
RANM 2019, �Lódź, Poland Conference Abstracts

Role of the Limit Directions in the Nonsmooth Dynamics of Towed
Wheels9 May

9:25
Room 2 Mate Antali∗ and Gabor Stepan†

Department of Applied Mechanics, Budapest University of Technology an Economics
e-mail: ∗antali@mm.bme.hu, †

Introduction The vibrations of towed wheels called shimmy appears at several engi-
neering problems such as the nose gears of aeroplanes, front wheels of motorcycles, or the
wheels of baby carriages and shopping carts. In this paper, we consider two simple models
of the towed wheels consisting of rigid bodies in the presence of dry friction between the
wheel and the ground (see Fig. 1). Due to the Coulomb friction model, the system has a
codimension2 discontinuity in the phase space. Our purpose is to utilize some recent re-
sults of nonsmooth dynamics to understand the discontinuous behaviour of these systems.

Figure 1: Left panel: the rigid model of the towed wheel with two degrees of freedom (ψ, );
right panel: the elastic model of the towed wheel with three degrees of freedom (ψ, , w).
The third degree of freedom is necessary to model the phenomenon of shimmy

The rolling wheel– 2 and 3 DoF models The minimal model for the lateral motion of
the towed wheel is a 2 degree-of-freedom (DoF) model, which is referred as the rigid model.
This model can be seen in the left panel of Fig. 1, where the rotation angle of the wheel is
denoted by θ and the angle of the bar is denoted by ψ. Due to the nonholonomic constraint
of rolling and the rotational symmetry of the wheel, the dynamics can be reduced to the
single kinematic equation ψ̇ = v/L sinψ, where L is the effective length of the caster and
v is the constant speed of the vehicle. In this model, the angle ψ of the caster always tends
exponentially to zero without vibrations.

For the modelling of the vibrations, the elastic deformation w can be introduced as a
third degree of freedom, which is related to the finite stiffness of the caster at the king
pin. (See the right panel of Fig. 1.) The dynamics of this model leads to a system of
three first-order differential equations. It is known from the literature that in this model,
vibrations occur which can be unstable. (See e.g. [1].) If the geometry or the mass of the
bodies changes then the trivial solution ψ ≡ ω ≡ w ≡ 0 can exhibit a subcritical Hopf
bifurcation. It can be derived that if the stability condition mcL

2 > CmwR
2 is satisfied

then the trivial solution ψ ≡ 0 of the caster angle is asymptotically stable. Here m c and
m w is the mass of the caster and the wheel, respectively, R is the radius of the wheel
and the dimensionless parameter C depends on the mass distribution of the bodies. For
a sufficiently large wheel, mcL

2 < CmwR
2, and unstable vibrations of the caster appear.
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For the linearly unstable parameters, the amplitude of vibrations are increasing expo-
nentially. Moreover, even in the linearly stable case, the amplitudes are increasing outside
the unstable limit cycle of the subcritical Hopf bifurcation. In both cases, the growth
of the vibrations are limited by different physical effects: For example, nonlinear contact
stiffness at the pin becomes important, or the rotating caster can hit other parts of the
vehicle, or damage of the parts can occur. A further possible effect is the slipping of the
wheel on the ground.

Effect of slipping The assumption of a simple Coulomb friction model between rigid
bodies can be considered as a limit case of the elastic tyre models when the velocity of the
vehicle is very small or the stiffness of the tyre is very large. Moreover, the understanding
of the structure of the dynamics can be a basis of the further research on more complicated
models.

If the slipping of the wheel is considered then the rolling constraint is released and we
have to introduce two further state variables. It is convenient to choose the components
u1 and u2 of the slipping velocity of the wheel at the contact point in an appropriately
chosen coordinate system. Then, the components Ff1 and Ff2 of the friction force are
determined by the Coulomb friction model in the form

Ff1 = −µFn
u1�

u21 + u22
, Ff2 = −µFn

u2�
u21 + u22

(1)

where Fn is the normal force and µ is the friction coefficient. Then the phase space of
the rigid model is extended from 1 to 3 dimensions, and the phase space of the elastic
model is extended from 3 to 5 dimensions. In both cases, the rolling condition u1 =
u2 = 0 corresponds to a codimension-2 subset of the phase space where the dynamics of
the slipping is discontinuous. The resulting nonsmooth dynamical system is an extended
Filippov system, and it can be analysed by the mathematical tools published recently [2, 3].

Results It can be shown that the dynamics of the system can change between slipping
to rolling strictly along some specific limit directions. A limit direction can be described by
an angle φ in the plane of the phase variables u1 and u2 , which angle shows the direction
of the slipping velocity at the contact point, as well. It can be proved that in both models
of the towed wheel in Fig. 1, four generic scenarios occur with different number and
attracting properties (see Fig. 2).

Figure 2: The four generic scenarios of the limit directions in the plane of the slipping
velocities u1 and u2

In the case of the rigid model, these limit directions determine the number of the
possible changes between slipping and rolling before reaching the trivial solution. In the
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case of the elastic model, the numerical simulations show stable periodic solutions with
slipping and rolling intervals. Based on the analysis of limit directions, we can understand
and categorize the different cases of these vibrations.
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