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1. Introduction 

 

Milling is a commonly used process in metal work, where the material is removed by the edge 

of a rotating tool. The technological parameters like the spin speed and the feed motions are 

limited mostly by the quality of the tool. Nowadays tools have a special coating or are made 

with inserts (figure 1). These tools can work properly in extreme condition.  

 

 
Figure 1: Tool with coating and with inserts [16]. 

 

Thus very large spin speed and material removal rates can be achieved. This kind of process is 

known as high speed milling (HSM), HSM is becoming common in more and more sectors of 

industry, such as aerospace manufacturing. With this process a complex work-piece can be 

made in a short time. HSM technology is not cheap, but savings can be achieved by reducing 

the outlay of the assembling. By creating a large and complex part form a single work-piece, 

even 90% of the material can be removed during the milling process. That is why it is 

important to use a large material removal rate, whilst we also need good surface quality and 

geometric precision. 

A good surface quality often cannot be achieved due to instability phenomenon such as 

regenerative-chatter. In the case of chatter, the tool has a large vibration relative to the work-

piece, which causes unacceptable surface quality, overload of the machine-tool, rapid tool 

wear and noise. Thus chatter is unacceptable during the milling process. This kind of 

vibration is caused by a time delay effect through the cutting force. During the material 
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removal process the chip thickness depends on the actual position of the cutting edge and on 

the surface pattern which was formed by the edge path in the previous material removal step. 

The description of this behaviour leads to models of HSM characterised by delayed 

differential equation (DDE). General description of DDEs can be found in [19]. The simplest 

type of a DDE is given by  

 

 ( ) [ ]0,,)(),(,)( maxτθθ −∈+=′ tttt yyfy . (1) 

 

Most models for milling process have a discrete time delay, but more sophisticated model can 

be found in [18] which use a functional DDE for mathematical model. To describe some non-

linear behaviour of the process neutral DDE might be needed. The general form of a neutral 

DDE is given by 

 

 ( ) [ ]0,,)(),(),(,)( maxτθθθ −∈+′+=′ ttttt yyyfy . (2) 

 

To solve a delayed differential equation we need an initial function on [ ]0,maxτ−∈t  time 

interval. 

The stability investigation must be made in an infinite dimensional phase space due to the 

time delay.  The solutions for different type of DDE can be found in [20]. Closed form for 

stability boundaries cannot be made for DDE, expect some trivial case. That is why several 

numerical and semi-analytical method which change the DDE into a different form. 

The semi-discretization method was described in [3], which approximates the DDE with a 

series of ODEs. 

Computer program have also be written to solve some classes of DDEs and continue their 

solutions, such as DDE-BIFTOOL [10], and PDDE-CONT [9]. 

One of the first validations of the time delayed mathematical model was made by [6]. In this 

paper the quasi-periodic motion and the stability of the milling process were determined 

theoretically and by measurement. The authors found that the stability chart, which is a graph 

of the regions of stable solutions in parameter space (typical parameters are axial immersion 
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and the spin speed), has the same ‘lobe-structure’ as typically predicted by the time delayed 

models. Later, more complex models of the stability of the cutting process were investigated, 

such as interrupted turning [12]. This paper used a non-autonomous DDE to describe the 

cutting process. They found and improved theoretically the existence of the parametrically 

induced flip bifurcation lenses (islands), where periodic chatter occurs. The phenomenon of 

the periodic chatter was founded by measurement for milling in [2]. 

All the above mentioned studies used models of HSM with straight edged tool. Investigation 

for helical tool can be found e.g. in [11] and [17]. In these papers the helical tool was treated 

as a series of straight edged tools. In this case the edge is not a continuous curve. Stability 

investigations were made for a tool with a continuous helical edge in [13], where the flip 

lenses induced by the helical edge were described. In this paper the mathematical model was 

also validated by experimental results. 

A periodic time delay ( )()( τθθ += tt ) which is caused by the trochoidal tooth path of the 

cutting edge was taken into consideration in [7]. A model for state dependent delay ( ))(( tyθ ) 

can be found in [8], which describes the turning process. 

The aim of most articles to determine the stability boundaries of the cutting process. In most 

cases the forced excited motion is neglected or assumed to be small. However, in those 

regions where there is no self-excited vibration, the system is susceptible to large forced 

excited vibrations. In spite of this fact, there is much less investigation of the surface quality 

as the stability boundaries, and these models are not as well described. A description of milled 

surface generation for time domain simulation can be found in [5]. The method uses a model 

with a straight edged-tool. The same method was also used in [15], where the surface 

properties were determined over a stability chart. They found that both the surface location 

error (SLE), which is the distance between the desired and the milled surface, and the surface 

quality are large in the unstable region, and also significant in those regions where the ratio of 

the natural frequency of the system and the angular velocity is close to an integer. 

The same phenomenon was shown in [1]. In this paper the periodic motions of the tool edge 

were calculated analytically. The surface location error was calculated from the edge path. 

The main aim of this thesis is to predict the surface quality of the milled surface and describe 

how the measures of the surface quality vary as parameters of the model are changed. 

First we investigated a two degree of freedom model with straight edged tool. We created the 

equations of motion of the system and calculated the stability chart using a semi-discretization 
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method. We checked our result with a different method by using the numerical calculation of 

a Matlab package called DDE-BIFTOOL, and found very good agreement. In the stable 

region of the stability chart we examined the behaviour of the transient motion. We found that 

there are special regions where it dies out much faster. Then we calculated the forced excited 

vibration of the tool both analytical, and with time domain simulation. We generated the 

surface of the particular solution of the tool motion, and described the calculation of the 

surface properties, such as surface location error and surface quality. 

Secondly we extended our description to be able to describe a helical tool. We described the 

helical edges as a continuous line and calculated the exact excitation force of the helical tool. 

We calculated the stability chart with a semi-discretization method and found helix-induced 

flip lenses. We calculated the periodic motion of the tool by using a truncated Fourier series 

of the excitation. We generate the milled surface from the edge path, which is a two 

dimensional surface without regularity. We described the surface properties with the 

commonly used surface location error and surface quality, and introduced a new surface 

property, the surface waviness, which describes the deflections of the surface in the direction 

of the tool axis. This property is always zero for a straight-edged tool, but it can be of the 

same size as SLE for a tool with a small helix pitch. 

Thirdly we described the effect of the technical parameters both on the stability and on 

surface properties in the models above. Our calculations supported the results of practical 

experiments, that larger axial immersion can be achieved by using small radial immersion and 

a tool with a few teeth. 

We also found other advantages of helical tools: we can use a larger axial immersion at 

special angular velocities that cannot be used in case of straight edged tool. At these spin 

speed the system is close to resonance, which causes poor surface properties with a straight 

edged tool, while in the case of a helical tool we can achieve good surface properties by using 

a particular range of axial immersion. 

Finally we propose a more accurate model to describe the chip thickness, which considers the 

vibration of the tool. We found a new type of stability loss, called a fold bifurcation, and 

regions in which there are multiple stable attractors. 
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2. Models 

 

Several models can be used to understand the milling process. The model usually contains 

three main parts.  The first describes the properties of the machine-tool, the second the 

function of the cutting force, and the third the description of the cutting process. 

2.1.  Machine-tool 

 

The most important requirement of the machine-tool model is to describe the relation between 

the tool and the work-piece. They can be in relative motion, caused by a flexible tool, non-

rigid holder or soft work-piece.  The motion can be examined by a modal analysis. The 

motions have several modes and eigenfrequencies which can be measured; in most cases the 

first few modes are the most important. We can make a simple model which has similar 

behaviour. It can be described by the mass ( ), damping (M K ) and the stiffness (S ) matrices, 

and will have as many degrees of freedom (DoF) as the number of eigenfrequencies we use. 

Most of the articles [1, 2, 4, 7] use one or two DoF models, because in that case the 

calculation is much simpler and it gives a qualified description of the behaviour of the milling 

process. In these models either the tool or the work-pieces is flexible. 

Typically we use the first two eigenfrequencies; there is no theoretical barrier to using more 

but it becomes more difficult to determine the modal matrices. 
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Table 1: Common used model for milling process 

 

 
Figure 2:  Model with four degrees of freedom. 

 

In this report, we consider two different tools: with straight or helical edges. In the case of 

straight edges we can use a two dimensional (planar) model, while for the helical-edged tool 

we must use three spatial dimensions. In spite of the fact that most tools have helical edges we 

can approximate its behaviours with a straight-edged model if the axial immersion (w, shown 

in figure 4) of the tool is small (see figure 3). 
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Figure 3: Helical edges (a) approximated with straight edges (b). 

 

2.2.  Cutting force 

 

 
Figure 4: Parameters of the cutting force. 

 

Models of the cutting force depends on numerous parameters. The most common used model 

is the so-called three-quarter role (figure 5. a). It is first used by Taylor for linear 

programming. 

 

 whkvwhkF tt
4
3

1.0
p

4
3

== − , (3) 
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where – tangentional force tF

t,kk  – cutting coefficient, (technical parameters) 

  – chip thickness h

  – chip width w

  – speed of cutting pv

 

In the milling process the peripheral speed ( ) of the tool edge usually does not change. In 

that case  is absorbed into the parameter . 

pv

pv tk

The main problem with this function is that it has an infinite derivative at , which causes 

problems when the tool leaves or establish contact with the surface. 

0=h

This function can be linearised around a working point (figure 5. b). This linearization also 

has a problem at , because it has a non-zero force at zero chip thickness. This problem 

can be fixed if we make a piecewise linear approximation to the cutting force so that it crosses 

the origin (figure 5. c). 

0=h

 

 
Figure 5: Linearization of the three-quarter role. 

(a) three-quarter role, (b) tangent in , (c) fitted line. 0h

 

A polynomial function could also be used if we would like to study the non-linear behaviour 

of the system, or if we are close to 0=h . A quadratic polynomial function was used in [6] 

which was based on measurement. 

In almost every case the tangential cutting force ( , shown in figure 8) is proportional to the 

radial cutting force ( , shown in figure 8)  ([1, 2, 5, 7, 12]). 

tF
rF
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2.3.  Cutting process 

 

We now describe the models of the chip thickness. It usually contains of two parts. The first is 

the static chip thickness, which can be described by a rigid tool and rigid work-piece model. 

In this case the edge is moving on a trochoidal path (figure 6. a) relative to the surface. Such a 

description is used in [7]. 

We can approximate this motion with a series of circles (figure 6. b). This is a good 
approximation because the feed per tooth ( ) is typically very small compared the diameter 
of the tool [7]. The feed per tool can calculated form the feed motion , so 

zf
v

 

 
Z

v
f Z Ω

=
π2

. (4) 

 

In this case we can use a simple function for the chip thickness: 

 

 ( )(sin tfh Zstat )φ= , (5) 

 

where  – static chip thickness stath

zf  – feed per tooth 

 )( tφ  – angular position of the edge 
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Figure 6: Trochoidal (a) and circular (b) path of the tool edge. 

 

The second part of the chip thickness is the dynamic one. It arises from the vibration of the 

flexible system. The vibration also contains two parts. The first is generated by the periodic 

exciting force. This vibration has the same frequencies as the excitation force, and usually has 

small amplitude. In general case we assume that is small enough compared to the static chip 

thickness to neglect. In the case that it is larger we must use a much more complicated model 

for the static chip thickness. The second part of the vibration is a self-excited vibration caused 

by the time delay effect. It is due to the fact that the chip thickness depends on the edge path 

approximately one revolution of the tool ago. 
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Figure 7: Constant (a), time dependent (b) and state dependent (c) delay. 

 

It is very hard to make an analytical description of state dependent delay in the milling 

process, though some analytical solutions in the related problem of turning have been found 

[8]. Numerically, solutions can be calculated by time-domain simulation [5], though we shall 

use more sophisticated path-following methods. 

Time dependent delay was considered in [7], but was shown that have a small effect on the 

stability. 

The most commonly used model has a single constant delay. If we use a constant delay, self-

excited vibrations die out in some regions of parameter space, and tend to large vibration 

elsewhere, thus it is not necessary to calculate surface profile solutions for this type of the 

vibration; only the stability calculation is needed. The boundary of this parameter region, 

where a bifurcation occurs, can be found by linear stability analysis. The non-linear terms 

only influence the type and the behaviour of the bifurcation. 

 

The most important issue in calculating is to determine the surface prosperities at the 

permanent vibration of the stable system. 

During milling, only the chatter-free process, where there is no self-excited vibration is 

acceptable, since in the case of chatter the surface has a poor quality and it overloads the 

machine-tool. 
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Chatter is caused by instability of the system, which occurs due to the time delay effect. Thus 

we have to calculate the stability of the system. Linear cutting force model which crosses the 

origin is suitable for finding the stability boundaries of the system, so we used this 

approximation of the cutting force. 

Let us suppose that the vibration of the tool is small, so that we can use the simplest 

approximations of a static chip thickness (5) and a constant time delay in our model. 

During our calculations, a 2 DoF, flexible tool/rigid work-piece model was used, both because 

the first modal frequency (in the x  and  directions) are the most important due to the small 

damping, and also because it is the most commonly used model. 

y

Surface calculations were made using both straight and helical edge tools. 
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3. Tool with straight edges  

 

We begin by considering a simple model, of a tool with straight edges. Therefore we will be 

able to validate later, more complicate methods. In this case both analytical and numerical 

methods can be used, and their results can be compared with each other and with results in the 

literature. 

3.1.  System Equation 

 

From the modal analysis we obtain the system equation: 

 

 )()()()( tttt FSqqKqM =++ &&& , (6) 

 

where   and  denote the displacement and cutting force vector in the )( tq )( tF yx −  plane. 

For a system with m vibration modes in x  and  direction, the vectors q  and , and 

 and . 

y m2∈F

KM, mm 22 ×∈S

 

 
Figure 8: The tangent and radial components of the force in milling process. 

 

The right hand side forcing function  originates from the cutting force. We can write it as a 

sum of the force from each individual tooth (see figure 8), so that 

F
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 , (7) ( ) (∑∑
−

=

−

=

+==
1

0

rt
1

0
)()()()()(

Z

j
jjjj

Z

j
j tttgtt FFFF φ )

 

where Z  is the number of teeth, and jφ is the angular position of the  tooth given by: thj

 

 
Z

jttj
πφ 2)( +Ω= , (8) 

 

and the step function  shows whether the  tooth is cutting or not, so jg thj

 

  (9) ( )
⎪⎩

⎪
⎨
⎧

=
cutting.not  tooth  if,0

cuttingtooth if,1
)(

th

th

j
j

tg jj φ

 

 

Figure 9: Step function ( ) for up-milling (a) and down-milling (b). jg

 

Using the notation in figure 9, we can write  as jg

 

   (10) ( ) ( )
⎩
⎨
⎧ <<

=
otherwise.,0

,1
)( outin φφφ

φ
t

tg j
jj
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The parameters inφ  and outφ  are the angular position for which cutting begins and finishes 

respectively. If we assume that the vibration of the tool is small, then inφ  and outφ  are not state 

dependent. We consider two separate cases shown schematically in figure 9, known as up-

milling and down-milling. 

In the case of up-milling, inφ  and outφ  are defined by 

 

 ( )epoutin 21arccosand0 a−== φφ , (11) 

 

and for down-milling by 

 

 ( ) πφφ =−−= outepin and)1(21arccos a , (12) 

 

where we define the parameter aep to be the dimensionless radial immersion relative to the 

diameter of the tool, . For down-milling D [ ]1,0ep ∈a  is given by  

 

 
D
aa e

ep = , (13) 

 

and for up-milling, [ 2,1ep ]∈a  is defined to be 

 

 
D
aa e

ep 2 −= , (14) 

 

where  is the radial immersion (shown in figure 9). ea

The angles inφ  and outφ  are shown graphically in figure 10. 
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Figure 10:  and inφ outφ  as a function of .epa

 

We assume that the radial cutting force  is proportional to the tangential cutting force 

, so that: 

r
jF

)(t tFj

 

 rr

t

const
)(
)(

k
tF
tF

j

j == . (15) 

 

We can therefore write the cutting force  in F yx,  coordinates as  

 

 ( ) ( ) ( ) ( )
( ) ( ) ).(

)(cos)(sin
)(sin)(cos

)( t
1

0 r

r tF
tkt
tkt

tgt j

Z

j jj

jj
jj∑

−

=
⎥
⎦

⎤
⎢
⎣

⎡
−

−−
=

φφ
φφ

φF  (16) 

 

 

We use a linear force model (described in section 2.2), so that 

 

 . (17) )()( t
t thkwtF jj =
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The chip thickness ( ) comprises two parts, the static and dynamic chip thicknesses. The 

static part is generated by the constant feed motion ( v ), while the fact that tool is non-rigid 

causes the dynamic part. 

)( thj

 

  (18) )()()( dinstat ththth jjj +=

 

The static chip thickness can calculated (see section 2.3) as a projection of feed motion. 

The feed per tooth, , is given by Zf

 

 
Z

vfZ Ω
=

π2 , (19) 

 

and hence, assuming a small tool vibration, we obtain 

 

 ( ))(sin)(stat tfth jZj φ= . (20) 

 

 
Figure 11: Projected static chip thickness ( )stat

jh . 
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Figure 12: Dynamic part of the chip thickness ( )din

jh . 

 

The dynamic chip thickness is a function of the current and the previous tooth position.  

 

 ( ) ( ) ( ) ( ).)(cos)()()(sin)()()( din,tdin,din ttytyttxtxhhth jjjjj φτφττ −−+−−=−=  (21) 

 

It is the dynamic chip thickness that causes the time delayed effect in the differential equation 

(6). The time delay is constant, generated by the tooth-passing frequency 

 

 
ZΩ

=
πτ 2 . (22) 

 

Substituting (21) and (20) into (18), we obtain 

 

  (23) 

( ) ( ) ( )[ ]

( ) ( )[ ] ,)()(
0

)(cos)(sin

)()(
)()(

)(cos)(sin

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−+⎥

⎦

⎤
⎢
⎣

⎡
=

⎥
⎦

⎤
⎢
⎣

⎡
−−

−−+
=

τφφ

τ
τ

φφ

tt
f

tt

tyty
txtxf

ttth

Z
jj

Z
jjj

qq

 

from which we can find the cutting force (16) , with the assumption of linearity (17) 

 

 . (24) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−+⎥

⎦

⎤
⎢
⎣

⎡
= )()(

0
)()( τtt

f
tt Z qqWF
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The projection matrix  is a periodic function, with period ( )tW τ  

 

 ( ) ( ) ( )()(
2

1

0

t ttgkwt j

Z

j
jj φφ TW ∑

−

=

= ), (25) 

 

where the transformation matrix is given by 

 

 

( )
( ) ( ) ( ) (

( ) ( ) ( ) ( .
)(2cos)(2sin)(2sin)(2cos1
)(2sin)(2cos1)(2cos)(2sin

)(

rrr

rrr
⎥
⎦

⎤
⎢
⎣

⎡
−−−−
−−−+−−

=

tkkttkt
tkttkkt

t

jjjj

jjjj

j

φφφφ
φφφφ )

)

φT

 (26) 

 

We note that the components of  are exactly the same as in [1]. ( )tW

 

 
Figure 13: Component of W(t) as function of time for half immersion down-milling with a 

single fluted tooth. The parameters are , ][N/mm10644 26
t ⋅=k 368.0r =k , . ]krpm[5.20=Ω
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We may now write the system equation (6) in the form: 

 

 . (27) ( ) )()(
0

)()()()()( τ−−⎥
⎦

⎤
⎢
⎣

⎡
=−++ tt

f
ttttt z qWWqWSqKqM &&&

 

Equation (27) is linear, so we can separate it into two parts with new variables  and  x ξ

 

 , (28) ⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
=+=

)(
)(

)(
)(

)()()(
t
t

ty
tx

ttt
η
ξ

ξxq

 

such that x(t) satisfies 

 

 . (29) )(
0

)()()()( t
f

tttt z fWSxxKxM =⎥
⎦

⎤
⎢
⎣

⎡
=++ &&&

 

Note that  is periodic, with period )( tf τ . In this case  also has the same period, so )( tx

 

 )()( τ−= tt xx . (30) 

 

Equation (29) is the non-delayed part of the system equation. Substituting (28) into (27), and 

using (29) and (30), we obtain the delayed part of the system equation: 

 

  (31) ( ) )()()()()()( τ−−=−++ tttttt ξWξWSξKξM &&&

 

Equation (31) is a system of second-order non-autonomous (parameter forced excited) linear 

delayed homogenous differential equations without external excitation. This part of the 

system equation describes the stability of the tool.  It is essential to determine the stability of 
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the tool motion. If it is unstable, the tool vibration amplitude tends to infinity (and there is no 

need to calculate the surface). 

If, on the other hand, the trivial solution of (31) ( 0)( =tξ ) is stable, the motion of the tool 

centre is given by the solution of the non-delayed part of the system equation, (29). This is a 

system of second-order linear ordinary differential equations (ODE), with a non-smooth 

periodic excitation. This always has an asymptotically stable periodic solution because of the 

small damping. By using this solution we can compute the motion of the teeth, which 

generates the surface, neglecting transient motion. 
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3.2.  Stability, time delay part 

 

For equation (31) the constant zero is the only equilibrium, because it is linear DDE [19]. We 

must calculate the stability of this solution; there are several methods we can use. 

The first method is time domain simulation. It is computationally expensive, partly because 

long integration times must be used; moreover the motion itself does not form part of the 

solution, and only stability information is important. 

The second possible method is to use a Fourier series approximation of . In case of the 

zeroth order approximation (ZOA) only the zeroth order Fourier term is used [4].  

)( tW

 

 ∫≅
τ

τ 0

)(1 dttWW . (32) 

 

With ZOA the characteristic polynomial can be used to calculate the stability boundaries. This 

approximation can be good at large radial immersion, but loses accuracy at small radial 

immersion. 

The third possible approach is semi-discretization [3]. Detailed description of the method is 

written in section 3.2.1. The DDE (31) is approximated as a system of ordinary differential 

equations. In every ODE the time delayed terms and the excitation matrix are approached 

with constant values. The Floquet transition matrix over a period can be generated through the 

ODEs. 

 

 )()( tt Φξξ =+τ . (33) 

 

The system is stable if all eigenvalues of  are smaller than 1 in modulus. Φ

A fourth method is to use a package for Matlab, called DDE-BIFTOOL [10]. We can use this 

package for systems of delayed differential equations with several constant and state-

dependent delays. It can calculate the stability of the steady-state solution and follow 

bifurcation curves in parameter space. 

Because of the significant drawbacks of the first two methods, we use only methods 3 and 4. 
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3.2.1. Semi-discretization 

 

The delayed part of the system equation (31) can be written as a system of first order delayed 

differential equations by using a new variable u , where: 

 

  (34) 
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We can approximate (35) with m coupled ODEs. The ith ODE operates only for [ ]tttt ii ∆+∈ ,  

where the length of the time interval t∆  is given by 
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In the ith ODE we approximate  and )( tW ( )τ−tu  by: 
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Figure 14: Approximation of  ( )τ−tu  and . )( tW

 

We make the ODE approximation to (35) using (37), giving 
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The solution of (38) is: 
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where the vector  is arbitrary. We determine it using the initial condition c
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Thus the solution for the  is [ ]tttt ii ∆+∈ ,
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and hence, at the end of time interval 
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This can be simplified using  (38) to give 
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Using a new variable , we can define a discrete map iv
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with coefficient matrix  given by ))1(4)1(4( +×+∈ mm
i Z
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We can reduce the size of these matrices.  Some elements of  can be omitted out because 

 only has elements in the upper right side, due to the fact that (31) is not neutral. Hence we 

may write a new variable  such that 

iv
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and the new coefficient matrix ))2(2)2(2(~ +×+∈ mm
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The Floquet transition matrix over a period can be generated as a product of iZ~  matrices 
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The stability of the non-delayed part of the system equation is determined by the eigenvalues 

of . If all the eigenvalues are located in the unit circle in the complex plane then the zero 

solution of is (31) stable. 

Φ

The zero solution can lose its stability in two ways. The first called a Hopf bifurcation is when 

two complex conjugate eigenvalues cross the unit circle [2]. In this case the time period of the 

vibration is different from the time delay. In a real milling process this phenomenon causes 

chatter characterized by quasi-periodic vibration. 

The second way is when an eigenvalue crosses the unit circle at the point -1. This bifurcation 

is called a flip or periodic doubling bifurcation, because the time period of the vibration is 

twice as long as the time delay, which causes chatter characterized by periodic vibration. 

In our linear system both above mentioned vibrations tend to infinity if the system is unstable.  

 

 
Figure 15: Stability losing by Hopf (a) and flip (b) bifurcation. 

 

A stability chart can be made by calculating the stability in a grid in parameter space. In our 

system (31) the Hopf bifurcation lines have a lobe structure, with flip bifurcation lenses (see 

figure 16), exactly as in [2]. 
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Figure 16: Stability chart of the system computed by semi-discretization method. 

Parameters are 1=Z , 05.0ep =a . 

 

Producing a chart with acceptable quality takes a very long time. A chart with acceptable 

quality and precision calculated more than 2 hour by using Matlab in Windows. It is not 

necessary to compute the stability at every point on the grid, because only the stability 

boundaries are needed. If we calculate the stability around the boundaries, we can reduce the 

calculation time by a factor of about 10. For this reason the chart was initially computed on a 

coarse mesh. Those segments, where the stability changed were divided to four parts and 

recomputed. This process was repeated until the diagram was of prescribed quality. 

 

3.2.2. DDE-BIFTOOL 

 

To validate the semi-discretization method the Matlab package, called DDE-BIFTOOL was 

used. This program is made for autonomous systems of DDEs. We modified the program to 

be able to compute a parametrically-excited system. Hence the constant zero solution of (31) 

can be described as a periodic solution. This is needed to permit consideration of a periodic 

excitation. The boundaries of regions stability of the zero solution were followed in the 

parameter space by a predictor-corrector method. 
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We check the semi-discretization method, and the stability lines of DDE-BIFTOOL fit very 

well into the stability boundaries of the semi-discretization, as shown in figure 17. 

 

 
Figure 17: Stability chart of the system using DDE-BIFTOOL. 

Parameters are 1=Z , 05.0ep =a . 
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3.2.3. Transient 

 

In the case that the zero solution is stable, then the transient solution dies out. The amplitude 

of the transient decreases according to 1µ , which is the modulus of the biggest eigenvalue of 

. Over a period Φ

 

 1
transient

transient

)(
)(
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≅
+
t

t
u

u
 (51) 

 

Near to the stability boundary, 1µ  is very close to 1, so the transient takes a very long time to 

die out. 

 

 
Figure 18: Modulus of the biggest eigenvalue of  over the stability chart. 

Parameters are 

Φ

1=Z , 1.0ep =a . 

 

Figure 18 shows that the modulus of 1µ  decreases at smaller angular velocity. There are areas 

on the stability chart where the transient dies out much faster. 
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3.3.  Surface, non-delay part 

 

If we use a rigid tool and rigid work-piece model, the surface roughness ( 0µ ) which is the 

biggest deflection of the surface can be calculated in a simple way by approaching the tooth 

path as a circle, so 
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where R is the radius of the tool. 

If the delayed part of (31) has a stable zero solution, then the motion of the tool centre is 

described only by the solution of the non-delayed part, (29). We now describe the 

computation of the surface, during which we assume that transient motion can be neglected. 

The only difficulty occurs because the function  is non-smooth. There are different ways 

to solve this problem and get the particular solution of the equation (29). 

)( tf

The first is to use the first NF terms of the Fourier series of  instead of  itself. Good 

approximation can usually be achieved by using the first 10 terms of the series (

)( tf )( tf
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according to [1]  
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In this case the solution can be given as a similar trigonometric function 
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By using (53) and (54), equation (29) can be separated to find the constants  and  by 

matching the coefficients of sin and cos. 

lc ld
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The second possible solution method gives an analytical solution of (29).  We observe that  

 is non-smooth only at the points where the )( tf ( ))( tg jj φ  functions switch. Equation (29) can 

be solved analytically between these switching points.    

A third possible method is time domain simulation. This kind of method always can be easily 

used. Its biggest drawback is that the transient motion cannot be neglected, and so the 

simulation time must be enough long to let it die out. The size of the surface quality is of the 

order of micrometers, so the error due to the transient motion must be significantly smaller 

than that value. The relative damping factor of the machine-tools is very small, however, 

around 0.01, so the size of the transient is halved about every 11th period; too long for 

practical use. 

 

3.3.1. Analytical method 

 

The quality of the surface is important principally in the surface finishing process. In this 

process the radial immersion is always small and the tool has just a few teeth, which means 

that usually just one tooth is cutting. This approximation is valid if 
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For example, where the radial immersion is 0.25, the maximal number of teeth is 6. In this 

case the solution of (29) can be solved in two parts (cutting and flying), and patched together 

to ensure continuity of the solution. 

The particular solution is periodic and has the same time period as the excitation, τ , so that 
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If equation (29) is solved with a general initial starting point, and satisfies (57) then it is a 

periodic solution. The initial values can be found more easily by using a new time coordinate, 

relative to the beginning of the cutting phase. 
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Figure 19: New time coordinate for the periodic solution. 

 

Eq. (29) can be written in first order form: 
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and separated into the two phases: first flying motion 
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and second, cutting motion: 
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where 
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Excitation of (63) can be written in a trigonometrical form: 
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where 
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Let the initial values be 
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Then the solution of (60) is: 
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The particular solution of the cutting motion equation (63) also has the same trigonometrical 

form as : )~( tf
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 ( ) ( )ttt ~2sin2~2cos2)~(p,cut ΩΩ−ΩΩ= klu&  (70) 

 

The coefficients m, l, k can be calculated using Eq. (63), again separated according to the 

trigonometrical functions: 
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Hence the homogenous part of equation (63) is  
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The c vector can be found by using the initial values: 
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The solution of cutting motion is 

 

 ( ) ( ttttt t )~2cos~2sin)(e)~()~()~( 0

~

cutp,cuth,cut Ω+Ω++−−=+= klmkmuuuu A . (75) 

 

 

 

 38



The particular solution satisfies (57), so that 
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Thus the motion of the tool centre can be calculated analytically. In order to generate the 

surface we have to calculate the motion of the tooth edges. The vibration of the teeth is just 

the same as the tool centre, but the vibration superposes on a circle with the radius ( R ) of the 

tool. Every point of the tool edge has the same path in its own relative time frame. The 

motions of the edges are given by  
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Figure 20: Motion of the tool centre (a) and tooth edge path of flexible (b) and rigid (c) tool. 

Red lines denote the cutting phase, black lines denote the flying phase. 

Parameters are 1=Z , , ]/[1125 srad=Ω ][4.0 mmw = , ][15.0 mmf z = , . 5.1ep =a
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3.3.2. Time domain simulation 

 

The time domain simulation is made by the simplest Euler method. The time step ( ) of the 

simulation was changed to consider its effect on the simulation. We observed that if  

t∆

 

 
1000

τ
≤∆t , (78) 

 

there was no significant change in the edge path. On a simulated edge path, shown in figure 

21, we can see the problem of the small damping. We cannot even use the edge path if we 

simulate over a hundred periods, because the transient motion is still large relative to the 

surface quality. In spite of this fact the shape of the vibration is acceptable to validate the 

analytical solution. The difference between the two different methods is shown in figure 22. 

 

 
Figure 21: Tooth edge and tool centre path relative to the work-piece by time domain 

simulation. Parameters are 1=Z , ]/[1125 srad=Ω , ][4.0 mmw = , , ][15.0 mmf z =

5.1ep =a . 
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Figure 22: Motion of the tooth edge and the tool centre calculated by the 

analytical (blue lines) and time domain (black lines) simulation after 100 period. 

Parameters are 1=Z , , ]/[2250 srad=Ω ][4.0 mmw = , ][15.0 mmf z = , . 5.0ep =a

 

3.3.3. Surface calculation 

 

To generate the cut surface we need to find the motion of the edges relative to the work-piece. 

By using (77) motion of the edge relative to the feed motion ( ) is given by v
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If we use a tool with more than one tooth all the edge paths are the same, but there are shifts 

in the x direction between the paths: the distance between two neighbouring path is the feed 

per tooth. In case of up-milling the surface is defined by the curve which bounds these paths 

from above. In down-milling it is shaped by the lower bounding curve (see figure 23). 
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Figure 23: Surface is defined by the relative motions of the edges in up-milling process. 

Solid lines belongs to the first tooth, dash lines belongs to the second tooth.  

Parameters are 2=Z , , ]/[450 srad=Ω ][4.0 mmw = , ][15.0 mmf z = , . 5.0ep =a

 

Figure 23 shows clearly that the surface can be described with a single piece of surface 

segment. Assuming periodicity one representative segment form the surface, , can be 

described as a part of (79) between   and  so 
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We have to determine the times ( ), when the edge is on the boundary of the surface 

segment. The two unknown times can be determined from (81) by using that fact the width of 

the segment is : 
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There are several solutions of this equation, but only one pair is needed. The solutions of (81)  

are repeated periodically, with period T. We can choose any such pair of these solutions, 

because they produce the same surface, and hence we can neglect the multiple solutions. We 

must use that pair which is closest to the surface. In the case of up-milling it must be the 

highest intersection point  
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and for down-milling it is the lowest point, so 
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Hence the surface can be described totally with this single surface segment. 

We now describe two measures of the quality of the milled surface, the surface roughness, 

and the surface location error, illustrated schematically in figure 24. The surface roughness 

( µ ), given by 
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tt

−= )µ . (84) 

 

On the other hand, the surface location error ( SLE ) is an offset error, which is the distance 

between the desired surface and the formed surface. In case of up-milling it is given by 
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and for down-milling 

 

 . (86) ( ) RtySLE
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These kind of surface errors are represented in figure 24. 

 

 
Figure 24: Schematic representation of the surface location error and the surface quality. 

(a) desired surface, (b) machined surface. 

 

 

By using the methods which are described in chapter 4 we can calculate the stability chart of 

the milling process and determine the surface properties in the case of straight edged tool. 

This calculations were used to validate our methods and used as a base of further calculations. 
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4. Tool with helical edge 

 

In practice, tool edges are always helical. Experimental evidence suggests that helical tools 

make smooth cut surfaces, and that they make the function of force less ‘impact-like’ and 

hence make a smaller load for the machine-tool. From the point of view of theoretical 

approaches, in [11] the tool was sliced into finite segments, each described as a tool with 

straight edge. The cutting force was approach as a sum of the cutting force acting on each 

segment. The quality of this approximation strongly depends on the number of the segments.  

In our calculation we use a continuous model and use the exact cutting force. 

 

4.1.  Equation of motion 

 

The system can be described in the same way as in the straight edge model; in the helical 

model the angular position of the tooth edge, jφ , depends on the vertical coordinate (z), which 

is parallel to the axis of the tool  

 

 
p

z
Z

jttzj
ππφ 22),( −+Ω= , (87) 

 

where p is the helix pitch and Z is the number of teeth as before (see figure 25). 
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Figure 25: Helix pitch and angular position of the edge as a function of the z coordinate. 

 

Due to the helical edge we have to change the calculation of the cutting force. In a cross 

section of the tool the cutting force can calculated in the same way as in the straight edge 

model with an infinitesimally small chip width ( ). We can calculate the cutting force by 

integrating this equation, so  

dz
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Following the method of calculation in section 3.1, we get a similar equation to (24) for the 

cutting force in terms of the system states 

 

 , (89) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−+⎥

⎦

⎤
⎢
⎣

⎡
= )()(

0
)(~)( τtt

f
tt Z qqWF

 

where )(~ tW  is the periodic excitation matrix for the helical tool, given by 
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The limit of integration can be changed simply to the angular coordinate (see figure 26.) 

because the function ),( tzjφ  is linear, so 
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Figure 26: Integration of the cutting force along the helical edge in two fluted tool. 
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Figure 26 shows clearly that if the angle of the helical edge satisfies 

 

 
Z

twt jj
πφφψ 2),(),0(: >−= , (92) 

 

then the integration (91) comprises two parts. The first contains those sections of the 

integration where we integrate on a full period (see figure 26). This part is constant in time. If 

the axial immersion is large enough, then it can contain more then one full period. The 

number of the full period is given by 
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where  is the largest integer )int( x x≤ . 

The result of the integration of a section ( W ) can be calculated as an integration between inφ  

and outφ  by using the definition of the  function (10), so jg
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where inφ  and outφ  are the angular position for which cutting begins and finishes respectively  

(see (11) and (12)). 

Another part of (91) contains the rest of the integration. The length of this integration is given 

by 

 

 
Z
Nfull2~ πψψ −= . (95) 
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Hence we can write (91) as 
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where 
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To eliminate  from  we have to use new integration limits ( ), which are time 

dependent, so 

jg jW jj ba ,
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There are three different cases in calculating  and  according to the length of ja jb ψ~ . The 

three cases are represented in figure 27. The lengths of the cutting and flying phases are given 

by 

 

 cutflyinoutcut φπφφφφ −2=−= . (99) 
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igure 27: Graphical presentation of the integration limits of  in case jW cut

~0 φψ ≤<  (a), 

flycut
~ φψφ ≤<  (b) and πψφ 2~

fly <<  (c). Yellow shading denotes the cutting phase. 

le there is no contact between the work-piece and the helical edge  is zero. jW

ase (b) ψ~  is bigger then the cutting phase cutφ , for this reason sometimes the helical arc 

rs the whole cutting phase cutφ . In this case we have to integrate between inφ  and outφ  as 

tant limits, so  is constant for this period. jW

 limits of integration ( , ) are presented in table 2. If we use a cyclical coordinate  ja jb

[ [outoutoutout
~,2~'2~)2mod~(' φψπφψφπφψπφψφφ +−+∈−++−−= jjj . (100) 

ad of the total angle jφ , then we can make a simpler notation. 

ase (c) we can make an easier calculation by filling the helical arc to π2  and then 

raction this part from W  (94), so 
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and using a different domain for 'jφ , given by  

 

 [ )outoutoutout ,2'2)2,2mod(' φπφφπφππφφφ −∈−++−= jjj . (102) 

 

Type Part )( ta j  )( tbj  ) 

)

 

(a

Fly inout ),0('2~ φφπφψ ≤<−+ tj  0W =j  

Step 

in 
ψφφφ ~),0(' inin +≤< tj  inφ  ),0(' tjφ  

Inside outin ),0('~ φφψφ ≤<+ tj  ψφ ~),0(' −tj  ),0(' tjφ  

Step 

out 
ψφφφ ~),0(' outout +≤< tj  ψφ ~),0(' −tj  outφ  

 
 Type 
(b)
Part )( ta j  )( tbj  

Fly inout ),0('2~ φφπφψ ≤<−+ tj  0W =j  

Step 

in 
outin ),0(' φφφ ≤< tj  inφ  ),0(' tjφ  

Cover ψφφφ ~),0(' inout +≤< tj  inφ  outφ  

Step 

out 
ψφφψφ ~),0('~

outin +≤<+ tj  ψφ ~),0(' −tj  outφ  

 

Type Part )( ta j  )( tbj   
(c
Fly ψπφφπφ ~2),0('2 inout +−≤<− tj  0W =j  

Step 

in 
inin ),0('~2 φφψπφ ≤<+− tj  inφ  ψπφ ~2),0(' −+tj  

Inside ψπφφφ ~2),0(' outin +−≤< tj  ),0(' tjφ  ψπφ ~2),0(' −+tj  

Step 

out 
outout ),0('~2 φφψπφ ≤<+− tj  ),0(' tjφ  outφ  

In case (a) cut
~0 φψ <≤ , case (b) flycut

~ φψφ <≤ , case (c) πψφ 2~
fly <≤ . 

Table 2: The integration limits of . jW

51



 

 
Figure 28: Function of  in different axial immersion. 
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These manipulations allow us to compute the periodic excitation matrix . Using an 

analogous method to that presented in section 3.1, we split the solution into two parts, one a 

linear 2

W~

nd order ODE 
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and the other a linear 2nd order DDE 

 

 ( ) )()(~)()(~)()( τ−−=−++ tttttt ξWξWSξKξM &&& . (104) 
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4.2.  Stability  

 

The stability of the system described by (104) can be calculated with the same semi-

discretization method described in section 3.2.2. Note that we can describe the straight edge 

tool by using an infinite helix pitch ( ∞=p ). By using a very large helix pitch ( ) we 

get the same stability chart as for the straight edge tool, validating our numerics. 

][1 mp =

Periodic chatter is caused by the flip bifurcation that occurs due to the parametric excitation. 

If ψ  is zero, we have that 

 

 +∈= k
Z
pkw , (105) 

 

so the excitation matrix is constant, and there is no parametric excitation. Hence, along such 

line in parameter space there can be no flip bifurcation and the stability boundaries are the 

some as in the zeroth order approximation (see section 3.2). For a straight edged tool it is 

proved in [12] that the flip bifurcation boundaries are closed curves (called lenses or islands) 

in the stability chart on every lobe except the first one. In the first lobe the period doubling 

boundary is not a closed curve. If we use a helical tool, lenses can be found in every lobe 

(shown in figure 29); the same phenomenon was observed in shown in [13]. 
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Figure 29: Period doubling islands in the first lobe caused by the helical edge. 

Parameters are 2=Z , 05.0ep =a , ][10 mmp = . 

 

 

4.3.  Motion of the tool centre  

 

We could calculate the vibration of the tool centre analytically from equation (103) in a 

similar fashion the straight edge model (see section 3.3.1.). This method assumes that only 

one edge is cutting. However this assumption is good only in a small region of the parameter 

space; it is valid if 

 

 
inout

2
φψφ

π
−+

≤Z . (106) 

 

We can see that this is only valid in the case of small axial immersion, or large helix pitch. 

This small parameter region is also contains three different cases of calculation method due to 

the fact that  is a non-smooth function of w too. So the analytical method is, in practice, 

too difficult to use in the general case. For this reason we solve the particular solution of (103) 

by using the firs  terms of Fourier series of 

jW

FN f~  (53). During the calculations the first 25 

terms were used ( 25F =N ). 
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Figure 30: Excitation force and its Fourier approximation. Red lines denote the x component; 

blue lines denote the y component of the approximated force. Black lines denote the 

components of the exact force. Parameters are 1=Z , ]/[4500 srad=Ω , , 

, 

][1 mmw =

][1.0 mmfz = ][25 mmp = , 2.0ep =a . 

 

In this method the particular solution of the tool-centre vibration is also given by a series of 

trigonometric functions (54) (as in section 3.3). Using this solution the motion of the edge 

 can be described by superposing this vibration on a cylinder. This cylinder is created 

by the edge of the rigid tool 

),( tze
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The vibration and the circular motion of the edges is parallel to the x-y plane, the sides of 

cylinder are parallel to the z axis. In spite of these symmetries the surface , where the 

edge is moving does not have regularity because we superpose the vibration onto the cylinder  

at the appropriate phase according to the helix angle which causes the deformation.  

),( tze
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Figure 31: Path of the helical edge and its section. 

Red surfaces denote the cutting phase, blue surfaces denote the flying phase. 

Parameters are 1=Z , ]/[2270 srad=Ω , ][3 mmw = , ][1.0 mmfz = , ][10 mmp = , 2.0ep =a . 

 

4.4.  Surface calculation 

 

To describe the surface we have to follow the calculation between (79) and (86), but in this 

case all the variables are a function of the z coordinate. The motion of the edge relative to the 

surface is given by 
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We have to determine the lines ( ), when the edge is on the boundary of the 

surface segment. These lines can be calculated from. 
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We need those points along the z axis which are closest to the surface. These points can be 

determined for up-milling by 
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and for down-milling by 
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It is not necessary that these lines are continuous curves. The lines (  and ) 

which determines the boundary of a surface segment consists of parts of different section 

lines. In figure 32 we use extreme parameters to show this phenomenon more clearly.  

)(start zt )(end zt

 

 
Figure 32: Surface segment boundaries formed by parts of different section lines. Blue and 

red surfaces denote the motion of the edge (a), yellow surfaces (b) denotes milled surface. 

Parameters are 2=Z , , ]/[1135 srad=Ω ][4 mmw = , ][2.0 mmf z = , , 95.1ep =a

][10 mmp = . 
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Thus we can describe the surface segment by 
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We can calculate the surface roughness )( zµ  by 

 

 ( ) ( )),(min),(max)( surfsurf tzytzyz
tt

−=µ , (113) 

 

where the result of /  is the maximum / minimum of the argument just along the t 

variable. In case of up-milling the surface location error is given by 

t
max

t
min

 

 ( ) RtzyzSLE
t

−= ),(max)( surf , (114) 

 

and for down-milling 

 

 . (115) ( ) RtzyzSLE
t

−−= ),(min)( surf

 

However we need some single parameter to describe the surface quality rather than functions 

of z. In practice the surface quality is described by the largest difference between the points of 

the surface. Using a tool with a helical edge there are two different deflections. The first is in 

the x direction, which is similar to surface roughness at the straight edge model. The second is 

in the z direction due to the changing SLE. This error is caused only by the helical edge, and 

hence always zero in the case of a straight edged tool. In real parameter space the change of 

SLE is at least ten times bigger then the error in the x direction and the wavelength of its 

repetition is of the order of the helix pitch (see chapter 5.2). For this reason it is not really a 

surface roughness but a surface waviness. Due to this fact, the surface roughness was 

separated into two parts. The first is the maximum of the deflection along the x direction: 

 

 ))((max z
zx µµ = . (116) 
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The second one is the waviness of the surface, given by 

 

 ( ) ( )(min)(max~ zSLEzSLE
zz

−= )µ . (117) 

 

To describe the surface location error the average of  was used, so )( zSLE
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These types of surface errors are represented graphically in figure 33. 

 

 
Figure 33: Schematic representation of the surface errors made by a helical tool, 

where R is the radius of the tool. Parameters are 1=Z , ]/[2270 srad=Ω , , 

, 

][3 mmw =

][1.0 mmf z = 1.0ep =a , ][150 mmp = .
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5. Investigated model 

 

To describe the effect of the parameters on the surface quality we choose a particular 

machine-tool and work-piece. The machine-tool is described by the same modal parameters as 

used in [1]. These parameters were determined experimentally. The mass ( ), damping (M K ) 

and the stiffness ( ) matrices were determined thorough modal analysis by a standard impact 

test procedure. 

S

 

[ ]kg
m

m

y

x
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

02008.00
001986.0

0
0

M , 

⎥⎦
⎤

⎢⎣
⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

m
Ns

k
k

y

x

155697.10
060312.1

0
0

K , 

 ⎥⎦
⎤

⎢⎣
⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

m
N

s
s

y

x

4454130
0866408

0
0

S . 

 

The average tool diameter is between 2mm and 25mm, though a tool with inserts usually has 

a larger diameter between 12mm and 100mm. During the calculations we use tools with an 

ordinary diameter (D=8 mm). 

The chosen material of the work-piece is AlMgSi0.5 aluminium alloy. It can be described by 

the tangential cutting coefficient ( ) and the non-dimensional force ratio ( ) tk rk
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These values were determined by measurement in [14]. 
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5.1.  Stability chart 

 

Our first task is to find regions in parameter space where tool motion is bounded. The 

simplest of these is where period motion exists and is stable. Then we do not have to calculate 

the surface for those parameter regions where the motion is unstable. The stability boundaries 

depend on four parameters (radial immersion ( ), chip width or axial immersion ( ), 

angular velocity of the tool ( Ω ) and the helix pitch ( )) and is generally plotted as a function 

of the angular velocity of the tool and the axial immersion (the chip width). 

epa w

p

First we investigate the effect of varying the radial immersion. Figure 34 shows the stability 

chart for different radial immersions of a straight edge model ( ∞→p ) with one tooth. A tool 

with one tooth is used to have an easier understanding of the milling process.  

 At small radial immersion we find flip bifurcations. These bifurcations occur due to the time 

dependent excitation matrix ( ). In the case of small radial immersion the cutting force is 

more impact like due to the short switching time of the step function (

W

g ). 

At large radial immersion the system loses its stability at smaller axial immersion because it 

gets more energy form the cutting force. In this case the ratio of the cutting phase and the 

flying phase increases. The longer cutting phase gives more energy to the system, and reduces 

the flying phase which can damp the energy.  

We can see that the stability lobes for up-milling and down-milling are very similar. At large 

radial immersion this is obvious because, in this case, the tool is cutting on almost the same 

region ( 0in ≅φ , πφ ≅out ). In the case of small radial immersion the cutting force is almost 

constant during the short cutting phase. The period of the excitation matrix is half that of the 

tool rotation, and so the value of the cutting force at the beginning of the cutting phase in up-

milling is the some as its value at the end of the cutting phase in down-milling. Therefore the 

shapes of the cutting force in time are similar, which cause the similarity of the stability 

charts.  
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Figure 34: Stability charts for different radial immersions. 

Parameters are 1=Z , ∞→p . 

 

Figure 35 shows the effect of the number of teeth on the stability. If we use a tool with more 

teeth, then the cutting phase is repeated over one revolution. This has a similar effect to 

multiplying the angular velocity of the tool. By using more teeth the ratio of the duration of 

the cutting and flying phases gets larger, which has a similar effect to a larger radial 

immersion, so the stable regions get smaller.  
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Figure 35: Stability charts for straight edge tool with different number of teeth. Note the 

variation of the horizontal scale of the charts. Parameters are 05.0ep =a , .  ∞→p

 

For surface finishing (end milling) a small radial immersion is always used. For this reason 

we check stability lobes for different helix pitches at 5% radial immersion with 4 teeth  

(shown in figure 36). Again the straight-edge tool is described as a tool with infinite helix 

pitch. We can see that the helix pitch has a great effect on the flip bifurcation boundary. A 

helical tool has a smoother force in time to such an extent that the cutting force can be time 
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independent. The excitation matrix is constant along defined axial immersion lines (see 

equation (105)). Along these lines, flip bifurcations cannot occur, so the flip bifurcation 

curves are separated between these lines. 

 

 
Figure 36: Stability charts for different helix pitch and small radial immersion. Along the 

dotted lines the excitation matrix is constant. Parameters are 4=Z , . 05.0ep =a
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At large radial immersion there is no flip bifurcation, but only Hopf bifurcations. For this 

reason there is no great difference between the stability charts corresponding to different helix 

pitches (see figure 37). 

 

 
Figure 37: Stability charts for different helix pitch and half immersion up-milling. 

Parameters are 4=Z , 5.0ep =a . 

 

5.2.  Surface 

 

We can now calculate the surface in parameter regions where the system is stable. The 

properties of the surface quality depend on the same parameters as the stability, moreover 

they also depend on the feed per tooth ( ). The surface quality is important only for end 

milling, where a small radial immersion is typically used. Thus we made the investigation at a 

fixed 10% radial immersion. Figures 38 and 39 show the surface location error ( ) (eq. 

(85) and (86)) and the surface roughness (

zf

SLE

µ ) (eq. (84)) for up-milling, over a stability chart 

for a straight edge tool with a typical feed per tooth ( ) and up-milling. Note that the surface 

waviness is always zero for a straight edge tool. 

zf
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Figure 38: Surface location error (a), (c), surface roughness (b), (d)for up-milling. 

Parameters are 2=Z , ][05.0 mmf z = , ∞→p , 1.0ep =a . 
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We can see that there are large offset errors if we are close to on angular velocities where the 

ratio of the natural frequency of the system and the angular velocity is close to an integer. In 

this case the tool vibration is close to resonance because the frequencies of higher harmonics 

of the cutting force are close to the natural frequencies. The peak points of the SLE are almost 

proportional to the coefficient of the appropriate term of the Fourier series of the cutting 

force; figure 40 shows this phenomenon. The peak points of SLE do not converge evenly 

because of the ‘impact-like’ cutting force. 

 

Figure 40: Surface location error p
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Figure 39 shows that the surface roughn

its peak points increase at lower freque

the SLE. The surface roughness depend

what generate the surface. At smaller a

higher frequency compared to the spin 

superpose on the path of the edge of th

path increases. This effect is shown figu

 

 
lotted against the number of peak points and the 

e cutting force. The vertical coordinate is the relative 

2=Z , ][1 mmw = , ][1.0 mmf z = , , ∞→p 1.0ep =a . 

eak point / number of the Fourier coefficient 

ess is also higher if we are close to the resonance, but 

ncies. This is caused by a similar effect described by 

s mostly on the curvature of the parts of the edge path 

ngular velocity the vibration of the tool centre has a 

frequency of the tool. For this reason more waves can 

e rigid tool over a turn, so the curvature of the edge 

re 41.  
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      ]/[454 srad=Ω ]/[568 srad=Ω  ]/[767 srad=Ω  ]/[1135 srad=Ω   
 

]/[2270 srad=Ω

Figure 41: Edge path in x-y [mm] plane at different angular velocity. 

Parameters are 2=Z , ][1 mmw = , ][1.0 mmf z = , ∞→p , . 1.0ep =a

 

Figure 42 shows the surface location error and the surface roughness as a function of the axial 

immersion along  parameter line, where the system is close to the vibration. 

Both of the errors are increasing at larger axial immersion. The cutting force is proportional to 

the axial immersion, so the vibration gets larger at larger axial immersion. 
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Figure 42: Surface location error and surface roughness as a function of the axial immersion. 

Blue lines denote stable process, red lines denote unstable process. 

Parameters are 2=Z , , ]/[1110 srad=Ω ][05.0 mmfz = , ∞→p , . 1.0ep =a

 

We can check the effect of the feed motion ( ) on the surface quality by plotting the surface 

properties against the feed per tooth ( ) and fixing all the other parameters (see figure 43). 

The cutting force is also proportional to the feed per tooth, so changing  has a similar 

influence on SLE as changing the axial immersion. The surface quality is also changed, but in 

v

zf

zf
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a different way, since it directly depends on the feed per tooth. (Recall that the stability does 

not depend on the feed per tooth). 

 

Figure 43: Surface location error, surface roughness for as a fu

Parameters are 2=Z , , ]/[1110 srad=Ω ][1 mmwz = ,
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Figure 44: Surface roughness for a helica
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Figure 45: Surface loca
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w Z / p ,number of the full helix pitch 

e can achieve the same surface quality between these points. There are 

 in a full helix pitch as the number of the ratio of the natural frequency 

of the tool. In these points the duration of the excitation is an integer 

f the natural vibration of the tool (see figure 46). 
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6. Non-linear model 

 

All the above calculations are based on the assumption that the vibration of the tool centre is 

small. But in some cases, when the system is close to resonance or we use a large axial 

immersion or feed per tooth, the vibration increases to a level that we can not accept this 

assumption. In this region we must calculate the chip thickness in a different way. 

We can calculate a more precise estimate of chip thickness ( h~ ) if we consider the velocity of 

the tool. Usually the chip thickness is defined as the size of the chip along the direction 

perpendicular to the velocity (see figure 47). In this case we can define an angle between the 

chip thickness and the side rake of the tool, called the lead angle (κ ). The cutting coefficient 

( ) depends on this angle in a highly complicated manner [21]; however we do not deal with 

this issue here. 

tk

 

 
Figure 47: Chip thickness. 

 

In this model we also need some restrictions. We suppose that the second derivative of the 

edge path is small. In this case the tangent of the tool path can be well approximated by a 

constant for a short period of time. 

A schematic representation of the geometry is shown in figure 48.  
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Figure 48: Graphical representation of geometry of the chip thickness. 

 

The chip thickness of the jth tooth ( ) can be calculated as a simple projection of jh~ Zf
~  to , 

which is a unit vector tangent to the velocity of the j
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Using (119) and (120) the chip thickness is given by 
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In this model ( jh~ ) can be negative so we have to use a step function ( ) to neglect the 

negative cutting force, so 

jH

 

  ( )
⎪⎩

⎪
⎨
⎧ <

=
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0~,1~ j
jj

h
hH  (122) 

 

We use the same assumptions for the cutting force as used in section 3.1, that is to say we use 

a linear force model that has  (17), where the radial cutting force is proportional to 

the tangential cutting force (15), (16). Hence we can make the system equation from (6) 

which is given by 
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Eq. (123) is a non-linear DDE. In this model the system equation cannot be separated into two 

parts. We used DDE-BIFTOOL to find the periodic solutions and to check the stability of the 

solution of system. In this case the stability charts also depend on the feed per tooth. We 

compute the stability chart for different feed per tooth (see figure 49). We get the same 

stability chart as for the linear model (described in chapter 3) if we use a very small feed per 

tooth, because in this case the vibration of the tool is very small. For larger feed per tooth we 

found a new type of stability loss: a fold bifurcation. In this case an eigenvalue of the Floquet 

transition matrix (Φ ) crosses the unit circle at the +1 (figure 50). 
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Figure 49: Stability chart for different feed per tooth. Lines denote the stability boundary of 

the non-linear model, shaded region denote the stabile region of the linear model. 

Parameters are 1=Z , 1.0ep =a , ∞→p . 

 
Figure 50: Stability losing by fold bifurcation. 

 

It is not necessary that the unstable vibrations tend to infinity for the non-linear model. For 

this reason we follow the solution for ]/[2253 srad=Ω . We create a bifurcation diagram by 

plotting the amplitude of the vibration against the axial immersion (figure 51). We found that 

the fold bifurcation is a boundary of a bi-stable region. 

 

 

Figure 51: Bifurcation diagram. Blue lines denotes stable periodic solution, red lines denote 

instable periodic solution. Parameters are =Z , ]/[2253 srad=Ω , ][5.0 mmfz = , 1.0ep =a . 
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We can see in figure 49 that this type of bifurcation can occur for even small radial immersion 

if we are close to resonance. Such behaviour cannot be described with the linear model. Thus 

we cannot use the simpler linear model in those parameter regions where the amplitude of the 

vibration is large. 

We could use the non-linear model as a better approximation to the linear model, but the non-

linear model also has some drawbacks. Firstly two separated step functions ( ) are used, 

but in reality this two functions are coupled. 

jj Hg ,

The second problem is the force model. If the amplitude of the vibration is large, then the 

variable lead angle (κ ) is significant, inconsistent with our assumption of a constant cutting 

coefficient ( ). tk

Thirdly, the teeth can leave the surface and make contact again during one cutting phase. In 

this case the surface is not formed form the current tooth path. To describe the surface we 

need to consider more than one time delay. Our model does not take this ‘fly over’ effect into 

consideration. 

Finally, the Fourth problem is that the model is good only for a tooth path with small 

curvature. 
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7. Conclusion 

 

This report has investigated the dynamics of milling, with particular fouls on the milled 

surface. First we investigated a 2 degree of freedom model with a straight edged tool, to 

develop our methods and have a comparison for later more complicated models. We 

determined the system equation for the general case of milling. The equation was separated 

into two parts, which described the periodic motion of the tool centre and the stability of the 

system.  

We computed the stability chart by using the semi-discretization method. To check our result 

we also calculated the stability using the Matlab package DDE-BIFTOOL. The results of the 

two numerical methods fitted very well, so the accuracy of the semi-discretization method 

was found to be good enough for later use. In the stable region of the stability chart we 

examined the properties of the transient motion. We found that there are special regions where 

it dies out much faster. 

We then turned to calculating properties of the milled surface. First we calculated the periodic 

motion of the tool analytically. This analytical solution can be used for real technical 

parameters of end-milling. We also checked this solution with a numerical time domain 

simulation, and we showing the problem of the small damping of the system. We used this 

periodic solution to generate the surface and define two properties to describe the surface 

quality. The first was the surface location error which is an offset error, between the desired 

and the milled surface, and the second was the surface roughness, which is the biggest 

deflection of the milled surface. 

We then moved on to considers a helical tool. We began by determining the equations of 

motion with a helical tool. We calculated the excitation force analytically. This equation was 

also separated to two parts. We modified our semi-discretization method and solved the first 

part which described the stability of the system. We found the phenomenon that a flip 

bifurcation cannot be formed along special parameter lines determined by the helix pitch in 

the stability chart. The flip bifurcation occurs due to the parametric excitation. For given axial 

immersion the excitation matrix is time independent, so these parameter lines separate the flip 

bifurcation islands. 
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We calculated the periodic motion of the tool centre  (the second part of the system equation 

of the helical model). The analytical method proved be too difficult to use in the general case. 

For this reason we determined the motion of the tool centre by expanding the excitation as a 

Fourier series. 

Using this solution we generated the motion of the edges. We found that this motion has no 

regularity in the direction of the axis of the tool (z), despite the fact that the motion is parallel 

to the x-y plane. Thus the milled surface had to be described as a three dimensional surface. 

We calculated the properties of the surface with the same parameters as in the straight edged 

model, as well as defining a new parameter which describes the deflection along the z 

coordinate: the surface waviness. 

We took the modal parameters of a real machine-tool, and the cutting coefficients from 

realistic material to describe the effect of the parameters.  

First we checked the effect of the parameters on the stability chart. We found that large axial 

immersion can be used at spin speeds, where the ratio of the natural frequency of the system 

to the angular velocity is close to an integer. This effect derives from the well know ‘lobe-

structure’. 

Our calculations supported the result of practical experiments, that a larger axial immersion 

can be achieved by using a small radial immersion, and tool with a few teeth. We found that 

the helix pitch has no great influence on the size of the stable region, but just changes the 

shape of the boundary lines. 

We then checked the effect of the parameters on the surface quality. We found that the 

advantages that we can use large axial immersion at the above mentioned angular velocities 

cannot be used in case of straight edged tool, because in this region the surface quality is very 

poor due to we are very close to resonance. 

We found that the surface location error changed almost proportionally to the axial 

immersion; however the surface quality got significantly worse for increasing axial 

immersion. 

The feed per tooth has the same influence on the surface properties as the axial immersion, 

but according to the linear model the stability does not depend on this parameter. 

Our most important observation was that if we use an appropriate helix pitch, good surface 

properties can be achieved in the case of resonance angular velocities. We found new 
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phenomenon that the appropriate helix pitches are not just those where the excitation matrix is 

time independent (so there is no flip bifurcation), but that there are others equally spaced 

between them, where the spacing depends on the angular velocity. 

We found that large vibrations can occur in some parameter region, so the commonly used 

approach of the statically chip thickness is no longer valid. Thus we construct a new non-

linear model which considers the vibration of the tool. Despite not being an exact model, it 

showed that new type of behaviour appears in the system such as bistable regions caused by 

fold bifurcation. 

Further aims would be to make an experimental validation of the calculated surface qualities, 

as well as a more precise model of the chip thickness which considers the effect of the state-

dependent delay. We would also investigate the effect of higher modes of the machine-tool in 

the stability chart. 
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9. Notation 

 

ae  radial immersion [m] 

aep  dimensionless radial immersion [1] 

Ai, Bi  coefficient of the the ith first order ODE in semi-discretization method 

  Bi belongs to the retarded part 

ll ba ,   coefficient of the Fourier series of the cutting force 

ll dc ,   coefficient of the Fourier series of the motion of the tool centre 

D  diameter of the tool [m] 

e(t)  general variable for the motion of the edge 

)(rel te   general variable for the motion of the edge relative to the surface 

F  general force [N] 

Fj  force [N] 

Ft,j, Fr,j  tangent and radial components of the force of jth tooth [N] 

)( tf   excitation force of the non-delayed system 

fz  feed per tooth [m/tooth] 

( )tg j   step function 

hj, , jh~   chip thickness for linear and non-linear model [m] 

hj,stat, hj,din static and  dynamic chip thickness of the jth tooth [m] 

jH   setp function to neglect the negative force 

K  damping matrix [Ns/m] 

kx,ky  components of the diagonal damping matrix [Ns/m] 

k,kt  cutting coefficients [N/m2] 

M  mass matrix [kg] 

m  number of single ODEs in the semi-discretization method 

mx,my  components of the diagonal mass matrix [kg] 

NF  number of the terms in the truncated Fourier series 

Nfull  number of the full period 

jv
0n   unit vector tangent to the velocity of the jth edge 

Pi, Ri  element of Zi in semi-discretization method 
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p  helix pitch 

q(t)  the general coordinate of the tool centre ( ) ( )
( )⎥⎦

⎤
⎢
⎣

⎡
=

ty
tx

t
c

cq  [m] 

 R  radius of the tool [m] 

S  stiffness matrix [N/m] 

sx,sy  components of the diagonal stiffness matrix [N/m]  

s(t)  parametrical graph for surface segment 

SLE  surface location error 

t~   relative time coordinate 

inin  , φT   time, angle when the tooth reaches the surface, start cutting 

outout  , φT  time, angle when the tooth leaves the surface, finish cutting 

cutcut  , φT  time, angle length while a tooth cut 

flyfly  , φT  time, angle length while a tooth does not cut  

( ))( tjφT  transformation matrix 

t∆  Time interval of semi-discretization method [s], and time step of the time 

domain simulation 

u(0)  position and velocity of the tool centre at the beginning of the cutting 

)~( tu   general variable in the shifted time for the first order non-delayed system 

equation   

u(t)  general variable for the motion of the tool centre 

ui  general variable for the ith first order ODE in semi-discretization method 

[ ]Tttttt )()()()()( ηξηξ &&=u  

csk vvv ,,  coefficients of the constant, the sin and the cos part of the excitation in the first 

order non-delayed system equation 

vi  variable for the discreet map in semi-discretization method 

v  velocity of feed [m/s] 

vp  speed of the cutting edge [m/s] 

w  chip width, axial immersion [m] 

)( tW   periodic excitation matrix for the tool with straight edge [N/m] 

)(~ tW   periodic excitation matrix for the tool with helical edge [N/m] 

W   average of the excitation matrix 
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( )tx   Solution of the non-delayed part of the system equation  [m] ( ) ( )
( )⎥⎦

⎤
⎢
⎣

⎡
=

ty
tx

tx

x(t)  horizontal component of the tool centre [m] 

y(t)  vertical component of the tool centre [m] 

Z  number of teeth [1] 

Zi  coefficient of the discreet map in semi-discretization method 

µ  the surface roughness for straight edged tool 

µx
  the surface roughness for helical tool 

µ~   surface waviness 

µ0
  the surface roughness in of the rigid tool and rigid work-piece model 

µ1
  the biggest eigenvalue of Φ  

ψ   total arc of the helical edge 

ψ~   reminder arc of the helical edge πψ 2~ ≤  

κ   lead angle 

Ω   angular velocity of the tool [rad/s] 

jφ   angular position of jth tooth [rad] 

'jφ   cyclical coordinate for the angular position of jth tooth [rad] 

Φ   Floquet transition matrix 

( )tξ   Solution of the delayed part of the system equation 
 

( ) ( )
( )⎥⎦

⎤
⎢
⎣

⎡
=

t
t

t
η
ξ

ξ
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