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Abstract
In this project, the Coulomb friction is used to model the tan-

gential contact forces between the railway wheelset and rails. This
results a discontinuous model containing the pure rolling and the
pure slipping behaviour. By this approach, a nonsmooth dynami-
cal system is obtained. The condition of transition between rolling
and slipping is determined by similar methods to those of piecewise
smooth systems

Introduction

We investigate the model of a single railway wheelset run-
ning on a straight track with a constant speed v (see Figure
1). We focus on the lateral motion (y) and the yaw rotation
(ψ) of the wheelset. In vertical and longitudinal direction, we
assume rigid connection between the wheelset and the vehi-
cle, and the resultant effect of lateral and yaw suspensions are
modelled by springs.
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Figure 1: The mechanical model. Left panel: sketch of geometry from
front view. The equivalent conicity h depends on also the local geome-
try of the profiles at the contact points. Right: kinematic variables and
friction/creep force components from top view.

Mechanical model

Equations of motion of the wheelset. The two degree-of-
freedom model results to the equations of the motion

Jψ̈ + sψψ − 2bFx(ux , uy) � 0,
m ÿ + sy y − 2Fy(ux , uy) � 0,

(1)

which can be found in the literature (see e.g. [1]). The nota-
tions can be found in Table 1.

y lateral displacement
ψ yaw angle
ux , uy creep velocities
v vehicle speed
b half track width
r rolling radius
h equivalent conicity

m mass of the wheelset
J moment of inertia
sy lateral stiffness
sψ yaw stiffness
Fx , Fy friction/creep forces
C Coulomb friction force
kx , ky creep coefficients

Table 1: Notations of the mechanical model (1)-(2)-(3).

Approximate values of creep velocities. By using the as-
sumption h � 1, the linear approximation of the creep ve-
locities become

ux ≈ bψ̇ + vh/r · y , uy � ẏ − vψ. (2)

Nonlinear creep model In the literature, nonlinearity in the
creep forces are usually described by a piecewise polynomial
model (see e.g. [2]). In this analysis, we consider the nonlin-
ear creep model

Fx(ux , uy) � −C ux√
u2

x+u2
y

tanh
(

kx

Cv

√
u2

x + u2
y

)
, (3)

and the formula for Fy is constructed analogously. In the limit
cases, we get:
• Limit case 1 (linear creep model, applied first by [3]):√

u2
x + u2

y �
Cv
kx

→ Fx(ux , uy) ≈ −kx
ux

v
(4)

• Limit case 2 (Coulomb friction model):√
u2

x + u2
y �

Cv
kx

→ Fx(ux , uy) ≈ −C ux√
u2

x+u2
y

(5)

In this analysis, we consider the Coulomb model (5), which is,
thus, a consistent limit case of the nonlinear creep model.

Dynamics with the Coulomb model

Slipping dynamics Equations (1), (2) and (5) lead to the fol-
lowing system of 4 first-order ordinary differential equations
(the new notations can be found in Table 2):

u̇x � −

(
α2

x − ω
2
)

x +
ω
λ

uy − ηκ
ux√

u2
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y

,

u̇y � −

(
α2
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2
)

y − λωux − κ
uy√

u2
x+u2

y

,

ẋ � ux −
ω
λ

y ,

ẏ � uy + λωx.

(6)

The discontinuity manifold Σ is the hyperplane determined by

u �

√
u2

x + u2
y � 0. This is a nonsmooth dynamical system

but it is not piecewise smooth (see e.g. [4]), because Σ is a
codimension–2 submanifold of the state space. From approach-
ing Σ from different directions, we get different limits for the
accelerations u̇x and u̇y.

x � bψ normalised yaw angle
ω � v

√
h/(br) angular frequency of kinematic oscillations

λ �
√

r/(hb) geometric factor from conicity

αx �

√
sψ/J natural angular frequency of yaw motion

αy �
√

sy/m natural angular frequency of lateral motion
η � mb2/J factor from moment of inertia
κ � 2C/m normalised Coulomb friction force

Table 2: Definition of the transformed parameters. For physically relevant
parameters, λ ≈ 2 . . . 10, η ≈ 1 . . . 10.

Rolling dynamics In the discontinuity set Σ, the dynamics
is determined by the assumption of pure rolling:

u̇x � 0, u̇y � 0, ẋ � −
ω
λ

y , ẏ � λωx. (7)

Trajectories of (7) are ellipses defined

λ2x2 + y2
� A2 (8)

where A is the amplitude of the oscillation expressed by the
lateral displacement y.

Transition from rolling to slipping

Failure of standard method Usually, dynamic condition of
rolling is determined from the Coulomb model by calculat-
ing the static friction force. However, the presented model is
statically indetermined in the case of rolling, thus this method
cannot be applied. Instead, we use dynamical methods of
codimension-2 discontinuity sets (see also [5]).

Polar coordinates around the discontinuity set Let us
switch to polar coordinates by introducing

• the magnitude u �

√
u2

x + u2
y of creep velocity, and

• the direction angle φ � arctan(uy , ux) of creep velocity.
The dynamics is given by

u̇ � u̇x cosφ + u̇y sinφ, uφ̇ � u̇y cosφ − u̇x sinφ. (9)

Attracting and repelling directions If a trajectory of (6)
reaches the rolling state u � 0 from the direction φ � φ1 then

lim
u→0

uφ̇(u , φ1, x , y) � 0. (10)

Let us define the limit u̇∗ of the of the contact points, which
has a different value depending on the limit direction φ1:

u̇∗(φ1, x , y) :� lim
u→0

u̇(u , φ1, x , y). (11)

Then, there are two possibilities (see Figure 2):
• If u̇∗(φ1, x , y) < 0 then the trajectory is pulled towards Σ

(attracting direction).
• If u̇∗(φ1, x , y) > 0 then the trajectory is pushed away from
Σ (repelling direction).
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Figure 2: Sketch of the trajectories projected into the orthogonal space ofΣ
at two example points. The brown lines denote the attracting or repelling
directions. Left panel: at this point, we have four attracting directions. In
this case, the trajectories cannot escape from Σ, that is, there is no tran-
sitions from rolling to slipping. Right panel: φ1 is a repelling direction
and φ2 is an attracting direction. Trajectories can escape from Σ along φ1,
which means transition from rolling to slipping.

Results

Condition of swithing from rolling to slipping By calcu-
lating the criteria prescribed above, we get the the ellipse(

α2
x − ω

2
)2

x2 + η2
(
α2

y − ω
2
)2

y2
� κ2η2. (12)

Inside the ellipse, there are only attracting directions, and the
rolling dynamics (7) is valid (see Figure 3). Outside the ellipse,
there is an instantaneous transition to the slipping dynamics
(6), the trajectory goes out to the 4 dimensional state space.

By comparing (8) and (12), the maximum admissible ampli-
tude of the oscillation without slipping is Amax � min(A1,A2),
where

A1 �
κηλ

|α2
x − ω2|

, A2 �
κ

|α2
y − ω2|

. (13)

The results can be seen in Figure 4. The intersection A1 � A2
occurs at

ωI �

√
ηλα2

y + α2
x

ηλ + 1
, ωII �

√
ηλα2

y − α
2
x

ηλ − 1
. (14)

If α2
x > ηλα2

y then ωII vanishes. At these values, the ellipses
(8) and (12) are proportional. Then, at the critical amplitude
A1 � A2, a trajectory of (7) lays exactly on the boundary of the
slipping.
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Figure 3: Sketch of the phase portrait of (7). The black solid lines denote
the valid rolling trajectories. The blue ellipse denotes the boundary of the
slipping. At the red crosses, the trajectories reach the boundary and they
escape to the 4 dimensional space described by (6). The brown dotted lines
denote virtual trajectories which are not realised due to slipping.
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Figure 4: Maximum admissible amplitude of oscillations without slip-
ping. The shaded area denote the region where rolling is possible, and
outside that, slipping occurs.The sub-figures denote the three typical cases
according to the natural frequencies αx and αy. Left: α2

x > ηλα
2
y. Middle:

ηλα2
y > α

2
x > α

2
y. Right: α2

y > α
2
x.

Conclusions

From the result, we can propose the following conclusions:
• The Coulomb friction model is a consistent limit case of the

nonlinear creep model for large creeps.
• The description by a nonsmooth dynamical system pro-

vides a method for calculating the condition of slipping.
• We obtained the maximum admissible amplitude of oscil-

lations without slipping of the wheelset.
• Forthcoming research: Properties of oscillations at the

boundary could be possibly used to determine the periodic
solutions in the slipping region.

References
[1] J. P. Meijaard: The motion of a railway wheelset on a track or on a roller rig, Procedia

IUTAM 19 274 – 281, 112:151–157, 2016.

[2] P. J. Vermeulen, K. L. Johnson : Contact of Nonspherical Elastic Bodies Transmitting
Tangential Forces, Journal of Applied Mechanics, 31(2):338–340, 1964.

[3] F. W. Carter: On the action of a locomotive driving wheel, Proc. Roy. Soc. A, 112:151–
157, 1926.

[4] M. di Bernardo and et al.: Piecewise-smooth Dynamical Systems, Springer, 2008.

[5] M. Antali, G. Stepan: Nonsmooth bifurcations of a dual-point-contact ball, Nonlinear
dynamics, 83:685–702, 2016.

Acknowledgements
The research leading to these results has received funding from the European Research
Council under the European Union’s Seventh Framework Programme (FP/2007-2013),
ERC Advanced Grant Agreement n. 340889. A.M.D.G.


