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1
Introduction

Understanding the mechanical behaviour of materials is an essential part of everyday engineering
work in order to accurately determine and predict the deformation and stress state of structures
and parts subjected to external effects including mechanical loading. In order to relate the de-
formation of a general three-dimensional body to the applied external effects, the local behaviour
of the material at every point should be characterised by a suitably chosen constitutive equation.
In continuum mechanics approach, the simplest constitutive model is the isotropic Hooke’s law,
that describes accurately the deformation of metals in the small-strain regime, where the material
behaves in a linear elastic manner. In the linearised theory of deformation, the advanced constitu-
tive models may also include several complex phenomena such as permanent (yielding or plastic)
and rate-dependent (viscous) deformations [1, 2, 3, 4].

The mechanical behaviour of modern polymer materials exhibits different types of phenomena
when exposed to normal loading such as creep, stress relaxation, yielding, plastic flow, fracture
or fatigue [5]. The goal of the material characterisation (or constitutive modelling) process is to
mathematically describe these phenomena and predict the material behaviour for complex load
cases. There are two main modelling approaches that aim to capture the material response to
external effects: microstructural and phenomenological approaches [5, 6].

Microstructural (or micromechanical) models estimate the global mechanical behaviour us-
ing the knowledge about the local behaviour including interactions and deformation mechanisms
from the atomic level in a monomer to the interaction of molecular chains in molecular level
[5, 7, 8]. These models are always more reliable than phenomenological models; however, due
to the complexity of micromechanical interactions (also including electrostatic, thermodynamical
and chemical effects), it becomes complicated to derive a constitutive model based solely on mi-
cromechanical considerations. Therefore, such models are rarely applied in computational solid
mechanics [4, 6, 9]

The phenomenological modelling approach is mainly concerned with finding suitable math-
ematical relations between measurable macroscopic quantities (e.g. stress, strain, temperature,
load-rate) based on experimental investigation focusing on the phenomena to be characterised.
Although, these models are not capable of describing the microstructural deformation mechanisms
underlying the macroscopic structure of the material [6]. Due to the fact, that phenomenological
models are fitted to certain load cases, they are only strictly applicable for the exact loading
conditions for which the constitutive modelling was performed or for which the model was val-
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CHAPTER 1. INTRODUCTION

idated. The steps of the complete phenomenological characterisation process are illustrated in
Fig. 1.1 [5]. The material characterisation process is usually based on simple experimental work
that highlights all the phenomena to be modelled in the simplest possible manner (e.g. using ho-
mogeneous deformations), which are then applied during the development of constitutive models.
The constitutive modelling part ends with a validation step where the prediction of the proposed
model are compared with the results of the simple mechanical tests. As a next step, the material
model should also be validated for complex load cases using, e.g. finite element simulations for
obtaining the model prediction for the load case. In this dissertation, this modelling approach is
applied and investigated.

Simple
Measurements

time

st
re

ss

Analyse
Measurements

Select
Material Model

+

σ=f(ε)

Calibrate
Mat. model

time

st
re

ss

R2=?

Develop
fitting strategy

Iteration

FE simulation
of complex load

Validation forExperiment
of complex load

Application

complex load

Figure 1.1: Schematics of complete material modelling using phenomenological approach (based on [5])

The mechanical behaviour of polymers usually exhibits large strains and large deformations
with highly nonlinear effects. Therefore, in general, finite strain (or large-strain) continuum me-
chanics description is required for the adoption of such behaviours. In addition to the nonlinear
elastic contribution, the deformation may also show linear/nonlinear viscous and linear/nonlinear
yielding properties [10, 11, 12, 13, 14]. The available constitutive models (elastic, viscoelastic,
viscoplastic) implemented in a commercial finite element (FE) software (such as Abaqus [15],
Ansys [16], MSC Marc [17]) can be effectively used to obtain very accurate numerical results
for the deformation of metals even with finite strain formulation. These models certainly have
limitations, but those are still widely accepted and applied by the engineering and academic com-
munity. However, it should be emphasised that general, accurate constitutive models for polymers
with finite strain deformations in combination with viscoelastic and viscoplastic effects are not
available, and hence, researchers usually develop their own models for the particular material
under investigation.

The commonly applied method for modelling the nonlinear viscoelastic-viscoplastic behaviour
of polymers is the combination of a so-called hyperelastic constitutive equation with a suitably
selected network of basic elements characterising nonlinear viscous and yielding behaviours. The
hyperelastic modelling approach (which is described in detail in Section 2.3), was firstly developed
for rubber-like materials, which are considered to be incompressible (or nearly-incompressible),
and since then several incompressible hyperelastic models were published [18, 19]. However,
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several polymers show significant volumetric deformation, for which usually an additional term is
introduced in the strain-energy potential [6, 20, 21]. In the literature and in the commercial finite
element software, the number of large-strain compressible hyperelastic material models are limited,
while in the industry, there is significant need to model such material behaviour accurately.

According to the highly-cited flowchart of Hughes [22], the material modelling process takes at
least 6–10% of the total engineering hours during a complete FE simulation process. However, the
choice of material models fundamentally determines the result of the simulation and its validity. In
industry, the design and manufacturing time can be significantly reduced, and process parameters
can be optimised when the entire production process (e.g. thermoforming) is investigated with
accurate FE simulations [23, 24, 25]. This requires a complete understanding of the behaviour
of large-strain compressible materials with viscoelastic and viscoplastic effects and to develop the
corresponding material models and parameter fitting strategies.

This thesis is dedicated to the mechanical modelling of polymer materials where different as-
pects of viscoelastic and viscoplastic properties occur under finite strain deformations. Three
fundamental constitutive modelling approaches are investigated and combined: compressible hy-
perelastic, viscoelastic and viscoplastic. The hyperelastic constitutive models are applied when
the deformations are elastic but in a nonlinear manner with large strains. Viscoelastic approach
is assumed when explicit time-dependence occurs in the governing equations and the material
has strain-rate dependent behaviour or “memory effect” without permanent deformations. Fi-
nally, viscoplastic models are adopted for those materials where the yielding behaviour is also
rate-dependent. In this thesis, all three kinds of modelling approaches are considered through
examples related to real engineering application.

The thesis contributes to the state-of-the-art literature by developing material characterisa-
tion process including experimental, analytical, and numerical methods as well as by providing
advanced constitutive models for open- and closed-cell foams, microcellular thermoplastic foams
and polymer airsoft pellets. The mechanical characterisation of such materials is an actively re-
searched field due to their widespread use and industrial importance. The primary motivation
of the thesis was to develop such phenomenological models, parameter fitting algorithms and
strategies that can efficiently be utilised in real engineering problems and forms also the basis
for further research. A further aim of the thesis was analysing the applicability of the proposed
phenomenological models and investigating the model prediction on complex load cases. With
this aim, experimental validation methods were also developed and proposed.

1.1 Layout
The present dissertation contains six chapters and is structured as follows. Chapter 1 summarises
the background of the thesis, the motivation and goals of the Author. Then, the goals and the
structure of the thesis are reviewed, and finally, the most important notations are summarised.

The chapters of the thesis discuss various engineering problems with large-strain compressible
material behaviour; therefore, the literature overview is given at the beginning of each chapter.
However, a general overview of the necessary theoretical background is provided in Chapter 2.
After a brief introduction to the fundamentals of phenomenological modelling and material net-
work models with small-strain formulation, the large-strain continuum mechanics formulation and
the description of large-strain deformations and stresses are presented, including the theory of
hyperelasticity as well. The summary of the small-strain elastoplasticity and viscoelasticity is also
an essential part of this Chapter.
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CHAPTER 1. INTRODUCTION

Chapter 3 considers the first engineering application, which is the pure elastic modelling of
open- and closed-cell polymer foams using the Ogden–Hill compressible hyperelastic (or Hyper-
foam1) model. This model is well-known for foams and also implemented in Abaqus, although,
the material characterisation strongly depends on the transversal behaviour. In this Chapter,
experimental investigations are presented, including mechanical tests and image processing tech-
niques, whereas constitutive modelling strategies are compared and analysed.

In Chapter 4, the rate-dependent behaviour of open-cell foams (so-called “memory foams”)
are investigated, for which a large-strain visco-hyperelastic constitutive model is proposed based
on the previously applied Hyperfoam model. For this material model analytical stress solutions
are derived, that can be utilised in the parameter-fitting procedure, which significantly improves
the fitting accuracy compared to the separated fitting approach. The benefits of the closed-form
fitting method are also illustrated via a case study on memory foams applied in mattresses.

Chapter 5 is dedicated to the modelling of thermoplastic microcellular polyethylene-terephtelate
foam material (MC-PET), which is applied in lighting applications and manufactured using ther-
moforming. In this case, the material behaviour, in addition to its elastic behaviour, also exhibits
viscous properties, and the permanent deformation is also significant. Here, a parallel viscoelastic-
viscoplastic model was proposed for characterising the material response on the entire tempera-
ture domain that is relevant from the thermoforming aspect. For the parameter-fitting task, a
FE-based numerical algorithm was implemented, whereas, for the validation, a punch-test based
laser scanning method was proposed.

Finally, Chapter 6 presents the simulation of airsoft pellet impacts and its applicability as an
impulse excitation method. This topic was motivated by the lack of proper excitation methods for
rotating machine tools due to the posed safety-risks and the infeasibility of excitation by a modal
hammer. In the ERC 2 founded research SIREN and ProExcer, a pneumatic ball excitation method
was developed. However, the estimation of the relevant excitation frequency domain should be
determined based on numerical simulations. According to the mechanical tests, similar material
behaviour was detected as in case of the MC-PET material. Thus the similar modelling approach
was extended, and the applicability of pellet impacts was also demonstrated via an experimental
case study and numerical simulations.

1.2 Nomenclature
Latin letters

A, n,m Creep law parameters
A0, a Initial and current cross section
A, a Surface element vectors in the reference and in the current configuration
b Left Cauchy–Green deformation tensor
C Right Cauchy–Green deformation tensor
D Damping factor
d Rate of deformation tensor
E Green–Lagrange strain tensor
E Elastic modulus (Young’s modulus)
E0, E∞ Instantaneous and long-term elastic moduli
ek Relative elastic modulus
E1,E2,E3 Unit basis vectors in the reference configuration
e1, e2, e3 Unit basis vectors in the spatial configuration

1The name of Ogden–Hill’s hyperelastic model in Abaqus
2www.siren.mm.bme.hu
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1.2. NOMENCLATURE

F Deformation gradient
f Frequency
fE Fraction of elasticity (or elastic-ratio)
F Load, force
G Shear modulus
gi Relative shear modulus
H Right logarithmic (Hencky) strain tensor
h Left logarithmic (Hencky) strain tensor
H Linear hardening modulus
H0 Initial separation
I Second-order identity tensor
I1, I2, I3 Principal scalar invariants of C and b
J Volume ratio (J = detF )
K Bulk modulus
ki Relative bulk modulus
l Eulerian velocity gradient
L0, L Initial and actual heights of the specimen
ni Unit eigenvectors of b
N i Unit eigenvectors of C
NΦ Outward normal of the yield surface
N Order of the hyperelastic material model
P Order of the Prony-series
R Rotation tensor (proper orthogonal)
S Standard error of regression
P First Piola–Kirchhoff stress tensor
S Second Piola–Kirchhoff stress tensor
s Deviatoric Cauchy stress tensor
t Time
t Traction vector
tr Relaxation time
T Temperature
Tg Glass-transition temperature
u, U Displacements
U Right stretch tensor
V Left stretch tensor
v Eulerian velocity field
vΩ0 Lagrangian velocity field
W Strain energy potential
w Spin tensor

Greek letters

α(t), α(ω) Acceleration signal and its FFT
αi, βi, µi Material parameters in the Ogden–Hill’s hyperelastic material model
Γ(ν, x) Upper incomplete gamma function
δabs, δrel Absolute and relative error
ε Small-strain tensor
εeng Engineering strain
εtrue True (or logarithmic) strain
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εcr Creep strain
εe, εe Elastic strain tensor, elastic strain
εp, εp Plastic strain tensor, plastic strain
ε̄p Accumulated plastic strain
ε̇ Engineering strain rate
η Dynamic viscosity
Φ Yield function
λ Stretch
λ1, λ2, λ3 Principal stretches
λp Plastic multiplier
λT Transversal stretch
ν Poisson’s ratio
σ Cauchy stress
σ Cauchy stress tensor
σy0, σy Initial and actual yield stress
τ Kirchhoff stress
τ Kirchhoff stress tensor
τi Prony parameters
τr Relaxation or retardation time
ω Angular frequency

Calligraphic letters
De Elastic tangent modulus
Dep Elastic-plastic tangent modulus
T Deviatoric projection tensor

Abbreviations
CU Confined uniaxial
CB Confined biaxial
D Deviatoric
EB Equibiaxial
H Hydrostatic
inst Instantaneous
long Long-term
SS Simple shear
UN, UA Uniaxial
VOL Volumetric
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2
Theoretical background

This thesis focuses on the phenomenological modelling of polymers with large strain deformation
in combination with viscoelastic and viscoplastic effects. In order to thoroughly understand the
applied models and to analyse their performance and applicability, the theoretical background is
summarised briefly.

2.1 Rheological models
In solid mechanics, the structure of complex three-dimensional constitutive models are often rep-
resented as one-dimensional networks of basic rheological elements (see Fig. 2.1), where the state
variables are the σ(t) Cauchy-stress and ε(t) strain [5, 10, 26, 7, 8]. The elastic behaviour is
usually illustrated by springs and in small-strain formulation characterised by the Hooke’s law:

σ = Eε, (2.1)

where E is the elastic (or Young’s) modulus. The nonlinear elastic behaviour can be modelled with
a nonlinear spring (see Nonlinear Hooke-element in Fig. 2.1/b), which is characterised formally
by σ = fσ(ε). However, the exact formulation of such nonlinear springs is based on continuum
mechanics formulation and the theory of hyperelasticity, which is discussed in Section 2.3 [6, 2, 1].

E

nonlinear

yσ

a) Hooke-element
η

nonlinear

b) Nonlinear Hooke-element

c) Newton-element

d) Nonlinear Newton-element

e) Coulomb-element

Figure 2.1: The basic rheological elements: a) Hooke-element, b) Nonlinear Hooke-element, c) Newton-
element d) Nonlinear Newton-element and d) Coulomb-element

The viscous properties can be modelled with the Newton-element, illustrated as dashpots in
Fig. 2.1/c, which provide a one-to-one connection between the stress σ(t) and the strain rate ε̇(t).

7



CHAPTER 2. THEORETICAL BACKGROUND

If linear relation is assumed, the Newton-law holds, namely

σ = ηε̇, (2.2)

where η is the (dynamic) viscosity. Of course, similarly to nonlinear springs, nonlinear Newton-
elements can also be defined formally as σ = fη(ε̇), for which several possible relations are proposed
in the literature, see for example Anand, Norton–Hoff, Power-law, Hyberbolic-Sine or Eyring
nonlinear viscous models [10, 14, 27].

Finally, the so-called Coulomb-element is applied to describe yielding properties, where (plas-
tic) strain occurs only above a certain stress limit (e.g. yield stress). Therefore, the stress-strain
relation can be summarised as [28]

ε̇ = 0 if |σ| < σy, and σ =

σy → ε̇ > 0
−σy → ε̇ < 0

. (2.3)

This element is usually represented as a slider in Fig. 2.1/e. The detailed theory and the
corresponding governing equations of small strain elastoplasticity are summarised in Section 2.4.

2.1.1 Viscoelastic behaviour
Elastic materials are capable of storing the potential energy during the loading process, and when
the load is removed, the original shape is retrieved immediately. Compared to this, viscoelastic
materials have viscous properties as well, which means that some energy is dissipated during load-
ing, while the original shape is retrieved only in ”infinite” time after the unloading. Viscoelastic
behaviour also means that in case of cyclic loading a hysteresis can be observed in the stress-
strain characteristic (σ− ε), while the strain rate (ε̇) also influences the material response causing
significant hardening, these properties are illustrated in Fig. 2.2/a-b [5, 10, 29, 1].

st
re

ss

strain

uploading

unloading

a)

st
re

ss

strain

strain rate

b)

c) stress relaxation d) creep

t

t

t

t ττ

Figure 2.2: The main viscoelastic properties: a) hysteresis during cyclic loading with stress control,
b) strain-rate dependence, and the illustration of a possible type of c) stress-relaxation and d) creep
phenomena

The two most significant phenomena of the viscoelastic material behaviour are the stress-
relaxation and the creep. In case of stress relaxation the stress decays exponential-likely, when
the strain is kept constant ε(t) = ε0, while in case of creep the stress is kept constant σ(t) = σ,
which cause monotonously increasing strains (see Fig. 2.2/c-d).

Using the previously introduced linear spring and dashpot elements, the basic rheological
models characterising viscoelastic behaviour can be constructed. The Maxwell-model (Fig. 2.3/a)
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2.1. RHEOLOGICAL MODELS

is the series connection of the spring and dashpot elements, where the total strain can be split
between the spring and the dashpot elements as

ε(t) = εe(t) + εv(t), while σ(t) = σv(t) = σe(t), (2.4)

where indices e and v refers to elastic and viscous contributions, respectively. Thus, applying (2.1)
and (2.2), the governing equation for the total strain-rate becomes

ε̇(t) = σ(t)
η

+ σ̇(t)
E

. (2.5)

On the other hand, the parallel connection of the spring and the dashpot (Fig. 2.3/b) is called
Kelvin–Voigt-model, where the total stress is decomposed additively and governing equations are
expressed as

σ(t) = σv(t) + σe(t), ε(t) = εe(t) = εv(t), and σ(t) = Eε(t) + ηε̇(t). (2.6)

The mechanical characterisation process of viscoelastic materials is usually based on stress-
relaxation and displacement-driven mechanical tests. Connecting a spring in parallel with the
Maxwell-element (see Fig. 2.3/c) gives the so-called Standard Linear Solid element (SLS), which
is commonly applied for describing stress-relaxation. Combining the relations in (2.1)-(2.6), the
governing differential equation of SLS becomes

σ(t) + η

E
σ̇(t) = E∞ε(t) +

(
1 + E∞

E

)
ηε̇(t), (2.7)

which can also be expressed in the form of a hereditary (or convolution) integral of the strain-rate
as

σ(t) =
t∫

0

E(t− s)ε̇(s)ds, (2.8)

where E(t) is the relaxation modulus, which is defined as

E(t) = E∞ + Ee−t/τr , (2.9)

while E∞ is the long-term elastic modulus. A significant parameter of the system is the time
constant τr = η/E, which is also commonly referred as relaxation or retardation time, respectively.
Note, that SLS model forms the basis of the most-commonly applied finite-strain viscoelastic
models (see Chapter 4).

E
η

b) Kelvin–Voigt

∞

E η

c) Standard Linear Solid

EE η

a) Maxwell

Figure 2.3: The basic models of linear viscoelasticity: a) Maxwell-model, b) Kelvin–Voigt-model and
c) Standard Linear Solid model
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CHAPTER 2. THEORETICAL BACKGROUND

2.2 Description of finite strain deformations
In solid mechanics, finite strain deformations and nonlinear material behaviour can effectively
be described using the phenomenological approach of continuum mechanics. The fundamental
assumption of continuum theory states that the material body is imagined as a continuous set of
material points and has a continuous distribution of matter both in space and time, which can be
characterised by continuous field variables on macroscopic level [1, 2, 6, 20, 21].

The general motion of a deformable body is shown in Fig. 2.4. At their initial position at
t = 0, the material particles (occupying the region Ω0) are identified with theirX coordinates with
respect to Cartesian basis Ei, which is referred as initial, reference or undeformed configuration.
After deformation, the current position of particles at time instance t is described by coordinates
x in basis ei in the region Ω, which is also called current, spatial or deformed configuration
[6, 20]. Furthermore, it is widely accepted simplification that the origin of the coordinate systems
corresponding to initial and current configurations coincides. It should be noted, that there
exists a more general description, where non-orthogonal curvilinear coordinates are applied for
both configurations [30, 31, 32, 33]. However, from the material constitutive modelling point of
view [5, 9], this representation has minor benefits, and thus the simplified, orthogonal Cartesian
coordinates are applied.

E1,e1 E2,e2

E3,e3

t=0 t>0

Ω

Ω0

P P'

X(X 1,X
2,X

3)

x(x1,x2,x3)

dX dx

ϕ(X,t)

ϕ-1(x,t)

path

reference current
configuration configuration

Figure 2.4: Representation of deformable solid in reference and current configurations

The mathematical description of the motion is given as a unique mapping φ between the inital
and the reference configurations, namely

x = φ(X, t). (2.10)

Since, motion is assumed to be uniquely invertible, its inverse can be expressed as

X = φ−1(x, t). (2.11)

In continuum mechanics, a careful distinction should be made between the description of quan-
tities corresponding to the body under motion. The so-called material (or Lagrangian) description
is applied to characterise quantities in the reference configuration, as a function of coordinates
X and time t. Whereas, the spatial (or Eulerian) description uses coordinates x and time t
corresponding to the deformed configuration.

The local deformation is characterised primarily by the deformation gradient F defined as

F (X, t) = ∂φ(X, t)
∂X

= FaBea ⊗EB, (2.12)
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which relates the infinitesimal line elements as dx = F (X, t)dX. To ensure non-singular mo-
tion, the deformation gradient should satisfy det(F ) > 0. Using the inverse motion, the inverse
deformation gradient can be expressed as

F−1(x, t) = ∂φ−1(x, t)
∂x

= FAbEA ⊗ eb. (2.13)

The motion is considered to be homogeneous, if the deformation gradient does not depend on
the material coordinates, namely F (X, t) = F (t) or F−1(x, t) = F−1(t).

2.2.1 Strain measures
Using the deformation gradient several deformation and strain measures can be introduced [2, 6,
20]. The symmetric and positive definite left and right Cauchy–Green deformation tensors are
defined as:

right Cauchy–Green deformation tensor: C(X, t) = F TF , (2.14)
left Cauchy–Green deformation tensor: b(x, t) = FF T , (2.15)

from, which the Green–Lagrange strain tensor can be introduced as

E(X, t) = 1
2 (C − I) . (2.16)

The non-singular deformation gradient can be decomposed uniquely using the so-called polar
decomposition theorem [6, 20] as

F = RU = V R (2.17)
where U(X, t) and V (x, t) are the right and left stretch tensors, respectively, while R is a proper
orthogonal rotation tensor. Using the polar decomposition, the deformation is split to stretching
(given by U and V ) and a superimposed rigid-body rotation given by R. The stretch tensors are
related to the strain tensors as

U =
√
C, and V =

√
b. (2.18)

The λi eigenvalues of U and V are called principal stretches, while the corresponding nor-
malized eigenvectors N i and ni = RN i define the principal directions. The principal stretches
give the ratio between current and initial lengths of a line element in the principal directions.
Consequently, C and U can be expressed with their spectral decomposition as

U =
3∑
i=1

λiN i ⊗N i, and C =
3∑
i=1

λ2
iN i ⊗N i. (2.19)

Similarly, the corresponding Eulerian quantities can also be expressed as

V =
3∑
i=1

λini ⊗ ni, and b =
3∑
i=1

λ2
ini ⊗ ni. (2.20)

Using U and V the material and spatial logarithmic strain tensors can also be introduced as

H(X, t) =
3∑
i=1

ln λiN i ⊗N i = lnU , and h(x, t) =
3∑
i=1

ln λini ⊗ ni = lnV . (2.21)

Finally, the volume change of an infinitesimal volume element is given by the volume ratio J
as

J = detF , (2.22)
for which J > 0 should hold in order ensure physically admissible deformation [6, 20].
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2.2.2 Velocity and time-derivatives
Obviously, the deformation is in many cases rate-dependent and thus, the velocity and other
time-derivatives should be obtained [2, 6, 20]. The Lagrangian velocity field can be introduced as

vΩ0(X, t) = ∂φ(X, t)
∂t

, (2.23)

while the Eulerian velocity field can be obtained as

v(x, t) = vΩ0(φ−1(x, t), t). (2.24)

From the velocity field, the Eulerian velocity gradient l can be defined as

l(x, t) = ∂v(x, t)
∂x

= Ḟ F−1, (2.25)

which can be additively decomposed to the symmetric rate of deformation tensor d and the skew-
symmetric spin tensor w using

l(x, t) = d(x, t) +w(x, t), (2.26)

where

d = 1
2
(
l + lT

)
, and w = 1

2
(
l− lT

)
. (2.27)

Similarly, the time-derivative of other quantities can be introduced. However, different deriva-
tion rules apply for Lagrangian and Eulerian fields. In continuum mechanics, material time deriva-
tive (total time derivative) represents the rate of change seen by an observer following the path of
a certain material particle. Let us consider a general Lagrangian scalar or tensor field FΩ0(X, t)
and an Eulerian one fΩ(x, t). The material time derivative of such quantities can be expressed as

˙FΩ0(X, t) = DFΩ0(X, t)
Dt =

(
∂FΩ0(X, t)

∂t

)
X

, (2.28)

ḟΩ(x, t) = DfΩ(x, t)
Dt = ∂fΩ(x, t)

∂t
+ grad (fΩ(x, t)) · v(x, t). (2.29)

In case of the material time derivative of spatial fields, the first term in (2.29) is called local (or
spatial) time derivative, while the second term is the convective derivative. Using the derivation
rules, most important time derivatives of the previously introduced strain and stress measures
become

Ḟ = lF , (2.30)
Ċ = 2F TdF , (2.31)
ḃ = lb+ blT , (2.32)
Ė = F TdF , (2.33)
J̇ = J tr(d). (2.34)
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2.2.3 Concept of stress
During the deformation of a solid body, interaction occurs in between the neighbouring regions of
the body. Let us cut virtually the body into two parts and investigate the resultant spatial force
∆f acting on the element area ∆a corresponding to the normal vector n (see Fig. 2.5) [2, 6, 20].
Then, the traction field can be defined as

t(n) = lim
∆a→0

∆f
∆a = df

da , (2.35)

for, which according to Newton’s third law t(n) = −t(−n) holds. For each material point x in
the current configuration, there exists a second-order tensor field σ(x, t) such that

t(n,x, t) = σ(x, t)n, and df = σnda = σda (2.36)

which is called the Cauchy-stress tensor, which is a symmetric tensor, thus σ = σT . In the
derivation of the Cauchy-stress tensor both the area element ∆a = ∆an and the force vector ∆f
were given in the current configuration.

E1,e1 E2,e2

E3,e3

t=0

t>0
Ω

Ω0

P P'

X(X 1,X
2,X

3)

x(x1,x2,x3)

df0 df

ϕ(X,t)

ϕ-1(x,t)

N n

dA da

reference current
configuration configuration

Figure 2.5: Representation of surface traction

The first Piola–Kirchhoff stress tensor is a two-point tensor that relates df with the area
element dA in the reference configuration. Therefore, using Nanson’s formula da = JF−TdA,
the non-symmetric, two-point Piola–Kirchhoff stress tensor becomes

df = PNdA = PdA, and P = JσF−T . (2.37)

Similarly, the infinitesimal force vector df can also be expressed in the reference configuration
with df0 using df = Fdf0. Substituting, this back into (2.37), the second Piola–Kirchhoff stress
tensor S can be introduced as

df0 = SNdA = SdA, and S = JF−1σF−T . (2.38)

Finally, the spatial, Kirchhoff stress tensor can also be introduced by

τ = Jσ. (2.39)

The relation of the stress tensors are summarised in Table 2.1.
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Table 2.1: The relation of stress tensors

σ P S τ

σ - σ=J−1PF T σ=J−1FSF T σ=J−1τ

P P = JσF−T - P=FS P = τF−T

S S = JF−1σF−T S = F−1P - S = F−1τF−T

τ τ=Jσ τ=PF T τ=FSF T -

2.2.4 Objectivity
An important concept in solid mechanics is the notion of objectivity [20]. The main concept
of objectivity is that the material response should remain invariant for the change of equivalent
observers, which are related through the Euclidean transformation expressed as x̃ = c(t) + Q(t)x
and t̃ = t − α. This can equivalently be viewed as a rigid-body motion superimposed on the
current configuration. The requirement of objectivity is fulfilled, if the different spatial field
variables transform under the change of observer according to the following rules [6]:

Second-order tensor fields: Ã(x̃, t̃) = Q(t)A(x, t)QT (t), (2.40)
Vector fields: ũ(x̃, t̃) = Q(t)u(x, t), (2.41)
Scalar fields: φ̃(x̃, t̃) = φ(x, t). (2.42)

Note that the transformation of two-point tensors (e.g. F , or P follow the rule of vectors.
Among the previously introduced fields J,F ,C, b,E,R,U ,V ,d and σ are objective, whereas
v, l and σ̇ are not objective [2, 6, 20]. This latter one causes severe problem since constitutive
models are usually formulated in rate form. A possible solution is to introduce so-called objective
rates, which are modified material time derivatives in order to ensure objectivity. The two most
commonly applied objective rates in FE implementations: the Jaumann- and the Green-Naghdi
rates [6, 15, 16, 17]. The general form of such co-rotational rate is expressed as

M̊
∗ = Ṁ −Q∗M +MQ∗, (2.43)

where the corresponding skew-symmetric spin tensor Q∗ is defined for Jaumann-rate as QJ = w,
while for the Green-Naghdi rate QGN = ṘR

T .

2.3 Theory of Hyperelasticity
In linear isotropic elasticity the stress and the strain are related by the Hooke’s law as

σ =
E

1 + ν

[
ε+ ν

1− 2ν εII
]
. (2.44)

For simplicity, let us introduce the 4th-order elasticity tensor De (also called as Hooke’s oper-
ator), which is defined as

De = E

1 + ν
T + E

3 (1− 2ν)I ⊗ I, (2.45)

where T is the 4th-order deviatoric projection tensor. Therefore, the Hooke’s law can be rewritten
in a simplified form using the Hooke’s operator as [1, 2]

σ = De : ε. (2.46)
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Alternatively, one can also express the linear stress-strain relation (i.e. the Hooke’s law) as

σ = De: ε = ∂

∂ε

(1
2ε : De : ε

)
, (2.47)

where the scalar-valued function W (ε) = (ε : De : ε)/2 is the stored elastic (or strain) energy per
unit volume.

Similarly, when the mechanical behaviour cannot be described using small-strain theory and
one consider finite-strain material formulation, the so-called hyperelastic constitutive equations
can also be derived from a polyconvex scalar function W (F ), which expresses the stored strain
energy per unit reference volume as the function of deformation gradient F [2, 6].

The existence of such a function W (F ) for a hyperelastic material leads that the stress power
per unit reference volume is equal to the time derivative of W i.e. Ẇ . The stress power Ẇ can
also be related to the stress tensors as

Ẇ = Jσ : d = τ : d = P : Ḟ . (2.48)

Simultaneously, Ẇ can be expressed as the time derivative of the strain energy function W (F )
by applying the chain rule of derivation, therefore

Ẇ = ∂W (F )
∂F

: Ḟ . (2.49)

Comparing the formulations of Ẇ in (2.48) and (2.49) gives that the first Piola–Kirchhoff
stress tensor (P ) can be directly derived from the strain energy function as

P =
∂W (F )
∂F

. (2.50)

When an additional rigid body rotation (Q) added to the deformation, the deformation gra-
dient satisfies the material objectivity, thus the deformation gradient in the rotated coordinate
system becomes F̃ = QF . This yields that the strain energy function can be rewritten as

W (F ) = W (QF ), (2.51)

because the stored strain energy does not change when an additional rigid body rotation is ap-
plied on the body. If the rigid body rotation tensor is chosen as Q = RT based on the polar
decomposition theorem in (2.17), then W can be expressed as

W (F ) = W (QRU ) = W (RTRU ) = W (U), (2.52)

which is a necessary and sufficient condition for an objective strain energy function [6]. Conse-
quently, using the relation in (2.18) the strain energy function W is also the function of the right
Cauchy–Green deformation tensor C, therefore

W (F ) = W̃ (C), (2.53)

from which the stress power can be expressed as

Ẇ = ∂W (F )
∂F

: ˙F =∂W̃ (C)
∂C

∂C

∂F
: Ḟ . (2.54)

According to (2.14), the partial derivative in (2.54) can be simplified as

∂C

∂F
= 2F . (2.55)
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Consequently, when the strain energy function W is related to the right Cauchy–Green defor-
mation tensor as W = W (C), the first Piola–Kirchhoff stress tensor becomes

P = 2F ∂W (C)
∂C

. (2.56)

Therefore, applying the relations of the stress tensors in Table 2.1 leads to

S = 2∂W (C)
∂C

, τ = 2F ∂W (C)
∂C

F T , and σ = 2
J
F
∂W (C)
∂C

F T . (2.57)

2.3.1 Isotropic hyperelasticty
In case of isotropic material the strain energy function satisfiesW (C) = W (CQ) for any arbitrary
proper orthogonal tensor Q, and consequently it can be expressed by either the function of the
principal invariants of C (I1, I2 and I3) or the principal stretches (λ1, λ2 and λ3) [6]. Therefore

W = W (I1, I2, I3) or W = W (λ1, λ2, λ3), (2.58)

where the scalar invariants of C are defined as

I1 = tr(C), I2 = 1
2(I2

1 − tr(C2)), I3 = det C = J2. (2.59)

Since the (λi)2 are the eigenvalues of tensor C, the scalar invariants can be expressed using
the principal stretches (λ1, λ2 and λ3) as

I1 = λ2
1 + λ2

2 + λ2
3, I2 = (λ1λ2)2 + (λ1λ3)2 + (λ2λ3)2, I3 = (λ1λ2λ3)2. (2.60)

Let us consider the case when the strain energy function is defined using the principal stretches,
i.e. W = W (λ1, λ2, λ3). Then the chain-rule for derivation gives that

S=2∂W (λ1, λ2, λ3)
∂C

= 2
3∑

k=1

∂W (λ1, λ2, λ3)
∂λk

∂λk
∂C

, (2.61)

where the corresponding derivation rule is

∂λk
∂C

= 1
2λk

N k ⊗N k, (2.62)

in which N k are the unit eigenvectors of C. Then substituting (2.62) back into (2.61), the second
Piola–Kirchhoff stress tensor S becomes

S =
3∑

k=1

1
λk

∂W

∂λk
N k ⊗N k. (2.63)

Therefore, applying the relation of the stress tensors in Table 2.1, they can be expressed as

σ =
3∑

k=1

λk
J

∂W

∂λk
nk ⊗ nk, (2.64)

τ =
3∑

k=1
λk
∂W

∂λk
nk ⊗ nk, (2.65)
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P =
3∑

k=1

∂W

∂λk
nk ⊗N k, (2.66)

where nk are the unit eigenvectors of the left Cauchy–Green deformation tensor (b), for which
N k = λaF

−1nk holds. Based on equations (2.63) - (2.66) the principal stresses can be expressed
as

Sk = 1
λk

∂W

∂λk
, σk = λk

J

∂W

∂λk
, τk = λk

∂W

∂λk
, Pk = ∂W

∂λk
, k = 1, 2, 3. (2.67)

2.4 Theory of small strain plasticity
The mathematical theory of plasticity gives a general framework for the phenomenological de-
scription of materials that sustain permanent deformation after complete unloading. The basic
assumption for plastic behaviour is the existence of an elastic domain within the material behaviour
is considered as purely elastic without any permanent strain occurring. This elastic domain, how-
ever, is limited by the so-called yield stress, above which the evolution of permanent (or plastic)
strains take place, which might be accompanied by the evolution of yield stress when hardening is
assumed [2, 11, 12, 13, 34, 35]. In the following, the introduction of basic equations of plasticity
is restricted to infinitesimal deformations and thus small strain formulation is applied, which can
be generalized to finite strains according to [1, 11].

The fundamental assumption in the theory of incremental plasticity is the additive decompo-
sition of the total strain increment dε into elastic and plastic contributions as

dε = dεe + dεp, (2.68)

where dεe and dεp stand for elastic and plastic strain increments, respectively. The additive split
of the total strain for one-dimensional case is illustrated in Fig. 2.6, which shows an ideal uniaxial
stress-strain response of an elastic-plastic material. Close to the origin, the material response is
purely elastic, until the initial yield stress σy0 is reached. Above that point, the material yields and
the deformation shows elastic-plastic properties. Note, that for this simplified case the additive
split in (2.68) also holds for the total strains, letting ε = εe + εp.

O

A

Bσ

εεp

σy0

elastic 
unloading

elastic 
loading

elastic-plastic 
loading

εee

dε

B
dεp

dεe

B'

Figure 2.6: Elastic-plastic material response for uniaxial loading

The elastic domain is limited by the yield function Φ(σ, σy), which defines a yield surface in
the Haigh-Westergaard stress-space [36, 37] by

Φ(σ, σy) = 0, (2.69)
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where σy is the actual yield stress. The elastic domain is defined as

Φ(σ, σy) < 0, (2.70)

while in case of yielding or plastic deformation Φ = 0 holds. Therefore, the physically admissible
stress states are defined by the criterion Φ ≤ 0 [2, 11].

2.4.1 Associative flow rule with von Mises criterion
In this thesis, the associative von Mises elastoplasticity model is applied in combination with
linear isotropic hardening. According to the von Mises yield criterion [38], plastic yielding begins
when J2 = tr(s2)/2 stress deviator invariant reaches a critical value, where s is the devatoric part
of the Cauchy stress, namely

s = σ − 1
3 tr(σ)I. (2.71)

Therefore, the yield function for the von Mises criterion, which defines a cylinder in the Haigh-
Westergaard stress space can be expressed as

Φ(σ, σy) =
√

3
2s : s− σy. (2.72)

As the yield stress is reached, further loading initiates plastic flow, which is governed by the
associative plastic flow rule as

ε̇p = λ̇p
∂Φ
∂σ

= λ̇p

√
3
2
s

||s||
, (2.73)

where λ̇p is the plastic multiplier, while the direction of the plastic strain rate is defined by the
surface gradient ∂Φ/∂σ = NΦ, yielding that the strain rate is perpendicular to the yield surface.
Note, that the associative von Mises perfectly plastic constitutive model is commonly referred to
as Prandtl–Reuss equations [12, 39, 40].

During plastic flow, the plastic strain accumulates in the material, while during elastic loading
the accumulated strain is conserved, thus for the plastic multiplier, the consistency criterion of

λ̇p ≥ 0 (2.74)

should hold [2, 11, 12, 13, 34]. Together, with the criterion corresponding to the yield function,
the Kuhn–Tucker conditions [11, 12] can be formulated as

Φ̇ ≤ 0, λ̇p ≥ 0, and Φλ̇p = 0. (2.75)

2.4.2 Isotropic hardening
During plastic deformation, the yield stress might also increase during loading, which can be
characterised by the so-called hardening laws. A hardening law is said to be isotropic when the
yield surface expands uniformly without translation. In such case, the elastic region expands
equally in tension and compression during plastic flow, which can also be imagined as an increase
in the radius of the von Mises cylinder [2, 11, 12, 13, 34, 36, 37].
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Firstly, let us introduce the accumulated plastic strain as

ε̄p =
t∫

0

√
2
3 ε̇

p : ε̇pdt, (2.76)

which after comparison with (2.73) yields

˙̄εp = λ̇p. (2.77)

In isotropic hardening the yield stress is assumed to be a function of the accumulated plastic
strain, letting

σy = σy(ε̄p). (2.78)

In case of linear isotropic hardening, the hardening rule simplifies to

σy(ε̄p) = σy0 +Hε̄p, (2.79)

where H is the plastic hardening modulus. Of course, if necessary, nonlinear hardening charac-
teristics can also be introduced [2], like

σy(ε̄p) = σy0 +H (ε̄p)m or σy(ε̄p) = σy0 +H
(
1− e−mε̄p

)
, (2.80)

whereas in the FE software any arbitrary hardening function can be prescribed in tabular form
[15, 16, 17].

2.4.3 Elastic-plastic constitutive model
In this section the constitutive model for the associative von Mises elastoplastic model with linear
isotropic hardening is derived. In the 3D-theory of plasticity, the Cauchy stress and the elastic
strain is always related via the Hooke’s law [2, 11, 12, 36], namely

σ = De : εe or in rate-form σ̇ = De : ε̇e. (2.81)

Substituting the additive split of strain rates according to (2.68) yields

σ̇ = De : ε̇−De : ε̇p = De :
(
ε̇− λ̇pNΦ

)
. (2.82)

In case of plastic flow, λ̇p > 0, which yields that Φ̇ = 0, c.f. (2.75). Using the chain rule of
derivation in combination with (2.72) and (2.78) gives

Φ̇ = ∂Φ
∂σ

: σ̇ + ∂Φ
∂σy

∂σy
∂ε̄p

˙̄εp = 0, (2.83)

where ∂Φ/∂σ = NΦ, while ∂Φ/∂σy = −1 and ∂σy/∂ε̄p = H. Substituting (2.77) back into (2.83)
and using (2.82) yields

Φ̇ = NΦ : σ̇ −Hλ̇p = NΦ : De :
(
ε̇− λ̇pNΦ

)
−Hλ̇p = 0, (2.84)

from which the plastic multiplier can be expressed as

λ̇p = NΦ : De : ε̇
NΦ : De : NΦ +H

. (2.85)
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After substituting this back into (2.82) the constitutive model becomes

σ̇ = De :
(
ε̇− NΦ : De : ε̇

NΦ : De : NΦ +H
NΦ

)
, (2.86)

which can be written in simplified form as

σ̇ =
(
De − D

e : NΦ ⊗NΦ : De

NΦ : De : NΦ +H

)
: ε̇ = Dep : ε̇, (2.87)

where Dep is the elastic-plastic tangent modulus [2, 11, 12, 13, 34, 36, 37].
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3
Elastic deformation of polymer foams

The elastic behaviour of polymer foams attracts substantial attention, thanks to their favourable
mechanical and production properties. The production of polymer foams is low-cost and simple,
whereas polymer foam shows excellent energy absorption properties, chemical resistance and ther-
mal conductivity [3, 41, 42, 43, 44]. Due to their cellular structure, polymer foams are light-weight
with low overall density ρ∗ since they are typically 90% cavity. Additionally, the mechanical be-
haviour is characterised by low moduli, such as the elastic modulus, the shear modulus and the
bulk modulus. The utilization of polymer foams covers a broad spectrum of industrial and ev-
eryday applications that range from core materials for sports equipment, seat cushions, thermal
insulations, electromagnetic shielding, filtrations, tissue scaffolds, flexible sensors to growth of cells
and artificial organs or implant materials for endovascular procedures [42, 45, 46, 47, 48].

Therefore, there is a significant need to accurately model the mechanical behaviour of foams,
to develop suitable material models and to improve the parameter fitting procedures of such
models. In order to accurately describe the mechanical characteristics of polymer foams, accurate
prediction of their large strain elastic behaviour is crucial. This chapter is devoted to the analysis
of the constitutive modelling of elastic foams, based on compressible hyperelastic constitutive
models using finite strain formulation.

3.1 Overview and goals
From the mechanical point of view, the behaviour of polymer foams is highly nonlinear with
significant volumetric strains due to their special cellular microstructure. In the literature, two
main groups of polymer foams are distinguished: (i) open-cell and (ii) closed-cell foams (see
Fig. 3.1). In open-cell foams, the neighbouring cells are not encapsulated and thus, air can pass
freely between them, whereas closed-cell foams cell are separated by connected cell-faces, in which
substantial fraction of solid can be found [3, 41, 42].

The general stress-strain curve for both types of foams is illustrated in Fig. 3.1. During
compression, the stress-strain characteristic shows linear elasticity at low stresses, which is followed
by a long collapse plateau and finally by the regime of densification. Whereas, in tension, the
behaviour is monotonous in a highly nonlinear manner [41].
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CHAPTER 3. ELASTIC DEFORMATION OF POLYMER FOAMS

Such material behaviour can be described based on microstructural mechanisms, which were
discussed in details by Gibson and Ashby [41, 43, 49]. In their approach, the representative
volume element of the cells are modelled as cubic arrays (see Fig. 3.1), while the overall behaviour
is derived using homogenisation approach. According to their model, the linear elastic regime is
related to cell-wall bending and additional cell-face stretching in case of closed-cell foams. The
plateau is associated with the collapse of cells, i.e. elastic buckling. At the densification, due to
the collapse, cell walls touch each other, and the cell-edge solid itself starts to compress. During
tension, the stiffness change caused by the rotation of cell edges towards the tensile axis leads to
a nonlinear stress-strain characteristic. In the case of closed-cell foams, the membrane stretching
and internal gas pressure also have a significant effect on the overall behaviour.

σ

εlinear
elastic

plateau

densification

nonlinear

cell edge

cell face

cell edge

b) open-cell foam c) closed-cell foama)

Figure 3.1: The a) stress-strain characteristic of foams and the micromechanical model for b) open-
and c) closed-cell foams [41]

Moreover, open- and closed-cell foams also differ in their lateral behaviour. As it has been
demonstrated in several studies, the transversal deformation of open-cell foams shows nonlinear
characteristics [50, 51, 52], which is close-to-zero at moderate strains and often shows auxetic
effects (i.e. negative Poission’s ratio [53, 54, 55]) at higher strains due to the significant buckling
of cell edges. This property is commonly approximated by neglecting the transversal effects
[9, 29, 42, 56, 57], yielding

νopen ≈ 0. (3.1)

Compared to this, in closed-cell foams, gas cannot escape from the cells, yielding small, but
not negligible transversal deformations. Therefore νclosed > 0 applies [41, 43, 45, 58]. However,
several studies also use the zero Poisson’s ratio condition1 in order to eliminate the transversal
stretches [15, 41, 50, 59], which is difficult to measure accurately.

The finite strain elastic behaviour of polymer foams can also be accurately captured using
isotropic hyperelastic material models with the assumption that the material is homogeneous
[9, 42]. The development of hyperelastic material models was originally indicated by the need
for modelling rubber-like materials, which exhibit large deformations, while the volume change is
approximately zero. Compared to rubber-like materials, the deformation of polymer foams shows
large volumetric strains. Therefore, the hyperelastic material models developed for rubber-like
materials cannot be applied for polymer foams. In the recent years, several authors proposed
hyperelastic constitutive models for compressible foams [60, 45, 61, 62].

1The zero Poisson’s ratio condition is also commonly applied for cork materials, which also has negligible
transverse effects in compression
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However, in the literature, there is only one widely applied model, which is also implemented
in all commercial finite element software. The model is referred to as Hyperfoam in Abaqus [15],
Ogden foam in Ansys [16] and Rubber foam in MSC Marc [17]. The material model is named
differently in the literature as well, since its introduction can be related to three different authors,
but mostly cited as Ogden–Hill’s hyperelastic or simply Hyperfoam model.

The parameter fitting of Hyperfoam model is more complicated than in case of other hyper-
elastic models proposed for incompressible materials. In the incompressible case, the transverse
stretches can be easily calculated from the incompressibility constraint J ≡ 1 in uniaxial com-
pression/tension or other homogeneous deformations [63]. However, for the Hyperfoam model
the transverse stretch, in general, cannot be obtained from the zero transverse stress constraint,
even in uniaxial compression since the constraint-equations are highly-nonlinear. Therefore, the
parameter fitting procedure is not so trivial for this material model [64, 65]. Moreover, it is well-
known, that the hyperelastic characterisation may also lead to unwanted material instabilities
and difficulties. If only uniaxial test data is used to obtain the material parameters of the applied
particular hyperelastic model, then the simulated biaxial response may have very poor accuracy
or even physically nonrelaistic reposnse [66, 67].

This chapter is devoted to the investigation of the constitutive modelling of elastic polymer
foams using Hyperfoam model including also material stability and approximation of the transver-
sal strains via the case study of a particular closed-cell polyethylene foam material using uniaxial
and biaxial test data. The chapter also aims to propose and compare different optimization
strategies for the hyperelastic material characterisation procedure.

3.2 Hyperfoam model for compressible foams

3.2.1 Development of Hyperfoam model
Ogden [68] investigated the hyperelastic modelling of compressible materials and provided a hyper-
elastic material model, in which a former compressible hyperelastic material model for rubber-like
materials was extended with an additional unknown function f(λ1, λ2, λ3), which describes the
strain energy corresponding to the volumetric strain. In his formulation, the strain energy function
of the compressible materials is written as

W =
N∑
i=1

µ̄i
αi

(λαi1 + λαi2 + λαi3 − 3) + f(λ1, λ2, λ3), (3.2)

where N denotes the order of the hyperelastic model, αi and µ̄i are material parameters. Later,
Hill [69] proposed a volumetric part for the Ogden model (3.2) as

f(λ1, λ2, λ3) =
N∑
i=1

µ̄i
αi

1− 2ν
ν

(
J−

ν
1−2ναi − 1

)
, (3.3)

which can be substituted back into (3.2) resulting

W =
N∑
i=1

µ̄i
αi

(
λαi1 + λαi2 + λαi3 − 3 + 1− 2ν

ν

(
J−

ν
1−2ναi − 1

))
. (3.4)

In the above formulation, material parameters αi, µ̄i and ν are included, therefore the model
contains 2N + 1 material parameters. Storåkers [70] proposed the following alternative form for
this model:

W =
N∑
i=1

µ̄i
αi

(
λαi1 + λαi2 + λαi3 − 3 + 1

n

(
J−nαi − 1

))
, (3.5)
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where the new parameter n is related directly to the ground-state Poisson’s ratio as

n = ν

1− 2ν . (3.6)

The formulation of the model in Abaqus is based on the formulation of Storåkers (3.5), but
the parameters are defined in a different way [44], namely

W =
N∑
i=1

2µi
α2
i

(
λαi1 + λαi2 + λαi3 − 3 + 1

βi

(
J−αiβi − 1

))
. (3.7)

It should be noted that the µi parameters in the Abaqus formulation are not equal with the µ̄i
parameters used in (3.5). Furthermore, Abaqus allows to use multiple βi parameters not just a
single n parameter. Therefore, 3N material parameters are included in the model. The µi and βi
parameters in this formulation can be directly related to the initial (ground-state) shear (µ0) and
bulk (K0) moduli as

µ0 =
N∑
i=1

µi > 0, K0 =
N∑
i=1

2µi
(1

3 + βi

)
> 0, (3.8)

which also define criteria for the possible values of the material parameters µi and βi [18, 71].
The detailed derivation is provided in Appendix A. During the further calculations the Abaqus
formulation of the Ogden–Hill’s (or Hyperfoam) hyperelastic model in (3.7) will be applied.

3.2.2 Open-cell foams
As it was discussed in Chapter 3.1, the ground-state Poission’s ratio of open-cell foams νopen ≈ 0.
This means, that the original parameter n in (3.5) and the βi parameters in the Abaqus notation
can be approximated as

n ≈ 0 and βi ≈ 0. (3.9)

3.2.3 Stress solutions
The stress solutions of the rate-independent Hyperfoam model can be obtained by substituting
the previously defined strain energy function (3.7) into (2.67). Therefore, the principal stresses
become

τk =
N∑
i=1

2µi
αi

(
λαik − J−αiβi

)
, (3.10)

σk = 1
J

N∑
i=1

2µi
αi

(
λαik − J−αiβi

)
, (3.11)

Sk =
N∑
i=1

1
λ2
k

2µi
αi

(
λαik − J−αiβi

)
, (3.12)

Pk =
N∑
i=1

1
λk

2µi
αi

(
λαik − J−αiβi

)
, (3.13)

where the load is characterised by the principal stretches λk.
In the following, the stress solutions will be derived for homogeneous deformations using the

first Piola–Kirchhoff stress tensor.
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3.2.3.1 Uniaxial extension (UN)

In case of uniaxial extension, the stretch in the longitudinal direction is prescribed, whereas in
the other two principal directions, which are referred as transversal (lateral) directions, no load
is applied and the transversal stretches are identical λ2 = λ3. For simplicity, let λ := λ1 and
λT := λ2 = λ3, where subscript T refers to the transverse direction. The deformation gradient F
and the volume ratio can be written as

F UN =

λ 0 0
0 λT 0
0 0 λT

 , P UN =

P
UN
1 0 0
0 0 0
0 0 0

 , JUN = λλ2
T . (3.14)

Consequently, the principal first Piola–Kirchhoff stresses, after substituting (3.14) into (3.13),
can be expressed as

PUN
1 (λ, λT ) =

N∑
i=1

1
λ

2µi
αi

(
λαi − (λλ2

T )−αiβi
)
, (3.15)

PUN
2 (λ, λT ) = PUN

3 (λ, λT ) = 0 =
N∑
i=1

1
λT

2µi
αi

(
λαiT − (λλ2

T )−αiβi
)
. (3.16)

For the first-order case N = 1, the transverse stretch can be expressed from the zero transverse
stress constraint (3.16) as

λT = λ−
β

1+2β = λ−ν , (3.17)

and thus, the nominal stress along the loading direction can be written as the function of λ as

PUN
1 (λ) = 2µ

α

(
λα−1 − λ−

αβ
1+2β−1

)
. (3.18)

However, for higher-order models (N > 1), the relation (3.16) cannot be solved for λT in
closed-form. Consequently, the stress along the loading direction cannot be expressed solely as a
function of the longitudinal stretch λ.

3.2.3.2 Confined uniaxial extension (CU)

During confined uniaxial extension, the transversal deformation is fixed, therefore λT ≡ 1 and the
deformation gradient and the volume ratio reduce to

F CU =

λ 0 0
0 1 0
0 0 1

 , P CU =

P
CU
1 0 0
0 PCU

2 0
0 0 PCU

3

 , JCU = λ. (3.19)

Whereas, stress will also occur in the transverse direction, letting

PCU
1 (λ) =

N∑
i=1

1
λ

2µi
αi

(
λαi − λ−αiβi

)
, (3.20)

PCU
2 (λ) = PCU

3 (λ) =
N∑
i=1

2µi
αi

(
1− λ−αiβi

)
6= 0. (3.21)

Note that when βi = 0 and the transversal effects are neglected, the load does not affect the
transversal directions i.e. the uniaxial extension (UN) has the same kinematic description as the
confined uniaxial extension (CU) and thus the same stress state.
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3.2.3.3 Equibiaxial extension (EB)

In equibiaxial extension, the same stretch is prescribed in two principal directions, while in the
third, transverse direction, the material deforms freely. Therefore, using the same notation as for
UN case,

F EB =

λ 0 0
0 λ 0
0 0 λT

 , P EB =

P
EB
1 0 0
0 PEB

1 0
0 0 0

 , JEB = λ2λT . (3.22)

Consequently, the stresses can be obtained as

PEB
1 (λ, λT ) = PEB

2 (λ, λT ) =
N∑
i=1

1
λ

2µi
αi

(
λαi − (λ2λT )−αiβi

)
, (3.23)

PEB
3 (λ, λT ) =

N∑
i=1

1
λT

2µi
αi

(
λαiT − (λ2λT )−αiβi

)
= 0. (3.24)

Assuming first-order model (N = 1), the transverse stretch can be written as

λT = λ−
β

1+β , (3.25)

and thus, the nominal stress becomes

PEB
1 (λ) = 2µ

α

(
λα−1 − λ−

2αβ
1+β−1

)
. (3.26)

Similarly to the UN case, for N > 1, the closed-form solution cannot be expressed analytically.

3.2.3.4 Confined biaxial extension (CB)

In confined biaxial extension, the transversal deformation is fixed, yielding

F CB =

λ 0 0
0 λ 0
0 0 1

 , P CB =

P
CB
1 0 0
0 PCB

1 0
0 0 PCB

2

 , JCB = λ2. (3.27)

Whereas, the principal stresses read

PCB
1 (λ) = PCB

2 (λ) =
N∑
i=1

1
λ

2µi
αi

(
λαi − λ−2αiβi

)
, (3.28)

PCB
3 (λ) =

N∑
i=1

2µi
αi

(
1− λ−2αiβi

)
6= 0. (3.29)

Similarly to CU load case, for βi = 0, the kinematics and stresses for EB and CB are identi-
cal. Furthermore, the longitudinal principal stresses [P CB]11 and [P CB]22 are also equal with the
uniaxial principal stress [P CU]11 for βi = 0.

3.2.3.5 Volumetric deformation (VOL)

In this deformation mode, all the principal stretches are prescribed equally, namely λk = λ with
k = 1, 2, 3; letting

F VOL =

λ 0 0
0 λ 0
0 0 λ

 , P VOL =

P
VOL
1 0 0
0 PVOL

1 0
0 0 PVOL

1

 , JVOL = λ3. (3.30)

26



3.2. HYPERFOAM MODEL FOR COMPRESSIBLE FOAMS

The principal stresses are equal in all the three principal directions, thus

PVOL
1 (λ) = PVOL

2 (λ) = PVOL
3 (λ) =

N∑
i=1

1
λ

2µi
αi

(
λαi − λ−3αiβi

)
. (3.31)

In this case, βi = 0 condition leads to PVOL
1 = PCU

1 .

3.2.3.6 Simple shear (SS)

For simple shear case, the deformation gradient is given by

F EB =

1 γ 0
0 1 0
0 0 1

 , JSS = 1, (3.32)

where the corresponding principal stretches are

λ1 = 1
2

(
γ +

√
γ2 + 4

)
, λ2 = 1

2

(
−γ +

√
γ2 + 4

)
, and λ3 = 1. (3.33)

Substitution into (3.13) gives

P SS
1 (γ) =

N∑
i=1

2µi
αi

((
γ

2 + 1
2

√
γ2 + 4

)αi−1
−
(
γ

2 + 1
2

√
γ2 + 4

)−1)
, (3.34)

P SS
2 (γ) =

N∑
i=1

2µi
αi

((
−γ2 + 1

2

√
γ2 + 4

)αi−1
−
(
−γ2 + 1

2

√
γ2 + 4

)−1)
, (3.35)

P SS
3 (λ) = 0. (3.36)

3.2.4 Material stability
The material parameters in the Ogden–Hill’s compressible hyperelastic material model cannot
be chosen freely. Some criteria have already been formulated in (3.8), but in order to receive
physically acceptable results, the material model should be stable for all strains or at least in the
strain regime used in the application. Otherwise, the numerical simulation will be inaccurate or
may not converge. This defines new criteria for the material parameters, which has to be checked
after the parameter fitting process. The most widely used method to check material stability is
the application of Drucker-stability criteria.

The Drucker-stability [72] criteria states, that the strain energy has to increase for any incre-
ment in the strain. The criteria can be expressed as [9, 15]

dτ : dh > 0, (3.37)

where h is the spatial logarithmic strain tensor introduced in (2.21). In case of isotropic material
the relation can be expressed using the principal values as

3∑
k=1

dτkdhk = dτ1dh1 + dτ2dh2 + dτ3dh3 > 0, (3.38)

where dhk are the logarithmic strain increments and dτk are the corresponding principal Kirchhoff
stress increments. Applying the chain rule of derivation and the definition in (2.21), we obtain

dhk = ∂hk
∂λk

dλk = ∂(ln λk)
∂λk

dλk = 1
λk

dλk, (3.39)
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furthermore

dJ = ∂J

∂λ1
dλ1 + ∂J

∂λ2
dλ2 + ∂J

∂λ3
dλ3 = J

λ1
dλ1 + J

λ2
dλ2 + J

λ3
dλ3 = (3.40)

= J
3∑

k=1

dλk
λk

= J
3∑

k=1
dhk. (3.41)

The incremental dτk can be obtained [9] as

dτk = ∂τk
λk

dλk + ∂τk
∂J

dJ. (3.42)

After substituting (3.13), (3.39) and (3.41) into (3.43)

dτk =
(

N∑
i=1

2µiλαik
)

dhk +
(

N∑
i=1

2µiβiJ−αiβi
) 3∑
k=1

dhk. (3.43)

According to Silber [9], let us introduce Ai = βiJ
−αiβi and the matrix notation of

dτ k =

dτ1
dτ2
dτ3

 , dhk =

dh1
dh2
dh3

 . (3.44)

Using the notation above, the stress and the strain increment vectors can be related as

dτ k = Ddhk, (3.45)

where the D matrix is defined from principal stresses in (3.13) as

D =

D11 D12 D13
D21 D22 D23
D31 D32 D33

 =
N∑
i=1

2µi

λ
αi
1 + Ai Ai Ai
Ai λαi2 + Ai Ai
Ai Ai λαi3 + Ai

 , (3.46)

After substituting back (3.45) into the stability criterion (3.37), it yields

dhkDdhk > 0. (3.47)

The criterion is satisfied, when D is positive definite, thus its scalar invariants should be
positive. Therefore, the criteria for D and its eigenvalues (D1, D2 and D3) can be expressed as

ID = trD =D1 +D2 +D3 > 0, (3.48)

IID = 1
2((trD)2 − trD2) = D1D2 +D1D3 +D2D3 > 0, (3.49)

IIID = det D =D1D2D3 > 0. (3.50)

It should be noted thatD contains the principal stretches (λk), therefore the stability depends
on the load as well. In order to assume, that the fitted material model is stable, the Drucker-
stability should be checked for all homogeneous deformations, namely uniaxial tension/compression,
biaxial tension/compression, volumetric tension/compression, simple shear and pure shear [15].
This stability check, however, requires transversal stretches, which cannot be solved analytically
for N > 1. Therefore a numerical root finding algorithm (e.g. Newton–Raphson) should be applied
[9, 15].
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3.2.4.1 Simplified stability criteria for open-cell foams

However, in the case of open-cell foams, the assumption βi = 0 holds [SzB1], and thus the Drucker-
stability matrix simplifies to

Dopen =

D
open
11 0 0
0 Dopen

22 0
0 0 Dopen

33

 =
N∑
i=1

2µi

λ
αi
1 0 0
0 λαi2 0
0 0 λαi3

 , (3.51)

which is a diagonal matrix. It is known, that a diagonal matrix is positive definite if and only if all
the diagonal elements are positive. Therefore, for open-cell foams the Drucker-stability criterion
in (3.47) can be simplified by the novel expression of

N∑
i=1

µiλ
αi
k > 0, k = 1, 2, 3. (3.52)

This means that using the closed-form solution, the Drucker-stability could efficiently be eval-
uated for a given parameter set.

3.3 Mechanical tests
A possible way to find the material parameters of a certain hyperelastic model is to fit the model
responses of particular homogeneous deformations to experimental data. For the mechanical tests
a particular closed-cell polyethylene foam sheet was chosen (ρPE = 922 kg/m3, ρ∗ = 40.5 kg/m3),
on which the transversal strains are not negligible. The microstructure of the foam is illustrated
in Fig. 3.2, in which significant surface-skin layer is observable. The effect of the surface skin layer
has also been investigated experimentally, which revealed that the existence of such a layer with in-
creased density cause hardening in the stress-strain curve, whereas the nature of its characteristics
(i.e. the three regimes in Fig. 3.1) is not affected [SzB2].

a) Uniaxial Test b) Biaxial Test

5 mm

b) Biaxial Test c) Closed-cell PE foam 

crosshead

load cell

specimen

compression
platen

crosshead

load cell

specimen

specimen

biaxial
fixture

Figure 3.2: The layout of a) uniaxial and b) biaxial measurement; and c) the microstructure of the
investigated closed-cell PE foam
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3.3.1 Uniaxial test with video processing
The geometry of specimens used in compression test is based on the recommendation of ISO
3386 standard [73], which recommends the specimens to be right parallelepiped with a minimum
width/thickness ratio of 2:1. Therefore, the three 40 × 40 mm specimens with thickness were
piled together. The measurements were performed with an Instron 3345 Single Column Universal
Testing System, while the load was measured by an Instron model 2519-107 5kN load cell. The
compression test was performed with engineering strain rate of ε̇ = 10−5 1/s, while the maximal
displacement was umax = 30 mm. The captured data points corresponding to the loading and
unloading phases cannot be distinguished, hence the viscoelastic effect was eliminated. Thus, the
experimental data can be considered as the long-term pure hyperelastic response of the material.
During the measurement, in every sampling point the load (F ) and the displacement (u) values
were recorded, from which the longitudinal stretch and the first Piola–Kirchhoff stress data can
be obtained as

λUNexp = 1− u

L0
, PUNexp

1 = F

L2
0
, (3.53)

where L0 = 40 mm is the compression length (edge length) and A0 = L2
0 = 1600 mm2.

The transverse deformation of the specimen was recorded using optical measurement and image
processing, that is illustrated in Fig. 3.3/b [SzB2]. In the image processing a slice of the video
recording was cut and binarized, while the lateral stretch at the ith frame was obtained as

λUNexp
T,i = AWh,i

AWh,0
, (3.54)

where AWh,i and AWh,0 is the area of white pixels corresponding to the ith and the first frame,
respectively [SzB2]. The measurement results are summarised in Fig. 3.3/b.

Uniaxial (UN)
Biaxial (EB) Uniaxial (UN)

a) b)

Binarization

Awh,i

Figure 3.3: The measured a) engineering stress - stretch characteristics in uniaxial and equibiaxial load
case, b) the measured lateral stretch characteristics and the steps of video processing

3.3.2 Equibiaxial test
For the equibiaxial compression test, the test fixture developed by Kossa [66] was used. for further
details see Appendix D). The specimen was a cube material having L0 = 100 mm edge dimensions,
while the applied engineering strain rate was the same as in the uniaxial compression. For the
biaxial test, the stress and stretch values were obtained using

λEBexp = 1− u√
2L0

, PEBexp
1 = F√

2L2
0
. (3.55)
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The measured engineering stress-stretch characteristics are presented in Fig. 3.3/a. Since the
biaxial compression fixture hid the specimen, it was not possible to measure the transverse stretch
using side-view optical measurement [SzB3].

3.4 Parameter-fitting strategies
Hereafter, the Hyperfoam model will be fitted to the uniaxial and the equibiaxial compression
experimental data, including the corresponding measured and estimated transverse stretch data.
The parameter fitting algorithm of the first-order (N = 1) model is relatively simple compared
to higher-order models because closed-form solution is available for the stresses in terms of the
primary stretches as in (3.18) and (3.26). In addition, transverse stretches can also be expressed in
terms of the primary stretch (see (3.17) and (3.25)). Therefore, the quality (or error) function to
be minimized can be easily constructed by summing the errors between the experimental data and
the model responses. However, the first-order model may serve an inaccurate result and higher-
order model (N > 1) should be used for the characterisation. As discussed in Section 3.2.3, for the
higher-order models, the transverse stretch cannot be eliminated and cannot be fitted separately
as in the case of using a first-order model. Consequently, another strategy has to be deployed.

If the transverse stretch is significant, one can use the method proposed by Schrodt et al. [74].
In the proposed method, each iteration step of the parameter fitting procedure is divided into two
parts: 1) solving the zero transverse stress constraint (3.16) and (3.24) for the transverse stretch
λT and 2) calculating the model response after substitution of the obtained λT value into (3.15)
and (3.23). The drawback of this method is that there is no guarantee that (3.16) and (3.24) can
be solved for any value of the primary stretch. Besides, the predicted transverse stretch value may
be very inaccurate. However, the method can be improved by modifying the quality function in the
optimization routine, including the fitting of the transverse stretch prediction to the experimental
data. The main drawback is that an optimization code should be applied alongside the numerical
solution scheme. In the following, three different fitting strategies are proposed and analysed: i)
using only uniaxial data, ii) using uniaxial data with analytic transversal stretch function and iii)
using uniaxial and biaxial data, which are illustrated in Fig. 3.4.
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Figure 3.4: The summary of the proposed parameter fitting strategies
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3.4.1 Strategy A
In the simplest approach, only the uniaxial measurement data is used in the fitting process. In the
corresponding quality function not only the error between the uniaxial principal stress PUN

1 (λ, λT )
and the measurement data PUNexp

1 (λ, λT ) is minimized, but also the zero transverse stress is also
enforced by adding and an extra term to the quality function. Therefore, the novel quality function
reads

QA = QUN
1 +QUN

T , (3.56)

where

QUN
1 =

R∑
r=1

PUNexp
r − PUN

1

(
λUNexp
r , λUNexp

T,r

)
PUNexp
r

2

, (3.57)

QUN
T =

R∑
r=1

PUN
2

(
λUNexp
r , λUNexp

T,r

)
PUNexp
r

2

, (3.58)

where R is the number of captured data points in uniaxial tests [SzB3].
The experimental data for the transverse stress is obviously zero; therefore, in the normalized

error expressions (3.58), the stress values corresponding to the loading directions are applied.
Minimizing the quality function QA in (3.56) serves a parameter set which tries to enforce the zero
transverse stress constraint in addition to the fitting of the transverse stretches to the experimental
data. It should be noted that the transverse stretch is not fitted explicitly; however, it is fitted
implicitly via the zero transverse stress constraint. The main benefit of this method is that there
is no need to solve the highly nonlinear expression in (3.16) for the transverse stretch.

3.4.2 Strategy B
In this new strategy the transversal stretch behaviour is modelled using the generalized Poisson’s
ratio, which reduced the number of parameters in the fitting process. According to the model
proposed by Blatz and Ko [53, 75], the relation of the lateral and longitudinal stretches for uniaxial
deformation can be expressed using the generalized Poisson’s ratio. According to their ad hoc
assumption,

λT = λ−ν
∗
, (3.59)

which also means that by taking the natural logarithm of both sides

ln λT = ln(λ−ν∗), (3.60)

where ln λT = εtrue
T and ln λ = εtrue are the logarithmic strains or true strains. Therefore, their

model simplifies to

εtrue
T = −ν∗εtrue, (3.61)

which can also be interpreted as the finite strain generalization of the 1D Hooke’s law.
Following this assumption, the parameter fitting can be separated to a) fitting the generalized

Poisson’s ratio based on the measured uniaxial transverse stretch characteristics and then b) fitting
the Hyperfoam model using only a single β parameter [SzB3], which is defined as

βi = βB = ν∗

1− 2ν∗ . (3.62)
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After performing the fitting to the uniaxial transverse stretch data ν∗ = 0.0899 and thus,
βB = 0.10964 were obtained. The accuracy of the fitting is presented in Fig. 3.5. This yields
that during the hyperelastic fitting only αi and µi parameters should be fitted, which significantly
reduces the parameter-space where the global minima are searched.

3.4.3 Strategy C
In order to include the biaxial measurement data in the parameter fitting, the equibiaxial trans-
verse stretch values λEBexp

T should also be obtained. Due to the measurement layout, such data is
not available, therefore an estimation should be applied. This approach assumes that the linear
Hooke’s law can also be generalized for biaxial load case [SzB3], letting

εEB,true
T = −2ν∗εEB,true. (3.63)

After combining with (3.61) and using the relation εtrue = ln λ the lateral stretches could be
obtained as

λEBexp
T (λ) = 2

(
λUAexp
T (λ)− 1

)
+ 1 = 2λUAexp

T (λ)− 1. (3.64)

Using this method, the transverse stretch characteristic corresponding to the biaxial test was
obtained, which is presented in Fig. 3.5.

Uniaxial (UN)
Biaxial (EB)

Fitted curve

estimation

Figure 3.5: The fitted transversal stretch characteristics using the generalized Poisson’s ratio and the
estimated transverse stretches for biaxial measurement

Using the proposed transverse stretch data, the optimization criteria in (3.56) can be extended
for biaxial case [SzB3], letting

QC = QUN
1 +QUN

T +QEB
1 +QEB

T , (3.65)

where

QEB
1 =

L∑
l=1

PEBexp
l − PEB

1

(
λEBexp
l , 2λUAexp

T (λEBexp
l )− 1

)
PEBexp
l

2

, (3.66)

QEB
T =

L∑
l=1

PEB
2

(
λEBexp
l , 2λUAexp

T (λEBexp
l )− 1

)
PEBexp
l

2

, (3.67)

where L is the number of captured data points in biaxial tests.
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3.4.4 Evaluation of strategies
The global minimization of the quality functions using all three methods was performed in Wol-
fram Mathematica using the built-in “NMinimize” algorithm with Random Search method. The
parameter fitting for Strategy C was also performed using the built-in fitting procedure of Abaqus
[15]. The fitted parameters for N = 1, 2, 3 cases are listed in Table 3.1. It should be noted, that
the Abaqus fitting for N = 3 resulted in physically inadmissible results, since∑ βAba,N=2

i < −1/3.
Furthermore, the stability analysis was also performed based on Section 3.2.4, which revealed that
the Hyperfoam model with all fitted parameter sets satisfy the Drucker-stability criterion.

Table 3.1: The fitted Hyperfoam parameters using Strategy A, B, C and Abaqus

µ1 α1 β1 µ2 α2 β2 µ3 α3 β3
[MPa] [-] [-] [MPa] [-] [-] [MPa] [-] [-]

Strategy A
N=1 0.0806 4.361 0.162
N=2 0.0163 0.187 0.670 0.0712 7.655 0.0164
N=3 -0.673 3.514 0.377 0.1829 1.961 0.4180 0.5770 4.368 0.329

Strategy B
N=1 0.0724 2.596 0.109
N=2 0.0679 7.621 0.109 0.0206 0.6789 0.1096
N=3 22.864 12.56 0.109 0.0168 -0.221 0.1096 -22.798 12.59 0.109

Strategy C
N=1 0.1048 7.108 0.135
N=2 0.0582 4.266 0.220 0.0508 20.98 0.0448
N=3 -1.460 37.64 -0.013 0.0588 4.835 -0.3248 1.517 37.28 0.011

Abaqus
N=1 0.1012 6.578 0.1378
N=2 0.0756 15.84 0.0569 0.0361 2.829 0.3044
N=3 No data

Table 3.2: The quality and time of fitting using different strategies and Abaqus

PUN
1 PEB

1 λUN
T Fitting time [s]

R2 [%] S [kPa] R2 [%] S [kPa] R2 [%] S [kPa] (3.1 GHz CPU)

Strategy A
N = 1 96.54 16.72 69.93 23.56 79.36 27.69 0.76
N = 2 99.94 0.808 70.84 22.72 99.64 22.57 15.41
N = 3 99.99 0.549 70.54 22.92 99.89 12.85 169.45

Strategy B
N = 1 96.62 16.56 69.51 23.48 99.59 26.26 0.45
N = 2 99.98 0.667 79.62 18.78 99.59 26.26 4.51
N = 3 99.99 0.521 80.01 17.93 99.59 26.26 99.98

Strategy C
N = 1 98.70 10.19 97.15 8.05 92.02 14.19 1.23
N = 2 99.34 8.533 99.59 3.34 99.22 3.21 55.44
N = 3 99.82 3.381 99.19 4.61 98.68 4.12 193.82

Abaqus
N = 1 98.26 12.37 96.02 9.38 90.85 15.51
N = 2 99.35 8.889 99.24 4.46 99.78 1.82 No data
N = 3 Failed

Using the fitted parameters, the numerical solution of the uniaxial and biaxial load cases were
calculated, in which the transversal stretches were obtained numerically from the zero transverse
stress condition in (3.16) and (3.24). The accuracy of the models could be quantified by the
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coefficient of determination R2 and the standard error of regression S, which are defined as

R2 = 1−

M∑
i=1

(
fmeas
i − ffit

i

)2

M∑
i=1

(
fmeas
i − f̄

)2
, and S =

√√√√√√ M∑
i=1

(fmeas
i − ffit

i )2

M − 2 , (3.68)

where f stands for the quantity to be compared, while f̄ is its average value. The value of R2

should satisfy 0 < R2 ≤ 1, where R2 = 1 represents the perfect fit.
The variation of goodness quantities for PUN

1 , λUN
T and PEB

1 curves are presented in Table 3.2
and in Fig. 3.6. The results show that the second-order models are very accurate and introducing
an additional term in the strain energy potential results only in a slight improvement. It could
also be stated, that Strategy C performed the best, even better than the fitting of Abaqus,
whereas Strategy B where βi were obtained separately using ν∗ become significantly faster than
the original Strategy A.

Strategy A

Measurement
Fitted N=3
Fitted N=2
Fitted N=1

Biaxial (EB)
Fitted N=3
Fitted N=2
Fitted N=1

Measurement
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Fitted N=1

Measurement
Fitted N=3
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Fitted N=1

Biaxial (EB)
Fitted N=3
Fitted N=2
Fitted N=1

Measurement
Fitted N=3
Fitted N=2
Fitted N=1

Measurement
Fitted N=3
Fitted N=2
Fitted N=1

Biaxial (EB)
Fitted N=3
Fitted N=2
Fitted N=1

Measurement
Fitted N=3
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Biaxial (EB)
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Strategy B Strategy B

Strategy B
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Strategy C

Abaqus Abaqus

Abaqus

Figure 3.6: Comparison of measurement and fitted Hyperfoam model by Strategy A, B, C and Abaqus
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3.5 Main results
I have analysed the purely elastic behaviour of polymer foams using the Ogden–Hill’s compressible
hyperelastic material model with particular interest on the lateral deformations. I have proposed
an analytical Drucker-stability criterion for open-cell foams and I have performed detailed exper-
imental analysis on a particular closed-cell polyethylene foam material including uniaxial, biaxial
tests, and image processing. I have proposed two novel parameter-fitting strategies to simplify
the uniaxial and to estimate the transverse biaxial stretches. By means of comparative analysis
with the fitting procedure in Abaqus, I have drawn the following conclusions.

Thesis statement 1

A) Consider the N-th order Ogden–Hill’s hyperelastic (Hyperfoam) constitutive model for
a material (e.g. open-cell polymer foam) where the transverse deformations are negligibly small.
Then, the assumption for the hyperelastic parameter βi = 0 leads that the material meets the
Drucker-stability criterion of dτ : dh > 0, if and only if, the hyperelastic parameters µi and αi
satisfy

N∑
i=1

µiλ
αi
k > 0, k = 1, 2, 3

for all λk principal stretches corresponding to any arbitrary deformation.

B) During the parameter fitting of the Ogden–Hill’s hyperelastic (Hyperfoam) model for closed-
cell polymer foams with non-negligible transversal effects, let the approximation of λUN

T uniaxial
transversal stretch characteristic be

λUN
T = λ−ν

∗
,

where ν∗ is the generalized Poisson’s ratio for finite strains, while λ is the logitudinal stretch. In
this case, the unmeasured biaxial stretch characteristic (λEB

T ) can be estimated from the uniaxial
transverse stretch characteristic as

λEB
T = 2λUN

T − 1.

With this estimation, the accuracy of the parameter fitting can be significantly improved, when the
optimization criterion is prescribed for both uniaxial and biaxial test data as

Q = QUN
1 +QUN

T +QEB
1 +QEB

T ,

in which QUN
1 and QEB

1 are the errors of the logitudinal stress predictions, while QUN
T and QEB

T

ensure zero transverse stresses.

Related publications: [SzB1],[SzB2], [SzB3]
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4
Viscoelastic characterisation of memory foams

Besides the previously introduced large strain, nonlinear stress-strain characteristic in compression,
the mechanical behaviour of several polymer foams also show significant viscoelastic properties
[3, 9, 29, 76]. Among the typical viscoelastic properties (summarised in Section 2.1.1), large energy
absorption property has the greatest significance from the industrial point of view. Thanks to the
properties mentioned above, polymer foams are applied mostly in the industrial field of impact
protecting and packaging. The primary goal here is to protect the products from impacts and
damages during transportation, storage and delivery, and additionally to damp the environmental
vibrations and insulate the product. Besides the industrial applications, viscoelastic polymer
foams can also be familiar from everyday life like sport shoe treads, car seats or helmets [9, 77,
78, 42].

These rate-dependent properties are also presented in the memory foam layers of mattresses,
where the duration of the loading, caused by the human body during the sleep, is several hours
[79, 80]. Originally, the memory foams were developed by NASA [81] for spaceship seats. After the
first experiments, the results were published for the public domain. The memory foam was initially
referred to as “slow spring back foam”; most called it “temper foam” [81]. The Swedish Fagerdala
World Foams released the first commercial memory foam mattress in 1991 [82]. Since then, several
manufacturers have joined into production and development. Memory foam mattresses are able to
follow the body shape, thus supporting the body uniformly (see Fig. 4.1). Therefore, the pressure
on the backbone and the body decreases, which increases the comfort during sleep [79, 80].

a) b) c)
horizontal spine

Figure 4.1: The commercial a) memory foams and b) the horizontal spine and c) the body shape follow-
ing the support of memory foam mattresses Sources: cardo.hu, matracguru.hu, www.topmattress.com
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4.1 Literature overview and objectives

The behaviour of finite strain viscoelastic materials can be described with adequate precision using
the so-called visco-hyperelastic constitutive equation. In this approach, the rate-dependent stress-
relaxation phenomenon is modelled with a properly chosen viscoelastic model [10, 27], while for
the long-term rate-independent behaviour, a hyperelastic material model is adopted, which can
be derived from the corresponding strain energy function.

The characterisation of the rate-dependent properties has been provided in several discussions
in the literature. In the work of Weber et al. [83], the rate-dependent material moduli and Poisson’s
ratio were determined based on uniaxial compression tests, while Bekkour et al. [84] investigated
the rate-dependent and flow properties of polymeric foams experimentally. In some studies, creep
and stress-relaxation behaviour were discussed, including the superposition of the temperature
and the rate-dependent principles [85, 86]. There are also several recent studies regarding the
mechanical modelling approaches, in which different strain energy functions (e.g. extended Ogden,
extended Yeoh, Mooney–Rivlin or Exp-Lin) were applied to model the pure hyperelastic behaviour
[87, 88, 89]. However, novel strain energy functions can also be applied, like the model by Yang
[90] and Elfarhani [91]. Recently, an enhanced KHL-model was proposed by Lee for characterising
polymeric foams over a wide range of strain rates [92, 93]. However, the most common method
is to combine the previously introduced Hyperfoam model (see Section 3.2) with a Maxwell-type
viscoelastic model using the Prony-series representation [9, 80, 94, 95, 96, 97].

The most critical part of material modelling in the latter case to determine all the parameters
in the constitutive equation, which should be obtained directly from experimental data using
parameter-fitting algorithm. However, the visco-hyperelastic material law is defined in the form of
a hereditary integral, therefore the general stress response function cannot be defined. The usually
adopted algorithm to find the material parameters for a particular visco-hyperelastic material is to
separate the fitting of Prony’s and pure hyperelastic parameters using idealised stress-relaxation
and long-term elastic test data [74, 76]. This approach may involve significant errors into the
fitting process, consequently, the fitted material parameters cannot describe the overall visco-
hyperelastic behaviour accurately, and the solution will be inaccurate (see Fig. 4.2), which is a
well-known phenomenon [93, 98]. Using the analytically derived stress-response functions for the
stress-relaxation loading case, which have not been provided in the literature yet, the entire visco-
hyperelastic material model could be fitted to the measurement data directly as it was provided
for the Mooney–Rivlin incompressible hyperelastic material model by [99].
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Figure 4.2: Closed-form and separated fitting strategies
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4.2. FINITE STRAIN VISCO-HYPERELASTIC MODEL FOR FOAMS

The lack of the closed-form stress solution for the visco-hyperelastic constitutive equation
based on the Hyperfoam model and the development of the parameter-fitting process was the
primary motivation to investigate the material behaviour of compressible polymer foams with
rate-dependent properties analytically.

4.2 Finite strain visco-hyperelastic model for foams

The proposed constitutive model for memory foams can be represented as a generalized Standard
Linear Solid model, in which P piece of Maxwell-elements and a single Hooke-element are assem-
bled in parallel (see Fig. 4.3/a). Unfortunately, the model name is not uniform in the literature; it
is also commonly cited as generalized Maxwell model [15]. Due to the parallel Maxwell-branches,
this model characterises the stress relaxation phenomena with improved accuracy compared to
the Standard Linear Solid model, introduced in (2.7) [5].

∞

E1 η1

σ,ε

a) Generalized Standard Linear Solid
E

E2 η2

E3 η3

EP ηP

G1 η1

σ,ε

b) Visco-hyperelastic Standard Solid

G2 η2

G3 η3

GP ηP

Long-term hyperelastic

Figure 4.3: Schematics of a) Standard Linear Solid model and b) the proposed large-strain visco-
hyperelastic model for memory foams

4.2.1 Solution of the generalized Standard Linear Solid model
In order to develop the general large strain constitutive model, firstly, the stress-strain relation
of the generalized Standard Linear Solid model should be derived. In this approach the Hooke-
element captures the long-term elastic behaviour, where E∞ is the long-term elastic modulus,
while ηk and Ek denotes the parameters in the Maxwell-elements, respectively [9, 27]. According
to (2.9) the relaxation time for each branches can be introduced, namely τk = ηk/Ek. Thus,
similarly to (2.9) the rate-dependent elastic modulus E(t) can be expressed as

E(t) = E∞ +
P∑
k=1

Eke
−t/τk . (4.1)

This series repesentation of exponential function is also called as Prony-series [5, 100], which is
a widely applied function in the characterisation of even more complex viscoelastic behaviour
e.g. using fractional derivatives [101, 102]. The model defines the stress solution in 1D as a
hereditary integral as in (2.8), which can be rewritten in an alternative, but equivalent form,
which is based on the instantaneous elastic response, instead. In this form, the instantaneous
elastic and the viscoelastic contributions can be separated as

σ(t) = σ0(t)−
P∑
k=1

ek
τk

∫ t

0
σ0(t− s)e−s/τkds, (4.2)
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where the instantaneous stress response σ0(t) can be obtained from σ0(t) = E0ε(t) and

E0 = E(0) = E∞ +
P∑
k=1

Ek. (4.3)

The above introduced model also contains the so-called relative elastic moduli ek, which are defined
as ek = Ek/E0 [9, 5].

4.2.2 Finite strain viscoelasticity
The visco-hyperelastic material model can be obtained by reformulating the linear viscoelastic
material model using finite strain theory. The resulting model is a finite-strain visco-hyperelastic
model, where the long term behaviour is modelled using a hyperelastic model (see Fig. 4.3/b). A
possible formulation of such visco-hyperelastic materials is provided by Abaqus [15]. It should be
noted, that in Abaqus version 6.9, the material model was updated and reformulated [103, 104],
but for the Hyperfoam model the implementation remained the previous (as in Abaqus version
6.8). Therefore, in the present calculations the original formulation is applied. According to this
formalism, the constitutive equation is defined for the Kirchhoff stress tensor (τ ). For compressible
materials the instantaneous Kirchhoff stress tensor τ 0 can be split into hydrostatic and deviatoric
parts as

τ 0(t) = τD0 (F̄(t)) + τH0 (J(t)), (4.4)
where the hydrostatic part is the function of the volume ratio J , while the deviatoric part is related
to the so-called distortional deformation gradient F̄. The distortional deformation gradient can
be directly obtained from the deformation gradient F, as

F̄ =FJ−1/3. (4.5)
The visco-hyperelastic constitutive equation corresponding to finite strain materials can be ob-
tained by the following convolution integrals [15]:

τD(t) = τD0 (t) + SYM
∫ t

0

Ġ(s)
G0

F−1
t (t− s)τD0 (t− s)Ft(t− s)ds, (4.6)

τH(t) = τH0 (t) +
∫ t

0

K̇(s)
K0

τH0 (t− s)ds. (4.7)

E1,e1 E2,e2

E3,e3

t=0
t>0

ΩΩ0

reference

current

configuration

configuration

intermediate
configuration

t–s
Ωs

Figure 4.4: The representation of the Ft(t− s) relative deformation gradient
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4.2. FINITE STRAIN VISCO-HYPERELASTIC MODEL FOR FOAMS

The hereditary integral of the deviatoric part is performed via the so-called pull-back Ft(t− s)
and push-forward F−1

t (t − s) operators. In order to ensure objectivity (see Section 2.2.4), the
system is transformed firstly back into the state corresponding to time t−s, where the convolution
integral can be performed and then transformed back into the spatial configuration. Finally, the
symmetric part of the solution is obtained by using the SYM operator. The pull-back operator
(illustrated in Fig. 4.4) is practically a relative deformation gradient defined between the time
instants t− s and t, thus

Ft(t− s) = F(t− s)F−1(t). (4.8)

In the governing constitutive law in (4.6)-(4.7) G0 and K0 are the instantaneous shear and
bulk moduli, respectively. Similarly to (4.1), the rate-dependent mechanical moduli are provided
in Prony-series representation as

G(t) = G0

g∞ +
Pg∑
k=1

gke−t/τ
G
k

 , (4.9)

K(t) = K0

k∞ +
Pk∑
k=1

kke−t/τ
K
k

 , (4.10)

where gk and kk are the relative, while g∞ and k∞ are the long-term moduli, respectively. For the
so-called relaxation moduli the following condition holds:

g∞ +
PG∑
k=1

gk = k∞ +
PK∑
k=1

kk = 1. (4.11)

The substitution of (4.9)-(4.10) into the convolution integrals in (4.6) and (4.7) defines the
constitutive equation of the material model as

τD(t) = τD0 (t)− SYM
 Pg∑
k=1

gk
τGk

∫ t

0
F−1
t (t− s)τD0 (t− s)Ft(t− s)e−s/τ

G
k ds

 , (4.12)

τH(t) = τH0 (t)−
Pk∑
k=1

kk
τKk

∫ t

0
τH0 (t− s)e−s/τKk ds. (4.13)

Based on the literature suggestions it is assumed that the number of parameters in the deviatoric
and the hydrostatic parts are equal, letting Pg = Pk = P [9, 15]. In addition, the expression above
can also be simplified by letting gk = kk and τGk = τKk = τk [9, 15, 27]. Applying the previous
assumptions, the visco-hyperelastic extension of the Hyperfoam model becomes

τD(t) = τD0 (t)− SYM
[
P∑
k=1

gk
τk

∫ t

0
F−1
t (t− s)τD0 (t− s)Ft(t− s)e−s/τkds

]
, (4.14)

τH(t) = τH0 (t)−
P∑
k=1

gk
τk

∫ t

0
τH0 (t− s)e−s/τkds, (4.15)

where the instantaneous stress responses, τD0 (t) and τH0 (t) are adopted from the Hyperfoam
material model defined in (3.13).
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4.2.3 Numerical solution
The stress solution for visco-hyperelastic materials can be obtained as the solution of the de-
rived constitutive equation in (4.14) and (4.15), where the prescribed λ(t) stretch-history in the
instantaneous stress response characterise the loading path. During the finite element analysis,
it is required to solve the integrals efficiently. Therefore, a numerical integration scheme is also
provided [15], where solution is integrated forward in time.

Firstly, let us introduce τDk (t) and τHk (t) internal deviatoric and hydrostatic stresses, which
are defined as

τDk (t) = SYM
[
gk
τk

∫ t

0
F−1
t (t− s)τD0 (t− s)Ft(t− s) exp

[−s
τk

]
ds
]
, (4.16)

τHk (t) = gk
τk

∫ t

0
τH0 (t− s) exp

[−s
τk

]
ds. (4.17)

For the deviatoric stresses, the pull-back, the push-forward and the SYM operators should also
be considered, thus a modified deviatoric stresses should be obtained as

τ̂D0 (t) = SYM
[
∆FτD0 (t)∆F−1

]
, (4.18)

τ̂Dk (t) = SYM
[
∆FτDk (t)∆F−1

]
, (4.19)

where ∆F = Ft(t+ ∆t). Assuming first-order approximation for all the quantities within a step,
the stress solution at time t+ ∆t can be provided as

τ (t+ ∆t) =
(

1−
P∑
k=1

aigk

)
τD0 (t+ ∆t) +

P∑
k=1

bigkτ̂
D
0 (t) +

P∑
k=1

ciτ̂
D
k (t) +

(
1−

P∑
k=1

aigk

)
τH0 (t+ ∆t) +

P∑
k=1

bigkτ
H
0 (t) +

P∑
k=1

ciτ
H
k (t), (4.20)

with

ai = 1− τk
∆t(1− ci); bi = τk

∆t (1− ci)− ci; ci = exp
[
−∆t
τk

]
. (4.21)

Therefore, the stress solution at time t+∆t can be derived from the instantaneous and internal
stress values at time instant t and t + ∆t. The detailed derivation of the integration scheme is
provided in Appendix C.

4.3 Closed-form stress solutions
The visco-hyperelastic material parameters could be obtained directly from the relaxation test,
if the closed-form stress solution for such loading history is available. This stress solution can
be obtained by solving the hereditary integrals in (4.14)-(4.15) [SzB1], [SzB4]. The analytical
solvability of the convolution integrals strongly depends on the loading history. The stretch
history corresponding to the ramp loading in compression, as shown in Fig. 4.5, is given by

λ(t) =

1 + ε̇t t ≤ T

1 + ε̇T t > T
, (4.22)

which means that firstly, the body is compressed with constant ε̇ < 0 strain rate in a finite T
time, then the strain is kept constant.
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min

c) Solution for upload phase d) Solution for relaxation phase

,max

b) Instantaneous responsea) Stretch input

I. II.

1

Figure 4.5: The a) stretch input λ (t), where λmin = 1 + ε̇T and the corresponding b) instantaneous
stress function τ0 (t) and c)-d) the steps of the convolution integral for the uploading and the relaxation
parts

Integrals (4.14)-(4.15) could not be performed in one step, because λ (t) and the instantaneous
Kirchhoff stress τ0 (t) is a piecewise function containing two-phases: the uploading and the relax-
ation regimes (see Fig. 4.5). Therefore, the hereditary integral is performed also in two steps and
the exact stress solution is provided as separated functions for the uploading and the relaxation
phases, respectively.

4.3.1 Homogeneous confined compression
The exact stress-solutions for homogeneous confined compression loading cases (uniaxial, equibi-
axial and volumetric) have the same structure, therefore let us introduce the parameterM [SzB1],
which indicates the applied loading case, namely

M =


1 for uniaxial (CU)
2 for equibiaxial (CB)
3 for volumetric (VOL)

. (4.23)

In all cases the body is compressed uniformly in M directions and the corresponding so-called
longitudinal stretch is denoted by λL. In the other (3 −M) directions, the transverse stretches,
denoted by λT , are kept constant, letting λT ≡ 1. In order to simplify the presentation the
notation (t) will be omitted in the following expressions. Based on (3.19),(3.22) and (3.30), the
deformation gradient and the instantaneous Kirchhoff stress tensors for the three loading cases
become

F CU =

λL 0 0
0 λT 0
0 0 λT

 =

λL 0 0
0 1 0
0 0 1

 , τCU
0 =

 τL0 0 0
0 τT0 0
0 0 τT0

 , (4.24)

F CB =

λL 0 0
0 λL 0
0 0 λT

 =

λL 0 0
0 λL 0
0 0 1

 , τCB
0 =

 τL0 0 0
0 τL0 0
0 0 τT0

 , (4.25)

F VOL =

λL 0 0
0 λL 0
0 0 λL

 , τVOL
0 =

 τL0 0 0
0 τL0 0
0 0 τL0

 . (4.26)

The corresponding volume ratio becomes J = (λL)M . For the hereditary integrals in (4.14)-(4.15)
the instantaneous Kirchhoff stress tensor τ 0 is obtained by substituting the stretch input into the
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pure hyperelastic stress solution using (3.20),(3.28),(3.31) and Table 2.1. The expressions for the
instantaneous longitudinal τL0 (t) and the transverse τT0 (t) stress components can be obtained as

τL0 (t) =
N∑
i=1

2µi
αi

(
[λ (t)]αi − [λ (t)]−Mαiβi

)
, (4.27)

τT0 (t) =
N∑
i=1

2µi
αi

(
1− [λ (t)]−Mαiβi

)
. (4.28)

After performing the integrals the stress solutions can be expressed as [SzB1]

τL (t) =



τL0 (t)−
P∑
k=1

gk

(
N∑
i=1

2µi
αi
ηik

)
t ≤ T,

τL0 (T )
(

1−
P∑
k=1

gk

(
1− e

T−t
τk

))
−

P∑
k=1

gk

(
N∑
i=1

2µi
αi
ϑik

)
t > T,

(4.29)

τT (t) =



τT0 (t)−
P∑
k=1

gk

(
N∑
i=1

2µi
αi
η̂ik

)
t ≤ T,

τT0 (T )
(

1−
P∑
k=1

gk

(
1− e

T−t
τk

))
−

P∑
k=1

gk

(
N∑
i=1

2µi
αi
ϑ̂ik

)
t > T,

(4.30)

where the quantities ηik, ϑik, η̂ik, ϑ̂ik are the second-order parameter tensors, defined using the
loading case parameter M as

ηik =e
−t−1/ε̇
τk

(−1
ε̇τk

)Mαiβi (
Γ
[
1−Mαiβi,

−1
τkε̇

]
− Γ

[
1−Mαiβi,

−1− tε̇
τkε̇

])
+ e−

t+1/ε̇
τk

(−1
ε̇τk

)−αi (
Γ
[
1 + αi,−

1 + tε̇

τkε̇

]
− Γ

[
1 + αi,−

1
τkε̇

])
, (4.31)

ϑik =e
−t−1/ε̇
τk

(−1
ε̇τk

)Mαiβi (
Γ
[
1−Mαiβi,

−1
τkε̇

]
− Γ

[
1−Mαiβi,

−1− T ε̇
τkε̇

])
+

+ e
−1−ε̇t
ε̇τk

(−1
ε̇τk

)−αi (
Γ
[
1 + αi,

−1− T ε̇
τkε̇

]
− Γ

[
1 + αi,

−1
τkε̇

])
, (4.32)

η̂ik =e
−t−1/ε̇
τk

(−1
ε̇τk

)Mαiβi (
Γ
[
1−Mαiβi,

−1
τkε̇

]
− Γ

[
1−Mαiβi,

−1− tε̇
τkε̇

])
+ 1− e

−t
τk , (4.33)

ϑ̂ik =e
−t−1/ε̇
τk

(−1
ε̇τk

)Mαiβi (
Γ
[
1−Mαiβi,

−1
τkε̇

]
− Γ

[
1−Mαiβi,

−1− tε̇
τkε̇

])
+ e−

t−T
τk − e

−t
τk . (4.34)
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In the parameters above, Γ [a, z] represents the incomplete upper gamma function [105, 106],
which is defined as

Γ [ν, x] =
∞∫
x

tν−1e−tdt. (4.35)

Using the above-introduced expressions the exact Kirchhoff stress solution can be obtained as

τUN (t) =

 τL (t) 0 0
0 τT (t) 0
0 0 τT (t)

with M = 1, (4.36)

τEB (t) =

 τL (t) 0 0
0 τL (t) 0
0 0 τT (t)

with M = 2, (4.37)

τVOL (t) =

 τL (t) 0 0
0 τL (t) 0
0 0 τL (t)

with M = 3. (4.38)

The Cauchy stress solutions can be also obtained using the identity σ(t) = τ (t)/J(t). This
yields, that the instantaneous Cauchy stresses become

σL0 (t) = τL0 (t)
J(t) , σT0 (t) = τT0 (t)

J(t) , (4.39)

where

J(t) =

(1 + ε̇t)M t ≤ T,

(1 + ε̇T )M t > T.
. (4.40)

For simplicity let J(T ) ≡ (1 + ε̇T )M . Substituting (4.40) and (4.29)-(4.30) into (4.39) leads to
the solutions

σL (t) =



σL0 (t)−
P∑
k=1

gk

(
N∑
i=1

2µi
αi
ηik

)
(1 + ε̇t)−M t ≤ T,

σL0 (T )
(

1−
P∑
k=1

gk

(
1− e

T−t
τk

))
− 1

J(T )

P∑
k=1

gk

(
N∑
i=1

2µi
αi
ϑik

)
t > T,

(4.41)

σT (t) =



σT0 (t)−
P∑
k=1

gk

(
N∑
i=1

2µi
αi
η̂ik

)
(1 + ε̇t)−M t ≤ T,

σT0 (T )
(

1−
P∑
k=1

gk

(
1− e

T−t
τk

))
− 1

J(T )

P∑
k=1

gk

(
N∑
i=1

2µi
αi
ϑ̂ik

)
t > T.

(4.42)
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4.3.2 Homogeneous compression with βi = 0
In the case, when the hyperelastic material parameters βi are zero, e.g. for open-cell foams (see
Section 3.1) [SzB4], the longitudinal loads have no effect in the transverse directions, therefore
λT ≡ 1 and the transverse stress is identically zero, thus τT (t) ≡ 0. Consequently, the deformation
gradients for the uniaxial, biaxial and volumetric loading cases will be the same as in (4.24)-(4.26).
In order to distinguish from the previous loading case, index B will be applied for the longitudinal
direction, when βi = 0 holds. The instantaneous longitudinal τB0 (t) Kirchhoff stress and the
corresponding Cauchy stress components simplify to

τB0 (t) =
N∑
i=1

2µi
αi

([λ (t)]αi − 1) , σB0 (t) = τB0 (t)
J(t). (4.43)

This yields, that the solutions should be derived only for τB0 (t). After performing the hereditary
integral, the solution becomes [SzB4]

τB (t) =



τB0 (t)−
P∑
k=1

gk

(
N∑
i=1

2µi
αi
η̃ik

)
t ≤ T,

τB0 (T )
(

1−
P∑
k=1

gk

(
1− e

T−t
τk

))
−

P∑
k=1

gk

(
N∑
i=1

2µi
αi
ϑ̃ik

)
t > T,

(4.44)

in which

η̃ik =− e
−t−1/ε̇
τk

(−1
ε̇τk

)−αi (
Γ
[
1 + αi,

−1
τkε̇

]
− Γ

[
1 + αi,

−1− tε̇
τkε̇

])
+ e−

t
τk − 1, (4.45)

ϑ̃ik =− e
−1−ε̇t
ε̇τk

(−1
ε̇τk

)−αi (
Γ
[
1 + αi,

−1
τkε̇

]
− Γ

[
1 + αi,

−1− T ε̇
τkε̇

])
+ e

−t
τk − e

−t+T
τk . (4.46)

This means that the Kirchhoff stress tensor solutions can be written as

τUN
B (t) =

 τB (t) 0 0
0 0 0
0 0 0

 , (4.47)

τEB
B (t) =

 τB (t) 0 0
0 τB (t) 0
0 0 0

 , (4.48)

τVOL
B (t) =

 τB (t) 0 0
0 τB (t) 0
0 0 τB (t)

 . (4.49)

Similarly to (4.41)-(4.42), the Cauchy stress solution can be obtained as

σB (t) =



σB0 (t)−
P∑
k=1

gk

(
N∑
i=1

2µi
αi
η̃ik

)
(1 + ε̇t)−M t ≤ T,

σB0 (T )
(

1−
P∑
k=1

gk

(
1− e

T−t
τk

))
− 1

J(T )

P∑
k=1

gk

(
N∑
i=1

2µi
αi
ϑ̃ik

)
t > T.

(4.50)
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4.3.3 Comparison with numerical integration (FEA)
In the previous section, the exact stress solutions for the ramp loading have been derived via the
analytical solution of the hereditary integrals. The validation of the analytical integration was
performed using the numerical integration in Abaqus.

The goal of the analysis is to compare the model prediction of the proposed closed-form stress
solution and the numerical scheme for ramp loading prescribed by λ(t) in (4.22). Furthermore, the
analysis also aims to highlight that with properly chosen time increments, the numerical scheme
with first-order approximation (see the numerical integration in Subsection 4.2.3 and Appendix
C) results in accurate stress-solution.

The FEA was performed in Abaqus [15]. The geometry is a unit cube (1 × 1 × 1 mm), the
mesh contains only one eight-node brick element with reduced integration (C3D8R), in order to fully
characterize homogeneous deformations. As boundary condition zero displacement was applied on
plane 1-2-3-4 in direction E1, on plane 3-4-8-7 in direction E2 and on plane 1-5-8-4 in direction
E3, respectively. Additionally, the homogeneous deformation was ensured by the displacements
U1, U2, U3 on planes 5-6-7-8, 1-2-6-5 and 2-3-7-6, respectively as indicated in Fig. 4.6. The
prescibed displacement values for the different load cases are listed in Table 4.1.

E2

E3

E1 U1

U2

U3

Figure 4.6: The FE model
and the applied U1, U2, U3 dis-
placements

Table 4.1: Prescribed displacement values for FE validation

Load case M U1 [mm] U2 [mm] U3 [mm]
Confined uniaxial 1 −0.8 0 0
Confined biaxial 2 −0.6 −0.6 0
Volumetric 3 −0.8 0 0
Uniaxial with βi = 0 - −0.8 −0.8 −0.8

The FE calculations have been divided into two steps. In the first step, the body is compressed
with a constant strain rate up to the prescribed displacement in T = 2 s, while in the second step,
the strain was kept constant. The steps were computed in numerous increments in order to provide
an accurate numerical solution for the nonlinear material law. The parameters of the steps applied
in the FEA are listed in Table 4.2. Note, that further step-refinement has completely negligible
effect on the results. Hence, this solution is considered to be the exact one.

Table 4.2: The step parameters and number of increments in FE validation

Step Start End Increment Number of Increments
1 0 s 2 s 0.01 s 200

2 2 s 100 s 0.2 s 490

4.3.3.1 Material parameters

In order to adopt the stress solution, all 3N hyperelastic (αi, µi, βi) and 2P Prony-parameters
(gi, τi) have to be provided. During the FE calculations a 3rd-order Prony-series (i.e. P = 3)
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was applied, while the order of the hyperelastic model was also N = 3. The hyperelastic and
Prony-parameters, presented in Table 4.3, were chosen arbitrarily for illustrative purposes.

Table 4.3: The material parameters applied in FEA validation

Hyperfoam parameters N = 3
α1 [-] µ1 [MPa] β1 [-] α2 [-] µ2 [MPa] β2 [-] α3 [-] µ3 [MPa] β3 [-]
2.63 0.00064 1.214 4.78 0.084 0.0072 0.0058 0.0085 0.6

Prony-parameters P = 3
g1 [-] g2 [-] g3 [-] τ1 [s] τ2 [s] τ3 [s]
0.12 0.74 0.05 0.2 2 20

4.3.3.2 Comparison of results

The comparison the FE results and the prediction using the closed-form stress solutions are pre-
sented in Fig. 4.7. Furthermore, the accuracy of the solution was also implemented using the
numerical scheme presented in Section 4.2.3. The result clearly shows that the analytical solution
provides the same stress solution as the FEA and the numerical scheme, which confirms the cor-
rectness of the analytical integration and the adequate accuracy of the first-order approximation
in the numerical scheme.

a) Uniaxial confined compression (M=1) b) Equibiaxial confined compression (M=3)

c) Volumetric compression (M=1) d) Uniaxial confined compression with βi=0

Numerical (FE)
Closed-form
Numerical (FE)
Closed-form

Numerical (FE)
Closed-form
Numerical (FE)
Closed-form

Numerical (FE)
Closed-form
Numerical (FE)
Closed-form

Numerical (FE)
Closed-form
Numerical (FE)
Closed-form

lon
git

ud
in
al

lon
git

ud
in
al

longitudinal longitudinal

Figure 4.7: Comparison of the closed-form stress-solutions with numerical integration in Abaqus in
case of a) confined uniaxial, b) confined equibiaxial, c) volumetric and d) confined uniaxial compression
with βi = 0
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4.4 Case-study: Polyurethane memory foam

In order to present the benefits of the novel closed-form stress solutions during the parameter
identification process, mechanical tests were carried out on a particular open-cell polymer foam
material. Based on the obtained measurement data, the performance of the different parameter-
fitting approaches (separated and closed-form) were compared. The investigated material is a
commercial so-called “memory foam”, which is an open-cell polyurethane foam applied in mat-
tresses and medical products. The microstructure of the material is presented in Fig. 4.8.

a)

1 mm

b)crosshead

load cell

specimen

compression
+ additional

platen

Figure 4.8: The a) measurement layout and b) the microstructure of the investigated polyurethane
memory foam

4.4.1 Measurement results

Since the investigated material is open-cell foam, for simplicity its Poisson’s ratio is approximated
with ν ≈ 0 [9, 27], which yields that the hyperelastic parameter βi = 0. Therefore, the material pa-
rameters could be fitted using uniaxial compression test data. The measurements were performed
with an Instron 3345 Single Column Universal Testing System, while the load was measured by an
Instron model 2519-107 5kN load cell. From the raw material, homogeneous specimens were cut
with the size of 8×8×8 cm and piled together accordingly to ISO 3386 [73]. In order to provide the
required measurement data for the fitting process, displacement-controlled relaxation and cyclic
tests were performed. During the measurement, in every sampling point the load (F ) and the
displacement (u) values were recorded, from which the longitudinal stretch and the engineering
stress data can be obtained as

λ1 = 1 + u

L0
, P1 = σ1 = F

A0
, (4.51)

where the initial cross-section is A0 = 6400 mm2 and specimens’ height is L0 = 80 mm. Addition-
ally, the Cauchy (σ1) and the first Piola–Kirchhoff (P1) stresses are identical, since the transversal
strains can be neglected, i.e. λT = 1 and J = λ1.
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4.4.1.1 Relaxation test

During this test, the specimen was compressed with a constant strain rate in a finite time T , and
then the strain was kept constant, while the stress relaxes. In order to have significant relaxation,
the uploading strain rate (ε̇) should be as high as possible. The applied test parameters are
presented in Table 4.4, while Fig. 4.9 shows the σ(t) stress response for stress relaxation.

Table 4.4: Relaxation test parameters

Time of uploading, T 4.57 s
Minimal longitudinal stretch, λmin 0.24
Strain rate, ε̇ −0.1662 1/s
Time of relaxation, tr 600 s

a) Stretch-input b) Stress-response

uploading

relaxation

uploading

relaxationλmin

T T

tr
specimen

Figure 4.9: The a) stretch-input and b) the stress response of the relaxation test for t ∈ [0, 50] s

4.4.1.2 Cyclic test

In the case of the cyclic test, the specimen was compressed incrementally, and the strain was
kept constant after each step to ensure stress relaxation. Similarly, the unload process was also
performed incrementally. Due to the viscoelastic properties, the uploading and the unloading
process follows different paths due to the energy dissipation in the material. During the relaxation
sessions, the stress values tend to the long-term (rate-independent) stress response. Hence, the
results of the cyclic test can be applied in the parameter-fitting of the rate-independent hyperelastic
material model. The uploading and the unloading phases were performed with n = 10 increments
using a lower strain rate than in the previous case. The test parameters are presented in Table
4.5, while the σ(t) stress response curve is illustrated in Fig. 4.10.

Table 4.5: The parameters of the cyclic test

Time of uploading, T 1.6 s
Minimal longitudinal stretch, λmin 0.24
Strain rate, ε̇ −0.015 1/s
Stretch increment, ∆λ 0.024
Time of relaxation, tr 30 s
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a) Stretch-input b) Stress-response

λmin

tr
Δλ

Figure 4.10: The a) stretch-input and b) the stress response of the cyclic test

4.4.1.3 Summary of results

The results can be summarised on a common σ − λ stress-stretch diagram (see Fig. 4.11). These
characteristics show that the stress values in case of the relaxation test are higher than the stress
values obtained by cyclic test, since the strain rate were also higher in case of the relaxation test.
Additionally, it can be clearly seen, that in the relaxation regions of both tests the stress values
tend to the long-term (rate-independent) stress response values, which lay in between the up- and
unloading parts of the cyclic test.

Figure 4.11: The measured σ − λ stress-stretch characteristics

4.4.2 Parameter-fitting
The goal of the parameter fitting method is to determine both the viscoelastic and the hyper-
elastic parameters based on the measurement data. Since for open-cell foams βi = 0 is as-
sumed, the number of material parameters included in the corresponding visco-hyperelastic model
are: 2N (α1, α2...αN ;µ1, µ2...µN) parameters for the rate-independent hyperelastic model and 2P
(g1, g2...gP ; τ1, τ2...τP ) parameters for the rate-dependent viscoelastic model. It means that al-
together 2(N + P ) parameters should be fitted to the measurement data in order to describe
the visco-hyperelastic material behaviour. For the investigated memory foam a fourth-order vis-
coelastic (P = 4) and a second-order hyperelastic model (N = 2) was fitted using two different
approaches: the commonly applied separated method and the closed-form fitting based on the
corresponding stress response.
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4.4.2.1 Separated fitting - Hyperfoam parameters

In this approach, the hyperelastic model is fitted to the long-term stress response, while the
viscoelastic parameters are fitted to the stress relaxation behaviour. The long-term behaviour
is determined from cyclic compression-relaxation loading, where the data points for the ith step
(λlong

i − σlong
i ) corresponding to the long-term behaviour appears between the uploading and un-

loading curves [9].
On the measured stress-stretch curve, the start and end point of each relaxation phase were

detected for the upload and for the unload curves corresponding to the λlong
i = i ·∆λ stretch value

after the ith step. The detected points are denoted as σup
i,max, σ

up
i,min, σ

un
i,max, σ

un
i,min as illustrated in

Fig. 4.12. The most convenient way to approximate the long-term stress point is to assume that
σlong
i lays in the middle of the distance between the upload and unload curves. However, a novel

approach is proposed in order to compensate the different relaxation lengths for uploading and
unloading. For this, let us introduce the ratio of relaxation sections as

ξi =
|σup
i,max − σ

up
i,min|

|σun
i,max − σun

i,min|
. (4.52)

Assuming, that the long-term stress point divide the distance between the upload and unload
curves by the ratio ξi of the degree of relaxation at each step, namely

ξi =
|σup
i,max − σ

long
i |

|σlong
i − σun

i,min|
(4.53)

Therefore, the long-term stress points can be expressed as

σlong
i =

σup
i,max + ξiσ

un
i,min

1 + ξi
. (4.54)

End of relaxation in unloading

Start of relaxation in uploading

Start of relaxation in unloading
End of relaxation in uploading

σi,max
up

σi,min
up

σi,max
un

σi,min
un

uploading

unloading

fitted Interpolated long-term point
R2=99,91%

σi
long

Figure 4.12: The fitted long-term hyperelastic model using separated fitting approach and the process
of interpolation

The material parameters of the long-term hyperelastic material model denoted as (α̃i, µ̃i), while
the stress relaxation is characterised using the Prony-parameters (gk, τk). It should be noted, that
the long-term hyperelastic parameters (α̃i, µ̃i), are not equal with the hyperelastic parameters
(αi, µi) in the visco-hyperelastic constitutive equation in ((4.14)-(4.15), which were related to the
instantaneous stress response. However, the long-term and the instantaneous stress responses can
be related as

τ0(t) = 1
g∞

τ∞(t), (4.55)
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where g∞ = 1−∑ gk can be obtained from the gk Prony-parameters. Note, that in Abaqus [15]
the hyperelastic parameters can be defined both for the long-term and the instantaneous stress
responses, thus it does not induce any further error during the material modelling.

Based on (4.43), the long-term hyperelastic model to be fitted becomes

τ1 = 2µ̃1

α̃1

(
λα̃1

1 − 1
)

+ 2µ̃2

α̃2

(
λα̃2

1 − 1
)
, (4.56)

which contains four material parameters, namely α̃1, α̃2, µ̃1, µ̃2. As it was derived previously in
(3.8), the parameters should satisfy the following criteria µ̃1 + µ̃2 > 0 and to ensure Drucker-stable
solution, accordingly to (3.52): µ1λ

α1 + µ2λ
α2 > 0 for 0 < λ ≤ 1 . The parameter fitting was

performed in Wolfram Mathematica using NMinimize algorithm [107], while corresponding error
function was obtained as the sum of squared differences, namely

elong =
n∑
i=1

[(2µ̃1

α̃1

((
λlong
i

)α̃1 − 1
)

+ 2µ̃2

α̃2

((
λlong
i

)α̃2 − 1
))
− σlong

i

]2
, (4.57)

where n = 10 is the number of measurement data points and (λlong
i ;σlong

i ) the measured values.
The fitting results are presented in Fig. 4.12, while the fitted parameters are listed in Table 4.6.
The result shows, that the pure hyperelastic parameters could be fitted with excellent accuracy
(R2 = 99.91%).

Table 4.6: The hyperelastic parameters using separated fitting method

α̃1 [-] α̃2 [-] µ̃1 [MPa] µ̃2 [MPa] R2 [%]
−7.14 18.225 1.575 · 10−7 0.00663 99.91

4.4.2.2 Separated fitting - Prony parameters

The viscoelastic behaviour is characterised by the Prony-parameters (see 4.9), which can be fitted
to the relaxation test results (see Fig. 4.9). The measurement results are considered to be ideal
relaxation response corresponding to step loading, in this case the stress solution using small strain
formulation is

σ (t) = σ0

(
e∞ +

P∑
k=1

eke−t/τk
)
, (4.58)

where σ0 is the instantaneous stress response for the applied stretch λ0. Obviously, σ0 is unknown,
and in fact it is impossible to determine from measurements, because infinite strain-rate loading
would be needed, which is technically impossible to achieve. Consequently, σ0 should be eliminated
from the equation above in order to fit the Prony-parameters. The instantaneous (σ0) and the
long-term (σ∞) stresses are related as

σ∞ = e∞σ0. (4.59)

Consequently, by expressing e∞ based on (4.11), the stress relaxation in (4.58) can be written as

σ (t) = σ∞
e∞

(
e∞ +

P∑
k=1

eke−t/τk
)

= σ∞

1−∑P
k=1 ek

(
1−

P∑
k=1

ek +
P∑
k=1

eke−t/τk
)
. (4.60)

Dividing both sides with σ∞ and applying the assumption of ek = gk = kk [9, 15] gives [SzB4]

σ̄ (t) = σ (t)
σ∞

= 1
1−∑P

k=1 gk

(
1−

P∑
k=1

gk +
P∑
k=1

gke−t/τk
)
. (4.61)
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The right-hand side contains only the Prony-parameters, whereas the modified data σ̄ (t) is simply
determined by dividing the experimental stress values with the long-term response σ∞, which can
be easily obtained. Finally, σ0 is eliminated and the new function σ̄ (t) can be fitted to the modified
experimental data. For the chosen Prony-series (P = 4) the fitting criteria are

τk > 0, gk > 0, g1 + g2 + g3 + g4 < 1. (4.62)

In the literature, there are several methods, which reduces the error resulting from the ramp
loading by modifying the experimental data (e.g. by time-shifting) [108]. According to the Factor-
of-ten method [109], relaxation modulus E(t) can be obtained from the step-strain case only for
t > 10T , this yields that

σ̄10T (t) = σ̄ (t) , t ≥ 10T. (4.63)

The method of Zapas and Philips [110] shifts the relaxation curve by T/2, thus

σ̄ZP (t) = σ̄ (t+ T/2) , t ≥ T/2. (4.64)

The iterative method proposed by Solvari and Malinen [108] is based on the two point trapezoidal
rule of integration is applied, yielding

σ̄SM (t− T ) = σ̄ (t)−
˙̄σ (t)
2ε̇0

(1 + λ0), t ≥ T ; with ˙̄σ (t) = σ̄ (t+ h)− σ̄ (t− h)
2h , (4.65)

where h is an arbitrarily chosen step time.
After performing the parameter fitting for all cases, the fitted parameters were substituted back

into (4.61) and compared with the measurement data, in which σ∞ = −0.00489 MPa. The result
of the parameter fitting is presented in Fig. 4.13, while the corresponding material parameters are
listed in Table 4.7.

Basic method
Solvari-Marinen
Zapas-Philips
Factor-of-ten

Measurement

Figure 4.13: The measured σ̄(t) function and the fitted ideal relaxation model using Prony-series using
Basic, 10T, ZP and SM methods

Table 4.7: The fitted Prony-parameters using separated fitting method

Method g1 [-] g2 [-] g3 [-] g4 [-] τ1 [s] τ2 [s] τ3 [s] τ4 [s] R2 [%]
Basic 0.0147 0.00204 0.0385 0.6114 249.134 100.259 18.939 2.149 94.05
10T 0.0784 0.759 0.000051 0.1474 2.1 8.285 3.142 93.91 65.42
ZP 0.0332 0.00204 0.00484 0.00819 2.592 7.231 2.182 87.15 94.75
SM 0.00324 0.00126 0.861 0.012 16.42 7.253 4.227 66.39 93.87
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4.4.2.3 Closed-form parameter fitting

Since the closed-form stress response τ (t) is obtained in (4.44)-(4.46), the material model can be
fitted directly to the stress relaxation data (see Fig. 4.9). The parameters of the loading case were
the strain rate ε̇ = −0.1662 1/s and the time of uploading T = 4.57 s. The parameter fitting
was performed again in Mathematica using the NMinimize global minimizer algorithm, where the
error function (SSD) was defined as

eclosed = 1
L1

L1∑
i=1

[
τ
(
tM1
i

)
− σM1

i

]2
+ 1
L2

L2∑
i=1

[
τ
(
tM2
i

)
− σM2

i

]2
, (4.66)

where L1 and L2 denotes the number of measurement points in the uploading and the stress
relaxation parts, respectively. The applied material model contains a second-order hyperelastic
(N = 2) and a fourth-order Prony-series (P = 4). Based on the conditions in (3.8), the criteria
for the parameters were defined as

µ1 + µ2 > 0, τk > 0, gk > 0, g1 + g2 + g3 + g4 < 1. (4.67)

The identified visco-hyperelastic material parameters are presented in Table 4.8.

Table 4.8: The material parameters in case of closed-form parameter fitting method

Hyperfoam α1 [-] α2 [-] µ1 [MPa] µ2 [MPa]
parameters −3.1473 6.227 0.00001706 0.01265

Prony’s g1 [-] g2 [-] g3 [-] g4 [-] τ1 [s] τ2 [s] τ3 [s] τ4 [s]
parameters 0.136 0.6202 0.000012 1.05 · 10−7 2.44 0.486 1.434 0.836

4.4.3 Evaluation of results
In the previous subsections, all the material parameters were identified for the visco-hyperelastic
material model in case of uniaxial compression with βi = 0. The fitted mechanical model can be
validated using FEA as it was described in Section 4.3.3. The goal of the analysis is to investigate
the accuracy of the fitted model compared to the measured stress relaxation data. The results are
also presented in Fig. 4.14, while the corresponding R2 values are listed in Table 4.9.

Closed-form fitting
Measurement

Separated fitting (Basic)
Separated fitting (SM)
Separated fitting (ZP)
Separated fitting (10T)

a) b)

Figure 4.14: The comparison of the performance of the separated and the closed-form fitting methods
a) for t ∈ [0, 50] s and b) for t ∈ [0, 120] s on logarithmic scale
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Table 4.9: Comparsion of R2 values for closed-form and separated fitting methods

Method Uploading R2 [%] Relaxation R2 [%] Overall R2 [%]
Closed-form 99.78 92.35 96.89
Separated (basic) 80.35 27.45 54.04
Separated (10T) 82.78 4.24 41.12
Separated (ZP) 81.14 11.24 39.22
Separated (SM) 83.78 13.57 40.29

As the result shows, all models are close to the real measured data in the uploading part, while
in case of the stress relaxation part the error of the separated approach is significant. Compared to
the separated fitting method, the error of the closed-form approach is negligible, and it describes
the material behaviour with excellent precision.
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4.5 Main results

I have investigated the large-strain viscoelastic behaviour of polymer foams (memory foams) based
on the visco-hyperelastic extension of the generalised Standard Solid Model in combination with
Hyperfoam model. I have derived closed-form stress solution for ramp loading for confined ho-
mogeneous deformation and for open-cell foams, where the transverse effect is negligible. I have
demonstrated, that the closed-form stress solution can be effectively utilised in the material char-
acterisation process via the detailed experimental case study of an open-cell memory foam. By
comparing the results with the separated fitting approaches in the literature, I have obtained the
following results.

Thesis statement 2

Consider Abaqus’s finite strain visco-hyperelastic constitutive model in the form of

τD(t) = τD0 (t)− SYM
[
P∑
k=1

gk
τk

∫ t

0
F−1
t (t− s)τD0 (t− s)Ft(t− s)e−s/τkds

]
,

τH(t) = τH0 (t)−
P∑
k=1

gk
τk

∫ t

0
τH0 (t− s)e−s/τkds,

where τD and τH are the deviatoric and hydrostatic Kirchhoff stresses, while gk, τk are the
Prony-parameters characterizing linear stress relaxation. When the instantaneous stress response
(τD0 , τH0 ) is modelled using the Ogden–Hill’s hyperelastic model, the τL longitudinal and τT transver-
sal stress solutions for homogeneous confined compression ramp tests are expressed in closed-form
as

τL (t) =



τL0 (t)−
P∑
k=1

gk

(
N∑
i=1

2µi
αi
ηik

)
t ≤ T,

τL0 (T )
(

1−
P∑
k=1

gk

(
1− e

T−t
τk

))
−

P∑
k=1

gk

(
N∑
i=1

2µi
αi
ϑik

)
t > T,

τT (t) =



τT0 (t)−
P∑
k=1

gk

(
N∑
i=1

2µi
αi
η̂ik

)
t ≤ T,

τT0 (T )
(

1−
P∑
k=1

gk

(
1− e

T−t
τk

))
−

P∑
k=1

gk

(
N∑
i=1

2µi
αi
ϑ̂ik

)
t > T,

where N and P denote the order of the Hyperfoam model and the Prony-series, T is the upload
time, while Γ[ν, x] stands for the upper-incomplete Gamma-function. The quantities ηik, ϑik, η̂ik, ϑ̂ik
are the second-order parameter tensors, defined using the loading case parameter M as

ηik =e
−t−1/ε̇
τk

(−1
ε̇τk

)Mαiβi (
Γ
[
1−Mαiβi,

−1
τkε̇

]
− Γ

[
1−Mαiβi,

−1− tε̇
τkε̇

])
+ e−

t+1/ε̇
τk

(−1
ε̇τk

)−αi (
Γ
[
1 + αi,−

1 + tε̇

τkε̇

]
− Γ

[
1 + αi,−

1
τkε̇

])
,
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ϑik =e
−t−1/ε̇
τk

(−1
ε̇τk

)Mαiβi (
Γ
[
1−Mαiβi,

−1
τkε̇

]
− Γ

[
1−Mαiβi,

−1− T ε̇
τkε̇

])
+

+ e
−1−ε̇t
ε̇τk

(−1
ε̇τk

)−αi (
Γ
[
1 + αi,

−1− T ε̇
τkε̇

]
− Γ

[
1 + αi,

−1
τkε̇

])
,

η̂ik =e
−t−1/ε̇
τk

(−1
ε̇τk

)Mαiβi (
Γ
[
1−Mαiβi,

−1
τkε̇

]
− Γ

[
1−Mαiβi,

−1− tε̇
τkε̇

])
+ 1− e

−t
τk ,

ϑ̂ik =e
−t−1/ε̇
τk

(−1
ε̇τk

)Mαiβi (
Γ
[
1−Mαiβi,

−1
τkε̇

]
− Γ

[
1−Mαiβi,

−1− tε̇
τkε̇

])
+ e−

t−T
τk − e

−t
τk .

Related publications: [SzB1],[SzB4],[SzB5],[SzB6]

Thesis statement 3

Consider the parameter fitting of open-cell polyethylene memory foams with significant vis-
coelastic effects and negligible transverse deformation (i.e. βi = 0) using Abaqus’s finite strain
visco-hyperelastic constitutive model in combination with the Ogden–Hill’s hyperelastic model. In
this fitting process, the 2N Hyperfoam and 2P Prony-parameter of can be fitted in one step to the
uniaxial stress relaxation test (ramp test) with excellent accuracy (R2 > 0.98) using the closed-
form stress solution for ramp test, compared to the separated fitting approaches (e.g. Zapas-Phillips,
Factor-of-ten, Solvari-Malinen methods), which contain significant error due to the idealisation of
ramp test.

Related publications: [SzB1],[SzB4],[SzB5],[SzB6]
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5
Viscoelastic-viscoplastic model for microcellular

foams

This chapter is devoted to the mechanical characterisation of a particular thermoplastic foam
material, the so-called microcellular polyethene-therephtalate (MC-PET) foam. Compared to
conventional foam materials (presented in Chapters 3 and 4), the mechanical behaviour of MC-
PET foams are mostly characterised by their thermoplastic PET skin layer, that shows significant
viscoelastic-viscoplastic properties in combination with large strains and deformation, which fun-
damentally characterise the manufacturing process of MC-PET.

The usual manufacturing process of microcellular foams is thermoforming, which is one of the
most widely applied manufacturing processes since the beginning of the polymer industry [23].
Using this process, a great variety of products can be manufactured with moderate costs, including
extremely thin parts with complex geometries as well. During the process, the raw material sheet
is heated up to the so-called forming temperature, where the forming process is applied (e.g. using
vacuum, compressed air or mechanical contact), which is followed by cooling to room temperature.
The final geometry of the part is strongly dependent on the technological parameters of process,
e.g. temperature levels, rate of loading, holding times [24, 25]. Due to the high sensitivity of the
material behaviour on the technical parameters, the setting of proper production parameters is
usually achieved after several tries, which might be very time-consuming and costly. However, the
final shape may be adequately modelled using finite element (FE) simulation as it is discussed
by Guzman-Maldonado et al. [111], which could also reduce the time and costs of production
design. Additionally, such simulations can also be applied to assess the long-term behaviour of
the thermoformed parts, which is in high industrial demand due to the unreasonable amount of
time required for the experimental investigations.

5.1 Literature overview and objectives

In order to perform FE simulation of the forming process adequately, the thermoplastic material
should be characterised using an accurate constitutive model including all relevant deformation
behaviours occurring during the entire forming process. As several studies in the literature have
revealed, the thermoplastic materials undergo large strains and deformations which show signifi-
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cant viscous, elastic and yielding characteristics with dominant temperature-dependent properties.
Consequently, the constitutive model applied in FE simulations must be able to describe yielding
properties with hardening, viscoelastic and elastic contributions. Nevertheless, the number of
suitable models in the commercial finite element software (e.g. Abaqus [15], Ansys [16], MSC
Marc [17]) is limited. Moreover, these models were mostly proposed for metals, not polymers.
Therefore, the development of advanced material models for characterising the complex mechan-
ical behaviours of thermoplastics is currently a highly investigated field of computational solid
mechanics.

In addition to the available models in FE software, a commercially available model family
for solid polymers is the PolyUMod Library provided by Bergström via Veryst Engineering [5].
This library includes the Three-Network Model (TNM) and the Parallel Network Model (PNM)
proposed especially for modelling thermoplastics. These advanced models, however, contains a
high number of material parameters without including explicit temperature dependence. Besides,
recent studies have also proposed viscoelastic and viscoplastic models for modelling temperature-
dependent behaviour of various thermoplastic materials (including PLA and PVA core-shell nanofi-
bres, PMMA, PLA, PC and isotactic PP) using parallel and serial configurations of the well-
known rheological models (see Section 2) combined with nonlinear viscoelastic-viscoplastic ele-
ments [112, 113, 114, 115, 116, 117, 118, 119, 120, 121]. Whereas, the novel constitutive model
proposed for temperature-dependent structural relaxation by Das et al. [122] also includes mul-
tiple time-scales using statistical homogenization. Additionally, several studies investigated the
yielding behaviour of thermoplastics based on cyclic tests utilizing kinematic hardening approach
[123, 124, 125, 126].

Microcellular foaming technology was invented at Massachusetts Institute of Technology (MIT)
by Martini et al. and patented in 1982 [127]. Microcellular foam materials show excellent insu-
lation and diffuse reflection properties, which can be achieved by relatively low production prices
[128, 129]. One of the possible fields of application of such foams is in lighting (e.g. as lamp shells),
which are manufactured using thermoforming process at temperatures above 200 ◦C, for which the
proper temperature-dependent modelling at all relevant temperature levels (as discussed above)
is essential. However, there is a lack in the literature regarding the experimental and numerical
investigations of such foam materials at wide temperature-regime, which was the main motivation
of this study. Since the material behaviour changes significantly with increasing temperature, the
objective was to apply a constitutive law such that characterise the material on the entire temper-
ature domain with adequate accuracy. The proposed material model comprises of a Maxwell-type
branch in parallel with an elastic-plastic model using isotropic hardening and associative flow
rule with Mises yield function, while the nonlinear viscoelastic effect was modelled using strain-
and time-hardening power-law creep models. This model-family is also commonly cited as two-
layer viscoplastic model, abbreviated as TLVP [15, 130, 131]. Additionally, the goal was also to
analyse performance and the sensitivity of the proposed model, which is also discussed further in
details. Moreover, in this chapter, analytical functions are also proposed to describe the variation
of viscous-elastic-plastic material parameters with temperature.

5.2 Mechanical behaviour of micro-cellular PET foam

The investigated material is a microcellular-polyethene-terephthalate (MC-PET) and currently
under development at Furukawa Electric Technology Ltd. [132]. Compared to pure PET, the
MC-PET material contains microcells which ensure excellent diffuse reflection quantities. The
foam is mainly used as lamp shells in different places, including extraordinary circumstances
(e.g. extreme cold, high UV-radiation, etc. . . ), thus the material model is required to capture the
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mechanical properties during the entire thermoforming process. The MC-PET foam is produced
as sheets with thickness 0.94 mm. The microstructure of the foam consists of a thin PET skin-
layer and a microcellular foam core, which is presented on the SEM image in Fig. 5.1/a. The skin-
layer/foam core thickness ratio is approximately 1:5, while the size of the microcells is in the range
of 5−10µm. Due to the foam core and the various deformation mechanisms of cellular structures
[41], the mechanical properties of the MC-PET foam significantly differ from the behaviour of the
matrix PET material (e.g. reduced density, improved impact absorption, etc.). Therefore, during
material modelling, one could not rely on the constitutive models and characteristics of single
PET material.

0.94
150
90

50

13

25

b)

PET Micro-cellular
foam core

a)

20μm

skin-layerSEM

Figure 5.1: The a) SEM image of microstructure of the investigated MC-PET foam and b) the specimen
geometry for uniaxial tests with the markers for video extensometer

5.2.1 Preliminary material tests
In order to get preliminary information about the temperature-dependent behaviour of the mate-
rial, the raw material was tested using sweep DMA test (dynamic mechanical analysis) in order
to investigate the viscoelastic and the temperature-dependent properties [7, 8]. The measurement
was performed in the laboratory of the Department of Polymer Technology at BME. The measured
quantities are the storage modulus E ′ representing the stored elastic energy and the loss modulus
E ′′ quantifying the energy dissipated as heat. The results of the DMA tests (see Fig. 5.2) shows
that the mechanical properties significantly change at elevated temperatures. Based on the DMA
curves, the glass-transition temperature Tg can be obtained using the inflection of E ′(T ) or the
maxima of E ′′(T ), namely Tg = 90 ◦C according to [133].

T
g=

90
°C

Figure 5.2: The results of the DMA tests: the variation of the storage modulus E′ and the loss modulus
E′′ against temperature

Beside the DMA tests, preliminary uniaxial tensile cyclic tests were also performed on the
specimens in order to reveal and identify the deformation characteristics in the investigated tem-
perature domain. The uniaxial tests were performed using a Zwick Roell Z010 Testing System with
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Zwick Xforce P load-cell with a maximal load capacity of 1 kN. Additionally, for the temperature-
dependent measurements, an air-feed-based Zwick heat chamber was applied, which ensures uni-
form temperature distribution in the chamber. Note, that after reaching the required temperature,
the specimen was laying in the chamber for 2 min to ensure that the whole volume of the specimen
is heated up. During the heating-up period, the speed of temperature changing was approximately
12 K/min as it is provided in the heat chamber specification. The heat chamber and the applied
specimen conditioning procedure ensure reliable test results according to standards ISO 527-1
[134], ASTM D618 [135] and D638 [136]. The preliminary uniaxial cyclic tests consist of several
loading-unloading cycles with increasing displacements in the temperature range of 21 − 210 ◦C,
which is the usual regime of the thermoforming production process of this particular material in
order to avoid the degradation of the microstructure which occurs at around 220− 240 ◦C. From
the measured force-displacement curves the engineering stress P and the engineering strain εeng

were computed from the measured force F and displacement value u as

P = F

A0
and εeng = u

L0
, (5.1)

where A0 = 12.24 mm2 and L0 = 50 mm are the initial cross-section and the initial gauge length.
The measured curves (data points) are illustrated in Fig. 5.3. The results at all temperatures show
that the material behaviour exhibits stress relaxation properties and the permanent deformation
after each cycle is also significant [SzB7].

T=160°C

T=210°C

T=21°C

T=60°C

T=90°C

Figure 5.3: The measured engineering stress – engineering strain curves in case of the preliminary cyclic
uniaxial tensile tests at temperatures of 21 ◦C, 60 ◦C, 90 ◦C, 160 ◦C and 210 ◦C

5.2.2 Uniaxial tensile tests
As the preliminary tests (DMA and cyclic) revealed, deformation of the MC-PET foam shows
significant elastic, plastic and viscous properties with significant temperature dependency. During
the constitutive modelling, in order to reduce the computational time of the parameter fitting, the
simplest test should be applied, which is also expected to involve both viscoelastic and viscoplastic
properties. Therefore, uniaxial tensile tests have been performed using a single cycle with three
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loading steps [SzB8], which is illustrated in Fig. 5.4. Firstly, displacement-controlled uploading
to umax with cross-head speed vc, then relaxation by holding the strain for tr = t2 − t1 = 60 s and
finally displacement-controlled unloading with vc until zero load is reached, namely F = 0 N. The
test parameters are summarised in Table 5.1.

relaxation
unloading

uploading

t1 t2 t3 t

Figure 5.4: The prescribed displacement history
during uniaxial test

Table 5.1: The uniaxial test parameters

upload time, t1 25 s
maximal displacement, umax 37.5 mm
relaxation time, tr 60 s
crosshead speed, vc 1.5 mm/s

As the DMA results indicated, the material behaviour significantly changes at around 90 ◦C,
therefore the investigated temperature values were not uniformly distributed in the regime of
21−210 ◦C as smaller temperature increments were applied around the glass transition temperature
according to [137]. Consequently, the tests were performed at ten different temperature levels,
namely 21 ◦C, 60 ◦C, 75 ◦C, 83 ◦C, 90 ◦C, 97 ◦C¸ 106 ◦C, 120 ◦C, 160 ◦C and 210 ◦C [SzB7].

60°C
75°C

83°C

21°C

160°C
120°C

210°C

60°C75°C83°C

21°C

160°C
120°C

210°C

106°C
90°C97°C90°C 97°C106°C

a) b)

Figure 5.5: The measured uniaxial a) P − t and b) P − εeng curves and the corresponding c) 3D surface
in the temperature domain of 21-210 ◦C
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The measured engineering-stress against time curves and the stress-strain curves are sum-
marised in Fig. 5.5, respectively. The results show that temperature has a significant softening
effect on overall mechanical behaviour. Furthermore, it can also be stated that the above glass
transition temperature, due to the microstructural changes, significantly different behaviour oc-
curs while the permanent deformation at the end of the cycle, which can be quantified by uP (as
indicated in Fig. 5.4), also increases.

5.3 Parallel viscoelastic-viscoplastic constitutive models
The constitutive model proposed for the characterisation of the investigated MC-PET material
at all temperature levels is a particular parallel viscoelastic-viscoplastic model [SzB7], [SzB8],
that is commonly cited as two-layer viscoplastic model (TLVP) [4, 15]. The TLVP model one
of the simplest parallel viscoelastic-viscoplastic model, which is comprised of a Maxwell-type
nonlinear viscoelastic branch and an elastic-plastic network, respectively. This model is mainly
applied for high-temperature modelling of metals [138, 139, 140, 141], although, originally it was
proposed for polymers [130, 131] and can also be efficiently applied for other materials [142, 143].
Among parallel viscoelastic-viscoplastic models, the TLVP model is beneficial thanks to its simple
structure and the relatively small number of parameters, whereas it is also implemented in the
commercial FE software Abaqus [15]. The 1D representation of the TLVP model is depicted in
Fig. 5.6. Due to the parallel configuration, the total stress can be expressed additively as

σ = σV + σP , while εV = εP = ε, (5.2)

where σV denotes the stress acting on the viscoelastic branch, whereas σP on the elastic-plastic
network, respectively

EP

EV

H

y

nonlinear
viscoelastic

elastic-plastic

Figure 5.6: The 1D representation of the two-layer viscoplastic model

5.3.1 Elastic behaviour
The elastic behaviour of the material is modelled using linear isotropic elasticity, which is rep-
resented by the elastic moduli EV and EP in the viscoelastic and the elastoplastic networks,
respectively. Therefore, the total elastic modulus can be expressed as E = EV +EP . The ratio of
EV and E is introduced as a new parameter fe, the so-called fraction of elasticity (or elastic-ratio)
for convenience as

fe = EV
E
. (5.3)

Furthermore, as isotropic behaviour is assumed, the Poisson’s ratio in both networks is iden-
tical, namely ν = νV = νP .
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Moreover, due to the large strains and deformations that the material behaviour shows, the
linear isotropic elastic behaviour is modelled using finite strain approach, namely by the so-called
hypoelastic model using the formulation for solid elements in Abaqus [6, 11, 15], where the
governing differential equation is expressed as

σ̊J = De : d. (5.4)
In which σ̊J represents the Jaumann stress-rate of the Cauchy stress tensor, d is the rate of
deformation tensor and De is the Hooke-operator. Assuming that the stretch varies linearly in
time, namely λ(t) = 1 + ε̇engt , the integration of (5.4) for uniaxial extension simplifies for the
Cauchy-stress as

σ(t) = E ln(λ(t)) = Eεtrue(t) (5.5)
where εtrue denotes the true strain.

5.3.2 Nonlinear creep laws
In the proposed TLVP model, the nonlinear viscous behaviour is modelled through nonlinear creep
laws [14]. Among several available creep laws, the so-called power-law models are the most widely
used models, thanks to their simplicity. The models only consider deviatoric creep, therefore the
governing differential equations are expressed using the Mises equivalent stress q , defined as

q =
√

3
2s : s, (5.6)

where s = dev(σ) is the deviatoric stress tensor. In this study time-hardening and strain-
hardening power-law models are investigated in detail [SzB7], [SzB8]. Note, that the time-
hardening power-law model is mainly recommended for slightly varying stress states, whereas
the strain-hardening model can be applied also for varying stress states as well. Additionally,
both models assume that the stresses are low [14, 15]. The governing equation of the equivalent
creep strain εcr for the time-hardening power-law is expressed for tension as

ε̇cr = Aqntm, (5.7)
while in case of strain-hardening power-law, the expression for tension becomes

ε̇cr = (Aqn [(m+ 1)εcr]m)
1

m+1 , (5.8)
where A, n and m are parameters, while the equivalent creep strain is defined as

εcr =
√

2
3ε

cr : εcr. (5.9)

It should be noted, that for m = 0 both models reduce to the Norton–Hoff creep law, which is
defined as

ε̇cr = Aqn. (5.10)
Beside the power-law creep models, there also exist more complex nonlinear creep laws (e.g. Anand,

Darveaux and Double power). In these models, however, the number of material parameters are
also higher, which makes the parameter-fitting even more difficult and uncertain, thus in the fol-
lowing, only the power-law models are discussed. During the numerical solution of the TLVP
model using FEA in Abaqus, the accuracy of creep integration was controlled by the so-called
creep strain error tolerance, for which value of 5 · 10−5 was prescribed according to the Abaqus
suggestion [15]. This error tolerance determines the time increment so that the creep strain incre-
ment is always smaller than the elastic strain increment [15].
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5.3.3 Yielding behaviour
Due to the lack of proper volumetric measurements, only deviatoric effects were taken into account
in the characterization of yielding behaviour. The elastic-plastic network was modelled using
associative flow rule with Mises yield criterion (see Chapter 2). Additionally, isotropic hardening
rule is assumed [SzB8]. In order to obtain proper hardening curve, the cyclic tests were analysed
in the true stress – true strain curve (see Fig. 5.7/a), where σ = P (εeng +1) and εtrue = ln(εeng +1)
using the volumetric incompressibility assumption. It should be noted that the elastic contribution
in the strain involves volumetric strain, but it is negligible compared to the viscous and plastic
strains. Furthermore, the endpoints of each load steps were also detected, namely the endpoint of
uploading/unloading and each relaxation steps as indicated by dot markers in Fig. 5.7/a.

T=21°C

T=60°C

T=90°C

T=160°C

T=210°C

p

b)T=21°C

End of unloading

End of relaxation after uploading

End of uploading
End of relaxation after unloading

fitted EP
model

a)

true

Initial slope (  )E

Figure 5.7: The a) method for estimation of long-term behaviour and hardening law at 21 ◦C and b)
the linear hardening curves at all investigated temperatures

In order to eliminate the viscoelastic-viscoplastic effects, it was assumed that the endpoints
of each relaxation phase after uploading steps correspond to the long-term, pure elastic-plastic
behaviour [SzB7]. Therefore, the hardening curve can be approximated by a polynomial on the
σ − εtrue curves. Furthermore, the initial elastic modulus Ē was obtained as the initial slope of
the true stress – true strain curve, which is listed in Table 5.2.

Table 5.2: Estimation of the elastic modulus as the initial slope of the cyclic tests

Temperature [◦C] Ē [MPa]
21 369.78
60 347.53
90 130.94
160 45.80
210 38.42

Using the decomposition of the total stress as in (2.68), the plastic strain values can be obtained
(see Fig. 5.7/a) as

εp =
(
εtrue − σ

Ē

)
. (5.11)

Moreover, using the same steps, the fitted polynomial yield function against the true plastic
strain can also be obtained, which defines the hardening curve. As the results in Fig. 5.7/b show,
the hardening curves can be approximated with linear functions with reasonable accuracy. Thus,
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in the proposed model, linear isotropic hardening was applied [SzB7], [SzB8], where the hardening
rule is defined accordingly to (2.79).

5.4 Fitting strategy and results
Having chosen the viscous and elastic-plastic elements of the TLVP model, the material parameters
should be fitted to the uniaxial tests with uploading, relaxation and unloading phases as presented
in Fig. 5.5. According to the generally applied parameter fitting strategy, the error between the
model prediction and the measurement data is minimized [9].

The proposed TLVP model contains altogether eight material parameters. The elastic be-
haviour is characterised by the elastic modulus E, the Poisson’s ratio ν and the fraction of elasticity
fe. The nonlinear viscous elements contain the power-law exponent m and power-law coefficients
A and n, whereas the yield function is characterised by the initial yield stress σy0 and plastic hard-
ening modulus H. The parameters should also fulfil the following constraints to ensure physically
admissible results:

E,A, n,H, σy0 > 0, (5.12)
0 < fe < 1, (5.13)
−1 < m < 0. (5.14)

Since the fitting was performed using uniaxial tensile tests, the Poisson’s ratio has a negligible
effect on the stress result. Therefore, for minimizing the parameters to be fitted, the Poisson’s
ratio is considered to be constant, namely ν = 0.4 [132, 144].

In contrast to the visco-hyperelastic model (in Chapter 4), the closed-form stress solution
cannot be expressed analytically, thus a FE-based parameter-fitting method is proposed [SzB7],
[SzB8]. In each iteration step a complete FE simulation of the problem was performed [143].
The procedure was performed on a single, eight-node brick element with reduced integration.
The boundary conditions were set similarly as in Section 4.3.3, while displacement U1 was set
according to the simplified uniaxial measurement data presented in Section 5.2.2 and the resultant
engineering stress values were obtained in each iteration step.

The fitting process, which is represented via its flowchart in Fig. 5.8, was defined to minimize
the error function, which can be calculated as the sum of squared differences (SSD) between the
simulation results and the measured data as

eTLVP =
M∑
i=1

(
Pmeas
i − PFE(tmeas

i )
)2
, (5.15)

where Pmeas
i −tmeas

i are the measured stress-time value data pairs, PFE is the stress values obtained
from FE simulation, while M stands for the number of data points.

5.4.1 Numerical optimization scheme
This parameter fitting method is extremely time-consuming since a single iteration step lasts
20-25 s using a CPU with 3.1 GHz for the loading history used in the simulation. In order to
reduce the fitting time, three numerical optimization algorithms were compared (see Fig. 5.9):
Hooke–Jeeves (HJ), Downhill simplex (DS) and Adaptive Simulated Annealing (ASA).

The DS method finds the local minima after simplex-operations based on function evaluations
at the simplexes [145, 146]. The HJ algorithm searches the optima by simultaneously performed
optimization using several trial solutions in the parameter-space [147], whereas the strategy of
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ASA method is based on a random search with adaptive parameter control using temperature
schedules mimicking heat treatment of metals [148].

After several trial-runs, the HJ method was found to perform the best concerning optimization
time. As the example in Fig. 5.9 shows the convergence of the elastic modulus at T = 120 ◦C
required 532, 2017 and 4035 iteration steps for the HJ, DS and ASA algorithms, respectively. Note,
that since the ASA method based on a random search, the convergence can only be declared after
a given number of unsuccessful tries in order to guarantee that no better solution can be obtained.

Random initial values

Comparison with
measurement data

Evaluate quality function (SSD)
+ convergence?

Uniaxial
Measurement

time

st
re

ss

Single element 
FE Simulation

Preprocessing:
Set uniaxial load history 
+ material parameters

Postprocessing:
Export stress-time curve

Yes

No

Finish fitting
Export parameters

Guess new
parameters

Figure 5.8: The flowchart of the proposed fitting method

Adaptive Simulated Annealing
Downhill simplex
Hooke-Jeeves T=120°C

Figure 5.9: The comparison of numerical algorithms (HJ, DS, ASA) for the convergence of the elastic
modulus at T = 120 ◦C
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5.4.2 Fitting results: strain-hardening creep law
In case of the applied TLVP model using strain-hardening power-law creep model, the fitted
material parameters are listed in Table 5.3, whereas Fig. 5.10 shows the fitted engineering stress-
time curves at all investigated temperature levels.
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Figure 5.10: The comparison of the uniaxial measurement data and the fitted TLVP model using
strain-hardening power-law creep model including the uncertainty region for at least 10% relative error
for each parameter

Furthermore, the sensitivity of the model was also investigated using Monte-Carlo simulation,
where a relative parameter error of δp = ±0 − 10% was introduced for each fitted parameter
[SzB7]. After performing the FE simulation of the simplified uniaxial extension problem for each
combination of parameters with errors of ±1%± 2%± 5%± 10%, the so-called uncertainty region
could be introduced as the envelope of the resultant engineering stress – time curves (see the grey
shaded areas in Fig. 5.10). The results show that the TLVP model can characterise the viscous-
elastic-plastic behaviour of the investigated MC-PET material with excellent accuracy. However,
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at elevated temperatures (temperatures above the glass-transition temperature of Tg = 90 ◦C) the
sensitivity of the model indicated by the uncertainty region, significantly increases.

Table 5.3: The fitted material parameters of the investigated microcellular foam using strain-hardening
power-law creep model

Temp. [◦C] E [MPa] σy0 [MPa] H [MPa] A · 103 [-] n [-] m [-] fe [-]
21 685.08 4.099 29.51 0.446 2.500 -0.553 0.817
60 566.25 2.213 29.78 0.403 2.610 -0.541 0.858
75 520.06 1.325 29.37 0.538 2.610 -0.544 0.877
83 448.29 0.558 31.22 0.827 2.483 -0.521 0.877
90 384.41 0.000535 33.16 1.009 2.497 -0.522 0.876
97 302.83 0.000200 36.60 3.038 1.987 -0.588 0.879
106 267.59 0.000227 38.10 4.941 1.833 -0.623 0.882
120 206.00 0.000098 37.08 10.949 1.405 -0.710 0.884
160 135.81 0.000194 40.50 16.870 1.486 -0.761 0.880
210 80.01 0.000050 36.05 35.845 1.013 -0.770 0.890

5.4.3 Fitting results: time-hardening creep law
Similarly, the results in case of time-hardening power-law creep model can be summarised via the
parameter Table 5.4 and by the comparison of measured engineering stress-time curves with the
model prediction using the fitted parameters in Fig. 5.11. In the latter case, the sensitivity of the
model is quantified by the uncertainty-region obtained by Monte-Carlo simulations as introduced
previously. As the results show, this model is also able to characterise the material behaviour
with adequate accuracy at all temperature levels. Additionally, the sensitivity analysis also shows
similar results to the case of the TLVP model with strain-hardening creep law.

Table 5.4: The fitted material parameters of the investigated microcellular foam using time-hardening
power-law creep model

Temp. [◦C] E [MPa] σy0 [MPa] H [MPa] A · 103 [-] n [-] m [-] fe [-]
21 753.37 4.935 30.99 0.528 3.389 -0.837 0.814
60 659.96 3.129 29.48 0.410 3.600 -0.797 0.843
75 576.57 2.211 29.33 0.725 3.513 -0.831 0.867
83 497.61 1.255 32.35 0.825 3.500 -0.795 0.881
90 409.29 0.832 35.86 1.476 3.403 -0.847 0.887
97 333.35 0.778 42.93 5.257 3.036 -0.938 0.895
106 297.08 0.404 45.96 9.743 2.866 -0.936 0.894
120 229.60 0.000383 46.98 35.037 2.388 -0.999 0.889
160 168.22 0.000279 48.00 98.019 2.295 -0.993 0.890
210 108.44 0.000051 43.23 309.744 1.753 -1.000 0.908
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Figure 5.11: The comparison of the uniaxial measurement data and the fitted TLVP model using time-
hardening power-law creep model including the uncertainty region for at least 10% relative error for each
parameter

5.4.4 Comparison of models

The performance of the fitted models can also be analysed by the coefficient of determination
R2, which is defined according to (3.68). This quantity, however, can give accurate result only
if the curve is monotonously increasing, therefore for such curves, another quantity, namely the
standard error of regression S (see (3.68)) is recommended [149][150].

The calculated values characterising the goodness of the fitting are listed in Table 5.5. It should
be noted that values of SSD and S are not normalized, therefore the temperature-dependent
tendency can only be obtained from the variation of R2. According to Fig. 5.12 the accuracy of
the model prediction slightly decreases at the highest temperatures. Although, the R2 values are
always above 98.9%, which means that both models can be applied for characterising the material
with good accuracy. The goodness of fitting also indicates that the strain-hardening power-law
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creep model shows better accuracy compared to the time-hardening one, nearly all temperatures,
but especially at the highest ones.

T
g=

90
°C

Time-h.
Strain-h.

Figure 5.12: Variation of R2 against temperature for strain- and time-hardening creep laws

Table 5.5: Comparison the performance of strain-hardening (Strain-h.) and time-hardening (Time-h.)
TLVP models using fitting quality values of SSD, R2 and S

Temp.
[◦C]

SSD [MPa2] R2 [%] S [MPa]
Strain-h. Time-h. Strain-h. Time-h. Strain-h. Time-h.

21 12.94 10.18 99.78 99.83 0.0927 0.0823
60 7.23 14.71 99.84 99.67 0.0694 0.0991
75 6.13 12.51 99.83 99.67 0.0638 0.0912
83 6.91 14.33 99.81 99.61 0.0676 0.0973
90 5.47 15.47 99.84 99.57 0.0599 0.1008
97 4.12 20.92 99.88 99.43 0.0517 0.1163
106 4.71 12.02 99.86 99.67 0.0549 0.0877
120 3.22 8.25 99.87 99.68 0.0455 0.0728
160 4.76 16.94 99.78 99.21 0.0541 0.1021
210 2.84 7.39 99.61 98.94 0.0423 0.0681

5.4.5 Sensitivity of parameters
Besides the analysis of global sensitivity using uncertainty regions, the sensitivity of each parameter
can also be obtained using the Monte-Carlo simulation method again [SzB7]. This case, only a
single parameter was perturbed with δp relative parameter error of ±1%± 2%± 5%± 10%, and
the resulted curves were compared using standard error of regression as in (5.15). The resultant
curves are presented in Figs. 5.13-5.14, from which the effect of each parameter can be obtained.

72



5.4. FITTING STRATEGY AND RESULTS

Elastic modulus, E Hardening modulus, HInitial yield stress, 

Power law coeff., A Power law exponent, mPower law exponent, n

Fraction of elasticity, fe 21°C
60°C
75°C
83°C
90°C
97°C
106°C
120°C
160°C
210°C

y0

Figure 5.13: Sensitivity of the fitted parameters in case of TLVP model with strain-hardening creep

Elastic modulus, E Hardening modulus, H

Power law coeff., A Power law exponent, mPower law exponent, n

Fraction of elasticity, fe 21°C
60°C
75°C
83°C
90°C
97°C
106°C
120°C
160°C
210°C

saturation

y0Initial yield stress, 

Figure 5.14: Sensitivity of the fitted parameters in case of TLVP model with time-hardening creep
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As the results show, the parameter fe (fraction of elasticity) has the largest effect on global
sensitivity. It should be emphasized that the initial yield stress decreases approximately to zero,
therefore it does not affect on the global error above the glass transition temperature. In case of
the viscous parameters, the error varies on the same scale for all three viscous parameters (A, n
and m). Note, that in case of the time-hardening power-law at temperatures 106-210◦C the fitted
value for the power-law exponent m lays close to the boundary of the possible parameter range as
in (5.14), Consequently, the effect of positive relative errors (δp > 0) cannot be analysed. Thus,
the error considered to be saturated, which is indicated in Fig. 5.14.

5.5 Temperature-dependency of parameters
The result of the parameter fitting provides information about the temperature-dependence of the
material parameters. This can be utilized as a validation method of the fitting by comparing the
variation of elastic modulus with the DMA results. The long-term and instantaneous boundary
models can be introduced for the TLVP model by substituting the nonlinear dashpot element
with breakage and short-circuit, respectively [SzB7]. As it is discussed in [21, 151], the long-
term behaviour is defined with ε̇ → 0, when the dashpot element deforms without any stress
merging, thus the dashpot can be substituted with a breakage (see Fig. 5.15). Moreover, in case
of instantaneous behaviour, namely ε̇→∞, the viscous element becomes infinitely stiff, thus only
the elastic element deforms in the viscoelastic branch. Consequently, both cases can be represented
with pure elastic-plastic models.

instantaneous elastic-plastic

Einst Hinst

yinst

long-term elastic-plastic

Elong Hlong

ylong

EP

EV

H

y

EP

EV

H

y

Elastic-plastic boundary models

Substitution of nonlinear dashpot

EP

EV

H

y

viscoelastic

elastic-plastic

viscoelastic with

elastic-plastic

viscoelastic with

elastic-plastic

Figure 5.15: The introduction of the elastic-plastic boundary models for the TLVP model representing
the long-term and instantaneous behaviour

74



5.5. TEMPERATURE-DEPENDENCY OF PARAMETERS

The corresponding material parameters in the elastic-plastic boundary models in case of the
applied TLVP model can be obtained as

Einst = EP + EV = E, and Elong = EP = (1− fe)E, (5.16)

σy0inst = 1
1− f σY 0, and σy0long = σy0, (5.17)

Hinst = fe (1− fe)E +H

(1− fe)2 , and Hlong = H, (5.18)

where subscript “inst” refers to the instantaneous boundary model, whereas “long” for the long-
term, respectively [SzB7].

Using the previously introduced models, the long-term and instantaneous elastic moduli can be
obtained for all temperatures using both creep models, respectively. By comparing the variation
of these curve against the temperature with the DMA results (see Fig. 5.16), it can be clearly seen
that the DMA measurement always lays in between the long-term and instantaneous responses,
since the DMA measurement was performed with finite deformation speed. For the boundary
models, the glass transition temperature was also determined as the inflexion of the curves [133].
As a result of the numerical interpolation and derivation, the glass transition temperature was
found to be T strain

g = 91.3 ◦C and T time
g = 87.7 ◦C respectively. This means that the parameter

fitting and the DMA measurement are in excellent agreement.

T
g=

90
°C

DMA measurement
Fitted Time-h.
Fitted Strain-h.

Instantaneous

Long-term

Figure 5.16: Comparison of the DMA results and the boundary models for the fitted strain- and
time-hardening power-law TLVP models

5.5.1 Analytical parameter functions

Besides the elastic modulus, all other material parameters, which characterise yielding and creep-
ing, could also be analysed as a function of the temperature. The characteristics in Fig. 5.17
show clear tendencies only with moderate numerical noise. In the literature, a possible solution
to describe the temperature dependency of material parameters is by introducing closed-form
functions, usually in polynomial form [117].

Although, it can also be seen, that in the vicinity of the glass transition temperature, there is
a significant change in all parameter value. Consequently, it is preferable to include Tg as internal
parameter in the analytical temperature-dependent parameter functions as applied in [137, 152].
In the approach to finding suitable functions several possibilities were tried; the chosen functions
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have the form [SzB7]:

E(T ) = E1 arctan (E2 (T − Tg)) + E3 (5.19)
H(T ) = H1 arctan (H2 (T − Tg)) +H3 (5.20)
n(T ) = n1 arctan (n2 (T − Tg + n3)) + n4 (5.21)
m(T ) = m1 arctan (m2 (T − Tg +m3)) +m4 (5.22)

σy0(T ) =

Y2 (T − Tg)2 + Y1 (T − Tg) + Y0, T ≤ Tg

Y3 (T − Tg) + Y0, T > Tg
(5.23)

A(T ) =

A1 (T − Tg) + A0, T ≤ Tg

A3 (T − Tg)2 + A2 (T − Tg) + A0, T > Tg
(5.24)

fe(T ) =

fe1 (T − Tg) + fe0, T ≤ Tg

fe2 (T − Tg) + fe0, T > Tg
(5.25)

As the functions show, the elastic modulus E, the hardening modulus H, the power-law expo-
nent n and m show a similar tendency according to the arctangent function. Whereas, the initial
yield stress σy0, the power-law coefficient A and the fraction of elasticity fe can be described using
piecewise polynomials. The numerical values of the parameters in (5.19)-(5.25) are listed in Table
5.6. The variation of material parameters shows a excellent agreement with the change of material
behaviour of thermoplastics around the glass transition temperature as summarised in [5, 7, 8].
Above Tg large segmental motions are activated, and the polymer starts to behave more fluid-like,
as indicated by increasing A and fe parameters, while the elastic modulus and the initial yield
stress significantly drops.
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Figure 5.17: The temperature-dependency of material parameters and the fitted analytical functions
for strain- and time-hardening power-law TLVP models
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Table 5.6: Parameters of the analytical temperature-dependent parameter functions for TLVP with
strain-hardening and time-hardening creeping

Parameter Strain-h. Time-h. Parameter Strain-h. Time-h.
E1 [MPa] 223.7 236.2 A0 [-] 0.0013 0.0034
E2 [MPa] -0.039 -0.043 A1 [-] 0.000018 0.0000585
E3 [MPa] 390.4 440.4 A2 [-] 0.000211 0.0000293
Y0 [MPa] 0.1506 0.1403 A3 [-] 0 0.0000208
Y1 [MPa] -0.0809 -0.1372 n1 [-] -0.4895 -0.5613
Y2 [MPa] -0.000334 -0.000988 n3 [-] 0.0943 0.0740
Y3 [MPa] -0.000849 -0.00165 n3 [-] 1.9418 2.7969
H1 [MPa] -2.856 -5.434 n4 [-] -11.909 -17.621
H2 [MPa] -0.239 -0.983 m1 [-] -0.0794 -0.0584
H3 [MPa] 33.67 37.67 m2 [-] 0.1226 0.280

fe0 [] 0.888 0.887 m3 [-] -0.646 -0.898
fe1 [-] 0.00101 0.00113 m4 [-] -18.98 -4.72
fe2 [-] 0.00066 0.0014

5.5.2 Improved fitting with analytical functions
The previously introduced analytical functions not only express the relation of temperature and
the parameter values but also can be utilized for initializing the fitting process. As it was discussed
above, the FE-based parameter fitting procedure could be extremely time-consuming and also very
sensitive to the initial set of parameter values. The proposed analytical functions contain only 2-4
parameters, therefore based on approximately 3 fittings (e.g. at room temperature, at 60 ◦C and at
the maximum temperature), the analytical function parameters in (5.19)-(5.25) can be fitted. This
approach was motivated by the model of Dupaix, where temperature-dependent shear modulus
function is fitted to measurements below and above glass transition temperature [137, 152]. After
evaluating the function at all other temperature levels, this could give a possible guess for the
initial parameters and ensures significantly faster fitting. This flowchart of this fitting algorithm
is illustrated in Fig. 5.18.

The benefit of this method is presented via a case study of elastic modulus fitting at 120 ◦C
using TLVP with strain-hardening power-law. As the fitting is performed for 21 ◦C, 60 ◦C and
210 ◦C using the originally proposed method, the analytical function in (5.19) can be fitted to E21,
E60 and E210 values (see Table 5.4) and hence, the numerical estimation function becomes

E∗ = 255.36 · arctan(−0.0356(T − 90)) + 450.89, (5.26)

from which the initial value for the fitting at 120 ◦C becomes

Einit,120 = 241.82 MPa. (5.27)

As Fig. 5.19 shows, the fitting process started with this value needs only 514 iteration steps, while
the same fitting started from the room-temperature result of E21 = 753.37 MPa needed 1487
iterations. Therefore, the time needed to finalize fitting could be reduced to its third by properly
chosen initial values based on the analytical parameter functions proposed above.
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Figure 5.18: The flowchart of the fitting method utilizing the analytical parameter functions for ini-
tializing numerical parameter values

a) b)

Figure 5.19: Comparison of the parameter fitting at 120 ◦C with strain-hardening TLVP model using
initial values from original room-temperature fitting and novel analytical estimations
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5.6 Punch-test based validation procedure
The previously discussed material characterisation process was usually based on uniaxial mea-
surements including creep, relaxation and cyclic tests performed at several temperatures. For
such nonlinear constitutive models, a perfectly fitted model to uniaxial tests may lead to extreme
deviation during the prediction of the material behaviour for different load cases [66].

During thermoforming, the dominant loading is biaxial, therefore one cannot rely on the fitted
model to uniaxial data without validation for biaxial load case. In the literature, a commonly
applied method for performing such biaxial loading with single-column testing systems is punch-
test measurements [153, 9, 143, 154].

In the proposed method for thermoplastic MC-PET material, punch-tests are combined with
laser scanning measurements in order to obtain not only the force-displacement characteristic
but also the final shape and thickness variation along of the specimen [SzB9]. The measured
punch-test data can further be utilized during the validation process by comparing with the FE
simulation result of the punch-test applying the fitted material model. The proposed validation
method contains the following four main steps, which are also illustrated in Fig. 5.20.

1. Experimental punch-tests with spherical head geometry

2. 3D surface laser scanning of top and bottom surfaces

3. FE simulation of the punch-test

4. Comparison of the thickness variation, final shape and force-time curves
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Figure 5.20: The workflow of the validation strategy for thickness variation using punch-tests

5.6.1 Punch-tests
The schematics of the axisymmetric punch-test measurement is presented in Fig. 5.21/a. A piece
of a raw MC-PET material sheet with dimensions of 75 × 75 mm was placed in a special fixture
mounted in Zwick Z010 Testing System equipped with temperature chamber and the punch-test
was performed with stainless steel spherical punch with diameter of 19 mm. The displacement-
based loading consists of three parts: uploading with vc = 500 mm/min, relaxation for tr = 30 s
and unloading with vc = 100 mm/min until F = 0 N is reached. Figure 5.21/b illustrates the
experimental punch-test force-displacement F − u data at same temperatures levels as in Section
5.2.2.
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a)
b)

Figure 5.21: The a) layout of the punch-test measurement in heat chamber and b) the measured
force-displacement characteristics

5.6.2 Laser scanning
After punch-tests, the deformed specimens were placed in an NCT EmR-610Ms CNC milling ma-
chine, where the top and the bottom surfaces were scanned using a KEYENCE IL-030 Laser Dif-
ferentiation Displacement Sensor following a predefined “zig-zag”-like path as shown in Fig. 5.22/a
(for further details of the laser system see [155]).

b)a)

Top curve

Bottom
 curve

P

xP

P
h

tangent

P'e

c)

Figure 5.22: The a) schematics of the deformed surface detection using laser scanner and b) the
determination of local thickness from top and bottom curves and c) the applied FE model

After synchronization of the time signal of the distance variation recorded by the laser sensor
and the position data provided by the CNC machine, the point clouds corresponding to both top
and bottom surfaces of the deformed shape were obtained. Based on the scanned surfaces the
thickness variation was determined along the surface and evaluated along the x-axis by searching
point P ′ on the top curve (see Fig. 5.22/b) to the corresponding point on the bottom curve
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(denoted by P ). For this purpose, the perpendicular line e to the tangent at P (xP , yP ) was
determined and then P ′ was obtained as the closest point on the top curve on the line. Finally,
the thickness h at each xP along the x-axis was obtained as

h(xP ) =
∣∣∣PP ′∣∣∣ . (5.28)

5.6.3 Simulation of punch-test
As a next step, the FE simulation of the punch-test was performed using the commercial software
Abaqus [15]. The applied axisymmetric FE-model is illustrated in Fig. 5.22/c. In order to reduce
the computational time, the punch head was modelled as an analytical rigid surface, while the
contact between the rigid punch and the MC-PET was modelled with Coulomb-friction with the
coefficient of µ = 0.15 [144]. Futhermore, the model was meshed with CAX4R elements with reduced
integration.

5.6.4 Validation results
The comparison of the measured punch-test force-time (F − t) data and the FE simulation results
are presented in Fig. 5.23. The comparison of the force-time curves shows that in case of 21 ◦C
the discrepancy between the simulation result and the measurement is remarkable. However, at
elevated temperatures, this deviation becomes moderate, especially in case of TLVP model with
time-hardening creeping.
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Figure 5.23: The comparison of the experimental results and the FE simulation using TLVP with
strain- and time-hardening power-law models at 21 ◦C, 90 ◦C and 160 ◦C based on a)-c) force-time data
from punch test, d)-f) thickness variation and g)-i) the deformed shape of the specimen by laser scanning
technique
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The variation of the thickness h along the x-axis shows good agreement with the results
of the laser scanning measurement. Note, that in Fig. 5.23/d-f numerical noise is observable
in the neighbourhood of the fixed support, which could be eliminated with mesh-refinement or
by using full integration, however, its effect on the simulation results is negligible. The local
minima on the thickness variation also indicate the contact region between the punch-head and
the specimen. Finally, the excellent accuracy between the deformed geometries (represented with
the position in z-direction) also confirms that the TLVP-model can be applied for describing the
material behaviour and the permanent deformation for complex geometries and non-homogeneous
deformations as well.

In order to characterise the model accuracy with the temperature, the relative error of the
maximal force and the minimal thickness values were compared using the measurement data as a
reference value. The variation of the relative errors δrel is illustrated in Fig. 5.24. The relative error
of the maximal force varies between 5–30% and significantly decreases at elevated temperatures,
while the error of the minimal thickness is always less than 10%. The comparison of the thickness
variation obtained by FE prediction and the laser scanning method are in good agreement. The
relative error of the maximal force varies between 5–30% and significantly decreases at elevated
temperatures, while the error of the minimal thickness is always less than 10%.

Minimum thicknessMaximal force

a) b)

Strain-h.
Time-h.

Strain-h.
Time-h.

Figure 5.24: Comparison of the error of the applied TLVP models with strain- and time-hardening
power-law models

The higher relative error of the maximal force values at low temperatures indicates that at
these temperatures it is harder to extrapolate from uniaxial test data to biaxial load case, while
at elevated temperatures the biaxial stress state can be approximated from the uniaxial test with
reasonable accuracy. The reason behind this fact is that under the glass transition temperature
the material behaviour is mostly characterised by nonlinear elastic and yielding properties, while
above this temperature the behaviour of the material becomes more fluid-like [5, 7, 8]. It can also
be concluded that the TLVP model can characterise the material behaviour in biaxial stress-state
with adequate accuracy, even if only uniaxial tests were used during the fitting process. The results
also revealed that the prediction of the TLVP model with time-hardening power-law creeping law
is more accurate than TLVP model utilizing strain-hardening creeping law.
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5.7 Main results
I have performed detailed experimental study on the mechanical behaviour of a particular micro-
cellular polyethene-therephtalate foam material on wide temperature range. I have proposed a
parallel viscoelastic-viscoplastic model, that is able to characterise the material on the entire tem-
perature regime with excellent accuracy. Using a FE-based fitting procedure I have determined
the temperature dependent material parameters. By means of the analysis of the parameters I
have proposed analytical functions, that describe the variation of parameters with the tempera-
ture. Furthermore, I have also proposed a punch-test based validation technique for the validation
of the fitted model non-homogeneous deformation with complex geometry. By analysing the per-
formance of the proposed models, I have obtained the following results.

Thesis statement 4

The mechanical behaviour of thermoplastic microcellular polyethene-therephtalate foam ma-
terial shows significant elastic, rate-dependent and permanent deformations on the temperature
domain of 21–210 ◦C, which is relevant for its thermoforming applications.

The captured mechanical behaviour can be effectively modelled on the entire temperature do-
main using a parallel viscoelastic-viscoplastic constitutive model with finite strain approach, where
the viscoelastic properties modelled via a Maxwell-element with nonlinear power-law creeping law
with strain- and time-hardening, while the yielding behaviour is modelled with associative flow
rule based on the von Mises yield criterion with linear isotropic hardening. At high temperatures,
however, the sensitivity of the model increases significantly.

The accuracy of time- and strain-hardening power-law creep laws shows only minor discrep-
ancy in uniaxial case, and furthermore the constitutive model also predicts the force-displacement
characteristic of punch-tests within reasonable errors.

Related publications: [SzB7],[SzB8],[SzB9],[SzB10]
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Thesis statement 5

Consider the temperature-dependent mechanical behaviour of the microcellular polyethene-
therephtalate foam to be modelled using the parallel viscoelastic-viscoplastic constitutive model as
a combination of an elastic-plastic network based on von Mises yield criterion with linear isotropic
hardening and a Maxwell-element with nonlinear strain and time hardening power-law creeping.
The temperature-dependency of the material parameters, namely the elastic modulus (E), initial
yield stress (σy0), hardening modulus (H), fraction of elasticity (fe), creep-law coefficient (A) and
exponents (m,n), can be characterized with monotonous, continuous functions of the T actual
temperature and Tg glass-transition temperature in the form of

E(T ) = E1 arctan (E2 (T − Tg)) + E3,

H(T ) = H1 arctan (H2 (T − Tg)) +H3,

n(T ) = n1 arctan (n2 (T − Tg + n3)) + n4,

m(T ) = m1 arctan (m2 (T − Tg +m3)) +m4,

σy0(T ) =

Y2 (T − Tg)2 + Y1 (T − Tg) + Y0, T ≤ Tg

Y3 (T − Tg) + Y0, T > Tg
,

A(T ) =

A1 (T − Tg) + A0, T ≤ Tg

A3 (T − Tg)2 + A2 (T − Tg) + A0, T > Tg
, and

fe(T ) =

fe1 (T − Tg) + fe0, T ≤ Tg

fe2 (T − Tg) + fe0, T > Tg
.

Related publications: [SzB7],[SzB8],[SzB10]
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6
Pellet impacts for impulse excitation

In this chapter, the benefits of the previously introduced parallel viscoelastic-viscoplastic model
with the proposed parameter-fitting strategy is presented via the case study of airsoft pellet
impacts applied for impulse excitation.

In the research field of machine tool vibrations, the frequency response function (FRF) of cut-
ting tools with large length/diameter ratio and blade-type workpieces plays significant role [156].
In modal testing, the FRF can be measured as the response for impulse excitation performed by
a modal hammer. However, during the hammer impact, the so-called multiple-hitting phenomena
might occur (see Fig. 6.1) resulting in non-ideal input force signal, which should be avoided. The
natural frequencies of machine tools are usually high, which yields that the time of impact (Timp)
should be decreased to ensure wider relevant frequency range of the Fourier-transform of the force
signal, yielding that the FRF of the tool could also be obtained on a wider frequency domain.
Therefore, smaller hammers (e.g. micro-hammers) should be applied, however, the signal-to-noise
ratio is typically worse due to the small energy transfer during the impacts. In addition, due to
the dynamical properties of the spindle bearings, the FRF can change during rotation, and the
hammer excitation of high-speed rotating tools also poses safety risks, implying a significant need
for an alternative impulse excitation method.

b)a)

ideal impulse
real impulse

with multiple hits

ideal impulse

real impulse
with multiple hits

modal hammer

dummy tool v

Figure 6.1: The a) phenomena of multiple-hitting during hammer excitation of a dummy tool and b)
the comparison of the frequency spectra of ideal and real hammer excitation
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6.1 Impulse excitation of high-speed rotating machine tools
In modal analysis, two main approaches can be distinguished: experimental and operational modal
analysis. In case of experimental modal analysis, the calculation of the FRF is based on the direct
measurements of both input and output signals during artificial excitation (e.g. impulse excitation
with modal hammer). However, during operational modal analysis only the structural responses
are measured, while the knowledge of the input is replaced by the assumption that the input is a
realisation of a stochastic process [157, 158, 159, 160].

In the novel experimental modal approach provided by SIREN ERC research group at the
Department of Applied Mechanics (siren.mm.bme.hu), the impulse excitation of the machine tool
is provided by shots of spherical airsoft pellets using a custom-designed pneumatic gun [161]. The
drawback of this technique is the lack of measurable excitation force (i.e. the input signal), which
yields that the FRF of the investigated mechanical system cannot be obtained directly. However,
on the relevant frequency domain, where the Fourier transform of the excitation (contact force)
signal is mostly constant, the FRF is assumed to be identical to the fast Fourier transformation
(FFT) of the output signal except for a constant multiplier. As the FRF of the machining system
is discovered, its modal parameters (e.g. eigenfrequencies, damping factors) can also be calculated,
which has key role in the prediction of stability of turning operations, milling operations, and other
machining processes, where the self-excited vibrations are major problems limiting the productivity
[162, 163, 164, 165, 166, 167, 168].

The relevant frequency range can be estimated based on the Fourier transform of the contact
force signal, which can be obtained using FE simulations. The proper estimation of the contact
characteristics (e.g. contact time, maximal force, dissipated energy) and the contact force signal
requires the accurate constitutive modelling of the pellet materials including experimental work,
constitutive modelling and FE simulations.

The numerical and experimental analysis of pellet impacts has been provided in several discus-
sions in the literature. In the work of Gustafsson et al. the fracture properties of iron pellets are
investigated using a strain-rate dependent fracture model [169]. The dynamic FE simulation of the
impact of an elastic sphere using axisymmetric elements has also been proposed [170, 171]. At the
same time the same problem was also investigated, assuming elastic-plastic properties for both the
sphere and the half-space using semi-analytical methods [172, 173]. Jayadeep [174] also discussed
the loss of kinetic energy and the variation of the coefficient of restitution in case of the adhesive
impact of an elastic sphere and a rigid body. Additionally, there are also recent papers regarding
the numerical methods with different contact formulations and algorithms such as dimensional-
ity reduction and artificial neural networks in which the numerical solution of the sphere-plane
contact problem also occurs, and its contact properties are investigated [175, 176, 177, 178, 179].

The dependence of the maximal contact force (Fmax) and the impact time (Timp) on the impact
velocity (v0) during contact of an elastic sphere and rigid walls are also discussed [180, 181, 182].
This could be utilised for obtaining the necessary impact velocity to ensure the maximal impact
force and the necessary relevant frequency bandwidth.

One of the main motivations of this chapter is to investigate the applicability of the pellet shot
excitation. This goal requires the accurate mechanical modelling of the material response. The
proposed technique is essential for the experimental investigation of high-speed machining, which
would certainly help to understand better the dynamics of machine-tool vibrations.
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6.2 Material characterisation
The investigated samples of the commercial airsoft pellet (Madbull Precision Ultimate Heavy
Sniper BB) are spherical balls with diameter d = 5.95 ± 0.01 mm and average mass m = 0.43 g
(see Fig. 6.2). Regarding the material and the manufacturing of the pellet, there is limited
information available, namely that the raw material is likely a polymer blend of high impact
polystyrene (HIPS), while the pellets have undergone precision lapping and polishing processes.

6.2.1 Compression tests
Due to the lack of the raw material, the mechanical behaviour of the pellet can be investigated
by mechanical compression tests performed on the pellet itself. Based on the experiences on
the viscous-elastic-plastic behaviour of polymers, the same three-step compression tests were per-
formed as in Section 5.2.2: uploading (umax = 0.24 mm, T1 = 14.3 s), holding (relaxation)
(T2 = 314.3 s) and unloading (T3 = 318.3 s). The tests were performed on Instron 3345 one-
column testing system with Instron 2519-107 load cell with limit load of 5 kN. Due to its small
range (see Fig. 6.2/a), the measured displacement values using the dedicated Instron extensometer
were verified using high-resolution camera recordings and image detection, which showed perfect
agreement. The measurement was performed on several specimens and a typical measured force-
displacement (F − u) characteristics and the permanent deformation is presented in Fig. 6.2/a.

/2

a) b)

Figure 6.2: The a) measured force-displacement characteristics on the airsoft pellet and b) the applied
FE model of the uniaxial compression test during the FE-based parameter fitting

6.2.2 Constitutive model and fitting
The measured force-displacement curve for this non-homogeneous stress state and complex geom-
etry is qualitatively similar to the one measured for the microcellular foam material (see Fig. 5.5)
for uniaxial homogeneous extension. Therefore, the material behaviour was modelled similarly:
using the parallel viscoelastic-viscoplastic (the TLVP) constitutive model with nonlinear strain
hardening power-law creeping in combination with linear isotropic hardening yield properties
[SzB11],[SzB12] as discussed in Section 5.3.

Consequently, in this case, the parameter fitting strategy in Fig. 5.8 was adopted, where the
comparison of the measurement data and the simulation results are evaluated using the SSD
between the experimental and simulated data.

Due to symmetry, the geometry of the FE model during the iteration is an axisymmetric
quarter model (see Fig. 6.2/b) meshed with eight-noded CAX8 elements with full integration. The

87



CHAPTER 6. PELLET IMPACTS FOR IMPULSE EXCITATION

friction coefficient between the wall and the pellet is set to µ = 0.3 [183]. It is noted here, that the
friction coefficient has a very minor effect on the force-displacement curve. The microstructure
of the airsoft pellet is granular, thus the Poisson’s ratio is definitely lower than 0.5. As an
approximation ν = 0.25 was applied, which was kept constant during the fitting. However, its
effect on the mechanical behaviour is negligible.

It should also be noted that in case of rate-dependent behaviour the material parameters
are usually fitted to various measurement results at different loading rates, especially when such
high rates like impacts occur. Due to the small size of the pellet and the limitations of the
testing system, such measurements could not be performed with good accuracy. However, the
viscoelastic-viscoplastic material parameters can also be fitted to relaxation test results as it is
presented in several case studies in the literature [9, 98].

The accuracy of the fitted model is demonstrated in Fig. 6.3, whereas the obtained mate-
rial parameters are collected in Table 6.1. The result shows that the proposed material model
characterise the material behaviour with excellent accuracy [SzB11].

Table 6.1: The fitted material parameters of the airsoft pellet using the two-layer viscoplastic model

Elastic Viscous Plastic
E [MPa] 2309.4 A [-] 0.00242 σy [MPa] 14.24 MPa

ν [-] 0.25 n [-] 0.48255 H [MPa] 45.7 MPa
fe [-] 0.39943 m [-] -0.55108

Figure 6.3: The comparison of the fitted TLVP model prediction and the measured a) force-time b)
force-displacement characteristics

6.2.3 Elastic-plastic boundary models
Having determined the model parameters, the dynamical simulation could be performed. Never-
theless, the proposed TLVP is not implemented for explicit solvers, whereas using implicit solver,
non-realistic results were experienced regarding the behaviour of the viscous model. Therefore,
the impact characteristics were approximated by the boundary elastic-plastic models substitut-
ing the nonlinear viscous element with its two extremes: instantaneous and long-term cases (see.
Fig. 5.15 and (5.16)-(5.18)), letting the real material behaviour lay in between the prediction of
implicit FE simulations using the instantaneous and long-term models, respectively. The obtained
elastic-plastic material parameters of the airsoft pellet are listed in Table 6.2.
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Table 6.2: The material parameters for the airsoft pellet using elastic-plastic boundary models

Instantaneous Long-term
Einst [MPa] 2309.4 Elong [MPa] 1387.02

νinst [-] 0.25 νlong [-] 0.25
σyinst [MPa] 23.71 σylong [MPa] 14.24
Hinst [MPa] 1659.72 Hlong [MPa] 45.7

6.3 FE simulation of pellet impacts
After determining the material parameters of the airsoft pellet using the equivalent elastic-plastic
model of the TLVP constitutive equation, the impact of the pellet can be investigated using FE
simulations. The goal of the simulations is to obtain the contact force signal of the airsoft shots in
order to estimate the frequency bandwidth where it ensures adequate excitation. Therefore, the
impact process was investigated using Photron FASTCAM SA5 high-speed camera system with
frame rate of 40000 fps, which is illustrated in Fig. 6.4/a.
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Figure 6.4: The a) measurement layout of airsoft shooting using high-speed camera and b) the applied
FE model for impact simulations

During the measurement the pellet was shot towards a heavy aluminum wall and its motion
was detected using image processing algorithms, from which the velocity of the pellet before the
impact in the coordinate system (n, t) was provided from one typical case, namely

v =
[
vn
vt

]
=
[
28.14
2.14

]
m/s. (6.1)

6.3.1 FE model
The applied FE model (see. Fig. 6.4/b) is an axisymmetric model of the impact with structured
mesh of CAX8 elements. According to the fitted material parameters and the high-speed camera
recordings, the stiffness of the airsoft pellet (HIPS with ρHIPS = 3900 kg/m3) and is small compared
to the aluminum wall (Einst = 2.31 GPa or Elong = 1.38 GPa). However, according to the Hertz-
theory [184, 185], the stresses at the contact point are infinite and thus, elastic-plastic deformation
is assumed for the wall itself using elastic-perfectly plastic constitutive model. The corresponding
material parameters are ρAl = 2780 kg/m3, EAl = 73.1 GPa, νAl = 0.33 and σyAl = 324 MPa
[144]. During the impulse excitation, only the amplitude of the contact force plays significant
role, therefore the impact is considered to be oblique during the simulations with impact velocity
of |v| = 28.22 m/s according to (6.1). The friction between the bodies were modelled using a
friction coefficient of µ = 0.3 based on literature suggestion [183, 144].
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6.3.2 Impact characteristics
As the result of the FE simulation of the pellet impact, the contact forces are provided for both
the instantaneous and the long-term substitute models. Fig. 6.5/a shows the comparison of the
two models regarding the contact force characteristics.

In the FE simulations, the impact was perfectly oblique, although a slight obliqueness that
can be characterised by the angle α (as in Fig. 6.4), might affects on the contact force curves.
Thus, further 3D FE simulations (complete geometry, structured mesh and C3D8R elements) were
performed with different angles, namely α = 5◦, 10◦ and 15◦, using both the instantaneous and
the long-term models. The comparison of the force-time functions (see Fig. 6.5/b-c) shows that
obliqueness has a minor effect on the contact time and the contact force curve, thus the effect of
obliqueness is neglected in further investigations and the axisymmetric model could be applied.
Similarly, the effect of the friction coefficient of µ was also investigated, and its effect was also
considered to be negligible.

instantaneous long-terminstantaneous
long-term

a) b) c)

Figure 6.5: Comparison of the a) impact characteristics in case of instantaneous and long-term boundary
elastic-plastic models and b)-c) the effect of obliqueness

6.3.3 Relevant excitation frequency bandwidth
The contact forces can also be compared by introducing the relevant force Frel as

Frel(t) = F (t)
Fmax

. (6.2)

Similarly let us introduce the relevant spectrum Φrel [SzB11] by

Φrel(ω) = |Φ(ω)|
max
ω≥0
|Φ(ω)| , (6.3)

where Φ(ω) = F(F (t)) is the Fourier-transform of the force signal obtained by Fast Fourier
Transform (FFT). Let us introduce, the relevant frequency relf as the highest frequency f , for
which

log |Φrel(ω)| > −1.5, (6.4)

holds for all ω ∈ [0, 2πf ] [SzB11],[SzB12]. The force spectra and the estimated frequencies are
summarised in Fig. 6.6 and Table 6.3.
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Figure 6.6: The a) estimated force spectra and the relevant frequencies using instantaneous and long-
term models and the variation of b) maximal impact force, c) relevant frequency and d) impact time as
a function of the impact velocity and the corresponding analytical functions.

The results show that the airsoft impact can be applied as impulse excitation for frequencies
f ≤ 15.15 − 24.71 kHz. However, by comparing the high-speed camera recordings (see Fig. 6.7)
with the instantaneous 3D simulation results plotted on the high-speed camera recordings, only
a slight difference is observed. This confirms that due to the high-speed impact the behaviour
of the airsoft pellet can be approximated with the instantaneous elastic-plastic boundary model,
thus relfpellet = 24.71 Hz.

Figure 6.7: Comparison of high-speed camera re-
codings and the FE model prediction (plotted to-
gether with the camera recordings) using the instan-
taneous elastic-plastic boundary model

Table 6.3: The impact parameters using
elastic-plastic boundary models

Instantaneous Long-term
Fmax [N] 950.706 413.508
Timp [µs] 32.013 42.625
relf [kHz] 24.71 15.15
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6.3.4 Prediction of the contact characteristics
The relation of the contact characteristics and the velocity magnitude before the impact could
help us to choose the adequate velocity to ensure the necessary relevant frequency range. Using
the FE simulations of the pellet, the prediction of the maximal force (Fmax) and the time of impact
(Timp) were obtained for impact velocities of v = 1, 2, 4, 8, 16, 32 and 64 m/s [SzB12]. The resultant
characteristics are presented in Fig. 6.6. After normalization with the measured reference value
corresponding to v = 28.22m/s the relations can be expressed using logarithmic and quadratic
functions of

Fmax(v) = a2v
2 + a1v + a0, (6.5)

Timp(v) = b0 + b1 ln b2v, (6.6)
relf(v) = c2v + c1

√
v + c0, (6.7)

while the fitted parameters are listed in Table 6.4 [SzB12].

Table 6.4: The coefficients of the fitted closed-form functions characterizing the velocity-dependent
impact parameters

Model a0 a1 a2 b0 b1 b2 c0 c1 c2

Instantaneous -25.98 31.66 0.0964 85.49 -9.11 12.55 10.33 3.75 -0.185
Long-term -7.18 14.11 0.0067 105.1 -8.56 34.66 10.02 1.72 -0.127

6.4 Experimental validation
In order to present the applicability and the benefits of the pellet shot excitation method, modal
analyses were carried out on particular aluminum block (see Fig. 6.8/a). Beside the pellet shots,
the impulse excitations were also performed using Modal Hammer 2302-10 with different tips
(metal, polymer and rubber) and a B&K Type 8203 micro hammer with B&K 2647-A charge
amplifier. During the modal hammer excitation, an additional mass was not used since its effect
on the impact time is negligible compared to the type of different tips. As a response for the
F (t) input force excitation, the a(t) accelerations were recorded at three different locations of the
workpieces using PCB 352C23 accelerometers and National Instruments data acquisition system
NI cDAQ-9178 with NI 9234 module with sampling rate of 51 kHz. During the measurement no
additional filtering was applied except for the natural high-pass filter of the accelerometer with
cut-off frequency fc ≈ 2 Hz.

The investigated workpiece is an aluminum (AL2024-T351) block with size of 180×80×40 mm.
The workpiece was hanged on rubber stripes, thus the vibration can be approximated as constraint-
free. The measurement layout of the aluminum workpiece is illustrated in Fig. 6.8. In addition
to the different hammers, the excitation was also performed in point E (see Fig. 6.8) using the
previously introduced airsoft pellet.
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a) b)

Figure 6.8: The measurement layout and positions of PCB accelerometers and the location of the
excitation point E in case of modal analysis of aluminum workpiece; and b) the comparison of the
relative force spectra and the estimated relevant frequency ranges for different modal hammers

6.4.1 Experimental results
The different hammer excitation methods are compared by the Frel relevant force and Φrel relevant
spectra, which are presented in Fig. 6.9.

Figure 6.9: Comparison of the Φrel relevant force
spectra and the estimated relevant frequency ranges
for different modal hammer tips

Table 6.5: The maximal forces and the esti-
mated relevant frequencies using impulse force
signals and the FE prediction of the airsoft im-
pact in case of aluminum workpiece

Excitation Fmax [N] relf [kHz]
Rubber tip 121.66 0.45
Polymer tip 404.54 2.71

Metal tip 390.29 6.52
Micro hammer 144.36 25
Pellet (inst.) 950.706 24.71

Based on the relevant spectra, the relf relevant frequencies can be estimated using the condition
in (6.4). The maximal forces and the relevant frequencies are listed in Table 6.5. Note, that by
decreasing the time of impact the relf increases. In case of the rubber and the polymer hammers,
where the time of impact is larger (see Fig. 6.10), noisy signals are expected at high frequencies.
Additionally, the FRF of the workpiece between the excitation point E and sensing points R-G-B
can be obtained formally as

FRF (ω) = α(ω)
Φ(ω) . (6.8)

The comparison of the FFT of the acceleration signals α(ω) = F(a(t)) and the calculated FRF
of the aluminum workpiece is presented in Fig. 6.10, where the red, green and blue lines represent
the FFT and the FRF of the different accelerometers.
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The results show that the airsoft pellet shots provide smoother signals even at high-frequency
range and all the peaks corresponding to the natural frequencies are well-detectable. Moreover,
the estimation for the relevant frequencies illustrated with green shaded domain in Fig. 6.10 show
good correspondence with the frequencies presented in Table 6.5. Above this frequency domain,
the noise level increases significantly, especially in case of the rubber and the polymer hammers
due to insufficient excitation (e.g. long impact time and small relevant frequency). It should be
noted that the micro-hammer is designed for excitation of high-frequencies, therefore some noise
at lower frequencies might occur.

Figure 6.10: The comparsion of a) α(ω), the FFT of the acceleration signals (red, green and blue) and
b) the calculated FRF for different types of modal hammers

6.4.2 Modal parameters
The goal of the modal analysis is to determine the modal parameters of the workpieces, namely the
natural frequencies (fN) and the damping-factors (DN). A widely-applied method is the so-called
3 dB method, from which the parameters can be calculated directly from the FRF if there are
separated peaks. In this case the modal parameters were determined from the FRF of the micro
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hammer and the FFT of airsoft pellet (see Fig. 6.10) and additionally the natural frequencies are
also compared with FE calculations of the natural frequencies. The mean values of the parameters
(fN and DN) are determined from 5 measurements. Tables 6.6 and 6.7 present the mean values,
their variance and the error between the micro hammer and the airsoft excitation. The eigenmodes
of the corresponding natural frequencies are also obtained using FE simulation of the workpiece,
which are presented in Fig. 6.11. It should be noted that some of the eigenfrequencies and
corresponding damping factors could not be detected since the accelerometers might have been
placed at nodes or the direction of the excitation was perpendicular to the corresponding mode,
so some peeks could not be identified. Despite measuring the accelerations in multiple directions,
the hammer excitation cannot excite all of the mode shapes if they have no displacement in the
direction of excitation (see, for example the 6th mode in Fig. 6.11 and Tables 6.6 and 6.7.

Table 6.6: The obtained natural frequencies (fN ) of the aluminum workpiece using micro hammer
excitation and airsoft pellet shot

FEA Airsoft pellet Micro hammer
N fN [Hz] fN [Hz] Var(fN)[Hz] fN [Hz] Var(fN) [Hz] δabs [Hz]
1 5532 5549 0.00 5550 0.00 0.93
2 6322 6343 0.18 6343 0.02 0.27
3 8616 8616 0.21 8570 0.35 45.73
4 12608 12622 1.11 12623 0.55 0.59
5 12654 12803 0.22 12802 0.86 0.72
6 13860 No data 13773.3 0.06 -
7 15502 15551 0.15 15553 4.66 1.73
8 19040 19157 0.17 19146 0.04 10.37
9 19934 20257 3.46 20255 0.77 2.20

Table 6.7: The obtained damping factors (DN ) of the aluminum workpiece using micro hammer exci-
tation and airsoft pellet shot

Airsoft pellet Micro hammer
N DN [-] Var(DN) [-] DN [-] Var(DN)[-] δrel [-]
1 0.000526 6.61E-12 0.000316 2.51E-10 39.99%
2 0.001111 1.10E-09 0.000432 4.11E-09 61.09%
3 0.002311 1.48E-05 0.000483 2.58E-09 79.12%
4 0.000618 3.81E-11 0.000691 9.47E-09 11.72%
5 0.000628 8.80E-10 0.000439 5.58E-09 30.06%
6 No data 0.000158 1.79E-10 -
7 0.000270 1.78E-10 0.000243 2.87E-09 9.85%
8 0.000571 1.17E-11 0.000556 9.16E-11 2.49%
9 0.000490 5.02E-10 0.000360 1.95E-09 26.62%

The results show that using the airsoft excitation, modal parameters can be obtained with good
accuracy, especially the natural frequencies. The variance of the measurements also indicates that
the airsoft method has good repeatability.
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Figure 6.11: The first 9 eigenmodes of the aluminum workpiece
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6.5 Main results
I have investigated the material behaviour of airsoft pellets using quasi-static experimental work
and I have revealed that the material shows viscous-elastic-plastic properties. For the explicit
dynamic simulation of pellet impacts I have introduced the elastic-plastic boundary models cor-
responding to instantaneous and long-term loadings. For the validation of the material model
I have performed high-speed camera measurements and a case study of impulse excitation. By
comparing the performance of the airsoft pellet impact with modal hammer excitations, I have
drawn the following conclusions.

Thesis statement 6

During the impact of polymer airsoft pellets applied for impulse excitation, the mechanical
behaviour exhibits viscous-elastic-plastic properties, which can effectively be modelled by the par-
allel viscoelastic-viscoplastic constitutive model. The contact characteristics can be determined by
explicit dynamic finite element simulations using the elastic-plastic boundary models of the con-
stitutive equation, corresponding to the instantaneous and long-term limit cases. The applicability
limit of the airsoft pellet as an impulse excitation can be determined by the relevant frequency relf
introduced as the highest frequency f , for which

log |Φrel(ω)| > −1.5,

holds for all ω ∈ [0, 2πf ], in which

Φrel(ω) = |Φ(ω)|
max
ω≥0
|Φ(ω)| ,

is the impact force spectra. This method ensured optimal excitation up to 24 kHz for HIPS pellet,
which is significantly better than the limit of classical modal hammer excitation with rubber, poly-
mer or metal hammer tips. By increasing the impact speed v, the relevant frequency bandwidth
shows monotonously increasing characteristic according to

relf(v) = c2v + c1
√
v + c0,

where constants c0, c1 and c2 can be determined experimentally for different pellets.

Related publications: [SzB11],[SzB12],[SzB13],[SzB14]
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A
Linearization of Hyperfoam model and its

relation to Hooke’s law

The parameters in the Ogden–Hill’s compressible hyperelastic (Hyperfoam) material model cannot
be chosen freely, because certain physical conditions have to be satisfied during the parameter
fitting process. One of these conditions states that the linearised form of the nonlinear material
model should be equal with the Hooke’s law in case of small strains. The linearisation is performed
around the undeformed state, i.e. when λi = 1. Firstly, let us introduce a modified stretch-measure
(λ∗i ) [71, 18] as

λ∗i = λiJ
−1/3. (A.1)

Based on this stretch-measure, the originally applied strain energy function W (λ1, λ2, λ3) can
be rewritten as

W (λ1, λ2, λ3) = W ∗(λ∗1, λ∗2, λ∗3, J), (A.2)

where λ∗3 can be expressed as the function of λ∗1 and λ∗2 using the relation λ∗3 = (λ∗1λ∗2)−1. Substi-
tuting this into (A.2) the simplified strain energy function Ŵ ∗ becomes

Ŵ ∗(λ∗1, λ∗2, J) = W ∗(λ∗1, λ∗2, (λ∗1λ∗2)−1 , J). (A.3)

Based on this formulation, the initial moduli of the material model can be related to the partial
derivatives of the strain energy function in (A.3), which are evaluated at the undeformed state,
i.e. λ∗1 = 1, λ∗2 = 1 and J = 1 [71, 18]. Thus

K0 = ∂2Ŵ ∗

∂J2 (1, 1, 1), (A.4)

µ0 = ∂2Ŵ ∗

∂λ∗21
(1, 1, 1) = ∂2Ŵ ∗

∂λ∗22
(1, 1, 1) = 2 ∂2Ŵ ∗

∂λ∗1∂λ
∗
2
(1, 1, 1), (A.5)

where K0 is the initial bulk modulus and µ0 the initial shear modulus.
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In the Ogden–Hill’s hyperelastic constitutive equation according to the Abaqus [15] formula-
tion the corresponding strain energy function can be written as

W =
N∑
i=1

2µi
α2
i

(
λαi1 + λαi2 + λαi3 − 3 + 1

βi

(
J−αiβi − 1

))
, (A.6)

which, after substituting the relations in (A.1) back, leads that the Ŵ ∗ function becomes

Ŵ ∗(λ∗1, λ∗2, J) =
N∑
i=1

2µi
α2
i

((
λ∗1J

1/3
)αi +

(
λ∗2J

1/3
)αi +

(
J1/3

λ∗1λ
∗
2

)αi
− 3 + 1

βi

(
J−αiβi − 1

))
. (A.7)

After expressing and evaluating the partial derivatives in (A.4) and (A.5), the initial moduli
can be expressed as

µ0 =
N∑
i=1

µi, and K0 =
N∑
i=1

2µi
(1

3βi
)
. (A.8)

In the Hooke’s law the conditions for the shear and the bulk moduli are µ0 > 0 and K > 0,
respectively. Using the derived expressions in (A.8) leads that

µ0 =
N∑
i=1

µi > 0, K =
N∑
i=1

2µi
(1

3 + βi

)
> 0, (A.9)

from which the conditions of the material parameters in the Ogden–Hill’s Hyperfoam material
model becomes

N∑
i=1

µi > 0, βi > −
1
3 . (A.10)

It should be noted that the condition βi > −1/3 is stricter than the necessary condition for
the βi parameters, which significantly limits the possible domain of parameters. Although, this
condition is applied in the literature and in Abaqus as well [15].
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B
Incomplete Gamma-function

The following summary of the upper incomplete gamma function Γ(ν, x) , which occurred in the
calculations, is based on Spanier and Oldham: An atlas of functions [105] and the documentations
provided by [106].

B.1 The (complete) gamma function
The (complete) gamma function Γ(n) is defined to be an extension of the factorial to complex and
real number arguments, which is related to the factorial in case of natural numbers as

Γ(n) = (n− 1)!. (B.1)

Generally, the (complete) gamma function is defined as a definite integral for all Re(z) > 0. A
possible formulation of this function is called as Euler’s integral form, in which

Γ(z) =
∫ ∞

0
tz−1e−tdt, (B.2)

which can be alternatively given as

Γ(z) =
∫ 1

0

[
ln
(1
t

)]z−1
dt. (B.3)

The complete gamma function can be further generalized using the so-called incomplete gamma
functions, which by definition satisfy

Γ(ν) = Γ(ν, x) + γ(ν, x), (B.4)

where Γ(ν, x) is the so-called upper incomplete gamma function and γ(ν, x) the lower incomplete
gamma function. The functions contain two variables: ν is called as the parameter, while x is the
argument in both incomplete gamma functions. The adjective “incomplete” reflects the restricted
ranges of the definite integral compared to the complete gamma function in (B.2). The adjectives
“upper” and “lower” specifies that the particular incomplete gamma function is defined on which
range of the x > 0 domain.
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B.2 The upper incomplete gamma function
The upper incomplete gamma function is defined via an improper integral as

Γ(ν, x) =
∫ ∞
x

tν−1e−tdt, (B.5)

for all Re(ν) > 0 and x > 0. Using the above introduced notation, the (complete) gamma function
Γ(ν) can be related to the upper incomplete gamma function as

Γ(ν) = Γ(ν, 0). (B.6)

When the parameter (ν) is a natural number, then the function can also be expressed using
the exponential sum as

Γ(n, x) = (n− 1)!e−x
n−1∑
k=0

xk

k! . (B.7)

The definition of the function in (B.5) can be extended to Re(z) < 0 by utilizing the recursion
formula. Therefore

Γ(ν, x) = xνe−x

Γ(1− ν)

∫ ∞
0

t−νe−t

t+ x
dt. (B.8)

B.3 Special cases
For some special values of ν and x, the upper incomplete gamma function reduces to other well-
known functions, like

Γ
(1

2 , x
)

=
√
πerfc

(√
x
)
, (B.9)

where erfc(x) denotes the complementer Gauss error function, or

Γ (0, x) =
{
−Ei(−x)− iπ, if x < 0
−Ei(−x), if x > 0 . (B.10)

where Ei(x) is the so-called exponential integral function. Furthermore

Γ (ν + 1, x) = νΓ (ν, x) + xνe−x. (B.11)

104



C
Numerical integration scheme for finite strain

viscoelastic model

The following derivation steps are the summary the detailed derivation available in the Theory
Guide of Abaqus [15]. Based on the definition of the visco-hyperelastic constitutive equation in
Abaqus, the Kirchhoff stress solutions can be obtained as

τD(t) = τD0 (t)− SYM
[
P∑
k=1

gk
τk

∫ t

0
F−1
t (t− s)τD0 (t− s)Ft(t− s) exp

[−s
τk

]
ds
]
, (C.1)

τH(t) = τH0 (t)−
P∑
k=1

gk
τk

∫ t

0
τH0 (t− s) exp

[−s
τk

]
ds, (C.2)

where τD(t) is the deviatoric and τH(t) the hydrostatic part of the Kirchhoff stress tensor (τ ).
Let us introduce the so-called internal stresses, associated with each term of the series

τDk (t) = SYM
[
gk
τk

∫ t

0
F−1
t (t− s)τD0 (t− s)Ft(t− s) exp

[−s
τk

]
ds
]
, (C.3)

τHk (t) = gk
τk

∫ t

0
τH0 (t− s) exp

[−s
τk

]
ds. (C.4)

The above introduced stresses are stored in each material point and integrated forward in time.
Let us assume, that the stress solution at time t is known and the solution at time t+∆t should be
defined. The numerical integration of the convolution integrals in (C.1) and (C.2) are performed
separately for the deviatoric and the hydrostatic parts.

C.1 Integration of the hydrostatic stress

The internal hydrostatic stress values at time t+ ∆t can be obtained from

τHk (t+ ∆t) = gk
τk

∫ t+∆t

0
τH0 (t+ ∆t− s) exp

[−s
τk

]
ds. (C.5)

105



APPENDIX C. NUMERICAL INTEGRATION SCHEME FOR FINITE STRAIN
VISCOELASTIC MODEL

Introducing t̂ = s−∆t it follows that

τHk (t+ ∆t) = gk
τk

exp
[
−∆t
τk

] ∫ 0

−∆t
τH0 (t− t̂) exp

[
−t̂
τk

]
dt̂+ exp

[
−∆t
τk

]
τHk (t) (C.6)

To perform the integral, assume that τH0 (t− t̂) is a linear function over the increment, therefore

τH0 (t− t̂) =
(

1 + t̂

τk

)
τH0 (t)− t̂

τk
τH0 (t+ ∆t), −∆t ≤ t̂ ≤ 0. (C.7)

Substitution back into (C.6) yields

τHk (t+ ∆t) = gk
τk

exp
[
−∆t
τk

] ∫ 0

−∆t

[(
1 + t̂

τk

)
τH0 (t)− t̂

τk
τH0 (t+ ∆t)

]
exp

[
−t̂
τk

]
dt̂

+ exp
[
−∆t
τk

]
τHk (t). (C.8)

After expressing the integrals, the solution at the end of the increment becomes

τHk (t+ ∆t) =
[
1− τk

∆t

(
1− exp

[
−∆t
τk

])]
gkτ

H
0 (t+ ∆t) +[

τk
∆t

(
1− exp

[
−∆t
τk

])
− exp

[
−∆t
τk

]]
gkτ

H
0 (t) + exp

[
−∆t
τk

]
τHk (t), (C.9)

which can be written in a simplified form as

τHk (t+ ∆t) = aigkτ
H
0 (t+ ∆t) + bigkτ

H
0 (t) + ciτ

H
k (t), (C.10)

where

ai = 1− τk
∆t(1− ci); bi = τk

∆t (1− ci)− ci; ci = exp
[
−∆t
τk

]
. (C.11)

C.2 Integration of the deviatoric stress
The internal deviatoric stress values at time t+ ∆t can be obtained from

τDk (t+∆t) = SYM
[
gk
τk

∫ t+∆t

0
F−1
t+∆t(t+ ∆t− s)τD0 (t+ ∆t− s)Ft+∆t(t+ ∆t− s) exp

[−s
τk

]
ds
]
.

(C.12)

Where the push-back operator related between time t and t+ ∆t becomes

Ft+∆t(t− s) = Ft(t− s)Ft+∆t(s). (C.13)

Introducing t̂ = s−∆t, ∆F = Ft(t+ ∆t) and a new variable τ̂D for which

τ̂D0 (t) = SYM
[
∆FτD0 (t)∆F−1

]
, (C.14)

τ̂D0 (t+ ∆t) = τD0 (t+ ∆t), (C.15)
τ̂Dk (t) = SYM

[
∆FτDk (t)∆F−1

]
, (C.16)
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relation hold, the integral simplifies to

τDk (t+ ∆t) = gk
τk

exp
[
−∆t
τk

] ∫ 0

−∆t
τ̂D0 (t− t̂) exp

[
−t̂
τk

]
dt̂+ exp

[
−∆t
τk

]
τ̂Dk (t). (C.17)

To perform the integral, assume that τ̂D0 (t− t̂) is a linear function over the increment, therefore

τD0 (t− t̂) =
(

1 + t̂

τk

)
τ̂D0 (t)− t̂

τk
τ̂D0 (t+ ∆t), −∆t ≤ t̂ ≤ 0. (C.18)

Substituting back into (C.17), and performing the integration, exactly the same form of the
stress solution as in (C.10) and (C.11) is given, thus

τDk (t+ ∆t) = aigkτ
D
0 (t+ ∆t) + bigkτ̂

D
0 (t) + ciτ̂

D
k (t), (C.19)

where

ai = 1− τk
∆t(1− ci); bi = τk

∆t (1− ci)− ci, ci = exp
[
−∆t
τk

]
. (C.20)

C.3 Total stress solution
From the previously derived hydrostatic and deviatoric internal stress solutions in (C.10) and
(C.19), respectively, the total stress at time t+ ∆t can be expressed as

τ (t+ ∆t) = τ 0(t− s)−
P∑
k=1
τDk (t+ ∆t)−

P∑
k=1
τHk (t+ ∆t) (C.21)

which with equations (C.10) and (C.19) can also be written as

τ (t+ ∆t) =
(

1−
P∑
k=1

aigk

)
τD0 (t+ ∆t) +

P∑
k=1

bigkτ̂
D
0 (t) +

P∑
k=1

ciτ̂
D
k (t) +

(
1−

P∑
k=1

aigk

)
τH0 (t+ ∆t) +

P∑
k=1

bigkτ
H
0 (t) +

P∑
k=1

ciτ
H
k (t), (C.22)

with

ai = 1− τk
∆t(1− ci), bi = τk

∆t (1− ci)− ci, ci = exp
[
−∆t
τk

]
. (C.23)
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D
Biaxial compression fixture

During the mechanical tests of closed-cell polymer foams in Chapter 3, equibiaxial tests were
performed using the fixture proposed by Kossa. In the followings the details fixture are summarized
based on the paper of Kossa [66].

The equibiaxial fixture (see Fig. D.1/a-c) consist of two comb-like steel parts, which can slide
into each other. Thanks to the perpendicular forks, the equibiaxial compression force FEB and
the equibiaxial extension uEB become

FEB = F/
√

2 and uEB = u/
√

2, (D.1)
where F is the loading force on the fixture, while u stands for the crosshead’s displacement.

Figure D.1/d illustrates the equibiaxial compression of a cube specimen with edge length L0.
In such case the equibiaxial nominal stress and stretch values are obtained as

PEB = FEB

L2
0

and λEB = 1 + εEB = 1− uEB

L0
. (D.2)

After substituting back the relations in (D.1), the equibiaxial stress and stretch values can be
expressed from the loading force and the crosshead’s displacement as

PEB = F√
2L2

0
and λEB = 1 + εEB = 1− u√

2L0
. (D.3)

45° 45°
Fu

F

a) b) c) d)

F EB F EB

F EB F EB

Figure D.1: The a)-c) the CAD drawing of the Kossa-type biaxial fixture and d) the forces acting on
the specimen in equibiaxial loading (based on [66])
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