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Abstract We analyse the dynamics of a basketball
which rolls around the rim of a basketball hoop. The
rolling steady motions are determined, and we inves-
tigate falling, slipping, and instability. The qualitative
behaviour of the global dynamics is analysed and the
possible trajectories are categorised.We investigate the
effect of initial conditions which cause the basketball
to fall inside or outside the basket or to remain on the
rim.

Keywords Basketball · Basketball rim · Steady
motion · Rolling ball

1 Introduction

In basketball, one of the most exciting phenomena is
when the ball rolls around the rim of the hoop several
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times, and the observer cannot predict whether it falls
inside or outside the basket. Analysis of this type of
motion is the motivation of the research work in this
paper.

The basketball throw was analysed in [8,19] focus-
ing on the appropriate shooting angle and velocity.
Later, the outcome of the different shooting initial con-
ditions was investigated numerically [11,27] including
the effects of bounces of the ball on the rim and of air
resistance. The different shooting strategieswere inves-
tigated analytically by Huston and Grau [16]. Several
numerical simulations were published by Okubo and
Hubbard [20,21,23], focusing on the ball-rim inter-
actions and rebounds of the ball. Other works deal
with the identification of the parameters of the bas-
ketball itself from measurements [2,22]. The dynam-
ics of the basketball on the rim is similar to that of
the golf ball rolling on the edge of the hole [14,15].
The problem of a sphere rolling on different types of
fixed [6,7,13,28] or rotating [5,17] surfaces contains
many interesting dynamical details related nonholo-
nomic constraints conserved quantities. The dynamics
of rolling disk on a flat surface [24] has some structural
similarities to that of the basketball, as well.

In the present paper, the main goal is to analyse
and explain the long-term rolling of the basketball
around the rim by considering the nonlinear dynamics
of a rigid body model of the ball-rim system. Previ-
ously, Liu et al. [18] discovered the existence of a two-
parametric family of steadymotions in a similar model.
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The stability of these steady motions was investigated
by the authors in [12].

In the present paper, we provide a thorough analysis
of the ball rolling on the rim. The effects of slipping and
falling from the rim are included. The steady motions,
the global dynamics of the phase space of the system
and the physical limitations of the long-term motion
are analysed in detail.

The paper is organised as follows. In Sect. 2, the
mechanical model is presented and the equations of
motion are derived for the basketball rolling and slip-
ping on the rim. In Sect. 3, the steady motions of the
rolling ball are found and the physical restrictions of
these solutions caused by instability, slipping, falling
and limited kinetic energy are determined. In Sect. 4,
the global dynamics of the rolling ball is analysed based
on the symmetries of the system, and the possible tra-
jectories are categorised. Section 5 focuses on the long-
term realisable rolling motions.

2 Mechanical model

2.1 Configuration

The basketball is modelled as a rigid sphere of radius
r , and the rim is modelled as a rigid torus with major
radius R and minor radius a. A sketch of the system
can be seen in Fig. 1, and the parameters of the model
can be found in Table 1.

During the analysis, we focus on describing the
dynamics of the ball which is already in permanent
contact with the rim—including both rolling or slip-
ping. The possible collisions preceding this state are
not covered by the calculations, but the conditions of
separation from the rim are checked from the normal
contact force.

Let us consider the orthonormal basis (e1, e2, e3)
fixed to the rim, where the basis vector e3 is perpendic-
ular to themiddle plane of the rim. ) From the geometric
centre O of the rim, the location of the contact point C
is given by

rOC = (R − a cosβ)(sin α e1 − cosα e2)

+a sin β e3, (1)

where α denotes the angle around the circumference
of the rim and β denotes the angle around the cross-
section of the rim (see Fig. 1). Note that at β = 0, the

contact point is located in the middle plane of the rim
in the inner side.

At the contact point C , we define another orthonor-
mal basis (n1,n2,n3) in the following way: Let n1 and
n3 be the unit vectors tangent to the parameter lines of
α and β of the torus,

n1 = ∂rOC/∂α

‖∂rOC/∂α‖ = e1 cosα + e2 sin α, (2)

n3 = ∂rOC/∂β

‖∂rOC/∂β‖ = sin β(sin α e1 − cosα e2)

+ cosβ e3, (3)

and let

n2 = n3 × n1 = cosβ(cosα e2 − sin α e1)

+ sin β e3 (4)

be the unit vector normal to the rim surface at the
contact point C . The connection between the bases
(e1, e2, e3) and (n1,n2,n3) can be given in the form

n1 = Te1, n2 = Te2, n3 = Te3, (5)

where T(α, β) denotes the proper orthogonal tensor
defined by (2)–(4). Note, that this tensor can be com-
posed from two rotations in the form

T = Q(β, cosαe1 + sin αe2)Q(α, e3), (6)

where

Q(θ, e) = I+ (1− cos θ) · e⊗ e+ sin θ · skwt(e) (7)

is the rotation tensor about the unit vector e by the angle
θ (see [25, p. 224]). In (7), I denotes the identity tensor,
⊗ is the dyadic product of vectors, and skwt(.) gives
the skew-symmetric tensor associated to an (axial) vec-
tor. The angles α and β can be considered as the first
two Euler angles parametrizing the rotation between
the bases (e1, e2, e3) and (n1,n2,n3). A third rota-
tion is not needed because n1 must remain in the plane
spanned by e1 and e2.

The configuration of the ball is prescribed by the
location of contact point C , which is given by α and β,
and the orientation of the ball. The orientation can be
described by

rPQ = R rP ′Q′ , (8)
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Fig. 1 The geometry and
the parameters of the
system. Left panel: the ball
and the rim from the side.
Right panel: top view of the
system

Table 1 Parameters of the
system

The values of R, a, r, ρ and
m are based on the official
basketball rules [1]. The
value of the friction
coefficient μ is a typical
value based on
measurements in [2]. These
default values are used
throughout this paper

Notation Meaning Default value

r Radius of the ball 0.12 m

R Major radius of the rim 0.225 m

a Minor radius of the rim 0.01 m

ρ Shorthand notion for r + a 0.13 m

m Mass of the ball 0.6 kg

j Dimensionless moment of inertia 2/3

μ Friction coefficient 1.0

g Gravitational acceleration 9.81 m/s2

where P and Q are arbitrary points of the ball in the
current configuration, P ′ and Q′ are the same material
points in a given initial configuration, andR is an arbi-
trary proper orthogonal tensor. The tensor R could be
expressed by scalar variables such as Euler angles (see
[10, p. 140]), but such parametrization is not necessary
for the present calculation. Then, the configuration of
the ball is given by the triplet

q = (α, β,R) ∈ Q ∼= S1 × S1 × SO(3), (9)

where Q denotes the configuration space composed
from the torusS1×S1 and the special orthogonal group
SO(3) of three-dimensional rotations.

2.2 Velocity state

During the motion of the ball, the basis (e1, e2, e3) is
fixed, but (n1,n2,n3) is rotating as the contact point C
changes. By differentiating (2)–(4), the time derivatives

of these basis vectors are given in the form

ṅ1 = � × n1, ṅ2 = � × n2, ṅ3 = � × n3, (10)

where × denotes the cross product of vectors, the dot
denotes differentiation with respect to time, and

� = ax(ṪT−1) = β̇·n1+α̇ sin β·n2+α̇ cosβ·n3. (11)

The function ax(.) denotes the mapping between vec-
tors and skew-symmetric tensors in three dimensions,
which satisfies ax(X) × z = Xz for any skew-
symmetric tensor X and vector z. The function ax(.)
is the inverse of the mapping skwt(.) mentioned above
(see [25, p. 497]). Note, that the vector � is not the
angular velocity of the ball, but it can be considered as
the angular velocity of a virtual rigid body co-rotating
with the basis (n1,n2,n3).

The location of the centre G of the ball is given by

rOG = (ρ − R cosβ)n2 + R sin β n3, (12)
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where the parameter ρ := a+r is the distance between
G and the middle circle of the rim (see the left panel of
Fig. 1). The velocity of the ball at G can be obtained
by the time derivative of (12) considering (10)–(11),

vG = ṙOG = α̇(R − ρ cosβ)n1 + β̇ρ n3. (13)

The angular velocity of the ball can be defined by the
rotation tensor R,

ω = ax(ṘR−1). (14)

The velocity state of the ball is now expressed by
the derivatives q̇ = (α̇, β̇, Ṙ). Instead, we introduce
the vector

s = (ω1, ω2, ω3, u1, u3) (15)

of five quasi-velocities (see [10, p. 217]), which are
chosen to be the components of the angular velocity of
the ball,

ω = ω1n1 + ω2n2 + ω3n3 (16)

and the components of the velocity of the contact point,

vC = u1n1 + u3n3. (17)

The ball is rolling on the rim when vC = 0. The
derivatives q̇ = (α̇, β̇, Ṙ) can be expressed from quasi-
velocities; from (14), we get

Ṙ = skwt(ω)R, (18)

and from the rigid body reduction formula vG = vC +
ω × rCG with rCG = r n2, we can express

α̇ = u1 − r ω3

R − ρ cosβ
, (19)

and

β̇ = u3 + r ω1

ρ
. (20)

The physical meaning of the quasi-velocities (can
be seen in Fig. 2) is important because these variables
will be used trough the analysis of the paper:

– The component ω3 is called circular angular
velocity. In the case of pure circular rolling (all
components of s is zero except for ω3), (19)–(20)
show that the ball is rolling around the rim with
β = const, which is also called the toroidal direc-
tion of the torus.

– The component ω1 is called transversal angular
velocity. In the case of pure transversal rolling,
(19)–(20) show that the ball is rolling around a
transversal cross-section of rim with α = const,
which is also called the poloidal direction of the
torus.

– The component ω2 is called orthogonal angular
velocity. In the case of pure orthogonal rotation
(called spinning in basketball), (19)–(20) show that
the points C and G are fixed and the ball is self-
rotating around the axis of the normal contact direc-
tion.

– The components u1 and u3 are the slipping veloc-
ities between the ball and the torus, which are the
components of the velocity of the contact point C
if the ball is slipping on the rim. These components
are zero in the case of rolling.

In summary, the configurationof theball is described
by (9) and the velocity state of the ball is described
by (15). Thus, the state of the ball is determined by
z = (q, s) in the state space Z � z. By the usage of
quasi-velocities, it is not needed to express the equa-
tion of motion of the system as a set of second-order
differential equations for q, but instead, it is expressed
as a set of first-order differential equations for z. The
expression for q̇ is already given in (18)–(20), and the
expression for ṡ is obtained from the dynamical equa-
tions presented below.

2.3 Newton–Euler equations

For more complicated systems expressed with the
quasi-velocities, the governing equations canbederived
algorithmically by using, e.g. the Appell–Gibbs equa-
tions (see [10, p. 254]) or the Boltzmann–Hamel equa-
tions (see [10, p. 226]). However, for our system, the
simple Newton–Euler equations of rigid bodies give
results effectively.

Let us consider a rigid body with a mass m and a
mass moment of inertia tensor J computed at the centre
of gravity G of the body. When the external force sys-
tem consists of only concentrated forces F1 . . .Fn act-
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Fig. 2 Description of the velocity state of the ball by quasi-
velocities. The angular velocity can be separated into transver-
sal (ω1), orthogonal (ω2) and circular (ω3) components by using
the coordinate system (n1,n2,n3). The velocity of the contact
point is given by the slipping velocities u1 and u3. In the figure,
the components of the angular velocity are denoted by double

arrows, and the components of the slipping velocity are denoted
by single solid arrows. In the cases when all quasi-velocities are
zero expect one of the angular velocity components, the motion
of the ball is symbolised by thin dashed arrows and grey silhou-
ettes

ing at P1 . . . Pn , respectively, then the Newton–Euler
equations in an inertial reference frame can be written
in the form

m aG =
n∑

i=1

Fi ,

J · ε + ω × (J · ω) =
n∑

i=1

rGPi × Fi .

(21)

where aG is the acceleration of the centre of gravity G
and ε is the angular acceleration of the body.

In the case of a basketball, the mass distribution is
spherically symmetric. Thus, the moment of inertia has
the form J = jmr2I independently from the coordinate
system, where I is the identity matrix, and j is the
dimensionlessmassmoment of inertia.We assume j =
2/3 because the mass of the basketball is distributed
approximately on a thin spherical shell. The spherical
symmetry makes gyroscopic term ω × (J · ω) vanish
from (21).

The two external forces are gravity force FG acting
at G, and the contact force FC acting at C , which are

given by

FG = −mg e3 = −mg sin β n2 − mg cosβ n3, (22)

FC = F1 n1 + F2 n2 + F3 n3, (23)

respectively, where g is the gravitational acceleration,
F2 is the normal contact force and F1, F3 are the
components of the friction force. Then, Newton–Euler
Eq. (21) of the ball become

m aG = FG + FC , (24)

jmr2ε = rGC × FC , (25)

Note, that Eqs. (24) and (25) are expressed in an iner-
tial reference frame fixed to the rim, while the rotating
coordinate system (n1,n2,n3) is used to express the
coordinates of the quantities. Therefore, the derivatives
of the basis vectors (10) have to be considered at the
calculations.

The acceleration and angular acceleration can be
computed from (13) and (14),

aG = v̇G
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=
(
u̇1 − r ω̇3 + α̇ sin β (u3 + r ω1)

)
n1

+
(
α̇ cosβ (u1 − r ω3) − β̇ (u3 + r ω1)

)
n2

+
(
u̇3 + r ω̇1 − α̇ sin β (u1 − r ω3)

)
n3, (26)

ε = ω̇

=
(
ω̇1 + ω3α̇ sin β − ω2α̇ cosβ

)
n1

+
(
ω̇2 − ω3β̇ + ω1α̇ cosβ

)
n2

+
(
ω̇3 + ω2β̇ − ω1α̇ sin β

)
n3, (27)

where α̇ and β̇ are given by (19)–(20).
In (24)–(25), we neglect dissipation effects such

as the torques acting at C (drilling friction, rolling
resistance) and the air resistance. Our purpose is to
explore and understand the fundamental structure of
the dynamics. However, the consequence of dissipation
effects are considered in Sect. 5.3.

By taking into account (22)–(23) and (26)–(27), the
dynamical Eqs. (24)–(25) provide six scalar equations.
Our eight unknown variables are the derivatives of the
five quasi-velocities in ṡ and the three components of
the contact force FC in (23). The missing two scalar
equations are provided by the frictionmodel at the con-
tact point.

Let us apply the Coulomb friction model, where we
assume that the coefficients of static and dynamic fric-
tion are identical and equal toμ. When the normal con-
tact is ensured, the tangential contact state of the ball
can be rolling or slipping. In the rolling case, the veloc-
ity vC of the contact point is zero, which is equivalent
to

u1 ≡ 0, u3 ≡ 0. (28)

In the slipping case, the friction forces are given by

F1 = −μF2
u1√

u21 + u23

, F3 = −μF2
u3√

u21 + u23

.

(29)

Now, Eqs. (24)–(25) and (28) determine all compo-
nents of ṡ and FC in the rolling case; while Eqs. (24)–
(25) and (29) determine these variables in the slipping
case.

2.4 Equation of motion for rolling

In the rolling case, the rolling constraint (28) directly
gives u̇1 = 0 and u̇3 = 0. Then, the expressions of the
contact forces are given by

F1 = jmr2ω1ω2

ρ(1 + j)
, (30)

F2 = mr2ω2
3 cosβ

R − ρ cosβ
− mr2ω2

1

ρ
+ mg sin β, (31)

F3 = jmg cosβ

1 + j
− jmr2ω2ω3 cosβ

(1 + j)(R − ρ cosβ)
, (32)

and the derivatives of the angular velocities become

ω̇1 = (1 + j)rω2
3 sin β − jrω2ω3 cosβ

(1 + j)(R − ρ cosβ)
− g cosβ

r(1 + j)
,

(33)

ω̇2 = r Rω1ω3

ρ(R − ρ cosβ)
, (34)

ω̇3 = − rω1ω3 sin β

R − ρ cosβ
− jrω1ω2

ρ(1 + j)
, (35)

Now, the dynamics of the variable set ŷ = (q, s)
is fully determined by (18)–(20), (33)–(35) and u̇1 =
u3 = 0. The dynamics of u1 and u3 are trivial, and
thus, it can be separated from the system.Moreover, the
cyclic variablesR andα do not appear on the right-hand
side of the evolution equations of the other variables.
(The system is symmetric with respect to the change of
orientation R of the ball and with respect to the angle
α around the rim.) That is, by considering

β̇ = r

ρ
ω1 (36)

from (20) in the rolling case u3 = 0, the dynamics of
the variables β, ω1, ω2, and ω3 is fully determined by
the set (33)–(36) of four first-order ordinary differential
equations (ODEs). Formally, the rolling dynamics can
be written as

ẋ = f(x), (37)

where

x = (β, ω1, ω2, ω3) (38)
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Nonlinear dynamics of a basketball rolling around the rim 3019

is the variable set for rolling in the four-dimensional
reduced rolling state space x ∈ X ∼= S1×R

3. Note that
once the solution for x is known from (37), the solution
for the cyclic variables R and α can be obtained from
(18)–(19).

A rolling state is physically valid if

μF2 ≥
√
F2
1 + F2

3 (39)

is satisfied. Moreover, the contact condition

F2 ≥ 0 (40)

can be checked to avoid the separation of the ball from
the rim, as well. Condition (39) provides a stricter con-
dition than (40). The properties of rolling trajectories
satisfying these conditions are analysed later in Sect. 5.

2.5 Equations of motion for slipping

In the slipping case, direct calculation from Eqs. (24)–
(25) shows that the expression of the normal contact
force is given by

F2 = m (u1 − rω3)
2 cosβ

R − ρ cosβ

−m (u3 + rω1)
2

ρ
+ mg sin β. (41)

and the derivatives of the quasi-velocities are
⎡

⎢⎢⎢⎢⎣

ω̇1

ω̇2

ω̇3

u̇1
u̇3

⎤

⎥⎥⎥⎥⎦
= α̇

⎡

⎢⎢⎢⎢⎣

−ω3 sin β + ω2 cosβ

−ω1 cosβ

ω1 sin β

−u3 sin β

−rω2 cosβ + u1 sin β

⎤

⎥⎥⎥⎥⎦
+ β̇

⎡

⎢⎢⎢⎢⎣

0
ω3

−ω2

−rω2

0

⎤

⎥⎥⎥⎥⎦

−μF2
mr j

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

−u3
/√

u21 + u23
0

u1
/√

u21 + u23

r(1 + j) · u1
/√

u21 + u23

r(1 + j) · u3
/√

u21 + u23

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡

⎢⎢⎢⎢⎣

0
0
0
0

−g cosβ

⎤

⎥⎥⎥⎥⎦
(42)

where α̇ and β̇ are given by (19)–(20). The variables
R and α do not appear on the right-hand side of the
equations, again. Thus, (20) and (42) can be formally
written as

ẏ = g(y), (43)

where

y = (β, ω1, ω2, ω3, u1, u2) (44)

is the variable set for slipping in the six-dimensional
reduced slipping state space y ∈ Y ∼= S1 × R

5.
The condition u1 = u3 = 0 determines the four-
dimensional subspace X ⊂ Y of the rolling dynamics
(37). On this set, the differential Eq. (43) is not defined
due to the discontinuity of F1 and F3 (see (29)).

During the slipping motion, (40) has to be satisfied
again. In the case F2 < 0, the slipping dynamics (43)
is not valid, but the ball separates from the rim. After
the separation, the motion of the ball is free-fall with
possible impacts with the rim.

It can be checked by direct calculation from (43) that
in the slipping case, no equilibria y = y0 exists which
satisfies g(y0) = 0.

3 Steady motions of the rolling ball

In this section, we find and analyse the equilibria of the
rollingEq. (37) in the formx = x0 satisfying f(x0) = 0.
In such states, the state variables x = (β, ω1, ω2, ω3)

are constant in time, but the cyclic variablesR andα are
changing according to (18) and (19). Thus, the equilib-
rium point x0 of the reduced rolling state space X � x
correspond to special but non-stationary trajectories in
the full state space Z � z = (q, s). Physically, these
solutions correspond to steady motions when the ball
is rolling around the rim with a uniform speed at a con-
stant height β (see Fig. 4) while the components of the
angular velocity are constant measured in the rotating
coordinate system (see Fig. 2). Throughout this paper,
the phrase steady motion refers simultaneously to this
mechanical meaning and the corresponding equilib-
rium point of the of differential equation ẋ = f(x)
in the reduced phase space.

These steady motions of the system were found first
in [18]. In this section, we present a throughout anal-
ysis of the steady motions, including stability analysis
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and restrictions by other physical effects. In the next
two sections, we show that these solutions play a fun-
damental role in the global dynamics of the ball and the
realisation of the long-time rolling motion on the rim.

3.1 Determining of the steady motions

We look for the steady motions of the rolling ball from
(37) in the form

x ≡ x0 =

⎡

⎢⎢⎣

β0

ω10

ω20

ω30

⎤

⎥⎥⎦ , (45)

where x0 ∈ X and f(x0) = 0. We can find two typical
families of equilibria which we call trivial and non-
trivial steady motions.

Proposition 1 (Trivial steady motions) A state of the
ball given by

x+
0 (ω20) :=

⎡

⎢⎢⎣

π/2
0

ω20

0

⎤

⎥⎥⎦ or x−
0 (ω20) :=

⎡

⎢⎢⎣

−π/2
0

ω20

0

⎤

⎥⎥⎦

(46)

is an equilibrium point of (33)–(36) for any ω20 ∈ R.
These solutions are called trivial steady motions.

These two formulae do not correspond to discrete equi-
librium points but to two one-parametric families of
equilibria in the form (46). The states x+

0 correspond
to the case when the ball is placed on the top of the
rim with an arbitrary orthogonal angular velocity ω20.
The states x−

0 correspond to the case when the ball is
’hanging’ on the bottom of the rim, which is physically
impossible due to the requirement of the non-negative
normal force F2. More interesting, non-trivial steady
motions exist for the rolling ball:

Proposition 2 (Non-trivial steady motions) The non-
trivial equilibria of the system (33)–(36) are given by

x̄0(β0, ω30) :=

⎡

⎢⎢⎣

β0

0
ω20(β0, ω30)

ω30

⎤

⎥⎥⎦ , (47)

Fig. 3 Visualization of the steady motions (47)–(48). The fig-
ure shows the projection of the surface of the family of steady
motions into the plane of β and ω3. For each β0 ∈ [−π, π) \
{−π/2, π/2} and ω30 ∈ R \ 0, formulae (47)–(48) provide a
steady motion of the rolling ball. The three singularity lines
β0 = ±π/2 and ω30 = 0 are denoted by thick continuous lines.
The Roman numbers I–IV corresponds to the four typical loca-
tions of the ball according to Fig. 4

where

ω20(β0, ω30) := (1 + j)ω30 sin β0

j cosβ0

−g(R − ρ cosβ0)

jr2ω30
. (48)

Proof In (36), the condition β̇ = 0 leads to

ω10 = 0, (49)

that is, the transversal angular velocity is zero (see
Fig. 2). Moreover, ω10 = 0 satisfies the conditions
ω̇2 = 0 and ω̇3 = 0 automatically in (34)–(35). Finally,
ω̇1 = 0 in (33) results in (48). ��

Formulae (47)–(48) lead to a two-parametric family
of steady motions, which form a two-dimensional sur-
face in the four-dimensional state space X . The phys-
ical meaning of this family of these steady motions is
the following: If we choose an angle β0 around the
minor circle of the rim and choose a rolling angular
velocity ω30 around the rim, as well, then the formula
(48) gives the appropriate orthogonal angular velocity
ω20(β0, ω30) which is necessary to maintain this state
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Nonlinear dynamics of a basketball rolling around the rim 3021

Fig. 4 According to the value of the angle β, there are four
typical positions of the ball along the minor radius of the rim.
Distinguishing these regions makes easier to understand the dia-
grams in Figs. 3, 5, 6, 7 and 8

of the ball. In Figs. 3 and 4, the different ranges of β

are denoted by the Roman numbers I–IV to recognize
the geometric meaning of the typical ranges of the ball
along the minor circle.

The expression in (48) diverges if β0 = ±π/2 or
ω30 = 0 (see the thick solid lines in Fig. 3). The states
β0 = ±π/2 correspond to the top and the bottom posi-
tion on the ball around the minor radius of the rim
(see Fig. 4). The condition ω30 = 0 corresponds to
the state when the ball is not moving around the cir-
cumference of the rim. Although ω20 in (48) diverges
along any of these singularity lines, the singularities
vanish at the intersection of these lines (denoted by
circles in Fig. 3), where we get ω20 = 0. The point
x̄0(π/2, 0) = [π/2, 0, 0, 0]T corresponds to the case
when the ball is just placed on the top of the rimwithout
rotation. At x̄0(−π/2, 0) = [−π/2, 0, 0, 0]T , the ball
would ’hang’ at the bottom of the rim without rotation.
These special solutions coincide with the trivial steady
motions x+

0 (0) and x−
0 (0).

Considering the periodicity of the angle β, β = −π

andβ = π correspond to the same physical state. Then,
we can see according to Fig. 3, that the singularity lines
cosβ0 = 0 andω30 = 0 divide the family of non-trivial
steady motions into four branches.

There are several physical limitations on the practi-
cal occurrence of the steady motions. We analyse three
main limitations: instability of the steady motion, slip-
ping of the ball (including falling from the rim) and the
limited kinetic energy of the ball.

In the case of the trivial steady motions, there exist
simple, general limitations. The state x+

0 is always
unstable, which can be proved in a similar way as will

be done in Sect. 3.2. (It is interesting, that indepen-
dently from ω20, one of the corresponding eigenval-
ues has always the positive value

√
(g/ρ)/(1 + j).) In

the case of x−
0 , the ball is always falling down from

the rim, because these motions would require nega-
tive normal contact force (F2 < 0). In the case of the
non-trivial steady motions, the situation is more com-
plicated. In the subsequent subsections, we analyse the
three limitations (instability, slipping–falling, limited
kinetic energy) and determine the subset of the points
(β0, ω30) for that the non-trivial steady motions are
physically realisable.

3.2 Limitation from instability

For the linear stability analysis, let us expand (33)–
(36) around a chosen (non-trivial) steady motion
x̄0(β0, ω30),

ẋ = x̄0 + A(β0, ω30) · (x − x̄0) + O2, (50)

where A(β0, ω30) is a 4× 4 matrix andO2 denotes the
higher order terms.

The matrix A can be obtained by direct calculation,
and formally, we get

A(β0, ω30) =

⎡

⎢⎢⎣

0 A12 0 0
A21 0 A23 A24

0 A32 0 0
0 A42 0 0

⎤

⎥⎥⎦ , (51)

where the elements Ai j depend on the values β0, ω30

of the given equilibrium point. The four eigenvalues of
the system are

λ1 = λ2 = 0, (52)

λ23,4 = A12A21 + A23A32 + A24A42 = h(β0, ω30),

(53)

where

h(β0, ω30) = ω2
30r

2(R cosβ0 − (1 + j)ρ)

(1 + j)ρ(R − ρ cosβ0)2

− 2g sin β0 cosβ0

(1 + j)(R − ρ cosβ0)

+g2 cosβ0(R − ρ cosβ0)

r2ρ(1 + j)2ω2
30

. (54)
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Hence, each steady motion has a double zero eigen-
value. It can be checked that the eigenvectors corre-
sponding to this zero eigenvalues span exactly the tan-
gent space of x̄0(β0, ω30) at the given equilibrium. This
means that small perturbations in this tangent space just
push the system into a different steady motion of the
family of the steady motions. Hence, the equilibria are
neutrally stable in these directions.

If h(β0, ω30) > 0 then the eigenvalues λ3,4 are real,
given by λ3,4 = ±√

h(β0, ω30). Then the equilibrium
is a degenerate saddle, and it is unstable. This kind
of motion cannot be realized physically, because small
perturbations make the system leave the vicinity of the
equilibrium.

If h(β0, ω30) < 0 then the eigenvalues λ3,4 are
pure imaginary, given by λ3,4 = ±i

√−h(β0, ω30).
These pure imaginary eigenvalues imply periodic oscil-
lations in the linearized system. As the total mechani-
cal energy of the ball is conserved, the equilibrium is
expected to be neutrally stable (stable but not asymp-
totically stable), and small perturbations create peri-
odic oscillations of the state of the ball. This conjecture
will be proven in Proposition 13 from the properties of
the global dynamics, and these equilibria prove to be
degenerate centre.

The stable and unstable regions in the (β0, ω30)

plane can be seen in Fig. 5. The typical values of the
diagram can be computed analytically using (53). For
small values of the circular angular velocity ω30, the
steady motions are typically unstable in the ’inner’
region |β0| < π/2 of the rim (see Fig. 4).

Assume that R > ρ (1+ j), which is satisfied for the
parameter values of a standard basketball and rim (see
Table 1). Then, we can find the following two typical
values of the diagram in Fig. 5.

– For large circular angular velocities ω30, the unsta-
ble region reduces and it tends to |β0| < β∗ where
β∗ = arccos((1 + j) · ρ/R).

– It can be shown that β̂ = min |β0| is given by β̂ =
arccos cβ , where cβ is the solution of the equation

ρ2(1+ j)c3β −Rρc2β +R2cβ −Rρ(1+ j) = 0. (55)

(It can be proved that (55) has a single real root
in −1 < cβ < 1.) The points with β0 = β̂ are
denoted by black dots in Fig. 5. It can be proved
that β̂ < β∗.

Fig. 5 Stability regions of the non-trivial steadymotions (47). In
the shaded regions labelled ’S’, the steady motions of the ball are
neutrally stable. In this case, small perturbations cause periodic
oscillations and the solutions remain close to the steady motion.
In the region labelled ’U’, the steadymotions are unstable. In this
case, small perturbations pull the system away from the steady
motion. With the data shown in Table 1, the typical values of the
graph are β∗ = 0.273[rad] = 15.6[◦] and β̂ = 0.144[rad] =
8.3[◦]

3.3 Limitation from slipping and falling

As it mentioned in (39), the magnitude of tangential
contact force is limited by the Coulomb friction model

μF2 ≥
√
F2
1 + F2

3 .By substituting (47) into (30)–(32),
the slipping condition (39) becomes

μ ·
(
mr2ω2

30 cosβ0

R − ρ cosβ0
+ mg sin β0

)

≥
∣∣∣∣∣
mr2ω2

30 sin β0

R − ρ cosβ0
− mg cosβ0

∣∣∣∣∣ . (56)

If (56) is satisfied then the rolling steady motion is
realizable without slipping, which is denoted by the
shaded region in Fig. 6 for μ = 1. If (56) is violated
then the given steady motion is not realizable and the
ball starts slipping immediately. For small values of
the circular angular velocity ω30, the realizable region
tends to |β0 −π/2| < β̃ = arctanμ. This interval of β

is on upper side of the rim (see Fig. 4). For large values
of ω30, the region tends to |β0| < β̃, which is related
to the inner side of the rim (see Fig. 4).
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Fig. 6 Boundaries showing the effect of slipping and falling of
the non-trivial steady motions (47). In the shaded region, the
rolling steady motions occur for μ = 1. Outside this region,
these steady motions are not realisable due to slipping. In the
figure, the boundary curves are depicted for several values of the
friction coefficientμ. In the limit caseμ → 0, the region without
slipping shrinks to a line. In the limit case μ → ∞, we get the
condition of falling of the ball from the rim. With the data shown
in Table 1, β̃ = 0.785[rad] = 45[◦] for μ = 1

In the limit case μ → ∞, the expression (56) sim-
plifies to

mr2ω2
30 cosβ0

R − ρ cosβ0
+ mg sin β0 ≥ 0. (57)

Condition (57) coincides to the requirement (40) of
the non-negative normal contact force, which can be
calculated from (31) at the steady motion. This curve
is shown in Fig. 6, as well. At a steady motion, the
ball can remain in contact with the rim only if (57) is
satisfied, otherwise, the ball falls from the rim. It can be
seen in Fig. 6 that for a finite friction coefficient μ, the
slipping condition always provides a stricter condition
than the falling condition.

3.4 Limitation of maximal kinetic energy

If a steady motion is in the vicinity of the singularity
linesβ0 = ±π/2 andω30 = 0, the absolute value of the
orthogonal angular velocity ω20 tends to infinity (see
(48) and Fig. 3). To restrict ourselves to physically real-

isable cases, an upper estimation of the kinetic energy
T of the ball can be given by

T = 1

2
m|vG |2 + 1

2
jmr2|ω|2 ≤ 1

2
mv2throw (58)

where vthrow is the typical maximum speed of the bas-
ketball throw. Since the kinetic energy of the basketball
is both converted to potential energy and lost due to col-
lisions with the rim and the backboard, (58) is an upper
estimation of the energy level of physically realisable
steady motions.

By substituting (16)–(17) and (47) into (58), we get

v2throw ≥ jr2ω2
20(β0, ω30) + (1 + j)r2ω2

30. (59)

The boundary curves of these conditions can be seen in
Fig. 7 for different values of vthrow. Inside this closed
curves, the kinetic energy of the steady motion does
not exceed the energy of a throw with a speed vthrow.
Outside the curves, the steady motion would require
too much kinetic energy. By reducing the energy level
through vthrow, the curves in Fig. 7 shrink to the two
points which were denoted by circles in Fig. 3. It was
mentioned that these states correspond to placing the
ball statically onto the top of the rim or ’hanging’ it to
the bottom of the rim.

3.5 Realizable steady motions

In the previous subsections, we analysed different fac-
tors which restrict the occurrence of the steadymotions
of the ball. The trivial steady motions (46) are practi-
cally non-realisable because x+

0 is always unstable and
x−
0 is unphysical.
As for the non-trivial steady motions, let us con-

sider the intersection of the conditions of stability (the
shaded region in Fig. 5), the condition of rolling with
μ = 1 (Fig. 6) and the maximum kinetic energy cor-
responding to the shot speed vthrow = 10 m/s (Fig. 7).
In Fig. 8, we can see the physically realisable steady
motions that satisfy all these conditions. For such large
throw velocity, we get three typical regions, which are
denoted by A, B and C. It can be checked from Fig. 4
that region A corresponds to the inside-above part of
the rim, region B corresponds to the inside-below part
of the rim and region C is related to the outside-above
part of the rim.
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Fig. 7 Limitation of the steady motions based on the maximal
kinetic energy of the ball. Inside the curves, the kinetic energy of
the ball does not exceed the energy of a typical maximum speed
of the basketball throw. Outside this region, the steady motion is
not realisable in practice because of the high level of the kinetic
energy. The shaded region corresponds to vthrow = 10m/s

In real basketball games, we see the long-time
rolling of the ball in region A only, which can be
explained from the properties of these regions. On one
hand, region A has the largest area, that is, it can
be reached from a wider range of initial conditions.
On the other hand, a lower level of kinetic energy is
required for the steady motions in region A. It can
be computed numerically that for these parameters,
region C exists for vshot � 7m/s, region B exists for
vshot � 5m/s while the existence of region A requires
only vshot � 1m/s.

In these regions in Fig. 8, we denoted by “+” and
“−” the sign ofω20 of the corresponding steadymotion.
It can be seen that in region A, both signs occur, and
on the dotted line, ω20 = 0. That is, there are steady
motions in this region with very low values of the
orthogonal angular velocity, which is a further reason
why the solutions of region A occur in practice.

In this section,we analysed the steadymotions of the
ball, where the angular velocity components of the ball
remains constant. A long-time rolling solution is not
necessarily an exact steady motion, but it can probably
be a solution in the vicinity of a steady motion. This is
the topic of the following two sections. In Sect. 4, we
analyse the global dynamics of the rolling ball with the

Fig. 8 Physically realisable steady motions by considering all
presented limitations. The shaded region is obtained by the inter-
section of the shaded regions of Figs. 5, 6 and 7. The letters A,
B and C refer to the different regions of realisable motions. The
signs “+” and “−” denote the sign ofω20 in the different regions.
Along the dotted line, ω20 = 0, that is, the ball can be in a steady
motion without orthogonal rotation. (See Fig. 2)

possible types of solutions. Then, in Sect. 5, we search
for the regions around the steady motions containing
long-term rolling behaviour.

4 Symmetries and global dynamics of the rolling
ball

During this section, we analyze the global dynamics of
the rolling system (33)–(36). One of the main goals is
to determine the possible types of solutions and their
relations in the phase space. In this section, the slipping
condition (39) and the falling condition (40) are not
considered. These effects are considered in the next
section.

4.1 Symmetries

We can speak about symmetries of the system from
different points of view. In this section, we present
the important symmetric properties of the rolling equa-
tions and use them to obtain information of the global
dynamics of the system.
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The dynamics of the four phase variables ω1, ω2,
ω3 and β are invariant under the change of the other
variables of the mechanical system. This symme-
try has been taken into consideration at the deriva-
tion of the differential Eqs. (33)–(36), and the further
variables—the angle α and the orientation of the ball—
are excluded from the phase space.

As the mechanical model does not contain dissipa-
tion, the total energy

E = 1

2
mjr2ω2

2+ 1

2
m(1+ j)r2

(
ω2
1 + ω2

3

)
+mgr sin β

(60)

of the system is conserved, that is Ė = 0. This con-
servative property can be directly checked from the
Eqs. (33)–(36). For a given energy level E0, the equa-
tion E = E0 determines a smooth 3 dimensional hyper-
surface in the 4 dimensional phase space.

The form of Eqs. (33)–(36) shows that the phase
space is invariant under the transformationω2 → −ω2,
ω3 → −ω3, and the direction of the trajectories is
unchanged. That is, the phase space has a symmetry
under the reflection to the set ω2 = ω3 = 0.

It can be shown from Eqs. (33)–(36) that the trans-
formation ω1 → −ω1 results in a same phase plane
but the opposite direction of the trajectories. We can
say that the phase space has a time-reverse symmetry
under the reflection to the plane ω1 = 0.

4.2 General periodic solutions

The time-reverse symmetry related to the planeω1 = 0
is an essential property of the system. In this subsection,
we use this property to prove that periodic solutions are
typical in the phase space.

Proposition 3 Consider a solution x(t) : R → R
4 of

the system (37) and let us denote its components by
ω1(t), ω2(t), ω3(t) and β(t). Assume that ω1(t1) = 0
and ω̇1(t1) �= 0 for some t1. Then, for any 
t ∈ R,

⎡

⎢⎢⎣

ω1(t1 + 
t)
ω2(t1 + 
t)
ω3(t1 + 
t)
β(t1 + 
t)

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

−ω1(t1 − 
t)
ω2(t1 − 
t)
ω3(t1 − 
t)
β(t1 − 
t).

⎤

⎥⎥⎦ (61)

Proof Consider the integration of the solution from
the initial condition x(t1) in both forward and back-
ward time. Due to the time-reverse symmetry, the two
half-trajectories can be mapped onto each other by the
transformation ω1 → −ω1. ��
That is, if a trajectory intersects the plane ω1 = 0 then
the each piece of the trajectory determines the other.
Consequently, if the function ω1(t) twice intersects the
ω1 = 0 plane transversely then the solution is periodic:

Proposition 4 Consider a solution x(t) : R → R
4 of

the system (37) and let us denote its components by
ω1(t), ω2(t), ω3(t) and β(t). Assume that ω1(t1) = 0,
ω̇1(t1) �= 0, ω1(t2) = 0 and ω̇1(t2) �= 0 for some
t1 < t2. Then, x(t) is a periodic function with a period
2(t2 − t1).

Proof It can be shown from (61) that ω1(t1 + k(t2 −
t1)) = 0 for any k ∈ Z. That is, there are infinitely
many zeroes of ω1(t), and these zeroes divide the time
line t ∈ R into uniform intervals with a length t2 − t1.
Moreover, it follows from (61) that the solution is the
same on every second of these intervals. ��

4.3 Non-periodic solutions

In the previous subsection, we showed that all solutions
are periodic which has at least two transverse intersec-
tion with the plane ω1 = 0. Non-periodic solutions can
exist either if there is a maximum of one zero of ω1(t)
or, the intersection is not transverse.

If the intersection is not transverse atω1(t1) = 0 then
ω̇1(t1) = 0. By substituting these values into (33)–(36),
we get ω̇1 = ω̇2 = ω̇3 = β̇ = 0, which corresponds
to the equilibrium solution (45). That is, these trajec-
tories are connected to the equilibrium points, which
can be the homoclinic or heteroclinic trajectories of
the unstable equilibrium points.

The other possibility for a non-periodic solution is if
ω1(t) has a single zero or it does not have a zero at all.
In both cases, there exists a half-line in the timeline for
which ω1(t) does not change sign. Consider the case
when ω(t) > 0 for t > t1, which is assumed in the
following proposition. The cases with ω(t) < 0 and
t < t1 can be stated and proved analogously.

Proposition 5 Consider a solution x(t) : R → R
4 of

the system (37) and let us denote its components by
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ω1(t), ω2(t), ω3(t) and β(t). Assume that there exist
t1 ∈ R such that ω1(t) > 0 for any t > t1. Then,
(33)–(36) leads to

dω2

dβ
= R

R − ρ cosβ
ω3,

dω3

dβ
= − ρ sin β

R − ρ cosβ
ω3 − j

(1 + j)
ω2.

(62)

Proof Assume that the solution has a given energy level
E = E0. Then, from (60), the value of ω1 is limited by

0 < ω1(t) ≤ 2E0 + 2mgr

m(1 + j)r2
, (63)

where the lower limit comes from the assumption of the
Proposition. That is,ω1(t) is finite andpositive all along
t ∈ (t1,∞), and thus, β(t) increases strictly monotoni-
cally according to (36). Consequently, the independent
variable of (34)–(35) can be changed from t toβ, which
leads to (62). ��

Note that even if (62) provides a solution for ω2 and
ω3, wemust substitute it into (33) and (36) and check if
ω1 is indeed positive for t > t1. Otherwise, the solution
of (62) is not valid.

Proposition 6 The trivial solution ω2(t) ≡ ω3(t) ≡ 0
corresponds to a non-periodic solution of the original
system (33)–(36) if the total energy (60) of the solution
satisfies E > mgr.

Proof By substitutingω2 = ω3 ≡ 0 into (33)–(36), we
get the system

ω̇1 = − g cosβ

r(1 + j)
, ω̇2 = 0, ω̇3 = 0, β̇ = r

ρ
ω1,

(64)

which is analogous to the dynamics of a single pen-
dulum. It can be shown from (60) that ω1(t) does not
change sign for E > mgr , which satisfies the condi-
tions of Proposition 5. ��

System (62) is a linear, homogeneous but non-
autonomous system. It can be written into the form
dz/dβ = A(β) · z where z = [ω2, ω3]T and A(β)

is a 2 × 2 matrix periodically depending on β. The
solution of this type of system can be determined by

Fig. 9 Stability of the solution ω3 = ω3 = 0 of the system (62)
based on numerical calculations of the monodromy matrix and
application of the Floquet theory. In the shaded, stable region of
parameters (denoted by S), the non-trivial solutions of (62) are
quasi-periodic oscillations. In the unstable region (denoted by
U), the non-trivial solutions of (62) are exponentially growing
oscillations. The ρ/R = 0 and j = 0 axes and striped regions
denote the boundary of the physically relevant parameter range.
A standard ball and rim with the parameter values from Table 1
is denoted by a circle

the Floquet theorem (see [9, p. 55]). First, the mon-
odromy matrix M should be determined such that
z(β+2π) = M ·z(β). The eigenvalues of thematrixM
(the Floquet multipliers) determine the stability of the
solutions. We used numerical simulations to determine
the monodromy matrix M and the Floquet multipli-
ers for the physically relevant parameter range of (62).
This leads to the following result:

Proposition 7 Consider the parameter range 0 <

ρ/R < 1 − a/R and 0 < j ≤ 2/3 of the parame-
ters of the system (62). In this parameter range, there
is a subset such that the corresponding Floquet multi-
pliersμ1 andμ2 of the system satisfy |μ1| = |μ2| = 1.
In this case, the trivial solutions of (62) is neutrally
stable and the system exhibits quasi-periodic oscilla-
tions. For the complement set of the parameters in this
region, the Floquet multipliers satisfy |μ1| < 1 < |μ2|,
the trivial solution of (62) is unstable and the system
exhibits exponentially growing oscillating solutions.

The stable and unstable regions can be seen in Fig. 9.
In the stable region, the quasi-periodic solution for ω2

and ω3 is bounded. Then, for a sufficiently large initial
value of ω1, the function ω1(t) does not change sign
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(see 33). Thus, the conditions of Proposition 5 are sat-
isfied and the system (33)–(36) exhibits quasi-periodic
oscillations, as well.

In the unstable region, the solution for ω2 and ω3

is divergent, which makes ω̇1 and ω1 divergent due to
(33). Then, the condition of Proposition 5 is violated
and the solution is not valid for the original system
(33)–(36).

It can be seen in Fig. 9 that the parameter values of a
standard ball is in the unstable region. Stability would
be possible either if the ball is very small (ρ/R is small),
or, if the mass of the ball is concentrated close to the
centre of the ball ( j is small). For a realistic basketball,
we can state the following proposition:

Proposition 8 Assume that the parameters ρ, R and
j are located in the unstable region denoted in Fig. 9.
Then, the trivial solution of (62) is the only solution
which corresponds to a valid solution of the original
system (33)–(36).

That is, for these parameter values, the only non-
periodic solutions of the rolling basketball are the solu-
tions of the system (64).

4.4 Global dynamics

To summarize the results of this section, let us state
the following theorem, which is based on the results
presented above

Theorem 1 (Types of the solutions of the ball rolling
on the rim) The set of differential Eqs. (33)–(36) of the
rolling ball has the following types of solutions:

1. Trivial equilibrium points,
2. Non-trivial equilibrium points,
3. Homoclinic or heteroclinic connections of the triv-

ial unstable equilibrium points
4. Homoclinic or heteroclinic connections of the non-

trivial unstable equilibrium points,
5. Non-periodic solutions in the subset ω2 = ω3 = 0
6. General periodic solutions,
7. General quasi-periodic solutions.

According to the data in Table 2, we can try to imag-
ine the structure of the phase space. For the realistic
parameter values near to the data of a standard ball, the
quasi-periodic solutions do not exist. Then, the only
4D family of the solutions is the set of general peri-
odic solutions. That is, most of phase space is filled by

periodic solutions. The only 3D family of solutions is
the family of homoclinic or heteroclinic connections
of unstable non-trivial equilibria. This family of con-
nections is located on 3D surfaces, which separate the
different basins of the periodic solutions. The whole
structure of the 4D phase space is thus, similar to that
of a planar conservative system with centers, saddles
and the heteroclinic or homoclinic connections of sad-
dles. Note that according to the simulations, it seems
that all connections are homoclinic, but this has not
been proved yet.

As most of the phase space is filled by the 3-
parametric family of periodic solutions, the levels sets
of these solutions should be parameterized—at least,
locally—by three independent conservative quantities.
The total energy (60) can be chosen to one of these
quantities. It seems that we cannot find other conser-
vative quantities expressed in a simple algebraic form.
However, we can find the missing two conserved quan-
tities as solutions of differential equations.

Assume that a quantity related to linear or angu-
lar momentum is conserved along the motion. In our
system, thesemomenta can be expressed as linear com-
bination of the angular velocities ω1, ω2 and ω3. That
is, consider the quantity

P = c1(β)ω1 + c2(β)ω2 + c3(β)ω3. (65)

Let us determine the time evolution of (65) from (33)–
(36) by direct calculation, which leads to the following
proposition:

Proposition 9 The function (65) is conserved along
the trajectories of the rolling dynamics (33)–(36) if
c1(β) ≡ 0, and the functions c2(β) and c3(β) satisfy

dc2
dβ

= j

1 + j
c3,

dc3
dβ

= − R

R − ρ cosβ
c2 + ρ sin β

R − ρ cosβ
c3.

(66)

Note that (66) has a similar structure to that of (62)
with periodic coefficients. From the analysis described
above, we can check that for physically relevant param-
eters, the solutions of (66) arenot periodic but exponen-
tially growing oscillating solutions. Surprisingly, this
kind of solutions provides the missing two conserved
quantities:
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Table 2 Different types of solutions of the rolling ball

Family of solution Dimension of the family Dimension in the phase space

Trivial equilibrium points 1D 1D

Non-trivial equilibrium points 2D 2D

Connections of unstable trivial equilibria 1D 2D

Connections of unstable non-trivial equilibria 2D 3D

Non-periodic solutions with ω2 = ω3 = 0 1D 2D

General periodic solutions 3D 4D

General quasi-periodic solutions (exist only for unrealistic parameter values) 3D 4D

The second column shows the number of dimensions in the family of solutions. The third columns shows the dimension of the subset
occupied by the family in the state space

Proposition 10 The function (65) provides two inde-
pendent conserved quantities of the system (33)–(36)
in the form PI (β, ω2, ω3) and PI I (β, ω2, ω3).

Proof As (66) if a linear differential equation, its solu-
tions can be expressed in the form

[
c2(β)

c3(β)

]
= �(β)c, (67)

where �(β) is a fundamental matrix of (66) (see [9,
p. 53]) and c ∈ R

2. By substituting (67) into (65), we
get

P = [
ω2 ω3

] · �(β)c. (68)

By choosing two linearly independent vectors cI and
cI I , (68) generates two independent conserved quanti-
ties PI (β, ω2, ω3) and PI I (β, ω2, ω3). All other con-
served quantity in the form (65) can be expressed as
the linear combination of PI and PI I . ��
Note, that PI and PI I do not depend on ω1, thus, the
level sets of these quantities are parallel to theω1 direc-
tion in the phase space. The fundamental matrix �(β)

depends on j, R, ρ and β, but it cannot be expressed
algebraically in terms of these quantities. Thus, it is
hard to find the physical meaning of this conserved
quantities. We can say based on the form (65) that PI
and PI I are somehow related to conservation of linear
and angular momenta. Together with the total mechan-
ical energy (60), the global dynamics of the basketball
is organized by three conserved quantities.

Note that in degenerate limit cases, it is possible to
obtain the analytical form of conserved quantities. The

following propositions can be proved by direct calcu-
lation:

Proposition 11 Assume the system (33)–(36) in the
limit case R → ∞. Then, the torus shape of the rim
becomes a cylinder, and the quantities

PI = ω3 cos

(√
j

j+1β

)
+ ω2

√
j

j+1 sin

(√
j

j+1β

)
,

PI I = ω3 sin

(√
j

j+1β

)
− ω2

√
j

j+1 cos

(√
j

j+1β

)

(69)

are conserved along the trajectories of the system.
Alternatively, we can obtain the quantities

P̃I = jω2
2 + (1 + j)ω2

3

P̃I I = β −
√

1+ j
j arctan2

(√
j

1+ j ω2, ω3

)
,

(70)

and the conservation of (69) and (70) are equivalent.

In (70), arctan2(y, x) denotes the two-parametric
arcus tangent function defined by

arctan2(y, x) = 2 arctan

(
y√

x2 + y2 + x

)
, (71)

which gives arctan2(y, x) = arctan(y/x) for x > 0.
Physically, P̃I is the scalar product of the angular

momentum and angular velocity in the plane of ω2 and
ω3, and P̃I I is somewhat related to the direction of
these vectors measured from β.
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Proposition 12 Assume the system (33)–(36) in the
limit case R → 0. Then, the torus shape of the rim
becomes a sphere, and the quantities

PI = ω2,

PI I = ω3(1 + j) cosβ + ω2 j sin β
(72)

are conserved along the trajectories of the system.

Physically, PI I is the angular momentum of the ball
about the vertical axis. In the non-degenerate case of
the rim (a torus), the conserved quantities might be
somehow combined. The presence of the different fre-
quencies of β with an irrational ratio in (69)and (72)
is supposed to cause that the coefficients of conserved
quantities (65) do not have a closed algebraic form.

Finally, let us state an important consequence of
Theorem 1, which can be used in the next section. In
Subsection 3.2, we showed that the stable non-trivial
equilibria are centers in the linearised system. Now, we
can state that these equilibria are surrounded by peri-
odic solutions.

Proposition 13 Consider a non-trivial equilibrium
point x̄0 of the system (33)–(36), which is stable with
a pair of pure imaginary eigenvalues. Then, there exist
a neighbourhood of x̄0 in which all solutions are peri-
odic. Consequently, these equilibria are nonlinear cen-
ters and these are neutrally stable.

Proof By checking the properties of the different types
of solutions in Theorem 1, it can be showed that the
possible solutions surrounding x̄0 are either other sta-
ble equilibria or general periodic solutions. Even if
quasi-periodic solutions exist, they cannot be in a small
neighborhood of an equilibrium point: These trajecto-
ries require a finite, sufficiently large value ofω1, while
the equilibria satisfies ω1 = 0. ��

During this section, we assumed that all solutions of
the rolling ball is realisable without slipping or falling
from the rim. However, the analysis of this theoretical
system lead to results which are used in the next section
to determine the possible long-term rolling solutions in
the presence of different mechanical effects.

5 Long-term realisable rolling motion and falling
from the rim

Consider a realisable steady motion of the rolling ball
from the regions depicted in Fig. 8. It was shown in

Proposition 13 that the steady motions are surrounded
by periodic solutions. During these motions, the state
variables of the ball (the angle β and the components of
the angular velocity) are oscillating around the steady
motion.We expect that for small amplitude oscillations
of this kind, the oscillating solutions are realisable in
the sense of the restricting conditions of slipping and
falling. By increasing the amplitude of the oscillations,
the slipping and falling of the ball is anticipated, where
the long-term motions are no more possible.

In this section, our goal is to explore and charac-
terise the regions of initial conditions, where long-term
rolling motion of the ball is realisable. Moreover, it can
be important to decide whether the motion results in a
basketball score when reaching the boundary of these
regions.

5.1 Effect of falling

First, we assume that the ball can fall from the rim
according to (40), but the slipping condition (39) is not
considered. This assumption is a reasonable approxi-
mation for large values of the friction coefficient μ. At
μ → ∞, the slipping condition (39) tends to the falling
condition (40).

In a given state (β, ω1, ω2, ω3) of the rolling ball,
the rolling motion can be preserved without falling if
the normal contact force satisfies

F2 = mr2ω2
3 cosβ

R − ρ cosβ
− mr2ω2

1

ρ
+ mg sin β > 0. (73)

The expression does not depend on ω2, thus, F2 = 0
is a cylinder-like 3D surface in the 4D state space X �
(β, ω1, ω2, ω3). From the formula (73), we can have
the following conclusions:

– In the region −π < β < −π/2 (see below-outside
region III in Fig. 4), the normal force F2 is always
negative, thus, the rolling ball cannot enter this
region without falling from the rim.

– In the below-inside region IV, falling is avoided for
large values of the circular angular velocity ω3.

– In the above-outside region II, the motion without
falling is possible if both the circulation ω3 and
rotation ω1 have small values.

– The increase of the transversal angular velocity ω1

causes falling from the rim in all cases even in the
above-inside region I (see Fig. 4).

123



3030 M. Antali et al.

When we consider a solution beginning with a
rolling state, the ball can avoid falling from the rim if
throughout the motion, the normal contact force is pos-
itive. For a periodic rolling motion with a time period

t , this motion is possible without falling if

Fmin
2 = min

t∈[0,
t] F2(t) > 0. (74)

Let us consider the motion of the rolling ball for
varying initial conditions. From this point of view,we
can find two typical mechanisms for changing the sign
of Fmin

2 .

1. When we consider a family of initial conditions
corresponding to structurally similar—periodic—
solutions, the value of Fmin

2 changes smoothly.
Then, we can find some special trajectories with
Fmin
2 = 0. The initial conditions of this property

form a surface in the phase. We call this surface a
deadlock-type boundary of falling.

2. When there is a surface in the phase space that sep-
arates regions of structurally different solutions,
there can be a sudden change in value of Fmin

2
while the initial conditions change smoothly. If
such boundary modifies the sign of Fmin

2 , we call it
a separatrix-type boundary of falling.

On one side of such surfaces, we can find realisable
long-term (periodic) rolling solutions with Fmin

2 > 0.
On the other side, the ball falls down from the rim and
the periodic motion is not possible.

When an initial condition is exactly at a deadlock-
type boundary surface, the periodic rolling motion is
still possible, but the normal contact force F2 goes
down to zero for a moment. As the normal force in
(73) depends smoothly on the state variables, the time
derivative Ḟ2 should be zero, as well, at this ’deadlock’
point.

Itwas shown inSect. 4 that the separatrices of the dif-
ferent regions of the phase space consists of the homo-
clinic or heteroclinic trajectories of non-trivial saddle-
type equilibria. That is, an initial condition exactly at
a separatrix-type boundary surface should tend expo-
nentially to such an equilibrium point.

These scenarios are visualized in Fig. 10 by using
only two dimensions. In the four-dimensional phase
space of the system, the centre and saddles are located
in a two-dimensional surface, the separatrices of the
saddles form three-dimensional surfaces, and the con-
dition F2 = 0 is also a three-dimensional surface.

5.1.1 The algorithm

For the systematic detection of the boundary surfaces in
our four-dimensional phase space X � (β, ω1, ω2, ω3),
no analytical tool seems to be available. Instead, we
perform numerical simulations to find the regions of
long-time rolling solutions. The main steps of the sim-
ulation are the following:

1. A steady motion of the rolling ball is selected.
2. The initial conditions are varied in a finite vicinity

of the steady motion.
3. A numerical simulation is performed from each ini-

tial condition.
4. The long-term rolling motion or the falling are

detected in each simulation.
5. The boundaries of the resulting regions are checked

to be either the deadlock-type or the separatrix-type
boundary surface.

The throughout exploration of the phase is beyond
the scope of this paper. We selected some steady
motions which are realisable from the point of view
of stability, falling and slipping. From the region A of
Fig. 8,we chose three typical steadymotions,which can
be seen in Figs. 11, 12 and 13.We take two dimensional
sections from the phase space: From the variables of
the initial condition, the orthogonal and circular angu-
lar velocities (ω2 and ω3) are fixed and the other two
variables (ω1 and β) are varied. In each diagram, a grid
of 360× 240 points were used as initial conditions for
the simulations. The rolling simulations were imple-
mented by Julia language by using a built-in adaptive
Runge–Kutta solver [26]. During each simulation, the
long-time (periodic) rolling solution can be detected
by the repetition of the ω1 = 0 value twice without
falling (see Proposition 4). If falling (negative normal
contact force) is detected during the simulation then
from a basic calculation of free-fall, we can determine
that the ball falls down inside (’in’,’score’) or outside
(’out’,’no score’) from the rim.

When the boundaries are found between the long-
term (periodic) rolling and the falling (in or out) regions
thenwe candecide from the presented two types: If near
the boundary, the trajectories satisfy Fmin

2 ≈ 0 then we
have found adeadlock-typeboundary (see above).Or, if
the time period of the trajectory tends to infinity thenwe
have found a separatrix-type boundary. The results can
be seen in the top-left panels of Figs. 11, 12 and13. (The
remaining panels of these figures are produced from
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Fig. 10 The two types of boundary of realisable periodic rolling
solutions of the ball, visualized in two dimensions. Left panel:
deadlock-type boundary. Right panel: separatrix-type boundary.
The dots with the numbers corresponds to initial conditions of
typical solutions. Number 1: a realisable periodic rolling solution

without falling. Number 3: a non-realisable periodic rolling solu-
tion where the ball falls down from the rim. Number 2: solutions
at the boundary of falling; these type of initial conditions form the
deadlock-type and the separatrix-type boundaries, respectively

different modelling assumptions, see later.) Note when
depicting the graphs, the grid points were interpolated
by straight lines.

5.1.2 The results

In Fig. 11, we can see the case which seems to be the
most typical in the area A of Fig. 8. The region of
periodic rolling motion is bounded by two surfaces,
both are separatrix-type boundaries (denoted by thick
continuous lines). In the four-dimensional space, these
curves are three-dimensional surfaceswhich surround a
tubular region of realisable periodic rolling. Note that
by crossing one of these boundaries, the ball falls in
(score), and by crossing the other boundary, the ball
falls out (no score).

In Fig. 12, the structure of the diagram remains simi-
lar, but now, one of the boundaries becomes a deadlock-
type boundary of falling (denoted by a dashed line). In
Fig. 13, a new region seems to be appear surrounded
entirely by a deadlock-type boundary surface. It can be
checked from a different section that the two regions of
periodic rolling are connected in the four-dimensional
phase space.

In all cases, we proved from the simulations that
around the steadymotions, we can find solutions where
the state variables are oscillating periodically and the
ball can remain on the rim permanently. These results
are modified when the effects of slipping and dissipa-
tion are considered.

5.2 Effect of slipping

Theoretically, it is straightforward to add slipping to the
simulations. During the simulation, we should check
the slipping condition (39) and it slipping occurs, we
should switch the solution of the slipping differential
Eq. (42). However, slipping and Coulomb friction in
three dimensions is challenging when we want to sim-
ulate both accurately and effectively. (Note that each
graph in Figs. 11, 12 and 13 were produced by running
the simulation about ≈ 105 times).

The main issue during the simulation is the nons-
mooth behaviour of the system (42) at u1 = u3 = 0,
which occurs every time the system switches between
rolling to slipping or vice versa. If we can find a real-
valued event function in the form E(y) : Y → R on
the phase space Y such that E(y) = 0 at the discon-
tinuity, we can use effective event-driven simulation
techniques available in many software packages. This
methods can be used in many nonsmooth physical sys-
tems including the mechanical problems with planar
Coulomb friction.

However, the discontinuity u1 = u3 = 0 of the
rolling basketball cannot be written in the form of sim-
ple event functions, which is a usual issue in spatial
friction problems. There is discontinuity in the system
if the two conditions u1 = 0 and u3 = 0 are satisfied
at the same time.

Recent studies show [3,4] that in the vicinity of dis-
continuity set u1 = u3 = 0, the trajectories tends to
some characteristic directions called limit directions.

123



3032 M. Antali et al.

Fig. 11 Outcome of the basketball shot from different initial
conditions on the rim,ω2 = 35 s−1,ω3 = 10 s−1, β ∈ [0.8, 1.8],
ω1 ∈ [−20 s−1, 20 s−1]. When no energy loss is modelled dur-
ing rolling then a region of periodic rolling solution exist around
the steady motions where the ball can remain on the rim perma-
nently. On the top-right panel, we can see the case when slipping
is not considered (the friction coefficient tends to infinity). On
the top-right panel, the effect of slipping is included. By adding

a small amount of dissipation, the ball falls down sooner or later,
but it can remain on the rim for a very long time (see the dotted
regions in the bottom-left and bottom-right panels). The figure
demonstrates that by assuming different types of dissipation, the
long-time rolling solutions can fall both in and out of the rim.
Thus, the outcome of the long-time motion (’in’ or ’out’) can
be unpredictable when several types of dissipation present at the
same time

Fig. 12 Outcome of the
basketball shot from
different initial conditions
on the rim, ω2 = 65 1

s ,
ω3 = 10 1

s , β ∈ [0.8, 1.8],
ω1 ∈ [−20 1

s , 20
1
s ]
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Fig. 13 Outcome of the
basketball shot from
different initial conditions
on the rim, ω2 = 105 1

s ,
ω3 = 10 1

s , β ∈ [0.8, 1.8],
ω1 ∈ [−20 1

s , 20
1
s ]

Byutilizing this property of the vector field, we can cre-
ate an effective and robust algorithm for the simulation.
We present only the essential amount of mathematical
background, the details can be found in [3,4].

5.2.1 Nonsmooth dynamics of the basketball

The phase space X � (β, ω1, ω2, ω3) of the rolling
ball is a four-dimensional space embedded into the six-
dimensional phase space Y � (β, ω1, ω2, ω3, u1, u3)
of the slipping ball. In Y , the set X is a codimension-2
discontinuity set. Our main problem that the slipping
vector field (42) is not defined in this set.

However, we can take the limit of the vector field
(42) from different directions. At a chosen point x ∈ X ,
the set of directions in Y normal to X can be char-
acterised by an angle ϕ = arctan(u3, u1) ∈ [0, 2π ].
(The situation is similar to the case when an 1D line is
embedded into the 3D space and we can measure the
direction around the line by an angle.) Consider the last
two components of (42). By taking the limit of a vector
field at a point x ∈ X from the direction ϕ ∈ [0, 2π),
we get

u̇∗
1(x, ϕ) = B1(x) − C(x) · cosϕ,

u̇∗
3(x, ϕ) = B3(x) − C(x) · sin ϕ,

(75)

where

B1(x) = −r2ω1ω2

ρ
,

B3(x) = r2ω2ω3 cosβ

R − ρ cosβ
− g cosβ,

C(x) = μ(1 + j)

j

·
(

r2ω2
3 cosβ

R − ρ cosβ
− r2ω2

1

ρ
+ g sin β

)
,

(76)

and the star superscript denotes the operation of the
directional limit.

Let us transform the slipping velocities into polar
coordinates in the form

u1 = u cosϕ, u3 = u sin ϕ, (77)

where u is the magnitude of the slipping velocity of
the ball. The angle ϕ was introduced by a geometric
meaning in the phase space, but it can be also imagined
physically as the angle of the slipping velocity in the
normal contact plane of the ball and the rim. Note that
the discontinuity u1 = u3 = 0 corresponds to u = 0
in polar coordinates. From the time derivation of (77),
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we get

u̇ = u̇1 cosϕ + u̇3 sin ϕ,

uϕ̇ = −u̇1 sin ϕ + u̇3 cosϕ.
(78)

Let us take the directional limit of (78) at the disconti-
nuity according to (75). Then, we get

u̇∗(x, ϕ) = B1(x) cos ϕ + B3(x) sin ϕ − C(x), (79)

0 = B3(x) cos ϕ − B1(x) sin ϕ. (80)

From (80), two angles are obtained,

ϕ1 = arctan(B3(x), B1(x)), ϕ2 = ϕ1 + π, (81)

which we call limit directions (see [4]). The limit direc-
tions give the possible direction of the slipping veloc-
ities exactly at the moment of the transition between
slipping and rolling.

Moreover, it can be checked by substituting back the
values ϕ1 and ϕ2 into (80) that the limit direction ϕ2 is
always attracting (u̇∗ < 0), the trajectories follow this
direction at the transition from slipping to rolling. The
another limit direction can be either attracting (u̇∗ < 0)
or repelling (u̇∗ > 0), depending on the values of
B1(x), B3(x) and C(x). It can be shown by compar-
ing (76) and (30)–(32) that the boundary between the
attracting and repelling cases coincides with the slip-
ping condition (39).

5.2.2 The algorithm

These results give important information about the
structure of the trajectories in the plane u1 − u3 of the
phase space. If both limit directions are attracting then
the rolling motion is realisable and the adjacent trajec-
tories tend to the discontinuity along the two limit direc-
tions as asymptotes. If the limit direction ϕ1 becomes
repelling then the rolling motion is not realisable and
the trajectories leave the discontinuity along the limit
direction ϕ1.

How can we use these results to create an effective
simulation of the slipping-rolling transitions?

1. The simulation of the transition from rolling to
slipping is easier. Beginning from a rolling state,
we should check the slipping condition (39) with
a usual event-driven technique. When slipping is
detected at a point x, the dynamics is switched to

the slippingdifferentialEq. (42). The repelling limit
direction ϕ1 can be calculated from (81). Then, the
state u1 = u3 = 0 should be slightly modified to
u1 = δ cosϕ1, u3 = δ sin ϕ1 where δ is a small
positive number. Then, the slipping simulation is
launched to the appropriate direction. (See the left
panel of Fig. 14.)

2. Before a slipping solution turns into rolling, the
trajectories approach the set u1 = u3 = 0 along
one of the limit directions ϕ1 and ϕ2. That is, the
angle ϕ = arctan(u3, u1) should converge to ϕ1 or
ϕ2, which can be detected by using an appropri-
ate tolerance. Note that at the discontinuity set, the
leading term of the expansion of u̇ is not linear but
constant, and the trajectories tend to the discon-
tinuity in finite time. That is, when the trajectory
gets sufficiently close to the limit direction ϕi , the
time for reaching the rolling state can be extrapo-
lated from u and u̇∗(x, ϕi ). Then, the dynamics is
switched back to the rolling differential equations,
and the state is set explicitly to u1 = u3 = 0. (See
the right panel of Fig. 14.)

5.2.3 The results

By implementing the algorithm presented above, the
results can be seen in the top-right panels of Figs. 11, 12
and 13.

In Fig. 11, we can see that adding the effect of slip-
ping has almost no effect to the diagram. The bound-
aries of the periodic rolling comes from the separatrices
from the rolling phase space, which are not affected by
slipping.

InFig. 12, the effect of slipping is significant. Instead
of the deadlock-type boundary, a similar but stricter
condition appears from the slipping of the ball. More-
over, the region of the periodic rolling is now fully
embedded to the region where the ball falls out from
the rim and no score is achieved. In Fig. 13, we can
see the similar effect; moreover, the second region of
periodic rolling vanishes.

5.3 Effect of dissipation

Up to this point, we neglected the dissipation during
the rolling motion of the ball. Now, we investigate the
effect of small dissipation and its consequence to the
long-term rolling solutions.
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Fig. 14 Sketch of the
algorithm of the simulation
of slipping-rolling
transitions of the basketball.
Left panel: transition from
rolling to slipping. Right
panel: transition from
slipping to rolling

We can identify twomain sources of the dissipation:
the combined effect of contact deformations and fric-
tion, and air resistance. In this paper, we pay attention
to the friction effects.

5.3.1 Modelling the dissipation from the finite size
contact

If the bodies are not considered to be completely rigid
then in (23), the contact force FC complemented with
a contact moment MC acting at the contact point C .
In case of finite contact stiffness, a small finite contact
area is initiated around the theoretical contact point.
In the case that we consider rolling motion from the
point of view of the rigid body model, some regions
of the contact area is sticking and some regions are
slipping. The resulting distributed slipping friction can
be reduced to a force (a small addition to FC ) and a
moment (appearing of a new termMC ).

We focus on the qualitative effect of the dissipation
and assume the simplest relevant models. That is, the
contact moment is considered in the linear form

MC =
⎡

⎣
M1

M2

M3

⎤

⎦ =
⎡

⎣
−Crω1

−Cdω2

−Crω3

⎤

⎦ , (82)

where Cd and Cr are the coefficients of the drilling
resistance and the rolling resistance, respectively.
These coefficients are assumed to be small but finite.

By adding the term (82) to the right-hand side of
the Euler Eq. (25), the rolling dynamics (33)–(35) is

modified to

ω̇1 = (1 + j)rω2
3 sin β − jrω2ω3 cosβ

(1 + j)(R − ρ cosβ)

− g cosβ

r(1 + j)
− Cr

jmR2ω1,

ω̇2 = r Rω1ω3

ρ(R − ρ cosβ)
− Cd

jmR2ω2,

ω̇3 = − rω1ω3 sin β

R − ρ cosβ
− jrω1ω2

ρ(1 + j)
− Cr

jmR2ω3,

β̇ = r

ρ
ω1.

(83)

The simulation can be performed as we did before,
and the rolling dynamics is replaced by the new rolling
Eq. (83).

5.3.2 The results

It can be seen that the system (83) does not have equi-
librium points any more. That is we expect also from
the physical point of view: In the presence of dissipa-
tion, the energy loss makes the ball fall from the rim
sooner or later. However, if the dissipation is small then
the solutions remain close to those without energy loss.

By including drilling resistance and rolling resis-
tanceone-by-one,weget the bottompanels ofFigs. 11, 12
and 13. The bottom-left panels contain the results with
Cd/( jmR2) = 0.02 · 1/s and Cr = 0 (only drilling
resistance) and the bottom-right panels correspond to
Cr/( jmR2) = 0.02 · 1/s and Cd = 0 (only rolling
resistance).

In Fig. 13, we can see that the region of periodic
rolling vanishes. In the region of the former periodic
rolling (denoted by thin dotted lines in the figure), the
ball falls outside for both types of dissipation.
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For the smaller and more realistic values of ω3

depicted in Figs. 11 and 12, we get a more interesting
result. The simulation shows that in the presence of a
small amount of drilling resistance, all former periodic
solution becomes falling out from the rim. However,
the presence of a small amount of rolling resistance
pushes the periodic motions to fall into the rim. Note
that in both cases, the dissipation is small, and the ball
can spend a long time on the rim close to the periodic
rolling behaviour.

The detailed effect of the dissipation model is not
topic of this paper. However, from simulations from a
few example models, it seems that the falling in or out
is sensitive to the dissipation models and parameters.
The combined effect of drilling and rolling resistance,
the nonlinear extensions of the model (82) and the air
resistance makes the problem even more complicated.
Possibly, even the pattern of the basketball with the
regions of different surface roughness modifies the dis-
sipation, which introduces the orientation of the ball as
new state variables.

We can conclude that from the models without dis-
sipation, we can determine the regions of initial condi-
tions, where the ball is rolling around the rim for a very
long time in the presence of dissipation.However, it still
seems to be hard to determine whether the ball falls in
or out from the rim in real physical circumstances.

6 Conclusions

From the analysis of the rigid body model of the ball
rolling on the rim, we obtain the following results:

– We showed that the phase space of the system con-
tains a two-parameter family of steady motions.
Physically, this means that the ball is rolling around
the rim with a constant orthogonal and circular
angular velocity. These results coincide with those
in [18].

– We found that this set of steady motions is divided
into four branches by singularity lines where no
steady motions exist.

– The physical restrictions were determined which
decide whether the steady motions are realisable.
Namely, we analysed the restrictions from lin-
ear instability, slipping, falling, and limited kinetic
energy. Themost significant realisable set of steady
motions coincides with the motions experienced in
basketball games.

– Based on the symmetries of the system, we anal-
ysed the global dynamics of the phase space of the
rolling ball. It was possible to categorise the possi-
ble types of solutions. It was shown that for realistic
parameters, the general behaviour of the rolling ball
corresponds to periodic solutions.

– We showed that in addition to the total mechanical
energy, two other independent conserved quanti-
ties can be found, which cannot be expressed alge-
braically, but are probably related to the linear or
angular momentum of the ball.

– We explored the structure of realisable periodic
rolling solutions around the steady motions. In
the presence of falling and slipping, two types of
boundaries were detected where periodic solutions
cease to exist. By using numerical simulations,
it was determined for changing initial conditions
whether the periodic solution is realisable or the
ball falls inside or outside the basket.

– By assuming a small dissipation, the periodic
rolling solutions become long-term rolling solu-
tions, and they fall from the rim after going around
several times. It was showed that changing the dis-
sipationmodelsmodify sensitivelywhether the ball
falls inside or outside the rim. This explains why
it is hard to predict the outcome of the long-term
rolling motions of the ball.

The presented results could be extended to differ-
ent directions. First, a detailed exploration of the initial
conditions could be carried out by using the numerical
simulations. While some of the possible motions pre-
sented above are clearly in good agreement with the
basketball dynamics experienced in practice, it would
be interesting to reproduce these results in experiments.
Moreover, the present analysis follows the behaviour of
the ball during its continuous contact with the rim. It
would be interesting to analyse the effects of collisions
of the ball with the rim before getting to the long-term
rolling case. That analysis may restrict the set of initial
conditions to those regions which are realisable after a
real basketball shot.

It seems that the results of this section are closely
related to the properties of other similar systems with
rolling bodies. In [24] the analysis of the rolling disk
relies on classic results on symmetries and integrability
of the system, which make it possible to reduce the
dynamics to a two-parametric family of second-order
differential equations. The application these results to
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the case of the rolling basketball would be a topic of
further research work.
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