}$ is the displacement vector at node J.
Rotation constraints:
$e_{1} \cdot e_{2}^{J}=0$
$e_{1}^{1} \cdot e_{3}^{J}=0$

If the revolute axes $e_{1}^{\prime}$ and $e_{1}^{J}$ are not aligned at the start of the analysis, then the angle between the two is held fixed at the starting value.

The relative position of the local coordinate system at node I with respect to node $J$ is characterized by the first Cardan (or Bryant) angle given by:
$\phi=-\tan ^{-1}\left(\frac{e_{2}^{l} \cdot e_{3}^{J}}{e_{3}^{l} \cdot e_{3}^{J}}\right)$
The change in the relative angular position between the two local coordinate system is given by:
$u_{r}=\phi-\phi_{0}+m \pi$
Where, $\phi_{0}$ is the initial angular offset (the first Cardan (or Bryant ) angle measured in the reference configuration) between the two coordinate systems and $m$ is an integer accounting for multiple rotations about the revolute axis.

The constitutive calculations use the following definition of the joint rotation:
$u_{r}^{\mathrm{C}}=\phi+\mathrm{m} \pi-\phi_{1}^{\text {ref }}$

Where $\phi_{1}^{\text {ref }}$ is the reference angle, angle1, specified on the SECDATA command. If this value is not specified, then $\phi_{0}$ is used in place of $\phi_{1}^{\text {ref }}$.

Other input data that are common to all joint elements (material behavior, stops and limits, locks, etc.) are described in "Joint Input Data" (p. 911) in the MPC184 element description.

## MPC184 Revolute Joint Input Summary

This input summary applies to the revolute joint element option of $\operatorname{MPC} 184: \operatorname{KEYOPT}(1)=6$.

## Nodes

I, J

## Note

For a grounded joint element, specify either node I or node J in the element definition and leave the other node (the grounded node) blank.

## Degrees of Freedom

UX, UY, UZ, ROTX, ROTY, ROTZ

## Real Constants

None

## Material Properties

Use the JOIN label on the TB command to define stiffness, damping, and Coulomb friction behavior. (See MPC184 Joint Material Models (TB,JOIN) (p. 78) for detailed information on defining joint materials.)

## Surface Loads

None

## Body Loads

## Temperatures --

$\mathrm{T}(\mathrm{I}), \mathrm{T}(\mathrm{J})$

## Element Loads

Rotations --
ROTX $(\operatorname{KEYOPT}(4)=0)$
ROTZ $(\operatorname{KEYOPT}(4)=1)$

## Angular velocities --

OMGX (KEYOPT(4) = 0$)$
OMGZ $(\operatorname{KEYOPT}(4)=1)$
Angular accelerations --
DMGX (KEYOPT(4) = 0$)$
DMGZ $(\operatorname{KEYOPT}(4)=1)$
Moments --
MX $(\operatorname{KEYOPT}(4)=0)$
$M Z(\operatorname{KEYOPT}(4)=1)$

## Special Features

Large deflection
Linear perturbation

## KEYOPT(1)

Element behavior:
6 --
Revolute joint element

## KEYOPT(4)

Element configuration:
0 --
$x$-axis revolute joint with local 1 direction as the revolute axis.
1 --
z-axis revolute joint with local 3 direction as the revolute axis.

## MPC184 Revolute Joint Output Data

The solution output associated with the element is in two forms:

- Nodal displacements included in the overall nodal solution
- Additional element output as shown in Table 1: MPC184 Revolute Joint Element Output Definitions (p. 928) and Table 2: MPC184 Revolute Joint Element - NMISC Output (p. 930).

These tables use the following notation:
A colon (:) in the Name column indicates the item can be accessed by the Component Name method [ETABLE, ESOL]. The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, Y indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and a - indicates that the item is not available.

Table 1 MPC184 Revolute Joint Element Output Definitions

Name	Definition	0	R
$\mathbf{x}$-axis Revolute Joint ( $\operatorname{KEYOPT}(4)=0$ )			
EL	Element Number	-	Y
NODES	Element node numbers (I, J)	-	Y
FX	Constraint Force in X direction	-	Y
FY	Constraint Force in Y direction	-	Y
FZ	Constraint Force in Z direction	-	Y
MY	Constraint Moment in Y direction	-	Y
MZ	Constraint Moment in Z direction	-	Y
CSTOP4	Constraint moment if stop is specified on DOF 4	-	Y


Name	Definition	0	R
CLOCK4	Constraint moment if lock is specified on DOF 4	-	Y
CSST4	Constraint stop status[1]	-	Y
CLST4	Constraint lock status[2]	-	Y
JRP4	Joint relative position	-	Y
JCD4	Joint constitutive rotation	-	Y
JEF4	Joint elastic moment	-	Y
JDF4	Joint damping moment	-	Y
JFF4	Joint friction moment	-	Y
JRU4	Joint relative rotation	-	Y
JRV4	Joint relative velocity	-	Y
JRA4	Joint relative acceleration	-	Y
JTEMP	Average temperature in the element[3]	-	Y
JFST4	Stick/slip status when friction is specified[4]	-	Y
JFNF4	Normal moment in friction calculations	-	Y
$\mathbf{z - a x i s ~ R e v o l u t e ~ J o i n t ~ ( ~} \operatorname{KEYOPT(4)=1)~}$			
EL	Element Number	-	Y
NODES	Element node numbers (I, J)	-	Y
FX	Constraint Force in X direction	-	Y
FY	Constraint Force in Y direction	-	Y
FZ	Constraint Force in Z direction	-	Y
MX	Constraint Moment in X direction	-	Y
MY	Constraint Moment in Y direction	-	Y
CSTOP6	Constraint moment if stop is specified on DOF 6	-	Y
CLOCK6	Constraint moment if lock is specified on DOF 6	-	Y
CSST6	Constraint stop status[1]	-	Y
CLST6	Constraint lock status[2]	-	Y
JRP6	Joint relative position	-	Y
JCD6	Joint constitutive rotation	-	Y
JEF6	Joint elastic moment	-	Y
JDF6	Joint damping moment	-	Y
JFF6	Joint friction moment	-	Y
JRU6	Joint relative rotation	-	Y
JRV6	Joint relative velocity	-	Y
JRA6	Joint relative acceleration	-	Y
JTEMP	Average temperature in the element[3]	-	Y


Name	Definition	$\mathbf{O}$	$\mathbf{R}$
JFST6	Slip/stick status when friction is specified[4]	-	Y
JFNF6	Normal moment in friction calculations	-	Y

1. Constraint stop status:
$0=$ stop not active, or deactivated
$1=$ stopped at minimum value
$2=$ stopped at maximum value
2. Constraint lock status:
$0=$ lock not active
$1=$ locked at minimum value
2 = locked at maximum value
3. Average temperature in the element when temperatures are applied on the nodes of the element using the BF command, or when temperature are applied on the element using the BFE command.
4. Stick/slip status when friction is active:
$0=$ friction is not activated
1 = sticking
$2=$ slipping or sliding
The following table shows additional non-summable miscellaneous (NMISC) output available for all forms of the revolute joint element.

## Note

This output is intended for use in the ANSYS Workbench program to track the evolution of local coordinate systems specified at the nodes of joint elements.

Table 2 MPC184 Revolute Joint Element - NMISC Output

Name	Definition	0	R
The following output is available for all revolute joint elements (KEYOPT(4) = 0 and 1)			
$\begin{aligned} & \text { E1X-I, E1Y-I, } \\ & \text { E1Z-I } \end{aligned}$	$X, Y, Z$ components of the evolved $e_{1}$ axis at node I	-	Y
$\begin{aligned} & \text { E2X-I, E2Y-I, } \\ & \text { E2Z-I } \end{aligned}$	$X, Y, Z$ components of the evolved $e_{2}$ axis at node I	-	Y
$\begin{aligned} & \text { E3X-I, E3Y-I, } \\ & \text { E3Z-I } \end{aligned}$	$X, Y, Z$ components of the evolved $e_{3}$ axis at node I	-	Y
$\begin{aligned} & \text { E1X-J, E1Y-J, } \\ & \text { E1Z-J } \end{aligned}$	$X, Y, Z$ components of the evolved $e_{1}$ axis at node J	-	Y
$\begin{aligned} & \text { E2X-J, E2Y-J, } \\ & \text { E2Z-J } \end{aligned}$	$X, Y, Z$ components of the evolved $e_{2}$ axis at node J	-	Y
$\begin{array}{\|l} \text { E3X-J, E3Y-J, } \\ \text { E3Z-J } \end{array}$	$X, Y, Z$ components of the evolved $e_{3}$ axis at node J	-	Y


Name	Definition	$\mathbf{O}$	R
JFX, JFY, JFZ	Constraint forces expressed in the evolved co-   ordinate system specified at node I	-	Y
JMX, JMY, JMZ	Constraint moments expressed in the evolved   coordinate system specified at node I	-	Y

Table 3: MPC184 Revolute Joint Item and Sequence Numbers - SMISC Items (p. 931) and Table 4: MPC184 Revolute Joint Item and Sequence Numbers - NMISC Items (p. 932) list output available via the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p.9) for further information. The table uses the following notation:

## Name

output quantity as defined in the Element Output Definitions table.

## Item

predetermined Item label for ETABLE command
E
sequence number for single-valued or constant element data
Table 3 MPC184 Revolute Joint Item and Sequence Numbers - SMISC Items

Output Quantity Name	ETABLE and ESOL Command Input	
	Item	
x-axis Revolute Joint (KEYOPT(4) = 0)		
	SMISC	1
FY	SMISC	2
FZ	SMISC	3
MY	SMISC	5
MZ	SMISC	6
CSTOP4	SMISC	10
CLOCK4	SMISC	16
CSST4	SMISC	22
CLST4	SMISC	28
JRP4	SMISC	34
JCD4	SMISC	40
JEF4	SMISC	46
JDF4	SMISC	52
JFF4	SMISC	58
JRU4	SMISC	64
JRV4	SMISC	70
JRA4	SMISC	76
JTEMP	SMISC	79
JFST4	SMISC	80
JFNF4	SMISC	84


Output Quantity Name	ETABLE and ESOL Command Input	
	z-axis Revolute Joint (KEYOPT(4) = 1)	
	SMISC	E
FX	SMISC	1
FY	SMISC	2
FZ	SMISC	3
MX	SMISC	4
MY	SMISC	5
CSTOP6	SMISC	12
CLOCK6	SMISC	18
CSST6	SMISC	24
CLST6	SMISC	30
JRP6	SMISC	36
JCD6	SMISC	42
JEF6	SMISC	48
JDF6	SMISC	54
JFF6	SMISC	60
JRU6	SMISC	66
JRV6	SMISC	72
JRA6	SMISC	78
JTEMP	SMISC	79
JFST6	SMISC	82
JFNF6		86

Table 4 MPC184 Revolute Joint Item and Sequence Numbers - NMISC Items

Output Quantity Name	ETABLE and ESOL Command Input	
	Item	
The following output is available for all revolute joint elements (KEYOPT(4) = 0 and		
$\mathbf{1 )}$		
E1X-I	NMISC	1
E1Y-I	NMISC	2
E1Z-I	NMISC	3
E2X-I	NMISC	4
E2Y-I	NMISC	5
E2Z-I	NMISC	6
E3X-I	NMISC	7
E3Y-I	NMISC	8
E3Z-I	NMISC	9
E1X-J	NMISC	10


Output Quantity Name	ETABLE and ESOL Command Input	
	Item	E
E1Y-J	NMISC	11
E1Z-J	NMISC	12
E2X-J	NMISC	13
E2Y-J	NMISC	14
E2Z-J	NMISC	15
E3X-J	NMISC	16
E3Y-J	NMISC	17
E3Z-J	NMISC	18
JFX	NMISC	19
JFY	NMISC	20
JFZ	NMISC	21
JMX	NMISC	22
JMY	NMISC	23
JMZ	NMISC	24

## MPC184 Revolute Joint Assumptions and Restrictions

- The nodes I and J must be coincident.
- The local coordinate systems at the nodes must be specified such that the revolute axis is well defined. Otherwise, it is possible that the rotational motion might not be what is expected.
- Boundary conditions cannot be applied on the nodes forming the revolute joint.
- Rotational degrees of freedom are activated at the nodes forming the element. When these elements are used in conjunction with solid elements, the rotational degrees of freedom must be suitably constrained. Since boundary conditions cannot be applied to the nodes of the Revolute Joint, a beam or shell element with very weak stiffness may be used with the underlying solid elements at the nodes forming the joint element to avoid any rigid body modes.
- If both stops and locks are specified, then lock specification takes precedence. That is, if the degree of freedom is locked at a given value, then it will remain locked for the rest of the analysis.
- In a nonlinear analysis, the component of relative motion (rotation around the revolute axis) is accumulated over all the substeps. It is essential that the substep size be restricted such that this rotation in a given substep is less than $\pi$ for the values to be accumulated correctly.
- The element currently does not support birth or death options.
- The equation solver (EQSLV) must be the sparse solver.
- The element coordinate system (/PSYMB,ESYS) is not relevant.
- This element cannot be used with the arc-length method (ARCLEN).


## MPC184 Revolute Joint Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

## ANSYS Professional

- No special features are allowed.


## MPC184-Universal

## Multipoint Constraint Element: Universal Joint

MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

Product Restrictions

## MPC184 Universal Joint Element Description

The MPC184 universal joint element is a two-node element that has two free relative rotational degrees of freedom. The two nodes forming the element must have identical spatial coordinates.

## Figure 1 MPC184 Universal Joint Geometry



## MPC184 Universal Joint Input Data

Set $\operatorname{KEYOPT}(1)=7$ to define a two-node universal joint element.
Figure 1 (p. 935) shows the geometry and node locations for this element. Two nodes (I and J) define the element. The two nodes are expected to have identical spatial coordinates.

A local Cartesian coordinate system must be specified at the first node, I, of the element. The specification of the second local coordinate system at node $J$ is optional. If the local coordinate system is not specified at node $J$, then the local coordinate system at node $J$ is assumed to be the same as that at node I. The local 2 direction is usually aligned along the shaft axes of the universal joint. The orientation of local directions must follow the convention specified in Figure 1 (p. 935). These local coordinate systems evolve with the rotations at the respective nodes (if any). Use the SECJOINT command to specify the identifiers of the local coordinate systems.

The constraints imposed in a universal joint element are easily described by considering the two local coordinate systems (Cartesian) attached to node I and node J (Figure 1 (p. 935)). At any given instant of time, the constraints imposed in a universal joint are as described below.

Displacement constraints:

$$
u^{\prime}=u^{J}
$$

Where, $\mathrm{u}^{\prime}$ is the displacement vector at node I , and $\mathrm{u}^{J}$ is the displacement vector at node J.
Rotation constraints:
$e_{1}^{\mathrm{I}} \cdot \mathrm{e}_{3}^{\mathrm{J}}=0$

If the axes $e_{2}^{l}$ and $e_{2}^{J}$ are not aligned at the start of the analysis, then the angle between the two is held fixed at the initial value.

The relative position of the local coordinate system at node I with respect to node $J$ is characterized by the first and the third Cardan (or Bryant) angles as:
$\phi=-\tan ^{-1}\left(\frac{e_{2}^{I} \cdot e_{3}^{J}}{e_{3}^{l} \cdot e_{3}^{J}}\right)$
$\psi=-\tan ^{-1}\left(\frac{e_{1}^{l} \cdot e_{2}^{J}}{e_{1}^{l} \cdot e_{1}^{J}}\right)$
The change in the relative angular position between the two local coordinate system is given by

$$
\begin{aligned}
& \mathrm{u}_{\mathrm{r} 4}=\phi-\phi_{0} \\
& \mathrm{u}_{\mathrm{r} 6}=\psi-\psi_{0}
\end{aligned}
$$

Where, $\phi_{0}$ and $\psi_{0}$ are the initial angular offsets between the two coordinate systems (that is, the first and third Cardan (or Bryant) angles measured in the reference configuration).

The constitutive calculations use the following definition of the joint rotation:
$u_{r 4}^{\mathrm{c}}=\phi-\phi_{1}^{\text {ref }}$
$u_{r 6}^{\mathrm{c}}=\psi-\phi_{3}^{\mathrm{ref}}$

Where, $\phi_{1}^{\text {ref }}, \phi_{3}^{\text {ref }}$ are the reference angles, angle1 and angle3, specified on the SECDATA command. If these values are not specified, then $\phi_{0}$ and $\psi_{0}$ are used in place of $\phi_{1}^{\text {ref }}$ and $\phi_{3}^{\text {ref }}$, respectively.

Other input data that are common to all joint elements (material behavior, stops and limits, locks, etc.) are described in "Joint Input Data" (p. 911) in the MPC184 element description.

## MPC184 Universal Joint Input Summary

This input summary applies to the universal joint element option of MPC184: $\operatorname{KEYOPT}(1)=7$.

## Nodes

I, J

## Note

For a grounded joint element, specify either node I or node J in the element definition and leave the other node (the grounded node) blank.

## Degrees of Freedom

UX, UY, UZ, ROTX, ROTY, ROTZ

## Real Constants

None

## Material Properties

Use the JOIN label on the TB command to define stiffness, damping, and hysteretic friction behavior. (See MPC184 Joint Material Models (TB,JOIN) (p. 78) for detailed information on defining joint materials.)

## Surface Loads

None

## Body Loads

## Temperatures --

## Element Loads

Rotations --
ROTX, ROTZ
Moments --
MX, MZ

## Special Features

Large deflection
Linear perturbation

## KEYOPT(1)

Element behavior:
7 --
Universal joint element

## MPC184 Universal Joint Output Data

The solution output associated with the element is in two forms:

- Nodal displacements included in the overall nodal solution
- Additional element output as shown in Table 1: MPC184 Universal Joint Element Output Definitions (p. 938) and Table 2: MPC184 Universal Joint Element - NMISC Output (p. 940).

These tables use the following notation:
A colon (:) in the Name column indicates the item can be accessed by the Component Name method [ETABLE, ESOL]. The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, Y indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and a-indicates that the item is not available.

## Table 1 MPC184 Universal Joint Element Output Definitions

Name	Definition	$\mathbf{O}$	$\mathbf{R}$
EL	Element Number	-	Y
NODES	Element node numbers (I, J)	-	Y
FX	Constraint force in X direction	-	Y
FY	Constraint force in Y direction	-	Y
FZ	Constraint force in Z direction	-	Y
MY	Constraint moment in Y direction	-	Y
CSTOP4	Constraint moment if stop is specified on DOF   4	-	Y
CSTOP6	Constraint moment if stop is specified on DOF   6	-	Y
CLOCK4	Constraint moment if lock is specified on DOF   4	-	Y
CLOCK6	Constraint moment if lock is specified on DOF   6	-	Y
CSST4	Constraint stop status on DOF 4[1]	-	Y
CLST4	Constraint lock status on DOF 4[2]	-	Y
CSST6	Constraint stop status on DOF 6[1]	-	Y


Name	Definition	$\mathbf{0}$	$\mathbf{R}$
CLST6	Constraint lock status on DOF 6[2]	-	Y
JRP4	Joint relative position of DOF4	-	Y
JRP6	Joint relative position of DOF6	-	Y
JCD4	Joint constitutive rotation on DOF4	-	Y
JCD6	Joint constitutive rotation on DOF6	-	Y
JEF4	Joint elastic moment in direction -4	-	Y
JEF6	Joint elastic moment in direction -6	-	Y
JDF4	Joint damping moment in direction -4	-	Y
JDF6	Joint damping moment in direction -6	-	Y
JFF4	Joint friction moment in direction -4	-	Y
JFF6	Joint friction moment in direction -6	-	Y
JRU4	Joint relative rotation of DOF4	-	Y
JRU6	Joint relative rotation of DOF6	-	Y
JRV4	Joint relative rotational velocity of DOF4	-	Y
JRV6	Joint relative rotational velocity of DOF6	-	Y
JRA4	Joint relative rotational acceleration of DOF4	-	Y
JRA6	Joint relative rotational acceleration of DOF6	-	Y
JTEMP	Average temperature in the element[3]	-	Y

1. Constraint stop status:
$0=$ stop not active, or deactivated
1 = stopped at minimum value
2 = stopped at maximum value
2. Constraint lock status:
$0=$ lock not active
1 = locked at minimum value
2 = locked at maximum value
3. Average temperature in the element when temperatures are applied on the nodes of the element using the BF command, or when temperature are applied on the element using the BFE command.

The following table shows additional non-summable miscellaneous (NMISC) output available for the universal joint element.

## Note

This output is intended for use in the ANSYS Workbench program to track the evolution of local coordinate systems specified at the nodes of joint elements.

## Table 2 MPC184 Universal Joint Element - NMISC Output

Name	Definition	0	R
$\begin{aligned} & \text { E1X-I, E1Y-I, } \\ & \text { E1Z-I } \end{aligned}$	$X, Y, Z$ components of the evolved $e_{1}$ axis at node I	-	Y
$\begin{aligned} & \text { E2X-I, E2Y-I, } \\ & \text { E2Z-I } \end{aligned}$	$X, Y, Z$ components of the evolved $e_{2}$ axis at node I	-	Y
$\begin{aligned} & \text { E3X-I, E3Y-I, } \\ & \text { E3Z-I } \end{aligned}$	$X, Y, Z$ components of the evolved $e_{3}$ axis at node I	-	Y
$\begin{array}{\|l} \hline \text { E1X-J, E1Y-J, } \\ \text { E1Z-J } \end{array}$	$X, Y, Z$ components of the evolved $e_{1}$ axis at node J	-	Y
$\begin{aligned} & \text { E2X-J, E2Y-J, } \\ & \text { E2Z-J } \end{aligned}$	$X, Y, Z$ components of the evolved $e_{2}$ axis at node J	-	Y
$\begin{aligned} & \text { E3X-J, E3Y-J, } \\ & \text { E3Z-J } \end{aligned}$	$X, Y, Z$ components of the evolved $e_{3}$ axis at node J	-	Y
JFX, JFY, JFZ	Constraint forces expressed in the evolved coordinate system specified at node I	-	Y
JMX, JMY, JMZ	Constraint moments expressed in the evolved coordinate system specified at node I	-	Y

Table 3: MPC184 Universal Joint Item and Sequence Numbers - SMISC Items (p. 940) and Table 4: MPC184 Universal Joint Item and Sequence Numbers - NMISC Items (p. 941) list output available via the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p. 9) for further information. The table uses the following notation:

## Name

output quantity as defined in the Element Output Definitions table.

## Item

predetermined Item label for ETABLE command
E
sequence number for single-valued or constant element data
Table 3 MPC184 Universal Joint Item and Sequence Numbers - SMISC Items

Output Quantity Name	ETABLE and ESOL Command Input	
	Item	E
FX	SMISC	1
FY	SMISC	2
FZ	SMISC	3
MY	SMISC	5
MZ	SMISC	6


Output Quantity Name	ETABLE and ESOL Command Input	
	Item	$\mathbf{E}$
CSTOP4	SMISC	10
CSTOP6	SMISC	12
CLOCK4	SMISC	16
CLOCK6	SMISC	18
CSST4	SMISC	22
CLST4	SMISC	28
CSST6	SMISC	24
CLST6	SMISC	30
JRP4	SMISC	34
JRP6	SMISC	36
JCD4	SMISC	40
JCD6	SMISC	42
JEF4	SMISC	46
JEF6	SMISC	48
JDF4	SMISC	52
JDF6	SMISC	54
JFF4	SMISC	58
JFF6	SMISC	60
JRU4	SMISC	64
JRU6	SMISC	66
JRV4	SMISC	70
JRV6	SMISC	72
JRA4	SMISC	76
JTEMP	SMISC	78
SMISC	79	
		7

Table 4 MPC184 Universal Joint Item and Sequence Numbers - NMISC Items

Output Quantity Name	ETABLE and ESOL Command Input	
	Item	$\mathbf{E}$
E1X-I	NMISC	1
E1Y-I	NMISC	2
E1Z-I	NMISC	3
E2X-I	NMISC	4
E2Y-I	NMISC	5
E2Z-I	NMISC	6
E3X-I	NMISC	7
E3Y-I	NMISC	8


Output Quantity Name	ETABLE and ESOL Command Input	
	Item	E
E3Z-I	NMISC	9
E1X-J	NMISC	10
E1Y-J	NMISC	11
E1Z-J	NMISC	12
E2X-J	NMISC	13
E2Y-J	NMISC	14
E2Z-J	NMISC	15
E3X-J	NMISC	16
E3Y-J	NMISC	17
E3Z-J	NMISC	18
JFX	NMISC	19
JFY	NMISC	20
JFZ	NMISC	21
JMX	NMISC	22
JMY	NMISC	23
JMZ	NMISC	24

## MPC184 Universal Joint Assumptions and Restrictions

- The nodes I and J must be coincident.
- The local coordinate systems at the nodes must be specified such that the axes of rotation are well defined. Otherwise, it is possible that the rotational motion might not be what is expected.
- Boundary conditions cannot be applied on the nodes forming the universal joint.
- Rotational degrees of freedom are activated at the nodes forming the element. When these elements are used in conjunction with solid elements, the rotational degrees of freedom must be suitably constrained. Since boundary conditions cannot be applied to the nodes of the universal joint, a beam or shell element with very weak stiffness may be used with the underlying solid elements at the nodes forming the joint element to avoid any rigid body modes.
- If both stops and locks are specified, then lock specification takes precedence. That is, if the degree of freedom is locked at a given value, then it will remain locked for the rest of the analysis.
- In a nonlinear analysis, the components of relative motion are accumulated over all the substeps. It is essential that the substep size be restricted such that these rotations in a given substep are less than $\pi$ for the values to be accumulated correctly.
- The element currently does not support birth or death options.
- The equation solver (EQSLV) must be the sparse solver.
- The element coordinate system (/PSYMB,ESYS) is not relevant.
- This element cannot be used with the arc-length method (ARCLEN).


## MPC184 Universal Joint Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

## ANSYS Professional

- No special features are allowed.


## MPC184-Slot

Multipoint Constraint Element: Slot Joint
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS
Product Restrictions

## MPC184 Slot Joint Element Description

The MPC184 slot joint element is a two-node element that has one relative displacement degree of freedom. The rotational degrees of freedom at nodes I and J are left free.

## Figure 1 MPC184 Slot Joint Geometry



## MPC184 Slot Joint Input Data

Set $\operatorname{KEYOPT}(1)=8$ to define a two-node slot joint element.
Figure 1 (p. 945) shows the geometry and node locations for this element. Two nodes (I and J) define the element.

A local Cartesian coordinate system must be specified at the first node, I, of the element. The second node, J , is constrained to move on the local $\mathbf{e}_{1}$ axis specified at node I. The local coordinate system specified at node I evolves with the rotations at node I. Use the SECJOINT command to specify the identifiers of the local coordinate systems.

The constraints imposed on a slot joint element are easily described by referring to Figure 1 (p. 945). At any given instant of time, the constraints imposed in a 3-D slot joint are as follows:
$\mathbf{e}_{2}^{\mathbf{l}} \cdot\left(\mathbf{x}^{\mathrm{J}}-\mathbf{x}^{\mathbf{\prime}}\right)-E_{2}^{\mathbf{l}} \cdot\left(\mathbf{X}^{\mathrm{J}}-\mathbf{X}^{\mathbf{l}}\right)=0$
$\mathbf{e}_{3}^{\mathbf{l}} \cdot\left(\mathbf{x}^{\mathrm{J}}-\mathbf{x}^{\mathbf{\prime}}\right)-E_{3}^{\prime} \cdot\left(X^{\mathrm{J}}-X^{\mathbf{l}}\right)=0$
Where, $\mathbf{x}^{\prime}$ and $\mathbf{x}^{J}$ are the position vectors of nodes $I$ and $J$ in the current configuration, and $\mathbf{X}^{\prime}$ and $\mathbf{X}^{J}$ are the position vectors of nodes I and $J$ in the reference configuration. Essentially these constraints force the node
$J$ to move along the $\mathbf{e}_{1}$ axis of the local coordinate system specified at node I. $\mathbf{e}^{\prime}$ are in the current configuration, while $\mathbf{E}^{\prime}$ are specified in the initial configuration.

The change in the relative position of the nodes I and $J$ is given by:
$u_{1}=\ell-\ell_{0}$
Where $u$ is the initial offset computed based on the initial configuration and the local coordinate system associated with node I, and
$\ell=\mathbf{e}_{1}^{\mathrm{I}} \cdot\left(\mathbf{x}^{\mathrm{J}}-\mathbf{x}^{\mathrm{I}}\right)$ and $\ell_{0}=\mathbf{E}_{1}^{\prime} \cdot\left(\mathbf{X}^{\mathrm{J}}-\mathbf{X}^{\mathbf{\prime}}\right)$
The constitutive calculations use the following definition of the joint displacement:

$$
u_{1}^{\mathrm{c}}=\ell-\ell_{1}^{\text {ref }}
$$

where:
$\ell_{1}^{\text {ref }}=$ reference length, length 1 , specified on SECDATA command.
If the reference length is not specified, the initial offset is used.
Other input data that are common to all joint elements (material behavior, stops and limits, locks, etc.) are described in "Joint Input Data" (p. 911) in the MPC184 element description.

## MPC184 Slot Joint Input Summary

This input summary applies to the slot joint element option of MPC184: $\operatorname{KEYOPT}(1)=8$.

## Nodes

I, J

## Note

For a grounded joint element, specify either node I or node J in the element definition and leave the other node (the grounded node) blank.

## Degrees of Freedom

UX, UY, UZ, ROTX, ROTY, ROTZ

## Real Constants

None

## Material Properties

Use the JOIN label on the TB command to define stiffness, damping, and Coulomb friction behavior.
(See MPC184 Joint Material Models (TB,JOIN) (p. 78) for detailed information on defining joint materials.)

## Surface Loads

None

## Body Loads

## Temperatures --

$\mathrm{T}(\mathrm{I}), \mathrm{T}(\mathrm{J})$

## Element Loads

Displacements --
UX
Forces --
FX

## Special Features

Large deflection
Linear perturbation

## KEYOPT(1)

Element behavior:
8 --
Slot joint element

## MPC184 Slot Joint Output Data

The solution output associated with the element is in two forms:

- Nodal displacements included in the overall nodal solution
- Additional element output as shown in Table 1: MPC184 Slot Joint Element Output Definitions (p. 947) and Table 2: MPC184 Slot Joint Element - NMISC Output (p. 948).

These tables use the following notation:
A colon (:) in the Name column indicates the item can be accessed by the Component Name method [ETABLE, ESOL]. The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, Y indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and a - indicates that the item is not available.

## Table 1 MPC184 Slot Joint Element Output Definitions

Name	Definition	$\mathbf{O}$	$\mathbf{R}$
EL	Element Number	-	Y
NODES	Element node numbers (I, J)	-	Y
FY	Constraint force in Y direction	-	Y
FZ	Constraint force in Z direction	-	Y
CSTOP1	Constraint force if stop is specified on DOF 1	-	Y
CLOCK1	Constraint force if lock is specified on DOF 1	-	Y
CSST1	Constraint stop status[1]	-	Y
CLST1	Constraint lock status[2]	-	Y
JRP1	Joint relative position	-	Y


Name	Definition	$\mathbf{O}$	$\mathbf{R}$
JCD1	Joint constitutive displacement	-	Y
JEF1	Joint elastic force	-	Y
JDF1	Joint damping force	-	Y
JFF1	Joint friction force	-	Y
JRU1	Joint relative displacement	-	Y
JRA1	Joint relative acceleration	-	Y
JRV1	Joint relative velocity	-	Y
JTEMP	Average temperature in the element[3]	-	Y
JFST1	Slip/stick status when friction is specified[4]	-	Y
JFNF1	Normal moment in friction calculations	-	Y

1. Constraint stop status:

0 = stop not active, or deactivated
$1=$ stopped at minimum value
2 = stopped at maximum value
2. Constraint lock status:
$0=$ lock not active
1 = locked at minimum value
$2=$ locked at maximum value
3. Average temperature in the element when temperatures are applied on the nodes of the element using the BF command, or when temperature are applied on the element using the BFE command.
4. Stick/slip status when friction is active:
$0=$ friction is not activated
1 = sticking
$2=$ slipping or sliding
The following table shows additional non-summable miscellaneous (NMISC) output available for the slot joint element.

## Note

This output is intended for use in the ANSYS Workbench program to track the evolution of local coordinate systems specified at the nodes of joint elements.

Table 2 MPC184 Slot Joint Element - NMISC Output

Name	Definition	$\mathbf{O}$	$\mathbf{R}$
E1X-I, E1Y-I,   E1Z-I	$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ components of the evolved $\mathrm{e}_{1}$ axis at   node I	-	Y
E2X-I, E2Y-I,   E2Z-I	$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ components of the evolved $\mathrm{e}_{2}$ axis at   node I	-	Y


Name	Definition	0	R
$\begin{array}{\|l\|} \hline \text { E3X-I, E3Y-I, } \\ \text { E3Z-I } \end{array}$	$X, Y, Z$ components of the evolved $e_{3}$ axis at node I	-	Y
$\begin{array}{\|l} \text { E1X-J, E1Y-J, } \\ \text { E1Z-J } \end{array}$	$X, Y, Z$ components of the evolved $e_{1}$ axis at node J	-	Y
$\begin{aligned} & \text { E2X-J, E2Y-J, } \\ & \text { E2Z-J } \end{aligned}$	$X, Y, Z$ components of the evolved $e_{2}$ axis at node J	-	Y
$\begin{array}{\|l\|} \hline \text { E3X-J, E3Y-J, } \\ \text { E3Z-J } \end{array}$	$X, Y, Z$ components of the evolved $e_{3}$ axis at node J	-	Y
JFX, JFY, JFZ	Constraint forces expressed in the evolved coordinate system specified at node I	-	Y
JMX, JMY, JMZ	Constraint moments expressed in the evolved coordinate system specified at node I	-	Y

Table 3: MPC184 Slot Joint Item and Sequence Numbers - SMISC Items (p. 949) and Table 4: MPC184 Slot Joint Item and Sequence Numbers - NMISC Items (p. 950) list output available via the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p. 9) for further information. The table uses the following notation:

## Name

output quantity as defined in the Element Output Definitions table.

## Item

predetermined Item label for ETABLE command
E
sequence number for single-valued or constant element data
Table 3 MPC184 Slot Joint Item and Sequence Numbers - SMISC Items

Output Quantity Name	ETABLE and ESOL Command Input	
	Item	$\mathbf{E}$
FY	SMISC	2
FZ	SMISC	3
CSTOP1	SMISC	7
CLOCK1	SMISC	13
CSST1	SMISC	19
CLST1	SMISC	25
JRP1	SMISC	31
JCD1	SMISC	37
JEF1	SMISC	43
JDF1	SMISC	49
JFF1	SMISC	55
JRU1	SMISC	61
JRV1	SMISC	67
JRA1	SMISC	73


Output Quantity Name	ETABLE and ESOL Command Input	
	Item	E
JTEMP	SMISC	79
JFST1	SMISC	80
JFNF1	SMISC	81

Table 4 MPC184 Slot Joint Item and Sequence Numbers - NMISC Items

Output Quantity Name	ETABLE and ESOL Command Input	
	Item	E
E1X-I	NMISC	1
E1Y-I	NMISC	2
E1Z-I	NMISC	3
E2X-I	NMISC	4
E2Y-I	NMISC	5
E2Z-I	NMISC	6
E3X-I	NMISC	7
E3Y-I	NMISC	8
E3Z-I	NMISC	9
E1X-J	NMISC	10
E1Y-J	NMISC	11
E1Z-J	NMISC	12
E2X-J	NMISC	13
E2Y-J	NMISC	14
E2Z-J	NMISC	15
E3X-J	NMISC	16
E3Y-J	NMISC	17
E3Z-J	NMISC	18
JFX	NMISC	19
JFY	NMISC	20
JFZ	NMISC	21
JMX	NMISC	22
JMY	NMISC	23
JMZ	NMISC	24
		7

## MPC184 Slot Joint Assumptions and Restrictions

- Boundary conditions cannot be applied on the nodes forming the slot joint.
- Rotational degrees of freedom are activated at the nodes forming the element. When these elements are used in conjunction with solid elements, the rotational degrees of freedom must be suitably constrained. Since boundary conditions cannot be applied to the nodes of the slot joint, a beam or shell
element with very weak stiffness may be used with the underlying solid elements at the nodes forming the joint element to avoid any rigid body modes.
- Stops (SECSTOP) and locks (SECLOCK) can only be applied on the relative x-direction. These are not applicable to the rotational degrees of freedom.
- If both stops and locks are specified, then lock specification takes precedence. That is, if the degree of freedom is locked at a given value, then it will remain locked for the rest of the analysis.
- In a nonlinear analysis, the components of relative motion are accumulated over all the substeps. It is essential that the substep size be restricted such that these rotations in a given substep are less than $\pi$ for the values to be accumulated correctly.
- The element currently does not support birth or death options.
- The equation solver (EQSLV) must be the sparse solver.
- The element coordinate system (/PSYMB,ESYS) is not relevant.
- This element cannot be used with the arc-length method (ARCLEN).


## MPC184 Slot Joint Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

## ANSYS Professional

- No special features are allowed.


## MPC184-Point

## Multipoint Constraint Element: Point-in-plane Joint

MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS
Product Restrictions

## MPC184 Point-in-plane Joint Element Description

The MPC184 point-in-plane joint element is a two-node element that has two relative displacement degrees of freedom. The relative rotational degrees of freedom are not considered and cannot be controlled.

## Figure 1 MPC184 Point-in-plane Joint Geometry



## MPC184 Point-in-plane Joint Input Data

Set $\operatorname{KEYOPT}(1)=9$ to define a two-node point-in-plane joint element.
Figure 1 ( p .953 ) shows the geometry and node locations for this element. Two nodes (I and J) define the element.

A local Cartesian coordinate system must be specified at the first node, I, of the element. The second node, $J$, is constrained such that it remains on a plane defined by the local $e_{1}^{l}$ and $e_{2}^{l}$ axes. The normal distance from this plane containing node $J$ to node $I$ is held fixed. The local coordinate system specified at node $I$ evolves with the rotations at node I. Use the SECJOINT command to specify the identifiers of the local coordinate systems.

The constraints imposed on a point-in-plane joint element are easily described by referring to Figure 1 (p. 953). At any given instant of time, the constraint imposed is as follows:
$\mathbf{e}_{1}^{\mathbf{I}} \cdot\left(\mathbf{x}^{\mathrm{J}}-\mathbf{x}^{\mathbf{\prime}}\right)-E_{1}^{\mathbf{I}} \cdot\left(\mathbf{X}^{\mathrm{J}}-\mathbf{X}^{\mathbf{I}}\right)=\mathbf{0}$

Where, $x^{\prime}$ and $x^{J}$ are the positional vectors of nodes $I$ and $J$ in the current configuration, and $X^{\prime}$ and $X^{J}$ are the position vectors of nodes I and $J$ in the reference configuration. $e^{l}$ are in the current configuration, while $E^{\prime}$ are specified in the initial configuration.

The changes in the relative position of the nodes I and J are given by:
$u_{2}=\mathbf{e}_{2}^{\prime} \cdot\left(\mathbf{x}^{\mathrm{J}}-\mathbf{x}^{\prime}\right)-E_{2}^{\prime} \cdot\left(\mathbf{X}^{\mathrm{J}}-\mathbf{X}^{\prime}\right)$
$\mathrm{u}_{3}=\mathbf{e}_{3}^{\mathrm{I}} \cdot\left(\mathbf{x}^{\mathrm{J}}-\mathbf{x}^{\mathbf{I}}\right)-\mathrm{E}_{3}^{\mathrm{I}} \cdot\left(\mathbf{X}^{\mathrm{J}}-\mathbf{X}^{\mathrm{I}}\right)$
The constitutive calculations use the following definition of the joint displacement:
$u_{2}^{c}=\mathbf{e}_{2}^{\mathrm{I}} \cdot\left(\mathbf{x}^{\mathrm{J}}-\mathbf{x}^{\mathrm{I}}\right)-\ell_{2}^{\text {ref }}$
$\mathbf{u}_{3}^{\mathrm{c}}=\mathbf{e}_{3}^{\mathrm{l}} \cdot\left(\mathbf{x}^{\mathrm{J}}-\mathbf{x}^{\mathrm{I}}\right)-\ell_{3}^{\text {ref }}$
where:

$$
\begin{aligned}
& \ell_{2}^{\text {ref }}=\text { reference length specified on the SECDATA command } \\
& \ell_{3}^{\text {ref }}=\text { reference length specified on the SECDATA command }
\end{aligned}
$$

If the reference lengths are not specified, the initial offsets are used.
Other input data that are common to all joint elements (material behavior, stops and limits, locks, etc.) are described in "Joint Input Data" (p. 911) in the MPC184 element description.

## MPC184 Point-in-plane Joint Input Summary

This input summary applies to the point-in-plane joint element option of MPC184: $\operatorname{KEYOPT}(1)=9$.

## Nodes

I, J

## Note

For a grounded joint element, specify either node I or node J in the element definition and leave the other node (the grounded node) blank.

## Degrees of Freedom

UX, UY, UZ, ROTX, ROTY, ROTZ

## Real Constants

None

## Material Properties

Use the JOIN label on the TB command to define stiffness, damping, and hysteretic friction behavior.
(See MPC184 Joint Material Models (TB,JOIN) (p. 78) for detailed information on defining joint materials.)

## Surface Loads

None

## Body Loads

## Temperatures --

$\mathrm{T}(\mathrm{I}), \mathrm{T}(\mathrm{J})$

## Element Loads

None

## Special Features

Large deflection
Linear perturbation

## KEYOPT(1)

Element behavior:
9 --
Point-in-plane joint element

## MPC184 Point-in-plane Joint Output Data

The solution output associated with the element is in two forms:

- Nodal displacements included in the overall nodal solution
- Additional element output as shown in Table 1: MPC184 Point-in-plane Joint Element Output Definitions (p. 955) and Table 2: MPC184 Point-in-plane Joint Element - NMISC Output (p. 957).

These tables use the following notation:
A colon (:) in the Name column indicates the item can be accessed by the Component Name method [ETABLE, ESOL]. The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, Y indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and a - indicates that the item is not available.

Table 1 MPC184 Point-in-plane Joint Element Output Definitions

Name	Definition	$\mathbf{O}$	R
EL	Element Number	-	Y
NODES	Element node numbers (I, J)	-	Y
FX	Constraint Force in X direction	-	Y
CSTOP2	Constraint force if stop is specified on DOF 2	-	Y
CSTOP3	Constraint force if stop is specified on DOF 3	-	Y
CLOCK2	Constraint force if lock is specified on DOF 2	-	Y
CLOCK3	Constraint force if lock is specified on DOF 3	-	Y
CSST2	Constraint stop status on DOF 2[1]	-	Y
CLST2	Constraint lock status on DOF 2[2]	-	Y
CSST3	Constraint stop status on DOF 3[1]	-	Y


Name	Definition	$\mathbf{O}$	$\mathbf{R}$
CLST3	Constraint lock status on DOF 3[2]	-	Y
JRP2	Joint relative position of DOF2	-	Y
JRP3	Joint relative position of DOF3	-	Y
JCD2	Joint constitutive displacement on DOF2	-	Y
JCD3	Joint constitutive displacement on DOF3	-	Y
JEF2	Joint elastic force in direction -2	-	Y
JEF3	Joint elastic force in direction -3	-	Y
JDF2	Joint damping force in direction -2	-	Y
JDF3	Joint damping force in direction -3	-	Y
JFF2	Joint friction force in direction -2	-	Y
JFF3	Joint friction force in direction -3	-	Y
JRU2	Joint relative displacement in direction -2	-	Y
JRU3	Joint relative displacement in direction -3	-	Y
JRV2	Joint relative velocity in direction -2	-	Y
JRV3	Joint relative velocity in direction -3	-	Y
JRA2	Joint relative acceleration in direction -2	-	Y
JRA3	Joint relative acceleration in direction -3	-	Y
JTEMP	Average temperature in the element[3]	-	Y

1. Constraint stop status:
$0=$ stop not active, or deactivated
$1=$ stopped at minimum value
2 = stopped at maximum value
2. Constraint lock status:
$0=$ lock not active
$1=$ locked at minimum value
2 = locked at maximum value
3. Average temperature in the element when temperatures are applied on the nodes of the element using the BF command, or when temperature are applied on the element using the BFE command.

The following table shows additional non-summable miscellaneous (NMISC) output available for the point-in-plane joint element.

## Note

This output is intended for use in the ANSYS Workbench program to track the evolution of local coordinate systems specified at the nodes of joint elements.

Table 2 MPC184 Point-in-plane Joint Element - NMISC Output

Name	Definition	0	R
$\begin{aligned} & \text { E1X-I, E1Y-I, } \\ & \text { E1Z-I } \end{aligned}$	$X, Y, Z$ components of the evolved $e_{1}$ axis at node I	-	Y
$\begin{aligned} & \text { E2X-I, E2Y-I, } \\ & \text { E2Z-I } \end{aligned}$	$X, Y, Z$ components of the evolved $e_{2}$ axis at node I	-	Y
$\begin{aligned} & \text { E3X-I, E3Y-I, } \\ & \text { E3Z-I } \end{aligned}$	$X, Y, Z$ components of the evolved $e_{3}$ axis at node I	-	Y
$\begin{aligned} & \text { E1X-J, E1Y-J, } \\ & \text { E1Z-J } \end{aligned}$	$X, Y, Z$ components of the evolved $e_{1}$ axis at node J	-	Y
$\begin{aligned} & \text { E2X-J, E2Y-J, } \\ & \text { E2Z-J } \end{aligned}$	$X, Y, Z$ components of the evolved $e_{2}$ axis at node J	-	Y
$\begin{array}{\|l} \text { E3X-J, E3Y-J, } \\ \text { E3Z-J } \end{array}$	$X, Y, Z$ components of the evolved $e_{3}$ axis at node J	-	Y
JFX, JFY, JFZ	Constraint forces expressed in the evolved coordinate system specified at node I	-	Y
JMX, JMY, JMZ	Constraint moments expressed in the evolved coordinate system specified at node I	-	Y

Table 3: MPC184 Point-in-plane Joint Item and Sequence Numbers - SMISC Items (p. 957) and Table 4: MPC184 Point-in-plane Joint Item and Sequence Numbers - NMISC Items (p. 958) list output available via the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p. 9) for further information. The table uses the following notation:

## Name

output quantity as defined in the Element Output Definitions table.

## Item

predetermined Item label for ETABLE command
E
sequence number for single-valued or constant element data
Table 3 MPC184 Point-in-plane Joint Item and Sequence Numbers - SMISC Items

Output Quantity Name	ETABLE and ESOL Command Input	
	Item	$\mathbf{E}$
FX	SMISC	1
CSTOP2	SMISC	8
CSTOP3	SMISC	9
CLOCK2	SMISC	14


Output Quantity Name	ETABLE and ESOL Command Input	
	Item	E
CLOCK3	SMISC	15
CSST2	SMISC	20
CLST2	SMISC	26
CSST3	SMISC	21
CLST3	SMISC	27
JRP2	SMISC	32
JRP3	SMISC	33
JCD2	SMISC	38
JCD3	SMISC	39
JEF2	SMISC	44
JEF3	SMISC	45
JDF2	SMISC	50
JDF3	SMISC	51
JFF2	SMISC	56
JFF3	SMISC	57
JRU2	SMISC	62
JRU3	SMISC	63
JRV2	SMISC	68
JRV3	SMISC	69
JRA2	SMISC	74
JRA3	SMISC	75
JTEMP	SMISC	79

Table 4 MPC184 Point-in-plane Joint Item and Sequence Numbers - NMISC Items

Output Quantity Name	ETABLE and ESOL Command Input	
	Item	E
E1X-I	NMISC	1
E1Y-I	NMISC	2
E1Z-I	NMISC	3
E2X-I	NMISC	4
E2Y-I	NMISC	5
E2Z-I	NMISC	6
E3X-I	NMISC	7
E3Y-I	NMISC	8
E3Z-I	NMISC	9
E1X-J	NMISC	10
E1Y-J	NMISC	11


Output Quantity Name	ETABLE and ESOL Command Input	
	Item	E
E1Z-J	NMISC	12
E2X-J	NMISC	13
E2Y-J	NMISC	14
E2Z-J	NMISC	15
E3X-J	NMISC	16
E3Y-J	NMISC	17
E3Z-J	NMISC	18
JFX	NMISC	19
JFY	NMISC	20
JFZ	NMISC	21
JMX	NMISC	22
JMY	NMISC	23
JMZ	NMISC	24

## MPC184 Point-in-plane Joint Assumptions and Restrictions

- Boundary conditions cannot be applied on the nodes forming the point-in-plane joint.
- Rotational degrees of freedom are activated at the nodes forming the element. When these elements are used in conjunction with solid elements, the rotational degrees of freedom must be suitably constrained. Since boundary conditions cannot be applied to the nodes of the point-in-plane joint, a beam or shell element with very weak stiffness may be used with the underlying solid elements at the nodes forming the joint element to avoid any rigid body modes.
- If both stops and locks are specified, then lock specification takes precedence. That is, if the degree of freedom is locked at a given value, then it will remain locked for the rest of the analysis.
- In a nonlinear analysis, the components of relative motion are accumulated over all the substeps. It is essential that the substep size be restricted such that these rotations in a given substep are less than $\pi$ for the values to be accumulated correctly.
- The element currently does not support birth or death options.
- The equation solver (EQSLV) must be the sparse solver.
- The element coordinate system (/PSYMB,ESYS) is not relevant.
- This element cannot be used with the arc-length method (ARCLEN).


## MPC184 Point-in-plane Joint Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

## ANSYS Professional

- No special features are allowed.


## MPC184-Trans

Multipoint Constraint Element:Translational Joint
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS
Product Restrictions

## MPC184 Translational Joint Element Description

The MPC184 translational joint element is a two-node element that has one relative displacement degree of freedom. All other relative degrees of freedom are fixed.

## Figure 1 MPC184 Translational Joint Geometry



## MPC184 Translational Joint Input Data

Set $\operatorname{KEYOPT}(1)=10$ to define a two-node translational joint element.
Figure 1 (p. 961) shows the geometry and node locations for this element. Two nodes (I and J) define the element.

A local Cartesian coordinate system must be specified at the first node, I, of the element. The local coordinate system specification at the second node is optional. The second node $J$ is constrained to move along the $e_{1}$ axis specified at node I. The local coordinate system specified at node I evolves with the rotations at node I. Use the SECJOINT command to specify the identifiers of the local coordinate systems.

The constraints imposed on a translational joint element are easily described by referring to Figure 1 (p.961). At any given instant of time, the constraints imposed are as follows:
$\mathbf{e}_{2}^{\prime} \cdot\left(\mathbf{x}^{\mathrm{J}}-\mathbf{x}^{\mathbf{\prime}}\right)-E_{2}^{\prime} \cdot\left(\mathbf{X}^{\mathrm{J}}-\mathbf{X}^{\mathbf{l}}\right)=\mathbf{0}$
$\mathbf{e}_{3}^{\prime} \cdot\left(\mathbf{x}^{J}-\mathbf{x}^{\mathbf{\prime}}\right)-E_{3}^{\prime} \cdot\left(\mathbf{X}^{\mathrm{J}}-\mathbf{X}^{\mathbf{\prime}}\right)=0$
$e_{1}^{I} \cdot e_{2}^{J}-E_{1}^{I} \cdot E_{2}^{J}=0$
$\mathbf{e}_{2}^{\mathbf{I}} \cdot \mathbf{e}_{3}^{\mathrm{J}}-\mathbf{E}_{2}^{\mathbf{I}} \cdot \mathbf{E}_{3}^{\mathrm{J}}=0$
$\mathbf{e}_{1}^{\mathrm{I}} \cdot \mathbf{e}_{3}^{J}-E_{1}^{1} \cdot E_{3}^{J}=0$

Where, $x^{\prime}$ and $x^{J}$ are the positional vectors of nodes $I$ and $J$ in the current configuration, and $X^{\prime}$ and $X^{J}$ are the position vectors of nodes I and $J$ in the reference configuration. Essentially these constraints force the node $J$ to move along the $e_{1}$ axis of the local coordinate system specified at node I. $e^{l}$ are in the current configuration, while $E^{\prime}$ are specified in the initial configuration.

The change in the relative position of the nodes I and $J$ is given by:
$\mathbf{u}_{1}=\mathbf{e}_{1}^{\mathbf{l}} \cdot\left(\mathbf{x}^{\mathrm{J}}-\mathbf{x}^{\mathbf{\prime}}\right)-\mathbf{E}_{1}^{\mathbf{I}} \cdot\left(\mathbf{X}^{\mathrm{J}}-\mathbf{X}^{\mathbf{I}}\right)$
The constitutive calculations use the following definition of the joint displacement:
$u_{1}^{\mathrm{c}}=\mathbf{e}_{1}^{\mathrm{I}} \cdot\left(\mathbf{x}^{\mathrm{J}}-\mathbf{x}^{\mathrm{l}}\right)-\ell_{1}^{\text {ref }}$
where:
$\ell_{1}^{\text {ref }}=$ reference length, length 1 , specified on SECDATA command
If the reference length is not specified, the initial offset is used.
Other input data that are common to all joint elements (material behavior, stops and limits, locks, etc.) are described in "Joint Input Data" (p. 911) in the MPC184 element description.

## MPC184 Translational Joint Input Summary

This input summary applies to the translational joint element option of $\operatorname{MPC} 184$ : $\operatorname{KEYOPT}(1)=10$.

## Nodes

I, J

## Note

For a grounded joint element, specify either node I or node J in the element definition and leave the other node (the grounded node) blank.

## Degrees of Freedom

UX, UY, UZ, ROTX, ROTY, ROTZ

## Real Constants

None

## Material Properties

Use the JOIN label on the TB command to define stiffness, damping, and Coulomb friction behavior. (See MPC184 Joint Material Models (TB,JOIN) (p. 78) for detailed information on defining joint materials.)

## Surface Loads

None

## Body Loads

## Temperatures --

$\mathrm{T}(\mathrm{I}), \mathrm{T}(\mathrm{J})$

## Element Loads

None

## Special Features

Large deflection
Linear perturbation

## KEYOPT(1)

## Element behavior:

10 --
Translational joint element

## MPC184 Translational Joint Output Data

The solution output associated with the element is in two forms:

- Nodal displacements included in the overall nodal solution
- Additional element output as shown in Table 1: MPC184 Translational Joint Element Output Definitions (p. 963) and Table 2: MPC184 Translational Joint Element - NMISC Output (p. 965).

These tables use the following notation:
A colon (:) in the Name column indicates the item can be accessed by the Component Name method [ETABLE, ESOL]. The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, Y indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and a - indicates that the item is not available.

Table 1 MPC184 Translational Joint Element Output Definitions

Name	Definition	$\mathbf{O}$	$\mathbf{R}$
EL	Element number	-	Y
NODES	Element node numbers (I, J)	-	Y
FY	Constraint force in Y direction	-	Y
FZ	Constraint force in Z direction	-	Y
MX	Constraint moment in X direction	-	Y
MY	Constraint moment in Y direction	-	Y
MZ	Constraint moment in Z direction	-	Y


Name	Definition	$\mathbf{O}$	R
CSTOP1	Constraint force if stop is specified on DOF 1	-	Y
CLOCK1	Constraint force if lock is specified on DOF 1	-	Y
CSST1	Constraint stop status[1]	-	Y
CLST1	Constraint lock status[2]	-	Y
JRP1	Joint relative position	-	Y
JCD1	Joint constitutive displacement	-	Y
JEF1	Joint elastic force	-	Y
JDF1	Joint damping force	-	Y
JFF1	Joint friction force	-	Y
JRU1	Joint relative displacement	-	Y
JRV1	Joint relative velocity	Y	
JRA1	Joint relative acceleration	Y	
JTEMP	Average temperature in the element[3]	-	Y
JFST1	Slip/stick status when friction is specified[4]	-	Y
JFNF1	Normal moment in friction calculations	-	Y

1. Constraint stop status:

0 = stop not active, or deactivated
$1=$ stopped at minimum value
2 = stopped at maximum value
2. Constraint lock status:
$0=$ lock not active
1 = locked at minimum value
$2=$ locked at maximum value
3. Average temperature in the element when temperatures are applied on the nodes of the element using the BF command, or when temperature are applied on the element using the BFE command.
4. Stick/slip status when friction is active:
$0=$ friction is not activated
1 = sticking
2 = slipping or sliding
The following table shows additional non-summable miscellaneous (NMISC) output available for the translational joint element.

## Note

This output is intended for use in the ANSYS Workbench program to track the evolution of local coordinate systems specified at the nodes of joint elements.

## Table 2 MPC184 Translational Joint Element - NMISC Output

Name	Definition	0	R
$\begin{aligned} & \text { E1X-I, E1Y-I, } \\ & \text { E1Z-I } \end{aligned}$	$X, Y, Z$ components of the evolved $e_{1}$ axis at node I	-	Y
$\begin{aligned} & \text { E2X-I, E2Y-I, } \\ & \text { E2Z-I } \end{aligned}$	$X, Y, Z$ components of the evolved $e_{2}$ axis at node I	-	Y
$\begin{aligned} & \text { E3X-I, E3Y-I, } \\ & \text { E3Z-I } \end{aligned}$	$X, Y, Z$ components of the evolved $e_{3}$ axis at node I	-	Y
$\begin{array}{\|l} \text { E1X-J, E1Y-J, } \\ \text { E1Z-J } \end{array}$	$X, Y, Z$ components of the evolved $e_{1}$ axis at node J	-	Y
$\begin{aligned} & \text { E2X-J, E2Y-J, } \\ & \text { E2Z-J } \end{aligned}$	$X, Y, Z$ components of the evolved $e_{2}$ axis at node J	-	Y
$\begin{array}{\|l} \text { E3X-J, E3Y-J, } \\ \text { E3Z-J } \end{array}$	$X, Y, Z$ components of the evolved $e_{3}$ axis at node J	-	Y
JFX, JFY, JFZ	Constraint forces expressed in the evolved coordinate system specified at node I	-	Y
JMX, JMY, JMZ	Constraint moments expressed in the evolved coordinate system specified at node I	-	Y

Table 3: MPC184 Translational Joint Item and Sequence Numbers - SMISC Items (p. 965) and Table 4: MPC184 Translational Joint Item and Sequence Numbers - NMISC Items (p. 966) list output available via the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p. 9) for further information. The table uses the following notation:

## Name

output quantity as defined in the Element Output Definitions table.

## Item

predetermined Item label for ETABLE command
E
sequence number for single-valued or constant element data
Table 3 MPC184 Translational Joint Item and Sequence Numbers - SMISC Items

Output Quantity Name	ETABLE and ESOL Command Input	
	Item	$\mathbf{E}$
FY	SMISC	2
FZ	SMISC	3
MX	SMISC	4
MY	SMISC	5


Output Quantity Name	ETABLE and ESOL Command Input	
	Item	E
MZ	SMISC	6
CSTOP1	SMISC	7
CLOCK1	SMISC	13
CSST1	SMISC	19
CLST1	SMISC	25
JRP1	SMISC	31
JCD1	SMISC	37
JEF1	SMISC	43
JDF1	SMISC	49
JFF1	SMISC	55
JRU1	SMISC	61
JRV1	SMISC	67
JRA1	SMISC	73
JTEMP	SMISC	79
JFST1	SMISC	80
JFNF1	SMISC	81

Table 4 MPC184 Translational Joint Item and Sequence Numbers - NMISC Items

Output Quantity Name	ETABLE and ESOL Command Input	
	Item	E
E1X-I	NMISC	1
E1Y-I	NMISC	2
E1Z-I	NMISC	3
E2X-I	NMISC	4
E2Y-I	NMISC	5
E2Z-I	NMISC	6
E3X-I	NMISC	7
E3Y-I	NMISC	8
E3Z-I	NMISC	9
E1X-J	NMISC	10
E1Y-J	NMISC	11
E1Z-J	NMISC	12
E2X-J	NMISC	13
E2Y-J	NMISC	14
E2Z-J	NMISC	15
E3X-J	NMISC	16
E3Y-J	NMISC	17


Output Quantity Name	ETABLE and ESOL Command Input	
	Item	E
E3Z-J	NMISC	18
JFX	NMISC	19
JFY	NMISC	20
JFZ	NMISC	21
JMX	NMISC	22
JMY	NMISC	23
JMZ	NMISC	24

## MPC184 Translational Joint Assumptions and Restrictions

- Boundary conditions cannot be applied on the nodes forming the translational joint.
- Rotational degrees of freedom are activated at the nodes forming the element. When these elements are used in conjunction with solid elements, the rotational degrees of freedom must be suitably constrained. Since boundary conditions cannot be applied to the nodes of the translational joint, a beam or shell element with very weak stiffness may be used with the underlying solid elements at the nodes forming the joint element to avoid any rigid body modes.
- If both stops and locks are specified, then lock specification takes precedence. That is, if the degree of freedom is locked at a given value, then it will remain locked for the rest of the analysis.
- In a nonlinear analysis, the components of relative motion are accumulated over all the substeps. It is essential that the substep size be restricted such that these rotations in a given substep are less than $\pi$ for the values to be accumulated correctly.
- The element currently does not support birth or death options.
- The equation solver (EQSLV) must be the sparse solver.
- The element coordinate system (/PSYMB,ESYS) is not relevant.
- This element cannot be used with the arc-length method (ARCLEN).


## MPC184 Translational Joint Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

## ANSYS Professional

- No special features are allowed.


## MPC184-Cylin

Multipoint Constraint Element: Cylindrical Joint
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS
Product Restrictions

## MPC184 Cylindrical Joint Element Description

The MPC184 cylindrical joint element is a two-node element that has one free relative displacement degree of freedom and one free relative rotational degree of freedom (around the cylindrical or revolute axis). All other relative degrees of freedom are fixed.

## Figure 1 MPC184 Cylindrical Joint Geometry



## MPC184 Cylindrical Joint Input Data

Set $\operatorname{KEYOPT}(1)=11$ to define a two-node cylindrical joint element.
Figure 1 ( p .969 ) shows the geometry and node locations for this element. Two nodes (I and J) define the element.

If $\operatorname{KEYOPT}(4)=0$, then the element is an $x$-axis cylindrical joint element with the local $e_{1}$ axis as the cylindrical or revolute axis. Translational motion along this axis is also allowed.

If $\operatorname{KEYOPT}(4)=1$, then the element is a $z$-axis cylindrical joint element with the local $e_{3}$ axis as the cylindrical or revolute axis. Translational motion along this axis is also allowed.

A local Cartesian coordinate system must be specified at the first node, I, of the element. The local coordinate system specification at the second node is optional. The local coordinate systems specified at node I and J evolve with the rotations at the respective nodes. Use the SECJOINT command to specify the identifiers of the local coordinate systems.

The constraints imposed in a cylindrical joint element with local $e_{1}$ axis as the cylindrical or revolute axis are described below. Similar constraint conditions are set up when the local $e_{3}$ axis is the cylindrical or revolute axis. Referring to Figure 1 (p. 969), with local coordinate systems specified at nodes I and J, the constraints imposed at any given time are as follows:
$\mathbf{e}_{2}^{\prime} \cdot\left(\mathbf{x}^{\mathrm{J}}-\mathbf{x}^{\mathbf{\prime}}\right)-E_{2}^{\prime} \cdot\left(\mathbf{X}^{\mathrm{J}}-\mathbf{X}^{\mathbf{\prime}}\right)=0$
$\mathbf{e}_{3}^{\prime} \cdot\left(\mathbf{x}^{J}-\mathbf{x}^{\mathbf{\prime}}\right)-E_{3}^{\prime} \cdot\left(\mathbf{X}^{\mathrm{J}}-\mathbf{X}^{\mathbf{\prime}}\right)=0$
$\mathbf{e}_{1}^{\mathrm{I}} \cdot \mathbf{e}_{2}^{\mathrm{J}}-\mathbf{E}_{1}^{\mathrm{I}} \cdot \mathbf{E}_{2}^{J}=0$
$\mathbf{e}_{1}^{\prime} \cdot \mathbf{e}_{3}^{J}-E_{1}^{I} \cdot E_{3}^{J}=0$
The change in the relative position of the nodes I and $J$ is given by:
$u_{1}=\ell-\ell_{0}$
where:

$$
\ell=\mathbf{e}_{1}^{\prime} \cdot\left(\mathbf{x}^{\mathrm{J}}-\mathbf{x}^{\prime}\right) \text { and } \ell_{0}=\mathbf{E}_{1}^{\prime} \cdot\left(\mathbf{X}^{\mathrm{J}}-\mathbf{X}^{\mathbf{\prime}}\right)
$$

The relative rotation between nodes I and J is given by:
$\phi=-\tan ^{-1}\left(\frac{e_{2}^{I} \cdot e_{3}^{J}}{e_{3}^{I} \cdot e_{3}^{J}}\right)$
The change in the relative angular position between the two local coordinate systems is given by

$$
u_{r}=\phi-\phi_{0}+m \pi
$$

where $\phi_{0}$ is the initial angular offset between the two coordinate systems and $m$ is an integer accounting for multiple rotations about the cylindrical axis.

The constitutive calculations use the following definition of the joint displacement:
$\mathbf{u}_{1}^{\mathrm{c}}=\mathbf{e}_{1}^{\mathrm{l}} \cdot\left(\mathbf{x}^{\mathrm{J}}-\mathbf{x}^{\mathrm{l}}\right)-\ell_{1}^{\text {ref }}$
where:
$\ell_{1}^{\text {ref }}=$ reference length specified on SECDATA command.
The constitutive calculations use the following definition of the joint rotation:
$u_{r 4}^{\mathrm{c}}=\phi+m \pi-\phi_{1}^{\mathrm{ref}}$
where:
$\phi_{1}^{\text {ref }}=$ reference angle, angle 1 , specified on the SECDATA command. If this value is not specified, then $\Phi_{0}$ is used in place of ${ }_{1}^{\text {ref }}$

Other input data that are common to all joint elements (material behavior, stops and limits, locks, etc.) are described in "Joint Input Data" (p. 911) in the MPC184 element description.

## MPC184 Cylindrical Joint Input Summary

This input summary applies to the cylindrical joint element option of $\operatorname{MPC} 184$ : $\operatorname{KEYOPT}(1)=11$.

## Nodes

I, J

## Note

For a grounded joint element, specify either node I or node J in the element definition and leave the other node (the grounded node) blank.

## Degrees of Freedom

UX, UY, UZ, ROTX, ROTY, ROTZ

## Real Constants

None

## Material Properties

Use the JOIN label on the TB command to define stiffness, damping, and hysteretic friction behavior. (See MPC184 Joint Material Models (TB,JOIN) (p. 78) for detailed information on defining joint materials.)

## Surface Loads

None

## Body Loads

Temperatures -$\mathrm{T}(\mathrm{I}), \mathrm{T}(\mathrm{J})$

## Element Loads when $\operatorname{KEYOPT}(4)=0$ :

Displacements/Rotations --
UX, ROTX
Velocities --
VELX, OMGX

## Accelerations --

ACCX, DMGX

## Force/Moments --

FX, MX
Element Loads when $\operatorname{KEYOPT}(4)=1$ :
Displacements/Rotations --
UZ, ROTZ
Velocities --
VELZ, OMGZ

## Accelerations --

ACCZ, DMGZ

## Force/Moments --

FZ, MZ

## Special Features

Large deflection
Linear perturbation

## KEYOPT(1)

Element behavior:
11 -Cylindrical joint element

## KEYOPT(4)

Element configuration:
0 --
x -axis Cylindrical joint with local 1 direction as the cylindrical axis.
1 --
z-axis Cylindrical joint with local 3 direction as the cylindrical axis.

## MPC184 Cylindrical Joint Output Data

The solution output associated with the element is in two forms:

- Nodal displacements included in the overall nodal solution
- Additional element output as shown in Table 1: MPC184 Cylindrical Joint Element Output Definitions (p. 973) and Table 2: MPC184 Cylindrical Joint Element - NMISC Output (p. 975).

These tables use the following notation:
A colon (:) in the Name column indicates the item can be accessed by the Component Name method [ETABLE, ESOL]. The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, Y indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and a - indicates that the item is not available.

Table 1 MPC184 Cylindrical Joint Element Output Definitions

Name	Definition	0	R
x-axis Cylindrical Joint Element (KEYOPT(4) = 0)			
EL	Element Number	-	Y
NODES	Element node numbers (I, J)	-	Y
FY	Constraint Force in Y direction	-	Y
FZ	Constraint Force in Z direction	-	Y
MY	Constraint Moment in Y direction	-	Y
MZ	Constraint Moment in Z direction	-	Y
CSTOP1	Constraint force if stop is specified on DOF 1	-	Y
CSTOP4	Constraint moment if stop is specified on DOF 4	-	Y
CLOCK1	Constraint force if lock is specified on DOF 1	-	Y
CLOCK4	Constraint moment if lock is specified on DOF 4	-	Y
CSST1	Constraint stop status on DOF 1[1]	-	Y
CLST1	Constraint lock status on DOF 1[2]	-	Y
CSST4	Constraint stop status on DOF 4[1]	-	Y
CLST4	Constraint lock status on DOF 4[2]	-	Y
JRP1	Joint relative position of DOF 1	-	Y
JRP4	Joint relative position of DOF 4	-	Y
JCD1	Joint constitutive displacement on DOF 1	-	Y
JCD4	Joint constitutive rotation on DOF 4	-	Y
JEF1	Joint elastic force in direction-1	-	Y
JEF4	Joint elastic moment in direction -4	-	Y
JDF1	Joint damping force in direction -1	-	Y
JDF4	Joint damping moment in direction -4	-	Y
JFF1	Joint friction force in direction -1	-	Y
JFF4	Joint friction moment in direction -4	-	Y
JRU1	Joint relative displacement of DOF 1	-	Y
JRU4	Joint relative rotation of DOF 4	-	Y
JRV1	Joint relative velocity of DOF 1	-	Y
JRV4	Joint relative rotational velocity of DOF 4	-	Y
JRA1	Joint relative acceleration of DOF 1	-	Y
JRA4	Joint relative rotational acceleration of DOF 4	-	Y
JTEMP	Average temperature in the element[3]	-	Y
z-axis Cylindrical Joint Element (KEYOPT(4) = 1)			

MPC184-Cylindrical

Name	Definition	0	R
EL	Element Number	-	Y
NODES	Element node numbers (I, J)	-	Y
FX	Constraint Force in X direction	-	Y
FY	Constraint Force in Y direction	-	Y
MX	Constraint Moment in X direction	-	Y
MY	Constraint Moment in Y direction	-	Y
CSTOP3	Constraint force if stop is specified on DOF 3	-	Y
CSTOP6	Constraint moment if stop is specified on DOF 6	-	Y
CLOCK3	Constraint force if lock is specified on DOF 3	-	Y
CLOCK6	Constraint moment if lock is specified on DOF 6	-	Y
CSST3	Constraint stop status on DOF 3[1]	-	Y
CLST3	Constraint lock status on DOF 3[2]	-	Y
CSST6	Constraint stop status on DOF 6[1]	-	Y
CLST6	Constraint lock status on DOF 6[2]	-	Y
JRP3	Joint relative position of DOF 3	-	Y
JRP6	Joint relative position of DOF 6	-	Y
JCD3	Joint constitutive displacement on DOF 3	-	Y
JCD6	Joint constitutive rotation on DOF 6	-	Y
JEF3	Joint elastic force in direction -3	-	Y
JEF6	Joint elastic moment in direction -6	-	Y
JDF3	Joint damping force in direction -3	-	Y
JDF6	Joint damping moment in direction -6	-	Y
JFF3	Joint friction force in direction -3	-	Y
JFF6	Joint friction moment in direction -6	-	Y
JRU3	Joint relative displacement of DOF 3	-	Y
JRU6	Joint relative rotation of DOF 6	-	Y
JRV3	Joint relative velocity of DOF 3	-	Y
JRV6	Joint relative rotational velocity of DOF 6	-	Y
JRA3	Joint relative acceleration of DOF 3	-	Y
JRA6	Joint relative rotational acceleration of DOF 6	-	Y
JTEMP	Average temperature in the element[3]	-	Y

1. Constraint stop status:
$0=$ stop not active, or deactivated
$1=$ stopped at minimum value
2 = stopped at maximum value
2. Constraint lock status:
$0=$ lock not active
$1=$ locked at minimum value
2 = locked at maximum value
3. Average temperature in the element when temperatures are applied on the nodes of the element using the BF command, or when temperature are applied on the element using the BFE command.

The following table shows additional non-summable miscellaneous (NMISC) output available for all forms of the cylindrical joint element.

## Note

This output is intended for use in the ANSYS Workbench program to track the evolution of local coordinate systems specified at the nodes of joint elements.

## Table 2 MPC184 Cylindrical Joint Element - NMISC Output

Name	Definition	0	R
The following output is available for all cylindrical joint elements (KEYOPT(4) $=0$ and 1 )			
$\begin{array}{\|l} \hline \text { E1X-I, E1Y-I, } \\ \text { E1Z-I } \end{array}$	$X, Y, Z$ components of the evolved $e_{1}$ axis at node I	-	Y
$\begin{aligned} & \text { E2X-I, E2Y-I, } \\ & \text { E2Z-I } \end{aligned}$	$X, Y, Z$ components of the evolved $e_{2}$ axis at node I	-	Y
$\begin{aligned} & \text { E3X-I, E3Y-I, } \\ & \text { E3Z-I } \end{aligned}$	$X, Y, Z$ components of the evolved $e_{3}$ axis at node I	-	Y
$\begin{aligned} & \text { E1X-J, E1Y-J, } \\ & \text { E1Z-J } \end{aligned}$	$X, Y, Z$ components of the evolved $e_{1}$ axis at node J	-	Y
$\begin{aligned} & \text { E2X-J, E2Y-J, } \\ & \text { E2Z-J } \end{aligned}$	$X, Y, Z$ components of the evolved $e_{2}$ axis at node J	-	Y
$\begin{aligned} & \text { E3X-J, E3Y-J, } \\ & \text { E3Z-J } \end{aligned}$	$X, Y, Z$ components of the evolved $e_{3}$ axis at node J	-	Y
JFX, JFY, JFZ	Constraint forces expressed in the evolved coordinate system specified at node I	-	Y
JMX, JMY, JMZ	Constraint moments expressed in the evolved coordinate system specified at node I	-	Y

Table 3: MPC184 Cylindrical Joint Item and Sequence Numbers - SMISC Items (p. 976) and Table 4: MPC184 CyIindrical Joint Item and Sequence Numbers - NMISC Items (p. 977) list output available via the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p.9) for further information. The table uses the following notation:

## Name

output quantity as defined in the Element Output Definitions table.

## Item

predetermined Item label for ETABLE command

## E

sequence number for single-valued or constant element data
Table 3 MPC184 Cylindrical Joint Item and Sequence Numbers - SMISC Items

Output Quantity Name	ETABLE and ESOL Command Input	
	Item	E
x-axis Cylindrical Joint Element (KEYOPT(4) = 0)		
FY	SMISC	2
FZ	SMISC	3
MY	SMISC	5
MZ	SMISC	6
CSTOP1	SMISC	7
CSTOP4	SMISC	10
CLOCK1	SMISC	13
CLOCK4	SMISC	16
CSST1	SMISC	19
CSST4	SMISC	22
CLST1	SMISC	25
CLST4	SMISC	28
JRP1	SMISC	31
JRP4	SMISC	34
JCD1	SMISC	37
JCD4	SMISC	40
JEF1	SMISC	43
JEF4	SMISC	46
JDF1	SMISC	49
JDF4	SMISC	52
JFF1	SMISC	55
JFF4	SMISC	58
JRU1	SMISC	61
JRU4	SMISC	64
JRV1	SMISC	67
JRV4	SMISC	70
JRA1	SMISC	73
JRA4	SMISC	76
JTEMP	SMISC	79
z-axis Cylindrical Joint Element (KEYOPT(4) = 1)		
FX	SMISC	1
FY	SMISC	2


Output Quantity Name	ETABLE and ESOL Command Input	
	Item	E
MX	SMISC	4
MY	SMISC	5
CSTOP3	SMISC	9
CSTOP6	SMISC	12
CLOCK3	SMISC	15
CLOCK6	SMISC	18
CSST3	SMISC	21
CSST6	SMISC	24
CLST3	SMISC	27
CLST6	SMISC	30
JRP3	SMISC	33
JRP6	SMISC	36
JCD3	SMISC	39
JCD6	SMISC	42
JEF3	SMISC	45
JEF6	SMISC	48
JDF3	SMISC	51
JDF6	SMISC	54
JFF3	SMISC	57
JFF6	SMISC	60
JRU3	SMISC	63
JRU6	SMISC	66
JRV3	SMISC	69
JRV6	SMISC	72
JRA3	SMISC	75
JRA6	SMISC	78
JTEMP	SMISC	79

Table 4 MPC184 Cylindrical Joint Item and Sequence Numbers - NMISC Items

Output Quantity Name	ETABLE and ESOL Command Input	
	Item	


Output Quantity Name	ETABLE and ESOL Command Input	
	Item	E
E2Y-I	NMISC	5
E2Z-I	NMISC	6
E3X-I	NMISC	7
E3Y-I	NMISC	8
E3Z-I	NMISC	9
E1X-J	NMISC	10
E1Y-J	NMISC	11
E1Z-J	NMISC	12
E2X-J	NMISC	13
E2Y-J	NMISC	14
E2Z-J	NMISC	15
E3X-J	NMISC	16
E3Y-J	NMISC	17
E3Z-J	NMISC	18
JFX	NMISC	19
JFY	NMISC	20
JFZ	NMISC	21
JMX	NMISC	22
JMY	NMISC	23
JMZ	NMISC	24

## MPC184 Cylindrical Joint Assumptions and Restrictions

- Boundary conditions cannot be applied on the nodes forming the cylindrical joint.
- Rotational degrees of freedom are activated at the nodes forming the element. When these elements are used in conjunction with solid elements, the rotational degrees of freedom must be suitably constrained. Since boundary conditions cannot be applied to the nodes of the cylindrical joint, a beam or shell element with very weak stiffness may be used with the underlying solid elements at the nodes forming the joint element to avoid any rigid body modes.
- If both stops and locks are specified, then lock specification takes precedence. That is, if the degree of freedom is locked at a given value, then it will remain locked for the rest of the analysis.
- In a nonlinear analysis, the components of relative motion are accumulated over all the substeps. It is essential that the substep size be restricted such that these rotations in a given substep are less than $\pi$ for the values to be accumulated correctly.
- The element currently does not support birth or death options.
- The equation solver (EQSLV) must be the sparse solver.
- The element coordinate system (/PSYMB,ESYS) is not relevant.
- This element cannot be used with the arc-length method (ARCLEN).


## MPC184 Cylindrical Joint Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

## ANSYS Professional

- No special features are allowed.


## MPC184-Planar

Multipoint Constraint Element: Planar Joint
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS
Product Restrictions

## MPC184 Planar Joint Element Description

The MPC184 planar joint element is a two-node element that has two relative displacement degrees of freedom and one relative rotational degree of freedom. All other relative degrees of freedom are fixed.

Figure 1 MPC184 Planar Joint Geometry


## MPC184 Planar Joint Input Data

Set $\operatorname{KEYOPT}(1)=12$ to define a two-node planar joint element.
Figure 1 ( p .981 ) shows the geometry and node locations for this element. Two nodes (I and J) define the element.

If $\operatorname{KEYOPT}(4)=0$, the element is an $x$-axis planar joint element with the local $e_{1}$ axis as the rotation axis and also the axis along which the distance is fixed.

If $\operatorname{KEYOPT}(4)=1$, the element is a $z$-axis planar joint element with the local $e_{3}$ axis as the rotation axis and also the axis along which the distance is fixed.

A local Cartesian coordinate system must be specified at the first node, I, of the element. The local coordinate system specification at the second node is optional. The local coordinate systems specified at node I and J evolve with the rotations at the respective nodes. Use the SECJOINT command to specify the identifiers of the local coordinate systems.

The constraints imposed on a planar joint element with local $e_{1}$ axis as the axis of rotation are described below. Similar constraint conditions are set up when the local $e_{3}$ axis is the axis of rotation. Referring to Figure 1 (p. 981), the constraints imposed at any given time are as follows:
$\mathbf{e}_{1}^{\mathbf{I}} \cdot\left(\mathbf{x}^{\mathrm{J}}-\mathbf{x}^{\mathbf{I}}\right)-E_{1}^{\mathbf{I}} \cdot\left(\mathbf{X}^{\mathrm{J}}-\mathbf{X}^{\mathbf{I}}\right)=0$
$\mathbf{e}_{1}^{\mathrm{I}} \cdot \mathbf{e}_{2}^{\mathrm{J}}-\mathrm{E}_{1}^{\mathrm{I}} \cdot \mathrm{E}_{2}^{\mathrm{J}}=0$
$\mathbf{e}_{1}^{I} \cdot \mathbf{e}_{3}^{J}-E_{1}^{I} \cdot E_{3}^{J}=0$

The changes in the relative position of the nodes I and J are given by:
$\mathbf{u}_{2}=\mathbf{e}_{2} \cdot\left(\mathbf{x}^{\mathrm{J}}-\mathbf{x}^{\mathrm{I}}\right)-\mathbf{E}_{2} \cdot\left(\mathbf{X}^{\mathrm{J}}-\mathbf{X}^{\mathrm{I}}\right)$
$u_{3}=e_{3} \cdot\left(\mathbf{x}^{\mathrm{J}}-\mathbf{x}^{\mathrm{I}}\right)-\mathbf{E}_{3} \cdot\left(\mathbf{X}^{\mathrm{J}}-\mathbf{X}^{\mathrm{I}}\right)$
The change in the relative angular position between the two local coordinate systems is given by:

$$
u_{r}=\phi-\phi_{0}+m \pi
$$

The constitutive calculations use the following definition of the joint displacement:
$\mathbf{u}_{2}=\mathbf{e}_{2} \cdot\left(\mathbf{x}^{\mathrm{J}}-\mathbf{x}^{\mathrm{l}}\right)-\ell_{2}^{\text {ref }}$
$\mathbf{u}_{3}=\mathbf{e}_{3} \cdot\left(\mathbf{x}^{\mathrm{J}}-\mathbf{x}^{\mathrm{l}}\right)-\ell_{3}^{\text {ref }}$
where:
$\ell_{2}^{\text {ref }}$ and ${ }_{3}^{\ell_{3}^{\text {ref }}}=$ reference lengths, length2 and length3, specified on the SECDATA command.
The constitutive calculations use the following definition of the joint rotation:
$u_{r 4}^{\mathrm{c}}=\phi+\mathrm{m} \pi-\phi_{1}^{\mathrm{ref}}$
where:
$\phi_{1}^{\text {ref }}=$ reference angle, angle 1 , specified on the SECDATA command. If this value is not specified, then $\phi_{0}$ is used in place of $\phi_{1}^{\text {ref }}$.

Other input data that are common to all joint elements (material behavior, stops and limits, locks, etc.) are described in "Joint Input Data" (p. 911) in the MPC184 element description.

## MPC184 Planar Joint Input Summary

This input summary applies to the planar joint element option of MPC184: $\operatorname{KEYOPT}(1)=12$.

## Nodes

I, J

## Note

For a grounded joint element, specify either node I or node $J$ in the element definition and leave the other node (the grounded node) blank.

## Degrees of Freedom

UX, UY, UZ, ROTX, ROTY, ROTZ

## Real Constants

None

## Material Properties

Use the JOIN label on the TB command to define stiffness, damping, and hysteretic friction behavior. (See MPC184 Joint Material Models (TB,JOIN) (p. 78) for detailed information on defining joint materials.)

## Surface Loads

None

## Body Loads

## Temperatures --

 $\mathrm{T}(\mathrm{I}), \mathrm{T}(\mathrm{J})$
## Element Loads when KEYOPT(4) $=0$

Displacements/Rotations --
UY, UZ, ROTX
Velocities --
VELY, VELZ, OMGX
Accelerations --
ACCY, ACCZ, DMGX
Element Loads when KEYOPT(4) = 1
Displacements/Rotations --
UX, UY, ROTZ
Velocities -VELX, VELY, OMGZ
Accelerations --
ACCX, ACCY, DMGZ
Special Features
Large deflection
Linear perturbation

## KEYOPT(1)

Element behavior:

12 --
Planar joint element

## KEYOPT(4)

Element configuration:
0 --
x -axis Planar joint with local 1 direction as the rotation axis.
1 --
z-axis Planar joint with local 3 direction as the rotation axis.

## MPC184 Planar Joint Output Data

The solution output associated with the element is in two forms:

- Nodal displacements included in the overall nodal solution
- Additional element output as shown in Table 1: MPC184 Planar Joint Element Output Definitions (p. 984) and Table 2: MPC184 Planar Joint Element - NMISC Output (p. 987).

These tables use the following notation:
A colon (:) in the Name column indicates the item can be accessed by the Component Name method [ETABLE, ESOL]. The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, Y indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and a - indicates that the item is not available.

Table 1 MPC184 Planar Joint Element Output Definitions

Name	Definition	0	R
x-axis Planar Joint Element (KEYOPT(4) = 0)			
EL	Element number	-	Y
NODES	Element node numbers (I, J)	-	Y
FX	Constraint force in X direction	-	Y
MY	Constraint moment in Y direction	-	Y
MZ	Constraint moment in Z direction	-	Y
CSTOP2	Constraint force if stop is specified on DOF 2	-	Y
CSTOP3	Constraint force if stop is specified on DOF 3	-	Y
CSTOP4	Constraint moment if stop is specified on DOF 4	-	Y
CLOCK2	Constraint force if lock is specified on DOF 2	-	Y
CLOCK3	Constraint force if lock is specified on DOF 3	-	Y
CLOCK4	Constraint moment if lock is specified on DOF 4	-	Y
CSST2	Constraint stop status on DOF 2[1]	-	Y
CLST2	Constraint lock status on DOF 2[2]	-	Y
CSST3	Constraint stop status on DOF 3[1]	-	Y


Name	Definition	0	R
CLST3	Constraint lock status on DOF 3[2]	-	Y
CSST4	Constraint stop status on DOF 4[1]	-	Y
CLST4	Constraint lock status on DOF 4[2]	-	Y
JRP2	Joint relative position of DOF 2	-	Y
JRP3	Joint relative position of DOF 3	-	Y
JRP4	Joint relative position of DOF 4	-	Y
JCD2	Joint constitutive displacement on DOF 2	-	Y
JCD3	Joint constitutive displacement on DOF 3	-	Y
JCD4	Joint constitutive rotation on DOF 4	-	Y
JEF2	Joint elastic force in direction -2	-	Y
JEF3	Joint elastic force in direction -3	-	Y
JEF4	Joint elastic moment in direction -4	-	Y
JDF2	Joint damping force in direction -2	-	Y
JDF3	Joint damping force in direction -3	-	Y
JDF4	Joint damping moment in direction -4	-	Y
JFF2	Joint friction force in direction -2	-	Y
JFF3	Joint friction force in direction -3	-	Y
JFF4	Joint friction moment in direction -4	-	Y
JRU2	Joint relative displacement of DOF 2	-	Y
JRU3	Joint relative displacement of DOF 3	-	Y
JRU4	Joint relative rotation of DOF 4	-	Y
JRV2	Joint relative velocity of DOF 2	-	Y
JRV3	Joint relative velocity of DOF 3	-	Y
JRV4	Joint relative rotational velocity of DOF 4	-	Y
JRA2	Joint relative acceleration of DOF 2	-	Y
JRA3	Joint relative acceleration of DOF 3	-	Y
JRA4	Joint relative rotational acceleration of DOF 4	-	Y
JTEMP	Average temperature in the element[3]	-	Y
z-axis Planar Joint Element (KEYOPT(4) = 1)			
EL	Element Number	-	Y
NODES	Element node numbers (I, J)	-	Y
FZ	Constraint Force in Z direction	-	Y
MX	Constraint Moment in X direction	-	Y
MY	Constraint Moment in Y direction	-	Y
CSTOP1	Constraint force if stop is specified on DOF 1	-	Y
CSTOP2	Constraint force if stop is specified on DOF 2	-	Y
CSTOP6	Constraint moment if stop is specified on DOF 6	-	Y


Name	Definition	0	R
CLOCK1	Constraint force if lock is specified on DOF 1	-	Y
CLOCK2	Constraint force if lock is specified on DOF 2	-	Y
CLOCK6	Constraint moment if lock is specified on DOF 6	-	Y
CSST1	Constraint stop status on DOF 1[1]	-	Y
CLST1	Constraint lock status on DOF 1[2]	-	Y
CSST2	Constraint stop status on DOF 2[1]	-	Y
CLST2	Constraint lock status on DOF 2[2]	-	Y
CSST6	Constraint stop status on DOF 6[1]	-	Y
CLST6	Constraint lock status on DOF 6[2]	-	Y
JRP1	Joint relative position of DOF 1	-	Y
JRP2	Joint relative position of DOF 2	-	Y
JRP6	Joint relative position of DOF 6	-	Y
JCD1	Joint constitutive displacement on DOF 1	-	Y
JCD2	Joint constitutive displacement on DOF 2	-	Y
JCD6	Joint constitutive rotation on DOF 6	-	Y
JEF1	Joint elastic force in direction -1	-	Y
JEF2	Joint elastic force in direction -2	-	Y
JEF6	Joint elastic moment in direction -6	-	Y
JDF1	Joint damping force in direction -1	-	Y
JDF2	Joint damping force in direction -2	-	Y
JDF6	Joint damping moment in direction -6	-	Y
JFF1	Joint friction force in direction -1	-	Y
JFF2	Joint friction force in direction -2	-	Y
JFF6	Joint friction moment in direction -6	-	Y
JRU1	Joint relative displacement of DOF 1	-	Y
JRU2	Joint relative displacement of DOF 2	-	Y
JRU6	Joint relative rotation of DOF 6	-	Y
JRV1	Joint relative velocity of DOF 1	-	Y
JRV2	Joint relative velocity of DOF 2	-	Y
JRV6	Joint relative rotational velocity of DOF 6	-	Y
JRA1	Joint relative acceleration of DOF 1	-	Y
JRA2	Joint relative acceleration of DOF 2	-	Y
JRA6	Joint relative rotational acceleration of DOF 6	-	Y
JTEMP	Average temperature in the element[3]	-	Y

1. Constraint stop status:
$0=$ stop not active, or deactivated

1 = stopped at minimum value
2 = stopped at maximum value
2. Constraint lock status:
$0=$ lock not active
$1=$ locked at minimum value
2 = locked at maximum value
3. Average temperature in the element when temperatures are applied on the nodes of the element using the BF command, or when temperature are applied on the element using the BFE command.

The following table shows additional non-summable miscellaneous (NMISC) output available for all forms of the planar joint element.

## Note

This output is intended for use in the ANSYS Workbench program to track the evolution of local coordinate systems specified at the nodes of joint elements.

## Table 2 MPC184 Planar Joint Element - NMISC Output

Name	Definition	0	R
The following output is available for all planar joint elements (KEYOPT(4) $=0$ and 1)			
$\begin{aligned} & \text { E1X-I, E1Y-I, } \\ & \text { E1Z-I } \end{aligned}$	$X, Y, Z$ components of the evolved $e_{1}$ axis at node I	-	Y
$\begin{aligned} & \text { E2X-I, E2Y-I, } \\ & \text { E2Z-I } \end{aligned}$	$X, Y, Z$ components of the evolved $e_{2}$ axis at node I	-	Y
$\begin{aligned} & \text { E3X-I, E3Y-I, } \\ & \text { E3Z-I } \end{aligned}$	$X, Y, Z$ components of the evolved $e_{3}$ axis at node I	-	Y
$\begin{aligned} & \text { E1X-J, E1Y-J, } \\ & \text { E1Z-J } \end{aligned}$	$X, Y, Z$ components of the evolved $e_{1}$ axis at node J	-	Y
$\begin{aligned} & \text { E2X-J, E2Y-J, } \\ & \text { E2Z-J } \end{aligned}$	$X, Y, Z$ components of the evolved $e_{2}$ axis at node J	-	Y
$\begin{aligned} & \text { E3X-J, E3Y-J, } \\ & \text { E3Z-J } \end{aligned}$	$X, Y, Z$ components of the evolved $e_{3}$ axis at node J	-	Y
JFX, JFY, JFZ	Constraint forces expressed in the evolved coordinate system specified at node I	-	Y
JMX, JMY, JMZ	Constraint moments expressed in the evolved coordinate system specified at node I	-	Y

Table 3: MPC184 Planar Joint Item and Sequence Numbers - SMISC Items (p. 988) and Table 4: MPC184 Planar Joint Item and Sequence Numbers - NMISC Items (p. 990) list output available via the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p. 9) for further information. The table uses the following notation:

## Name

output quantity as defined in the Element Output Definitions table.

## Item

predetermined Item label for ETABLE command
E
sequence number for single-valued or constant element data
Table 3 MPC184 Planar Joint Item and Sequence Numbers - SMISC Items

Output Quantity Name	ETABLE and ESOL Command Input	
	Item	E
x-axis Planar Joint Element ( $\operatorname{KEYOPT(4)=0)~}$		
FX	SMISC	1
MY	SMISC	5
MZ	SMISC	6
CSTOP2	SMISC	8
CSTOP3	SMISC	9
CSTOP4	SMISC	10
CLOCK2	SMISC	14
CLOCK3	SMISC	15
CLOCK4	SMISC	16
CSST2	SMISC	20
CSST3	SMISC	21
CSST4	SMISC	22
CLST2	SMISC	26
CLST3	SMISC	27
CLST4	SMISC	28
JRP2	SMISC	32
JRP3	SMISC	33
JRP4	SMISC	34
JCD2	SMISC	38
JCD3	SMISC	39
JCD4	SMISC	40
JEF2	SMISC	44
JEF3	SMISC	45
JEF4	SMISC	46
JDF2	SMISC	50
JDF3	SMISC	51
JDF4	SMISC	52
JFF2	SMISC	56
JFF3	SMISC	57
JFF4	SMISC	58


Output Quantity Name	ETABLE and ESOL Command Input	
	Item	E
JRU2	SMISC	62
JRU3	SMISC	63
JRU4	SMISC	64
JRV2	SMISC	68
JRV3	SMISC	69
JRV4	SMISC	70
JRA2	SMISC	74
JRA3	SMISC	75
JRA4	SMISC	76
JTEMP	SMISC	79


z-axis Planar Joint Element (KEYOPT(4) = 1)		
FZ	SMISC	3
MX	SMISC	4
MY	SMISC	5
CSTOP1	SMISC	7
CSTOP2	SMISC	8
CSTOP6	SMISC	12
CLOCK1	SMISC	13
CLOCK2	SMISC	14
CLOCK6	SMISC	18
CSST1	SMISC	19
CSST2	SMISC	20
CSST6	SMISC	24
CLST1	SMISC	25
CLST2	SMISC	26
CLST6	SMISC	30
JRP1	SMISC	31
JRP2	SMISC	32
JRP6	SMISC	36
JCD1	SMISC	37
JCD2	SMISC	38
JCD6	SMISC	42
JEF1	SMISC	43
JEF2	SMISC	44
JEF6	SMISC	48
JDF1	SMISC	49
JDF2	SMISC	50


Output Quantity Name	ETABLE and ESOL Command Input	
	Item	E
JDF6	SMISC	54
JFF1	SMISC	55
JFF2	SMISC	56
JFF6	SMISC	60
JRU1	SMISC	61
JRU2	SMISC	62
JRU6	SMISC	66
JRV1	SMISC	67
JRV2	SMISC	68
JRV6	SMISC	72
JRA1	SMISC	73
JRA2	SMISC	74
JRA6	SMISC	78
JTEMP	SMISC	79

Table 4 MPC184 Planar Joint Item and Sequence Numbers - NMISC Items

Output Quantity Name	ETABLE and ESOL Command Input	
	Item	
The following output is available for all planar joint elements (KEYOPT(4) = 0 and 1)		
E1X-I	NMISC	1
E1Y-I	NMISC	2
E1Z-I	NMISC	3
E2X-I	NMISC	4
E2Y-I	NMISC	5
E2Z-I	NMISC	6
E3X-I	NMISC	7
E3Y-I	NMISC	8
E3Z-I	NMISC	9
E1X-J	NMISC	10
E1Y-J	NMISC	11
E1Z-J	NMISC	12
E2X-J	NMISC	13
E2Y-J	NMISC	14
E2Z-J	NMISC	15
E3X-J	NMISC	16
E3Y-J	NMISC	17
E3Z-J	NMISC	18
		2


Output Quantity Name	ETABLE and ESOL Command Input	
	Item	E
JFX	NMISC	19
JFY	NMISC	20
JFZ	NMISC	21
JMX	NMISC	22
JMY	NMISC	23
JMZ	NMISC	24

## MPC184 Planar Joint Assumptions and Restrictions

- Boundary conditions cannot be applied on the nodes forming the planar joint.
- Rotational degrees of freedom are activated at the nodes forming the element. When these elements are used in conjunction with solid elements, the rotational degrees of freedom must be suitably constrained. Since boundary conditions cannot be applied to the nodes of the planar joint, a beam or shell element with very weak stiffness may be used with the underlying solid elements at the nodes forming the joint element to avoid any rigid body modes.
- If both stops and locks are specified, then lock specification takes precedence. That is, if the degree of freedom is locked at a given value, then it will remain locked for the rest of the analysis.
- In a nonlinear analysis, the components of relative motion are accumulated over all the substeps. It is essential that the substep size be restricted such that these rotations in a given substep are less than $\pi$ for the values to be accumulated correctly.
- The element currently does not support birth or death options.
- The equation solver (EQSLV) must be the sparse solver.
- The element coordinate system (/PSYMB,ESYS) is not relevant.
- This element cannot be used with the arc-length method (ARCLEN).


## MPC184 Planar Joint Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

## ANSYS Professional

- No special features are allowed.


## MPC184-Weld

Multipoint Constraint Element: Weld Joint
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS
Product Restrictions

## MPC184 Weld Joint Element Description

The MPC184 weld joint element is a two-node element that has all relative degrees of freedom fixed.
Figure 1 MPC184 Weld Joint Geometry


## MPC184 Weld Joint Input Data

Set $\operatorname{KEYOPT}(1)=13$ to define a two-node weld joint element.
Figure 1 ( p .993 ) shows the geometry and node locations for this element. Two nodes ( I and J ) define the element.

A local Cartesian coordinate system must be specified at the first node, I, of the element. The local coordinate system specification at the second node is optional. The local coordinate systems specified at node I and J evolve with the rotations at the respective nodes. Use the SECJOINT command to specify the identifiers of the local coordinate systems.

Other input data that are common to all joint elements (material behavior, etc.) are described in "Joint Input Data" ( $p .911$ ) in the MPC184 element description.

## Note

The weld joint may also be simulated by using the CE command. See the CE command description for additional details.

## MPC184 Weld Joint Input Summary

This input summary applies to the weld joint element option of MPC184: $\operatorname{KEYOPT}(1)=13$.

## Nodes

I, J

## Note

For a grounded joint element, specify either node I or node $J$ in the element definition and leave the other node (the grounded node) blank.

## Degrees of Freedom

UX, UY, UZ, ROTX, ROTY, ROTZ

## Real Constants

None

## Material Properties

None

## Surface Loads

None

## Body Loads

None

## Element Loads

None

## Special Features

Large deflection
Linear perturbation

## KEYOPT(1)

Element behavior:
13 --
Weld joint element

## MPC184 Weld Joint Output Data

The solution output associated with the element is in two forms:

- Nodal displacements included in the overall nodal solution
- Additional element output as shown in Table 1: MPC184 Weld Joint Element Output Definitions (p. 994) and Table 2: MPC184 Weld Joint Element - NMISC Output (p. 995).

These tables use the following notation:
A colon (:) in the Name column indicates the item can be accessed by the Component Name method [ETABLE, ESOL]. The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, Y indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and a - indicates that the item is not available.

## Table 1 MPC184 Weld Joint Element Output Definitions

Name	Definition	$\mathbf{O}$	$\mathbf{R}$
EL	Element number	-	Y


Name	Definition	$\mathbf{O}$	$\mathbf{R}$
NODES	Element node numbers (I, J)	-	Y
FX	Constraint force in X direction	-	Y
FY	Constraint force in Y direction	-	Y
FZ	Constraint force in Z direction	-	Y
MX	Constraint moment in X direction	-	Y
MY	Constraint moment in Y direction	-	Y
MZ	Constraint moment in Z direction	-	Y

The following table shows additional non-summable miscellaneous (NMISC) output available for the weld joint element.

## Note

This output is intended for use in the ANSYS Workbench program to track the evolution of local coordinate systems specified at the nodes of joint elements.

## Table 2 MPC184 Weld Joint Element - NMISC Output

Name	Definition	0	R
$\begin{aligned} & \text { E1X-I, E1Y-I, } \\ & \text { E1Z-I } \end{aligned}$	$X, Y, Z$ components of the evolved $e_{1}$ axis at node I	-	Y
$\begin{aligned} & \text { E2X-I, E2Y-I, } \\ & \text { E2Z-I } \end{aligned}$	$X, Y, Z$ components of the evolved $e_{2}$ axis at node I	-	Y
$\begin{aligned} & \text { E3X-I, E3Y-I, } \\ & \text { E3Z-I } \end{aligned}$	$X, Y, Z$ components of the evolved $e_{3}$ axis at node I	-	Y
$\begin{array}{\|l} \text { E1X-J, E1Y-J, } \\ \text { E1Z-J } \end{array}$	$X, Y, Z$ components of the evolved $e_{1}$ axis at node J	-	Y
$\begin{aligned} & \text { E2X-J, E2Y-J, } \\ & \text { E2Z-J } \end{aligned}$	$X, Y, Z$ components of the evolved $e_{2}$ axis at node J	-	Y
$\begin{array}{\|l} \text { E3X-J, E3Y-J, } \\ \text { E3Z-J } \end{array}$	$X, Y, Z$ components of the evolved $e_{3}$ axis at node J	-	Y
JFX, JFY, JFZ	Constraint forces expressed in the evolved coordinate system specified at node I	-	Y
JMX, JMY, JMZ	Constraint moments expressed in the evolved coordinate system specified at node I	-	Y

Table 3: MPC184 Weld Joint Item and Sequence Numbers - SMISC Items (p. 996) and Table 4: MPC184 Weld Joint Item and Sequence Numbers - NMISC Items (p. 996) list output available via the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p. 9) for further information. The table uses the following notation:

## Name

output quantity as defined in the Element Output Definitions table.

## Item

predetermined Item label for ETABLE command

## E

sequence number for single-valued or constant element data
Table 3 MPC184 Weld Joint Item and Sequence Numbers - SMISC Items

Output Quantity Name	ETABLE and ESOL Command Input	
	Item	E
FX	SMISC	1
FY	SMISC	2
FZ	SMISC	3
MX	SMISC	4
MY	SMISC	5
MZ	SMISC	6

Table 4 MPC184 Weld Joint Item and Sequence Numbers - NMISC Items

Output Quantity Name	ETABLE and ESOL Command Input	
	Item	E
E1X-I	NMISC	1
E1Y-I	NMISC	2
E1Z-I	NMISC	3
E2X-I	NMISC	4
E2Y-I	NMISC	5
E2Z-I	NMISC	6
E3X-I	NMISC	7
E3Y-I	NMISC	8
E3Z-I	NMISC	9
E1X-J	NMISC	10
E1Y-J	NMISC	11
E1Z-J	NMISC	12
E2X-J	NMISC	13
E2Y-J	NMISC	14
E2Z-J	NMISC	15
E3X-J	NMISC	16
E3Y-J	NMISC	17
E3Z-J	NMISC	18
JFX	NMISC	19
JFY	NMISC	20
JFZ	NMISC	21
JMX	NMISC	22
JMY	NMISC	23


Output Quantity Name	ETABLE and ESOL Command Input	
	Item	E
JMZ	NMISC	24

## MPC184 Weld Joint Assumptions and Restrictions

- Boundary conditions cannot be applied on the nodes forming the weld joint.
- Rotational degrees of freedom are activated at the nodes forming the element. When these elements are used in conjunction with solid elements, the rotational degrees of freedom must be suitably constrained. Since boundary conditions cannot be applied to the nodes of the weld joint, a beam or shell element with very weak stiffness may be used with the underlying solid elements at the nodes forming the joint element to avoid any rigid body modes.
- Stops (SECSTOP) and locks (SECLOCK) are not applicable to this element.
- In a nonlinear analysis, the components of relative motion are accumulated over all the substeps. It is essential that the substep size be restricted such that these rotations in a given substep are less than $\pi$ for the values to be accumulated correctly.
- The element currently does not support birth or death options.
- The equation solver (EQSLV) must be the sparse solver.
- The element coordinate system (/PSYMB,ESYS) is not relevant.
- This element cannot be used with the arc-length method (ARCLEN).


## MPC184 Weld Joint Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

## ANSYS Professional

- No special features are allowed.


## MPC184-Orient

Multipoint Constraint Element: Orient Joint
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS
Product Restrictions

## MPC184 Orient Joint Element Description

The MPC184 orient joint is a two-node element. In this joint, the relative rotational degrees of freedom are fixed while the displacement degrees of freedom are left free.

## Figure 1 MPC184 Orient Joint Geometry



## MPC184 Orient Joint Input Data

Set $\operatorname{KEYOPT}(1)=14$ to define a two-node orient joint element.
Figure 1 ( p .999 ) shows the geometry and node locations for this element. Two nodes (I and J) define the element.

A local Cartesian coordinate system must be specified at the first node, I, of the element. The local coordinate system specification at the second node is optional. The local coordinate systems specified at node I and J evolve with the rotations at the respective nodes. Use the SECJOINT command to specify the identifiers of the local coordinate systems.

The constraints imposed on an orient joint element are easily described by referring to Figure 1 (p. 999). At any given instant of time, the constraints imposed are as follows:
$e_{2}^{\prime} \cdot e_{3}^{J}-E_{2}^{\prime} \cdot E_{3}^{J}=0$
$\mathbf{e}_{1}^{\prime} \cdot \mathbf{e}_{2}^{J}-E_{1}^{\prime} \cdot E_{2}^{J}=0$
$\mathbf{e}_{1}^{\prime} \cdot \mathbf{e}_{3}^{J}-E_{1}^{\prime} \cdot E_{3}^{J}=0$

Other input data that are common to all joint elements (material behavior, etc.) are described in "Joint Input Data" (p. 911) in the MPC184 element description.

## MPC184 Orient Joint Input Summary

This input summary applies to the orient joint element option of $\operatorname{MPC} 184$ : $\operatorname{KEYOPT}(1)=14$.

## Nodes

I, J

## Note

For a grounded joint element, specify either node I or node J in the element definition and leave the other node (the grounded node) blank.

## Degrees of Freedom

UX, UY, UZ, ROTX, ROTY, ROTZ

## Real Constants

None

## Material Properties

None

## Surface Loads

None

## Body Loads

None

## Element Loads

None

## Special Features

Large deflection
Linear perturbation

## KEYOPT(1)

Element behavior:
14 --
Orient joint element

## MPC184 Orient Joint Output Data

The solution output associated with the element is in two forms:

- Nodal displacements included in the overall nodal solution
- Additional element output as shown in Table 1: MPC184 Orient Joint Element Output Definitions (p. 1001) and Table 2: MPC184 Orient Joint Element - NMISC Output (p. 1001).

These tables use the following notation:

A colon (:) in the Name column indicates the item can be accessed by the Component Name method [ETABLE, ESOL]. The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, Y indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and a-indicates that the item is not available.

## Table 1 MPC184 Orient Joint Element Output Definitions

Name	Definition	$\mathbf{O}$	$\mathbf{R}$
EL	Element number	-	Y
NODES	Element node numbers ( $\mathrm{I}, \mathrm{J}$ )	-	Y
MX	Constraint moment in X direction	-	Y
$M Y$	Constraint moment in Y direction	-	Y
MZ	Constraint moment in Z direction	-	Y

The following table shows additional non-summable miscellaneous (NMISC) output available for the orient joint element.

## Note

This output is intended for use in the ANSYS Workbench program to track the evolution of local coordinate systems specified at the nodes of joint elements.

## Table 2 MPC184 Orient Joint Element - NMISC Output

Name	Definition	0	R
$\begin{aligned} & \text { E1X-I, E1Y-I, } \\ & \text { E1Z-I } \end{aligned}$	$X, Y, Z$ components of the evolved $e_{1}$ axis at node I	-	Y
$\begin{aligned} & \text { E2X-I, E2Y-I, } \\ & \text { E2Z-I } \end{aligned}$	$X, Y, Z$ components of the evolved $e_{2}$ axis at node I	-	Y
$\begin{aligned} & \text { E3X-I, E3Y-I, } \\ & \text { E3Z-I } \end{aligned}$	$X, Y, Z$ components of the evolved $e_{3}$ axis at node I	-	Y
$\begin{array}{\|l} \text { E1X-J, E1Y-J, } \\ \text { E1Z-J } \end{array}$	$X, Y, Z$ components of the evolved $e_{1}$ axis at node J	-	Y
$\begin{aligned} & \text { E2X-J, E2Y-J, } \\ & \text { E2Z-J } \end{aligned}$	$X, Y, Z$ components of the evolved $e_{2}$ axis at node J	-	Y
$\begin{array}{\|l} \hline \text { E3X-J, E3Y-J, } \\ \text { E3Z-J } \end{array}$	$X, Y, Z$ components of the evolved $e_{3}$ axis at node J	-	Y
JFX, JFY, JFZ	Constraint forces expressed in the evolved coordinate system specified at node I	-	Y
JMX, JMY, JMZ	Constraint moments expressed in the evolved coordinate system specified at node I	-	Y

Table 3: MPC184 Orient Joint Item and Sequence Numbers - SMISC Items (p. 1002) and Table 4: MPC184 Orient Joint Item and Sequence Numbers - NMISC Items (p. 1002) list output available via the ETABLE command using the

Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p. 9) for further information. The table uses the following notation:

## Name

output quantity as defined in the Element Output Definitions table.

## Item

predetermined Item label for ETABLE command
E
sequence number for single-valued or constant element data
Table 3 MPC184 Orient Joint Item and Sequence Numbers - SMISC Items

Output Quantity Name	ETABLE and ESOL Command Input	
	Item	$\mathbf{E}$
$M X$	SMISC	4
$M Y$	SMISC	5
$M Z$	SMISC	6

## Table 4 MPC184 Orient Joint Item and Sequence Numbers - NMISC Items

Output Quantity Name	ETABLE and ESOL Command Input	
	Item	E
E1X-I	NMISC	1
E1Y-I	NMISC	2
E1Z-I	NMISC	3
E2X-I	NMISC	4
E2Y-I	NMISC	5
E2Z-I	NMISC	6
E3X-I	NMISC	7
E3Y-I	NMISC	8
E3Z-I	NMISC	9
E1X-J	NMISC	10
E1Y-J	NMISC	11
E1Z-J	NMISC	12
E2X-J	NMISC	13
E2Y-J	NMISC	14
E2Z-J	NMISC	15
E3X-J	NMISC	16
E3Y-J	NMISC	17
E3Z-J	NMISC	18
JFX	NMISC	19
JFY	NMISC	20


Output Quantity Name	ETABLE and ESOL Command Input	
	Item	E
JFZ	NMISC	21
JMX	NMISC	22
JMY	NMISC	23
JMZ	NMISC	24

## MPC184 Orient Joint Assumptions and Restrictions

- Boundary conditions cannot be applied on the nodes forming the orient joint.
- Rotational degrees of freedom are activated at the nodes forming the element. When these elements are used in conjunction with solid elements, the rotational degrees of freedom must be suitably constrained. Since boundary conditions cannot be applied to the nodes of the orient joint, a beam or shell element with very weak stiffness may be used with the underlying solid elements at the nodes forming the joint element to avoid any rigid body modes.
- Stops (SECSTOP) and locks (SECLOCK) are not applicable to this element.
- In a nonlinear analysis, the components of relative motion are accumulated over all the substeps. It is essential that the substep size be restricted such that these rotations in a given substep are less than $\pi$ for the values to be accumulated correctly.
- The element currently does not support birth or death options.
- The equation solver (EQSLV) must be the sparse solver.
- The element coordinate system (/PSYMB,ESYS) is not relevant.
- This element cannot be used with the arc-length method (ARCLEN).


## MPC184 Orient Joint Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

## ANSYS Professional

- No special features are allowed.


## MPC184-Spherical

Multipoint Constraint Element: Spherical Joint
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS
Product Restrictions

## MPC184 Spherical Joint Element Description

The MPC184 spherical joint element is a two-node element with the relative displacement degrees of freedom constrained. The relative rotational degrees of freedom are left unconstrained. These rotations cannot be controlled. The kinematic constraints are imposed using the Lagrange multiplier method.

## Figure 1 MPC184 Spherical Joint Geometry



## MPC184 Spherical Joint Input Data

Set $\operatorname{KEYOPT}(1)=15$ to define a two-node spherical joint element.
Figure 1 (p. 1005) shows the geometry and node locations for this element. Two nodes define the element. The two nodes (I and J) are expected to have identical spatial locations initially. If the two nodes are not coincident, the relative positions of the two nodes are maintained.

A local Cartesian coordinate system should be specified at the first node, I, of the element. The specification of the second local coordinate system at node $J$ is optional. If the local coordinate system is not specified at node $J$, the local coordinate system at node $J$ is assumed to be the same as that at node I. Use the SECJOINT command to specify the identifiers of the local coordinate systems.

The constraints imposed in a spherical joint element are described below. Referring to Figure 1 (p. 1005), the constraints imposed at any given time are as follows:

$$
\begin{aligned}
& \mathbf{e}_{1}^{\prime} \cdot\left(\mathbf{x}^{J}-\mathbf{x}^{\prime}\right)-E_{1}^{\prime} \cdot\left(\mathbf{X}^{J}-\mathbf{X}^{\prime}\right)=0 \\
& \mathbf{e}_{2}^{\prime} \cdot\left(\mathbf{x}^{\mathrm{J}}-\mathbf{x}^{\prime}\right)-E_{2}^{\prime} \cdot\left(\mathbf{X}^{\mathrm{J}}-\mathbf{X}^{\prime}\right)=0
\end{aligned}
$$

$\mathbf{e}_{3}^{\prime} \cdot\left(\mathbf{x}^{J}-\mathbf{x}^{\mathbf{\prime}}\right)-E_{3}^{\prime} \cdot\left(\mathbf{X}^{\mathrm{J}}-\mathbf{X}^{\mathbf{\prime}}\right)=0$
For output purposes, the relative rotations between nodes I and J are characterized by the Cardan (or Bryant) angles as follows:
$\phi=-\tan ^{-1}\left(\frac{e_{2}^{I} \cdot e_{3}^{J}}{e_{3}^{I} \cdot e_{3}^{J}}\right)$
$\varphi=-\sin ^{-1}\left(e_{1}^{I} \cdot e_{3}^{J}\right)$
$\chi=-\tan ^{-1}\left(\frac{e_{1}^{I} \cdot e_{2}^{J}}{e_{1}^{I} \cdot e_{1}^{J}}\right)$
Since the output of relative rotations is characterized by the Cardan (or Bryant) angles, the rotation around the local $e_{2}$ axis is limited to between $-\mathrm{PI} / 2$ to $+\mathrm{PI} / 2$ (see the expression for $\Phi$ above). When this rotation value reaches $|\mathrm{PI} / 2|$, the other two angles become indeterminate. Therefore, if the accumulated angles around an axis of rotation is greater than $|\mathrm{PI} / 2|$, the axis of rotation should typically be specified as the local $\mathrm{e}_{1}$ or $e_{3}$ axis.

Since the relative rotational degrees of freedom cannot be controlled, the spherical joint element does not allow stops and locks or material behavior specifications. Other input data that are common to all joint elements are described in "Joint Input Data" (p. 911) in the MPC184 element description.

## MPC184 Spherical Joint Input Summary

This input summary applies to the spherical joint element option of $\operatorname{MPC} 184$ : $\operatorname{KEYOPT}(1)=15$.

## Nodes

I, J,

## Note

For a grounded spherical joint element, specify either node I or node $J$ in the element definition and leave the other node (the grounded node) blank.

## Degrees of Freedom

UX, UY, UZ, ROTX, ROTY, ROTZ

## Real Constants

None

## Material Properties

None

## Surface Loads

None

## Body Loads

None

## Element Loads

None

## Special Features

Large deflection
Linear perturbation

## KEYOPT(1)

Element behavior:
15 --
Spherical joint element

## MPC184 Spherical Joint Output Data

The solution output associated with the element is in two forms:

- Nodal displacements included in the overall nodal solution
- Additional element output as shown in Table 1: MPC184 Spherical Joint Element Output Definitions (p. 1007) and Table 2: MPC184 Spherical Joint Element - NMISC Output (p. 1008).

These tables use the following notation:
A colon (:) in the Name column indicates the item can be accessed by the Component Name method [ETABLE, ESOL]. The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, Y indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and a-indicates that the item is not available.

Table 1 MPC184 Spherical Joint Element Output Definitions

Name	Definition	$\mathbf{O}$	R
EL	Element number	-	Y
NODES	Element node numbers (I, J)	-	Y
FX	Constraint force in X direction	-	Y
FY	Constraint force in Y direction	-	Y
FZ	Constraint force in Z direction	-	Y
JRP4	Joint relative position of DOF 4	-	Y
JRP5	Joint relative position of DOF 5	-	Y
JRP6	Joint relative position of DOF 6	-	Y
JRU4	Joint relative rotation of DOF 4	-	Y
JRU5	Joint relative rotation of DOF 5	-	Y
JRU6	Joint relative rotation of DOF 6	-	Y
JRV4	Joint relative rotational velocity of DOF 4	-	Y
JRV5	Joint relative rotational velocity of DOF 5	-	Y
JRV6	Joint relative rotational velocity of DOF 6	-	Y
JRA4	Joint relative rotational acceleration of DOF 4	-	Y


Name	Definition	O	R
JRA5	Joint relative rotational acceleration of DOF 5	-	Y
JRA6	Joint relative rotational acceleration of DOF 6	-	Y

The following table shows additional non-summable miscellaneous (NMISC) output available for the spherical joint element.

## Note

This output is intended for use in the ANSYS Workbench program to track the evolution of local coordinate systems specified at the nodes of joint elements.

## Table 2 MPC184 Spherical Joint Element - NMISC Output

Name	Definition	0	R
$\begin{array}{\|l} \text { E1X-I, E1Y-I, } \\ \text { E1Z-I } \end{array}$	$X, Y, Z$ components of the evolved $e_{1}$ axis at node I	-	Y
$\begin{array}{\|l\|} \hline \text { E2X-I, E2Y-I, } \\ \text { E2Z-I } \end{array}$	$X, Y, Z$ components of the evolved $e_{2}$ axis at node I	-	Y
$\begin{array}{\|l} \text { E3X-I, E3Y-I, } \\ \text { E3Z-I } \end{array}$	$X, Y, Z$ components of the evolved $e_{3}$ axis at node I	-	Y
$\begin{aligned} & \text { E1X-J, E1Y-J, } \\ & \text { E1Z-J } \end{aligned}$	$X, Y, Z$ components of the evolved $e_{1}$ axis at node J	-	Y
$\begin{aligned} & \text { E2X-J, E2Y-J, } \\ & \text { E2Z-J } \end{aligned}$	$X, Y, Z$ components of the evolved $e_{2}$ axis at node J	-	Y
$\begin{aligned} & \text { E3X-J, E3Y-J, } \\ & \text { E3Z-J } \end{aligned}$	$X, Y, Z$ components of the evolved $e_{3}$ axis at node J	-	Y
JFX, JFY, JFZ	Constraint forces expressed in the evolved coordinate system specified at node I	-	Y
JMX, JMY, JMZ	Constraint moments expressed in the evolved coordinate system specified at node I	-	Y

Table 3: MPC184 Spherical Joint Item and Sequence Numbers -SMISC Items (p. 1009) and Table 4: MPC184 Spherical Joint Item and Sequence Numbers - NMISC Items (p. 1009) list output available via the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p. 9) for further information. The table uses the following notation:

## Name

output quantity as defined in the Element Output Definitions table.

## Item

predetermined Item label for ETABLE command

E
sequence number for single-valued or constant element data
Table 3 MPC184 Spherical Joint Item and Sequence Numbers -SMISC Items

Output Quantity Name	ETABLE and ESOL Command Input	
	Item	E
FX	SMISC	1
FY	SMISC	2
FZ	SMISC	3
JRP4-6	SMISC	$34-36$
JRU4-6	SMISC	$64-66$
JRV4-6	SMISC	$70-72$
JRA4-6	SMISC	$76-78$

Table 4 MPC184 Spherical Joint Item and Sequence Numbers - NMISC Items

Output Quantity Name	ETABLE and ESOL Command Input	
	Item	E
E1X-I	NMISC	1
E1Y-I	NMISC	2
E1Z-I	NMISC	3
E2X-I	NMISC	4
E2Y-I	NMISC	5
E2Z-I	NMISC	6
E3X-I	NMISC	7
E3Y-I	NMISC	8
E3Z-I	NMISC	9
E1X-J	NMISC	10
E1Y-J	NMISC	11
E1Z-J	NMISC	12
E2X-J	NMISC	13
E2Y-J	NMISC	14
E2Z-J	NMISC	15
E3X-J	NMISC	16
E3Y-J	NMISC	17
E3Z-J	NMISC	18
JFX	NMISC	19
JFY	NMISC	20
JFZ	NMISC	21
JMX	NMISC	22


Output Quantity Name	ETABLE and ESOL Command Input	
	Item	E
JMY	NMISC	23
JMZ	NMISC	24

## MPC184 Spherical Joint Assumptions and Restrictions

- The nodes I and J should be coincident. If the nodes are not coincident, the relative positions between the two nodes are maintained.
- Boundary conditions cannot be applied on the nodes forming the spherical element.
- Rotational degrees of freedom are activated at the nodes forming the element. When these elements are used in conjunction with solid elements, the rotational degrees of freedom must be suitably constrained. Since boundary conditions cannot be applied to the nodes of the spherical joint, a beam or shell element with very weak stiffness may be used with the underlying solid elements at the nodes forming the joint element to avoid any rigid body modes.
- Stops (SECSTOP) and locks (SECLOCK) are not applicable to this element.
- In a nonlinear analysis, the components of relative motion are accumulated over all the substeps. For the values to be accumulated correctly, it is essential that the substep size be restricted such that the rotation in a given substep is less than $\pi$.
- The element currently does not support birth or death options.
- The equation solver (EQSLV) must be the sparse solver.
- The element coordinate system (/PSYMB,ESYS) is not relevant.
- This element cannot be used with the arc-length method (ARCLEN).


## MPC184 Spherical Joint Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

## ANSYS Professional

- No special features are allowed.


## MPC184-General

Multipoint Constraint Element: General Joint
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS
Product Restrictions

## MPC184 General Joint Element Description

The MPC184 general joint is a two-node element. By default, no relative degrees of freedom are fixed. However, you can specify which relative degrees of freedom need to be constrained. By specifying as many relative degrees of freedom to be constrained as needed, you can simulate different joint elements.

Figure 1 MPC184 General Joint Geometry


By default, a general joint has both displacement and rotational degrees of freedom activated at the nodes of the element. In some cases only displacement degrees of freedom are needed (as in a model consisting of only continuum elements). In such cases, you can specify a general joint with only displacement degrees of freedom activated by setting $\operatorname{KEYOPT}(4)=1$.

## MPC184 General Joint Input Data

Set $\operatorname{KEYOPT}(1)=16$ to define a two-node general joint element.
Use KEYOPT(4) to specify the active degree-of-freedom set:
KEYOPT(4) = 0 (default) - both displacement and rotational degrees of freedom are activated. $\operatorname{KEYOPT}(4)=1$ - only displacement degrees of freedom are activated.

For this element, you can specify which relative degrees of freedom need to be constrained. First, define the section type (SECTYPE command) for this joint. Then define the SECJOINT command as follows:

```
SECJ,LSYS,local cs1,local cs2 ! Defines the local coordinate systems for the joints.
SECJ,RDOF,dof1,dof2,...,dof6 ! Defines the relative DOFs to be constrained.
```

Note that the SECJOINT command is issued twice when the general joint is used with some degrees of freedom constrained. The first SECJOINT command defines the local coordinate systems for the joint. In the second SECJOINT command, specify as many relative degrees of freedom as needed (a maximum of 6 may be specified). The general joint element allows you to simulate different joint elements by specifying different
relative degrees of freedom to be constrained. The following examples highlight the different joint elements that can be simulated:

```
SECJ,RDOF,dof1,dof2,dof3,dof5,dof6 ! Simulates a revolute joint with local e_1 axis as the axis of revolute.
SECJ,RDOF,dof2,dof3,dof5,dof6 ! Simulates a cylindrical joint with local e_1 axis as the axis of rotation.
SECJ,RDOF,dof1,dof2,dof3,dof4,dof5,dof6 ! Simulates a weld joint.
```

When $\operatorname{KEYOPT}(4)=1$, the local coordinate systems specified at nodes I and $J$ remain fixed in their initial orientation. The rotation at the nodes, if any, is ignored.

When $\operatorname{KEYOPT}(4)=0$, the local coordinate systems specified at nodes I and $J$ are assumed to evolve with the rotations at the nodes.

For an unconstrained general joint $(\operatorname{KEYOPT}(4)=0$ or 1$)$, the relative displacements between nodes $I$ and $J$ are as follows:
$u_{1}=\mathbf{e}_{1}^{\mathbf{I}} \cdot\left(\mathbf{x}^{\mathrm{J}}-\mathbf{x}^{\mathbf{I}}\right)-\mathbf{E}_{1}^{\mathbf{I}} \cdot\left(\mathbf{X}^{\mathrm{J}}-\mathbf{X}^{\mathbf{I}}\right)$
$u_{2}=\mathbf{e}_{2}^{\prime} \cdot\left(\mathbf{x}^{\mathrm{J}}-\mathbf{x}^{\prime}\right)-E_{2}^{\prime} \cdot\left(\mathbf{X}^{\mathrm{J}}-\mathbf{X}^{\prime}\right)$
$u_{3}=\mathbf{e}_{3}^{\prime} \cdot\left(\mathbf{x}^{\mathrm{J}}-\mathbf{x}^{\mathrm{I}}\right)-E_{3}^{\prime} \cdot\left(\mathbf{X}^{\mathrm{J}}-\mathbf{X}^{\mathrm{I}}\right)$
The relative rotations between nodes I and J are characterized by the Cardan (or Bryant) angles as follows (only if $\operatorname{KEYOPT}(4)=0$ ):
$\phi=-\tan ^{-1}\left(\frac{e_{2}^{l} \cdot e_{3}^{J}}{e_{3}^{l} \cdot e_{3}^{J}}\right)$
$\varphi=-\sin ^{-1}\left(e_{1}^{I} \cdot e_{3}^{J}\right)$
$\chi=-\tan ^{-1}\left(\frac{e_{1}^{1} \cdot e_{2}^{J}}{e_{1}^{l} \cdot e_{1}^{J}}\right)$
The relative displacements and rotations are suitably constrained when some or all of the relative degrees of freedom are fixed.

Note that the relative angular positions for the general joint are characterized by the Cardan (or Bryant) angles. This requires that the rotations about the local $e_{2}$ axis be restricted between $-\mathrm{Pl} / 2$ to $+\mathrm{PI} / 2$. Thus, the local $\mathrm{e}_{2}$ axis should not be used to simulate the axis of rotation.

For an unconstrained general joint, the constitutive calculations use the following definitions for relative displacement:

$$
\mathbf{u}_{1}=\mathbf{e}_{1}^{\mathrm{I}} \cdot\left(\mathbf{x}^{\mathrm{J}}-\mathbf{x}^{\mathrm{I}}\right)-\ell_{1}^{\text {ref }}
$$

$\mathbf{u}_{2}=\mathbf{e}_{2}^{\mathrm{l}} \cdot\left(\mathbf{x}^{\mathrm{J}}-\mathbf{x}^{\mathrm{l}}\right)-\ell_{2}^{\text {ref }}$
$\mathbf{u}_{3}=\mathbf{e}_{3}^{\mathrm{l}} \cdot\left(\mathbf{x}^{\mathrm{J}}-\mathbf{x}^{\mathrm{l}}\right)-\ell_{3}^{\text {ref }}$
where:
$\ell_{1}^{\text {ref }}, \ell_{2}^{\text {ref }}$, and ${ }_{3}^{\text {ref }}=$ reference lengths, length1, length 2 , and length3, specified on the SECDATA command.

The following definitions are for relative rotations:
$u_{r 4}=\phi-\phi_{1}^{\text {ref }}$
$u_{r}=\varphi-\phi_{2}^{\mathrm{ref}}$
$u_{r 6}=\chi-\phi_{3}^{\text {ref }}$
where:
$\phi_{1}^{\text {ref }}, \phi_{3}^{\text {ref }}$, and $\phi_{2}^{\text {ref }}=$ reference angle specifications, angle 1 , angle 2 , and angle 3 on the SECDATA command.

Other input data that are common to all joint elements (material behavior, stops and limits, locks, etc.) are described in "Joint Input Data" (p. 911) in the MPC184 element description.

## MPC184 General Joint Input Summary

This input summary applies to the general joint element option of MPC184: $\operatorname{KEYOPT}(1)=16$.

## Nodes

I, J

## Note

For a grounded joint element, specify either node I or node J in the element definition and leave the other node (the grounded node) blank.

## Degrees of Freedom

UX, UY, UZ, ROTX, ROTY, ROTZ $(\operatorname{KEYOPT}(4)=0)$
UX, UY, UZ $(\operatorname{KEYOPT}(4)=1)$

## Real Constants

None

## Material Properties

Use the JOIN label on the TB command to define stiffness, damping, and hysteretic friction behavior.
(See MPC184 Joint Material Models (TB,JOIN) (p. 78) for detailed information on defining joint materials.)

## Surface Loads

None

## Body Loads

## Temperatures --

$\mathrm{T}(\mathrm{I}), \mathrm{T}(\mathrm{J})$

## Element Loads

For an unconstrained general joint:
Displacement (KEYOPT(4) = 0 or 1 ) --
UX, UY, UZ
Rotation (KEYOPT(4) = 0) -ROTX, ROTY, ROTZ

For a constrained general joint, loads are based on the free relative degrees of freedom in the joint.

## Special Features

Large deflection
Linear perturbation

## KEYOPT(1)

Element behavior:
16 --
General joint element

## KEYOPT(4)

Element configuration:
0 --
General joint with both displacement and rotational degrees of freedom activated.
1 --
General joint with only displacement degrees of freedom activated.

## MPC184 General Joint Output Data

The solution output associated with the element is in two forms:

- Nodal displacements included in the overall nodal solution
- Additional element output as shown in Table 1: MPC184 General Joint Element Output Definitions (p. 1015) and Table 2: MPC184 General Joint Element - NMISC Output (p. 1017).

These tables use the following notation:
A colon (:) in the Name column indicates the item can be accessed by the Component Name method [ETABLE, ESOL]. The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, Y indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and a - indicates that the item is not available.

Table 1 MPC184 General Joint Element Output Definitions

Name	Definition	0	R
General joint with displacement and rotation DOF (KEYOPT(4) = 0)			
EL	Element number	-	Y
NODES	Element node numbers (I, J)	-	Y
The constraint force and moment output depends on which of the relative DOFs are constrained.			
FX	Constraint force in X direction	-	Y
FY	Constraint force in Y direction	-	Y
FZ	Constraint force in Z direction	-	Y
MX	Constraint moment in X direction	-	Y
MY	Constraint moment in Y direction	-	Y
MZ	Constraint moment in Z direction	-	Y
The following output depends on which of the relative DOFs are unconstrained.			
CSTOP1-6	Constraint force/moment if stop is specified on DOFs 1-6	-	Y
CLOCK1-6	Constraint force/moment if lock is specified on DOFs 1-6	-	Y
CSST1-6	Constraint stop status on relative DOFs 1-6[1]	-	Y
CLST1-6	Constraint lock status on relative DOFs 1-6[2]	-	Y
JRP1-6	Joint relative position of DOFs 1-6	-	Y
JCD1-6	Joint constitutive displacement/rotation of DOFs 1-6	-	Y
JEF1-6	Joint elastic force/moment 1-6	-	Y
JDF1-6	Joint damping force/moment 1-6	-	Y
JFF1-6	Joint friction force/moment 1-6	-	Y
JRU1-6	Joint relative displacement/rotation 1-6	-	Y
JRV1-6	Joint relative velocity (or rotational velocity) 16	-	Y
JRA1-6	Joint relative acceleration (or rotational acceleration) 1-6	-	Y
JTEMP	Average temperature in the element[3]	-	Y
General joint with displacement DOF (KEYOPT(4) =1)			
EL	Element number	-	Y
NODES	Element node numbers ( $\mathrm{I}, \mathrm{J}$ )	-	Y
The constraint force and moment output depends on which of the relative DOFs are constrained.			
FX	Constraint force in X direction	-	Y


| Name | Definition | $\mathbf{O}$ | R |
| :--- | :--- | :--- | :--- | :--- |
| FY | Constraint force in Y direction | - | Y |
| FZ | Constraint force in Z direction | - | Y |
| The following output depends on which of the relative DOFs are unconstrained. |  |  |  |
| CSTOP1-3 | Constraint force if stop is specified on DOFs 1- <br> 3 | - | Y |
| CLOCK1-3 | Constraint force if lock is specified on DOFs 1- <br> 3 | - | Y |
| CSST1-3 | Constraint stop status on relative DOFs 1-3[1] | - | Y |
| CLST1-3 | Constraint lock status on relative DOFs 1-3[2] | - | Y |
| JRP1-3 | Joint relative position of DOFs 1-3 | - | Y |
| JCD1-3 | Joint constitutive displacement of DOFs 1-3 | - | Y |
| JEF1-3 | Joint elastic force 1-3 | - | Y |
| JDF1-3 | Joint damping force 1-3 | - | Y |
| JFF1-3 | Joint friction force 1-3 | - | Y |
| JRU1-3 | Joint relative displacement 1-3 | - | Y |
| JRV1-3 | Joint relative velocity 1-3 | - | Y |
| JRA1-3 | Joint relative acceleration 1-3 | - | Y |
| JTEMP | Average temperature in the element[3] | - | Y |

1. Constraint stop status:
$0=$ stop not active, or deactivated
$1=$ stopped at minimum value
2 = stopped at maximum value
2. Constraint lock status:
$0=$ lock not active
$1=$ locked at minimum value
$2=$ locked at maximum value
3. Average temperature in the element when temperatures are applied on the nodes of the element using the $\mathbf{B F}$ command, or when temperature are applied on the element using the BFE command.

The following table shows additional non-summable miscellaneous (NMISC) output available for all forms of the general joint element.

## Note

This output is intended for use in the ANSYS Workbench program to track the evolution of local coordinate systems specified at the nodes of joint elements.

## Table 2 MPC184 General Joint Element - NMISC Output

Name	Definition	0	R
The following output is available for all general joint elements $($ KEYOPT(4) $=$ 0 and 1)			
$\begin{aligned} & \text { E1X-I, E1Y-I, } \\ & \text { E1Z-I } \end{aligned}$	$X, Y, Z$ components of the evolved $e_{1}$ axis at node I	-	Y
$\begin{aligned} & \text { E2X-I, E2Y-I, } \\ & \text { E2Z-I } \end{aligned}$	$X, Y, Z$ components of the evolved $e_{2}$ axis at node I	-	Y
$\begin{aligned} & \text { E3X-I, E3Y-I, } \\ & \text { E3Z-I } \end{aligned}$	$X, Y, Z$ components of the evolved $e_{3}$ axis at node I	-	Y
$\begin{aligned} & \text { E1X-J, E1Y-J, } \\ & \text { E1Z-J } \end{aligned}$	$X, Y, Z$ components of the evolved $e_{1}$ axis at node J	-	Y
$\begin{aligned} & \text { E2X-J, E2Y-J, } \\ & \text { E2Z-J } \end{aligned}$	$X, Y, Z$ components of the evolved $e_{2}$ axis at node J	-	Y
$\begin{array}{\|l} \hline \text { E3X-J, E3Y-J, } \\ \text { E3Z-J } \end{array}$	$X, Y, Z$ components of the evolved $e_{3}$ axis at node J	-	Y
JFX, JFY, JFZ	Constraint forces expressed in the evolved coordinate system specified at node I	-	Y
JMX, JMY, JMZ	Constraint moments expressed in the evolved coordinate system specified at node I	-	Y

Table 3: MPC184 General Joint Item and Sequence Numbers - SMISC Items (p. 1017) and Table 4: MPC184 General Joint Item and Sequence Numbers - NMISC Items (p. 1019) list output available via the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p. 9) for further information. The tables use the following notation:

## Name

output quantity as defined in the Element Output Definitions table.

## Item

predetermined Item label for ETABLE command
E
sequence number for single-valued or constant element data
Table 3 MPC184 General Joint Item and Sequence Numbers - SMISC Items

Output Quantity Name	ETABLE and ESOL Command Input	
	Item	
General joint with displacement and rotation DOF (KEYOPT(4) = 0)   (Some of these values may be zero depending on which relative degrees of freedom are constrain\&d.)		


Output Quantity Name	ETABLE and ESOL Command Input	
	Item	$\mathbf{E}$
FX	SMISC	1
FY	SMISC	2
FZ	SMISC	3
MX	SMISC	4
MY	SMISC	5
MZ	SMISC	6
CSTOP1-6	SMISC	$7-12$
CLOCK1-6	SMISC	$13-18$
CSST1-6	SMISC	$19-24$
CLST1-6	SMISC	$25-30$
JRP1-6	SMISC	$31-36$
JCD1-6	SMISC	$37-42$
JEF1-6	SMISC	$43-48$
JDF1-6	SMISC	$49-54$
JFF1-6	SMISC	$55-60$
JRU1-6	SMISC	$61-66$
JRV1-6	SMISC	$67-72$
JRA1-6	SMISC	$73-78$
JTEMP	SMISC	79

General joint with displacement DOF (KEYOPT(4) = 1)
(Some of these values may be zero depending on which relative degrees of freedom are constrain\&d.)

FX	SMISC	1
FY	SMISC	2
FZ	SMISC	3
CSTOP1-3	SMISC	$7-9$
CLOCK1-3	SMISC	$13-15$
CSST1-3	SMISC	$19-21$
CLST1-3	SMISC	$25-27$
JRP1-3	SMISC	$31-33$
JCD1-3	SMISC	$37-39$
JEF1-3	SMISC	$43-45$
JDF1-3	SMISC	$49-51$
JFF1-3	SMISC	$55-57$
JRU1-3	SMISC	$61-63$
JRV1-3	SMISC	$67-69$
JRA1-3	SMISC	$73-78$


Output Quantity Name	ETABLE and ESOL Command Input	
	Item	E
JTEMP	SMISC	79

Table 4 MPC184 General Joint Item and Sequence Numbers - NMISC Items

Output Quantity Name	ETABLE and ESOL Command Input	
	Item	E
The following output is available for all general joint elements (KEYOPT(4) = 0 and		

$\qquad$

E1X-I	NMISC	1
E1Y-I	NMISC	2
E1Z-I	NMISC	3
E2X-I	NMISC	4
E2Y-I	NMISC	5
E2Z-I	NMISC	6
E3X-I	NMISC	7
E3Y-I	NMISC	8
E3Z-I	NMISC	9
E1X-J	NMISC	10
E1Y-J	NMISC	11
E1Z-J	NMISC	12
E2X-J	NMISC	13
E2Y-J	NMISC	14
E2Z-J	NMISC	15
E3X-J	NMISC	16
E3Y-J	NMISC	17
E3Z-J	NMISC	18
JFX	NMISC	19
JFY	NMISC	20
JFZ	NMISC	21
JMX	NMISC	22
JMY	NMISC	23
JMZ	NMISC	24

## MPC184 General Joint Assumptions and Restrictions

- Boundary conditions cannot be applied on the nodes forming the general joint.
- Rotational degrees of freedom are activated at the nodes forming the element. When these elements are used in conjunction with solid elements, the rotational degrees of freedom must be suitably constrained. Since boundary conditions cannot be applied to the nodes of the general joint, a beam or
shell element with very weak stiffness may be used with the underlying solid elements at the nodes forming the joint element to avoid any rigid body modes.
- If both stops and locks are specified, then lock specification takes precedence. That is, if the degree of freedom is locked at a given value, then it will remain locked for the rest of the analysis.
- In a nonlinear analysis, the components of relative motion are accumulated over all the substeps. It is essential that the substep size be restricted such that these rotations in a given substep are less than $\pi$ for the values to be accumulated correctly.
- The element currently does not support birth or death options.
- The equation solver (EQSLV) must be the sparse solver.
- The element coordinate system (/PSYMB,ESYS) is not relevant.
- This element cannot be used with the arc-length method (ARCLEN).


## MPC184 General Joint Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

## ANSYS Professional

- No special features are allowed.


## MPC184-Screw

Multipoint Constraint Element: Screw Joint
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS
Product Restrictions

## MPC184 Screw Joint Element Description

The MPC184 screw joint element is a two-node element which is very similar to the cylindrical joint element in construction. Whereas the cylindrical Joint element has two free relative degrees of freedom, the screw Joint has only one. In a screw joint, the "pitch" of the screw relates the relative rotation angle (around the cylindrical or screw axis) to the relative translational displacement along the axis of the screw. All other relative degrees of freedom are fixed.

Figure 1 MPC184 Screw Joint Geometry


## MPC184 Screw Joint Input Data

Set $\operatorname{KEYOPT}(1)=17$ to define a two-node screw joint element.
Figure 1 ( p .1021 ) shows the geometry and node locations for this element. Two nodes (I and J) define the element.

A local Cartesian coordinate system must be specified at the first node, I, of the element. The local coordinate system specification at the second node is optional. The local coordinate systems specified at nodes I and $J$ evolve with the rotations at the respective nodes. Use the SECJOINT command to specify the identifiers
of the local coordinate systems. The $e_{3}$ axes of the local coordinate systems specified at the nodes must align to form the axis of the screw joint.

Note that the SECJOINT command is issued twice for the screw joint element. The first SECJOINT command defines the local coordinate systems for the joint. The second SECJOINT command specifies the screw pitch that relates the relative rotation angle to the relative translational displacement along the axis of the screw.

The basic constraints imposed in a screw joint element are described below:
$\mathbf{e}_{1}^{\mathrm{I}} \cdot\left(\mathbf{x}^{\mathrm{J}}-\mathbf{x}^{\mathbf{I}}\right)-E_{1}^{\prime} \cdot\left(\mathbf{X}^{\mathrm{J}}-\mathbf{X}^{\mathbf{l}}\right)=0$
$\mathbf{e}_{2}^{\prime} \cdot\left(\mathbf{x}^{\mathrm{J}}-\mathbf{x}^{\mathrm{I}}\right)-E_{2}^{\prime} \cdot\left(\mathbf{X}^{\mathrm{J}}-\mathbf{X}^{\mathrm{I}}\right)=0$
$\mathbf{e}_{2}^{\mathbf{I}} \cdot \mathbf{e}_{3}^{J}-E_{2}^{I} \cdot E_{3}^{J}=0$
$e_{1}^{\prime} \cdot e_{3}^{J}-E_{1}^{I} \cdot E_{3}^{J}=0$
The constraint relating the relative rotational angle to the relative translational displacement along the axis is given by:
$e_{3}^{\prime} \cdot\left(x^{J}-x^{\prime}\right)-E_{3}^{\prime} \cdot\left(x^{J}-x^{\prime}\right)-p\left(\phi-\phi_{0}\right)=0$
where $p$ is the pitch of the screw defined as the ratio of relative axial displacement (length units) to the relative rotation (in radians), $\phi$ is defined as:
$\phi=-\tan ^{-1}\left(\frac{e_{1}^{I} \cdot e_{2}^{J}}{e_{1}^{I} \cdot e_{1}^{J}}\right)$
and $\phi_{0}$ is defined in the reference configuration with the same expression given above.
The change in the relative position of the nodes I and $J$ is given by:
$u_{3}=\left(\ell-\ell_{0}\right)$
where:
$\ell=e_{3}^{\prime} \cdot\left(x^{J}-x^{\prime}\right)-E_{3}^{\prime} \cdot\left(x^{J}-x^{\prime}\right)$
and ${ }^{\ell} 0$ is computed in the reference configuration using the same expression above.
The relative rotation between nodes $I$ and $J$ is given by:
$\phi=-\tan ^{-1}\left(\frac{e_{1}^{I} \cdot e_{2}^{J}}{e_{1}^{I} \cdot e_{2}^{J}}\right)$
The change in the relative angular position between the two local coordinate systems is given by:
$u_{r}=\phi-\phi_{0}+m \pi$
where $\phi_{0}$ is the initial angular offset between the two coordinate systems and $m$ is an integer accounting for multiple rotations about the screw axis.

The constitutive calculations use the following definition of the joint displacement:

$$
u_{3}^{c}=e_{3}^{l} \cdot\left(x^{J}-x^{l}\right)-l_{3}^{\text {ref }}
$$

where:

$$
\ell_{3}^{\text {ref }}=\text { reference length specified on SECDATA command. }
$$

The constitutive calculations use the following definition of the joint rotation:
$u_{r 6}^{c}=\phi+m \pi-\phi_{3}^{\text {ref }}$
where:

$$
\begin{aligned}
& \phi_{3}^{\text {ref }}=\text { reference angle, angle3, specified on the SECDATA command. If this value is not specified, then } \\
& \Phi_{0} \text { is used in place of } \phi_{3}^{\text {ref }}
\end{aligned}
$$

Other input data that are common to all joint elements (material behavior, stops and limits, locks, etc.) are described in "Joint Input Data" (p. 911) in the MPC184 element description.

## MPC184 Screw Joint Input Summary

This input summary applies to the screw joint element option of MPC184: $\operatorname{KEYOPT}(1)=17$.

## Nodes

I, J

## Note

For a grounded joint element, specify either node I or node J in the element definition and leave the other node (the grounded node) blank.

## Degrees of Freedom

UX, UY, UZ, ROTX, ROTY, ROTZ

## Real Constants

None

## Material Properties

Use the JOIN label on the TB command to define stiffness and damping. (See MPC184 Joint Material Models (TB,JOIN) (p. 78) for detailed information on defining joint materials.)

## Surface Loads

None

## Body Loads

## Temperatures --

$\mathrm{T}(\mathrm{I}), \mathrm{T}(\mathrm{J})$

## Element Loads:

## Displacements/Rotations --

UZ, ROTZ
Velocities --
VELZ, OMGZ
Accelerations --
ACCZ, DMGZ
Force/Moments --
FZ, MZ

## Special Features

Large deflection
Linear perturbation

## KEYOPT(1)

Element behavior:
17 --
Screw joint element

## MPC184 Screw Joint Output Data

The solution output associated with the element is in two forms:

- Nodal displacements included in the overall nodal solution
- Additional element output as shown in Table 1: MPC184 Screw Joint Element Output Definitions (p. 1025) and Table 2: MPC184 Screw Joint Element - NMISC Output (p. 1026).

These tables use the following notation:
A colon (:) in the Name column indicates the item can be accessed by the Component Name method [ETABLE, ESOL]. The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, Y indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and a - indicates that the item is not available.

Table 1 MPC184 Screw Joint Element Output Definitions

Name	Definition	0	R
EL	Element Number	-	Y
NODES	Element node numbers (I, J)	-	Y
FX	Constraint Force in X direction	-	Y
FY	Constraint Force in Y direction	-	Y
MX	Constraint Moment in X direction	-	Y
MY	Constraint Moment in Y direction	-	Y
CSTOP3	Constraint force if stop is specified on DOF 3	-	Y
CSTOP6	Constraint moment if stop is specified on DOF 6	-	Y
CLOCK3	Constraint force if lock is specified on DOF 3	-	Y
CLOCK6	Constraint moment if lock is specified on DOF 6	-	Y
CSST3	Constraint stop status on DOF 3[1]	-	Y
CLST3	Constraint lock status on DOF 3[2]	-	Y
CSST6	Constraint stop status on DOF 6[1]	-	Y
CLST6	Constraint lock status on DOF 6[2]	-	Y
JRP3	Joint relative position of DOF 3	-	Y
JRP6	Joint relative position of DOF 6	-	Y
JCD3	Joint constitutive displacement on DOF 3	-	Y
JCD6	Joint constitutive rotation on DOF 6	-	Y
JEF3	Joint elastic force in direction -3	-	Y
JEF6	Joint elastic moment in direction -6	-	Y
JDF3	Joint damping force in direction -3	-	Y
JDF6	Joint damping moment in direction -6	-	Y
JRU3	Joint relative displacement of DOF 3	-	Y
JRU6	Joint relative rotation of DOF 6	-	Y
JRV3	Joint relative velocity of DOF 3	-	Y
JRV6	Joint relative rotational velocity of DOF 6	-	Y
JRA3	Joint relative acceleration of DOF 3	-	Y
JRA6	Joint relative rotational acceleration of DOF 6	-	Y
JTEMP	Average temperature in the element[3]	-	Y

1. Constraint stop status:
$0=$ stop not active, or deactivated
1 = stopped at minimum value

$$
2 \text { = stopped at maximum value }
$$

2. Constraint lock status:
$0=$ lock not active
$1=$ locked at minimum value
2 = locked at maximum value
3. Average temperature in the element when temperatures are applied on the nodes of the element using the BF command, or when temperature are applied on the element using the BFE command.

The following table shows additional non-summable miscellaneous (NMISC) output available for all forms of the screw joint element.

## Note

This output is intended for use in the ANSYS Workbench program to track the evolution of local coordinate systems specified at the nodes of joint elements.

## Table 2 MPC184 Screw Joint Element - NMISC Output

Name	Definition	0	R
The following output is available for all screw joint elements (KEYOPT(4) $=0$ and 1)			
$\begin{aligned} & \text { E1X-I, E1Y-I, } \\ & \text { E1Z-I } \end{aligned}$	$X, Y, Z$ components of the evolved $e_{1}$ axis at node I	-	Y
$\begin{aligned} & \text { E2X-I, E2Y-I, } \\ & \text { E2Z-I } \end{aligned}$	$X, Y, Z$ components of the evolved $e_{2}$ axis at node I	-	Y
$\begin{aligned} & \text { E3X-I, E3Y-I, } \\ & \text { E3Z-I } \end{aligned}$	$X, Y, Z$ components of the evolved $e_{3}$ axis at node I	-	Y
$\begin{aligned} & \text { E1X-J, E1Y-J, } \\ & \text { E1Z-J } \end{aligned}$	$X, Y, Z$ components of the evolved $e_{1}$ axis at node J	-	Y
$\begin{aligned} & \text { E2X-J, E2Y-J, } \\ & \text { E2Z-J } \end{aligned}$	$X, Y, Z$ components of the evolved $e_{2}$ axis at node J	-	Y
$\begin{array}{\|l\|} \hline \text { E3X-J, E3Y-J, } \\ \text { E3Z-J } \end{array}$	$X, Y, Z$ components of the evolved $e_{3}$ axis at node J	-	Y
JFX, JFY, JFZ	Constraint forces expressed in the evolved coordinate system specified at node I	-	Y
JMX, JMY, JMZ	Constraint moments expressed in the evolved coordinate system specified at node I	-	Y

Table 3: MPC184 Screw Joint Item and Sequence Numbers - SMISC Items (p. 1027) and Table 4: MPC184 Screw Joint Item and Sequence Numbers - NMISC Items (p. 1028) list output available via the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p.9) for further information. The table uses the following notation:

## Name

output quantity as defined in the Element Output Definitions table.

## Item

predetermined Item label for ETABLE command
E
sequence number for single-valued or constant element data
Table 3 MPC184 Screw Joint Item and Sequence Numbers - SMISC Items

Output Quantity Name	ETABLE and ESOL Command Input	
	Item	E
FX	SMISC	1
FY	SMISC	2
MX	SMISC	4
MY	SMISC	5
CSTOP3	SMISC	9
CSTOP6	SMISC	12
CLOCK3	SMISC	15
CLOCK6	SMISC	18
CSST3	SMISC	21
CSST6	SMISC	24
CLST3	SMISC	27
CLST6	SMISC	30
JRP3	SMISC	33
JRP6	SMISC	36
JCD3	SMISC	39
JCD6	SMISC	42
JEF3	SMISC	45
JEF6	SMISC	48
JDF3	SMISC	51
JDF6	SMISC	54
JRU3	SMISC	63
JRU6	SMISC	66
JRV3	SMISC	69
JRV6	SMISC	72
JRA6	SMISC	75
	SMISC	78
		2


Output Quantity Name	ETABLE and ESOL Command Input	
	Item	E
JTEMP	SMISC	79

## Table 4 MPC184 Screw Joint Item and Sequence Numbers - NMISC Items

Output Quantity Name	ETABLE and ESOL Command Input	
	Item	E
E1X-I	NMISC	1
E1Y-I	NMISC	2
E1Z-I	NMISC	3
E2X-I	NMISC	4
E2Y-I	NMISC	5
E2Z-I	NMISC	6
E3X-I	NMISC	7
E3Y-I	NMISC	8
E3Z-I	NMISC	9
E1X-J	NMISC	10
E1Y-J	NMISC	11
E1Z-J	NMISC	12
E2X-J	NMISC	13
E2Y-J	NMISC	14
E2Z-J	NMISC	15
E3X-J	NMISC	16
E3Y-J	NMISC	17
E3Z-J	NMISC	18
JFX	NMISC	19
JFY	NMISC	20
JFZ	NMISC	21
JMX	NMISC	22
JMY	NMISC	23
JMZ	NMISC	24
		7

## MPC184 Screw Joint Assumptions and Restrictions

- Boundary conditions cannot be applied on the nodes forming the screw joint.
- Rotational degrees of freedom are activated at the nodes forming the element. When these elements are used in conjunction with solid elements, the rotational degrees of freedom must be suitably constrained. Since boundary conditions cannot be applied to the nodes of the screw joint, a beam or shell element with very weak stiffness may be used with the underlying solid elements at the nodes forming the joint element to avoid any rigid body modes.
- The pitch of the screw joint is defined as the ratio of relative axial displacement (length units) to relative rotation (in radians). Note that the relative rotation is expressed in radians and not as "number of revolutions." Thus, the ANSYS definition for the pitch of a screw joint differs from some commonly used definitions for pitch.
- If both stops and locks are specified, then lock specification takes precedence. That is, if the degree of freedom is locked at a given value, then it will remain locked for the rest of the analysis.
- In a nonlinear analysis, the components of relative motion are accumulated over all the substeps. It is essential that the substep size be restricted such that these rotations in a given substep are less than $\pi$ for the values to be accumulated correctly.
- The relative rotation and relative translation degrees of freedom for this joint are not independent. Loads or boundary conditions (applied with the FJ or DJ command) can be specified on only one of these two relative degrees of freedom, while the other relative degree of freedom is automatically defined via the constraint equations of the element.
- The element currently does not support birth or death options.
- The equation solver (EQSLV) must be the sparse solver.
- The element coordinate system (/PSYMB,ESYS) is not relevant.
- This element cannot be used with the arc-length method (ARCLEN).


## MPC184 Screw Joint Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

## ANSYS Professional

- No special features are allowed.


## SOLID185

## 3-D 8-Node Structural Solid

MP ME ST PR PRN DS DSS <> <> <> <> PP VT EME MFS

## SOLID185 Element Description

SOLID185 is used for 3-D modeling of solid structures. It is defined by eight nodes having three degrees of freedom at each node: translations in the nodal $x, y$, and $z$ directions. The element has plasticity, hyperelasticity, stress stiffening, creep, large deflection, and large strain capabilities. It also has mixed formulation capability for simulating deformations of nearly incompressible elastoplastic materials, and fully incompressible hyperelastic materials.

SOLID185 is available in two forms:

- Homogeneous Structural Solid (KEYOPT(3) = 0, the default) -- See "SOLID185 Homogeneous Structural Solid Element Description" (p. 1031).
- Layered Structural Solid (KEYOPT(3) = 1) -- See "SOLID185 Layered Structural Solid Element Description" (p. 1039).

See SOLID185 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

A higher-order version of the SOLID185 element is SOLID186.

## SOLID185 Homogeneous Structural Solid Element Description

SOLID185 Structural Solid is suitable for modeling general 3-D solid structures. It allows for prism and tetrahedral degenerations when used in irregular regions. Various element technologies such as B-bar, uniformly reduced integration, and enhanced strains are supported.

Figure 1 SOLID185 Homogeneous Structural Solid Geometry



Tetrahedral Option not recommended

## SOLID185 Homogeneous Structural Solid Input Data

The geometry and node locations for this element are shown in Figure 1 (p. 1032). The element is defined by eight nodes and the orthotropic material properties. The default element coordinate system is along global directions. You may define an element coordinate system using ESYS, which forms the basis for orthotropic material directions.

Element loads are described in Node and Element Loads (p. 97). Pressures may be input as surface loads on the element faces as shown by the circled numbers in Figure 1 (p. 1032). Positive pressures act into the element. Temperatures may be input as element body loads at the nodes. The node I temperature $T(I)$ defaults to TUNIF. If all other temperatures are unspecified, they default to $T(I)$. For any other input temperature pattern, unspecified temperatures default to TUNIF. Similar defaults occurs for fluence except that zero is used instead of TUNIF.
$\operatorname{KEYOPT}(6)=1$ sets the element for using mixed formulation. For details on the use of mixed formulation, see Applications of Mixed u-P Formulations (p.118) in the Element Reference.

You can apply an initial stress state to this element via the INISTATE command. For more information, see "Initial State" in the Basic Analysis Guide.

As described in Coordinate Systems (p. 14), you can use ESYS to orient the material properties and strain/stress output. Use RSYS to choose output that follows the material coordinate system or the global coordinate system. For the case of hyperelastic materials, the output of stress and strain is always with respect to the global Cartesian coordinate system rather than following the material/element coordinate system.

The effects of pressure load stiffness are automatically included for this element. If an unsymmetrical matrix is needed for pressure load stiffness effects, use NROPT,UNSYM.
"SOLID185 Homogeneous Structural Solid Input Summary" (p. 1033) contains a summary of element input. For a general description of element input, see Element Input (p. 5).

## SOLID185 Homogeneous Structural Solid Input Summary

## Nodes

I, J, K, L, M, N, O, P

## Degrees of Freedom

UX, UY, UZ

## Real Constants

None, if $\operatorname{KEYOPT}(2)=0$,
HGSTF - Hourglass Stiffness Scaling factor if KEYOPT(2) $=1$ (Default is 1.0 ; any positive number is valid. If set to 0.0 , value is automatically reset to 1.0 .)

## Material Properties

EX, EY, EZ, PRXY, PRYZ, PRXZ (or NUXY, NUYZ, NUXZ), GXY, GYZ, GXZ, ALPX, ALPY, ALPZ (or CTEX, CTEY, CTEZ or THSX, THSY, THSZ), DENS, DAMP

## Surface Loads

Pressures --
face 1 (J-I-L-K), face 2 (I-J-N-M), face 3 (J-K-O-N), face 4 (K-L-P-O), face 5 (L-I-M-P), face 6 (M-N-O-P)

## Body Loads

## Temperatures --

$T(I), T(J), T(K), T(L), T(M), T(N), T(O), T(P)$

## Body force densities --

The element values in the global $X, Y$, and $Z$ directions.

## Special Features

Plasticity (PLASTIC, BISO, MISO, NLISO, BKIN, MKIN, KINH, CHABOCHE, HILL)
Hyperelasticity (AHYPER, HYPER)
Viscoelasticity (PRONY, SHIFT)
Viscoplasticity/Creep (CREEP, RATE)
Elasticity (ELASTIC, ANEL)
Other material (USER, SDAMP, SMA, CAST, EDP, GURSON)
Stress stiffening
Large deflection
Large strain
Initial stress import
Nonlinear stabilization
Automatic selection of element technology
Birth and death Linear perturbation

## Note

Items in parentheses refer to data tables associated with the TB command. See the Theory Reference for the Mechanical APDL and Mechanical Applications for details of the material models.

## Note

See Automatic Selection of Element Technologies (p. 122) and ETCONTROL for more information on selection of element technologies.

## KEYOPT(2)

Element technology:
0 --
Full integration with $\overline{\mathrm{B}}$ method (default)
1 --
Uniform reduced integration with hourglass control
2 --
Enhanced strain formulation
3 --
Simplified enhanced strain formulation

## KEYOPT(3)

Layer construction:
0 --
Structural Solid (default) -- nonlayered
1 --
Layered Solid (not applicable to SOLID185 Structural Solid)

## KEYOPT(6)

Element formulation:
0 --
Use pure displacement formulation (default)
1 --
Use mixed formulation

## SOLID185 Homogeneous Structural Solid Element Technology

SOLID185 uses the $\bar{B}$ method (also known as the selective reduced integration method), the uniform reduced integration method, or the enhanced strain formulation method, as follows:

- $\bar{B}$ method (selective reduced integration)

Helps to prevent volumetric mesh locking in nearly incompressible cases. This option replaces volumetric strain at the Gauss integration point with the average volumetric strain of the elements. This method cannot, however, prevent any shear locking in bending dominated problems. In such situations, use the enhanced strain formulation of this element. If it is not clear if the deformation is bending dominated, enhanced strain formulation is recommended. For more information, see the Theory Reference for the Mechanical APDL and Mechanical Applications.

- Uniform reduced integration

Also helps to prevent volumetric mesh locking in nearly incompressible cases. Because it has only one integration point, this option is more efficient than the $\bar{B}$ method (selective reduced integration) option.

However, the artificial energy introduced to control the hourglass effect may affect solution accuracy adversely.

When using this option, check the solution accuracy by comparing the total energy (SENE label in ETABLE) and the artificial energy (AENE label in ETABLE) introduced by hourglass control. If the ratio of artificial energy to total energy is less than $5 \%$, the solution is generally acceptable. If the ratio exceeds five percent, refine the mesh. You can also monitor the total energy and artificial energy by issuing the OUTPR,VENG command in the solution phase.

For more information about uniform reduced integration, see the Theory Reference for the Mechanical APDL and Mechanical Applications.

## - Enhanced strain formulation

Prevents shear locking in bending-dominated problems and volumetric locking in nearly incompressible cases. The formulation introduces 13 internal DOFs (inaccessible to ANSYS users). If mixed u-P formulation is employed with enhanced strain formulation, only 9 DOFs for overcoming shear-locking are used. All internal DOFs are introduced automatically at the element level and condensed out.

Because of the extra internal DOFs and static condensation, this option is less efficient than either the $\bar{B}$ method (selective reduced integration) option or the uniform reduced integration option.

For more information about enhanced strain formulation, see the Theory Reference for the Mechanical APDL and Mechanical Applications.

## - Simplified enhanced strain formulation

Prevents shear locking in bending-dominated problems. This is a special case of the enhanced strain formulation and always introduces 9 internal DOFs (inaccessible to ANSYS users). Because there are no internal DOFs to handle volumetric locking, this formulation should not be used when the material is nearly incompressible, except when the Mixed u-P formulation is also used. When used with the Mixed $u$-P formulation, the simplified enhanced strain formulation gives the same results as the enhanced strain formulation. All internal DOFs are introduced automatically at the element level and condensed out.

Because of the extra internal DOFs and static condensation, this option is less efficient than either the $\bar{B}$ method (selective reduced integration) option or the uniform reduced integration option, but is more efficient than the enhanced strain formulation due to using fewer internal DOFs.

For more information about the simplified enhanced strain formulation, see the Theory Reference for the Mechanical APDL and Mechanical Applications.

## SOLID185 Homogeneous Structural Solid Output Data

The solution output associated with the element is in two forms:

- Nodal displacements included in the overall nodal solution
- Additional element output as shown in Table 1: SOLID185 Homogeneous Structural Solid Element Output Definitions (p. 1036)

Several items are illustrated in Figure 2 (p. 1036). See Element Table for Variables Identified By Sequence Number in the Basic Analysis Guide and The Item and Sequence Number Table (p. 9) in this document for more information.

Figure 2 SOLID185 Homogeneous Structural Solid Stress Output


Stress directions shown are for global directions.

## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " $Y$ " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 1 SOLID185 Homogeneous Structural Solid Element Output Definitions

Name	Definition	0	R
EL	Element Number	-	Y
NODES	Nodes - I, J, K, L, M, N, O, P	-	Y
MAT	Material number	-	Y
VOLU:	Volume	-	Y
XC, YC, ZC	Location where results are reported	Y	3
PRES	Pressures P1 at nodes J, I, L, K; P2 at I, J, N, M; P3 at J, K, O, N; P4 at K, L, P, O; P5 at L, I, M, P; P6 at M, N, O, P	-	Y
TEMP	Temperatures $\mathrm{T}(\mathrm{I}), \mathrm{T}(\mathrm{J}), \mathrm{T}(\mathrm{K}), \mathrm{T}(\mathrm{L}), \mathrm{T}(\mathrm{M}), \mathrm{T}(\mathrm{N}), \mathrm{T}(\mathrm{O}), \mathrm{T}(\mathrm{P})$	-	Y
S:X, Y, Z, XY, YZ, XZ	Stresses	Y	Y
S:1, 2, 3	Principal stresses	-	Y
S:INT	Stress intensity	-	Y
S:EQV	Equivalent stress	-	Y
$\begin{aligned} & \text { EPEL:X, Y, Z, XY, YZ, } \\ & X Z \end{aligned}$	Elastic strains	Y	Y


Name	Definition	$\mathbf{0}$	$\mathbf{R}$
EPEL:EQV	Equivalent elastic strains [6]	-	Y
EPTH:X, Y, Z, XY, YZ,   XZ	Thermal strains	2	2
EPTH:EQV	Equivalent thermal strains [6]	2	2
EPPL:X, Y, Z, XY, YZ,   XZ	Plastic strains [7]	1	1
EPPL:EQV	Equivalent plastic strains [6]	1	1
EPCR:X, Y, Z, XY, YZ,   XZ	Creep strains	1	1
EPCR:EQV	Equivalent creep strains [6]	1	1
EPTO:X, Y, Z, XY, YZ,   XZ	Total mechanical strains (EPEL + EPPL + EPCR)	-	
EPTO:EQV	Total equivalent mechanical strains (EPEL + EPPL +   EPCR)	Y	-
NL:EPEQ	Accumulated equivalent plastic strain	1	1
NL:CREQ	Accumulated equivalent creep strain	-	1
NL:SRAT	Plastic yielding (1 = actively yielding, 0 = not yield-   ing)	1	1
NL:HPRES	Hydrostatic pressure	-	5
SEND:ELASTIC,   PLASTIC, CREEP	Strain energy densities	1	
LOCI:X, Y, Z	Integration point locations	1	
SVAR:1, 2, ... , N	State variables	1	1

1. Nonlinear solution, output only if the element has a nonlinear material
2. Output only if element has a thermal load
3. Available only at centroid as a *GET item
4. Available only if OUTRES,LOCI is used
5. Available only if the USERMAT subroutine and TB,STATE are used
6. The equivalent strains use an effective Poisson's ratio: for elastic and thermal this value is set by the user (MP, PRXY); for plastic and creep this value is set at 0.5.
7. For the shape memory alloy material model, transformation strains are reported as plasticity strain EPPL.

Table 2: SOLID185 Homogeneous Structural Solid Item and Sequence Numbers (p. 1038) lists output available via ETABLE using the Sequence Number method. See Element Table for Variables Identified By Sequence Number in the Basic Analysis Guide and The Item and Sequence Number Table (p. 9) in this document for more information. The following notation is used in Table 2: SOLID185 Homogeneous Structural Solid Item and Sequence Numbers (p. 1038):

## Name

output quantity as defined in the Table 1: SOLID185 Homogeneous Structural Solid Element Output Definitions (p. 1036)

## Item

predetermined Item label for ETABLE command
$\mathbf{I}, \mathbf{J}, \ldots, \mathrm{P}$
sequence number for data at nodes I, J, ..., P
Table 2 SOLID185 Homogeneous Structural Solid Item and Sequence Numbers

Output   Quant-   ity   Name											Item	$\mathbf{I}$	$\mathbf{J}$	$\mathbf{K}$	$\mathbf{L}$	$\mathbf{M}$	$\mathbf{N}$	$\mathbf{O}$	$\mathbf{P}$
	P1	SMISC	2	1	4	3	-	-	-										
P2	SMISC	5	6	-	-	8	7	-	-										
P3	SMISC	-	9	10	-	-	12	11	-										
P4	SMISC	-	-	13	14	-	-	16	15										
P5	SMISC	18	-	-	17	19	-	-	20										
P6	SMISC	-	-	-	-	21	22	23	24										

## SOLID185 Homogeneous Structural Solid Assumptions and Restrictions

- Zero-volume elements are not allowed.
- Elements may be numbered either as shown in Figure 1 (p. 1032) or may have the planes IJKL and MNOP interchanged. The element may not be twisted such that the element has two separate volumes (which occurs most frequently when the elements are not numbered properly).
- All elements must have eight nodes. You can form a prism-shaped element by defining duplicate K and L and duplicate O and P node numbers. (See Triangle, Prism, and Tetrahedral Elements (p. 99).) A tetrahedron shape is also available.
- For the degenerated shape elements where the $\bar{B}$ or enhanced strain formulations are specified, degenerated shape functions and a conventional integration scheme are used.
- If you use the mixed formulation $(\operatorname{KEYOPT}(6)=1)$, the damped eigensolver is not supported. You must use the sparse solver (default).
- For modal cyclic symmetry analyses, ANSYS recommends using enhanced strain formulation.
- Stress stiffening is always included in geometrically nonlinear analyses (NLGEOM,ON). Prestress effects can be activated by the PSTRES command.

This element has a layered option (KEYOPT $(3)=1)$. See "SOLID185 Layered Structural Solid Assumptions and Restrictions" ( p .1046 ) for additional information.

## SOLID185 Homogeneous Structural Solid Product Restrictions

None.

## SOLID185 Layered Structural Solid Element Description

Use SOLID185 Layered Solid to model layered thick shells or solids. The layered section definition is given by ANSYS section (SEC $x \times x$ ) commands. A prism degeneration option is also available.

Figure 3 SOLID185 Layered Structural Solid Geometry


## SOLID185 Layered Structural Solid Input Data

The geometry and node locations for this element are shown in Figure 3 (p. 1039). The element is defined by eight nodes. A prism-shaped element may be formed by defining the same node numbers for nodes $K$ and L , and O and P .

In addition to the nodes, the element input data includes the anisotropic material properties. Anisotropic material directions correspond to the layer coordinate directions which are based on the element coordinate system. The element coordinate system follows the shell convention where the $z$ axis is normal to the surface of the shell. The nodal ordering must follow the convention that I-J-K-L and M-N-O-P element faces represent the bottom and top shell surfaces, respectively. You can change the orientation within the plane of the layers via the ESYS command in the same way that you would for shell elements (as described in Coordinate Systems (p. 14)). To achieve the correct nodal ordering for a volume mapped (hexahedron) mesh, you can use the VEORIENT command to specify the desired volume orientation before executing the VMESH command. Alternatively, you can use the EORIENT command after automatic meshing to reorient the elements to be in line with the orientation of another element, or to be as parallel as possible to a defined ESYS axis.

## Layered Section Definition Using Section Commands

You can associate SOLID185 Layered Solid with a shell section (SECTYPE). The layered composite specifications (including layer thickness, material, orientation, and number of integration points through the thickness of the layer) are specified via shell section (SEC $x \times x$ ) commands. You can use the shell section commands even
with a single-layered element. ANSYS obtains the actual layer thicknesses used for element calculations by scaling the input layer thickness so that they are consistent with the thickness between the nodes. A section can be partially defined using data from a FiberSIM . xml file.

You can designate the number of integration points ( $1,3,5,7$, or 9 ) located through the thickness of each layer. Two points are located on the top and bottom surfaces respectively and the remaining points are distributed equal distance between the two points. The element requires at least two points through the entire thickness. When no shell section definition is provided, the element is treated as single-layered and uses two integration points through the thickness.

SOLID185 Layered Solid does not support real constant input for defining layer sections.

## Other Input

The default orientation for this element has the S1 (shell surface coordinate) axis aligned with the first parametric direction of the element at the center of the element and is shown as $\mathrm{x}_{\mathrm{o}}$ in Figure 3 (p. 1039).

The default first surface direction S1 can be reoriented in the element reference plane (as shown in Figure 3 (p. 1039)) via the ESYS command. You can further rotate S1 by angle THETA (in degrees) for each layer via the SECDATA command to create layer-wise coordinate systems. See Coordinate Systems (p. 14) for details.

Element loads are described in Node and Element Loads (p. 97). Pressures may be input as surface loads on the element faces as shown by the circled numbers in Figure 3 (p.1039). Positive pressures act into the element.

If you specify no element body load for defining temperatures-that is, if you define temperatures with commands other than BFE--SOLID185 Layered Solid adopts an element-wise temperature pattern and requires only eight temperatures for the eight element corner nodes. The node I temperature $\mathrm{T}(\mathrm{I})$ defaults to TUNIF. If all other temperatures are unspecified, they default to $T(I)$. 'For any other input temperature pattern, unspecified nodal temperatures default to TUNIF. ANSYS computes all layer interface temperatures by interpolating nodal temperatures.

Alternatively, you can input temperatures as element body loads at the corners of the outside faces of the element and at the corners of the interfaces between layers. In such a case, the element uses a layer-wise pattern. Temperatures $\mathrm{T} 1, \mathrm{~T} 2, \mathrm{~T} 3, \mathrm{~T} 4$ are used for the bottom of layer 1, temperatures $\mathrm{T} 5, \mathrm{~T} 6, \mathrm{~T} 7, \mathrm{~T} 8$ are used for interface corners between layers 1 and 2 , and so on between successive layers, ending with temperatures at the top layer NLayer. If you input exactly NLayer+1 temperatures, one temperature is used for the four bottom corners of each layer, and the last temperature is used for the four top corner temperatures of the top layer. The first corner temperature T1 defaults to TUNIF. If all other corner temperatures are unspecified, they default to T1. For any other input pattern, unspecified temperatures default to TUNIF.
$\operatorname{KEYOPT}(6)=1$ sets the element for using mixed formulation. For details on the use of mixed formulation, see Applications of Mixed $u$-P Formulations (p. 118) in the Element Reference.

You can apply an initial stress state to this element via the INISTATE command. For more information, see "Initial State" in the Basic Analysis Guide.

The effects of pressure load stiffness are automatically included for this element. If an unsymmetrical matrix is needed for pressure load stiffness effects, use NROPT,UNSYM.

The following table summarizes the element input. Element Input (p. 5) provides a general description of element input.

## SOLID185 Layered Structural Solid Input Summary

## Nodes

I, J, K, L, M, N, O, P

## Degrees of Freedom

UX, UY, UZ

## Real Constants

None

## Material Properties

EX, EY, EZ, PRXY, PRYZ, PRXZ (or NUXY, NUYZ, NUXZ),
ALPX, ALPY, ALPZ (or CTEX, CTEY, CTEZ or THSX, THSY, THSZ),
DENS, GXY, GYZ, GXZ, DAMP

## Surface Loads

Pressures --
face 1 (J-I-L-K), face 2 (I-J-N-M), face 3 (J-K-O-N), face 4 (K-L-P-O), face 5 (L-I-M-P), face 6 (M-N-O-P)

## Body Loads

## Temperatures --

T1, T2, T3, T4 at bottom of layer 1; T5, T6, T7, T8 between layers 1-2; similarly for between successive layers, ending with temperatures at top of layer NLayer ( 4 * (NLayer + 1) maximum)

## Body force densities --

The element values in the global $X, Y$, and $Z$ directions.

## Special Features

Plasticity (PLASTIC, BISO, MISO, NLISO, BKIN, MKIN, KINH, CHABOCHE, HILL)
Hyperelasticity (AHYPER, HYPER, BB, CDM)
Viscoelasticity (PRONY, SHIFT)
Viscoplasticity/Creep (CREEP, RATE)
Creep
Stress stiffening
Large deflection
Large strain
Initial state
Automatic selection of element technology
Birth and death
Linear perturbation
See the Theory Reference for the Mechanical APDL and Mechanical Applications for details about material models.

See Automatic Selection of Element Technologies (p. 122) and ETCONTROL for more information about selecting element technologies.

## KEYOPT(2)

Element technology:

```
2 --
 Enhanced strain formulation
3--
 Simplified enhanced strain formulation (default)
```


## KEYOPT(3)

Layer construction:
0 --
Structural Solid (not applicable to SOLID185 Layered Solid)
1 --
Layered Solid

## KEYOPT(6)

Element formulation:
0 --
Use pure displacement formulation (default)
1 --
Use mixed formulation

## KEYOPT(8)

Layer data storage:
0 --
Store data for bottom of bottom layer and top of top layer (default)
1 --
Store top and bottom data for all layers. (The volume of data may be considerable.)

## SOLID185 Layered Structural Solid Element Technology

SOLID185 Layered Solid uses the enhanced strain formulation method, as follows:

- Enhanced strain formulation

Prevents shear locking in bending-dominated problems and volumetric locking in nearly incompressible cases. The formulation introduces 13 internal DOFs (inaccessible to ANSYS users). If mixed u-P formulation is employed with enhanced strain formulation, only nine DOFs for overcoming shear-locking are used. All internal DOFs are introduced automatically at the element level and condensed out.

For more information about enhanced strain formulation, see the Theory Reference for the Mechanical APDL and Mechanical Applications.

- Simplified enhanced strain formulation

Prevents shear locking in bending-dominated problems. This is a special case of the enhanced strain formulation and always introduces 9 internal DOFs (inaccessible to ANSYS users). Because there are no internal DOFs to handle volumetric locking, this formulation should not be used when the material is nearly incompressible, except when the Mixed u-P formulation is also used. When used with the Mixed $u-P$ formulation, the simplified enhanced strain formulation gives the same results as the enhanced strain formulation. All internal DOFs are introduced automatically at the element level and condensed out.

This option is more efficient than the enhanced strain formulation because it uses fewer internal DOFs.

For more information about the simplified enhanced strain formulation, see the Theory Reference for the Mechanical APDL and Mechanical Applications.

## SOLID185 Layered Structural Solid Output Data

The solution output associated with the element is in two forms:

- Nodal displacements included in the overall nodal solution
- Additional element output as shown in Table 3: SOLID185 Layered Structural Solid Element Output Definitions (p. 1044)

Several items are illustrated in Figure 4 (p. 1043). See Filling the Element Table for Variables Identified By Sequence Number in the Basic Analysis Guide and The Item and Sequence Number Table (p. 9) in this document for more information.

Figure 4 SOLID185 Layered Structural Solid Stress Output

*Note: Layer Coordinate System x-y plane is parallel to the reference plane (KREF)
Stress directions shown are for global directions.
The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " $Y$ " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 3 SOLID185 Layered Structural Solid Element Output Definitions

Name	Definition	0	R
EL	Element Number	-	Y
NODES	Nodes - I, J, K, L, M, N, O, P	-	Y
MAT	Material number	-	Y
VOLU:	Volume	-	Y
XC, YC, ZC	Location where results are reported	Y	3
PRES	Pressures P1 at nodes J, I, L, K; P2 at I, J, N, M; P3 at J, K, O, N; P4 at K, L, P, O; P5 at L, I, M, P; P6 at M, N, O, P	-	Y
TEMP	T1, T2, T3, T4 at bottom of layer 1; T5, T6, T7, T8 between layers 1-2; similarly for between successive layers, ending with temperatures at top of layer NL ( 4 * $(N L+1)$ maximum $)$	-	Y
S:X, Y, Z, XY, YZ, XZ	Stresses	Y	Y
S:1, 2, 3	Principal stresses	-	Y
S:INT	Stress intensity	-	Y
S:EQV	Equivalent stress	-	Y
$\begin{aligned} & \text { EPEL:X,Y, Z, XY, YZ, } \\ & X Z \end{aligned}$	Elastic strains	Y	Y
EPEL:EQV	Equivalent elastic strains [6]	-	Y
$\begin{aligned} & \text { EPTH:X, Y, Z, XY, YZ, } \\ & \text { XZ } \end{aligned}$	Thermal strains	2	2
EPTH:EQV	Equivalent thermal strains [6]	2	2
$\begin{aligned} & \text { EPPL:X, Y, Z, XY, YZ, } \\ & X Z \end{aligned}$	Plastic strains [7]	1	1
EPPL:EQV	Equivalent plastic strains [6]	1	1
$\begin{aligned} & \text { EPCR:X,Y, Z, XY, YZ, } \\ & X Z \end{aligned}$	Creep strains	1	1
EPCR:EQV	Equivalent creep strains [6]	1	1
$\begin{aligned} & \text { EPTO:X, Y, Z, XY, YZ, } \\ & X Z \end{aligned}$	Total mechanical strains (EPEL + EPPL + EPCR)	Y	-
EPTO:EQV	Total equivalent mechanical strains (EPEL + EPPL + EPCR)	Y	-
NL:EPEQ	Accumulated equivalent plastic strain	1	1
NL:CREQ	Accumulated equivalent creep strain	1	1


Name	Definition	$\mathbf{0}$	$\mathbf{R}$
NL:SRAT	Plastic yielding (1 = actively yielding, $0=$ not yield-   ing $)$	1	1
NL:HPRES	Hydrostatic pressure	1	1
SEND:ELASTIC,   PLASTIC, CREEP	Strain energy densities	-	1
LOCI:X, Y, Z	Integration point locations	-	4
SVAR:1, 2, .., N	State variables	-	5
ILSXZ	SXZ interlaminar shear stress	-	9
ILSYZ	SYZ interlaminar shear stress	-	9
ILSUM	Magnitude of the interlaminar shear stress vector	-	8,
ILANG	Angle of interlaminar shear stress vector (measured   from the element x-axis toward the element y-axis   in degrees)	-	9

1. Nonlinear solution, output only if the element has a nonlinear material
2. Output only if element has a thermal load
3. Available only at centroid as a *GET item
4. Available only if OUTRES,LOCI is used
5. Available only if the USERMAT subroutine and TB,STATE are used
6. The equivalent strains use an effective Poisson's ratio: for elastic and thermal this value is set by the user (MP,PRXY); for plastic and creep this value is set at 0.5.
7. For the shape memory alloy material model, transformation strains are reported as plasticity strain EPPL.
8. The components are combined as $\sigma_{\mathrm{il}}=\sqrt{\left(\sigma_{\mathrm{xz}}\right)^{2}+\left(\sigma_{\mathrm{yz}}\right)^{2}}$ and the largest value of $\sigma_{\mathrm{il}}$ is output as the maximum interlaminar shear stress.
9. Available only if a valid shell section (SECTYPE,,SHELL) is defined for the element.

Table 4: SOLID185 Layered Structural Solid Item and Sequence Numbers (p. 1046) lists output available via ETABLE using the Sequence Number method. See Element Table for Variables Identified By Sequence Number in the Basic Analysis Guide and The Item and Sequence Number Table (p.9) in this document for more information. The following notation is used in Table 4: SOLID185 Layered Structural Solid Item and Sequence Numbers (p. 1046):

## Name

output quantity as defined in Table 3: SOLID185 Layered Structural Solid Element Output Definitions (p. 1044)

## Item

predetermined Item label for ETABLE command

## I,J,...,P

sequence number for data at nodes I, J, ..., P
Table 4 SOLID185 Layered Structural Solid Item and Sequence Numbers

Output			ETABL	an	ESOL	Com	mand	npu		
Quant- ity Name		Item	I	J	K	L	M	N	0	P
P1		SMISC	2	1	4	3	-	-	-	-
P2		SMISC	5	6	-	-	8	7	-	-
P3		SMISC	-	9	10	-	-	12	11	-
P4		SMISC	-	-	13	14	-	-	16	15
P5		SMISC	18	-	-	17	19	-	-	20
P6		SMISC	-		-	-	21	22	23	24
Output Quantity Name	ETABLE and ESOL Command Input									
	Item	Bottom of Layer $\mathbf{i}$				Top of Layer NL				
ILSXZ	SMISC	$8 *(i-1)+41$				8 * (NL - 1) + 42				
ILSYZ	SMISC	8 * $(\mathrm{i}-1)+43$				$8 *(N L-1)+44$				
ILSUM	SMISC	8* $(i-1)+45$				8* (NL - 1) + 46				
ILANG	SMISC	8* $(\mathrm{i}-1)+47$				8 * (NL - 1) + 48				

## SOLID185 Layered Structural Solid Assumptions and Restrictions

- Zero-volume elements are not allowed.
- Elements may be numbered either as shown in Figure 3 (p. 1039) or may have the planes IJKL and MNOP interchanged. The element may not be twisted such that the element has two separate volumes (which occurs most frequently when the elements are not numbered properly).
- All elements must have eight nodes. You can form a prism-shaped element by defining duplicate K and L and duplicate O and P node numbers. (See Triangle, Prism, and Tetrahedral Elements (p. 99).)
- If you use the mixed formulation ( $\operatorname{KEYOPT}(6)=1)$, the damped eigensolver is not supported. You must use the sparse solver (default).
- Stress stiffening is always included in geometrically nonlinear analyses (NLGEOM,ON). It is ignored in geometrically linear analyses (NLGEOM,OFF) when specified by SSTIF,ON. Prestress effects can be activated via the PSTRES command.
- If the material of a layer is hyperelastic, the layer orientation angle has no effect.


## SOLID185 Layered Structural Solid Product Restrictions

There are no product-specific restrictions for this element.

## SOLID186

## 3-D 20-Node Structural Solid

MP ME ST PR PRN DS DSS <> <> <> <> PP VT EME MFS

## SOLID186 Element Description

SOLID186 is a higher order 3-D 20-node solid element that exhibits quadratic displacement behavior. The element is defined by 20 nodes having three degrees of freedom per node: translations in the nodal $x, y$, and $z$ directions. The element supports plasticity, hyperelasticity, creep, stress stiffening, large deflection, and large strain capabilities. It also has mixed formulation capability for simulating deformations of nearly incompressible elastoplastic materials, and fully incompressible hyperelastic materials.

SOLID186 is available in two forms:

- Homogenous Structural Solid (KEYOPT(3) $=0$, the default) -- See "SOLID186 Homogenous Structural Solid Element Description " (p. 1047).
- Layered Structural Solid (KEYOPT(3) = 1) -- See "SOLID186 Layered Structural Solid Element Description" (p. 1054).

A lower-order version of the SOLID186 element is SOLID185.

## SOLID186 Homogenous Structural Solid Element Description

SOLID186 Homogenous Structural Solid is well suited to modeling irregular meshes (such as those produced by various CAD/CAM systems). The element may have any spatial orientation.

Various printout options are available. See SOLID186 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details.

Figure 1 SOLID186 Homogenous Structural Solid Geometry



Tetrahedral Option



## SOLID186 Homogenous Structural Solid Input Data

The geometry, node locations, and the element coordinate system for this element are shown in Figure 1 (p. 1048). A prism-shaped element may be formed by defining the same node numbers for nodes K, L, and S ; nodes A and B ; and nodes $\mathrm{O}, \mathrm{P}$, and W. A tetrahedral-shaped element and a pyramid-shaped element may also be formed as shown in Figure 1 (p. 1048). SOLID187 is a similar, but 10-node tetrahedron element.

In addition to the nodes, the element input data includes the anisotropic material properties. Anisotropic material directions correspond to the element coordinate directions. The element coordinate system orientation is as described in Coordinate Systems (p. 14).

Element loads are described in Node and Element Loads (p. 97). Pressures may be input as surface loads on the element faces as shown by the circled numbers on Figure 1 (p. 1048). Positive pressures act into the element. Temperatures may be input as element body loads at the nodes. The node I temperature $\mathrm{T}(\mathrm{I})$ defaults to TUNIF. If all other temperatures are unspecified, they default to $\mathrm{T}(\mathrm{I})$. If all corner node temperatures are specified, each midside node temperature defaults to the average temperature of its adjacent corner nodes. For any other input temperature pattern, unspecified temperatures default to TUNIF.

As described in Coordinate Systems (p. 14), you can use ESYS to orient the material properties and strain/stress output. Use RSYS to choose output that follows the material coordinate system or the global coordinate system. For the case of hyperelastic materials, the output of stress and strain is always with respect to the global Cartesian coordinate system rather than following the material/element coordinate system.
$\operatorname{KEYOPT}(6)=1$ sets the element for using mixed formulation. For details on the use of mixed formulation, see Applications of Mixed u-P Formulations (p. 118) in the Element Reference.

You can apply an initial stress state to this element via the INISTATE command. For more information, see "Initial State" in the Basic Analysis Guide.

The effects of pressure load stiffness are automatically included for this element. If an unsymmetric matrix is needed for pressure load stiffness effects, use NROPT,UNSYM.

The following table summarizes the element input. Element Input (p. 5) provides a general description of element input.

## SOLID186 Homogenous Structural Solid Input Summary

## Nodes

I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, A, B

## Degrees of Freedom

UX, UY, UZ

## Real Constants

None

## Material Properties

EX, EY, EZ, ALPX, ALPY, ALPZ (or CTEX, CTEY, CTEZ or THSX,THSY, THSZ), PRXY, PRYZ, PRXZ (or NUXY, NUYZ, NUXZ), DENS, GXY, GYZ, GXZ, DAMP

## Surface Loads

Pressures --
face 1 (J-I-L-K), face 2 (I-J-N-M), face 3 (J-K-O-N),
face 4 (K-L-P-O), face 5 (L-I-M-P), face 6 (M-N-O-P)

## Body Loads

## Temperatures --

$T(I), T(J), T(K), T(L), T(M), T(N), T(O), T(P), T(Q), T(R), T(S), T(T), T(U), T(V), T(W), T(X), T(Y), T(Z), T(A), T(B)$

## Body force densities --

The element values in the global $X, Y$, and $Z$ directions.

## Special Features

Plasticity (PLASTIC, BISO, MISO, NLISO, BKIN, MKIN, KINH, CHABOCHE, HILL)
Hyperelasticity (AHYPER, HYPER, BB, CDM)
Viscoelasticity (PRONY, SHIFT)
Viscoplasticity/Creep (CREEP, RATE)
Elasticity (ELASTIC, ANEL)
Other material (USER, SDAMP, SMA, CAST, EDP, GURSON)
Stress stiffening
Large deflection
Large strain
Initial state
Nonlinear stabilization
Automatic selection of element technology

Birth and death
Linear perturbation
Items in parentheses refer to data tables associated with the TB command. See the Theory Reference for the Mechanical APDL and Mechanical Applications for details of the material models.

See Automatic Selection of Element Technologies (p. 122) and ETCONTROL for more information on selection of element technologies.

## KEYOPT(2)

Element technology:
0 --
Uniform reduced integration (default)
1 --
Full integration

## KEYOPT(3)

Layer construction:
0 --
Homogenous Structural Solid (default) -- nonlayered
1 --
Layered Structural Solid (not applicable to SOLID186 Homogenous Structural Solid)

## KEYOPT(6)

Element formulation:
0 --
Use pure displacement formulation (default)
1 --
Use mixed formulation

## SOLID186 Homogenous Structural Solid Element Technology

SOLID186 uses the uniform reduced integration method or the full integration method, as follows:

## - Uniform reduced integration method

Helps to prevent volumetric mesh locking in nearly incompressible cases. However, hourglass mode might propagate in the model if there are not at least two layers of elements in each direction.

## - Full integration

The full integration method does not cause hourglass mode, but can cause volumetric locking in nearly incompressible cases. This method is used primarily for purely linear analyses, or when the model has only one layer of elements in each direction.

## SOLID186 Homogenous Structural Solid Output Data

The solution output associated with the element is in two forms:

- Nodal displacements included in the overall nodal solution
- Additional element output as shown in Table 1: SOLID186 Homogenous Structural Solid Element Output Definitions (p. 1051)

Figure 2 SOLID186 Homogenous Structural Solid Stress Output


The element stress directions are parallel to the element coordinate system. A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " $Y$ " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and " - " indicates that the item is not available.

Table 1 SOLID186 Homogenous Structural Solid Element Output Definitions

Name	Definition	$\mathbf{O}$	R
EL	Element number and name	-	Y
NODES	Nodes - I, J, K, L, M, N, O, P	-	Y
MAT	Material number	-	Y
VOLU:	Volume	-	Y
$\mathrm{XC}, \mathrm{YC}, \mathrm{ZC}$	Location where results are reported	Y	3
PRES	Pressures P1 at nodes J, I, L, K; P2 at I, J, N, M; P3 at   J, K, O, N; P4 at K, L, P, O; P5 at L, I, M, P; P6 at M,   N, O, P	-	Y
TEMP	Temperatures T(I), T(J), T(K), T(L),T(M),T(N), T(O), T(P)	-	Y
S:X, Y, Z, XY, YZ, XZ	Stresses	Y	Y
$\mathrm{S}: 1,2,3$	Principal stresses	-	Y


Name	Definition	0	R
S:INT	Stress intensity	-	Y
S:EQV	Equivalent stress	-	Y
$\begin{aligned} & \text { EPEL:X,Y, Z, XY, YZ, } \\ & X Z \end{aligned}$	Elastic strains	Y	Y
EPEL:EQV	Equivalent elastic strains [6]	Y	Y
$\begin{aligned} & \text { EPTH:X, Y, Z, XY, YZ, } \\ & X Z \end{aligned}$	Thermal strains	2	2
EPTH:EQV	Equivalent thermal strains [6]	2	2
$\begin{aligned} & \text { EPPL:X,Y, Z, XY, YZ, } \\ & \text { XZ } \end{aligned}$	Plastic strains [7]	1	1
EPPL:EQV	Equivalent plastic strains [6]	1	1
$\begin{aligned} & \text { EPCR:X,Y, Z, XY, YZ, } \\ & \text { XZ } \end{aligned}$	Creep strains	1	1
EPCR:EQV	Equivalent creep strains [6]	1	1
$\begin{aligned} & \text { EPTO:X,Y, Z, XY, YZ, } \\ & \text { XZ } \end{aligned}$	Total mechanical strains (EPEL + EPPL + EPCR)	Y	-
EPTO:EQV	Total equivalent mechanical strains (EPEL + EPPL + EPCR)	Y	-
NL:EPEQ	Accumulated equivalent plastic strain	1	1
NL:CREQ	Accumulated equivalent creep strain	1	1
NL:SRAT	Plastic yielding ( $1=$ actively yielding, $0=$ not yielding)	1	1
NL:HPRES	Hydrostatic pressure	1	1
SEND:ELASTIC, PLASTIC, CREEP	Strain energy density	-	1
LOCI:X, Y, Z	Integration point locations	-	4
SVAR:1, 2, ... , N	State variables	-	5

1. Nonlinear solution (output only if the element has a nonlinear material)
2. Output only if element has a thermal load
3. Available only at centroid as a *GET item.
4. Available only if OUTRES,LOCI is used.
5. Available only if the USERMAT subroutine and TB,STATE are used.
6. The equivalent strains use an effective Poisson's ratio: for elastic and thermal this value is set by the user (MP,PRXY); for plastic and creep this value is set at 0.5.
7. For the shape memory alloy material model, transformation strains are reported as plasticity strain EPPL.

Table 2: SOLID186 Homogenous Structural Solid Item and Sequence Numbers (p. 1053) lists output available through ETABLE using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p. 9) in this document for more information. The following notation is used in Table 2: SOLID186 Homogenous Structural Solid Item and Sequence Numbers (p. 1053):

## Name

output quantity as defined in Table 1: SOLID186 Homogenous Structural Solid Element Output Definitions (p. 1051)

## Item

predetermined Item label for ETABLE
$\mathbf{I}, \mathbf{J}, \ldots, B$
sequence number for data at nodes I, J, ..., B
Table 2 SOLID186 Homogenous Structural Solid Item and Sequence Numbers

Output   Quant-   ity   Name												Item	$\mathbf{I}$	$\mathbf{J}$	$\mathbf{K}$	$\mathbf{L}$	$\mathbf{M}$	$\mathbf{N}$	$\mathbf{O}$	$\mathbf{P}$	$\mathbf{Q}, \ldots, \mathbf{B}$
	SMISC	2	1	4	3	-	-	-	-	-											
P2	SMISC	5	6	-	-	8	7	-	-	-											
P3	SMISC	-	9	10	-	-	12	11	-	-											
P4	SMISC	-	-	13	14	-	-	16	15	-											
P5	SMISC	18	-	-	17	19	-	-	20	-											
P6	SMISC	-	-	-	-	21	22	23	24	-											

See Surface Solution (p. 10) in this document for the item and sequence numbers for surface output for ETABLE.

## SOLID186 Homogenous Structural Solid Assumptions and Restrictions

- The element must not have a zero volume. Also, the element may not be twisted such that the element has two separate volumes (which occurs most frequently when the element is not numbered properly). Elements may be numbered either as shown in Figure 1 (p. 1048) or may have the planes IJKL and MNOP interchanged.
- An edge with a removed midside node implies that the displacement varies linearly, rather than parabolically, along that edge. See Quadratic Elements (Midside Nodes) in the Modeling and Meshing Guide for more information on the use of midside nodes.
- Use at least two elements in each direction to avoid hourglass mode if uniform reduced integration is used ( $\operatorname{KEYOPT}(2)=0)$.
- When degenerated into a tetrahedron, wedge, or pyramid element shape (see Triangle, Prism, and Tetrahedral Elements ( p .99 )), the corresponding degenerated shape functions are used. Degeneration to a pyramidal form should be used with caution. The element sizes, when degenerated, should be small to minimize the stress gradients. Pyramid elements are best used as filler elements or in meshing transition zones.
- For mixed formulation ( $\operatorname{KEYOPT}(6)=1)$, no midside nodes can be missed, and no degenerated shapes are recommended. If you use the mixed formulation, you must use the sparse solver (default).
- Stress stiffening is always included in geometrically nonlinear analyses (NLGEOM,ON). Prestress effects can be activated via the PSTRES command.

This element has a layered option $(\operatorname{KEYOPT}(3)=1)$. See "SOLID186 Layered Structural Solid Assumptions and Restrictions" (p. 1061) for additional information.

## SOLID186 Homogenous Structural Solid Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

## ANSYS Professional

- The only special feature allowed is stress stiffening.


## SOLID186 Layered Structural Solid Element Description

Use SOLID186 Layered Structural Solid to model layered thick shells or solids. The layered section definition is given by ANSYS section (SECxxx) commands. A prism degeneration option is also available.

Figure 3 SOLID186 Layered Structural Solid Geometry

$\mathrm{x}_{\mathrm{o}}=$ Element x -axis if ESYS is not supplied.
$x=$ Element $x$-axis if ESYS is supplied.

## SOLID186 Layered Structural Solid Input Data

The geometry, node locations, and the element coordinate system for this element are shown in Figure 3 (p. 1054). A prism-shaped element may be formed by defining the same node numbers for nodes K, L, and S; nodes A and B; and nodes O, P, and W.

In addition to the nodes, the element input data includes the anisotropic material properties. Anisotropic material directions correspond to the layer coordinate directions which are based on the element coordinate system. The element coordinate system follows the shell convention where the $z$ axis is normal to the surface of the shell. The nodal ordering must follow the convention that I-J-K-L and M-N-O-P element faces represent the bottom and top shell surfaces, respectively. You can change the orientation within the plane of the
layers via the ESYS command in the same way that you would for shell elements (as described in Coordinate Systems (p. 14)). To achieve the correct nodal ordering for a volume mapped (hexahedron) mesh, you can use the VEORIENT command to specify the desired volume orientation before executing the VMESH command. Alternatively, you can use the EORIENT command after automatic meshing to reorient the elements to be in line with the orientation of another element, or to be as parallel as possible to a defined ESYS axis.

## Layered Section Definition Using Section Commands

You can associate SOLID186 Layered Structural Solid with a shell section (SECTYPE). The layered composite specifications (including layer thickness, material, orientation, and number of integration points through the thickness of the layer) are specified via shell section (SECxxx) commands. You can use the shell section commands even with a single-layered element. ANSYS obtains the actual layer thicknesses used for element calculations by scaling the input layer thickness so that they are consistent with the thickness between the nodes. A section can be partially defined using data from a FiberSIM .xml file.

You can designate the number of integration points ( $1,3,5,7$, or 9 ) located through the thickness of each layer. Two points are located on the top and bottom surfaces respectively and the remaining points are distributed equal distance between the two points. The element requires at least two points through the entire thickness. When no shell section definition is provided, the element is treated as single-layered and uses two integration points through the thickness.

SOLID186 Layered Structural Solid does not support real constant input for defining layer sections.

## Other Input

The default orientation for this element has the S 1 (shell surface coordinate) axis aligned with the first parametric direction of the element at the center of the element and is shown as $x_{o}$ in Figure 3 (p. 1054).

The default first surface direction S1 can be reoriented in the element reference plane (as shown in Figure 3 (p. 1054)) via the ESYS command. You can further rotate S1 by angle THETA (in degrees) for each layer via the SECDATA command to create layer-wise coordinate systems. See Coordinate Systems (p. 14) for details.

Element loads are described in Node and Element Loads (p. 97). Pressures may be input as surface loads on the element faces as shown by the circled numbers in Figure 3 (p. 1054). Positive pressures act into the element.

If you specify no element body load for defining temperatures--that is, if you define temperatures with commands other than BFE--SOLID186 Layered Structural Solid adopts an element-wise temperature pattern and requires only eight temperatures for the eight element corner nodes. The node I temperature $\mathrm{T}(\mathrm{I})$ defaults to TUNIF. If all other temperatures are unspecified, they default to $T(I)$. If all corner node temperatures are specified, each midside node temperature defaults to the average temperature of its adjacent corner nodes. For any other input temperature pattern, unspecified nodal temperatures default to TUNIF. ANSYS computes all layer interface temperatures by interpolating nodal temperatures.

Alternatively, you can input temperatures as element body loads at the corners of the outside faces of the element and at the corners of the interfaces between layers. In such a case, the element uses a layer-wise pattern. Temperatures $\mathrm{T} 1, \mathrm{~T} 2, \mathrm{~T} 3, \mathrm{~T} 4$ are used for the bottom of layer 1, temperatures $\mathrm{T} 5, \mathrm{~T} 6, \mathrm{~T} 7, \mathrm{~T} 8$ are used for interface corners between layers 1 and 2, and so on between successive layers, ending with temperatures at the top layer NLayer. If you input exactly NLayer+1 temperatures, one temperature is used for the four bottom corners of each layer, and the last temperature is used for the four top corner temperatures of the top layer. The first corner temperature T1 defaults to TUNIF. If all other corner temperatures are unspecified, they default to T1. For any other input pattern, unspecified temperatures default to TUNIF.

As described in Coordinate Systems (p. 14), you can use the ESYS command to orient the material properties and strain/stress output. Use RSYS to choose output that follows the material coordinate system or the global coordinate system. For the case of hyperelastic materials, the output of stress and strain is always with respect to the global Cartesian coordinate system rather than the material/element coordinate system.

KEYOPT(6) $=1$ sets the element for using u-P mixed formulation. For details about the use of mixed formulation, see Applications of Mixed u-P Formulations (p. 118) in the Element Reference.

You can apply an initial stress state to this element via the INISTATE command. For more information, see "Initial State" in the Basic Analysis Guide.

The effects of pressure load stiffness are automatically included for this element. If an unsymmetric matrix is needed for pressure load stiffness effects, use NROPT,UNSYM.

The following table summarizes the element input. Element Input (p. 5) provides a general description of element input.

## SOLID186 Layered Structural Solid Input Summary

## Nodes

I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, A, B

## Degrees of Freedom

UX, UY, UZ

## Real Constants

None

## Material Properties

EX, EY, EZ, ALPX, ALPY, ALPZ (or CTEX, CTEY, CTEZ or THSX,THSY, THSZ), PRXY, PRYZ, PRXZ (or NUXY, NUYZ, NUXZ), DENS, GXY, GYZ, GXZ, DAMP

## Surface Loads

face 1 (J-I-L-K), face 2 (I-J-N-M), face 3 (J-K-O-N), face 4 (K-L-P-O), face 5 (L-I-M-P), face 6 (M-N-O-P)

## Body Loads

## Temperatures --

T1, T2, T3, T4 at bottom of layer 1; T5, T6, T7, T8 between layers 1-2; similarly for between successive layers, ending with temperatures at top of layer NLayer ( 4 * (NLayer +1 ) maximum)

## Body force densities --

The element values in the global $X, Y$, and $Z$ directions.

## Special Features

Plasticity (PLASTIC, BISO, MISO, NLISO, BKIN, MKIN, KINH, CHABOCHE, HILL)
Hyperelasticity (AHYPER, HYPER, BB, CDM)
Viscoelasticity (PRONY, SHIFT)
Viscoplasticity
Creep
Stress stiffening
Large deflection

Large strain<br>Initial state<br>Automatic selection of element technology<br>Birth and death<br>Linear perturbation

See "Structures with Material Nonlinearities" in the Theory Reference for the Mechanical APDL and Mechanical Applications for details on the material models.

See Automatic Selection of Element Technologies (p. 122) and ETCONTROL for more information on selection of element technologies.

## KEYOPT(2)

Element technology:
0 --
Uniform reduced integration (default)

## KEYOPT(3)

Layer construction:
0 --
Homogenous Structural Solid (not applicable to SOLID186 Layered Structural Solid)
1 --
Layered Structural Solid

## KEYOPT(6)

Element formulation:
0 --
Use pure displacement formulation (default)
1 --
Use mixed formulation

## KEYOPT(8)

Layer data storage:
0 --
Store data for bottom of bottom layer and top of top layer
1 --
Store top and bottom data for all layers. (The volume of data may be excessive.)

## SOLID186 Layered Structural Solid Element Technology

SOLID186 Layered Structural Solid supports only the uniform reduced integration method (KEYOPT(2) = 0), which helps to prevent volumetric mesh locking in nearly incompressible cases. However, hourglass mode might propagate in the model if there are not at least two layers of elements in each direction.

## SOLID186 Layered Structural Solid Output Data

The solution output associated with the element is in two forms:

- Nodal displacements included in the overall nodal solution
- Additional element output as shown in Table 3: SOLID186 Layered Structural Solid Element Output Definitions (p. 1058)

Figure 4 SOLID186 Layered Structural Solid Stress Output


The element stress directions are parallel to the layer coordinate system. A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " $Y$ " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and " - " indicates that the item is not available.

Table 3 SOLID186 Layered Structural Solid Element Output Definitions

Name	Definition	$\mathbf{O}$	R
EL	Element number and name	-	Y
NODES	Nodes $-\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}, \mathrm{M}, \mathrm{N}, \mathrm{O}, \mathrm{P}$	-	Y
MAT	Material number	-	Y
VOLU:	Volume	-	Y
XC, YC, ZC	Location where results are reported	Y	3
PRES	Pressures P1 at nodes J, I, L, K; P2 at I, J, N, M; P3 at   J, K, O, N; P4 at K, L, P, O; P5 at L, I, M, P; P6 at M, N,   $\mathrm{O}, \mathrm{P}$	-	Y
TEMP	$\mathrm{T} 1, \mathrm{~T} 2, \mathrm{~T} 3, \mathrm{T4}$ at bottom of layer 1; T5, T6, T7, T8   between layers 1-2; similarly for between successive   layers, ending with temperatures at top of layer NL   (4 * (NL + 1) maximum)	-	Y


Name	Definition	0	R
S:X, Y, Z, XY, YZ, XZ	Stresses	Y	Y
S:1, 2, 3	Principal stresses	-	Y
S:INT	Stress intensity	-	Y
S:EQV	Equivalent stress	-	Y
$\begin{aligned} & \text { EPEL:X,Y, Z, XY, YZ, } \\ & \text { XZ } \end{aligned}$	Elastic strains	Y	Y
EPEL:EQV	Equivalent elastic strains [6]	Y	Y
$\begin{aligned} & \text { EPTH:X,Y, Z, XY, YZ, } \\ & X Z \end{aligned}$	Thermal strains	2	2
EPTH:EQV	Equivalent thermal strains [6]	2	2
$\begin{aligned} & \text { EPPL:X,Y, Z, XY, YZ, } \\ & X Z \end{aligned}$	Plastic strains [7]	1	1
EPPL:EQV	Equivalent plastic strains [6]	1	1
$\begin{aligned} & \text { EPCR:X,Y, Z, XY, YZ, } \\ & \text { XZ } \end{aligned}$	Creep strains	1	1
EPCR:EQV	Equivalent creep strains [6]	1	1
$\begin{aligned} & \text { EPTO:X,Y, Z, XY, YZ, } \\ & \text { XZ } \end{aligned}$	Total mechanical strains (EPEL + EPPL + EPCR)	Y	-
EPTO:EQV	Total equivalent mechanical strains (EPEL + EPPL + EPCR)	Y	-
NL:EPEQ	Accumulated equivalent plastic strain	1	1
NL:CREQ	Accumulated equivalent creep strain	1	1
NL:SRAT	Plastic yielding ( $1=$ actively yielding, $0=$ not yielding)	1	1
NL:HPRES	Hydrostatic pressure	1	1
SEND:ELASTIC, PLASTIC, CREEP	Strain energy density	-	1
LOCI:X, Y, Z	Integration point locations	-	4
SVAR:1, 2, ... , N	State variables	-	5
ILSXZ	SXZ interlaminar shear stress	-	8
ILSYZ	SYZ interlaminar shear stress	-	8
ILSUM	Interlaminar shear stress vector sum	-	8
ILANG	Angle of interlaminar shear stress vector (measured from the element $x$-axis toward the element $y$-axis in degrees)	-	8

1. Nonlinear solution (output only if the element has a nonlinear material)
2. Output only if element has a thermal load
3. Available only at centroid as a *GET item.
4. Available only if OUTRES,LOCI is used.
5. Available only if the USERMAT subroutine and TB,STATE are used.
6. The equivalent strains use an effective Poisson's ratio: for elastic and thermal this value is set by the user (MP,PRXY); for plastic and creep this value is set at 0.5.
7. For the shape memory alloy material model, transformation strains are reported as plasticity strain EPPL.
8. Available only if a valid shell section (SECTYPE,,SHELL) is defined for the element.

Table 4: SOLID186 Layered Structural Solid Item and Sequence Numbers (p. 1060) lists output available via ETABLE using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p.9) in this document for more information. The following notation is used in Table 4: SOLID186 Layered Structural Solid Item and Sequence Numbers (p. 1060):

## Name

output quantity as defined in Table 3: SOLID186 Layered Structural Solid Element Output Definitions (p. 1058)

## Item

predetermined Item label for ETABLE
$\mathbf{I}, \mathbf{J}, \ldots, B$
sequence number for data at nodes I, J, ..., B
Table 4 SOLID186 Layered Structural Solid Item and Sequence Numbers

Output Quantity Name	ETABLE and ESOL Command Input									
	Item	I	J	K	L	M	N	0	P	Q,..., $\mathbf{B}$
P1	SMISC	2	1	4	3	-	-	-	-	-
P2	SMISC	5	6	-	-	8	7	-	-	-
P3	SMISC	-	9	10	-	-	12	11	-	-
P4	SMISC	-	-	13	14	-	-	16	15	-
P5	SMISC	18	-	-	17	19	-	-	20	-
P6	SMISC	-	-	-	-	21	22	23	24	-
Output	ETABLE and ESOL Command Input									
Quantity Name	Item	Bottom of Layer i					Top of Layer NL			
ILSXZ	SMISC	8 * $(\mathrm{i}-1)+41$					8 * (NL - 1) + 42			
ILSYZ	SMISC	8 * $(\mathrm{i}-1)+43$					8 * (NL-1) + 44			
ILSUM	SMISC	8* $(\mathrm{i}-1)+45$					8 * (NL -1$)+46$			
ILANG	SMISC	8* $\mathrm{i}-1)+47$					8 * (NL - 1) + 48			

See Surface Solution (p. 10) in this document for the item and sequence numbers for surface output for ETABLE.

## SOLID186 Layered Structural Solid Assumptions and Restrictions

- The element must not have a zero volume. Also, the element may not be twisted such that the element has two separate volumes (which occurs most frequently when the element is not numbered properly). Elements may be numbered either as shown in Figure 3 (p. 1054) or may have the planes IJKL and MNOP interchanged.
- An edge with a removed midside node implies that the displacement varies linearly, rather than parabolically, along that edge. See Quadratic Elements (Midside Nodes) in the Modeling and Meshing Guide for more information on the use of midside nodes.
- Use at least two elements in each direction to avoid hourglass mode.
- When degenerated into a wedge element shape (see Triangle, Prism, and Tetrahedral Elements (p. 99)), the corresponding degenerated shape functions are used. The element sizes, when degenerated, should be small to minimize the stress gradients.
- For mixed formulation ( $\operatorname{KEYOPT}(6)=1)$, no midside nodes can be missed, and no degenerated shapes are recommended. If you use the mixed formulation, you must use the sparse solver (default).
- Stress stiffening is always included in geometrically nonlinear analyses (NLGEOM,ON). It is ignored in geometrically linear analyses (NLGEOM,OFF) when specified by SSTIF,ON. Prestress effects can be activated via the PSTRES command.
- If the material of a layer is hyperelastic, the layer orientation angle has no effect.


## SOLID186 Layered Structural Solid Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

## ANSYS Professional

- The only special feature allowed is stress stiffening.


## SOLID187

## 3-D 10-Node Tetrahedral Structural Solid

MP ME ST PR PRN DS DSS <> <> <> <> PP VT EME MFS
Product Restrictions

## SOLID187 Element Description

SOLID187 element is a higher order 3-D, 10-node element. SOLID187 has a quadratic displacement behavior and is well suited to modeling irregular meshes (such as those produced from various CAD/CAM systems).

The element is defined by 10 nodes having three degrees of freedom at each node: translations in the nodal $x, y$, and $z$ directions. The element has plasticity, hyperelasticity, creep, stress stiffening, large deflection, and large strain capabilities. It also has mixed formulation capability for simulating deformations of nearly incompressible elastoplastic materials, and fully incompressible hyperelastic materials. See SOLID187 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

## Figure 1 SOLID187 Geometry



## SOLID187 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 1 (p. 1063).
In addition to the nodes, the element input data includes the orthotropic or anisotropic material properties. Orthotropic and anisotropic material directions correspond to the element coordinate directions. The element coordinate system orientation is as described in Linear Material Properties (p. 16).

Element loads are described in Node and Element Loads (p. 97). Pressures may be input as surface loads on the element faces as shown by the circled numbers on Figure 1 (p. 1063). Positive pressures act into the element. Temperatures may be input as element body loads at the nodes. The node I temperature $\mathrm{T}(\mathrm{I})$ defaults to TUNIF. If all other temperatures are unspecified, they default to $T(I)$. If all corner node temperatures are specified, each midside node temperature defaults to the average temperature of its adjacent corner nodes. For any other input temperature pattern, unspecified temperatures default to TUNIF.

As described in Coordinate Systems (p. 14), you can use ESYS to orient the material properties and strain/stress output. Use RSYS to choose output that follows the material coordinate system or the global coordinate
system. For the case of hyperelastic materials, the output of stress and strain is always with respect to the global Cartesian coordinate system rather than following the material/element coordinate system.

KEYOPT(6) $=1$ or 2 sets the element for using mixed formulation. For details on the use of mixed formulation, see Applications of Mixed u-P Formulations (p. 118) in the Element Reference.

You can apply an initial stress state to this element via the INISTATE command. For more information, see the INISTATE command, and also Initial Stress Loading in the Basic Analysis Guide.

The effects of pressure load stiffness are automatically included for this element. If an unsymmetric matrix is needed for pressure load stiffness effects, use NROPT,UNSYM.

The next table summarizes the element input. Element Input (p. 5) gives a general description of element input.

## SOLID187 Input Summary

## Nodes

I, J, K, L, M, N, O, P, Q, R
Degrees of Freedom
UX, UY, UZ

## Real Constants

None

## Material Properties

EX, EY, EZ, ALPX, ALPY, ALPZ (or CTEX, CTEY, CTEZ or THSX, THSY, THSZ), PRXY, PRYZ, PRXZ (or NUXY, NUYZ, NUXZ), DENS, GXY, GYZ, GXZ, DAMP

## Surface Loads

## Pressures --

face 1 (J-I-K), face 2 (I-J-L), face 3 (J-K-L), face 4 (K-I-L)

## Body Loads

## Temperatures --

$T(I), T(J), T(K), T(L), T(M), T(N), T(O), T(P), T(Q), T(R)$

## Body force densities --

The element values in the global $X, Y$, and $Z$ directions.

## Special Features

Plasticity (PLASTIC, BISO, MISO, NLISO, BKIN, MKIN, KINH, CHABOCHE, HILL)
Hyperelasticity (AHYPER, HYPER, BB, CDM)
Viscoelasticity (PRONY, SHIFT)
Viscoplasticity/Creep (CREEP, RATE)
Elasticity (ELASTIC, ANEL)
Other material (USER, SDAMP, SMA, CAST, EDP, GURSON)
Stress stiffening
Large deflection
Large strain
Initial state
Nonlinear stabilization

Automatic selection of element technology
Birth and death
Linear perturbation

## Note

Items in parentheses refer to data tables associated with the TB command. See "Structures with Material Nonlinearities" in the Theory Reference for the Mechanical APDL and Mechanical Applications for details of the material models.

## Note

See Automatic Selection of Element Technologies (p. 122) and ETCONTROL for more information on selection of element technologies.

## KEYOPT(6)

Element formulation:

## 0 --

Use pure displacement formulation (default)
1 --
Use mixed formulation, hydrostatic pressure is constant in an element (recommended for hyperelastic materials)
2 --
Use mixed formulation, hydrostatic pressure is interpolated linearly in an element (recommended for nearly incompressible elastoplastic materials)

## SOLID187 Output Data

The solution output associated with the element is in two forms:

- Nodal displacements included in the overall nodal solution
- Additional element output as shown in Table 1: SOLID187 Element Output Definitions (p. 1066)

Several items are illustrated in Figure 2 (p. 1066). The element stress directions are parallel to the element coordinate system. The surface stress outputs are in the surface coordinate system and are available for any face (KEYOPT(6)). The coordinate system for face JIK is shown in Figure 2 (p. 1066). The other surface coordinate systems follow similar orientations as indicated by the pressure face node description. Surface stress printout is valid only if the conditions described in Element Solution (p. 9) are met. A general description of solution output is given in The Item and Sequence Number Table (p. 9). See the Basic Analysis Guide for ways to view results.

Figure 2 SOLID187 Stress Output


## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and " - " indicates that the item is not available.

## Table 1 SOLID187 Element Output Definitions

Name	Definition	0	R
EL	Element Number	-	Y
NODES	Nodes - I, J, K, L	-	Y
MAT	Material number	-	Y
VOLU:	Volume	-	Y
XC, YC, ZC	Location where results are reported	Y	3
PRES	Pressures P1 at nodes J, I, K; P2 at I, J, L; P3 at J, K, L; P4 at K, I, L	-	Y
TEMP	Temperatures $\mathrm{T}(\mathrm{I}), \mathrm{T}(\mathrm{J}), \mathrm{T}(\mathrm{K}), \mathrm{T}(\mathrm{L})$	-	Y
S:X, Y, Z, XY, YZ, XZ	Stresses	Y	Y
S:1, 2, 3	Principal stresses	-	Y
S:INT	Stress intensity	-	Y
S:EQV	Equivalent stress	-	Y
$\begin{aligned} & \text { EPEL:X,Y, Z, XY, YZ, } \\ & X Z \end{aligned}$	Elastic strains	Y	Y
EPEL:EQV	Equivalent elastic strains [6]	-	Y
$\begin{aligned} & \text { EPTH:X, Y, Z, XY, YZ, } \\ & X Z \end{aligned}$	Thermal strains	1	1
EPTH: EQV	Equivalent thermal strains [6]	1	1


Name	Definition	$\mathbf{0}$	$\mathbf{R}$
EPPL:X, Y, Z, XY, YZ,   XZ	Plastic strains [7]	1	1
EPPL:EQV	Equivalent plastic strains [6]	1	1
EPCR:X, Y, Z, XY, YZ,   XZ	Creep strains	1	1
EPCR:EQV	Equivalent creep strains [6]	1	1
EPTO:X, Y, Z, XY, YZ,   XZ	Total mechanical strains (EPEL + EPPL + EPCR)	-	
EPTO:EQV	Total equivalent mechanical strains (EPEL + EPPL +   EPCR)	Y	-
NL:EPEQ	Accumulated equivalent plastic strain	1	1
NL:CREQ	Accumulated equivalent creep strain	1	1
NL:SRAT	Plastic yielding (1 = actively yielding, 0 = not yield-   ing)	1	1
NL:HPRES	Hydrostatic pressure	-	1
SEND: ELASTIC,   PLASTIC, CREEP	Strain energy density	-	4
LOCI:X, Y, Z	Integration point locations	-	5
SVAR:1, 2, $\ldots$, N	State variables	1	

1. Nonlinear solution, output only if the element has a nonlinear material
2. Output only if element has a thermal load
3. Available only at centroid as a *GET item.
4. Available only if OUTRES,LOCI is used.
5. Available only if the USERMAT subroutine and TB,STATE are used.
6. The equivalent strains use an effective Poisson's ratio: for elastic and thermal this value is set by the user (MP,PRXY); for plastic and creep this value is set at 0.5 .
7. For the shape memory alloy material model, transformation strains are reported as plasticity strain EPPL.

Table 2: SOLID187 Item and Sequence Numbers (p. 1068) lists output available through ETABLE using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p. 9) in this manual for more information. The following notation is used in Table 2: SOLID187 Item and Sequence Numbers (p. 1068):

## Name

output quantity as defined in Table 1: SOLID187 Element Output Definitions (p. 1066)

## Item

predetermined Item label for ETABLE command

## I,J,...,R

sequence number for data at nodes I, J, ..., R
Table 2 SOLID187 Item and Sequence Numbers

Output   Quantity   Name	ETABLE and ESOL Command Input					
	Item	$\mathbf{I}$	$\mathbf{J}$	$\mathbf{K}$	$\mathbf{L}$	$\mathbf{M}, \ldots, \mathbf{R}$
P1	SMISC	2	1	3	-	-
P2	SMISC	4	5	-	6	-
P3	SMISC	-	7	8	9	-
P4	SMISC	11	-	10	12	-

See Surface Solution (p.10) in this manual for the item and sequence numbers for surface output for ETABLE.

## SOLID187 Assumptions and Restrictions

- The element must not have a zero volume.
- Elements may be numbered either as shown in Figure 1 (p.1063) or may have node L below the I, J, K plane.
- An edge with a removed midside node implies that the displacement varies linearly, rather than parabolically, along that edge. See Quadratic Elements (Midside Nodes) in the Modeling and Meshing Guide for information about using midside nodes.
- When mixed formulation is used (KEYOPT(6) $=1$ or 2 ), no midside nodes can be missed.
- If you use the mixed formulation $(\operatorname{KEYOPT}(6)=1$ or 2$)$, the damped eigensolver is not supported. You must use the sparse solver (default).
- Stress stiffening is always included in geometrically nonlinear analyses (NLGEOM,ON). Prestress effects can be activated by the PSTRES command.


## SOLID187 Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

## ANSYS Professional

- The only special feature allowed is stress stiffening.


## BEAM188

3-D 2-Node Beam
MP ME ST PR PRN DS DSS <> <> <> <> PP VT EME MFS
Product Restrictions

## BEAM188 Element Description

BEAM188 is suitable for analyzing slender to moderately stubby/thick beam structures. The element is based on Timoshenko beam theory which includes shear-deformation effects. The element provides options for unrestrained warping and restrained warping of cross-sections.

The element is a linear, quadratic, or cubic two-node beam element in 3-D. BEAM188 has six or seven degrees of freedom at each node. These include translations in the $x, y$, and $z$ directions and rotations about the $x$, $y$, and $z$ directions. A seventh degree of freedom (warping magnitude) is optional. This element is well-suited for linear, large rotation, and/or large strain nonlinear applications.

The element includes stress stiffness terms, by default, in any analysis with large deflection. The provided stress-stiffness terms enable the elements to analyze flexural, lateral, and torsional stability problems (using eigenvalue buckling, or collapse studies with arc length methods or nonlinear stabilization).

Elasticity, plasticity, creep and other nonlinear material models are supported. A cross-section associated with this element type can be a built-up section referencing more than one material.

Figure 1 BEAM188 Geometry


## BEAM188 Element Technology and Usage Recommendations

BEAM188 is based on Timoshenko beam theory, which is a first-order shear-deformation theory: transverseshear strain is constant through the cross-section (that is, cross-sections remain plane and undistorted after deformation).

The element can be used for slender or stout beams. Due to the limitations of first-order shear-deformation theory, slender to moderately thick beams can be analyzed. Use the slenderness ratio of a beam structure $\left(\mathrm{GAL}^{2} /(\mathrm{EI})\right.$ ) to judge the applicability of the element, where:

## G

Shear modulus

## A

Area of the cross-section
L
Length of the member (not the element length)
EI
Flexural rigidity
Calculate the ratio using some global distance measures, rather than basing it upon individual element dimensions. The following illustration shows an estimate of transverse-shear deformation in a cantilever beam subjected to a tip load. Although the results cannot be extrapolated to any other application, the example serves well as a general guideline. A slenderness ratio greater than 30 is recommended.

Figure 2 Transverse-Shear Deformation Estimation


Slenderness Ratio   $\mathbf{( G A L}^{\mathbf{2}}$ /(EI))	$\delta$ Timoshenko / $\delta$ Euler-   Bernoulli
25	1.120
50	1.060
100	1.030
1000	1.003

The element supports an elastic relationship between transverse-shear forces and transverse-shear strains. You can override default values of transverse-shear stiffnesses via the SECCONTROLS command.

BEAM188 does not use higher-order theories to account for variation in distribution of shear stresses. Use solid elements if such effects must be considered.

BEAM188 supports "restrained warping" analysis by making available a seventh degree of freedom at each beam node. By default, BEAM188 elements assume that the warping of a cross-section is small enough that it can be neglected $(\operatorname{KEYOPT}(1)=0)$. You can activate the warping degree of freedom by using $\operatorname{KEYOPT}(1)$ $=1$. With the warping degree of freedom activated, each node has seven degrees of freedom: UX, UY, UZ, ROTX, ROTY, ROTZ, and WARP. With $\operatorname{KEYOPT}(1)=1$, bimoment and bicurvature are output.

When KEYOPT(3) = 0 (linear, default), BEAM188 is based on linear shape functions. It uses one point of integration along the length; therefore, all element solution quantities are constant along the length. For example, when SMISC quantities are requested at nodes I and J, the centroidal values are reported for both end nodes. This option is recommended if the element is used as stiffener and it is necessary to maintain compatibility with a first-order shell element (such as SHELL181). Only constant bending moments can be represented exactly with this option. Mesh refinement is generally required in typical applications.

When $\operatorname{KEYOPT}(3)=2$ (quadratic), BEAM188 has an internal node in the interpolation scheme, effectively making this a beam element based on quadratic shape functions. Two points of integration are used, resulting
in linear variation of element solution quantities along the length. Linearly varying bending moments are represented exactly.

When KEYOPT(3) $=3$ (cubic), BEAM188 has two internal nodes and adopts cubic shape functions. Quadratically varying bending moments are represented exactly. Three points of integration along the length are used, resulting in quadratic variation of element solution quantities along the length. Unlike typical cubic (Hermitian) formulations, cubic interpolation is used for all displacements and rotations.

Quadratic and cubic options are recommended when higher-order element interpolations are desired in situations where:

- The element is associated with tapered cross-sections.
- Nonuniform loads (including tapered distributed loads) exist within the element; in this case, the cubic option gives superior results over the quadratic option.
(For partially distributed loads and non-nodal point loads, only the cubic option is valid.)
- The element may undergo highly nonuniform deformation (for example, when individual frame members in civil engineering structures are modeled with single elements).

In practice, when two elements with "restrained warping" come together at a sharp angle, you need to couple the displacements and rotations, but leave the out-of-plane warping decoupled. This is normally accomplished by having two nodes at a physical location and using appropriate constraints. This process is made easier (or automated) by the ENDRELEASE command, which decouples the out-of plane warping for any adjacent elements with cross-sections intersecting at an angle greater than 20 degrees.

BEAM188 allows change in cross-sectional inertia properties as a function of axial elongation. By default, the cross-sectional area changes such that the volume of the element is preserved after deformation. The default is suitable for elastoplastic applications. By using KEYOPT(2), you can choose to keep the cross-section constant or rigid. Scaling is not an option for nonlinear general beam sections (SECTYPE,,GENB).

Two limitations are associated with the quadratic and cubic options in BEAM188:

- Although the elements employ higher-order interpolations, the initial geometry of BEAM188 is treated as straight.
- Because the internal nodes are inaccessible, no boundary/loading/initial conditions are allowed on these internal nodes.

As a result of the limitations associated with the quadratic and cubic options, you will notice discrepancies in the results between BEAM189 and the quadratic option of BEAM188 if the midside nodes of the BEAM189 model have specified boundary/loading/initial conditions and/or the midside nodes are not located exactly at the element midpoint. Similarly, the cubic option of BEAM188 may not be identical to a traditional cubic (Hermitian) beam element.

For the mass matrix and evaluation of consistent load vectors, a higher order integration rule than that used for stiffness matrix is employed. The elements support both consistent and lumped mass matrices. Use LUMPM,ON to activate lumped mass matrix. Consistent mass matrix is used by default. An added mass per unit length can be input with the ADDMAS section controls. See "BEAM188 Input Summary" (p. 1075).

The St. Venant warping functions for torsional behavior are determined in the undeformed state, and are used to define shear strain even after yielding. No options are available for recalculating in deformed configuration the torsional shear distribution on cross-sections during the analysis and possible partial plastic yielding of cross-sections. As such, large inelastic deformation due to torsional loading should be treated
and verified with caution. Under such circumstances, alternative modeling using solid or shell elements is recommended.

## BEAM188 Input Data

The geometry, node locations, coordinate system, and pressure directions for this element are shown in Figure 1 (p. 1069). BEAM188 is defined by nodes I and J in the global coordinate system.

Node K is a preferred way to define the orientation of the element. For information about orientation nodes and beam meshing, see Generating a Beam Mesh With Orientation Nodes in the Modeling and Meshing Guide. See the LMESH and LATT command descriptions for details on generating the K node automatically.

BEAM188 can also be defined without the orientation node K. In this case, the element x-axis is oriented from node I (end 1) toward node $J$ (end 2 ). If no orientation node is used, the default orientation of the element $y$-axis is automatically calculated to be parallel to the global $X-Y$ plane. For the case where the element is parallel to the global Z-axis (or within a 0.01 percent slope of it), the element $y$-axis is oriented parallel to the global Y -axis (as shown). To control the element orientation about the element x -axis, use the orientation-node option. If both are defined, the orientation-node option takes precedence. The orientation node K, if used, defines a plane (with I and J) containing the element x and z -axes (as shown). If using this element in a large-deflection analysis, be aware that the location of the orientation node K is used only to initially orient the element.

The number of degrees of freedom depends on the value of $\operatorname{KEYOPT}(1)$. When $\operatorname{KEYOPT}(1)=0$ (the default), six degrees of freedom occur at each node. These include translations in the $x, y$, and $z$ directions and rotations about the $x, y$, and $z$ directions. When $\operatorname{KEYOPT}(1)=1$, a seventh degree of freedom (warping magnitude) is also considered.

The beam element is a one-dimensional line element in space. The cross-section details are provided separately via the SECTYPE and SECDATA commands. (See Beam Analysis and cross-sections in the Structural Analysis Guide for details). A section is associated with the beam elements by specifying the section ID number (SECNUM). A section number is an independent element attribute. In addition to a constant cross-section, you can also define a tapered cross-section by using the TAPER option on the SECTYPE command (see Defining a Tapered Beam).

BEAM188 ignores any real constant data. See the SECCONTROLS command for defining the transverse-shear stiffness and added mass.

A summary of the element input is given in "BEAM188 Input Summary" (p. 1075).

## BEAM188 Cross-Sections

BEAM188 can be associated with these cross-section types:

- Standard library section types or user meshes which define the geometry of the beam cross-section (SECTYPE,BEAM). The material of the beam is defined either as an element attribute (MAT), or as part of section buildup (for multi-material cross-sections).
- Generalized beam cross-sections (SECTYPE,,GENB), where the relationships of generalized stresses to generalized strains are input directly.
- Tapered beam cross-sections (SECTYPE,TAPER), where a standard library section or user mesh defines each end of the beam.


## Standard Library Sections

BEAM188 elements are provided with section-relevant quantities (area of integration, position, etc.) automatically at a number of section points using SECTYPE and SECDATA. Each section is assumed to be an assembly of a predetermined number of nine-node cells. Each cross-section cell has four integration points and each can be associated with an independent material type.

Figure 3 Cross-Section Cells

(a) Rectangular section

(b) Channel section

## - Section Nodes

- Section Corner Nodes
+ Section Integration Points
The number of cells in the cross-sections influences the accuracy of section properties and ability to model nonlinear stress-strain relationship through the cross-section. The element has a nested structure of integration (along the length and in the cross-section).

When the material associated with the elements has inelastic behavior or when the temperature varies across the section, constitutive calculations are performed at the section integration points. For more common elastic applications, the element uses precalculated properties of the section at the element integration points; however, the stresses and strains are calculated in the output pass at the section integration points. Element output is available at the integration points, as well as values extrapolated to the element and section nodes.

If the section is assigned the subtype ASEC, only the generalized stresses and strains (axial force, bending moments, transverse shears, curvatures, and shear strains) are available for output. 3-D contour plots and deformed shapes are not available. The ASEC subtype is displayed only as a thin rectangle to verify beam orientation.

BEAM188 is helpful for analyzing built-up beams (that is, those fabricated of two or more pieces of material joined together to form a single, solid beam). The pieces are assumed to be perfectly bonded together; therefore, the beam behaves as a single member.

The multi-material cross-section capability is applicable only where the assumptions of a beam behavior (Timoshenko or Bernoulli-Euler beam theory) holds.

In other words, what is supported is a simple extension of a conventional Timoshenko beam theory. It can be used in applications such as:

- Bimetallic strips
- Beams with metallic reinforcement
- Sensors where layers of a different material has been deposited

BEAM188 does not account for coupling of bending and twisting at the section stiffness level. The transverse shears are also treated in an uncoupled manner. This can have a significant effect on layered composite and sandwich beams if the lay-up is unbalanced.

Always validate the application of BEAM188, either with experiments or other numerical analysis. Use the restrained warping option with built-up sections after due verification.
$\operatorname{KEYOPT}(15)$ specifies the format of the .rst results file. For $\operatorname{KEYOPT}(15)=0$, the format gives only one averaged result at each section corner node; therefore, this option typically applies to homogeneous sections. For $\operatorname{KEYOPT}(15)=1$, the format gives one result for each section integration point; therefore, this option typically applies to built-up sections with multiple materials (and generates a larger results file).

## Generalized Beam Cross-Sections

When using nonlinear general beam sections, neither the geometric properties nor the material is explicitly specified. Generalized stress implies the axial force, bending moments, torque, and transverse-shear forces. Similarly, generalized strain implies the axial strain, bending curvatures, twisting curvature, and transverseshear strains. (For more information, see nonlinear general beam sections.) This is an abstract method for representing cross-section behavior; therefore, input often consists of experimental data or the results of other analyses.

Generally, BEAM188 supports an elastic relationship between transverse-shear forces and transverse-shear strains. You can override default values of transverse-shear stiffnesses via the SECCONTROLS command.

When the beam element is associated with a generalized beam (SECTYPE,,GENB) cross-section type, the relationship of transverse-shear force to the transverse-shear strain can be nonlinear elastic or plastic, an especially useful capability when flexible spot welds are modeled. In such a case, the SECCONTROLS command does not apply.

## Tapered Beam Cross-Sections

A linearly tapered beam is defined by specifying a standard library section or user mesh at each end of the beam. The section geometries are specified at global coordinates, then linear interpolated and evaluated at the element. The sections at the end points must be topologically identical. (For more information, see Defining a Tapered Beam.)

## BEAM188 Loads

Forces are applied at the nodes (which also define the element $x$-axis). If the centroidal axis is not colinear with the element x-axis, applied axial forces will cause bending. Applied shear forces cause torsional strains and moment if the centroid and shear center of the cross-section are different. The nodes should therefore be located at the desired points where you want to apply the forces. Use the OFFSETY and OFFSETZ arguments of the SECOFFSET command appropriately. By default, the program uses the centroid as the reference axis for the beam elements.

Element loads are described in Node and Element Loads (p. 97). Pressures can be input as surface loads on the element faces as shown by the circled numbers in Figure 1 (p. 1069). Positive normal pressures act into the element. Lateral pressures are input as force per unit length. End "pressures" are input as forces.

At both ends of the element, temperatures can be input at these locations:

- At the element $x$-axis $(T(0,0))$
- At one unit from the $x$-axis in the element $y$-direction $(T(1,0))$
- At one unit from the $x$-axis in the element $z$-direction $(T(0,1))$

Element locations ( $T(y, z)$ ) are given according to the convention used in Figure 1 (p. 1069).
For beam elements, element body load commands (BFE) accept an element number and a list of values, 1 through 6 for temperatures $T_{l}(0,0), T_{l}(1,0), T_{l}(0,1), T_{J}(0,0), T_{J}(1,0)$, and $T_{J}(0,1)$. This input can be used to specify temperature gradients that vary linearly both over the cross section and along the length of the element.

The following defaults apply to element temperature input:

- If all temperatures after the first are unspecified, they default to the first. This pattern applies a uniform temperature over the entire element. (The first coordinate temperature, if unspecified, defaults to TUNIF.)
- If all three temperatures at node I are input, and all temperatures at node J are unspecified, the node $J$ temperatures default to the corresponding node I temperatures. This pattern applies a temperature gradient that varies linearly over the cross section but remains constant along the length of the element.
- For any other input pattern, unspecified temperatures default to TUNIF.

Alternatively, temperatures at nodes I and J can be defined using nodal body loads (BF,NODE,TEMP,VAL1). When using a nodal body load to define a temperature, a uniform temperature is applied over the cross section at the specified node.

You can apply an initial stress state to this element via the INISTATE command. For more information, see "Initial State" in the Basic Analysis Guide.

The effects of pressure load stiffness are automatically included for this element. If an unsymmetric matrix is needed for pressure load stiffness effects, use NROPT,UNSYM.

## BEAM188 Input Summary

## Nodes

$\mathrm{I}, \mathrm{J}, \mathrm{K}$ (K, the orientation node, is optional but recommended)

## Degrees of Freedom

UX, UY, UZ, ROTX, ROTY, ROTZ if KEYOPT(1) $=0$
UX, UY, UZ, ROTX, ROTY, ROTZ, WARP if KEYOPT(1) = 1

## Section Controls

TXZ, TXY, ADDMAS (See SECCONTROLS)
(TXZ and TXY default to $A^{*} G X Z$ and $A^{*} G X Y$, respectively, where $A=$ cross-sectional area)

## Material Properties

EX, (PRXY,or NUXY), GXY, GXZ
ALPX, (or CTEX, or THSX)

DENS, DAMP

## Surface Loads

## Pressure --

face 1 (I-J) (-z normal direction)
face $2(I-J)$ (-y normal direction)
face 3 (I-J) (+x tangential direction)
face 4 (I) (+x axial direction)
face 5 (J) (-x axial direction)
I and J denote the end nodes.
Use a negative value for loading in the opposite direction.
Issue the SFBEAM command to specify surface loads.
For faces 1,2 , and 3 , offsets apply only if you are using the cubic option $(\operatorname{KEYOPT}(3)=3)$.

## Body Loads

Temperatures --
$\mathrm{T}(0,0), \mathrm{T}(1,0), \mathrm{T}(0,1)$ at each end node

## Special Features

Plasticity (PLASTIC, BISO, MISO, NLISO, BKIN, MKIN, KINH, CHABOCHE, HILL) [1 (p. 1076)]
Viscoelasticity (PRONY, SHIFT) [1 (p. 1076)]
Viscoplasticity/Creep (CREEP, RATE) [1 (p. 1076)]
Other material (USER) [1 (p. 1076)]
Stress stiffening
Large deflection
Large strain
Initial state
Nonlinear stabilization
Birth and death (requires $\operatorname{KEYOPT}(11)=1$ )
Automatic selection of element technology [2 (p. 1076)]
Generalized cross-section (nonlinear elastic, elasto-plastic, temperature-dependent) Linear perturbation

1. Items in parentheses refer to data tables associated with the TB command. See "Structures with Material Nonlinearities" in the Theory Reference for the Mechanical APDL and Mechanical Applications for details of the material models.
2. See Automatic Selection of Element Technologies (p. 122) and ETCONTROL for more information about selecting element technologies.

## KEYOPT(1)

Warping degree of freedom:
0 --
Six degrees of freedom per node, unrestrained warping (default)
1 --
Seven degrees of freedom per node (including warping). Bimoment and bicurvature are output.

## KEYOPT(2)

Cross-section scaling, applies only if NLGEOM,ON has been invoked:

## 0 --

Cross-section is scaled as a function of axial stretch (default)
1 --
Section is assumed to be rigid (classical beam theory)

## KEYOPT(3)

Shape functions along the length:
0 --
Linear (default)
2 --
Quadratic
3 --
Cubic

## KEYOPT(4)

Shear stress output:
0 --
Output only torsion-related shear stresses (default)
1 --
Output only flexure-related transverse-shear stresses
2 --
Output a combined state of the previous two types

## KEYOPT(6), KEYOPT(7), and KEYOPT(9)

active only when OUTPR,ESOL is active:

## KEYOPT(6)

Output control for section forces/moments and strains/curvatures:
0 --
Output section forces/moments and strains/curvatures at integration points along the length (default)
1 --
Same as $\operatorname{KEYOPT}(6)=0$ plus current section area
2 --
Same as KEYOPT(6) = 1 plus element basis directions ( $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ )
3 --
Output section forces/moments and strains/curvatures extrapolated to the element nodes

## KEYOPT(7)

Output control at integration points (not available when section subtype = ASEC):
0 --
None (default)
1 --
Maximum and minimum stresses/strains
2 --
Same as $\operatorname{KEYOPT}(7)=1$ plus stresses and strains at each section point

## KEYOPT(9)

Output control for values extrapolated to the element and section nodes (not available when section subtype = ASEC):

## 0 --

None (default)
1 --
Maximum and minimum stresses/strains
2 --
Same as $\operatorname{KEYOPT}(9)=1$ plus stresses and strains along the exterior boundary of the cross-section 3 --

Same as $\operatorname{KEYOPT}(9)=1$ plus stresses and strains at all section nodes

## KEYOPT(11)

Set section properties:
0 --
Automatically determine if preintegrated section properties can be used (default)
1 --
Use numerical integration of section

## KEYOPT(12)

Tapered section treatment:
0 --
Linear tapered section analysis; cross-section properties are evaluated at each Gauss point (default).
This is more accurate, but computationally intensive.
1 --
Average cross-section analysis; for elements with tapered sections, cross-section properties are evaluated at the centroid only. This is an approximation of the order of the mesh size; however, it is faster.

## KEYOPT(15)

Results file format:
0 --
Store averaged results at each section corner node (default).
1 --
Store non-averaged results at each section integration point. (The volume of data may be excessive. This option is typically useful for built-up sections with multiple materials only.)

## BEAM188 Output Data

The solution output associated with these elements is in two forms:

- Nodal displacements and reactions included in the overall nodal solution
- Additional element output as described in Table 1: BEAM188 Element Output Definitions (p. 1079)

To view 3-D deformed shapes for BEAM188, issue an OUTRES,MISC or OUTRES,ALL command for static or transient analyses. To view 3-D mode shapes for a modal or eigenvalue buckling analysis, you must expand the modes with element results calculation active (via the MXPAND command's Elcalc = YES option).

## Linearized Stress

It is customary in beam design to employ components of axial stress that contribute to axial loads and bending in each direction separately; therefore, BEAM188 provides a linearized stress output as part of its SMISC output record, as indicated in the following definitions:

SDIR is the stress component due to axial load.
SDIR $=F x / A$, where $F x$ is the axial load (SMISC quantities 1 and 14) and $A$ is the area of the cross-section.
SByT and SByB are bending-stress components.

$$
\begin{aligned}
& \text { SByT }=-M z * y_{\max } / I z z \\
& \text { SByB }=-M z * y_{\min } / I z z \\
& \text { SBzT }=M z z_{\text {max }} / \mathrm{lyy} \\
& \text { SBzB }=M z * z_{\text {min }} / l y y
\end{aligned}
$$

where $\mathrm{My}, \mathrm{Mz}$ are bending moments in the beam coordinate system (SMISC quantities 2,15,3,16), as shown in Figure 1 (p. 1069). Coordinates $y_{\text {max }} y_{\text {min }}, z_{\text {max }}$, and $z_{\text {min }}$ are the maximum and minimum $y, z$ coordinates in the cross-section measured from the centroid. Values lyy and Izz are moments of inertia of the cross-section. Except for the ASEC type of beam cross-section, the program uses the maximum and minimum cross-section dimensions. For the ASEC type of cross-section, the maximum and minimum in each of y and y direction is assumed to be +0.5 to -0.5 , respectively.

Corresponding definitions for the component strains are:

```
EPELDIR = Ex
EPELByT = -Kz* * ymax
EPELByB = -Kz * y ymin
EPELBzT = Kz * Z Zmax
EPELBzB = Kz * }\mp@subsup{z}{\mathrm{ min}}{
```

where $E x, K y$, and $K z$ are generalized strains and curvatures (SMISC quantities 7,8,9, 20,21 and 22).
The reported stresses are strictly valid only for elastic behavior of members. BEAM188 always employs combined stresses in order to support nonlinear material behavior. When the elements are associated with nonlinear materials, the component stresses can at best be regarded as linearized approximations and should be interpreted with caution.

When using $\operatorname{KEYOPT}(7)$ with the cubic option (KEYOPT $(3)=3)$, the integration point at the middle of the element is reported last in the integration-point printout.

## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " $Y$ " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 1 BEAM188 Element Output Definitions

Name	Definition	$\mathbf{O}$	$\mathbf{R}$
EL	Element number	Y	Y
NODES	Element connectivity	Y	Y
MAT	Material number	Y	Y


Name	Definition	0	R
C.G.:X, Y, Z	Element center of gravity	Y	1
Area	Area of cross-section	2	Y
SF:y, z	Section shear forces	2	Y
SE: $\mathrm{y}, \mathrm{z}$	Section shear strains	2	Y
S:xx, xy, xz	Section point stresses	3	Y
EPEL:xx, xy, xz	Elastic strains	3	Y
EPTO:xx, xy, xz	Section point total mechanical strains (EPEL + EPPL + EPCR)	3	Y
EPTT:xx, xy, xz	Section point total strains (EPEL + EPPL + EPCR+EPTH)	3	Y
EPPL:xx, xy, xz	Section point plastic strains	3	Y
EPCR:xx, $x y, x z$	Section point creep strains	3	Y
EPTH:xx	Section point thermal strains	3	Y
NL:EPEQ	Accumulated equivalent plastic strain	-	5
NL:CREQ	Accumulated equivalent creep strain	-	5
NL:SRAT	Plastic yielding ( $1=$ actively yielding, $0=$ not yielding)	-	5
NL:PLWK	Plastic work	-	5
NL:EPEQ	Accumulated equivalent plastic strain	-	5
SEND:ELASTIC, PLASTIC, CREEP	Strain energy densities	-	5
TQ	Torsional moment	Y	Y
TE	Torsional strain	Y	Y
Ky, Kz	Curvature	Y	Y
Ex	Axial strain	Y	Y
Fx	Axial force	Y	Y
My, Mz	Bending moments	Y	Y
BM	Warping bimoment	4	4
BK	Warping bicurvature	4	4
SDIR	Axial direct stress	-	2
SByT	Bending stress on the element $+Y$ side of the beam	-	Y
SByB	Bending stress on the element $-Y$ side of the beam	-	Y
SBzT	Bending stress on the element $+Z$ side of the beam	-	Y
SBzB	Bending stress on the element $-Z$ side of the beam	-	Y
EPELDIR	Axial strain at the end	-	Y


Name	Definition	$\mathbf{0}$	$\mathbf{R}$
EPELByT	Bending strain on the element +Y side of the   beam.	-	Y
EPELByB	Bending strain on the element -Y side of the   beam.	-	Y
EPELBzT	Bending strain on the element +Z side of the   beam.	-	Y
EPELBzB	Bending strain on the element -Z side of the   beam.	-	Y
TEMP	Temperatures at all section corner nodes.	-	Y
LOCI:X, Y, Z	Integration point locations	-	6
SVAR:1, 2, ... N	State variables	-	7

1. Available only at the centroid as a *GET item.
2. See KEYOPT(6) description.
3. See KEYOPT(7) and KEYOPT(9) descriptions.
4. See KEYOPT(1) description.
5. Available if the element has a nonlinear material.
6. Available only if OUTRES,LOCI command is used.
7. Available only if the UserMat subroutine and TB,STATE command are used.

More output is described via the PRESOL command in POST1.
Table 2: BEAM188 Item and Sequence Numbers (p. 1081) lists output available via ETABLE using the Sequence Number method. See Creating an Element Table in the Basic Analysis Guide and The Item and Sequence Number Table (p.9) in this manual for more information. Table 2: BEAM188 Item and Sequence Numbers (p. 1081) uses the following notation:

## Name

output quantity as defined in the Table 1: BEAM188 Element Output Definitions (p. 1079)

## Item

predetermined Item label for ETABLE
I,J
sequence number for data at nodes I and J
Table 2 BEAM188 Item and Sequence Numbers

Output Quantity   Name	ETABLE and ESOL Command Input		
	Item	$\mathbf{I}$	$\mathbf{J}$
Fx	SMISC	1	14
My	SMISC	2	15
Mz	SMISC	3	16
TQ	SMISC	4	17
SFz	SMISC	5	18


Output Quantity Name	ETABLE and ESOL Command Input		
	Item	I	J
SFy	SMISC	6	19
Ex	SMISC	7	20
Ky	SMISC	8	21
Kz	SMISC	9	22
TE	SMISC	10	23
SEz	SMISC	11	24
SEy	SMISC	12	25
Area	SMISC	13	26
BM	SMISC	27	29
BK	SMISC	28	30
SDIR	SMISC	31	36
SByT	SMISC	32	37
SByB	SMISC	33	38
SBzT	SMISC	34	39
SBzB	SMISC	35	40
EPELDIR	SMISC	41	46
EPELByT	SMISC	42	47
EPELByB	SMISC	43	48
EPELBzT	SMISC	44	49
EPELBzB	SMISC	45	50
TEMP	SMISC	51-53	54-56
S: $\mathrm{xx}, \mathrm{xy}, \mathrm{xz}$	LS	CI[1], DI[2]	CJ[1], DJ[2]
EPEL:xx, xy, xz	LEPEL	CI[1], DI[2]	CJ[1], DJ[2]
EPTH:xx	LEPTH	AI[3], BI[4]	AJ[3], BJ[4]
EPPL:xx, xy, xz	LEPPL	CI[1], DI[2]	CJ[1], DJ[2]
EPCR:xx, $x y$, $x z$	LEPCR	CI[1], DI[2]	CJ[1], DJ[2]
EPTO:xx, xy, xz	LEPTO	CI[1], DI[2]	$\mathrm{CJ}[1], \mathrm{DJ}[2]$
EPTT:xx, xy, xz	LEPTT	CI[1], DI[2]	CJ[1], DJ[2]

1. Cl and CJ are the sequence numbers for accessing the averaged line element solution quantities (LS, LEPEL, LEPPL, LEPCR, LEPTO, and LEPTT) at RST section nodes (section corner nodes where results are available), at element Node I and J respectively. Cl and CJ are applicable only when $\operatorname{KEYOPT}(15)=0$. For a given section corner node $n n, \mathrm{Cl}$ and CJ are given as follows:
$\mathrm{Cl}=(n n-1) * 3+\operatorname{COMP}$
$\mathrm{CJ}=(n n M a x+n n-1) * 3+$ COMP

Where nnMax is the total number of RST section nodes, and COMP is the stress or strain component ( $1-x x, 2-x y, 3-x z$ ). Locations of RST section nodes can be visualized with SECPLOT,,6.
2. DI and DJ are the sequence numbers for accessing the non-averaged line element solution quantities (LS, LEPEL, LEPPL, LEPCR, LEPTO, and LEPTT) at RST section integration points (section integration points where results are available), at element Node I and $J$ respectively. DI and DJ are applicable only when $\operatorname{KEYOPT}(15)=1$. For the ith integration point ( $i=1,2,3$, or 4 ) in section cell $n c$, DI and DJ are given as follows:
$\mathrm{DI}=(n c-1) * 12+(\mathrm{i}-1) * 3+$ COMP
DJ $=(n c M a x+n c-1) * 12+(i-1) * 3+$ COMP
Where ncMax is the total number of RST section cells, and COMP is the stress or strain component ( $1-x x, 2-x y, 3-x z$ ). Locations of RST section cells can be visualized with SECPLOT,,7.
3. AI and AJ are the sequence numbers for accessing the averaged line element thermal strain quantities LEPTH at RST section nodes (section corner nodes where results are available), at element Node I and J respectively. AI and AJ are applicable only when $\operatorname{KEYOPT}(15)=0$. For a given section corner node $n n, \mathrm{AI}$ and AJ are given as follows:
$A \mathrm{I}=n n$
$A J=n n M a x+n n$
Where nnMax is the total number of RST section nodes. Locations of RST section nodes can be visualized with SECPLOT,,6.
4. BI and BJ are the sequence numbers for accessing the non-averaged line element thermal strain quantities LEPTH at RST section integration points (section integration points where results are available), at element Node I and J respectively. BI and BJ are applicable only when $\operatorname{KEYOPT}(15)=1$. For the ith integration point $(i=1,2,3$, or 4$)$ in section cell $n c, \mathrm{Bl}$ and BJ are given as follows:
$\mathrm{BI}=(n c-1) * 4+\mathrm{i}$
$B J=(n c M a x+n c-1) * 4+i$
Where ncMax is the total number of RST section cells. Locations of RST section cells can be visualized with SECPLOT,,7.

## Transverse-Shear Stress Output

The BEAM188 formulation is based on three stress components:

- one axial
- two shear stress

The shear stresses are caused by torsional and transverse loads. BEAM188 is based on first-order shear-deformation theory, also popularly known as Timoshenko beam theory. The transverse-shear strain is constant for the cross-section; therefore, the shear energy is based on a transverse-shear force. The shear force is redistributed by predetermined shear-stress distribution coefficients across the beam cross-section, and made
available for output purposes. By default, the program outputs only the shear stresses caused by torsional loading. Use KEYOPT(4) to activate output of shear stresses caused by flexure or transverse loading.

The accuracy of transverse-shear distribution is directly proportional to the mesh density of cross-section modeling (for determination of warping, shear center and other section geometric properties). The tractionfree state at the edges of a cross-section is met only in a well-refined model of the cross-section.

By default, the program uses a mesh density (for cross-section modeling) that provides accurate results for torsional rigidity, warping rigidity, inertia properties, and shear-center determination. The default mesh employed is also appropriate for nonlinear material calculations; however, more refined cross-section models may be necessary if the shear stress distribution due to transverse loads must be captured very accurately. Increasing cross-section mesh size does not imply larger computational cost if the associated material is linear. Use the SECTYPE and SECDATA commands to adjust cross-section mesh density.

The transverse-shear distribution calculation ignores the effects of Poisson's ratio. The Poisson's ratio affects the shear-correction factor and shear-stress distribution slightly, and this effect is ignored.

## BEAM188 Assumptions and Restrictions

- The beam must not have zero length.
- By default (KEYOPT $(1)=0)$, the effect of warping restraint is assumed to be negligible.
- Cross-section failure or folding is not accounted for.
- Rotational degrees of freedom are not included in the lumped mass matrix if offsets are present.
- The element works best with the full Newton-Raphson solution scheme (that is, the default choice in solution control).
- Only moderately "thick" beams can be analyzed. See "BEAM188 Element Technology and Usage Recommendations" (p. 1069) for more information.
- Stress stiffening is always included in geometrically nonlinear analyses (NLGEOM,ON). Prestress effects can be activated by the PSTRES command.
- When the element is associated with nonlinear general beam sections (SECTYPE,,GENB), additional restrictions apply. For more information, see Considerations for Using Nonlinear General Beam Sections.
- The element coordinate system (/PSYMB,ESYS) is not relevant.


## BEAM188 Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

## ANSYS Professional

- The only special features allowed are stress stiffening and large deflections.


## BEAM189

## 3-D 3-Node Beam

MP ME ST PR PRN DS DSS <> <> <> <> PP VT EME MFS

## BEAM189 Element Description

The BEAM189 element is suitable for analyzing slender to moderately stubby/thick beam structures. The element is based on Timoshenko beam theory which includes shear-deformation effects. The element provides options for unrestrained warping and restrained warping of cross-sections.

The element is a quadratic three-node beam element in 3-D. With default settings, six degrees of freedom occur at each node; these include translations in the $x, y$, and $z$ directions and rotations about the $x, y$, and $z$ directions. An optional seventh degree of freedom (warping magnitude) is available. The element is wellsuited for linear, large rotation, and/or large-strain nonlinear applications.

The element includes stress stiffness terms, by default, in any analysis with NLGEOM,ON. The provided stressstiffness terms enable the elements to analyze flexural, lateral, and torsional stability problems (using eigenvalue buckling, or collapse studies with arc length methods or nonlinear stabilization).

Elasticity, plasticity, creep and other nonlinear material models are supported. A cross-section associated with this element type can be a built-up section referencing more than one material.

## Figure 1 BEAM189 Geometry



## BEAM189 Element Technology and Usage Recommendations

BEAM189 is based on Timoshenko beam theory, which is a first-order shear-deformation theory: transverseshear strain is constant through the cross-section; that is, cross-sections remain plane and undistorted after deformation.

The element can be used for slender or stout beams. Due to the limitations of first-order shear-deformation theory, slender to moderately thick beams can be analyzed. Use the slenderness ratio of a beam structure (GAL ${ }^{2} /(\mathrm{EI})$ ) to judge the applicability of the element, where:

## G

Shear modulus

## A

Area of the cross-section
L
Length of the member (not the element length)
EI
Flexural rigidity
Calculate the ratio using some global distance measures, rather than basing it upon individual element dimensions. The following illustration shows an estimate of transverse-shear deformation in a cantilever beam subjected to a tip load. Although the results cannot be extrapolated to any other application, the example serves well as a general guideline. A slenderness ratio greater than 30 is recommended.

Figure 2 Transverse-Shear Deformation Estimation


Slenderness Ratio   $\mathbf{( G A L}^{\mathbf{2}}$ /(EI))	$\delta$ Timoshenko / $\delta$ Euler-   Bernoulli
25	1.120
50	1.060
100	1.030
1000	1.003

These elements support an elastic relationship between transverse-shear forces and transverse-shear strains. You can override default values of transverse-shear stiffnesses using the SECCONTROLS command.

BEAM189 does not use higher-order theories to account for variation in distribution of shear stresses. Use solid elements if such effects must be considered.

BEAM189 supports "restrained warping" analysis by making available a seventh degree of freedom at each beam node. By default, BEAM189 elements assume that the warping of a cross-section is small enough that it may be neglected $(\operatorname{KEYOPT}(1)=0)$. You can activate the warping degree of freedom by using $\operatorname{KEYOPT}(1)$ $=1$. With the warping degree of freedom activated, each node has seven degrees of freedom: UX, UY, UZ, ROTX, ROTZ, ROTY, and WARP. With $\operatorname{KEYOPT}(1)=1$, bimoment and bicurvature are output.

Unlike other cubic (Hermitian) polynomial-based elements, BEAM189 is based on quadratic polynomials; therefore, offsets in specification of distributed pressure loads are not allowed.BEAM189 has linear bendingmoment variation. Refinement of the mesh is recommended in order to accommodate such loading. BEAM189 is computationally efficient and has super-convergence properties with respect to mesh refinement. For example, the quadratic beam with a two point Gaussian integration is known to be of same accuracy as a Hermitian element.

In practice, when two elements with "restrained warping" come together at a sharp angle, you need to couple the displacements and rotations, but leave the out-of-plane warping decoupled. This is normally accomplished by having two nodes at a physical location and using appropriate constraints. This process is
made easier (or automated) by the ENDRELEASE command, which decouples the out-of plane warping for any adjacent elements with cross-sections intersecting at an angle greater than 20 degrees.

BEAM189 allows change in cross-sectional inertia properties as a function of axial elongation. By default, the cross-sectional area changes such that the volume of the element is preserved after deformation. The default is suitable for elastoplastic applications. By using KEYOPT(2), you can choose to keep the cross-section constant or rigid. Scaling is not an option for nonlinear general beam sections (SECTYPE,,GENB).

For the mass matrix and evaluation of consistent load vectors, a higher order integration rule than that used for stiffness matrix is employed. The elements support both consistent and lumped mass matrices. Avoid using LUMPM,ON as BEAM189 is a higher-order element. Consistent mass matrix is used by default. An added mass per unit length may be input with the ADDMAS section controls. See "BEAM189 Input Summary" (p. 1091).

The St. Venant warping functions for torsional behavior are determined in the undeformed state, and are used to define shear strain even after yielding. No options are available for recalculating in deformed configuration the torsional shear distribution on cross-sections during the analysis and possible partial plastic yielding of cross-sections. As such, large inelastic deformation due to torsional loading should be treated and verified with caution. Under such circumstances, alternative modeling using solid or shell elements is recommended.

## BEAM189 Input Data

The geometry, node locations, coordinate system, and pressure directions for this element are shown in Figure 1 (p. 1085). BEAM189 is defined by nodes I, J, and K in the global coordinate system.

Node L is a preferred way to define the orientation of the element. For information about orientation nodes and beam meshing, see Generating a Beam Mesh With Orientation Nodes in the Modeling and Meshing Guide. Also, see Quadratic Elements (Midside Nodes) in the same manual for the use of midside nodes. See the LMESH and LATT command descriptions for details on generating the L node automatically. For a description of the low-order beam, see BEAM188.

The element can also be defined without the orientation node L. In this case, the element x-axis is oriented from node I (end 1) toward node $J$ (end 2 ). When no orientation node is used, the default orientation of the element $y$-axis is automatically calculated to be parallel to the global X-Y plane. For the case where the element is parallel to the global Z-axis (or within a 0.01 percent slope of it), the element $y$-axis is oriented parallel to the global Y-axis (as shown). For user control of the element orientation about the element xaxis, use the $L$ node option. If both are defined, the orientation node option takes precedence. The orientation node $L$, if used, defines a plane (with I and J) containing the element $x$ and $z$-axes (as shown). If using this element in a large-deflection analysis, be aware that the location of the orientation node $L$ is used only to initially orient the element.

The number of degrees of freedom depends on the value of $\operatorname{KEYOPT}(1)$. When $\operatorname{KEYOPT}(1)=0$ (the default), six degrees of freedom occur at each node. These include translations in the $x, y$, and $z$ directions and rotations about the $x, y$, and $z$ directions. When $\operatorname{KEYOPT}(1)=1$, a seventh degree of freedom (warping magnitude) is also considered.

The element is a one-dimensional line element in space. The cross-section details are provided separately via the SECTYPE and SECDATA commands. (See Beam Analysis and Cross-Sections in the Structural Analysis Guide for details.) A section is associated with the beam elements by specifying the section ID number (SECNUM). A section number is an independent attribute. In addition to a constant cross-section, you can also define a tapered cross-section by using the TAPER option on the SECTYPE command. (For more information, see Defining a Tapered Beam.)

BEAM189 ignores any real constant data beginning with Release 6.0. See SECCONTROLS command for defining the transverse-shear stiffness, and added mass.

A summary of the element input follows in "BEAM189 Input Summary" (p. 1091).

## BEAM189 Cross-Sections

BEAM189 can be associated with these cross-section types:

- Standard library section types or user meshes which define the geometry of the beam cross-section (SECTYPE,,BEAM). The material of the beam is defined either as an element attribute (MAT), or as part of section buildup (for multi-material cross-sections).
- Generalized beam cross-sections (SECTYPE,,GENB), where the relationships of generalized stresses to generalized strains are input directly.
- Tapered beam cross-sections (SECTYPE,,TAPER), where a standard library section or user mesh defines each end of the beam.


## Standard Library Sections

BEAM189 is provided with section-relevant quantities (area of integration, position, etc.) automatically at a number of section points using SECTYPE and SECDATA. Each section is assumed to be an assembly of a predetermined number of nine-node cells. Each cross-section cell has four integration points and each can be associated with an independent material type.

Figure 3 Cross-Section Cells


- Section Nodes
- Section Corner Nodes
+ Section Integration Points

The number of cells in the cross-sections influences the accuracy of section properties and ability to model nonlinear stress-strain relationship through the cross-section. The element has a nested structure of integration (along the length and in the cross-section).

When the material associated with the elements has inelastic behavior or when the temperature varies across the section, constitutive calculations are performed at the section integration points. For more common elastic applications, the element uses precalculated properties of the section at the element integration points. However, the stresses and strains are calculated in the output pass at the section nodes.

If the section is assigned the subtype ASEC, only the generalized stresses and strains (axial force, bending moments, transverse shears, curvatures, and shear strains) are available for output. 3-D contour plots and deformed shapes are not available. The ASEC subtype is displayed only as a thin rectangle to verify beam orientation. BEAM189 treats ASEC as a section type with just one cross-section integration point.

BEAM189 is helpful for analyzing built-up beams, (that is, those fabricated of two or more pieces of material joined together to form a single, solid beam). The pieces are assumed to be perfectly bonded together; therefore, the beam behaves as a single member.

The multi-material cross-section capability is applicable only where the assumptions of a beam behavior (Timoshenko or Bernoulli-Euler beam theory) holds.

In other words, what is supported is a simple extension of a conventional Timoshenko beam theory. It may be used in applications such as:

- bimetallic strips
- beams with metallic reinforcement
- sensors where layers of a different material has been deposited

BEAM189 does not account for coupling of bending and twisting at the section stiffness level. The transverse shears are also treated in an uncoupled manner. This may have a significant effect on layered composite and sandwich beams if the lay-up is unbalanced.

Always validate the application of BEAM189, either with experiments or other numerical analysis. Use the restrained warping option with built-up sections after due verification.

KEYOPT(15) specifies the format of the .rst results file. For $\operatorname{KEYOPT}(15)=0$, the format gives only one averaged result at each section corner node; therefore, this option typically applies to homogeneous sections. For $\operatorname{KEYOPT}(15)=1$, the format gives one result for each section integration point; therefore, this option typically applies to built-up sections with multiple materials (and generates a larger results file).

## Generalized Beam Cross-Sections

When using nonlinear general beam sections, neither the geometric properties nor the material is explicitly specified. Generalized stress implies the axial force, bending moments, torque, and transverse-shear forces. Similarly, generalized strain implies the axial strain, bending curvatures, twisting curvature, and transverseshear strains. (For more information, see nonlinear general beam sections.) This is an abstract method for representing cross-section behavior; therefore, input often consists of experimental data or the results of other analyses.

Generally, BEAM189 supports an elastic relationship between transverse-shear forces and transverse-shear strains. You can override default values of transverse-shear stiffnesses via the SECCONTROLS command.

When the beam element is associated with a generalized beam (SECTYPE,,GENB) cross-section type, the relationship of transverse-shear force to the transverse-shear strain can be nonlinear elastic or plastic, an especially useful capability when flexible spot welds are modeled. In such a case, the SECCONTROLS command does not apply.

## Tapered Beam Cross-Sections

A linearly tapered beam is defined by specifying a standard library section or user mesh at each end of the beam The section geometries are specified at global coordinates, then linear interpolated and evaluated at the element. The sections at the end points must be topologically identical. (For more information, see Defining a Tapered Beam.)

## BEAM189 Loads

Forces are applied at the nodes (which also define the element $x$-axis). If the centroidal axis is not colinear with the element $x$-axis, applied axial forces will cause bending. Applied shear forces will cause torsional strains and moment if the centroid and shear center of the cross-section are different. The nodes should therefore be located at the points where you want to apply the forces. Use the OFFSETY and OFFSETZ arguments of the SECOFFSET command appropriately.

Element loads are described in Node and Element Loads (p. 97). Pressures may be input as surface loads on the element faces as shown by the circled numbers on Figure 1 (p. 1085). Positive normal pressures act into the element. Lateral pressures are input as force per unit length. End "pressures" are input as forces.

At both ends of the element, temperatures can be input at these locations:

- At the element $x$-axis $(T(0,0))$
- At one unit from the $x$-axis in the element $y$-direction $(T(1,0))$
- At one unit from the $x$-axis in the element $z$-direction $(T(0,1))$

Element locations ( $\mathrm{T}(\mathrm{y}, \mathrm{z})$ ) are given according to the convention used in Figure 1 (p. 1085).
For beam elements, element body load commands (BFE) accept an element number and a list of values, 1 through 6 for temperatures $T_{l}(0,0), T_{1}(1,0), T_{1}(0,1), T_{j}(0,0), T_{J}(1,0)$, and $T_{j}(0,1)$. This input can be used to specify temperature gradients that vary linearly both over the cross section and along the length of the element.

The following defaults apply to element temperature input:

- If all temperatures after the first are unspecified, they default to the first. This pattern applies a uniform temperature over the entire element. (The first coordinate temperature, if unspecified, defaults to TUNIF.)
- If all three temperatures at node I are input, and all temperatures at node $J$ are unspecified, the node $J$ temperatures default to the corresponding node I temperatures. This pattern applies a temperature gradient that varies linearly over the cross section but remains constant along the length of the element.
- For any other input pattern, unspecified temperatures default to TUNIF.

Alternatively, temperatures at nodes I and J can be defined using nodal body loads (BF,NODE,TEMP,VAL1). When using a nodal body load to define a temperature, a uniform temperature is applied over the cross section at the specified node. (BF command input is not accepted at node K.)

You can apply an initial stress state to this element via the INISTATE command. For more information, see "Initial State" in the Basic Analysis Guide.

The effects of pressure load stiffness are automatically included for this element. If an unsymmetric matrix is needed for pressure load stiffness effects, use NROPT,UNSYM.

## BEAM189 Input Summary

## Nodes

$\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}$ (the orientation node L is optional but recommended)

## Degrees of Freedom

UX, UY, UZ, ROTX, ROTY, ROTZ if KEYOPT(1) = 0
UX, UY, UZ, ROTX, ROTY, ROTZ, WARP if KEYOPT(1) = 1

## Section Controls

TXZ, TXY, ADDMAS (see SECCONTROLS)
(TXZ and TXY default to $A^{*} G X Z$ and $A^{*} G X Y$, respectively, where $A=$ cross-sectional area)

## Material Properties

EX, (PRXY,or NUXY), GXY, GXZ
ALPX, (or CTEX, or THSX)

DENS, DAMP

## Surface Loads

## Pressure --

face 1 (I-J) (-z normal direction)
face 2 (I-J) (-y normal direction)
face 3 (I-J) (+x tangential direction)
face 4 (I) (+x axial direction)
face 5 (J) (-x axial direction)

I and J denote the end nodes.
Use a negative value for loading in the opposite direction.
Issue the SFBEAM command to specify surface loads.
Distributed pressure offsets are not available for faces 1,2 , and 3 .

## Body Loads

Temperatures --
$\mathrm{T}(0,0), \mathrm{T}(1,0), \mathrm{T}(0,1)$ at each end node

## Special Features

Plasticity (PLASTIC, BISO, MISO, NLISO, BKIN, MKIN, KINH, CHABOCHE, HILL) [1 (p. 1092)]
Viscoelasticity (PRONY, SHIFT) [1 (p. 1092)]
Viscoplasticity/Creep (CREEP, RATE) [1 (p. 1092)]
Other material (USER) [1 (p. 1092)]
Stress stiffening
Large deflection
Large strain
Initial state
Nonlinear stabilization
Birth and death (requires KEYOPT(11) = 1)
Automatic selection of element technology [2 (p. 1092)]
Generalized cross-section (nonlinear elastic, elasto-plastic, temperature-dependent) Linear perturbation

1. Items in parentheses refer to data tables associated with the TB command. See "Structures with Material Nonlinearities" in the Theory Reference for the Mechanical APDL and Mechanical Applications for details of the material models.
2. See Automatic Selection of Element Technologies (p. 122) and ETCONTROL for more information about selecting element technologies.

## KEYOPT(1)

Warping degree of freedom:
0 --
Six degrees of freedom per node, unrestrained warping (default)
1 --
Seven degrees of freedom per node (including warping). Bimoment and bicurvature are output.

## KEYOPT(2)

Cross-section scaling:
0 --
Cross-section is scaled as a function of axial stretch (default); applies only if NLGEOM,ON has been invoked

1 --
Section is assumed to be rigid (classical beam theory)

## KEYOPT(4)

Shear stress output:
0 --
Output only torsion-related shear stresses (default)
1 --
Output only flexure-related transverse-shear stresses
2 --
Output a combined state of the previous two types.

## KEYOPT(6), KEYOPT(7), and KEYOPT(9)

Active only when OUTPR,ESOL is active:

## KEYOPT(6)

Output control for section forces/moments and strains/curvatures:
0 --
Output section forces/moments and strains/curvatures at integration points along the length (default) 1 --

Same as $\operatorname{KEYOPT}(6)=0$ plus current section area
2 --
Same as $\operatorname{KEYOPT}(6)=1$ plus element basis directions $(X, Y, Z)$
3 --
Output section forces/moments and strains/curvatures extrapolated to the element nodes

## KEYOPT(7)

Output control at section integration point (not available when section subtype = ASEC):
0 --
None (default)

## 1 --

Maximum and minimum stresses/strains
2 --
Same as $\operatorname{KEYOPT}(7)=1$ plus stresses and strains at each section point

## KEYOPT(9)

Output control for values extrapolated to the element and section nodes (not available when section subtype = ASEC):

0 --
None (default)
1 --
Maximum and minimum stresses/strains
2 --
Same as $\operatorname{KEYOPT}(9)=1$ plus stresses and strains along the exterior boundary of the cross-section 3 --

Same as $\operatorname{KEYOPT}(9)=1$ plus stresses and strains at all section nodes

## KEYOPT(11)

Set section properties:
0 --
Automatically determine if preintegrated section properties can be used (default)
1 --
Use numerical integration of section

## KEYOPT(12)

Tapered section treatment:
0 --
Linear tapered section analysis; cross-section properties are evaluated at each Gauss point (default). This is more accurate, but computationally intensive.

1 --
Average cross-section analysis; for elements with tapered sections, cross-section properties are evaluated at the centroid only. This is an approximation of the order of the mesh size; however, it is faster.

## KEYOPT(15)

Results file format:
0 --
Store averaged results at each section corner node (default).
1 --
Store non-averaged results at each section integration point. (The volume of data may be excessive. This option is typically useful for built-up sections with multiple materials only.)

## BEAM189 Output Data

The solution output associated with these elements is in two forms:

- Nodal displacements and reactions included in the overall nodal solution
- Additional element output as described in Table 1: BEAM189 Element Output Definitions (p. 1095)

To view 3-D deformed shapes for BEAM189, issue an OUTRES,MISC or OUTRES,ALL command for static or transient analyses. To view 3-D mode shapes for a modal or eigenvalue buckling analysis, you must expand the modes with element results calculation active (via the MXPAND command's Elcalc = YES option).

## Linearized Stress

It is customary in beam design to employ components of axial stress that contribute to axial loads and bending in each direction separately; therefore, BEAM189 provides a linearized stress output as part of its SMISC output record, as indicated in the following definitions:

SDIR is the stress component due to axial load.
SDIR $=F x / A$, where $F x$ is the axial load (SMISC quantities 1 and 14) and $A$ is the area of the cross-section.
SByT and SByB are bending stress components.

$$
\begin{aligned}
& \mathrm{SByT}=-\mathrm{Mz} * \mathrm{y}_{\max } / \mathrm{Izz} \\
& \mathrm{SByB}=-\mathrm{Mz}{ }^{*} \mathrm{y}_{\min } / \mathrm{Izz} \\
& \mathrm{SBzT}=\mathrm{My}{ }^{*} z_{\max } / \mathrm{lyy} \\
& \mathrm{SBzB}=\mathrm{My}^{*} \mathrm{z}_{\text {min }} / \mathrm{lyy}
\end{aligned}
$$

where $\mathrm{My}, \mathrm{Mz}$ are bending moments (SMISC quantities $2,15,3,16$ ). Coordinates $y_{\text {max }} y_{\text {min }}, z_{\text {max }}$, and $z_{\text {min }}$ are the maximum and minimum $y, z$ coordinates in the cross-section measured from the centroid. Values lyy and Izz are moments of inertia of the cross-section. Except for the ASEC type of beam cross-section, the program uses the maximum and minimum cross-section dimensions. For the ASEC type of cross-section, the maximum and minimum in each of $y$ and $z$ direction is assumed to be +0.5 to -0.5 , respectively.

Corresponding definitions for the component strains are:

```
EPELDIR = Ex
EPELBYT = -Kz * y max
EPELBYB = -Kz* 爯min
EPELBZT = Ky * Z zmax
EPELBZB = Ky * Z mmin
```

where $E x, K y$, and $K z$ are generalized strains and curvatures (SMISC quantities 7,8,9, 20,21 and 22).
The reported stresses are strictly valid only for elastic behavior of members. BEAM189 always employs combined stresses in order to support nonlinear material behavior. When the elements are associated with nonlinear materials, the component stresses may at best be regarded as linearized approximations and should be interpreted with caution.

## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " $Y$ " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 1 BEAM189 Element Output Definitions

Name	Definition	0	R
EL	Element number	Y	Y
NODES	Element connectivity	Y	Y
MAT	Material number	Y	Y
C.G.:X, Y, Z	Element center of gravity	Y	Y
Area	Area of cross-section	1	Y
SF:y, z	Section shear forces	1	Y
SE: $\mathrm{y}, \mathrm{z}$	Section shear strains	1	Y
S: $\mathrm{xx}, \mathrm{xy}, \mathrm{xz}$	Section point stresses	2	Y
EPEL: $x x, x y$, xz	Elastic strains	2	Y
EPTO:xx, xy, xz	Section point total mechanical strains (EPEL + EPPL + EPCR)	2	Y
EPTT:xx, xy, xz	Section point total strains (EPEL + EPPL + EPCR + EPTH)	2	Y
EPPL:xx, xy, xz	Section point plastic strains	2	Y
EPCR:xx, xy, xz	Section point creep strains	2	Y
EPTH:xx	Section point thermal strains	2	Y
NL:EPEQ	Accumulated equivalent plastic strain	-	4
NL:CREQ	Accumulated equivalent creep strain	-	4
NL:SRAT	Plastic yielding ( $1=$ actively yielding, $0=$ not yielding)	-	4
NL:PLWK	Plastic work	-	4
NL:EPEQ	Accumulated equivalent plastic strain	-	4
SEND:ELASTIC, PLASTIC, CREEP	Strain energy densities	-	4
TQ	Torsional moment	Y	Y
TE	Torsional strain	Y	Y
Ky, Kz	Curvature	Y	Y
Ex	Axial strain	Y	Y
Fx	Axial force	Y	Y
My, Mz	Bending moments	Y	Y
BM	Warping bimoment	3	3
BK	Warping bicurvature	3	3
SDIR	Axial direct stress	-	1
SByT	Bending stress on the element $+Y$ side of the beam	-	Y


Name	Definition	$\mathbf{O}$	$\mathbf{R}$
SByB	Bending stress on the element -Y side of the   beam	-	Y
SBzT	Bending stress on the element $+Z$ side of the   beam	-	Y
SBzB	Bending stress on the element $-Z$ side of the   beam	-	Y
EPELDIR	Axial strain at the end	-	Y
EPELByT	Bending strain on the element +Y side of the   beam.	-	Y
EPELByB	Bending strain on the element -Y side of the   beam.	-	Y
EPELBzT	Bending strain on the element +Z side of the   beam.	-	Y
EPELBzB	Bending strain on the element -Z side of the   beam.	-	Y
TEMP	Temperatures at all section corner nodes.	-	Y
LOCI:X, Y, Z	Integration point locations	-	5
SVAR:1, $2, \ldots, \mathrm{~N}$	State variables	-	6

1. See KEYOPT(6) description
2. See KEYOPT(7) and KEYOPT(9) descriptions
3. See KEYOPT(1) description
4. Available if the element has a nonlinear material.
5. Available only if OUTRES,LOCI command is used.
6. Available only if the UserMat subroutine and TB,STATE command are used.

More output is described via the PRESOL command in POST1.
Table 2: BEAM 189 Item and Sequence Numbers (p. 1097) lists output available via ETABLE using the Sequence Number method. See Creating an Element Table in the Basic Analysis Guide and The Item and Sequence Number Table (p. 9) in this manual for more information. Table 2: BEAM 189 Item and Sequence Numbers (p. 1097) uses the following notation:

## Name

output quantity as defined in the Table 1: BEAM189 Element Output Definitions (p. 1095)

## Item

predetermined Item label for ETABLE

I,J
sequence number for data at nodes I and J
Table 2 BEAM 189 Item and Sequence Numbers

Output Quantity Name	ETABLE and ESOL Command Input		
	Item	I	J
Fx	SMISC	1	14
My	SMISC	2	15
Mz	SMISC	3	16
TQ	SMISC	4	17
SFz	SMISC	5	18
SFy	SMISC	6	19
Ex	SMISC	7	20
Ky	SMISC	8	21
Kz	SMISC	9	22
TE	SMISC	10	23
SEz	SMISC	11	24
SEy	SMISC	12	25
Area	SMISC	13	26
BM	SMISC	27	29
BK	SMISC	28	30
SDIR	SMISC	31	36
SByT	SMISC	32	37
SByB	SMISC	33	38
SBzT	SMISC	34	39
SBzB	SMISC	35	40
EPELDIR	SMISC	41	46
EPELByT	SMISC	42	47
EPELByB	SMISC	43	48
EPELBzT	SMISC	44	49
EPELBzB	SMISC	45	50
TEMP	SMISC	51-53	54-56
S: $\mathrm{xx}, \mathrm{xy}, \mathrm{xz}$	LS	CI[1], DI[2]	CJ[1], DJ[2]
EPEL:xx,xz,xy	LEPEL	CI[1], DI[2]	CJ[1], DJ[2]
EPTH:xx	LEPTH	AI[3], BI[4]	AJ[3], BJ[4]
EPPL:xx,xz,xy	LEPPL	CI[1], DI[2]	CJ[1], DJ[2]
EPCR:xx,xz,xy	LEPCR	CI[1], DI[2]	CJ[1], DJ[2]
EPTO:xx, xy, xz	LEPTO	$\mathrm{Cl}[1], \mathrm{DI}[2]$	CJ[1], DJ[2]
EPTT:xx, xy, xz	LEPTT	CI[1], DI[2]	CJ[1], DJ[2]

1. Cl and CJ are the sequence numbers for accessing the averaged line element solution quantities (LS, LEPEL, LEPPL, LEPCR, LEPTO, and LEPTT) at RST section nodes (section corner nodes where results are available), at element Node I and J respectively. Cl and CJ are applicable only when $\operatorname{KEYOPT}(15)=0$. For a given section corner node $n n, \mathrm{Cl}$ and CJ are given as follows:
$\mathrm{Cl}=(n n-1) * 3+\mathrm{COMP}$
$\mathrm{CJ}=(n n \operatorname{Max}+n n-1) * 3+\mathrm{COMP}$
Where nnMax is the total number of RST section nodes, and COMP is the stress or strain component ( $1-x x, 2-x y, 3-x z$ ). Locations of RST section nodes can be visualized with SECPLOT,,6.
2. DI and DJ are the sequence numbers for accessing the non-averaged line element solution quantities (LS, LEPEL, LEPPL, LEPCR, LEPTO, and LEPTT) at RST section integration points (section integration points where results are available), respectively at element Node I and J. DI and DJ are applicable only when $\operatorname{KEYOPT}(15)=1$. For the ith integration point ( $i=1,2,3$, or 4 ) in section cell $n c$, DI and DJ are given as follows:
$\mathrm{DI}=(n c-1) * 12+(\mathrm{i}-1) * 3+$ COMP
DJ $=(n c M a x+n c-1) * 12+(i-1) * 3+$ COMP
Where ncMax is the total number of RST section cells, and COMP is the stress or strain component ( $1-x x, 2-x y, 3-x z$ ). Locations of RST section cells can be visualized with SECPLOT,,7.
3. AI and AJ are the sequence numbers for accessing the averaged line element thermal strain quantities LEPTH at RST section nodes (section corner nodes where results are available), at element Node I and J respectively. AI and AJ are applicable only when $\operatorname{KEYOPT}(15)=0$. For a given section corner node $n n, \mathrm{AI}$ and AJ are given as follows:
$A \mathrm{I}=n n$
$A J=n n M a x+n n$
Where nnMax is the total number of RST section nodes. Locations of RST section nodes can be visualized with SECPLOT,,6.
4. BI and BJ are the sequence numbers for accessing the non-averaged line element thermal strain quantities LEPTH at RST section integration points (section integration points where results are available), at element Node I and J respectively. BI and BJ are applicable only when $\operatorname{KEYOPT}(15)=1$. For the ith integration point $(i=1,2,3$, or 4$)$ in section cell $n c, B$ and BJ are given as follows:
$B I=(n c-1) * 4+i$
$B J=(n c M a x+n c-1) * 4+i$
Where ncMax is the total number of RST section cells. Locations of RST section cells can be visualized with SECPLOT,,7.

For more usage details, see Plot and Review the Section Results and Sample Problem with Cantilever Beams, Command Method.

## Transverse-Shear Stress Output

The BEAM189 formulation is based on three stress components:

- one axial
- two shear stress

The shear stresses are caused by torsional and transverse loads. BEAM189 is based on first-order shear-deformation theory, also popularly known as Timoshenko beam theory. The transverse-shear strain is constant for the cross-section; therefore, the shear energy is based on a transverse-shear force. The shear force is redistributed by predetermined shear-stress distribution coefficients across the beam cross-section, and made available for output purposes. By default, the program outputs only the shear stresses caused by torsional loading. Use KEYOPT(4) to activate output of shear stresses caused by flexure or transverse loading.

The accuracy of transverse-shear distribution is directly proportional to the mesh density of cross-section modeling (for determination of warping, shear center and other section geometric properties). The tractionfree state at the edges of a cross-section is met only in a well-refined model of the cross-section.

By default, the program uses a mesh density (for cross-section modeling) that provides accurate results for torsional rigidity, warping rigidity, inertia properties, and shear-center determination. The default mesh employed is also appropriate for nonlinear material calculations; however, more refined cross-section models may be necessary if the shear stress distribution due to transverse loads must be captured very accurately. Increasing cross-section mesh size does not imply larger computational cost if the associated material is linear. Use the SECTYPE and SECDATA commands to adjust cross-section mesh density.

The transverse-shear distribution calculation ignores the effects of Poisson's ratio. The Poisson's ratio affects the shear-correction factor and shear-stress distribution slightly, and this effect is ignored.

## BEAM189 Assumptions and Restrictions

- The beam must not have zero length.
- By default ( $\operatorname{KEYOPT}(1)=0)$, the effect of warping restraint is assumed to be negligible.
- Cross-section failure or folding is not accounted for.
- Rotational degrees of freedom are not included in the lumped mass matrix if node-location offsets are present.
- The element allows curved member definition and linear-bending-moment variation. However, if a cubic representation for lateral displacement is necessary and the members are initially straight, ANSYS, Inc. recommends using BEAM188 with the cubic option ( $\operatorname{KEYOPT}(3)=3$ ).
- The element includes the effects of transverse shear and accounts for the initial curvature of the beams.
- The element works best with the full Newton-Raphson solution scheme (that is, the default choice in solution control).
- Only moderately "thick" beams can be analyzed. See the "BEAM189 Element Technology and Usage Recommendations" (p. 1085) section for more information.
- Stress stiffening is always included in geometrically nonlinear analyses (NLGEOM,ON). Prestress effects can be activated by the PSTRES command.
- When the element is associated with nonlinear general beam sections (SECTYPE,,GENB), additional restrictions apply. For more information, see Considerations for Using Nonlinear General Beam Sections.
- The element coordinate system (/PSYMB,ESYS) is not relevant.


## BEAM189 Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

## ANSYS Professional

- The only special features allowed are stress stiffening and large deflections.


## SOLSH190

## 3-D 8-Node Structural Solid Shell

MP ME ST PR PRN DS DSS <> <> <> <> PP <> EME MFS

## SOLSH190 Element Description

SOLSH190 is used for simulating shell structures with a wide range of thickness (from thin to moderately thick). The element possesses the continuum solid element topology and features eight-node connectivity with three degrees of freedom at each node: translations in the nodal $x, y$, and $z$ directions. Thus, connecting SOLSH190 with other continuum elements requires no extra efforts. A degenerate prism option is available, but should only be used as filler elements in mesh generation. The element has plasticity, hyperelasticity, stress stiffening, creep, large deflection, and large strain capabilities. It also has mixed u-P formulation capability for simulating deformations of nearly incompressible elastoplastic materials, and fully incompressible hyperelastic materials. The element formulation is based on logarithmic strain and true stress measures.

You can use SOLSH190 for layered applications such as modeling laminated shells or sandwich construction. The layered section definition is given by section (SEC $x x x$ ) commands. Accuracy in modeling composite shells is governed by the first-order shear-deformation theory (also known as Mindlin-Reissner shell theory).

See SOLSH190 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

Figure 1 SOLSH190 Geometry



Prism Option

## SOLSH190 Input Data

The geometry, node locations, and the element coordinate system for this element are shown in Figure 1 (p. 1101). The element is defined by eight nodes. The element coordinate system follows the shell convention where the $z$ axis is normal to the surface of the shell. The node ordering must follow the convention that
the I-J-K-L and M-N-O-P element faces represent the bottom and top shell surfaces, respectively. You can change the orientation within the plane of the layers via the ESYS command as you would for shell elements (as described in Coordinate Systems (p. 14)). To achieve the correct nodal ordering for a volume mapped (hexahedron) mesh, you can use the VEORIENT command to specify the desired volume orientation before executing the VMESH command. Alternatively, you can use the EORIENT command after automatic meshing to reorient the elements to be in line with the orientation of another element, or to be as parallel as possible to a defined ESYS axis.

## Layered Section Definition Using Section Commands

You can associate SOLSH190 with a shell section (SECTYPE). The layered composite specifications (including layer thickness, material, orientation, and number of integration points through the thickness of the layer) are specified via shell section (SEC $x \times x$ ) commands. You can use the shell section commands even with a single-layered SOLSH190 element. ANSYS obtains the actual layer thicknesses used for element calculations by scaling the input layer thickness so that they are consistent with the thickness between the nodes. A section can be partially defined using data from a FiberSIM .xml file.

You can designate the number of integration points ( $1,3,5,7$, or 9 ) located through the thickness of each layer. Two points are located on the top and bottom surfaces respectively and the remaining points are distributed equal distance between the two points. The element requires at least two points through the entire thickness. When no shell section definition is provided, the element is treated as single-layered and uses two integration points through the thickness.

SOLSH190 does not support real constant input for defining layer sections.

## Other Input

The default orientation for this element has the S 1 (shell surface coordinate) axis aligned with the first parametric direction of the element at the center of the element and is shown as $x_{0}$ in Figure 1 (p.1101). The axis can be defined as shown:

$$
S_{1}=\frac{\partial\{x\}}{\partial s} /\left(\left|\frac{\partial\{x\}}{\partial s}\right|\right)
$$

where:

$$
\begin{aligned}
& \frac{\partial\{x\}}{\partial s}=\left(\frac{1}{8}\right)\left[-\{x\}^{\mathrm{l}}+\{x\}^{\mathrm{J}}+\{x\}^{\mathrm{K}}-\{x\}^{\mathrm{L}}-\{x\}^{\mathrm{M}}+\{x\}^{\mathrm{N}}+\{x\}^{\mathrm{O}}-\{x\}^{\mathrm{P}}\right] \\
& \{x\}^{1},\{x\}^{J}, \ldots,\{x\}^{\mathrm{P}}=\text { global nodal coordinates }
\end{aligned}
$$

You can reorient the default first surface direction S1 in the element reference plane (see Figure 190.1) via the ESYS command. You can further rotate S1 by angle THETA (in degrees) for each layer via the SECDATA command to create layer-wise coordinate systems. See Coordinate Systems (p. 14) for details.

Element loads are described in Node and Element Loads (p. 97). Pressures may be input as surface loads on the element faces as shown by the circled numbers on Figure 1 (p.1101). Positive pressures act into the element.

If you specify no element body load for defining temperatures--that is, you define temperatures with commands other than BFE--SOLSH190 adopts an element-wise temperature pattern and requires only eight temperatures for the eight element nodes. Unspecified nodal temperatures default to the assigned uniform
temperature (TUNIF). ANSYS computes all layer interface temperatures by interpolating nodal temperatures T1 ~ T8.

Alternatively, you can input temperatures as element body loads at the corners of the outside faces of the element and at the corners of the interfaces between layers. In such a case, the element uses a layer-wise pattern. Temperatures T1, T2, T3, T4 are used for the bottom of layer 1, temperatures T5, T6, T7, T8 are used for interface corners between layers 1 and 2 , and so on between successive layers, ending with temperatures at the top layer NL. If you input exactly NL + 1 temperatures, one temperature is used for the four bottom corners of each layer, and the last temperature is used for the four top corner temperatures of the top layer. The first corner temperature T1 defaults to TUNIF. If all other corner temperatures are unspecified, they default to T1. For any other input pattern, unspecified temperatures default to TUNIF.

You can use the MP command to define the isotropic or orthotropic elastic material properties and the TB,ANEL command to define anisotropic elastic material properties. Other material properties include density, damping ratios, and coefficients of thermal expansion. You may also use the TB command to define nonlinear material behavior such as plasticity, hyperelasticity, viscoelasticity, creep, and viscoplasticity.
$\operatorname{KEYOPT}(2)=1$ activates the internal strain enhancements to the element transverse-shear strains. With this option, the element is capable of quadratic transverse-shear strain distributions through the entire thickness of the element.
$\operatorname{KEYOPT}(6)=1$ sets the element for using u-P mixed formulation. For details on the use of mixed formulation, see Applications of Mixed u-P Formulations (p.118) in the Element Reference.

You can apply an initial stress state to this element via the INISTATE command. For more information, see "Initial State" in the Basic Analysis Guide.

The effects of pressure load stiffness are automatically included for this element. If an unsymmetric matrix is needed for pressure load stiffness effects, use NROPT,UNSYM.
"SOLSH190 Input Summary" (p. 1103) contains a summary of element input. For a general description of element input, see Element Input (p. 5).

## SOLSH190 Input Summary

## Nodes

I, J, K, L, M, N, O, P

## Degrees of Freedom

UX, UY, UZ

## Real Constants

None

## Material Properties

EX, EY, EZ, PRXY, PRYZ, PRXZ (or NUXY, NUYZ, NUXZ), ALPX, ALPY, ALPZ (or CTEX, CTEY, CTEZ or THSX, THSY, THSZ), DENS, GXY, GYZ, GXZ, DAMP

## Surface Loads

 Pressures --face 1 (J-I-L-K), face 2 (I-J-N-M), face 3 (J-K-O-N), face 4 (K-L-P-O), face 5 (L-I-M-P), face 6 (M-N-O-P)

## Body Loads

## Temperatures --

Element-wise pattern (no element body load command issued): T1, T2, T3, T4, T5, T6, T7, T8 for 8 element nodes. Temperatures at layer interface corners are computed by interpolating nodal temperatures.
Layer-wise pattern (element body load command issued): T1, T2, T3, T4 (at bottom of layer 1), T5, T6, T7, T8 (between layers 1-2); similarly for temperatures between subsequent layers, ending with temperatures at top of layer NL ( 4 * $(\mathrm{NL}+1)$ maximum). For a one-layer element, therefore, 8 temperatures are used.

## Body force densities --

The element values in the global $X, Y$, and $Z$ directions.

## Special Features

Plasticity (PLASTIC, BISO, MISO, NLISO, BKIN, MKIN, KINH, CHABOCHE, HILL)
Hyperelasticity (AHYPER, HYPER, BB, CDM)
Viscoelasticity (PRONY, SHIFT)
Viscoplasticity/Creep (CREEP, RATE)
Elasticity (ELASTIC, ANEL)
Other material (USER, SDAMP, SMA, CAST, EDP, GURSON)
Stress stiffening
Large deflection
Large strain
Initial state
Nonlinear stabilization
Birth and death
Linear perturbation
Items in parentheses refer to data tables associated with the TB command. See "Structures with Material Nonlinearities" in the Theory Reference for the Mechanical APDL and Mechanical Applications for details about the material models.

## KEYOPT(2)

Enhanced transverse-shear strains:
0 --
No enhanced transverse-shear strains (default).
1 --
Include enhanced transverse-shear strains.

## KEYOPT(6)

Element formulation:
0 --
Use pure displacement formulation (default).
1 --
Use mixed u-P formulation.

## KEYOPT(8)

Storage of layer data:
0 --
For multilayer elements, store data for bottom of bottom layer and top of top layer (default).

## 1 --

For multilayer elements, store data for top and bottom for all layers. (Before using this option, be aware that the amount of data involved can be very large.)

## SOLSH190 Element Technology

SOLSH190 employs incompatible modes to enhance the accuracy in in-plane bending situations. The satisfaction of the in-plane patch test is ensured. A separate set of incompatible modes is adopted to overcome the thickness locking in bending dominant problems. The incompatible modes introduce seven internal DOFs that are inaccessible to users and condensed out at the element level.

SOLSH190 utilizes a suite of special kinematic formulations to avoid locking when the shell thickness becomes extremely small. However, due to its shell-like behavior, SOLSH190 fails to pass the patch test if the element is distorted in the thickness direction.

SOLSH190 is fully compatible with 3-D constitutive relations. Compared to classical shell elements that are based on plane stress assumptions, SOLSH190 usually gives more accurate predictions when the shell is thick.

## SOLSH190 Output Data

The solution output associated with the element is in two forms:

- Nodal displacements included in the overall nodal solution
- Additional element output as shown in Table 1: SOLSH190 Element Output Definitions (p. 1106)

Several items are illustrated in Figure 2 (p. 1106). See Element Table for Variables Identified By Sequence Number in the Basic Analysis Guide and The Item and Sequence Number Table (p. 9) in this manual for more information.

Figure 2 SOLSH190 Stress Output

$x_{0}=$ Element $x$-axis if ESYS is not supplied.
$x=$ Element $x$-axis if ESYS is supplied.

## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " $Y$ " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 1 SOLSH190 Element Output Definitions

Name	Definition	$\mathbf{O}$	$\mathbf{R}$
EL	Element Number	-	Y
NODES	Nodes $-\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}, \mathrm{M}, \mathrm{N}, \mathrm{O}, \mathrm{P}$	-	Y
MAT	Material number	-	Y
VOLU:	Volume	-	Y
XC, YC, ZC	Location where results are reported	Y	2
PRES	Pressures P1 at nodes J, I, L, K; P2 at I, J, N, M; P3 at   J, K, O, N; P4 at K, L, P, O; P5 at L, I, M, P; P6 at M, N,   $\mathrm{O}, \mathrm{P}$	-	Y


Name	Definition	0	R
TEMP	T1, T2, T3, T4 at bottom of layer 1; T5, T6, T7, T8 between layers 1-2; similarly for between successive layers, ending with temperatures at top of layer NL (4* $(\mathrm{NL}+1)$ maximum $)$	-	Y
S:X, Y, Z, XY, YZ, XZ	Stresses	Y	Y
S:1, 2, 3	Principal stresses	-	Y
S:INT	Stress intensity	-	Y
S:EQV	Equivalent stress	-	Y
$\begin{aligned} & \text { EPEL:X,Y, Z, XY, YZ, } \\ & X Z \end{aligned}$	Elastic strains	Y	Y
EPEL:EQV	Equivalent elastic strains [5]	-	Y
$\begin{aligned} & \text { EPTH:X, Y, Z, XY, YZ, } \\ & X Z \end{aligned}$	Thermal strains	Y	Y
EPTH:EQV	Equivalent thermal strains [5]	-	Y
$\begin{aligned} & \text { EPPL:X,Y, Z, XY, YZ, } \\ & X Z \end{aligned}$	Plastic strains [6]	1	1
EPPL:EQV	Equivalent plastic strains [5]	-	1
$\begin{aligned} & \text { EPCR:X,Y, Z, XY, YZ, } \\ & X Z \end{aligned}$	Creep strains	1	1
EPCR:EQV	Equivalent creep strains [5]	-	1
$\begin{aligned} & \text { EPTO:X,Y, Z, XY, YZ, } \\ & \text { XZ } \end{aligned}$	Total mechanical strains (EPEL + EPPL + EPCR)	Y	-
EPTO:EQV	Total equivalent mechanical strains (EPEL + EPPL + EPCR)	-	-
NL:EPEQ	Accumulated equivalent plastic strain	1	1
NL:CREQ	Accumulated equivalent creep strain	1	1
NL:SRAT	Plastic yielding ( $1=$ actively yielding, $0=$ not yielding)	1	1
NL:HPRES	Hydrostatic pressure	1	1
SEND:ELASTIC, PLASTIC, CREEP	Strain energy densities	-	1
N11, N22, N12	In-plane forces (per unit length)	-	Y
M11, M22, M12	Out-of-plane moments (per unit length)	-	Y
Q13, Q23	Transverse-shear forces (per unit length)	-	Y
LOCI:X, Y, Z	Integration point locations	-	3
SVAR:1, 2, ... , N	State variables	-	4
ILSXZ	SXZ interlaminar shear stress	-	7
ILSYZ	SYZ interlaminar shear stress	-	7
ILSUM	Magnitude of the interlaminar shear stress vector	-	7


Name	Definition	$\mathbf{O}$	R
ILANG	Angle of interlaminar shear stress vector (measured   from the element x-axis toward the element $y$-axis   in degrees)	-	7
Sm: $11,22,12$	Membrane stresses	-	Y
Sb: $11,22,12$	Bending stresses	-	Y
Sp: $11,22,12$	Peak stresses	-	Y
St: 13,23	Averaged transverse-shear stresses	-	Y

1. Nonlinear solution, output only if the element has a nonlinear material
2. Available only at centroid as a *GET item
3. Available only if OUTRES,LOCI is used
4. Available only if the USERMAT subroutine and TB,STATE are used
5. The equivalent strains use an effective Poisson's ratio: for elastic and thermal this value is set by the user (MP,NUXY); for plastic and creep this value is set at 0.5.
6. For the shape memory alloy material model, transformation strains are reported as plasticity strain EPPL.
7. Available only if a valid shell section (SECTYPE,,SHELL) is defined for the element.

Table 2: SOLSH190 Item and Sequence Numbers (p. 1108) lists output available through ETABLE using the Sequence Number method. See Element Table for Variables Identified By Sequence Number in the Basic Analysis Guide and The Item and Sequence Number Table (p. 9) in this manual for more information. The following notation is used in Table 2: SOLSH190 Item and Sequence Numbers (p. 1108):

## Name

output quantity as defined in the Table 1: SOLSH190 Element Output Definitions (p. 1106)

## Item

predetermined Item label for ETABLE command
$\mathbf{I}, \mathbf{J}, \ldots, \mathrm{P}$
sequence number for data at nodes I, J, ..., P
Table 2 SOLSH190 Item and Sequence Numbers

Output Quantity Name	ETABLE and ESOL Command Input									
	Item	E	I	J	K	L	M	N	0	P
P1	SMISC	-	2	1	4	3	-	-	-	-
P2	SMISC	-	5	6	-	-	8	7	-	-
P3	SMISC	-	-	9	10	-	-	12	11	-
P4	SMISC	-	-	-	13	14	-	-	16	15
P5	SMISC	-	18	-	-	17	19	-	-	20
P6	SMISC	-	-	-	-	-	21	22	23	24
THICK	SMISC	27	-	-	-	-	-	-	-	-


Output Quantity Name	ETABLE and ESOL Command Input									
	Item	E	I	$J$	K	L	M	N	0	P
N11	SMISC	28	-	-	-	-	-	-	-	-
N22	SMISC	29	-	-	-	-	-	-	-	-
N12	SMISC	30	-	-	-	-	-	-	-	-
M11	SMISC	31	-	-	-	-	-	-	-	-
M22	SMISC	32	-	-	-	-	-	-	-	-
M12	SMISC	33	-	-	-	-	-	-	-	-
Q13	SMISC	34	-	-	-	-	-	-	-	-
Q23	SMISC	35	-	-	-	-	-	-	-	-
Sm: 11	SMISC	36	-	-	-	-	-	-	-	-
Sm: 22	SMISC	37	-	-	-	-	-	-	-	-
Sm: 12	SMISC	38	-	-	-	-	-	-	-	-
Sb: 11	SMISC	39	-	-	-	-	-	-	-	-
Sb: 22	SMISC	40	-	-	-	-	-	-	-	-
Sb: 12	SMISC	41	-	-	-	-	-	-	-	-
Sp: 11 (at bottom face)	SMISC	42	-	-	-	-	-	-	-	-
Sp: 22 (at bottom face)	SMISC	43	-	-	-	-	-	-	-	-
$\mathrm{Sp}: 12$ (at bottom face)	SMISC	44	-	-	-	-	-	-	-	-
Sp: 11 (at top face)	SMISC	45	-	-	-	-	-	-	-	-
Sp: 22 (at top face)	SMISC	46	-	-	-	-	-	-	-	-
Sp: 12 (at top face)	SMISC	47	-	-	-	-	-	-	-	-
St: 13	SMISC	48	-	-	-	-	-	-	-	-
St: 23	SMISC	49	-	-	-	-	-	-	-	-


Output   Quant-   ity   Name	ETABLE and ESOL Command Input		
	Item	Bottom of Layer i	Top of Layer NL
ILSXZ	SMISC	$8^{*}(\mathrm{i}-1)+51$	$8^{*}(\mathrm{NL}-1)+52$
ILSYZ	SMISC	$8^{*}(\mathrm{i}-1)+53$	$8^{*}(\mathrm{NL}-1)+54$
ILSUM	SMISC	$8^{*}(\mathrm{i}-1)+55$	$8^{*}(\mathrm{NL}-1)+56$
ILANG	SMISC	$8^{*}(\mathrm{i}-1)+57$	$8^{*}(\mathrm{NL}-1)+58$

## SOLSH190 Assumptions and Restrictions

- Zero-volume elements are not allowed.
- Elements may be numbered either as shown in Figure 1 (p. 1101) or may have the planes IJKL and MNOP interchanged. The element may not be twisted such that the element has two separate volumes (which occurs most frequently when the elements are not numbered properly).
- All elements must have eight nodes. You can form a prism-shaped element by defining duplicate $K$ and L and duplicate O and P node numbers (see Triangle, Prism, and Tetrahedral Elements (p. 99)).
- If you use the mixed u-P formulation $(\operatorname{KEYOPT}(6)=1)$, the damped eigensolver is not supported. You must use the sparse solver (default).
- If the material of a layer is hyperelastic, the layer orientation angle has no effect.
- Using both hyperelastic and elastoplastic layers in the same element can produce unpredictable results and is not recommended.
- Stress stiffening is always included in geometrically nonlinear analyses (NLGEOM,ON). Prestress effects can be activated by the PSTRES command.


## SOLSH190 Product Restrictions

There are no product-specific restrictions for this element.

## INTER192

## 2-D 4-Node Gasket

MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS

## INTER192 Element Description

INTER192 is a 2-D four-node linear interface element used for 2-D structural assembly modeling . When used with 2-D linear structural elements (such as PLANE182), INTER192 simulates gasket joints. The element can be used either as a plane element (plane stress or plane strain) or as an axisymmetric element. It is defined by four nodes having two degrees of freedom at each node: translations in the nodal x and y directions.

See Gasket Material and INTER192 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

Also see Gasket Joints Simulation in the Structural Analysis Guide for more details on the gasket capability in ANSYS.

Figure 1 INTER192 Geometry


## INTER192 Input Data

The element geometry, node locations, connectivity, and the nodal coordinate system are shown in Figure 1 (p. 1111). The element geometry is defined by 4 nodes, which form bottom and top lines of the element. The bottom line is defined by nodes $\mathrm{I}, \mathrm{J}$; and the top line is defined by nodes $\mathrm{K}, \mathrm{L}$. The element connectivity is defined as I, J, K, L. This element has 2 integration points. The Gauss integration scheme is used for the numerical integration.

Temperatures may be input as element body loads at the nodes. The node I temperature $\mathrm{T}(\mathrm{I})$, defaults to TUNIF. If all other temperatures are unspecified, they default to $T(I)$. For any other input pattern, unspecified temperatures default to TUNIF.

Input the nodal forces, if any, per unit of depth for a plane analysis (except for $\operatorname{KEYOPT}(3)=3)$ and on a full $360^{\circ}$ basis for an axisymmetric analysis.

By default, the element is capable of both through-thickness and transverse shear deformations (KEYOPT(2) $=1$ ). The inclusion of transverse shear stiffness is generally required when the interfaces between the gasket and the mating parts are modeled as sliding contact. However, if the interfaces are modeled with a matching
mesh method (that is, with coincident nodes), ANSYS recommends using through-thickness deformation only ( $\operatorname{KEYOPT}(2)=0)$ to avoid unnecessary in-plane interaction between the gasket and the mating parts.

The following table summarizes the element input. See the Element Input (p. 5) section in the Element Reference for a general description of element input.

## INTER192 Input Summary

## Nodes

I, J, K, L
Degrees of Freedom
UX, UY

## Real Constants

None, if KEYOPT(3) $=0,1$, or 2
THK - Plane stress with thickness, if $\operatorname{KEYOPT}(3)=3$

## Material Properties

DAMP, ALPX (or CTEX or THSX)

## Body Loads

Temperatures --
$\mathrm{T}(\mathrm{I}), \mathrm{T}(\mathrm{J}), \mathrm{T}(\mathrm{K}), \mathrm{T}(\mathrm{L})$

## Special Features

Gasket material associated with TB,GASKET [1 (p. 1112)]
Linear perturbation

1. See Gasket Material in the Theory Reference for the Mechanical APDL and Mechanical Applications for details on the material model.

## KEYOPT(2)

Element deformation:
0 --
Through-thickness deformation only
1 --
Through-thickness and transverse shear deformation (default)

## KEYOPT(3)

Element behavior:
0 --
Plane stress
1 --
Axisymmetric
2 --
Plane strain (Z strain $=0.0$ )
3 --
Plane stress with thickness (THK) real constant input

## INTER192 Output Data

The solution output associated with the element is in two forms:

- Nodal items such as nodal displacements are included in the overall nodal solution.
- Element items such as stresses and closures are element outputs as shown in Table 1: INTER192 Element Output Definitions (p. 1113).

The output directions for element items are parallel to the local element coordinate system based on the element midplane as illustrated in Figure 2 (p. 1113). See Gasket Material in the Theory Reference for the Mechanical APDL and Mechanical Applications for details.

A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to review results.

Figure 2 INTER192 Stress Output


## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " $\gamma$ " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and " - " indicates that the item is not available.

## Table 1 INTER192 Element Output Definitions

Name	Definition	0	R
EL	Element number	-	Y
NODES	Node connectivity - I, J, K, L	-	Y
MAT	Material number	-	Y
TEMP	Temperatures $\mathrm{T}(\mathrm{I}), \mathrm{T}(\mathrm{J}), \mathrm{T}(\mathrm{K}), \mathrm{T}(\mathrm{L})$	-	Y
GKS:X, (XY)	Stress (also gasket pressure)	Y	Y
GKD:X, (XY)	Total closure	Y	Y
GKDI:X, (XY)	Total inelastic closure	Y	Y


Name	Definition	$\mathbf{O}$	$\mathbf{R}$
GKTH:X, (XY)	Thermal closure	$Y$	$Y$

## INTER192 Assumptions and Restrictions

- This element is not supported for initial stress.
- Pressure as a type of surface load on element faces is not supported by this element.
- This element is based on the local coordinate system. ESYS is not permitted.
- This element is only available for static analyses.


## INTER192 Product Restrictions

There are no product-specific restrictions on this element.

## INTER193

2-D 6-Node Gasket
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS
Product Restrictions

## INTER193 Element Description

INTER193 is a 2-D 6-node quadratic interface element used for 2-D structural assembly modeling. When used in conjunction with 2-D quadratic structural elements (such as PLANE183), INTER193 is used to simulate gasket joints. The element can be used either as a plane element (plane stress or plane strain) or as an axisymmetric element. It is defined by six nodes having two degrees of freedom at each node: translations in the nodal $x$ and $y$ directions.

See Gasket Material and INTER193 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

Also see Gasket Joints Simulation in the Structural Analysis Guide for more details on the gasket capability in ANSYS.

Figure 1 INTER193 Geometry


## INTER193 Input Data

The element geometry, node locations, connectivity, and the nodal coordinate system are shown in Figure 1 (p. 1115). The element geometry is defined by 6 nodes, which form bottom and top lines of the element. The bottom line is defined by nodes $\mathrm{I}, \mathrm{J}, \mathrm{M}$; and the top line is defined by nodes $\mathrm{K}, \mathrm{L}, \mathrm{O}$. The element connectivity is defined as $I, J, K, L, M, O$. This element has 2 integration points. Dropping mid side nodes $M$ or $O$ is not permitted.

Temperatures may be input as element body loads at the nodes. The node I temperature $\mathrm{T}(\mathrm{I})$, defaults to TUNIF. If all other temperatures are unspecified, they default to $T(I)$. For any other input pattern, unspecified temperatures default to TUNIF.

Input the nodal forces, if any, per unit of depth for a plane analysis (except for $\operatorname{KEYOPT}(3)=3$ ) and on a full $360^{\circ}$ basis for an axisymmetric analysis.

By default, the element adopts a full-integration scheme $(\operatorname{KEYOPT}(4)=2)$ and is capable of both throughthickness and transverse shear deformations $(\operatorname{KEYOPT}(2)=1)$. The full-integration scheme and the inclusion of transverse shear stiffness are generally required when the interfaces between the gasket and the mating parts are modeled as sliding contact. However, if the interfaces are modeled with a matching mesh method (that is, with coincident nodes), ANSYS recommends using the reduced integration scheme (KEYOPT(4) = 0) and through-thickness deformation only $(\operatorname{KEYOPT}(2)=0)$ to achieve better efficiency and to avoid unnecessary in-plane interaction between the gasket and the mating parts.

The next table summarizes the element input. See Element Input (p.5) in the Element Reference for a general description of element input.

## INTER193 Input Summary

## Nodes

I, J, K, L, M, O

## Degrees of Freedom

UX, UY

## Real Constants

None, if $\operatorname{KEYOPT}(3)=0,1$, or 2
THK - Plane stress with thickness, if $\operatorname{KEYOPT}(3)=3$

## Material Properties

DAMP, ALPX (or CTEX or THSX)

## Body Loads

Temperatures --
$\mathrm{T}(\mathrm{I}), \mathrm{T}(\mathrm{J}), \mathrm{T}(\mathrm{K}), \mathrm{T}(\mathrm{L}), \mathrm{T}(\mathrm{M}), \mathrm{T}(\mathrm{O})$

## Special Features

Gasket material associated with TB,GASKET [1 (p. 1116)]
Linear perturbation

1. See Gasket Material in the Theory Reference for the Mechanical APDL and Mechanical Applications for details on the material model.

## KEYOPT(2)

Element deformation:
0 --
Through-thickness deformation only
1 --
Through-thickness and transverse shear deformation (default)

## KEYOPT(3)

Element behavior:
0 --
Plane stress
1 --
Axisymmetric
2 --
Plane strain $(Z$ strain $=0.0)$

## 3 --

Plane stress with thickness (THK) real constant input

## KEYOPT(4)

Element technology:
0 --
Uniform reduced integration
2 --
Full integration (default)

## INTER193 Output Data

The solution output associated with the element is in two forms:

- Nodal items such as nodal displacements are included in the overall nodal solution.
- Element items such as stresses and closures are element outputs as shown in Table 1: INTER193 Element Output Definitions (p. 1118).

The output directions for element items are parallel to the local element coordinate system based on the element midplane as illustrated in Figure 2 (p. 1117). See Gasket Material in the Theory Reference for the Mechanical APDL and Mechanical Applications for details.

A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to review results.

Figure 2 INTER193 Stress Output


## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " $Y$ " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 1 INTER193 Element Output Definitions

Name	Definition	$\mathbf{O}$	$\mathbf{R}$
EL	Element number	-	Y
NODES	Node connectivity $-\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}, \mathrm{M}, \mathrm{O}$	-	Y
MAT	Material number	-	Y
TEMP	Temperatures T(I), T(J), T(K), T(L), T(M), T(O)	-	Y
GKS:X, (XY)	Stress (also gasket pressure)	Y	Y
GKD:X, (XY)	Total closure	Y	Y
GKDI:X, (XY)	Total inelastic closure	Y	Y
GKTH:X, (XY)	Thermal closure	Y	Y

## INTER193 Assumptions and Restrictions

- This element is not supported for initial stress.
- Pressure as a type of surface load on element faces is not supported by this element.
- This element is based on the local coordinate system. ESYS is not permitted.
- This element is only available for static analyses.

INTER193 Product Restrictions
There are no product-specific restrictions on this element.

## INTER194

3-D 16-Node Gasket
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS
Product Restrictions

## INTER194 Element Description

INTER194 is a 3-D 16-node quadratic interface element. When used with 3-D quadratic structural elements (SOLID96, SOLID186, and SOLID187), INTER194 simulates gasket joints. It is defined by 16 nodes having three degrees of freedom at each node: translations in the nodal $x, y$, and $z$ directions.

See Gasket Material and INTER194 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

Also see Gasket Joints Simulation in the Structural Analysis Guide for more details about gasket simulation.
Figure 1 INTER194 Geometry


## INTER194 Input Data

The element geometry, node locations, connectivity, and the nodal coordinate system are shown in Figure 1 (p.1119). The element geometry is defined by 16 nodes, which form bottom and top surfaces of the element. The bottom surface is defined by nodes, $I, J, K, L, Q, R, S, T$; and the top surface is defined by nodes, $M, N$, $\mathrm{O}, \mathrm{P}, \mathrm{U}, \mathrm{V}, \mathrm{W}, \mathrm{X}$. As shown, the element connectivity is defined as $\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}, \mathrm{M}, \mathrm{N}, \mathrm{O}, \mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}, \mathrm{T}, \mathrm{U}, \mathrm{V}, \mathrm{W}, \mathrm{X}$. The element is degenerated to a wedge (prism) element, when $\mathrm{K}=\mathrm{L}=\mathrm{S}$ and $\mathrm{O}=\mathrm{P}=\mathrm{W}$, as shown in Figure 2 (p.1120).

Figure 2 INTER194 3-D 16-Node Degenerated Quadratic Interface


For the degenerated element, 3 integration points are used for numerical integration. The degenerated element can be used in conjunction with 10 -node solid tetrahedral elements (such as SOLID187). Dropping any or some of midside nodes, $\mathrm{Q}, \mathrm{R}, \mathrm{S}, \mathrm{T}, \mathrm{U}, \mathrm{V}, \mathrm{W}, \mathrm{X}$ is not permitted.

Temperatures may be input as element body loads at the nodes. The node I temperature $\mathrm{T}(\mathrm{I})$, defaults to TUNIF. If all other temperatures are unspecified, they default to $T(I)$. For any other input pattern, unspecified temperatures default to TUNIF.

By default, the element adopts a full-integration scheme $(\operatorname{KEYOPT}(4)=2)$ and is capable of both throughthickness and transverse shear deformations $(\operatorname{KEYOPT}(2)=1)$. The full-integration scheme and the inclusion of transverse shear stiffness are generally required when the interfaces between the gasket and the mating parts are modeled as sliding contact. However, if the interfaces are modeled with a matching mesh method (that is, with coincident nodes), ANSYS, Inc. recommends using the reduced-integration scheme (KEYOPT(4) $=0$ ) and through-thickness deformation only ( $\operatorname{KEYOPT}(2)=0)$ to achieve better efficiency and to avoid unnecessary in-plane interaction between the gasket and the mating parts.

The following table summarizes the element input. See Element Input (p. 5) in the Element Reference for a general description of element input.

## INTER194 Input Summary

## Nodes

I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X

## Degrees of Freedom

UX, UY, UZ

## Real Constants

None

## Material Properties

DAMP, ALPX (or CTEX or THSX)

## Body Loads

Temperatures --
$\mathrm{T}(\mathrm{I}), \mathrm{T}(\mathrm{J}), \mathrm{T}(\mathrm{K}), \mathrm{T}(\mathrm{L}) \mathrm{T}(\mathrm{M}), \mathrm{T}(\mathrm{N}), \mathrm{T}(\mathrm{O}), \mathrm{T}(\mathrm{P}), \mathrm{T}(\mathrm{Q}), \mathrm{T}(\mathrm{R}), \mathrm{T}(\mathrm{S}), \mathrm{T}(\mathrm{T}), \mathrm{T}(\mathrm{U}), \mathrm{T}(\mathrm{V}), \mathrm{T}(\mathrm{W}), \mathrm{T}(\mathrm{X})$

## Special Features

Gasket material associated with TB,GASKET [1 (p. 1121)]
Linear perturbation

1. See Gasket Material in the Theory Reference for the Mechanical APDL and Mechanical Applications for details on the material model.

## KEYOPT(2)

Element deformation:
0 --
Through-thickness deformation only
1 --
Through-thickness and transverse shear deformation (default)

## KEYOPT(4)

Element technology:
0 --
Uniform reduced integration
2 --
Full integration (default)

## INTER194 Output Data

The solution output associated with the element is in two forms:

- Nodal items such as nodal displacements are included in the overall nodal solution.
- Element items such as stresses and closures are element outputs as shown in Table 1: INTER194 Element Output Definitions (p. 1122).

The output directions for element items are parallel to the local element coordinate system based on the element midplane as illustrated in Figure 3 (p. 1122). See Gasket Material in the Theory Reference for the Mechanical APDL and Mechanical Applications for details.

A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to review results.

Figure 3 INTER194 Stress Output


## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " $Y$ " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

## Table 1 INTER194 Element Output Definitions

Name	Definition	$\mathbf{O}$	$\mathbf{R}$
EL	Element number	-	Y
NODES	Node connectivity $-\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}, \mathrm{M}, \mathrm{N}, \mathrm{O}, \mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}$,   $\mathrm{T}, \mathrm{U}, \mathrm{V}, \mathrm{W}, \mathrm{X}$	-	Y
MAT	Material number	-	Y
TEMP	Temperatures $\mathrm{T}(\mathrm{I}), \mathrm{T}(\mathrm{J}), \mathrm{T}(\mathrm{K}), \mathrm{T}(\mathrm{L}), \mathrm{T}(\mathrm{M}), \mathrm{T}(\mathrm{N}), \mathrm{T}(\mathrm{O})$,   $\mathrm{T}(\mathrm{P}), \mathrm{T}(\mathrm{Q}), \mathrm{T}(\mathrm{R}), \mathrm{T}(\mathrm{S}), \mathrm{T}(\mathrm{T}), \mathrm{T}(\mathrm{U}), \mathrm{T}(\mathrm{V}), \mathrm{T}(\mathrm{W}), \mathrm{T}(\mathrm{X})$	-	Y
GKS:X, (XY, XZ)	Stress (also gasket pressure $)$	Y	Y
GKD:X, (XY, XZ)	Total closure	Y	Y
GKDI:X, (XY, XZ)	Total inelastic closure	Y	Y
GKTH:X, (XY, XZ)	Thermal closure	Y	Y

## INTER194 Assumptions and Restrictions

- This element is not supported for initial stress.
- Pressure as a type of surface load on element faces is not supported by this element.
- This element is based on the local coordinate system. ESYS is not permitted.
- This element is only available for static analyses.


## INTER194 Product Restrictions

There are no product-specific restrictions on this element.

## INTER195

3-D 8-Node Gasket
MP ME ST <> <> <>> <> <> <> <> <> PP <> EME MFS
Product Restrictions

## INTER195 Element Description

INTER195 is a 3-D 8-node linear interface element. When used with 3-D linear structural elements (SOLID62, SOLID65, SOLID185, SOLSH190, SOLID272, SOLID273, and SOLID285), INTER195 simulates gasket joints. It is defined by eight nodes having three degrees of freedom at each node: translations in the nodal $x, y, a n d z$ directions.

See Gasket Material and INTER195 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

Also see Gasket Joints Simulation in the Structural Analysis Guide for more details on this ANSYS capability.
Figure 1 INTER195 Geometry


## INTER195 Input Data

The element geometry, node locations, connectivity, and the nodal coordinate system are shown in Figure 1 (p. 1125). The element geometry is defined by 8 nodes, which form bottom and top surfaces of the element. The bottom surface is defined by nodes, $\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}$; and the top surface is defined by nodes, M, N, O, P. As shown, the element connectivity is defined as $I, J, K, L, M, N, O, P$.

Temperatures may be input as element body loads at the nodes. The node I temperature $\mathrm{T}(\mathrm{I})$, defaults to TUNIF. If all other temperatures are unspecified, they default to $T(I)$. For any other input pattern, unspecified temperatures default to TUNIF.

By default, the element is capable of both through-thickness and transverse shear deformations (KEYOPT(2) $=1$ ). The inclusion of transverse shear stiffness is generally required when the interfaces between the gasket and the mating parts are modeled as sliding contact. However, if the interfaces are modeled with a matching mesh method (that is, with coincident nodes), ANSYS recommends using through-thickness deformation only ( $\operatorname{KEYOPT}(2)=0)$ to avoid unnecessary in-plane interaction between the gasket and the mating parts.

The next table summarizes the element input. See Element Input (p.5) in the Element Reference for a general description of element input.

## INTER195 Input Summary

## Nodes

I, J, K, L, M, N, O, P
Degrees of Freedom
UX, UY, UZ

## Real Constants

None

## Material Properties

DAMP, ALPX (or CTEX or THSX)

## Body Loads

## Temperatures --

$\mathrm{T}(\mathrm{I}), \mathrm{T}(\mathrm{J}), \mathrm{T}(\mathrm{K}), \mathrm{T}(\mathrm{L}), \mathrm{T}(\mathrm{M}), \mathrm{T}(\mathrm{N}), \mathrm{T}(\mathrm{O}), \mathrm{T}(\mathrm{P})$

## Special Features

Gasket material associated with TB,GASKET [1 (p. 1126)]
Linear perturbation

1. See Gasket Material in the Theory Reference for the Mechanical APDL and Mechanical Applications for details on the material model.

## KEYOPT(2)

Element deformation:
0 --
Through-thickness deformation only
1 --
Through-thickness and transverse shear deformation (default)

## INTER195 Output Data

The solution output associated with the element is in two forms:

- Nodal items such as nodal displacements are included in the overall nodal solution.
- Element items such as stresses and closures are element outputs as shown in Table 1: INTER195 Element Output Definitions (p. 1127).

The output directions for element items are parallel to the local element coordinate system based on the element midplane as illustrated in Figure 2 (p. 1127). See Gasket Material in the Theory Reference for the Mechanical APDL and Mechanical Applications for details.

A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to review results.

Figure 2 INTER195 Stress Output


## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " $Y$ " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 1 INTER195 Element Output Definitions

Name	Definition	$\mathbf{O}$	$\mathbf{R}$
EL	Element number	-	Y
NODES	Node connectivity $-\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}, \mathrm{M}, \mathrm{N}, \mathrm{O}, \mathrm{P}$	-	Y
MAT	Material number	-	Y
TEMP	Temperatures $\mathrm{T}(\mathrm{I}), \mathrm{T}(\mathrm{J}), \mathrm{T}(\mathrm{K}), \mathrm{T}(\mathrm{L}), \mathrm{T}(\mathrm{M}), \mathrm{T}(\mathrm{N}), \mathrm{T}(\mathrm{O})$,   $\mathrm{T}(\mathrm{P})$	-	Y
GKS:X, (XY, XZ)	Stress (also gasket pressure)	Y	Y
GKD:X, (XY, XZ)	Total closure	Y	Y
GKDI:X, (XY, XZ)	Total inelastic closure	Y	Y
GKTH:X, (XY, XZ)	Thermal closure	Y	Y

## INTER195 Assumptions and Restrictions

- This element is not supported for initial stress.
- Pressure as a type of surface load on element faces is not supported by this element.
- This element is based on the local coordinate system. ESYS is not permitted.
- This element is only available for static analyses.


## INTER195 Product Restrictions

There are no product-specific restrictions on this element.

## MESH200

## Meshing Facet

> MP ME ST PR PRN <> <> <> EM <> DY PP <> EME MFS Product Restrictions

## MESH200 Element Description

MESH200 is a "mesh-only" element, contributing nothing to the solution. This element can be used for the following types of operations:

- Multistep meshing operations, such as extrusion, that require a lower dimensionality mesh be used for the creation of a higher dimensionality mesh
- Line-meshing in 2-D or 3-D space with or without midside nodes,
- Area-meshing or volume-meshing in 3-D space with triangles, quadrilaterals, tetrahedra, or bricks, with or without midside nodes.
- Temporary storage of elements when the analysis physics has not yet been specified.

MESH200 may be used in conjunction with any other ANSYS element types. After it is no longer needed, it can be deleted (cleared), or can be left in place. Its presence will not affect solution results.

MESH200 elements can be changed into other element types using EMODIF.
Figure 1 MESH200 Geometry


KEYOPT (1) $=0$
2-D line with 2 nodes


KEYOPT (1) = 1
2-D line with 3 nodes


KEYOPT (1) = 2
3-D line with 2 nodes


KEYOPT (1) = 4
3-D triangle with 3 nodes


KEYOPT (1) = 6
3-D quadrilateral with 4 nodes


KEYOPT (1) = 8
tetrahedron with 4 nodes


KEYOPT (1) = 10
brick with 8 nodes


KEYOPT (1) $=3$
3-D line with 3 nodes


KEYOPT (1) = 5
3-D triangle with 6 nodes


KEYOPT (1) = 7
3-D quadrilateral with 8 nodes


KEYOPT (1) $=9$
tetrahedron with 10 nodes


KEYOPT (1) = 11
brick with 20 nodes

## MESH200 Input Data

The permissible geometry and node locations for this element are shown in Figure 1 (p. 1129). The element is defined by two to twenty nodes. It has no degrees of freedom, material properties, real constants, or loadings.
"MESH200 Input Summary" ( p .1131 ) summarizes the element input. See Element Input (p.5) in the Element Reference for a general description of element input.

## MESH200 Input Summary

## Nodes

I, J if KEYOPT (1) = 0, 2-D line with 2 nodes
I, J, K if KEYOPT (1) = 1, 2-D line with 3 nodes
$I, J$ if KEYOPT (1) $=2,3-D$ line with 2 nodes
$\mathrm{I}, \mathrm{J}, \mathrm{K}$ if KEYOPT (1) = 3, 3-D line with 3 nodes
I, J, K if KEYOPT ( 1 ) = 4, 3-D triangle with 3 nodes
I, J, K, L, M, N if KEYOPT (1) = 5, 3-D triangle with 6 nodes
I, J, K, L if KEYOPT (1) = 6, 3-D quadrilateral with 4 nodes
I, J, K, L, M, N, O, P if KEYOPT (1) = 7, 3-D quadrilateral with 8 nodes
$\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}$ if KEYOPT $(1)=8$, tetrahedron with 4 nodes
I, J, K, L, M, N, O, P, Q, R if KEYOPT (1) $=9$, tetrahedron with 10 nodes
I, J, K, L, M, N, O, P if KEYOPT (1) = 10, brick with 8 nodes
I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, A, B if KEYOPT (1) = 11, brick with 20 nodes

## Degrees of Freedom

None

## Real Constants

None

## Material Properties

None

## Surface Loads

None

## Body Loads

None

## Special Features

Linear perturbation

## KEYOPT(1)

Element shape and number of nodes:
0 --
2-D line with 2 nodes
1 --
2-D line with 3 nodes
2 --
3-D line with 2 nodes
3 --
3-D line with 3 nodes

## 4 --

3-D triangle with 3 nodes
5 --
3-D triangle with 6 nodes
6 --
3-D quadrilateral with 4 nodes
7 --
3-D quadrilateral with 8 nodes
8 --
tetrahedron with 4 nodes
9 --
tetrahedron with 10 nodes
10 --
brick with 8 nodes
11 --
brick with 20 nodes

## KEYOPT(2)

Element shape testing:
0 --
Shape testing is done (default)
1 --
No shape testing is done for this element

## MESH200 Output Data

This element has no output data.

## MESH200 Assumptions and Restrictions

- When this element is a triangle or quadrilateral, it is shape-tested in the same manner as an equivalent "non-structural shell". When it is a tetrahedron or brick, it is shape-tested like a SOLID185. This is so that meshing will work to create well-shaped elements. If $\operatorname{KEYOPT}(2)=1$, no shape testing is done for this element type.
- MESH200 elements may not be active during result contour plotting (/POST1, PLNSOL, or PLESOL). The elements are automatically unselected during either operation.


## MESH200 Product Restrictions

There are no product-specific restrictions for this element.

## FOLLW201

## Follower Load

MP ME ST PR PRN DS DSS <> <> <> <> PP <> EME MFS
Product Restrictions

## FOLLW201 Element Description

FOLLW201 is a one-node 3-D element that can be overlaid onto an existing node with physical rotation degrees of freedom. The element specifies external forces and moments which follow the deformation of a structure in a nonlinear analysis. FOLLW201 contributes follower load stiffness terms in a geometrically nonlinear analysis (NLGEOM,ON).

## Figure 1 FOLLW201 Geometry



FOLLW201 overlaid on a node shared by shell or beam elements. The element has two faces:
face 1 for specifying magnitude of force and face 2 for specifying magnitude of moment.

## FOLLW201 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 1 (p. 1133). The element is defined by a single node. The node has three translational and rotational degrees of freedom each. The element may be defined only at those nodes which are associated with structural elements having three translational and rotational degrees of freedom; a singularity will result if the element is used in any other way.

Real constants of the element specify the direction of the force/moment vectors, and the element load command SFE specifies the magnitude of force/moment.

Element loads are described in Node and Element Loads (p. 97). The vectors defined by real constants will evolve with deformation (follow the displacements) in a geometrically nonlinear analysis.
$\operatorname{KEYOPT}(1)=1$ provides a means of specifying complex (real and imaginary) point loads via an element specification. You can consider it as a nodal point equivalent of surface-effect elements (such as SURF154). When KEYOPT(1) = 1 (intended primarily for use in the ANSYS Workbench interface), the direction of the load is not updated for geometrically nonlinear analyses, and the element is renamed to (and appears in the output as) CLOAD201. In this case, the applied load is the same as that generated via the $\mathbf{F}$ command,
except that loads can be simultaneously applied in multiple directions to one node. The KEYOPT(2) = 1 setting, which can only be used with $\operatorname{KEYOPT}(1)=1$, enables use of the CLOAD201 element on nodes that may or may not have active rotational degrees of freedom.

With the exception of follower load effects, the element contributes nothing to the stiffness matrix. By default, follower (pressure) load stiffness effects are included in a geometrically nonlinear analysis. The stiffness contribution is usually unsymmetrical and may require an unsymmetrical solution option (NROPT,UNSYM).
"FOLLW201 Input Summary" (p. 1134) contains a summary of the element input. See Element Input (p.5) in the Element Reference for a general description of element input.

## FOLLW201 Input Summary

## Nodes

I

## Degrees of Freedom

UX, UY, UZ, ROTX, ROTY, ROTZ

## Real Constants

FX - Cosine of the angle between force vector and global X direction
FY - Cosine of the angle between force vector and global Y direction
FZ - Cosine of the angle between force vector and global $Z$ direction
MX - Cosine of the angle between moment vector and global $X$ direction
MY - Cosine of the angle between moment vector and global $Y$ direction
MZ - Cosine of the angle between moment vector and global $Z$ direction

## Material Properties

None

## Surface Loads

face 1 (force magnitude)
face 2 (moment magnitude)

## Body Loads

None

## Special Features

Large deflection
Birth and death
Linear perturbation

## KEYOPT(1)

Direction load:
0 --
Updated direction load (default)
1 --
Constant direction load (intended primarily for use in the ANSYS Workbench interface)

## KEYOPT(2)

Degrees of freedom control:
0 --
Use all (UX, UY, UZ, ROTX, ROTY, ROTZ) degrees of freedom (default)

## 1 --

Use UX, UY, and UZ degrees of freedom only (valid only when $\operatorname{KEYOPT}(1)=1$ )

## FOLLW201 Output Data

The Element Outputs consist of updated direction cosines of the force/moment vectors as Miscellaneous quantities (SMISC). No other output is provided.

## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

The following table lists output available via the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p.9) in this manual for more information.

## Name

output quantity as defined above

## Item

predetermined item label for ETABLE command
I
sequence number for data at node I
Table 1 FOLLW201 Item and Sequence Numbers for theETABLE and ESOL Commands

Name	Item	Location
FX	SMISC	1
FY	SMISC	2
FZ	SMISC	3
MX	SMISC	4
MY	SMISC	5
MZ	SMISC	6

## FOLLW201 Assumptions and Restrictions

- Follower load stiffening is ignored in geometrically linear analyses (NLGEOM,OFF), which is equivalent to the normal specification of forces and moments ( $\mathbf{F}$ ).
- The element must be overlaid on a node having existing physical stiffness contributions (from other shell or beam elements).
- Follower load effects are nonconservative. They often introduce dynamics instability issues (such as flutter) which may cause convergence difficulties.


## FOLLW201 Product Restrictions

There are no product-specific restrictions for this element.

## INTER202

2-D 4-Node Cohesive
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS
Product Restrictions

## INTER202 Element Description

INTER202 is a 2-D 4-node linear interface element used for 2-D structural assembly modeling. When used with 2-D linear structural elements (such as PLANE182), INTER202 simulates the interface surfaces and the subsequent delamination process, where the separation is represented by an increasing displacement between nodes, within the interface element itself, that are initially coincident. The element can be used as either a plane element (plane stress or plane strain) or as an axisymmetric element. It is defined by four nodes having two degrees of freedom at each node: translations in the nodal x and y directions.

See Cohesive Zone Material Model and INTER202 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

Also see Interface Delaminaton and Failure Simulation in the Structural Analysis Guide for more details on the interface failure/delamination capability in ANSYS.

Figure 1 INTER202 Geometry


## INTER202 Input Data

The element geometry, node locations, connectivity, and the nodal coordinate system are shown in Figure 1 (p. 1137). The element geometry is defined by 4 nodes, which form bottom and top lines of the element. The bottom line is defined by nodes $\mathrm{I}, \mathrm{J}$; and the top line is defined by nodes $\mathrm{K}, \mathrm{L}$. The element connectivity is defined as $\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}$. This element has 2 integration points. The Gauss integration scheme is used for the numerical integration.

INTER202 is used to simulate the separation along an interface defined by this element. At the outset of your simulation, nodes $I, L$ and $J, K$ are coincident, both with each other. and with the corresponding nodes in the adjacent structural elements. The subsequent separation of the adjacent elements (usually defined contiguously as components) is represented by an increasing displacement between the nodes within this element.

Temperatures may be input as element body loads at the nodes. The node I temperature $T(I)$, defaults to TUNIF. If all other temperatures are unspecified, they default to $T(I)$. For any other input pattern, unspecified temperatures default to TUNIF.

Input the nodal forces, if any, per unit of depth for a plane analysis (except for $\operatorname{KEYOPT}(3)=3)$ and on a full $360^{\circ}$ basis for an axisymmetric analysis.

The next table summarizes the element input. See the Element Input (p. 5) section in the Element Reference for a general description of element input.

## INTER202 Input Summary

## Nodes

I, J, K, L

## Degrees of Freedom

UX, UY

## Real Constants

None, if KEYOPT(3) $=0,1$, or 2
THK - Plane stress with thickness, if $\operatorname{KEYOPT}(3)=3$

## Body Loads

## Temperatures --

$\mathrm{T}(\mathrm{I}, \mathrm{T}(\mathrm{J}), \mathrm{T}(\mathrm{K}), \mathrm{T}(\mathrm{L})$

## Note

The temperature is used only to evaluate the material properties.

## Special Features

Interface material associated with TB,CZM.

## KEYOPT(3)

Element behavior:
0 --
Plane stress
1 --
Axisymmetric
2 --
Plane strain $(Z$ strain $=0.0)$
3 --
Plane stress with thickness (THK) real constant input

## INTER202 Output Data

The solution output associated with the element is in two forms:

- Nodal items such as nodal displacements are included in the overall nodal solution.
- Element items such as tractions and separations are element outputs as shown in Table 1: INTER202 Element Output Definitions (p. 1139).

The output directions for element items are parallel to the local element coordinate system based on the element midplane, as illustrated in Figure 2 (p. 1139). See Cohesive Zone Model in the Theory Reference for the Mechanical APDL and Mechanical Applications for details.

A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to review results.

Figure 2 INTER202 Stress Output


## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and " - " indicates that the item is not available.

## Table 1 INTER202 Element Output Definitions

Name	Definition	$\mathbf{O}$	$\mathbf{R}$
EL	Element number	-	Y
NODES	Node connectivity $-\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}$	-	Y
MAT	Material number	-	Y
TEMP	Temperatures T(I), T(J), T(K), T(L)	-	Y
SS:X, (XY)	Interface Traction (stress)	Y	Y
SD:X, (XY)	Interface Separation (displacement)	Y	Y

## INTER202 Assumptions and Restrictions

- This element is not supported for initial stress.
- Pressure as a type of surface load on element faces is not supported by this element.
- This element is based on the local coordinate system. ESYS is not permitted.
- This element is only available for static analyses.
- This element cannot be used in a distributed solution.


## INTER202 Product Restrictions

There are no product-specific restrictions on this element.

## INTER203

2-D 6-Node Cohesive
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS
Product Restrictions

## INTER203 Element Description

INTER203 is a 2-D 6-node quadratic interface element used for 2-D structural assembly modeling. When used with 2-D quadratic structural elements (such as PLANE183), INTER203 simulates the interface surfaces and the subsequent delamination process, where the separation is represented by an increasing displacement between nodes, within the interface element itself, that are initially coincident. The element can be used either as a plane element (plane stress or plane strain) or as an axisymmetric element. It is defined by six nodes having two degrees of freedom at each node: translations in the nodal x and y directions.

See Cohesive Zone Material Model and INTER203 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

Also see Interface Delaminaton and Failure Simulation in the Structural Analysis Guide for more details on the interface failure/delamination capability in ANSYS.

Figure 1 INTER203 Geometry


## INTER203 Input Data

The element geometry, node locations, connectivity, and the nodal coordinate system are shown in Figure 1 (p. 1141). The element geometry is defined by 6 nodes, which form bottom and top lines of the element. The bottom line is defined by nodes $I, J, M$; and the top line is defined by nodes $K, L, O$. This element has 2 integration points. Dropping mid side nodes M or O is not permitted.

INTER203 is used to simulate a separation along an interface defined by this element. At the outset of your simulation, nodes $\mathrm{I}, \mathrm{L}$, nodes $\mathrm{M}, \mathrm{O}$ and nodes $\mathrm{J}, \mathrm{K}$ are coincident, with each other, and with the corresponding nodes in the adjacent structural elements. The subsequent separation of the adjacent elements (usually defined contiguously as components) is represented by an increasing displacement between the initially coincident nodes within this element.

Temperatures may be input as element body loads at the nodes. The node I temperature $T(I)$, defaults to TUNIF. If all other temperatures are unspecified, they default to $T(I)$. For any other input pattern, unspecified temperatures default to TUNIF.

Input the nodal forces, if any, per unit of depth for a plane analysis (except for $\operatorname{KEYOPT}(3)=3$ ) and on a full $360^{\circ}$ basis for an axisymmetric analysis.

The next table summarizes the element input. See Element Input (p. 5) in the Element Reference for a general description of element input.

## INTER203 Input Summary

## Nodes

I, J, K, L, M, , O
Degrees of Freedom
UX, UY

## Real Constants

None, if KEYOPT(3) $=0,1$, or 2
THK - Plane stress with thickness, if $\operatorname{KEYOPT}(3)=3$

## Body Loads

## Temperatures --

$\mathrm{T}(\mathrm{I}), \mathrm{T}(\mathrm{J}), \mathrm{T}(\mathrm{K}), \mathrm{T}(\mathrm{L}), \mathrm{T}(\mathrm{M}), \mathrm{T}(\mathrm{O})$

## Note

Temperature is used only to evaluate the material properties.

## Special Features

Interface material associated with TB,CZM.

## Note

See Cohesive Zone Material Model and INTER203 in the Theory Reference for the Mechanical APDL and Mechanical Applications for details on the material model.

## KEYOPT(3)

Element behavior:
0 --
Plane stress
1 --
Axisymmetric
2 --
Plane strain $(Z$ strain $=0.0)$
3 --
Plane stress with thickness (THK) real constant input

## INTER203 Output Data

The solution output associated with the element is in two forms:

- Nodal items such as nodal displacements are included in the overall nodal solution.
- Element items such as tractions and separations are element outputs as shown in Table 1: INTER203 Element Output Definitions (p. 1143).

The output directions for element items are parallel to the local element coordinate system based on the element midplane as illustrated in Figure 2 (p. 1143). See Cohesive Zone Material Model and INTER203 in the Theory Reference for the Mechanical APDL and Mechanical Applications for details.

A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to review results.

Figure 2 INTER203 Stress Output


## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " $Y$ " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 1 INTER203 Element Output Definitions

Name	Definition	$\mathbf{O}$	$\mathbf{R}$
EL	Element number	-	Y
NODES	Node connectivity $-\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}, \mathrm{M}, \mathrm{O}$	-	Y
MAT	Material number	-	Y
TEMP	Temperatures T(I), T(J),T(K), T(L), T(M), T(O)	-	Y
SS:X, (XY)	Interface Traction (Stress)	Y	Y
SD:X, (XY)	Interface Separation	Y	Y

## INTER203 Assumptions and Restrictions

- This element is not supported for initial stress.
- Pressure as a type of surface load on element faces is not supported by this element.
- This element is based on the local coordinate system. ESYS is not permitted.
- This element is only available for static analyses.
- This element cannot be used in a distributed solution.


## INTER203 Product Restrictions

There are no product-specific restrictions on this element.

## INTER204

3-D 16-Node Cohesive
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS
Product Restrictions

## INTER204 Element Description

INTER204 is a 3-D 16-node quadratic interface element. When used with 3-D quadratic structural elements (SOLID186, and SOLID187), INTER204 simulates an interface between two surfaces and the subsequent delamination process, where the separation is represented by an increasing displacement between nodes, within the interface element itself. The nodes are initially coincident.

INTER204 is defined by 16 nodes having three degrees of freedom at each node: translations in the nodal $x, y$ and $z$ directions.

See Cohesive Zone Material Model and INTER204 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

Also see Interface Delaminaton and Failure Simulation in the Structural Analysis Guide for more details about the interface failure/delamination capability.

Figure 1 INTER204 Geometry


## INTER204 Input Data

The element geometry, node locations, connectivity, and the nodal coordinate system are shown in Figure 1 (p. 1145). The element geometry is defined by 16 nodes, which form bottom and top surfaces of the element. The bottom surface is defined by nodes, $I, J, K, L, Q, R, S, T$; and the top surface is defined by nodes, $M, N$, $\mathrm{O}, \mathrm{P}, \mathrm{U}, \mathrm{V}, \mathrm{W}, \mathrm{X}$. The element may be degenerated to a wedge (prism) element, by setting nodes $\mathrm{K}=\mathrm{L}=\mathrm{S}$ and $\mathrm{O}=\mathrm{P}=\mathrm{W}$, as shown in Figure 2 (p. 1146).

Figure 2 INTER204 3-D 16-Node Degenerated Quadratic Interface


For the degenerated element, 3 integration points are used for numerical integration. The degenerated element can be used in conjunction with 10 -node solid tetrahedral elements (SOLID187). Dropping any or some of the midside nodes, $\mathrm{Q}, \mathrm{R}, \mathrm{S}, \mathrm{T}, \mathrm{U}, \mathrm{V}, \mathrm{W}, \mathrm{X}$ is not permitted.

Temperatures may be input as element body loads at the nodes. The node I temperature $T(I)$, defaults to TUNIF. If all other temperatures are unspecified, they default to $T(I)$. For any other input pattern, unspecified temperatures default to TUNIF.

The next table summarizes the element input. See Element Input (p.5) in the Element Reference for a general description of element input.

## INTER204 Input Summary

## Nodes

I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X
Degrees of Freedom
UX, UY, UZ

## Real Constants

None

## Body Loads

Temperatures --
$T(I), T(J), T(K), T(L) T(M), T(N), T(O), T(P), T(Q), T(R), T(S), T(T), T(U), T(V), T(W), T(X)$

## Special Features

Cohesive zone material associated with TB,CZM.

## Note

See Cohesive Zone Material Model and INTER204 in the Theory Reference for the Mechanical APDL and Mechanical Applications for details on the material model.

## KEYOPTS

None

## INTER204 Output Data

The solution output associated with the element is in two forms:

- Nodal items such as nodal displacements are included in the overall nodal solution.
- Element items such as tractions and separations are element outputs as shown in Table 1: INTER204 Element Output Definitions (p. 1147).

The output directions for element items are parallel to the local element coordinate system based on the element midplane as illustrated in Figure 3 (p. 1147). See Cohesive Zone Material in the Theory Reference for the Mechanical APDL and Mechanical Applications for details.

A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to review results.

Figure 3 INTER204 Stress Output


The Element Output Definitions table uses the following notation:
A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " $Y$ " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and " - " indicates that the item is not available.

## Table 1 INTER204 Element Output Definitions

Name	Definition	$\mathbf{O}$	$\mathbf{R}$
EL	Element number	-	Y
NODES	Node connectivity $-\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}, \mathrm{M}, \mathrm{N}, \mathrm{O}, \mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}$,   $\mathrm{T}, \mathrm{U}, \mathrm{V}, \mathrm{W}, \mathrm{X}$	-	Y
MAT	Material number	-	Y


Name	Definition	$\mathbf{O}$	$\mathbf{R}$
$T \mathrm{TEMP}$	Temperatures $\mathrm{T}(\mathrm{I}), \mathrm{T}(\mathrm{J}), \mathrm{T}(\mathrm{K}), \mathrm{T}(\mathrm{L}), \mathrm{T}(\mathrm{M}), \mathrm{T}(\mathrm{N}), \mathrm{T}(\mathrm{O})$,   $\mathrm{T}(\mathrm{P}), \mathrm{T}(\mathrm{Q}), \mathrm{T}(\mathrm{R}), \mathrm{T}(\mathrm{S}), \mathrm{T}(\mathrm{T}), \mathrm{T}(\mathrm{U}), \mathrm{T}(\mathrm{V}), \mathrm{T}(\mathrm{W}), \mathrm{T}(\mathrm{X})$	-	Y
$\mathrm{SS}: \mathrm{X},(\mathrm{XY}, \mathrm{XZ})$	Interface traction (stress)	Y	Y
$\mathrm{SD}: \mathrm{X},(\mathrm{XY}, \mathrm{XZ})$	Interface Separation	Y	Y

## INTER204 Assumptions and Restrictions

- This element is not supported for initial stress.
- Pressure as a type of surface load on element faces is not supported by this element.
- This element is based on the local coordinate system. ESYS is not permitted.
- This element is only available for static analyses.
- This element cannot be used in a distributed solution.


## INTER204 Product Restrictions

There are no product-specific restrictions on this element.

## INTER205

3-D 8-Node Cohesive
MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS
Product Restrictions

## INTER205 Element Description

INTER205 is a 3-D 8-node linear interface element. When used with 3-D linear structural elements (SOLID185, SOLSH190, SOLID272, SOLID273, and SOLID285), INTER205 simulates an interface between two surfaces and the subsequent delamination process, where the separation is represented by an increasing displacement between nodes, within the interface element itself. The nodes are initially coincident.

The element is defined by eight nodes having three degrees of freedom at each node: translations in the nodal $\mathrm{x}, \mathrm{y}$, and z directions.

See Cohesive Zone Material Model and INTER204 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

Also see Interface Delaminaton and Failure Simulation in the Structural Analysis Guide for more details on the interface failure/delamination capability in ANSYS.

## Figure 1 INTER205 Geometry



## INTER205 Input Data

The element geometry, node locations, connectivity, and the nodal coordinate system are shown in Figure 1 (p. 1149). The element geometry is defined by 8 nodes, which form bottom and top surfaces of the element. The bottom surface is defined by nodes, $\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}$; and the top surface is defined by nodes, $\mathrm{M}, \mathrm{N}, \mathrm{O}, \mathrm{P}$.

Temperatures may be input as element body loads at the nodes. The node I temperature $\mathrm{T}(\mathrm{I})$, defaults to TUNIF. If all other temperatures are unspecified, they default to $T(I)$. For any other input pattern, unspecified temperatures default to TUNIF.

The next table summarizes the element input. See Element Input (p. 5) in the Element Reference for a general description of element input.

## INTER205 Input Summary

## Nodes

I, J, K, L, M, N, O, P

## Degrees of Freedom

UX, UY, UZ

## Real Constants

None

## Body Loads

## Temperatures --

$T(I), T(J), T(K), T(L), T(M), T(N), T(O), T(P)$

## Note

The temperature is used only to evaluate the material properties.

## Special Features

Cohesive zone material associated with TB,CZM.

## Note

See Cohesive Zone Material Model and INTER205 in the Theory Reference for the Mechanical APDL and Mechanical Applications for details on the material model.

## KEYOPTS

None

## INTER205 Output Data

The solution output associated with the element is in two forms:

- Nodal items such as nodal displacements are included in the overall nodal solution.
- Element items such as tractions and separations are element outputs as shown in Table 1: INTER205 Element Output Definitions (p. 1151).

The output directions for element items are parallel to the local element coordinate system based on the element midplane as illustrated in Figure 2 (p. 1151). See Gasket Material in the Theory Reference for the Mechanical APDL and Mechanical Applications for details.

A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to review results.

Figure 2 INTER205 Stress Output


## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " $Y$ " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and " - " indicates that the item is not available.

Table 1 INTER205 Element Output Definitions

Name	Definition	$\mathbf{O}$	$\mathbf{R}$
EL	Element number	-	Y
NODES	Node connectivity $-\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}, \mathrm{M}, \mathrm{N}, \mathrm{O}, \mathrm{P}$	-	Y
MAT	Material number	-	Y
TEMP	Temperatures T(I), T(J), T(K), T(L), T(M), T(N), T(O),   $\mathrm{T}(\mathrm{P})$	-	Y
SS:X, (XY, XZ)	Interface traction (stress)	Y	Y
SD:X, (XY, XZ $)$	Interface separation	Y	Y

## INTER205 Assumptions and Restrictions

- This element is not supported for initial stress.
- Pressure as a type of surface load on element faces is not supported by this element.
- This element is based on the local coordinate system. ESYS is not permitted.
- This element is only available for static analyses.
- This element cannot be used in a distributed solution.


## INTER205 Product Restrictions

There are no product-specific restrictions on this element.

## SHELL208

## 2-Node Axisymmetric Shell

MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS
Product Restrictions

## SHELL208 Element Description

The SHELL208 element is suitable for modeling thin to moderately thick axisymmetric shell structures, such as oil tanks, pipes, and cooling towers. It is a two-node element with three degrees of freedom at each node: translations in the $x$, and $y$ directions, and rotation about the $z$-axis. A fourth translational degree of freedom in $z$ direction can be included to model uniform torsion $(\operatorname{KEYOPT}(2)=1)$. When the membrane option is used, the rotational degree of freedom is excluded. An extra internal node is available via $\operatorname{KEYOPT}(3)=2$. (SHELL209 incorporates this extra node by default.)

SHELL208 allows you to account for large strain effects, transverse shear deformation, hyperelasticity and layers in your models. The element is intended to model finite strain with pure axisymmetric displacements; transverse shear strains are assumed to be small.

SHELL208 can be used for layered applications for modeling laminated composite shells or sandwich construction. See SHELL208 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

Figure 1 SHELL208 Geometry


## SHELL208 Input Data

Figure 1 (p. 1153) shows the geometry, node locations, and element coordinate system for SHELL208. The element is defined by two nodes. For material property labels, the local $x$-direction corresponds to the meridional direction of the shell element. The local $y$-direction is the circumferential. The local $z$-direction corresponds to the through-the-thickness direction. Element formulation is based on logarithmic strain and true stress measures. Element kinematics allows for finite membrane strains (stretching). However, the curvature changes within an increment are assumed to be small.

The shell thickness and more general properties (such as material and number of integration points through the thickness) are specified via section commands (SECTYPE, SECDATA and SECCONTROLS). Shell section commands allow for both single-layered and composite shell definitions. You can designate the number of integration points ( $1,3,5,7$, or 9 ) located through the thickness of each layer. If only one, the integration point is always located midway between the top and the bottom surfaces. If three or more, two points are located on the top and the bottom surfaces respectively and the remaining points are distributed evenly between these two points. The default for each layer is three integration points. The element can have variable thickness, as a tabular function of global/local coordinates or node numbers (SECFUNCTION).

Element loads are described in Node and Element Loads (p. 97). Pressure may be input as surface loads on the element faces as shown by the circled numbers on Figure 1 (p.1153). Positive pressures act into the element.

Temperatures may be input as element body loads at the corners of the outside faces of the element and the corners of the interfaces between layers. The first corner temperature T1 defaults to TUNIF. If all other temperatures are unspecified, they default to T 1 . If $\operatorname{KEYOPT}(1)=0$ and exactly $\mathrm{NL}+1$ (where NL is the number of layers in the shell section) temperatures are input, one temperature is used for the bottom corners of each layer, and the last temperature is for the top corners of the top layer. If $\operatorname{KEYOPT}(1)=1$ and if exactly NL temperatures are input, one temperature is used for the two corners of each layer; that is, T1 is used for T1 and T2; T2 (as input) is used for T3 and T4, etc. For any other input patterns, unspecified temperatures default to TUNIF.

Nodal forces, if any, should be input on a full $360^{\circ}$ basis.
$\operatorname{KEYOPT}(1)$ is the membrane option. When $\operatorname{KEYOPT}(1)=1$, the element uses one integration point through-the-thickness and accounts for only membrane stiffness (that is, the bending and transverse shear stiffness are ignored).

KEYOPT(2) controls the torsion capability. When $\operatorname{KEYOPT}(2)=1$, the element allows constant torsion by allowing a translational degree of freedom UZ in the circumferential direction.

KEYOPT(3) is used to include or suppress internal nodes. When $\operatorname{KEYOPT}(3)=2$, the element contains an extra internal node and adopts a two-point integration rule. By default, the element uses one-point integration scheme (see Figure 1 (p. 1153)). Internal nodes are not accessible to users. Therefore, boundary conditions/loading can not be specified on those nodes.

SHELL208 includes the effects of transverse shear deformation. The transverse shear stiffness E11 can be specified using SECCONTROLS. For a single-layered shell with isotropic material, default transverse shear stiffness is $k G h$, in which $k=5 / 6, G$ is the shear modulus, and $h$ is the thickness of the shell.

SHELL208 can be associated with linear elastic, elastoplastic, creep, or hyperelastic material properties.
Set $\operatorname{KEYOPT}(8)=2$ to store midsurface results in the results file for single- or multi-layer shell elements. If you use SHELL,MID, you will see these calculated values, rather than the average of the TOP and BOTTOM results. You should use this option to access these correct midsurface results (membrane results) for those analyses where averaging TOP and BOTTOM results is inappropriate. Examples include midsurface stresses and strains with nonlinear material behavior, and midsurface results after mode combinations that involve squaring operations such as in spectrum analyses.

Set $\operatorname{KEYOPT}(9)=1$ to read initial thickness data from a user subroutine.
You can apply an initial stress state to this element via the INISTATE command. For more information, see "Initial State" in the Basic Analysis Guide.

The effects of pressure load stiffness are automatically included for this element. If an unsymmetric matrix is needed for pressure load stiffness effects, use NROPT,UNSYM.

A summary of the element input is given in "SHELL208 Input Summary" (p.1155). A general description of element input is given in Element Input (p. 5).

## SHELL208 Input Summary

## Nodes

I, J

## Degrees of Freedom

UX, UY, ROTZ -- If $\operatorname{KEYOPT}(1)=0$ and $\operatorname{KEYOPT}(2)=0$
UX, UY -- If KEYOPT(1) $=1$ and $\operatorname{KEYOPT}(2)=0$
UX, UY, UZ, ROTZ -- If $\operatorname{KEYOPT}(1)=0$ and $\operatorname{KEYOPT}(2)=1$
UX, UY, UZ -- If $\operatorname{KEYOPT}(1)=1$ and $\operatorname{KEYOPT}(2)=1$

## Real Constants

None

## Section Controls

E11, ADMSUA

## Material Properties

EX, EY, EZ, PRXY, PRYZ, PRXZ (or NUXY, NUYZ, NUXZ), ALPX, ALPY, ALPZ (or CTEX, CTEY, CTEZ or THSX, THSY, THSZ), DENS, GXY, GYZ, GXZ, DAMP

## Surface Loads

Pressures --
face $1(\mathrm{I}-\mathrm{J})$ (top, in -N direction),
face $2(1-J)$ (bottom, in +N direction)

## Body Loads

## Temperatures --

For $\operatorname{KEYOPT}(1)=0$ :
$\mathrm{T} 1, \mathrm{~T} 2$ (corresponding to nodes I and J) at bottom of layer 1, and T3, T4 (corresponding to nodes $I$ and J) between layers 1-2. A similar relationship exists for all layers, ending with temperatures at the top of layer NL. Hence, for one-layer elements, four temperatures are used.
For $\operatorname{KEYOPT}(1)=1$ :
T1, T2 for layer 1; T3, T4 for layer 2; similarly for all layers (2 * NL maximum). Hence, for one-layer elements, two temperatures are used.

## Special Features

Plasticity (PLASTIC, BISO, MISO, NLISO, BKIN, MKIN, KINH, CHABOCHE, HILL)
Hyperelasticity (AHYPER, HYPER, BB, CDM)
Viscoelasticity (PRONY, SHIFT)
Viscoplasticity/Creep (CREEP, RATE)
Elasticity (ELASTIC, ANEL)
Other material (USER, SDAMP)

Stress stiffening
Large deflection
Large strain
Initial state
Nonlinear stabilization
Automatic selection of element technology
Birth and death
Linear perturbation
Items in parentheses refer to data tables associated with the TB command. See "Structures with Material Nonlinearities" in the Theory Reference for the Mechanical APDL and Mechanical Applications for details of the material models.

See Automatic Selection of Element Technologies (p. 122) and ETCONTROL for more information on selection of element technologies.

Adaptive descent is not supported.

## KEYOPT(1)

Element stiffness:
0 --
Bending and membrane stiffness (default).
1 --
Membrane stiffness only.

## KEYOPT(2)

Torsion capability:
0 --
Excluded (default).
1 --
Included.

## KEYOPT(3)

Extra internal node option:
0 --
Suppress extra internal node (default).
2 --
Include extra internal node.

## KEYOPT(8)

Storage of layer data:
0 --
Store data for BOTTOM of bottom layer and TOP of top layer (default).
1 --
Store data for TOP and BOTTOM for all layers.
2 --
Store data for TOP, BOTTOM, and MID for all layers. (The volume of data may be excessive.)

## KEYOPT(9)

User-defined thickness:

## 0 --

No user subroutine to provide initial thickness (default).
1 --
Read initial thickness data from user subroutine UTHICK
See the Guide to ANSYS User Programmable Features for information about user-written subroutines

## SHELL208 Output Data

The solution output associated with the element is in two forms:

- Nodal displacements included in the overall nodal solution.
- Additional element output as shown in Table 1: SHELL208 Element Output Definitions (p. 1158)

Several items are illustrated in Figure 2 (p. 1158).
KEYOPT(8) controls the amount of data output on the result file for processing with the LAYER command. Interlaminar shear stress is available at the layer interfaces. Setting $\operatorname{KEYOPT}(8)=1$ or 2 is necessary for these stresses to be output in POST1. A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

The element stress resultants ( $\mathrm{N} 11, \mathrm{M} 11, \mathrm{Q} 13$, etc.) are parallel to the element coordinate system, as are the membrane strains and curvatures of the element. Such generalized strains are available through the SMISC option at the element centroid only. The transverse shear force Q13 is available only in resultant form: that is, use SMISC,5. Likewise, the transverse shear strain $\gamma_{13}$ is constant through the thickness and only available as a SMISC item (SMISC,10).

ANSYS computes moments (M11, M22) with respect to the shell reference plane. By default, ANSYS adopts the shell midplane as the reference plane. To offset the reference plane to any other specified location, issue the SECOFFSET command. When there is a nonzero offset (L) from the reference plane to the midplane, moments with respect to the midplane ( $\overline{\mathrm{M} 11, \overline{\mathrm{M} 22} \text { ) can be recovered from stress resultants with respect to }}$ the reference plane as follows:

```
M11 = M11 - L }\timesN1
\(\mathrm{M} 22=\mathrm{M} 22-\mathrm{L} \times \mathrm{N} 22\)
```

SHELL208 does not support extensive basic element printout. POST1 provides more comprehensive output processing tools; you should use the OUTRES command to ensure that the required results are stored in the database.

Figure 2 SHELL208 Element Stress Output


## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " $Y$ " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and " - " indicates that the item is not available.

Table 1 SHELL208 Element Output Definitions

Name	Definition	$\mathbf{O}$	R
EL	Element Number	Y	Y
NODES	Nodes $-\mathrm{I}, \mathrm{J}$	-	Y
MAT	Material number	-	Y
THICK	Average thickness	-	Y
VOLU:	Volume	-	Y
XC, YC	Location where results are reported	Y	4
PRES	Pressures P1 (top) at NODES I, J; P2 (bottom) at NODES   I, J	-	Y
TEMP	Temperatures T1,T2 at bottom of layer 1,T3, T4   between layers 1-2, similarly for between next layers,   ending with temperatures at top of layer NL (2*(NL+1)   maximum)	-	Y


Name	Definition	0	R
LOC	TOP, MID, BOT, or integration point location	-	1
$\begin{aligned} & \mathrm{S}: X, Y, Z, X Y, Y Z, \\ & X Z \end{aligned}$	Stresses	3	1
S:1, 2, 3	Principal stresses	-	1
S:INT	Stress intensity	-	1
S:EQV	Equivalent stress	-	1
$\begin{aligned} & \text { EPEL:X, Y, Z, } \\ & X Y, Y Z, X Z \end{aligned}$	Elastic strains	3	1
EPEL:EQV	Equivalent elastic strain	-	1
$\begin{aligned} & \text { EPTH:X,Y, Z, } \\ & X Y, Y Z, X Z \end{aligned}$	Thermal strains	3	1
EPTH:EQV	Equivalent thermal strain	-	1
$\begin{aligned} & \text { EPPL:X,Y, Z, } \\ & \text { XY,YZ,XZ } \end{aligned}$	Average plastic strains	3	2
EPPL:EQV	Equivalent plastic strain	-	2
$\begin{aligned} & \text { EPCR:X, Y, Z, XY } \\ & , Y Z, X Z \end{aligned}$	Average creep strains	3	2
EPCR:EQV	Equivalent creep strain	-	2
$\begin{aligned} & \text { EPTO:X,Y, Z } \\ & , X Y, Y Z, X Z \end{aligned}$	Total mechanical strains (EPEL+EPPL+EPCR)	3	-
EPTO:EQV	Total equivalent mechanical strains	-	-
NL:EPEQ	Accumulated equivalent plastic strain	-	2
NL:CREQ	Accumulated equivalent creep strain	-	2
NL:SRAT	Plastic yielding ( $1=$ actively yielding, $0=$ not yielding)	-	2
NL:PLWK	Plastic work	-	2
NL:HPRES	Hydrostatic pressure	-	2
SEND:Elastic, Plastic, Creep	Strain energy densities	-	2
N11, N22, N12	In-plane forces (per unit length)	-	Y
M11, M22	Out-of-plane moments (per unit length)	-	Y
Q13	Transverse shear forces (per unit length)	-	Y
E11, E22, E12	Membrane strains	-	Y
K11, K22	Curvatures	-	Y
$\gamma_{13}$	Transverse shear strain	-	Y
LOCI:X, Y, Z	Integration point locations	-	5
SVAR:1, 2, ... , N	State variables	-	6
ILSXZ	SXZ interlaminar shear stress	-	Y
ILSYZ	SYZ interlaminar shear stress	-	Y
ILSUM	Magnitude of the interlaminar shear stress vector	-	Y


Name	Definition	$\mathbf{O}$	$\mathbf{R}$
ILANG	Angle of interlaminar shear stress vector (measured   from the element x-axis toward the element $y$-axis in   degrees)	-	Y
Sm: $11,22,12$	Membrane stresses	-	Y
Sb: 11,22	Bending stresses	-	Y
Sp: $11,22,12$	Peak stresses	-	Y
St: 13	Averaged transverse shear stresses	-	Y

1. The following stress solution repeats for top, middle, and bottom surfaces.
2. Nonlinear solution output for top, middle, and bottom surfaces, if the element has a nonlinear material.
3. Stresses, total strains, plastic strains, elastic strains, creep strains, and thermal strains in the element coordinate system are available for output (at all section points through thickness). If layers are in use, the results are in the layer coordinate system.
4. Available only at centroid as a *GET item.
5. Available only if OUTRES,LOCI is used.
6. Available only if the USERMAT subroutine and TB,STATE are used.

Table 2: SHELL208 Item and Sequence Numbers (p. 1160) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p.9) of this manual for more information. The following notation is used in Table 2: SHELL208 Item and Sequence Numbers (p. 1160):

## Name

output quantity as defined in the Table 1: SHELL208 Element Output Definitions (p. 1158)

## Item

predetermined Item label for ETABLE command
E
sequence number for single-valued or constant element data
I, J
sequence number for data at nodes $\mathrm{I}, \mathrm{J}$.
Table 2 SHELL208 Item and Sequence Numbers

Output   Quantity   Name	ETABLE and ESOL Command Input			
	Item	E	$\mathbf{I}$	$\mathbf{J}$
N11	SMISC	1	-	-
N22	SMISC	2	-	-
N12	SMISC	3	-	-
M11	SMISC	4	-	-
M22	SMISC	5	-	-
Q13	SMISC	6	-	-


Output Quantity Name	ETABLE and ESOL Command Input				
	Item	E	I		J
$\varepsilon_{11}$	SMISC	7	-		-
$\varepsilon_{22}$	SMISC	8	-		-
$\varepsilon_{12}$	SMISC	9	-		-
$\mathrm{k}_{11}$	SMISC	10	-		-
$\mathrm{k}_{22}$	SMISC	11	-		-
$\gamma_{13}$	SMISC	12	-		-
THICK	SMISC	13	-		-
P1	SMISC	-	14		15
P2	SMISC	-	16		17
Sm: 11	SMISC	18	-		-
Sm: 22	SMISC	19	-		-
Sm: 12	SMISC	20	-		-
Sb: 11	SMISC	21	-		-
Sb: 22	SMISC	22	-		-
Sp: 11 (at shell bottom)	SMISC	23	-		-
Sp: 22 (at shell bottom)	SMISC	24	-		-
Sp: 12 (at shell bottom)	SMISC	25	-		-
Sp: 11 (at shell top)	SMISC	26	-		-
$\begin{aligned} & \text { Sp: } 22 \text { (at } \\ & \text { shell top) } \end{aligned}$	SMISC	27	-		-
Sp: 12 (at shell top)	SMISC	28	-		-
St: 13	SMISC	29	-		-
Output Quantity Name	ETABLE and ESOL Command Input				
	Item	Bottom			yer NL
ILSXZ	SMISC	8 * i			) +32
ILSYZ	SMISC	8 * (i			) +34
ILSUM	SMISC	8 * i			) +36
ILANG	SMISC	8 * i			) +38

## SHELL208 Assumptions and Restrictions

- The axisymmetric shell element must be defined in the global $X-Y$ plane with the $Y$-axis the axis of symmetry.
- The element cannot have a zero length.
- Zero thickness elements, or elements tapering down to a zero thickness at any corner, are not allowed (but zero thickness layers are allowed).
- If multiple load steps are used, the number of layers may not change between load steps.
- No slippage is assumed between the element layers. Shear deflections are included in the element; however, normals to the center plane before deformation are assumed to remain straight after deformation.
- Transverse shear stiffness of the shell section is estimated by an energy equivalence procedure (of the generalized section forces \& strains vs. the material point stresses and strains). The accuracy of this calculation may be adversely affected if the ratio of material stiffnesses (Young's moduli) between adjacent layers is very high.
- The calculation of interlaminar shear stresses is based on simplifying assumptions of unidirectional, uncoupled bending in each direction. If accurate edge interlaminar shear stresses are required, shell-tosolid submodeling should be used.
- The section definition permits use of hyperelastic material models and elastoplastic material models in laminate definition. However, the accuracy of the solution is primarily governed by fundamental assumptions of shell theory. The applicability of shell theory in such cases is best understood by using a comparable solid model.
- For nonlinear applications, this element works best with full Newton-Raphson solution scheme (NROPT,FULL,ON).
- Stress stiffening is always included in geometrically nonlinear analyses (NLGEOM,ON). Prestress effects can be activated by the PSTRES command.
- In a nonlinear analysis, the solution process terminates if the thickness at any integration point that was defined with a nonzero thickness vanishes (within a small numerical tolerance).
- SHELL208 with an internal node cannot be used in substructures.


## SHELL208 Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

## ANSYS Professional

- The only special features allowed are stress stiffening and large deflections.


## SHELL209

## 3-Node Axisymmetric Shell

MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS
Product Restrictions

## SHELL209 Element Description

The SHELL209 element is suitable for analyzing thin to moderately thick axisymmetric shell structures. It is a three-node element with three degrees of freedom at each node: translations in the $\mathrm{X}, \mathrm{Y}$ directions, and a rotation about the Z -axis. A fourth translational degree of freedom in $z$ direction can be included to model uniform torsion $(\operatorname{KEYOPT}(2)=1)$. When the membrane option is used, the rotational degree of freedom is excluded. (For higher efficiency, the two-node element SHELL208 may be more suitable.)

The element is well suited for linear, large rotation, and/or large strain nonlinear applications. Changes in shell thickness and follower effects of distributed pressures are accounted for in nonlinear analyses, and it can be used for layered applications for modeling laminated composite shells or sandwich construction. See SHELL209 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

Figure 1 SHELL209 Geometry


## SHELL209 Input Data

Figure 1 (p. 1163) shows the geometry, node locations, and element coordinate system for this element. The element is defined by three nodes. For material property labels, the local x-direction corresponds to the meridional direction of the shell element. The local $y$-direction is the circumferential. The local z-direction corresponds to the through-the-thickness direction. Element formulation is based on logarithmic strain and true stress measures. Element kinematics allows for finite membrane strains (stretching). However, the curvature changes within an increment are assumed to be small.

The shell thickness and more general properties (such as material and number of integration points through the thickness) are specified via section commands (SECTYPE, SECDATA and SECCONTROLS). Shell section commands allow for both single-layered and composite shell definitions. You can designate the number of integration points ( $1,3,5,7$, or 9 ) located through the thickness of each layer. If only one, the integration point is always located midway between the top and the bottom surfaces. If three or more, two points are
located on the top and the bottom surfaces respectively and the remaining points are distributed evenly between these two points. The default for each layer is three integration points. The element can have variable thickness, as a tabular function of global/local coordinates or node numbers (SECFUNCTION).

Element loads are described in Node and Element Loads (p. 97). Pressure may be input as surface loads on the element faces as shown by the circled numbers on Figure 1 (p.1163). Positive pressures act into the element.

Temperatures can be input as element body loads at the corners of the outside faces of the element and the corners of the interfaces between layers. The first corner temperature T1 defaults to TUNIF. If all other temperatures are unspecified, they default to T1. If $\operatorname{KEYOPT}(1)=0$ and exactly $\mathrm{NL}+1$ (where NL is the number of layers in the shell section) temperatures are input, one temperature is used for the bottom corners of each layer, and the last temperature is for the top corners of the top layer. If $\operatorname{KEYOPT}(1)=1$ and if exactly NL temperatures are input, one temperature is used for the two corners of each layer. That is, T1 is used for $\mathrm{T} 1, \mathrm{~T} 2$, and T 3 ; T 2 (as input) is used for $\mathrm{T} 4, \mathrm{~T} 5$, and T 6 , etc. For any other input patterns, unspecified temperatures default to TUNIF.

Nodal forces, if any, should be input on a full $360^{\circ}$ basis.
$\operatorname{KEYOPT}(1)$ is the membrane option. When $\operatorname{KEYOPT}(1)=1$, the element uses one integration point through-the-thickness and accounts for only membrane stiffness (that is, the bending and transverse shear stiffness are ignored).
$\operatorname{KEYOPT}(2)$ controls the torsion capability. When $\operatorname{KEYOPT}(2)=1$, the element allows constant torsion by allowing a translational degree of freedom UZ in the circumferential direction.

SHELL209 includes the effects of transverse shear deformation. The transverse shear stiffness E11 can be specified with SECCONTROLS. For a single-layered shell with isotropic material, default transverse shear stiffness is $k G h$, in which $k=5 / 6, G$ is the shear modulus, and $h$ is the thickness of the shell.

SHELL209 can be associated with linear elastic, elastoplastic, creep, or hyperelastic material properties.
Set $\operatorname{KEYOPT}(8)=2$ to store midsurface results in the results file for single or multi-layer shell elements. If you use SHELL,MID, you will see these calculated values, rather than the average of the TOP and BOTTOM results. You should use this option to access these correct midsurface results (membrane results) for those analyses where averaging TOP and BOTTOM results is inappropriate. Examples include midsurface stresses and strains with nonlinear material behavior, and midsurface results after mode combinations that involve squaring operations such as in spectrum analyses.

Set KEYOPT(9) = 1 to read initial thickness data from a user subroutine.
You can apply an initial stress state to this element via the INISTATE command. For more information, see "Initial State" in the Basic Analysis Guide.

The effects of pressure load stiffness are automatically included for this element. If an unsymmetric matrix is needed for pressure load stiffness effects, use NROPT,UNSYM.
"SHELL209 Input Summary" (p. 1164) gives a summary of the element input. A general description of element input is given in Element Input (p. 5)

## SHELL209 Input Summary

## Nodes

I, J, K

## Degrees of Freedom

UX, UY, ROTZ -- If $\operatorname{KEYOPT}(1)=0$ and $\operatorname{KEYOPT}(2)=0$
UX, UY -- If $\operatorname{KEYOPT}(1)=1$ and $\operatorname{KEYOPT}(2)=0$
UX, UY, UZ, ROTZ -- If $\operatorname{KEYOPT}(1)=0$ and $\operatorname{KEYOPT}(2)=1$
UX, UY, UZ -- If $\operatorname{KEYOPT}(1)=1$ and $\operatorname{KEYOPT}(2)=1$

## Real Constants

None

## Section Controls

E11, ADMSUA

## Material Properties

EX, EY, EZ, PRXY, PRYZ, PRXZ (or NUXY, NUYZ, NUXZ), ALPX, ALPY, ALPZ (or CTEX, CTEY, CTEZ or THSX, THSY, THSZ),
DENS, GXY, GYZ,
GXZ, DAMP

## Surface Loads

Pressures --
face 1 (I-J-K) (top, in -N direction), face 2 (I-J-K) (bottom, in +N direction)

## Body Loads

## Temperatures --

For $\operatorname{KEYOPT}(1)=0$ :
T1, T2 T3 (corresponding to nodes I, J, and K) at bottom of layer 1, and T4, T5, T6 (corresponding to nodes I, J, and K) between layers 1-2. A similar relationship exists for all layers, ending with temperatures at the top of layer NL. For one-layer elements, therefore, six temperatures are used. For $\operatorname{KEYOPT}(1)=1$ :
T1, T2, T3 for layer 1; T4, T5, T6 for layer 2; similarly for all layers (3 * NL maximum). Hence, for one-layer elements, three temperatures are used.

## Special Features

Plasticity (PLASTIC, BISO, MISO, NLISO, BKIN, MKIN, KINH, CHABOCHE, HILL)
Hyperelasticity (AHYPER, HYPER, BB, CDM)
Viscoelasticity (PRONY, SHIFT)
Viscoplasticity/Creep (CREEP, RATE)
Elasticity (ELASTIC, ANEL)
Other material (USER, SDAMP)
Stress stiffening
Large deflection
Large strain
Initial state
Nonlinear stabilization
Automatic selection of element technology
Birth and death
Linear perturbation

Items in parentheses refer to data tables associated with the TB command. See "Structures with Material Nonlinearities" in the Theory Reference for the Mechanical APDL and Mechanical Applications for details of the material models.

See Automatic Selection of Element Technologies (p. 122) and ETCONTROL for more information on selection of element technologies.

Adaptive descent is not supported.

## KEYOPT(1)

Element stiffness:
0 --
Bending and membrane stiffness (default).
1 --
Membrane stiffness only.

## KEYOPT(2)

Torsion capability:
0 --
Excluded (default).
1 --
Included.

## KEYOPT(8)

Storage of layer data:
0 --
Store data for BOTTOM of bottom layer and TOP of top layer (default).
1 --
Store data for TOP and BOTTOM for all layers.
2 --
Store data for TOP, BOTTOM, and MID for all layers. (The volume of data may be excessive.)

## KEYOPT(9)

User-defined thickness:
0 --
No user subroutine to provide initial thickness (default).
1 --
Read initial thickness data from user subroutine UTHICK
See the Guide to ANSYS User Programmable Features for information about user-written subroutines.

## SHELL209 Output Data

The solution output associated with the element is in two forms:

- Nodal displacements included in the overall nodal solution.
- Additional element output as shown in Table 1: SHELL209 Element Output Definitions (p. 1168)

Several items are illustrated in Figure 2 (p. 1167).

KEYOPT(8) controls the amount of data output on the result file for processing with the LAYER command. Interlaminar shear stress is available at the layer interfaces. Setting $\operatorname{KEYOPT}(8)=1$ or 2 is necessary for these stresses to be output in POST1. A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

The element stress resultants (N11, M11, Q13, etc.) are parallel to the element coordinate system, as are the membrane strains and curvatures of the element. Such generalized strains are available through the SMISC option at the element centroid only. The transverse shear force Q13 are available only in resultant form: that is, use SMISC,5. Likewise, the transverse shear strain.
$\gamma_{13}$ is constant through the thickness and only available as a SMISC item (SMISC,10).
ANSYS computes moments (M11, M22) with respect to the shell reference plane. By default, ANSYS adopts the shell midplane as the reference plane. To offset the reference plane to any other specified location, issue the SECOFFSET command. When there is a nonzero offset ( L ) from the reference plane to the midplane,
moments with respect to the midplane ( $\overline{\mathrm{M} 11}, \overline{\mathrm{M} 22}$ ) can be recovered from stress resultants with respect to the reference plane as follows:
$\overline{\mathrm{M} 11}=\mathrm{M} 11-\mathrm{L} \times \mathrm{N} 11$
$\overline{\mathrm{M} 22}=\mathrm{M} 22-\mathrm{L} \times \mathrm{N} 22$
SHELL209 does not support extensive basic element printout. POST1 provides more comprehensive output processing tools; therefore, we suggest using OUTRES command to ensure that the required results are stored in the database.

Figure 2 SHELL209 Element Stress Output


The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " $Y$ " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and " - " indicates that the item is not available.

Table 1 SHELL209 Element Output Definitions

Name	Definition	0	R
EL	Element Number	Y	Y
NODES	Nodes - I, J, K	-	Y
MAT	Material number	-	Y
THICK	Average thickness	-	Y
VOLU:	Volume	-	Y
XC, YC	Location where results are reported	Y	4
PRES	Pressures P1 (top) at NODES I, J; P2 (bottom) at NODES I, J	-	Y
TEMP	Temperatures T1, T2 at bottom of layer 1, T3, T4 between layers 1-2, similarly for between next layers, ending with temperatures at top of layer NL ( $2 *(N L+1)$ maximum)	-	Y
LOC	TOP, MID, BOT, or integration point location	-	1
$\begin{aligned} & S: X, Y, Z, X Y, Y Z, \\ & X Z \end{aligned}$	Stresses	3	1
$\mathrm{S}: 1,2,3$	Principal stresses	-	1
S:INT	Stress intensity	-	1
S:EQV	Equivalent stress	-	1
$\begin{aligned} & \text { EPEL:X,Y, Z, } \\ & X Y, Y Z, X Z \end{aligned}$	Elastic strains	3	1
EPEL:EQV	Equivalent elastic strain	-	1
$\begin{aligned} & \text { EPTH:X, Y, Z, } \\ & X Y, Y Z, X Z \end{aligned}$	Thermal strains	3	1
EPTH:EQV	Equivalent thermal strain	-	1
$\begin{aligned} & \text { EPPL:X,Y, Z, } \\ & X Y, Y Z, X Z \end{aligned}$	Average plastic strains	3	2
EPPL:EQV	Equivalent plastic strain	-	2
$\begin{aligned} & \text { EPCR:X, Y, Z, } \\ & X Y, Y Z, X Z \end{aligned}$	Average creep strains	3	2
EPCR:EQV	Equivalent creep strain	-	2
$\begin{aligned} & \text { EPTO:X,Y, Z } \\ & , X Y, Y Z, X Z \end{aligned}$	Total mechanical strains (EPEL+EPPL+EPCR)	3	-
EPTO:EQV	Total equivalent mechanical strains	-	-
NL:EPEQ	Accumulated equivalent plastic strain	-	2


Name	Definition	0	R
NL:CREQ	Accumulated equivalent creep strain	-	2
NL:SRAT	Plastic yielding ( $1=$ actively yielding, $0=$ not yielding)	-	2
NL:PLWK	Plastic work	-	2
NL:HPRES	Hydrostatic pressure	-	2
SEND:Elastic, Plastic, Creep	Strain energy densities	-	2
N11, N22, N12	In-plane forces (per unit length)	-	Y
M11, M22	Out-of-plane moments (per unit length)	-	Y
Q13	Transverse shear forces (per unit length)	-	Y
E11, E22, E12	Membrane strains	-	Y
K11, K22	Curvatures	-	Y
$\gamma_{13}$	Transverse shear strain	-	Y
LOCI:X, Y, Z	Integration point locations	-	5
SVAR:1, 2, ... , N	State variables	-	6
ILSXZ	SXZ interlaminar shear stress	-	Y
ILSYZ	SYZ interlaminar shear stress	-	Y
ILSUM	Magnitude of the interlaminar shear stress vector	-	Y
ILANG	Angle of interlaminar shear stress vector (measured from the element $x$-axis toward the element $y$-axis in degrees)	-	Y
Sm: 11, 22, 12	Membrane stresses	-	Y
Sb: 11, 22	Bending stresses	-	Y
Sp: 11, 22, 12	Peak stresses	-	Y
St: 13	Averaged transverse shear stresses	-	Y

1. The following stress solution repeats for top, middle, and bottom surfaces.
2. Nonlinear solution output for top, middle, and bottom surfaces, if the element has a nonlinear material.
3. Stresses, total strains, plastic strains, elastic strains, creep strains, and thermal strains in the element coordinate system are available for output (at all section points through thickness). If layers are in use, the results are in the layer coordinate system.
4. Available only at centroid as a *GET item.
5. Available only if OUTRES,LOCI is used.
6. Available only if the USERMAT subroutine and TB,STATE are used.

Table 2: SHELL209 Item and Sequence Numbers (p. 1170) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p.9) of this manual for more information. The following notation is used in Table 2: SHELL209 Item and Sequence Numbers (p. 1170):

## Name

output quantity as defined in the Table 1: SHELL208 Element Output Definitions (p. 1158)

## Item

predetermined Item label for ETABLE command
E
sequence number for single-valued or constant element data
I, J, K
sequence number for data at nodes I, J, K.
Table 2 SHELL209 Item and Sequence Numbers

Output Quantity Name	ETABLE and ESOL Command Input				
	Item	E	I	J	K
N11	SMISC	1	-	-	-
N22	SMISC	2	-	-	-
N12	SMISC	3	-	-	-
M11	SMISC	4	-	-	-
M22	SMISC	5	-	-	-
Q13	SMISC	6	-	-	-
$\varepsilon_{11}$	SMISC	7	-	-	-
$\varepsilon_{22}$	SMISC	8	-	-	-
$\varepsilon_{12}$	SMISC	9	-	-	-
$\mathrm{k}_{11}$	SMISC	10	-	-	-
$\mathrm{k}_{22}$	SMISC	11	-	-	-
$\gamma_{13}$	SMISC	12	-	-	-
THICK	SMISC	13	-	-	-
P1	SMISC	-	14	15	16
P2	SMISC	-	17	18	19
Sm: 11	SMISC	18	-	-	-
Sm: 22	SMISC	19	-	-	-
Sm: 12	SMISC	20	-	-	-
Sb: 11	SMISC	21	-	-	-
Sb: 22	SMISC	22	-	-	-
Sp: 11 (at shell bottom)	SMISC	23	-	-	-
$\mathrm{Sp}: 22$ (at shell bottom)	SMISC	24	-	-	-
$\mathrm{Sp}: 12$ (at shell bottom)	SMISC	25	-	-	-
Sp: 11 (at shell top)	SMISC	26	-	-	-


Output   Quantity   Name	ETABLE and ESOL Command Input				
	Item	E	I	J	K
Sp: 22 (at   shell top)	SMISC	27	-	-	-
Sp: 12 (at   shell top)	SMISC	28	-	-	-
St: 13	SMISC	29	-	-	-


Output   Quantity   Name	ETABLE and ESOL Command Input		
	Item	Bottom of Layer i	Top of Layer NL
ILSXZ	SMISC	$8^{*}(\mathrm{i}-1)+31$	$8^{*}(\mathrm{NL}-1)+32$
ILSYZ	SMISC	$8^{*}(\mathrm{i}-1)+33$	$8^{*}(\mathrm{NL}-1)+34$
ILSUM	SMISC	$8^{*}(\mathrm{i}-1)+35$	$8^{*}(\mathrm{NL}-1)+36$
ILANG	SMISC	$8^{*}(\mathrm{i}-1)+37$	$8^{*}(\mathrm{NL}-1)+38$

## SHELL209 Assumptions and Restrictions

- The axisymmetric shell element must be defined in the global $X-Y$ plane with the $Y$-axis the axis of symmetry.
- The element cannot have a zero length.
- Zero thickness elements, or elements tapering down to a zero thickness at any corner, are not allowed (but zero thickness layers are allowed).
- If multiple load steps are used, the number of layers may not change between load steps.
- No slippage is assumed between the element layers. Shear deflections are included in the element; however, normals to the center plane before deformation are assumed to remain straight after deformation.
- Transverse shear stiffness of the shell section is estimated by an energy equivalence procedure (of the generalized section forces \& strains vs. the material point stresses and strains). The accuracy of this calculation may be adversely affected if the ratio of material stiffnesses (Young's moduli) between adjacent layers is very high.
- The calculation of interlaminar shear stresses is based on simplifying assumptions of unidirectional, uncoupled bending in each direction. If accurate edge interlaminar shear stresses are required, shell-tosolid submodeling should be used.
- The section definition permits use of hyperelastic material models and elastoplastic material models in laminate definition. However, the accuracy of the solution is primarily governed by fundamental assumptions of shell theory. The applicability of shell theory in such cases is best understood by using a comparable solid model.
- For nonlinear applications, this element works best with full Newton-Raphson solution scheme (NROPT,FULL,ON).
- Stress stiffening is always included in geometrically nonlinear analyses (NLGEOM,ON). Prestress effects can be activated by the PSTRES command.
- In a nonlinear analysis, the solution process terminates if the thickness at any integration point that was defined with a nonzero thickness vanishes (within a small numerical tolerance).


## SHELL209 Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

## ANSYS Professional

- The only special features allowed are stress stiffening and large deflections.


## CPT212

## 2-D 4-Node Coupled Pore-Pressure Mechanical Solid

MP ME <> <> <> <> <> <> <> <> <> PP <> EME MFS
Product Restrictions

## CPT212 Element Description

CPT212 is a 2-D four-node coupled pore-pressure mechanical solid element. The element has bilinear displacement behavior.

The element is defined by four nodes having three degrees of freedom at each node: translations in the nodal $x$ and $y$ directions, and one pore-pressure degree of freedom at each node.

CPT212 can be used as a plane strain or axisymmetric element. The element has stress stiffening, large deflection, and large strain capabilities. Various printout options are also available.

See CPT212 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

## Figure 1 CPT212 Geometry



(Triangular Option not recommended)

## CPT212 Input Data

The geometry and node locations for this element are shown in Figure 1 (p.1173).
A degenerated triangular-shaped element can be formed by defining the same node number for nodes K and L. In addition to the nodes, the element input data includes the orthotropic material properties. Orthotropic material directions correspond to the element coordinate directions. (The element coordinate system orientation is described in Coordinate Systems (p.14).)

Element loads are described in Node and Element Loads (p. 97). Pressures can be input as surface loads on the element faces as shown by the circled numbers in Figure 1 (p. 1173). Positive pressures act into the element. Temperatures can be input as element body loads at the nodes. The node I temperature $\mathrm{T}(\mathrm{I})$ defaults to TUNIF. If all other temperatures are unspecified, they default to $T(I)$. For any other input temperature pattern, unspecified temperatures default to TUNIF.

Input the nodal forces, if any, per unit of depth for a plane analysis and on a full $360^{\circ}$ basis for an axisymmetric analysis.

As described in Coordinate Systems (p. 14), you can use the ESYS command to orient the material properties and strain/stress output. Use the RSYS command to choose output that follows the material coordinate system or the global coordinate system.

The effects of pressure load stiffness are automatically included for this element, and the element generally produces an unsymmetric matrix. To avoid convergence difficulty, issue the NROPT,UNSYM command to use the unsymmetric solver.

The following table summarizes the element input. For a general description of element input, see Element Input (p. 5).

## CPT212 Input Summary

## Nodes

I, J, K, L
Degrees of Freedom
UX, UY, PRES

## Real Constants

None

## Material Properties

EX, EY, EZ, PRXY, PRYZ, PRXZ (or NUXY, NUYZ, NUXZ),
ALPX, ALPY, ALPZ (or CTEX, CTEY, CTEZ or THSX, THSY, THSZ),
DENS, GXY, GYZ, GXZ

## Surface Loads

Pressures --
face $1(\mathrm{~J}-\mathrm{I})$, face $2(\mathrm{~K}-\mathrm{J})$, face $3(\mathrm{I}-\mathrm{K})$, face $4(\mathrm{I}-\mathrm{L})$

## Body Loads

Temperatures --
$\mathrm{T}(\mathrm{I}, \mathrm{T}(\mathrm{J}), \mathrm{T}(\mathrm{K}), \mathrm{T}(\mathrm{L})$

## Special Features --

Elasticity (ELASTIC, ANEL)
Porous Media (PM)
Stress stiffening
Large deflection
Large strain
Items in parentheses refer to data tables associated with the TB command. See the Theory Reference for the Mechanical APDL and Mechanical Applications for details about the material models.

## KEYOPT(3)

Element behavior:
1 --
Axisymmetric
2 --
Plane strain $(Z$ strain $=0.0)($ default $)$

## CPT212 Output Data

The solution output associated with the element is in two forms:

- Nodal displacements and pore pressure included in the overall nodal solution
- Additional element output as shown in Table 1: CPT212 Element Output Definitions (p. 1175)

The element stress directions are parallel to the element coordinate system, as shown in Figure 2 (p. 1175). A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

## Figure 2 CPT212 Stress Output



## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " $Y$ " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 1 CPT212 Element Output Definitions

Name	Definition	$\mathbf{O}$	$\mathbf{R}$
EL	Element number	-	Y
NODES	Nodes $-\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}$	-	Y
MAT	Material number	-	Y
THICK	Thickness	-	Y
VOLU	Volume	-	Y
XC, YC	Location where results are reported	Y	2
TEMP	Temperatures T(I), T(J), T(K), T(L)	-	${ }^{\prime} \mathrm{Y}$
S:X, Y, Z, XY	Stresses	Y	Y
S:1, 2, 3	Principal stresses	-	Y
S:INT	Stress intensity	-	Y
S:EQV	Equivalent stress	Y	Y


Name	Definition	$\mathbf{0}$	$\mathbf{R}$
EPEL:X, Y, Z, XY	Elastic strains	Y	Y
EPEL:1, 2, 3	Principal elastic strains	-	Y
EPEL:EQV	Equivalent elastic strain	Y	Y
EPTH:X, Y, Z, XY	Thermal strains	1	1

1. Output only if element has a thermal load.
2. Available only at centroid as a *GET item.

For axisymmetric solutions in a global coordinate system, the $X, Y, X Y$, and $Z$ stress and strain outputs correspond to the radial, axial, in-plane shear, and hoop stresses and strains, respectively.

Table 2: CPT212 Item and Sequence Numbers (p. 1176) lists output available via the ETABLE command using the Sequence Number method. For more information, see Creating an Element Table in the Basic Analysis Guide and The Item and Sequence Number Table (p.9) in this document. The table uses the following notation:

## Name

output quantity as defined in the Table 1: CPT212 Element Output Definitions (p. 1175)

## Item

predetermined Item label for ETABLE
E
sequence number for single-valued or constant element data

## I,J,K,L

sequence number for data at nodes I, J, K, L
Table 2 CPT212 Item and Sequence Numbers

Output Quantity Name	ETABLE and ESOL Command Input									
	Item	E	I	J	K	L	M	N	0	P
P1	SMISC	-	2	1	-	-	-	-	-	-
P2	SMISC	-	-	4	3	-	-	-	-	-
P3	SMISC	-	-	-	6	5	-	-	-	-
P4	SMISC	-	7	-	-	8	-	-	-	-

See Surface Solution (p.10) in this document for the item and sequence numbers for surface output for ETABLE.

## CPT212 Assumptions and Restrictions

- The area of the element must be positive.
- The element must lie in a global X-Y plane as shown in Figure 1 ( p .1173 ) and the Y -axis must be the axis of symmetry for axisymmetric analyses. An axisymmetric structure should be modeled in the $+X$ quadrants.
- You can form a triangular element by defining duplicate $K$ and $L$ node numbers. (For more information, see Triangle, Prism, and Tetrahedral Elements (p. 99).)
- Stress stiffening is always included in geometrically nonlinear analyses (NLGEOM,ON). It is ignored in geometrically linear analyses (NLGEOM,OFF) when specified by SSTIF,ON. Prestress effects can be activated by the PSTRES command.


## CPT212 Product Restrictions

There are no product-specific restrictions for this element.

## CPT213

## 2-D 8-Node Coupled Pore-Pressure Mechanical Solid

MP ME <> <> <> <> <> <> <> <> <> PP <> EME MFS
Product Restrictions

## CPT213 Element Description

CPT213 is a higher-order 2-D eight-node coupled pore-pressure mechanical solid element. The element has quadratic displacement behavior and is well suited to modeling curved boundaries.

The element is defined by eight nodes having three degrees of freedom at each corner node:

- The translations in the nodal x and y directions
- One pore-pressure degree of freedom and two degrees of freedom at the midside nodes: the translations in the nodal x and y directions.

CPT213 can be used as a plane strain or axisymmetric element. The element has stress stiffening, large deflection, and large strain capabilities. Various printout options are also available. See CPT213 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

Figure 1 CPT213 Geometry


A higher-order version of this element is CPT217.

## CPT213 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 1 (p. 1179).
A degenerated triangular-shaped element can be formed by defining the same node number for nodes K , L and O . In addition to the nodes, the element input data includes the orthotropic material properties. Orthotropic material directions correspond to the element coordinate directions. (The element coordinate system orientation is described in Coordinate Systems (p.14).)

Element loads are described in Node and Element Loads (p. 97). Pressures can be input as surface loads on the element faces as shown by the circled numbers in Figure 1 (p. 1179). Positive pressures act into the element. Temperatures can be input as element body loads at the nodes. The node I temperature $T(I)$ defaults to TUNIF. If all other temperatures are unspecified, they default to $T(I)$. If all corner node temperatures are specified, each midside node temperature defaults to the average temperature of its adjacent corner nodes. For any other input temperature pattern, unspecified temperatures default to TUNIF.

The nodal forces, if any, should be input per unit of depth for a plane analysis and on a full $360^{\circ}$ basis for an axisymmetric analysis.

As described in Coordinate Systems (p. 14), you can use the ESYS command to orient the material properties and strain/stress output. Use ESYS to choose output that follows the material coordinate system or the global coordinate system.

The effects of pressure load stiffness are automatically included for this element, and the element generally produces an unsymmetric matrix. To avoid convergence difficulty, issue the NROPT,UNSYM command to use the unsymmetric solver.

The following table summarizes the element input. Element Input (p. 5) gives a general description of element input.

## CPT213 Input Summary

## Nodes

I, J, K, L, M, N, O, P
Degrees of Freedom
UX, UY, PRES

## Real Constants

None

## Material Properties

EX, EY, EZ, PRXY, PRYZ, PRXZ (or NUXY, NUYZ, NUXZ), ALPX, ALPY, ALPZ (or CTEX, CTEY, CTEZ or THSX, THSY, THSZ), DENS, GXY, GYZ, GXZ

## Surface Loads

Pressures --
face 1 ( $\mathrm{J}-\mathrm{I}$ ), face $2(\mathrm{~K}-\mathrm{J})$, face $3(\mathrm{I}-\mathrm{K})$, face $4(\mathrm{I}-\mathrm{L})$

## Body Loads

Temperatures --
$\mathrm{T}(\mathrm{I}), \mathrm{T}(\mathrm{J}), \mathrm{T}(\mathrm{K}), \mathrm{T}(\mathrm{L}), \mathrm{T}(\mathrm{M}), \mathrm{T}(\mathrm{N}), \mathrm{T}(\mathrm{O}), \mathrm{T}(\mathrm{P})$

## Special Features

Elasticity (ELASTIC, ANEL)
Porous Media (PM)
Stress stiffening
Large deflection
Large strain

## KEYOPT(3)

Element behavior:
1 --
Axisymmetric
2 --
Plane strain $(Z$ strain $=0.0)($ default $)$

## CPT213 Output Data

The solution output associated with the element is in two forms:

- Nodal displacements and pore pressure included in the overall nodal solution
- Additional element output as shown in Table 1: CPT213 Element Output Definitions (p. 1181).

As illustrated in Figure 2 (p. 1181), the element stress directions are parallel to the element coordinate system. A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

Figure 2 CPT213 Stress Output


## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " $Y$ " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 1 CPT213 Element Output Definitions

Name	Definition	$\mathbf{0}$	$\mathbf{R}$
EL	Element number	-	Y
NODES	Nodes $-\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}$	-	Y
MAT	Material number	-	Y
THICK	Thickness	-	Y
VOLU	Volume	-	Y
XC, YC	Location where results are reported	Y	1


Name	Definition	0	R
TEMP	Temperatures $\mathrm{T}(\mathrm{I}), \mathrm{T}(\mathrm{J}), \mathrm{T}(\mathrm{K}), \mathrm{T}(\mathrm{L})$	-	Y
S:X, Y, Z, XY	Stresses	Y	Y
S:1, 2, 3	Principal stresses	-	Y
S: INT	Stress intensity	-	Y
S:EQV	Equivalent stress	-	Y
EPEL:X, Y, Z, XY	Elastic strains	Y	Y
EPEL:1, 2, 3	Principal elastic strains	Y	-
EPEL:EQV	Equivalent elastic strain [2]	-	Y
EPTH: $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{XY}$	Thermal strains	3	3
EPTH:EQV	Equivalent thermal strain [2]	-	3

1. Available only at centroid as a *GET item.
2. The equivalent strains use an effective Poisson's ratio: for elastic and thermal this value is set by the user (MP,PRXY); for plastic and creep this value is set at 0.5 .
3. Output only if element has a thermal load.

For axisymmetric solutions, the $X, Y, X Y$, and $Z$ stress and strain outputs correspond to the radial, axial, inplane shear, and hoop stresses and strains.

Table 2: CPT213 Item and Sequence Numbers (p. 1182) lists output available via the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p. 9) in this document for more information. The following notation is used in Table 2: CPT213 Item and Sequence Numbers (p. 1182):

## Name

output quantity as defined in Table 1: CPT213 Element Output Definitions (p. 1181)

## Item

predetermined Item label for ETABLE
E
sequence number for single-valued or constant element data
I,J,...,P
sequence number for data at nodes I, J, ..., P
Table 2 CPT213 Item and Sequence Numbers

Output   Quant-   ity   Name											
	Item	E	$\mathbf{I}$	J	K	$\mathbf{L}$	$\mathbf{M}$	$\mathbf{N}$	$\mathbf{O}$	$\mathbf{P}$	
P1	SMISC	-	2	1	-	-	-	-	-	-	
P2	SMISC	-	-	4	3	-	-	-	-	-	
P3	SMISC	-	-	-	6	5	-	-	-	-	
P4	SMISC	-	7	-	-	8	-	-	-	-	

See Surface Solution (p. 10) in this document for the item and sequence numbers for surface output for ETABLE.

## CPT213 Assumptions and Restrictions

- The area of the element must be positive.
- The element must lie in a global $X-Y$ plane as shown in Figure 1 (p. 1179) and the Y -axis must be the axis of symmetry for axisymmetric analyses. An axisymmetric structure should be modeled in the +X quadrants.
- An edge with a removed midside node implies that the displacement varies linearly, rather than parabolically, along that face. See Quadratic Elements (Midside Nodes) in the Modeling and Meshing Guide for more information about the use of midside nodes.
- A triangular element can be formed by defining duplicate K-L-O node numbers. (See Triangle, Prism, and Tetrahedral Elements (p. 99).) For these degenerated elements, the triangular shape function is used and the solution is the same as for the regular triangular 6-node elements.
- Stress stiffening is always included in geometrically nonlinear analyses (NLGEOM,ON). It is ignored in geometrically linear analyses (NLGEOM,OFF) when specified via the SSTIF,ON command. Prestress effects can be activated via the PSTRES command.


## CPT213 Product Restrictions

There are no product-specific restrictions for this element.

## COMBI214

## 2-D Spring-Damper Bearing

MP ME ST PR PRN DS DSS <> <> <> <> PP <> EME MFS
Product Restrictions

## COMBI214 Element Description

COMBI214 has longitudinal as well as cross-coupling capability in 2-D applications. It is a tension-compression element with up to two degrees of freedom at each node: translations in any two nodal directions ( $\mathrm{x}, \mathrm{y}$, or z). COMBI214 has two nodes plus one optional orientation node. No bending or torsion is considered.

The spring-damper element has no mass. Masses can be added by using the appropriate mass element (MASS21). The spring or the damping capability may be removed from the element.

A longitudinal spring/damper with torsion capabilities is available via the COMBIN14 element. A general spring or damper is also available in the stiffness, damping or mass matrix element MATRIX27. Another spring-damper element having its direction of action determined by the nodal coordinate directions is COMBIN40.

For more information about this element, see COMBI214-2-D Spring-Damper Bearing in the Theory Reference for the Mechanical APDL and Mechanical Applications.

Figure 1 COMBI214 Geometry


For linear analyses, I and J can be coincident.

## COMBI214 Input Data

The geometry, node locations, and coordinate system for this element are shown in Figure 1 (p. 1185). The element is defined by two nodes. It has stiffness characteristics $\mathrm{K}_{11}, \mathrm{~K}_{22}, \mathrm{~K}_{12}$ and $\mathrm{K}_{21}$ and damping characteristics $\mathrm{C}_{11}, \mathrm{C}_{22}, \mathrm{C}_{12}$ and $\mathrm{C}_{21}$. The stiffness coefficients should have units of Force/Length, and the damping coefficient units are Force*Time/Length. (The damping capability is not used for static or undamped modal analyses.)

The third node is for orientation and applies to nonlinear analyses only.
For stiffness and damping real constants, either numerical values or tabular array inputs can be specified. If specifying tabular inputs, enclose the table name within "\%" characters (\%tabname\%). These real constants can vary with the amplitude of the rotational velocity vector (defined via the OMEGA or CMOMEGA command). Use the *DIM command and the primary variable OMEGS to dimension the table and identify the variable. Because the amplitude of the rotational velocity vector is an absolute value, only positive values of OMEGS in the table parameter are valid. For more information about using tabular inputs, see Array Parameters in the ANSYS Parametric Design Language Guide, Applying Loads Using TABLE Type Array Parameters in the Basic Analysis Guide, and Performing a Thermal Analysis Using Tabular Boundary Conditions in the Thermal Analysis Guide.

KEYOPT(2) $=0$ through 2 options define the element plane. The element operates in the nodal coordinate system.

The $\operatorname{KEYOPT}(3)=0$ and 1 options specify whether or not the element is symmetric. When symmetric, crosscoupling terms in stiffness and damping coefficients are equal (that is, $\mathrm{K}_{12}=\mathrm{K}_{21}$ and $\mathrm{C}_{12}=\mathrm{C}_{21}$ ).

A summary of the element input is given in "COMBI214 Input Summary" (p. 1186). A general description of element input is given in Element Input (p. 5).

## COMBI214 Input Summary

## Nodes

I, J, K (The K orientation node is optional and for nonlinear analyses only.)

## Degrees of Freedom

UX, UY (KEYOPT (2) = 0)
UY, UZ (KEYOPT (2) = 1)
UX, UZ (KEYOPT (2) = 2)

## Real Constants

$\mathrm{K}_{11}, \mathrm{~K}_{22}, \mathrm{~K}_{12}, \mathrm{~K}_{21}, \mathrm{C}_{11}, \mathrm{C}_{22}, \mathrm{C}_{12}, \mathrm{C}_{21}$
$\mathrm{K}_{\mathrm{ij}}-(\mathrm{i}=1,2 \mathrm{j}=1,2)$ Stiffness coefficients
$C_{i j}-(i=1,2 j=1,2)$ Damping coefficients

## Note

Real constants may be defined as table parameters as a function of omega (using primary variable OMEGS).

## Material Properties

None

## Surface Loads

None

## Body Loads

None

## Special Features

Stress stiffening
Large deflections
Birth and death
Linear perturbation

## KEYOPT(2)

Degrees of freedom selection:
0 --
Element lies in a plane parallel to the XY plane. The degrees of freedom are UX and UY. This value option is the default.

1 --
Element lies in a plane parallel to the YZ plane. The degrees of freedom are UY and UZ.
2 --
Element lies in a plane parallel to the XZ plane. The degrees of freedom are UX and UZ.

## KEYOPT(3)

Symmetry:
0 --
Element is symmetric: $\mathrm{K}_{12}=\mathrm{K}_{21}$ and $\mathrm{C}_{12}=\mathrm{C}_{21}$. This option is the default.
1 --
Element is not symmetric.

## KEYOPT(4)

Element stiffness and damping matrices output:
0 --
Do not print element matrices.
1 --
Print element matrices at beginning of solution phase.

## COMBI214 Output Data

The solution output associated with the element is in two forms:

- Nodal displacements included in the overall nodal solution
- Additional element output as shown in Table 1: COMBI214 Element Output Definitions (p. 1188).

The Element Output Definitions table uses the following notation:
(1) and (2) indicate the first and second axis of the element plane defined by KEYOPT(2). For example, if KEYOPT(2) equals 0 , then (1) is the $X$ axis and (2) is the $Y$ axis.

A colon (:) in the Name column indicates the item can be accessed by the Component Name method [ETABLE, ESOL]. The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, Y indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and a - indicates that the item is not available.

Table 1 COMBI214 Element Output Definitions

Name	Definition	$\mathbf{O}$	R
EL	Element Number	Y	Y
NODES	Nodes - I, J	Y	Y
XC, YC, ZC	Location where results are reported	Y	1
FORC1	Spring force along (1)	Y	Y
FORC2	Spring force along (2)	Y	Y
STRETCH1	Stretch of spring along (1)	Y	Y
STRETCH2	Stretch of spring along (2)	Y	Y
VELOCITY1	Velocity along (1)	-	Y
VELOCITY2	Velocity along (2)	-	Y
DAMPING FORCE1	Damping force along (1) -- Zero unless this is a   transient analysis (ANTYPE,TRANS) and damping is   present	Y	Y
DAMPING FORCE2	Damping force along (2) -- Zero unless this is a   transient analysis (ANTYPE,TRANS) and damping is   present	Y	Y

1. Available only at centroid as a *GET item.

Table 2: COMBI214 Item and Sequence Numbers (p. 1189) lists output available via the ETABLE command using the Sequence Number method. See "The General Postprocessor (POST1)" in the Basic Analysis Guide and The Item and Sequence Number Table (p. 9) in this document for more information. The following notation is used in Table 2: COMBI214 Item and Sequence Numbers (p. 1189):

## Name

Output quantity as defined in Table 1: COMBI214 Element Output Definitions (p. 1188)

## Item

Predetermined Item label for the ETABLE command
E
Sequence number for single-valued or constant element data

Output data for COMBI214 consists of the following:
Table 2 COMBI214 Item and Sequence Numbers

Output Quantity Name	ETABLE and ESOL Command Input	
	Item	E
FORC1	SMISC	1
FORC2	SMISC	2
STRETCH1	NMISC	1
STRETCH2	NMISC	2
VELOCITY1	NMISC	3
VELOCITY2	NMISC	4
DAMPING FORCE1	NMISC	5
DAMPING FORCE2	NMISC	6

## COMBI214 Assumptions and Restrictions

- Nodes must lie in the plane defined by KEYOPT(2).
- The following applies to a nonlinear analysis:
-- The orientation node K is required.
-- The length of the spring-damper element must not be zero (that is, nodes I, J and K should not be coincident because the node locations determine the spring orientation).
- Vector (IJ) must be along axis (1). Vector (KJ) must be along axis (2). Directions are considered.
- The element allows only a uniform stress in the springs.
- The following applies when $\operatorname{KEYOPT}(3)=0$ (symmetric):
-- If $\mathrm{K}_{12}$ is non-zero and $\mathrm{K}_{21}$ is zero, then $\mathrm{K}_{21}$ is set to $\mathrm{K}_{12}$.
-- If $C_{12}$ is non-zero and $C_{21}$ is zero, then $C_{21}$ is set to $C_{12}$.
- The spring or the damping capability may be deleted from the element by setting all $K_{i j}(i=1,2 j=1,2)$ or all $C_{i j}(i=1,2 j=1,2)$ equal to zero, respectively.
- The degrees of freedom are specified in the nodal coordinate system and are the same for both nodes. (For more information, see Elements that Operate in the Nodal Coordinate System (p. 15).) If the nodal coordinate systems are rotated relative to each other, the same degree of freedom may be in different directions (thereby giving possibly unexpected results).
- No moment effects are included; that is, if the nodes are offset from the lines of action, moment equilibrium may not be satisfied.
- The element is defined such that a positive displacement of node $J$ relative to node I tends to stretch the spring. If, for a given set of conditions, nodes I and J are interchanged, a positive displacement of node $J$ relative to node I tends to compress the spring.
- Rotating damping effect (RotDamp $=$ ON in the CORIOLIS command) is taken into account if the diagonal damping characteristics (C11 and C22) are equal and non zero and cross-terms (C12 and C21) are zero.
- Rotating damping effect is ignored if the element has a real constant input as a table array.


## COMBI214 Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

## ANSYS Professional

Structural Analysis:

- No damping capability; $C_{i j}(i=1,2 j=1,2)$ are not allowed.
- Only stress stiffening and large deflections are allowed.


## CPT215

## 3-D 8-Node Coupled Pore-Pressure Mechanical Solid

MP ME <> <> <> <> <> <> <> <> <> PP <> EME MFS
Product Restrictions

## CPT215 Element Description

CPT215 is a 3-D eight-node coupled pore-pressure mechanical solid element. The element is defined by eight nodes having four degrees of freedom at each node: translations in the nodal $x, y$, and $z$ directions, and one pore-pressure degree of freedom at each corner node.

CPT215 has elasticity, stress stiffening, large deflection, and large strain capabilities. Various printout options are available.

For more details about this element, see CPT215 in the Theory Reference for the Mechanical APDL and Mechanical Applications.

Figure 1 CPT215 Structural Solid Geometry



Prism Option


Tetrahedral Option not recommended

A higher-order version of this element is CPT216.

## CPT215 Input Data

The geometry and node locations for this element are shown in Figure 1 (p. 1191). A prism-shaped element can be formed by defining the same node numbers for nodes $K$ and $L$, and nodes $O$ and P.A tetrahedralshaped element and a pyramid-shaped element can also be formed, as shown in the illustration. (CPT217 is a similar element, but is a 10-node tetrahedron.)

In addition to the nodes, the element input data includes the orthotropic material properties. Orthotropic material directions correspond to the element coordinate directions. The element coordinate system orientation is described in Coordinate Systems (p. 14).

Element loads are described in Node and Element Loads (p. 97). Pressures can be input as surface loads on the element faces as shown by the circled numbers in Figure 1 (p. 1191). Positive pressures act into the element. Temperatures can be input as element body loads at the nodes. The node I temperature $\mathrm{T}(\mathrm{I})$ defaults to TUNIF. If all other temperatures are unspecified, they default to $T(I)$. For any other input temperature pattern, unspecified temperatures default to TUNIF.

As described in Coordinate Systems (p. 14), you can use the ESYS command to orient the material properties and strain/stress output. Use the RSYS command to choose output that follows the material coordinate system or the global coordinate system.

The effects of pressure load stiffness are automatically included for this element, and the element generally produces an unsymmetric matrix. To avoid convergence difficulty, issue the NROPT,UNSYM command to use the unsymmetric solver.
"CPT215 Input Summary" (p. 1192) contains a summary of element input. For a general description of element input, see Element Input (p. 5).

## CPT215 Input Summary

## Nodes

I, J, K, L, M, N, O, P

## Degrees of Freedom

UX, UY, UZ, PRES

## Real Constants

None

## Material Properties

EX, EY, EZ, ALPX, ALPY, ALPZ (or CTEX, CTEY, CTEZ or THSX,THSY, THSZ), PRXY, PRYZ, PRXZ (or NUXY, NUYZ, NUXZ),
DENS, GXY, GYZ, GXZ

## Surface Loads

## Pressures --

face 1 (J-I-L-K), face 2 (I-J-N-M), face 3 (J-K-O-N), face 4 (K-L-P-O), face 5 (L-I-M-P), face 6 (M-N-O-P)

## Body Loads

Temperatures --
$T(I), T(J), T(K), T(L), T(M), T(N), T(O), T(P)$

## Special Features

Elasticity (ELASTIC, ANEL)
Porous Media (PM)
Stress stiffening
Large deflection
Large strain
Items in parentheses refer to data tables associated with the TB command. For details about the material models, see the Theory Reference for the Mechanical APDL and Mechanical Applications.

## CPT215 Technology

CPT215 uses the $\bar{B}$ method (also known as selective reduced integration). This approach helps to prevent volumetric mesh locking in nearly incompressible cases. It replaces volumetric strain at the Gauss integration point with the average volumetric strain of the elements. For more information, see the Theory Reference for the Mechanical APDL and Mechanical Applications.

## CPT215 Output Data

The solution output associated with the element is in two forms:

- Nodal displacements and pore pressure included in the overall nodal solution
- Additional element output as shown in Table 1: CPT215 Output Definitions (p. 1194)

The element stress directions are parallel to the element coordinate system, as shown in Figure 2 (p. 1193). A general description of solution output is given in The Item and Sequence Number Table (p. 9). See the Basic Analysis Guide for ways to view results.

## Figure 2 CPT215 Stress Output



The element stress directions are parallel to the global coordinate system.
The Element Output Definitions table uses the following notation:
A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " $Y$ " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and " ${ }^{-}$" indicates that the item is not available.

Table 1 CPT215 Output Definitions

Name	Definition	$\mathbf{O}$	$\mathbf{R}$
EL	Element Number	-	Y
NODES	Nodes - I, J, K, L, M, N, O, P	-	Y
MAT	Material number	-	Y
VOLU:	Volume	-	Y
XC, YC, ZC	Location where results are reported	Y	2
TEMP	Temperatures T(I), T(J), T(K), T(L), T(M), T(N), T(O), T(P)	-	Y
S:X, Y, Z, XY, YZ, XZ	Stresses	Y	Y
S:1, 2, 3	Principal stresses	-	Y
S:INT	Stress intensity	-	Y
S:EQV	Equivalent stress	-	Y
EPEL:X, Y, Z, XY, YZ,   XZ	Elastic strains	Y	Y
EPEL:1, 2, 3	Principal elastic strains	-	Y
EPEL:EQV	Equivalent elastic strains [3]	-	Y
EPTH:X, Y, Z, XY, YZ,   XZ	Thermal strains	1	1
EPTH:EQV	Equivalent thermal strains [3]	1	1

1. Output only if element has a thermal load
2. Available only at centroid as a *GET item
3. The equivalent strains use an effective Poisson's ratio: for elastic and thermal this value is set by the user (MP,PRXY); for plastic and creep this value is set at 0.5 .

Table 2: CPT215 Item and Sequence Numbers ( p .1195 ) lists output available via ETABLE using the Sequence Number method. See Element Table for Variables Identified By Sequence Number in the Basic Analysis Guide and The Item and Sequence Number Table (p.9) in this document for more information. The following notation is used in Table 2: CPT215 Item and Sequence Numbers (p. 1195):

## Name

output quantity as defined in the Table 1: CPT215 Output Definitions (p. 1194)
Item
predetermined Item label for ETABLE command

## $\mathbf{I}, \mathbf{J}, \ldots, \mathbf{P}$

sequence number for data at nodes $\mathrm{I}, \mathrm{J}, \ldots, \mathrm{P}$
Table 2 CPT215 Item and Sequence Numbers

Output   Quant-   ity   Name											Item	$\mathbf{I}$	$\mathbf{J}$	$\mathbf{K}$	$\mathbf{L}$	$\mathbf{M}$	$\mathbf{N}$	$\mathbf{O}$	$\mathbf{P}$
	SMISC	2	1	4	3	-	-	-	-										
P2	SMISC	5	6	-	-	8	7	-	-										
P3	SMISC	-	9	10	-	-	12	11	-										
P4	SMISC	-	-	13	14	-	-	16	15										
P5	SMISC	18	-	-	17	19	-	-	20										
P6	SMISC	-	-	-	-	21	22	23	24										

See Surface Solution (p. 10) in this document for the item and sequence numbers for surface output for ETABLE.

## CPT215 Assumptions and Restrictions

- The element must not have a zero volume. Also, the element may not be twisted such that the element has two separate volumes (which occurs most frequently when the element is numbered improperly). Elements may be numbered either as shown in Figure 1 (p.1191) or may have the planes IJKL and MNOP interchanged.
- When degenerated into a tetrahedron, wedge, or pyramid element shape (described in Triangle, Prism, and Tetrahedral Elements (p. 99)), the corresponding degenerated shape functions are used. Degeneration to a pyramidal form should be used with caution. The element sizes, when degenerated, should be small to minimize the stress gradients. Pyramid elements are best used as filler elements or in meshing transition zones.
- Stress stiffening is always included in geometrically nonlinear analyses (NLGEOM,ON). It is ignored in geometrically linear analyses (NLGEOM,OFF) when specified by SSTIF,ON. Prestress effects can be activated by the PSTRES command.


## CPT215 Product Restrictions

There are no product-specific restrictions for this element.

## CPT216

## 3-D 20-Node Coupled Pore-Pressure Mechanical Solid

MP ME <> <> <>> <> <> <> <> <> <> PP <> EME MFS
Product Restrictions

## CPT216 Element Description

CPT216 is a higher-order 3-D 20-node coupled pore-pressure mechanical solid element. The element exhibits quadratic displacement behavior and is well suited to modeling irregular meshes.

The element is defined by twenty nodes having four degrees of freedom at each corner node:

- The translations in the nodal $x, y$ and $z$ directions
- One pore-pressure degree of freedom
- Three degrees of freedom at the mid-side nodes: the translations in the nodal $x, y$ and $z$ directions.

CPT216 has elasticity, stress stiffening, large deflection, and large strain capabilities. The element can have any spatial orientation. Various printout options are available.

See CPT216 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

## Figure 1 CPT216 Geometry




Tetrahedral Option



Prism Option

A lower-order version of this element is CPT215.

## CPT216 Input Data

The geometry, node locations, and the element coordinate system for this element are shown in Figure 1 (p. 1197). A prism-shaped element may be formed by defining the same node numbers for nodes K, L, and $S$; nodes $A$ and $B$; and nodes $\mathrm{O}, \mathrm{P}$, and W. A tetrahedral-shaped element and a pyramid-shaped element may also be formed as shown in Figure 1 (p. 1048). (CPT217 is similar, but is a 10-node tetrahedral element.)

In addition to the nodes, the element input data includes the orthotropic material properties. Orthotropic material directions correspond to the element coordinate directions. The element coordinate system orientation is as described in Coordinate Systems (p. 14).

Element loads are described in Node and Element Loads (p. 97). Pressures may be input as surface loads on the element faces as shown by the circled numbers in Figure 1 (p. 1197). Positive pressures act into the element.

Temperatures may be input as element body loads at the nodes. The node I temperature $\mathrm{T}(\mathrm{I})$ defaults to TUNIF. If all other temperatures are unspecified, they default to $T(I)$. If all corner node temperatures are specified, each midside node temperature defaults to the average temperature of its adjacent corner nodes. For any other input temperature pattern, unspecified temperatures default to TUNIF.

As described in Coordinate Systems (p. 14), you can use the ESYS command to orient the material properties and strain/stress output. Use the RSYS command to choose output that follows the material coordinate system or the global coordinate system.

The effects of pressure load stiffness are automatically included for this element, and the element generally produces an unsymmetric matrix. To avoid convergence difficulty, issue the NROPT,UNSYM command to use the unsymmetric solver.

The following table summarizes the element input. Element Input (p. 5) provides a general description of element input.

## CPT216 Input Summary

## Nodes

I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, A, B

## Degrees of Freedom

UX, UY, UZ, PRES

## Real Constants

None

## Material Properties

EX, EY, EZ, ALPX, ALPY, ALPZ (or CTEX, CTEY, CTEZ or THSX,THSY, THSZ), PRXY, PRYZ, PRXZ (or NUXY, NUYZ, NUXZ),
DENS, GXY, GYZ, GXZ

## Surface Loads

face 1 (J-I-L-K), face 2 (I-J-N-M), face 3 (J-K-O-N),
face 4 (K-L-P-O), face 5 (L-I-M-P), face 6 (M-N-O-P)

## Body Loads

## Temperatures --

$T(I), T(J), T(K), T(L), T(M), T(N), T(O), T(P), T(Q), T(R), T(S), T(T), T(U), T(V), T(W), T(X), T(Y), T(Z), T(A), T(B)$

## Special Features

Elasticity (ELASTIC, ANEL)
Porous Media (PM)
Stress stiffening
Large deflection
Large strain
Items in parentheses refer to data tables associated with the TB command. See the Theory Reference for the Mechanical APDL and Mechanical Applications for details of the material models.

## KEYOPT(2)

Element technology:
0 --
Uniform reduced integration (default)
1 --
Full integration

## CPT216 Element Technology

CPT216 uses the uniform reduced integration method or the full integration method, as follows:

- Uniform reduced integration method

Helps to prevent volumetric mesh locking in nearly incompressible cases. However, hourglass mode might propagate in the model if there are not at least two layers of elements in each direction.

## - Full integration

The full integration method does not cause hourglass mode, but can cause volumetric locking in nearly incompressible cases. This method is used primarily for purely linear analyses, or when the model has only one layer of elements in each direction.

## CPT216 Output Data

The solution output associated with the element is in two forms:

- Nodal displacements and pore pressures included in the overall nodal solution
- Additional element output as shown in Table 1: CPT216 Output Definitions (p. 1200)

Figure 2 CPT216 Stress Output


The element stress directions are parallel to the element coordinate system. A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " $Y$ " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and " - " indicates that the item is not available.

Table 1 CPT216 Output Definitions

Name	Definition	0	R
EL	Element number and name	-	Y
NODES	Nodes - I, J, K, L, M, N, O, P	-	Y
MAT	Material number	-	Y
VOLU:	Volume	-	Y
XC, YC, ZC	Location where results are reported	Y	2
TEMP	Temperatures $\mathrm{T}(\mathrm{I}), \mathrm{T}(\mathrm{J}), \mathrm{T}(\mathrm{K}), \mathrm{T}(\mathrm{L}), \mathrm{T}(\mathrm{M}), \mathrm{T}(\mathrm{N}), \mathrm{T}(\mathrm{O}), \mathrm{T}(\mathrm{P})$	-	Y
S:X, Y, Z, XY, YZ, XZ	Stresses	Y	Y
S:1, 2, 3	Principal stresses	-	Y
S:INT	Stress intensity	-	Y
S:EQV	Equivalent stress	-	Y
$\begin{aligned} & \text { EPEL:X, Y, Z, XY, YZ, } \\ & \mathrm{XZ} \end{aligned}$	Elastic strains	Y	Y
EPEL:1, 2, 3	Principal elastic strains	Y	-


Name	Definition	$\mathbf{O}$	$\mathbf{R}$
EPEL:EQV	Equivalent elastic strains	$Y$	$Y$
EPTH: $: X, Y, Z, X Y, Y Z, ~$   $X Z$	Thermal strains	1	1
EPTH:EQV	Equivalent thermal strains	1	1

1. Output only if element has a thermal load
2. Available only at centroid as a *GET item.

Table 2: CPT216 Item and Sequence Numbers (p. 1201) lists output available via the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p. 9) in this document for more information. The following notation is used in Table 2: CPT216 Item and Sequence Numbers (p. 1201):

## Name

output quantity as defined in Table 1: CPT216 Output Definitions (p. 1200)

## Item

predetermined Item label for ETABLE
$\mathbf{I}, \mathbf{J}, \ldots, B$
sequence number for data at nodes I, J, ..., B
Table information below to be provided.
Table 2 CPT216 Item and Sequence Numbers

Output   Quant-   ity   Name											
	Item	$\mathbf{I}$	$\mathbf{J}$	$\mathbf{K}$	$\mathbf{L}$	$\mathbf{M}$	$\mathbf{N}$	$\mathbf{O}$	$\mathbf{P}$	$\mathbf{Q}, \ldots, \mathbf{B}$	
P1	SMISC	2	1	4	3	-	-	-	-	-	
P2	SMISC	5	6	-	-	8	7		-	-	
P3	SMISC	-	9	10	-	-	12	11	-	-	
P4	SMISC	-	-	13	14	-	-	16	15	-	
P5	SMISC	18	-	-	17	19	-	-	20	-	
P6	SMISC	-	-	-	-	21	22	23	24	-	

See Surface Solution (p. 10) in this document for the item and sequence numbers for surface output for ETABLE.

## CPT216 Assumptions and Restrictions

- The element must not have a zero volume. Also, the element may not be twisted such that the element has two separate volumes (which occurs most frequently when the element is numbered improperly). Elements may be numbered either as shown in Figure 1 (p.1197) or may have the planes IJKL and MNOP interchanged.
- An edge with a removed midside node implies that the displacement varies linearly, rather than parabolically, along that edge. See Quadratic Elements (Midside Nodes) in the Modeling and Meshing Guide for more information on the use of midside nodes.
- Use at least two elements in each direction to avoid the hourglass effect when using reduced integration ( $\operatorname{KEYOPT}(2)=0)$.
- When degenerated into a tetrahedron, wedge, or pyramid element shape (described in Triangle, Prism, and Tetrahedral Elements (p. 99)), the corresponding degenerated shape functions are used. Degeneration to a pyramidal form should be used with caution. The element sizes, when degenerated, should be small to minimize the stress gradients. Pyramid elements are best used as filler elements or in meshing transition zones.
- Stress stiffening is always included in geometrically nonlinear analyses (NLGEOM,ON). It is ignored in geometrically linear analyses (NLGEOM,OFF) when specified by SSTIF,ON. Prestress effects can be activated via the PSTRES command.


## CPT216 Product Restrictions

There are no product-specific restrictions for this element.

## CPT217

## 3-D 10-Node Coupled Pore-Pressure Mechanical Solid

$$
\begin{array}{r}
\text { MP ME <> <> <> <> <> <> <> <> <> PP <> EME MFS } \\
\text { Product Restrictions }
\end{array}
$$

## CPT217 Element Description

CPT217 is a higher-order 3-D 10-node coupled pore-pressure mechanical solid element. The element has a quadratic displacement, and linear pore-pressure and temperature behavior.

The element is defined by ten nodes having four degrees of freedom at each corner node:

- The translations in the nodal $x, y$ and $z$ directions
- One pore-pressure degree of freedom
- Three degrees of freedom at the midside nodes: the translations in the nodal $x, y$ and $z$ directions.

CPT217 has elasticity, stress stiffening, large deflection, and large strain capabilities. See CPT217 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

## Figure 1 CPT217 Geometry



## CPT217 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 1 (p. 1203).
In addition to the nodes, the element input data includes the orthotropic material properties. Orthotropic material directions correspond to the element coordinate directions. The element coordinate system orientation is as described in Linear Material Properties (p. 16).

Element loads are described in Node and Element Loads (p. 97). Pressures can be input as surface loads on the element faces as shown by the circled numbers in Figure 1 (p. 1203). Positive pressures act into the element. Temperatures may be input as element body loads at the nodes. The node I temperature $T(I)$ defaults to TUNIF. If all other temperatures are unspecified, they default to T(I). If all corner node temperatures are specified, each midside node temperature defaults to the average temperature of its adjacent corner nodes. For any other input temperature pattern, unspecified temperatures default to TUNIF.

As described in Coordinate Systems (p. 14), you can use the ESYS command to orient the material properties and strain/stress output. Issue the RSYS command to choose output that follows the material coordinate system or the global coordinate system.

The effects of pressure load stiffness are automatically included for this element, and the element generally produces an unsymmetric matrix. To avoid convergence difficulty, issue the NROPT,UNSYM command to use the unsymmetric solver.

The following table summarizes the element input. Element Input (p. 5) gives a general input description.

## CPT217 Input Summary

## Nodes

I, J, K, L, M, N, O, P, Q, R
Degrees of Freedom
UX, UY, UZ, PRES

## Real Constants

None

## Material Properties

EX, EY, EZ, ALPX, ALPY, ALPZ (or CTEX, CTEY, CTEZ or THSX, THSY, THSZ), PRXY, PRYZ, PRXZ (or NUXY, NUYZ, NUXZ), DENS, GXY, GYZ, GXZ

## Surface Loads

Pressures --
face 1 (J-I-K), face 2 (I-J-L), face 3 (J-K-L), face 4 (K-I-L)

## Body Loads

Temperatures --
$T(I), T(J), T(K), T(L), T(M), T(N), T(O), T(P), T(Q), T(R)$

## Special Features

Elasticity (ELASTIC, ANEL)
Porous Media (PM)
Stress stiffening
Large deflection
Large strain
Items in parentheses refer to data tables associated with the TB command. See Structures with Material Nonlinearities in the Theory Reference for the Mechanical APDL and Mechanical Applications for details about the material models.

## CPT217 Output Data

The solution output associated with the element is in two forms:

- Nodal displacements and pore pressure included in the overall nodal solution
- Additional element output as shown in Table 1: CPT217 Element Output Definitions (p. 1205)

The element stress directions are parallel to the element coordinate system, as shown in Figure 2 (p. 1205). A general description of solution output is given in The Item and Sequence Number Table (p. 9). See the Basic Analysis Guide for ways to view results.

Figure 2 CPT217 Stress Output


## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 1 CPT217 Element Output Definitions

Name	Definition	$\mathbf{0}$	$\mathbf{R}$
EL	Element number	-	Y
NODES	Nodes - I, J, K, L	-	Y
MAT	Material number	-	Y
VOLU:	Volume	-	Y
$\mathrm{XC}, \mathrm{YC} ZC$,	Location where results are reported	Y	2
TEMP	Temperatures T(I), T(J),T(K), T(L)	-	Y
$\mathrm{S}: \mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{XY}, \mathrm{YZ}, \mathrm{XZ}$	Stresses	Y	Y
$\mathrm{S}: 1,2,3$	Principal stresses	-	Y
S:INT	Stress intensity	-	Y
S:EQV	Equivalent stress	-	Y
EPEL:X, Y, Z, XY, YZ,   XZ	Elastic strains	Y	Y
EPEL:1, 2, 3	Principal elastic strains	Y	-
EPEL:EQV	Equivalent elastic strains [3]	-	Y


Name	Definition	$\mathbf{0}$	$\mathbf{R}$
EPTH:X, Y, Z, XY, YZ,   $X Z$	Thermal strains	1	1
EPTH: EQV	Equivalent thermal strains [3]	1	1
EPTO:X, Y, Z, XY, YZ,   $X Z$	Total mechanical strains (EPEL + EPPL + EPCR)	$Y$	-
EPTO:EQV	Total equivalent mechanical strains (EPEL + EPPL +   EPCR)	$Y$	-

1. Output only if element has a thermal load
2. Available only at centroid as a *GET item.
3. The equivalent strains use an effective Poisson's ratio: for elastic and thermal this value is set by the user (MP,PRXY); for plastic and creep this value is set at 0.5.

Table 2: CPT217 Item and Sequence Numbers (p. 1206) lists output available via the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p.9) in this document for more information. The following notation is used in the table:

## Name

Output quantity as defined in Table 1: CPT217 Element Output Definitions (p. 1205)

## Item

Predetermined Item label for ETABLE command

## $\mathbf{I}, \mathbf{J}, \ldots, \mathbf{R}$

Sequence number for data at nodes I, J, ..., R

## Table 2 CPT217 Item and Sequence Numbers

Output   Quantity   Name	ETABLE and ESOL Command Input					
	Item	$\mathbf{I}$	$\mathbf{J}$	$\mathbf{K}$	$\mathbf{L}$	$\mathbf{M}, \ldots, \mathbf{R}$
P1	SMISC	2	1	3	-	-
P2	SMISC	4	5	-	6	-
P3	SMISC	-	7	8	9	-
P4	SMISC	11	-	10	12	-

See Surface Solution (p. 10) in this document for the item and sequence numbers for surface output.

## CPT217 Assumptions and Restrictions

- The element must not have a zero volume.
- Elements may be numbered either as shown in Figure 1 (p. 1203) or may have node L below the I, J, K plane.
- An edge with a removed midside node implies that the displacement varies linearly, rather than parabolically, along that edge. For information about using midside nodes, see Quadratic Elements (Midside Nodes) in the Modeling and Meshing Guide.
- Stress stiffening is always included in geometrically nonlinear analyses (NLGEOM,ON). It is ignored in geometrically linear analyses (NLGEOM,OFF) when specified by SSTIF,ON. Prestress effects can be activated via the PSTRES command.


## CPT217 Product Restrictions

There are no product-specific restrictions for this element.
MP ME <> <> <> <> <> <> <> <> <> PP <> EME MFS

## FLUID220 Element Description

FLUID220 is a higher order 3-D 20-node solid element that exhibits quadratic displacement behavior. It is used for modeling the fluid medium and the interface in fluid/structure interaction problems. Typical applications include sound wave propagation and submerged structure dynamics. The governing equation for acoustics, namely the 3-D wave equation, has been discretized taking into account the coupling of acoustic pressure and structural motion at the interface. The element node has four degrees of freedom per node: translations in the nodal $x, y$ and $z$ directions, and pressure. The translations are only applicable at nodes that are on the interface. Acceleration effects like those in sloshing problems may be included.

FLUID220 has the capability to include damping of sound absorbing material at the interface. The element can be used with other 3-D structural elements to perform unsymmetric or damped modal full harmonic response and full transient method analyses (see the description of the TRNOPT command). When there is no structural motion, the element is also applicable to static, modal, and reduced harmonic response analyses. See Acoustics in the Mechanical APDL and Mechanical Applications Theory Reference for more details about this element. See FLUID221 for a tetrahedral option and FLUID30 for a lower order option.

## Figure 1 FLUID220 Geometry






Prism Option

## FLUID220 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 1 (p. 1209). The element is defined by 20 nodes, a reference pressure, and the isotropic material properties. The reference pressure (PREF) is used to calculate the element sound pressure level (defaults to $20 \times 10-6 \mathrm{~N} / \mathrm{m} 2$ ). The speed of sound ( $\sqrt{k / \rho_{0}}$ ) in the fluid is input by SONC where $k$ is the bulk modulus of the fluid (Force/Area) and $\rho o$ is the mean fluid density (Mass/Volume) (input as DENS). The dissipative effect due to fluid viscosity is neglected, but absorption of sound at the interface is accounted for by generating a damping matrix using the surface area and boundary admittance at the interface. Experimentally measured values of the boundary admittance for the sound absorbing material may be input as material property MU. We recommend MU values from 0.0 to 1.0 ; however, values greater than 1.0 are allowed. $\mathrm{MU}=0.0$ represents no sound absorption and $\mathrm{MU}=1.0$ represents full sound absorption, where MU is the ratio of chosen impedance to sound plane wave impedance in media. DENS, SONC, and MU are evaluated at the average of the nodal temperatures.

Nodal flow rates may be specified using the F command, where both the real and imaginary components may be applied.

Element loads are described in Node and Element Loads. Fluid-structure interfaces (FSI) may be flagged by surface loads at the element faces as shown by the circled numbers in Figure 1 (p. 1209). Specifying the FSI label without a value ( $\mathbf{S F}, \mathbf{S F A}, \mathbf{S F E}$ ) will couple the structural motion and fluid pressure at the interface. Deleting the FSI specification (SFDELE, SFADELE, SFEDELE) removes the flag. The flag specification should be on the fluid elements at the interface. See the Coupled-Field Analysis Guide for more information on the use of the fluid-structure interaction flag. The surface load label IMPD with a given complex impedance value can be used to include damping at a structural boundary with a sound absorption lining when $\mathrm{MU}=$ 0 . A zero value of IMPD removes the damping calculation when $M U=0$. The displacement degrees of freedom ( $U X, U Y$, and $U Z$ ) at element nodes not on the interface should be set to zero to avoid zero-pivot warning messages.

Temperatures may be input as element body loads at the nodes. The node I temperature $\mathrm{T}(\mathrm{I})$ defaults to TUNIF. If all other temperatures are unspecified, they default to $T(I)$. For any other input pattern, unspecified temperatures default to TUNIF.

KEYOPT(2) is used to specify the absence of a structure at the interface and the absence of coupling between the fluid and structure. Since the absence of coupling produces symmetric element matrices, a symmetric eigensolver (MODOPT) may be used within the modal analysis. For the coupled (unsymmetric) problem, a corresponding unsymmetric eigensolver (MODOPT) must be used.

KEYOPT(4) is used to specify the existence of perfectly matched layers (PML) to absorb the outgoing sound waves. Refer to Perfectly Matched Layers (PML) in the Mechanical APDL High-Frequency Electromagnetic Analysis Guide for more information about using PML.

Vertical acceleration (ACELZ on the ACEL command) is needed for the gravity, even for a modal analysis.
A summary of the element input is given in "FLUID220 Input Summary" (p. 1210).

## FLUID220 Input Summary

## Nodes

I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, A, B

## Degrees of Freedom

UX, UY, UZ, PRES if KEYOPT (2) $=0$
PRES if KEYOPT (2) = 1

## Real Constants

PREF - Reference pressure

## Material Properties

DENS, SONC, MU

## Surface Loads

Fluid-structure interface flag:
face 1 (J-I-L-K), face 2 (I-J-N-M), face 3 (J-K-O-N), face 4 (K-L-P-O), face 5 (L-I-M-P), face 6 (M-N-O-P)

Impedance:
face 1 (J-I-L-K), face 2 (I-J-N-M), face 3 (J-K-O-N), face 4 (K-L-P-O), face 5 (L-I-M-P), face 6 (M-N-O-P)

## Special Features

None

## KEYOPT(2)

Structure at element interface:
0 --
Structure present at interface (unsymmetric element matrix)
1 --
No structure at the interface (symmetric element matrix)

## KEYOPT(4)

PML absorbing condition:
0 --
Do not include PML absorbing condition
1 --
Include PML absorbing condition

## KEYOPT(7)

Free surface effect:
0 --
Do not include sloshing effect
1 --
Include sloshing effect on face of elements located on $Z=0.0$ plane (elements must not have positive Z coordinates)

## FLUID220 Output Data

The solution output associated with the element is in two forms:

- Nodal displacements and pressures included in the overall nodal solution
- Additional element output as shown in Table 1: FLUID220 Element Output Definitions (p. 1212).

A general description of solution output is given in "FLUID220 Output Data" (p. 1211). See the Basic Analysis Guide for ways to view results.

## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " $Y$ " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 1 FLUID220 Element Output Definitions

Name	Definition	$\mathbf{O}$	R
EL	Element Number	Y	Y
NODES	Nodes - I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W,   $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{A}, \mathrm{B}$	Y	Y
MAT	Material number	Y	Y
VOLU:	Volume	Y	Y
XC, YC, ZC	Location where results are reported	Y	2
TEMP	$\mathrm{T}(\mathrm{I}), \mathrm{T}(\mathrm{J}), \mathrm{T}(\mathrm{K}), \mathrm{T}(\mathrm{L}), \mathrm{T}(\mathrm{M}), \mathrm{T}(\mathrm{N}), \mathrm{T}(\mathrm{O}), \mathrm{T}(\mathrm{P})$	Y	Y
PRESSURE	Average pressure	Y	Y
PG(X,Y,Z,SUM)	Pressure gradient components and vector sum	Y	Y
VL(X,Y,Z,SUM)	Fluid velocity components and vector sum	1	1
SOUND PR.   LEVEL	Sound pressure level (in decibels)	1	1

1. Output only if ANTYPE,HARMIC
2. Available only at centroid as a *GET item.

Table 2: FLUID220 Item and Sequence Numbers (p. 1213) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and Table 2: FLUID220 Item and Sequence Numbers (p. 1213) of this manual for more information. The following notation is used in Table 2: FLUID220 Item and Sequence Numbers (p. 1213):

## Name

output quantity as defined in the Table 1: FLUID220 Element Output Definitions (p. 1212)
Item
predetermined Item label for ETABLE command

## E

sequence number for single-valued or constant element data
Table 2 FLUID220 Item and Sequence Numbers

Output Quant-   ity Name	ETABLE and   ESOL Command   Input	
	Item	E
PGX	SMISC	1
PGY	SMISC	2
PGZ	SMISC	3
VLX	SMISC	4
VLY	SMISC	5
VLZ	SMISC	6
PRESSURE	NMISC	1
PGSUM	NMISC	2
VLSUM	NMISC	3
SOUND PR.   LEVEL	NMISC	4

## FLUID220 Assumptions and Restrictions

- The element must not have a zero volume.
- Element nodes may be numbered either as shown in Figure 1 (p. 1209) or may have planes IJKL and MNOP interchanged.
- The element may not be twisted such that it has two separate volumes. This occurs usually when the element nodes are not in the correct sequence.
- All elements must have 20 nodes. A prism-shaped element may be formed by defining duplicate $L$ and S and duplicate P and W nodes (see Triangle, Prism, and Tetrahedral Elements (p. 99)). A tetrahedron shape is also available.
- The acoustic pressure in the fluid medium is determined by the wave equation with the following assumptions:
- The fluid is compressible (density changes due to pressure variations).
- Inviscid fluid (no dissipative effect due to viscosity).
- There is no mean flow of the fluid.
- The mean density and pressure are uniform throughout the fluid. Note that the acoustic pressure is the excess pressure from the mean pressure.
- Analyses are limited to relatively small acoustic pressures so that the changes in density are small compared with the mean density.
- The lumped mass matrix formulation [LUMPM,ON] is not allowed for this element.


## FLUID220 Product Restrictions

## ANSYS Multiphysics

- KEYOPT(7) is valid only in ANSYS Multiphysics


## FLUID221

## 3-D Acoustic Fluid 10-Node Solid Element

MP ME <> <> <> <> <> <> <> <> <> PP <> EME MFS

Product Restrictions

## FLUID221 Element Description

FLUID221 is a higher order 3-D 10-node solid element that exhibits quadratic displacement behavior, and is used for modeling the fluid medium and the interface in fluid-structure interaction problems. Typical applications include sound wave propagation and submerged structure dynamics. The governing equation for acoustics, namely the 3-D wave equation, has been discretized, taking into account the coupling of acoustic pressure and structural motion at the interface. The element has four degrees of freedom per node: translations in the nodal $x, y$ and $z$ directions, and pressure. The translations are applicable only at nodes that are on the interface. Acceleration effects such as in sloshing problems may be included.

The element has the capability to include damping of sound absorbing material at the interface. The element can be used with other 3-D structural elements to perform unsymmetric or damped modal, full harmonic response, and full transient method analyses (see the description of the TRNOPT command). When there is no structural motion, the element is also applicable to static, modal, and reduced harmonic response analyses. See Acoustics in the Mechanical APDL and Mechanical Applications Theory Reference for more details about this element. See FLUID220 for a hexahedral option and FLUID30 for a lower order option.

Figure 1 FLUID221 Geometry


## FLUID221 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 1 (p. 1215). The element is defined by ten nodes, a reference pressure, and the isotropic material properties. The reference pressure (PREF) is used to calculate the element sound pressure level (defaults to $20 \times 10-6 \mathrm{~N} / \mathrm{m} 2$ ). The speed of sound ( $\sqrt{\mathrm{k} / \rho_{\mathrm{o}}}$ ) in the fluid is input by SONC where $k$ is the bulk modulus of the fluid (Force/Area) and $\rho o$ is the mean fluid density (Mass/Volume) (input as DENS). The dissipative effect due to fluid viscosity is neglected, but absorption of sound at the interface is accounted for by generating a damping matrix using the surface area and boundary admittance at the interface. Experimentally measured values of the boundary admittance for the sound absorbing material may be input as material property MU. ANSYS recommends $M U$ values from 0.0 to 1.0 ; however, values greater than 1.0 are allowed. $\mathrm{MU}=0.0$ represents no sound ab-
sorption, and $\mathrm{MU}=1.0$ represents full sound absorption, where MU is the ratio of chosen impedance to sound plane wave impedance in media. DENS, SONC, and MU are evaluated at the average of the nodal temperatures.

Nodal flow rates may be specified using the $\mathbf{F}$ command, where both the real and imaginary components may be applied.

Element loads are described in Node and Element Loads. Fluid-structure interfaces (FSI) may be flagged by surface loads at the element faces as shown by the circled numbers in Figure 1 (p. 1215). Specifying the FSI label without a value (SF, SFA, SFE) will couple the structural motion and fluid pressure at the interface. Deleting the FSI specification (SFDELE, SFADELE, SFEDELE) removes the flag. The flag specification should be on the fluid elements at the interface. See Acoustics in the Coupled-Field Analysis Guide for more information on the use of the fluid-structure interaction flag. The surface load label IMPD with a given complex impedance value can be used to include damping at a structural boundary with a sound absorption lining when $M U=0$. A zero value of IMPD removes the damping calculation when $M U=0$. The displacement degrees of freedom ( $U X, U Y$, and $U Z$ ) at element nodes not on the interface should be set to zero to avoid zero-pivot warning messages.

Temperatures can be input as element body loads at the nodes. The node I temperature $\mathrm{T}(\mathrm{I})$ defaults to TUNIF. If all other temperatures are unspecified, they default to $T(I)$. For any other input pattern, unspecified temperatures default to TUNIF.

KEYOPT(2) is used to specify the absence of a structure at the interface and the absence of coupling between the fluid and structure. Since the absence of coupling produces symmetric element matrices, a symmetric eigensolver (MODOPT) may be used within the modal analysis. However, for the coupled (unsymmetric) problem, a corresponding unsymmetric eigensolver [MODOPT] must be used.

KEYOPT(4) is used to specify the existence of perfectly matched layers (PML) to absorb the outgoing sound waves. Refer to Perfectly Matched Layers (PML) in the Mechanical APDL High-Frequency Electromagnetic Analysis Guide for more information about using PML.

Vertical acceleration (ACELZ on the ACEL command) is needed for the gravity, even for a modal analysis.
A summary of the element input is given in "FLUID221 Input Summary" (p.1216). A general description of element input is given in "FLUID221 Input Data" (p. 1215).

## FLUID221 Input Summary

## Nodes

I, J, K, L, M, N, O, P, Q, R

## Degrees of Freedom

UX, UY, UZ, PRES if KEYOPT (2) = 0
PRES if KEYOPT (2) = 1

## Real Constants

PREF - Reference pressure

## Material Properties

DENS, SONC, MU

## Surface Loads

Fluid-structure interface flag:
face 1 (J-I-L-K), face 2 (I-J-N-M), face 3 (J-K-O-N), face 4 (K-L-P-O), face 5 (L-I-M-P), face 6 (M-N-O-P)

Impedance:
face 1 (J-I-L-K), face 2 (I-J-N-M), face 3 (J-K-O-N), face 4 (K-L-P-O), face 5 (L-I-M-P), face 6 (M-N-O-P)

## Special Features

None

## KEYOPT(2)

Structure at element interface:
0 --
Structure present at interface (unsymmetric element matrix)
1 --
No structure at the interface (symmetric element matrix)

## KEYOPT(4)

PML absorbing condition:
0 --
Do not include PML absorbing condition
1 --
Include PML absorbing condition

## KEYOPT(7)

Free surface effect:
0 --
Do not include sloshing effect
1 --
Include sloshing effect on face of elements located on $Z=0.0$ plane (elements must not have positive Z coordinates)

## FLUID221 Output Data

The solution output associated with the element is in two forms:

- Nodal displacements and pressures included in the overall nodal solution
- Additional element output as shown in Table 1: FLUID221 Element Output Definitions (p. 1218).

A general description of solution output is given in "FLUID221 Output Data" (p. 1217). See the Basic Analysis Guide for ways to view results.

## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " $Y$ " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 1 FLUID221 Element Output Definitions

Name	Definition	$\mathbf{O}$	R
EL	Element Number	Y	Y
NODES	odes - I, J, K, L, M, N, O, P, Q, R	Y	Y
MAT	Material number	Y	Y
VOLU:	Volume	Y	Y
XC, YC, ZC	Location where results are reported	Y	2
TEMP	$\mathrm{T}(\mathrm{I}), \mathrm{T}(\mathrm{J}), \mathrm{T}(\mathrm{K}), \mathrm{T}(\mathrm{L}), \mathrm{T}(\mathrm{M}), \mathrm{T}(\mathrm{N}), \mathrm{T}(\mathrm{O}), \mathrm{T}(\mathrm{P})$	Y	Y
PRESSURE	Average pressure	Y	Y
PG(X,Y,Z,SUM)	Pressure gradient components and vector sum	Y	Y
VL(X,Y,Z,SUM)	Fluid velocity components and vector sum	1	1
SOUND PR.   LEVEL	Sound pressure level (in decibels)	1	1

1. Output only if ANTYPE,HARMIC
2. Available only at centroid as a *GET item.

Table 2: FLUID30 Item and Sequence Numbers (p. 219) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and Table 2: FLUID221 Item and Sequence Numbers (p. 1218) of this manual for more information. The following notation is used in Table 2: FLUID221 Item and Sequence Numbers (p. 1218):

## Name

output quantity as defined in the Table 1: FLUID221 Element Output Definitions (p. 1218)

## Item

predetermined Item label for ETABLE command
E
sequence number for single-valued or constant element data

## Table 2 FLUID221 Item and Sequence Numbers

Output Quant-   ity Name	ETABLE and   ESOL Command   Input	
	Item	E
PGX	SMISC	1
PGY	SMISC	2
PGZ	SMISC	3
VLX	SMISC	4
VLY	SMISC	5
VLZ	SMISC	6


Output Quant-   ity Name	ETABLE and   ESOL Command   Input	
	Item	E
PRESSURE	NMISC	1
PGSUM	NMISC	2
VLSUM	NMISC	3
SOUND PR.   LEVEL	NMISC	4

## FLUID221 Assumptions and Restrictions

- The element must not have a zero volume.
- Element nodes may be numbered either as shown in Figure 1 (p. 1215).
- The element may not be twisted such that it has two separate volumes. This occurs usually when the element nodes are not in the correct sequence.
- The acoustic pressure in the fluid medium is determined by the wave equation with the following assumptions:
- The fluid is compressible (density changes due to pressure variations).
- Inviscid fluid (no dissipative effect due to viscosity).
- There is no mean flow of the fluid.
- The mean density and pressure are uniform throughout the fluid. Note that the acoustic pressure is the excess pressure from the mean pressure.
- Analyses are limited to relatively small acoustic pressures so that the changes in density are small compared with the mean density.
- The lumped mass matrix formulation [LUMPM,ON] is not allowed for this element.


## FLUID221 Product Restrictions

## ANSYS Multiphysics

- KEYOPT(7) is valid only in ANSYS Multiphysics


## PLANE223

## 2-D 8-Node Coupled-FieId Solid

MP ME <> <> <> <> <> <> <> <> <> PP <> EME MFS
Product Restrictions

## PLANE223 Element Description

PLANE223 has the following capabilities:

- Structural-Thermal
- Piezoresistive
- Electroelastic
- Piezoelectric
- Thermal-Electric
- Structural-Thermoelectric
- Thermal-Piezoelectric

The element has eight nodes with up to four degrees of freedom per node. Structural capabilities include elasticity, plasticity, viscoelasticity, viscoplasticity, creep, large strain, large deflection, stress stiffening effects, and prestress effects. Thermoelectric capabilities include Seebeck, Peltier, and Thomson effects, as well as Joule heating. In addition to thermal expansion, structural-thermal capabilities include the piezocaloric effect in dynamic analyses. The Coriolis effect is available for analyses with structural degrees of freedom. See PLANE223 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

Figure 1 PLANE223 Geometry


## PLANE223 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 1 (p. 1221). The element input data includes eight nodes and structural, thermal, and electrical material properties. The type of units (MKS or user defined) is specified through the EMUNIT command. EMUNIT also determines the value of free-space permittivity EPZRO. The EMUNIT defaults are MKS units and EPZRO $=8.85 \mathrm{e}-12$ Farads/meter.

KEYOPT(1) determines the element DOF set and the corresponding force labels and reaction solution. KEYOPT(1) is set equal to the sum of the field keys shown in Table 1: PLANE223 Field Keys (p. 1222). For example, KEYOPT(1) is set to 11 for a structural-thermal analysis (structural field key + thermal field key $=1+10$ ). For a structural-thermal analysis, UX, UY, and TEMP are the DOF labels and force and heat flow are the reaction solution.

## Table 1 PLANE223 Field Keys

Field	Field   Key	DOF Label	Force Label	Reaction Solution
Structural	1	UX, UY	FX, FY	Force
Thermal	10	TEMP	HEAT	Heat Flow
Electric Conduction	100	VOLT	AMPS	Electric Current
Electrostatic	1000	VOLT	CHRG	Electric Charge

The coupled-field analysis KEYOPT(1) settings, DOF labels, force labels, reaction solutions, and analysis types are shown in the following table.

Table 2 PLANE223 Coupled-Field Analyses

Coupled-Field Analysis	$\begin{gathered} \text { KEY- } \\ \text { OPT(1) } \end{gathered}$	DOF Label	Force Label	Reaction Solution	Analysis Type
Structural-Thermal [1], [2]	11	UX, UY, TEMP	$\begin{aligned} & \text { FX, FY, } \\ & \text { HEAT } \end{aligned}$	Force, Heat Flow	Static   Full Harmonic   Full Transient
Piezoresistive	101	UX, UY, VOLT	$\mathrm{FX}, \mathrm{FY},$   AMPS	Force, Electric Current	Static   Full Transient
Electroelastic	1001 [3]	UX, UY, VOLT	$\begin{aligned} & \text { FX, FY, } \\ & \text { CHRG } \end{aligned}$	Force, Electric Charge (positive)	Static   Full Transient
Piezoelectric	1001 [3]	UX, UY, VOLT	$\begin{aligned} & \text { FX, FY, } \\ & \text { CHRG } \end{aligned}$	Force, Electric Charge (negative)	Static   Modal   Full Harmonic   Full Transient
Thermal-Electric	110	TEMP, VOLT	HEAT, AMPS	Heat Flow, Electric Current	Static   Full Transient
Structural-Thermoelectric [1]	111	UX, UY, TEMP, VOLT	$\begin{aligned} & \text { FX, FY, } \\ & \text { HEAT, } \\ & \text { AMPS } \end{aligned}$	Force,   Heat Flow,   Electric   Current	Static   Full Transient


Coupled-Field Analys-   is	KEY-   OPT(1)	DOF Label	Force La-   bel	Reaction   Solution	Analysis Type
Thermal-Piezoelectric   [1], [2]	1011	UX, UY,   TEMP,   VOLT	FX, FY,   HEAT,   CHRG	Force,   Heat Flow,   Electric   Charge   (negative)	Ftatic
Full Harmonic					
Full Transient					

1. For static and full transient analyses, KEYOPT(2) can specify a strong (matrix) or weak (load vector) structural-thermal coupling.
2. For full harmonic analyses, strong structural-thermal coupling only applies.
3. The electrostatic-structural analysis available with $\operatorname{KEYOPT}(1)=1001$ defaults to an electroelastic analysis (electrostatic force coupling) unless a piezoelectric matrix is specified on TB,PIEZ.

As shown in the following table, material property requirements consist of those required for the individual fields (structural, thermal, electric conduction, or electrostatic) and those required for field coupling. Material properties are defined with the MP, MPDATA, and TB commands.

Table 3 PLANE223 Material Properties

ALL ANALYSES WITH A STRUCTURAL FIELD	
Structural	EX, EY, EZ, PRXY, PRYZ, PRXZ (or NUXY, NUYZ, NUXZ), GXY, GYZ, GXZ, ELASTIC,   ANEL, DENS, DAMP, DMPR, SDAMP   ALPX, ALPY, ALPZ (or CTEX, CTEY, CTEZ, or THSX, THSY, THSZ), REFT   Plasticity (PLASTIC, BISO, MISO, NLISO, BKIN, MKIN, KINH, CHABOCHE, HILL, SMA,   CAST, EDP, GURSON) [1 (p. 1224)]   Viscoelasticity (PRONY,SHIFT) [1 (p. 1224)]   Viscoplasticity/Creep (CREEP, RATE) [1 (p. 1224)]
ADDITIONAL MATERIAL PROPERTIES FOR STRUCTURAL-THERMAL ANALYSES	
Thermal	KXX, KYY, DENS, C, ENTH, HF
Coupling	ALPX, ALPY, ALPZ (or CTEX, CTEY, CTEZ, or THSX, THSY, THSZ)
ADDITIONAL MATERIAL PROPERTIES FOR PIEZORESISTIVE ANALYSES	
Electric	RSVX, RSVY, PERX, PERY
Coupling	PZRS
ADDITIONAL MATERIAL PROPERTIES FOR ELECTROELASTIC ANALYSES	
Electric	PERX, PERY, DPER
Electric	PERX, PERY, DPER, LSST (and/or RSVX, RSVY)
Coupling	PIEZ
MATERIAL PROPERTIES FOR THERMAL-ELECTRIC ANALYSES	
Thermal	KXX, KYY, DENS, C, ENTH, HF
Electric	RSVX, RSVY, PERX, PERY
Coupling	SBKX, SBKY
ADDITIONAL MATERIAL PROPERTIES FOR STRUCTURAL-THERMOELECTRIC ANALYSES	


ALL ANALYSES WITH A STRUCTURAL FIELD	
Thermal	KXX, KYY, DENS, C, ENTH, HF
Electric	RSVX, RSVY, PERX, PERY
Coupling	ALPX, ALPY, ALPZ (or CTEX, CTEY, CTEZ, or THSX, THSY, THSZ), SBKX, SBKY, PZRS
ADDITIONAL MATERIAL PROPERTIES FOR THERMAL-PIEZOELECTRIC ANALYSES	
Thermal	KXX, KYY, DENS, C, ENTH, HF
Electric	PERX, PERY, DPER, LSST (and/or RSVX, RSVY)
Coupling	ALPX, ALPY, ALPZ (or CTEX, CTEY, CTEZ, or THSX, THSY, THSZ), PIEZ

1. These material properties are not applicable to structural-thermal analyses $(\operatorname{KEYOPT}(1)=11)$.

Various combinations of nodal loading are available for this element (depending upon the KEYOPT(1) value). Nodal loads are defined with the $\mathbf{D}$ and the $\mathbf{F}$ commands. Nodal forces, if any, should be input per unit of depth for a plane analysis and on a full $360^{\circ}$ basis for an axisymmetric analysis.

Element loads are described in Node and Element Loads (p. 97). Surface loads may be input on the element faces indicated by the circled numbers in Figure 1 (p. 1221) using the SF and SFE commands. Positive pressures act into the element. Body loads may be input at the element's nodes or as a single element value using the BF and BFE commands.

PLANE223 surface and body loads are given in the following table.
Table 4 PLANE223 Surface and Body Loads

Coupled-Field Analysis	$\begin{gathered} \text { KEY- } \\ \text { OPT(1) } \end{gathered}$	Load Type	Load	Command Label
Structural-Thermal	11	Surface	Pressure	PRES
			Convection Heat Flux Radiation	$\begin{aligned} & \text { CONV } \\ & \text { HFLUX } \\ & \text { RDSF } \end{aligned}$
		Body	Force Density	FORC
			Heat Generation -Nodes I through P	HGEN
Piezoresistive	101	Surface	Pressure	PRES
		Body	Force Density	FORC
			Temperature -- Nodes I through P	TEMP
Electroelastic and Piezoelectric	1001	Surface	Pressure   Surface Charge Density	PRES   CHRGS[1 (p. 1225)]
		Body	Force Density	FORC
			Temperature -- Nodes I through P	TEMP
			Volume Charge Density   -- Nodes I through P	CHRGD[1 (p. 1225)]


Coupled-Field Analysis	$\begin{aligned} & \hline \text { KEY- } \\ & \text { OPT(1) } \end{aligned}$	Load Type	Load	Command Label
Thermal-Electric	110	Surface	Convection Heat Flux Radiation	$\begin{aligned} & \text { CONV } \\ & \text { HFLUX } \\ & \text { RDSF } \end{aligned}$
		Body	Heat Generation -Nodes I through P	HGEN
Structural-Thermoelectric	111	Surface	Pressure	PRES
			Convection Heat Flux Radiation	CONV HFLUX RDSF
		Body	Force Density	FORC
			Heat Generation -Nodes I through P	HGEN
Thermal-Piezoelectric	1011	Surface	Pressure   Surface Charge Density	$\begin{aligned} & \text { PRES } \\ & \text { CHRGS[1 (p. 1225)] } \end{aligned}$
			Convection Heat Flux Radiation	CONV HFLUX RDSF
		Body	Force Density	FORC
			Heat Generation -Nodes I through P	HGEN
			Volume Charge Density   -- Nodes I through P	CHRGD[1 (p. 1225)]

1. CHRGS and CHRGD are interpreted as negative surface charge density and negative volume charge density, respectively.

A summary of the element input is given in "PLANE223 Input Summary" (p. 1225). A general description of element input is given in Element Input (p. 5). For axisymmetric applications see Harmonic Axisymmetric Elements (p. 102).

## PLANE223 Input Summary

## Nodes

$$
\mathrm{I}, \mathrm{~J}, \mathrm{~K}, \mathrm{~L}, \mathrm{M}, \mathrm{~N}, \mathrm{O}, \mathrm{P}
$$

## Degrees of Freedom

Set by KEYOPT(1). See Table 2: PLANE223 Coupled-Field Analyses (p. 1222).

## Real Constants

None

## Material Properties

See Table 3: PLANE223 Material Properties (p. 1223).

## Surface Loads

See Table 4: PLANE223 Surface and Body Loads (p. 1224).

## Body Loads

See Table 4: PLANE223 Surface and Body Loads (p. 1224).

## Special Features

Elasticity (ELASTIC, ANEL) [1 (p. 1227)]
Plasticity (PLASTIC, BISO, MISO, NLISO, BKIN, MKIN, KINH, CHABOCHE, HILL, SMA, CAST, EDP, GURSON)
[1 (p. 1227)]
Viscoelasticity (PRONY,SHIFT) [1 (p. 1227)]
Viscoplasticity/Creep (CREEP, RATE) [1 (p. 1227)]
Stress stiffening
Large deflection
Large strain
Automatic selection of element technology

## KEYOPT(1)

Element degrees of freedom. See Table 2: PLANE223 Coupled-Field Analyses (p. 1222).

## KEYOPT(2)

Structural-thermal coupling method in structural-thermal, structural-thermoelastic, or thermal-piezoelectric analyses $(\operatorname{KEYOPT}(1)=11,111$, or 1011).
0 --
Strong (matrix) coupling - produces an unsymmetric matrix. In a linear analysis, a coupled response is achieved after one iteration.

1 --
Weak (load vector) coupling - produces a symmetric matrix and requires at least two iterations to achieve a coupled response. [2 (p. 1227)]

## KEYOPT(3)

Element behavior:
0 --
Plane stress
1 --
Axisymmetric
2 --
Plane strain

## KEYOPT(4)

Electrostatic force in electroelastic analysis (KEYOPT(1) = 1001):
0 --
Applied to every element node.
1 --
Applied to the air-structure interface or to element nodes that have constrained structural degrees of freedom.

2 --
Not applied.
For more information, see Electroelastic Analysis in the Coupled-Field Analysis Guide.

## KEYOPT(9)

Thermoelastic damping (piezocaloric effect) in structural-thermal, structural-thermoelastic, or thermalpiezoelectric analyses $(\operatorname{KEYOPT}(1)=11,111$, or 1011). Applicable to harmonic and transient analyses only.

```
0 --
Active
```

1 --
Suppressed [2 (p. 1227)]

## Input Summary Notes:

1. Items in parentheses refer to data tables associated with the TB command.
2. Recommended in a coupled-field analysis with structural nonlinearities.

## PLANE223 Output Data

The solution output associated with the element is in two forms:

- Nodal degrees of freedom included in the overall nodal solution
- Additional element output as shown in Table 5: PLANE223 Element Output Definitions (p. 1227).

The element output directions are parallel to the element coordinate system. A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

## Table 5 PLANE223 Element Output Definitions

Name	Definition	0	R
ALL ANALYSES			
EL	Element Number	-	Y
NODES	Nodes - I, J, K, L, M, N, O, P	-	Y
MAT	Material number	-	Y
VOLU:	Volume	-	Y
XC, YC	Location where results are reported	-	2
ALL ANALYSES WITH A STRUCTURAL FIELD			
S:X, Y, Z, XY	Stresses (SZ = 0.0 for plane stress elements)	-	1
S:1, 2, 3	Principal stresses	-	1
S:EQV	Equivalent stress	-	1
EPEL:X, Y, $Z, X Y$	Elastic strains	-	1
EPTH:X, Y, $Z, X Y$	Thermal strains	-	1
EPTH:EQV	Equivalent thermal strain [3]	-	1
EPPL:X, Y, Z, XY	Plastic strains	-	1
EPPL:EQV	Equivalent plastic strain [3]	-	1


Name	Definition	0	R
EPCR:X, Y, Z, XY	Creep strains	-	1
EPCR:EQV	Equivalent creep strain [3]	-	1
EPTO:X, Y, Z, XY	Total mechanical strains (EPEL + EPPL + EPCR)	-	-
EPTO:EQV	Total equivalent mechanical strain (EPEL + EPPL + EPCR)	-	-
ADDITIONAL OUTPUT FOR STRUCTURAL-THERMAL ANALYSES (KEYOPT(1) = 11)			
TG:X, Y, SUM	Thermal gradient components and vector magnitude	-	1
TF:X, Y, SUM	Thermal flux components and vector magnitude	-	1
UT	Total strain energy [7]	-	1
ADDITIONAL OUTPUT FOR PIEZORESISTIVE ANALYSES (KEYOPT(1) = 101)			
TEMP	Input temperatures	-	Y
EF:X, Y, SUM	Electric field components ( $\mathrm{X}, \mathrm{Y}$ ) and vector magnitude	-	1
JC:X, Y, SUM	Conduction current density components ( $\mathrm{X}, \mathrm{Y}$ ) and vector magnitude	-	1
JS:X, Y, SUM	Current density components ( $\mathrm{X}, \mathrm{Y}$ ) and vector magnitude [4]	-	1
JHEAT	Joule heat generation per unit volume [5]	-	1
ADDITIONAL OUTPUT FOR ELECTROELASTIC ANALYSES (KEYOPT(1) = 1001)			
TEMP	Input temperatures	-	Y
EF:X, Y, SUM	Electric field components ( $\mathrm{X}, \mathrm{Y}$ ) and vector magnitude	-	1
D:X, Y, SUM	Electric flux density components ( $\mathrm{X}, \mathrm{Y}$ ) and vector magnitude	-	1
FMAG:X, Y, SUM	Electrostatic force components ( $\mathrm{X}, \mathrm{Y}$ ) and vector magnitude	-	1
UE, UD	Stored elastic and dielectric energies	-	1
ADDITIONAL OUTPUT FOR PIEZOELECTRIC ANALYSES (KEYOPT(1) = 1001)			
TEMP	Input temperatures	-	Y
EF:X, Y, SUM	Electric field components ( $\mathrm{X}, \mathrm{Y}$ ) and vector magnitude	-	1
D: $X, Y$, SUM	Electric flux density components ( $\mathrm{X}, \mathrm{Y}$ ) and vector magnitude	-	1
JHEAT	Joule heat generation per unit volume [5], [6]	-	1
UE, UD	Stored elastic and dielectric energies	-	1
ADDITIONAL OUTPUT FOR THERMAL-ELECTRIC ANALYSES (KEYOPT(1) = 110)			
TG:X, Y, SUM	Thermal gradient components and vector magnitude	-	1
TF:X, Y, SUM	Thermal flux components and vector magnitude	-	1
EF:X, Y, SUM	Electric field components and vector magnitude	-	1
JC:X, Y, SUM	Conduction current density components and vector magnitude	-	1
JS:X, Y, SUM	Current density components and vector magnitude [4]	-	1
JHEAT	Joule heat generation per unit volume [5], [6]	-	1


| Name | Definition | $\mathbf{O}$ | $\mathbf{R}$ |
| :--- | :--- | :--- | :--- | :--- |
| ADDITIONAL OUTPUT FOR STRUCTURAL-THERMOELECTRIC ANALYSES (KEYOPT(1) = |  |  |  |
| TG:X, Y, SUM | Thermal gradient components and vector magnitude | - | 1 |
| TF:X, Y, SUM | Thermal flux components and vector magnitude | - | 1 |
| EF:X, Y, SUM | Electric field components and vector magnitude | - | 1 |
| JC:X, Y, SUM | Conduction current density components and vector <br> magnitude | - | 1 |
| JS:X, Y, SUM | Current density components and vector magnitude [4] | - | 1 |
| JHEAT | Joule heat generation per unit volume [5], [6] | - | 1 |
| UT | Total strain energy [7] | - | 1 |
| ADDITIONAL OUTPUT FOR THERMAL-PIEZOELECTRIC ANALYSES (KEYOPT(1) = 1011) |  |  |  |
| TG:X, Y, SUM | Thermal gradient components and vector magnitude | - | 1 |
| TF:X, Y, SUM | Thermal flux components and vector magnitude | - | 1 |
| EF:X, Y, SUM | Electric field components and vector magnitude | - | 1 |
| D:X, Y, SUM | Electric flux density components and vector magnitude | - | 1 |
| JHEAT | Joule heat generation per unit volume [5], [6] | - | 1 |
| UE, UD | Stored elastic and dielectric energies | - | 1 |
| UT | Total strain energy [7] | - | 1 |

1. Solution values are output only if calculated (based on input values).
2. Available only at centroid as a *GET item.
3. The equivalent strains use an effective Poisson's ratio: for elastic and thermal this value is set by the user (MP,PRXY); for plastic and creep this value is set at 0.5 .
4. JS represents the sum of element conduction and displacement current densities.
5. Calculated Joule heat generation rate per unit volume (JHEAT) may be made available for a subsequent thermal analysis with companion thermal elements.
6. For a time-harmonic analysis, Joule losses (JHEAT) are time-averaged. These values are stored in both the real and imaginary data sets. For more information, see Quasistatic Electric Analysis in the Theory Reference for the Mechanical APDL and Mechanical Applications.
7. For a time-harmonic analysis, total strain energy (UT) is time-averaged. These values are stored in both the real and imaginary data sets. For more information, see Thermoelasticity in the Theory Reference for the Mechanical APDL and Mechanical Applications.

Table 6: PLANE223 Item and Sequence Numbers (p. 1230) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) of the Basic Analysis Guide and The Item and Sequence Number Table ( p .9 ) of this manual for more information. The following notation is used in Table 6: PLANE223 Item and Sequence Numbers (p. 1230):

## Name

output quantity as defined in the Table 5: PLANE223 Element Output Definitions (p. 1227)

## Item

predetermined Item label for ETABLE command

## E

sequence number for single-valued or constant element data
Table 6 PLANE223 Item and Sequence Numbers

Output   Quantity   Name	ETABLE Com-   mand Input	
	Item	E
UE	NMISC	1
UD	NMISC	2
UT	NMISC	4

## PLANE223 Assumptions and Restrictions

- PLANE223 assumes a unit thickness.
- When NLGEOM is ON, SSTIF defaults to OFF.
- PLANE223 uses $2 \times 2$ and 3 point integration rules to calculate the element matrices and load vectors for the quad and triangle geometries, respectively.
- In a piezoelectric analysis, electric charge loading is interpreted as negative electric charge or negative charge density.
- In a coupled-field analysis with structural degrees of freedom, the model should have at least two elements in each direction to avoid the hourglass mode.
- The optimized nonlinear solution defaults (SOLCONTROL) are not available in coupled-field analyses.
- The element must lie in a global $X$ - Y plane as shown in Figure 1 (p. 1221) and the Y -axis must be the axis of symmetry for axisymmetric analyses.
- An axisymmetric structure should be modeled in the $+X$ quadrants.
- A face with a removed midside node implies that the degrees-of-freedom vary linearly, rather than parabolically, along that face. See Quadratic Elements (Midside Nodes) in the Modeling and Meshing Guide for more information about the use of midside nodes.
- This element may not be compatible with other elements with the VOLT degree of freedom. To be compatible, the elements must have the same reaction solution for the VOLT DOF. Elements that have an electric charge reaction solution must all have the same electric charge reaction sign. For more information, see Element Compatibility in the Low-Frequency Electromagnetic Analysis Guide.
- This element does not support fully incompressible materials.


## PLANE223 Product Restrictions

There are no product-specific restrictions for this element.

## SOLID226

## 3-D 20-Node Coupled-Field Solid

MP ME <> <> <> <> <> <> <> <> <> PP <> EME MFS
Product Restrictions

## SOLID226 Element Description

SOLID226 has the following capabilities:

- Structural-Thermal
- Piezoresistive
- Electroelastic
- Piezoelectric
- Thermal-Electric
- Structural-Thermoelectric
- Thermal-Piezoelectric

The element has twenty nodes with up to five degrees of freedom per node. Structural capabilities include elasticity, plasticity, viscoelasticity, viscoplasticity, creep, large strain, large deflection, stress stiffening effects, and prestress effects. Thermoelectric capabilities include Seebeck, Peltier, and Thomson effects, as well as Joule heating. In addition to thermal expansion, structural-thermal capabilities include the piezocaloric effect in dynamic analyses. The Coriolis effect is available for analyses with structural degrees of freedom. See SOLID226 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

Figure 1 SOLID226 Geometry



Tetrahedral Option


Pyramid Option


Prism Option

## SOLID226 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 1 (p. 1232). The element input data includes twenty nodes and structural, thermal, and electrical material properties. The type of units (MKS or user defined) is specified through the EMUNIT command. EMUNIT also determines the value of free-space permittivity EPZRO. The EMUNIT defaults are MKS units and EPZRO $=8.85 \mathrm{e}-12$ Farads/meter.

KEYOPT(1) determines the element DOF set and the corresponding force labels and reaction solution. KEYOPT(1) is set equal to the sum of the field keys shown in Table 1: SOLID226 Field Keys (p. 1232). For example, KEYOPT(1) is set to 11 for a structural-thermal analysis (structural field key + thermal field key $=1+10$ ). For a structural-thermal analysis, UX, UY, and TEMP are the DOF labels and force and heat flow are the reaction solution.

Table 1 SOLID226 Field Keys

Field	Field   Key	DOF Label	Force Label	Reaction Solution
Structural	1	UX, UY, UZ	FX, FY, FZ	Force
Thermal	10	TEMP	HEAT	Heat Flow
Electric Conduction	100	VOLT	AMPS	Electric Current
Electrostatic	1000	VOLT	CHRG	Electric Charge

The coupled-field analysis KEYOPT(1) settings, DOF labels, force labels, reaction solutions, and analysis types are shown in the following table.

Table 2 SOLID226 Coupled-Field Analyses

Coupled-Field   Analysis	KEY-   OPT(1)	DOF Label	Force La-   bel	Reaction   Solution	Analysis Type
Structural-Thermal   [1], [2]	11	UX, UY, UZ,   TEMP	FX, FY, FZ,   HEAT	Force,   Heat Flow	Static
Pull Harmonic					

1. For static and full transient analyses, KEYOPT(2) can specify a strong (matrix) or weak (load vector) structural-thermal coupling.
2. For full harmonic analyses, strong structural-thermal coupling only applies.
3. The electrostatic-structural analysis available with $\operatorname{KEYOPT}(1)=1001$ defaults to an electroelastic analysis (electrostatic force coupling) unless a piezoelectric matrix is specified on TB,PIEZ.

As shown in the following table, material property requirements consist of those required for the individual fields (structural, thermal, electric conduction, or electrostatic) and those required for field coupling. Material properties are defined with the MP, MPDATA, and TB commands.

Table 3 SOLID226 Material Properties

ALL ANALYSES WITH A STRUCTURAL FIELD	
Structural	EX, EY, EZ, PRXY, PRYZ, PRXZ (or NUXY, NUYZ, NUXZ), GXY, GYZ, GXZ, ELASTIC, ANEL, DENS, DAMP, DMPR, SDAMP   ALPX, ALPY, ALPZ (or CTEX, CTEY, CTEZ, or THSX, THSY, THSZ), REFT   Plasticity (PLASTIC, BISO, MISO, NLISO, BKIN, MKIN, KINH, CHABOCHE, HILL, SMA,   CAST, EDP, GURSON) [1 (p. 1234)]   Viscoelasticity (PRONY,SHIFT) [1 (p. 1234)]   Viscoplasticity/Creep (CREEP, RATE) [1 (p. 1234)]
ADDITIONAL MATERIAL PROPERTIES FOR STRUCTURAL-THERMAL ANALYSES	
Thermal	KXX, KYY, KZZ, DENS, C, ENTH, HF
Coupling	ALPX, ALPY, ALPZ (or CTEX, CTEY, CTEZ, or THSX, THSY, THSZ)
ADDITIONAL MATERIAL PROPERTIES FOR PIEZORESISTIVE ANALYSES	
Electric	RSVX, RSVY, RSVZ, PERX, PERY, PERZ
Coupling	PZRS
ADDITIONAL MATERIAL PROPERTIES FOR ELECTROELASTIC ANALYSES	
Electric	PERX, PERY, PERZ, DPER
ADDITIONAL MATERIAL PROPERTIES FOR PIEZOELECTRIC ANALYSES	
Electric	PERX, PERY, PERZ, DPER, LSST (and/or RSVX, RSVY, RSVZ)
Coupling	PIEZ
MATERIAL PROPERTIES FOR THERMAL-ELECTRIC ANALYSES	
Thermal	KXX, KYY, DENS, C, ENTH, HF
Electric	RSVX, RSVY, RSVZ, PERX, PERY, PERZ
Coupling	SBKX, SBKY, SBKZ
ADDITIONAL MATERIAL PROPERTIES FOR STRUCTURAL-THERMOELECTRIC ANALYSES	
Thermal	KXX, KYY, KZZ, DENS, C, ENTH, HF
Electric	RSVX, RSVY, RSVZ, PERX, PERY, PERZ
Coupling	ALPX, ALPY, ALPZ (or CTEX, CTEY, CTEZ, or THSX, THSY, THSZ), SBKX, SBKY, SBKZ, PZRS
ADDITIONAL MATERIAL PROPERTIES FOR THERMAL-PIEZOELECTRIC ANALYSES	
Thermal	KXX, KYY, KZZ, DENS, C, ENTH, HF
Electric	PERX, PERY, PERZ, DPER, LSST (and/or RSVX, RSVY, RSVZ)
Coupling	ALPX, ALPY, ALPZ (or CTEX, CTEY, CTEZ, or THSX, THSY, THSZ), PIEZ

1. These material properties are not applicable to structural-thermal analyses $(\operatorname{KEYOPT}(1)=11)$.

Various combinations of nodal loading are available for this element (depending upon the KEYOPT(1) value). Nodal loads are defined with the $\mathbf{D}$ and the $\mathbf{F}$ commands.

Element loads are described in Node and Element Loads (p. 97). Loads may be input on the element faces indicated by the circled numbers in Figure 1 (p. 1232) using the SF and SFE commands. Positive pressures act into the element. Body loads may be input at the element's nodes or as a single element value using the BF and BFE commands.

SOLID226 surface and body loads are given in the following table. CHRGS and CHRGD are interpreted as negative surface charge density and negative volume charge density, respectively.

Table 4 SOLID226 Surface and Body Loads

Coupled-Field Analysis	$\begin{gathered} \text { KEY- } \\ \text { OPT(1) } \end{gathered}$	Load Type	Load	Command Label
Structural-Thermal	11	Surface	Pressure	PRES
			Convection Heat Flux Radiation	$\begin{aligned} & \text { CONV } \\ & \text { HFLUX } \\ & \text { RDSF } \end{aligned}$
		Body	Force Density	FORC
			Heat Generation -Nodes I, J, ..., A, B	HGEN
Piezoresistive	101	Surface	Pressure	PRES
		Body	Force Density	FORC
			Temperature -Nodes I, J, ..., A, B	TEMP
Electroelastic and Piezoelectric	1001	Surface	Pressure   Surface Charge Density	PRES CHRGS[1 (p. 1236)]
		Body	Force Density	FORC
			Temperature -Nodes I, J, ..., A, B	TEMP
			Volume Charge Density -Nodes I, J, ..., A, B	CHRGD[1 (p. 1236)]
Thermal-Electric	110	Surface	Convection Heat Flux Radiation	$\begin{aligned} & \text { CONV } \\ & \text { HFLUX } \\ & \text { RDSF } \end{aligned}$
		Body	Heat Generation --   Nodes I, J, ..., A, B	HGEN
Structural-Thermoelectric	111	Surface	Pressure	PRES
			Convection Heat Flux Radiation	$\begin{aligned} & \text { CONV } \\ & \text { HFLUX } \\ & \text { RDSF } \end{aligned}$
		Body	Force Density	FORC
			Heat Generation -Nodes I, J, ..., A, B	HGEN
Thermal-Piezoelectric	1011	Sur-   face	Pressure   Surface Charge Density	PRES   CHRGS[1 (p. 1236)]


Coupled-Field Ana-   lysis	KEY-   OPT(1)	Load   Type	Load	Command Label
			Convection   Heat Flux   Radiation	CONV   HFLUX   RDSF
		Body	Force Density	FORC
		Heat Generation --   Nodes I, J, .., A, B	HGEN	
	Volume Charge Density --   Nodes I, J, .., A, B	CHRGD[1 (p. 1236)]		

1. CHRGS and CHRGD are interpreted as negative surface charge density and negative volume charge density, respectively.

A summary of the element input is given in "SOLID226 Input Summary" (p. 1236). A general description of element input is given in Element Input (p. 5).

## SOLID226 Input Summary

## Nodes

I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, A, B

## Degrees of Freedom

Set by KEYOPT(1). See Table 2: SOLID226 Coupled-Field Analyses (p. 1233).

## Real Constants

None

## Material Properties

See Table 3: SOLID226 Material Properties (p. 1234).

## Surface Loads

See Table 4: SOLID226 Surface and Body Loads (p. 1235).

## Body Loads

See Table 4: SOLID226 Surface and Body Loads (p. 1235).

## Special Features

Elasticity (ELASTIC, ANEL) [1 (p. 1237)]
Plasticity (PLASTIC, BISO, MISO, NLISO, BKIN, MKIN, KINH, CHABOCHE, HILL, SMA, CAST, EDP, GURSON)
[1 (p. 1237)]
Viscoelasticity (PRONY,SHIFT) [1 (p. 1237)]
Viscoplasticity/Creep (CREEP, RATE) [1 (p. 1237)]
Stress stiffening
Large deflection
Large strain
Automatic selection of element technology

## KEYOPT(1)

Element degrees of freedom. See Table 2: SOLID226 Coupled-Field Analyses (p. 1233).

## KEYOPT(2)

Structural-thermal coupling method in structural-thermal, structural-thermoelastic, or thermal-piezoelectric analyses $(\operatorname{KEYOPT}(1)=11,111$, or 1011).

## 0 --

Strong (matrix) coupling - produces an unsymmetric matrix. In a linear analysis, a coupled response is achieved after one iteration.

1 --
Weak (load vector) coupling - produces a symmetric matrix and requires at least two iterations to achieve a coupled response. [2 (p. 1237)]

## KEYOPT(4)

Electrostatic force in electroelastic analysis $(\operatorname{KEYOPT}(1)=1001)$ :
0 --
Applied to every element node.
1 --
Applied to the air-structure interface or to element nodes that have constrained structural degrees of freedom.
2 --
Not applied.
For more information, see Electroelastic Analysis in the Coupled-Field Analysis Guide.

## KEYOPT(6)

Integration method (applicable to the brick-shaped elements with structural DOFs).
0 --
Full integration - uses 14 integrations points. This method can cause volumetric locking in the models with nearly incompressible materials. It is primary employed for purely linear analyses.

1 --
Uniform reduced integration - uses a $2 \times 2 \times 2$ integration scheme. This method helps prevent volumetric mesh locking in the models with nearly incompressible materials. It is recommended for analyses with structural nonlinearities. To avoid the propagation of hourglass mode associated with the reduced integration, the model must have at least two layers of elements in each direction. [2 (p. 1237)]

## KEYOPT(9)

Thermoelastic damping (piezocaloric effect) in structural-thermal, structural-thermoelastic, or thermalpiezoelectric analyses $(\operatorname{KEYOPT}(1)=11,111$, or 1011). Applicable to harmonic and transient analyses only.

0 --
Active
1 --
Suppressed [2 (p. 1237)]

## Input Summary Notes:

1. Items in parentheses refer to data tables associated with the TB command.
2. Recommended in a coupled-field analysis with structural nonlinearities.

## SOLID226 Output Data

The solution output associated with the element is in two forms:

- Nodal degrees of freedom included in the overall nodal solution
- Additional element output as shown in Table 5: SOLID226 Element Output Definitions (p. 1238).

The element output directions are parallel to the element coordinate system. A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " $Y$ " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and " - " indicates that the item is not available.

## Table 5 SOLID226 Element Output Definitions

Name	Definition	0	R
ALL ANALYSES			
EL	Element Number	-	Y
NODES	```Nodes - I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, A, B```	-	Y
MAT	Material number	-	Y
VOLU:	Volume	-	Y
XC, YC, ZC	Location where results are reported	-	2
ALL ANALYSES WITH A STRUCTURAL FIELD			
$\begin{aligned} & \mathrm{S}: X, Y, Z, X Y, Y Z, \\ & X Z \end{aligned}$	Stresses (SZ = 0.0 for plane stress elements)	-	1
S:1, 2, 3	Principal stresses	-	1
S:EQV	Equivalent stress	-	1
$\begin{aligned} & \text { EPEL:X,Y, Z, XY, } \\ & \mathrm{YZ}, \mathrm{XZ} \end{aligned}$	Elastic strains	-	1
EPEL:EQV	Equivalent elastic strain [3]	-	1
$\begin{aligned} & \text { EPTH:X,Y, Z, XY, } \\ & Y Z, X Z \end{aligned}$	Thermal strains	-	1
EPTH:EQV	Equivalent thermal strain [3]	-	1
$\begin{aligned} & \text { EPPL:X,Y, Z, XY, } \\ & Y Z, X Z \end{aligned}$	Plastic strains	-	1
EPPL:EQV	Equivalent plastic strain [3]	-	1
$\begin{aligned} & \mathrm{EPCR}: X, Y, Z, X Y, \\ & Y Z, X Z \end{aligned}$	Creep strains	-	1
EPCR:EQV	Equivalent creep strain [3]	-	1
$\begin{aligned} & \text { EPTO:X, Y, Z, XY, } \\ & Y Z, X Z \end{aligned}$	Total mechanical strains (EPEL + EPPL + EPCR)	-	-
EPTO:EQV	Total equivalent mechanical strain (EPEL + EPPL + EPCR)	-	-
ADDITIONAL OUTPUT FOR STRUCTURAL-THERMAL ANALYSES (KEYOPT(1) = 11)			


Name	Definition	0	R
ALL ANALYSES			
TG:X, Y, Z, SUM	Thermal gradient components and vector magnitude	-	1
TF:X, Y, Z, SUM	Thermal flux components and vector magnitude	-	1
UT	Total strain energy [7]	-	1
ADDITIONAL OUTPUT FOR PIEZORESISTIVE ANALYSES (KEYOPT(1) = 101)			
TEMP	Input temperatures	-	Y
EF:X, Y, Z, SUM	Electric field components ( $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ ) and vector magnitude	-	1
JC:X, Y, Z, SUM	Conduction current density components ( $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ ) and vector magnitude	-	1
JS:X, Y, Z, SUM	Current density components and vector magnitude [4]	-	1
JHEAT	Joule heat generation per unit volume [5]	-	1
ADDITIONAL OUTPUT FOR ELECTROELASTIC ANALYSES (KEYOPT(1) = 1001)			
TEMP	Input temperatures	-	Y
EF:X, Y, Z, SUM	Electric field components ( $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ ) and vector magnitude	-	1
D:X, Y, Z, SUM	Electric flux density components ( $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ ) and vector magnitude	-	1
$\begin{aligned} & \text { FMAG:X, Y, Z, } \\ & \text { SUM } \end{aligned}$	Electrostatic force components ( $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ ) and vector magnitude	-	1
UE, UD	Stored elastic and dielectric energies	-	1
ADDITIONAL OUTPUT FOR PIEZOELECTRIC ANALYSES (KEYOPT(1) = 1001)			
TEMP	Input temperatures	-	Y
EF:X, Y, Z, SUM	Electric field components ( $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ ) and vector magnitude	-	1
D:X, Y, Z, SUM	Electric flux density components ( $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ ) and vector magnitude	-	1
JHEAT	Joule heat generation per unit volume [5], [6]	-	1
UE, UD	Stored elastic and dielectric energies	-	1
THERMAL-ELECTRIC (KEYOPT(1) = 110)			
TG:X, Y, Z, SUM	Thermal gradient components and vector magnitude	-	1
TF:X, Y, Z, SUM	Thermal flux components and vector magnitude	-	1
EF:X, Y, Z, SUM	Electric field components and vector magnitude	-	1
JC:X, Y, Z, SUM	Conduction current density components and vector magnitude	-	1
JS:X, Y, Z, SUM	Current density components and vector magnitude [4]	-	1
JHEAT	Joule heat generation per unit volume [5], [6]	-	1
ADDITIONAL OUTPUT FOR STRUCTURAL-THERMOELECTRIC ANALYSES (KEYOPT(1) = 111)			
TG:X, Y, Z, SUM	Thermal gradient components and vector magnitude	-	1
TF:X, Y, Z, SUM	Thermal flux components and vector magnitude	-	1
EF:X, Y, Z, SUM	Electric field components and vector magnitude	-	1


Name	Definition	O	R
ALL ANALYSES			
JC:X, Y, Z, SUM	Conduction current density components and vector   magnitude	-	1
JS:X, Y, Z, SUM	Current density components and vector magnitude [4]	-	1
JHEAT	Joule heat generation per unit volume [5], [6]	-	1
UT	Total strain energy [7]	-	1
ADDITIONAL OUTPUT FOR THERMAL-PIEZOELECTRIC ANALYSES (KEYOPT(1) = 1011)			
TG:X, Y, Z, SUM	Thermal gradient components and vector magnitude	-	1
TF:X, Y, Z, SUM	Thermal flux components and vector magnitude	-	1
EF:X, Y, Z, SUM	Electric field components and vector magnitude	-	1
D:X, Y, Z, SUM	Electric flux density components and vector magnitude	-	1
JHEAT	Joule heat generation per unit volume [5], [6]	-	1
UE, UD	Stored elastic and dielectric energies	-	1
UT	Total strain energy [7]	-	1

1. Solution values are output only if calculated (based on input values).
2. Available only at centroid as a *GET item.
3. The equivalent strains use an effective Poisson's ratio: for elastic and thermal this value is set by the user (MP,PRXY); for plastic and creep this value is set at 0.5 .
4. JS represents the sum of element conduction and displacement current densities.
5. Calculated Joule heat generation rate per unit volume (JHEAT) may be made available for a subsequent thermal analysis with companion thermal elements.
6. For a time-harmonic analysis, Joule losses (JHEAT) are time-averaged. These values are stored in both the real and imaginary data sets. For more information, see Quasistatic Electric Analysis in the Theory Reference for the Mechanical APDL and Mechanical Applications.
7. For a time-harmonic analysis, total strain energy (UT) is time-averaged. These values are stored in both the real and imaginary data sets. For more information, see Thermoelasticity in the Theory Reference for the Mechanical APDL and Mechanical Applications.

Table 5: SOLID226 Element Output Definitions (p. 1238) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) of the Basic Analysis Guide and The Item and Sequence Number Table (p.9) of this manual for more information. The following notation is used in Table 6: SOLID226 Item and Sequence Numbers (p. 1241):

## Name

output quantity as defined in the Table 5: SOLID226 Element Output Definitions (p. 1238)

## Item

predetermined Item label for ETABLE command

## E

sequence number for single-valued or constant element data
Table 6 SOLID226 Item and Sequence Numbers

Output   Quantity   Name	ETABLE Com-   mand Input	
	Item	E
UE	NMISC	1
UD	NMISC	2
UT	NMISC	4

## SOLID226 Assumptions and Restrictions

- When NLGEOM is ON, SSTIF defaults to OFF.
- In a piezoelectric analysis, electric charge loading is interpreted as negative electric charge or negative charge density.
- The optimized nonlinear solution defaults (SOLCONTROL) are not available in coupled-field analyses.
- An edge with a removed midside node implies that the degrees-of-freedom varies linearly, rather than parabolically, along that edge. See Quadratic Elements (Midside Nodes) in the Modeling and Meshing Guide for more information about the use of midside nodes.
- This element may not be compatible with other elements with the VOLT degree of freedom. To be compatible, the elements must have the same reaction solution for the VOLT DOF. Elements that have an electric charge reaction solution must all have the same electric charge reaction sign. For more information, see Element Compatibility in the Low-Frequency Electromagnetic Analysis Guide.
- •The model should have at least two layers of elements in each direction when uniform reduced integration $(\operatorname{KEYOPT}(6)=1)$ is used.
- This element does not support fully incompressible materials.


## SOLID226 Product Restrictions

There are no product-specific restrictions for this element.

## SOLID227

## 3-D 10-Node Coupled-Field Solid

MP ME <> <> <> <> <> <> <> <> <> PP <> EME MFS

## SOLID227 Element Description

SOLID227 has the following capabilities:

- Structural-Thermal
- Piezoresistive
- Electroelastic
- Piezoelectric
- Thermal-Electric
- Structural-Thermoelectric
- Thermal-Piezoelectric

The element has ten nodes with up to five degrees of freedom per node. Structural capabilities include elasticity, plasticity, viscoelasticity, viscoplasticity, creep, large strain, large deflection, stress stiffening effects, and prestress effects. Thermoelectric capabilities include Seebeck, Peltier, and Thomson effects, as well as Joule heating. In addition to thermal expansion, structural-thermal capabilities include the piezocaloric effect in dynamic analyses. The Coriolis effect is available for analyses with structural degrees of freedom. See SOLID227 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

Figure 1 SOLID227 Geometry


## SOLID227 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 1 (p. 1243). The element input data includes ten nodes and structural, thermal, and electrical material properties. The type of units (MKS or user defined) is specified through the EMUNIT command. EMUNIT also determines the
value of free-space permittivity EPZRO. The EMUNIT defaults are MKS units and EPZRO $=8.85 \mathrm{e}-12$ Farads/meter.

KEYOPT(1) determines the element DOF set and the corresponding force labels and reaction solution. KEYOPT(1) is set equal to the sum of the field keys shown in Table 1: SOLID227 Field Keys (p. 1244). For example, KEYOPT(1) is set to 11 for a structural-thermal analysis (structural field key + thermal field key $=1+10$ ). For a structural-thermal analysis, UX, UY, and TEMP are the DOF labels and force and heat flow are the reaction solution.

## Table 1 SOLID227 Field Keys

Field	Field   Key	DOF Label	Force Label	Reaction Solution
Structural	1	UX, UY, UZ	FX, FY, FZ	Force
Thermal	10	TEMP	HEAT	Heat Flow
Electric Conduction	100	VOLT	AMPS	Electric Current
Electrostatic	1000	VOLT	CHRG	Electric Charge

The coupled-field analysis KEYOPT(1) settings, DOF labels, force labels, reaction solutions, and analysis types are shown in the following table.

Table 2 SOLID227 Coupled-Field Analyses

Coupled-Field Analysis	$\begin{gathered} \hline \text { KEY- } \\ \text { OPT(1) } \end{gathered}$	DOF Label	Force Label	Reaction Solution	Analyses Type
Structural-Thermal [1], [2]	11	UX, UY, UZ, TEMP	$\begin{aligned} & \text { FX, FY, FZ, } \\ & \text { HEAT } \end{aligned}$	Force, Heat Flow	Static   Full Harmonic   Full Transient
Piezoresistive	101	UX, UY, UZ, VOLT	$F X, F Y, F Z,$ AMPS	Force,   Electric Current	Static   Full Transient
Electroelastic	1001 [3]	$\begin{aligned} & \text { UX, UY, UZ, } \\ & \text { VOLT } \end{aligned}$	$\begin{aligned} & \text { FX, FY, FZ, } \\ & \text { CHRG } \end{aligned}$	Force, Electric Charge (positive)	Static   Full Transient
Piezoelectric	1001 [3]	UX, UY, UZ, VOLT	$\begin{aligned} & \text { FX, FY, FZ, } \\ & \text { CHRG } \end{aligned}$	Force, Electric Charge (negative)	Static   Modal   Full Harmonic   Full Transient


Coupled-Field Ana-   lysis	KEY-   OPT(1)	DOF Label	Force La-   bel	Reaction   Solution	Analyses   Type
Thermal-Electric	110	TEMP, VOLT	HEAT,   AMPS	Heat Flow,   Electric Cur-   rent	Static   Full Transi-   ent
Structural-Thermo-   electric [1]	111	UX, UY, UZ,   TEMP,   VOLT	FX, FY, FZ,   HEAT,   AMPS	Force,   Heat Flow,   Electric Cur-   rent	Static   Full Transi-   ent
Thermal-Piezoelec-   tric [1], [2]	1011	UX, UY, UZ,   TEMP,   VOLT	FX, FY, FZ,   HEAT,   CHRG	Force,   Heat Flow,   Electric   Charge (neg-   ative)	Static   Full Harmon-   ic
Full Transi-   ent					

1. For static and full transient analyses, KEYOPT(2) can specify a strong (matrix) or weak (load vector) structural-thermal coupling.
2. For full harmonic analyses, strong structural-thermal coupling only applies.
3. The electrostatic-structural analysis available with $\operatorname{KEYOPT}(1)=1001$ defaults to an electroelastic analysis (electrostatic force coupling) unless a piezoelectric matrix is specified on TB,PIEZ.

As shown in the following table, material property requirements consist of those required for the individual fields (structural, thermal, electric conduction, or electrostatic) and those required for field coupling. Material properties are defined with the MP, MPDATA, and TB commands.

Table 3 SOLID227 Material Properties

ALL ANALYSES WITH A STRUCTURAL FIELD	
Structural	EX, EY, EZ, PRXY, PRYZ, PRXZ (or NUXY, NUYZ, NUXZ), GXY, GYZ, GXZ, ELASTIC,   ANEL, DENS, DAMP, DMPR, SDAMP   ALPX, ALPY, ALPZ (or CTEX, CTEY, CTEZ, or THSX, THSY, THSZ), REFT   Plasticity (PLASTIC, BISO, MISO, NLISO, BKIN, MKIN, KINH, CHABOCHE, HILL, SMA,   CAST, EDP, GURSON) [1 (p. 1246)]   Viscoelasticity (PRONY,SHIFT) [1 (p. 1246)]   Viscoplasticity/Creep (CREEP, RATE) [1 (p. 1246)]
ADDITIONAL MATERIAL PROPERTIES FOR STRUCTURAL-THERMAL ANALYSES	
Thermal	KXX, KYY, KZZ, DENS, C, ENTH, HF
Coupling	ALPX, ALPY, ALPZ (or CTEX, CTEY, CTEZ, or THSX, THSY, THSZ)
ADDITIONAL MATERIAL PROPERTIES FOR PIEZORESISTIVE ANALYSES	
Electric	RSVX, RSVY, RSVZ, PERX, PERY, PERZ
Coupling	PZRS
ADDITIONAL MATERIAL PROPERTIES FOR ELECTROELASTIC ANALYSES	
Electric	


ALL ANALYSES WITH A STRUCTURAL FIELD	
Electric	PERX, PERY, PERZ, DPER, LSST (and/or RSVX, RSVY, RSVZ)
Coupling	PIEZ
MATERIAL PROPERTIES FOR THERMAL-ELECTRIC ANALYSES	
Thermal	KXX, KYY, DENS, C, ENTH, HF
Electric	RSVX, RSVY, RSVZ, PERX, PERY, PERZ
Coupling	SBKX, SBKY, SBKZ
ADDITIONAL MATERIAL PROPERTIES FOR STRUCTURAL-THERMOELECTRIC ANALYSES	
Thermal	KXX, KYY, KZZ, DENS, C, ENTH, HF
Electric	RSVX, RSVY, RSVZ, PERX, PERY, PERZ
Coupling	ALPX, ALPY, ALPZ (or CTEX, CTEY, CTEZ, or THSX, THSY, THSZ), SBKX, SBKY, SBKZ,   PZRS
ADDITIONAL MATERIAL PROPERTIES FOR THERMAL-PIEZOELECTRIC ANALYSES	
Thermal	KXX, KYY, KZZ, DENS, C, ENTH, HF
Electric	PERX, PERY, PERZ, DPER, LSST (and/or RSVX, RSVY, RSVZ)
Coupling	ALPX, ALPY, ALPZ (or CTEX, CTEY, CTEZ, or THSX, THSY, THSZ), PIEZ

1. These material properties are not applicable to structural-thermal analyses $(\operatorname{KEYOPT}(1)=11)$.

Various combinations of nodal loading are available for this element (depending upon the KEYOPT(1) value). Nodal loads are defined with the $\mathbf{D}$ and the $\mathbf{F}$ commands.

Element loads are described in Node and Element Loads (p. 97). Loads may be input on the element faces indicated by the circled numbers in Figure 1 (p. 1243) using the SF and SFE commands. Positive pressures act into the element. Body loads may be input at the element's nodes or as a single element value using the BF and BFE commands.

SOLID227 surface and body loads are given in the following table.
Table 4 SOLID227 Surface and Body Loads

Coupled-Field Analysis	$\begin{gathered} \text { KEY- } \\ \text { OPT(1) } \end{gathered}$	Load   Type	Load	Command Label
Structural-Thermal	11	Surface	Pressure	PRES
			Convection Heat Flux Radiation	CONV HFLUX RDSF
		Body	Force Density	FORC
			Heat Generation -- Nodes I through R	HGEN
Piezoresistive	101	Surface	Pressure	PRES
		Body	Force Density	FORC
			Temperatures -- Nodes I through R	TEMP


Coupled-Field AnaIysis	$\begin{gathered} \text { KEY- } \\ \text { OPT(1) } \end{gathered}$	Load Type	Load	Command Label
Electroelastic and Piezoelectric	1001	Surface	Pressure   Surface Charge Density	PRES   CHRGS [1 (p. 1247)]
		Body	Force Density	FORC
			Temperatures -- Nodes I through R	TEMP
			Volume Charge Density -Nodes I through R	CHRGD [1 (p. 1247)]
Thermal-Electric	110	Surface	Convection Heat Flux Radiation	$\begin{aligned} & \text { CONV } \\ & \text { HFLUX } \\ & \text { RDSF } \end{aligned}$
		Body	Heat Generation -- Nodes I through R	HGEN
Structural-Thermoelectric	111	Surface	Pressure	PRES
			Convection Heat Flux Radiation	
		Body	Force Density	FORC
			Heat Generation -- Nodes I through R	HGEN
Thermal-Piezoelectric	1011	Surface	Pressure   Surface Charge Density	PRES   CHRGS [1 (p. 1247)]
			Convection Heat Flux Radiation	
		Body	Force Density	FORC
			Heat Generation -- Nodes I through R	HGEN
			Volume Charge Density -Nodes I through R	CHRGD [1 (p. 1247)]

1. CHRGS and CHRGD are interpreted as negative surface charge density and negative volume charge density, respectively.

A summary of the element input is given in "SOLID227 Input Summary" (p. 1247). A general description of element input is given in Element Input (p. 5).

## SOLID227 Input Summary

## Nodes

I, J, K, L, M, N, O, P, Q, R

## Degrees of Freedom

Set by KEYOPT(1). See Table 2: SOLID227 Coupled-Field Analyses (p. 1244).

## Real Constants

None

## Material Properties

See Table 3: SOLID227 Material Properties (p. 1245).

## Surface Loads

See Table 4: SOLID227 Surface and Body Loads (p. 1246).

## Body Loads

See Table 4: SOLID227 Surface and Body Loads (p. 1246).

## Special Features

Elasticity (ELASTIC, ANEL) [1 (p. 1249)]
Plasticity (PLASTIC, BISO, MISO, NLISO, BKIN, MKIN, KINH, CHABOCHE, HILL, SMA, CAST, EDP, GURSON)
[1 (p. 1249)]
Viscoelasticity (PRONY,SHIFT) [1 (p. 1249)]
Viscoplasticity/Creep (CREEP, RATE) [1 (p. 1249)]
Stress stiffening
Large deflection
Large strain
Automatic selection of element technology

## KEYOPT(1)

Element degrees of freedom. See Table 2: SOLID227 Coupled-Field Analyses (p. 1244).

## KEYOPT(2)

Structural-thermal coupling method in structural-thermal, structural-thermoelastic, or thermal-piezoelectric analyses $(\operatorname{KEYOPT}(1)=11,111$, or 1011).

0 --
Strong (matrix) coupling - produces an unsymmetric matrix. In a linear analysis, a coupled response is achieved after one iteration.

1 --
Weak (load vector) coupling - produces a symmetric matrix and requires at least two iterations to achieve a coupled response. [2 (p. 1249)]

## KEYOPT(4)

Electrostatic force in electroelastic analysis (KEYOPT $(1)=1001)$ :
0 --
Applied to every element node.
1 --
Applied to the air-structure interface or to element nodes that have constrained structural degrees of freedom.

2 --
Not applied.
For more information, see Electroelastic Analysis in the Coupled-Field Analysis Guide.

## KEYOPT(9)

Thermoelastic damping (piezocaloric effect) in structural-thermal, structural-thermoelastic, or thermalpiezoelectric analyses $(\operatorname{KEYOPT}(1)=11,111$, or 1011). Applicable to harmonic and transient analyses only.

0 --
Active

## 1 --

Suppressed [2 (p. 1249)]

## Input Summary Notes:

1. Items in parentheses refer to data tables associated with the TB command.
2. Recommended in a coupled-field analysis with structural nonlinearities.

## SOLID227 Output Data

The solution output associated with the element is in two forms:

- Nodal degrees of freedom included in the overall nodal solution
- Additional element output as shown in Table 5: SOLID227 Element Output Definitions (p. 1249).

The element output directions are parallel to the element coordinate system. A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " $Y$ " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

## Table 5 SOLID227 Element Output Definitions

Name	Definition	0	R
ALL ANALYSES			
EL	Element Number	-	Y
NODES	Nodes - I, J, K, L, M, N, O, P, Q, R	-	Y
MAT	Material number	-	Y
VOLU:	Volume	-	Y
XC, YC, ZC	Location where results are reported	-	2
ALL ANALYSES WITH A STRUCTURAL FIELD			
$\begin{aligned} & \mathrm{S}: X, Y, Z, X Y, Y Z, \\ & X Z \end{aligned}$	Stresses (SZ = 0.0 for plane stress elements)	-	1
S:1, 2, 3	Principal stresses	-	1
S:EQV	Equivalent stress	-	1
$\begin{aligned} & \text { EPEL:X, Y, Z, XY, } \\ & Y Z, X Z \end{aligned}$	Elastic strains	-	1
EPEL:EQV	Equivalent elastic strain [3]	-	1
$\begin{aligned} & \text { EPTH:X, Y, Z, XY, } \\ & Y Z, X Z \end{aligned}$	Thermal strains	-	1
EPTH:EQV	Equivalent thermal strain [3]	-	1


Name	Definition	0	R
$\begin{aligned} & \text { EPPL:X,Y, Z, XY, } \\ & \mathrm{YZ}, \mathrm{XZ} \end{aligned}$	Plastic strains	-	1
EPPL:EQV	Equivalent plastic strain [3]	-	1
$\begin{aligned} & \text { EPCR:X, Y, Z, XY, } \\ & Y Z, X Z \end{aligned}$	Creep strains	-	1
EPCR:EQV	Equivalent creep strain [3]	-	1
$\begin{aligned} & \text { EPTO:X, Y, Z, XY, } \\ & Y Z, X Z \end{aligned}$	Total mechanical strains (EPEL + EPPL + EPCR)	-	-
EPTO:EQV	Total equivalent mechanical strain (EPEL + EPPL + EPCR)	-	-
ADDITIONAL OUTPUT FOR STRUCTURAL-THERMAL ANALYSES (KEYOPT(1) = 11)			
TG:X, Y, Z, SUM	Thermal gradient components and vector magnitude	-	1
TF:X, Y, Z, SUM	Thermal flux components and vector magnitude	-	1
UT	Total strain energy [7]	-	1
ADDITIONAL OUTPUT FOR PIEZORESISTIVE ANALYSES (KEYOPT(1) = 101)			
TEMP	Input temperatures	-	Y
EF:X, Y, Z, SUM	Electric field components ( $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ ) and vector magnitude	-	1
JC:X, Y, Z, SUM	Conduction current density components ( $X, Y, Z$ ) and vector magnitude	-	1
JS:X, Y, Z, SUM	Current density components and vector magnitude [4]	-	1
JHEAT	Joule heat generation per unit volume [5]	-	1
ADDITIONAL OUTPUT FOR ELECTROELASTIC ANALYSES (KEYOPT(1) = 1001)			
TEMP	Input temperatures	-	Y
EF:X, Y, Z, SUM	Electric field components ( $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ ) and vector magnitude	-	1
D:X, Y, Z, SUM	Electric flux density components ( $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ ) and vector magnitude	-	1
$\begin{aligned} & \text { FMAG:X, Y, Z, } \\ & \text { SUM } \end{aligned}$	Electrostatic force components ( $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ ) and vector magnitude	-	1
UE, UD	Stored elastic and dielectric energies	-	1
ADDITIONAL OUTPUT FOR PIEZOELECTRIC ANALYSES (KEYOPT(1) = 1001)			
TEMP	Input temperatures	-	Y
EF:X, Y, Z, SUM	Electric field components ( $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ ) and vector magnitude	-	1
D:X, Y, Z, SUM	Electric flux density components ( $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ ) and vector magnitude	-	1
JHEAT	Joule heat generation per unit volume [5], [6]	-	1
UE, UD	Stored elastic and dielectric energies	-	1
THERMAL-ELECTRIC (KEYOPT(1) = 110)			
TG:X, Y, Z, SUM	Thermal gradient components and vector magnitude	-	1
TF:X, Y, Z, SUM	Thermal flux components and vector magnitude	-	1
EF:X, Y, Z, SUM	Electric field components and vector magnitude	-	1


Name	Definition	0	R
JC:X, Y, Z, SUM	Conduction current density components and vector magnitude	-	1
JS:X, Y, Z, SUM	Current density components and vector magnitude [4]	-	1
JHEAT	Joule heat generation per unit volume [5], [6]		1
ADDITIONAL OUTPUT FOR STRUCTURAL-THERMOELECTRIC ANALYSES (KEYOPT(1) = 111)			
TG:X, Y, Z, SUM	Thermal gradient components and vector magnitude	-	1
TF:X, Y, Z, SUM	Thermal flux components and vector magnitude	-	1
EF:X, Y, Z, SUM	Electric field components and vector magnitude		1
JC:X, Y, Z, SUM	Conduction current density components and vector magnitude	-	1
JS:X, Y, Z, SUM	Current density components and vector magnitude [4]	-	1
JHEAT	Joule heat generation per unit volume [5], [6]	-	1
UT	Total strain energy [7]	-	1
ADDITIONAL OUTPUT FOR THERMAL-PIEZOELECTRIC ANALYSES (KEYOPT(1) = 1011)			
TG:X, Y, Z, SUM	Thermal gradient components and vector magnitude	-	1
TF:X, Y, Z, SUM	Thermal flux components and vector magnitude	-	1
EF:X, Y, Z, SUM	Electric field components and vector magnitude	-	1
D:X, Y, Z, SUM	Electric flux density components and vector magnitude	-	1
JHEAT	Joule heat generation per unit volume [5], [6]	-	1
UE, UD	Stored elastic and dielectric energies	-	1
UT	Total strain energy [7]	-	1

1. Solution values are output only if calculated (based on input values).
2. Available only at centroid as a *GET item.
3. The equivalent strains use an effective Poisson's ratio: for elastic and thermal this value is set by the user (MP,PRXY); for plastic and creep this value is set at 0.5 .
4. JS represents the sum of element conduction and displacement current densities.
5. Calculated Joule heat generation rate per unit volume (JHEAT) may be made available for a subsequent thermal analysis with companion thermal elements.
6. For a time-harmonic analysis, Joule losses (JHEAT) are time-averaged. These values are stored in both the real and imaginary data sets. For more information, see Quasistatic Electric Analysis in the Theory Reference for the Mechanical APDL and Mechanical Applications.
7. For a time-harmonic analysis, total strain energy (UT) is time-averaged. These values are stored in both the real and imaginary data sets. For more information, see Thermoelasticity in the Theory Reference for the Mechanical APDL and Mechanical Applications.

Table 5: SOLID227 Element Output Definitions (p. 1249) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) of the Basic Analysis Guide and The Item and Sequence Number Table (p.9) of this manual for more information. The following notation is used in Table 6: SOLID227 Item and Sequence Numbers (p. 1252):

## Name

output quantity as defined in the Table 5: SOLID227 Element Output Definitions (p. 1249)

## Item

predetermined Item label for ETABLE command
E
sequence number for single-valued or constant element data
Table 6 SOLID227 Item and Sequence Numbers

Output   Quantity   Name	ETABLE Com-   mand Input	
	Item	E
UE	NMISC	1
UD	NMISC	2
UT	NMISC	4

## SOLID227 Assumptions and Restrictions

- When NLGEOM is ON, SSTIF defaults to OFF.
- In a piezoelectric analysis, electric charge loading is interpreted as negative electric charge or negative charge density.
- The optimized nonlinear solution defaults (SOLCONTROL) are not available in coupled-field analyses.
- An edge with a removed midside node implies that the degrees-of-freedom varies linearly, rather than parabolically, along that edge. See Quadratic Elements (Midside Nodes) in the Modeling and Meshing Guide for more information about the use of midside nodes.
- This element may not be compatible with other elements with the VOLT degree of freedom. To be compatible, the elements must have the same through reaction solution for the VOLT DOF. Elements that have an electric charge reaction solution must all have the same electric charge reaction sign. For more information, see Element Compatibility in the Low-Frequency Electromagnetic Analysis Guide.
- This element does not support fully incompressible materials.


## SOLID227 Product Restrictions

There are no product-specific restrictions for this element.

## PLANE230

## 2-D 8-Node Electric Solid

$$
\begin{array}{r}
\mathrm{MP} \text { <> <> <> <> <> <> <> EM <> <> PP <> EME <> } \\
\text { Product Restrictions }
\end{array}
$$

## PLANE230 Element Description

PLANE230 is a 2-D, 8-node, current-based electric element. The element has one degree of freedom, voltage, at each node. The 8 -node elements have compatible voltage shapes and are well suited to model curved boundaries.

This element is based on the electric scalar potential formulation and it is applicable to the following low frequency electric field analyses: steady-state electric conduction, time-harmonic quasistatic and transient quasistatic. See PLANE230-2-D 8-Node Electric Solid in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

Figure 1 PLANE230 Geometry


## PLANE230 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 1 (p. 1253). The element is defined by eight nodes and orthotropic material properties. The type of units (MKS or user defined) is specified through the EMUNIT command. EMUNIT also determines the value of EPZRO. The EMUNIT defaults are MKS units and EPZRO $=8.854 \times 10-12$ Farad/meter. A triangular-shaped element may be formed by defining the same node number for nodes $\mathrm{K}, \mathrm{L}$ and O .

Orthotropic material directions correspond to the element coordinate directions. The element coordinate system orientation is as described in Coordinate Systems (p. 14). Properties not input default as described in Linear Material Properties (p. 16).

Nodal loads are defined with the $\mathbf{D}(L a b=V O L T)$ and $\mathbf{F}(L a b=A M P S)$ commands. The nodal forces, if any, should be input per unit of depth for a plane analysis and on a full $360^{\circ}$ basis for an axisymmetric analysis.

The temperature (for material property evaluation only) body loads may be input based on their value at the element's nodes or as a single element value [BF, BFE]. In general, unspecified nodal values of temperatures default to the uniform value specified with the BFUNIF or TUNIF commands.

A summary of the element input is given in "PLANE230 Input Summary" (p. 1254). A general description of element input is given in Element Input (p. 5). For axisymmetric applications see Harmonic Axisymmetric Elements (p. 102).

## PLANE230 Input Summary

## Nodes

I, J, K, L, M, N, O, P
Degrees of Freedom
VOLT

## Real Constants

THK - Thickness (used only if $\operatorname{KEYOPT}(3)=3$ )

## Material Properties

RSVX, RSVY, PERX, PERY, LSST

## Surface Loads

None

## Body Loads

Temperature --
$T(I), T(J), T(K), T(L), T(M), T(N), T(O), T(P)$

## Special Features

Birth and death

## KEYOPT(3)

Element behavior:
0 --
Plane
1 --
Axisymmetric
3 --
Plane with thickness input, specified via real constant THK.

## PLANE230 Output Data

The solution output associated with the element is in two forms:

- Nodal degrees of freedom included in the overall nodal solution
- Additional element output as shown in Table 1: PLANE230 Element Output Definitions (p. 1255).

Several items are illustrated in Figure 2 (p. 1255). The element output directions are parallel to the element coordinate system. A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results. The element output directions are parallel to the element coordinate system as shown in Figure 2 (p. 1255).

## Figure 2 PLANE230 Output



## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and " - " indicates that the item is not available.

Table 1 PLANE230 Element Output Definitions

Name	Definition	$\mathbf{O}$	R
EL	Element Number	Y	Y
NODES	Nodes - I, J, K, L, M, N, O, P	Y	Y
MAT	Material number	Y	Y
VOLU:	Volume	Y	Y
XC, YC	Location where results are reported	Y	2
TEMP	Temperatures T(I), T(J), T(K), T(L), T(M), T(N), T(O), T(P)	Y	Y
LOC	Output location (X, Y)	1	-
EF:X, Y, SUM	Electric field components and vector magnitude	1	1
JC:X, Y, SUM	Nodal conduction current density components and   vector magnitude	1	1
JS:X, Y, SUM	Current density components and vector magnitude [3]	-	1
JT:X, Y, SUM	Element conduction current density components and   magnitude [3]	-	1
JHEAT:	Joule heat generation rate per unit volume [4] [5] [6]	-	1
SENE:	Stored electric energy [6]	-	1
D:X, Y, SUM	Electric flux density components and vector magnitude	-	1

1. The solution value is output only if calculated (based upon input data). The element solution is at the centroid.
2. Available only at centroid as a *GET item.
3. JS represents the sum of element conduction and displacement current densities. JT represents the element conduction current density. The element displacement current density (JD) can be derived from JS and JT as JD = JS-JT.
4. For a time-harmonic analysis, calculated Joule heat generation rate per unit volume (JHEAT) includes conduction heating and dielectric heating due to the loss tangent.
5. Calculated Joule heat generation rate per unit volume (JHEAT) may be made available for a subsequent thermal analysis with companion elements [LDREAD].
6. For a time-harmonic analysis, Joule losses (JHEAT) and stored energy (SENE) represent time-average values. These values are stored in both the real and imaginary data sets.

Table 2: PLANE230 Item and Sequence Numbers (p. 1256) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p.9) in this manual for more information. The following notation is used in Table 2: PLANE230 Item and Sequence Numbers (p. 1256):

## Name

output quantity as defined in the Table 1: PLANE230 Element Output Definitions (p. 1255)

## Item

predetermined Item label for ETABLE command
E
sequence number for single-valued or constant element data

## Table 2 PLANE230 Item and Sequence Numbers

Output   Quant-   ity   Name	ETABLE and   ESOL Command   Input	
	E	
DX	NMISC	1
DY	NMISC	2
DSUM	NMISC	3
JTX	NMISC	4
JTY	NMISC	5
JTSUM	NMISC	6

## PLANE230 Assumptions and Restrictions

- The area of the element must be positive.
- The element must lie in a global X-Y plane as shown in Figure 2 (p. 1255), and the Y -axis must be the axis of symmetry for axisymmetric analyses.
- An axisymmetric structure should be modeled in the $+X$ quadrants.
- A face with a removed midside node implies that the potential varies linearly, rather than parabolically, along that face. See Quadratic Elements (Midside Nodes) in the Modeling and Meshing Guide for more information about the use of midside nodes.
- This element is only compatible with elements having a VOLT degree of freedom and an electric current reaction solution. See Element Compatibility in the Low-Frequency Electromagnetic Analysis Guide) for more information.


## PLANE230 Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

## ANSYS Emag

- The Birth and death special feature is not allowed.


## SOLID231 Element Description

SOLID231 is a 3-D 20-node, current-based electric element. The element has one degree of freedom, voltage, at each node. It can tolerate irregular shapes without much loss of accuracy. SOLID231 elements have compatible voltage shapes and are well suited to model curved boundaries.

This element is based on the electric scalar potential formulation and it is applicable to the following low frequency electric field analyses: steady-state electric conduction, time-harmonic quasistatic and transient quasistatic. See SOLID231-3-D 20-Node Electric Solid in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

## Figure 1 SOLID231 Geometry




Tetrahedral Option



Prism Option

## SOLID231 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 1 (p. 1259). The element is defined by 20 node points and the material properties. The type of units (MKS or user defined) is specified through the EMUNIT command. EMUNIT also determines the value of EPZRO. The EMUNIT defaults are MKS units and EPZRO $=8.854 \times 10-12$ Farad/meter. A prism-shaped element may be formed by defining
duplicate $\mathrm{K}, \mathrm{L}$, and S ; A and B ; and $\mathrm{O}, \mathrm{P}$, and W node numbers. A pyramid-shaped element and a tetrahedralshaped element may also be formed as shown in Figure 1 (p. 1259).

Orthotropic material directions correspond to the element coordinate directions. The element coordinate system orientation is as described in Coordinate Systems (p. 14). Properties not input default as described in Linear Material Properties (p. 16).

Nodal loads are defined with the $\mathbf{D}(L a b=V O L T)$ and $\mathbf{F}(L a b=A M P S)$ commands. The temperature (for material property evaluation only) body loads may be input based on their value at the element's nodes or as a single element value [BF, BFE]. In general, unspecified nodal values of temperatures default to the uniform value specified with the BFUNIF or TUNIF commands.

A summary of the element input is given in "SOLID231 Input Summary" (p. 1260). A general description of element input is given in Element Input (p. 5).

## SOLID231 Input Summary

## Nodes

I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, A, B

## Degrees of Freedom

VOLT

## Real Constants

None

## Material Properties

RSVX, RSVY, RSVZ, PERX, PERY, PERZ, LSST

## Surface Loads

None

## Body Loads

## Temperature --

$\mathrm{T}(\mathrm{I}), \mathrm{T}(\mathrm{J}), \ldots, \mathrm{T}(\mathrm{Z}), \mathrm{T}(\mathrm{A}), \mathrm{T}(\mathrm{B})$

## Special Features

Birth and death

## KEYOPT

None

## SOLID231 Output Data

The solution output associated with the element is in two forms:

- Nodal potentials included in the overall nodal solution
- Additional element output as shown in Table 1: SOLID231 Element Output Definitions (p. 1261)

The element output directions are parallel to the element coordinate system. A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " $Y$ " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

## Table 1 SOLID231 Element Output Definitions

Name	Definition	$\mathbf{O}$	R
EL	Element Number	Y	Y
NODES	Nodes - I, J, K, L, M, N, O, P	Y	Y
MAT	Material number	Y	Y
VOLU:	Volume	Y	Y
XC, YC, ZC	Location where results are reported	Y	2
TEMP	Temperatures T(I), T(J), ..., T(Z), T(A), T(B)	Y	Y
LOC	Output location (X, Y, Z)	1	-
EF:X, Y, Z, SUM	Electric field components and vector magnitude	1	1
JC:X, Y, Z, SUM	Nodal conduction current density components and   vector magnitude	1	1
JS:X, Y, Z, SUM	Current density components and vector magnitude [3]	-	1
JT:X, Y, Z, SUM	Element conduction current density components and   magnitude [3]	-	1
JHEAT:	Joule heat generation rate per unit volume [4] [5] [6]	-	1
SENE:	Stored electric energy [6]	-	1
D:X, Y, Z, SUM	Electric flux density components and vector magnitude	-	1

1. The solution value is output only if calculated (based upon input data). The element solution is at the centroid.
2. Available only at centroid as a *GET item.
3. JS represents the sum of element conduction and displacement current densities. JT represents the element conduction current density. The element displacement current density (JD) can be derived from JS and JT as JD = JS-JT. JS can be used as a source current density for a subsequent magnetostatic analysis with companion elements [LDREAD].
4. For a time-harmonic analysis, calculated Joule heat generation rate per unit volume (JHEAT) includes conduction heating and dielectric heating due to the loss tangent.
5. Calculated Joule heat generation rate per unit volume (JHEAT) may be made available for a subsequent thermal analysis with companion elements [LDREAD].
6. For a time-harmonic analysis, Joule losses (JHEAT) and stored energy (SENE) represent time-average values. These values are stored in both the real and imaginary data sets.

Table 2: SOLID231 Item and Sequence Numbers (p. 1262) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p.9) in this manual for more information. The following notation is used in Table 2: SOLID231 Item and Sequence Numbers (p. 1262):

## Name

output quantity as defined in Table 1: SOLID231 Element Output Definitions (p. 1261)

## Item

predetermined Item label for ETABLE command
E
sequence number for single-valued or constant element data

## Table 2 SOLID231 Item and Sequence Numbers

Output   Quant-   ity   Name	ETABLE and   ESOL Command   Input	
	Item	E
DX	NMISC	1
DY	NMISC	2
DZ	NMISC	3
DSUM	NMISC	4
JTX	NMISC	5
JTY	NMISC	6
JTZ	NMISC	7
JTSUM	NMISC	8

## SOLID231 Assumptions and Restrictions

- The element must not have a zero volume or a zero length side. This occurs most frequently when the element is not numbered properly. Elements may be numbered either as shown in Figure 1 (p. 1259) or in an opposite fashion.
- An edge with a removed midside node implies that the potential varies linearly, rather than parabolically, along that edge. See Quadratic Elements (Midside Nodes) in the Modeling and Meshing Guide for more information on the use of midside nodes.
- Degeneration to the form of pyramid should be used with caution. The element sizes, when degenerated, should be small in order to minimize the field gradients. Pyramid elements are best used as filler elements in meshing transition zones.
- This element is only compatible with elements having a VOLT degree of freedom and an electric current reaction solution. See Element Compatibility in the Low-Frequency Electromagnetic Analysis Guide) for more information.
- The solenoidal current density is required for a solution, or for any postprocessing operations.


## SOLID231 Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

## ANSYS Emag

- The Birth and death special feature is not allowed.


## SOLID232

## 3-D 10-Node Tetrahedral Electric Solid

$$
\begin{array}{r}
\mathrm{MP} \text { <> <> <> <> <> <> <> EM <> <> PP <> EME <> } \\
\text { Product Restrictions }
\end{array}
$$

## SOLID232 Element Description

SOLID232 is a 3-D, 10-node, current-based electric element. It is well suited to model irregular meshes (such as produced from various CAD/CAM systems). The element has one degree of freedom, voltage, at each node.

This element is based on the electric scalar potential formulation and it is applicable to the following low frequency electric field analyses: steady-state electric conduction, time-harmonic quasistatic and transient quasistatic. See SOLID232-3-D 10-Node Tetrahedral Electric Solid in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

Figure 1 SOLID232 Geometry


## SOLID232 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 1 (p. 1263). The element is defined by 10 node points and the material properties. The type of units (MKS or user defined) is specified through the EMUNIT command. EMUNIT also determines the value of EPZRO. The EMUNIT defaults are MKS units and EPZRO $=8.854 \times 10-12$ Farad/meter.

Orthotropic material directions correspond to the element coordinate directions. The element coordinate system orientation is as described in Coordinate Systems (p. 14). Properties not input default as described in Linear Material Properties (p. 16).

Nodal loads are defined with the $\mathbf{D}(L a b=V O L T)$ and $\mathbf{F}(L a b=A M P S)$ commands. The temperature (for material property evaluation only) body loads may be input based on their value at the element's nodes or as a single element value $[\mathbf{B F}, \mathbf{B F E}]$. In general, unspecified nodal values of temperatures default to the uniform value specified with the BFUNIF or TUNIF commands.

A summary of the element input is given in "SOLID232 Input Summary" (p. 1264). A general description of element input is given in Element Input (p. 5).

## SOLID232 Input Summary

## Nodes

I, J, K, L, M, N, O, P, Q, R
Degrees of Freedom
VOLT

## Real Constants

None

## Material Properties

RSVX, RSVY, RSVZ, PERX, PERY, PERZ, LSST

## Surface Loads

None

## Body Loads

Temperature --
$T(I), T(J), T(K), T(L), T(M), T(N), T(O), T(P), T(Q), T(R)$

## Special Features

Birth and death

## KEYOPTS

None

## SOLID232 Output Data

The solution output associated with the element is in two forms:

- Nodal potentials included in the overall nodal solution
- Additional element output as shown in Table 1: SOLID232 Element Output Definitions (p. 1264)

The element output directions are parallel to the element coordinate system. A general description of solution output is given in Solution Output (p. 8) in the Element Reference. See the Basic Analysis Guide for ways to view results.

## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUt. The R column indicates the availability of the items in the results file.

In either the O or R columns, " $Y$ " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and " - " indicates that the item is not available.

Table 1 SOLID232 Element Output Definitions

Name	Definition	$\mathbf{O}$	$\mathbf{R}$
EL	Element Number	Y	Y
NODES	Nodes $-\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}, \mathrm{M}, \mathrm{N}, \mathrm{O}, \mathrm{P}$	Y	Y
MAT	Material number	Y	Y
VOLU:	Volume	Y	Y


Name	Definition	$\mathbf{O}$	$\mathbf{R}$
XC, YC, ZC	Location where results are reported	$Y$	2
TEMP	Temperatures $\mathrm{T}(\mathrm{I}), \mathrm{T}(\mathrm{J}), \mathrm{T}(\mathrm{K}), \mathrm{T}(\mathrm{L}), \mathrm{T}(\mathrm{M}), \mathrm{T}(\mathrm{N}), \mathrm{T}(\mathrm{O}), \mathrm{T}(\mathrm{P})$,   $\mathrm{T}(\mathrm{Q}), \mathrm{T}(\mathrm{R})$	Y	Y
LOC	Output location (X, Y, Z)	1	-
EF:X, Y, Z, SUM	Electric field components and vector magnitude	1	1
JC:X, Y, Z, SUM	Nodal conduction current density components and   vector magnitude	1	1
JS:X, Y, Z, SUM	Current density components and vector magnitude [3]	-	1
JT:X, Y, Z, SUM	Element conduction current density components and   magnitude [3]	-	1
JHEAT:	Joule heat generation rate per unit volume [4] [5] [6]	-	1
SENE:	Stored electric energy [6]	-	1
D:X, Y, Z, SUM	Electric flux density components and vector magnitude	-	1

1. The solution value is output only if calculated (based upon input data). The element solution is at the centroid.
2. Available only at centroid as a *GET item.
3. JS represents the sum of element conduction and displacement current densities. JT represents the element conduction current density. The element displacement current density (JD) can be derived from JS and JT as JD = JS-JT. JS can be used as a source current density for a subsequent magnetostatic analysis with companion elements [LDREAD].
4. For a time-harmonic analysis, calculated Joule heat generation rate per unit volume (JHEAT) includes conduction heating and dielectric heating due to the loss tangent.
5. Calculated Joule heat generation rate per unit volume (JHEAT) may be made available for a subsequent thermal analysis with companion elements [LDREAD].
6. For a time-harmonic analysis, Joule losses (JHEAT) and stored energy (SENE) represent time-average values. These values are stored in both the real and imaginary data sets.

Table 2: SOLID232 Item and Sequence Numbers (p. 1266) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p.9) in this manual for more information. The following notation is used in Table 2: SOLID232 Item and Sequence Numbers (p. 1266):

## Name

output quantity as defined in the Table 1: SOLID232 Element Output Definitions (p. 1264)

## Item

predetermined Item label for ETABLE command

## E

sequence number for single-valued or constant element data
Table 2 SOLID232 Item and Sequence Numbers

Output   Quant-   ity   Name	ETABLE and   ESOL Command   Input	
	E	
DX	NMISC	1
DY	NMISC	2
DZ	NMISC	3
DSUM	NMISC	4
JTX	NMISC	5
JTY	NMISC	6
JTZ	NMISC	7
JTSUM	NMISC	8

## SOLID232 Assumptions and Restrictions

- The element must not have a zero volume or a zero length side. This occurs most frequently when the element is not numbered properly. Elements may be numbered either as shown in Figure 1 (p. 1263) or in an opposite fashion.
- An edge with a removed midside node implies that the potential varies linearly, rather than parabolically, along that edge. See Quadratic Elements (Midside Nodes) in the Modeling and Meshing Guide for more information on the use of midside nodes.
- This element is only compatible with elements having a VOLT degree of freedom and an electric current reaction solution. See Element Compatibility in the Low-Frequency Electromagnetic Analysis Guide) for more information.
- The solenoidal current density is required for a solution, or for any postprocessing operations.


## SOLID232 Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

## ANSYS Emag

- The birth and death special feature is not allowed.


## PLANE233

## 2-D 8-Node Electromagnetic Solid

$$
\begin{array}{r}
\text { MP <> <> <> <> <> <> <> EM <> <> PP <> EME <> } \\
\text { Product Restrictions }
\end{array}
$$

## PLANE233 Element Description

PLANE233 is a 2-D element capable of modeling planar or axisymmetric electromagnetic fields. The element is defined by 8 or 6 nodes, and has up to 2 degrees of freedom per node: Z-component of the magnetic vector potential (AZ) and electric scalar potential (VOLT). The element also has an option to perform an electromagnetic analysis with time-integrated electric potential (VOLT) as a degree of freedom.

In an electromagnetic analysis, the electric degree of freedom is the electric potential (VOLT) defined at each node. The element also has an option to perform an electromagnetic analysis with time-integrated electric potential.

In a stranded coil analysis, the electric degrees of freedom are the voltage drop across the coil (VOLT) and the electromotive force (EMF). In a coil region, all the VOLT and EMF degrees of freedom must be coupled using the CP command. The element has the option to perform a stranded coil analysis with time-integrated voltage drop or time-integrated electromotive force.

PLANE233 is applicable to 2-D static, time-harmonic and time-transient electromagnetic analyses. The magnetic analysis option typically is used to model air, iron, nonferrous materials and permanent magnets. The analysis is driven by the current density applied as an element body load. The electromagnetic analysis option is suitable for modeling solid (massive) conductors. This analysis may be voltage or current driven, as well as circuit fed. The electromagnetic analysis has the option to suppress the eddy current effect in time-varying analyses to model stranded conductors. The stranded coil analysis option is suitable for modeling a stranded winding with a prescribed current flow direction vector. The stranded coil may be voltage- or current-driven, as well as circuit-fed.

The following command macros can be used with PLANE233 for solution postprocessing: CURR2D, EMAGERR, EMFT, FLUXV, MMF, PLF2D, POWERH. See "Electric and Magnetic Macros" in the Low-Frequency Electromagnetic Analysis Guide for more details.

See PLANE233 theory in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element. The element has nonlinear magnetic capability for modeling B-H curves or permanent magnet demagnetization curves for static and time-transient analyses.

Figure 1 PLANE233 Geometry


## PLANE233 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 1 (p. 1267). A triangular-shaped element may be formed by defining the same node number for nodes $K, L$ and $O$.

The type of units (MKS or user defined) is specified through the EMUNIT command. EMUNIT also determines the value of MUZRO and EPZRO. The EMUNIT defaults are MKS units and MUZRO $=4 \pi 10^{-7}$ Henry/meter and EPZRO $=8.854 \times 10^{-12}$ Farad/meter. In addition to MUZRO and EPZRO, orthotropic relative permeability is specified through the MURX and MURY material property labels. The Z-depth resistivity and permittivity are specified using the RSVZ and PERZ material property labels respectively. MGXX and MGYY represent vector components of the coercive force for permanent magnet materials. The magnitude of the coercive force is the square root of the sum of the squares of the components. The direction of polarization is determined by the components MGXX and MGYY. Permanent magnet polarization directions correspond to the element coordinate directions. The element coordinate system orientation is as described in Coordinate Systems (p. 14). Nonlinear magnetic B-H properties are entered with the TB command as described in Material Data Tables (Implicit Analysis) (p. 22). Nonlinear orthotropic magnetic properties may be specified with a combination of a B-H curve and linear relative permeability. The B-H curve will be used in each element coordinate direction where a zero value of relative permeability is specified. Only one B-H curve may be specified per material.

For the plane option $(\operatorname{KEYOPT}(3)=0)$, you can also define the element thickness (Z-depth) using the real constant THK. For the axisymmetric option $(\operatorname{KEYOPT}(3)=1)$, you can specify the fraction of the $360^{\circ}$ basis using the same real constant.

Nodal loads are defined with the $\mathbf{D}$ and $\mathbf{F}$ commands. The nodal forces, if any, should be input per unit of depth for a plane analysis and on a full $360^{\circ}$ basis for an axisymmetric analysis unless the THK real constant is specified. For edge-based analysis, the $\mathbf{D}$ command with $L a b=A Z$ applies the edge-flux constraint to the node. Flux-parallel boundary conditions are prescribed by setting AZ to zero. No AZ constraint is required to set flux-normal boundary conditions.

For massive conductors $(\operatorname{KEYOPT}(1)=1), L a b=$ VOLT is valid with the $\mathbf{D}$ command and VALUE defines the electric potential. Note that electric potential is time-integrated if $\operatorname{KEYOPT}(2)=2$. With the $\mathbf{F}$ command, Lab = AMPS and VALUE corresponds to the total current.

For stranded coils $(\operatorname{KEYOPT}(1)=2), L a b=V O L T$ is valid with the $\mathbf{D}$ command and VALUE defines the voltage drop across the coil. The $\mathbf{D}$ command with $L a b=E M F$ can be used to apply constraints on the electromotive force. Note that voltage drop and the electromotive force are time-integrated if $\operatorname{KEYOPT}(2)=2$. The total current through the coil can be applied with the $\mathbf{F}$ command using Lab $=$ AMPS.

The temperature (for material property evaluation only) body loads may be input based on their value at the element's nodes or as a single element value [BF, BFE]. In general, unspecified nodal values of temperatures default to the uniform value specified with the BFUNIF or TUNIF commands. For modeling stranded conductors with $\operatorname{KEYOPT}(1)=0$, source current density may be applied to an area [BFA] or input as an element value [BFE].

A summary of the element input is given in "PLANE233 Input Summary". A general description of element input is given in Element Input.

## PLANE233 Input Summary

## Nodes

I, J, K, L, M, N, O, P

## Degrees of Freedom

Set by KEYOPT(1).

## Real Constants

Thickness (THK) is the only real constant for $\operatorname{KEYOPT}(1)=0$ or 1 .
The following are the real constants for $\operatorname{KEYOPT}(1)=2$ :
THK, SC, NC, RAD, TZ, R
SYM
See Table 1: PLANE233 Real Constants (p. 1271) for more information.

## Material Properties

MURX, MURY
MGXX, MGYY
Nonlinear B-H curve (TB,BH)
RSVZ
PERZ (See ""PLANE233 Assumptions and Restrictions" (p. 1273)")

## Surface Loads

None

## Body Loads

Temperature --
$T(I), T(J), \ldots, T(O), T(P)$
Source Current Density (valid for KEYOPT(1) = 0 only) --
spare, spare, JSZ(I), PHASE(I),
spare, spare, JSZ(J), PHASE(J),
spare, spare, JSZ(O), PHASE(O),
spare, spare, JSZ(P), PHASE(P)

## Special Features

Nonlinear magnetic materials.

## KEYOPT(1)

Element capability and degrees of freedom:
0 --
Magnetic:
AZ
1 --
Electromagnetic:
AZ, VOLT

## 2 --

Stranded coil:
AZ, VOLT, EMF

## KEYOPT(2)

Coupling method between magnetic and electric degrees of freedom $\operatorname{(KEYOPT}(1)=1$ or 2); also defines the meaning of the VOLT and EMF degrees of freedom for $\operatorname{KEYOPT}(1)=1$ or 2:
0 --
Strong (matrix) coupling. Produces an unsymmetric matrix. In a linear analysis, a coupled response is achieved after one iteration. Applicable to all analysis types.

1 --
Weak (load vector). Produces a symmetric matrix and requires at least two iterations to achieve a coupled response. Applicable to static and transient analyses only. (See "PLANE233 Assumptions and Restrictions" (p. 1273))
2 --
Strong (matrix) coupling with time-integrated electric potential (VOLT) for KEYOPT(1) $=1$ (electromagnetic analysis). Produces a symmetric matrix.

Strong (matrix) coupling with time-integrated voltage drop (VOLT) and time-integrated electromotive force (EMF) for KEYOPT( 1 ) = 2 (stranded coil analysis). Produces a symmetric matrix if the coil symmetry factor is 1 ; produces a nonsymmetric matrix if the coil symmetry factor is greater than 1.

In a linear analysis, a coupled response is achieved after one iteration. Applicable to harmonic and transient analyses only.

## KEYOPT(3)

Element behavior:
0 --
Plane
1 --
Axisymmetric

## KEYOPT(5)

Eddy currents in electromagnetic $(\operatorname{KEYOPT}(1)=1)$ harmonic or transient analyses:
0 --
Active
1 --
Suppressed

## KEYOPT(7)

Electromagnetic force output:
0 --
At each element node (corner and midside)
1 --
At element corner nodes only (midside node forces are condensed to the corner nodes)

## KEYOPT(8)

Electromagnetic force calculation:

```
0 --
 Maxwell
1 --
 Lorentz
```

Table 1 PLANE233 Real Constants

No.	Name	Description	Default	Definition
1	THK	Thickness (plane) or fraction of the $360^{\circ}$ basis (axisymmetric)	1	Applicable to all $\operatorname{KEYOPT}(1)=0$, 1 , or 2.
2	SC	Coil cross-sectional area	none	True physical cross-section of the coil regardless of symmetry modeling considerations. It includes the cross-sectional area of the wire and the non-conducting material filling the space between the winding.
3	NC	Number of coil turns	1	Total number of winding turns in a coil regardless of any symmetry modeling considerations.
4	RAD	Mean radius of the coil (axisymmetric)	none	Mean radius of the axisymmetric coil model. If the mean radius is not known, input $\mathrm{VC} /((2 \pi)(\mathrm{SC})(\mathrm{THK}))$, where VC is the full symmetry true physical volume of the coil. VC includes the volume occupied by the wire and the non-conducting material filling the space between the winding.
5	TZ	Current polarity	1 (plane)   -1 (axisymmetric)	The current flow direction (1 or -1) with respect to Z-axis
6	R	Coil resistance	none	Total coil DC resistance regardless of any symmetry modeling considerations.
7	SYM	Coil symmetry factor	1	Ratio of the full symmetry coil cross-sectional area (SC) to the modeled coil area. The input should be greater or equal to 1 .

## PLANE233 Output Data

The solution output associated with the element is in two forms:

- Nodal degrees of freedom included in the overall nodal solution
- Additional element output as shown in Table 2: PLANE233 Element Output Definitions (p. 1272)

The element output directions are parallel to the element coordinate system. A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

The Element Output Definitions table uses the following notation:
A colon (:) in the Name column indicates the item can be accessed by the Component Name method [ETABLE, ESOL]. The O column indicates the availability of the items in the file Jobname.OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, Y indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and a - indicates that the item is not available.

Table 2 PLANE233 Element Output Definitions

Name	Definition	O	R
EL	Element Number	-	Y
NODES	Nodes $-\mathrm{I}, \mathrm{J}, \ldots, \mathrm{O}, \mathrm{P}$	-	Y
MAT	Material number	-	Y
THICK	Thickness	-	Y
VOLU:	Volume	-	Y
XC, YC	Location where results are reported	-	2
TEMP	Input temperatures T(I), T(J), ..., T(O), T(P)	-	Y
LOC	Output location (X, Y)	-	-
B: X, Y, SUM	Magnetic flux density components and vector magnitude	-	1
H: X, Y, SUM	Magnetic field intensity components and vector magnitude	-	1
EF: Z, SUM	Electric field intensity Z-component and vector magnitude   [7]	-	1
JC: Z, SUM	Conduction current density Z-component and vector mag-   nitude [7]	-	1
FMAG: X, Y, SUM	Electromagnetic force components and magnitude [3]	-	1
JT: Z, SUM	Conduction current density Z-component (in the global   Cartesian coordinate system) and vector magnitude [6]	-	1
JS: Z, SUM	Current density Z-component (in the global Cartesian co-   ordinate system) and vector magnitude [4] [6]	-	1
JHEAT:	Joule heat generation rate per unit volume [3] [5] [6]	-	1
SENE:	Stored electromagnetic energy [3]	-	1

1. The solution value is output only if calculated (based upon input data). The element solution is at the centroid.
2. Available only at centroid as a *GET item.
3. For a time-harmonic analysis, electromagnetic forces (FMAG), Joule losses (JHEAT) and stored energy (SENE) represent time-average values. These values are stored in both the real and imaginary data sets.
4. JS represents the sum of element conduction and displacement current densities.
5. Calculated Joule heat generation rate per unit volume (JHEAT) may be made available for a subsequent thermal analysis with companion elements [LDREAD].
6. For the stranded coil analysis option ( $\operatorname{KEYOPT}(1)=2$ ), JT and JS are the effective current densities as they are calculated based on the coil cross-sectional area (SC) that includes the wire and the nonconducting material filling the space between the winding. JHEAT represents the effective Joule heat generation rate per unit volume as it is calculated based on the modeled coil volume that includes the wire and the non-conducting material filling the space between the winding.
7. Not available with the stranded coil option (KEYOPT(1) = 2).

Table 3: PLANE233 Item and Sequence Numbers (p. 1273) lists output available through the ETABLE command using the Sequence Number method. See "The General Postprocessor (POST1)" in the Basic Analysis Guide and Table 3: PLANE233 Item and Sequence Numbers (p. 1273) in this manual for more information. The following notation is used in Table 3: PLANE233 Item and Sequence Numbers (p. 1273):

Name: output quantity as defined in Table 2: PLANE233 Element Output Definitions (p. 1272)
Item: predetermined Item label for ETABLE command
E: sequence number for single-valued or constant element data

## Table 3 PLANE233 Item and Sequence Numbers

Output Quantity Name	ETABLE and ESOL Command Input	
	Item	E
JTZ	NMISC	1

## PLANE233 Assumptions and Restrictions

- The area of the element must be positive.
- The element must lie in a global X-Y plane as shown in Figure 1 ( p .1267 ) and the Y -axis must be the axis of symmetry for axisymmetric analyses. An axisymmetric structure should be modeled in the $+X$ quadrants.
- A face with a removed midside node implies that the potentials vary linearly, rather than parabolically, along that edge. See Quadratic Elements (Midside Nodes) in the Modeling and Meshing Guide for more information on the use of midside nodes.
- Permanent magnets are not permitted in a harmonic analysis.
- It is not recommended to use the weak coupling option (KEYOPT$(2)=1)$ in a transient electromagnetic analysis with eddy currents or a transient stranded coil analysis because multiple iterations may be required to achieve convergence.
- In a transient analysis, the THETA integration parameter defaults to the values shown in the following table. You can use the TINTP command to modify the default setting.


## Table 4 THETA Default Values

Analysis Type	KEYOPT Values	THETA De-   fault Value
Strongly coupled transient electromagnetic   analysis with electric potential or stranded   coil analysis with voltage drop (VOLT)	$\mathrm{KEYOPT}(1)=1$ or 2 and KEYOPT $(2)=0$	1.0
Strongly coupled transient electromagnetic   analysis with time-integrated electric poten-	$\mathrm{KEYOPT}(1)=1$ or 2 and KEYOPT(2) $=2$	0.5


Analysis Type	KEYOPT Values	THETA De-   fault Value
tial or stranded coil analysis with time-integ-   rated voltage drop (VOLT)		

- The electrical permittivity material input (MP,PERZ) is applicable to electromagnetic harmonic analyses $(\operatorname{KEYOPT}(1)=1)$ only.
- In a stranded coil $(\operatorname{KEYOPT}(1)=2)$ domain, all VOLT and EMF degrees of freedom must be coupled $(\mathbf{C P}$ command).
- Unlike the 2-D magnetic elements PLANE53 and PLANE13 that model the eddy current effects with the AZ option ( $\operatorname{KEYOPT}(1)=0$ ) when BFE,,JS is not specified, PLANE233 always acts as a stranded conductor in a harmonic or transient analysis with $\operatorname{KEYOPT}(1)=0$. In this respect, the PLANE233 behavior is consistent with the 3-D electromagnetic elements (e.g. SOLID236) behavior.
- This element may not be compatible with other elements having a VOLT degree of freedom. See Element Compatibility in the Low-Frequency Electromagnetic Analysis Guide) for more information. The electromagnetic analysis with time-integrated electric potential (KEYOPT $(2)=2)$ cannot be used with currentbased circuit (e.g. CIRCU124) or low-frequency electric (e.g. PLANE230) elements.


## PLANE233 Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

ANSYS Emag: The birth and death special feature is not allowed

## SOLID236

## 3-D 20-Node Electromagnetic Solid

$$
\begin{array}{r}
\text { MP <> <> <> <> <> <> <> EM <> <> PP <> EME <> } \\
\text { Product Restrictions }
\end{array}
$$

## SOLID236 Element Description

SOLID236 is a 3-D 20-node element capable of modeling electromagnetic fields. The element has magnetic and electric degrees of freedom. Magnetic degrees of freedom are based on the edge-flux formulation.

The edge-flux (AZ) degrees of freedoms are the line integrals of the magnetic vector potential along the element edges. They are defined at the midside nodes only, and there are no magnetic degrees of freedom associated with the corner nodes. The edge-flux formulation uses tree gauging (see the GAUGE command) to produce a unique solution.

In an electromagnetic analysis, the electric degree of freedom is the electric potential (VOLT) defined at each node. The element also has an option to perform an electromagnetic analysis with time-integrated electric potential.

In a stranded coil analysis, the electric degrees of freedom are the voltage drop across the coil (VOLT) and the electromotive force (EMF). In a coil region, all the VOLT and EMF degrees of freedom must be coupled using the CP command. The element has the option to perform a stranded coil analysis with time-integrated voltage drop or time-integrated electromotive force.

The element is applicable to 3-D static, time-harmonic and time-transient electromagnetic analyses. The magnetic analysis option typically is used to model air, iron, nonferrous materials and permanent magnets. The analysis is driven by the current density applied as an element body load. The electromagnetic analysis option is suitable for modeling solid (massive) conductors. The solid (massive) conductor may be voltageor current-driven, as well as circuit-fed. The electromagnetic analysis has the option to suppress the eddy current effect in time-varying analyses to model stranded conductors. The stranded coil analysis option is suitable for modeling a stranded winding with a prescribed current flow direction vector. The stranded coil may be voltage- or current-driven, as well as circuit-fed.

The following command macros can be used with SOLID236 for solution postprocessing: EMAGERR, EMFT, MMF, POWERH. See Electric and Magnetic Macros in the Low-Frequency Electromagnetic Analysis Guide for more details.

See SOLID236 theory in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element. The element has nonlinear magnetic capability for modeling B-H curves or permanent magnet demagnetization curves for static and time-transient analyses.

Figure 1 SOLID236 Geometry



Tetrahedral Option


Pyramid Option


Prism Option

## SOLID236 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 1 (p. 1276). The element is defined by 20 node points and the material properties. A prism-shaped element may be formed by defining duplicate $\mathrm{K}, \mathrm{L}$, and $\mathrm{S} ; \mathrm{A}$ and B ; and $\mathrm{O}, \mathrm{P}$, and W node numbers. A pyramid-shaped element and a tetrahedral-shaped element may also be formed as shown in Figure 1 (p. 1276).

The type of units (MKS or user defined) is specified through the EMUNIT command. EMUNIT also determines the value of MUZRO and EPZRO. The EMUNIT defaults are MKS units and MUZRO $=4 \pi 10^{-7}$ Henry/meter and $E P Z R O=8.854 \times 10^{-12}$ Farad/meter. In addition to MUZRO and EPZRO, orthotropic relative permeability and permittivity is available and is specified through the MURX, MURY, and MURZ and PERX, PERY, PERZ material options, respectively. Orthotropic resistivity is specified through RSVX, RSVY, and RSVZ material property labels. MGXX, MGYY, and MGZZ represent vector components of the coercive force for permanent magnet materials. The magnitude of the coercive force is the square root of the sum of the squares of the components. The direction of polarization is determined by the components MGXX, MGYY, and MGZZ. Permanent magnet polarization directions correspond to the element coordinate directions. The element coordinate system orientation is as described in Coordinate Systems (p. 14). Nonlinear magnetic B-H properties are entered with the TB command as described in Material Data Tables (Implicit Analysis) (p. 22). Nonlinear orthotropic magnetic properties may be specified with a combination of a B-H curve and linear relative permeability. The B$H$ curve will be used in each element coordinate direction where a zero value of relative permeability is specified. Only one B-H curve may be specified per material.

Nodal loads are defined with the $\mathbf{D}$ and $\mathbf{F}$ commands. For edge-based analysis, the $\mathbf{D}$ command with $L a b=$ AZ applies the edge-flux constraint to the node. Flux-parallel boundary conditions are prescribed by setting AZ to zero. No AZ constraint is required to set flux-normal boundary conditions.

For massive conductors (KEYOPT $(1)=1$ ), Lab = VOLT is valid with the $\mathbf{D}$ command and VALUE defines the electric potential. Note that electric potential is time-integrated if $\operatorname{KEYOPT}(2)=2$. With the $\mathbf{F}$ command, Lab = AMPS and VALUE corresponds to the total current.

For stranded coils ( $\operatorname{KEYOPT}(1)=2$ ), Lab = VOLT is valid with the $\mathbf{D}$ command and VALUE defines the voltage drop across the coil. The $\mathbf{D}$ command with $L a b=$ EMF can be used to apply constraints on the electromotive force. Note that voltage drop and the electromotive force are time-integrated if $\operatorname{KEYOPT}(2)=2$. The total current through the coil can be applied with the $\mathbf{F}$ command using Lab $=$ AMPS.

The temperature (for material property evaluation only) body loads may be input based on their value at the element's nodes or as a single element value [BF, BFE]. In general, unspecified nodal values of temperatures default to the uniform value specified with the BFUNIF or TUNIF commands.

For modeling stranded conductors with $\operatorname{KEYOPT}(1)=0$, source current density may be applied to an area or volume [BFA or BFV] or input as an element value [BFE]. The vector components of the current density are with respect to the element coordinate system. See "SOLID236 Assumptions and Restrictions" (p. 1282) for a description of the solenoidal condition.

A summary of the element input is given in "SOLID236 Input Summary" (p. 1277). A general description of element input is given in Element Input (p.5).

## SOLID236 Input Summary

## Nodes

I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, A, B

## Degrees of Freedom

See KEYOPT(1)

## Real Constants

There are no real constants for KEYOPT(1) $=0$ or 1.
The following are the real constants for $\operatorname{KEYOPT}(1)=2$ :
SC, NC, VC, TX, TY, TZ
R, SYM
See Table 1: SOLID 236 Real Constants (p. 1279) for more information.

## Material Properties

MURX, MURY, MURZ,
MGXX, MGYY, MGZZ
Nonlinear B-H curve (TB,BH)
RSVX, RSVY, RSVZ
PERX, PERY, PERZ (see "SOLID236 Assumptions and Restrictions" (p. 1282))

## Surface Loads

None

## Body Loads

## Temperature --

$T(I), T(J), \ldots, T(Z), T(A), T(B)$
Source Current Density (valid for KEYOPT(1) = 0 only)
JSX(I), JSY(I), JSZ(I), PHASE(I),
JSX(J), JSY(J), JSZ(J), PHASE(J),
...
JSX(Z), JSY(Z), JSZ(Z), PHASE(Z),
JSX(A), JSY(A), JSZ(A), PHASE(A),
JSX(B), JSY(B), JSZ(B), PHASE(B)

## Special Features

Nonlinear magnetic materials.

## KEYOPT(1)

Element capability and degrees of freedom:
0 --
Magnetic:
AZ
1 --
Electromagnetic:
AZ, VOLT
2 --
Stranded coil:
AZ, VOLT, EMF

## KEYOPT(2)

Coupling method between magnetic and electric degrees of freedom $(\operatorname{KEYOPT}(1)=1$ or 2$)$; also defines the meaning of the VOLT and EMF degrees of freedom for $\operatorname{KEYOPT}(1)=1$ or 2:
0 --
Strong (matrix) coupling. Produces an unsymmetric matrix. In a linear analysis, a coupled response is achieved after one iteration. Applicable to all analysis types.

1 --
Weak (load vector). Produces a symmetric matrix and requires at least two iterations to achieve a coupled response. Applicable to static and transient analyses only. (see "SOLID236 Assumptions and Restrictions" (p. 1282))

2 --
Strong (matrix) coupling with time-integrated electric potential (VOLT) for KEYOPT(1) $=1$ (electromagnetic analysis). Produces a symmetric matrix.

Strong (matrix) coupling with time-integrated voltage drop (VOLT) and time-integrated electromotive force (EMF) for KEYOPT(1) = 2 (stranded coil analysis). Produces a symmetric matrix if the coil symmetry factor is 1 ; produces a nonsymmetric matrix if the coil symmetry factor is greater than 1.

In a linear analysis, a coupled response is achieved after one iteration. Applicable to harmonic and transient analyses only.

## KEYOPT(5)

Eddy currents in electromagnetic (KEYOPT(1)=1) harmonic or transient analyses:
0 --
Active
1 --
Suppressed

## KEYOPT(7)

Electromagnetic force output:
0 --
At each element node (corner and midside)
1 --
At element corner nodes only (midside node forces are condensed to the corner nodes)

## KEYOPT(8)

Electromagnetic force calculation:
0 --
Maxwell
1 --
Lorentz
Table 1 SOLID 236 Real Constants

No.	Name	Description	De-   fault	Definition			
1	SC	Coil cross-sectional area	none	True physical cross-section of   the coil regardless of symmetry   modeling considerations. It in-   cludes the cross-sectional area   of the wire and the non-con-   ducting material filling the   space between the winding.			
2	NC	Number of coil turns	1	Total number of winding turns   in a coil regardless of any sym-   metry modeling considerations.			
3	VC	Coil volume	none	True physical volume of the coil   regardless of symmetry model-   ing considerations. It includes   the volume occupied by the   wire and the non-conducting   material filling the space   between the winding.			
4	TX	Coil winding X-directional   cosine	0	The coil direction vector T $=\{$ TX,   TY, TZ $\}$			
to is a unit vector tangent					$	$	to the coil winding. It desig-
:---							
nates the current flow direction.							


No.	Name	Description	De-   fault	Definition
6	TZ	Coil winding Z-directional   cosine	0	
7	R	Coil resistance	none	Total coil DC resistance regard-   less of any symmetry modeling   considerations.
8	SYM	Coil symmetry factor	1	Ratio of the true physical   volume of the coil (real constant   VC) to the modeled coil volume.   The input should be greater or   equal to 1.

## SOLID236 Output Data

The solution output associated with the element is in two forms:

- Nodal degrees of freedom included in the overall nodal solution
- Additional element output as shown in Table 2: SOLID236 Element Output Definitions (p. 1280)

The element output directions are parallel to the element coordinate system. A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.
Table 2 SOLID236 Element Output Definitions

Name	Definition	$\mathbf{O}$	$\mathbf{R}$
EL	Element Number	-	Y
NODES	Nodes - I, J,..., Z, A, B	-	Y
MAT	Material number	-	Y
VOLU:	Volume	-	Y
XC, YC, ZC	Location where results are reported	-	2
TEMP	Input temperatures T(I), T(J), ..., T(Z), T(A), T(B)	-	Y
LOC	Output location (X, Y, Z)	-	-
B: X, Y, Z, SUM	Magnetic flux density components and vector mag-   nitude	-	1
H: X, Y, Z, SUM	Magnetic field intensity components and vector mag-   nitude	-	1
EF: X, Y, Z, SUM	Electric field intensity components and magnitude [7]	-	1


Name	Definition	$\mathbf{O}$	$\mathbf{R}$
JC: X, Y, Z, SUM	Nodal conduction current density components and   magnitude [7]	-	1
FMAG: X, Y, Z,   SUM	Electromagnetic force components and magnitude [3]	-	1
JT: X, Y, Z, SUM	Element conduction current density components (in   the global Cartesian coordinate system) and vector   magnitude [6	-	1
JS: X, Y, Z, SUM	Element current density components (in the global   Cartesian coordinate system) and vector magnitude [4]   [6	-	1
JHEAT:	Joule heat generation rate per unit volume [3] [5] [6]	-	1
SENE:	Stored electromagnetic energy [3]	-	1

1. The solution value is output only if calculated (based upon input data). The element solution is at the centroid.
2. Available only at centroid as a *GET item.
3. For a time-harmonic analysis, electromagnetic forces (FMAG), Joule losses (JHEAT) and stored energy (SENE) represent time-average values. These values are stored in both the real and imaginary data sets.
4. JS represents the sum of element conduction and displacement current densities.
5. Calculated Joule heat generation rate per unit volume (JHEAT) may be made available for a subsequent thermal analysis with companion elements [LDREAD].
6. For the stranded coil analysis option ( $\operatorname{KEYOPT}(1)=2$ ), JT and JS are the effective current densities as they are calculated based on the coil cross-sectional area (SC) that includes the wire and the nonconducting material filling the space between the winding. JHEAT represents the effective Joule heat generation rate per unit volume as it is calculated based on the modeled coil volume that includes the wire and the non-conducting material filling the space between the winding.
7. Not available with the stranded coil option $(\operatorname{KEYOPT}(1)=2)$.

Table 3: SOLID236 Item and Sequence Numbers (p. 1282) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p.9) in this manual for more information. The following notation is used in Table 3: SOLID236 Item and Sequence Numbers (p. 1282):

## Name

output quantity as defined in Table 2: SOLID236 Element Output Definitions (p. 1280)

## Item

predetermined Item label for ETABLE command

## E

sequence number for single-valued or constant element data
Table 3 SOLID236 Item and Sequence Numbers

Output   Quant-   ity   Name	ETABLE and   ESOL Command   Input	
	Item	E
JTX	NMISC	1
JTY	NMISC	2
JTZ	NMISC	3
JTSUM	NMISC	4

## SOLID236 Assumptions and Restrictions

- The element must not have a zero volume or a zero length side. This occurs most frequently when the element is not numbered properly. Elements may be numbered either as shown in Figure 1 (p. 1276) or in an opposite fashion.
- Midside nodes may not be removed.
- Degeneration to the form of pyramid should be used with caution. The element sizes, when degenerated, should be small in order to minimize the field gradients. Pyramid elements are best used as filler elements in meshing transition zones.
- The magnetic analysis option $(\mathrm{KEYOPT}(1)=0)$ requires the source current density specified with the BFE,,JS command to be solenoidal.
- Permanent magnets are not permitted in a harmonic analysis.
- The element edge-based magnetic formulation is not compatible with the edge-based analysis using SOLID117.
- It is not recommended to use the weak coupling option $(\operatorname{KEYOPT}(2)=1)$ in a transient electromagnetic analysis with eddy currents or a transient stranded coil analysis because multiple iterations may be required to achieve convergence.
- In a transient analysis, the THETA integration parameter defaults to the values shown in the following table. You can use the TINTP command to modify the default setting.


## Table 4 THETA Default Values

Analysis Type	KEYOPT Values	THETA Default Value
Strongly coupled transient electromagnetic analysis with electric potential or stranded coil analysis with voltage drop (VOLT)	$\operatorname{KEYOPT}(1)=1$ or 2 and $\operatorname{KEYOPT}(2)=0$	1.0
Strongly coupled transient electromagnetic analysis with time-integrated electric potential or stranded coil analysis with time-integrated voltage drop (VOLT)	$\operatorname{KEYOPT}(1)=1$ or 2 and $\operatorname{KEYOPT}(2)=2$	0.5

- The electrical permittivity material input (MP,PERX, also PERY, PERZ) is applicable to electromagnetic harmonic analyses (KEYOPT $(1)=1$ ) only.
- In a stranded coil $(\operatorname{KEYOPT}(1)=2)$ domain, the winding direction vector $T=\{T X, T Y, T Z\}^{\top}$ must be specified in the element coordinate system and all VOLT and EMF degrees of freedom must be coupled (CP command).
- This element may not be compatible with other elements having a VOLT degree of freedom. See Element Compatibility in the Low-Frequency Electromagnetic Analysis Guide) for more information. The electromagnetic analysis with time-integrated electric potential (KEYOPT $(2)=2$ ) cannot be used with currentbased circuit (e.g. CIRCU124) or low-frequency electric (e.g. SOLID231) elements.


## SOLID236 Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

## ANSYS Emag

- The birth and death special feature is not allowed.


## SOLID237

## 3-D 10-Node Electromagnetic Solid

$$
\begin{array}{r}
\text { MP <> <> <> <> <> <> <> EM <> <> PP <> EME <> } \\
\text { Product Restrictions }
\end{array}
$$

## SOLID237 Element Description

SOLID237 is a 3-D 10-node, element capable of modeling electromagnetic fields. The element has magnetic and electric degrees of freedom. Magnetic degrees of freedom are based on the edge-flux formulation.

The edge-flux (AZ) degrees of freedoms are the line integrals of the magnetic vector potential along the element edges. They are defined at the midside nodes only and there are no magnetic degrees of freedom associated with the corner nodes. The edge-flux formulation uses tree gauging (see the GAUGE command) to produce a unique solution.

In an electromagnetic analysis, the electric degree of freedom is the electric potential (VOLT) defined at each node. The element also has an option to perform an electromagnetic analysis with time-integrated electric potential.

In a stranded coil analysis, the electric degrees of freedom are the voltage drop across the coil (VOLT) and the electromotive force (EMF). In a coil region, all the VOLT and EMF degrees of freedom must be coupled using the CP command. The element has the option to perform a stranded coil analysis with time-integrated voltage drop or time-integrated electromotive force.

The element is applicable to 3-D static, time-harmonic and time-transient electromagnetic analyses. The magnetic analysis option typically is used to model air, iron, nonferrous materials and permanent magnets. The analysis is driven by the current density applied as an element body load. The electromagnetic analysis option is suitable for modeling solid (massive) conductors. The solid (massive) conductor may be voltageor current-driven, as well as circuit-fed. The electromagnetic analysis has the option to suppress the eddy current effect in time-varying analyses to model stranded conductors. The stranded coil analysis option is suitable for modeling a stranded winding with a prescribed current flow direction vector. The stranded coil may be voltage- or current-driven, as well as circuit-fed.

The following command macros can be used with SOLID237 for solution postprocessing: EMAGERR, EMFT, MMF, POWERH. See Electric and Magnetic Macros in the Low-Frequency Electromagnetic Analysis Guide for more details.

The element has nonlinear magnetic capability for modeling B-H curves or permanent magnet demagnetization curves for static and time-transient analyses. See SOLID237 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

Figure 1 SOLID237 Geometry


## SOLID237 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 1 (p. 1286). The element is defined by 10 node points and the material properties.

The type of units (MKS or user defined) is specified through the EMUNIT command. EMUNIT also determines the value of MUZRO and EPZRO. The EMUNIT defaults are MKS units and MUZRO $=4 \pi 10^{-7}$ Henry/meter and EPZRO $=8.854 \times 10^{-12}$ Farad/meter. In addition to MUZRO and EPZRO, orthotropic relative permeability and permittivity is available and is specified through the MURX, MURY, and MURZ and PERX, PERY, PERZ material options, respectively. Orthotropic resistivity is specified through RSVX, RSVY, and RSVZ material property labels. MGXX, MGYY, and MGZZ represent vector components of the coercive force for permanent magnet materials. The magnitude of the coercive force is the square root of the sum of the squares of the components. The direction of polarization is determined by the components MGXX, MGYY, and MGZZ. Permanent magnet polarization directions correspond to the element coordinate directions. The element coordinate system orientation is as described in Coordinate Systems (p. 14). Nonlinear magnetic B-H properties are entered with the TB command as described inMaterial Data Tables (Implicit Analysis) (p. 22). Nonlinear orthotropic magnetic properties may be specified with a combination of a B-H curve and linear relative permeability. The B$H$ curve will be used in each element coordinate direction where a zero value of relative permeability is specified. Only one B-H curve may be specified per material.

Nodal loads are defined with the $\mathbf{D}$ and $\mathbf{F}$ commands. For edge-based analysis, the $\mathbf{D}$ command with $L a b=$ AZ applies the edge-flux constraint to the node. Flux-parallel boundary conditions are prescribed by setting $A Z$ to zero. No AZ constraint is required to set flux-normal boundary conditions.

For massive conductors $(\operatorname{KEYOPT}(1)=1), L a b=$ VOLT is valid with the $\mathbf{D}$ command and VALUE defines the electric potential. Note that electric potential is time-integrated if $\operatorname{KEYOPT}(2)=2$. With the $\mathbf{F}$ command, Lab = AMPS and VALUE corresponds to the total current.

For stranded coils $(\operatorname{KEYOPT}(1)=2), L a b=$ VOLT is valid with the $\mathbf{D}$ command and VALUE defines the voltage drop across the coil. The $\mathbf{D}$ command with $L a b=E M F$ can be used to apply constraints on the electromotive force. Note that voltage drop and the electromotive force are time-integrated if $\operatorname{KEYOPT}(2)=2$. The total current through the coil can be applied with the $\mathbf{F}$ command using Lab $=$ AMPS.

The temperature (for material property evaluation only) body loads may be input based on their value at the element's nodes or as a single element value [BF, BFE]. In general, unspecified nodal values of temperatures default to the uniform value specified with the BFUNIF or TUNIF commands.

For modeling stranded conductors KEYOPT(1) $=0$, source current density may be applied to an area or volume [BFE or BFV] or input as an element value [BFE]. The vector components of the current density are with respect to the element coordinate system. See "SOLID237 Assumptions and Restrictions" (p. 1291) for a description of the solenoidal condition.

A summary of the element input is given in "SOLID237 Input Summary" (p. 1287). A general description of element input is given in Element Input (p. 5).

## SOLID237 Input Summary

## Nodes

I, J, K, L, M, N, O, P, Q, R

## Degrees of Freedom

See KEYOPT(1)

## Real Constants

There are no real constants for $\operatorname{KEYOPT}(1)=0$ or 1 .
The following are the real constants for $\operatorname{KEYOPT}(1)=2$ :
SC, NC, VC, TX, TY, TZ
R, SYM
See Table 1: SOLID 237 Real Constants (p. 1289) for more information.

## Material Properties

MURX, MURY, MURZ,
MGXX, MGYY, MGZZ
Nonlinear B-H curve (TB,BH)
RSVX, RSVY, RSVZ
PERX, PERY, PERZ (see "SOLID237 Assumptions and Restrictions" (p. 1291))

## Surface Loads

None

## Body Loads

## Temperature --

$\mathrm{T}(\mathrm{I}), \mathrm{T}(\mathrm{J}), \ldots, \mathrm{T}(\mathrm{P}), \mathrm{T}(\mathrm{Q}), \mathrm{T}(\mathrm{R})$
Source Current Density (valid for KEYOPT(1) = 0 only)
JSX(I), JSY(I), JSZ(I), PHASE(I),
JSX(J), JSY(J), JSZ(J), PHASE(J),

JSX(P), JSY(P), JSZ(P), PHASE(P),

JSX(Q), JSY(Q), JSZ(Q), PHASE(Q),
JSX(R), JSY(R), JSZ(R), PHASE(R)

## Special Features

Nonlinear magnetic materials.

## KEYOPT(1)

Element capability and degrees of freedom:
0 --
Magnetic:
AZ
1 --
Electromagnetic:
AZ, VOLT
2 --
Stranded coil:
AZ, VOLT, EMF

## KEYOPT(2)

Coupling method between magnetic and electric degrees of freedom $(\operatorname{KEYOPT}(1)=1$ or 2); also defines the meaning of the VOLT and EMF degrees of freedom for $\operatorname{KEYOPT}(1)=1$ or 2:

0 --
Strong (matrix) coupling. Produces an unsymmetric matrix. In a linear analysis, a coupled response is achieved after one iteration. Applicable to all analysis types

1 --
Weak (load vector). Produces a symmetric matrix and requires at least two iterations to achieve a coupled response. Applicable to static and transient analyses only. (see "SOLID237 Assumptions and Restrictions" (p. 1291))
2 --
Strong (matrix) coupling with time-integrated electric potential (VOLT) for KEYOPT(1) $=1$ (electromagnetic analysis). Produces a symmetric matrix.

Strong (matrix) coupling with time-integrated voltage drop (VOLT) and time-integrated electromotive force (EMF) for $\operatorname{KEYOPT}(1)=2$ (stranded coil analysis). Produces a symmetric matrix if the coil symmetry factor is 1 ; produces a nonsymmetric matrix if the coil symmetry factor is greater than 1.

In a linear analysis, a coupled response is achieved after one iteration. Applicable to harmonic and transient analyses only.

## KEYOPT(5)

Eddy currents in electromagnetic $(\operatorname{KEYOPT}(1)=1)$ harmonic or transient analyses:
0 --
Active
1 --
Suppressed

## KEYOPT(7)

Electromagnetic force output:

## 0 --

At each element node (corner and midside)
1 --
At element corner nodes only (midside nodes forces are condensed to the corner nodes)

## KEYOPT(8)

Electromagnetic force calculation:
0 --
Maxwell
1 --
Lorentz
Table 1 SOLID 237 Real Constants

No.	Name	Description	De-   fault	Definition
1	SC	Coil cross-sectional area	none	True physical cross-section of   the coil regardless of symmetry   modeling considerations. It in-   cludes the cross-sectional area   of the wire and the non-con-   ducting material filling the   space between the winding.
2	NC	Number of coil turns	1	Total number of winding turns   in a coil regardless of any sym-   metry modeling considerations.
3	VC	Coil volume	none	True physical volume of the coil   regardless of symmetry model-   ing considerations. It includes   the volume occupied by the   wire and the non-conducting   material filling the space   between the winding.
4	TX	Coil winding X-directional   cosine	0	The coil direction vector T $=\{$ TX,   TY, TZ\} ${ }^{\top}$ is a unit vector tangent   to the coil winding. It desig-   nates the current flow direction.
5	TY	Coil winding Y-directional   cosine	1	Coil winding Z-directional   cosine
6	TZ	Coil resistance	none	Total coil DC resistance regard-   less of any symmetry modeling   considerations.
7	R	SYM	Coil symmetry factor	1
8	Ratio of the true physical   volume of the coil (real constant   VC) to the modeled coil volume.   The input should be greater or   equal to 1.			

## SOLID237 Output Data

The solution output associated with the element is in two forms:

- Nodal degrees of freedom included in the overall nodal solution
- Additional element output as shown in Table 2: SOLID237 Element Output Definitions (p. 1290)

The element output directions are parallel to the element coordinate system. A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 2 SOLID237 Element Output Definitions

Name	Definition	$\mathbf{O}$	$\mathbf{R}$
EL	Element Number	-	Y
NODES	Nodes - I, J,.., P, Q, R	-	Y
MAT	Material number	-	Y
VOLU:	Volume	-	Y
XC, YC, ZC	Location where results are reported	-	2
TEMP	Input temperatures T(I), T(J), ..., T(P), T(Q), T(R)	-	Y
LOC	Output location (X, Y, Z)	-	-
B: X, Y, Z, SUM	Magnetic flux density components and vector mag-   nitude	-	1
H: X, Y, Z, SUM	Magnetic field intensity components and vector mag-   nitude	-	1
EF: X, Y, Z, SUM	Electric field intensity components and magnitude [7]	-	1
JC: X, Y, Z, SUM	Nodal conduction current density components and   magnitude [7]	-	1
FMAG: X, Y, Z,   SUM	Electromagnetic force components and magnitude [3]	-	1
JT: X, Y, Z, SUM	Element conduction current density components (in   the global Cartesian coordinate system) and vector   magnitude [6]	-	1
SS: X, Y, Z, SUM	Element current density components (in the global   Cartesian coordinate system) and vector magnitude [4]   [6]	-	1
JHEAT:	Joule heat generation rate per unit volume [3] [5] [6]	-	1
SENE:	Stored electromagnetic energy [3]	-	1

1. The solution value is output only if calculated (based upon input data). The element solution is at the centroid.
2. Available only at centroid as a *GET item.
3. For a time-harmonic analysis, electromagnetic forces (FMAG), Joule losses (JHEAT) and stored energy (SENE) represent time-average values. These values are stored in both the real and imaginary data sets.
4. JS represents the sum of element conduction and displacement current densities.
5. Calculated Joule heat generation rate per unit volume (JHEAT) may be made available for a subsequent thermal analysis with companion elements [LDREAD].
6. For the stranded coil analysis option $(\operatorname{KEYOPT}(1)=2)$, JT and JS are the effective current densities as they are calculated based on the coil cross-sectional (SC) that includes the wire and the non-conducting material filling the space between the winding. JHEAT represents the effective Joule heat generation rate per unit volume as it is calculated based on the modeled coil volume that includes the wire and the non-conducting material filling the space between the winding.
7. Not available with the stranded coil option $(\operatorname{KEYOPT}(1)=2)$.

Table 3: SOLID237 Item and Sequence Numbers (p. 1291) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p.9) in this manual for more information. The following notation is used in Table 3: SOLID236 Item and Sequence Numbers (p. 1282):

## Name

output quantity as defined in Table 2: SOLID237 Element Output Definitions (p. 1290)

## Item

predetermined Item label for ETABLE command
E
sequence number for single-valued or constant element data
Table 3 SOLID237 Item and Sequence Numbers

Output   Quant-   ity   Name	ETABLE and   ESOL Command   Input	
	E	
JTX	NMISC	1
JTY	NMISC	2
JTZ	NMISC	3
JTSUM	NMISC	4

## SOLID237 Assumptions and Restrictions

- The element must not have a zero volume or a zero length side. This occurs most frequently when the element is not numbered properly. Elements may be numbered either as shown in Figure 1 (p. 1286) or in an opposite fashion.
- Midside nodes may not be removed.
- The magnetic analysis option $(\operatorname{KEYOPT}(1)=0)$ requires the source current density specified with the BFE,,JS command to be solenoidal.
- Permanent magnets are not permitted in a harmonic analysis.
- The element edge-based magnetic formulation is not compatible with the edge-based analysis using SOLID117.
- It is not recommended to use the weak coupling option (KEYOPT(2) = 1 ) in a transient electromagnetic analysis with eddy currents or a transient stranded coil analysis because multiple iterations may be required to achieve convergence.
- In a transient analysis, the THETA integration parameter defaults to the values shown in the following table. You can use the TINTP command to modify the default setting.


## Table 4 THETA Default Values

Analysis Type	KEYOPT Values	THETA De-   fault Value
Strongly coupled transient electromagnetic   analysis with electric potential or stranded   coil analysis with voltage drop (VOLT)	KEYOPT(1) = 1 or 2 and KEYOPT(2) $=0$	1.0
Strongly coupled transient electromagnetic   analysis with time-integrated electric poten-   tial or stranded coil analysis with time-integ-   rated voltage drop (VOLT)	KEYOPT(1)=1 or 2 and KEYOPT(2) =	

- The electrical permittivity material input (MP,PERX, also PERY, PERZ) is applicable to electromagnetic harmonic analyses ( $\operatorname{KEYOPT}(1)=1)$ only.
- In a stranded coil $(\operatorname{KEYOPT}(1)=2)$ domain, the winding direction vector $T=\{T X, T Y, T Z\}^{\top}$ must be specified in the element coordinate system and all VOLT and EMF degrees of freedom must be coupled (CP command).
- This element may not be compatible with other elements having a VOLT degree of freedom. See Element Compatibility in the Low-Frequency Electromagnetic Analysis Guide) for more information. The electromagnetic analysis with time-integrated electric potential ( $\operatorname{KEYOPT}(2)=2$ ) cannot be used with currentbased circuit (e.g. CIRCU124) or low-frequency electric (e.g. SOLID232) elements.


## SOLID237 Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

## ANSYS Emag

- The birth and death special feature is not allowed.
MP ME <> <> <> <> <> <> <> <> <> PP <> EME MFS

Product Restrictions

## HSFLD241 Element Description

HSFLD241 is used to model fluids that are fully enclosed by solids (containing vessels). The hydrostatic fluid element is well suited for calculating fluid volume and pressure for coupled problems involving fluid-solid interaction. The pressure in the fluid volume is assumed to be uniform (no pressure gradients), so sloshing effects cannot be included. Temperature effects and compressibility may be included, but fluid viscosity cannot be included.

Hydrostatic fluid elements are overlaid on the faces of 2-D solid elements enclosing the fluid volume. See HSFLD241 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element. See HSFLD242 for a 3-D version of this element.

Figure 1 HSFLD241 Geometry


## HSFLD241 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 1 (p. 1293). The hydrostatic fluid element is defined by three or four nodes. Nodes I, J and K on the surface (face 1) are shared with the solid element and have two degrees of freedom at each node: translation in x and y directions. Node K is not used if the underlying solid element does not have a midside node. For the case of a degenerate solid element sharing the collapsed face with the hydrostatic fluid element, the surface nodes of the hydrostatic fluid element will be coincident. Node $L$ is a pressure node with a hydrostatic pressure degree of freedom. Hydrostatic fluid elements can be generated automatically using the ESURF command.

The pressure node ( L ) can be located anywhere in the fluid volume, except when the fluid volume has symmetry boundaries; in this case the pressure node must be located on the symmetry line or on the intersection point of multiple symmetry lines. The pressure node is automatically moved to the centroid of the fluid volume if there are no displacement degree-of-freedom constraints specified. To keep the pressure node on a symmetry line, you must specify symmetry boundary conditions at this node. (The displacement degrees of freedom at the pressure node do not have any displacement solution associated with them. They are only available for applying displacement degree of freedom constraints.) The pressure node is shared by all the hydrostatic fluid elements used to define the fluid volume. It is also used to apply temperature loads, fluid mass flow rate, or hydrostatic pressure degree-of-freedom constraints for the fluid.

You can define a hydrostatic fluid element without an underlying solid element in situations where the underlying solid has a discontinuity. In this case, the surface nodes (I and J) of the hydrostatic fluid element
must be shared with adjacent solid elements, or the displacement degrees of freedom at the surface nodes should be constrained. For example, the gap between the cylinder and piston in a cylinder-piston assembly with fluid may be bridged with a hydrostatic fluid element by sharing one of its surface nodes (I) with a solid element on the cylinder and its other surface node (J) with a solid element on the piston (see Example Model Using Hydrostatic Fluid Elements in the Structural Analysis Guide).

You can define material properties for hydrostatic fluid elements using MP or TB commands. All hydrostatic fluid elements sharing a pressure node must use the same material property definition and must have the same real constant values (THK and PREF).

You can input element thickness and reference pressure (must be specified for compressible gas defined via TB command with $L a b=$ FLUID and $T B O P T=G A S$ ) as real constants THK and PREF. The THK value is used to calculate element volume.

You can define the initial state of the hydrostatic fluid by defining initial pressure (input via the IC command with $L a b=H D S P)$ at the pressure node. Specify the reference temperature by using the TREF command or the MP,REFT command. For compressible gas (defined via the TB command with Lab = FLUID and TBOPT $=$ GAS), the initial pressure and the reference pressure (input as real constant PREF) are added internally to get the total initial pressure for the Ideal Gas Law. Internal force corresponding to initial pressure is calculated internally and applied over the first load step.

You can prescribe uniform pressure for the fluid as a hydrostatic pressure degree-of-freedom constraint at the pressure node (input on $\mathbf{D}$ command with Lab = HDSP). The change in hydrostatic pressure value is assumed to occur as a result of the addition or removal of fluid mass to or from the containing vessel. Applying a hydrostatic pressure degree-of-freedom constraint is equivalent to applying a surface load on the underlying solid element surface. Element loads are described in Node and Element Loads (p. 97). You can apply fluid mass flow rate as a load on the pressure node (input via F command with $L a b=D V O L$ ); a positive value indicates fluid mass flowing into the containing vessel. You can also input fluid temperature as an element body load at the pressure node (input via BF command with Lab = TEMP). The nodal temperature defaults to TUNIF.

You can model fluid flow between two fluid volumes in two containing vessels by using FLUID116 coupled thermal-fluid pipe elements to connect the pressure nodes of the fluid volumes. You must activate the PRES degree of freedom ( $\operatorname{KEYOPT}(1)=1$ ) on pressure nodes of the hydrostatic fluid elements. In addition, you must set $\operatorname{KEYOPT}(1)=3$ on the FLUID116 element.

KEYOPT(1) defines degrees of freedom for the hydrostatic fluid element:
Use KEYOPT(1) = 0 (default) to activate UX and UY degrees of freedom on the surface nodes ( $\mathrm{I}, \mathrm{J}, \mathrm{K}$ ) and HDSP degree of freedom on the pressure node (L).
Use KEYOPT(1) = 1 to activate UX, and UY degrees of freedom on surface nodes ( $\mathrm{I}, \mathrm{J}, \mathrm{K}$ ) and HDSP and PRES degrees of freedom on the pressure node (L). You must activate the PRES degree of freedom if the pressure node of the hydrostatic fluid element is shared with a coupled thermal-fluid pipe (FLUID116) element to model fluid flow.

KEYOPT(3) defines the hydrostatic fluid element behavior:
Use KEYOPT(3) $=0$ (default) to model planar behavior. The choice of plane stress or plane strain is made automatically based on the attached solid element.
Use KEYOPT(3) $=1$ to model 2-D axisymmetric behavior.
KEYOPT(5) specifies how mass is computed for the hydrostatic fluid element:

Use $\operatorname{KEYOPT}(5)=0$ (default) to ignore the mass contribution from the fluid element. However, you can attach MASS21 elements to the nodes of the underlying 2-D solid elements to account for the fluid mass. Use $\operatorname{KEYOPT}(5)=1$ to distribute the fluid element mass to the surface nodes $(I, J, K)$ based on the volume of the fluid element. No mass is added to the surface nodes if the volume of the fluid element becomes negative.
Use $\operatorname{KEYOPT}(5)=2$ to distribute the fluid element mass to the surface nodes $(I, J, K)$ based on the ratio of element surface area (area of face 1) to the total fluid surface area.

KEYOPT(6) defines the hydrostatic fluid element compressibility:
Use KEYOPT(6) = 0 (default) to model the hydrostatic fluid element as compressible. You need to define a fluid material property (use the TB command with $L a b=$ FLUID) to relate changes in fluid pressure to fluid volume.
Use KEYOPT(6) = 1 to model the hydrostatic fluid element as incompressible. The fluid volume is kept constant, even as the solid enclosing the fluid undergoes large deformations. The fluid volume, however, can change when fluid mass is added to or taken out of the containing vessel; this is achieved by applying a fluid mass flow rate or by prescribing a non-zero hydrostatic pressure degree-of-freedom constraint at the pressure node. The fluid volume can also change when a temperature load is applied at the pressure node for a fluid with a non-zero coefficient of thermal expansion.

You can define contact and target surfaces on the attached 2-D solid elements to model self-contact between walls of the containing vessel after the fluid has been removed. Note that contact should not cause a single fluid region to be separated into two since the pressure-volume calculations are performed assuming a single cavity.

For more information on using hydrostatic fluid elements to model fluids enclosed by solids, see "Modeling Hydrostatic Fluids" in the Structural Analysis Guide.
"HSFLD241 Input Summary" (p. 1295) contains a summary of the element input. See Element Input (p.5) in this document for a general description of element input.

## HSFLD241 Input Summary

## Nodes

I, J, K, L

## Degrees of Freedom

UX, UY for surface nodes (I, J, K)
HDSP and PRES for pressure node (L)

## Real Constants

THK - Thickness
PREF - Reference pressure for compressible gas defined via TB command with Lab = FLUID and TBOPT = GAS

## Material Properties

ALPX, DENS (MP command)
FLUID (TB command)

## Surface Loads

None

## Body Loads

Temperatures --
T(L)

## Special Features

Nonlinear
Large deflection

## KEYOPT(1)

Degrees of freedom:
0 --
UX and UY degrees of freedom at surface nodes, HDSP degree of freedom at pressure node (default)
1 --
UX and UY degrees of freedom at surface nodes, HDSP and PRES degrees of freedom at pressure node

## KEYOPT(3)

Element behavior:
0 --
Planar (default)
1 --
Axisymmetric

## KEYOPT(5)

Fluid mass:
0 --
No fluid mass (default)
1 --
Fluid mass calculated based on the volume of the fluid element
2 --
Fluid mass calculated based on the surface area of the fluid element

## KEYOPT(6)

Fluid compressibility:
0 --
Compressible (default)
1 --
Incompressible

## HSFLD241 Output Data

The solution output associated with the element is in two forms:

- Nodal degrees of freedom included in the overall nodal solution
- Additional element output as shown in Table 1: HSFLD241 Element Output Definitions (p. 1297)

A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " $Y$ " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 1 HSFLD241 Element Output Definitions

Name	Definition	$\mathbf{O}$	R
EL	Element Number	Y	Y
NODES	Nodes $-\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}$	Y	Y
MAT	Material number	Y	Y
AREA	Element surface area (face 1)	Y	Y
VOLU	Element volume	Y	Y
XC, YC	Location on the surface (face 1) where results are repor-   ted	Y	1
DENSITY	Fluid density	Y	Y
TEMP	Temperature at nodes: T(I), T(J), T(K), T(L)	Y	Y
TVOL	Total volume of the fluid in the containing vessel	2	2
TMAS	Total mass of the fluid in the containing vessel	3	3
MFLO	Fluid mass flow rate	4	4
TVOLO	Total original volume of the fluid in the containing   vessel	2	2

1. Available only at centroid as a *GET item.
2. Elements that share a pressure node have the same TVOL and TVOLO output value.
3. Elements that share a pressure node have the same TMAS output value.
4. Elements that share a pressure node have the same MFLO output value.

Table 2: HSFLD241 Item and Sequence Numbers (p. 1298) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p.9) in this manual for more information. The following notation is used in Table 2: HSFLD241 Item and Sequence Numbers (p. 1298):

## Name

output quantity as defined in Table 1: HSFLD241 Element Output Definitions (p. 1297)

## Item

predetermined Item label for ETABLE command

## E

sequence number for single-valued or constant element data
Table 2 HSFLD241 Item and Sequence Numbers

Output Quantity   Name	ETABLE and   ESOL Command   Input	
	Item	E
DENSITY	NMISC	1
AREA	NMISC	2
TVOL	NMISC	3
TMAS	NMISC	4
MFLO	NMISC	5
TVOLO	NMISC	6

## HSFLD241 Assumptions and Restrictions

- The fluid volume has no free surface; it is completely enclosed by the solid (containing vessel).
- The fluid volume has uniform pressure, temperature, and density without any gradients.
- All elements used to define a fluid volume share a pressure node with a hydrostatic pressure degree of freedom.
- The pressure node can be located anywhere within the fluid volume; it is automatically moved to the centroid of the fluid volume if there are no displacement degree-of-freedom constraints specified. However, if the fluid volume is bounded by one or more symmetry lines, the pressure node must be on the symmetry line or intersecting corner of multiple symmetry lines, and it must have symmetry boundary conditions.
- The fluid may be modeled as incompressible or compressible without any viscosity.
- The PRES degree of freedom must be active $(\operatorname{KEYOPT}(1)=1)$ on the pressure node of the hydrostatic fluid element to model fluid flow with FLUID116 coupled thermal-fluid pipe elements. In this case, the PRES (pressure) and HDSP (hydrostatic pressure) degrees of freedom are made to be the same at the pressure node.
- Inertial effects such as sloshing cannot be included, but fluid mass can be added to the surface nodes ( $I, J, K$ ) shared with the underlying 2-D solid by using KEYOPT(5).
- This element can be used in linear and nonlinear static and transient analyses and modal analyses.


## HSFLD241 Product Restrictions

There are no product-specific restrictions for this element.
MP ME <> <> <> <> <> <> <> <> <> PP <> EME MFS

Product Restrictions

## HSFLD242 Element Description

HSFLD242 is used to model fluids that are fully enclosed by solids (containing vessels). The hydrostatic fluid element is well suited for calculating fluid volume and pressure for coupled problems involving fluid-solid interaction. The pressure in the fluid volume is assumed to be uniform (no pressure gradients), so sloshing effects cannot be included. Temperature effects and compressibility may be included, but fluid viscosity cannot be included.

Hydrostatic fluid elements are overlaid on the faces of 3-D solid or shell elements enclosing the fluid volume. See HSFLD242 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element. See HSFLD241 for a 2-D version of this element.

Figure 1 HSFLD242 Geometry


## HSFLD242 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 1 (p. 1299). The hydrostatic fluid element is defined by five to nine nodes. Nodes $I, J, K, L, M, N, O$, and $P$ on the surface (face 1) are shared with the solid or shell element and have three degrees of freedom at each node: translation in $x, y$, and $z$ directions. Nodes $M, N, O$, and $P$ are not used if the underlying solid or shell element does not have midside nodes. For the case of a degenerate solid or shell element sharing the collapsed face with the hydrostatic fluid element, some of the surface nodes of the hydrostatic fluid element will be coincident. Node Q is a pressure node with a hydrostatic pressure degree of freedom. Hydrostatic fluid elements can be generated automatically using the ESURF command.

The pressure node $(\mathrm{Q})$ can be located anywhere in the fluid volume, except when the fluid volume has symmetry boundaries; in this case the pressure node must be located on the symmetry plane or on the intersection point or edge of multiple symmetry planes. The pressure node is automatically moved to the centroid of the fluid volume if there are no displacement degree-of-freedom constraints specified. To keep the pressure node on a symmetry line, you must specify symmetry boundary conditions at this node. (The displacement degrees of freedom at the pressure node do not have any displacement solution associated with them. They are only available for applying displacement degree of freedom constraints.) The pressure
node is shared by all the hydrostatic fluid elements used to define the fluid volume. It is also used to apply temperature loads, fluid mass flow rate, or hydrostatic pressure degree-of-freedom constraints for the fluid.

You can define a hydrostatic fluid element without an underlying solid or shell element in situations where the underlying solid has a discontinuity. In this case, the surface nodes (I through P) of the hydrostatic fluid element must be shared with adjacent solid or shell elements, or the displacement degrees of freedom at the surface nodes should be constrained. For example, the gap between the cylinder and piston in a cylinderpiston assembly with fluid may be bridged with a hydrostatic fluid element by sharing some of its surface nodes with a solid or shell element on the cylinder and sharing its other surface nodes with a solid or shell element on the piston (see Example Model Using Hydrostatic Fluid Elements in the Structural Analysis Guide).

You can define material properties for hydrostatic fluid elements using MP or TB commands. All hydrostatic fluid elements sharing a pressure node must use the same material property definition and must have the same real constant values (PREF).

You can input a reference pressure (must be specified for compressible gas defined via TB command with Lab $=$ FLUID and $T B O P T=$ GAS) as real constant PREF.

You can define the initial state of the hydrostatic fluid by defining initial pressure (input via the IC command with $L a b=$ HDSP) at the pressure node. Specify the reference temperature by using the TREF command or the MP,REFT command. For compressible gas (defined via the TB command with Lab = FLUID and TBOPT $=$ GAS), the initial pressure and the reference pressure (input as real constant PREF) are added internally to get the total initial pressure for the Ideal Gas Law. Internal force corresponding to initial pressure is calculated internally and applied over the first load step.

You can prescribe uniform pressure for the fluid as a hydrostatic pressure degree-of-freedom constraint at the pressure node (input via the $\mathbf{D}$ command with Lab = HDSP). The change in hydrostatic pressure value is assumed to occur as a result of the addition or removal of fluid mass to or from the containing vessel. Applying a hydrostatic pressure degree-of-freedom constraint is equivalent to applying a surface load on the underlying solid or shell element surface. Element loads are described in Node and Element Loads (p. 97). You can apply a fluid mass flow rate as a load on the pressure node (input via the $\mathbf{F}$ command with $L a b=$ DVOL); a positive value indicates fluid mass flowing into the containing vessel. You can also input fluid temperature as an element body load at the pressure node (input via the BF command with Lab = TEMP). The nodal temperature defaults to TUNIF.

You can model fluid flow between two fluid volumes in two containing vessels by using FLUID116 coupled thermal-fluid pipe elements to connect the pressure nodes of the fluid volumes. You must activate the PRES degree of freedom $(\operatorname{KEYOPT}(1)=1)$ on pressure nodes of the hydrostatic fluid elements. In addition, you must set $\operatorname{KEYOPT}(1)=3$ on the FLUID116 element.

KEYOPT(1) defines degrees of freedom for the hydrostatic fluid element:
Use $\operatorname{KEYOPT}(1)=0$ (default) to activate UX, UY, and UZ degrees of freedom on the surface nodes (I through P) and HDSP degree of freedom on the pressure node (Q).
Use KEYOPT(1) = 1 to activate UX, UY, and UZ degrees of freedom on surface nodes (I through P) and HDSP and PRES degrees of freedom on the pressure node (Q). You must activate the PRES degree of freedom if the pressure node of the hydrostatic fluid element is shared with a coupled thermal-fluid pipe (FLUID116) element to model fluid flow. In this case, you must also set $\operatorname{KEYOPT}(1)=3$ on the FLUID116 element.

KEYOPT(5) specifies how mass is computed for the hydrostatic fluid element:

Use $\operatorname{KEYOPT}(5)=0$ (default) to ignore the mass contribution from the fluid element. However, you can attach MASS21 elements to the nodes of the underlying 3-D solid or shell elements to account for the fluid mass.
Use KEYOPT(5) = 1 to distribute the fluid element mass to the surface nodes (I through P) based on the volume of the fluid element. No mass is added to the surface nodes if the volume of the fluid element becomes negative.
Use KEYOPT(5) $=2$ to distribute the fluid element mass to the surface nodes (I through P) based on the ratio of element surface area (area of face 1) to the total fluid surface area.

KEYOPT(6) defines the hydrostatic fluid element compressibility:
Use KEYOPT(6) $=0$ (default) to model the hydrostatic fluid element as compressible. You need to define a fluid material property (use the TB command with $L a b=$ FLUID) to relate changes in fluid pressure to fluid volume.
Use $\operatorname{KEYOPT}(6)=1$ to model the hydrostatic fluid element as incompressible. The fluid volume is kept constant, even as the solid enclosing the fluid undergoes large deformations. The fluid volume, however, can change when fluid mass is added to or taken out of the containing vessel; this is achieved by applying a fluid mass flow rate or by prescribing a non-zero hydrostatic pressure degree-of-freedom constraint at the pressure node. The fluid volume can also change when a temperature load is applied at the pressure node for a fluid with a non-zero coefficient of thermal expansion.

You can define contact and target surfaces on the underlying 3-D solid or shell elements to model selfcontact between walls of the vessel after the fluid has been removed. Note that contact should not cause a single fluid region to be separated into two since the pressure-volume calculations are performed assuming a single cavity.

For more information on using hydrostatic fluid elements to model fluids enclosed by solids, see "Modeling Hydrostatic Fluids" in the Structural Analysis Guide.
"HSFLD242 Input Summary" (p. 1301) contains a summary of the element input. See Element Input (p.5) in this document for a general description of element input.

## HSFLD242 Input Summary

## Nodes

I, J, K, L, M, N, O, P, Q

## Degrees of Freedom

UX, UY, UZ for surface nodes (I, J, K, L, M, N, O, P)
HSDP and PRES for pressure node (Q)

## Real Constants

PREF - Reference pressure for compressible gas defined via TB command with Lab = FLUID and TBOPT = GAS

## Material Properties

ALPX, DENS (MP command)
FLUID (TB command)

## Surface Loads

None

## Body Loads

Temperatures --
T(Q)

## Special Features

Nonlinear
Large deflection

## KEYOPT(1)

Degrees of freedom:
0 --
UX, UY, and UZ degrees of freedom at surface nodes, HDSP degree of freedom at pressure node (default)

1 --
UX, UY, and UZ degrees of freedom at surface nodes, HDSP and PRES degrees of freedom at pressure node

## KEYOPT(5)

Fluid mass:
0 --
No fluid mass (default)
1 --
Fluid mass calculated based on the volume of the fluid element
2 --
Fluid mass calculated based on the surface area of the fluid element

## KEYOPT(6)

Fluid compressibility:
0 --
Compressible (default)
1 --
Incompressible

## HSFLD242 Output Data

The solution output associated with the element is in two forms:

- Nodal degrees of freedom included in the overall nodal solution
- Additional element output as shown in Table 1: HSFLD242 Element Output Definitions (p. 1303)

A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " $Y$ " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 1 HSFLD242 Element Output Definitions

Name	Definition	$\mathbf{O}$	$\mathbf{R}$
EL	Element Number	Y	Y
NODES	Nodes $-\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}, \mathrm{M}, \mathrm{N}, \mathrm{O}, \mathrm{P}$	Y	Y
MAT	Material number	Y	Y
AREA	Element surface area (face 1)	Y	Y
VOLU	Element volume	Y	Y
XC, YC, ZC	Location on the surface (face 1) where results are repor-   ted	Y	1
DENSITY	Fluid density	Y	Y
TEMP	Temperature at nodes: $\mathrm{T}(\mathrm{I}), \mathrm{T}(\mathrm{J}), \mathrm{T}(\mathrm{K}), \mathrm{T}(\mathrm{L}), \mathrm{T}(\mathrm{M}), \mathrm{T}(\mathrm{N})$,   $\mathrm{T}(\mathrm{O}), \mathrm{T}(\mathrm{P}), \mathrm{T}(\mathrm{Q})$	Y	Y
TVOL	Total volume of the fluid in the containing vessel	2	2
TMAS	Total mass of the fluid in the containing vessel	3	3
MFLO	Fluid mass flow rate	4	4
TVOLO	Total original volume of the fluid in the containing   vessel	2	2

1. Available only at centroid as a *GET item.
2. Elements that share a pressure node have the same TVOL and TVOLO output values.
3. Elements that share a pressure node have the same TMAS output value.
4. Elements that share a pressure node have the same MFLO output value.

Table 2: HSFLD242 Item and Sequence Numbers (p. 1304) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p.9) in this manual for more information. The following notation is used in Table 2: HSFLD242 Item and Sequence Numbers (p. 1304):

## Name

output quantity as defined in Table 1: HSFLD242 Element Output Definitions (p. 1303)

## Item

predetermined Item label for ETABLE command

## E

sequence number for single-valued or constant element data
Table 2 HSFLD242 Item and Sequence Numbers

Output Quantity   Name	ETABLE and   ESOL Command   Input	
	Item	E
DENSITY	NMISC	1
AREA	NMISC	2
TVOL	NMISC	3
TMAS	NMISC	4
MFLO	NMISC	5
TVOLO	NMISC	6

## HSFLD242 Assumptions and Restrictions

- The fluid volume has no free surface; it is completely enclosed by the solid (containing vessel).
- The fluid volume has uniform pressure, temperature, and density without any gradients.
- All elements used to define a fluid volume share a pressure node with a hydrostatic pressure degree of freedom.
- The pressure node can be located anywhere within the fluid volume; it is automatically moved to the centroid of the fluid volume if there are no displacement degree-of-freedom constraints specified. However, if the fluid volume is bounded by one or more symmetry lines, the pressure node must be on the symmetry plane, intersecting point, or edge of multiple symmetry planes, and it must have symmetry boundary condition.
- The fluid may be modeled as incompressible or compressible without any viscosity.
- The PRES degree of freedom must be active $(\operatorname{KEYOPT}(1)=1)$ on the pressure node of the hydrostatic fluid element to model fluid flow with FLUID116 coupled thermal-fluid pipe elements. In this case, the PRES (pressure) and HDSP (hydrostatic pressure) degrees of freedom are made to be the same at the pressure node.
- Inertial effects such as sloshing cannot be included, but fluid mass can be added to the surface nodes (I through P) shared with the underlying 3-D solid or shell elements by using KEYOPT(5).
- This element can be used in linear and nonlinear static and transient analyses and modal analyses.


## HSFLD242 Product Restrictions

There are no product-specific restrictions for this element.

## SURF251

## 2-D Radiosity Surface

MP ME <> PR PRN <> <> <> <> <> <> PP <> EME MFS

## SURF251 Element Description

SURF251 is used for radiation surface loads and can be used only with the radiosity solver method. It can be overlaid onto a face of any 2-D thermal solid element that supports temperature DOF, except FLUID141 elements. This element is applicable to 2-D thermal analyses (planar or axisymmetric). Various other loads and surface effects may exist simultaneously (e.g., SURF151 and SURF153 and SURF251 may be applied on the same solid element faces to support convection heat flux and radiation heat flux loads).

This element can be created only by the RSURF command. The underlying solid surface must also have the RDSF flag.

Figure 1 SURF251 Geometry


## SURF251 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 1 (p. 1305). The element is defined by two nodes, regardless of the underlying solid element.

You would typically generate SURF251 elements via the RSURF command, creating elements which are coincident with the solid element surface. However, if you are using decimation (RDEC), then the surface elements created will not coincide with the underlying solid element topology. See Figure 2 (p. 1306). Symmetrical SURF251 elements (produced when using the symmetry options [RSYMM]) can have no underlying solid elements. The RSURF command always produces extra nodes to define the SURF251 topology as shown in Figure 2 (p. 1306), regardless if RDEC is used.

Figure 2 SURF251 Elements Without Coincident Nodes


You cannot apply any loads on this element. During solution, the element extracts the temperature of the solid element and computes the radiation heat flux, which is transferred back as a surface load to the solid element.

The next table summarizes the element input. Element Input (p. 5) gives a general description of element input.

## SURF251 Input Summary

## Element Name

SURF251

## Nodes

I, J
Degrees of Freedom
None

## Real Constants

None

## Material Properties

None

## Surface Loads

None

## Body Loads

None

## Special Features

None

## KEYOPTS

None

## SURF251 Output Data

Table 1: SURF251 Item and Sequence Numbers for the ETABLE and ESOL Commands (p. 1307) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p. 9) in this manual for more information. The following notation is used in Table 3: SURF151 Item and Sequence Numbers (p. 626):

## Name

output quantity as defined in Table 1: SURF251 Item and Sequence Numbers for the ETABLE and ESOL Commands (p. 1307)

## Item

predetermined Item label for ETABLE command
E
sequence number for single-valued or constant element data
I,J
sequence number for data at nodes I and J
Table 1 SURF251 Item and Sequence Numbers for theETABLE and ESOL Commands

Name	Item	E
CENTROID X	NMISC	1
CENTROID Y	NMISC	2
CENTROID Z	NMISC	3
AREA	NMISC	4
TEMP	NMISC	5
EMISSIVITY	NMISC	6
Net radiation heat flux	NMISC	7
Emitted radiation heat flux	NMISC	8
Reflected radiation heat flux	NMISC	9
Incident radiant heat flux	NMISC	10
Enclosure No.	NMISC	18

The net radiation heat flux is the sum of the directly emitted radiation flux $\left[\varepsilon \sigma T^{4}\right]$ plus the reflected radiation flux $\left[(1-\varepsilon) q_{i}\right]$ minus the incoming radiation $\left[q_{i}\right]$, as shown in Figure 3 (p. 1308).

Figure 3 Net Radiation Heat Flux


Net outgoing radiant heat flux $=\varepsilon \sigma \mathrm{T}^{4}+(1-\varepsilon) \mathrm{q}_{\mathrm{i}}-\mathrm{q}_{\mathrm{i}}$


## SURF251 Assumptions and Restrictions

- The element must not have a zero length.
- This element cannot be used in a distributed solution.


## SURF251 Product Restrictions

None

## SURF252

3-D Thermal Radiosity Surface
MP ME <> PR PRN <> <> <> <> <> <> PP <> EME MFS

## SURF252 Element Description

SURF252 is used for radiation surface loads and can be used only with the radiosity solver method. It can be overlaid onto a face of any 3-D thermal solid or shell element that supports temperature DOF, except FLUID142 elements. This element is applicable to 3-D thermal analyses. Various other loads and surface effects may exist simultaneously (e.g., SURF152 and SURF154 and SURF252 may be applied on the same solid element faces to support convection heat flux and radiation heat flux loads).

This element can be created only by the RSURF command. The surface must also have the RDSF flag.

## Figure 1 SURF252 Geometry



## SURF252 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 1 (p. 1309). The element is defined by three or four nodes, regardless of the underlying solid element.

You would typically generate SURF252 elements via the RSURF command, creating elements which are coincident with the solid element surface. However, if you are using decimation (RDEC), then the surface elements created will not coincide with the underlying solid element topology. See Figure 2 (p. 1310). Symmetrical SURF252 elements (produced when using the symmetry options [RSYMM]) will have no underlying solid elements. The RSURF command always produces extra nodes to define the SURF252 topology as shown in Figure 2 (p. 1310), regardless if RDEC is used.

Figure 2 SURF252 Elements Without Coincident Nodes


You cannot apply any loads on this element. During solution, the element extracts the temperature of the solid element and computes the radiation heat flux, which is transferred back as a surface load to the solid element.

The next table summarizes the element input. Element Input (p. 5) gives a general description of element input.

## SURF252 Input Summary

## Element Name

SURF252

## Nodes

I, J, K, L
Degrees of Freedom
None

## Real Constants

None

## Material Properties

None

## Surface Loads

None

## Body Loads

None

## Special Features

None

## KEYOPTS

None

## SURF252 Output Data

Table 1: SURF252 Item and Sequence Numbers for the ETABLE and ESOL Commands (p.1311) lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p. 9) in this manual for more information. The following notation is used in Table 3: SURF151 Item and Sequence Numbers (p. 626):

## Name

output quantity as defined in Table 1: SURF252 Item and Sequence Numbers for the ETABLE and ESOL Commands (p. 1311)

## Item

predetermined Item label for ETABLE command
E
sequence number for single-valued or constant element data
I,J
sequence number for data at nodes I and J
Table 1 SURF252 Item and Sequence Numbers for theETABLE and ESOL Commands

Name	Item	E
CENTROID X	NMISC	1
CENTROID Y	NMISC	2
CENTROID Z	NMISC	3
AREA	NMISC	4
TEMP	NMISC	5
EMISSIVITY	NMISC	6
Net radiation heat flux	NMISC	7
Emitted radiation heat flux	NMISC	8
Reflected radiation heat flux	NMISC	9
Incident radiant heat flux	NMISC	10
Enclosure No.	NMISC	18

The net radiation heat flux is the sum of the directly emitted radiation flux $\left[\varepsilon \sigma T^{4}\right]$ plus the reflected radiation flux $\left[(1-\varepsilon) q_{i}\right]$ minus the incoming radiation $\left[q_{i}\right]$, as shown in Figure 3 (p. 1312).

Figure 3 Net Radiation Heat Flux


Net outgoing radiant heat flux $=\varepsilon \sigma \mathrm{T}^{4}+(1-\varepsilon) \mathrm{q}_{\mathrm{i}}-\mathrm{q}_{\mathrm{i}}$


## SURF252 Assumptions and Restrictions

- The element must not have a zero length.
- This element cannot be used in a distributed solution.


## SURF252 Product Restrictions

None

## REINF263

## 2-D Smeared Reinforcing

MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS
Product Restrictions

## REINF263 Element Description

Use REINF263 with standard 2-D solid and shell elements (referred to here as the base elements) to provide extra reinforcing to those elements.

The element uses a smeared approach and is suitable for modeling evenly spaced reinforcing fibers that appear in layered form. Each reinforcing layer contains a cluster of fibers with unique orientation, material, and cross-section area, and is simplified as a homogenous membrane having unidirectional stiffness. You can specify multiple layers of reinforcing in one REINF263 element. The nodal locations, degrees of freedom, and connectivity of the REINF263 element are identical to those of the base element.

REINF263 has plasticity, stress stiffening, creep, large deflection, and large strain capabilities. See REINF263 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

Figure 1 REINF263 Geometry


Figure 2 REINF263 Coordinate System

$\mathrm{X}=$ Layer x -axis if layer orientation angle $\theta$ is specified (SECDATA,,,,THETA)
$X_{0}=$ Layer $x$-axis if layer orientation angle $\theta$ is not specified

## REINF263 Input Data

The geometry and nodal locations for this element are shown in Figure 1 (p.1313). The REINF263 element and its base element share the same nodes and element connectivity.

You can easily create REINF263 elements from the selected base elements via the EREINF command. Section commands (SECTYPE and SECDATA) define the material ID, cross-section area, spacing, location, and orientation of reinforcing fibers.

The equivalent thickness $h$ of the smeared reinforcing layer is given by

$$
h=A / S
$$

where $A$ is the cross-section area of a single fiber, and $S$ is the distance between two adjacent fibers.
The coordinate systems for one reinforcing layer are shown in Figure 2 (p. 1314). Each reinforcing layer is indicated by its intersection points (II, JJ for linear base elements, and II, JJ, KK, for quadratic base elements) with the base elements. Fibers in this layer are always parallel to the first coordinate axis x . The x axis is default to the first parametric direction S1 at the center of the layer. The default axis is defined as

$$
S_{1}=\frac{\partial\{x\}}{\partial s} /\left(\left|\frac{\partial\{x\}}{\partial s}\right|\right)
$$

where
$\{x\}=h_{1}\{x\}^{I I}+h_{2}\{x\}^{J J}+h_{3}\{x\}^{\text {KK }}$
$\{x\}^{I I},\{x\}^{J J},\{x\}^{\text {KK }}=$ global coordinates of intersection points

$$
h_{1}, h_{2}, h_{3}=\text { line shape functions }
$$

You can reorient the layer coordinate system by angle $\theta$ (in degrees) for each layer. The value of $\theta$ is also provided for each layer via the SECDATA command. For more information about visualizing fiber orientations, see the /PSYMB command documentation.

You can use REINF263 to reinforce 2-D solid elements with plane stress, plane strain, axisymmetric, and generalized plane strain behaviors, and axisymmetric shells/membranes with or without uniform torsion capability. The element accounts for various base element behaviors automatically.

REINF263 allows tension-only or compression-only reinforcing fibers. You can specify the desired fiber behavior (SECCONTROLS).

The REINF263 element does not accept element loading. Apply element loading only to the base element. The temperature of the REINF263 element is identical to the temperature of the base element.

You can import an initial stress state for this element (INISTATE). For more information, see "Initial State" in the Basic Analysis Guide.

A summary of the element input follows.

## REINF263 Input Summary

## Nodes

Same as those of the base element, as shown:

Base Element	REINF263 Nodes
2-D 4-Node Solid	I,J,K,L
2-D 8-Node Solid	I,J,K,L,M,N,O,P
2-D 2-Node Axisymmetric Shell	I,J
2-D 3-Node Axisymmetric Shell	$1, J, \mathrm{~K}$

## Degrees of Freedom

Same as those of the base element, as shown:

Base Element	REINF263 DOFs
2-D 4-Node or 8-Node Solid	UX, UY
2-D 2-Node Axisymmetric Shell	UX, UY, ROTZ
2-D 2-Node Axisymmetric Membrane	UX,UY
2-D 2-Node Axisymmetric Shell Allowing   Uniform Torsion	UX,UY,UZ, ROTX
2-D 2-Node Axisymmetric Membrane Al-   lowing Uniform Torsion	UX,UY,UZ

## Real Constants

None

## Material Properties

EX, (PRXY or NUXY), ALPX (or CTEX or THSX), DENS, GXY, DAMP

## Surface Loads

None

## Body Loads

Temperatures --
Same as those of the base element

## Special Features

```
Plasticity
Viscoelasticity
Viscoplasticity
Creep
Stress stiffening
Large deflection
Large strain
Initial state
Birth and death
Supports the following types of data tables associated with the TB command: BISO, MISO, NLISO, BKIN, MKIN, KINH, CHABOCHE, HILL, RATE, CREEP, PRONY, SHIFT, PLASTIC, and USER.
```

See "Structures with Material Nonlinearities" in the Theory Reference for the Mechanical APDL and Mechanical Applications for details about the material models.

## KEYOPTS

None

## REINF263 Output Data

The solution output associated with the element is in two forms:

- Nodal displacements included in the overall nodal solution
- Additional element output as shown in Table 1: REINF263 Element Output Definitions (p. 1317).

The following figure illustrates the axial stress component:

## Figure 3 REINF263 Stress Output



Unlike layered solid or shell elements (such as SHELL181), REINF263 always outputs the element solution for all reinforcing layers. You can select solution items for a specific reinforcing layer (LAYER) for listing and visualization by using full graphics (/GRAPHICS,FULL). Visualization via PowerGraphics (/GRAPHICS,POWER) is not affected by the LAYER command; all reinforcing layers are displayed simultaneously. See the Basic Analysis Guide for ways to review results.

To inspect REINF263 element results, select only REINF263 element results or adjust translucency level of the base elements before executing any plotting command. REINF263 display options are also available directly via the GUI (Main Menu> Preprocessor> Sections> Reinforcing> Display Options).

## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " $Y$ " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 1 REINF263 Element Output Definitions

Name	Definition	$\mathbf{O}$	$\mathbf{R}$
EL	Element number and name	-	Y
NODES	Nodes (as shown in "REINF263 Input Summary")	-	Y
MAT	Material number	-	Y
AREA	Averaged cross-section area of reinforcing fibers	-	Y
SPACING	Averaged distance between two adjacent fibers	-	Y
VOLU:	Volume	-	Y
XC, YC, ZC	Center location	-	3


Name	Definition	$\mathbf{0}$	$\mathbf{R}$
TEMP	T1, T2 for reinforcing layer 1; T3, T4 for reinforcing   layer 2; ending with temperatures for the last rein-   forcing layer NL (2*NL maximum)	-	Y
S:X	Axial stresses	2	Y
EPEL:X	Axial elastic strains	2	Y
EPTH:X	Axial thermal strains	2	Y
EPPL:X	Axial plastic strains	2	1
EPCR:X	Axial creep strains	2	1
EPTO:X	Total axial mechanical strains (EPEL + EPPL + EPCR)	Y	-
EPTT:X	Total axial strains (EPEL + EPPL + EPCR + EPTH)	Y	-
NL:EPEQ	Accumulated equivalent plastic strain	-	1
NL:CREQ	Accumulated equivalent creep strain	-	1
NL:SRAT	Plastic yielding (1 = actively yielding, $0=$ not yield-   ing)	-	1
NL:PLWK	Plastic work	-	1
N11	Averaged axial force	-	Y
LOCI:X, Y, Z	Integration point locations	-	4

1. Nonlinear solution output if the element has a nonlinear material.
2. Stresses, total strains, plastic strains, elastic strains, creep strains, and thermal strains in the element coordinate system are available for output.
3. Available only at centroid as a *GET item.
4. Available only if OUTRES,LOCI is used.

Table 2: REINF263 Item and Sequence Numbers (p. 1318) lists output available via ETABLE using the Sequence Number method. See Creating an Element Table in the Basic Analysis Guide and The Item and Sequence Number Table (p. 9) in this document for more information. The following notation is used in Table 2: REINF263 Item and Sequence Numbers (p. 1318):

## Name

output quantity as defined in Table 1: REINF263 Element Output Definitions (p. 1317)

## Item

predetermined Item label for ETABLE
E
sequence number for single-valued or constant element data
Table 2 REINF263 Item and Sequence Numbers

Output   Quant-   ity   Name	ETABLE and ESOL Command   Input	
	E	
N11	SMISC	$(i-1) * 3+1$


Output   Quant-   ity   Name	ETABLE and ESOL Command   Input	
	SMISC	$(\mathrm{i}-1) * 3+2$
SPA-   CING	SMISC	$(\mathrm{i}-1) * 3+3$

The $i$ value (where $i=1,2,3, \ldots, N L$ ) represents the reinforcing layer number of the element. $N L$ is the maximum reinforcing layer number.

## REINF263 Assumptions and Restrictions

- Zero-volume elements are invalid.
- This element can be used only with base element types SHELL208, SHELL209, PLANE182, and PLANE183.
- A valid base element must be present for each REINF263 element.
- The reinforcing element is firmly attached to its base element. No relative movement between the reinforcing element and the base is allowed.
- Through-thickness reinforcing is not permitted in shells and layered solid elements.
- Stress stiffening is always included in geometrically nonlinear analyses (NLGEOM,ON). You can also activate prestress effects (PSTRES).
- To simulate tension-/compression-only reinforcing fibers, a nonlinear iterative solution approach is necessary.


## REINF263 Product Restrictions

None.

## REINF264

3-D Discrete Reinforcing
MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS
Product Restrictions

## REINF264 Element Description

Use REINF264 with standard 3-D link, beam, shell and solid elements (referred to here as the base elements) to provide extra reinforcing to those elements.

The element is suitable for simulating reinforcing fibers with arbitrary orientations. Each fiber is modeled separately as a spar that has only uniaxial stiffness. You can specify multiple reinforcing fibers in one REINF264 element. The nodal locations, degrees of freedom, and connectivity of the REINF264 element are identical to those of the base element.

For smeared reinforcing modeling options, use the REINF263 and REINF265 elements.
REINF264 has plasticity, stress stiffening, creep, large deflection, and large strain capabilities. See REINF264 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

## Figure 1 REINF264 Geometry



3-D 8-Node Solid or Solid Shell


3-D 20-Node Solid

3-D 4-Node Tetrahedral Solid

3-D 10-Node Tetrahedral Solid


> 3-D 4-Node Shell

3-D 2-Node Beam
3-D 8-Node Shell


3-D 3-Node Beam


3-D 2-Node Spar

Figure 2 REINF264 Coordinate System


## REINF264 Input Data

The geometry and nodal locations for this element are shown in Figure 1 (p. 1321). The REINF264 element and its base element share the same nodes and element connectivity. Each reinforcing fiber is indicated by its intersection points (II, JJ for linear base elements, and II, JJ, KK for quadratic base elements) with the base elements.

You can easily create REINF264 elements from the selected base elements (EREINF). Section commands (SECTYPE and SECDATA) define the material ID, cross-section area, and location of reinforcing fibers.

REINF264 allows tension-only or compression-only reinforcing fibers. You can specify the desired fiber behavior (SECCONTROLS).

The coordinate system for one reinforcing fiber is shown in Figure 2 (p. 1323). The coordinate system is solely determined by intersection points $\mathrm{II}, \mathrm{JJ}$, and KK ; therefore, the element coordinate system (/PSYMB,ESYS) is not relevant for this element.

The REINF264 element does not accept element loading. Apply element loading only to the base element. The temperature of the REINF264 element is identical to the temperature of the base element.

You can import an initial stress state for this element (INISTATE). For more information, see "Initial State" in the Basic Analysis Guide.

A summary of the element input follows.

## REINF264 Input Summary

## Nodes

Same as those of the base element, as shown:

Base Element	REINF264 Nodes
3-D 8-Node Solid or Solid Shell	$\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}, \mathrm{M}, \mathrm{N}, \mathrm{O}, \mathrm{P}$
3-D 20-Node Solid	$\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{M}, \mathrm{N}, \mathrm{O}, \mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}, \mathrm{T}, \mathrm{U}, \mathrm{V}, \mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{A}, \mathrm{B}$
3-D 4-Node Tetrahedral Solid	$\mathrm{I}, \mathrm{I}, \mathrm{K}, \mathrm{L}$
3-D 10-Node Tetrahedral Solid	$\mathrm{I}, \mathrm{K}, \mathrm{L}, \mathrm{M}, \mathrm{N}, \mathrm{O}, \mathrm{P}, \mathrm{Q}, \mathrm{R}$
3-D 4-Node Shell	$\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}$
3-D 8-Node Shell	$\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}, \mathrm{M}, \mathrm{N}, \mathrm{O}, \mathrm{P}$
3-D 2-Node Beam	$\mathrm{I}, \mathrm{J}, \mathrm{K}$ (K is an optional orientation node)
3-D 3-Node Beam	$\mathrm{I}, \mathrm{J}, \mathrm{L}, \mathrm{L}$ ( is an optional orientation node)


$3-D ~ 2-N o d e ~ S p a r ~$	$I, J$

## Degrees of Freedom

Same as those of the base element, as shown:

Base Element	REINF264 DOFs
3-D 8-Node Solid or Solid Shell	UX, UY, UZ
3-D 20-Node Solid	UX, UY, UZ
3-D 14-Node Tetrahedral Solid	UX, UY, UZ
3-D 10-Node Tetrahedral Solid	UX, UY, UZ
3-D 4-Node Shell	UX,UY,UZ, ROTX, ROTY, ROTZ
3-D 8-Node Shell	UX, UY, UZ, ROTX, ROTY, ROTZ
3-D 2-Node Beam	UX, UY, UZ, ROTX, ROTY, ROTZ
3-D 3-Node Beam	UX, UY, UZ, ROTX, ROTY, ROTZ
3-D 2-Node Spar	UX, UY,UZ

## Real Constants

None

## Material Properties

EX, (PRXY or NUXY), ALPX (or CTEX or THSX), DENS, GXY, DAMP

## Surface Loads

None

## Body Loads

## Temperatures --

Same as those of the base element

## Special Features

Plasticity
Viscoelasticity
Viscoplasticity
Creep
Stress stiffening
Large deflection
Large strain
Initial state
Birth and death
Supports the following types of data tables associated with the TB command: BISO, MISO, NLISO, BKIN, MKIN, KINH, CHABOCHE, HILL, RATE, CREEP, PRONY, SHIFT, PLASTIC, and USER.

See "Structures with Material Nonlinearities" in the Theory Reference for the Mechanical APDL and Mechanical Applications for details about the material models.

## KEYOPTS

None

## REINF264 Output Data

The solution output associated with the element is in two forms:

- Nodal displacements included in the overall nodal solution
- Additional element output as shown in Table 1: REINF264 Element Output Definitions (p. 1325).

The axial stress component is illustrated in Figure 3 (p. 1325).
Figure 3 REINF264 Stress Output

Unlike layered solid or shell elements (such as SHELL181), REINF264 always outputs the element solution for all reinforcing layers. You can select solution items for a specific reinforcing layer (LAYER) for listing and visualization by using full graphics (/GRAPHICS,FULL). Visualization via PowerGraphics (/GRAPHICS,POWER) is not affected by the LAYER command; all reinforcing layers are displayed simultaneously. See the Basic Analysis Guide for ways to review results.

To inspect REINF264 element results, select only REINF264 element results or adjust the translucency level of the base elements before executing any plotting command. REINF264 display options are also available directly via the GUI (Main Menu> Preprocessor> Sections> Reinforcing> Display Options).

## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " $Y$ " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and " - " indicates that the item is not available.

Table 1 REINF264 Element Output Definitions

Name	Definition	$\mathbf{O}$	R
EL	Element number and name	-	Y
NODES	Nodes (as shown in "REINF264 Input Summary")	-	Y
MAT	Material number	-	Y
AREA	Averaged cross-section area of reinforcing fibers	-	Y
VOLU:	Volume	-	Y


Name	Definition	$\mathbf{O}$	R
XC, YC, ZC	Center location	-	3
TEMP	T1, T2 for reinforcing fiber 1; T3, T4 for reinforcing   fiber 2; ending with temperatures for the last reinfor-   cing fiber NL (2 * NL maximum)	-	Y
S:X	Axial stresses	2	Y
EPEL:X	Axial elastic strains	2	Y
EPTH:X	Axial thermal strains	2	Y
EPPL:X	Axial plastic strains	2	1
EPCR:X	Axial creep strains	2	1
EPTO:X	Total axial mechanical strains (EPEL + EPPL + EPCR)	Y	-
NL:EPEQ	Accumulated equivalent plastic strain	-	1
NL:CREQ	Accumulated equivalent creep strain	-	1
NL:SRAT	Plastic yielding (1 = actively yielding, 0 = not yield-   ing)	-	1
NL:PLWK	Plastic work	-	1
N11	Averaged axial force	-	Y
LOCI:X,Y, Z	Integration point locations	-	4

1. Nonlinear solution output if the element has a nonlinear material.
2. Stresses, total strains, plastic strains, elastic strains, creep strains, and thermal strains in the element coordinate system are available for output.
3. Available only at centroid as a *GET item.
4. Available only if OUTRES,LOCI is used.

Table 2: REINF264 Item and Sequence Numbers (p. 1326) lists output available via the ETABLE command using the Sequence Number method. See Creating an Element Table in the Basic Analysis Guide and The Item and Sequence Number Table (p. 9) in this document for more information. The following notation is used in Table 2: REINF264 Item and Sequence Numbers (p. 1326):

## Name

output quantity as defined in Table 1: REINF264 Element Output Definitions (p. 1325)

## Item

predetermined Item label for ETABLE
E
sequence number for single-valued or constant element data
Table 2 REINF264 Item and Sequence Numbers

Output   Quant-   ity   Name	ETABLE and ESOL Command   Input	
	E	
N11	SMISC	$(i-1) * 2+1$


Output   Quant-   ity   Name	ETABLE and ESOL Command   Input	
	E	
AREA	SMISC	$(\mathrm{i}-1) * 2+2$

The $i$ value (where $i=1,2,3, \ldots, N L$ ) represents the reinforcing fiber number of the element. $N L$ is the maximum reinforcing fiber number.

## REINF264 Assumptions and Restrictions

- Zero-volume elements are invalid.
- This element can be used only with base element types LINK180, SHELL181, SHELL281, SOLID185, SOLID186, SOLID187, BEAM188, BEAM189, SOLSH190, and SOLID285.
- A valid base element must be present for each REINF264 element.
- The reinforcing element is firmly attached to its base element. No relative movement between the reinforcing element and the base is allowed.
- Through-thickness reinforcing is not permitted in shells and layered solid elements.
- Stress stiffening is always included in geometrically nonlinear analyses (NLGEOM,ON). You can activate prestress effects via the PSTRES command.
- The warping degree of freedom in beam base elements are not accounted for.
- REINF264 does not support BEAM188 with the quadratic or cubic interpolation option (KEYOPT(3)).
- To simulate the tension-/compression-only reinforcing fibers, a nonlinear iterative solution approach is necessary.


## REINF264 Product Restrictions

None.

## REINF265

## 3-D Smeared Reinforcing

MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS
Product Restrictions

## REINF265 Element Description

Use REINF265 with standard 3-D solid and shell elements (referred to here as the base elements) to provide extra reinforcing to those elements.

The element uses a smeared approach and is suitable for modeling evenly spaced reinforcing fibers that appear in layered form. Each reinforcing layer contains a cluster of fibers with unique orientation, material, and cross-section area, and is simplified as a homogenous membrane having unidirectional stiffness. You can specify multiple layers of reinforcing in one REINF265 element. The nodal locations, degrees of freedom, and connectivity of the REINF265 element are identical to those of the base element.

For discrete reinforcing modeling options, see the documentation for the REINF264 element.
REINF265 has plasticity, stress stiffening, creep, large deflection, and large strain capabilities. See REINF265 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

Figure 1 REINF265 Geometry


3-D 8-Node Solid or Solid Shell


3-D 20-Node Solid



3-D 4-Node Shell

3-D 10-Node Tetrahedral Solid


3-D 8-Node Shell

## Figure 2 REINF265 Coordinate System


$X=$ Layer $x$-axis if the local coordinate system reference number (SECDATA, ,,KCN) for the layer is specified
$X_{0}=$ Layer $x$-axis if the local coordinate system reference number is not specified

## REINF265 Input Data

The geometry and nodal locations for this element are shown in Figure 1 (p. 1329). The REINF265 element and its base element share the same nodes and element connectivity.

You can easily create REINF265 elements from the selected base elements via the EREINF command. Section commands (SECTYPE and SECDATA) define the material ID, cross-section area, spacing, location, and orientation of reinforcing fibers.

The equivalent thickness $h$ of the smeared reinforcing layer is given by

$$
h=A / S
$$

where $A$ is the cross-section area of a single fiber, and $S$ is the distance between two adjacent fibers.
The coordinate systems for one reinforcing layer are shown in Figure 2 (p. 1331). Each reinforcing layer is indicated by its intersection points (II, JJ, KK, LL for linear base elements, and II, JJ, KK, LL, MM, NN, OO, PP for quadratic base elements) with the base elements. Fibers in this layer are always parallel to the first coordinate axis x . The x axis is default to the first parametric direction S1 at the center of the layer. The default axis is defined as
$\mathrm{S}_{1}=\frac{\partial\{\mathrm{x}\}}{\partial \mathrm{s}} /\left(\left|\frac{\partial\{\mathrm{x}\}}{\partial \mathrm{s}}\right|\right)$
where

$$
\frac{\partial\{x\}}{\partial s}=\left(\frac{1}{4}\right)\left[-\{x\}^{I I}+\{x\}^{J J}+\{x\}^{\mathrm{KK}}-\{x\}^{\mathrm{LL}}\right]
$$

$\{x\}^{I \prime},\{x\}^{J J},\{x\}^{\mathrm{KK}},\{x\}^{\mathrm{LL}}=$ global nodal coordinates
You can reorient the default layer coordinate system by projecting a local coordinate system (LOCAL) to the layer plane. One local coordinate system is allowed for each layer. The local coordinate system reference number is given via the SECDATA command.

You can further rotate the layer coordinate system by angle $\theta$ (in degrees) for each layer. The value of $\theta$ is also provided for each layer via SECDATA. For more information about visualizing fiber orientations, see the /PSYMB command documentation.

REINF265 allows tension-only or compression-only reinforcing fibers. You can specify the desired fiber behavior (SECCONTROLS).

The REINF265 element does not accept element loading. Apply element loading only to the base element. The temperature of the REINF265 element is identical to the temperature of the base element.

You can import an initial stress state for this element (INISTATE). For more information, see "Initial State" in the Basic Analysis Guide.

A summary of the element input follows.

## REINF265 Input Summary

## Nodes

Same as those of the base element, as shown:

Base Element	REINF265 Nodes
3-D 8-Node Solid or Solid Shell	$\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}, \mathrm{M}, \mathrm{N}, \mathrm{O}, \mathrm{P}$
3-D 20-Node Solid	$\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{M}, \mathrm{N}, \mathrm{O}, \mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}, \mathrm{T}, \mathrm{U}, \mathrm{V}, \mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{A}, \mathrm{B}$
3-D 10-Node Tetrahedral Solid	$\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}, \mathrm{M}, \mathrm{N}, \mathrm{O}, \mathrm{P}, \mathrm{Q}, \mathrm{R}$
3-D 4-Node Shell	$\mathrm{I}, \mathrm{J}, \mathrm{L}$
3-D 8-Node Shell	$\mathrm{I}, \mathrm{J}, \mathrm{L}, \mathrm{M}, \mathrm{N}, \mathrm{O}, \mathrm{P}$

## Degrees of Freedom

Same as those of the base element, as shown:

Base Element	REINF265 DOFs
3-D 8-Node Solid or Solid Shell	UX, UY, UZ
3-D 20-Node Solid	UX, UY, UZ
3-D 10-Node Tetrahedral Solid	UX, UY, UZ
3-D 4-Node Shell	UX, UY, UZ, ROTX, ROTY, ROTZ
3-D 8-Node Shell	UX,UY, UZ, ROTX, ROTY, ROTZ

## Real Constants

None

## Material Properties

EX, (PRXY or NUXY), ALPX (or CTEX or THSX), DENS, GXY, DAMP

## Surface Loads

None

## Body Loads

## Temperatures --

Same as those of the base element

## Special Features

Plasticity
Viscoelasticity
Viscoplasticity
Creep
Stress stiffening
Large deflection
Large strain
Initial state
Birth and death
Supports the following types of data tables associated with the TB command: BISO, MISO, NLISO, BKIN, MKIN, KINH, CHABOCHE, HILL, RATE, CREEP, PRONY, SHIFT, PLASTIC, and USER.

See "Structures with Material Nonlinearities" in the Theory Reference for the Mechanical APDL and Mechanical Applications for details about the material models.

## KEYOPTS

None

## REINF265 Output Data

The solution output associated with the element is in two forms:

- Nodal displacements included in the overall nodal solution
- Additional element output as shown in Table 1: REINF265 Element Output Definitions (p. 1334).

The following figure illustrates the axial stress component:

Figure 3 REINF265 Stress Output

$X=$ Layer $x$-axis if the local coordinate system reference number (SECDATA,,, KCN) for the layer is specified
$X_{0}=$ Layer $x$-axis if the local coordinate system reference number is not specified
Unlike layered solid or shell elements (such as SHELL181), REINF265 always outputs the element solution for all reinforcing layers. You can select solution items for a specific reinforcing layer (LAYER) for listing and visualization by using full graphics (/GRAPHICS,FULL). Visualization via PowerGraphics (/GRAPHICS,POWER) is not affected by the LAYER command; all reinforcing layers are displayed simultaneously. See the Basic Analysis Guide for ways to review results.

To inspect REINF265 element results, select only REINF265 element results or adjust translucency level of the base elements before executing any plotting command. REINF265 display options are also available directly via the GUI (Main Menu> Preprocessor> Sections> Reinforcing> Display Options).

## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " $Y$ " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and " - " indicates that the item is not available.

## Table 1 REINF265 Element Output Definitions

Name	Definition	$\mathbf{O}$	$\mathbf{R}$
EL	Element number and name	-	Y


Name	Definition	$\mathbf{O}$	R
NODES	Nodes (as shown in "REINF265 Input Summary")	-	Y
MAT	Material number	-	Y
AREA	Averaged cross-section area of reinforcing fibers	-	Y
SPACING	Averaged distance between two adjacent fibers	-	Y
VOLU:	Volume	-	Y
XC, YC, ZC	Center location	-	3
TEMP	T1, T2, T3, T4 for reinforcing layer 1; T5, T6, T7, T8   for reinforcing layer 2; ending with temperatures for   the last reinforcing layer NL (4*NL maximum)	-	Y
A:X	Axial stresses	2	Y
EPEL:X	Axial elastic strains	2	Y
EPTH:X	Axial thermal strains	2	Y
EPPL:X	Axial plastic strains	2	1
EPCR:X	Axial creep strains	2	1
EPTO:X	Total axial mechanical strains (EPEL + EPPL + EPCR)	Y	-
NL:EPEQ	Accumulated equivalent plastic strain	-	1
NL:CREQ	Accumulated equivalent creep strain	-	1
NL:SRAT	Plastic yielding (1 = actively yielding, $0=$ not yield-   ing)	-	1
NL:PLWK	Plastic work	-	1
N11	Averaged axial force	-	Y
LOCI:X, Y, Z	Integration point locations	-	4

1. Nonlinear solution output if the element has a nonlinear material.
2. Stresses, total strains, plastic strains, elastic strains, creep strains, and thermal strains in the element coordinate system are available for output.
3. Available only at centroid as a *GET item.
4. Available only if OUTRES,LOCI is used.

Table 2: REINF265 Item and Sequence Numbers (p. 1336) lists output available through ETABLE using the Sequence Number method. See Creating an Element Table in the Basic Analysis Guide and The Item and Sequence Number Table (p. 9) in this document for more information. The following notation is used in Table 2: REINF265 Item and Sequence Numbers (p. 1336):

## Name

output quantity as defined in Table 1: REINF265 Element Output Definitions (p. 1334)

## Item

predetermined Item label for ETABLE

## E

sequence number for single-valued or constant element data
Table 2 REINF265 Item and Sequence Numbers

Output   Quant-   ity   Name	ETABLE and ESOL Command   Input	
	SMISC	$(\mathrm{i}-1)^{*} 3+1$
AREA	SMISC	$(\mathrm{i}-1)^{*} 3+2$
SPA-   CING	SMISC	$(\mathrm{i}-1)^{*} 3+3$

The $i$ value (where $i=1,2,3, \ldots, N L$ ) represents the reinforcing layer number of the element. $N L$ is the maximum reinforcing layer number ( $1 \leq N L \leq 250$ ).

## REINF265 Assumptions and Restrictions

- Zero-volume elements are invalid.
- This element can be used only with base element types SHELL181, SHELL281, SOLID185, SOLID186, SOLID187, and SOLSH190.
- A valid base element must be present for each REINF265 element.
- The reinforcing element is firmly attached to its base element. No relative movement between the reinforcing element and the base is allowed.
- Through-thickness reinforcing is not permitted in shells and layered solid elements.
- Stress stiffening is always included in geometrically nonlinear analyses (NLGEOM,ON). You can activate prestress effects via the PSTRES command.
- To simulate tension-/compression-only reinforcing fibers, a nonlinear iterative solution approach is necessary.


## REINF265 Product Restrictions

None.

## General Axisymmetric Solid with 4 Base Nodes

MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS
Product Restrictions

## SOLID272 Element Description

Use SOLID272 to model axisymmetric solid structures. It is defined by four nodes on the master plane, and nodes created automatically in the circumferential direction based on the four master plane nodes. The total number of nodes depends on the number of nodal planes (KEYOPT(2)). Each node has three degrees of freedom: translations in the nodal $\mathrm{x}, \mathrm{y}$ and z directions. The element allows a triangle as the degenerated shape on the base plane to simulate irregular areas. The element has plasticity, hyperelasticity, stress stiffening, large deflection, and large strain capabilities. It also has mixed-formulation capability for simulating deformations of nearly incompressible elastoplastic materials, and nearly and fully incompressible hyperelastic materials.

For more details about this element, see SOLID272 in the Theory Reference for the Mechanical APDL and Mechanical Applications, and General Axisymmetric Elements (p. 107) in this document.

Figure 1 SOLID272 Geometry $(\operatorname{KEYOPT}(2)=3)$


## SOLID272 Input Data

The geometry and node locations for this element (when $\operatorname{KEYOPT}(2)=3$ ) are shown in Figure 1 (p. 1337). The element input data includes nodes and the orthotropic material properties. The total number of nodes is the four base nodes times the number of nodal planes. (For information about how Fourier nodes are generated, see the NAXIS command documentation.) The default element coordinate system is the cylindrical
coordinate system with the $Z$ axis as the axisymmetric axis (defined via the SECDATA command) and the circumferential direction as $\theta$. (See General Axisymmetric Elements (p. 107) for details.) Use the ESYS command to define an element coordinate system, which forms the basis for orthotropic material directions.

Element loads are described in Node and Element Loads (p. 97). Pressures must be input as element surface loads on the element edges of the nodal planes as shown by the circled numbers in Figure 1 (p. 1337). Positive pressures act into the element and the maximum face edge is 4 n , where n is the number of nodal planes. If pressure is applied on the element edge with face numbers less than or equal to 4 and no load on other edges, the pressure loads are the same on the 360 degrees of circumferential surfaces. (If pressure is applied on a single element edge with a face number greater than 4 , the pressure is ignored.) If pressure is applied on the element edges with faces $p$ and $4 q+p$ (where $q=1 \ldots n-1$ ), the pressure changes linearly with respect to $\theta$ within the part of the surface bounded by the edges $p$ and $4 q+p$; on the rest of the surface, the pressure is zero.

Temperatures may be input as element body loads at the nodes. For the four nodes on the master plane, the node I1 temperature $T\left(I_{1}\right)$ defaults to TUNIF. If all other temperatures are unspecified, they default to $T\left(I_{1}\right)$. For any other input pattern, unspecified temperatures default to TUNIF. For the nodes generated in the circumferential direction based on the master node, they default to the value of their base nodes $\left(T\left(I_{1}\right)\right.$, $T\left(J_{1}\right), T\left(K_{1}\right)$ or $T\left(L_{1}\right)$, depending on their location) if all other temperatures are unspecified. For any other input pattern, unspecified temperatures default to TUNIF.
$\operatorname{KEYOPT}(6)=1$ sets the element for using mixed formulation. For details on the use of mixed formulation, see Applications of Mixed u-P Formulations in this document.

As described in Coordinate Systems, you can use the ESYS command to orient the material properties and strain/stress output. Use RSYS to choose output that follows the material coordinate system or the global coordinate system.

The effects of pressure load stiffness are automatically included for this element. If an unsymmetric matrix is needed for pressure load stiffness effects, issue a NROPT,UNSYM command. For a geometric nonlinear analysis when convergence is an issue, use an unsymmetric matrix.
"SOLID272 Input Summary" (p. 1338) contains a summary of the element input. See Element Input (p. 5) in this document for a general description of element input.

## SOLID272 Input Summary

## Nodes

$I_{1}, J_{1}, K_{1}, L_{1}, I_{2}, J_{2}, K_{2}, L_{2}, \ldots, I_{n}, J_{n}, K_{n}, L_{n}$ (where $n=\operatorname{KEYOPT}(2)$, the number of nodal planes)

## Degrees of Freedom

UX, UY, UZ

## Real Constants

None

## Material Properties

EX, EY, EZ, PRXY, PRYZ, PRXZ (or NUXY, NUYZ, NUXZ),
ALPX, ALPY, ALPZ (or CTEX, CTEY, CTEZ or THSX, THSY, THSZ),
DENS, GXY, GYZ, GXZ, DAMP

## Surface Loads

## Pressures --

edge $1\left(J_{1}-I_{1}\right)$, edge $2\left(K_{1}-J_{1}\right)$, edge $3\left(L_{1}-K_{1}\right)$, edge $4\left(I_{1}-L_{1}\right)$, edge $5\left(J_{2}-I_{2}\right)$, edge $6\left(K_{2}-J_{2}\right), \ldots$, edge $4 n-3\left(J_{n}-I_{n}\right)$, edge $4 n-2\left(K_{n}-J_{n}\right)$, edge $4 n-1\left(L_{n}-K_{n}\right)$, edge $4 n\left(I_{n}-L_{n}\right)$

## Body Loads

Temperatures --
$T\left(I_{1}\right), T\left(J_{1}\right), T\left(K_{1}\right), T\left(L_{1}\right), T\left(I_{2}\right), T\left(J_{2}\right), T\left(K_{2}\right), T\left(L_{2}\right), \ldots, T\left(I_{n}\right), T\left(J_{n}\right), T\left(K_{n}\right), T\left(L_{n}\right)$

## Special Features

Plasticity (PLASTIC, BISO, MISO, NLISO, BKIN, MKIN, KINH, CHABOCHE, HILL)
Hyperelasticity (AHYPER, HYPER)
Viscoelasticity (PRONY, SHIFT)
Viscoplasticity/Creep (CREEP, RATE)
Elasticity (ELASTIC, ANEL)
Other material (USER, SDAMP, SMA, CAST, EDP, GURSON)
Stress stiffening
Large deflection
Large strain
Nonlinear stabilization
Automatic selection of element technology
Birth and death
Items in parentheses refer to data tables associated with the TB command. See the Theory Reference for the Mechanical APDL and Mechanical Applications for details about the material models.

See Automatic Selection of Element Technologies (p. 122) and the ETCONTROL command documentation for more information about selecting element technologies.

## KEYOPT(2)

Number of Fourier nodes in the circumferential direction (that is, the number of nodal planes):
1 --
Axisymmetric deformation (may have torsion)
3-12--
General 3-D deformation
This KEYOPT has no default. You must specify a valid value. (0 is not valid.)
For large-rotation not about the axisymmetric axis, $\operatorname{KEYOPT}(2) \geq 5$ is recommended.
For information about specifying the number of Fourier nodes, see General Axisymmetric Elements in this document.

For information about how Fourier nodes are generated, see the NAXIS command documentation.

## KEYOPT(6)

Element formulation:
0 --
Use pure displacement formulation (default)

## 1 --

Use mixed u-P formulation

## SOLID272 Output Data

The solution output associated with the element is in two forms:

- Nodal displacements included in the overall nodal solution
- Additional element output as shown in Table 1: SOLID272 Element Output Definitions (p. 1341)

As shown in Figure 2 (p. 1340), the element stress directions are parallel to the element coordinate system. A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

To view 3-D mode shapes for a modal or eigenvalue buckling analysis, expand the modes with element results calculation active (via the MXPAND command's Elcalc = YES option).

Figure 2 SOLID272 Stress Output


Element stress directions SX, SY, and SZ shown in the global coordinate system.

## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " $Y$ " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 1 SOLID272 Element Output Definitions

Name	Definition	0	R
EL	Element number	-	Y
NODES	Nodes - $\mathrm{I}_{1}, \mathrm{~J}_{1}, \mathrm{~K}_{1}, \mathrm{~L}_{1}, \mathrm{I}_{2}, \mathrm{~J}_{2}, \mathrm{~K}_{2}, \mathrm{~L}_{2}, \ldots$	-	Y
MAT	Material number	-	Y
VOLU	Volume	-	Y
XC, YC, ZC	Location where results are reported	-	3
PRES	Pressures P1 at nodes J,I; P2 at K, J; P3 at L,K; P4 at I,L   See Table 2: SOLID272 Item and Sequence Numbers (p. 1342) for more output.	-	Y
TEMP	Temperatures $\mathrm{T}\left(\mathrm{I}_{1}\right), \mathrm{T}\left(\mathrm{J}_{1}\right), \mathrm{T}\left(\mathrm{K}_{1}\right), \mathrm{T}\left(\mathrm{L}_{1}\right), \mathrm{T}\left(\mathrm{I}_{2}\right), \mathrm{T}\left(\mathrm{J}_{2}\right), \mathrm{T}\left(\mathrm{K}_{2}\right)$, $T\left(L_{2}\right), \ldots$	-	Y
S:X, Y, Z, XY, YZ, XZ	Stresses	Y	Y
S:1, 2, 3	Principal stresses	-	Y
S:INT	Stress intensity	-	Y
S:EQV	Equivalent stress	Y	Y
$\begin{aligned} & \text { EPEL:X,Y, Z, XY, YZ, } \\ & \text { XZ } \end{aligned}$	Elastic strains	Y	Y
EPEL:1, 2, 3	Principal elastic strains	-	Y
EPEL:EQV	Equivalent elastic strain [6]	Y	Y
$\begin{aligned} & \text { EPTH:X,Y, Z, XY, YZ, } \\ & \text { XZ } \end{aligned}$	Thermal strains	2	2
EPTH:EQV	Equivalent thermal strain [6]	2	2
$\begin{aligned} & \text { EPPL:X,Y, Z, XY, YZ, } \\ & X Z \end{aligned}$	Plastic strains[7]	1	1
EPPL:EQV	Equivalent plastic strain [6]	1	1
$\begin{aligned} & \text { EPCR:X,Y, Z, XY, YZ, } \\ & X Z \end{aligned}$	Creep strains	1	1
EPCR:EQV	Equivalent creep strains [6]	1	1
$\begin{aligned} & \text { EPTO:X, Y, Z, XY, YZ, } \\ & \text { XZ } \end{aligned}$	Total mechanical strains (EPEL + EPPL + EPCR)	Y	-
EPTO:EQV	Total equivalent mechanical strains (EPEL + EPPL + EPCR)	Y	-
NL:EPEQ	Accumulated equivalent plastic strain	1	1
NL:CREQ	Accumulated equivalent plastic strain	1	1
NL:SRAT	Plastic yielding ( $1=$ actively yielding, $0=$ not yielding)	1	1


Name	Definition	$\mathbf{0}$	$\mathbf{R}$
NL:PLWK	Plastic work	1	1
NL:HPRES	Hydrostatic pressure	1	1
SEND:ELASTIC,   PLASTIC, CREEP	Strain energy densities	-	1
LOCI:X, Y, Z	Integration point locations	-	4
SVAR:1, $2, \ldots, N$	State variables	-	5

1. Nonlinear solution, output only if the element has a nonlinear material.
2. Output only if element has a thermal load.
3. Available only at centroid as a *GET item.
4. Available only if OUTRES,LOCI is used.
5. Available only if the USERMAT subroutine and TB,STATE are used.
6. The equivalent strains use an effective Poisson's ratio: for elastic and thermal strains, this value is set by the user (MP,PRXY); for plastic and creep strains, this value is set at 0.5 .
7. For the shape memory alloy material model, transformation strains are reported as plasticity strain EPPL.

Table 2: SOLID272 Item and Sequence Numbers (p. 1342) lists output available through ETABLE using the Sequence Number method. See Creating an Element Table in the Basic Analysis Guide and The Item and Sequence Number Table (p.9) in this document for more information. The following notation is used in the output table:

## Name

output quantity as defined in the Table 1: SOLID272 Element Output Definitions (p. 1341)

## Item

predetermined Item label for ETABLE
$I_{1}, J_{1}, K_{1}, L_{1}, I_{2}, J_{2}, K_{2}, L_{2}, \ldots$
sequence number for data at nodes $I_{1}, J_{1}, K_{1}, L_{1}, I_{2}, J_{2}, K_{2}, L_{2}, \ldots$
Table 2 SOLID272 Item and Sequence Numbers

Output	ETABLE and ESOL Command Input													
Quantity Name	Item	$\mathrm{I}_{1}$	$\mathrm{J}_{1}$	$\mathrm{K}_{1}$	$L_{1}$	$\mathrm{I}_{2}$	$\mathrm{J}_{2}$	$\mathrm{K}_{2}$	$\mathrm{L}_{2}$	---	$\mathrm{I}_{\mathrm{n}}$	$\mathrm{J}_{\mathrm{n}}$	$\mathrm{K}_{\mathrm{n}}$	$L_{n}$
$\mathrm{P}_{1}$	SMISC	2	1							---				
$\mathrm{P}_{2}$	SMISC		4	3						---				
$\mathrm{P}_{3}$	SMISC			6	5					---				
$\mathrm{P}_{4}$	SMISC	7			8					---				
$\mathrm{P}_{5}$	SMISC					10	9			---				
$\mathrm{P}_{6}$	SMISC						12	11		---				
$\mathrm{P}_{7}$	SMISC							14	13	---				
$\mathrm{P}_{8}$	SMISC					15			16	---				


Output	ETABLE and ESOL Command Input													
Quantity Name	Item	$\mathrm{I}_{1}$	$\mathrm{J}_{1}$	$\mathrm{K}_{1}$	$\mathrm{L}_{1}$	$\mathrm{I}_{2}$	$\mathrm{J}_{2}$	$\mathrm{K}_{2}$	$L_{2}$	---	$I_{n}$	$\mathrm{J}_{\mathrm{n}}$	$K_{n}$	$L_{n}$
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---
$\mathrm{P}_{4 \mathrm{n}-3}$	SMISC									---	$\begin{gathered} 8 n- \\ 6 \end{gathered}$	$\begin{gathered} 8 \mathrm{n}- \\ 7 \end{gathered}$		
$\mathrm{P}_{4 \mathrm{n}-2}$	SMISC									---		$\begin{gathered} 8 n- \\ 4 \end{gathered}$	$\begin{gathered} 8 \mathrm{n}- \\ 5 \end{gathered}$	
$\mathrm{P}_{4 \mathrm{n}-1}$	SMISC									---			$\begin{gathered} 8 n- \\ 2 \end{gathered}$	$\begin{gathered} 8 n- \\ 3 \end{gathered}$
$\mathrm{P}_{4}$	SMISC									---	$\begin{gathered} 8 n- \\ 1 \end{gathered}$			8 n

## SOLID272 Assumptions and Restrictions

- The area of the base element must be nonzero.
- The base element must lie on one side of the axisymmetric axis, and the axisymmetric axis must be on the same plane as the base element (master plane).
- A base element or base node must be associated with one axisymmetric axis (defined via SECTYPE and SECDATA commands) before generating nodes for general axisymmetric element sections (NAXIS) or defining an element by node connectivity (E).
- You can form a triangular base element by defining duplicate K1 and L1 node numbers. (See Triangle, Prism, and Tetrahedral Elements (p. 99) in this document.)
- You cannot apply a pressure load via the SFA command.
- Incompressible and nearly incompressible material behavior should be modeled with the mixed u-P formulation.
- If you specify mixed formulation (KEYOPT( 6 ) $=1$ ), you must use the sparse solver.
- The contribution of the element to the mass moment inertia of the whole model is calculated by element mass multiplied by the square of the coordinates of the elemental centroid. The moment of inertia may therefore be inaccurate.
- The element does not support the expansion pass of a superelement with large rotation.
- Issuing an /ESHAPE, 1 command while PowerGraphics is active causes the program to plot the elements in 3-D and the results on both nodal planes and all integration planes in the circumferential direction; otherwise, the program plots the elements in 2-D and the results on the master plane.
- You cannot display surface load symbols (/PSF) when displaying this element in 3-D via the /ESHAPE command.
- When specifying more than one facet per element edge for PowerGraphics displays (NAXIS,EFACET,NUM, where $N U M>1$ ), ANSYS plots additional results on some planes between the nodal and integration planes. The results on these planes are interpolated based on the nodal and integration plane values. and are therefore less accurate than the values on the nodal and interpolation planes. If you do not wish to plot the interpolated values, set $N U M=1$ to plot only the values on nodal and integration planes.
- Print commands in postprocessing print the nodal plane results only.
- To model axisymmetric solid surface loads acting on this element, use general axisymmetric surface element SURF159. (You cannot use this element with surface-effect elements SURF153 and SURF154.)
- You cannot generate surface-based contact pairs (contact elements CONTA171 through CONTA174 paired with target elements TARGE169 and TARGE170) on this element.
- You can generate node-to-surface contact pairs (contact elements CONTA175 paired with target elements TARGE170) and node-to-node contact elements (CONTA178) on this element, with the following restrictions:
- When TARGE170 is on the surface of SOLID272, you may have accuracy and convergence issues if the loading causes large rotations about the axisymmetric axis of SOLID272; you may also have those issues if the two sides of the contact boundaries have different mesh patterns in the circumferential direction (caused by different KEYOPT(2) values of SOLID272).
- You cannot define CONTA175 with the multipoint constraint (MPC) approach using a force-distributed constraint (that is, you cannot set $\operatorname{KEYOPT}(2)=2, \operatorname{KEYOPT}(4)=1$, and $\operatorname{KEYOPT}(12)=5$ or 6 simultaneously for the CONTA175 elements).
- Stress stiffening is always included in geometrically nonlinear analyses (NLGEOM,ON). Prestress effects can be activated via the PSTRES command.


## SOLID272 Product Restrictions

No product-specific restrictions exist for this element.

## SOLID273

## General Axisymmetric Solid with 8 Base Nodes

MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS
Product Restrictions

## SOLID273 Element Description

Use SOLID273 to model axisymmetric solid structures. The element has quadratic displacement behavior on the master plane and is well suited to modeling irregular meshes on the master plane. It is defined by eight nodes on the master plane, and nodes created automatically in the circumferential direction based on the eight master plane nodes. The total number of nodes depends on the number of nodal planes (KEYOPT(2)). Each node has three degrees of freedom: translations in the nodal $x, y$ and $z$ directions. The element allows a triangle as the degenerated shape on the base plane to simulate irregular areas. The element has plasticity, hyperelasticity, stress stiffening, large deflection, and large strain capabilities. It also has mixed-formulation capability for simulating deformations of nearly incompressible elastoplastic materials, and nearly and fully incompressible hyperelastic materials.

For more details about this element, see SOLID273 in the Theory Reference for the Mechanical APDL and Mechanical Applications, and General Axisymmetric Elements (p. 107) in this document.

Figure 1 SOLID273 Geometry (KEYOPT(2) = 3)


## SOLID273 Input Data

The geometry and node locations for this element (when $\operatorname{KEYOPT}(2)=3$ ) are shown in Figure 1 (p. 1345). The element input data includes nodes and the orthotropic material properties. The total number of nodes is
the 8 base nodes times the number of nodal planes. (For information about how Fourier node are generated, see the NAXIS command documentation.) The default element coordinate system is the cylindrical coordinate system with the $Z$ axis as the axisymmetric axis (defined via the SECDATA command) and the circumferential direction as $\theta$. (See General Axisymmetric Elements (p. 107) for details.) Use the ESYS command to define an element coordinate system, which forms the basis for orthotropic material directions.

Element loads are described in Node and Element Loads (p. 97). Pressures must be input as element surface loads on the element edge of nodal planes as shown by the circled numbers in Figure 1 (p. 1345). Positive pressures act into the element and the maximum face edge is $4 n$, where $n$ is the number of nodal planes. If pressure is applied on the element edge with face numbers less that or equal to 4 and no load on other edges, the pressure loads are the same on the 360 degrees of circumferential surfaces. (If pressure is applied on a single element edge with a face number greater than 4 , the pressure is ignored.) If pressure is applied on the element edges with faces $p$ and $4 q+p$ (where $q=1 \ldots n-1$ ), the pressure changes linearly with respect to $\theta$ within the part of the surface bounded by the edges $p$ and $4 q+p$; on the rest of the surface, the pressure is zero.

Temperatures may be input as element body loads at the nodes. For the eight nodes on the master plane, the node $I_{1}$ temperature $T\left(I_{1}\right)$ defaults to TUNIF. If all other temperatures are unspecified, they default to $T\left(l_{1}\right)$. If all corner node temperatures are specified, each midside node temperature defaults to the average temperature of its adjacent corner nodes. For any other input pattern, unspecified temperatures default to TUNIF. For the nodes generated in circumferential direction based on the master node, if all other temperatures are unspecified, they default to the value of their base nodes $\left(\mathrm{T}\left(\mathrm{I}_{1}\right), \mathrm{T}\left(\mathrm{J}_{1}\right), \mathrm{T}\left(\mathrm{K}_{1}\right), \mathrm{T}\left(\mathrm{L}_{1}\right), \mathrm{T}\left(\mathrm{M}_{1}\right), \mathrm{T}\left(\mathrm{N}_{1}\right), \mathrm{T}\left(\mathrm{O}_{1}\right)\right.$ and $T\left(P_{1}\right)$, depending on their location). For any other input pattern, unspecified temperatures default to TUNIF.
$\operatorname{KEYOPT}(6)=1$ sets the element for using mixed formulation. For details on the use of mixed formulation, see Applications of Mixed u-P Formulations in this document.

As described in Coordinate Systems, you can use the ESYS command to orient the material properties and strain/stress output. Use RSYS to choose output that follows the material coordinate system or the global coordinate system.

The effects of pressure load stiffness are automatically included for this element. If an unsymmetric matrix is needed for pressure load stiffness effects, issue a NROPT,UNSYM command. For a geometric nonlinear analysis when convergence is an issue, use an unsymmetric matrix.
"SOLID273 Input Summary" (p. 1346) contains a summary of the element input. See Element Input (p. 5) in this document for a general description of element input.

## SOLID273 Input Summary

## Nodes

$\mathrm{I}_{1}, \mathrm{~J}_{1}, \mathrm{~K}_{1}, \mathrm{~L}_{1}, \mathrm{M}_{1}, \mathrm{~N}_{1}, \mathrm{O}_{1}, \mathrm{P}_{1}, \mathrm{I}_{2}, \mathrm{~J}_{2}, \mathrm{~K}_{2}, \mathrm{~L}_{2}, \mathrm{M}_{2}, \mathrm{~N}_{2}, \mathrm{O}_{2}, \mathrm{P}_{2}, \ldots, \mathrm{I}_{\mathrm{n}}, \mathrm{J}_{\mathrm{n}}, \mathrm{K}_{\mathrm{n}}, \mathrm{L}_{\mathrm{n}}, \mathrm{M}_{\mathrm{n}}, \mathrm{N}_{\mathrm{n}}, \mathrm{O}_{\mathrm{n}}, \mathrm{P}_{\mathrm{n}}$ (where $\mathrm{n}=$ KEYOPT(2), the number of nodal planes)

## Degrees of Freedom

UX, UY, UZ

## Real Constants

None

## Material Properties

EX, EY, EZ, PRXY, PRYZ, PRXZ (or NUXY, NUYZ, NUXZ),

ALPX, ALPY, ALPZ (or CTEX, CTEY, CTEZ or THSX, THSY, THSZ),
DENS, GXY, GYZ, GXZ, DAMP

## Surface Loads

Pressures --
edge $1\left(J_{1}-I_{1}\right)$, edge $2\left(K_{1}-J_{1}\right)$, edge $3\left(L_{1}-K_{1}\right)$, edge $4\left(I_{1}-L_{1}\right)$, edge $5\left(J_{2}-I_{2}\right)$, edge $6\left(K_{2}-J_{2}\right), \ldots$, edge $4 n-3\left(J_{n}-I_{n}\right)$, edge $4 n-2\left(K_{n}-J_{n}\right)$, edge $4 n-1\left(L_{n}-K_{n}\right)$, edge $4 n\left(I_{n}-L_{n}\right)$

## Body Loads

Temperatures --
$\mathrm{T}\left(\mathrm{I}_{1}\right), \mathrm{T}\left(\mathrm{J}_{1}\right), \mathrm{T}\left(\mathrm{K}_{1}\right), \mathrm{T}\left(\mathrm{L}_{1}\right), \mathrm{T}\left(\mathrm{M}_{1}\right), \mathrm{T}\left(\mathrm{N}_{1}\right), \mathrm{T}\left(\mathrm{O}_{1}\right), \mathrm{T}\left(\mathrm{P}_{1}\right), \mathrm{T}\left(\mathrm{I}_{2}\right), \mathrm{T}\left(\mathrm{J}_{2}\right), \mathrm{T}\left(\mathrm{K}_{2}\right), \mathrm{T}\left(\mathrm{L}_{2}\right), \mathrm{T}\left(\mathrm{M}_{2}\right), \mathrm{T}\left(\mathrm{N}_{2}\right), \mathrm{T}\left(\mathrm{O}_{2}\right), \mathrm{T}\left(\mathrm{P}_{2}\right), \ldots$, $T\left(I_{n}\right), T\left(J_{n}\right), T\left(K_{n}\right), T\left(L_{n}\right), T\left(M_{n}\right), T\left(N_{n}\right), T\left(O_{n}\right), T\left(P_{n}\right)$

## Special Features

Plasticity (PLASTIC, BISO, MISO, NLISO, BKIN, MKIN, KINH, CHABOCHE, HILL)
Hyperelasticity (AHYPER, HYPER)
Viscoelasticity (PRONY, SHIFT)
Viscoplasticity/Creep (CREEP, RATE)
Elasticity (ELASTIC, ANEL)
Other material (USER, SDAMP, SMA, CAST, EDP, GURSON)
Stress stiffening
Large deflection
Large strain
Nonlinear stabilization
Automatic selection of element technology
Birth and death
Items in parentheses refer to data tables associated with the TB command. See the Theory Reference for the Mechanical APDL and Mechanical Applications for details about the material models.

See Automatic Selection of Element Technologies (p. 122) and the ETCONTROL command documentation for more information about selecting element technologies.

## KEYOPT(2)

Number of Fourier nodes in the circumferential direction (that is, the number of nodal planes):
1 --
Axisymmetric deformation (may have torsion)
3-12--
General 3-D deformation
This KEYOPT has no default. You must specify a valid nonzero value.
For large-rotation not about the axisymmetric axis, $\operatorname{KEYOPT}(2) \geq 5$ is recommended.
For information about specifying the number of Fourier nodes, see General Axisymmetric Elements in this document.

For information about how Fourier nodes are generated, see the NAXIS command documentation.

## KEYOPT(6)

Element formulation:
0 --
Use pure displacement formulation (default)
1 --
Use mixed u-P formulation

## SOLID273 Output Data

The solution output associated with the element is in two forms:

- Nodal displacements included in the overall nodal solution
- Additional element output as shown in Table 1: SOLID273 Element Output Definitions (p. 1349)

As shown in Figure 2 (p. 1348), the element stress directions are parallel to the element coordinate system. A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

To view 3-D mode shapes for a modal or eigenvalue buckling analysis, expand the modes with element results calculation active (via the MXPAND command's Elcalc = YES option).

Figure 2 SOLID273 Stress Output


Element stress directions SX, SY, and SZ shown in the global coordinate system.

## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 1 SOLID273 Element Output Definitions

Name	Definition	0	R
EL	Element number	-	Y
NODES	Nodes - $\mathrm{I}_{1}, \mathrm{~J}_{1}, \mathrm{~K}_{1}, \mathrm{~L}_{1}, \mathrm{I}_{2}, \mathrm{~J}_{2}, \mathrm{~K}_{2}, \mathrm{~L}_{2}, \ldots$	-	Y
MAT	Material number	-	Y
VOLU	Volume	-	Y
XC, YC, ZC	Location where results are reported	-	3
PRES	Pressures P1 at nodes J,I; P2 at K, J; P3 at L,K; P4 at I,L   See Table 2: SOLID273 Item and Sequence Numbers ( p .1350 ) for more output.	-	Y
TEMP	Temperatures $\mathrm{T}\left(\mathrm{I}_{1}\right), \mathrm{T}\left(\mathrm{J}_{1}\right), \mathrm{T}\left(\mathrm{K}_{1}\right), \mathrm{T}\left(\mathrm{L}_{1}\right), \mathrm{T}\left(\mathrm{I}_{2}\right), \mathrm{T}\left(\mathrm{J}_{2}\right), \mathrm{T}\left(\mathrm{K}_{2}\right)$, $\mathrm{T}\left(\mathrm{L}_{2}\right), \ldots$	-	Y
S:X, Y, Z, XY, YZ, XZ	Stresses	Y	Y
S:1, 2, 3	Principal stresses	-	Y
S:INT	Stress intensity	-	Y
S:EQV	Equivalent stress	Y	Y
$\begin{aligned} & \text { EPEL:X, Y, Z, XY, YZ, } \\ & X Z \end{aligned}$	Elastic strains	Y	Y
EPEL:1, 2, 3	Principal elastic strains	-	Y
EPEL:EQV	Equivalent elastic strain [6]	Y	Y
$\begin{aligned} & \text { EPTH:X, Y, Z, XY, YZ, } \\ & X Z \end{aligned}$	Thermal strains	2	2
EPTH:EQV	Equivalent thermal strain [6]	2	2
$\begin{aligned} & \text { EPPL:X, Y, Z, XY, YZ, } \\ & X Z \end{aligned}$	Plastic strains[7]	1	1
EPPL:EQV	Equivalent plastic strain [6]	1	1
$\begin{aligned} & \mathrm{EPCR}: X, Y, Z, X Y, Y Z, \\ & X Z \end{aligned}$	Creep strains	1	1
EPCR:EQV	Equivalent creep strains [6]	1	1
$\begin{aligned} & \text { EPTO:X, Y, Z, XY, YZ, } \\ & X Z \end{aligned}$	Total mechanical strains (EPEL + EPPL + EPCR)	Y	-
EPTO:EQV	Total equivalent mechanical strains (EPEL + EPPL + EPCR)	Y	-


Name	Definition	$\mathbf{0}$	$\mathbf{R}$
NL:EPEQ	Accumulated equivalent plastic strain	1	1
NL:CREQ	Accumulated equivalent plastic strain	1	1
NL:SRAT	Plastic yielding (1 = actively yielding, 0 = not yield-   ing)	1	1
NL:PLWK	Plastic work	1	1
NL:HPRES	Hydrostatic pressure	1	1
SEND:ELASTIC,   PLASTIC, CREEP	Strain energy densities	-	1
LOCI:X, Y, Z	Integration point locations	-	4
SVAR:1, 2, ... N	State variables	-	5

1. Nonlinear solution, output only if the element has a nonlinear material.
2. Output only if element has a thermal load.
3. Available only at centroid as a *GET item.
4. Available only if OUTRES,LOCI is used.
5. Available only if the USERMAT subroutine and TB,STATE are used.
6. The equivalent strains use an effective Poisson's ratio: for elastic and thermal strains, this value is set by the user (MP,PRXY); for plastic and creep strains, this value is set at 0.5 .
7. For the shape memory alloy material model, transformation strains are reported as plasticity strain EPPL.

Table 2: SOLID273 Item and Sequence Numbers (p. 1350) lists output available through ETABLE using the Sequence Number method. See Creating an Element Table in the Basic Analysis Guide and The Item and Sequence Number Table (p.9) in this document for more information. The following notation is used in the output table:

## Name

output quantity as defined in the Table 1: SOLID273 Element Output Definitions (p. 1349)

## Item

predetermined Item label for ETABLE

$$
I_{1}, J_{1}, K_{1}, L_{1}, M_{1}, N_{1}, O_{1}, P_{1}, I_{2}, J_{2}, K_{2}, L_{2}, M_{2}, N_{2}, O_{2}, P_{2} \ldots
$$

sequence number for data at nodes $I_{1}, J_{1}, K_{1}, L_{1}, M_{1}, N_{1}, O_{1}, P_{1}, I_{2}, J_{2}, K_{2}, L_{2}, M_{2}, N_{2}, O_{2}, P_{2}, \ldots$
Table 2 SOLID273 Item and Sequence Numbers

Output	ETABLE and ESOL Command Input																	
$\begin{array}{\|l} \text { Quant- } \\ \text { ity } \\ \text { Name } \end{array}$	Item	$\mathrm{I}_{1}$	$\mathrm{J}_{1}$	$\mathrm{K}_{1}$	$L_{1}$	$M_{1}$	$\mathrm{N}_{1}$	$\mathbf{O}_{1}$	$\mathrm{P}_{1}$	---	$I_{n}$	$\mathrm{J}_{\mathrm{n}}$	$K_{n}$	$L_{n}$	$M_{n}$	$\mathrm{N}_{\mathrm{n}}$	$\mathbf{O}_{\mathbf{n}}$	$\mathrm{P}_{\mathrm{n}}$
$\mathrm{P}_{1}$	SMISC	2	1							---								
$\mathrm{P}_{2}$	SMISC		4	3						---								
$\mathrm{P}_{3}$	SMISC			6	5					---								
$\mathrm{P}_{4}$	SMISC	7			8					---								


Output	ETABLE and ESOL Command Input																		
$\begin{array}{\|l} \text { Quant- } \\ \text { ity } \\ \text { Name } \end{array}$	Item	$\mathrm{I}_{1}$	$\mathrm{J}_{1}$	$\mathrm{K}_{1}$	$L_{1}$	$\mathbf{M}_{1}$	$\mathrm{N}_{1}$	$\mathbf{O}_{1}$	$\mathrm{P}_{1}$	---		$\mathrm{I}_{\mathrm{n}}$	$\mathrm{J}_{\mathrm{n}}$	$\mathbf{K}_{\mathbf{n}}$	$L_{n}$	$M_{n}$	$\mathrm{N}_{\mathrm{n}}$	$O_{n}$	$\mathbf{P}_{\mathbf{n}}$
$\mathrm{P}_{5}$	SMISC									---									
$\mathrm{P}_{6}$	SMISC									---									
$\mathrm{P}_{7}$	SMISC									---									
$\mathrm{P}_{8}$	SMISC									---									
---	---	---	---	---	---	---	---	---	---	---		---	---	---	---	---	---	---	---
$\mathrm{P}_{4 \mathrm{n}-3}$	SMISC									---		$\begin{gathered} 8 \mathrm{n}- \\ 6 \end{gathered}$	$\begin{gathered} 8 n- \\ 7 \end{gathered}$						
$\mathrm{P}_{4 \mathrm{n}-2}$	SMISC									---			$\begin{gathered} 8 \mathrm{n}- \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} 8 \mathrm{n}- \\ 5 \\ \hline \end{gathered}$					
$\mathrm{P}_{4 \mathrm{n}-1}$	SMISC									---				$\begin{gathered} 8 n- \\ 2 \end{gathered}$	$\begin{gathered} 8 \mathrm{n}- \\ 3 \end{gathered}$				
$\mathrm{P}_{4 \mathrm{n}}$	SMISC									---		$\begin{gathered} 8 \mathrm{n}- \\ 1 \end{gathered}$			8 n				

## SOLID273 Assumptions and Restrictions

- The area of the base element must be nonzero.
- The base element must lie on one side of the axisymmetric axis, and the axisymmetric axis must be on the same plane as the base element (master plane).
- A base element or base node must be associated with one axisymmetric axis (defined via SECTYPE and SECDATA commands) before generating nodes for general axisymmetric element sections (NAXIS) or defining an element by node connectivity (E).
- An edge with a removed midside node implies that the displacement varies linearly, rather than parabolically, along that edge. For more information about the use of midside nodes, see Quadratic Elements (Midside Nodes) in the Modeling and Meshing Guide.
- Use at least two elements to avoid the hourglass effect.
- You can form a triangular base element by defining duplicate $\mathrm{K}_{1}-\mathrm{L}_{1}-\mathrm{O}_{1}$ node numbers. (See Triangle, Prism, and Tetrahedral Elements (p. 99) in this document.)
- You cannot apply a pressure load via the SFA command.
- If you specify mixed formulation $(\operatorname{KEYOPT}(6)=1)$, do not miss any midside nodes. You must also use the sparse solver.
- The contribution of the element to the mass moment inertia of the whole model is calculated by element mass multiplied by the square of the coordinates of the elemental centroid. The moment of inertia may therefore be inaccurate.
- Issuing an /ESHAPE,1 command while PowerGraphics is active causes the program to plot the elements in 3-D and the results on both nodal planes and all integration planes in the circumferential direction; otherwise, the program plots the elements in 2-D and the results on the master plane.
- You cannot display surface load symbols (/PSF) when displaying this element in 3-D via the /ESHAPE command.
- When specifying more than one facet per element edge for PowerGraphics displays (NAXIS,EFACET,NUM, where $N U M>1$ ), ANSYS plots additional results on some planes between the nodal and integration planes. The results on these planes are interpolated based on the nodal and integration plane values. and are therefore less accurate than the values on the nodal and interpolation planes. If you do not wish to plot the interpolated values, set $N U M=1$ to plot only the values on nodal and integration planes.
- Print commands in postprocessing print the nodal plane results only.
- To model axisymmetric solid surface loads acting on this element, use general axisymmetric surface element SURF159. (You cannot use this element with surface-effect elements SURF153 and SURF154.)
- You cannot generate surface-based contact pairs (contact elements CONTA171 through CONTA174 paired with target elements TARGE169 and TARGE170) on this element.
- You can generate node-to-surface contact pairs (contact elements CONTA175 paired with target elements TARGE170) and node-to-node contact elements (CONTA178) on this element, with the following restrictions:
- When TARGE170 is on the surface of SOLID273, you may have accuracy and convergence issues if the loading causes large rotations about the axisymmetric axis of SOLID273; you may also have those issues if the two sides of the contact boundaries have different mesh patterns in the circumferential direction (caused by different KEYOPT(2) values of SOLID273).
- You cannot define CONTA175 with the multipoint constraint (MPC) approach using a force-distributed constraint (that is, you cannot set $\operatorname{KEYOPT}(2)=2, \operatorname{KEYOPT}(4)=1$, and $\operatorname{KEYOPT}(12)=5$ or 6 simultaneously for the CONTA175 elements).
- Stress stiffening is always included in geometrically nonlinear analyses (NLGEOM,ON). Prestress effects can be activated via the PSTRES command.


## SOLID273 Product Restrictions

No product-specific restrictions exist for this element.

## SOLID278

3-D 8-Node Thermal Solid
MP ME <> PR PRN <> <> <> <> <> <> PP <> EME MFS
Product Restrictions

## SOLID278 Element Description

SOLID278 has a 3-D thermal conduction capability. The element has eight nodes with a single degree of freedom, temperature, at each node. The element is applicable to a 3-D, steady-state or transient thermal analysis. If the model containing the conducting solid element is also to be analyzed structurally, the element should be replaced by an equivalent structural element (such as SOLID185). See SOLID279 for a similar thermal element, with mid-edge node capability.

SOLID278 is available in two forms:

- Homogeneous Thermal Solid (KEYOPT(3) $=0$, the default) -- See "SOLID278 Homogeneous Thermal Solid Element Description" (p. 1353).
- Layered Thermal Solid (KEYOPT(3) = 1) -- See "SOLID278 Layered Thermal Solid Element Description" (p. 1357).

See SOLID278 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

A higher-order version of the SOLID278 element is SOLID279.

## SOLID278 Homogeneous Thermal Solid Element Description

SOLID278 Thermal Solid is suitable for modeling general 3-D solid heat conduction. It allows for prism and tetrahedral degenerations when used in irregular regions. SOLID278 is designed to be a companion element for SOLID185.

Figure 1 SOLID278 Homogeneous Thermal Solid Geometry


## SOLID278 Homogeneous Thermal Solid Input Data

The geometry and node locations for this element are shown in Figure 1 (p. 1353). The element is defined by eight nodes and the orthotropic material properties. The default element coordinate system is along global directions. You may define an element coordinate system using ESYS, which forms the basis for orthotropic material directions (namely, for thermal conductivity). Specific heat and density are ignored for steady-state solutions. Properties not input default as described in Linear Material Properties (p. 16).

As described in Coordinate Systems (p. 14), you can use ESYS to orient the material properties and the temperature gradient and heat flux output. Use RSYS to choose output that follows the material coordinate system or the global coordinate system.

Element loads are described in Node and Element Loads (p. 97). Convection or heat flux (but not both) and radiation may be input as surface loads at the element faces as shown by the circled numbers on Figure 1 (p. 1353). Heat generation rates may be input as element body loads at the nodes. If the node I heat generation rate $\mathrm{HG}(\mathrm{I})$ is input, and all others are unspecified, they default to $\mathrm{HG}(\mathrm{I})$.
"SOLID278 Homogeneous Thermal Solid Input Summary" (p. 1354) contains a summary of element input. For a general description of element input, see Element Input (p. 5).

## SOLID278 Homogeneous Thermal Solid Input Summary

## Nodes

I, J, K, L, M, N, O, P

## Degrees of Freedom

TEMP

## Material Properties

KXX, KYY, KZZ, DENS, C

## Surface Loads

## Convection or Heat Flux (but not both) and Radiation (using Lab = RDSF) --

face 1 (J-I-L-K), face 2 (I-J-N-M), face 3 (J-K-O-N), face 4 (K-L-P-O), face 5 (L-I-M-P), face 6 (M-N-O-P)

## Body Loads

## Heat Generations --

$H G(I), H G(J), H G(K), H G(L), H G(M), H G(N), H G(O), H G(P)$

## Special Features

Birth and death

## KEYOPT(3)

Layer construction:
0 --
Homogenous Solid (default) -- nonlayered
1 --
Layered Solid

## KEYOPT(8)

Layer data storage. Only applicable for Layered Solid (KEYOPT(3) = 1).

## SOLID278 Homogeneous Thermal Solid Output Data

The solution output associated with the element is in two forms:

- Nodal temperatures included in the overall nodal solution
- Additional element output as shown in Table 1: SOLID278 Homogeneous Thermal Solid Output Definitions (p. 1355)

Convection heat flux is positive out of the element; applied heat flux is positive into the element. The element output directions are parallel to the element coordinate system. A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

## Table 1 SOLID278 Homogeneous Thermal Solid Output Definitions

Name	Definition	$\mathbf{O}$	$\mathbf{R}$
EL	Element Number	Y	Y
NODES	Nodes $-\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}, \mathrm{M}, \mathrm{N}, \mathrm{O}, \mathrm{P}$	Y	Y
MAT	Material number	Y	Y
VOLU:	Volume	Y	Y
XC, YC, ZC	Location where results are reported	Y	2
HGEN	Heat generations HG(I), HG(J), HG(K), HG(L), HG(M),   HG(N), HG(O), HG(P)	Y	-
TG:X, Y, Z	Thermal gradient components	Y	Y
TF:X, Y, Z	Thermal flux (heat flow rate/cross-sectional area) com-   ponents	Y	Y
FACE	Face label	1	-
AREA	Face area	1	1
NODES	Face nodes	1	-
HFILM	Film coefficient at each node of face	1	-
TBULK	Bulk temperature at each node of face	1	-
TAVG	Average face temperature	1	1
HEAT RATE	Heat flow rate across face by convection	1	1
HEAT   RATE/AREA	Heat flow rate per unit area across face by convection	1	-
HFAVG	Average film coefficient of the face	-	1
TBAVG	Average face bulk temperature	-	1


Name	Definition	$\mathbf{0}$	$\mathbf{R}$
HFLXAVG	Heat flow rate per unit area across face caused by input   heat flux	-	1
HFLUX	Heat flux at each node of face	1	-

1. Output if a surface load is input
2. Available only at centroid as a *GET item.

Table 2: SOLID278 Homogenous Thermal Solid Item and Sequence Numbers (p. 1356) lists output available via ETABLE using the Sequence Number method. See Element Table for Variables Identified By Sequence Number in the Basic Analysis Guide and The Item and Sequence Number Table (p. 9) in this manual for more information. The following notation is used in Table 2: SOLID278 Homogenous Thermal Solid Item and Sequence Numbers (p. 1356):

## Name

output quantity as defined in the Table 1: SOLID278 Homogeneous Thermal Solid Output Definitions (p. 1355)

## Item

predetermined Item label for ETABLE command
FCn
sequence number for solution items for element Face $n$

## Table 2 SOLID278 Homogenous Thermal Solid Item and Sequence Numbers

Output   Quantity   Name	ETABLE and ESOL Command Input						
	Item	FC1	FC2	FC3	FC4	FC5	FC6
AREA	NMISC	1	7	13	19	25	31
HFAVG	NMISC	2	8	14	20	26	32
TAVG	NMISC	3	9	15	21	27	33
TBAVG	NMISC	4	10	16	22	28	34
HEAT RATE	NMISC	5	11	17	23	29	35
HFLXAVG	NMISC	6	12	18	24	30	36

## SOLID278 Homogeneous Thermal Solid Assumptions and Restrictions

- Zero-volume elements are not allowed.
- Elements may be numbered either as shown in Figure 1 (p. 1353) or may have the planes IJKL and MNOP interchanged. The element may not be twisted such that the element has two separate volumes (which occurs most frequently when the elements are not numbered properly).
- All elements must have eight nodes. You can form a prism-shaped element by defining duplicate K and L and duplicate O and P node numbers. (See Triangle, Prism, and Tetrahedral Elements (p. 99).) A tetrahedron shape is also available.
- If the thermal element is to be replaced by a SOLID185 structural element with surface stresses requested, the thermal element should be oriented such that face I-J-N-M and/or face K-L-P-O is a free surface.
- A free surface of the element (that is, not adjacent to another element and not subjected to a boundary constraint) is assumed to be adiabatic.

This element has a layered option (KEYOPT $(3)=1)$. See "SOLID278 Layered Thermal Solid Assumptions and Restrictions" (p.1361) for additional information.

## SOLID278 Homogeneous Thermal Solid Product Restrictions

None.

## SOLID278 Layered Thermal Solid Element Description

Use SOLID278 Layered Thermal Solid to model heat conduction in layered thick shells or solids. The layered section definition is given by ANSYS section (SEC $x x x$ ) commands. A prism degeneration option is also available.

Figure 2 SOLID278 Layered Thermal Solid Geometry


## SOLID278 Layered Thermal Solid Input Data

The geometry and node locations for this element are shown in Figure 2 (p. 1357). The element is defined by eight nodes. A prism-shaped element may be formed by defining the same node numbers for nodes $K$ and L , and O and P .

In addition to the nodes, the element input data includes the anisotropic material properties. Anisotropic material directions correspond to the layer coordinate directions which are based on the element coordinate system. The element coordinate system follows the shell convention where the $z$ axis is normal to the surface of the shell. The nodal ordering must follow the convention that I-J-K-L and M-N-O-P element faces represent the bottom and top shell surfaces, respectively. You can change the orientation within the plane of the layers via the SECDATA command in the same way that you would for shell elements (as described in Co-
ordinate Systems (p.14)). To achieve the correct nodal ordering for a volume mapped (hexahedron) mesh, you can use the VEORIENT command to specify the desired volume orientation before executing the VMESH command. Alternatively, you can use the EORIENT command after automatic meshing to reorient the elements to be in line with the orientation of another element, or to be as parallel as possible to a defined ESYS axis.

## Layered Section Definition Using Section Commands

You can associate SOLID278 Layered Solid with a shell section (SECTYPE). The layered composite specifications (including layer thickness, material, orientation, and number of integration points through the thickness of the layer) are specified via shell section (SEC $x x x$ ) commands. You can use the shell section commands even with a single-layered element. ANSYS obtains the actual layer thicknesses used for element calculations by scaling the input layer thickness so that they are consistent with the thickness between the nodes.

You can designate the number of integration points ( $1,3,5,7$, or 9 ) located through the thickness of each layer. Two points are located on the top and bottom surfaces respectively and the remaining points are distributed equal distance between the two points. The element requires at least two points through the entire thickness. When no shell section definition is provided, the element is treated as single-layered and uses two integration points through the thickness.

SOLID278 Layered Thermal Solid does not support real constant input for defining layer sections.

## Other Input

The default orientation for this element has the S1 (shell surface coordinate) axis aligned with the first parametric direction of the element at the center of the element and is shown as $\mathrm{x}_{\mathrm{o}}$ in Figure 2 ( p .1357 ).

The default first surface direction S1 can be reoriented in the element reference plane (as shown in Figure 2 (p. 1357)) via the ESYS command. You can further rotate S1 by angle THETA (in degrees) for each layer via the SECDATA command to create layer-wise coordinate systems. See Coordinate Systems (p. 14) for details.

The geometry, node locations, and the coordinate system for this element are shown in Figure 2 (p. 1357). The element is defined by eight nodes and the orthotropic material properties. A prism-shaped element may also be formed as shown in Figure 2 (p. 1357). Orthotropic material directions correspond to the layer coordinate directions. The element coordinate system orientation is as described in Coordinate Systems (p. 14). Specific heat and density are ignored for steady-state solutions. Properties not input default as described in Linear Material Properties (p. 16).

Element loads are described in Node and Element Loads (p. 97). Convection or heat flux (but not both) and radiation may be input as surface loads at the element faces as shown by the circled numbers on Figure 2 (p. 1357). Heat generation rates may be input as element body loads on a per layer basis. One heat generation value is applied to the entire layer. If the first layer heat generation rate $\mathrm{HG}(1)$ is input, and all others are unspecified, they default to $\mathrm{HG}(1)$.

The following table summarizes the element input. Element Input (p. 5) provides a general description of element input.

## SOLID278 Layered Thermal Solid Input Summary

## Nodes

I, J, K, L, M, N, O, P
Degrees of Freedom TEMP

## Material Properties

KXX, KYY, KZZ, DENS, C

## Surface Loads

Convection or Heat Flux (but not both) and Radiation (using Lab = RDSF) --
face $1(\mathrm{~J}-\mathrm{I}-\mathrm{L}-\mathrm{K})$, face $2(\mathrm{I}-\mathrm{J}-\mathrm{N}-\mathrm{M})$, face 3 (J-K-O-N),
face 4 (K-L-P-O), face 5 (L-I-M-P), face 6 (M-N-O-P)

## Body Loads

Heat Generations --
HG(1), HG(2), HG(3), . . , HG(number of layers)

## Special Features

Birth and death

## KEYOPT(3)

Layer construction:
0 --
Homogenous Solid (default) -- nonlayered
1 --
Layered Solid

## KEYOPT(8)

Layer data storage:
0 --
Store data for bottom of bottom layer and top of top layer (default)
1 --
Store top and bottom data for all layers. (The volume of data may be considerable.)

## SOLID278 Layered Thermal Solid Output Data

The solution output associated with the element is in two forms:

- Nodal temperatures included in the overall nodal solution
- Additional element output as shown in Table 3: SOLID278 Layered Thermal Solid Element Output Definitions (p. 1360)

Convection heat flux is positive out of the element; applied heat flux is positive into the element. The element output directions are parallel to the layer coordinate system. A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

Figure 3 SOLID278 Layered Thermal Solid Heat Flux/Temperature Gradient Output


Heat flux directions shown are for global directions.

## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " $Y$ " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and " - " indicates that the item is not available.

Table 3 SOLID278 Layered Thermal Solid Element Output Definitions

Name	Definition	$\mathbf{O}$	$\mathbf{R}$
EL	Element Number	Y	Y
NODES	Nodes $-\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}, \mathrm{M}, \mathrm{N}, \mathrm{O}, \mathrm{P}$	Y	Y
MAT	Material number	Y	Y
VOLU:	Volume	Y	Y
XC, YC, ZC	Location where results are reported	Y	2
HGEN	Heat generations HG(1), HG(2), HG(3),.$\ldots$	Y	-
TG:X, Y, Z	Thermal gradient components	Y	Y
TF:X, Y, Z	Thermal flux (heat flow rate/cross-sectional area) com-   ponents	Y	Y
FACE	Face label	1	-
AREA	Face area	1	1
NODES	Face nodes	1	-


Name	Definition	$\mathbf{0}$	R
HFILM	Film coefficient at each node of face	1	-
TBULK	Bulk temperature at each node of face	1	-
TAVG	Average face temperature	1	1
HEAT RATE	Heat flow rate across face by convection	1	1
HEAT   RATE/AREA	Heat flow rate per unit area across face by convection	1	-
HFAVG	Average film coefficient of the face	-	1
TBAVG	Average face bulk temperature	-	1
HFLXAVG	Heat flow rate per unit area across face caused by input   heat flux	-	1
HFLUX	Heat flux at each node of face	1	-

1. Output if a surface load is input
2. Available only at centroid as a *GET item.

Table 4: SOLID278 Layered Thermal Solid Item and Sequence Numbers (p. 1361) lists output available via ETABLE using the Sequence Number method. See Element Table for Variables Identified By Sequence Number in the Basic Analysis Guide and The Item and Sequence Number Table (p. 9) in this manual for more information. The following notation is used in Table 4: SOLID278 Layered Thermal Solid Item and Sequence Numbers (p. 1361):

## Name

output quantity as defined in Table 3: SOLID278 Layered Thermal Solid Element Output Definitions (p. 1360)

## Item

predetermined Item label for ETABLE command
FCn
sequence number for solution items for element Face $n$
Table 4 SOLID278 Layered Thermal Solid Item and Sequence Numbers

Output   Quantity   Name	ETABLE and ESOL Command Input						
	Item	FC1	FC2	FC3	FC4	FC5	FC6
AREA	NMISC	1	7	13	19	25	31
HFAVG	NMISC	2	8	14	20	26	32
TAVG	NMISC	3	9	15	21	27	33
TBAVG	NMISC	4	10	16	22	28	34
HEAT RATE	NMISC	5	11	17	23	29	35
HFLXAVG	NMISC	6	12	18	24	30	36

## SOLID278 Layered Thermal Solid Assumptions and Restrictions

- Zero-volume elements are not allowed.
- Elements may be numbered either as shown in Figure 2 (p. 1357) or may have the planes IJKL and MNOP interchanged. The element may not be twisted such that the element has two separate volumes (which occurs most frequently when the elements are not numbered properly).
- All elements must have eight nodes. You can form a prism-shaped element by defining duplicate K and L and duplicate O and P node numbers. (See Triangle, Prism, and Tetrahedral Elements (p. 99).)
- If the thermal element is to be replaced by a SOLID185 structural element with surface stresses requested, the thermal element should be oriented such that face I-J-N-M and/or face K-L-P-O is a free surface.
- A free surface of the element (that is, not adjacent to another element and not subjected to a boundary constraint) is assumed to be adiabatic.


## SOLID278 Layered Thermal Solid Product Restrictions

There are no product-specific restrictions for this element.

## SOLID279

## 3-D 20-Node Thermal Solid

MP ME <> PR PRN <> <> <> <> <> <> PP <> EME MFS
Product Restrictions

## SOLID279 Element Description

SOLID279 is a higher order 3-D 20-node solid element that exhibits quadratic thermal behavior. The element is defined by 20 nodes with a temperature degree of freedom at each node.

SOLID279 is available in two forms:

- Homogenous Thermal Solid (KEYOPT(3) = 0, the default) -- See "SOLID279 Homogenous Thermal Solid Element Description " (p. 1363).
- Layered Thermal Solid $(\operatorname{KEYOPT}(3)=1)$-- See "SOLID279 Layered Thermal Solid Element Description" (p. 1368).

A lower-order version of the SOLID279 element is SOLID278.

## SOLID279 Homogenous Thermal Solid Element Description

SOLID279 Homogenous Thermal Solid is well suited to modeling irregular meshes (such as those produced by various CAD/CAM systems). The element may have any spatial orientation.

Various printout options are available. See SOLID279 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details.

Figure 1 SOLID279 Homogenous Thermal Solid Geometry



Tetrahedral Option


Pyramid Option


## SOLID279 Homogenous Thermal Solid Input Data

The geometry, node locations, and the element coordinate system for this element are shown in Figure 1 (p. 1364). A prism-shaped element may be formed by defining the same node numbers for nodes K, L, and S ; nodes A and B ; and nodes $\mathrm{O}, \mathrm{P}$, and W. A tetrahedral-shaped element and a pyramid-shaped element may also be formed as shown in Figure 1 (p. 1364). SOLID278 is a similar element, without mid-side nodes.

In addition to the nodes, the element input data includes the anisotropic material properties. Anisotropic material directions correspond to the element coordinate directions. The element coordinate system orientation is as described in Coordinate Systems (p. 14).

As described in Coordinate Systems (p.14), you can use ESYS to orient the material properties and the temperature gradient and heat flux output. Use RSYS to choose output that follows the material coordinate system or the global coordinate system.

Orthotropic material directions correspond to the element coordinate directions. The element coordinate system orientation is as described in Coordinate Systems (p. 14). Specific heat and density are ignored for steady-state solutions. Properties not input default as described in Linear Material Properties (p. 16).

Element loads are described in Node and Element Loads (p. 97). Convection or heat flux (but not both) and radiation may be input as surface loads at the element faces as shown by the circled numbers on Figure 1 (p. 1364). Heat generation rates may be input as element body loads at the nodes. If the node I heat generation rate $\mathrm{HG}(\mathrm{I})$ is input, and all others are unspecified, they default to $\mathrm{HG}(\mathrm{I})$. If all corner node heat generation
rates are specified, each midside node heat generation rate defaults to the average heat generation rate of its adjacent corner nodes.

The following table summarizes the element input. Element Input (p. 5) provides a general description of element input.

## SOLID279 Homogenous Thermal Solid Input Summary

## Nodes

I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, A, B

## Degrees of Freedom

TEMP

## Real Constants

None

## Material Properties

KXX, KYY, KZZ, DENS, C

## Surface Loads

Convection or Heat Flux (but not both) and Radiation (using Lab = RDSF) --
face 1 (J-I-L-K), face 2 (I-J-N-M), face 3 (J-K-O-N), face 4 (K-L-P-O), face 5 (L-I-M-P), face 6 (M-N-O-P)

## Body Loads

## Heat Generations --

HG(I), HG(J), HG(K), HG(L), HG(M), HG(N), HG(O), HG(P), HG(Q), HG(R), HG(S), HG(T), HG(U), HG(V), HG(W), HG(X), HG(Y), HG(Z), HG(A), HG(B)

## Special Features

Birth and death

## KEYOPT(3)

Layer construction:
0 --
Homogenous Solid (default) -- nonlayered
1 --
Layered Solid

## KEYOPT(8)

Layer data storage. Only applicable for Layered Solid $(\operatorname{KEYOPT}(3)=1)$.

## SOLID279 Homogenous Thermal Solid Output Data

The solution output associated with the element is in two forms:

- Nodal temperatures included in the overall nodal solution
- Additional element output as shown in Table 1: SOLID279 Element Output Definitions (p. 1366)

Figure 2 SOLID279 Homogenous Thermal Solid Temperature Gradient/Heat Flux Output


The element heat flux directions are parallel to the element coordinate system. A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " $Y$ " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and " - " indicates that the item is not available.

Table 1 SOLID279 Element Output Definitions

Label	Definition	$\mathbf{O}$	$\mathbf{R}$
EL	Element Number	Y	Y
NODES	Nodes $-\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}, \mathrm{M}, \mathrm{N}, \mathrm{O}, \mathrm{P}$	Y	Y
MAT	Material number	Y	Y
VOLU:	Volume	Y	Y
XC, YC, ZC	Location where results are reported	Y	2
HGEN	Heat generations HG(I), HG(J), HG(K), HG(L), HG(M),   HG(N), HG(O), HG(P), HG(Q), .., HG(Z), HG(A), HG(B)	Y	-
TG:X, Y, Z	Thermal gradient components	Y	Y
TF:X, Y, Z	Thermal flux (heat flow rate/cross-sectional area) com-   ponents	Y	Y
FACE	Face label	1	-
NODES	Corner nodes on this face	1	-
AREA	Face area	1	1


Label	Definition	$\mathbf{O}$	R
HFILM	Film coefficient	1	-
TAVG	Average face temperature	1	1
TBULK	Fluid bulk temperature	1	-
HEAT RATE	Heat flow rate across face by convection	1	1
HEAT   RATE/AREA	Heat flow rate per unit area across face by convection	1	-
HFLUX	Heat flux at each node of face	1	-
HFAVG	Average film coefficient of the face	-	1
TBAVG	Average face bulk temperature	-	1
HFLXAVG	Heat flow rate per unit area across face caused by input   heat flux	-	1

1. Output only if a surface load is input
2. Available only at centroid as a *GET item.

Table 2: SOLID279 Item and Sequence Numbers (p. 1367) lists output available through ETABLE using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p. 9) in this document for more information. The following notation is used in Table 2: SOLID279 Item and Sequence Numbers (p. 1367):

## Name

output quantity as defined in Table 1: SOLID279 Element Output Definitions (p. 1366)

## Item

predetermined Item label for ETABLE
FCn
sequence number for solution items for element Face $n$
Table 2 SOLID279 Item and Sequence Numbers

Output   Quantity   Name	ETABLE and ESOL Command Input						
	Item	FC1	FC2	FC3	FC4	FC5	FC6
AREA	NMISC	1	7	13	19	25	31
HFAVG	NMISC	2	8	14	20	26	32
TAVG	NMISC	3	9	15	21	27	33
TBAVG	NMISC	4	10	16	22	28	34
HEAT RATE	NMISC	5	11	17	23	29	35
HFLXAVG	NMISC	6	12	18	24	30	36

## SOLID279 Homogenous Thermal Solid Assumptions and Restrictions

- The element must not have a zero volume. This occurs most frequently when the element is not numbered properly.
- Elements may be numbered either as shown in Figure 1 (p. 399) or may have the planes IJKL and MNOP interchanged.
- The condensed face of a prism-shaped element should not be defined as a convection face.
- The specific heat is evaluated at each integration point to allow for abrupt changes (such as melting) within a coarse grid of elements.
- If the thermal element is to be replaced by a SOLID186 structural element with surface stresses requested, the thermal element should be oriented such that face IJNM and/or face KLPO is a free surface.
- A free surface of the element (i.e., not adjacent to another element and not subjected to a boundary constraint) is assumed to be adiabatic.
- Thermal transients having a fine integration time step and a severe thermal gradient at the surface will also require a fine mesh at the surface.
- An edge with a removed midside node implies that the temperature varies linearly, rather than parabolically, along that edge.
- See Quadratic Elements (Midside Nodes) in the Modeling and Meshing Guide for more information about the use of midside nodes.
- For transient solutions using the THOPT,QUASI option, the program removes the midside nodes from any face with a convection load. A temperature solution is not available for them. Do not use the midside nodes on these faces in constraint equations or with contact. If you use these faces for those situations, remove the midside nodes first.
- Degeneration to the form of pyramid should be used with caution.
- The element sizes, when degenerated, should be small in order to minimize the field gradients.
- Pyramid elements are best used as filler elements or in meshing transition zones.

This element has a layered option (KEYOPT $(3)=1)$. See "SOLID279 Layered Thermal Solid Assumptions and Restrictions" (p.1373) for additional information.

## SOLID279 Homogenous Thermal Solid Product Restrictions

None.

## SOLID279 Layered Thermal Solid Element Description

Use SOLID279 Layered Thermal Solid to model heat conduction in layered thick shells or solids. The layered section definition is given by ANSYS section (SEC $x x x$ ) commands. A prism degeneration option is also available.

Figure 3 SOLID279 Layered Thermal Solid Geometry


## SOLID279 Layered Thermal Solid Input Data

The geometry, node locations, and the element coordinate system for this element are shown in Figure 3 (p. 1369). A prism-shaped element may be formed by defining the same node numbers for nodes K, L, and S ; nodes A and B ; and nodes $\mathrm{O}, \mathrm{P}$, and W .

In addition to the nodes, the element input data includes the anisotropic material properties. Anisotropic material directions correspond to the layer coordinate directions which are based on the element coordinate system. The element coordinate system follows the shell convention where the $z$ axis is normal to the surface of the shell. The nodal ordering must follow the convention that I-J-K-L and M-N-O-P element faces represent the bottom and top shell surfaces, respectively. You can change the orientation within the plane of the layers via the ESYS command in the same way that you would for shell elements (as described in Coordinate Systems (p. 14)). To achieve the correct nodal ordering for a volume mapped (hexahedron) mesh, you can use the VEORIENT command to specify the desired volume orientation before executing the VMESH command. Alternatively, you can use the EORIENT command after automatic meshing to reorient the elements to be in line with the orientation of another element, or to be as parallel as possible to a defined ESYS axis.

## Layered Section Definition Using Section Commands

You can associate SOLID279 Layered Thermal Solid with a shell section (SECTYPE). The layered composite specifications (including layer thickness, material, orientation, and number of integration points through the thickness of the layer) are specified via shell section (SEC $x \times x$ ) commands. You can use the shell section commands even with a single-layered element. ANSYS obtains the actual layer thicknesses used for element calculations by scaling the input layer thickness so that they are consistent with the thickness between the nodes.

You can designate the number of integration points ( $1,3,5,7$, or 9 ) located through the thickness of each layer. Two points are located on the top and bottom surfaces respectively and the remaining points are distributed equal distance between the two points. The element requires at least two points through the entire thickness. When no shell section definition is provided, the element is treated as single-layered and uses two integration points through the thickness.

SOLID279 Layered Thermal Solid does not support real constant input for defining layer sections.

## Other Input

The default orientation for this element has the S 1 (shell surface coordinate) axis aligned with the first parametric direction of the element at the center of the element and is shown as $x_{0}$ in Figure 3 (p. 1369).

The default first surface direction S1 can be reoriented in the element reference plane (as shown in Figure 3 (p. 1369)) via the ESYS command. You can further rotate S1 by angle THETA (in degrees) for each layer via the SECDATA command to create layer-wise coordinate systems. See Coordinate Systems (p. 14) for details.

Orthotropic material directions correspond to the element coordinate directions. The element coordinate system orientation is as described in Coordinate Systems (p. 14). Specific heat and density are ignored for steady-state solutions. Properties not input default as described in Linear Material Properties (p. 16).

Element loads are described in Node and Element Loads (p. 97). Convection or heat flux (but not both) and radiation may be input as surface loads at the element faces as shown by the circled numbers on Figure 3 (p. 1369). Heat generation rates may be input as element body loads on a per layer basis. One heat generation value is applied to the entire layer. If the first layer heat generation rate $\mathrm{HG}(1)$ is input, and all others are unspecified, they default to $\mathrm{HG}(1)$.

As described in Coordinate Systems (p. 14), you can use the ESYS command to orient the material properties and temperature gradient/heat flux output. Use RSYS to choose output that follows the material coordinate system or the global coordinate system.

The following table summarizes the element input. Element Input (p. 5) provides a general description of element input.

## SOLID279 Layered Thermal Solid Input Summary

## Nodes

I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, A, B
Degrees of Freedom
TEMP

## Real Constants

 None
## Material Properties

KXX, KYY, KZZ, DENS, C, ENTH

## Surface Loads

Convection or Heat Flux (but not both) and Radiation (using Lab = RDSF) --
face 1 (J-I-L-K), face 2 (I-J-N-M), face 3 (J-K-O-N),
face 4 (K-L-P-O), face 5 (L-I-M-P), face 6 (M-N-O-P)

## Body Loads

Heat Generations --
$H G(1), H G(2), H G(3), \ldots, H G(n u m b e r ~ o f ~ l a y e r s)$

## Special Features

Birth and death

## KEYOPT(3)

Layer construction:
0 --
Homogenous Solid (default) -- nonlayered
1 --
Layered Solid

## KEYOPT(8)

Layer data storage:
0 --
Store data for bottom of bottom layer and top of top layer
1 --
Store top and bottom data for all layers. (The volume of data may be excessive.)

## SOLID279 Layered Thermal Solid Output Data

The solution output associated with the element is in two forms:

- Nodal temperatures included in the overall nodal solution
- Additional element output as shown in Figure 4 (p. 1371)

Figure 4 SOLID279 Layered Thermal Solid Temperature Gradient/Heat Flux Output


The element heat flux directions are parallel to the layer coordinate system. A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

Convection heat flux is positive out of the element; applied heat flux is positive into the element. The element output directions are parallel to the element coordinate system. A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to view results.

## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " $Y$ " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

Table 3 SOLID279 Element Output Definitions

Label	Definition	0	R
EL	Element Number	Y	Y
NODES	Nodes - I, J, K, L, M, N, O, P	Y	Y
MAT	Material number	Y	Y
VOLU:	Volume	Y	Y
XC, YC, ZC	Location where results are reported	Y	2
TG:X, Y, Z	Thermal gradient components	Y	Y
TF:X, Y, Z	Thermal flux (heat flow rate/cross-sectional area) components	Y	Y
FACE	Face label	1	-
NODES	Corner nodes on this face	1	-
AREA	Face area	1	1
HFILM	Film coefficient	1	-
TAVG	Average face temperature	1	1
TBULK	Fluid bulk temperature	1	-
HEAT RATE	Heat flow rate across face by convection	1	1
HEAT   RATE/AREA	Heat flow rate per unit area across face by convection	1	-
HFLUX	Heat flux at each node of face	1	-
HFAVG	Average film coefficient of the face	-	1
TBAVG	Average face bulk temperature	-	1
HFLXAVG	Heat flow rate per unit area across face caused by input heat flux	-	1

1. Output only if a surface load is input
2. Available only at centroid as a *GET item.

Table 4: SOLID279 Item and Sequence Numbers (p. 1373) lists output available via ETABLE using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p. 9) in this document for more information. The following notation is used in Table 4: SOLID279 Item and Sequence Numbers (p. 1373):

## Name

output quantity as defined in Table 3: SOLID279 Element Output Definitions (p. 1372)

## Item

predetermined Item label for ETABLE

## FCn

sequence number for solution items for element Face $n$

## Table 4 SOLID279 Item and Sequence Numbers

Output   Quantity   Name	ETABLE and ESOL Command Input						
	Item	FC1	FC2	FC3	FC4	FC5	FC6
AREA	NMISC	1	7	13	19	25	31
HFAVG	NMISC	2	8	14	20	26	32
TAVG	NMISC	3	9	15	21	27	33
TBAVG	NMISC	4	10	16	22	28	34
HEAT RATE	NMISC	5	11	17	23	29	35
HFLXAVG	NMISC	6	12	18	24	30	36

## SOLID279 Layered Thermal Solid Assumptions and Restrictions

- The element must not have a zero volume. This occurs most frequently when the element is not numbered properly.
- Elements may be numbered either as shown in Figure 3 (p.1369) or may have the planes IJKL and MNOP interchanged.
- The condensed face of a prism-shaped element should not be defined as a convection face.
- The specific heat is evaluated at each integration point to allow for abrupt changes (such as melting) within a coarse grid of elements.
- If the thermal element is to be replaced by a SOLID186 structural element with surface stresses requested, the thermal element should be oriented such that face IJNM and/or face KLPO is a free surface.
- A free surface of the element (i.e., not adjacent to another element and not subjected to a boundary constraint) is assumed to be adiabatic.
- Thermal transients having a fine integration time step and a severe thermal gradient at the surface will also require a fine mesh at the surface.
- An edge with a removed midside node implies that the temperature varies linearly, rather than parabolically, along that edge.
- See Quadratic Elements (Midside Nodes) in the Modeling and Meshing Guide for more information about the use of midside nodes.
- For transient solutions using the THOPT,QUASI option, the program removes the midside nodes from any face with a convection load. A temperature solution is not available for them. Do not use the midside
nodes on these faces in constraint equations or with contact. If you use these faces for those situations, remove the midside nodes first.


## SOLID279 Layered Thermal Solid Product Restrictions

None.

## SHELL281

8-Node Structural Shell
MP ME ST PR PRN DS DSS <> <> <> <> PP <> EME MFS
Product Restrictions

## SHELL281 Element Description

SHELL281 is suitable for analyzing thin to moderately-thick shell structures. The element has eight nodes with six degrees of freedom at each node: translations in the $x, y$, and $z$ axes, and rotations about the $x, y$, and $z$-axes. (When using the membrane option, the element has translational degrees of freedom only.)

SHELL281 is well-suited for linear, large rotation, and/or large strain nonlinear applications. Change in shell thickness is accounted for in nonlinear analyses. The element accounts for follower (load stiffness) effects of distributed pressures.

SHELL281 may be used for layered applications for modeling composite shells or sandwich construction. The accuracy in modeling composite shells is governed by the first-order shear-deformation theory (usually referred to as Mindlin-Reissner shell theory).

The element formulation is based on logarithmic strain and true stress measures. The element kinematics allow for finite membrane strains (stretching). However, the curvature changes within a time increment are assumed to be small.

See SHELL281 in the Theory Reference for the Mechanical APDL and Mechanical Applications for more details about this element.

## SHELL281 Input Data

The following figure shows the geometry, node locations, and the element coordinate system for this element. The element is defined by shell section information and by eight nodes (I, J, K, L, M, N, O and P).

Midside nodes may not be removed from this element. See Quadratic Elements (Midside Nodes) in the Modeling and Meshing Guide for more information about the use of midside nodes.

A triangular-shaped element may be formed by defining the same node number for nodes $\mathrm{K}, \mathrm{L}$ and O .

Figure 1 SHELL281 Geometry

$\mathrm{x}_{\mathrm{o}}=$ Element x -axis if element orientation (ESYS) is not provided.
$x=$ Element $x$-axis if element orientation is provided.

## Single-Layer Definition

To define the thickness (and other information), use section definition, as follows:
SECTYPE,,SHELL
SECDATA,THICKNESS, ...
A single-layer shell section definition provides flexible options. For example, you can specify the number of integration points used and the material orientation.

## Multilayer Definition

The shell section commands allow for layered shell definition. Options are available for specifying the thickness, material, orientation, and number of integration points through the thickness of the layers.

You can designate the number of integration points ( $1,3,5,7$, or 9 ) located through the thickness of each layer when using section input. When only one, the point is always located midway between the top and bottom surfaces. If three or more points, two points are located on the top and bottom surfaces respectively and the remaining points are distributed at equal distances between the two points. The default number of integration points for each layer is three; however, when a single layer is defined and plasticity is present, the number of integration points is changed to a minimum of five during solution.

The following additional capabilities are available when defining shell layers:

- SHELL181 accepts the preintegrated shell section type (SECTYPE,,GENS).

When the element is associated with the GENS section type, thickness or material definitions are not required.

- You can use the function tool to define thickness as a function of global/local coordinates or node numbers (SECFUNCTION).
- You can specify offsets (SECOFFSET).
- A section can be partially defined using data from a FiberSIM . xml file (SECTYPE,,SHELL,FIBERSIM).


## Other Input

The default orientation for this element has the S1 (shell surface coordinate) axis aligned with the first parametric direction of the element at the four in-plane integration points:
$\mathrm{S}_{1}=\frac{\partial\{\mathrm{x}\}}{\partial \mathrm{s}} /\left(\left|\frac{\partial\{\mathrm{x}\}}{\partial \mathrm{s}}\right|\right)$
Where element geometry $\{x\}$ is given as follows:
$\{x\}=\sum_{i=1}^{8} h^{i}(s, r)\{x\}^{i}$
$(\mathrm{s}, \mathrm{r})=$ two isoparametric element coordinates
$h^{\prime}(s, r)=$ shape functions associated with eight element nodes (see Theory Reference for the Mechanical APDL and Mechanical Applications for more details)
$\{x\}^{i}=$ global coordinates of eight element nodes
For undistorted elements, the default orientation is the same as described in Coordinate Systems (p. 14) (the first surface direction is aligned with the IJ side).

The first surface direction $\mathrm{S}_{1}$ can be rotated by angle $\theta$ (in degrees) for the layer via the SECDATA command. For an element, you can specify a single value of orientation in the plane of the element. Layer-wise orientation is supported.

You can also define element orientation via the ESYS command. For more information, see Coordinate Systems (p.14).

The element supports degeneration into a triangular form. For better accuracy, however, ANSYS, Inc. recommends quadrilateral shaped elements. The triangle form is generally more robust when using the membrane option with large deflections.

To evaluate stresses and strains on exterior surfaces, use $\operatorname{KEYOPT}(1)=2$. When used as overlaid elements on the faces of 3-D elements, this option is similar to the surface stress option (described in the Theory Reference for the Mechanical APDL and Mechanical Applications), but is more general and applicable to nonlinear analysis. The element used with this option does not provide any stiffness, mass, or load contributions. This option should only be used in single-layer shells. Irrespective of other settings, SHELL281 provides stress and strain output at the four in-plane integration points of the layer.

SHELL281uses a penalty method to relate the independent rotational degrees of freedom about the normal (to the shell surface) with the in-plane components of displacements. The program chooses an appropriate penalty stiffness by default. A drill stiffness factor can be specified via the SECCONTROLS command.

Element loads are described in Node and Element Loads (p. 97). Pressures may be input as surface loads on the element faces as shown by the circled numbers in Figure 1 (p.1376). Positive pressures act into the element. Because shell edge pressures are input on a per-unit-length basis, per-unit-area quantities must be multiplied by the shell thickness.

Temperatures may be input as element body loads at the corners of the outside faces of the element and at the corners of the interfaces between layers. The first corner temperature T1 defaults to TUNIF. If all other temperatures are unspecified, they default to T1. If $\operatorname{KEYOPT}(1)=0$ and if exactly NL+1 temperatures are input, one temperature is used for the four bottom corners of each layer, and the last temperature is used for the four top corner temperatures of the top layer. If $\operatorname{KEYOPT}(1)=1$ and if exactly NL temperatures are input, one temperature is used for the four corners of each layer. That is, T 1 is used for $\mathrm{T} 1, \mathrm{~T} 2, \mathrm{~T} 3$, and T4; T2 (as input) is used for T5, T6, T7, and T8, etc. For any other input pattern, unspecified temperatures default to TUNIF.

SHELL281 includes the effects of transverse shear deformation. The transverse shear stiffness of the element is a $2 \times 2$ matrix as shown below:

$$
E=\left[\begin{array}{ll}
E_{11} & E_{12} \\
\operatorname{sym} & E_{22}
\end{array}\right]
$$

To define transverse shear stiffness values, use the SECCONTROLS command .
For a single-layer shell with isotropic material, default transverse shear stiffnesses are:
$E=\left[\begin{array}{cc}k G h & 0 \\ 0 & k G h\end{array}\right]$

In the above matrix, $k=5 / 6, G=$ shear modulus, and $h=$ thickness of the shell.
SHELL281 can be associated with linear elastic, elastoplastic, creep, or hyperelastic material properties. Only isotropic, anisotropic, and orthotropic linear elastic properties can be input for elasticity. The von Mises isotropic hardening plasticity models can be invoked with BISO (bilinear isotropic hardening), MISO (multilinear isotropic hardening), and NLISO (nonlinear isotropic hardening) options. The kinematic hardening plasticity models can be invoked with BKIN (bilinear kinematic hardening), MKIN and KINH (multilinear kinematic hardening), and CHABOCHE (nonlinear kinematic hardening). Invoking plasticity assumes that the elastic properties are isotropic (that is, if orthotropic elasticity is used with plasticity, ANSYS assumes the isotropic elastic modulus $=$ EX and Poisson's ratio $=$ NUXY).

Hyperelastic material properties (2,3,5, or 9 parameter Mooney-Rivlin material model, Neo-Hookean model, Polynomial form model, Arruda-Boyce model, and user-defined model) can be used with this element. Poisson's ratio is used to specify the compressibility of the material. If less than 0 , Poisson's ratio is set to 0 ; if greater than or equal to 0.5 , Poisson's ratio is set to 0.5 (fully incompressible).

Both isotropic and orthotropic thermal expansion coefficients can be input using MP,ALPX. When used with hyperelasticity, isotropic expansion is assumed.

Issue the BETAD command to specify the global value of damping. If MP,DAMP is defined for the material number of the element (assigned with the MAT command), it is used for the element instead of the value from the BETAD command. Similarly, use the TREF command to specify the global value of reference temperature. If MP,REFT is defined for the material number of the element, it is used for the element instead of
the value from the TREF command. But if MP,REFT is defined for the material number of the layer, it is used instead of either the global or element value.

SHELL281 uses an advanced shell formulation that accurately incorporates initial curvature effects. The calculation for effective shell curvature change accounts for both shell-membrane and thickness strains. The new formulation generally offers improved accuracy in curved shell structure simulations, especially when thickness strain is significant or the material anisotropy in the thickness direction cannot be ignored.
$\operatorname{KEYOPT}(8)=2$ is used to store midsurface results in the results file for single or multi-layer shell elements. If you use SHELL,MID, you will see these calculated values, rather than the average of the TOP and BOTTOM results. Use this option to access these correct midsurface results (membrane results) for those analyses where averaging TOP and BOTTOM results is inappropriate; examples include midsurface stresses and strains with nonlinear material behavior, and midsurface results after mode combinations that involve squaring operations such as in spectrum analyses.
$\operatorname{KEYOPT}(9)=1$ is used to read initial thickness data from a user subroutine.
The effects of pressure load stiffness are automatically included for this element. If an unsymmetric matrix is needed for pressure load stiffness effects, use NROPT,UNSYM.

A summary of the element input is given in "SHELL281 Input Summary" (p. 1379). A general description of element input is given in Element Input (p. 5).

## SHELL281 Input Summary

## Nodes

I, J, K, L, M, N, O, P

## Degrees of Freedom

UX, UY, UZ, ROTX, ROTY, ROTZ if $\operatorname{KEYOPT}(1)=0$
UX, UY, UZ if $\operatorname{KEYOPT}(1)=1$

## Material Properties

EX, EY, EZ, (PRXY, PRYZ, PRXZ, or NUXY, NUYZ, NUXZ), ALPX, ALPY, ALPZ (or CTEX, CTEY, CTEZ or THSX, THSY, THSZ), DENS, GXY, GYZ, GXZ

Specify DAMP only once for the element (use MAT command to assign material property set). REFT may be provided once for the element, or may be assigned on a per layer basis. See the discussion in "SHELL281 Input Summary" (p. 1379) for more details.

## Surface Loads

Pressures --
face 1 (I-J-K-L) (bottom, in +N direction),
face $2(I-J-K-L)$ (top, in -N direction),
face $3(\mathrm{~J}-\mathrm{I})$, face $4(\mathrm{~K}-\mathrm{J})$, face $5(\mathrm{~L}-\mathrm{K})$, face $6(\mathrm{I}-\mathrm{L})$
Body Loads
Temperatures --
For $\operatorname{KEYOPT}(1)=0$ (Bending and membrane stiffness):

T1, T2, T3, T4 (at bottom of layer 1), T5, T6, T7, T8 (between layers 1-2); similarly for between next layers, ending with temperatures at top of layer $\mathrm{NL}\left(4^{*}(\mathrm{NL}+1)\right.$ maximum). Hence, for one-layer elements, eight temperatures are used.

## For $\operatorname{KEYOPT}(1)=1$ (Membrane stiffness only):

T1, T2, T3, T4 for layer 1, T5, T6, T7, T8 for layer 2, similarly for all layers (4*NL maximum). Hence, for one-layer elements, four temperatures are used.

## Special Features

Plasticity (PLASTIC, BISO, MISO, NLISO, BKIN, MKIN, KINH, CHABOCHE, HILL)
Hyperelasticity (AHYPER, HYPER, BB, CDM)
Viscoelasticity (PRONY, SHIFT)
Viscoplasticity/Creep (CREEP, RATE)
Elasticity (ANEL, ELASTIC)
Other material (USER, SDAMP)
Stress stiffening
Large deflection
Large strain
Initial state
Nonlinear stabilization
Automatic selection of element technology
Birth and death
Section definition for layered shells and preintegrated shell sections for input of homogenous section stiffnesses
Linear perturbation
Items in parentheses refer to data tables associated with the TB command. See "Structures with Material Nonlinearities" in the Theory Reference for the Mechanical APDL and Mechanical Applications for details about the material models.

See Automatic Selection of Element Technologies (p. 122) and the documentation for the ETCONTROL command for more information about selecting element technologies.

## KEYOPT(1)

Element stiffness:
0 --
Bending and membrane stiffness (default)
1 --
Membrane stiffness only
2 --
Stress/strain evaluation only

## KEYOPT(8)

Specify layer data storage:
0 --
Store data for bottom of bottom layer and top of top layer (multi-layer elements) (default)
1 --
Store data for TOP and BOTTOM, for all layers (multi-layer elements). (The volume of data may be considerable.)

## 2 --

Store data for TOP, BOTTOM, and MID for all layers; applies to single- and multi-layer elements

## KEYOPT(9)

User thickness option:
0 --
No user subroutine to provide initial thickness (default)
1 --
Read initial thickness data from user subroutine UTHICK
See the Guide to ANSYS User Programmable Features for information about user-written subroutines

## SHELL281 Output Data

The solution output associated with the element is in two forms:

- Nodal displacements included in the overall nodal solution
- Additional element output as shown in Table 1: SHELL281 Element Output Definitions (p. 1382)

Several items are illustrated in Figure 2 (p. 1382).
KEYOPT(8) controls the amount of data output to the results file for processing with the LAYER command. Interlaminar shear stress is available as SYZ and SXZ evaluated at the layer interfaces. KEYOPT(8) must be set to either 1 or 2 to output these stresses in the POST1 postprocessor. A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to review results.

The element stress resultants (N11, M11, Q13, etc.) are parallel to the element coordinate system, as are the membrane strains and curvatures of the element. Such generalized strains are available through the SMISC option at the element centroid only. The transverse shear forces Q13, Q23 are available only in resultant form: that is, use SMISC, 7 (or 8). Likewise, the transverse shear strains, $\gamma_{13}$ and $\gamma_{23}$, are constant through the thickness and are only available as SMISC items (SMISC,15 and SMISC,16, respectively).

ANSYS computes moments (M11, M22, M12) with respect to the shell reference plane. By default, ANSYS adopts the shell midplane as the reference plane. To offset the reference plane to any other specified location, issue the SECOFFSET command. When there is a nonzero offset ( L ) from the reference plane to the midplane, moments with respect to the midplane ( $\overline{\mathrm{M} 11}, \overline{\mathrm{M} 22}, \overline{\mathrm{M} 12}$ ) can be recovered from stress resultants with respect to the reference plane as follows:
$\overline{\mathrm{M} 11}=\mathrm{M} 11-\mathrm{L} \times \mathrm{N} 11$
$\overline{\mathrm{M} 22}=\mathrm{M} 22-\mathrm{L} \times \mathrm{N} 22$
$\overline{\mathrm{M} 12}=\mathrm{M} 12-\mathrm{L} \times \mathrm{N} 12$
SHELL281 does not support extensive basic element printout. POST1 provides more comprehensive output processing tools; therefore, ANSYS suggests issuing the OUTRES command to ensure that the required results are stored in the database.

Figure 2 SHELL281 Stress Output

$x_{0}=$ Element $x$-axis if ESYS is not provided.
$x=$ Element $x$-axis if ESYS is provided.

## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " $Y$ " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and " - " indicates that the item is not available.

Table 1 SHELL281 Element Output Definitions

Name	Definition	$\mathbf{O}$	$\mathbf{R}$
EL	Element number and name	Y	Y


Name	Definition	0	R
NODES	Nodes - I, J, K, L	-	Y
MAT	Material number	-	Y
THICK	Average thickness	-	Y
VOLU:	Volume	-	Y
XC, YC, ZC	Location where results are reported	-	4
PRES	Pressures P1 at nodes I, J, K, L; P2 at I, J, K, L; P3 at $\mathrm{J}, \mathrm{I} ; \mathrm{P} 4$ at $\mathrm{K}, \mathrm{J} ; \mathrm{P} 5$ at L,K; P6 at I,L	-	Y
TEMP	T1, T2, T3, T4 at bottom of layer 1, T5, T6, T7, T8 between layers $1-2$, similarly for between next layers, ending with temperatures at top of layer $\mathrm{NL}\left(4^{*}(\mathrm{NL}+1)\right.$ maximum)	-	Y
LOC	TOP, MID, BOT, or integration point location	-	1
S:X, Y, Z, XY, YZ, XZ	Stresses	3	1
S:1, 2, 3	Principal stresses	-	1
S:INT	Stress intensity	-	1
S:EQV	Equivalent stress	-	1
EPEL:X, Y, Z, XY	Elastic strains	3	1
EPEL:EQV	Equivalent elastic strains [7]	-	1
EPTH:X, Y, Z, XY	Thermal strains	3	1
EPTH:EQV	Equivalent thermal strains [7]	-	1
EPPL: $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{XY}$	Average plastic strains	3	2
EPPL:EQV	Equivalent plastic strains [7]	-	2
EPCR:X, Y, Z, XY	Average creep strains	3	2
EPCR:EQV	Equivalent creep strains [7]	-	2
EPTO:X, Y, Z, XY	Total mechanical strains (EPEL + EPPL + EPCR)	3	-
EPTO:EQV	Total equivalent mechanical strains (EPEL + EPPL + EPCR)	-	-
NL:EPEQ	Accumulated equivalent plastic strain	-	2
NL:CREQ	Accumulated equivalent creep strain	-	2
NL:SRAT	Plastic yielding ( $1=$ actively yielding, $0=$ not yielding)	-	2
NL:PLWK	Plastic work	-	2
NL:HPRES	Hydrostatic pressure	-	2
SEND:ELASTIC, PLASTIC, CREEP	Strain energy densities	-	2
N11, N22, N12	In-plane forces (per unit length)	-	Y
M11, M22, M12	Out-of-plane moments (per unit length)	-	8
Q13, Q23	Transverse shear forces (per unit length)	-	8
$\varepsilon_{11}, \varepsilon_{22}, \varepsilon_{12}$	Membrane strains	-	Y


Name	Definition	$\mathbf{O}$	$\mathbf{R}$
$\mathrm{k}_{11}, \mathrm{k}_{22}, \mathrm{k}_{12}$	Curvatures	-	8
$\gamma_{13}, \gamma_{23}$	Transverse shear strains	-	8
LOCI:X, Y, Z	Integration point locations	-	5
SVAR:1, 2,, N	State variables	-	6
ILSXZ	SXZ interlaminar shear stress	-	Y
ILSYZ	SYZ interlaminar shear stress	-	Y
ILSUM	Magnitude of the interlaminar shear stress vector	-	Y
ILANG	Angle of interlaminar shear stress vector (measured   from the element x-axis toward the element y-axis   in degrees)	-	Y
Sm: $11,22,12$	Membrane stresses		
Sb: $11,22,12$	Bending stresses	-	Y
Sp: $11,22,12$	Peak stresses	-	Y
St: 13,23	Averaged transverse shear stresses	Y	

1. The following stress solution repeats for top, middle, and bottom surfaces.
2. Nonlinear solution output for top, middle, and bottom surfaces, if the element has a nonlinear material.
3. Stresses, total strains, plastic strains, elastic strains, creep strains, and thermal strains in the element coordinate system are available for output (at all section points through thickness). If layers are in use, the results are in the layer coordinate system.
4. Available only at centroid as a *GET item.
5. Available only if OUTRES,LOCI is used.
6. Available only if the USERMAT subroutine and TB,STATE are used.
7. The equivalent strains use an effective Poisson's ratio: for elastic and thermal this value is set by the user (MP,PRXY); for plastic and creep this value is set at 0.5 .
8. Not available if the membrane element option is used $(\operatorname{KEYOPT}(1)=1)$.

Table 2: SHELL281 Item and Sequence Numbers (p. 1385) lists output available through ETABLE using the Sequence Number method. See Creating an Element Table in the Basic Analysis Guide and The Item and Sequence Number Table (p. 9) in this document for more information. The following notation is used in Table 2: SHELL281 Item and Sequence Numbers (p. 1385):

## Name

output quantity as defined in the Table 1: SHELL181 Element Output Definitions (p. 886)

## Item

predetermined Item label for ETABLE
E
sequence number for single-valued or constant element data

## I,J,K,L

sequence number for data at nodes I, J, K, L
Table 2 SHELL281 Item and Sequence Numbers

Output   Quant-   ity   Name	ETABLE and ESOL Command Input					
	Item	E	I	$\mathbf{J}$	K	$\mathbf{L}$
N11	SMISC	1	-	-	-	-
N22	SMISC	2	-	-	-	-
N12	SMISC	3	-	-	-	-
M11	SMISC	4	-	-	-	-
M22	SMISC	5	-	-	-	-
M12	SMISC	6	-	-	-	-
Q13	SMISC	7	-	-	-	-
Q23	SMISC	8	-	-	-	-
$\varepsilon_{11}$	SMISC	9	-	-	-	-
$\varepsilon_{22}$	SMISC	10	-	-	-	-
$\varepsilon_{12}$	SMISC	11	-	-	-	-
$\mathrm{k}_{11}$	SMISC	12	-	-	-	-
$\mathrm{k}_{22}$	SMISC	13	-	-	-	-
$\mathrm{k}_{12}$	SMISC	14	-	-	-	-
$\gamma_{13}$	SMISC	15	-	-	-	-
$\gamma_{23}$	SMISC	16	-	-	-	-
THICK	SMISC	17	-	-	-	-
P1	SMISC	-	18	19	20	21
P2	SMISC	-	22	23	24	25
P3	SMISC	-	27	26	-	-
P4	SMISC	-	-	29	28	-
P5	SMISC	-	-	-	31	30
P6	SMISC	-	32	-	-	33
P1	SMISC	-	18	19	20	21
P2	SMISC	-	22	23	24	25
P3	SMISC	-	27	26	-	-
P4	SMISC	-	-	29	28	-
P5	SMISC	-	-	-	31	30
P6	SMISC	-	32	-	-	33
Sm: 11	SMISC	34	-	-	-	-
Sm: 22	SMISC	35	-	-	-	-
Sm: 12	SMISC	36	-	-	-	-


Output   Quantity Name	ETABLE and ESOL Command Input					
	Item	E	I	J	K	L
Sb: 11	SMISC	37	-	-	-	-
Sb: 22	SMISC	38	-	-	-	-
Sb: 12	SMISC	39	-	-	-	-
Sp: 11   (at shell   bottom)	SMISC	40	-	-	-	-
$\begin{gathered} \hline \text { Sp: } 22 \\ \text { (at shell } \\ \text { bottom) } \end{gathered}$	SMISC	41	-	-	-	-
Sp: 12 (at shell bottom)	SMISC	42	-	-	-	-
Sp: 11 (at shell top)	SMISC	43	-	-	-	-
$\mathrm{Sp}: 22$ (at shell top)	SMISC	44	-	-	-	-
Sp: 12 (at shell top)	SMISC	45	-	-	-	-
St: 13	SMISC	46	-	-	-	-
St: 23	SMISC	47	-	-	-	-
Output	ETABLE and ESOL Command Input					
Quant- ity Name	Item	Bottom of Layer i			Top of Layer NL	
ILSXZ	SMISC	8 * (i-1)+51			$\begin{gathered} 8 *(\mathrm{NL}-1)+ \\ 52 \end{gathered}$	
ILSYZ	SMISC	8 * $(\mathrm{i}-1)+53$			$\begin{gathered} 8 *(N L-1)+ \\ 54 \end{gathered}$	
ILSUM	SMISC	8 * $(\mathrm{i}-1)+55$			$\begin{gathered} 8 *(N L-1)+ \\ 56 \end{gathered}$	
ILANG	SMISC	8 * $(\mathrm{i}-1)+57$			$\begin{gathered} 8 *(\mathrm{NL}-1)+ \\ 58 \end{gathered}$	

## SHELL281 Assumptions and Restrictions

- ANSYS recommends against using this element in triangular form, except as a filler element. Avoid triangular form especially in areas with high stress gradients.
- Zero-area elements are not allowed. (Zero-area elements occur most often whenever the elements are numbered improperly.)
- Zero thickness elements or elements tapering down to a zero thickness at any corner are not allowed (but zero thickness layers are allowed).
- If multiple load steps are used, the number of layers may not change between load steps.
- When the element is associated with preintegrated shell sections (SECTYPE,,GENS), additional restrictions apply. For more information, see Considerations for Using Preintegrated Shell Sections.
- No slippage is assumed between the element layers. Shear deflections are included in the element; however, normals to the center plane before deformation are assumed to remain straight after deformation.
- Transverse shear stiffness of the shell section is estimated by an energy equivalence procedure (of the generalized section forces and strains vs. the material point stresses and strains). The accuracy of this calculation may be adversely affected if the ratio of material stiffnesses (Young's moduli) between adjacent layers is very high.
- The calculation of interlaminar shear stresses is based on simplifying assumptions of unidirectional, uncoupled bending in each direction. If accurate edge interlaminar shear stresses are required, shell-tosolid submodeling should be used.
- The section definition permits use of hyperelastic material models and elastoplastic material models in laminate definition. However, the accuracy of the solution is primarily governed by fundamental assumptions of shell theory. The applicability of shell theory in such cases is best understood by using a comparable solid model.
- The layer orientation angle has no effect if the material of the layer is hyperelastic.
- Before using this element in a simulation containing curved thick shell structures with unbalanced laminate construction or shell offsets, validate the usage via full 3-D modeling with a solid element in a simpler representative model. This element may underestimate the curved thick shell stiffness, particularly when the offset is large and the structure is under torsional load.
- The through-thickness stress, SZ , is always zero.
- This element works best with full Newton-Raphson solution scheme (NROPT,FULL,ON).
- Stress stiffening is always included in geometrically nonlinear analyses (NLGEOM,ON). Prestress effects can be activated via the PSTRES command.
- In a nonlinear analysis, the solution process terminates if the thickness at any integration point that was defined with a nonzero thickness vanishes (within a small numerical tolerance).
- If a shell section has only one layer and the number of section integration points is equal to one, or if $\operatorname{KEYOPT}(1)=1$, then the shell has no bending stiffness, a condition that can result in solver and convergence problems.


## SHELL281 Product Restrictions

## ANSYS Professional

- The only special features allowed are stress stiffening and large deflections.


## SOLID285

## 3-D 4-Node Tetrahedral Structural Solid with Nodal Pressures

MP ME ST <> <> <> <> <> <> <> <> PP <> EME MFS
Product Restrictions

## SOLID285 Element Description

SOLID285 element is a lower-order 3-D, 4-node mixed u-P element. The element has a linear displacement and hydrostatic pressure behavior. The element is suitable for modeling irregular meshes (such as those generated by various CAD/CAM systems) and general materials (including incompressible materials).

The element is defined by four nodes having four degrees of freedom at each node: three translations in the nodal $x, y$, and $z$ directions, and one hydrostatic pressure (HDSP) for all materials except nearly incompressible hyperelastic materials. For nearly incompressible materials, instead of hydrostatic pressure, the volume change rate is used at each node together with the three translation degrees of freedom. In a nonlinear analysis, you can control the tolerance of HDSP separately via the CNVTOL command.

The element has plasticity, hyperelasticity, creep, stress stiffening, large deflection, and large strain capabilities. It is capable of simulating deformations of nearly incompressible elastoplastic materials, nearly incompressible hyperelastic materials, and fully incompressible hyperelastic materials.

For more details about this element, see SOLID285 in the Theory Reference for the Mechanical APDL and Mechanical Applications.

## Figure 1 SOLID285 Geometry



## SOLID285 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 1 (p. 1389).
In addition to the nodes, the element input data includes the orthotropic or anisotropic material properties. Orthotropic and anisotropic material directions correspond to the element coordinate directions. The element coordinate system orientation is as described in Linear Material Properties (p. 16).

Element loads are described in Node and Element Loads (p. 97). Pressure loads may be input as surface loads on the element faces as shown by the circled numbers on Figure 1 (p. 1389). Positive pressures act into the
element. Temperatures may be input as element body loads at the nodes. The node I temperature $T(I)$ defaults to TUNIF. If all other temperatures are unspecified, they default to $T(I)$. For any other input temperature pattern, unspecified temperatures default to TUNIF.

As described in Coordinate Systems (p. 14), you can use ESYS to orient the material properties and strain/stress output. Use RSYS to choose output that follows the material coordinate system or the global coordinate system. For the case of hyperelastic materials, the output of stress and strain is always with respect to the global Cartesian coordinate system rather than following the material/element coordinate system.

You can apply an initial stress state to this element via the INISTATE command. For more information, see "Initial State" in the Basic Analysis Guide.

The effects of pressure load stiffness are automatically included for this element. If an unsymmetric matrix is needed for pressure load stiffness effects, use NROPT,UNSYM.

The next table summarizes the element input. Element Input (p. 5) gives a general description of element input.

## SOLID285 Input Summary

## Nodes

I, J, K, L

## Degrees of Freedom

UX, UY, UZ, HDSP

## Real Constants

None

## Material Properties

EX, EY, EZ, ALPX, ALPY, ALPZ (or CTEX, CTEY, CTEZ or THSX, THSY, THSZ),
PRXY, PRYZ, PRXZ (or NUXY, NUYZ, NUXZ),
DENS, GXY, GYZ, GXZ, DAMP

## Surface Loads

## Pressures --

face 1 (J-I-K), face 2 (I-J-L), face 3 (J-K-L), face 4 (K-I-L)

## Body Loads

Temperatures --
$\mathrm{T}(\mathrm{I}), \mathrm{T}(\mathrm{J}), \mathrm{T}(\mathrm{K}), \mathrm{T}(\mathrm{L})$

## Body force densities --

The element values in the global $X, Y$, and $Z$ directions.

## Special Features

Plasticity (PLASTIC, BISO, MISO, NLISO, BKIN, MKIN, KINH, CHABOCHE, HILL)
Hyperelasticity (AHYPER, HYPER)
Viscoelasticity (PRONY, SHIFT)
Viscoplasticity/Creep (CREEP, RATE)
Elasticity (ELASTIC, ANEL)
Other material (USER, SDAMP, SMA, CAST, EDP, GURSON)
Stress stiffening
Large deflection
Large strain
Initial state
Nonlinear stabilization
Automatic selection of element technology
Birth and death
Linear perturbation

Items in parentheses refer to data tables associated with the TB command. See "Structures with Material Nonlinearities" in the Theory Reference for the Mechanical APDL and Mechanical Applications for details of the material models.

## Solid 285 Element Technology

This element has a mixed $u$ - P formulation with pressure stabilization. ANSYS achieves the stabilization by enhancing the strain field with three internal degrees of freedom (which are condensed out at the element level). The stabilization allows for a robust and accurate element.

## SOLID285 Output Data

The solution output associated with the element is in two forms:

- Nodal displacements and hydrostatic pressure included in the overall nodal solution
- Additional element output as shown in Table 1: SOLID285 Element Output Definitions (p. 1392)

Several items are illustrated in Figure 2 (p. 1391). The element stress directions are parallel to the element coordinate system. A general description of solution output is given in The Item and Sequence Number Table (p. 9). See the Basic Analysis Guide for ways to view results.

Figure 2 SOLID285 Stress Output


## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " $Y$ " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and " - " indicates that the item is not available.

Table 1 SOLID285 Element Output Definitions

Name	Definition	0	R
EL	Element Number	-	Y
NODES	Nodes - I, J, K, L	-	Y
MAT	Material number	-	Y
VOLU:	Volume	-	Y
XC, YC, ZC	Location where results are reported	Y	3
PRES	Pressures P1 at nodes J, I, K; P2 at I, J, L; P3 at J, K, L; P4 at K, I, L	-	Y
TEMP	Temperatures $\mathrm{T}(\mathrm{I}), \mathrm{T}(\mathrm{J}), \mathrm{T}(\mathrm{K}), \mathrm{T}(\mathrm{L})$	-	Y
S:X, Y, Z, XY, YZ, XZ	Stresses	Y	Y
S:1, 2, 3	Principal stresses	-	Y
S:INT	Stress intensity	-	Y
S:EQV	Equivalent stress	-	Y
$\begin{aligned} & \text { EPEL:X, Y, Z, XY, YZ, } \\ & X Z \end{aligned}$	Elastic strains	Y	Y
EPEL:EQV	Equivalent elastic strains [6]	-	Y
$\begin{aligned} & \text { EPTH:X, Y, Z, XY, YZ, } \\ & X Z \end{aligned}$	Thermal strains	1	1
EPTH: EQV	Equivalent thermal strains [6]	1	1
$\begin{aligned} & \text { EPPL:X,Y, Z, XY, YZ, } \\ & X Z \end{aligned}$	Plastic strains [7]	1	1
EPPL:EQV	Equivalent plastic strains [6]	1	1
$\begin{aligned} & \text { EPCR:X,Y, Z, XY, YZ, } \\ & \text { XZ } \end{aligned}$	Creep strains	1	1
EPCR:EQV	Equivalent creep strains [6]	1	1
$\begin{aligned} & \text { EPTO:X, Y, Z, XY, YZ, } \\ & X Z \end{aligned}$	Total mechanical strains (EPEL + EPPL + EPCR)	Y	-
EPTO:EQV	Total equivalent mechanical strains (EPEL + EPPL + EPCR)	Y	-
NL:EPEQ	Accumulated equivalent plastic strain	1	1
NL:CREQ	Accumulated equivalent creep strain	1	1
NL:SRAT	Plastic yielding ( $1=$ actively yielding, $0=$ not yielding)	1	1
NL:HPRES	Hydrostatic pressure	1	1
SEND: ELASTIC, PLASTIC, CREEP	Strain energy density	-	1
LOCI:X, Y, Z	Integration point locations	-	4


Name	Definition	$\mathbf{O}$	$\mathbf{R}$
SVAR:1, $2, \ldots, \mathrm{~N}$	State variables	-	5

1. Nonlinear solution, output only if the element has a nonlinear material
2. Output only if element has a thermal load
3. Available only at centroid as a *GET item.
4. Available only if OUTRES,LOCI is used.
5. Available only if the USERMAT subroutine and TB,STATE are used.
6. The equivalent strains use an effective Poisson's ratio: for elastic and thermal this value is set by the user (MP,PRXY); for plastic and creep this value is set at 0.5.
7. For the shape memory alloy material model, transformation strains are reported as plasticity strain EPPL.

Table 2: SOLID285 Item and Sequence Numbers (p. 1393) lists output available through ETABLE using the Sequence Number method. See The General Postprocessor (POST1) in the Basic Analysis Guide and The Item and Sequence Number Table (p. 9) in this document for more information. The following notation is used in Table 2: SOLID285 Item and Sequence Numbers (p. 1393):

## Name

output quantity as defined in Table 1: SOLID285 Element Output Definitions (p. 1392)

## Item

predetermined Item label for ETABLE command
$\mathbf{I}, \mathbf{J}, \ldots, \mathbf{R}$
sequence number for data at nodes I, J, ..., R
Table 2 SOLID285 Item and Sequence Numbers

Output   Quantity   Name	ETABLE and ESOL Command Input					
	Item	$\mathbf{I}$	$\mathbf{J}$	$\mathbf{K}$	$\mathbf{L}$	$\mathbf{M}, \ldots, \mathbf{R}$
P1	SMISC	2	1	3	-	-
P2	SMISC	4	5	-	6	-
P3	SMISC	-	7	8	9	-
P4	SMISC	11	-	10	12	-

See Surface Solution (p. 10) in this document for the item and sequence numbers for surface output for ETABLE.

## SOLID285 Assumptions and Restrictions

- The element must not have a zero volume.
- Elements may be numbered either as shown in Figure 1 (p. 1389) or may have node L below the I, J, K plane.
- Only the sparse solver is valid when using this element.
- Support is available for static and transient analyses.
- The element may not offer sufficient accuracy for bending-dominant problems, especially if the mesh is not fine enough.
- On the interfaces of different materials, the elements should not share nodes because the hydrostatic pressure value is not continuous at those nodes. This behavior can be overcome in either of two ways:
- Coupling the displacements of the nodes on the interface but leaving HDSP unconstrained.
- Adding bonded contact elements on the interfaces.
- The element is not computationally efficient when the model uses compressible material. In such cases, ANSYS recommends using a more suitable (pure displacement) element such as SOLID185 or SOLID187.
- Stress stiffening is always included in geometrically nonlinear analyses (NLGEOM,ON). Prestress effects can be activated by the PSTRES command.


## SOLID285 Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

## ANSYS Professional

- The only special feature allowed is stress stiffening.


## PIPE288

## 3-D 2-Node Pipe

MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS
Product Restrictions

## PIPE288 Element Description

The PIPE288 element is suitable for analyzing slender to moderately stubby/thick pipe structures. The element is based on Timoshenko beam theory. Shear-deformation effects are included.

PIPE288 is a linear, quadratic, or cubic two-node pipe element in 3-D. The element has six degrees of freedom at each node (the translations in the $x, y$, and $z$ directions and rotations about the $x, y$, and $z$ directions). The element is well-suited for linear, large rotation, and/or large strain nonlinear applications.

PIPE288 includes stress stiffness terms, by default, in any analysis with NLGEOM,ON. The provided stressstiffness terms enable the elements to analyze flexural, lateral, and torsional stability problems (using eigenvalue buckling, or collapse studies with arc length methods or nonlinear stabilization).

Elasticity, hyperelasticity, plasticity, creep, and other nonlinear material models are supported. Internal fluid and external insulation are supported. Added mass, hydraulic added mass, and hydrodynamic and buoyant loading are available.

## Figure 1 PIPE288 Geometry



## PIPE288 Element Technology and Usage Recommendations

PIPE288 is based on Timoshenko beam theory, a first-order shear-deformation theory. Transverse-shear strain is constant through the cross-section; that is, cross-sections remain plane and undistorted after deformation.

The element can be used for slender or stout pipes. Due to the limitations of first-order shear-deformation theory, only moderately "thick" pipes can be analyzed. The slenderness ratio of a pipe structure (GAL ${ }^{2}$ / (EI) ) can be used to judge the applicability of the element, where:

## G

Shear modulus

## A

Area of the cross-section
L
Length of the member (not the element length)
EI
Flexural rigidity
For pipes, $\left(G L^{2} / E I\right)$ can be reduced to: $2 L^{2} /\left((1+\nu)\left(R_{o}{ }^{2}+R_{i}{ }^{2}\right)\right.$, or for thin-walled pipes: $L^{2} /\left((1+\nu) R^{2}\right)$, where $\nu=$ Poisson's ratio, $\mathrm{R}_{\mathrm{o}}=$ outer radius, $\mathrm{R}_{\mathrm{i}}=$ inner radius, and $\mathrm{R}=$ average radius.

The following illustration provides an estimate of transverse-shear deformation in a cantilever pipe subjected to a tip load. Although the results cannot be extrapolated to other applications, the example serves generally. ANSYS, Inc. recommends a slenderness ratio greater than 30.

Figure 2 Transverse-Shear-Deformation Estimation


Slenderness Ratio   $\left(\mathbf{G A L}^{2} /(\mathbf{E I})\right)$	$\delta$ Timoshenko / $\delta$ Euler-   Bernoulli
25	1.120
50	1.060
100	1.030
1000	1.003

The PIPE288 element supports an elastic relationship between transverse-shear forces and transverse-shear strains.

When KEYOPT(3) = 0 (linear, default), PIPE288 is based on linear shape functions. It uses one point of integration along the length; therefore, all element solution quantities are constant along the length. For example, when SMISC quantities are requested at nodes I and J, the centroidal values are reported for both end nodes. This option is recommended if the element is used as stiffener and it is necessary to maintain compatibility with a first-order shell element (such as SHELL181). Only constant bending moments can be represented exactly with this option. Mesh refinement is generally required in typical applications.

When KEYOPT(3) $=2$ (quadratic), PIPE288 has an internal node in the interpolation scheme, effectively making this a beam element based on quadratic shape functions. Two points of integration are used, resulting in linear variation of element solution quantities along the length. Linearly varying bending moments are represented exactly.

When $\operatorname{KEYOPT}(3)=3$ (cubic), PIPE288 has two internal nodes and adopts cubic shape functions. Quadratically varying bending moments are represented exactly. Three points of integration along the length are used, resulting in quadratic variation of element solution quantities along the length. Unlike typical cubic (Hermitian) formulations, cubic interpolation is used for all displacements and rotations.

In general, the more complex the element, the fewer elements are needed. Quadratic and cubic options are recommended when higher-order element interpolations are desired in situations where:

- Nonuniform loads (including tapered distributed loads) exist within the element; in this case, the cubic option gives superior results over the quadratic option.
(For partially distributed loads and non-nodal point loads, only the cubic option is valid.)
- The element may undergo highly nonuniform deformation (for example, when individual frame members in civil engineering structures are modeled with single elements).

PIPE288 supports both the thin-pipe $(\operatorname{KEYOPT}(4)=1)$ and the thick-pipe $(\operatorname{KEYOPT}(4)=2)$ options. The thinpipe option assumes a plain stress state in the pipe wall and ignore the stress in the wall thickness direction. The thick-pipe option accounts for the full 3-D stress state and generally leads to more accurate results in thick-walled pipes where through-the-thickness stress can be significant. The element allows change in crosssectional area in large-deflection analysis. While the thick-pipe option can accurately determine the crosssection area change from the actual material constitutive properties, the thin-pipe option calculates the approximate area change based on a simple material incompressibility assumption.

Two limitations are associated with the quadratic and cubic options in PIPE288:

- Although the elements employ higher-order interpolations, the initial geometry of PIPE288 is treated as straight.
- Because the internal nodes are inaccessible, no boundary/loading/initial conditions are allowed on these internal nodes.

As a result of the limitations associated with the quadratic and cubic options, you will notice discrepancies in the results between PIPE289 and the quadratic option of PIPE288 if the midside nodes of the PIPE289 model have specified boundary/loading/initial conditions and/or the midside nodes are not located exactly at the element midpoint. Similarly, the cubic option of PIPE288 may not be identical to a traditional cubic (Hermitian) beam element.

For the mass matrix and load vectors, a higher order integration rule than that used for stiffness matrix is employed. The elements support both consistent and lumped mass matrices. The LUMPM,ON command activates lumped mass matrix. Consistent mass matrix is the default behavior. You can add mass per unit length using the SECCONTROLS command's ADDMAS values. See "PIPE288 Input Summary" (p. 1400).

When ocean loading is applied (SOCEAN), the loading is nonlinear (that is, based on the square of the relative velocity between the structure and the water). Accordingly, the full Newton-Raphson option (NROPT,FULL) may be necessary to achieve optimal results. (Full Newton-Raphson is applied automatically in an analysis involving large-deflection effects [NLGEOM,ON].)

## PIPE288 Input Data

The geometry, node locations, coordinate system, and pressure directions for this element are shown in Figure 1 (p. 1395). PIPE288 is defined by nodes I and J in the global coordinate system. If ocean loading is present, the global origin must be at the mean sea level, with the global Z-axis pointing away from the center of the earth.

Because the section is round, the element orientation is important only for defining offsets and temperatures, and interpreting bending moment directions and stress locations.

Node K is the preferred way to define the orientation of the element. For information about orientation nodes and beam meshing, see Generating a Beam Mesh With Orientation Nodes in the Modeling and Meshing Guide. See the LMESH and LATT command descriptions for details on generating the K node automatically.

PIPE288 can also be defined without the orientation node. The element x-axis is oriented from node I toward node J. When no orientation node is used, the default orientation of the element y -axis is automatically calculated to be parallel to the global X-Y plane. If the element is parallel to the global Z-axis (or within a 0.01 percent slope of $i t$ ), the element $y$-axis is oriented parallel to the global Y -axis. To control the element orientation about the element $x$-axis, use the orientation-node option. If both are defined, the orientationnode option takes precedence. The orientation node K, if used, defines a plane (with I and J) containing the element $x$ and $z$-axes (as shown). If this element is used in a large-deflection analysis, the location of the orientation node K only initially orients the element.

The pipe element is a one-dimensional line elements in space. The cross-section details are provided separately via the SECTYPE and SECDATA commands. A section is associated with the pipe elements by specifying the section ID number (SECNUM). A section number is an independent element attribute.

## PIPE288 Cross-Sections

PIPE288 can be associated only with the pipe cross-section (SECTYPE,,PIPE). The material of the pipe is defined as an element attribute (MAT).

PIPE288 is provided with section-relevant quantities (area of integration, position, etc.) automatically at a number of section points via the SECDATA command. Each section is assumed to be an assembly of a predetermined number of nine-node cells. Each cross-section cell has four integration points.

Section integration points and section corner nodes are shown in Figure 3 (p. 1398).

## Figure 3 Typical Cross-Section Cell



- Section Nodes
- Section Corner Nodes
+ Section Integration Points
$\operatorname{KEYOPT}(15)$ specifies the format of the .rst results file. For $\operatorname{KEYOPT}(15)=0$, the format gives only one averaged result at each section corner node; therefore, this option typically applies to homogeneous sections. For $\operatorname{KEYOPT}(15)=1$, the format gives one result for each section integration point; therefore, this option typically applies to built-up sections with multiple materials (and generates a larger results file).


## Section Flexibility

To apply section flexibility factors, use the SFLEX command. The command is valid only for linear material properties and small strain analyses, and does not support offsets, temperature loading, or initial state loading.

## PIPE288 Loads

Internal fluid and external insulation are supported. Added mass, hydraulic added mass, and hydrodynamic and buoyant loading, are available via the SOCEAN, OCDATA, and OCTABLE commands. See the SECCONTROLS command for defining added mass.

Forces are applied at the nodes I and J. If the centroidal axis is not colinear with the element $x$-axis because of offsets, applied axial forces will cause bending. The nodes should therefore be located at the desired points where you want to apply the forces. Use the OFFSETY and OFFSETZ arguments of the SECOFFSET command appropriately. By default, the program uses the centroid as the reference axis for the pipe elements.

Element loads are described in Node and Element Loads (p. 97). Pressures can be input as surface loads on the element faces as shown by the circled numbers in Figure 1 (p. 1395). Lateral pressures are input as force per unit length. End "pressures" are input as forces.

On the first and second faces, pressures are the internal and external pressures, respectively.
The pressure input on the third face is the global $Z$ coordinate location of the free surface of the fluid internal to the pipe. This pressure is used only for the mass and pressure effect. If this value is zero, no fluid inside of the pipe is considered. If the internal fluid free surface should be at $Z=0$, use a very small number instead. The free surface location is stepped, even if you issue a $\mathbf{K B C}, 0$ command.

When $\operatorname{KEYOPT}(1)=0$, temperatures can be input as element body loads at the inner and outer surfaces at both ends of the pipe element so that the temperature varies linearly through the wall thickness. If only two temperatures are specified, those two temperatures are used at both ends of the pipe element (that is, there is no gradient along the length). If only the first temperature is specified, all others default to the first. The following graphic illustrates temperature input at a node when $\operatorname{KEYOPT}(1)=0$ :


When $\operatorname{KEYOPT}(1)=1$, temperatures can be input as element body loads at three locations at both nodes of the pipe element so that the temperature varies linearly in the element $y$ and $z$ directions. At either end of the element, temperatures can be input at these locations:

- At the element $x$-axis $(T(0,0))$
- At the outer radius from the $x$-axis in the element $y$-direction $\left(T\left(R_{0}, 0\right)\right)$
- At the outer radius from the $x$-axis in the element $z$-direction $\left(T\left(0, R_{0}\right)\right)$

The following graphic illustrates temperature input at a node when $\operatorname{KEYOPT}(1)=1$ :


Element locations ( $T(Y, Z)$ ) are given according to the convention used in Figure 1 (p. 1395).
For pipe elements, element body load commands (BFE) accept an element number and a list of values, 1 through 6 for temperatures $T_{l}(0,0), T_{l}(1,0), T_{l}(0,1), T_{j}(0,0), T_{j}(1,0)$, and $T_{j}(0,1)$. This input can be used to specify temperature gradients that vary linearly both over the cross section and along the length of the element.

The following defaults apply to element temperature input:

- If all temperatures after the first are unspecified, they default to the first. This pattern applies a uniform temperature over the entire element. (The first coordinate temperature, if unspecified, defaults to TUNIF.)
- If all three temperatures at node I are input, and all temperatures at node J are unspecified, the node $J$ temperatures default to the corresponding node I temperatures. This pattern applies a temperature gradient that varies linearly over the cross section but remains constant along the length of the element.
- For any other input pattern, unspecified temperatures default to TUNIF.

Alternatively, temperatures at nodes I and J can be defined using nodal body loads (BF,NODE,TEMP,VAL1). This specifies a uniform temperature over the cross section at the specified node.

The effects of pressure load stiffness are automatically included for this element. If an unsymmetric matrix is needed for pressure load stiffness effects, issue an NROPT,UNSYM command.

## PIPE288 Input Summary

## Nodes

I, J, K (an optional orientation node)

## Degrees of Freedom

UX, UY, UZ, ROTX, ROTY, ROTZ

## Section Information

Accessed via SECTYPE,,PIPE and SECDATA commands.

## Material Properties

EX, EY, EZ, PRXY, PRYZ, PRXZ (or NUXY, NUYZ, NUXZ), ALPX, ALPY, ALPZ (or CTEX, CTEY, CTEZ or THSX, THSY, THSZ), DENS, GXY, GYZ, GXZ, DAMP

## Surface Loads

## Pressure --

face 1 - Internal pressure
face 2 - External pressure
face 3 - Height of free surface of fluid on inside of pipe
face 4 (I-J) (-z normal direction)
face $5(I-J)(-y$ normal direction)
face 6 (I-J) (+x tangential direction)
face 7 (I) (+x axial direction)
face 8 (J) (-x axial direction)
--
$I$ and $J$ denote end nodes.
Use a negative value for loading in the opposite direction.
Input pressure values for faces 1,2, and 3 via the SFE command. Input pressure values for faces 4 through 8 via the SFBEAM command.
For faces 4,5 , and 6 , offsets apply only if you are using the cubic option $(\operatorname{KEYOPT}(3)=3)$.

## Body Loads

## Temperatures --

$\operatorname{TOUT}(\mathrm{I}), \operatorname{TIN}(\mathrm{I}), \operatorname{TOUT}(\mathrm{J}), \operatorname{TIN}(\mathrm{J})$ if $\operatorname{KEYOPT}(1)=0$.
$\operatorname{TAVG}(\mathrm{I}), \mathrm{T}_{\mathrm{y}}(\mathrm{I}), \mathrm{T}_{\mathrm{z}}(\mathrm{I}), \operatorname{TAVG}(\mathrm{J}), \mathrm{T}_{\mathrm{y}}(\mathrm{J}), \mathrm{T}_{\mathrm{z}}(\mathrm{J})$ if $\operatorname{KEYOPT}(1)=1$.

## Special Features

Plasticity (PLASTIC, BISO, MISO, NLISO, BKIN, MKIN, KINH, CHABOCHE, HILL) [1 (p. 1401)]
Hyperelasticity (AHYPER, ANEL, BB, CDM, ELASTIC, HYPER) [1 (p. 1401)]
Viscoelasticity (PRONY, SHIFT) [1 (p. 1401)]
Viscoplasticity/Creep (CREEP, RATE) [1 (p. 1401)]
Other material (USER)
Stress stiffening
Large deflection
Ocean loading
Nonlinear stabilization
Linear perturbation
Birth and death
Automatic selection of element technology [2 (p. 1401)]

1. Items in parentheses refer to data tables associated with the TB command. See "Structures with Material Nonlinearities" in the Theory Reference for the Mechanical APDL and Mechanical Applications for details of the material models.
2. See Automatic Selection of Element Technologies (p. 122) and ETCONTROL for more information about selecting element technologies.

## KEYOPT(1)

Temperature input
0 --
Through wall gradient
1 --
Diametral gradient

## KEYOPT(3)

Shape functions along the length:
0 --
Linear
2 --
Quadratic
3 --
Cubic

## KEYOPT(4)

Hoop strain treatment
1 --
Thin pipe theory
2 --
Thick pipe theory

## KEYOPT(6)

End cap loads
0 --
Internal and external pressures cause loads on end caps
1 --
Internal and external pressures do not cause loads on end caps

## KEYOPT(7), KEYOPT(9), KEYOPT(11), and KEYOPT(12)

Active only when OUTPR,ESOL is active:

## KEYOPT(7)

Output control for section forces/moments and strains/curvatures:
0 --
Output section forces/moments, strains/curvatures, internal and external pressures, effective tension, and maximum hoop stress (default)

1 --
Same as $\operatorname{KEYOPT}(7)=0$ plus current section area
2 --
Same as $\operatorname{KEYOPT}(7)=1$ plus element basis directions $(X, Y, Z)$
3 --
Output section forces/moments, strains/curvatures, internal and external pressures, effective tension, and maximum hoop stress extrapolated to the element nodes

## KEYOPT(8)

Shear stress output:
0 --
Output a combined state of the following two types (default)
1 --
Output only torsion-related shear stresses
2 --
Output only flexure-related transverse-shear stresses

## KEYOPT(9)

Output control at integration points:
0 --
None (default)
1 --
Maximum and minimum stresses/strains
2 --
Same as $\operatorname{KEYOPT}(9)=1$ plus stresses and strains at each section node

## KEYOPT(11)

Output control for values extrapolated to the element and section nodes:
0 --
None (default)
1 --
Maximum and minimum stresses/strains
2 --
Same as $\operatorname{KEYOPT}(11)=1$ plus stresses and strains along the exterior boundary of the cross-section
3 --
Same as $\operatorname{KEYOPT}(11)=1$ plus stresses and strains at all section nodes

## KEYOPT(12)

Hydrodynamic output:
0 --
None (default)
1 --
Additional centroidal hydrodynamic printout

## KEYOPT(15)

Results file format:
0 --
Store averaged results at each section corner node (default).
1 --
Store non-averaged results at each section integration point. (The volume of data may be excessive.)

## PIPE288 Output Data

The solution output associated with these elements is in two forms:

- Nodal displacements and reactions included in the overall nodal solution
- Additional element output as described in Table 1: PIPE288 Element Output Definitions (p. 1404)

For ways to view results, see the Basic Analysis Guide.
To view 3-D deformed shapes for PIPE288, issue an OUTRES,MISC or OUTRES,ALL command for static or transient analyses. To view 3-D mode shapes for a modal or eigenvalue buckling analysis, expand the modes with element results calculation active (via the MXPAND command's Elcalc = YES option).

## Linearized Stress

It is customary in pipe design to employ components of axial stress that contribute to axial loads and bending in each direction separately; therefore, PIPE288 provides a linearized stress output as part of its SMISC output record, as indicated in the following definitions:

SDIR is the stress component due to axial load.
SDIR $=F x / A$, where $F x$ is the axial load (SMISC quantities 1 and 14 ) and $A$ is the area of the cross-section.
SByT and SByB are bending stress components.

$$
\begin{aligned}
& \text { SByT }=-M z * R_{0} / I \\
& \text { SByB }=M z * R_{0} / I \\
& \text { SBzT }=M y * R_{0} / I \\
& \text { SBzB }=-M y * R_{0} / I
\end{aligned}
$$

where My , Mz are bending moments in the beam coordinate system (SMISC quantities $2,15,3,16$ ) as shown in Figure 1 ( p .1395 ), $\mathrm{R}_{0}$ is the outside radius, and I is the moment of inertia of the cross-section. The program uses the maximum and minimum cross-section dimensions.

Corresponding definitions for the component strains are:

$$
\begin{aligned}
& \text { EPELDIR }=E x \\
& \text { EPELByT }=-K z * R_{0} \\
& \text { EPELByB }=K z * R_{0} \\
& \text { EPELBzT }=K y * R_{0} \\
& \text { EPELBzB }=-K y * R_{0}
\end{aligned}
$$

where $E x, K y$, and $K z$ are generalized strains and curvatures (SMISC quantities 7,8,9, 20,21 and 22).
The reported stresses are strictly valid only for elastic behavior of members. PIPE288 always employs combined stresses in order to support nonlinear material behavior. When the elements are associated with nonlinear materials, the component stresses can at best be regarded as linearized approximations and should be interpreted with caution.

When using $\operatorname{KEYOPT}(9)$ with the cubic option $(\operatorname{KEYOPT}(3)=3)$, the integration point at the middle of the element is reported last in the integration-point printout.

## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " $Y$ " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and " - " indicates that the item is not available.

For the stress and strain components, X refers to axial, Y refers to hoop, and Z refers to radial.

## Table 1 PIPE288 Element Output Definitions

Name	Definition	$\mathbf{O}$	$\mathbf{R}$
EL	Element number	Y	Y


Name	Definition	0	R
NODES	Element connectivity	Y	Y
MAT	Material number	Y	Y
C.G.:X, Y, Z	Element center of gravity	Y	1
Area	Area of cross-section	2	Y
$\begin{aligned} & \mathrm{S}: x, y, z, x y, y z, \\ & x z \end{aligned}$	Section point stresses	3	Y
$\begin{aligned} & \text { EPEL: } x, y, z, x y, \\ & y z, x z \end{aligned}$	Elastic strains	3	Y
$\begin{aligned} & \text { EPTO: } x, y, z x y, y z, \\ & x z \end{aligned}$	Section point total mechanical strains (EPEL + EPPL + EPCR)	3	Y
$\begin{aligned} & \text { EPTT: } x, y, z x y, y z, \\ & x z \end{aligned}$	Section point total strains (EPEL + EPPL + EPCR + EPTH)	3	Y
$\begin{aligned} & \text { EPPL: } x, y, z, x y, \\ & y z, x z \end{aligned}$	Section point plastic strains	3	Y
$\begin{aligned} & \text { EPCR:x, y, z, xy, } \\ & y z, x z \end{aligned}$	Section point creep strains	3	Y
$\begin{aligned} & \text { EPTH: } x, y, z, x y, \\ & y z, x z \end{aligned}$	Section point thermal strains	3	Y
NL:EPEQ	Accumulated equivalent plastic strain	-	4
NL:CREQ	Accumulated equivalent creep strain	-	4
NL:SRAT	Plastic yielding ( $1=$ actively yielding, $0=$ not yielding)	-	4
NL:PLWK	Plastic work	-	4
NL:EPEQ	Accumulated equivalent plastic strain	-	4
SEND:ELASTIC, PLASTIC, CREEP	Strain energy densities	-	4
TQ	Torsional moment	Y	Y
TE	Torsional strain	Y	Y
SFy, SFz	Section shear forces	2	Y
SEy, SEz	Section shear strains	2	Y
Ky, Kz	Curvature	Y	Y
Ex	Axial strain	Y	Y
Fx	Axial force	Y	Y
My, Mz	Bending moments	Y	Y
INT PRESS	Internal pressure at integration point	Y	Y
EXT PRESS	External pressure at integration point	Y	Y
EFFECTIVE TENS	Effective tension on pipe	Y	Y
MAX HOOP STRESS	Maximum hoop stress at integration point	Y	Y
SDIR	Axial direct stress	-	2


Name	Definition	0	R
SByT	Bending stress on the element $+Y$ side of the pipe	-	2
SByB	Bending stress on the element $-Y$ side of the pipe	-	2
SBzT	Bending stress on the element $+Z$ side of the pipe	-	2
SBzB	Bending stress on the element $-Z$ side of the pipe	-	2
EPELDIR	Axial strain at the end	-	Y
EPELByT	Bending strain on the element +Y side of the pipe	-	Y
EPELByB	Bending strain on the element -Y side of the pipe	-	Y
EPELBzT	Bending strain on the element $+Z$ side of the pipe	-	Y
EPELBzB	Bending strain on the element $-Z$ side of the pipe	-	Y
TEMP	Temperatures at all section corner nodes	-	Y
LOCI:X, Y, Z	Integration point locations	-	5
SVAR:1, 2, ... , N	State variables	-	6
The following values apply to ocean loading only:			
GLOBAL COORD	Element centroid location	7	Y
VR, VZ	Radial and vertical fluid particle velocities (VR is always $>0$ )	7	Y
AR, AZ	Radial and vertical fluid particle accelerations	7	Y
PHDYN	Dynamic fluid pressure head	7	Y
ETA	Wave amplitude over integration point	7	Y
TFLUID	Fluid temperature (printed if VISC is nonzero)	7	Y
VISC	Viscosity (output if VISC is nonzero)	7	Y
REN, RET	Normal and tangential Reynolds numbers (if VISC is nonzero)	7	Y
CT	Input tangential drag coefficients evaluated at Reynolds numbers	7	Y
CDY, CDZ	Input normal drag coefficients evaluated at Reynolds numbers	7	Y
CMY, CMZ	Input inertia coefficients evaluated at Reynolds numbers	7	Y
URT, URN	Tangential (parallel to element axis) and normal relative velocities	7	Y
ABURN	Vector sum of normal (URN) velocities	7	Y
AN	Accelerations normal to element	7	Y


Name	Definition	$\mathbf{O}$	R
FX, FY, FZ	Hydrodynamic tangential and normal forces in   element coordinates	7	Y
ARGU	Effective position of wave (radians)	7	Y

1. Available only at the centroid as a*GET item, or on the NMISC record for ocean loading.
2. See KEYOPT(7) description.
3. See KEYOPT(9) and KEYOPT(11) descriptions.
4. Available if the element has a nonlinear material.
5. Available only if OUTRES,LOCl is used.
6. Available only if the UserMat subroutine and the TB,STATE command are used.
7. See KEYOPT(12) description.

More output is described via the PRESOL command in the POST1 postprocessor.
Table 2: PIPE288 Item and Sequence Numbers (p. 1407) lists output available for the ETABLE command using the Sequence Number method. See Creating an Element Table in the Basic Analysis Guide and The Item and Sequence Number Table (p.9) for more information. The output tables use the following notation:

## Name

output quantity as defined in Table 1: PIPE288 Element Output Definitions (p. 1404)

## Item

predetermined Item label for ETABLE
E,I,J
sequence number for data at nodes $E, I$ and $J$
Table 2 PIPE288 Item and Sequence Numbers

Output Quantity   Name	ETABLE and ESOL Command Input			
	Item	E	I	J
Fx	SMISC	--	1	14
My	SMISC	--	2	15
Mz	SMISC	--	3	16
TQ	SMISC	--	4	17
SFz	SMISC	--	5	18
SFy	SMISC	--	6	19
Ex	SMISC	--	7	20
Ky	SMISC	--	8	21
Kz	SMISC	--	9	22
TE	SMISC	--	10	23
SEz	SMISC	--	11	24
SEy	SMISC	--	12	25
Area	SMISC	--	13	26


Output Quantity Name	ETABLE and ESOL Command Input			
	Item	E	I	J
BM	SMISC	--	27	29
BK	SMISC	--	28	30
SDIR	SMISC	--	31	36
SByT	SMISC	--	32	37
SByB	SMISC	--	33	38
SBzT	SMISC	--	34	39
SBzB	SMISC	--	35	40
EPELDIR	SMISC	--	41	46
EPELByT	SMISC	--	42	47
EPELByB	SMISC	--	43	48
EPELBzT	SMISC	--	44	49
EPELBzB	SMISC	--	45	50
TEMP	SMISC	--	51-53	54-56
INT PRESS [1]	SMISC	--	61	65
EXT PRESS [1]	SMISC	--	62	66
EFFECTIVE TENS [1]	SMISC	--	63	67
MAX HOOP STRESS   [1]	SMISC	--	64	68
$S: x, y, z, x y, y z, x z$	LS	--	CI[2], DI[3]	CJ[2], DJ[3]
EPEL: $x, y, z, x y, y z, x z$	LEPEL	--	CI[2], DI[3]	CJ[2], DJ[3]
$\begin{gathered} \text { EPTH:x, } y, z, x y, y z, \\ x z \end{gathered}$	LEPTH	--	CI[2], DI[3]	CJ[2], DJ[3]
EPPL: $x, y, z, x y, y z, x z$	LEPPL	--	CI[2], DI[3]	CJ[2], DJ[3]
$\begin{gathered} \text { EPCR:x, } y, z, x y, y z, \\ x z \end{gathered}$	LEPCR	--	CI[2], DI[3]	CJ[2], DJ[3]
$\begin{gathered} \text { EPTO:x, } y, z, x y, y z, \\ x z \end{gathered}$	LEPTO	--	CI[2], DI[3]	CJ[2], DJ[3]
EPTT: $x, y, z, x y, y z, x z$	LEPTT	--	CI[2], DI[3]	CJ[2], DJ[3]

The following output quantities are valid for ocean loading only:

GLOBAL COORD	NMISC	$1,2,3$	--	--
VR, VZ	NMISC	4,5	--	--
AR, AZ	NMISC	6,7	--	--
PHDYN	NMISC	8	--	--
ETA	NMISC	9	--	--
TFLUID	NMISC	10	--	--
VISC	NMISC	11	--	--
REN, RET	NMISC	12,13	--	--
CT	NMISC	14	--	--


Output Quantity   Name	ETABLE and ESOL Command Input			
	Item	E	I	J
CDY, CDZ	NMISC	15,16	--	--
CMY, CMZ	NMISC	17,18	--	--
URT, URN	NMISC	$19,20,21$	--	--
ABURN	NMISC	22	--	--
AN	NMISC	23,24	--	--
FX, FY, FZ	NMISC	$25,26,27$	--	--
ARGU	NMISC	28	--	--

1. Internal pressure (INT PRESS), external pressure (EXT PRESS), effective tension (EFFECTIVE TENS), and maximum hoop stress (MAX HOOP STRESS) occur at integration points, and not at end nodes.
2. Cl and CJ are the sequence numbers for accessing the averaged line element solution quantities (LS, LEPEL, LEPTH, LEPPL, LEPCR, LEPTO, and LEPTT) at RST section nodes (section corner nodes where results are available), at element Node I and J respectively. Cl and CJ are applicable only when $\operatorname{KEYOPT}(15)=0$. For a given section corner node $n n, \mathrm{Cl}$ and CJ are given as follows:
$\mathrm{Cl}=(n n-1) * 6+\operatorname{COMP}$
$C J=(n n M a x+n n-1) * 6+C O M P$
Where nnMax is the total number of RST section nodes, and COMP is the stress or strain component ( $1-x, 2-y, 3-z, 4-x y, 5-y z, 6-x z$ ). Locations of RST section nodes can be visualized with SECPLOT,,6.
3. $D I$ and $D J$ are the sequence numbers for accessing the non-averaged line element solution quantities (LS, LEPEL, LEPTH, LEPPL, LEPCR, LEPTO, and LEPTT) at RST section integration points (section integration points where results are available), at element Node I and J respectively. DI and DJ are applicable only when $\operatorname{KEYOPT}(15)=1$. For the ith integration point ( $\mathrm{i}=1,2,3$, or 4 ) in section cell $n c, \mathrm{DI}$ and DJ are given as follows:
$\mathrm{DI}=(n c-1) * 24+(\mathrm{i}-1) * 6+$ COMP
DJ $=(n c M a x+n c-1) * 24+(i-1) * 6+$ COMP
Where ncMax is the total number of RST section cells, and COMP is the stress or strain component ( $1-x, 2-x, 3-z, 4-x y, 5-y z, 6-x z$ ). Locations of RST section cells can be visualized with SECPLOT,,7.

For more usage details, see Plot and Review the Section Results and Sample Problem with Cantilever Beams, Command Method.

## Transverse-Shear Stress Output

The shear stresses are caused by torsional and transverse loads. PIPE288 is based on first-order shear-deformation theory, also popularly known as Timoshenko beam theory. The transverse-shear strain is constant for the cross-section; therefore, the shear energy is based on a transverse-shear force. This shear force is redistributed by predetermined shear stress distribution coefficients across the pipe cross-section, and made
available for output purposes. Use KEYOPT(8) to activate output of shear stresses caused by flexure or transverse loading.

By default, the program uses a mesh density (for cross-section modeling) that provides accurate results for torsional rigidity, warping rigidity, inertia properties, and shear center determination. The default mesh employed is also appropriate for nonlinear material calculations; however, more refined cross-section models may be necessary if the shear stress distribution due to transverse loads must be captured very accurately. Use the SECDATA command to adjust cross-section mesh density.

The traction-free state at the edges of the cross-section is met only in a well-refined model of the crosssection.

The transverse-shear distribution calculation ignores the effects of Poisson's ratio. The Poisson's ratio affects the shear correction factor and shear stress distribution slightly, and this effect is ignored.

## PIPE288 Assumptions and Restrictions

- The pipe cannot have zero length.
- Cross-section distortion or collapse is not considered.
- Rotational degrees of freedom are not included in the lumped mass matrix if offsets are present.
- The element works best with the full Newton-Raphson solution scheme (the default option in solution control).
- Only moderately "thick" pipes can be analyzed. See "PIPE288 Element Technology and Usage Recommendations" (p. 1395) for more information.
- Stress stiffening is always included in geometrically nonlinear analyses (NLGEOM,ON). Prestress effects can be activated via the PSTRES command.
- The element coordinate system (/PSYMB,ESYS) is not relevant.


## PIPE288 Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

## ANSYS Professional

- The only special features allowed are stress stiffening and large deflections.


## PIPE289

## 3-D 3-Node Pipe

MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS

## PIPE289 Element Description

The PIPE289 element is suitable for analyzing slender to moderately stubby/thick pipe structures. The element is based on Timoshenko beam theory. Shear deformation effects are included.

PIPE289 is a quadratic three-node pipe element in 3-D. The element has six degrees of freedom at each node (the translations in the $x, y$, and $z$ directions and rotations about the $x, y$, and $z$ directions). The element is well-suited for linear, large rotation, and/or large strain nonlinear applications.

PIPE289 includes stress stiffness terms, by default, in any analysis with NLGEOM,ON. The provided stressstiffness terms enable the elements to analyze flexural, lateral, and torsional stability problems (using eigenvalue buckling, or collapse studies with arc length methods or nonlinear stabilization).

Elasticity, hyperelasticity, plasticity, creep, and other nonlinear material models are supported. Internal fluid and external insulation are supported. Added mass, hydraulic added mass, and hydrodynamic and buoyant loading are available.

## Figure 1 PIPE289 Geometry



## PIPE289 Element Technology and Usage Recommendations

PIPE289 is based on Timoshenko beam theory, a first-order shear-deformation theory. Transverse-shear strain is constant through the cross-section; that is, cross-sections remain plane and undistorted after deformation. (For cases where cross-section distortion must be considered, it is preferable to use ELBOW290.)

The element can be used for slender or stout pipes. Due to the limitations of first-order shear-deformation theory, only moderately "thick" pipes can be analyzed. The slenderness ratio of a pipe structure (GAL ${ }^{2}$ / (EI) ) can be used to judge the applicability of the element, where:

## G

Shear modulus
A
Area of the cross-section
L
Length of the member (not the element length)
EI
Flexural rigidity
For pipes, (GAL $\left.{ }^{2} / E I\right)$ can be reduced to: $2 L^{2} /\left((1+\nu)\left(R_{o}^{2}+R_{i}^{2}\right)\right)$, or for thin-walled pipes: $L^{2} /\left((1+\nu) R^{2}\right)$, where $\nu=$ Poisson's ratio, $\mathrm{R}_{\mathrm{o}}=$ outer radius, $\mathrm{R}_{\mathrm{i}}=$ inner radius, and $\mathrm{R}=$ average radius.

The following illustration provides an estimate of transverse-shear deformation in a cantilever pipe subjected to a tip load. Although the results cannot be extrapolated to other applications, the example serves generally. ANSYS, Inc. recommends a slenderness ratio greater than 30 .

Figure 2 Transverse-Shear-Deformation Estimation


Slenderness Ratio   (GAL $^{\mathbf{2}}$ (EI))	$\delta$ Timoshenko / $\delta$ Euler-   Bernoulli
25	1.120
50	1.060
100	1.030
1000	1.003

The element supports an elastic relationship between transverse-shear forces and transverse-shear strains.
Unlike other cubic (Hermitian) polynomial-based elements, PIPE289 is based on quadratic polynomials; therefore, offsets in specification of distributed pressure loads are not allowed. The element has linear bending-moment variation. Refinement of the mesh is recommended in order to accommodate such loading. The element is computationally efficient and has super-convergence properties with respect to mesh refinement. For example, the quadratic beam with a two point Gaussian integration is known to be of same accuracy as a Hermitian element.

PIPE289 supports both the thin-pipe $(\operatorname{KEYOPT}(4)=1)$ and the thick-pipe $(\operatorname{KEYOPT}(4)=2)$ options. The thinpipe option assumes a plain stress state in the pipe wall and ignore the stress in the wall thickness direction. The thick-pipe option accounts for the full 3-D stress state and generally leads to more accurate results in thick-walled pipes where through-the-thickness stress can be significant. The element allows change in cross-
sectional area in large-deflection analysis. While the thick-pipe option can accurately determine the crosssection area change from the actual material constitutive properties, the thin-pipe option calculates the approximate area change based on a simple material incompressibility assumption.

For the mass matrix and load vectors, a higher order integration rule than that used for stiffness matrix is employed. The elements support both consistent and lumped mass matrices. Avoid using LUMPM,ON as PIPE289 is a higher-order element. Consistent mass matrix is the default behavior. You can add mass per unit length using the SECCONTROLS command's ADDMAS values. See "PIPE289 Input Summary" (p. 1416).

When ocean loading is applied (SOCEAN), the loading is nonlinear (that is, based on the square of the relative velocity between the structure and the water). Accordingly, the full Newton-Raphson option (NROPT,FULL) may be necessary to achieve optimal results. (Full Newton-Raphson is applied automatically in an analysis involving large-deflection effects [NLGEOM,ON].)

## PIPE289 Input Data

The geometry, node locations, coordinate system, and pressure directions for this element are shown in Figure 1 (p. 1411). PIPE289 is defined by nodes I, J, and K in the global coordinate system. If ocean loading is present, the global origin must be at the mean sea level, with the global Z-axis pointing away from the center of the earth.

Because the section is round, the element orientation is important only for defining offsets and temperatures, and interpreting bending moment directions and stress locations.

Node $L$ is the preferred way to define the orientation of the element. For information about orientation nodes and beam meshing, see Generating a Beam Mesh With Orientation Nodes in the Modeling and Meshing Guide. See the LMESH and LATT command descriptions for details on generating the K node automatically.

You can define PIPE289 without the orientation node. The element x-axis is oriented from node I toward node J. When no orientation node is used, the default orientation of the element $y$-axis is automatically calculated to be parallel to the global X-Y plane. If the element is parallel to the global Z-axis (or within a 0.01 percent slope of it), the element $y$-axis is oriented parallel to the global $Y$-axis. To control the element orientation about the element $x$-axis, use the $L$ (orientation) node option. If both are defined, the orientation node option takes precedence.

The orientation node L , if used, defines a plane (with I and J) containing the element x and z -axes (as shown). If this element is used in a large-deflection analysis, the location of the orientation node only initially orients the element.

The pipe element is a one-dimensional line elements in space. The cross-section details are provided separately via the SECTYPE and SECDATA commands. A section is associated with the pipe elements by specifying the section ID number (SECNUM). A section number is an independent element attribute.

Internal fluid and external insulation are supported. Added mass, hydraulic added mass, and hydrodynamic and buoyant loading, are available via the SOCEAN, OCDATA, and OCTABLE commands. See the SECCONTROLS command for defining added mass.

## PIPE289 Cross-Sections

PIPE289 can be associated only with the pipe cross-section (SECTYPE,,PIPE). The material of the pipe is defined as an element attribute (MAT).

PIPE289 is provided with section-relevant quantities (area of integration, position, etc.) automatically at a number of section points using the SECDATA command. Each section is assumed to be an assembly of a predetermined number of nine-node cells. Each cross-section cell has four integration points.

## Figure 3 Typical Cross-Section Cell



- Section Nodes
- Section Corner Nodes
+ Section Integration Points
KEYOPT(15) specifies the format of the .rst results file. For $\operatorname{KEYOPT}(15)=0$, the format gives only one averaged result at each section corner node; therefore, this option typically applies to homogeneous sections. For $\operatorname{KEYOPT}(15)=1$, the format gives one result for each section integration point; therefore, this option typically applies to built-up sections with multiple materials (and generates a larger results file).


## Section Flexibility

To apply section flexibility factors, use the SFLEX command. The command is valid only for linear material properties and small strain analyses, and does not support offsets, temperature loading, or initial state loading.

## PIPE289 Loads

Internal fluid and external insulation are supported. Added mass, hydraulic added mass, and hydrodynamic and buoyant loading, are available via the SOCEAN, OCDATA, and OCTABLE commands. See the SECCONTROLS command for defining added mass.

Forces are applied at nodes $\mathrm{I}, \mathrm{J}$, and K . If the centroidal axis is not colinear with the element x -axis because of node-location offsets, applied axial forces will cause bending. The nodes should therefore be located at the desired points where you want to apply the forces. Use the OFFSETY and OFFSETZ arguments of the SECOFFSET command appropriately. By default, the program uses the centroid as the reference axis for the pipe elements.

Element loads are described in Node and Element Loads (p. 97). Pressures can be input as surface loads on the element faces as shown by the circled numbers in Figure 1 (p. 1411). Lateral pressures are input as force per unit length. End "pressures" are input as forces.

On the first and second faces, pressures are the internal and external pressures, respectively.

The pressure on the third face is the global Z coordinate location of the free surface of the fluid internal to the pipe. This pressure is used only for the mass and pressure effect. If this value is zero, no fluid inside of the pipe is considered. If the internal fluid free surface should be at $Z=0$, use a very small number instead. The free surface location is stepped, even if you issue a $\mathbf{K B C}, 0$ command.

When $\operatorname{KEYOPT}(1)=0$, temperatures can be input as element body loads at the inner and outer surfaces at both ends of the pipe element so that the temperature varies linearly through the wall thickness. If only two temperatures are specified, those two temperatures are used at both ends of the pipe element (that is, there is no gradient along the length). If only the first temperature is specified, all others default to the first. The following graphic illustrates temperature input at a node when $\operatorname{KEYOPT}(1)=0$ :


When $\operatorname{KEYOPT}(1)=1$, temperatures can be input as element body loads at three locations at both nodes of the pipe element so that the temperature varies linearly in the element $y$ and $z$ directions. At either end of the element, temperatures can be input at these locations:

- At the element $x$-axis $(T(0,0))$
- At the outer radius from the $x$-axis in the element $y$-direction $\left(T\left(R_{0}, 0\right)\right)$
- At the outer radius from the $x$-axis in the element $z$-direction $\left(T\left(0, R_{0}\right)\right)$

The following graphic illustrates temperature input at a node when $\operatorname{KEYOPT}(1)=1$ :


Element locations ( $T(Y, Z)$ ) are given according to the convention used in Figure 1 (p. 1411).
For pipe elements, element body load commands (BFE) accept an element number and a list of values, 1 through 6 for temperatures $T_{l}(0,0), T_{l}(1,0), T_{1}(0,1), T_{J}(0,0), T_{J}(1,0)$, and $T_{J}(0,1)$. This input can be used to specify temperature gradients that vary linearly both over the cross section and along the length of the element.

The following defaults apply to element temperature input:

- If all temperatures after the first are unspecified, they default to the first. This pattern applies a uniform temperature over the entire element. (The first coordinate temperature, if unspecified, defaults to TUNIF.)
- If all three temperatures at node I are input, and all temperatures at node J are unspecified, the node $J$ temperatures default to the corresponding node I temperatures. This pattern applies a temperature gradient that varies linearly over the cross section but remains constant along the length of the element.
- For any other input pattern, unspecified temperatures default to TUNIF.

Alternatively, temperatures at nodes I and J can be defined using nodal body loads ( $\mathbf{B F}$, NODE,TEMP,VAL1). This specifies a uniform temperature over the cross section at the specified node. (BF command input is not accepted at node K.)

The effects of pressure load stiffness are automatically included for this element. If an unsymmetric matrix is needed for pressure load stiffness effects, issue an NROPT,UNSYM command.

The end-cap pressure effect is included by default. The end-cap effect can be deactivated via KEYOPT(6). When subjected to internal and external pressures, PIPE289 with end caps (KEYOPT(6) $=0$ ) is always in equilibrium; that is, no net forces are produced. Because the element curvature is not considered for the end-cap orientations, the element is also in equilibrium without end caps ( $\operatorname{KEYOPT}(6)=1$ ), even when the element is curved.

## PIPE289 Input Summary

## Nodes

I, J, K, and L (the optional, but recommended, orientation node)
Degrees of Freedom
UX, UY, UZ, ROTX, ROTY, ROTZ

## Section Information

Accessed via SECTYPE,,PIPE and SECDATA commands.

## Material Properties

EX, EY, EZ, PRXY, PRYZ, PRXZ (or NUXY, NUYZ, NUXZ), ALPX, ALPY, ALPZ (or CTEX, CTEY, CTEZ or THSX, THSY, THSZ), DENS, GXY, GYZ, GXZ, DAMP

## Surface Loads

## Pressure --

face 1- Internal pressure
face 2 - External pressure
face 3 - Height of free surface of fluid on inside of pipe
face $4(I-J)$ (-z normal direction)
face $5(I-J)(-y$ normal direction)
face 6 (I-J) (+x tangential direction)
face 7 (I) (+x axial direction)
face 8 (J) (-x axial direction)
---
I and J denote end nodes.
Use a negative value for loading in the opposite direction.

Input pressure values for faces 1,2, and 3 via the SFE command. Input pressure values for faces 4 through 8 via the SFBEAM command
Distributed pressure offsets are not available for faces 4,5 , and 6 .

## Body Loads

## Temperatures --

$\operatorname{TOUT}(\mathrm{I}), \operatorname{TIN}(\mathrm{I}), \operatorname{TOUT}(\mathrm{J}), \operatorname{TIN}(\mathrm{J})$ if $\operatorname{KEYOPT}(1)=0$.
$\operatorname{TAVG}(\mathrm{I}), \mathrm{T}_{\mathrm{y}}(\mathrm{I}), \mathrm{T}_{\mathrm{z}}(\mathrm{I}), \operatorname{TAVG}(\mathrm{J}), \mathrm{T}_{\mathrm{y}}(\mathrm{J}), \mathrm{T}_{\mathrm{z}}(\mathrm{J})$ if $\operatorname{KEYOPT}(1)=1$.

## Special Features

Plasticity (PLASTIC, BISO, MISO, NLISO, BKIN, MKIN, KINH, CHABOCHE, HILL) [1 (p. 1417)]
Hyperelasticity (AHYPER, ANEL, BB, CDM, ELASTIC, HYPER) [1 (p. 1417)]
Viscoelasticity (PRONY, SHIFT) [1 (p. 1417)]
Viscoplasticity/Creep (CREEP, RATE) [1 (p. 1417)]
Other material (USER) [1 (p. 1417)]
Stress stiffening
Large deflection
Ocean loading
Nonlinear stabilization
Linear perturbation
Birth and death
Automatic selection of element technology [2 (p. 1417)]

1. Items in parentheses refer to data tables associated with the TB command. See "Structures with Material Nonlinearities" in the Theory Reference for the Mechanical APDL and Mechanical Applications for details of the material models.
2. See Automatic Selection of Element Technologies (p.122) and ETCONTROL for more information about selecting element technologies.

## KEYOPT(1)

Temperature input
0 --
Through wall gradient
1 --
Diametral gradient

## KEYOPT(4)

Hoop strain treatment
1 --
Thin pipe theory
2 --
Thick pipe theory

## KEYOPT(6)

End cap loads
0 --
Internal and external pressures cause loads on end caps
1 --
Internal and external pressures do not cause loads on end caps

## KEYOPT(7), KEYOPT(9), KEYOPT(11), and KEYOPT(12)

Ative only when OUTPR,ESOL is active:

## KEYOPT(7)

Output control for section forces/moments and strains/curvatures:
0 --
Output section forces/moments, strains/curvatures, internal and external pressures, effective tension, and maximum hoop stress (default)

1 --
Same as $\operatorname{KEYOPT}(7)=0$ plus current section area
2 --
Same as $\operatorname{KEYOPT}(7)=1$ plus element basis directions $(X, Y, Z)$
3 --
Output section forces/moments, strains/curvatures, internal and external pressures, effective tension, and maximum hoop stress extrapolated to the element nodes

## KEYOPT(8)

Shear stress output:
0 --
Output a combined state of the following two types (default)
1 --
Output only torsion-related shear stresses
2 --
Output only flexure-related transverse-shear stresses

## KEYOPT(9)

Output control at integration points:
0 --
None (default)
1 --
Maximum and minimum stresses/strains
2 --
Same as $\operatorname{KEYOPT}(9)=1$ plus stresses and strains at each section node

## KEYOPT(11)

Output control for values extrapolated to the element and section nodes:
0 --
None (default)
1 --
Maximum and minimum stresses/strains
2 --
Same as $\operatorname{KEYOPT}(11)=1$ plus stresses and strains along the exterior boundary of the cross-section
3 --
Same as $\operatorname{KEYOPT}(11)=1$ plus stresses and strains at all section nodes

## KEYOPT(12)

Hydrodynamic output:

## 0 --

None (default)
1 --
Additional centroidal hydrodynamic printout

## KEYOPT(15)

Results file format:
0 --
Store averaged results at each section corner node (default).
1 --
Store non-averaged results at each section integration point. (The volume of data may be excessive.)

## PIPE289 Output Data

The solution output associated with these elements is in two forms:

- Nodal displacements and reactions included in the overall nodal solution
- Additional element output as described in Table 1: PIPE289 Element Output Definitions (p. 1420)

For ways to view results, see the Basic Analysis Guide.
To view 3-D deformed shapes for PIPE289, issue an OUTRES,MISC or OUTRES,ALL command for static or transient analyses. To view 3-D mode shapes for a modal or eigenvalue buckling analysis, expand the modes with element results calculation active (via the MXPAND command's Elcalc= YES option).

## Linearized Stress

It is customary in pipe design to employ components of axial stress that contribute to axial loads and bending in each direction separately; therefore, PIPE289 provides a linearized stress output as part of its SMISC output record, as indicated in the following definitions:

SDIR is the stress component due to axial load.
SDIR $=F x / A$, where $F x$ is the axial load (SMISC quantities 1 and 14 ) and $A$ is the area of the cross-section.
SByT and SByB are bending stress components.

$$
\begin{aligned}
& \text { SByT }=-M z * R_{0} / I \\
& \text { SByB }=M z * R_{0} / I \\
& \text { SBzT }=M y * R_{0} / I \\
& \text { SBzB }=-M y * R_{0} / I
\end{aligned}
$$

where $M y, M z$ are bending moments (SMISC quantities $2,15,3,16$ ), $R_{0}$ is the outside radius, and $I$ is the moment of inertia of the cross-section. The program uses the maximum and minimum cross-section dimensions.

Corresponding definitions for the component strains are:

```
EPELDIR = Ex
EPELByT = -Kz * R R
EPELByB = Kz * R R
EPELBzT = Ky * R R
```

EPELBzB $=-K y * R_{0}$
where $E x, K y$, and $K z$ are generalized strains and curvatures (SMISC quantities 7,8,9, 20,21 and 22).
The reported stresses are strictly valid only for elastic behavior of members. PIPE289 always employs combined stresses in order to support nonlinear material behavior. When the elements are associated with nonlinear materials, the component stresses can at best be regarded as linearized approximations and should be interpreted with caution.

When using KEYOPT(9) with the cubic option (KEYOPT(3) = 3), the integration point at the middle of the element is reported last in the integration-point printout.

## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " Y " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

For the stress and strain components, X refers to axial, Y refers to hoop, and Z refers to radial.

## Table 1 PIPE289 Element Output Definitions

Name	Definition	0	R
EL	Element number	Y	Y
NODES	Element connectivity	Y	Y
MAT	Material number	Y	Y
C.G.:X, Y, Z	Element center of gravity	Y	1
Area	Area of cross-section	2	Y
$\left\lvert\, \begin{aligned} & S: x, y, z, x y, y z, \\ & x z \end{aligned}\right.$	Section point stresses	3	Y
$\begin{aligned} & \text { EPEL:x, y, z, xy, } \\ & y z, x z \end{aligned}$	Elastic strains	3	Y
$\begin{aligned} & \text { EPTO:x, y, z, xy, } \\ & y z, x z \end{aligned}$	Section point total mechanical strains (EPEL + EPPL + EPCR)	3	Y
$\begin{aligned} & \text { EPTT:x, y, z, xy, } \\ & y z, x z \end{aligned}$	Section point total strains (EPEL + EPPL + EPCR + EPTH)	3	Y
$\begin{aligned} & \text { EPPL:x, y, z, xy, } \\ & y z, x z \end{aligned}$	Section point plastic strains	3	Y
$\begin{aligned} & \text { EPCR:x, y, z, xy, } \\ & y z, x z \end{aligned}$	Section point creep strains	3	Y
$\begin{aligned} & \text { EPTH:x, y, z, xy, } \\ & y z, x z \end{aligned}$	Section point thermal strains	3	Y
NL:EPEQ	Accumulated equivalent plastic strain	-	4
NL:CREQ	Accumulated equivalent creep strain	-	4


Name	Definition	0	R
NL:SRAT	Plastic yielding ( $1=$ actively yielding, $0=$ not yielding)	-	4
NL:PLWK	Plastic work	-	4
NL:EPEQ	Accumulated equivalent plastic strain	-	4
SEND:ELASTIC, PLASTIC, CREEP	Strain energy densities	-	4
TQ	Torsional moment	Y	Y
TE	Torsional strain	Y	Y
SFy, SFz	Section shear forces	2	Y
SEy, SEz	Section shear strains	2	Y
Ky, Kz	Curvature	Y	Y
Ex	Axial strain	Y	Y
Fx	Axial force	Y	Y
My, Mz	Bending moments	Y	Y
INT PRESS	Internal pressure at integration point	Y	Y
EXT PRESS	External pressure at integration point	Y	Y
EFFECTIVE TENS	Effective tension on pipe	Y	Y
MAX HOOP STRESS	Maximum hoop stress at integration point	Y	Y
SDIR	Axial direct stress	-	Y
SByT	Bending stress on the element +Y side of the pipe	-	Y
SByB	Bending stress on the element $-Y$ side of the pipe	-	Y
SBzT	Bending stress on the element $+Z$ side of the pipe	-	Y
SBzB	Bending stress on the element $-Z$ side of the pipe	-	Y
EPELDIR	Axial strain at the end	-	Y
EPELByT	Bending strain on the element +Y side of the pipe	-	Y
EPELByB	Bending strain on the element $-Y$ side of the pipe	-	Y
EPELBzT	Bending strain on the element $+Z$ side of the pipe	-	Y
EPELBzB	Bending strain on the element $-Z$ side of the pipe	-	Y
TEMP	Temperatures at all section corner nodes	-	Y
LOCI:X, Y, Z	Integration point locations	-	5
SVAR:1, 2, ... , N	State variables	-	6


Name	Definition	$\mathbf{0}$	R	
The following values apply to ocean loading only:	7	Y		
GLOBAL COORD	Element centroid location	7	Y	
VR, VZ	Radial and vertical fluid particle velocities (VR   is always > 0)	Radial and vertical fluid particle accelerations	7	Y
AR, AZ	Dynamic fluid pressure head	7	Y	
PHDYN	Wave amplitude over integration point	7	Y	
ETA	Fluid temperature (printed if VISC is nonzero)	7	Y	
TFLUID	Viscosity (output if VISC is nonzero)	7	Y	
VISC	Normal and tangential Reynolds numbers (if   VISC is nonzero)	7	Y	
REN, RET	Input tangential drag coefficients evaluated at   Reynolds numbers	7	Y	
CT	Input normal drag coefficients evaluated at   Reynolds numbers	7	Y	
CDY, CDZ	Input inertia coefficients evaluated at Reynolds   numbers	7	Y	
CMY, CMZ	Tangential (parallel to element axis) and normal   relative velocities	7	Y	
URT, URN	Vector sum of normal (URN) velocities	7	Y	
ABURN	Accelerations normal to element	7	Y	
AN	Hydrodynamic tangential and normal forces in   element coordinates	7	Y	
FX, FY, FZ	Effective position of wave (radians)	7	Y	
ARGU				

1. Available only at the centroid as a *GET item, or on the NMISC record for ocean loading.
2. See KEYOPT(7) description.
3. See KEYOPT(9) and KEYOPT(11) descriptions.
4. Available if the element has a nonlinear material.
5. Available only if OUTRES,LOCI is used.
6. Available only if the UserMat subroutine and the TB,STATE command are used.
7. See KEYOPT(12) description.

More output is described via the PRESOL command in the POST1 postprocessor.
Table 2: PIPE289 Item and Sequence Numbers (p. 1423) lists output available for the ETABLE command using the Sequence Number method. See Creating an Element Table in the Basic Analysis Guide and The Item and Sequence Number Table (p. 9) in this document for more information. The output tables use the following notation:

## Name

output quantity as defined in Table 1: PIPE289 Element Output Definitions (p. 1420).

## Item

predetermined Item label for ETABLE
E,I,J
sequence number for data at nodes I and J
Table 2 PIPE289 Item and Sequence Numbers

Output Quantity Name	ETABLE and ESOL Command Input			
	Item	E	I	J
Fx	SMISC	--	1	14
My	SMISC	--	2	15
Mz	SMISC	--	3	16
TQ	SMISC	--	4	17
SFz	SMISC	--	5	18
SFy	SMISC	--	6	19
Ex	SMISC	--	7	20
Ky	SMISC	--	8	21
Kz	SMISC	--	9	22
TE	SMISC	--	10	23
SEz	SMISC	--	11	24
SEy	SMISC	--	12	25
Area	SMISC	--	13	26
BM	SMISC	--	27	29
BK	SMISC	--	28	30
SDIR	SMISC	--	31	36
SByT	SMISC	--	32	37
SByB	SMISC	--	33	38
SBzT	SMISC	--	34	39
SBzB	SMISC	--	35	40
EPELDIR	SMISC	--	41	46
EPELByT	SMISC	--	42	47
EPELByB	SMISC	--	43	48
EPELBzT	SMISC	--	44	49
EPELBzB	SMISC	--	45	50
TEMP	SMISC	--	51-53	54-56
INT PRESS [1]	SMISC	--	61	65
EXT PRESS [1]	SMISC	--	62	66
EFFECTIVE TENS [1]	SMISC	--	63	67
MAX HOOP STRESS   [1]	SMISC	--	64	68
S: $x, y, z, x y, y z, x z$	LS	--	$\mathrm{Cl}[2], \mathrm{DI}[3]$	CJ[2], DJ[3]


Output Quantity Name	ETABLE and ESOL Command Input			
	Item	E	1	J
EPEL: $x, y, z, x y, y z, x z$	LEPEL	--	CI[2], DI[3]	CJ[2], DJ[3]
$\begin{gathered} \text { EPTH:x, } y, z, x y, y z, \\ x z \end{gathered}$	LEPTH	--	CI[2], DI[3]	CJ[2], DJ[3]
EPPL: $x, y, z, x y, y z, x z$	LEPPL	--	CI[2], DI[3]	CJ[2], DJ[3]
$\begin{gathered} \hline \text { EPCR:x, } y, z, x y, y z, \\ x z \end{gathered}$	LEPCR	--	CI[2], DI[3]	CJ[2], DJ[3]
$\begin{gathered} \text { EPTO:x, } y, z, x y, y z, \\ x z \end{gathered}$	LEPTO	-	CI[2], DI[3]	CJ[2], DJ[3]
EPTT: $x, y, z, x y, y z, x z$	LEPTT	--	CI[2], DI[3]	CJ[2], DJ[3]

The following output quantities are valid for ocean loading only:

GLOBAL COORD	NMISC	$1,2,3$	--	--
VR, VZ	NMISC	4,5	--	--
AR, AZ	NMISC	6,7	--	--
PHDYN	NMISC	8	--	--
ETA	NMISC	9	--	--
TFLUID	NMISC	10	--	--
VISC	NMISC	11	--	--
REN, RET	NMISC	12,13	--	--
CT	NMISC	14	--	--
CDY, CDZ	NMISC	15,16	--	--
CMY, CMZ	NMISC	17,18	--	--
URT, URN	NMISC	$19,20,21$	--	--
ABURN	NMISC	22	--	--
AN	NMISC	23,24	--	--
FX, FY, FZ	NMISC	$25,26,27$	--	--
ARGU	NMISC	28	--	--

1. Internal pressure (INT PRESS), external pressure (EXT PRESS), effective tension (EFFECTIVE TENS), and maximum hoop stress (MAX HOOP STRESS) occur at integration points, and not at end nodes.
2. Cl and CJ are the sequence numbers for accessing the averaged line element solution quantities (LS, LEPEL, LEPTH, LEPPL, LEPCR, LEPTO, and LEPTT) at RST section nodes (section corner nodes where results are available), at element Node I and J respectively. Cl and CJ are applicable only when $\operatorname{KEYOPT}(15)=0$. For a given section corner node $n n, \mathrm{Cl}$ and CJ are given as follows:
$\mathrm{Cl}=(n n-1) * 6+\mathrm{COMP}$
$C J=(n n M a x+n n-1) * 6+C O M P$

Where nnMax is the total number of RST section nodes, and COMP is the stress or strain component ( $1-x, 2-y, 3-z, 4-x y, 5-y z, 6-x z$ ). Locations of RST section nodes can be visualized with SECPLOT,,6.
3. Dl and DJ are the sequence numbers for accessing the non-averaged line element solution quantities (LS, LEPEL, LEPTH, LEPPL, LEPCR, LEPTO, and LEPTT) at RST section integration points (section integration points where results are available), respectively at element Node I and J. DI and DJ are applicable only when $\operatorname{KEYOPT}(15)=1$. For the ith integration point $(i=1,2,3$, or 4$)$ in section cell $n c, D I$ and $D J$ are given as follows:
$\mathrm{DI}=(n c-1) * 24+(\mathrm{i}-1) * 6+$ COMP
$\mathrm{DJ}=(n c M a x+n c-1) * 24+(i-1) * 6+$ COMP
Where ncMax is the total number of RST section cells, and COMP is the stress or strain component ( $1-x, 2-x, 3-z, 4-x y, 5-y z, 6-x z$ ). Locations of RST section cells can be visualized with SECPLOT,,7.

For more usage details, see Plot and Review the Section Results and Sample Problem with Cantilever Beams, Command Method.

## Transverse-Shear Stress Output

The shear stresses are caused by torsional and transverse loads. PIPE289 is based on first-order shear-deformation theory, also popularly known as Timoshenko beam theory. The transverse-shear strain is constant for the cross-section; therefore, the shear energy is based on a transverse-shear force. This shear force is redistributed by predetermined shear stress distribution coefficients across the pipe cross-section, and made available for output purposes. Use KEYOPT(8) to output shear stresses caused by flexure or transverse loading.

By default, the program uses a mesh density (for cross-section modeling) that provides accurate results for torsional rigidity, warping rigidity, inertia properties, and shear center determination. The default mesh employed is also appropriate for nonlinear material calculations; however, more refined cross-section models may be necessary if the shear stress distribution due to transverse loads must be captured very accurately. Use the SECDATA command to adjust cross-section mesh density.

The traction-free state at the edges of the cross-section is met only in a well-refined model of the crosssection.

The transverse-shear distribution calculation ignores the effects of Poisson's ratio. The Poisson's ratio affects the shear-correction factor and shear-stress distribution slightly, and this effect is ignored.

## PIPE289 Assumptions and Restrictions

- The pipe cannot have zero length.
- Cross-section distortion or collapse is not considered.
- Rotational degrees of freedom are not included in the lumped mass matrix if node-location offsets are present.
- The element works best with the full Newton-Raphson solution scheme (that is, the default choice in solution control).
- Only moderately "thick" pipes can be analyzed. See "PIPE289 Element Technology and Usage Recommendations" (p. 1411) for more information.
- Stress stiffening is always included in geometrically nonlinear analyses (NLGEOM,ON). Prestress effects can be activated via the PSTRES command.
- The element coordinate system (/PSYMB,ESYS) is not relevant.


## PIPE289 Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

## ANSYS Professional

- The only special features allowed are stress stiffening and large deflections.


## ELBOW290

## 3-D 3-Node Elbow

MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS
Product Restrictions

## ELBOW290 Element Description

The ELBOW290 element is suitable for analyzing pipe structures with initially circular cross-sections and thin to moderately thick pipe walls. The element accounts for cross-section distortion, which can be commonly observed in curved pipe structures under loading.

ELBOW290 is a quadratic (three-node) pipe element in 3-D. The element has six degrees of freedom at each node (the translations in the $x, y$, and $z$ directions and rotations about the $x, y$, and $z$ directions). The element is well-suited for linear, large rotation, and/or large strain nonlinear applications. Change in pipe thickness is accounted for in geometrically nonlinear analyses. The element accounts for follower (load stiffness) effects of distributed pressures.

ELBOW290 can be used in layered applications for modeling laminated composite pipes. The accuracy in modeling composite pipes is governed by the first-order shear-deformation theory (generally referred to as Mindlin-Reissner shell theory).

ELBOW290 supports the pipe cross-section defined via SECTYPE, SECDATA, and SECOFFSET commands.
For more detailed information about this element, see ELBOW290-3-D 3-Node Elbow in the Theory Reference for the Mechanical APDL and Mechanical Applications.

## Figure 1 ELBOW290 Geometry



A general description of the element coordinate system is available in Coordinate Systems (p. 14) in this document. Following is information about specific coordinate systems as they apply to ELBOW290.

## Beam Coordinate Systems

The beam coordinate systems ( $x-y-z$ ) are used for defining beam offsets and diametral temperature gradients.


The $x$ axis is always the axial direction pointing from node I to node J. The optional orientation node L, if used, defines a plane containing the x and z axes at node K . If this element is used in a large-deflection analysis, the location of the orientation node L is used only to initially orient the element.

When no orientation node is used, z is perpendicular to the curvature plane, uniquely determined by the I , J , and K nodes. If $\mathrm{I}, \mathrm{J}$, and K are colinear, the y axis is automatically calculated to be parallel to the global X $Y$ plane. In cases where the element is parallel to the global $Z$ axis (or within a 0.01 percent slope of the axis), the element $y$ axis is oriented parallel to the global Y axis.

For information about orientation nodes and beam meshing, see Generating a Beam Mesh With Orientation Nodes in the Modeling and Meshing Guide. See Quadratic Elements (Midside Nodes) in the same document for information about midside nodes. For details about generating the optional orientation node $L$ automatically, see the LMESH and LATT command descriptions.

## Local Cylindrical Coordinate Systems

The cylindrical coordinate systems (A-R-T) are used for defining internal section motions (that is, axial-A, ra-dial-R, and hoop-T displacements and rotations).


The cylindrical systems are always created from the default beam coordinate systems (beam system without orientation node L), with A being the same as beam axis $x$, and an angle $\alpha$ ( $0<\alpha<360$ degrees) from R to the beam axis $y$.

## Element and Layer Coordinate Systems

The element coordinate systems (e1-e2-e3) are defined at the mid-surfaces of the pipe wall. The e1, e2, and e3 axes are parallel respectively to cylindrical axes $A, T$, and $R$ in the undeformed configuration. Each element coordinate system is updated independently to account for large material rotation during a geometrically nonlinear analysis. Support is not available for user-defined element coordinate systems.


The layer coordinate systems (L1-L2-L3) are identical to the element coordinate system if no layer orientation angles are specified; otherwise, the layer coordinate system can be generated by rotating the corresponding element coordinate system about the shell normal (axis e3). Material properties are defined in the layer systems; therefore, the layer system is also called the material coordinate system.

## ELBOW290 Input Data

The geometry and node locations for ELBOW290 are shown in Figure 1 (p. 1427). The element is defined by nodes $\mathrm{I}, \mathrm{J}$, and K in the global coordinate system.


When using ELBOW290, the subtended angle $\phi$ should not exceed 45 degrees:

## ELBOW290 Cross Sections

The element is a one-dimensional line element in space. The cross-section details are provided separately (via the SECDATA command). A section is associated with the element by specifying the section ID number (SECNUM). A section number is an independent element attribute.

ELBOW290 can only be associated with the pipe cross section (SECTYPE,,PIPE). For elements with homogenous materials, the material of the pipe is defined as an element attribute (MAT).

The layup of a composite pipe can be defined with a shell section (SECTYPE). Shell section commands provide the input options for specifying the thickness, material, orientation and number of integration points through the thickness of the layers. ANSYS obtains the actual layer thicknesses used for ELBOW290 element calculations (by scaling the input layer thickness) so that they are consistent with the total wall thickness
given by the pipe section. A single-layer shell section definition is possible, allowing flexibility with regard to the number of integration points used and other options.

For shell section input, you can designate the number of integration points (1,3,5,7, or 9) located through the thickness of each layer. When only one integration point is specified, the point is always located midway between the top and bottom surfaces. If three or more points are specified, one point is located on the top surface, one point is located on the bottom surface, and the remaining points are distributed at equal distances between the top and bottom points. The default number of integration points for each layer is 3 . When a single layer is defined and plasticity is present, however, the number of integration points is changed to a minimum of five during solution.

In "Element and Layer Coordinate Systems" (p. 1428), the layer coordinate system can be obtained by rotating the corresponding element coordinate system about the shell normal (axis e3) by angle $\theta$ (in degrees). The value of $\theta$ for each layer is given by the SECDATA command input for the shell section.

For details about associating a shell section with a pipe section, see the SECDATA command documentation.

## Cross-Section Deformation

The level of accuracy in elbow cross-sectional deformation is given by the number of Fourier terms around the circumference of the cross section. The accuracy can be adjusted via $\operatorname{KEYOPT}(2)=n$, where $n$ is an integer value from 0 through 8 , as follows:
$\operatorname{KEYOPT}(2)=0$-- Only uniform radial expansion and transverse shears through the pipe wall are allowed. Suitable for simulating straight pipes without undergoing bending.
$\operatorname{KEYOPT}(2)=1-$ - Radial expansion and transverse shears are allowed to vary along the circumference to account for bending. Suitable for straight pipes in small-deformation analysis.
KEYOPT(2) $=2$ through 8 -- Allow general section deformation, including radial expansion, ovalization, and warping. Suitable for curved pipes or straight pipes in large-deformation analysis. The default is KEYOPT(2) $=2$. Higher values for KEYOPT(2) may be necessary for pipes with thinner walls, as they are more susceptible to complex cross-section deformation than are pipes with thicker walls.

Element computation becomes more intensive as the value of KEYOPT(2) increases. Use a KEYOPT(2) value that offers an optimal balance between accuracy and computational cost.

## Cross-Section Constraints

The constraints on the elbow cross-section can be applied at the element nodes I, J, and K with the following section degrees of freedom labels:

SE - section radial expansion
SO - section ovalization
SW - section warping
SRA - local shell normal rotation about cylindrical axis A
SRT - local shell normal rotation about cylindrical axis T
SECT - all section deformation


Only fixed cross-section constraints are allowed via the $\mathbf{D}$ command. Delete section constraints via the DDELE command. For example, to constrain the warping and ovalization of the cross-section at node $n$, issue this command:
D,n,SW,,,,,SO

To allow only the radial expansion of the cross-section, use the following commands:

> D,n,SECT

DDELE, $n, S E$
It is not practical to maintain the continuity of cross-section deformation between two adjacent elements joined at a sharp angle. For such cases, ANSYS recommends coupling the nodal displacements and rotations but leaving the cross-section deformation uncoupled. The ELBOW command can automate the process by uncoupling the cross-section deformation for any adjacent elements with cross-sections intersecting at an angle greater than 20 degrees.

Element loads are described in Node and Element Loads (p. 97). Forces are applied at the nodes. By default, ELBOW290 element nodes are located at the center of the cross-section. Use the SECOFFSET command's OFFSETY and OFFSETZ arguments for the pipe section to define locations other than the centroid for force application.

Pressures may be input as surface loads on the element faces as shown by the circled numbers in the following illustration. Positive pressures act into the pipe wall.


The end-cap pressure effect is included by default. The end-cap effect on one or both ends of the element can be deactivated via KEYOPT(6). When subjected to internal and external pressures, ELBOW290 with end caps $(\operatorname{KEYOPT}(6)=0)$ is always in equilibrium; that is, no net forces are produced. Without end caps (KEYOPT(6) $=1$ ), the element is also in equilibrium except for the case when the element is curved. With end caps only at one end $(\operatorname{KEYOPT}(6)=2$ or 3$)$, the element is obviously not in equilibrium.

## Pressure Load Stiffness

The effects of pressure load stiffness are included by default for this element. If an unsymmetric matrix is needed for pressure load stiffness effects, issue an NROPT,UNSYM command.

## Temperatures

When $\operatorname{KEYOPT}(1)=0$, a layer-wise pattern is used. T 1 and T 2 are temperatures at inner wall, T 3 and T 4 and the interface temperatures between layer 1 and layer 2 , ending with temperatures at the exterior of the pipe. All undefined temperatures are default to TUNIF. If exactly $(N L+1)$ temperatures are given (where $N L$ is the number of layers), then one temperature is taken as the uniform temperature at the bottom of each layer, with the last temperature for the exterior of the pipe.


Node I


Node J

When $\operatorname{KEYOPT}(1)=1$, temperatures can be input as element body loads at three locations at both end nodes of the element so that the temperature varies linearly in the beam $y$ axis and $z$ axis directions. At both ends, the element temperatures are input at the section centroid (TAVG), at the outer radius from the centroid in the element $y$ direction (Ty), and at the outer radius from the centroid in the element z-direction (Tz). The first coordinate temperature TAVG defaults to TUNIF. If all temperatures after the first are unspecified, they default to the first. If all temperatures at node I are input, and all temperatures at node J are unspecified, the node J temperatures default to the corresponding node I temperatures. For any other input pattern, unspecified temperatures default to TUNIF. The following graphic illustrates temperature input when KEYOPT(1) $=1$ :


## Transverse Shear Stiffness

ELBOW290 includes the effects of transverse shear deformation through the pipe wall. The transverse shear stiffness of the element is a $2 \times 2$ matrix, as shown:

$$
E=\left[\begin{array}{ll}
E_{11} & E_{12} \\
\operatorname{sym} & E_{22}
\end{array}\right]
$$

For a single-layer elbow with isotropic material, default transverse shear stiffnesses are as follows:
$E=\left[\begin{array}{cc}k G h & 0 \\ 0 & k G h\end{array}\right]$
where $\mathrm{k}=5 / 6, \mathrm{G}=$ shear modulus, and $\mathrm{h}=$ pipe wall thickness.
You can override the default transverse shear stiffness values by assigning different values via the SECCONTROLS command for the shell section.

## ELBOW290 Input Summary

## Nodes

I, J, K, and L (the optional orientation node)

## Degrees of Freedom

UX, UY, UZ, ROTX, ROTY, ROTZ

## Section Information

Accessed via SECTYPE,,PIPE and SECDATA commands.

## Material Properties

EX, EY, EZ, (PRXY, PRYZ, PRXZ, or NUXY, NUYZ, NUXZ),
ALPX, ALPY, ALPZ (or CTEX, CTEY, CTEZ or THSX, THSY, THSZ),
DENS, GXY, GYZ, GXZ
Specify DAMP only once for the element. (Issue the MAT command to assign the material property set). REFT may be provided once for the element, or may be assigned on a per-layer basis.

## Surface Loads

## Pressure --

Internal pressure
External pressure

## Body Loads

## Temperatures --

For $\operatorname{KEYOPT}(1)=0-\mathrm{T} 1, \mathrm{~T} 2$ (at bottom of layer 1), T3, T4 (between layers 1-2); similarly for between next layers, ending with temperatures at top of layer $N L\left(2^{*}(N L+1)\right.$ maximum $)$.
For $\operatorname{KEYOPT}(1)=1--\operatorname{TAVG}(\mathrm{I}), \operatorname{Ty}(\mathrm{I}), \operatorname{Tz}(\mathrm{I}), \operatorname{TAVG}(\mathrm{J}), \operatorname{Ty}(\mathrm{J}), \operatorname{Tz}(\mathrm{J})$

## Special Features

Plasticity (PLASTIC, BISO, MISO, NLISO, BKIN, MKIN, KINH, CHABOCHE, HILL)
Hyperelasticity (AHYPER, ANEL, BB, CDM, ELASTIC, HYPER)
Viscoelasticity (PRONY, SHIFT)
Viscoplasticity/Creep (CREEP, RATE)
Elasticity (ELASTIC)
Other material (USER, SDAMP)
Stress stiffening
Large deflection
Large strain
Nonlinear stabilization
Birth and death
Items in parentheses refer to data tables associated with the TB command. See "Structures with Material Nonlinearities" in the Theory Reference for the Mechanical APDL and Mechanical Applications for details of the material models.

## KEYOPT(1)

Temperature input
0 --
Layerwise input
1 --
Diametral gradient

## KEYOPT(2)

Number of Fourier terms (used for cross-sectional flexibility)
0 --
Uniform radial expansion
1 --
Nonuniform radial expansion to account for bending

## 2 through 8 --

General section deformation (default $=2$ )

## KEYOPT(6)

End cap loads
0 --
Internal and external pressures cause loads on end caps

## 1 --

Internal and external pressures do not cause loads on end caps
2 --
Internal and external pressures cause loads on element node I
3 --
Internal and external pressures cause loads on element node J

## KEYOPT(8)

Specify layer data storage:
0 --
Store data for bottom of bottom layer and top of top layer (multilayer elements) (default)
1 --
Store data for TOP and BOTTOM, for all layers (multilayer elements)
2 --
Store data for TOP, BOTTOM, and MID for all layers; applies to single-layer and multilayer elements. (The volume of data may be considerable.)

## ELBOW290 Output Data

The solution output associated with these elements is in two forms:

- Nodal displacements and reactions included in the overall nodal solution
- Additional element output as described in Table 1: ELBOW290 Element Output Definitions (p. 1437)


## Integration Stations

Integration stations along the length and within the cross-section of the elbow are shown in Figure 2 (p. 1435).
Figure 2 ELBOW290 Element Integration Stations


Element solution is available at all integration points through element printout (OUTPR). Solution via the POST1 postprocessor is available at element nodes and selected section integration locations (see KEYOPT(8) settings for more details).

## Stress Output

Several items are illustrated in Figure 3 (p. 1436):
Figure 3 ELBOW290 Stress Output


KEYOPT(8) controls the amount of data output to the results file for processing with the LAYER command. Interlaminar shear stress is available at the layer interfaces. $\operatorname{KEYOPT}(8)$ must be set to either 1 or 2 to output these stresses in the POST1 postprocessor. A general description of solution output is given in Solution Output (p. 8). See the Basic Analysis Guide for ways to review results.

The element shell stress resultants (N11, M11, Q13, etc.) are parallel to the element coordinate system (e1-e2-e3), as are the shell membrane strains and curvatures ( $\varepsilon_{11}, \kappa_{11}, \gamma_{13}$, etc.) of the element. Shell stress resultants and generalized shell strains are available via the SMISC option at the element end nodes I and J only.

ELBOW290 also outputs beam-related stress resultants (Fx, My, TQ, etc) and linearized stresses (SDIR, SByT, SByB, etc) at two element end nodes I and J to SMISC records. Beam stress resultants and linearized stresses are parallel to the beam coordinate system ( $\mathrm{x}-\mathrm{y}-\mathrm{z}$ ).

## Linearized Stress

It is customary in pipe design to employ components of axial stress that contribute to axial loads and bending in each direction separately. Therefore, ELBOW290 provides a linearized stress output as part of its SMISC output record, as indicated in the following definitions:

SDIR is the stress component due to axial load.
SDIR $=F x / A$, where $F x$ is the axial load (SMISC quantities 1 and 36 ) and $A$ is the area of the cross section (SMISC quantities 7 and 42).

SByT and SByB are bending stress components.

$$
\begin{aligned}
& \text { SByT }=-M z * y_{\text {max }} / I z z \\
& \text { SByB }=-M z * y_{\text {min }} / I z z \\
& \text { SBzT }=M y * z_{\text {max }} / l y y \\
& \text { SBzB }=M y * z_{\text {min }} / l y y
\end{aligned}
$$

where $\mathrm{My}, \mathrm{Mz}$ are bending moments (SMISC quantities $2,37,3,38$. Coordinates $y_{\text {max }}, y_{\text {min }}, z_{\text {max }}$, and $z_{\text {min }}$ are the maximum and minimum $y, z$ coordinates in the cross section measured from the centroid. Values lyy and Izz are moments of inertia of the cross section.

The reported stresses are strictly valid only for elastic behavior of members. ELBOW290 always employs combined stresses in order to support nonlinear material behavior. When the elements are associated with nonlinear materials, the component stresses can at best be regarded as linearized approximations and should be interpreted with caution.

ELBOW290 does not provide extensive element printout. Because the POST1 postprocessor provides more comprehensive output processing tools, ANSYS suggests issuing the OUTRES command to ensure that the required results are stored in the database. To view 3-D deformed shapes for ELBOW290, issue an OUTRES,MISC or OUTRES,ALL command for static or transient analyses. To view 3-D mode shapes for a modal or eigenvalue buckling analysis, expand the modes with element results calculation active via the MXPAND command's Elcalc = YES option.

## The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname. OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, " $Y$ " indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and "-" indicates that the item is not available.

## Table 1 ELBOW290 Element Output Definitions

Name	Definition	$\mathbf{O}$	$\mathbf{R}$
EL	Element number	Y	Y
NODES	Element connectivity	-	Y
MAT	Material number	-	Y
THICK	Average wall thickness	-	Y
AREA	Area of cross-section	-	Y


Name	Definition	0	R
XC, YC, ZC	Location where results are reported	-	4
LOCI:X, Y, Z	Integration point locations	-	5
TEMP	T1, T2 at bottom of layer 1, T3, T4 between layers 1-2, similarly for between next layers, ending with temperatures at top of layer NL (2 * ( $N L+1$ ) maximum)	-	Y
LOC	TOP, MID, BOT, or integration point location	-	1
$\begin{aligned} & \mathrm{S}: X, Y, Z, X Y, Y Z, \\ & X Z \end{aligned}$	Stresses	3	1
S:INT	Stress intensity	-	1
S:EQV	Equivalent stress	-	1
EPEL:X, Y, Z, XY	Elastic strains	3	1
EPEL:EQV	Equivalent elastic strains [7]	-	1
EPTH:X, Y, Z, XY	Thermal strains	3	1
EPTH:EQV	Equivalent thermal strains [7]	-	1
EPPL:X, Y, Z, XY	Average plastic strains	3	2
EPPL:EQV	Equivalent plastic strains [7]	-	2
EPCR:X, Y, Z, XY	Average creep strains	3	2
EPCR:EQV	Equivalent creep strains [7]	-	2
EPTO:X, Y, Z, XY	Total mechanical strains (EPEL + EPPL + EPCR)	3	-
EPTO:EQV	Total equivalent mechanical strains (EPEL + EPPL + EPCR)	-	-
NL:EPEQ	Accumulated equivalent plastic strain	-	2
NL:CREQ	Accumulated equivalent creep strain	-	2
NL:SRAT	Plastic yielding ( $1=$ actively yielding, $0=$ not yielding)	-	2
NL:PLWK	Plastic work	-	2
NL:HPRES	Hydrostatic pressure	-	2
SEND:ELASTIC, PLASTIC, CREEP	Strain energy densities	-	2
Fx	Section axial force	-	Y
My, Mz	Section bending moments	-	Y
TQ	Section torsional moment	-	Y
SFy, SFz	Section shear forces	-	Y
SDIR	Axial direct stress	-	Y
SByT	Bending stress on the element +y side of the pipe	-	Y
SByB	Bending stress on the element -y side of the pipe	-	Y


Name	Definition	$\mathbf{O}$	$\mathbf{R}$
SBzT	Bending stress on the element +z side of the   pipe	-	Y
SBzB	Bending stress on the element -z side of the   pipe	-	Y
N11, N22, N12	Wall in-plane forces (per unit length)	-	Y
M11, M22, M12	Wall out-of-plane moments (per unit length)	-	Y
Q13, Q23	Wall transverse shear forces (per unit length)	-	Y
$\varepsilon_{11}, \varepsilon_{22}, \varepsilon_{12}$	Wall membrane strains	-	Y
$\kappa_{11}, \kappa_{22}, \kappa_{12}$	Wall curvatures	-	Y
$\gamma_{13}, \gamma_{23}$	Wall transverse shear strains	-	Y
SVAR:1, 2, .., $N$	State variables	-	6

1. The subsequent stress solution repeats for top, middle, and bottom surfaces.
2. Nonlinear solution output for top, middle, and bottom surfaces, if the element has a nonlinear material.
3. Stresses, total strains, plastic strains, elastic strains, creep strains, and thermal strains in the element coordinate system are available for output (at all section points through thickness). If layers are in use, the results are in the layer coordinate system.
4. Available only at the centroid as a *GET item.
5. Available via an OUTRES,LOCI command only.
6. Available only via the UserMat subroutine and the TB,STATE command.
7. The equivalent strains use an effective Poisson's ratio. For elastic and thermal, you set the value (MP,PRXY). For plastic and creep, ANSYS sets the value at 0.5 .

More output is described via the PRESOL command in the POST1 postprocessor.
Table 2: ELBOW290 Item and Sequence Numbers (p. 1439) lists output available for the ETABLE command using the Sequence Number method. See Creating an Element Table in the Basic Analysis Guide and The Item and Sequence Number Table (p.9) in this document for more information. The output tables use the following notation:

## Name

output quantity as defined in Table 1: ELBOW290 Element Output Definitions (p. 1437)

## Item

predetermined Item label for ETABLE
I,J
sequence number for data at nodes I and J
Table 2 ELBOW290 Item and Sequence Numbers

Output Quantity   Name	ETABLE and ESOL Command Input		
	Item	$\mathbf{I}$	$\mathbf{J}$
Fx	SMISC	1	36
My	SMISC	2	37


Output Quantity   Name	ETABLE and ESOL Command Input		
	Item	I	J
TQ	SMISC	3	38
SFz	SMISC	4	39
SFy	SMISC	5	40
Area	SMISC	6	41
SDIR	SMISC	7	42
SByT	SMISC	8	43
SByB	SMISC	9	44
SBzT	SMISC	10	45
SBzB	SMISC	11	46
N11	SMISC	14	47
N22	SMISC	15	49
N12	SMISC	16	50
M11	SMISC	17	51
M22	SMISC	18	52
M12	SMISC	19	53
Q13	SMISC	20	54
Q23	SMISC	21	55
$\varepsilon_{11}$	SMISC	22	56
$\varepsilon_{22}$	SMISC	23	57
$\varepsilon_{12}$	SMISC	24	58
$\kappa_{11}$	SMISC	25	59
$\kappa_{22}$	SMISC	26	60
$\kappa_{12}$	SMISC	27	61
$\gamma_{13}$	SMISC	28	62
$\gamma_{23}$	SMISC	29	63
THICK	SMISC	30	64
		65	

## ELBOW290 Assumptions and Restrictions

- The element cannot have zero length.
- Zero wall thickness is not allowed. (Zero thickness layers are allowed.)
- In a nonlinear analysis, the solution is terminated if the thickness at any integration point vanishes (within a small numerical tolerance).
- This element works best with the full Newton-Raphson solution scheme (the default behavior in solution control).
- No slippage is assumed between the element layers. Shear deflections are included in the element; however, normals to the center wall surface before deformation are assumed to remain straight after deformation.
- If multiple load steps are used, the number of layers must remain unchanged between load steps.
- If the layer material is hyperelastic, the layer orientation angle has no effect .
- Stress stiffening is always included in geometrically nonlinear analyses (NLGEOM,ON). Apply prestress effects via a PSTRES command.
- The through-thickness stress SZ is always zero.
- The effects of fluid motion inside the pipe are ignored.


## ELBOW290 Product Restrictions

When used in the product(s) listed below, the stated product-specific restrictions apply to this element in addition to the general assumptions and restrictions given in the previous section.

## ANSYS Professional

- The only special features allowed are stress stiffening and large deflections.


## User-Defined Element

MP ME ST PR PRN <> <> <> <> <> <> PP <> EME MFS
Product Restrictions

## USER300 Element Description

ANSYS offers a convenient way create your own custom element named USER300. You can create virtually any element type.

The UserElem subroutine provides an interface to ANSYS code above the element level, passing all data needed to create your user-defined element, then returning all data and results from the element to update the database and files. Because access to database and file information occurs through the interface, an understanding of ANSYS database routines and file structures is rarely necessary. The interface also provides access to ANSYS code at the material level, allowing you to call ANSYS standard material subroutines from your element coding.

For detailed instructions, see Creating a New Element via the User-Defined Element API in the Guide to ANSYS User Programmable Features.

## USER300 Input Data

Use the USRELEM and USRDOF commands to input basic element characteristics. All other characteristics default automatically.

Special features include element convergence criteria and cutback control via the element.
The element supports parallel processing and Distributed ANSYS.

## USER300 Assumptions and Restrictions

The following capabilities are not available for user-defined elements:

- Birth and death
- Superelement stress pass
- Initial stress
- Section input
- Input of fluences
- Swelling


## USER300 Product Restrictions

There are no product-specific restrictions for this element.

## Bibliography

[1] Nuclear Systems Material Handbook. Vol. 1: Design Data, Part 1: Structural Materials, Group 1: High Alloy Steels . U. S. Department of Energy, Office of Scientific and Technical Information. Oak Ridge, TN.
[2] Nuclear Systems Material Handbook. Vol. 1: Design Data, Part 1: Structural Materials, Group 2: Low Alloy Steels, Section 2-2 1/4 CR - 1 Mo. . U. S. Department of Energy, Office of Scientific and Technical Information. Oak Ridge, TN.
[3] F. Barlat and J. Lian. "Plastic Behavior and Stretchability of Sheet Metals. Part I: A Yield Function for Orthotropic Sheets Under Plane Stress Conditions". Int. Journal of Plasticity, 5. pg. 51-66.
[4] F. Barlat, D. J. Lege, and J. C. Brem. "A Six-Component Yield Function for Anistropic Materials". Int. Journal of Plasticity, 7. pg. 693-712.
[5] R. Hill. "A Theory of the Yielding and Plastic Flow of Anisotropic Metals". Proceedings of the Royal Society of London, Series A., Vol. 193. 1948.
[6] F. K. Chang and K. Y. Chang. "A Progressive Damage Model for Laminated Composites Containing Stress Concentration". Journal of Composite Materials, 21. pg. 834-855. 1987a.
[7] R. G. Dean. Evaluation and Development of Water Wave Theories for Engineering Application. Volume 2, Tabulation of Dimensionless Stream Function Theory Variables, Special Report No. 1, . U. S. Army Corps of Engineers, Coastal Engineering Research Center. Fort Belvoir, VA. November 1974.
[8] Michael E. McCormick. Ocean Engineering Wave Mechanics. Wiley \& Sons. New York. 1973.

## Index

## A

anisotropic elastic material constants, 58 anisotropic electric permittivity material constants, 61 anisotropy

Hill's model, 29
axisymmetric elements
general, 107
harmonic, 102
harmonic with nonaxisymmetric loads, 103

## B

Bauschinger effect, 26
BEAM161,681
BEAM188, 1069
BEAM189, 1085

## C

Cantilever beams, 1086
Chaboche model, 26
CIRCU124, 523
CIRCU125,535
CIRCU94,405
cohesive zone material constants
contact elements, 86
interface elements, 86
overview, 85
COMBI165, 719
COMBI214, 1185
COMBIN14, 179
COMBIN37, 241
COMBIN39, 255
COMBIN40, 263
combinations
material model, 93
compressible fluid material models, 87
CONTA171,751
CONTA172,765
CONTA173, 779
CONTA174, 795
CONTA175, 811
CONTA176, 827
CONTA177,841
CONTA178,853
contact friction
isotropic, 83
orthotropic, 84
overview, 83
redefining between load steps, 84
user-defined, 85
CPT212, 1173
CPT213, 1179
CPT215, 1191
CPT216, 1197
CPT217, 1203
creep equations
explicit, 69
implicit, 67
overview, 66
cyclic hardening/softening, 26,28

## D

Damping
constant material damping coefficient, 16
data tables (implicit analysis), 22

## E

ELBOW290, 1427
element types
user-defined, 125
elements
automatic selection of, 122
legacy vs. current, 121
Elements
user-defined, 125
explicit dynamics materials, 97

## F

failure criteria, 12
field variable interpolation, 90
fluid material models, 87
FLUID116, 461
FLUID129, 551
FLUID130, 555
FLUID136, 575
FLUID138, 585
FLUID139, 589
FLUID141,595
FLUID142,605
FLUID220, 1209
FLUID221, 1215
FLUID29, 209
FLUID30, 215
FLUID38, 251
FLUID79, 371
FLUID80, 375
FLUID81, 381
FOLLW201, 1133

## G

gasket material constants, 64
generalized plane strain, 101
geometric nonlinearities, 113

## H

HF118, 483
HF119,489
HF120, 497
high-frequency electromagnetic material constants, 52 anisotropic electric and magnetic loss tangents, 55
B-H nonlinear material permeability matrix, 53 conductivity, permittivity, and permeability matrices, 53
frequency-dependent lossy dielectric, 56
HF118 elements, 57
HF119 and HF120 elements, 52
Hill's anisotropy, 29
HSFLD241, 1293
HSFLD242, 1299
hyperelastic material constants
anisotropic, 47
Arruda-Boyce, 38
Bergstrom-Boyce, 48
Blatz-Ko foam, 38
extended tube, 39
Gent, 39
Mooney-Rivlin, 40
Mullins effect, 49
neo-Hookean, 41
Ogden, 43
Ogden compressible foam, 42
overview, 37
polynomial form, 44
Yeoh, 46
hyperelasticity
user-defined option, 47

## I

INFIN110,445
INFIN111,451
INFIN47, 279
INFIN9, 161
initial stress, 97
INTER115,457
INTER192, 1111
INTER193, 1115
INTER194, 1119
INTER195, 1125
INTER202, 1137
INTER203, 1141

INTER204, 1145
INTER205, 1149
interpolation of field variables, 90

## L

linear perturbation
supported elements, 119
LINK11, 165
LINK160,677
LINK167,725
LINK180, 871
LINK31, 221
LINK33, 225
LINK34, 229
LINK68, 339

## M

magnetic material constants, 52
MASS166, 723
MASS21,185
MASS71,349
material model
combinations, 93
material models
field variable interpolation: understanding, 90
Material properties
constant damping coefficient, 16
material strength limits, 88
material-dependent damping, 16
materials
user-defined: creating, 36
MATRIX27, 197
MATRIX50, 283
MESH200, 1129
mixed u-P formulation elements, 116
MPC184, 909
MPC184 cylindrical joint, 969
MPC184 general joint, 1011
MPC184 joint material constants
linear elastic stiffness and damping behavior, 78
nonlinear elastic stiffness and damping behavior, 79
nonlinear stiffness behavior, 81
overview, 78
MPC184 orient joint, 999
MPC184 planar joint, 981
MPC184 point-in-plane joint, 953
MPC184 revolute joint, 925
MPC184 rigid link/beam, 915
MPC184 screw joint, 1021
MPC184 slider, 921
MPC184 slot joint, 945
MPC184 spherical, 1005

MPC184 translational joint, 961
MPC184 universal joint, 935
MPC184 weld joint, 993

## N

nonlinear stress-strain material constants anisotroptic, 29
bilinear isotropic hardening, 27
bilinear kinematic hardening, 24
cast iron plasticity, 35
Drucker-Prager, 31
extended Drucker-Prager, 31
Extended Drucker-Prager (EDP) Cap, 33
Gurson's model, 34
Hill's anisotropy, 29
material behavior options, 22
multilinear elastic, 35
multilinear isotropic hardening, 27
multilinear kinematic hardening, 24
nonlinear isotropic hardening, 28
nonlinear kinematic hardening, 26
porous media, 36
user-defined, 36

## P

piezoelectric material constants, 59
piezoresistive material constants, 60
PIPE288, 1395
PIPE289, 1411
plane strain
generalized, 101
PLANE121,505
PLANE13, 169
PLANE162, 695
PLANE182, 893
PLANE183, 901
PLANE223, 1221
PLANE230, 1253
PLANE233, 1267
PLANE25, 189
PLANE35, 233
PLANE53, 287
PLANE55, 297
PLANE75, 353
PLANE77, 359
PLANE78, 365
PLANE83, 387
PRETS179, 867
prism elements, 99

## R

ratcheting effect, 26
rate-dependent plastic (viscoplastic) material constants, 62

Anand option, 62
exponential visco-hardening option, 62
Peirce option, 62
Perzyna option, 62
REINF263, 1313
REINF264, 1321
REINF265, 1329
reinforcing, 1313, 1321, 1329
Rice's model, 24
ROM144,615

## S

shakedown effect, 26
shape memory alloy material constants, 76
shear deflection, 113
shell elements, 100
SHELL131, 559
SHELL132, 567
SHELL157,661
SHELL163, 701
SHELL181,877
SHELL208, 1153
SHELL209, 1163
SHELL28, 203
SHELL281, 1375
SHELL41, 271
SHELL61,303
SOLID117,471
SOLID122, 511
SOLID123, 517
SOLID164, 713
SOLID168, 729
SOLID185, 1031
SOLID186, 1047
SOLID187, 1063
SOLID226, 1231
SOLID227, 1243
SOLID231, 1259
SOLID232, 1263
SOLID236, 1275
SOLID237, 1285
SOLID272, 1337
SOLID273, 1345
SOLID276, 1363
SOLID278, 1353
SOLID285, 1389
SOLID5, 151
SOLID62, 319

Index

SOLID65, 329
SOLID70, 343
SOLID87, 395
SOLID90, 399
SOLID96,413
SOLID97,419
SOLID98,431
SOLSH190, 1101
SOURC36, 237
strength limits, material, 88
SURF151,619
SURF152,629
SURF153,639
SURF154,647
SURF156, 655
SURF159,667
SURF251 element, 1305
SURF252 element, 1309
swelling equation constants, 77

## T

TARGE169, 733
TARGE170, 741
tetrahedral elements, 99
TRANS 109, 441
TRANS126, 541
triangle elements, 99

## U

user subroutines
for creating new materials, 36
user-defined elements, 125
user-defined materials, 36
user-programmable features
user-defined materials, 36
USER300, 1443
USER300 element, 125
UserMat subroutine, 36

## V

viscoelastic material constants, 49
Voce hardening law, 28

