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Abstract: Usually the dynamics of robotic systems are described by ordinary
differential equations via selecting a minimum set of (independent) general-
ized coordinates. However, different parameterizations and the use of a non-
minimum set of (dependent) generalized coordinates can be advantageous in
such cases when the modeled device contains closed kinematic loops and/or it
has a complex structure. The use of dependent coordinates, like natural coor-
dinates, leads to differential algebraic equations of motion. On the other hand,
the stability analysis and control design of underactuated robots are usually
rely on partial feedback linearization based techniques which are exclusively
developed for systems modeled by independent coordinates. In this paper we
propose a different control algorithm formulated by using dependent coordi-
nates. A case study is presented for the stability analysis of the motion control
of a low degree of freedom, digitally controlled, underactuated service robot.

1. Introduction

In case of complex multibody problems or closed loop manipulators, geometric constraint

conditions have to be considered during dynamics modeling and simulation. These systems

are often described by a dependent set of generalized coordinates subjected to constraints

that provide an efficient formalism to generate the equations of motion in the form of differ-

ential algebraic equations (DAE).

Control methods for underactuated manipulators, such as partial feedback linearization

(PFL) [1] and the computed desired computed torque control (CDCTC) method [2] are

mainly developed for systems described by independent coordinates. The PFL can be used

to feedback linearize the dynamics corresponding to the active degrees-of-freedom (DoFs),

and in case of strong inertial coupling the dynamics corresponding to the passive DoFs of

a system. In connection with the categories of active and passive coordinates, reference

[2] introduces controlled and uncontrolled coordinates. While the controlled coordinates



are prescribed, the trajectories of the uncontrolled coordinates are calculated on-line which

makes the error feedback possible for all DoFs. The on-line calculation of these coordinates

requires the solution of the equation of motion projected into the space of uncontrolled

motion.

Following the same idea, reference [3] presents a computed torque based solution for the

position control of a suspended service robot ACROBOTER [4] that is modeled by dependent

coordinates. In that study, the desired values of the uncontrolled coordinates and the control

input is determined via the direct solution of the DAE equation of motion by applying the

backward Euler discretization.

By making use of the concept of servo-constraints (also called as control- or actuator-

constraints) [5], here, a computationally more effective computed torque control strategy is

proposed based on the method of Lagrangian multipliers combined with a PD controller for

enforcing the servo-constraints. This controller provides similar constraint stabilization for

the servo-constraints as the Baumgarte stabilization for the geometric constraints.

2. Dynamics modeling and computed torque control

It is assumed that the dynamics of the studied underactuated system is modeled by using

dependent coordinates resulting the equation of motion

Mq̈ + ΦΦΦT
qλλλ = Q + Hu , (1)

φφφg = 0 , (2)

where M(q) ∈ Rn×n is the mass matrix, ΦΦΦq(q) ∈ Rm×n is the Jacobian of geometric

constraints φφφg(q, t) ∈ Rm and λλλ is the vector of the Lagrangian multipliers. Matrix H(q)

∈ Rn×l is the control input matrix and u ∈ Rl contains the actuating forces and torques. In

addition, Q(q, q̇) ∈ Rn denotes the remaining generalized forces like the gravity and/or the

Coriolis and centrifugal terms.

Equation (1), (2) form an index 3 DAE, from which the underlying ODE equations can

be obtained by differentiating the geometric constraint equations twice and substituting back

the solution for λλλ into equation (1). For the sake of simplicity, in the following derivations we

assume that the geometric constraints have no components with explicit time dependence.

The constraints at the acceleration level has the form

φ̈φφg = Φqq̈ + Φ̇qq̇ . (3)

An important element of the presented approach is the use of the concept of servo-constraints

[5] specifying the desired motion of the constrained system as function of the generalized

coordinates and time. The servo constraint equations are formulated similar to the geometric



ones, but they involve control specification terms that may depend on time explicitly. These

constraints are represented at the position and acceleration level by

φφφs(q, t) = 0 and φ̈̈φ̈φs = Gqq̈ + Ġqq̇ + ċ, where Gq =
∂ φφφs

∂q
and c =

∂ φφφs

∂t
. (4)

Combining the equation of motion (1), the geometric (3) and the servo constraints (4) at

the acceleration level, similarly to the method of Lagrange multipliers, the accelerations q̈,

the Lagrange multipliers λλλ and the control input u can be calculated as the solution of the

system
M ΦΦΦT

q −H

ΦΦΦq 0 0

Gq 0 0




q̈

λλλ

u

 =


Q

−Φ̇̇Φ̇Φqq̇

−Ġqq̇− ċ− α φ̇̇φ̇φs − β φφφs

 , (5)

where the scalars α and β play a similar role as the Baumgarte parameters [6] in the solution

of DAE equations of motion. When there are only geometric constraints the Baumgarte

parameters are used to stabilize those constraints. Here, the control parameters α and β

realize a PD controller that is intended to enforce the servo constraints which results the

desired motion of the system. Assuming that the state of the system is measured and

the system matrix of (5) is invertible, the necessary control action can be calculated. The

proposed controller will be applied for a novel service robot described in the next section.

3. The ACROBOTER service robot

The ACROBOTER platform is a service robot that crawls in the plane of the ceiling and

has a pendulum-like working unit [4]. The different subsystems of this robot are shown in

Fig. 1 . The system of anchor points is placed on the ceiling in a triangular grid. The

climber unit (CU), which is a planar RRT robot, can move by grasping these anchor points.

The swinging unit (SU) is connected to the climber unit via a main and three secondary

cables. These four cables are fixed in one point by the cable connector (CC). The horizontal

motion of the SU is mainly provided by the climber unit, while in vertical direction it can

be elevated by the main cable. In addition, the SU has ducted fan actuators that can also

contribute to the control of the horizontal motion. The cable connector has no actuators

and therefore its position cannot directly be controlled. Consequently the ACROBOTER

platform is underactuated.

Assuming that the position of the CU and the length of the secondary cables are fixed

the ACROBOTER robot can be modeled as a double pendulum. For the presented stability

case study we consider only the corresponding simplified planar model of the system shown

right in Fig. 1. This model has one (ducted-fan) actuator considered as an external force



Figure 1. The ACROBOTER robot and its planar model

(FT) acting at the center of mass of the second link of the double pendulum. Using the

so-called natural coordinates q = [x1, y1, x2, y2, x3, y3, x4, y4]T and based on reference [6],

the equation of motion of the system can be given in the DAE form (1) and (2).

4. Stability of the planar ACROBOTER model

The stability of digitally controlled mechanical systems can be investigated by calculating the

eigenvalues of the discrete mapping constructed from the piecewise solution of the equation of

motion. This solution is known analytically if the system is linear, thus we have to linearize

the system around the investigated configurations. During the stability investigation it is

assumed that the control forces calculated at the nth time instant are based on the (n− 1)th

measured values which are held by a zero-order-hold (ZOH) until the (n + 1)th sampling

instant. The stability investigation is based on equation (1) where the input force u is

calculated via the solution of equation (5). In order to avoid the extra eigenvalues that

correspond to the realization of the geometric constraints the DAE system (1) and (2) is

transformed into the minimum set of equations using the transformation q̇ = Rṗ with

p = [θ1, θ2]T ∈ Rn−m. The transformed equation has the form

RTMRp̈ + RTMṘṗ = RTQ + RTHu. (6)

Equation (6) can be linearized around an arbitrary configuration and after that the equation

of the controlled system can be written in the general state space form

ẋ(t) = Ax(t) + Bx(tn−1), t ∈ [tn, tn+1]. (7)



By using the state variables at the end of the nth sampling interval the solution can be

calculated as

x(tn+1) = eA∆tx(tn) + (eA∆t + I)A−1Bx(tn−1), (8)

where ∆t is the sampling time of the digital controller. Based on equation (8) the mapping

zn+1 = Hzn can be composed, where zn = [x(tn−1), ẋ(tn−1),x(tn), ẋ(tn)] is the discrete

state vector. The convergence of this discrete mapping is equivalent to the asymptotic

stability of the desired motion of the control system. To ensure stability, by considering the

mapping as a multi dimensional geometric series, the eigenvalues of H have to be located

within the unit circle of the complex plane. The stability calculations are based on the

planar model of ACROBOTER shown in Fig. 1. Based on the analytical formulae provided

above, the stability charts are calculated numerically over the grid of the parameters α, β .

The third parameter of these charts is associated with the configuration of the system. The

ACROBOTER robot is kinematically redundant since the ratio of the lengths of the main and

secondary cables can vary while the position of the SU remains unchanged. In the present

model the main cable plus the CC are modeled by the first link (L1), and the effective length

associated with the secondary cables plus the height of the SU are modeled by the second

link (L2) of the double pendulum model. The ratio (L2/L1) of these lengths characterizes

the investigated configuration of the system. The resulting stability charts are shown in

Fig. 2. The parameters used in the stability analysis correspond to the real parameters of

the ACROBOTER platform. The masses of the links of the pendulum are m1 = 0.1[kg] and

m2 = 5[kg], respectively, while the corresponding mass moment of inertias with respect to

the centers of masses are JCM1 = 0.01[kgm2] and JCM2 = 0.1[kgm2] . The centers of gravity

along each links are defined by LCM1 = L1 − 0.02[m] and LCM2 = L2 − 0.1[m] , where the

typical cable lengths are included in the ranges L1 ∈ (0.1, 3 m) and L2 ∈ (0.2 m, 1 m).

The sampling time is given by ∆t = 0.01[s]. Because of the nonlinear behavior of the

system the stability properties depend on the configuration. The stability charts are showing

the stable domain of control parameters in the hanging down position, i.e., θ1 ≈ 0 and θ2 ≈ 0.

5. Conclusion

In this paper a computed torque method was proposed for underactuated mechanical sys-

tems modeled by non-minimum set of generalized coordinates. The proposed controller was

applied for the planar model of the ACROBOTER service robot. The stability of this system

was analyzed in the parameter space of the proportional and differential control gains (β and

α) and the configuration parameter (L2/L1) which mainly characterized by the ratio of the



Figure 2. Stability charts

lengths of the main and secondary cables. The stability charts shows that this cable length

ratio has no significant effect on the boundaries of the stable domain of control parameters.

On the other hand, the stability charts with the lowest minimum spectral radii (see ρ = 0.75

in Fig. 2) belong to those cases where the cable length ratio is low or high. These extreme

cases corresponds to those configurations in which the ACROBOTER system has a structure

which is close to a single pendulum.
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