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Nonsmooth analysis of a simple rolling-sliding
mechanical system with Coulomb friction

Mate Antali†, Gabor Stepan‡

Abstract

If both rolling and sliding is considered between rigid bodies, simple Coulomb friction can
cause discontinuities in the dynamics (see e.g. [2]). Conditions of rolling and rolling-
sliding transitions can be easily identi�ed in the nonsmooth dynamical system, using
the notions of Filippov systems. These correspondences are demonstrated on a simple
example of a rolling disk, also considering global behaviour and symbolic dynamics.

1. Mechanical model

Let us consider a rigid disk in 2D, which can roll or slide on the ground according to
Coulomb's law. The centre of the disk is connected to the wall by a spring. The dis-
placement and velocity of the centre of the disk is described by u and v, respectively,
and the velocity of the contact point is described by w.
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Figure 1: Mechanical model (left) with the characteristic curve of Coulomb's law (right). Notations:
m: mass; J : mass moment of inertia; k: sti�ness; µ: friction coe�cient

The equations of motion of the disk can be transformed into a system of �rst-order
di�erential equations in the form

u̇ = v; v̇ = − k
m
u− µg sgnw; ẇ = − k

m
u− µg1 + j

j
sgnw (1)

for the sliding case (w 6= 0) and in the form

u̇ = v v̇ = − k

m(1 + j)
u ẇ = 0 (2)

for the rolling case (w ≡ 0). Here j := J/(mr2) describes the mass distribution of the
disk, j = 0 for a particle, j = 1 for a circle and j = 0.4 for a solid disk. In the rolling
case, we also require

kj|u| ≤ µgm(1 + j), (3)

according to Coulomb's law.

2. Nonsmooth analysis by means of a Filippov system

By transforming the sliding equations (1) into a dimensionless form, we get the Filippov
system ẋẏ

ż

 = F (x, y, z) :=

{
F+(x, y, z) if H(x, y, z) > 0
F−(x, y, z) if H(x, y, z) < 0

(4)

on the phase space {(x, y, z) ∈ R3}, where the switching function is H(x, y, z) := z
and the vector �elds are de�ned by

F+(x, y, z) :=

 y

−(1 + j)
(
x + j

1+j

)
−(1 + j)(x + 1)

 ; F−(x, y, w) :=

 y

−(1 + j)
(
x− j

1+j

)
−(1 + j)(x− 1)

 (5)

The switching manifold Σ ⊂ R3, for which H(Σ) = {0}, is now the z = 0 plane. In Σ,
F is not determined, but an induced �sliding� vector �eld F 0 can be de�ned by using
for example, Utkin's equivalent method (see [1], p.77.), and we get

F 0(x, y, z) =

 y
−x
0

 (6)

The induced �eld F 0 has a sense only in the �sliding region� Σ0 ⊂ Σ, where the switch-
ing surface is attracting from both sides. In our case, Σ0 = {(x, y, 0), |x| < 1}, which
means an in�nite strip in Σ, around the x = 0 axis.
One can check that the induced dynamics F 0 coincides with the dynamics given from

the rolling equations (2). Moreover, the derived Σ0 set precisely satis�es the rolling
condition (3). Thus, (mechanical) sliding motion is the generic behaviour of the system,
and rolling motion can be considered as the induced sliding dynamics (in Filippov sense)
on the attracting portion of the switching surface.

3. Local behaviour and rolling-sliding transitions

Transitions between the possible dynamic cases (sliding in both directions and rolling)
can be explained in the nonsmooth system as follows, see also Figure 2.

• if a (mechanical) sliding trajectory intersects the z = 0 plane outside Σ0, the direction
of sliding changes without rolling (F+ → F− or F−→ F+) (Fig. 2/a)

• if a (mechanical) sliding trajectory intersects the z = 0 plane inside Σ0, it �sticks� into
the switching surface and the disk starts rolling (F+ → F 0 or F−→ F 0) (Fig. 2/b)

• if a rolling trajectory reaches the boundary of Σ0, it separates from the switching
surface, and (mechanical) sliding starts (F 0 → F− or F 0 → F+) (Fig. 2/c)
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Figure 2: Di�erent types of rolling-sliding transitions in the nonsmooth system

4. Global behaviour and symbolic dynamics

The trajectories of the system are unique in forward direction, but they are not unique
in backward direction, which is a usual e�ect caused by the discontinuity. Due to the
energy loss of sliding, the limit set of the system is the unit circle on Σ0 around the
origin, which contains all the circular trajectories of the rolling motion without passing
the boundary of Σ0.

Let us characterise the trajectories by a series of +, 0 and − symbols, according to the
rolling or sliding states (F+, F 0 or F−) of the dynamics in time. This symbolic dynam-
ical description is useful to distinguish the typical global behaviours of the trajectories.
Numerical analysis shows, that the possible long-term behaviour of the trajectories can
be either (0) (type A), reaching a continuous rolling state of any circular trajectory, or
(+0− 0 + 0− 0 . . . ) (type B), in�nite transitions between sliding and rolling.

Any circular trajectory has a basin of attraction containing two one-parameter families
of type A trajectories, characterised by (+0) and (−0). Moreover, the basin of attrac-
tion of the unit circle contains all the type B trajectories. Before reaching the periodic
(+0− 0) cycle, type B trajectories have a wide variety of behaviour, containing rolling
and sliding.

Figure 3: A typical type A trajectory can be seen on the left with the boundary of the region type
A and B trajectories. Outside this region, all trajectories tend to the unit circle through in�nite
number of rolling-sliding transitions. A typical example for these type B trajectories can be seen on
the right.
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Figure 4: Time histories of a typical type B oscillation. The decrease of the amplitude in state
variables x and y is linear at the beginning, and it becomes exponential after a while. On the graph
of z, the rolling and sliding intervals can be easily identi�ed.
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