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"All models are wrong, but some are useful."

George Box (1976)
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List of Symbols

The notation of the given quantities - if it is possible - corresponds with
the symbols of the national and international literatures. The rarely applied
explanation of notations can be found at their first attendance.

Latin letters

Notation Designation Unit
a Thickness of the cross section m
A Area of the cross section m2

b Width of cross section m
C Compliance matrix SI
d Complex function SI
E Young’s modulus GPa
fi Natural frequency Hz
g Gravitational acceleration (9.81) m/s2
I Second moment m4

L Length of the beam m
m Mass kg
M Bending moment function Nm
Mt Torsional moment Nm/rad
M Mass matrix SI
Mt Torsional moment vector Nm/rad
P Compressive force N
q Vector of generalized coordinates SI
Q Lateral force N
r Radius of the cross section m
s Spring stiffness N/m
S Spring stiffness matrix SI
t Time s
T Kinetic energy J
u Displacement function in the direction x m
U Potential, strain energy J
v Displacement function in the direction y m
v Velocity vector m/s
w Displacement function in the direction z m
Wij Work of external forces J
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Greek letters

Notation Designation Unit
α Torsional constant SI
γ Compression constant SI
δv End-displacement in the direction y (3D) m
δw End-displacement in the direction z (3D) m
θC Mass moment of inertia kgm2

ρ Density of rod kg/m3

ωn Natural angular frequency rad/s
Ω Angular velocity rad/s
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Introduction

Manufacturing is called a process that transforms mouldings or raw materials
to final products through different kinds of steps. The manufacturing process
begins with the preparation of the materials whereby the designed component
will be made. These materials are then modified through manufacturing
processes to become the required part [24]. Machining is the most important
type of forming where the typical cutting processes are defined as turning,
milling and drilling. However, this method of production has significantly
changed over the recent decades due to the increased requirements.

During manufacturing processes, unexpected vibrations called chatter
might occur that generally result in noise or tool break and affect the shaped
surfaces. Vibrations correspond to the relative displacement between the
cutting tool and the workpiece and might be separated to two types of
sources: forced and self-excited vibrations [31]. The forced vibrations are
mainly caused by interrupted cutting, runout or external excitations. The
self-excited vibrations are mostly related to the actual cutting depth and
the relative position between the tool and the workpiece during the previous
passage. These kinds of vibrations either disappear by itself or increase up
to levels which seriously degrade the surface quality. Although there exist
some mathematical models that make it possible to simulate the vibrations
during machining but in practice is always more difficult to avoid vibrations
[24].

Our investigation examines long boring tools and milling cutters that are
subjected to compression/tension, twist and lateral forces originated in the
process. The purpose is to predict how the each and combined loads affect
the natural frequencies of the system, which could be useful in practice. As
an industrial example, consider the moulding of a cylinder head where one of
the manufacturing steps is the drilling of the bearing support of the camshaft
called bearing street. It consists of more sliding bearings which are processed
by a one piece drilling tool because concentricity is needed. The first bearing
bore hole means the critical case due to the sensitivity to accidental buckling
of the tool, since there is no support along the tool till its clamped end.
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The objective of this work is to deal with one of the classical problems
of mechanics that involves questions related to the theory of vibrations and
strength of materials. The tool is modelled by a cantilever beam where
the beam is considered to be prismatic, homogeneous, linearly elastic and
inextensible. Apparently different mathamtical correspondences can be de-
termined between the general load cases and either the typical displacements
or angular rotations of the beam section that describe the deflection of the
beam. If we apply loading forces and torques at the same time then we can
use the principle of superposition. The total strain can be calculated in turn
by the summation of the caused strains of each load. In principle, these
deformation expressions are called as beam design formulas [21].

Let us investigate a cantilever beam that is loaded by a simple lateral
force at its free end. The linear theory of strength of materials only takes
into account the displacement in the applied force direction, which does not
correspond to the reality. As an example (see Fig. 1), consider an apple
attached to the branch by means of the stem [9]. The mass of the stem is
negligible compared to that of the apple. The stem is elastic and the natural
frequency of the apple depends on the lateral deformation of the stem, which
is affected by the tension caused by the weight of the fruit. During the
linear vibration of the apple, the change of the potential energy related to
the vertical position of its centre of gravity should be taken into account due
to the deformation of the stem: the vertical displacement is a second degree
function of the lateral displacement, similarly to the planar pendulum.

g

S

x

y

�

�

Figure 1: The mechanical model of the apple.

According to the theory applied for the stem, one can state the stiffness
of a rod can be defined by an equivalent lateral spring stiffness. The stiffness
is determined by means of a cantilever beam loaded by a lateral force at
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its free end. The ratio of the force and the end displacement in the force
direction caused by the force itself provides a stiffness formula. So there is
another phenomenon that might be taken into account in natural frequency
calculations, namely that the tensile force caused by the weight of the apple
at the end of the stem results in the variation of the lateral spring stiffness of
the stem. Further clarification is needed to discuss the two kinds of potential
energy variations and their effects on the natural frequency.

To support the calculation of the potential energy, we are going to pro-
vide a simple analytic formula that describes the connection of the lateral and
horizontal displacements of an elastic beam. There have been many related
results in the literature: Borboni, De Santis [8] and Lee [18] have investi-
gated a cantilever beam under combined loads with Ludwick type material
and provided a numerical algorithm to solve the problem. González and
LLorca [12] examined a same problem in the case of linearly elastic curved
beams and derived an implicit analytical expression that still requires the
application of some numerical methods. Solano-Carrillo [25] has found re-
lationship between the geometrical and material nonlinearities concerning a
beam under combined loading and suggested a semi-exact solution.

The model used by Beléndez et al. [5] is exactly the one we described
above. The mathematical model is obtained from the Euler-Bernoulli cur-
vature and bending moment connection and considered large and small de-
flections. They investigated only the longitudinal displacement of the beam
and do not take into account its connection with the lateral displacement.
Their results were achieved by incorporating some numerical methods and
these were also compared with experimental ones.

Since our aim is to create a mathematical model related to boring tools,
we need to take into account the effect of the twisting torque, too. Buckling is
not caused only by compression hence why a beam may also become unstable
under the action of a torsional moment. This problem cannot be treated in
two-dimension any more bacause if we are dealing only with the bending
vibrations then it is necessary to find how the twisting moment influences
the bending function, which actually results in a three-dimensional problem
[3]. There have been some previous results associated with the stability of
these structures that mainly explain only the problem of the basic pinned-
pinned constrained beam. Greenhill was the first who had attempted to find
a solution for the case of cantilever shafts [14] because it is important for the
design of turbines, generators and other rotating machinery. These results
were improved by Ziegler [30] and Beck [4] later.

We are going to investigate distinct loading types including torsion and
compression/tension: how they affect the stability of the rod, how the de-
formation will look like. Based on the deformation functions, the natural
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frequencies of the given systems can be calculated through the variation of
the potential energy. Eventually, we can compare how each load influences
the stiffness of the system and how these forces cause the modification of the
natural frequencies.

Since the boring and milling tools are rotating during the manufacturing
process, we need to consider a rotating, compressed and twisted beam and
determine the stability boundaries of the system. According to a related
result by Wang [29], a light rotating column with a concentrated mass at-
tached to its end that is able to model compression, might be treated by
arc-length parameterization and varying boundary conditions. We are going
to generalise the result when twist also appears.
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Chapter 1

Mechanical Modelling

The hierarchy of the present mechanical modelling is manifested by different
load types of a cantilever beam. The investigation of the models consists of
two well separated phases in the sense of the theory of Strength of Materials.
The first part is about the structural stability of the beam considered by
equilibrium (and kinetic) approach(es) [30]. We elaborate on three cases in-
cluding compressed/tensed, twisted and mixed load type beams. At the first
two cases, we will provide two methods with different numbers of boundary
conditions depending on whether real or complex valued differential equa-
tions are used. In the mixed type cases only the complex approach is used
because of its compact mathematical presentation. The second part is about
the general solutions of the three cases, but in this section we apply an addi-
tional lateral force at the free end of the beam in order to be able to examine
the lateral stiffness of the system. Eventually, we give an analytical formula
for the problem of compressed/tensed beam that is able to describe the con-
nection between the lateral and horizontal displacements of the end point of
the beam.

1.1 Equations of the Global System

The well-known mathematical model that describes beam deflections under
bending had been given by the Euler-Bernoulli theory [3]. The governing
equation of an elastic beam assumes the form

1

ρ
= −M

IE
, (1.1)

where the radius of beam curvature at a certain cross section is denoted by
ρ, IE is the bending stiffness, and the bending moment M is considered to
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Chapter 1. Mechanical Modelling

be positive if the upper fibre of the beam is in tension. The curvature can
be expressed as

1

ρ
=

y′′(x)(
1 + (y′(x))2

) 3
2

= y′′(x)

(
1− 3

2
(y′(x))

2 ± ...
)

(1.2)

where the primes mean the first and the second derivatives of the displace-
ment function y(x) with respect to the longitudinal coordinate x. If we
assume small deflections of the beam, we may use the linear approximation

1

ρ
∼= y′′(x) (1.3)

that yields the linearised form of Eq. (1.1):
∂2y(x)

∂x2
= −M(x)

IE
, (1.4)

where M(x) describes the bending moment function, while IE is constant
for the prismatic beam [21].

1.1.1 General Approaches

There exist many distinct approaches to investigate stability problems. We
will consider only two of these that are going to be mentioned in buckling
problems.

Equilibrium Approach:

The stability problem might be approached in different ways. One of them
is called equilibrium approach [30]. Let us consider Fig. 1.1 which depicts a
point mass that is able to move on the surface of a parabola without friction.
If we assume that the motion occurs only in the x−z plane then its equation
is z = 1

2
nx2. Apparently, the only equilibrium position (x = 0) is stable for

n > 0, becomes neutral for n = 0 and unstable for n < 0.

mg

xy

m

z

Figure 1.1: Motion of a point mass on a parabola.
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Chapter 1. Mechanical Modelling

When n = 0, the shape of the parabola coincides with the x axis and any
point x 6= 0 on it represents non-isolated equilibrium positions. So the loss of
the stability of the trivial equilibrium position is implied by the appearance
of the non-isolated equilibrium positions in its neighbourhood.

So this approach is based on the observation that the transition from
stability to instability of an equilibrium configuration may be marked by the
apperance of additional nontrivial equilibrium configurations in the vicinity
of the trivial one [3].

Kinetic Approach:

While the equilibrium approach has a simply static character, the present
investigation is kinetic. The purpose of the kinetic approach is to figure
out whether the small perturbations of the equilibrium result in increasing
motions or not, which is an idea that leads to the definition of stability.

As an example, let us consider Fig. 1.1 again. The linearised differential
equation of motion of the particle is described by

ẍ+ ngx = 0 .

Since we know that x = 0 is the equilibrium position of the system, which can
also be obtained from the differential equation of the motion of the particle,
it is stable when n > 0. Hence we once more obtained the stability condition
[30].

1.1.2 Application of torsion

Axial torsion:

In view of Eq. (1.4) we are already able to describe the system shown
in Fig. 1.2, which is subjected to the twisting torque Mt, compression P,
lateral force Q with its two components Qy , Qz and bending moment M
with the components My , Mz. The cantilever prismatic beam has length
L, it is inextensible and its bending stiffness is IE that is considered to be
the same in both directions (y, z) when a twisting moment is applied. In
case of compression only (Mt = 0), the bending stiffness is not necessarily
symmetric cylindrically since the problem becomes decoupled in the planes
(x− y) and (x− z).

Let us consider that v(x) is the displacement function in the direction y
and w(x) in the direction z. The deformation must be expected as a spatial
curve characterized by the the functions of v and w. Considering the cross
section A in Fig. 1.2 b) after buckling, the principal axes are represented by
ζ1,2,3. Accordingly, ζ1 defines the tangent of the deflected beam, and due to
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Chapter 1. Mechanical Modelling
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Figure 1.2: The mechanical model of a cantilever beam under combined loads.

the cylindrical symmetry of the cross section, ζ2 can be considered to be
parallel to the (x − y) plane and ζ3 to be parallel to the (x − z) plane.
Hence by resolving the torsional moment Mt with respect to the principal
system, we obtain two bending components with magnitude −Mt∂w(x)/∂x
in the direction y and −Mt∂v(x)/∂x in the direction z [27]. The variation
of the twisting moment (the projection of Mt to ζ1) is of second order, the
torsional stiffness of the beam is irrelevant from the viewpoint of buckling
[3]. Therefore the bending moment functions of the beam can be expressed
as

M (z)(x) = Mt
∂w(x)

∂x
−Mz +Qy(x− L) + Pv(x)− Pδv ,

M (y)(x) = −Mt
∂v(x)

∂x
+My +Qz(x− L) + Pw(x)− Pδw ,

(1.5)

and the governing equations assume the form

IE
∂2v(x)

∂x2
+Mt

∂w(x)

∂x
+ Pv(x) = Mz +Qy(L− x) + Pδv , (1.6)

IE
∂2w(x)

∂x2
−Mt

∂v(x)

∂x
+ Pw(x) = −My +Qz(L− x) + Pδw , (1.7)

where δv = v(L) and δw = w(L) denote the displacements at the end point
of the rod. Henceforward, we deal with these second order coupled, non-
homogeneous differential equations.

(Note that Mt is a circulatory load, that is, its work does not equal
to its potential. In a rotation through π about axis x, the work of Mt is
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Chapter 1. Mechanical Modelling

positive. In two performed rotations through π about axes y and z, the
same final position is reached, but now the work of Mt is zero. Hence the
literature [3][30] considers the axial torsion as a non-conservative load in the
arrangement of the cantilever beam.)

Semi-tangential torsion:

It is necessary to investigate the way in which the torsional torque is
transmitted to the beam. The reason why we are doing this will be ex-
plained in Subsec. 1.2.3. For example, twisting moment appears during the
operation of a boring tool or a milling tool, but it is not obvious whether this
moment is constant in the axial direction. There may be forces that make
up couples that give rise to torsional moment vector with constant direction
[30], but there may be others that will change direction together with the
lateral deflection of the beam.

Let us consider a cantilever beam with cylindrically symmetric cross sec-
tion depicted in Fig. 1.3 a). A tool-shaped disk (its height and mass are
irrelevant here) is attached to the free end at point A. To describe the be-
haviour of the system, we have to take into account the strings of length a
that are actually the levers of forces F . First, let us consider the two strings
that are acted upon by the two forces F parallel to the axis z only. Generally,
the unit vector n denotes the one that is tangential to the deflected beam at
A and also normal to the cross section. In the special case of the two forces
parallel to z, this is denoted by the unit vector n′ that is also normal to the
plane containing the two strings a, but it remains in the plane x− y.

Figure 1.3: a) The arrangement of semi-tangential torque using a cylindrically
symmetric cross section. b) The description of the quasi-tangential torque Mt =
Mtn

′ in case of two forces F only parallel to axis z where δ′v = ∂v(x)/∂x|x=L.
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Chapter 1. Mechanical Modelling

The difference between n and n′ comes from the assumption that considers
the forces F and thus the strings retain their directions during buckling.
Before buckling, n corresponds to n′> =

(
1 0 0

)
; during buckling, it is not

the case because n is calculated by means of two rotations about the axes z
and y. Therefore, we obtain

n =



cos

(
∂v(x)

∂x

)
cos

(
∂w(x)

∂x

)
sin

(
∂v(x)

∂x

)
cos

(
∂v(x)

∂x

)
sin

(
∂w(x)

∂x

)



∣∣∣∣∣∣∣∣∣∣∣∣∣
x=L

∼=


1

∂v(x)

∂x

∂w(x)

∂x



∣∣∣∣∣∣∣∣∣∣∣∣
x=L

.

On contrary, in case of two forces F only parallel to axis z, the strings retain
their direction during buckling, and the only motion that might occur is the
rotation about axis z (see Fig. 1.3 b)), that is

n′ =


cos

(
∂v(x)

∂x

)
sin

(
∂v(x)

∂x

)
0



∣∣∣∣∣∣∣∣∣∣∣
x=L

∼=


1

∂v(x)

∂x

0


∣∣∣∣∣∣∣∣∣∣
x=L

.

Now, the moment vector is created by the two forces F , that is, Mt = Mtn
′

where Mt = 2Fa (see lower panel of Fig. 1.3 b)).
The case of all the four forces F is referred to as semi-tangential case

(see Fig. 1.3 a)). Accordingly, Mt = 4Fa, which is the superposition of two
couples Mt/2. Combining the previous case of two forces F parallel to z and
two forces F parallel to y, the normal vector n can be simply calculated. We
have two moment vectors (M(1)

t , M
(2)
t ) that give

Mt = M
(1)
t + M

(2)
t

=
Mt

2


1

∂v(x)

∂x

0


∣∣∣∣∣∣∣∣∣∣
x=L

+
Mt

2


1

0

∂w(x)

∂x



∣∣∣∣∣∣∣∣∣∣∣
x=L

=
Mt

2


2

∂v(x)

∂x

∂w(x)

∂x



∣∣∣∣∣∣∣∣∣∣∣∣
x=L

.

(1.8)

It can be proven that the semi-tangential moment can be obtained in the
same form when the number of the forces is n > 2 and they are uniformly
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Chapter 1. Mechanical Modelling

distributed around the cross section [30, 4]. Eq. (1.8) results two additional
terms into Eq. (1.5), that are

M (z)(x) = ...− 1

2
Mtδ

′
w ,

M (y)(x) = ...+
1

2
Mtδ

′
v ,

(1.9)

where ∂v(x)/∂x and ∂w(x)/∂x at the end of the beam are denoted by δ′v
and δ′w, respectively (compare these to the beam deflections δv and δw in Eq.
(1.5)).

(Note that Beck [4] had investigated this and other torques and claims
that buckling by this type of torque is a conservative problem.)
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Chapter 1. Mechanical Modelling

1.2 Structural Stability of the System

This section examines how the stability of the structures is affected by the
different load types based on the above defined equilibrium approach. The
main issue is whether the system becomes unstable after a certain load or not.
There are obviously more complicated cases where combined loads appear.
Here, it is not enough to provide a critical value for each load because of
their interplay.

1.2.1 Buckling by Compression

If a straight beam is long compared to the sizes of its cross section and it is
loaded in its axis of the centre of gravity at the free end by an increasingly
growing compressive force, then at a certain critical load, it will lose the
stability of its straight equilibrium shape. Obviously, three modes can be
defined. As long as the compression is smaller than its critical value, the beam
will shorten but retain its straight shape. This is called stable configuration
that might be checked by means of a small lateral force perturbation acting
on the rod. It would cause deflection but when it stops acting, the rod gets
back to its initial equilibrium configuration. If we apply the exact critical
value of compression by using also the lateral force, then the rod retains its
deflected shape. It is called neutrally stable position in linear approximation,
but it can be weakly stable or unstable due to the nonlinearities. Eventually,
the unstable mode might be achieved by a compression value larger than the
critical one. Accordingly, the stability of the rod depends on the magnitude
of compression that can be analysed by mathematical manners.

Let us consider two different mathematical approaches that consider mod-
ifications in the number of the boundary conditions and in the method of the
solution. Based on Eq. (1.5), we obtain a simple two-dimensional problem
considering Mt = 0, My,z = 0 and Qy,z = 0:

∂2v(x)

∂x2
+ γv(x) = γδv , γ =

P

IE
. (1.10)

Case 1: Eq. (1.10) has a peculiar mathematical form since the end dis-
placement of the beam δv = v(L) appears in the differential equation itself.
Our aim is to eliminate this ill-defined form by using a fourth order governing
equation, which seems to be obtainable from Eq. (1.10) by differentiating it
twice with respect to x. The rigorous derivation of the fourth order form
is based on the fact that while the bending moment is proportional to the
second derivative in the curvature, the lateral distributed forces acting on the
beam are the second derivatives of the bending moment itself. Consequently,
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the connection between the lateral deformations and the lateral forces must
be 4th order derivative:

∂4v(x)

∂x4
+ γ

∂2v(x)

∂x2
= 0 , (1.11)

with four boundary conditions

v(0) =
∂v(x)

∂x

∣∣∣∣
x=0

=
∂2v(x)

∂x2

∣∣∣∣
x=L

= 0 ,

∂3v(x)

∂x3

∣∣∣∣
x=L

= −γ ∂v(x)

∂x

∣∣∣∣
x=L

.

(1.12)

Eq. (1.11) can be transformed to a four dimensional first order system de-
scribed by

∂z(x)

∂x
=


0 1 0 0
0 0 1 0
0 0 0 1
0 0 −γ 0


︸ ︷︷ ︸

A

z(x) , (1.13)

where the new vector variable is

z>(x) =

(
v(x)

∂v(x)

∂x

∂2v(x)

∂x2
∂3v(x)

∂x3

)
.

To determine the general solution of the system, we need to calculate the
eigenvalues and eigenvectors of matrix A. It yields

λ1,2 = 0 , λ3,4 = ±√γi , u1 =


1
0
0
0

 , u3 = u4 =


1√
γi
−γ
−γ√γi

 . (1.14)

In case of λ1,2, the geometrical multiplicity of the system is 1 and the alge-
braic is 2. Since algebraic multiplicity (k) of λ is greater than its geometrical
multiplicity (l), thus besides the already given linearly independent eigenvec-
tors, it is necessary to have even (k − l) = 1 linearly independent solutions.
These might be found in the form

η(x) = xeλxξ + eλxζ .

If it is substituted into ∂η(x)/∂x = Aη(x), we obtain

eλxξ + xλeλxξ + λeλxζ = Aeλxξx+ Aeλxζ
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that can be separated to

(A− λI)ξ = 0, (A− λI)ζ = ξ

where ξ is an eigenvector and ζ is a generalized eigenvector belonging to λ.
Note, that ζ does not belong to the characteristic subspace of λ because if it
belonged to, the equation would present it. Thus the general solution is

v(x) = A+Bx+ C cos(
√
γx) +D sin(

√
γx) . (1.15)

Considering the boundary conditions Eq. (1.12), the system of equations with
respect to the unknown coefficients A,B,C,D can be expressed as

1 0 1 0
0 1 0

√
γ

0 0 − cos(
√
γL) − sin(

√
γL)

0 1 0 0



A
B
C
D

 =


0
0
0
0

 . (1.16)

The non-trivial solution leads to the determinant of the system matrix being
equal to zero, which provides

cos(
√
γL)
√
γ = 0 . (1.17)

With integer n, this means

√
γL = (2n+ 1)

π

2
. (1.18)

When n = 0, we obtain the first critical value of compression

Pcr =
( π

2L

)2
IE (1.19)

that is called as Euler’s critical load.

Case 2: This solution holds the constant term γδv of Eq. (1.10) where
δv = v(L), and it needs only two boundary conditions for the fixed end point
of the beam:

v(0) = 0,
∂v(x)

∂x

∣∣∣∣
x=0

= 0 . (1.20)

By using the non-homogeneous term, the differential equation satisfies the
boundary conditions that refer to the free end of the beam (see Eq. (1.12)).
Due to the linear non-homogeneous nature of the differential equation, the
solution consists of a homogeneous part and a particular one:

v(x) = vH(x) + vP(x) .

16



Chapter 1. Mechanical Modelling

The homogeneous part can be investigated by substituting the test function
v(x) = Keλx into Eq. (1.10):

Keλx︸ ︷︷ ︸
6=0

(λ2 + γ) = 0 ⇒ λ1,2 = ±√γi , (1.21)

that implies
vH(x) = c1e

λ1x + c2e
λ2x .

Because the non-homogeneity is only a constant number, the general solution
assumes the form

v(x) = A cos(
√
γx) +B sin(

√
γx) + δv . (1.22)

The unknown coefficients A,B have to be A = −δv and B = 0 in order to
satisfy the boundary conditions (see Eq. (1.20)). Therefore, v(x) = δv(1 −
cos(
√
γL)), that is, if v(L) = δv, then δv cos(

√
γL) must be zero. It implies

the same solutions as above (see Eq. (1.18)).
If we consider δv as an unknown displacement of the end point of the

beam in Eq. (1.22), then by using Eq. (1.20), the system of equations is 1 0 1
0

√
γ 0

cos(
√
γL) sin(

√
γL) 0

AB
δv

 =

0
0
0

 . (1.23)

The non-trivial solution of Eq. (1.23) also leads us to the same critical com-
pressive loads as above (see Eq. (1.18)).

Note that in this case the equilibrium and kinetic approaches discussed in
Subsec. 1.1.1 provide the same result. The solution of the kinetic approach
can be found in [30] and it leads to the critical compressive load.

1.2.2 Buckling by Tension

Tension might be treated as a negative compression, however, the solution of
the basic differential equation modifies. Based on Eq. (1.10), it is necessary
to change the sign of P , which yields

∂2v(x)

∂x2
− γv(x) = −γδv , γ > 0 .

The boundary conditions correspond to Eq. (1.20). Now, the homogeneous
part of the solution is different. After the application of the test function,
we obtain

Keλx︸ ︷︷ ︸
6=0

(λ2 − γ) = 0 ⇒ λ1,2 = ±√γ .
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So the general solution for tension is given by

v(x) = A cosh(
√
γx) +B sinh(

√
γx) + δv ,

that modifies the system of equations 1 0 1
0

√
γ 0

cosh(
√
γL) sinh(

√
γL) 0

AB
δv

 =

0
0
0

 .

The non-trivial solution does not provide critical value for tension because
the determinant √γ cosh(

√
γL) of the system matrix cannot be zero.

Note that the kinetic approach would provide the same result similarly
to the case of compression.

1.2.3 Buckling by axial Torsion

Buckling might take place not only by compression. The modelled cantilever
beam is also able to buckle and become unstable by torsion. Let us investigate
the problem similarly to Subsec. 1.2.1. Based on the equilibrium approach
and Eqs. (1.6), (1.7), we obtain a second order differential equation system
considering P = 0, My,z = 0 and Qy,z = 0:

∂2v(x)

∂x2
+ α

∂w(x)

∂x
= 0

∂2w(x)

∂x2
− α∂v(x)

∂x
= 0

 , α =
Mt

IE
. (1.24)

Case 1: Based on the statement that claims the second derivative of
the bending moment function is proportional to the lateral distributed forces
acting on the beam, we will have a fourth order differential equation system
by differentiating Eq. (1.24) twice. Thus the boundary conditions are

v(0) =
∂v(x)

∂x

∣∣∣∣
x=0

=
∂2v(x)

∂x2

∣∣∣∣
x=L

=
∂3v(x)

∂x3

∣∣∣∣
x=L

= 0 ,

w(0) =
∂w(x)

∂x

∣∣∣∣
x=0

=
∂2w(x)

∂x2

∣∣∣∣
x=L

=
∂3w(x)

∂x3

∣∣∣∣
x=L

= 0 .

(1.25)
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Eq. (1.24) can be converted to a first order system

∂z(x)

∂x
=



0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 α
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 −α 0 0 0 0


︸ ︷︷ ︸

A

z(x) , (1.26)

where

z>(x) =

(
w(x)

∂w(x)

∂x

∂2w(x)

∂x2
∂3w(x)

∂x3
v(x)

∂v(x)

∂x

∂2v(x)

∂x2
∂3v(x)

∂x3

)
.

The geometrical and the algebraic multiplicity of the eigenvalues of A are
different. Consequently, the general solution can be calculated by using the
eigenvalues and eigenvectors of matrix A of Eq. (1.26) but we have to take
into account the generalized eigenvectors, too. The form of the general solu-
tion is

v(x) = A+Bx+ C
x2

2
−K sin(αx) +N cos(αx) ,

w(x) = D +Gx+H
x2

2
+K cos(αx) +N sin(αx) .

(1.27)

Considering the boundary conditions Eq. (1.25), the system of equations
assumes the form

1 0 0 0 0 0 0 1
0 1 0 0 0 0 −α 0
0 0 1 0 0 0 α2 sin(αL) −α2 cos(αL)
0 0 0 0 0 0 cos(αL) sin(αL)
0 0 0 1 0 0 1 0
0 0 0 0 1 0 0 α
0 0 0 0 0 1 −α2 cos(αL) −α2 sin(αL)
0 0 0 0 0 0 sin(αL) − cos(αL)





A
B
C
D
G
H
K
N


=



0
0
0
0
0
0
0
0


. (1.28)

The determinant of the coefficient matrix is 1, that is, there is no critical
value for Mt and only the stable trivial solution exists.

Case 2: This solution corresponds to the second order differential equa-
tion system of Eq. (1.24) and reduces the number of the boundary conditions.
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The first step is to transform the original system of equations and consider
its form

∂

∂x

(
∂v(x)

∂x
+ αw(x)

)
︸ ︷︷ ︸

=a

= 0 ,

∂

∂x

(
∂w(x)

∂x
− αv(x)

)
︸ ︷︷ ︸

=b

= 0

(1.29)

where a and b must be constants, that is

∂v(x)

∂x
+ αw(x) = C1 ,

∂w(x)

∂x
− αv(x) = C2 . (1.30)

Furthermore, the corresponding fixed end conditions Eq. (1.25) imply that
C1 and C2 are both zero. Hence

∂v(x)

∂x
= −αw(x) ,

∂w(x)

∂x
= αv(x), ∀x ∈ [0, L] . (1.31)

Based on Eq. (1.31), the following expression can be obtained

∂2w(x)

∂x2
+ α2w(x) = 0 (1.32)

that leads to the general solutions

w(x) = A cos(αx) +B sin(αx) ⇔ v(x) = −A sin(αx) +B cos(αx) .

If we differentiate Eq. (1.31) twice with respect to x, then we can see that
the boundary condition of the third derivative of v(x) at x = L implies the
condition of the second derivative of w(x) at x = L. The situation is the
same at the other equation, too. So we could reduce the number of conditions
from 8 to 6. The system of equations using these conditions is(

cos(αL) sin(αL)
sin(αL) − cos(αL)

)(
A
B

)
=

(
0
0

)
. (1.33)

The determinant of the coefficient matrix is 1, so there is no critical value for
Mt, which means, we arrive back to the same solution as with the equilibrium
approach Case 1 above.

The problem using kinetic approach (see Subsec. 1.1.1) was investigated
by Troesch [28], it turned out that the beam buckles under an arbitrary small
torque. The answer supplied by the kinetic approach is as wrong as the one
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that was achieved by the equilibrium approach, that is, when the beam is
unconditionally stable under an arbitrary torsional torque. Therefore, we
need to investigate how the torsion is transmitted to the beam. One of the
possible ways has been already introduced in Subsec. 1.1.2, namely, semi-
tangential torsion.

1.2.4 Buckling by semi-tangential Torsion

Since the result shows that a cantilever beam under axial torsion is uncon-
ditionally stable, it is reasonable to investigate the same problem by using
the semi-tangential torsion defined in Subsec. 1.1.2. The question is whether
the beam becomes unstable under a corresponding torque or not. By using
the equilibrium approach, the governing equations have two additional terms
compared to Eq. (1.24) due to Eq. (1.9). So we obtain

∂2v(x)

∂x2
+ α

∂w(x)

∂x
=

1

2
αδ′w ,

∂2w(x)

∂x2
− α∂v(x)

∂x
= −1

2
αδ′v .

(1.34)

For the sake of simplicity, let us introduce a complex function

d(x) = v(x) + iw(x) . (1.35)

If it is substituted into Eq. (1.34) and the simplifications are performed, we
obtain

∂2d(x)

∂x2
− iα

∂d(x)

∂x
= −1

2
iαd′L, d′L = (δ′v + iδ′w) . (1.36)

The solution needs to be separated to a homogeneous part and a non-
homogeneous part. Assuming the test function d(x) = Keλx, the form of
the homogeneous part is

Keλx︸ ︷︷ ︸
6=0

(λ2 − iαλ) = 0 (1.37)

where
λ1 = 0 , λ2 = iα ⇒ dH(x) = A+Beλ2x . (1.38)

The non-homogeneous part is purely linear, so the general solution is

d(x) = A+Beλ2x +
1

2
d′Lx . (1.39)

Basically, we have four boundary conditions for the fixed end of the beam
that can be reduced to two based on Eq. (1.35). We can also define two
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boundary conditions for the free end of the beam. These conditions and
terms are considered as

d(0) =
∂d(x)

∂x

∣∣∣∣
x=0

= 0, and
∂d(x)

∂x

∣∣∣∣
x=L

= d′L . (1.40)

To proceed, let us use the boundary conditions above for creating the system
matrix of equations where we also consider d′L as an unknown term:

1 1 0

0 λ2
1

2

0 λ2e
λ2L −1

2


︸ ︷︷ ︸

=A

A
B
d′L

 =

0
0
0

 . (1.41)

The non-trivial solution of Eq. (1.41) is when the determinant of the system
matrix vanishes:

− 1

2
λ2(1 + eλ2L) = 0 , (1.42)

that is true when −1 = eλ2L. It implies

−1 = cos(αL)

0 = sin(αL)

 α = (2n+ 1)
π

L
, n = 0, 1.. . (1.43)

So the first critical twisting torque (n = 0) is

Mt =
π

L
IE . (1.44)

This cannot be found by using purely the axial torsion above, because the
bending moment components originated in the semi-tangential moments are
not taken into account there [30].

1.2.5 Buckling by axial Torsion and Compression

The goal of this section is to understand how a cantilever beam behaves un-
der combined loads namely, under axial torsion and compression. According
to the previous results, a straight cantilever beam might buckle under com-
pression greater loading than Eq. (1.19). In case of axial torsion, there is no
critical value based on the equilibrium approach for cantilever beams, while
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critical value of torsion exists for a pinned-pinned beam as shown in litera-
ture [3]. By using Eqs. (1.6) and (1.7) considering My,z = 0 and Qy,z = 0,
we obtain

∂2v(x)

∂x2
+ α

∂w(x)

∂x
+ γv(x) = γδv ,

∂2w(x)

∂x2
− α∂v(x)

∂x
+ γw(x) = γδw .

(1.45)

Similarly to the Subsec. 1.2.4, the introduced complex function is able to
simplify our system:

∂2d(x)

∂x2
− iα

∂d(x)

∂x
+ γd(x) = γdL, dL = (δv + iδw) . (1.46)

Assuming the same test function, the homogeneous part gives

Keλx︸ ︷︷ ︸
6=0

(λ2 − iαλ+ γ) = 0 (1.47)

where

λ1,2 =
α±

√
α2 + 4γ

2
i ⇒ dH(x) = Aeλ1x +Beλ2x . (1.48)

Since the non-homogeneous part of the differential equation is constant, the
general solution assumes the form

d(x) = Aeλ1x +Beλ2x + dL . (1.49)

The boundary conditions and the defined term for the end of the beam are
given by

d(0) =
∂d(x)

∂x

∣∣∣∣
x=0

= 0, and d(L) = dL . (1.50)

These are used to create the system matrix of equations: 1 1 1
λ1 λ2 0
eλ1L eλ2L 0


︸ ︷︷ ︸

=A

A
B
dL

 =

0
0
0

 . (1.51)

The non-trivial solution of Eq. (1.51) is

λ1e
λ2L − λ2eλ1L = 0 , (1.52)
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that can be transformed to the form

λ1
λ2

= e(λ1−λ2)L . (1.53)

If we introduce the notation of λ1,2 = k1,2i and use the Euler-formula, Eq.
(1.53) gives

k1
k2

= cos ((k1 − k2)L) ,

0 = sin ((k1 − k2)L) .

(1.54)

The addition of the equations of (1.54) gives rise to k21 6= k22, that is, there
does not exist critical value of the applied loads in this configuration. When
the effect of torsion ceases, that is, α = 0, we arrive back to the critical load
of compression.

1.2.6 Buckling by axial Torsion and Tension

Subsec. 1.2.5 discovered that the assumption of buckling occurs under axial
torsion and compression using equilibrium approach is not correct. We could
not find any critical values of the combined load. The steps of the solution
are also the same at tension, that is, it can be figured out that there are
no critical values at a twisted and tensed cantilever beam neither. So the
cantilever beam is unconditionally stable again such as in case of only axial
torsion (see Subsec. 1.2.3).

1.2.7 Buckling by semi-tangential Torsion and Compression

The equilibrium approach by using axial torque did not satisfy the assump-
tion that claims: a twisted and compressed cantilever beam might buckle,
so we need to investigate the same structure under semi-tangential torsion.
The complex differential equation to be analysed must be a compound of
Eqs. (1.36) and (1.46), that is

∂2d(x)

∂x2
− iα

∂d(x)

∂x
+ γd(x) = γdL −

1

2
iαd′L . (1.55)

The homogeneous solution of Eq. (1.55) corresponds to the Eq. (1.48). Since
the non-homogeneity is purely a constant number, the non-homogeneous
solution will also be constant. Therefore, the general solution of Eq. (1.55)
assumes the form

d(x) = Aeλ1x +Beλ2x + dL −
α

2γ
id′L . (1.56)
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By using the boundary conditions defined by Eqs. (1.40) and (1.50), we
obtain 

1 1 1 − α

2γ
i

λ1 λ2 0 0

eλ1L eλ2L 0 − α

2γ
i

λ1e
λ1L λ2e

λ2L 0 −1


︸ ︷︷ ︸

=A


A
B
dL
d′L

 =


0
0
0
0

 . (1.57)

The non-trivial solution of Eq. (1.57) is

cos

(√
α2 + 4γ

2
L

)
= 0 (1.58)

that implies

α2 + 4γ = (2n+ 1)2
(π
L

)2
n = 0, 1... , (1.59)

where n is an integer. If we multiply Eq. (1.59) by (L/π)2, then it yields(
αL

π

)2

︸ ︷︷ ︸
=m2

t

+
4γL2

π2︸ ︷︷ ︸
=p

= (2n+ 1)2 ⇒ m2
t + p = (2n+ 1)2 , (1.60)

where parameter mt represents the relative importance of torsion to the first
critical value of semi-tangential torsion and p represents the relative impor-
tance of compression to the first critical value of compression.

-6 -4 -2 0 2 4 6

mt

10

-10

0

20

30

p

n=0

n=1

n=2

Figure 1.4: Dimensionless stability diagram of semi-tangential torsion and com-
pression/tension.
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The relationship between mt and p is parabolic meaning that the increas-
ing value of torsion decreases the value of compression and vice versa (see
Fig. 1.4). Note that the curves are crossing the axis mt at the normalized
critical values of the semi-tangential torque and crossing the axis p at the
normalized Euler critical buckling loads [30].

1.2.8 Buckling by semi-tangential Torsion and Tension

As we know, a tensed cantilever beam has no critical case in sense of struc-
tural stability. This can also be explained by the stiffness variation of the
system. While compression decreases the stiffness of the system, tension in-
creases that. The issue is whether this effect could be influenced by a twisting
moment. The way of calculation in accordance with Subsec. 1.2.7’s, the only
difference is the negative sign of γ.

The stability boundaries for a twisted and tensed beam can also be seen
in Fig. 1.4 because p < 0 describes the case of tension. Accordingly, we can
see that tension is able to delay the effect of torsion (see Fig. 1.4).

1.3 Deformation functions

To support the extended dynamical modelling, it is necessary to investigate
how the cantilever beam deforms under combined loads. Basically, we need
to consider the global system in Fig. 1.2, where we take into account the
lateral forces and bending moments at the free end of the beam. Based on
the deformation functions v and w, we are able to analyse the displacements
of the free end of the beam. It will be useful to define either an equivalent
lateral spring stiffness or a corresponding compliance matrix.

1.3.1 Compressed beam

To determine the deformation function, we have to utilize the differential
equation (1.6) considering Mt = 0, which yields

∂2v(x)

∂x2
+ γv(x) = γδv +

Qy

IE
(L− x) +

Mz

IE
. (1.61)

Again, the solution of Eq. (1.61) consists of a homogeneous part and a par-
ticular part. Assuming the test function v(x) = Keλx, we obtain

Keλx︸ ︷︷ ︸
6=0

(λ2 + γ) = 0 ⇒ λ1,2 = ±√γi . (1.62)
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In this case, the non-homogeneous part is purely linear, thus the shape of
the particular solution function is vP(x) = Cx + D. If it is substituted into
Eq. (1.61) and we calculate the unknown coefficients C and D, the general
solution is given by

v(x) = A cos(
√
γx) +B sin(

√
γx)− 1

γIE
(Qy(x− L)−Mz) + δv . (1.63)

The boundary conditions correspond to Eq. (1.20), which leads to the linear
non-homogeneous matrix equation

 1 0 1
0

√
γ 0

cos(
√
γL) sin(

√
γL) 0


︸ ︷︷ ︸

=A

AB
δv

 =


− 1

γIE
(QyL+Mz)

Qy

γIE

− Mz

γIE


︸ ︷︷ ︸

=B

. (1.64)

The coefficient vector can be determined by the expression of A−1B that
gives the specific solution

v(x) =− 1

γIE

(
Mz

cos(
√
γL)

+
Qy tan(

√
γL)

√
γ

)
cos(
√
γx)

+
Qy

γ
√
γIE

sin(
√
γx)− 1

γIE
(Qy(x− L)−Mz)

+

Mz
√
γ

(
1

cos(
√
γL)
− 1

)
+Qy

(
tan(
√
γL)− L√γ

)
γ
√
γIE

.

(1.65)

Since we are going to investigate the displacements of the end of the beam,
it is reasonable to provide the value of the function v at x = L

v(L) =

Mz
√
γ

(
1

cos(
√
γL)
− 1

)
+Qy

(
tan(
√
γL)− L√γ

)
γ
√
γIE

, (1.66)

that corresponds with the notation δv . When Mz tends to zero, the power
series of Eq. (1.66) with respect to L2γ can be expressed by

δv =
QyL

3

IE

(
1

3
+

2

15

(
L2γ

)
+

17

315

(
L2γ

)2
+ ...

)
. (1.67)
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Figure 1.5: a) Dimensionless relationship between the relative importance of
compression/tension and the relative importance of the displacement of the end
of the beam. b) Dimensionless relationship between the relative importance of
compression/tension and the relative importance of the angular rotation of the
end of the beam. L2γ = (2n + 1)2(π/2)2 - where n = 0, 1, 2... - is proportional to
the critical load of compression (see Eq. (1.19)).

When Qy tends to zero, the power series of the first derivative of Eq. (1.65)
is given by

δ′v =
MzL

IE

(
1 +

1

3

(
L2γ

)
+

2

15

(
L2γ

)2
+ ...

)
. (1.68)

The power series are depicted in Fig. 1.5 that shows how the relative displace-
ment and angular rotation change with respect to dimensionless compression.

1.3.2 Beam in Tension

Similarly to Subsec. 1.3.1, the general solution of the observed tensed beam
can be expressed as

v(x) = A cosh(
√
γx) +B sinh(

√
γx)− 1

γIE
(Qy(L− x) +Mz) + δv . (1.69)

The boundary conditions also correspond to Eq. (1.20), so the system of the
equations is

 1 0 1
0

√
γ 0

cosh(
√
γL) sinh(

√
γL) 0

AB
δv

 =



1

γIE
(QyL+Mz)

− Qy

γIE
Mz

γIE

 . (1.70)
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Therefore, the deformation function is

v(x) =
1

γIE

(
Mz

cosh(
√
γL)

+
Qy tanh(

√
γL)

√
γ

)
cosh(

√
γx)

− Qy

γ
√
γIE

sinh(
√
γx)− 1

γIE
(Qy(L− x) +Mz)

+

Mz
√
γ

(
1− 1

cosh(
√
γL)

)
+Qy

(
L
√
γ − tanh(

√
γL)

)
γ
√
γIE

.

(1.71)

The displacement of the end of the beam also equals with δv, that is

v(L) =

Mz
√
γ

(
1− 1

cosh(
√
γL)

)
+Qy

(
L
√
γ − tanh(

√
γL)

)
γ
√
γIE

. (1.72)

When Mz tends to zero, the power series of Eq. (1.72) is given by

δv =
QyL

3

IE

(
1

3
−

2

15

(
L2γ

)
+

17

315

(
L2γ

)2 ∓ ...) . (1.73)

When Qy tends to zero, the power series of the first derivative of Eq. (1.71)
can be expressed by

δ′v =
MzL

IE

(
1−

1

3

(
L2γ

)
+

2

15

(
L2γ

)2 ∓ ...) . (1.74)

The power series are depicted in Fig. 1.5 that shows how the relative displace-
ment and angular rotation change with respect to dimensionless tension.

1.3.3 Beam subjected to axial Torsion

Let us consider a cantilever beam subjected to axial torsion, lateral forces
and bending moments at its free end, that is, using Eqs. (1.6) and (1.7) where
we assume that P = 0 :

∂2v(x)

∂x2
+ α

∂w(x)

∂x
=
Qy

IE
(L− x) +

Mz

IE
,

∂2w(x)

∂x2
− α∂v(x)

∂x
=
Qz

IE
(L− x)− My

IE
.

(1.75)
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According to the previously defined complex function d (see Eq. (1.35)), Eq.
(1.75) assumes the form

∂2d(x)

∂x2
− iα

∂d(x)

∂x
= Γ + Λ(L− x) , (1.76)

where
Γ =

1

IE
(Mz − iMy) , Λ =

1

IE
(Qy + iQz) .

The linear, non-homogeneous, complex differential equation is needed to give
a homogeneous solution that can be simply calculated as

dH(x) = A+Beiαx . (1.77)

The test function of the particular solution is second order dP(x) = Cx2+Dx,
where C, D are constant coefficients. The superposition of the homogeneous
solution and the particular solution gives the complex deformation function
of the beam

d(x) = dH(x) + dP(x)

= A+Beiαx +
Λ

2iα
x2 +

i
α

(
(Γ + ΛL) +

Λi
α

)
x .

(1.78)

In order to proceed, it is necessary to have two boundary conditions that
refer to the fixed end of the beam

d(0) =
∂d(x)

∂x

∣∣∣∣
x=0

= 0 . (1.79)

By using the introduced boundary conditions, we are able to calculate the
unknown coefficients A, B. Hence the complex deformation function is

d(x) =
1

α

(
Λi
α

+ (Γ + ΛL)

)(
1

α

(
1− eiαx

)
+ ix

)
− Λi

2α
x2 . (1.80)

Considering (1.80) at x = L, it yields that we investigate the end point of
the beam, where d(L) is denoted by dL and d′(L) is denoted by d′L. When Γ
tends to zero, the power series of Eq. (1.80) with respect to iLα is

dL = L3Λ

(
1

3
+

1

8
(iLα) +

1

30
(iLα)2 + ...

)
. (1.81)

When Λ tends to zero, the power series of the first derivative of Eq. (1.80) is
given by

d′L = LΓ

(
1 +

1

2
(iLα) +

1

6
(iLα)2 + ...

)
. (1.82)
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Figure 1.6: a) Dimensionless relationship between the relative importance of
axial torsion and the relative importance of the displacement of the end of the
beam (Qz = 0 , My,z = 0). b) Dimensionless relationship between the relative
importance of axial torsion and the relative importance of the angular rotation of
the end of the beam (Qy,z = 0 , My = 0).

Eq. (1.80) can be separated to the real part and the imaginary part.
The definition of the complex function d provides that δv = Re (d(L)) and
δw = Im (d(L)), so

δv =
1

α2

(
Mz +

Qy sin(αL)

α
− cos(αL)(Mz +QyL)

)
(1.83)

and

δw =
1

α

(
MzL+Qy

(
1− cos(αL)

α2
+
L2

2

)
− sin(αL)

α
(Mz +QyL)

)
,

(1.84)
where Qz and My are zero. The resolution of the complex function d′(L) can
be similarly calculated where δ′v = Re (d′(L)) and δ′w = Im (d′(L)). δv,w and
δ′v,w are depicted in Fig. 1.6. Based on Eqs. (1.81) and (1.82), when Qy = Qz

andMy = Mz, the dimensionless displacement and angular rotation maps can
be seen in Fig. 1.7. It can be observed that, for example, the applied lateral
forces Qy,z and the displacement dL of the end of the beam are bidirectional
(see Eqs. (1.81) again). By taking into account the first term of the power
series, we can see that Λ is proportional to the lateral forces, hence why
the first term is evidently equidirectional to dL. The second term in the
presence of the axial torsion α destroys this feature and makes this relation
bidirectional [30], that is, the displacement dL will not have the direction of
the lateral force. This can be seen also in case of the bending moments My,z.

Note that when we increase the axial torsional moment, the end of the
beam follows a spiral orbit. When either the lateral forces Qy,z or the bending
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moments My,z are zero, we obtain again the previous stability problem (see
Subsec. 1.2.3), namely, there is no non-trivial equilibrium configuration. Now
the result is even more general: the axial torsion does not lead to instability
even in the presence of any lateral forces Qy,z and/or bending momentsMy,z.

d ( )x

x

y

z

Q

Mt

-1.0

-0.5

0.0

 0.5

0.0  0.5 1.0 1.5
�'

M L v
IE 
z

�'
M L w
IE 
y

a)

0.0

0.1

0.2

0.3

0.4

0.5

-0.2 -0.1  0.0 0.1 0.30.2 0.4

1
3

1
3

�
Q L3 w
IE 
z

�
Q L3 v
IE 
y

1

2

1

1

1
2

b)

Figure 1.7: Displacement/angular rotation of the end of the beam where d =
col(v w) and Q = col(Qy Qz). a) Dimensionless relationship in between the relative
importance of displacements when My,z = 0 . b) Dimensionless relationship in
between the relative importance of angular rotations when Qy,z = 0 . Here, the
circled numbers mean the corresponding terms of the power series of Eqs. (1.81)
and (1.82).

1.3.4 Beam subjected to semi-tangential Torsion

To resolve the above incorrect stability result related to axial torsion in Sub-
sec. 1.3.3, we need to take into account Eq. 1.9 that considers the additional
terms of semi-tangential torque. Thus the governing equations assume the
form

∂2v(x)

∂x2
+ α

∂w(x)

∂x
=
Qy

IE
(L− x) +

Mz

IE
+

1

2
αδ′w ,

∂2w(x)

∂x2
− α∂v(x)

∂x
=
Qz

IE
(L− x)− My

IE
− 1

2
αδ′v .

(1.85)
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Again, by using the complex displacement function d, we obtain a complex
differential equation

∂2d(x)

∂x2
− iα

∂d(x)

∂x
= Γ + Λ(L− x)− 1

2
iαd′L . (1.86)

The general solution can be calculated similarly to Eq. (1.78), so we obtain

d(x) = dH(x) + dP(x)

= A+Beiαx +
Λ

2iα
x2 +

(
i
α

(
(Γ + ΛL) +

Λi
α

)
+

1

2
d′L

)
x .

(1.87)

In this case, we need to have two boundary conditions and a definition that
refers to the rotation angles at the free end of the beam:

d(0) =
∂d(x)

∂x

∣∣∣∣
x=0

= 0 , and
∂d(x)

∂x

∣∣∣∣
x=L

= d′L . (1.88)

By means of the boundary conditions, the unknown coefficients A, B can be
calculated

d(x) =
i

αeiαL

(
1

2
d′L +

1

iα

(
Λi
α

+ Γ

))
(1− eiαx)

+
Λ

2iα
x2 +

(
i
α

(
(Γ + ΛL) +

Λi
α

)
+

1

2
d′L

)
x ,

(1.89)

where

d′L =
2

1 + e−iαL

(
e−iαL

iα

(
Λ

iα
− Γ

)
+

1

iα

(
Λi
α

+ (Γ + ΛL)

))
.

The exact value of the displacement of the end point of the beam is given by

dL =
iL
α2

(αΓ + iΛ) +
1

2α3
(Lα− 2i)(2(αΓ + iΛ) + LαΛ) tan

(
αL

2

)
. (1.90)

When Γ is zero, the power series of Eq. (1.90) with respect to iLα is

dL = L3Λ

(
1

3
− 7

240
(iLα)2 +

59

20160
(iLα)4 ∓ ...

)
. (1.91)

When Qz is zero, that is, Λ = Qy/IE then

dL = δv . (1.92)
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The power series shows how the displacement is changed by torsion. Basi-
cally, torsion increases the lateral displacement but in this case because of
the dimensionless nature, the power series is influenced by the quantity of
iLα . Note that when My,z = 0, the lateral force and the displacement are
unidirectional compared to the case of axial torsion.
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Figure 1.8: a) Dimensionless relationship between the relative importance of
semi-tangential torsion and the relative importance of the displacement of the end
of the beam (Qz = 0 , My,z = 0). b) Dimensionless relationship between the
relative importance of semi-tangential torsion and the relative importance of the
angular rotation of the end of the beam (Qy,z = 0 , My = 0). Lα = (2n + 1)π -
where n = 0, 1, 2... - is proportional to the critical load of semi-tangential torsion
(see Eq. (1.44)).

1.3.5 Beam subjected to axial Torsion and Compression

In case of a boring, the bar is also affected by compression, thus we have to
examine a twisted and compressed cantilever beam. The system is described
by Eqs. (1.6) and (1.7):

∂2v(x)

∂x2
+ α

∂w(x)

∂x
+ γv(x) = γδv +

Qy

IE
(L− x) +

Mz

IE
,

∂2w(x)

∂x2
− α∂v(x)

∂x
+ γw(x) = γδw +

Qz

IE
(L− x)− My

IE
.

(1.93)

For the sake of simplicity, let us use the complex function d again, that gives

∂2d(x)

∂x2
− iα

∂d(x)

∂x
+ γd(x) = γdL + Γ + Λ(L− x) . (1.94)

By using the test function dH(x) = Keλx to get the homogeneous solution,
we obtain

Keλx(λ2 − iαλ+ γ) = 0 ⇒ λ1,2 =
α±

√
α2 + 4γ

2
i . (1.95)
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To proceed, we need to introduce another test function dP(x) = Cx+D where
C, D are unknown coefficients. Hence the general solution of the system is

d(x) = dH(x) + dP(x)

= Aeλ1x +Beλ2x − Λ

γ
x+

1

γ

(
Γ + Λ

(
L− iα

γ

))
+ dL .

(1.96)
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Figure 1.9: Numerical result for the displacement of the end of the beam by
compression when Γ = 0 and where L = 1 (m), |Λ| =

√
2 (m−2) (Here, Λ =

col(Qy Qz)/(IE)), α = 0, 0.01, 0.02...40 (1/m), γ = 0, 0.01, 0.02...40 (m−2).

The following boundary conditions are needed

d(0) =
∂d(x)

∂x

∣∣∣∣
x=0

= 0 and d(L) = dL . (1.97)

Based on the boundary conditions, the unknown coefficients A, B and dL
can be calculated. Note that the displacements and the lateral forces (Qy,z)
are bidirectional similarly to Subsec. 1.3.3. Fig. 1.9 shows a numerical result
for the displacement variation of the end of the beam.

1.3.6 Beam subjected to semi-tangential Torsion and
Compression

To investigate the problem by using the semi-tangential torque, we need to
complete Eq. (1.94) with the terms of Eq. (1.9) which provide

∂2d(x)

∂x2
− iα

∂d(x)

∂x
+ γd(x) = γdL + Γ + Λ(L− x)− 1

2
iαd′L . (1.98)
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The general solution can be expressed as

d(x) = dH(x) + dP(x)

= Aeλ1x +Beλ2x − Λ

γ
x+

1

γ

(
Γ + Λ

(
L− iα

γ

))
+ dL −

iα
2γ
d′L .

(1.99)

The difference between axial torsion and semi-tangential torsion reveals only
in the boxed term of Eq. (1.99). The unknown coefficients A, B, dL and d′L
can be determined by using the boundary conditions

d(0) =
∂d(x)

∂x

∣∣∣∣
x=0

= 0 , and d(L) = dL ,
∂d(x)

∂x

∣∣∣∣
x=L

= d′L . (1.100)

If we assume that Qz = 0 and My,z = 0, then the imaginary part of the com-
plex deflection curve d(x) defined by w(x) ceases. It means that the applied
lateral forces at the end of the beam and the displacements are unidirectional.

1.3.7 Beam subjected to axial Torsion and Tension

The problem corresponds to the case of Subsec. 1.3.5. The only difference
appears in the sign of γ, that is, it works as tension. The governing differential
equation is

∂2d(x)

∂x2
− iα

∂d(x)

∂x
− γd(x) = −γdL + Γ + Λ(L− x) (1.101)

and its general solution can be expressed as

d(x) = dH(x) + dP(x)

= Aeλ1x +Beλ2x +
Λ

γ
x− 1

γ

(
Γ + Λ

(
L+

iα
γ

))
+ dL ,

(1.102)

where

λ1,2 =
α±

√
α2 − 4γ

2
i .

The boundary conditions correspond to Eq. (1.97), hence why the unknown
coefficients can be calculated. The presence of the bidirectional nature also
gives rise to a bent orbit that can be seen in Fig. 1.10.
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Figure 1.10: Numerical result for the displacement of the end of the beam
by tension when Γ = 0 and where L = 1 (m), |Λ| =

√
2 (m−2) (Here,

Λ = col(Qy Qz)/(IE)), α = 0, 0.01, 0.02...12 (1/m), γ = 0, 0.01, 0.02...12 (m−2).

1.3.8 Beam subjected to semi-tangential Torsion and Tension

The problem is fairly similar to Subsec. 1.3.6 meaning that the only difference
is the sign of γ in the equations. Therefore, the complex differential equation
is

∂2d(x)

∂x2
− iα

∂d(x)

∂x
− γd(x) = −γdL + Γ + Λ(L− x)− 1

2
iαd′L (1.103)

and its general solution is given by

d(x) = dH(x) + dP(x)

= Aeλ1x +Beλ2x +
Λ

γ
x− 1

γ

(
Γ + Λ

(
L+

iα
γ

))
+ dL +

iα
2γ
d′L

(1.104)

where the form of λ1,2 corresponds with the result of Subsec. 1.3.7. The
boundary conditions do not change as compared to Subsec. 1.3.6 either. The
unidirectional feature between the lateral forces and the displacement of the
end of the beam can be simply proven here, too.

1.4 Displacement Analysis by Energy Approach

This section particularly deals with the case of compression but also provides
close formulas for tension.

When a cantilever beam is subjected to both lateral force and compression
or tension, the observed displacements of the end of the beam that affect the
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natural frequencies of the system are not in agreement with the classical beam
theory. The purpose of this section is to investigate these displacements in
more details in order to provide a better approximation of the reality. Since
the following problem is only two-dimensional, for the sake of simplicity, we
are going to introduce some specific notation.

According to the results of Beléndez et al. [5], we are able to specify

ξ = κη2 (1.105)

that describes the connection of the longitudinal displacement ξ and the
lateral displacement η of a cantilever beam subjected to a lateral force Qy at
its free end (see Fig. 1.11 a)).
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Figure 1.11: a) Model of the cantilever beam subjected to lateral force Qy and
compression P at its free end. b) Approximation of the displacements of the end
of the beam.

To approximate the value of κ, let us assume that the end of a cantilever
beam moves on the arc of a circle (see Fig. 1.11 b)). Then, by Pythagoras,

L2 = (L− ξ)2 + η2 ⇒ ξ2 − 2Lξ + η2 = 0 ,

so ξ is given by

ξ =
1

2

η2

L
+O(η4) . (1.106)

The assumption provides the approximation of κ = 1/(2L) where L denotes
the length of the beam.

Let us consider the problem of Subsec. 1.3.1 assuming Mz = 0 . Then the
deformation function of the modelled beam in Fig. 1.11 a) is given by

v(x;Qy) =
Qy

γIE

(
tan(
√
γL)

√
γ

(1− cos(
√
γx))−

(
x−

sin(
√
γx)

√
γ

))
(1.107)

where its dependence on the lateral force Qy is emphasized.
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Then, the lateral deformation of the end of the beam η, is given by

η = v(L;Qy) (1.108)

from which the lateral force is obtained in the form

Qy(η) =
γ
√
γIE

tan(
√
γL)−√γL

η .

The substitution of this into the solution Eq. (1.107) leads to the lateral
deformation function v(x;Qy(η)), and the arc-length of the deformed beam
σ(η) can also be calculated as a function of η:

σ(η) =

L−κη2∫
0

√
1 +

(
∂v(x;Qy(η))

∂x

)2

dx . (1.109)

Its dependence on the end point lateral deformation η is complicated due to
the presence of η in the upper limit of the definite integral, where κ is the
unknown parameter we need to determine in Eq. (1.105). By means of the
Leibniz’s Theorem for differentiation of an integral [1]:

∂

∂x

b(x)∫
a(x)

f(x, t)dt =
∂b(x)

∂x
f(x, b(x))− ∂a(x)

∂x
f(x, a(x)) +

b(x)∫
a(x)

∂f(x, t)

∂x
dt ,

the power series of σ can be expressed with respect to η in the form

σ(η) = σ(0) + σ′(0)η +
1

2!
σ′′(0)η2 + ... ,

where it is obvious that σ(0) = L and σ′(0) = 0 because when η = 0, that
is, the displacement of the end of the beam is zero, then gradient of the
arc-length is zero, too. The second derivative of σ at zero can be considered
as

σ′′(0) = −2κ+

L−κη2∫
0

∂2

∂η2

√1 +

(
∂y(x;Qy(η))

∂x

)2
 dx

∣∣∣∣∣∣∣
η=0

.

It assumes the form

σ(η) = L+ (−2κ+ χ)
η2

2!
+ ... , (1.110)
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where

χ =

(
1 +

1

2
cos(2

√
γL)

)
γL− 3

4

√
γ sin(2

√
γL)(√

γL cos(
√
γL)− sin(

√
γL)

)2 .

Because the beam is considered to be inextensible, the arc-length is L for all
values of η, so from Eq. (1.110) we have that

σ(η) ≡ L ⇔ κ = χ/2

is obtained from Eq. (1.110), and

κ =
2 (2 + cos (2

√
γL)) γL− 3

√
γ sin (2

√
γL)

8 (
√
γL cos (

√
γL)− sin (

√
γL))2

. (1.111)

The parameter γ depends on the compression P , and the parameter κ can
be developed as a dimensionless power series of γ:

κL =
3

5
+

1

175

(
L2γ

)
+

1

2625

(
L2γ

)2
+ ... , (1.112)

where κ is normalized by the length of the beam L and L2γ represents the
relative importance of compression to the proportional part of Euler buckling
load. The coefficient κ in Eq. (1.105) agrees with the numerical evaluation
of the formula in [5], which gives the value of 0.5988 that is a good approx-
imation of 3/5 at zero compression. There is 20% difference between this
exact solution and the approximation of 1/2 of the triangle in terms of the
cantilever beam (see Eq. (1.106)). The non-zero compression obviously in-
creases the magnitude of the longitudinal displacement of the rod as it is also
expressed by formula (1.112) analytically.

When we have tension, the formula of Eq. (1.111) is modified

κ =

(
2 +

1

cosh2 (
√
γL)

)
γL− 3

√
γ tanh (

√
γL)

4 (
√
γL− tanh (

√
γL))2

. (1.113)

The parameter κ can also be given by the power series of γ

κL =
3

5
− 1

175

(
L2γ

)
+

1

2625

(
L2γ

)2 ∓ ... . (1.114)

The non-zero tension decreases the magnitude of the longitudinal displace-
ment of the beam as we can see in Fig. 1.12. When L2γ tends to infinity, by
using L’Hospital’s rule, κL = 1/2 .
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Note that Eqs. (1.112) and (1.114) are not uniformly valid when Qy = 0
due to the assumption of the inextensible nature of the beam. The results
were translated from [7].
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Figure 1.12: Dimensionless connection between the normalized κ and the relative
importance of compression and tension.
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Dynamical Behaviour

The dynamical modelling follows the structure of Chap. 1, that is, it investi-
gates how the introduced different types of loads affect the natural frequencies
of the system. In the following, we are going to deal with one degree and two
degrees of freedom systems. The basic model is a cantilever beam in tension
or in compression, it has a block attached to its free end (see Fig. 2.1) on
which torsion might also appear. Since semi-tangential torsion is the correct
way to maintain the stability problems properly (see Subsec. 1.2.4), the nat-
ural frequency calculations are based on these models of torsion only. The
difference between the one degree and the two degrees of freedom systems
is related to the assumption whether the mass moment of inertia of the end
block is negligible or not. The mass of the beam is also considered as a quan-
tity to a body concentrated at the free end of the beam. The beam is either
in compression (see Fig. 2.1 a)) or in tension (see Fig. 2.1 b)) depending on
whether the structure stands upward or downward in the gravitational space,
respectively. The horizontal arrangement refers to the neutral case.

g
g

y

x

y

x

a) b)

L

x

y

m

z IE

Figure 2.1: The arrangement of dynamical model. a) Case of compression. b)
Case of tension.
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The results of Chap. 1 are used to calculate stiffness characteristics, which
are used to describe the bending vibrations. The natural frequency calcula-
tions take into account the variation of the stiffness of the beam, but some
cases exploit the modification of the potential energy concerning the vertical
position of the end block.

2.1 Approximating inertial effects

In this modelling section, the purpose is to investigate such a cantilever beam
where its mass is taken into account in a block attached to its free end. The
determination of this additional lumped mass can be calculated by means
of the first natural angular frequency of a corresponding continuum rod (see
Fig. 2.2).

The motion of the system is described by

ρA
∂2v(x, t)

∂t2
+ IE

∂4v(x, t)

∂x4
= 0 , (2.1)

where t denotes the time. By using the adequate boundary conditions, the
natural angular frequencies of the system can be calculated as

ωnk =
β2
k

L2

√
IE

ρA
. (2.2)

For the first natural angular frequency, we have β2
1 = 3.533. When the simple

beam-mass structure is substituted by a one degree of freedom spring-mass
system, then it yields

β2
1

L2

√
IE

ρA
=

√
s

m0

, s =
3IE

L3
. (2.3)

v (x,t)

y

x
�, A, IE

L

Figure 2.2: Model of the continuum beam.
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Therefore, the value of the lumped mass is

m1 = 0.2404m0 , (2.4)

where the mass of the beam is denoted by m0. Basically, we consider a block
attached to the free end of the beam, which mass m is purely equal with the
concentrated mass m1 of the beam but in some cases (see in Subsec. 2.2.2
and in Subsec. 2.2.3), an additional mass m2 is assumed in order to manifest
the effect of compression or tension. Thus in these cases m = m1 + m2. By
using this end block, we will be able to deal with two degrees of freedom
models if we take into account the mass moment of inertia.

2.2 Natural frequencies of the cantilever beam

The purpose is to consider the bending vibration of the cantilever beam and
determine its natural frequencies. Their number depends on the assumed
degree of freedom of the system. Our investigation examines only the lin-
ear vibration where the linearisation is determined around the equilibrium
position of the structure.

m
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y

y

x y

�

s
L

h

g

a) b)
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L

g

m

Figure 2.3: a) One degree of freedom dynamical model. b) Two degree of freedom
dynamical model where the presence of h is also considered in some of the models.
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The global system is depicted in Fig. 2.3 depending upon whether the
mass moment of inertia of the end block is negligible or not. The generalised
coordinates are defined by the horizontal displacement y and the angular
rotation of the end of the beam denoted by ϕ .

Note that the results of the following subsections use the data summarized
in Table 2.1.

Table 2.1: Data of the investigated system that are utilised at the calculation of
the natural angular frequencies.

Notation Designation Value Unit
ρ Density of beam/end body 7900 kg/m3

E Young’s modulus of beam 200 GPa
r Radius of cross section 0.002 m
R Radius of end body 0.030 m
L Length of the beam 0.500 m
IE Bending stiffness 2.513 Nm2

m2 Additional mass to the block 0.088 kg

2.2.1 Vibration of unloaded beam

The case of the unloaded system assumes that there are no tensile force, no
compressive force and no torsional moment acting on the beam. In order to
proceed, let us consider the deformation function of Eq. (1.65) where γ tends
to zero. This yields

v(x) =
x2

6IE
(3(Mz +QyL)−Qyx) , (2.5)

which is used to determine a lumped stiffness parameter of the beam.

One Degree of Freedom System

By means of Eq. (2.5) and considering Mz = 0, an equivalent lateral stiffness

s =
Qy

δv
(2.6)

can be calculated with respect to the free end of the beam. After substitu-
tions, we obtain the well-known formula

s =
3IE

L3
. (2.7)
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The equation of motion is given by

ÿ(t) +
s

m
y(t) = 0 , (2.8)

where

ωn =

√
s

m
(2.9)

means the natural angular frequency of the system where the value of the end
mass ism = 0.012 kg (it comes only from the mass of the beam, the additional
mass m2 is considered to be zero here) and its compressive effect is neglected
because it stands in the neutral (horizontal) position, so ωn = 71.098 rad/s.

The determination of the natural angular frequencies of the system can
also be approximated by taking into account the modification of the potential
energy when the beam stands upward. Here, we can consider h(t) that
describes the vertical lifting of the mass m. The generalised coordinate is

q(t) = y(t) . (2.10)

To describe the motion of the system, we utilise the Lagrange’s equation of
motion of second kind

d
dt
∂T

∂ẏ
− ∂T

∂y
+
∂U

∂y
= 0 . (2.11)

The kinetic energy assumes the form

T =
1

2
mv2C(t) . (2.12)

where vC(t) = col
(
ẏ(t) ḣ(t)

)
. The potential energy can be defined as

U =
1

2
sy2(t)−mgh(y(t)) , (2.13)

where h(y(t)) = κy2(t) + . . . and κ comes from Eq. (1.112). By using this
step, we are able to transform our model to 1 DoF. Hence the linearised
equation of motion can be written as

ÿ(t) +

(
s− 2mgκ

m

)
y(t) = 0 , (2.14)

where

ωn =

√√√√ 3IE

L3
− 2mgκ

m
. (2.15)

The value of the end mass is still m = 0.012 kg, so ωn = 70.932 rad/s.
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Two Degrees of Freedom System

The system can be seen in Fig. 2.3 b) where the vector of the generalised
coordinates is given by

q(t) =

(
y(t)
ϕ(t)

)
. (2.16)

In order to investigate the motion of the system, we need the kinetic energy

T =
1

2
mv2C(t) +

1

2
θCΩ2(t) , (2.17)

where θC is the mass moment of inertia of the end body and Ω is the angular
velocity that corresponds to ϕ̇ . The velocity of the centre of gravity of the
end body is denoted by vC that is approximated only by ẏ since ḣ is negligible
here.

If the zero position of the potential function is defined at the centre of
gravity of the end body in equilibrium, then the expression of the potential
energy is

U =
1

2
q>(t)Srq(t)−mgκy2(t) , (2.18)

where Sr is the stiffness matrix of the rod. It comes from the expression
Sr = C−1 where C is the compliance matrix given by

C =


∂U

∂Qy

∣∣∣∣∣
Qy=1,Mz=0

∂U

∂Qy

∣∣∣∣∣
Qy=0,Mz=1

∂U

∂Mz

∣∣∣∣∣
Qy=1,Mz=0

∂U

∂Mz

∣∣∣∣∣
Qy=0,Mz=1



≡


∂δv

∂Qy

∣∣∣∣∣
Mz=0

∂δ′v
∂Qy

∣∣∣∣∣
Mz=0

∂δv

∂Mz

∣∣∣∣∣
Qy=0

∂δ′v
∂Mz

∣∣∣∣∣
Qy=0

 .

(2.19)

where U gives the strain energy of the system that is originated in bending
only.

In terms of Eq. (2.17) and Eq. (2.18), the linear matrix coefficient differ-
ential equation assumes the form

Mq̈(t) + Sq(t) = 0 , (2.20)

where the mass matrix is denoted by M and its form is

M =

(
m 0
0 θC

)
. (2.21)
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The stiffness matrix is defined as

S =
∂2U

∂qi∂qj

∣∣∣∣
q=0

. (2.22)

By means of Eq. (2.5), the stiffness matrix is expressed by

S =


12IE

L3
− 2mgκ −

6IE

L3

−
6IE

L3

4IE

L

 . (2.23)

The natural frequencies of the system can be calculated by using the fre-
quency equation, that is

det(−ω2
nM + S) = 0 . (2.24)

The expanded form of Eq. (2.24) is a bi-quadratic equation

ω4
n −

(
4IE

θCL
+

12θCIE

mL3
− 2gκ

)
ω2

n +

(
12(IE)2

mθCL4
−

8IEgκ

θCL

)
= 0 , (2.25)

where the expression of κ comes from Eq. (1.112). It gives two positive
roots where ωn1 < ωn2. By substituting the appropriate data from Table
2.1 and m = 0.012 kg (still m2 = 0 kg) into Eq. (2.25) and considering the
shape of the end body as a sphere, we obtain that ωn1 = 70.817 rad/s and
ωn2 = 2166.940 rad/s.

When κ = 0, that is, we do not take into account the vertical lifting of
the end mass (neutral case), we obtain that ωn1 = 70.983 rad/s and ωn2 =
2166.940 rad/s.

Comparison of results

The investigation of the one degree of freedom systems shows that the natural
angular frequencies are lower when the beam is in upward vertical position
and the value of κ is taken into account, correspondingly. It is caused by
the vertical lifting κy2(t) that decreases the stiffness of the system indirectly.
The difference between the two calculations is not significant here, it is only
0.233%.

In case of the two degree of freedom systems, it can be shown that the
comparison (either when κ = 0 or κ 6= 0) of their natural angular frequencies
to the one degree of freedom system’s gives 0.162% difference. So the mass
moment of inertia has no significant effect on the natural angular frequencies
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in both cases. It can also be seen that the lifting of the end mass has also
effect on the natural angular frequencies but in case of the selected data, it
is negligible at the second natural angular frequencies.

Table 2.2: Analytical results for the first and second natural angular frequencies
of the systems by using the data of Table 2.1 and m = 0.012 kg.

Natural
angular

frequency
1 DoF System 2 DoF System

κ = 0 κ 6= 0 κ = 0 κ 6= 0

ωn1 (rad/s) 71.098 70.932 70.983 70.817
ωn2 (rad/s) - - 2166.940 2166.940

2.2.2 Beam in Compression

The dynamical model of the compressed cantilever beam can be seen in Fig.
2.23 b). The effect of compression or tension is manifested by the arrange-
ment of the structure. There is an additional mass m2 introduced in Sec. 2.1
which is to model the effect of compression. Thus the total mass m consists
of the lumped mass m1 of the rod and the mass m2. The importance of this
mass m2 will be seen in the laboratory tests (see Chap. 4).

Stiffness Variation

Henceforward, we are going to deal with the problem of stiffness variation
and investigate how the natural frequencies of the system are affected by
the applied loads. The simplest case is when the cantilever beam is in com-
pression or tension. To proceed, we utilise Eq. (1.65) to define the stiffness
variation.

One Degree of Freedom System

As it has been introduced in Subsec. 2.2.1, an equivalent lateral stiffness can
be defined as the quotient of a lateral force that is perpendicular to the axis
of the beam and the displacement of the end of the rod in the direction of
the lateral force. The lateral displacement has already been specified in the
MacLaurin-series of Eq. (1.67). The lateral force Qy is emphasized here, thus
it can be easily eliminated. So the analytical formula of the lateral stiffness
variation yields

s =
γ
√
γIE

tan(
√
γL)−√γL

, (2.26)
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which can be approximated by the dimensionless power series

L3

IE
s = 3− 6

5

(
L2γ

)
− ... . (2.27)

Clearly, the compression decreases the lateral stiffness of the beam (see Fig.
2.4). Where the curve crosses the horizontal axis there is the first normalised
Euler buckling load. Since only the stiffness of the system has changed, the
equation of motion corresponds with Eq. (2.8) that yields

ωn =

√
γ
√
γIE

m(tan(
√
γL)−√γL)

(2.28)

where the compression constant γ obviously depends on the compressive force
P . It is manifested by the end block, that is, P = mg. The mass of the end
block is m=0.1 kg here and the natural angular frequency of the system is
ωn = 24.075 rad/s.

L �2
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Eq. (2.27)

Linearized

 !
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L s
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Figure 2.4: Dimensionless connection between relative importance of spring stiff-
ness and the relative importance of compression/tension.

Two Degrees of Freedom System

Since the mass moment of inertia might have significant effect on the natural
angular frequencies, we have to use a two degrees of freedom system and
examine how the compression influences the compliance matrix.

First of all, let us consider the deformation function of a compressed can-
tilever beam described by Eq. (1.65) and use the definition of the compliance
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matrix via Eq. (2.19). By performing the mathematical operations, we obtain

C =


tan(
√
γL)

γ
√
γIE

−
L

γIE
−

1

γIE

(
1−

1

cos(
√
γL)

)

−
1

γIE

(
1−

1

cos(
√
γL)

)
tan(
√
γL)

√
γIE

 . (2.29)

The stiffness matrix can be calculated by means of the compliance matrix.
In order to have a better look related to the elements of the stiffness matrix,
they are considered by their MacLaurin-series with respect to compressive
force P

S =


12IE

L3
− 6

5L
P − ... −6IE

L2
+

1

10
P + ...

−6IE

L2
+

1

10
P + ...

4IE

L
− 2L

15
P − ...

 . (2.30)

As we can see, when compression P tends to zero, we can get back the
well-known form of the stiffness matrix of an unloaded beam (no external
forces).

To proceed, let us consider Eq. (2.20). The natural angular frequencies
of the system can be calculated by using the frequency equation (see Eq.
(2.24)) where the mass matrix correspond to Eq. (2.21).

Ifm = 0.1 kg, the natural angular frequencies of the system are ωn1 =24.036
rad/s and ωn2 =747.327 rad/s.

Potential Energy Variation

The theory of potential energy variation appeared in Subsec. 2.2.1, when we
investigated the presence of the mass moment of inertia of the end block.
The exact expression of the value of κ can be found in Eq. (1.111). By using
the data of Table 2.1 and assuming that m = 0.1 kg, the reduced one degree
of freedom system gives ωn = 24.075 rad/s.

If we take into account the mass moment of inertia of the end block,
the bi-quadratic frequency equation (see Eq. (2.25)) does not change. When
m = 0.1 kg, we obtain the natural angular frequencies ωn1 =24.036 rad/s
and ωn2 =748.543 rad/s.

Comparison of results

First of all, we can conclude that the stiffness variation of the beam under
compression corresponds to the potential energy variation of the system tak-
ing into account the vertical lifting of the end body. So if there is a lumped
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mass at the free end of the vertical beam, the bending vibration frequency can
be calculated either by means of this reduced lateral stiffness or by the vari-
ation of the potential energy of the lumped mass in the gravitational space
due to the vertical deformation. In what follows, the nonlinear equivalence
of the two approaches is proven.

Based on the numerical results of Table 2.3, it can be seen that the effect
of the mass moment of inertia of the end block influences the natural angular
frequencies of the system compared to the one degree of freedom systems. In
case of the first natural angular frequency, this discrepancy is not significant
(cca. 0.162%) but it obviously depends on the material and geometrical data
of the system.

By comparing the second natural angular frequencies of the two degrees
of freedom systems (summarised in Table 2.3), we can experience small dis-
crepancy (cca. 0.162%) in between the results. The reason of the difference
can be identified in the considered potential energy function Eq. (2.13) of
the system. Since the vertical displacement h is assumed to depend only
on the horizontal displacement x, we neglect the effect of a possible bending
torque. It causes that when the compressive force P tends to its critical value
Pcr = π2IE/(2L)2, the determinant of S (see Eq. (2.23)) - by using the exact
value of κ (see Eq. (1.111)) - will not be zero, that is

3IE

L3
− 2Pcrκ = 0 . (2.31)

To approximate the critical value of compression, let us use the first approx-
imation of κ (see the first term in Eq. (1.112)). Then the solution of Eq.
(2.31) leads to Pcr = 10IE/(2L)2 that means 1.3% difference compared to

Table 2.3: Analytical results (compression) for the first and second natural an-
gular frequencies of the systems by using the data of Table 2.1 and m = 0.1 kg.

Natural 1 DoF System 2 DoF System
angular

frequency
Stiffness
variation
(κ = 0)

κ 6= 0 P = 0
Stiffness
variation
(κ = 0)

κ 6= 0 P = 0

ωn1 (rad/s) 24.075 24.075 24.560 24.036 24.036 24.520
ωn2 (rad/s) - - - 747.327 748.543 748.543

the Euler critical buckling load π2IE/(2L)2. The error decreases as the
approximation of κ is improved. So the Euler critical value is obtained exactly
if the additional tiny height variation h is calculated also as a function of the
angle ϕ caused by a torque at the free end of the bar.
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When P = 0, that is, there is no compression (neutral case), we have
1.974% (1 DoF system) difference between the neutral and compressed cases.
By investigating the 2 DoF system, we experience 1.974% discrepancy in
between the first natural angular frequencies (compressed-neutral) and there
is cca. 0.162% discrepancy in between the second natural angular frequencies
(compressed-neutral).

Proving with energy method

In the case of elastic bodies, the external forces are also going to perform
work when the points of application of these forces are shifted by the effect of
another applied force. The loads above are progressively increased from their
zero values to their supreme values. Let us consider the point of application
of Qi

y that moves with unit vector ei. If the relationship is linear between
the load and the displacement then the performed work is

Wi =
1

2
Qi
yei .

d11d12
d22

d21

d11

d21

d22 = 0

Qy

Qy
(x )v
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L, IE
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Figure 2.5: Displacement analysis. The displacements of d11 and d21 are affected
by the lateral force Qy. The d12 and d22 are due to compression P .

If di is a displacement component of ei in the force direction, it yields

Wi =
1

2
Qi
ydi .
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According to the Betti’s-theorem, if a balanced elastic body with arbitrary
shape loaded sequentially by two different equilibrium force systems included
forces and couples then they are signed by index 1 and index 2, respectively.

First of all, the elastic body is loaded by the force system of index 1 that
is going to perform work W11. After that we have to apply the force system
of index 2, which also perform work W22, however, the second force system
gives rise to further strain, hence we need to take into account the work of
the first force system, too, that provides another work signed by W12. At the
end of the loading period, the total work is

W = W11 +W22 +W12 , (2.32)

where the proper work of the force systems is denoted byW11 andW22 as well
as W12 = W21 are extraneous works. Note that in this case the connection
between the effects of forces and displacements are linear.

The aim is to prove that the strain energy of the described system defined
by the stiffness of the beam corresponds with the work of external forces using
the end displacements of the beam, that is, U = W . The strain energy can
be written as

U =
1

2IE

L∫
0

M2(x)dx , (2.33)

where the function of the bending moment is defined by M(x) = Pη +Qyξ.
After the substitution of M(x) and Eq. (1.107) into Eq. (2.33), we obtain

U =
Q2
y

4γ
√
γIE

( √
γL

cos2 (
√
γL)
− tan (

√
γL)

)
, (2.34)

that can also be expressed by its power series with respect to compression P

U =
Q2
yL

3

IE

(
1

6
+

2

15

(
L2γ

)
+

17

210

(
L2γ

)2
+ ...

)
. (2.35)

The investigation of the work done by external forces is more complicated.
In order to introduce some simplifications, let us consider Eq. (1.105) and
Eq. (1.108) where the compression P is emphasized

ξ(P ) =
Q2
y(2
√
γL(2 + cos(2

√
γL))− 3 sin(2

√
γL))

8(IE)2γ2
√
γ cos2(

√
γL)

,

η(P ) =
Qy(tan(

√
γL)−√γL)

IEγ
√
γ

.

(2.36)
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The forms of their power series yield

ξ(P ) =
Q2
yL

5

(IE)2

(
1

15
+

17

315

(
L2γ

)
+

31

945

(
L2γ

)2
+ ...

)
(2.37)

and

η(P ) =
QyL

3

IE

(
1

3
+

2

15

(
L2γ

)
+

17

315

(
L2γ

)2
+ ...

)
, (2.38)

respectively.
The first case can be seen in Fig. 2.5 a), we assume the lateral force Qy is

the first force as well as the compression P is the second one. Note that the
extraneous works are not equal, hence the supposition of the Betti’s-theorem
that all forces are linear in the displacements does not hold. Henceforth Fig.
2.6 a) and Eq. (2.32) will be referred to frequently.
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W12

d12d11
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W11

W21
P

d11

d21

a) b)
y y

Figure 2.6: Works of external forces.

The lateral force is applied first that gives rise to two displacements in
different directions but only one of them provides work because we do not
even have compression. Since the relationship between Qy and d11 is linear

W11 =
1

2
Qyd11 =

1

2
Qyη(0) =

Q2
yL

3

6IE
, (2.39)

that means the area of a triangle in Fig. 2.6 a). The situation is more
complicated in the case of W22 because the connection here is nonlinear,
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thus

W22 =

L∫
0

Pdx

= P (ξ(P )− ξ(0))−
P∫

0

ξ(P )− ξ(0)dP

=

Q2
y

(
√
γL

(
12 + 2γL2 +

3

cos2(
√
γL)

)
− 15 tan(

√
γL)

)
12IEγ

√
γ

,

(2.40)

that is given by its power series

W22 =
Q2
yL

3

IE

(
17

630

(
L2γ

)2
+

62

2835

(
L2γ

)3
+ ...

)
. (2.41)

The reason of the way of the calculation is that ξ depends on compression but
we need to calculate the area of W22 (see Fig. 2.6 a)). Finally, we examine
W12. The displacement is caused by compression P in the direction of the
lateral force Qy that means a rectangular area in Qy − y plane hence the
connection is also linear

W12 = Qy(η(P )− η(0))

= −
Q2
y(3
√
γL+ γ

√
γL3 − 3 tan(

√
γL))

3IEγ
√
γ

(2.42)

expressed by its power series

W12 =
Q2
yL

3

IE

(
2

15

(
L2γ

)
+

17

315

(
L2γ

)2
+ ...

)
. (2.43)

The summation of Eqs. (2.39), (2.40) and (2.42) provides

W =
Q2
y

4γ
√
γIE

( √
γL

cos2 (
√
γL)
− tan (

√
γL)

)
(2.44)

given by its power series

W =
Q2
yL

3

IE

(
1

6
+

2

15

(
L2γ

)
+

17

210

(
L2γ

)2
+ ...

)
, (2.45)

that exactly corresponds with the strain energy (see Eq. (2.34) and (2.35)).
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The second case can be seen in Fig. 2.5 b) where compression P is assumed
to be the first force. As we consider the stiffness of the beam is infinitely
large in the beam direction, thus compression does not cause displacement
(d22 = 0) that implies W22 = 0. When the lateral force Qy appears, it causes
two displacements d11 and d21. The workW11 is actually the area of a triangle
because Qy was increased uniformly up to its supreme value

W11 =
1

2
Qyη(P )

=
Q2
y(tan(

√
γL)−√γL)

2IEγ
√
γ

(2.46)
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Figure 2.7: Dimensionless connection between the normalized works and the
relative importance of compression. (a) Case 1. (b) Case 2.

expressed by its power series

W11 =
Q2
yL

3

IE

(
1
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+

1

15

(
L2γ

)
+
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630

(
L2γ

)2
+ ...

)
. (2.47)

The work W21 can be defined as a rectangular area (see Fig. 2.6 b)) because
the value of compression was constant during the application of F

W21 = Pξ(P )

=
Q2
y(2
√
γL(2 + cos(2

√
γL))− 3 sin(2

√
γL))

8IEγ
√
γ cos2(

√
γL)

,
(2.48)

given by its power series

W21 =
Q2
yL

3

IE

(
1

15

(
L2γ

)
+

17

315

(
L2γ

)2
+ ...

)
. (2.49)
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The summation of Eqs. (2.46) and (2.48) provides the same result such as
(2.44).

So the effect of the displacement in the rod direction results in the same
potential energy variation as the equivalent stiffness modification by loads.
It can be seen in Fig. 2.7, too.

2.2.3 Beam in Tension

The mechanical model of the tensed cantilever beam is nearly the same that
can be seen in Fig. 2.3 b). The effect of the tensile force can be modelled by
the arrangement of the structure when it stands downward and the effect of
the end mass behaves in tension.

Stiffness Variation

As it was already mentioned in Subsec. 2.2.2, tension means one of the sim-
plest case related to the stiffness variation of the system. To proceed, we will
use Eq. (1.71) to specify the equivalent stiffness of the beam.

One Degree of Freedom System

Similarly to Subsec. 2.2.2, an equivalent lateral stiffness can be introduced
by means of Eq. (2.6) that implies

s =
γ
√
γIE

√
γL− tanh(

√
γL)

, (2.50)

which can be given by the dimensionless power series

L3

IE
s = 3 +

6

5
(L2γ)± ... . (2.51)

To investigate the stiffness function s, let us have a look at Fig. 2.4. Since
tension is only a change of sign of P compared to compression, if we increase
the magnitude of tensile force, the lateral stiffness also increases and will not
imply a critical value that could cause the failure of the structure. According
to Eq. (2.9), the natural angular frequency of the system can be calculated

ωn =

√
γ
√
γIE

m(
√
γL− tanh(

√
γL))

. (2.52)

When the mass of the end block is m = 0.1 kg, ωn = 25.034 rad/s.
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Two Degrees of Freedom System

The difference between the compression and tension is indicated only in the
deformation function of the beam, thus the compliance matrix of the beam
also changes. By using the definition (see Eq. (2.19)) and performing the
operations, we obtain

C =


L

γIE
−

tanh(
√
γL)

γ
√
γIE

1

γIE

(
1−

1

cos(
√
γL)

)
1

γIE

(
1−

1

cos(
√
γL)

)
tanh(

√
γL)

√
γIE

 . (2.53)

The stiffness matrix also needs to be examined. It is derived from the com-
pliance matrix. In order to have a better look associated with the elements
of the stiffness matrix they are considered by their MacLaurin-series with
respect to tension P

S =


12IE

L3
+

6

5L
P ∓ ... −6IE

L2
− 1

10
P ± ...

−6IE

L2
− 1

10
P ± ... 4IE

L
+

2L

15
P ∓ ...

 . (2.54)

As we can see, when tension tends to zero, we can get back the well-known
form of the stiffness matrix of an unloaded beam.

To proceed, let us consider Eq. (2.20). The natural angular frequencies
of the system can be calculated by using the frequency equation (see Eq.
(2.24)) where the mass matrix correspond with Eq. (2.21).

Ifm = 0.1 kg, the natural angular frequencies of the system are ωn1 =24.994
rad/s and ωn2 =749.754 rad/s.

Potential Energy Variation

The case of potential energy variation can be similarly maintained such as
in Subsec. 2.2.2. Since tension can be defined as a negative compression, to
proceed, we will consider Eq. (1.113) to determine the modification of the
potential energy. By using the data of Table 2.1 and assuming that m = 0.1
kg, the reduced one degree of freedom system gives ωn = 25.034 rad/s.

In this case, when we take into account the mass moment of inertia of
the end body, the bi-quadratic frequency equation (see Eq. (2.25)) changes
because the potential energy of the system (see Eq. (2.18)) now increases
by the quantity mgh. By using m = 0.1 kg, we obtain the natural angular
frequencies ωn1 = 24.994 rad/s and ωn2 = 748.543 rad/s.
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Comparison of results

Based on the numerical results of Table 2.4, it can be seen that the effect of
the mass moment of inertia of the end body influences the natural angular
frequencies of the system compared to the one degree of freedom systems.
This tiny discrepancy is cca. 0.161% in case of the first natural angular
frequency.

By comparing the second natural angular frequencies of the two degrees
of freedom systems (summarised in Table 2.4), we can experience the same
discrepancy (cca. 0.161%) in between the results.

When P = 0, that is, there is no tension (neutral case), we have 1.896%
(1 DoF system) difference between the neutral case and case of tension.
By investigating the 2 DoF system, we experience 1.896% discrepancy in
between the first natural angular frequencies (tension-neutral) and there is
cca. 0.161% discrepancy in between the second natural angular frequencies
(tension-neutral).

Table 2.4: Analytical results (tension) for the first and second natural angular
frequencies of the systems by using the data of Table 2.1 and m = 0.1 kg.

Natural 1 DoF System 2 DoF System
angular

frequency
Stiffness
variation
(κ = 0)

κ 6= 0 P = 0
Stiffness
variation
(κ = 0)

κ 6= 0 P = 0

ωn1 (rad/s) 25.034 25.034 24.560 24.994 24.994 24.520
ωn2 (rad/s) - - - 749.754 748.543 748.543

Note that the equivalence of the strain energy of the system and the works
of external forces can also be proven here by using Betti’s theorem.

2.2.4 Twisted Beam

In the following, we are going to take into account the effect of torsion. The
dynamical models do not change compared to the previously investigated
cases and they can be seen in Fig. 2.23. The lumped mass m1 of the beam
also appears but its compressive effect is neglected (and m2 = 0 kg here)
because the beam is in the neutral (horizontal) position. When we investigate
our models in the presence of torsion, we consider only the theory of stiffness
variation of the beam and its effect on the natural frequencies.
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One Degree of Freedom System

As we previously did, we also utilise the theory of the equivalent spring stiff-
ness here that is defined by Eq. (2.6). Since we have already investigated the
deformation of the beam subjected to torsion, we only need to consider Eq.
(1.90) to specify the spring stiffness s. Eq. (1.90) describes the displacement
of the end of the beam in the direction of the lateral force vector . Let us as-
sume that Γ = 0 and Λ = Qy/(IE), that is, Qz = 0 . It is needed to mention
that δv = Re(dL). Therefore, we obtain

s =
2IEα3

(4 + α2L2) tan

(
αL

2

)
− 2αL

, (2.55)

that can be transformed to a dimensionless expression

L3

IE
s =

2(αL)3

(4 + (αL)2) tan

(
αL

2

)
− 2αL

. (2.56)

To check our results, let us have a look at Fig. 2.8 that actually shows the
critical loads of the system and indicates how the stiffness modifies with
respect to non-dimensional semi-tangential torsion. We can see that curve 1
tends to the line L3s/(IE) = 3 and curve 2, 3 are asymptotic to the values
of αL = 6.811 and αL = 12.868 , respectively. The roots along the αL axis
are the normalized critical loads of semi-tangential torque (2n + 1)π where
n = 0, 1... (see Subsec. 1.2.4).
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Figure 2.8: Dimensionless relation between the the relative importance of lateral
stiffness and the relative importance of semi-tangential torsion.
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To provide a better look in terms of the stiffness variation, the dimensionless
power series of Eq. (2.56) is given by

L3

IE
s = 3− 21

80
(αL)2 − 151

44800
(αL)4 + ... . (2.57)

Clearly, the semi-tangential torsion decreases the lateral stiffness of the beam.
Since only the stiffness of the system has changed, the equation of motion
corresponds to Eq. (2.8) that yields

ωn =

√√√√√√
2IEα3

m((4 + α2L2) tan

(
αL

2

)
− 2αL)

, (2.58)

where the twist constant α obviously depends on the twisting torque Mt. By
using the data of Table 2.1, the natural angular frequency of the system is
depicted in Fig. 2.9 a).

Two Degrees of Freedom System

The mass moment of inertia may affect the natural frequencies, hence why we
consider a two degrees of freedom system and specify the compliance matrix
of the beam. To proceed, we need to take into account the deformation
function of a beam subjected to semi-tangential torsion (see Eq. (1.89)).
According to this and assuming that Qz = 0 and My = 0, we obtain

C =



(4 + α2L2) tan
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2
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2

)
IEα
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IEα
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αL

2

)
IEα


. (2.59)

The stiffness matrix also needs to be examined that comes from the com-
pliance matrix. The stiffness matrix is given by its MacLaurin-series with
respect to torsion Mt

S =


12IE

L3
− 6

5IEL
M2

t − ... −
6IE

L2
+

3

5IE
M2

t + ...

−6IE

L2
+

3

5IE
M2

t + ...
4IE

L
− 23L

60IE
M2

t − ...

 . (2.60)
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By using the frequency equation, the natural angular frequencies of the sys-
tem can be seen in Fig. 2.9 b). Their initial values - whenMt = 0 - correspond
with the results of Table 2.2. Where the curves would cross the Mt axis, the
first critical value of Mt can be found.
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Figure 2.9: Natural angular frequency in case of a twisted beam (m = m1 here).
a) One degree of freedom system. b) Two degree of freedom system.

2.2.5 Twisted and Compressed Beam

The examination now considers a twisted and compressed shaft and provides
results how the presence of the combined loads influences the natural fre-
quencies of the system. The effect of compression does not come from the
mass of end block here (neutral position), we just apply the compressive force
P at the end of the shaft without using the additional mass m2. Since every
single case has already been investigated separately, we might compare these
results to the simpler ones.

One Degree of Freedom System

According to the expression of Eq. (2.6)), we are able to specify the equivalent
lateral stiffness of the beam under torsion and compression by using Eq.
(1.99) at x = L. Assuming that Qz = 0 and My = 0, we obtain

s = −
νγ2IE

νγL+ να
sin(µL)

cos(νL)
− (2ν2 − γ) tan(νL)

,
(2.61)

where
µ = α/2 , ν =

√
α2 + 4γ/2 .

When α, that is, the torsional constant tends to zero, then we arrive back to
Eq. (2.26). In that case, when γ tends to zero, we need to apply L’Hospital’s
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rule to get Eq. (2.55). Similarly as we have previously made, the natural
angular frequency of the system assumes the form

ωn =

√√√√√√ νγ2IE

m(νγL+ να
sin(µL)

cos(νL)
− (2ν2 − γ) tan(νL))

. (2.62)

By using the data of Table 2.1, the natural angular frequency of the system
can be seen in Fig. 2.10. Since the resolution of the numerical calculation
(applying only simple for loops for the values of compression P and torsion
Mt) was not appropriate, we obtained a zig-zag curve in the vicinity of the
parabolic line at the zero natural angular frequency. This also means the
stability boundary of the system (see Fig. 2.10 a)) and corresponds to Fig.
1.4. Due to the simplicity of the one degree of freedom system, an analytical
solution also could be found, which is depicted in Fig. 2.10 b). It can be
seen that both compression P and torsion Mt decreases the natural angular
frequency of the system up to their critical values.
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Figure 2.10: Natural angular frequency of the system under torsion Mt and
compression P (m = m1 here). a) Result of the numerical approximation. b)
Analytical result.

Two Degrees of Freedom System

Let us assume a two degrees of freedom system and numerically specify its
compliance matrix because of its complexity. By using the numerical com-
pliance matrix, the stiffness matrix can also be given. To provide the natural
angular frequencies of the dynamical system, we need to consider the fre-
quency equation (see Eq. (2.24)). Therefore, the maps of the natural angular
frequencies can be seen in Fig. 2.11. The stability boundary can also be
discovered in both maps. We note that the stability boundary could be
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approximated in a more accurate way by increasing the resolution of the nu-
merical calculation (using two for loops for the values of compression P and
torsion Mt).
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Figure 2.11: Natural angular frequencies of the two degree of freedom system
under torsion Mt and compression P (m = m1 here). a) Result of the numerical
approximation of the first natural angular frequency. b) Result of the numerical
approximation of the second natural angular frequency.

2.2.6 Twisted and Tensed Beam

Since the investigation of neither the purely twisted nor the twisted and
compressed beam provided significant difference in between the natural fre-
quencies, - so the mass moment of inertia of the end body had no real effect
- henceforth, we take into account only the one degree of freedom system in
case of a twisted and tensed beam.
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Figure 2.12: Natural angular frequencies of the twisted and tensed beam (m = m1

here). a) Result of the numerical approximation. b) Analytical result.

By using Eq. (1.104) at x = L and assuming that Qz = 0 and My = 0,
the lateral stiffness can be determined. By comparing this to Eq. (2.61), the
only difference that reveals, is sign of γ.
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The results are depicted in Fig. 2.12, where the stability boundaries also
can be seen and it correlates with the results of Fig. 1.4 when p < 0. The
presence of tension slightly increases the natural angular frequency of the
system that implies a widening stable zone.

To summarise our results, let us have a look at Fig. 2.13 that introduces
the entire frequency map in terms of compression/tension P and torsion Mt.
The diagram looks like a half cup showing that the reduction of compression
or the growth of tension increases the area of the stable zone. When Mt and
P are zero, we arrive back to the results of Table 2.2. When Mt 6= 0 but
P = 0, we are along the axis Mt and the result corresponds to Fig. 2.9 a).
On the other hand, when Mt = 0 but P 6= 0, we are along the axis P and
also get a parabolic curve.
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Figure 2.13: Variation of natural angular frequency of a twisted and com-
pressed/tensed beam.
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Investigation of a light rotating
beam

3.1 Modelling

Consider a long boring or a milling tool (see Fig. 3.1 a)) modelled by a
straight vertical cantilever beam. The beam rotates about its vertical axis
as well as being subjected to torsion Mt and compression mg. Due to the
presence of torsion, we are not able to analyse the system in two-dimensions
[29]. The compression can be modelled by a lumped mass m attached to
the free end of the beam (see Fig. 3.2 a)) that is much larger than the mass
of the beam. Thus, the mass of the beam might be neglected. The beam
is considered to be prismatic, homogeneous, linearly elastic and inextensi-
ble. It is either in compression or in tension depending on whether it stands
upward or downward, respectively. The described system might become un-
stable depending upon the speed of rotation, the compression, torsion or a
combination of all three [29].

The arrangement of the model and the corresponding notation can be
seen in Fig. 3.2 a) where the gravitational acceleration is denoted by g, the
angular velocity is ω, the centrifugal force is mω2d1, the compression is mg
and the torsional moment vector is Mt. Note that the twisting moment
is assumed to be semi-tangential [30, 4] depicted in Fig. 3.1 b), that is,
the forces F acting on the beam generate an axial torque Mt that is able
to tilt about both the y and z axes. By taking into account only small
displacement d = col

(
v w

)
and angles ψ , θ during buckling, the linearised

form of the torque is Mt = Mtcol
(
1 δ′v/2 δ′w/2

)
(see also in Subsec. 1.1.2)

whereMt = 4Fa, and the bending components ofMt come from its resolution
with respect to the principal system (ξ, η, ζ) and by using the definition of
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the semi-tangential torque in the sense of Subsec. 1.1.2 (see Fig. 3.1 b) and
c)). In case of the principal system, we consider ξ to be tangential to the
deflected beam, while η is parallel to the (x − y) plane and ζ is parallel to
the (x− z) plane. The notations δ′v and δ′w define the corresponding angular
rotations of the end of the beam (see Fig. 3.2 a)).

The mathematical model is obtained using the Euler-Bernoulli connection
between curvature and bending moment [3]

∂θ(s̃)

∂s̃
= −Mz(s̃)

IE
,

∂ψ(s̃)

∂s̃
= −My(s̃)

IE
, (3.1)

where the slope angles in the direction y and z are defined by θ and ψ (see
Fig. 3.2 b)), respectively, and s̃ is the arc length coordinate. The bending
moment functions My,z(s̃) are expressed about y axis and z axis as follows:

My(s̃) = −Mtθ(s̃) +mgs̃ψ(s̃)−mgδw +mω2δw(s̃− L) +
1

2
Mtδ

′
v ,

Mz(s̃) = Mtψ(s̃) +mgs̃θ(s̃)−mgδv +mω2δv(s̃− L)− 1

2
Mtδ

′
w ,

(3.2)

where δv and δw are displacements at the end of the beam. Since the variation
of the torsional moment (the projection of Mt to ξ) is of second order, the
torsional stiffness of the beam is irrelevant from the viewpoint of buckling
[3].
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Figure 3.1: a) Model of the rotating tool. b) Concept of the semi-tangential
moment in the sense of Ziegler [30]. c) Formulation of torsion.

The dimensionless length coordinate s = s̃/L is normalised by the length
L of the beam. By taking into account Eqs. (3.1) and (3.2), and neglecting
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Chapter 3. Investigation of a light rotating beam

the nonlinear terms of the bending functions above, the bending moment
balance gives the dimensionless differential equation system [27, 14, 3] for
small θ and ψ in the form

∂2θ(s)

∂s2
+ α′

∂ψ(s)

∂s
+ γ′θ(s) + χδv = 0 ,

∂2ψ(s)

∂s2
− α′∂θ(s)

∂s
+ γ′ψ(s) + χδw = 0 ,

(3.3)

where the parameter α′ = MtL/IE specifies the relative importance of tor-
sion to bending stiffness, γ′ = mgL2/IE is the relative importance of gravity
to bending stiffness and χ = mω2L3/IE is the relative importance of rotation
to bending stiffness.
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Figure 3.2: a) Rotating beam subjected to torsion and compression. b) Infinites-
imal piece of the beam.

Let us introduce a complex function r(s) = θ(s) + iψ(s). Hence from Eq.
(3.2) we have

∂2r(s)

∂s2
− iα′

∂r(s)

∂s
+ γ′r(s) + χd1 = 0 , (3.4)

where d1 = δv + iδw and d1 = col
(
δv δw

)
. The boundary conditions are

θ(0) = 0 ,
∂θ(s)

∂s

∣∣∣∣
s=1

= −1

2
α′δ′w ,

ψ(0) = 0 ,
∂ψ(s)

∂s

∣∣∣∣
s=1

=
1

2
α′δ′v ,

(3.5)

69



Chapter 3. Investigation of a light rotating beam

where the free end conditions are originated in the semi-tangential torque [30]
as discussed above. Using the complex function r, the boundary conditions
above can be expressed as

r(0) = 0 ,
∂r(s)

∂s

∣∣∣∣
s=1

=
1

2
iα′r1 , (3.6)

where r1 = δ′v + iδ′w.
In addition, we are able to specify a linear connection between an assumed

displacement function d(s) and r(s) (see Fig. 3.2 b))

∂d(s)

∂s
= r(s) (3.7)

where d(s) = v(s) + iw(s). It provides three additional conditions

d(0) = 0 , d(1) = d1 ,
∂d(s)

∂s

∣∣∣∣
s=1

= r1 , (3.8)

for the complex form Eq. (3.4) when it is transformed for d(s) .

3.2 Stability

The general solution of Eq. (3.4) is given by

r(s) = Aeλ1s +Beλ2s − χ

γ′
d1 , λ1,2 = (µ± ν)i ,

µ = α′/2 , ν =
√
α′2 + 4γ′/2 ,

(3.9)

where λ1,2 are purely imaginary eigenvalues. Applying Eq. (3.6), the un-
known coefficients A,B are given by

A =
χ

γ′
d1 −

1

2
iα′r1 −

χ

γ′
d1λ1e

λ1

λ2eλ2 − λ1eλ1
, B =

1

2
iα′r1 −

χ

γ′
d1λ1e

λ1

λ2eλ2 − λ1eλ1
. (3.10)

In view of Eq. (3.7), the function d(s) is then given by

d(s) = A
eλ1s

λ1
+B

eλ2s

λ2
− χ

γ′
d1s+ C . (3.11)

By means of Eq. (3.8), we could eliminate d1 and r1, to find
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χ
γ′

=

eλ2 (iα′ − 2λ2)− eλ1 (iα′ − 2λ1)

iα′
(

1− eλ1

λ1
+ 1

)
(eλ1 − eλ2)

1 +
λ2
(
1− eλ1

)
− λ1

(
1− eλ2

)
λ1λ2

(
1− eλ1

λ1
+ 1

)(
eλ1 − eλ2

1− eλ1

)+
λ22e

λ2
(
1− eλ1 + λ1

)
− λ21eλ1

(
1− eλ2 + λ2

)
iα′λ1λ2

2

(
1− eλ1

λ1
+ 1

)
(eλ1 − eλ2)

.

(3.12)
In order to proceed, we note that the right hand side of Eq. (3.12) is in

the form
χ

γ′
=

Pr + iPi
Qr + iQi

(3.13)

where Pr, Pi and Qr, Qi are real quantities. Now the left hand side of Eq.
(3.12) is real. So the right hand side of Eq. (3.13) must also be real and so
its imaginary part has to vanish. Hence

PiQr − PrQi = 0. (3.14)

But then the real part of the right hand side of Eq. (3.13) can be simplified
so that we find

χ

γ′
=
Pr
Qr

. (3.15)

So using Eq. (3.15), Eq. (3.12) simplifies greatly to become

χ = − γ′2ν cos ν

α′ν sinµ+ γ′ν cos ν − (2ν2 − γ′) sin ν
. (3.16)

3.3 Results

Eq. (3.16) is the main result of this problem. It denotes the relationship
between rotation, compression and torsion and generates stability boundaries
for the system. When α′ tends to zero, we have µ = 0, ν =

√
γ′ and so we

obtain Wang’s result [29], that is, the case of a two-dimensional problem
investigating a compressed, rotating beam in the absence of torsion

χ = − γ′
√
γ′ cos

√
γ′√

γ′ cos
√
γ′ − sin

√
γ′

(3.17)

shown in Fig. 3.3 a). The stability boundaries are slightly curved. Boundary
1 is asymptotic to the line χ = −γ′ and boundaries 2, 3 are asymptotic to the
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Chapter 3. Investigation of a light rotating beam

values of γ′2 = 20.191 and γ′3 = 59.679 , that are obtained from Eq. (3.17),
when χ tends to infinity, that is√

γ′ cos
√
γ′ = sin

√
γ′ .

When γ′ tends to zero (α′ 6= 0), that is, the relative importance of gravity
is negligible, we have that µ = ν = α′/2 and hence from Eq. (3.16) by using
L’Hospital’s rule

χ =
α′3

2(1 + µ2) tanµ− α′
, (3.18)

the stability boundaries can be seen in Fig. 3.3 b). Boundary 1 tends to the
line χ = 3 and boundaries are asymptotic to the values of α′2 = 6.811 and
α′3 = 12.868 , obtained from Eq. (3.18), when χ tends to infinity, that is

2(1 + µ2) tanµ = α′ .
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Figure 3.3: a) Stability boundaries in (χ − γ′) plane. b) Stability boundaries
in (χ − α′) plane. (c) Stability boundaries in (α′ − γ′) plane. d) 3D stability
boundaries.
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When χ might be neglected, the stability boundaries can be seen in Fig.
3.3 c). They are parabolic. The roots along the γ′ axis are the well-known,
normalized Euler buckling modes (2n+ 1)2π2/4 where n = 0, 1... , and along
the α′ axis are the normalized critical loads in terms of semi-tangential torque
(2n+ 1)π where n = 0, 1... .

The stability boundaries of the system, corresponding to Eq. (3.16) are
depicted by Fig. 3.3 d). The curvature of the stability boundaries is con-
tinuously increasing as the parameter α′ grows. They are asymptotic to the
dashed lines. Looking again at Fig. 3.3 a), surface 1 crosses the χ axis at
χ = 3 (see Fig. 3.4). The system is absolutely stable as long as the solution
does not reach the surface 1. Between surface 1 and 2 instability of the first
mode might occur depending on whether the beam stands upward or down-
ward. To the right of surface 2, 3 and 4 the instabilities of the second, third
and fourth modes may occur. The validity of the stable and unstable modes
are affected by torsion because it bends the stability boundaries as we can
see in Fig. 3.3 c).
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Figure 3.4: Explanation of stable and unstable modes.
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Laboratory tests

In order to identify precisely the effect of the longitudinal displacement ξ
of a cantilever beam (see Sec. 1.4) on the natural frequency of the bending
vibration, an experimental set-up was built (see Fig. 4.1). In case of three
different beam lengths, the natural frequencies were measured while the beam
was in the vertical position under either compression or tension (depending
on whether it stood upward or downward).

m

L

a

b

2

Figure 4.1: The experimental equipment that consists of a rectangular cross rod
with length L and a heavy block with mass m2 = 0.978 kg.

The horizontal position defined the neutral case, that is, the beam is not
affected by the heavy block. The results of the experiment are summarised
in Table 4.1. The average 15% difference of the frequencies depending on the
longitudinal load type compared to the neutral case gives the motivation to
investigate the problem deeply because there exist some industrial projects
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Chapter 4. Laboratory tests

where simple closed form expressions are needed for the calculation of the
natural frequency of a cantilever beam with a heavy mass attached to its
end, which takes into account whether the beam is vertical or horizontal [7].

Table 4.1: Measured natural frequencies. Three cases of load type are given.

Beam Length
(m)

Compression
(Hz) Neutral (Hz) Tension (Hz)

0.30 2.513 2.720 2.910
0.40 1.525 1.750 1.950
0.50 0.975 1.231 1.460

4.1 Bifurcation diagram

In Chap. 2, the models use a beam with absolutely straight axis meaning
that the applied loads act exactly at the centre of gravity of the cross section.
However, this theory cannot be realised experimentally in the reality because
the point of the application of these loads has a certain eccentricity that
influences the equivalent stiffness of the system.

Accordingly, we need to investigate the behaviour of an equivalent, one
degree of freedom, nonlinear system to provide further explanation for the
small discrepancies between the measurements and analytical results. The
nonlinear model consists of a pinned-free rod and a torsional spring at the
pinned end depicted in Fig. 4.2 b). Since the model is assumed to be equiva-
lent, it is needed to fit the appropriate parameters θO and st to the measured
system (see Fig. 4.1).

�
P

st

m, L

�
b)Pa)

O

P

st

m, L

�
c)

O

�e

Figure 4.2: a) Compressed rod. b) Equivalent, nonlinear dynamical model of a
compressed rod. c) Nonlinear dynamical model with angular error ϕe.
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The torque balance of the nonlinear system assumes the form

− θOϕ̈(t) = stϕ(t)− PL sinϕ(t) . (4.1)

By linearising Eq. (4.1), we obtain

θOϕ̈(t) + (st − PL)ϕ(t) = 0 , (4.2)

where the natural angular frequency of the system is

ωn =

√
st − PL
θO

. (4.3)

It can be seen that when st < PL, the system becomes unstable as depicted
in Fig. 4.3.

0-�/2 �/2 �-�

0

-1

1

PL 

PLsin 

s  t

  (rad)

A (Nm)

Figure 4.3: Linearising the equation of motion and investigating the possible
roots.

If we investigate the stability boundary of the system that is given by

PL sinϕ = stϕ (4.4)

and the trigonometric function is substituted by its power series with respect
to the angular rotation ϕ, then we obtain

PL

(
ϕ− 1

6
ϕ3

)
= stϕ . (4.5)

The simplification of Eq. (4.5) gives

ϕ3 +
6

PL
(st − PL)ϕ = 0 , (4.6)
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where the value of ϕ can be determined

ϕ1 = 0 , ϕ2,3 = ±
√

6

PL
(PL− st) . (4.7)

The bifurcation diagram of the system can be seen in Fig. 4.4.

2
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-1

0 50 100 150 200 250 300
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P (N)

Figure 4.4: Bifurcation diagram (st = 27.070 Nm/rad, θO = 0.097 kgm2, L =
0.30 m).

During the measurements, probably we cannot assure that the axis of the rod
is perfectly straight, thus we assume that the system has a certain angular
error (ϕe 6= 0), which modifies the condition of stability (see also in Fig. 4.2
c)). In case of angular error, the equation of motion of the nonlinear system
is given by

ϕ̈(t) +
st
θO

(ϕ(t)− ϕe)−
PL

θO
sinϕ(t) = 0 , (4.8)

After substituting the trigonometric function by its power series, we can
examine the new condition of equilibria

PL

(
ϕ− 1

6
ϕ3

)
= st(ϕ− ϕe) , (4.9)

from which we obtain a cubic expression

ϕ3 +
6(st − PL)

PL
ϕ− 6st

PL
ϕe = 0 . (4.10)

By using Cardano’s theory, we can determine the roots of Eq. (4.10):

ϕ1(P ) =
2Υψ +

(
3Υ3stϕe +

√
Υ3(9Υs2tϕ

2
e − 8ψ3)

)2/3
Υ(3Υ2stϕe +

√
Υ3(9Υs2tϕ

2
e − 8ψ3))1/3

(4.11)
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and

ϕ2,3(P ) =

(1±
√

3i)

(
1

2Υ

(
3Υ3stϕe +

√
Υ3(9Υs2tϕ

2
e − 8ψ3)

)2/3
− ψ

)
(3Υ2stϕe +

√
Υ3(9Υs2tϕ

2
e − 8ψ3))1/3

,

(4.12)
where Υ = PL and ψ = PL − st. Based on the expressions of Eqs. (4.11)
and (4.12) where P is also emphasized, the bifurcation diagram can be seen
Fig. 4.5 in terms of the angular error ϕe.
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Figure 4.5: Bifurcation diagram in terms of angular error (st = 27.070 Nm/rad,
θO = 0.097 kgm2, L = 0.30 m).

To investigate the variation of the natural angular frequencies of the sys-
tem, we need to transform the equation of motion of the system to the form
of small perturbation. The small disturbance can be defined as

ϕ(t) = ϕ1(P ) + x(t) . (4.13)

Substituting this into Eq. (4.8), after the linearisation, we obtain

ẍ(t) +

st + PL

(
1

2
ϕ1(P )− 1

)
θO

x(t) + st(ϕ1(P )− ϕe)

−PL
θO

(
ϕ1(P ) +

1

6
ϕ3
1(P )

)
= 0 .

(4.14)

In the linearised equation, x(t) = 0 is the trivial solution, which corresponds
to the asymmetric ϕ1(P ) equilibrium position. If we consider the exact value
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of ϕ1(P ), then Eq. (4.14) can be transformed to the form of ẍ(t)+ω2
nx(t) = 0.

The natural angular frequency ωn of the system can be seen in Fig. 4.6.
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Figure 4.6: a) Natural angular frequency with angular error b) Natural angular
frequency squared with angle error (st = 27.070 Nm/rad, θO = 0.097 kgm2, L =
0.30 m).

As we know, the relationship between compression and the square of the
natural angular frequency is linear, which statement is also shown by in Fig.
4.6 b). If we consider the case of ϕe = 20◦, we can see that this error is
the largest. Still, since the compressive force is only cca. 10 N (see Fig. 4.1),
it means only 0.55% discrepancy in the frequency. The biggest discrepan-
cies can be found at the minimum point of the curves at around 50-100 N
compared to the case with no angular error.

In reality, buckling occurs as the function of the angular error as it is
described by the problem. Basically, we do not experience a sudden collapse
at the critical value of the load, rather a slight, climbing deflection that
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appears already before reaching the critical value.

Table 4.2: Characteristic points of the functions of Fig. 4.6 a) .

Angular
error Minimum of the function

(◦) ωn (rad/s) P (N)
1 4.923 86.198
10 10.288 70.591
20 12.619 58.064

Table 4.3: Characteristic points of the functions of Fig. 4.6 b) .

Angular
error Minimum of the function

(◦) ωn (rad/s) P (N)
1 24.238 86.198
10 105.845 70.591
20 159.249 58.064

4.2 Experimental results

To provide analytical results, let us use Eq. (2.25). While Eq. (2.25) provides
only results concerning compression, the end mass is able to behave as tension
where the natural frequencies are also easily calculated. If the acceleration
of gravity assumed to be zero then we obtain the neutral case where the
experimental equipment is held horizontally. The results of the compressed,
tensed and neutral beam are summarized in Table 4.5 by different beam
lengths.

First of all, we can realise that the natural frequencies are lower in com-
pression compared to the neutral case because it decreases the stiffness of
the cantilever beam. On the other hand tension increases the stiffness that
causes higher natural frequencies. The natural frequencies also depend on
the length of the beam.

The error columns of Table 4.5 mean the difference between the analytical
and measured results (see Table 4.1). It can be seen that the largest relative
error is not greater than 4 %. These minor discrepancies might be caused by
the asymmetric disposition of the experimental equipment depending on the
length of the beam, too [7].
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If we take a look at the results of the nonlinear model, then it can be seen
that the relative error is zero when the angle error is zero. This is because
the mechanical parameters of the model was fitted to the natural frequencies
of the measured system. If we increase the angle error, we experience only
minor discrepancies compared to the case devoid of error.

Note that in case of the nonlinear system, the torsional spring stiffness
st and the mass moment of inertia θO are fitted to the measured system
(st = 3IE/L and θO is also fitted by means of Eq. (4.3)). The effect of the
fitted parameters is manifested in the shifted critical load of the system.

Table 4.4: Experimental data for Fig. 4.1.

Notation Designation Value Unit
ρ Density of beam 7900 kg/m3

E Young’s modulus of beam 200 GPa
a Thickness of cross section 0.0020 m
b Width of cross section 0.0203 m
L Length of beam 0.30; 0.40; 0.50 m
m2 Mass of end body 0.978 kg
m0 Mass of beam 0.096; 0.128; 0.160 kg
θC Moment of inertia of end body 0.00028 kgm2

− Size of end body (one block) 0.0187×0.0792×0.0427 m×m×m

Table 4.5: Analytical results for the first natural frequency of the system. The
error columns mean the difference from the measured results that can be seen in
Table 4.1.

Beam
Length Compression Neutral Tension

(m) Results
(Hz)

Error
(%)

Results
(Hz)

Error
(%)

Results
(Hz)

Error
(%)

0.30 2.563 1.99 2.749 1.07 2.923 0.45
0.40 1.559 2.23 1.782 1.83 1.978 1.44
0.50 1.008 3.27 1.271 3.25 1.486 1.78
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Table 4.6: Analytical results of the nonlinear system depending on the rate of the
angular error. The error columns mean the difference from the measured results
that can be seen in Table 4.1.

Beam Length
(m) 0.3 0.4 0.5

Angular error
(◦) 0 10 20 0 10 20 0 10 20

Natural
frequency (Hz) 2.513 2.516 2.527 1.525 1.529 1.545 0.975 0.982 1.005

Error (%) 0 0.12 0.56 0 0.26 1.31 0 0.72 3.08
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Summary

The objective of the thesis was to determine the mechanical behaviour of a
cantilever beam subjected to combined loads such as compression, tension
and torsion. The motivation was the precise calculation of natural frequencies
in case of long boring bars. First of all, it was needed to propose the way how
to investigate the problem in the presence of the applied loads. Two different
cases were separated, the equilibrium approach and the kinetic approach.
The equilibrium approach assumes that the observation is needed to be done
by means of a nontrivial equilibrium configuration in the vicinity of the trivial
equilibrium. In contrast, the kinetic approach is to figure out whether the
small perturbation of the equilibrium configuration results in motion or not.
Since the approaches provided different solutions in case of axial torsion, we
had to introduce a new type of torsion called semi-tangential torsion [30].
It meant the appropriate way to maintain the stability issues by means of
the equilibrium approach, thus the deformation functions using this were
subjected to further investigation.

In course of the task, three dynamical models had been analysed in detail
including compression, tension and torsion. The purpose was to specify the
natural frequencies of the systems by using the theory of lateral stiffness
variation. One of the models brings up a classical topic of beam theory, which
assumes that the displacement ξ in the beam direction might be neglected
because that is a second order function ξ = κη2 of the lateral displacement
η. In terms of vibration theory, the longitudinal lifting of the end point of
the beam causes a variation in the potential function of the system that has
an influence on the natural frequencies. The investigated formula is given by
its power series

κL =
3

5
+

1

175

(
L2P

IE

)
+

1

2625

(
L2P

IE

)2

+ ... ,

that makes up connection between the longitudinal and lateral displacements
of the end of the beam in case of compressive force P .

The question was whether the modification of the potential energy cor-
responds to the stiffness variation of the system under the combined loads
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above. By means of Betti’s Theorem, it can be proved that the work of ex-
ternal loads using the longitudinal displacement equals to the strain energy
function of the system considered only by bending.

Since our investigation is connected to the vibration of boring tools, we
also had to take into account a rotating system. The tool is modelled by a
rotating cantilever beam that is subject to compression and torsion, mani-
fested by semi-tangential torque. The three dimensional model is based on
the linear Euler-Bernoulli beam theory. Finally, we obtained a dimensionless
relationship between the relative importance of rotation, compression, and
torsion that reveals the stability boundaries of the system.

To validate our results related to the potential energy variation of the
beam, an experimental equipment was designed and constructed. As we
could see, the analytical results correspond to the measurement results where
the slight errors might be explained by the asymmetric disposition of the de-
vice that was investigated by a one degree of freedon nonlinear model. Graff
[13] has also examined the dynamics of beams and elaborated on the flexural
waves in thin rods under different types of loads. He dealt with the effects of
prestress in case of a pin-ended column investigating continuum beam with-
out end mass. The development of his models might provide another way to
understand our results.

In conclusion, the importance of our potential energy variation theory
is manifested by the natural frequency calculations of the blades of wind
turbines and long boring tools [16, 17, 19, 10, 11] where large longitudinal
forces might appear. There are many related theoretical, numerical results
and topics in the literature: Bayly et al. [2] investigated the low frequency
vibration in drilling to find agreement with drilling tests in the presence of
large longitudinal cutting forces. Roukema, Altintas [23] and Heisig, Neu-
bert [15] also considered lateral vibration of drilling tools. Park et al. [22]
examined the linear vibration of blades of a wind-turbine to see how to avoid
structural resonance due to significant axial forces caused by rotation.

Keywords: torsion, compression, potential energy, stability
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Összefoglalás

A dolgozat célkitűzése annak a megállapítása volt, hogy egy befogott tartó
hogyan viselkedik összetett terhelés hatására. A vizsgálatokat hosszú fúróru-
dak sajátfrekvenciáinak pontos meghatározása motiválta. A vizsgálat nyomó,
húzó és csavaró terhelésekre terjedt ki. A feladat első lépésében a rendszer
stabilitásának vizsgálatával foglalkoztam, melyre az irodalom két különböző
vizsgálati módszert emel ki: az egyensúlyi, illetve a dinamikai megközelítést
[30]. Az egyensúlyi megközelítés azt feltételezi, hogy a rendszer vizsgálatát
egy, a triviális egyensúlyi helyzetének környezetében megjelenő nem triviális
egyensúlyi helyzet alapján végezzük. Ezzel szemben a dinamikai megközelítés
kis perturbációs módszert használ annak érdekében, hogy kiderítse, hogy az
egyensúlyban lévő rendszer ezen kis perturbáció hatására hogyan viselkedik.
Mivel a két stabilitási elmélet különböző megoldást szolgáltat egy tisztán,
axiálisan csavart befogott rúd esetében, így a csavarás rúdra való átadásá-
nak vizsgálatára volt szükség. A dolgozat az irodalomban fellelhető szemi-
tangenciális nyomatékkal foglalkozott [30] az egyensúlyi módszer alapján.

A feladat során három mechanikai modell részletes vizsgálatával foglalkoz-
tam, ahol megkülönböztetünk nyomó, húzó, csavaró és ezek kombinációiból
adódó terheléseket. A cél annak a meghatározása volt, hogy ezen terhelések
hatására hogyan változik a rendszer sajátfrekvenciája. A vizsgálat itt ugyanc-
sak két részre bontható. Főként a rendszer merevségváltozásával foglalkoz-
tam, de megjelent egy, a rendszer helyzeti energiájának változásával foglalkozó
elmélet is. Ez az elmélet azt feltételezi, hogy egy függőleges helyzetben
álló rúd tengelyére merőleges irányú erő hatására nem csupán erőirányú,
hanem rúdirányú elmozdulás is bekövetkezik. A rúdirányú ξ elmozdulás
és az erőirányú η elmozdulás kapcsolata másodrendű ξ = κη2. Rezgéstani
értelemben a rúd végének függőleges irányú elmozdulása megváltoztatja a
rendszer potenciális energiáját és így befolyásolja annak sajátfrekvenciáját.
Itt κ meghatározása volt a cél laterális és nyomó terhelés hatása alatt. A
vizsgált formula a következő dimenziótlanított MacLaurin-sor formájában
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Chapter 4. Laboratory tests

adható meg
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ahol P a nyomóerőt jelenti. Felmerült a kérdés, hogy a potenciális energia
megváltozása, illetve a rendszer merevségének adott terhelés hatására történő
megváltozása milyen kapcsolatban vannak egymással. A Betti-tétel segít-
ségével bebizonyítottam, hogy a külső erők munkája és a rendszer alakvál-
tozási energiája megegyezik.

Mivel mechanikai modelljeink arra hivatottak, hogy egy fúrószerszámot
modellezzenek, így figyelmet kellett fordítani a rendszer forgására is. A
szer-szám ekkor egy, az Euler-Bernoulli rúdelméleten alapuló, forgó befogott
tartóként volt modellezve, melyre nyomó és csavaró terhelések hatnak. A
rendszer vizsgálata egy dimenziómentes stabilitási térképhez vezetett, mely
kapcsolatot teremt a nyomás, a csavarás és a szögsebesség között.

Annak érdekében, hogy validálni tudjam a rendszer potenciális energiájá-
nak megváltozásához köthető eredményeinket, egy korábban készített kísér-
leti eszköz sajátfrekvenciáit mértem [7]. Az analitikus eredmények jó közelítés-
sel megfeleltek a mért eredményinknek. A tapasztalt kis mértékű eltérések
magyarázataként egy egy szabadsági fokú nemlineáris rendszer vizsgálatá-
val is foglalkoztam, mivel felvetődött, hogy a kísérleti eszköz aszimetrikus
helyzete (kezdeti szöghibája) befolyásolhatja a rendszer sajátfrekvenciáit. Az
irodalomban is fellelhetőek ezzel kapcsolatos kutatások. Graff [13] ugyan-
csak rudak dinamikai viselkedésével foglalkozott és vizsgálta, hogy a hajlító
hullámok hogyan terjednek vékony, különbözően terhelt rudakban.

Összegzésként elmondható, hogy a dolgozatban taglalt téma szoros kap-
csolatban áll turbinalapátok és hosszú fúrószerszámok sajátfrekvenciáinak
meghatározásával [16, 17, 19, 10, 11]. Számos kapcsolódó elméleti és nu-
merikus eredmény is fellelhető az irodalomban, mint például Bayly [2], aki a
fúrás alacsony frekvenciás rezgését vizsgálta mind elméleti, mind pedig gyako-
rlati vonatkozásban. Roukema, Altintas [23] Heisig és Neubert [15] ugyanc-
sak laterális rezgéseket vizsgáltak fúrórudak tekintetében. Park [22] és mások
pedig turbinalapátok lineáris rezgéseivel foglalkozott annak érdekében, hogy
megoldást találjon a rezonancia elkerülésére.
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