
Budapest University of Technology and Economics

Department of Applied Mechanics

Szabolcs Berezvai

Experimental and numerical investigation
of the effects of surface skin layer on the

overall behavior of polymer foams

BSc Thesis

Supervisor: Dr. Attila Kossa, Assistant Professor

Budapest, 2013





 

 

SZAKDOLGOZAT FELADAT (BSc) 

A feladat címe:  Felületi bőrrétegnek az eredő anyagi viselkedésre gyakorolt hatásának 

kísérleti és numerikus vizsgálata polimer hab alapanyag esetén 

A szakdolgozat készítője (kódja): Berezvai Szabolcs (C22N59) 

Alapszak / szakirány: Mechatronikai mérnöki alapszak / Gépészeti modellezés szakirány 

Tanszéki konzulens neve,beosztása: Dr. Kossa Attila, adjunktus 
 munkahely neve, címe: Műszaki Mechanikai Tanszék 
  1111 Budapest, Műegyetem rkp. 5. 

Külső konzulens neve, beosztása: --- 
 munkahely neve, címe: --- 
   

A feladat részletezése: 1. Röviden ismertesse a polimer habok cellastruktúráit, valamint a 
mechanikai terhelés hatására fellépő jellegzetes deformációs jelenségeket. 

 2. Foglalja össze a makroszerkezeti viselkedés modellezésére alkalmas 
hiperelasztikus anyagmodelleket. 

 3. Javasoljon módszert a felületi bőrréteg eltávolítására és készítsen elő 
próbatesteket a mérésekhez. 

 4. Végezzen húzó- és nyomóméréseket az elkészített alapanyagokon és 
értékelje ki a méréssel kapott eredményeket. 

 5. Illessze a méréssel kapott adatokhoz a kiválasztott hiperelasztikus 
anyagmodell paramétereit, valamint készítsen végeselemes analíziseket a 
felületi bőrréteg hatásának vizsgálatára. 

 6. Foglalja össze az eredményeit magyar és angol nyelven. 

Feladat kiadása / beadási határidő: 2013. szeptember 9. / 2013. december 13. 

Záróvizsga tárgyak (kód): 1. Mechatronika (BMEGEFOAMM1, BMEGEFOAMM2) 

 2. Analóg és digitális technika (BMEVIAUA009, BMEVIAUA010) 

 3.  Robotok mechanikája és áramlások numerikus modellezése 
(BMEGEMMAM32, BMEGEÁTAM04) 

Budapest, 2013. szeptember 9. 

 ………………………………………… 
 tanszékvezető 

A feladatot jóváhagyom: 

Budapest, 2013. szeptember 9. 

 ………………………………………… 
 dékán 

Alulírott a feladatkiírás átvételével egyúttal nyilatkozom, hogy a 
szakdolgozat előkövetelményeit maradéktalanul teljesítettem. Ellenkező 
esetben tudomásul veszem, hogy a jelen feladatkiírás érvényét veszti. 
Budapest, 2013. szeptember 9. 

 ………………………………………… 
 hallgató 



 



Contents

1 Introduction 1
1.1 Aim of the work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Mechanical behaviour of elastomeric polymer foams 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Mechanical properties in compression . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Linear elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Non-linear elasticity and densification . . . . . . . . . . . . . . . . . . . . . 9

2.3 Mechanical properties in tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Measurements 11
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Compression tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 Description of the test, geometry of specimens . . . . . . . . . . . . . . . . 14
3.2.2 Machine direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.3 Non-machine direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.4 Thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Tensile tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.1 Description of the test, geometry of specimens . . . . . . . . . . . . . . . . 24
3.3.2 Machine direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.3 Non-machine direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Results of measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Hyperelastic model fitting 33
4.1 Introduction, theoretical summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Ogden–Stor̊akers compressible hyperelastic model . . . . . . . . . . . . . . . . . . 34

4.2.1 Description of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.2 Solutions for homogenous deformations . . . . . . . . . . . . . . . . . . . . 35

4.3 Determination of material parameters . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3.2 Relation of stretches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.3 Correction factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3.4 Procedure of fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3.5.1 Compression - Machine direction . . . . . . . . . . . . . . . . . . 40
4.3.5.2 Compression - Non-machine direction . . . . . . . . . . . . . . . . 42

i



CONTENTS

4.3.5.3 Compression - Thickness . . . . . . . . . . . . . . . . . . . . . . . 43
4.3.5.4 Tension - Machine direction . . . . . . . . . . . . . . . . . . . . . 45
4.3.5.5 Tension - Non-machine direction . . . . . . . . . . . . . . . . . . 46

4.3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Finite element analysis 49
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 Simulation of the experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.3 Results of simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.3.1 Compression - Machine direction . . . . . . . . . . . . . . . . . . . . . . . 51
5.3.2 Compression - Non-machine direction . . . . . . . . . . . . . . . . . . . . . 52
5.3.3 Compression - Thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3.4 Tension - Machine direction . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.3.5 Tension - Non-machine direction . . . . . . . . . . . . . . . . . . . . . . . . 54

5.4 Evaluation of simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6 Summary of results 57
6.1 Summary in English . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
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1
Introduction

1.1 Aim of the work

Nowadays, polymer foams are widely applied cellular materials in the field of industry, used
primary in packaging. In this application, the polymer foam should absorb all kinetic energy of
the impact, protecting the product inside. The applications require the complete understanding
of the mechanical behaviour of the foam, which is affected by the so-called surface skin layer. [10]
[15] [20]

The skin layer is a thick layer on the surface of the polymer foam created unwittingly during
the manufacturing. In this layer the material properties change, become inhomogeneous therefore
it affects the mechanical behaviour of the foam.

The goal of the thesis is to investigate this effect by experimental and numerical methods, in
order to understand the material behaviour of polymer foams. Firstly a series of tensile and com-
pression test will be executed on specimens of a specific polyethylene foam, in order to determine
the difference of mechanical behaviour between specimens containing and non-containing the skin
layer.

After, a proper hyperelastic model (Ogden–Stor̊akers compressible hyperelastic model) will be
fitted to the stress-stretch characteristics. Having found the coefficiens based on the measurement
data of our polyethylene foam, we will receive an adequate material model for numerical methods.

Additionally, the measurements will be simulated by finite element analysis in order to compare
the results received by the tests and by applying the fitted material model.
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CHAPTER 1. INTRODUCTION

1.2 Outline of the thesis

The structure of the BSc thesis based on the aims of the work contains 6 chapters, including the
chapter of introduction (Chapter 1 ), where the goals, the structure and the applied notations are
presented.

In Chapter 2, the summary of the mechanical behaviour of polymer foams can be found.
This chapter is based on the following piece of scientific literature: Lorna J. Gibson and Michael
F. Ashby: Cellular solids: structure and properties (1997) [10]. The summary represents the
basic structures of polymer foams used for describing the characteristic of deformation in case of
compression and tension. The material properties, required for determine the exact mechanical
behaviour, are also provided in case of all structure types.

After, in Chapter 3, the measurements executed on our specific polyethylene foam are pre-
sented, which goal is to investigate the effect of the skin layer. Compression and tensile tests
were executed on 4-4 specimens per each direction with and without layer based on the proper
International (ISO)[7] and the American (ASTM) standards [9], [8]. The geometry of specimens,
the parameters of test, the evaluation and the results are also represented in this chapter, which
shows the effect of skin layer by measurements.

Chapter 4 provides the theory of hyperelasticity based on the literature of continuum thesis
Issam Dorghi: Mechanics of Deformable Solids (2000) [5]; Allan F. Bower: Applied mechanics
of solids (2010) [3] and EA. de Souza Neto et al.: Computational methods for plasticity: theory
and application (2008)[4]. Firstly the theoretical summary of hyperelastic models and the most
commonly used model for compressible foams, the Ogden–Stor̊akers model are presented [11] .
The aim of this chapter is to fit this material model to our measured and video-processed data,
thus creating the hyperelastic description of the mechanical behaviour in all directions.

In Chapter 5, the fitted hyperelastic model is applied in finite element analysis (in ANSYS )
in order to investigate numerically the behaviour of the fitted material model and to compare it
with the measured data.

In the end, in Chapter 6, the summary of the results and the conclusion are peresented in
English and Hungarian as well.

The thesis also contains an Appendix in which the Wolfram Mathematica [18] notebooks, used
for post-processing the measurement data, are presented.

2



1.3. NOMENCLATURE

1.3 Nomenclature

Latin letters

A0 Area of the initial cross-section
b Left Cauchy-Green deformation tensor
b Initial thickness of specimens
C Right Cauchy-Green deformation tensor
C Numeric constant
c Correction factor
e Error of model fitting
E Elastic (Young’s) modulus
F Deformation gradient
F Load
G Shear modulus
H0 Initial separation of the Test System
I Second moment area with respect to the axis of bending
I1, I2, I3 Principal invariants of C and b

J Volume ratio (determinant of F )
l Representative length of polymer cell
L0 Inital compression or tension length of specimens
n

(a) Unit eigenvectors of the left Cauchy-Green deformation tensor
p Pressure
P 1st Piola-Kirchhoff stress (engineering stress or nominal stress in 1D)
P 1st Piola-Kirchhoff stress tensor
t Wide of the cell edge
v Speed of crosshead
V Representative volume of cell
w Width of specimens
W Elastic potential measured per unit reference volume

Greek letters

αi, βi, µi Material parameters of the Ogden–Stor̊akers model
γ Shear-strain
δ Linear-elastic deflection
ε Engineering strain
ε̇ Engineering strain rate
λ Stretch
ν Poisson’s ratio
ρ Density
σ Cauchy-stress in 1D
σ Cauchy stress tensor
τ Shear stress
τA Principal Kirchhoff stress (A = 1, 2, 3)
τ Kirchhoff stress tensor
ψ Elastic potencial measured per unit mass

3





2
Mechanical behaviour of elastomeric polymer

foams

The following theoretical summary is based on the book, titled Cellular solids: Structure and

properties by Lorna J. Gibson & Michael F. Ashby, Cambridge University Press, 1997 [10].

2.1 Introduction

The usage of polymer foams can strongly depend on its mechanical behaviour, even when the
primary use is not mechanical. Therefore understanding the mechanics of foams is highly required.
Mechanical properties of a foam are related to its structure (open or closed) and the following
material properties of the cell: relative density (ρ∗/ρs), density of the cellular material (ρs),
Young’s modulus of the cellular material (Es) and the yield strength (σs).

E
*

σ el

*

εd

ε

σ

linear

elasticity

plateau

densification

non-linerar

elasticity

Figure 2.1: Stress-strain curve of elastomeric polymer foams

The deformation mechanisms in an elastomeric polymer foam can be analysed by the stress-
strain curve, which is shown in Figure 2.1. The deformation can be divided into two parts:
compression and tension. In case of compression the curve shows linear elasticity at low stresses,
this is followed by a long collapse plateau and finally by the regime of densification. The linear

5



CHAPTER 2. MECHANICAL BEHAVIOUR OF ELASTOMERIC POLYMER FOAMS

elasticity is caused by cell-wall bending, plus cell-face stretching if the cells are closed. The plateau
is associated with the collapse of cells, in case of elastomeric foams it means elastic buckling. At
the densification, due to the collapse, cell walls touch each other and the cellular solid itself starts
to compress. When the loading is tensile, similarly to the compression part at low stresses linear
elasticity can be observed, after it the stress-strain curve becomes non-linear due to the increasing
stiffness caused by the rotation of cell edges towards the tensile axis, while it fractures.

2.2 Mechanical properties in compression

2.2.1 Linear elasticity

The linear behaviour of an elastomeric foam can be described by a couple of moduli. In case
of isotropic foams two moduli are required, which are chosen from: the Young’s modulus (E∗),
the shear modulus (G∗) and the Poisson’s ratio (ν∗). In order to give the proper expressions for
the moduli in demand, the structure of the cells should be determined, because the mechanism
depends on whether they are open or closed. In case of open-cells, besides the cell-wall bending,
deformation mechanism can be described by the axial deformation of cell-walls and the fluid flow
between the cells. Although, when cells are closed cell-wall bending, edge contraction, membrane
stretching and the pressure of the enclosed gas contributes the linear elastic response. These
mechanisms are presented in Figure 2.2.

edge contraction,

membrane stretching
cell-wall bending edge contraction fluid flow

F, δ

F, δ

F, δ F, δ

F, δ F, δ

F, δ

F, δ

F, δ

F, δ

F, δ

F, δ

cell-wall bending
gas pressure

Open-cell Closed cell

Figure 2.2: The mechanisms of deformation

Open cells
An open-cell foam can be modelled as a cubic array of members with a length (l) and a square

cross-section of side (t). The relative density of the cell (ρ∗/ρs) and the second moment area of a
member (I) are related to the following geometrical dimensions:

ρ∗

ρs
≈

(

t

l

)2

; I ≈ t4. (2.1)

In order to calculate the Young’s modulus of the foam (E∗), the linear-elastic deflection (δ) of a
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2.2. MECHANICAL PROPERTIES IN COMPRESSION

l

t

t

cell edge

Figure 2.3: The cubic array model for open-cells

beam of length (l) loaded at the midpoint by a load (F ) should be determined. According to the
standard beam theory

δ =
F l3

EsI
, (2.2)

where the force, (F ) is related to the remote compressive stress (σ), whereas deflection (δ) is
expressed as the function of strain (ε) using the cubic symmetry: F = σl2; δ = εl.

Therefore, the Young’s modulus of the foam (E∗) can be determined:

E∗ =
σ

ε
=
C1EsI

l4
. (2.3)

After replacing the relative density (ρ∗/ρs) and the second moment area of a member (I), we get

E∗

Es

= C1

(

ρ∗

ρs

)2

, (2.4)

where C1 is the constant including all geometrical constants. In case of another equiaxed cell
shape only this constant changes. As an adequate approximation, C1 = 1 is usually taken.

The shear modulus (G∗) can be calculated similarly. If a shear stress (τ) is applied, the cell
members will bend again and the bending deflection (δ) will be the same as at the compressive load.
The shearing stress (τ) and strain (γ) can be calculated from the following formulas: F = τl2;
δ = γl.

Therefore the shear modulus can be determined the following way:

G∗ =
τ

ε
=
C2EsI

l4
, (2.5)

from which, replacing the relative density (ρ∗/ρs) and the second moment area of a member (I);

G∗

Es

= C2

(

ρ∗

ρs

)2

, (2.6)
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CHAPTER 2. MECHANICAL BEHAVIOUR OF ELASTOMERIC POLYMER FOAMS

l

te

tf

cell edge

Figure 2.4: The cubic array model for closed-cells

where C2 is the constant of the geometry and in case of proper approximation: C2 = 3/8.
The last of the moduli, the Poisson’s ratio (ν∗) in case of linear-elastic and isotropic material

gives the connection between the Young’s and the shearing moduli

G∗ =
E∗

2(1 + ν∗)
. (2.7)

From which expressing the Poisson’s ratio (ν∗):

ν∗ =
C1

2C2
− 1. (2.8)

As it is shown the Poisson’s ratio is constant, solely a function of cell geometry and independent
of density. In case of approximation: C1 = 1 and C2 = 3/8, thus ν∗ = 1/3.

Closed cells
Closed cells polymer foams, which have a substantial fraction of solid in the cell faces, can be

modelled as a cube, in which a fraction (φ) of solid is contained in the cell edges, with a thickness
(te); and the remaining (1 − φ) fraction is in the cell-faces with the thickness tf . These moduli
required for describing the linear elasticity of closed cells are the same as the case of open cells
(E∗, G∗, ν∗). The moduli can be expressed as the sum of the three mechanisms undergoing in
closed cells: cell bending, membrane stretching and gas pressure. The Young’s modulus of cell
bending and membrane stretching can be determined from the work done against them 1

2
Fδ,

which is proportional to

1

2
Fδ = α

EsIδ
2

l3
+ βEsδ

2tf , (2.9)

where α and β are constants. Because of I ≈ t4e and E∗
≈ (F/l2)/(δ/l):

E∗

Es

= α′
t4e
l4

+ β ′
tf
l
. (2.10)

8



2.2. MECHANICAL PROPERTIES IN COMPRESSION

The required formula of E∗ (expressed in the function of relative density) can be related to
this equation

E∗

bend

Es

= C1φ
2

(

ρ∗

ρs

)2

+ C1(1− φ)
ρ∗

ρs
, (2.11)

where C1 and C ′

1 are geometric constants, which can be approximated by C1 = C ′

1 = 1.
The contriubution to Young’s modulus by the pressure of enclosed gas (p) is the result of the

cell volume decrease (from V0 to V ) caused by the compression

V

V0
= 1− ε(1− 2υ∗). (2.12)

The volume of the enclosed gas (Vg) does not contain the volume of cell edge and faces, thus

Vg
Vg0

=
1− ε(1− 2υ∗)− ρ∗

ρs

1− ρ∗

ρs

. (2.13)

According to Boyle’s law (pVg = p0Vg0), where p is the pressure of the gas inside, the pressure
overcome by the compressive stress is p′ = p − p0. Therefore the contribution of gas pressure to
the Young’s modulus is

E∗

g =
dp′

dε
=

d

(

p0ε(1−2υ∗)

1−ε(1−2υ∗)− ρ∗

ρs

)

dε
=
p0(1− 2υ∗)

1− ρ∗

ρs

. (2.14)

Now, the Young’s modulus can be expressed as the sum of the expressions (Eqn. 2.11 and
2.14) listed above and using the recommended constant values (C1 = C ′

1 = 1):

E∗

Es

= φ2

(

ρ∗

ρs

)2

+ (1− φ)
ρ∗

ρs
+
p0(1− 2υ∗)

Es(1−
ρ∗

ρs
)
. (2.15)

The shear modulus besides cell bending depends on cell-face stretching, which leads us to

G∗

Es

= C2

(

ρ∗

ρs

)2

+ C ′

2(1− φ)
ρ∗

ρs
, (2.16)

where C2 and C ′

2 are geometric constants, which can be approximated by C2 = C ′

2 = 3/8.
The Possion’s ratio similarly to open-cells is the ratio of the two strains, therefore it depends

only on the geometry, but not on the relative density. So it can be approximated again by ν∗ = 1/3.

2.2.2 Non-linear elasticity and densification

The compression of elastomeric foams shows linear elasticity typically until 5% of strain. At larger
strains when the bending turns into buckling, the polymer foam remains elastic, but the stress-
strain curve becomes non-linear. At the specific elastic collapse stress (σ∗

el) a collapse plateau can
be observed.

In case of open-cells, σ∗

el can be determined from the critical load, which is according to the
Euler-formula,

Fcrit =
n2π2EsI

l2
. (2.17)

9



CHAPTER 2. MECHANICAL BEHAVIOUR OF ELASTOMERIC POLYMER FOAMS

The factor n is the number of constraints at the end of the cell edges. The collapse stress σ∗

el is
proportional to

σ∗

el ≈
Fcrit

l2
≈
EsI

l4
. (2.18)

Substituting the correspondences in Eqn. 2.1, the elastic collapse stress can be expressed as
the function of relative density

σ∗

el

Es

= C4

(

ρ∗

ρs

)2

, (2.19)

where C4 is the constant of the geometry, with the usual value: C4 = 0.05. If the relative density
is higher (ρ∗/ρs > 0.3) a density correction is added to the formula above

σ∗

el

Es

= C4

(

ρ∗

ρs

)2
(

1 +

(

ρ∗

ρs

)
1

2

)2

. (2.20)

In this case the constant can be approximated by C4 = 0.03.
When the structure is closed, the additional stress by the enclosed gas pressure rises the collapse

stress, if the initial pressure of the fluid (p0) is higher than the atmospheric pressure (pat). In case
of man-made foams p0 is usually equal to pat so the gas do not has a considerable effect on σ∗

el,
thus the formulas for open-cell (Eqn. 2.19 and 2.20) is valid for closed-cells as well.

After the collapse, the plateau is horizontal when the cell is open. Although having a closed
cell foam, the plateau rises due to the enclosed gas, which creates a restoring pressure (p′), which
was determined in Eqn. 2.14. In this case ν∗ ≈ 0, so the curve of the plateau can be expressed as

σ∗

Es

= 0.05

(

ρ∗

ρs

)2

+
p0ε

Es(1− ε− ρ∗

ρs
)
. (2.21)

The last part of the stress-strain curve is the densification, which is described by the limiting
strain (εd). Above this strain the cell-faces compress each other, and the rise stress-strain curve
tends to Es. The value of the limiting strain was determined experimentally as

εd = 1− 1.4

(

ρ∗

ρs

)

. (2.22)

2.3 Mechanical properties in tension

Similarly to compression the tensile stress-strain curve can be divided to a linear elastic and a
non-linear part. When the strain is small (ε < 5%) the foam shows linear elasticity, which can be
described with the same set of moduli as in case of compression. Even the mechanisms are the
same (bending, face stretching, enclosed gas pressure), so the same formulas (2.4, 2.6 and 2.15,
2.16) are valid for open-cell and closed cell tension.

At larger strains the stiffness of elastomeric foams increases and the stress-strain curve becomes
non-linear. In this case the cell edges originally lying at an angle to the tensile axis rotates
towards it, which decreases the moment of bending. Thus bending is replaced by stretching as
the dominating mechanism of the deformation. This non-linear behaviour for uniaxial tension is
described by the formula

σ∗

Es

= 1.1

(

ρ∗

ρs

)2

ε+ 3.74

(

ρ∗

ρs

)3

ε2 + 0.0343

(

ρ∗

ρs

)

ε3. (2.23)

10



3
Measurements

3.1 Introduction

The aim of the thesis is to investigate the effect of surface skin layer on the mechanical behaviour.
The mechanisms presented in Chapter 2 only describe the behaviour in case of homogenous
material properties. Nevertheless, due to the manufacturing circumstances all polymer foam
contains a surface skin layer, which results in an inhomogeneous material structure (Figure 3.1).

Original

thickness

Thickness

without

skin-layer

Original surface Surface without skin layer

Figure 3.1: The skin layer of polymer foams

In order to determine the effect of skin layer, mechanical tests have been executed on a specific
polyethylene closed-cell polymer foam, whose material properties are contained in the following
table (Table 3.1).

11
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Material Polyethylene
Density of the cellular material (ρs) 922 kg/m3

Density of the foam (ρ∗) 40.521 kg/m3

Realtive density (ρ∗/ρs) 0.043949
Thickness 13 mm

Table 3.1: Material properties of the tested polymer foam

The goal of tests is to determine the stress-strain curves of the polymer foam in all directions
with and without the surface skin layer in case of uniaxial load, thus the effect of it can be
determined by analysing the curves. The directions are indexed according to the manufacturing
directions:

• Machine direction (MD)

• Non-machine direction (NMD)

• Thickness (T)

As the whole stress-strain curve cannot be measured at once, necessarily the tensile and com-
pression part of it have been determined separately by tensile and compression tests. In order to
measure the mechanical properties of the foam without skin layer, all tests needed to be executed
with skin-layer-free specimens as well. Therefore the experimental investigation was set up by the
following tests, which are denoted by the codes in bracket:

1. Compression test (C)

(a) Machine direction with layer (C-MD)

(b) Machine direction without layer (C-MD-WL)

(c) Non-machine direction with layer (C-NMD)

(d) Non-machine direction without layer (C-NMD-WL)

(e) Thickness with layer (C-T)

(f) Thickness without layer (C-T-WL)

2. Tensile test (T)

(a) Machine direction with layer (T-MD)

(b) Machine direction without layer (T-MD-WL)

(c) Non-machine direction with layer (T-NMD)

(d) Non-machine direction without layer (T-NMD-WL)

The skin-layer-free specimens could be created by removing an approximately 1.7 mm thick
skin-layer from both sides of the foam (see Figure 3.1). Towards that, a slicer device has been
designed and produced according to the recommendation of the D-3576 98 standard of the Amer-
ican Society for Testing and Materials (ASTM) [9]. The slice of skin layer was removed by a
commercial cutting blade moving on a specific sliding assembly (Figure 3.2), while the specimen
was placed between the sliding assembly, which fixes the position of the specimen. The thickness

12
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of the sliced skin layer could be adjusted by putting the required amount of slip of paper under
the specimens.

Figure 3.2: The slicer device for removing surface skin layer

The tensile and compression tests have been executed in the laboratory of the Department of
Applied Mechanics of BME, on an INSTRON 3345 Single Column Universal Testing System for
Low-force.

In order to receive a comparable result for all tests, the speed of deformation (ε̇) should be
equal in all cases. The deformation speed can be determined by

ε̇ =
v

L0
, (3.1)

where v is the speed of the crosshead, L0 is the initial length. Due to having an adequately slow
deformation, the value of ε̇ was chosen for

ε̇ = 0, 015
1

s
= 0, 9

1

min
. (3.2)

Therefore the crosshead speed of each tests was determined as

v = 0.9L0. (3.3)

During the measurements, the Testing System recorded the load (F ) and the displacement
(∆L). Simultaneously, the cross-direction stretches (λ2, λ3) were recorded using a full-HD camera
and evaluated by further image processing.

Figure 3.3: The Testing System and the measurement layout
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3.2 Compression tests

3.2.1 Description of the test, geometry of specimens

When the mechanical test is compression, a compression platen system should be fixed to the
Testing System, which compresses the specimens placed on the lower platen. The initial separation
(Figure 3.4) of platens is H0, and the compressive length of specimens is L0. After starting the
test the higher platen moves with constant velocity, which was adjusted according to Eqn. (3.2)
and (3.3). The test stops, when the the platens are very close to each other, or when F reaches a
critical value (3000 N).

Compression

platens Specimen H0L0

Figure 3.4: The layout of compression test

Specimens
The geometry of specimens used in compression test is based on the recommendation of ISO-

3386-1 standard of the International Organization for Standardization (ISO) [7]. According to
the standard the specimen is required to be right parallelepiped with a minimum width/thickness
ratio of 2:1. The optimal thickness is 50 mm, although having a thinner sheet of foam, specimens
can be plied together. Besides, the area of specimen should be as big as possible, but it should
not overlap the compression platen. In our case the diameter of the compression platen is 57 mm,
so the maximum width of the specimen is approximately 40 mm.

• Machine direction (MD)

In order to avoid the buckling of the specimen, three of them were fixed next to each other,
therefore the area became square. Naturally when the specimen is skin-layer-free, the width
of the thickness direction is less.

T

MD

NMD

L

b

w

Figure 3.5: Geometry of specimens for MD compression

After cutting and fixing the specimens, the final dimensions of each specimens have been
measured, which is enclosed in Table 3.2.
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Code L [mm] w [mm] b [mm] A [mm2]

C-MD-01 18 35.8 39 1396.2
C-MD-02 19.6 36.5 39 1423.5
C-MD-03 20.3 38.5 39 1501.5
C-MD-04 19.5 38 39 1482
C-MD-05 19.7 37 39 1443
C-MD-06 18.5 37 39 1443

C-MD-WL-07 19.6 38.5 24.5 943.3
C-MD-WL-08 19.1 39.5 23.1 912.5
C-MD-WL-09 19.4 37.5 24.6 922.5
C-MD-WL-10 18.8 36.5 25.1 916.2
C-MD-WL-11 19.7 37 23.5 869.5
C-MD-WL-12 19.3 36.5 24.5 894.3

Table 3.2: Dimensions of specimens for MD compression

• Non-machine direction (NMD)

The geometry of specimens is similar to machine direction’s and test pieces were fixed next
to each other as well. The geometrical structure and data of NMD specimens are displayed
in Figure 3.6 and Table 3.3.

TMD

NMD

L

b

w

Figure 3.6: Geometry of specimens for NMD compression

Code L [mm] w [mm] b [mm] [mm2]

C-NMD-01 18.5 37.5 39 1462.5
C-NMD-02 19.5 37.5 39 1462.5
C-NMD-03 18.5 38 39 1482
C-NMD-04 20.4 37.5 39 1462.5
C-NMD-05 19.6 36 39 1404
C-NMD-06 19.7 38 39 1482

C-NMD-WL-07 18.5 38 24.5 931
C-NMD-WL-08 21.8 36.5 25.4 927.1
C-NMD-WL-09 19.2 37.5 25.1 941.3
C-NMD-WL-10 18.8 36.5 25.7 938.1
C-NMD-WL-11 18.5 37.5 25.4 952.5
C-NMD-WL-12 18.9 37 24.6 910.2

Table 3.3: Dimensions of specimens for NMD compression
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• Thickness

When the direction of compression is thickness, the basis of specimen is a square (39× 39).
Purposely having a more optimal specimen, three specimens were plied together, so finally
a cubic test piece was received.

T

MD
NMD

w

b

L

Figure 3.7: Geometry of specimen for thickness compression

Code L [mm] w [mm] b [mm] A [mm2]

C-T-01 39 38 37 1406
C-T-02 39 38 39.5 1501
C-T-03 39 39 38.5 1501.5
C-T-04 39 39 38 1482
C-T-05 39 37.5 37,5 1406.3
C-T-06 39 36.5 38 1387

C-T-WL-07 23.6 38.5 38 1463
C-T-WL-08 23.2 39 38.5 1501.5
C-T-WL-09 23.4 39.5 38.5 1520.8
C-T-WL-10 23.8 38 39.5 1501
C-T-WL-11 23.8 38 36.5 1387
C-T-WL-12 23.9 38.5 38.5 1482.3

Table 3.4: Dimensions of specimens for thickness compression

Hereafter the indices of the directions are the following:

1. - longitudinal (compression) direction (L)

2. - cross-direction of width (w)

3. - cross-direction of length (b)

Evaluation
The process of evaluation was done in Wolfram Mathematica 7 [18] and Microsoft Excel 2010

[14]. The Mathematica notebooks are enclosed in the Appendix. As a result of the compression
test, the load-displacement (F −∆L) diagram and the video of the cross-direction stretches were
given. Firstly, the starting point of the compression curve should be found, where the higher
platen touches the specimen. It can be determined by a minimal limit of load (F0 < 0.5 N),
because before that point the higher platen do not touches the specimen, so the load is zero. The
point, when the load reaches 0.5 N should be the starting point (L1), the previous part of the
curve should be dropped. From the starting point the accurate compression length (L0) of the
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specimen could be determined as L0 = H0 − L1 (Figure 3.4). Due to the specimen plying, the
initial part of the linearly elastic period is non-linear, so an inflection point can be observed on
the stress-strain curve. This inflection point was detected by the local extreme value of the first
derivation of the curve. The initial non-linear region before the inflection point was replaced by
a linear session (Figure 3.8). From the processed (F −∆L) curve the stress-stretch characteristic
(P1 − λ1) can be determined. The stress is given in the so-called engineering-stress (P ) form

P1 =
F

A0

, (3.4)

which means that the load (F ) applied to the specimen is divided by the initial cross-sectional
area of the specimen (A0). The stretch was determined by

λ1 =
∆L+ L0

L0
=

∆L

L0
+ 1. (3.5)

After having the stress-stretch characteristics of the specimens with and without skin layer,
the effect of the layer could be demonstrated by comparing the mean of the curves in both cases.

ΔL

F

ΔL

F

ΔL

F

L1

Figure 3.8: The post-processing of compression test results

The cross-direction stretches (λ2, λ3) were determined by cropping a small slice of the video
(Figure 3.9), showing the side of the test piece, which underwent video processing in VirtualDub

[12], a freeware video editor by using ”treshhold” filter. As a result, a black and white video
was received, where the specimen is white and the environment is black. The area of the white
part divided by the white area of the first frame gives an averaged cross-direction stretch over the
sides of the specimens in every frame. The calculations were completed in MatLab [13]. After
converting the number of frames into time (frame rate of the camera is 23.976 frame/sec) the
cross-direction stretches can be determined in terms of the longitudinal stretch.

Figure 3.9: The process of creating black and white picture from the video of compression tests

At the end of the evaluation of measured data in case of compression test, the following results
were received for of all directions:
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• stress-stretch characteristic (P1 − λ1) with and without layer,

• comparison of stress-stretch characteristic (P1 − λ1),

• the cross-direction stretches in terms of the longitudinal stretch (λ1 − λ2) and (λ1 − λ3).

3.2.2 Machine direction

The compression test in machine direction was executed on 4 − 4 specimens with and without
skin layer, respectively (Figure 3.10). The parameters of the test are listed in Table 3.5. During
the test, in order to determine the relation of longitudinal and cross-direction stretches, one side
of the specimen was video-recorded, so we received the series of data of each cross-directions at
each type of specimens.

H0 29 mm
L0 ∼ 23.5 mm
v 21.15 mm/min

Table 3.5: Parameters of C-MD tests

Figure 3.10: The process of machine direction compression

The post-processed stress-stretch curves (P1 − λ1) of the specimens with and without skin
layer are displayed in Figures 3.11 and 3.12. As it is seen, the trend of the curves is similar, all
the regimes described in Chapter 2 (linear elasticity, collapse plateau and densification) can be
observed.

Figure 3.11: The stress-stretch curve of C-MD specimens
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Figure 3.12: The stress-stretch curve of C-MD-WL specimens

By comparing the mean of the stress-stretch curves of all types, the effect of skin layer is
visualized (Figure 3.13). In case of layer-free specimens, the stresses are lower, which means that,
the polymer foam without skin layer is more compressible and more flexible. The initial slope is
smaller, because the foam became more flexible.

Figure 3.13: The comparison of C-MD specimens’ stress-stretch curve with and without layer

The relation of stretches contains lot of disturbance, caused by the error of the video-processing
and the geometrical inaccuracy of specimens (Figures 3.14 and 3.15). However, the tendency,
especially at higher stretches (λ1 < 0.5), shows that during the compression the cross-direction
stretches increases.

Figure 3.14: The relation between stretches (λ1, λ2) of C-MD specimens with and without layer
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Figure 3.15: The relation between stretches (λ1, λ3) of C-MD specimens with and without layer

3.2.3 Non-machine direction

The execution of non-machine direction compression test was similar to the MD test, we used the
same parameters (Table 3.6 ) and number of specimens (Figure 3.16). The results (Figures 3.17,
3.18, 3.19, 3.20 and 3.21) became really similar as well, but unfortunately the relation of stretches
contains much more disturbance.

H0 29 mm
L0 ∼ 23.5 mm
v 21.15 mm/min

Table 3.6: Parameters of C-NMD tests

Figure 3.16: The process of non-machine direction compression

Figure 3.17: The stress-stretch curve of C-NMD specimens
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Figure 3.18: The stress-stretch curve of C-NMD-WL specimens

Figure 3.19: The comparison of C-NMD specimens’ stress-stretch curve with and without layer

Figure 3.20: The relation between stretches (λ1, λ2) of C-NMD specimens with and without layer
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Figure 3.21: The relation between stretches (λ1, λ3) of C-NMD specimens with and without layer

3.2.4 Thickness

When the direction of compression is thickness, the compression length of specimens with and
without layer is different, so the parameters of the test depend on the type of specimen. (Table
3.7). In this case we used 4 specimens per each type as well.

With layer (C-T) Without layer (C-T-WL)
H0 42 mm H0 29 mm
L0 ∼ 39 mm L0 ∼ 23.5 mm
v 35.1 mm/min v 21.15 mm/min

Table 3.7: Parameters of C-T tests

Figure 3.22: The process of thickness direction compression

The results (Figures 3.23, 3.24, 3.25 and 3.26) show again, that the layer-free specimens are
more compressible and more flexible, although the difference between the two types is smaller.
Because of the geometry of specimens in this case the two cross-direction stretches are considered
to be equal (λ2 = λ3), therefore only one cross-direction stretch (λ2) was measured.
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Figure 3.23: The stress-stretch curve of C-T specimens

Figure 3.24: The stress-stretch curve of C-T-WL specimens

Figure 3.25: The comparison of C-T specimens’ stress-stretch curve with and without layer

23



CHAPTER 3. MEASUREMENTS

Figure 3.26: The relation between stretches (λ1, λ2) of C-T specimens with and without layer

3.2.5 Summary

As the result of compression test shows, the surface skin layer of the polymer foam makes it a
bit less compressible and at the initial part less flexible. This can be explained by the increase of
relative density (ρ∗/ρs) in the skin layer. All material properties described in Chapter 2, can be
expressed in term of relative density, which leads to the increase of the elasctic modulus (E∗), the
elastic collapse stress (σ∗

el) and the gradient of the plateau (Eqn. 2.15, 2.19 and 2.21).
Besides, it can be observed that, the skin layer has bigger effects on the behaviour of com-

pression in case of machine and non-machine directions. In these cases the longitudinal direction
is parallel with the skin layer, therefore changes the properties of cell-wall buckling. When the
compression direction is thickness, the skin layer is perpendicular to the longitudinal direction, so
the effect is less considerable.

3.3 Tensile tests

3.3.1 Description of the test, geometry of specimens

After the compression part of the stress-strain characteristic had been determined, tensile tests
were executed. In this case, screw side action grips should have been placed in the Testing System,
which fixed the specimens. The layout of the tensile measurement and the initial separation (H0)
are shown in Figure 3.27. When the test starts, the top grip starts to move with constant velocity
according to Eqn. (3.2). The test stops when the specimen fractures, which is detected by the
fall of the load.

Tensile

grips Specimen H0

Figure 3.27: The layout of tensile test
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Specimens
The geometry of specimens are based on the recommendation on tension specimens of D 3574 03

standard of the American Society for Testing and Materials (ASTM) [8]. The geometry was
enlarged proportionately in order to fit into the slicer device (Figure 3.28).

The specimens were cut by laser at the Department of Machine and Product Design at BME by
the help of János Szücs (laboratory engineer at the Department of Machine and Product Design),
which is highly appreciated. The laser cut was based on the CAD sketch of the specimens.

L

w1
w2

L0

b

Figure 3.28: The geometry of tensile specimen

L 200 mm
w1 39 mm
w2 19 mm
L0 55 mm

Thickness 13 mm
Thickness (without layer) 9.5 mm

A0 247 mm2

A0 (without layer) 180.5 mm2

Table 3.8: Dimensions of tensile test specimen

Hereafter the indices of the directions are the following:

1. - longitudinal (compression) direction (L)

2. - cross-direction of width (w)

3. - cross-direction of thickness (b)

Evaluation
As a result of the tensile test the load (F ) – displacement (∆L) diagram was received from the

Testing System. This data was post-processed in Wolfram Mathematica [18] and Excel 2010 [14].
The Mathematica notebooks are enclosed in the Appendix. The initial load (F0) was subtracted,
so the curve starts from 0 N. After the maximum load was determined, all further measurement
points were eliminated. From (F − ∆L) curve the stress-stretch (P1 − λ1) curve for tensile was
determined according to the expressions in Eqn. 3.4 and 3.5. The effect of skin layer in case
of tension was demonstrated again by comparing the mean of the stress-stretch curves with and
without skin layer.
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ΔL

F

ΔL

F

ΔL

F

F0

Figure 3.29: The post-processing of tensile test results

The tests were recorded again, so the cross-direction stretches (λ2, λ3) in case of all type of
specimens could be determined by video processing. Similarly to the compression test, the video
was converted to black-and-white in VirtualDub [12] (Figure 3.30), and the stretch was given
by the ratio of the actual and the initial area of the white part in every frame in MatLab [13].
Therefore the cross-direction stretches could be defined in the terms of the longitudinal stretch
(λ1 − λ2, λ1 − λ3).

Figure 3.30: The process of creating black and white picture from the video of tensile tests

L

w1

L0

markers

Figure 3.31: Tensile test specimens with markers

Besides, on some specimens markers were placed (Figure 3.31). Thus, during the video pro-
cessing the longitudinal stretch (λ1) could be determined independently to the testing machine.
Firstly the distance of edges of the grips was tracked in Adobe AfterEffects [21], which should
give the same results for longitudinal stretch as the Test System. Secondly, the markers were
tracked, which gives the accurate stretch of the gauge length, reducing the effect of the shoulders,
which can cause errors during the hyperelastic model fitting. After the analysis of the longitudinal
stretch from the crosshead (λCH) and the stretch calculated from markers (λM) a correction factor
(c) could be determined. The calculation of the correction factor can be found in Chapter 4.

At the end of the evaluation of measured data, the following results were received in case of
all directions:
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• stress-stretch characteristic (P1 − λ1) with and without layer,

• comparison of stress-stretch characteristic (P1 − λ1),

• the cross-direction stretches in terms of the longitudinal stretch (λ1 − λ2) and (λ1 − λ3),

3.3.2 Machine direction

During the tensile machine direction test 4−4 specimens were used with and without layer as well
(Figure 3.32). The parameters of the test are displayed in Table 3.9. Similarly to compression test
the sides of the specimens were video recorded in order to determine the relation of longitudinal
stretch (λ1) and cross-direction stretches (λ2, λ3) of both type of specimens.

H0 90 mm
L0 ∼ 55 mm
v 49.5 mm/min

Table 3.9: Parameters of T-MD tests

Figure 3.32: The process of machine direction tension

As the stress-stretch (P − λ1) curves show, the regimes of tension described in Chapter 2 can
be observed: the initial linearly elastic and the non-linear regime until the fracture.

Figure 3.33: The stress-stretch curve of T-MD specimens
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Figure 3.34: The stress-stretch curve of T-MD-WL specimens

The comparison of the mean stress-stretch curves (Figure 3.35) shows, that specimens with
skin layer are more fragile. The initial slope of the curve (E∗) and the tensile strength (σmax) is
higher, while the maximum stretch (λmax) is lower.

Figure 3.35: The comparison of T-MD specimens’ stress-stretch curve with and without layer

From relation of stretches, determined from the video analysis (Figures 3.36, 3.37 and 3.38) it
can be noticed, that the cross-direction stretches decreases, while the longitudinal stretch increases
during the test, so they are inversely proportional.

Figure 3.36: The process of cross-direction stretch change during MD tensile test
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Figure 3.37: The relation between stretches (λ1, λ2) of T-MD specimens with and without layer

Figure 3.38: The relation between stretches (λ1, λ3) of T-MD specimens with and without layer

3.3.3 Non-machine direction

The non-machine direction tensile test is really similar to the machine direction test. We used the
same test parameters (Table 3.10), and the results shows the same tendency in point of stress-
stretch curves (Figures 3.39, 3.40 and 3.41) and the characteristic of cross-direction stretches
(Figures 3.42 and 3.43) in the function of the longitudinal stretch.

H0 90 mm
L0 ∼ 55 mm
v 49.5 mm/min

Table 3.10: Parameters of T-NMD tests

Figure 3.39: The stress-stretch curve of T-NMD specimens
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Figure 3.40: The stress-stretch curve of T-NMD-WL specimens

Figure 3.41: The comparison of T-NMD specimens’ stress-stretch curve with and without layer

Figure 3.42: The relation between stretches (λ1, λ2) of T-NMD specimens with and without layer

30



3.4. RESULTS OF MEASUREMENTS

Figure 3.43: The relation between stretches (λ1, λ3) of T-NMD specimens with and without layer

3.3.4 Summary

As the tensile test represents, the skin layer makes the polymer foam more fragile: the initial
elastic modulus (E∗) becomes higher, the tensile strength (σmax) increases, while the maximum
stretch decreases. This effect can be explained again by the higher relative density of the skin
layer because the elastic modulus and the formula describing the non-linear part is the function
of relative density (Eqn. 2.15 and 2.23).

The tendencies of machine and non-machine direction tension are the same, because of the
geometry of specimen is similar: the longitudinal direction is parallel with the skin layer.

3.4 Results of measurements

After the execution and evaluation of compression and tensile tests the full stress-stretch charac-
teristic of the examined polyethylene foam sheet has been determined in machine and non-machine
directions (Figures 3.44 and 3.45). As these figures show, the mechanical behaviour in case of uni-
axial load corresponds with the theoretical description of closed-cell polymer foams in Chapter

2.

without layer

with layer

Figure 3.44: The stress-stretch characteristic of MD load with and without layer
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without layer

with layer

Figure 3.45: The stress-stretch characteristic of NMD load with and without layer

In case of layer-free specimens the stress values are always smaller, so the effect of skin layer
can be established: it increases the strength of the foam, whereas in case of tension the maximum
stretch decreases.
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4
Hyperelastic model fitting

4.1 Introduction, theoretical summary

The following theoretical summary is based on the books of A. Bower (2010) [3], E. A. de Souza
et al. (2008) [4] and I. Dorghi (2000) [5].

Hyperelastic theory is applied for nonlinear, elastic materials in case of large strains. The
mechanical response of a typical polymer is temperature dependent: below the so-called Tg glass
transition temperature it behaves as a glass. Above this temperature mechanical properties and
mechanisms change and become rubbery: the moduli decreases, the stress is independent from
strain history and rate, which is described in the hyperelastic constitutive laws. Moreover, this
material model can be used for describing the mechanisms of polymer foams due to the similarity
of mechanical properties described in Chapter 2.

All hyperelastic models are based on the scalar-valued function determining the stress-strain
relation by defining the elastic potential of the body (per unit mass) as the function of the
deformation gradient (F ) as

ψ = ψ(F ), (4.1)

which ensures the elasticity of the material behaviour and enables the 1st Piola-Kichhoff stress
tensor (P ) to be expressed by

P = ρ0
∂ψ(F )

∂F
, (4.2)

where ρ0 is the density in the reference consiguration. Simultaneously W , the elastic potential
measured per unit volume can be defined as

W = ρ0ψ. (4.3)

If it is expressed in the function of the right Cauchy-Green deformation tensor C = F
T
F , the

1st Piola-Kirchhoff stress tensor P becomes

P = 2F
∂W (C)

∂C
. (4.4)
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Therefore, the other stress tensors can be expressed as the function ofW , due to the connection
between each other:

τ=2F
∂W (C)

∂C
F

T , (4.5)

σ=
2

J
F
∂W (C)

∂C
F

T , (4.6)

where τ is the Kirchhoff-stress and σ is the Cauchy-stress tensor and J is the determinant of F .
In case of elastically isotropic materials the elastic potential W depends on the scalar invariants
(I1, I2 and I3) of strain, which are constants, if the body is elastically homogenous. Therefore,

W =W (I1, I2, I3) (4.7)

where the principal invariants of C are determined by

I1 = tr[C], I2 =
1

2
(I21 − tr[C2], I3 = det C = J2. (4.8)

The principal invariants of C can be expressed in the term of the principal stretches (λ1, λ2
and λ3):

I1 = λ21 + λ22 + λ23, I2 = (λ1λ2)
2 + (λ1λ3)

2 + (λ2λ3)
2, I3 = (λ1λ2λ3)

2. (4.9)

Therefore, the elastic potential W in case of elastic homogenous isotropic materials can be
given as

W =W (λ1, λ2, λ3). (4.10)

Using the chain-rule for derivation, the Kirchhoff stress tensor (τ ) can be determined as:

τ =

3
∑

a=1

λa
∂W

∂λa
n

(a)
⊗ n

(a), (4.11)

where n
(a) are the unit eigenvectors of the left Cauchy-Green deformation tensor (b).

The specific forms for elastic potencial W are based on experiments and contain the material
properties, so the formula can be adjusted to the material being modelled. The most commonly
used hyperelastic material model for polymer foam is the Ogden–Stor̊akers compressible hypere-
lastic model. It is included in the most widely-used commercial finite element softwares, such as
ANSYS [2].

4.2 Ogden–Stor̊akers compressible hyperelastic model

4.2.1 Description of the model

The compressible hyperelastic model published by Stor̊akers in 1986 [11] describes the elastic
potential of homogenous isotropic materials in the terms of the principal stretches (λi) as:

W =
N
∑

i=1

2µi

α2
i

[

λαi

1 + λαi

2 + λαi

3 − 3 +
1

βi

(

J−αiβi − 1
)

]

, (4.12)
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where µi, αi and βi are material properties, which should be determined via experimental investi-
gations. The shear (µ0) and bulk (K0) moduli describing the initial behaviour of polymer foams
(at small strains) can be computed by

µ0 =
N
∑

i=1

µi, K0 =
N
∑

i=1

2µi

(

1

3
+ βi

)

. (4.13)

The material parameters βi, which represents the degree of compressibility, is related to the
Poisson’s ration (ν) by

βi =
νi

1− 2νi
. (4.14)

Towards a stable stress-free ground-state, the parameters have to fulfil the following require-
ments:

N
∑

i=1

µiαi > 0 and βi > −
1

3
. (4.15)

Now, according to Eqn. 4.11 the Kirchhoff stress is expressed as

τ =

3
∑

A=1

N
∑

i=1

2µi

αi

(

λαi

A − J−αiβi
)

n
(A)

⊗ n
(A), (4.16)

where the principal Kirchhoff stresses are

τA =
N
∑

i=1

2µi

αi

(

λαi

A − J−αiβi
)

, (A = 1, 2, 3). (4.17)

4.2.2 Solutions for homogenous deformations

In case of uniaxial tension and compression, like the measurements described in Chapter 3, the
uniaxial extension is defined in a fixed Cartesian coordinate system by

x1 = λ1X1, x2 = λ2X2, x3 = λ3X3, and λ2 = λ3, (4.18)

where direction 1 is the axis of deformation. Thus, the deformation gradient (F ) and the left
Cauchy-Green deformation tensor (b) are obtained as:

[F ] =





λ1 0 0
0 λ2 0
0 0 λ3



 and [b] =





λ21 0 0
0 λ22 0
0 0 λ23



 . (4.19)

Therefore, the principal invariants become

I1 = λ21 +
2J

λ1
, I2 =

J

λ1

(

2λ21 +
J

λ1

)

and I3 = λ21λ
4
2, (4.20)

which means that the determinant of F , will be J = λ1λ
2
2.

Now, according to (4.17) the principal Kirchhoff stresses can be determined as

τ1 =
N
∑

i=1

2µi

αi

(

λαi

1 −
(

λ1λ
2
2

)

−αiβi

)

, (4.21)
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τ2 = τ3 = 0 =

N
∑

i=1

2µi

αi

(

λαi

2 −
(

λ1λ
2
2

)

−αiβi

)

. (4.22)

In the case, when N = 1 only 3 model parameters are required which are denoted as (α, β and
µ). The principal stresses reduce to

τ1 =
2µ

α

(

λα1 −
(

λ1λ
2
2

)

−αβ
)

, (4.23)

τ2 = τ3 = 0 =
2µ

α

(

λα2 −
(

λ1λ
2
2

)

−αβ
)

(4.24)

From the second equation the relation between λ1 and λ2 can be expressed as

λ2 = λ
−β

1+2β

1 , (4.25)

which indicates, that by measuring the stretch in the perpendicular direction material parameter
β can be determined. Moreover using the formula above (4.25) the perpendicular stretches can
be eliminated. So, the principal Kirchhoff (τ1), Cauchy (σ1) and 1st Piola-Krichhoff (P1) stresses
(in the axis of deformation) become

τ1 =
2µ

α
(1− λ

−α
1+3β
1+2β

1 )λα1 , (4.26)

σ1 =
τ1
J

=
2µ

α
(1− λ

−α
1+3β
1+2β

1 )λ
α− 1

1+2β

1 , (4.27)

P1 =
τ1
λ1

=
2µ

α
(1− λ

−α 1+3β
1+2β

1 )λα−1
1 . (4.28)

From stresses, the load (F1) could be determined as

F1 = P1A0 = σ1A =
2µ

α
A0(1− λ

−α
1+3β
1+2β

1 )λα−1
1 , (4.29)

where A0 is the initial and A is the actual area of the cross-section (A = λ22A0).

4.3 Determination of material parameters

4.3.1 Introduction

After having the stress-stretch (P1 − λ1) characteristic of all type of specimens and the proper
hyperelastic material model, the parameters of the model should have been determined adequately
in order to describe the behaviour of our polyethylene foam by using the hyperelastic model. As
Eqn. 4.21 shows, originally the material model expresses the Kirchhoff-stress (τ) in function of
the stretches (λ1, λ2, λ3). However, in our case as the result of the measurements the 1st Piola-
Kirchhoff stress (P ) was determined in the term of the stretches. By using the relation between
the Kirchhoff and the 1st Piola-Kirchhoff stresses (λ1P1 = τ1) the formula, used for model fitting,
becomes

P1 =
N
∑

i=1

1

λ1

2µi

αi

(

λαi

1 −
(

λ1λ
2
2

)

−αiβi

)

. (4.30)

During our test, the load was uniaxial, thus the cross-direction stretches considered to be equal
(λ2 = λ3), and simultaneously the stresses in these directions (P2, P3) should be zero:

P2 = P3 = 0 =
N
∑

i=1

2µi

αi

(

λαi

2 −
(

λ1λ
2
2

)

−αiβi

)

. (4.31)
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4.3.2 Relation of stretches

In the material model, we used, the cross-direction stretches are equal, whereas during our mea-
surements the cross-direction stretches were different. Therefore an equivalent cross-direction
stretch was should be determined. According to the articles of W. H. El-Ratal et al. [6] and J. G.
Murphy et al. [16], the relationship between the longitudinal and the cross-direction stresses can
be approximated as

λ2 = λ−ν2
1 and λ3 = λ−ν3

1 , (4.32)

where ν2 and ν3 has the same significance as the Poisson’s ratio of linear elasticity. This model can
be used for compression and tension as well. So firstly in case of all tests, when the cross-direction
stretches were measured by video, the ν2 or ν3 exponents were determined using the “FindFit”
[17] built-in curve fitting algorithm of Wolfram Mathematica [18] on the longitudnial and cross-
direction stretch (see in the Appendix). The process of curve fitting is illustrated in Figure 4.1
and the results are listed in Table 4.1.

Specimen ν2 ν3 Specimen ν2 ν3
C-T-1 0.074994 - T-MD-1 0.491597 -
C-T-2 0.036279 - T-MD-2 0.531452 -
C-T-3 0.041896 - T-MD-3 - 0.586345
C-T-4 0.048417 - T-MD-4 - 0.600846

C-T-WL-2 0.04116 - T-MD-WL-1 0.708484 -
C-T-WL-3 0.068218 - T-MD-WL-2 0.690772 -
C-T-WL-4 0.032393 - T-MD-WL-3 - 0.545735
C-MD-1 0.091375 - T-MD-WL-4 - 0.5521658
C-MD-2 0.10193 - T-NMD-1 - 0.534716
C-MD-3 - 0.051712 T-NMD-2 - 0.546272
C-MD-4 - 0.046257 T-NMD-3 0.447526 -

C-MD-WL-1 0.089747 - T-NMD-4 0.51253 -
C-MD-WL-2 0.108854 - T-NMD-WL-1 - 0.468317
C-MD-WL-3 - 0.032119 T-NMD-WL-2 - 0.466648
C-MD-WL-4 - 0.065945 T-NMD-WL-3 0.620886 -
C-NMD-2 0.085285 - T-NMD-WL-4 0.654186 -
C-NMD-3 - 0.0241735

C-NMD-WL-2 0.015436 -
C-NMD-WL-3 - 0.021923

Table 4.1: The calculated ν2 and ν3 values
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original

fitted

original

fitted

Figure 4.1: The curve fitting on the λ1 - λ2,3 characteristics in case of tension and compression

From the results of the curve fitting, both exponents (ν2, ν3) were determined in all type of
specimens as the mean values of the curve fitting. In case of thickness direction compression
(C-T), because of the geometry, the cross-direction stretches were presumed to be equal, so in this
case ν2 = ν3.

Specimen type ν2 ν3
C-T 0.050396 0.050396

C-T-WL 0.047257 0.047257
C-MD 0.096652 0.048984

C-MD-WL 0.099301 0.049032
C-NMD 0.085285 0.024174

C-NMD-WL 0.015436 0.021923
T-MD 0.511525 0.593596

T-MD-WL 0.699628 0.5457356
T-NMD 0.480028 0.540494

T-NMD-WL 0.637536 0.447483

Table 4.2: The resultant ν2 and ν3 values of each specimen type

From these resultant (ν2, ν3) exponents the equivalent cross-direction stretch can be expresses
as

λ̄2 = λ
−

ν2+ν3
2

1 , (4.33)

which has the same effect as the two different cross-direction stresses measured during the
tests.

4.3.3 Correction factor

In case of tensile test, the stretch of the gauge length, shown as L0 in Figure 3.28, is not equal
to the stretch measured by the displacement of the cross-head. Therefore a correction factor (c)
should be determined to receive the proper stretch (λ1) values of the tensile test calculated from
the measured stretch (λMES). The initial stretch should remain 1, therefore the proper stretch
becomes:

λ1 = c · λMES − (c− 1). (4.34)
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As written in Chapter 3, markers were placed on the surface of some specimens. From the
video processed data the relation of the crosshead stretch (λCH) and by the marker tracking (λM)
was determined. This connection was described by covariant coefficient of the linear regression
fitting

λM = cλCH + β, (4.35)

where c is the correction factor and β is the so-called error term of the linear regression. The
results of the regression calculation are presented in the following table (Table 4.3).

Specimen c
T-MD-01 1.05877
T-MD-02 1.0399
T-NMD-01 1.06049
T-NMD-02 1.0924

Table 4.3: The calculated correction factor (c) values

original

fitted

Figure 4.2: The curve fitting on the λCH -λM characteristics

The resultant correction factor used for adjusting the stretches was given as the mean of the
correction factors in Table 4.3.

c =
1

4

4
∑

i=1

ci = 1.06289. (4.36)

It should be noted, that very small difference can be observed between the stretches measured by
the crosshead and the markers.

4.3.4 Procedure of fitting

The hyperelastic model fitting was performed in Wolfram Mathematica [18] by using two built-in
curve fitting algorithms: “Findfit” [17] and “NMinimize”[19], where the latter one is a numerical
procedure for contrained minimisation (see in the Appendix). The FindFit [17] algorithm is easier
to use, it finds the coefficients by using the least-square method with good accuracy to describe
only the (P1 − λ1) characteristic. But the cross-directional stress (P2) cannot be set up zero, so
we receive cross-directional stresses as well, thus the error of curve fitting becomes significant.
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When using the NMinimize [19] algorithm, an error function should be defined. The error
was determined according to the least square method used for the longitudinal direction and the
cross-direction stresses as well:

e =
N
∑

i=1

[(P1i − P1i fitted)
2 + P 2

2ifitted] (4.37)

where N is the number of measurement points.
The NMinimize [19] algorithm gives the coefficients of the material model by finding the min-

imum of the error function numerically. As a method for searching the minimum the “Simulated

Annealing” stochastic function minimizer was used. This algorithm gives better accuracy and the
cross-direction stress was taken into consideration as well.

Initially, I used a first-order Ogden–Stor̊akers model containing 3 material parameters (α, β, µ),
but as the result shows, its accuracy is not satisfactory. Therefore a second-order model was fitted,
in this case 6 material parameters (α1, β1, µ1, α2, β2, µ2) were calculated. Both models (first- and
second-order) was fitted by both algorithms so finally we received four series of parameters.

In all cases the maximum of the cross-direction stress and the error value (computed by the
least square method) were given representing the quality of the model fitting.

4.3.5 Results

After the process of the curve fitting, the received parameters were compared by computing the
error of the fitted model using the formula (Eqn 4.37) mentioned above. After analysing the
errors, the series of parameters having the smallest error were chosen as the best fitting model.
The resultant longitudinal and cross-direction stresses (P1, P2) and the measured longitudinal
stress are displayed in the corresponding figure. In all cases a second-order model found by
”Nminimize” method had the smallest error, therefore this was chosen the best fitted model.

4.3.5.1 Compression - Machine direction

With layer

Type of fitting α1 β1 µ1 α2 β2 µ2

”FindFit” 1st order 0.2414 13.299 0.0504 - - -
”NMinimize” 1st order 0.1422 7.622 0.0851 - - -
”FindFit” 2nd order 0.24136 13.488 0.05126 -2.93·10−7 -6.3179 -0.231929

”NMinimize” 2nd order 0.08043 7.62203 0.0850611 0.061728 7.62203 0.0850611

Table 4.4: The parameters of the hyperelastic model in case of C-MD specimens

Type of fitting Error (e)
”FindFit” 1st order 8.32012

”NMinimize” 1st order 0.00966
”FindFit” 2nd order 8.25844

”NMinimize” 2nd order 0.00965

Table 4.5: The error of hyperelastic model in case of C-MD specimens
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Measured P1

Fitted P1

Fitted P2

Figure 4.3: The stresses of the best fitted model in case of C-MD specimens

Without layer

Type of fitting α1 β1 µ1 α2 β2 µ2

”FindFit” 1st order 0.20437 15.4529 0.04168 - - -
”NMinimize” 1st order 0.09731 7.1161 0.08679 - - -
”FindFit” 2nd order 0.059752 3.0685 0.08811 2.75·10−7 2.5285 3.0897

”NMinimize” 2nd order 0.082097 7.1161 0.08679 0.01521 7.1161 0.08679

Table 4.6: The parameters of the hyperelastic model in case of C-MD-WL specimens

Type of fitting Error (e)
”FindFit” 1st order 12.8672

”NMinimize” 1st order 0.00911
”FindFit” 2nd order 0.06976

”NMinimize” 2nd order 0.00907

Table 4.7: The error of hyperelastic model in case of C-MD-WL specimens

Measured P1

Fitted P1

Fitted P2

Figure 4.4: The stresses of the best fitted model in case of C-MD-WL specimens
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4.3.5.2 Compression - Non-machine direction

With layer

Type of fitting α1 β1 µ1 α2 β2 µ2

”FindFit” 1st order 0.224412 14.2916 0.05701 - - -
”NMinimize” 1st order 0.208059 13.1954 0.061448 - - -
”FindFit” 2nd order 0.001888 0.01946 11.204 0.312249 24.5998 -0.00956

”NMinimize” 2nd order 0.18805 13.4922 0.044217 0.0062773 1.62681 0.63769

Table 4.8: The parameters of the hyperelastic model in case of C-NMD specimens

Type of fitting Error (e)
”FindFit” 1st order 0.053197

”NMinimize” 1st order 0.003987
”FindFit” 2nd order 5.71405

”NMinimize” 2nd order 0.002945

Table 4.9: The error of hyperelastic model in case of C-NMD specimens

Measured P1

Fitted P1

Fitted P2

Figure 4.5: The stresses of the best fitted model in case of C-NMD specimens

Without layer

Type of fitting α1 β1 µ1 α2 β2 µ2

”FindFit” 1st order 0.12073 9.8381 0.06891 - - -
”NMinimize” 1st order 0.43623 38.0723 0.01943 - - -
”FindFit” 2nd order 0.21856 16.8193 -0.32491 0.03899 2.3284 0.18989

”NMinimize” 2nd order 0.19764 23.4786 0.01925 0.01313 0.42027 0.02328

Table 4.10: The parameters of the hyperelastic model in case of C-NMD-WL specimens
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Type of fitting Error (e)
”FindFit” 1st order 0.974634

”NMinimize” 1st order 0.011376
”FindFit” 2nd order 8.93604

”NMinimize” 2nd order 8.83·10−5

Table 4.11: The error of hyperelastic model in case of C-NMD-WL specimens

Measured P1

Fitted P1

Fitted P2

Figure 4.6: The stresses of the best fitted model in case of C-NMD-WL specimen

4.3.5.3 Compression - Thickness

With layer

Type of fitting α1 β1 µ1 α2 β2 µ2

”FindFit” 1st order 0.11416 5.89458 0.09829 - - -
”NMinimize” 1st order 0.20427 11.2619 0.05612 - - -
”FindFit” 2nd order 0.17172 14.4548 -0.00419 0.01776 0.70022 0.48175

”NMinimize” 2nd order 0.0204 1.42564 0.411557 0.13479 11.5345 0.00308

Table 4.12: The parameters of the hyperelastic model in case of C-T specimens

Type of fitting Error (e)
”FindFit” 1st order 1.09466

”NMinimize” 1st order 0.015663
”FindFit” 2nd order 0.87387

”NMinimize” 2nd order 0.00113

Table 4.13: The error of hyperelastic model in case of C-T specimens
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Measured P1

Fitted P1

Fitted P2

Figure 4.7: The stresses of the best fitted model in case of C-T specimen

Without layer

Type of fitting α1 β1 µ1 α2 β2 µ2

”FindFit” 1st order 0.09799 7.7107 0.06891 - - -
”NMinimize” 1st order 0.18141 14.5121 0.01943 - - -
”FindFit” 2nd order -9.95·10−10 2.36576 2.6999 0.113972 9.43545 0.08338

”NMinimize” 2nd order 0.12674 13.1997 0.052 0.008779 0.44775 0.05796

Table 4.14: The parameters of the hyperelastic model in case of C-T-WL specimens

Type of fitting Error (e)
”FindFit” 1st order 1.16046

”NMinimize” 1st order 0.006832
”FindFit” 2nd order 0.959441

”NMinimize” 2nd order 0.00011

Table 4.15: The error of hyperelastic model in case of C-T-WL specimens

Measured P1

Fitted P1

Fitted P2

Figure 4.8: The stresses of the best fitted model in case of C-T-WL specimen
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4.3.5.4 Tension - Machine direction

With layer

Type of fitting α1 β1 µ1 α2 β2 µ2

”FindFit” 1st order 0.39778 1.88·10−9 0.01651 - - -
”NMinimize” 1st order 0.20357 3.0034 -0.3333 - - -
”FindFit” 2nd order 25.7025 0.06213 7.22495 -7.06532 0.22602 1.92779

”NMinimize” 2nd order -303.757 2.57162 -0.32843 304.061 2.56905 -0.3333

Table 4.16: The parameters of the hyperelastic model in case of T-MD specimens

Type of fitting Error (e)
”FindFit” 1st order 12.0645

”NMinimize” 1st order 4.0006
”FindFit” 2nd order 194156

”NMinimize” 2nd order 0.106819

Table 4.17: The error of hyperelastic model in case of T-MD specimens

Measured P1

Measured P2

Fitted P1

Figure 4.9: The stresses of the best fitted model in case of T-MD specimen

Without layer

Type of fitting α1 β1 µ1 α2 β2 µ2

”FindFit” 1st order 0.305248 3.21·10−10 0.008438 - - -
”NMinimize” 1st order 0.149396 2.64505 -0.3333 - - -
”FindFit” 2nd order 6.02105 0.709662 3.97192 0.450272 -9.48963 0.231519

”NMinimize” 2nd order 0.33151 -1.10958 -0.3333 -0.11976 -4.74863 6.89511

Table 4.18: The parameters of the hyperelastic model in case of T-MD-WL specimens
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Type of fitting Error (e)
”FindFit” 1st order 11.2889

”NMinimize” 1st order 2.53203
”FindFit” 2nd order 40410.7

”NMinimize” 2nd order 0.051206

Table 4.19: The error of hyperelastic model in case of T-MD-WL specimens

Measured P1

Measured P2

Fitted P1

Figure 4.10: The stresses of the best fitted model in case of T-MD-WL specimen

4.3.5.5 Tension - Non-machine direction

With layer

Type of fitting α1 β1 µ1 α2 β2 µ2

”FindFit” 1st order 0.321218 -2.14·10−9 0.09431 - - -
”NMinimize” 1st order 0.164993 2.87478 -0.3333 - - -
”FindFit” 2nd order 8.14481 0.518944 13.4023 -5.47018 0.77268 -0.24126

”NMinimize” 2nd order -0.33033 -5.74166 24.722 0.591589 -3.20599 -0.3333

Table 4.20: The parameters of the hyperelastic model in case of T-NMD specimens

Type of fitting Error (e)
”FindFit” 1st order 7.31049

”NMinimize” 1st order 2.78752
”FindFit” 2nd order 3534.39

”NMinimize” 2nd order 0.02301

Table 4.21: The error of hyperelastic model in case of T-NMD specimens
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Measured P1

Measured P2

Fitted P1

Figure 4.11: The stresses of the best fitted model in case of T-NMD specimen

Without layer

Type of fitting α1 β1 µ1 α2 β2 µ2

”FindFit” 1st order 0.245056 1.36·10−8 0.02327 - - -
”NMinimize” 1st order 0.12138 2.62107 -0.3333 - - -
”FindFit” 2nd order -0.83557 -27.5565 0.03431 8.61713 -26.7205 -0.20788

”NMinimize” 2nd order 0.41706 -2.26412 -0.3333 -0.23318 -4.04962 5.39818

Table 4.22: The parameters of the hyperelastic model in case of T-NMD-WL specimens

Type of fitting Error (e)
”FindFit” 1st order 5.73196

”NMinimize” 1st order 1.70619
”FindFit” 2nd order 9.17·106

”NMinimize” 2nd order 0.03686

Table 4.23: The error of hyperelastic model in case of T-NMD-WL specimens

Measured P1

Measured P2

Fitted P1

Figure 4.12: The stresses of the best fitted model in case of T-NMD-WL specimen
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4.3.6 Summary

As the results show, in all cases the best fitted model was received by using a second-order
”NMinimize” method. In this method in contrast to the ”FindFit” method the conditions for the
cross-direction stresses were taken into consideration, thus the total error of the fitting become
less by orders.

In case of compression, the model could be fitted with great accuracy, difference can be observed
only at the first linearly elastic regime of the stress-strain curve (P1 − λ1). The cross-directional
stress (P2) is approximately zero in the margin of acceptable error. Similarly, the cross-directional
stretch (λ2) characteristic is described with great accuracy by the fitted model.

When the load is tensile, the error of the model fitting increases. The main reason is that the
original material model was designed for describing material behaviours where the longitudinal
stress (P1) should increase progressively. Although in case of our polyethylene foam the charac-
teristic is rather digressive. Therefore, the accuracy of the material model fitting becomes worse
and the values of the parameters are negative in some cases. However, the accuracy of model
fitting describes the material behaviour with adequate accuracy for numerical simulations. The
cross-directional stress (P2) is again close to zero, although it became oscillating thanks to the
deviation of the material parameters. Similarly the cross-direction stretch characteristic (λ1−λ2)
shows only little error comparing to the measured data.

In spite of the numerical errors of curve fitting occurring especially in case of the tensile test, the
Ogden–Stor̊akers hyperelastic material model is suitable for describing the mechanical behaviour
of our polymer foam.
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5
Finite element analysis

5.1 Introduction

As the result of Chapter 4 shows, a possible hyperelastic material model was fitted to the results
of each type of specimens by finding the optimum of material parameters required to describe the
behaviour of our specimens. Therefore we have the opportunity of applying the material model
in a finite element program to simulate the experiments and to compare the results.

The commercial finite element simulation program, ANSYS Mechanical 13.0 [2] was used,
which has the Ogden–Stor̊akers hyperelastic material model built-in. Although in ANSYS [2],
according to the Theoretical Reference [1], the definition for W (the elastic potential measured
per unit volume) is

W =
N
∑

i=1

µi ANSY S

αi

[

λαi

1 + λαi

2 + λαi

3 − 3 +
1

βi

(

J−αiβi − 1
)

]

, (5.1)

which shows a bit difference from the elastic potential determined orginially in Eqn. 4.12. This
difference is caused by the definition of material parameters µi. After reducing the equations the
material parameters µi ANSY S in ANSYS [2] can be expressed as

µi ANSY S = 2
µi

αi

. (5.2)

Therefore, the material parameters of the fitted model adequate for the simulation in ANSYS
[2] are listed in the following Table (5.1).
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Type of specimen α1 β1 µ1 α2 β2 µ2

C-MD 0.0211 7.62203 0.0850611 0.0161972 7.62203 0.0850611
C-MD-WL 0.02307 7.11611 0.0867973 0.004276 7.11611 0.0867973
C-NMD 0.02787 13.4922 0.044218 0.007717 1.62861 0.63769

C-NMD-WL 0.016836 23.4786 0.01924 0.062506 0.420277 0.02328
C-T 0.028621 1.42564 0.411557 0.023371 11.5345 0.003079

C-T-WL 0.019204 13.1997 0.05201 0.039215 0.44776 0.05796
T-MD -236.2378 2.57162 -0.32843 236.71085 2.56905 -0.3333

T-MD-WL -0.59754 -1.10958 -0.3333 0.050441 -4.74863 6.89511
T-NMD 0.11506 -5.74166 24.722 -0.36905231 -3.20599 -0.3333

T-NMD-WL -0.36841 -2.26412 -0.3333 0.115159 -4.04962 5.39818

Table 5.1: The proper parameters of the hyperelastic model for Ansys

These material parameters describe the same material behaviour as the fitted curves in Chapter

4. The aim of the finite element analysis is to compare the measured and the numerical results of
each type of specimens, in the purpose of the verification of the fitted material model.

5.2 Simulation of the experiments

The finite element analysis of the measurement was a 3D structural analysis. The element type was
chosen to be an 8-node brick (8-node 185), which has the possibility of modelling hyperelasticity.
As material model the Ogden Compressible Foam model was chosen with the parameters listed
above.

In case of all measurements the load was uniaxial and the stresses were considered to be
homogenous, so the same geometry was built for all simulations. The model is an eighth part
cubic model which width is 1 mm. On the symmetry sides zero displacement should have been
applied, in order to simulate the deformation properly. The geometrical model is shown in Figure
5.1, with the coordinate system used in ANSYS.

z

y

x

1 mm

Figure 5.1: The geometrical model for finite element simulations

Because of the same considerations a one-element mesh was created, which contains the whole
geometry. The deformation was modelled as a constant displacement. In case of compression as
displacement −0.8 mm, in case of tension 0.55 mm was chosen accordingly to the results of the
measurements.

This displacement was executed in the first step of the simulation, but our goal is to receive
the stress-stretch curve, so sub-steps were required. During the simulations 500 sub-steps were
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used, which results the stress-stretch curve approximately with adequate sampling rate for the
comparison with the measured data. Additionally large static displacement was permitted, which
models the effect of large strains.

5.3 Results of simulations

When the simulation was complete, the following data were received in every sub-step: lon-
gitudinal displacement (∆L1), longitudinal stress (P1), cross-direction displacement (∆L2) and
cross-direction stress (P2). These results were post-processed in Wolfram Mathematica [18], and
we received the stress-strain diagram, showing the measured and the numerical longitudinal (P1)
and the numerical cross-direction (P2) stresses (see in the Appendix). Simultaneously the cross-
direction stretch (λ2) was determined in the terms of the longitudinal stretch (λ1) in case of the
measurements and the finite element analysis as well.

5.3.1 Compression - Machine direction

Stress-stretch curves
Longitudinal stretch

characteristic

Measured λ2

Simulated λ2

Measured P1

Simulated P1

Simulated P2

Figure 5.2: The results of C-MD simulations

Figure 5.3: The results of C-MD-WL simulations
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5.3.2 Compression - Non-machine direction

Figure 5.4: The results of C-NMD simulations

Stress-stretch curves
Longitudinal stretch

characteristic

Measured λ2

Simulated λ2

Measured P1

Simulated P1

Simulated P2

Figure 5.5: The results of C-NMD-WL simulations

5.3.3 Compression - Thickness

Stress-stretch curves
Longitudinal stretch

characteristic

Measured λ2

Simulated λ2

Measured P1

Simulated P1

Simulated P2

Figure 5.6: The results of C-T simulations
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Stress-stretch curves
Longitudinal stretch

characteristic

Measured λ2

Simulated λ2

Measured P1

Simulated P1

Simulated P2

Figure 5.7: The results of C-T-WL simulations

5.3.4 Tension - Machine direction

Stress-stretch curves
Longitudinal stretch

characteristic

Measured λ2

Simulated λ2

Measured P1

Simulated P1

Simulated P2

Figure 5.8: The results of T-MD simulations

Stress-stretch curves
Longitudinal stretch

characteristic

Measured λ2

Simulated λ2

Measured P1

Simulated P1

Simulated P2

Figure 5.9: The results of T-MD-WL simulations
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5.3.5 Tension - Non-machine direction

Stress-stretch curves
Longitudinal stretch

characteristic

Measured λ2

Simulated λ2

Measured P1

Simulated P1

Simulated P2

Figure 5.10: The results of T-NMD simulations

Stress-stretch curves
Longitudinal stretch

characteristic

Measured λ2

Simulated λ2

Measured P1

Simulated P1

Simulated P2

Figure 5.11: The results of T-NMD-WL simulations
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5.4 Evaluation of simulation

As the results shows, the numerical simulations differ from the measured results. The errors are
determined by using the least square method as

e1 =
N
∑

i=1

(P1i − P1i Ansys)
2 + P 2

2i fitted and e2 =
N
∑

i=1

(λ2i − λ2i Ansys)
2, (5.3)

where N is the number of measurement points.

Type of specimen Error (e1) Error (e2)
C-MD 0.3238 4.96·106

C-MD-WL 0.1672 1.41·10−5

C-NMD 0.5385 3.31·10−5

C-NMD-WL 0.4026 1.45·10−7

C-T 0.1627 1.12·10−5

C-T-WL 0.09444 5.5·10−7

T-MD 8.25245 3.24·10−6

T-MD-WL 13.5937 0.01698
T-NMD 5.47332 8.28·10−6

T-NMD-WL 6.50265 6.11·10−5

Table 5.2: The errors of numerical simulation without layer

In case of compression this difference appears only in the longitudinal stress-stretch (P1 − λ1)
characteristic, the error of the cross-direction stretch characteristic is minimal. This is the effect
of the following numerical factors. Firstly, as written in Chapter 4, because of the error of the
model fitting, the material model used in the numerical simulations is just an approximation of the
measured data. Besides, the parameters of the material model could be defined as finite length
numbers, which can increase the difference between the measured data and the fitted model.
Finally, the numerical simulation was executed by using sub-steps so some error occurs by this
discrete step simulation. Considering all this factors, the fitted material model approximates well
the measured behaviour; the difference appears only in case of large strains (λ1 < 0.5).

In case of tension the fitted material model had a bit bigger error, so according to the pre-
liminary expectation the numerical simulation shows bigger differences. The relation of stretches
(λ1 − λ2) shows only a little error, while in case of stresses the error is bigger. The same error-
factors can be observed as in case of the compression. This is mainly caused by the fracturing
behaviour of the foam. Firstly, only a few cells fractures, which decreases the area of the cross-
section participating in the tension. Although in the post-processing of our measurements this
effect was not taken in consideration, thus in case of larger stretches (λ1 > 1.3), when the fracture
starts, the measured characteristic is damped. Whereas during the finite element simulations, the
fracture is not modelled, so the resultant stress-strecth curve do not contain this damping factor,
which results in big error.

Nevertheless, the fitted material model approximates the material behaviour well only at
smaller stretches (λ1 < 1.2), while at bigger stretches the error of the fitted material model is
bigger.

As the finite element analysis demonstrates the chosen and fitted Ogden–Stor̊akers hyperelastic
material model is proper for describing the non-linear behaviour of our polyethylene foam.
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6
Summary of results

6.1 Summary in English

The skin-layer is a thin layer with modified material parameters on the surface of the polymer
foam created during the manufacturing, which results in inhomogeneity. In consequence, this layer
affects the overall mechanical behaviour of the foam. The aim of this thesis was to investigate
and determine this effect and to set up a suitable material model for the numerical modelling of
the foam.

After summarizing the structures and mechanical mechanisms of cellular materials like the
polyethylene foam chosen for our investigation, a series of compression and tensile test have been
performed. In both cases specimens with and without layer were prepared for all manufactur-
ing directions (MD, NMD, T). With the purpose of creating layer-free specimens I designed a
slicer-device to remove the skin-layer adequately. During the measurements, beside the load-
displacement values measured by the INSTRON Test System, the cross-directional stretches were
video-recorded.

As the result of the post-processing the stress-stretch (P1 − λ1) curves and the relation of
the longitudinal and cross-directional stretches (λ1 − λ2,3) were received. Having analysed the
characteristics the effect of skin layer could be determined. The polymer foams strength and
elastic modulus increases, thus the foam becomes more fragile which is demonstrated by the
decrease of maximum stretch in case of tension. This effect dominates, when the load of direction
was machine (MD) or non-machine (NMD), in other words when the load was parallel with the
skin layer. In case of thickness direction the degree of the effect was lower.

The mechanical behaviour of the foam was described by using the Ogden–Stor̊akers hyperelastic
material model used especially for compressible foams. Firstly, the stress-stretch function was
determined in case of uniaxial load. After, on the basis of the measurement results including the
video-processed data, the material parameters of the model were computed using curve fitting
methods. The curve fitting required the determination of cross-directional stretch in terms of
longitudinal stretch and a correction factor eliminating the error of the measured stretch caused
by the geometry of the specimens in case of tension. Finally, a second-order Ogden–Stor̊akers
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model was fitted adequately for the characteristics of our polymer foam by minimizing the error,
which was bigger in case of tension due to the difference of the tensile characteristics between the
model and the measurements.

Finally, all measurements were simulated in ANSYS using the fitted Ogden–Stor̊akers material
model in order to verify the fitted model with the measured data. The results of the simulation
shows, that in case of small stretches the fitted model approximates well the measured data. When
the stretches are larger the error of the simulation becomes bigger. Although the measured data
verifies the numerical calculations, thus the fitted material model is suitable for describing the
mechanical behaviour of the polymer foam.

As the result of my thesis the effect of surface skin layer on the overall behaviour of our
specific polyethylene foam was determined. Moreover, this behaviour was described by a proper
hyperelastic material model used for finite element modelling as well.
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6.2 Summary in Hungarian (Az eredmények összefoglalása)

A felületi bőrréteg a gyártás során kialakuló, vékony, megváltozott anyagtulajdonságokkal ren-
delkező réteg a polimer hab felsźınén. A bőrréteg hatására a polimer hab inhomogénné válik,
amely befolyásolja a hab eredő anyagi viselkedését, mechanikai tulajdonságait. A dolgozat célja a
felületi bőrréteg e hatásának vizsgálata, valamint egy megfelelő anyagmodell felálĺıtása a polimer
hab numerikus szimulációja céljából.

Elsőként a polimer habok, mint sejtszerkezetű anyagok, szerkezeti feléṕıtését és mechanikai
tulajdonságait összegeztem, melyek alapján nyomó- és szaḱıtóvizsgálatot végeztem egy polietilén
habon. A méréseket mindkét esetben bőrréteggel ellátott és bőrréteg nélküli, a gyártási irányoknak
(gépirányú, gépirányra merőleges és vastagság irányú) megfelelő próbatesteken végeztem. A
bőrréteg nélküli próbatestek létrehozásához egy vágóeszközt terveztem, hogy a felületi bőrréteget
megfelelő módon lehessen eltávoĺıtani. A mérések során az INSTRON mérőrendszer által mért erő-
elmozdulás értékek mellett a keresztirányú nyúlásokat is rögźıtve lettek videokamera seǵıtségével.

A mechanikai vizsgálatok eredményeként az egyes irányokhoz tartozó feszültség-megnyúlás
(P1−λ1) valamint keresztirányú nyúlás karakterisztikákat (λ1−λ2,3) határoztammeg. A bőrréteggel
rendelkező és bőrréteg nélküli jelleggörbék összevetéséből a bőrréteg keresett hatása megállaṕıtható:
az anyag szilárdsága, rugalmassági modulusa növekszik, ı́gy az anyag ridegebbé válik, a maximális
megnyúlása szaḱıtómérés esetén lecsökken. Ezek a hatások a legnagyobb mértékben akkor jelent-
keznek, amikor a terhelés párhuzamos a bőrréteggel, azaz gépirányban (MD) és arra merőlegesen
(NMD), vastagság irányban a hatás mértéke kisebb.

A vizsgált polimer hab mechanikai viselkedését az Ogden–Stor̊akers hiperelasztikus, speciálisan
összenyomható habok léırására létrehozott anyagmodell seǵıtségével ı́rtam le. Az egytengelyű
terhelés esetén érvényes feszültség-megnyúlás összefüggés meghatározása után, a modellben sze-
replő ismeretlen paramétereket a méréssel megállaṕıtott karakterisztikára való görbeillesztéssel
határoztam meg. A modellillesztéshez szükség volt a fő- és keresztirányú megnyúlások kap-
csolatát léıró összefüggés feĺırására, valamint egy korrekciós tényező meghatározására, amely a
próbatest geometriájából származó nyúlásmérési hibát korrigálja szaḱıtómérés esetén. Végül, a
hab mechanikai viselkedését egy másodrendű Ogden–Stor̊akers modellel lehetett megfelelő módon,
a hiba minimalizálásával meghatározni. A hiba a szaḱıtómérés esetén adódott nagyobbra, a mo-
dellben definiált és a méréssel felvett szaḱıtógörbék közötti eltérés miatt.

Végül, az elvégzett méréseket ANSYS-ban végeselemes anaĺızis seǵıtségével numerikusan is
vizsgáltam, annak érdekében, hogy a mért adatokkal összevetve verifikálni lehessen a felálĺıtott
anyagmodellt. Az eredményekből látható, hogy kisebb megnyúlások esetén a numerikus szimuláció
nagy pontossággal közeĺıti a mért eredményeket, viszont nagyobb nyúlások esetén megnő a szi-
muláció hibája. Ennek ellenére a mért adatok igazolják a felálĺıtott anyagmodell helyességét, ı́gy
a modell alkalmas a polimer hab anyagi viselkedésének léırására.

Összességében, a dolgozatom eredményeként a felületi bőrréteg eredő anyagi viselkedésre gyako-
rolt hatását meghatároztam, valamint az anyagi viselkedést egy végeselemes szimulációára is al-
kalmas hiperelasztikus anyagmodell seǵıtségével léırtam.
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A.1. Notebook of compression test evaluation 
date1=Date[]; 
H0=24; 
area={1396.2,1423.5,1501.5,1482}; 
 
CSV = {Import["D:\\Users\\test\\C_MD\\Specimen_RawData_1.csv"],  
   Import["D:\\Users\\test\\C_MD\\Specimen_RawData_2.csv"],  
   Import["D:\\Users\\test\\C_MD\\Specimen_RawData_3.csv"],  
   Import["D:\\Users\\test\\C_MD\\Specimen_RawData_4.csv"]}; 
 
n=First[Dimensions[CSV]]; 
CSVDATA=Table[Drop[CSV[[i]],8],{i,1,n}];  
FL0=Table[CSVDATA[[i]][[All,2;;3]],{i,1,n}];  
 
Fzero=0.05; 
FL=Table[Select[FL0[[i]],#[[2]]>Fzero&],{i,1,n}]; 
LF=Table[Table[{FL[[j]][[i,2]],FL[[j]][[i,1]]},{i,1,Dimensions[FL[[j]]][[1]]}], 

{j,1,n}]; 
LF=Table[DeleteDuplicates[LF[[i]],Abs[#1[[1]]-#2[[1]]]<0.001&],{i,1,n}]; 
F0=0.5; 
 
S0=Table[Interpolation[LF[[i]],InterpolationOrder1][F0],{i,1,n}] 
posH=Table[Position[FL[[i]][[All,2]],Table[Select[FL[[i]][[All,2]],#>F0&][[1]], 

{i,1,n}][[i]]][[1,1]],{i,1,n}] 
FLD=Table[Drop[FL[[i]],posH[[i]]-1],{i,1,n}]; 
 
FLOK=Table[Table[{FLD[[k]][[i,1]]-S0[[k]],FLD[[k]][[i,2]]}, 

{i,1,Dimensions[FLD[[k]]][[1]]}],{k,1,n}]; 
TL=Table[CSVDATA[[i]][[All,1;;2]] ,{i,1,n}];  
SPEED=Table[Table[(TL[[k]][[i,2]]-TL[[k]][[i-1,2]])/(TL[[k]][[i,1]]-TL[[k]] 

[[i-1,1]]),{i,2,Dimensions[TL[[k]]][[1]]}],{k,1,n}]; 
 
spmmsec=Table[Mean[SPEED[[i]]],{i,1,n}] 
spmmmin=Table[60*Mean[SPEED[[i]]],{i,1,n}] 
height=Table[H0-S0[[i]],{i,1,n}] 
XLS=FLOK; 
dimxls=Table[First[Dimensions[XLS[[i]]]],{i,1,n}]; 
 
maxpos=Table[Position[Transpose[XLS[[i]]][[2]],Max[Transpose[XLS[[i]]][[2]]]] 

[[1,1]],{i,1,n}]; 
data=Table[Drop[XLS[[i]],{maxpos[[i]]+1,dimxls[[i]]}],{i,1,n}]; 
n=First[Dimensions[data]]; 
dim=Table[First[Dimensions[data[[i]]]],{i,1,n}]; 
=Table[Table[{1+-data[[j,i,1]]/height[[j]],-

data[[j,i,2]]/area[[j]]},{i,1,dim[[j]]}],{j,1,n}]; 
 
min=1.1*Min[Union[Table[Transpose[[[i]]][[2]],{i,1,n}]]]; 
max=0; 
min=Min[Union[Table[Transpose[[[i]]][[1]],{i,1,n}]]]; 
max=1; 
max2=1.05; 
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cut=0.15; 
=Table[Select[�[[i]],#[[1]]>cut&],{i,1,n}]; 
sl=Table[DeleteDuplicates[[[i]],Abs[#1[[1]]-#2[[1]]]<0.001&],{i,1,n}]; 
 
init=0.85; 
init=Min[Table[Interpolation[sl[[i]]][init],{i,1,n}]]; 
min=1.1*Min[Union[Table[Transpose[sl[[i]]][[2]],{i,1,n}]]]; 
min=cut; 
DIM=Table[First[Dimensions[sl[[i]]]],{i,1,n}]; 
 
Young=Table[Table[{sl[[j,i+1,1]],(sl[[j,i+2,2]]-sl[[j,i,2]])/(sl[[j,i+2,1]]-

sl[[j,i,1]])},{i,1,DIM[[j]]-2}],{j,1,n}]; 
Ymax=Min[Table[Max[Young[[i]][[All,2]]],{i,1,n}]]; 
Ysel=Table[Select[Young[[i]],#[[1]]>0.85&],{i,1,n}];  
 
mm=Table[Max[Ysel[[i]][[All,2]]],{i,1,n}];  
pos=Table[Position[Ysel[[i]][[All,2]],mm[[i]]][[1,1]]+1,{i,1,n}]; 

sldrop=Table[Drop[sl[[i]],pos[[i]]],{i,1,n}]; 
DIMdrop=Table[First[Dimensions[sldrop[[i]]]],{i,1,n}]; 
Ydrop=Table[Drop[Young[[i]],pos[[i]]-1],{i,1,n}]; 
Yinit=1.2*Max[Table[Young[[i]][[pos[[i]]-1]][[2]],{i,1,n}]]; 
 
Es=Table[Young[[i]][[pos[[i]]-1,2]],{i,1,n}] 
s=Table[sl[[i]][[pos[[i]],2]],{i,1,n}]; 
s=Table[sl[[i]][[pos[[i]],1]],{i,1,n}]; 
s=1-s; 
s=s-Abs[s/Es]; 
 
slc=Table[Table[{sldrop[[i]][[k,1]]+s[[i]],sldrop[[i]][[k,2]]}, 

{k,1,DIMdrop[[i]]}],{i,1,n}]; 
slinit=Table[Table[{1-(i (1-slc[[j]][[1,1]]))/(pos[[j]]+1),i/(pos[[j]]+1) 

slc[[j]][[1,2]]},{i,1,pos[[j]]}],{j,1,n}]; 
slnew=Table[Union[slinit[[j]],slc[[j]]],{j,1,n}]; 
DIMnew=Table[First[Dimensions[slnew[[i]]]],{i,1,n}]; 
 
date2=Date[]; 
date=date2-date1; 
time=date[[6]]+date[[5]]*60+date[[4]]*3600+date[[3]]*3600*24 
 
Export["D:\\Users\\test\\C_MD_01.csv", Table[slnew[[1]]], "CSV"] 
Export["D:\\Users\\test\\C_MD_02.csv", Table[slnew[[2]]], "CSV"] 
Export["D:\\Users\\test\\C_MD_03.csv", Table[slnew[[3]]], "CSV"] 
Export["D:\\Users\\test\\C_MD_04.csv", Table[slnew[[4]]], "CSV"] 
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A.2. Notebook of tensile test evaluation 
date1=Date[]; 
L0=90; 
area=247; 
 
CSV={Import["D:\\Users\\test\\T_MD\\Specimen_RawData_2.csv"],Import["D:\\Users\\te

st\\T_MD\\Specimen_RawData_3.csv"],Import["D:\\Users\\test\\T_MD\\Specimen_RawDa
ta_8.csv"],Import["D:\\Users\\test\\T_MD\\Specimen_RawData_10.csv"]}; 

n=First[Dimensions[CSV]] 
 
CSVDATA=Table[Drop[CSV[[i]],8],{i,1,n}];  
FL0=Table[CSVDATA[[i]][[All,2;;3]],{i,1,n}] ;  
Dim=Table[First[Dimensions[FL0[[i]]]],{i,1,n} ] 
max=Table[Max[FL0[[i]][[All,2]]], {i,1,n} ] 
 
limit=Table[Position[FL0[[i]][[All,2]],max[[i]]],{i,1,n}] 
First[First[limit[[1]]]] 
FLjo=Table[Drop[FL0[[i]], First[First[limit[[i]]]]-Dim[[i]]],{i,1,n}]; 
 
lambda01=((FLjo[[1]][[All,1]]-FLjo[[1]][[All,1]][[1]])/L0)+1; 
lambda02=((FLjo[[2]][[All,1]]-FLjo[[2]][[All,1]][[1]])/L0)+1; 
lambda03=((FLjo[[3]][[All,1]]-FLjo[[3]][[All,1]][[1]])/L0)+1; 
lambda04=((FLjo[[4]][[All,1]]-FLjo[[4]][[All,1]][[1]])/L0)+1; 
szigma01=((FLjo[[1]][[All,2]]-FLjo[[1]][[All,2]][[1]])/area); 
szigma02=((FLjo[[2]][[All,2]]-FLjo[[2]][[All,2]][[1]])/area); 
szigma03=((FLjo[[3]][[All,2]]-FLjo[[3]][[All,2]][[1]])/area); 
szigma04=((FLjo[[4]][[All,2]]-FLjo[[4]][[All,2]][[1]])/area); 
 
ls01=Table[{lambda01[[i]], szigma01[[i]]},  {i, First[First[limit[[1]]]]}]; 
ls02=Table[{lambda02[[i]], szigma02[[i]]},  {i, First[First[limit[[2]]]]}]; 
ls03=Table[{lambda03[[i]], szigma03[[i]]},  {i, First[First[limit[[3]]]]}]; 
ls04=Table[{lambda04[[i]], szigma04[[i]]},  {i, First[First[limit[[4]]]]}]; 
 
date2=Date[]; 
date=date2-date1; 
time=date[[6]]+date[[5]]*60+date[[4]]*3600+date[[3]]*3600*24 
 
Export["D:\\Users\\test\\T_MD_01.csv", ls01, "CSV"]; 
Export["D:\\Users\\test\\T_MD_02.csv", ls02, "CSV"]; 
Export["D:\\Users\\test\\T_MD_03.csv", ls03, "CSV"]; 
Export["D:\\Users\\test\\T_MD_04.csv", ls04, "CSV"]; 
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A.3. Notebook of comparing test results 
MD01=Import["D:\\Users\\test\\C_MD_01.csv"]; 
MD02=Import["D:\\Users\\test\\C_MD_02.csv"]; 
MD03=Import["D:\\Users\\test\\C_MD_03.csv"]; 
MD04=Import["D:\\Users\\test\\C_MD_04.csv"]; 
 
MDWL01=Import["D:\\Users\\test\\C_MD_WL_01.csv"]; 
MDWL02=Import["D:\\Users\\test\\C_MD_WL_02.csv"]; 
MDWL03=Import["D:\\Users\\test\\C_MD_WL_03.csv"]; 
MDWL04=Import["D:\\Users\\test\\C_MD_WL_04.csv"]; 
limit=Min[First[Dimensions[MD01]], First[Dimensions[MD02]], 

First[Dimensions[MD03]], First[Dimensions[MD04]], First[Dimensions[MDWL01]], 
First[Dimensions[MDWL02]], First[Dimensions[MDWL03]], 
First[Dimensions[MDWL04]]] 

 
lambda = Table[1-0.8 i/limit, {i, 0, limit}]; 
 
IPMD01=Table [Interpolation[MD01, 1-0.8 i/limit], {i,0, limit}]; 
MD01JO= Table[{lambda[[i]], IPMD01[[i]]},  {i, limit+1}]; 
 
IPMD02=Table [Interpolation[MD02, 1-0.8 i/limit], {i,0, limit}]; 
MD02JO= Table[{lambda[[i]], IPMD02[[i]]},  {i, limit+1}]; 
 
IPMD03=Table [Interpolation[MD03, 1-0.8 i/limit], {i,0, limit}]; 
MD03JO= Table[{lambda[[i]], IPMD03[[i]]},  {i, limit+1}]; 
 
IPMD04=Table [Interpolation[MD04, 1-0.8 i/limit], {i,0, limit}]; 
MD04JO= Table[{lambda[[i]], IPMD04[[i]]},  {i, limit+1}]; 
 
IPMDWL01=Table [Interpolation[MDWL01, 1-0.8 i/limit], {i,0, limit}]; 
MDWL01JO= Table[{lambda[[i]], IPMDWL01[[i]]},  {i, limit+1}]; 
 
IPMDWL02=Table [Interpolation[MDWL02, 1-0.8 i/limit], {i,0, limit}]; 
MDWL02JO= Table[{lambda[[i]], IPMDWL02[[i]]},  {i, limit+1}]; 
 
IPMDWL03=Table [Interpolation[MDWL03, 1-0.8 i/limit], {i,0, limit}]; 
MDWL03JO= Table[{lambda[[i]], IPMDWL03[[i]]},  {i, limit+1}]; 
 
IPMDWL04=Table [Interpolation[MDWL04, 1-0.8 i/limit], {i,0, limit}]; 
 
MDWL04JO= Table[{lambda[[i]], IPMDWL04[[i]]},  {i, limit+1}]; 
 Mean[{IPMD01[[1]],IPMD02[[1]], IPMD03[[1]], IPMD04[[1]]}]; 
 
LAYER=Table[{lambda[[i]], Mean[{IPMD01[[i]],IPMD02[[i]], IPMD03[[i]], 

IPMD04[[i]]}]},  {i, limit+1}]; 
WLAYER=Table[{lambda[[i]], Mean[{IPMDWL01[[i]],IPMDWL02[[i]], IPMDWL03[[i]], 

IPMDWL04[[i]]}]},  {i, limit+1}]; 
 
Export["D:\\Users\\test\\C_MD_LAYER.csv", LAYER, "CSV"]; 
Export["D:\\Users\\test\\C_MD_WITHOUT_LAYER.csv", WLAYER, "CSV"]; 
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A.4. Notebook of cross-directional stretch evaluation 

BE=Import["D:\\Users\\test\\VIDEO\\MD_01.csv"]; 
BE2=Import["D:\\Users\\test\\C_MD\\Specimen_RawData_1.csv"]; 
 
Dimensions[BE]; 
tmax= (First[Dimensions[BE]]-1)/23.976; 
limit=tmax*23.976 
height=20.9011; 
H0=24; 
 
IP=Table [Interpolation[BE, i/23.976], {i,0, limit}]; 
Time = Table[i/23.976, {i, 0, limit}]; 
TL2= Table[{Time[[i]], IP [[i]]},  {i, limit+1}]; 
l2min= Min[IP]; 
l2max= Max[IP]; 
 
n=First[Dimensions[BE2]]; 
BE2OK=Table[Drop[BE2,8] ]; 
 
TL=Table[BE2OK[[All,1;;2]]]; 
IP1=Table [Interpolation[TL, i/23.976], {i,0, limit}]; 
lambda=H0/height-IP1/height; 
 
lmin= Min[lambda]; 
lmax= Max[lambda]; 
pos=First[Dimensions[lambda]-Dimensions[lambdajo]]; 
TLJO= Table[{Time[[i]], lambdajo[[i]]},  {i, limit+1-pos}]; 
lambda2jo=Drop[IP, pos]; 
 
MIN=lambda2jo[[1]]-1 
TL2JO= Table[{Time[[i]], lambda2jo[[i]]-MIN},  {i, limit+1-pos}]; 
 
"FITTING"; 
F=l^(-nu); 
mo=FindFit[l1l2, F, nu, l] 
 
 

A.5. Notebook of correction factor determination 

BE=Import["D:\\Users\\test\\VIDEO_MARKER_CROSSHEAD\\T_MD_01.csv"]; 
Dimensions[BE]; 
tmax= (First[Dimensions[BE]]-1)/23.976; 
limit=tmax*23.976 
 
CH=Table[BE[[i,2]], {i,1, limit+1}]; 
Marker=Table[BE[[i,3]], {i,1, limit+1}]; 
CHMARKER= Table[{CH[[i]], Marker [[i]]},  {i, limit+1}]; 
 
F2=m l+b; 
mo2=FindFit[CHMARKER, F2, {m,b}, l] 
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A.6. Notebook of curve fitting - compression 

SL=Import[ "D:\\Users\\test\\C_MD_LAYER.csv"]; 
Nu2=0.096652; 
Nu3=0.048984; 
Dim=Dimensions[SL][[1]]; 
 
F1=(211)/11 (1--1111(1-Nu2-Nu3)) 
F12=(211)/11 (-11(Nu2+Nu3)/2 --1111(1-Nu2-Nu3)) 

mo1=FindFit[SL,{F1,(11*11>0)&&(11>-1/3)},{{11,1},{11,1}, 
{11,1}},,Method→NMinimize] 

MO1=F1/.mo1; 
MO1l2=F12/.mo1; 
 
ERROR=Sum[((F1/.{→ SL[[i,1]]})-(SL[[i,2]]))2+(F12/.{→ SL[[i,1]]})^2,{i,1,Dim}]; 
mo2=NMinimize[{ERROR,(11*11>0)&&(11>-1/3)},{{11,-10,10},{11,-10,10},  

{11,-10,10}},Method→{"SimulatedAnnealing","PerturbationScale"→2, 
"SearchPoints"→100}][[2]] 

MO2=F1/.mo2; 
MO2lamdba=F12/.mo2; 
 
Sum[(((F1/.mo2)/.{→SL[[i,1]]})-(SL[[i,2]]))2 +(((F12/.mo1)/.{→SL[[i,1]]})-

(SL[[i,2]]))2,{i,1,Dim}] 
Sum[(((F1/.mo2)/.{→SL[[i,1]]})-(SL[[i,2]]))2 +(((F12/.mo2)/.{→SL[[i,1]]})-

(SL[[i,2]]))2,{i,1,Dim}] 
  
(*SECOND_ORDER*) 
 
F2=(221)/21 (21--21 21(1-Nu2-Nu3))+(222)/22 (22--22 22 (1-Nu2-Nu3)); 
F22=(221)/21 (-21(Nu2+Nu3)/2--2121(1-Nu2-Nu3))+(222)/22(-22(Nu2+Nu3)/2--2222(1-Nu2-Nu3)); 

mo21=FindFit[SL,{F2,(21*21+22*22>0)&&(21>-1/3) &&(22>-1/3)}, 
{{21,1},{21,1}, {21,1}, {22,1},{22,1}, {22,1}},,Method→NMinimize] 

MO21=F2/.mo21; 
MO21lambda=F22/.mo21; 
 

ERROR=Sum[((F2/.{→ SL[[i,1]]})-(SL[[i,2]]))2+(F22/.{→ SL[[i,1]]})^2,{i,1,Dim}]; 
mo22=NMinimize[{ERROR, ,(21*21+22*22>0)&&(21>-1/3) &&(22>-1/3)}, 

{21,21,21,22,22,22},Method→{"SimulatedAnnealing", 
"PerturbationScale"→2,"SearchPoints"→100}][[2]] 

 
MEGO22=F2/.mo22; 
MEGO22lambda=F22/.mo22; 
 
Sum[(((F2/.mo21)/.{→SL[[i,1]]})-(SL[[i,2]]))2 +(((F22/.mo21)/.{→SL[[i,1]]})-

(SL[[i,2]]))2,{i,1,Dim}] 
Sum[(((F2/.mo22)/.{→SL[[i,1]]})-(SL[[i,2]]))2 +(((F22/.mo22)/.{→SL[[i,1]]})-

(SL[[i,2]]))2,{i,1,Dim}] 
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A.7. Notebook of curve fitting - tension 

SL0=Import[ "D:\\Users\\test\\T_MD_LAYER.csv"]; 
Nu2=0.511525; 
Nu3=0.593596; 
c=1.06289; 
Dim=Dimensions[SL0][[1]]; 
 
L=Table[SL0[[i]][[1]],{i,1,Dim}] ; 
L1=L[[1]]*c-1 
S=Table[SL0[[i]][[2]],{i,1,Dim}] ; 
SL=Table[{c*L[[i]]-L1, S[[i]]}, {i,1,Dim}]; 
 
F1=(211)/11 (1--1111(1-Nu2-Nu3)) 
F12=(211)/11 (-11(Nu2+Nu3)/2 --1111(1-Nu2-Nu3)) 

mo1=FindFit[SL,{F1,(11*11>0)&&(11>-1/3)},{{11,1},{11,1}, 
{11,1}},,Method→NMinimize] 

MO1=F1/.mo1; 
MO1l2=F12/.mo1; 
 
ERROR=Sum[((F1/.{→ SL[[i,1]]})-(SL[[i,2]]))2+(F12/.{→ SL[[i,1]]})^2,{i,1,Dim}]; 
mo2=NMinimize[{ERROR,(11*11>0)&&(11>-1/3)},{{11,-10,10},{11,-10,10},  

{11,-10,10}},Method→{"SimulatedAnnealing","PerturbationScale"→2, 
"SearchPoints"→100}][[2]] 

MO2=F1/.mo2; 
MO2lamdba=F12/.mo2; 
 
Sum[(((F1/.mo2)/.{→SL[[i,1]]})-(SL[[i,2]]))2 +(((F12/.mo1)/.{→SL[[i,1]]})-

(SL[[i,2]]))2,{i,1,Dim}] 
Sum[(((F1/.mo2)/.{→SL[[i,1]]})-(SL[[i,2]]))2 +(((F12/.mo2)/.{→SL[[i,1]]})-

(SL[[i,2]]))2,{i,1,Dim}] 
 
(*SECOND_ORDER*) 
 

F2=(221)/21 (21--21 21(1-Nu2-Nu3))+(222)/22 (22--22 22 (1-Nu2-Nu3)); 
F22=(221)/21 (-21(Nu2+Nu3)/2--2121(1-Nu2-Nu3))+(222)/22(-22(Nu2+Nu3)/2--2222(1-Nu2-Nu3)); 

mo21=FindFit[SL,{F2,(21*21+22*22>0)&&(21>-1/3) &&(22>-1/3)}, 
{{21,1},{21,1}, {21,1}, {22,1},{22,1}, {22,1}},,Method→NMinimize] 

MO21=F2/.mo21; 
MO21lambda=F22/.mo21; 
 

ERROR=Sum[((F2/.{→ SL[[i,1]]})-(SL[[i,2]]))2+(F22/.{→ SL[[i,1]]})^2,{i,1,Dim}]; 
mo22=NMinimize[{ERROR, ,(21*21+22*22>0)&&(21>-1/3) &&(22>-1/3)}, 

{21,21,21,22,22,22},Method→{"SimulatedAnnealing", 
"PerturbationScale"→2,"SearchPoints"→100}][[2]] 

 

MEGO22=F2/.mo22; 
MEGO22lambda=F22/.mo22; 
Sum[(((F2/.mo21)/.{→SL[[i,1]]})-(SL[[i,2]]))2 +(((F22/.mo21)/.{→SL[[i,1]]})-

(SL[[i,2]]))2,{i,1,Dim}] 

Sum[(((F2/.mo22)/.{→SL[[i,1]]})-(SL[[i,2]]))2 +(((F22/.mo22)/.{→SL[[i,1]]})-
(SL[[i,2]]))2,{i,1,Dim}] 
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A.8. Notebook of numerical simulation evaluation 

MPL=Import[ "D:\\Users\\test\\C_MD_LAYER.csv"]; 
Nu2=0.096652; 
Nu3=0.048984; 

2=^(-(Nu2+Nu3)/2); 
 
BE=Import[ "D:\\Users\\test\\ANSYS\\C_MD.csv"]; 
BEOK2=Table[Drop[BE,1] ]; 
BEOK=Insert[BEOK2, {0,0,0,0,0},1]; 
Dim=Dimensions[BEOK][[1]]; 
t=Table[BEOK[[All,1]]]; 
P1=Table[BEOK[[All,3]]]; 
P2=Table[BEOK[[All,5]]]; 
l=Table[BEOK[[All,2]]]; 
l2=Table[BEOK[[All,4]]]; 
APL=Table[{1+l[[i]], P1 [[i]]},  {i, Dim}]; 
AL1L2=Table[{1+l[[i]], 1+l2 [[i]]},  {i, Dim}]; 
AL1P2=Table[{1+l[[i]],P2 [[i]]},  {i, Dim}]; 
DI=Dimensions[APL][[1]] 
 
HIBA1=Sum[((APL[[i,2]]-Interpolation[MPL, APL[[i,1]]])2+ 

(AL1P2[[i,2]])^2),{i,1,DI}] 

HIBA2=Sum[(AL1L2[[i,2]]-2/.{→ AL1P2[[i,1]]})2,{i,1,DI}] 
 

  


