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Abstract In this paper, a nonsmooth model of towed

wheels is analysed; this mechanism can be a part of

different kind of vehicles. We focus on the transitions

between slipping and rolling in the presence of dry

friction. The model leads to a three-dimensional

dynamical systemwith a codimension-2 discontinuity.

The systems can be analysed by means of the tools of

extended Filippov systems. The essence of the calcu-

lation is to find the so-called limit directions, which

show the possible directions of slipping-rolling tran-

sitions and their properties. By this method, four

different scenarios are found. The results are com-

pared to those from the creep models.

Keywords Towed wheel � Nonsmooth dynamics �
Dry friction � Filippov systems

1 Introduction

The towed wheels can be found in vehicles and

machines, where the axle of the wheel can freely rotate

with respect to the body of the vehicle. Simple

everyday examples of towed wheels are the wheels of

shopping carts and baby strollers, but the mechanism

of towed wheels cover the trailers [23], the aeroplane

nose gears [22], and the front wheels of motorbikes

[19]. The dynamical properties of these wheels are

important from the point of view of comfort and

safety.

One of the fundamental phenomena of towed

wheels is the self-excited oscillations called shimmy,

which has been intensively studied in the literature

(see [18, 21] and their references). There are many

possibilities for modelling the tyre and the vehicle, and

the resulting models often lead to complex mathemat-

ical models including, for example, time delay [3, 4].

In this paper, we try to focus on the simplest

relevant models and try to understand the basic

dynamical effects coming from the nonsmooth prop-

erty of the friction forces between the wheel and the

road. The resulting nonsmooth dynamical system is

analysed by means of the tools developed by the

authors [1] recently.

The paper is organized as follows: In Sect. 2, the

equations of motion of the system is derived for such

coordinates that give the possibility to introduce

several different contact models. In Sect. 3, we review

and compare a few fundamental models of the

tangential contact forces, including smooth and non-

smooth models. In Sect. 4, we analyse the towed wheel

model with a linear creep force, which analysis serves

as a reference when comparing it to the nonsmooth

model. In Sect. 5, we present a throughout analysis of

the wheel model with the spatial Coulomb friction, by
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using the recently developed calculation methods of

this kind of nonsmooth system. Our purpose is to

explore the possible scenarios when the system is

switching between rolling and slipping states. In Sect.

6, we show that the results from the nonsmooth model

can appropriately predict the behaviour of the system

with the full nonlinear creep model.

2 Equations of motion

Consider the model of the towed wheel consisting of

the wheel itself and the caster which connects the

wheel to the vehicle (see Fig. 1). The wheel-caster

mechanism can rotate in the horizontal plane around

the king pin. The radius of the wheel is R, the length of

the caster is L, and the distance of the centre of gravity

B of the caster from the king pin is H. The vehicle is

assumed to move with a constant speed v on a straight

road. The angle of the caster is measured by w, and the
rotation angle of the wheel is measured by #.

This two-degree-of-freedom model is the simplest

relevant model of the towed wheel. In this paper, we

focus on the nonsmooth dynamical effects caused by

the slipping-rolling transitions of the wheel. For this

purpose, the differential equations are expressed in

such variables that prove to be effective for the

subsequent analysis.

The dynamics is described in the inertial reference

frame, but the vector quantities are expressed in a

rotating coordinate system. The basis vectors i and j

are co-rotating with the caster in the horizontal plane

(see the Fig. 1). The basis vector i points forward in the

longitudinal axis of the caster, and j points to the left.

The basis vector k is fixed and points vertically

upwards.

In this coordinate system, the geometric relations

between the typical points of the mechanism are given

by the vectors

rAB ¼ �H i; rAC ¼ �L i; rCD ¼ �Rk: ð1Þ

The velocity of the point A is

vA ¼ v cosw i� v sinw j; ð2Þ

and the angular velocities of the caster and the wheel

are

xc ¼ _wk; xw ¼ _#jþ _wk; ð3Þ

respectively. All along this paper, the dot above a

symbol denotes differentiation with respect to time.

Then, the kinetic energy of the mechanism can be

written into the form

Ekin ¼
1

2
mv2 þ SAz _wv sinwþ 1

2
JAz _w

2 þ 1

2
JCy _#

2
;

ð4Þ

where m, SAz and JAz are the total mass, first mass

moment, and the (second) moment of inertia of the

wheel-caster mechanism, the latter two are calculated

with respect to the king pin about the vertical axis. JCz

Fig. 1 The sketch of the mechanical model analysed in the paper. Themechanism consisting of a wheel, a caster and the king pin can be

a part of several types of vehicles
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denotes the moment of inertia of the wheel about its

symmetry axis.

The force system acting between the wheel and the

road is reduced to a concentrated force FD and a

concentrated moment MD acting at the theoretical

contact point D. These vectors are denoted by

FD ¼ Tx iþ Ty jþ N k; ð5Þ

MD ¼ Mx iþMy jþMz k; ð6Þ

where Tx and Ty are the friction force components,N is

the normal force between the surfaces, and Mx,My,Mz

are the components of the moment. The details of

modelling of these quantities are discussed in Sect. 3.

Our two generalized coordinates are w and #; the

Lagrange equations of the second kind leads to the

following equations of motion:

JAz €w ¼ �TyLþMz;

JCy €# ¼ �TxRþMy:
ð7Þ

Let us transform the equations of motion into a more

appropriate form for the subsequent analysis. Consider

the velocity vD ¼ uxiþ uyj of the contact point

D where the components

ux ¼ �R _#þ v cosw;

uy ¼ �L _w� v sinw
ð8Þ

are the slipping velocites of the wheel on the ground.

We describe the position of the bodies by the

generalised coordinates w; #. In addition, the velocity

state of the bodies is parametrised by the quasi-

velocities ux; uy (see [7], p. 217). Then, the equation of

motion (7) can be transformed into four first-order

differential equations where

_ux ¼
v

L
sinwþ uy

L

� �
v sinwþ Tx �My=R

mx
; ð9Þ

_uy ¼
v

L
sinwþ uy

L

� �
v coswþ Ty �Mz=L

my
ð10Þ

are the dynamic equations for the evolution of the

quasi-velocities and

_w ¼ � v

L
sinw� uy

L
; ð11Þ

_# ¼ v

R
cosw� ux

R
ð12Þ

are the kinematic equations for the evolution of the

generalised coordinates. In (9)–(10), the definition of

the reduced equivalent masses mx and my are

mx ¼
JCy
R2

;my ¼
JAz
L2

: ð13Þ

The equations (9)–(12) still do not form a complete

system of ordinary differential equations, because we

have not defined the quantities Tx, Ty, My and Mz. In

the next subsection, we choose some nonsmooth and

smooth models which are used in the analysis of the

towed wheel.

3 Modelling of the contact forces

The detailed modelling of the contact forces between

the wheel and the road leads to complicated models

including several phenomena such as dynamical

models or time delay (see [3, 4] or, for a throughout

overview, [18]).

In this paper, we focus on the understanding of the

fundamental effect of the nonsmooth behaviour of the

contact. Thus, we restrict ourselves to the simplest

relevant models by considering the following

assumptions:

• We assume that the ratio of the magnitudes of the

moments My, Mz and forces Tx, Ty is proportional

to the typical size q of the contact patch [15]. Then,

by considering a small contact patch in the sense of

q � minðR; LÞ, the moments My and Mz can be

neglected in (9)-(10),

Tx �
My

R
� Tx;Ty �

Mz

L
� Ty: ð14Þ

• We consider stationary models, that is, we assume

that no additional dynamical variables are consid-

ered in the contact. Thus, the contact forces Tx, Ty
are expected to depend on the state variables

w; #; ux; uy only.
• We assume that the isotropy of the road and the

rotational symmetry of the wheel makes the contact

forces independent from the angles w and #.

Finally, we look for the formulae of the tangential

forces in the form Txðux; uyÞ and Tyðux; uyÞ.
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3.1 Coulomb friction model

If the stiffness of the wheel-road contact is sufficiently

rigid, then the contact forces can be calculated by the

simple Coulomb friction model. Then, the slipping

friction force is required to be the opposite direction to

the slipping velocity and to have a constant magnitude

lN where l is the friction coefficient. In planar

mechanical problems, it would be described by the

formula TC
x ðuxÞ ¼ �lN � ux=juxj. In spatial problems,

the formula becomes

TC
x ðux; uyÞ ¼ �lN

uxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2x þ u2y

q ;

TC
y ðux; uyÞ ¼ �lN

uyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2x þ u2y

q :
ð15Þ

Note that this model is discontinuous where both

slipping velocities ux and uy tend to zero, which issue

is the main challenge of the present analysis. The

discontinuity at ux ¼ uy ¼ 0 corresponds to the case

where the wheel is rolling. The expression of (15) can

be extended to the rolling case but then, we require

ux ¼ uy ¼ 0) T2
x þ T2

y � lN: ð16Þ

That is, the full dependence of the tangential forces on

ux and uy is not a function but a relation (15)–(16),

often called a set-valued force law [6]. In the rolling

state, the values of Tx and Ty are not specified

explicitly from the contact but they are computed

from the dynamics as contact forceswith respect to the

rolling constraint

ux ¼ uy ¼ 0: ð17Þ

Note that we implicitly assumed that the static and

dynamic friction coefficient coincide. It was shown in

[2] that this simplification does not imply loss of

generality in the analysis.

All things considered, the Coulomb friction model

leads to well-defined slipping and rolling states given

by (15) and (17), respectively (see the continuous line

in Fig. 2). In this paper, we focus on the dynamical

consequences of transitions between these two states.

However, it is important to compare the results to the

models where finite stiffness of the contacting bodies

is considered.

3.2 Linear creep model

When the stiffness of the contacting bodies is not large

enough at the contact point, the local deformation has

to be considered, which leads to the phenomenon

creep.

If we consider the problem locally, we can expe-

rience that the theoretical contact point becomes a

contact patch. In a chosen state of the system, slipping

and sticking behaviour can occur simultaneously in

the different regions of the contact patch [3].

If we consider the motion of the whole wheel as a

rigid body, this phenomenon leads to the effect that the

pure rolling behaviour does not occur for finite (non-

zero) tangential forces. Although the physical back-

ground is the co-existence of the local slipping and

sticking regions, it seems that the wheel is slipping

permanently. This phenomenon is called creep, and in

this context, the velocities ux and uy can be called

creep velocities.

The essence of this phenomenon can be modelled

by a linear creep model (see Fig. 2), where the

tangential forces are proportional to the slipping

(creep) velocities,

Tlcx ðux; uyÞ ¼ �cxux;

Tlcy ðux; uyÞ ¼ �cyuy:
ð18Þ

The creep coefficients cx and cy are influenced by the

contact stiffness of the bodies and by the velocity state

Fig. 2 Comparison of the contact models (15), (18) and (21) by

depicting in the special planar case uy ¼ 0. The nonlinear creep

model Tncx ðux; 0Þ ¼ �lN � tanhðcxux=ðlNÞÞ is denoted by a

dashed line. The linear creep model Tlcx ðux; 0Þ ¼ �cxux is

denoted by a dotted line. The Coulomb friction model

Txðux; 0Þ ¼ �lNux=juxj is denoted by a solid line
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of the contacting bodies. In our model, the velocity of

the wheel does not differ much from v for not too large

caster angles w, thus, cx and cy can be considered

constants for a fixed velocity v. However, the depen-

dence on v can be important when we investigate the

effect of different parameters. In the literature, the

lateral creep force is often expressed by the creep

angle b where tan b ¼ uy=v [3]. Then, a usual

empirical linear creep model is expressed as

T lcy ¼ �~cyb � �~cy � uy=v, where the parameter ~cy is

already independent on the velocity v. That is, cy �
~cy=v is proportional to the reciprocal of v. We expect a

similar tendency for cx.

3.3 Nonlinear creep model

We can summarize the difference between the previ-

ous two models: The Coulomb friction model is

appropriate for contact with large contact stiffness

(close to a rigid body), and the linear creep model is

appropriate for problems with small contact stiffness.

In the literature, these two types of behaviour are

usually combined, and nonlinear creep models are

obtained (see Fig.2). In two dimensions (uy � 0), the

nonlinear creep is expected to satisfy

Tnc
x ðux; 0Þ ¼

�cxux juxjcx=ðlNÞ � 1;

�lN
ux
juxj

juxjcx=ðlNÞ � 1:

8<
: ð19Þ

The two regions of the function can be connected in

the form

Tncx ðux; 0Þ ¼ �lN
ux
juxj

sigmoid
juxjcx
lN

� �
; ð20Þ

where sigmoidðxÞ is a monotonous function tending to

	1 at x ! 	1 and having a unit slope at x ¼ 0. For

example, such a sigmoid function can be represented

by a piecewise linear cut function [8], but piecewise

polynomial functions can be also found in the

literature [9]. Alternatively, a single smooth sigmoid

function can be chosen such as erfð
ffiffi
p

p

2
xÞ, 2p arctanðp2 xÞ,

x=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
, or tanhðxÞ [14]. Other possibilities can be

found in [20].

Let us represent the sigmoid function by the

hyperbolic tangent function. Then, the three-dimen-

sional (uy 6¼ 0) extension of (20) becomes

Tnc
x ðux; uyÞ ¼

�lNuxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2x þ u2y

q tanh
cx
lN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2x þ u2y

q� �
;

Tncy ðux; uyÞ ¼
�lNuyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2x þ u2y

q tanh
cy
lN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2x þ u2y

q� �
:

ð21Þ

Nonlinear creep models such as (21) are known and

widely used in the literature, and they are confirmed by

experiments and numerical simulations (see

[11–13, 17]). Thus, although much more complicated

models are required in given circumstances, we now

consider (21) as a validated model, and (15), (18) as

approximating models of (21).

3.4 Role of the approximating models

The parameters

Cx ¼
cx ~u

lN
;Cy ¼

cy ~u

lN
ð22Þ

express the dominant character of the nonlinear creep

model (21), where ~u is the typical amplitude offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2x þ u2y

q
in the given problem. IfCx;Cy � 1 then the

nonlinear creep model (21) tends to the linear creep

model (18). However, ifCx;Cy � 1 then the nonlinear

creep model (21) tends to the Coulomb model (15).

That is, the linear creep and the Coulombmodel can be

considered opposite limit cases of the more realistic

nonlinear creep model (compare the curves in Fig. 2).

This fact can be shown more clearly from the

expansion of the nonlinear characteristic curve. Con-

sider the hyperbolic tangent function, which was

chosen as the sigmoid function when constructing

(21). At x ¼ 0, the Taylor expansion of tanhðxÞ is

tanhðxÞ ¼ x� x3

3
þ 2x5

15
� 17x7

315
þ 62x9

2835
� . . .; ð23Þ

where the coefficients of the terms can be expressed by

the Bernoulli numbers ([16], p. 291). Note that the

convergence of this series is extremely slow. Even for

considering the first hundred terms from the series, the

truncated series is impossible to make an appropriate

approximation of the saturation of the curve at 	1.

(see the left panel in Fig. 3). This phenomenon seems

to be typical for other sigmoid functions, as well.
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Therefore, if an approximate analysis is needed,

including the saturation effect, other methods need to

be found. It has been shown (see p. 18 of [10]) that the

sigmoid function can be effectively approximated by

asymptotic series where the leading term is the sign

function. This asymptotic expansion of the hyperbolic

tangent function is [16]

tanhðxÞ ¼ sgnðxÞ � 1� 2 expð�2jxjÞ þ 2 expð�4jxjÞð
� 2 expð�6jxjÞ þ 2 expð�8jxjÞ � . . .Þ:

ð24Þ

This series initially gives a good approximation for

large absolute values of x, and by increasing the terms

considered in the series, the convergence is relatively

fast towards the small absolute values of x (see the

right panel of Fig. 3). The first approximation is the

sign function itself, which immediately contains the

saturation of the original curve at x ¼ 	1.

In this sense, the linear term x and the sign function

sgnðxÞ are the leading terms of the two expansions

(23)–(24) of the sigmoid function tanhðxÞ. By com-

paring this to the formulae (15), (18), (21) and Fig. 2,

we can get a similar conclusion for the contact models.

The linear creep model and the Coulomb friction

model can be considered the leading approximations

of two different expansions of the nonlinear creep

model.

The advantage of these two approximate models is

the availability of analytic methods to explore the

behaviour of the system. The linear creep model can

be investigated by usual linear stability analysis and

multi-scale considerations. The main new result of the

paper is the analysis of the system with the Coulomb

model by using the nonsmooth methods introduced

recently by the authors [1].

3.5 General set of ODEs

If we formally insert any of the models (15), (18) and

(21) into (9)–(12) in the form Txðux; uyÞ and Tyðux; uyÞ,
we get a system of four ODEs. Note that the rotation

angle # does not appear on the right-hand side of these

equations. Thus, the ODE (12) of this cyclic variable

can be omitted, and the dynamics of the other three

variables is determined by the system

_ux ¼
v

L
sinwþ uy

L

� �
v sinwþ Txðux; uyÞ

mx
;

_uy ¼
v

L
sinwþ uy

L

� �
v coswþ Tyðux; uyÞ

my
;

_w ¼ � v

L
sinw� uy

L
:

ð25Þ

In vector form, (25) can be written as

_x ¼ fðxÞ; x ¼
ux

uy

w

2
64

3
75: ð26Þ

Fig. 3 Two different expansion of the hyperbolic tangent

function. In both panels, the numbers at the curves show the

number of the terms considered in the expansion. Left panel: the

Taylor expansion (23) around the origin. The convergence of

this expansion is very slow, and even the 100-term truncated

series is a bad approximation of the saturation value 	1. Right

panel: the asymptotic expansion (24). The linear creep model
and theCoulomb friction model can be considered as the leading
terms of these two types of expansions of the nonlinear creep
model
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The following part of the paper contains the analysis of

the system (25) by assuming the models (18) and (15).

Section 4 contains the linear stability analysis of the

system with the linear creep model. In Sect. 5, a

throughout analysis is carried out on the system with

the Coulombmodel by using the nonsmooth analytical

tools of extended Filippov systems.

4 Analysis with the linear creep model

Let us substitute the formulae of the linear creep

model (18) into the set (25) of general equations. Then,

we get

_ux ¼
v

L
sinwþ uy

L

� �
v sinw� cxux

mx
;

_uy ¼
v

L
sinwþ uy

L

� �
v cosw� cyuy

my
;

_w ¼ � v

L
sinw� uy

L
:

ð27Þ

The trivial equilibrium of this smooth system is

located at ðux; uy;wÞ ¼ ð0; 0; 0Þ. The linearised differ-
ential equation around the trivial equilibrium can be

written in the form

_ux

_uy
_w

2
64

3
75 ¼

�cx=mx 0 0

0 v=L� cy=my v2=L

0 � 1=L � v=L

2
64

3
75 �

ux

uy

w

2
64

3
75:

ð28Þ

The eigenvalues of the coefficient matrix are deter-

mined by the characteristic equation

kþ cx
mx

� �
� k2 þ cy

my
kþ cyv

myL

� �
¼ 0; ð29Þ

and the eigenvalues are

k1 ¼ � cx
mx

; k2;3 ¼ � cy
my

1

2
	 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4vmy

Lcy

s !
:

ð30Þ

The real part of all eigenvalues is negative, and the

trivial equilibrium is asymptotically stable.

The structure of the dynamics is significantly

affected by the parameter

S ¼ v=L

cy=my
: ð31Þ

Note, that v/L is the coefficient of the decay of the

caster angle at the pure rolling motion (see (36)),

which we call the kinematic effect. At v ¼ 0, the lateral

slipping velocity (creep velocity) uy decays with a

coefficient cy=my (see (27)), which we call the lateral

creep effect. Thus, the parameter S expresses the ratio

of the time scale of these two effects. As it was

explained at the end of Sect. 3.2, the parameters cx and

cy are supposed to be approximately proportional to 1/

v.

If S is relatively large (high velocity or low wheel

stiffness) in the sense S[ 1=4 then (30) shows that the

eigenvalues k2;3 become complex, which causes

oscillatory decay of the variables. When S\1=4

(low velocity or high wheel stiffness), all eigenvalues

are real, and there are no oscillations during the

exponential decay.

If S is very small in the sense of S � 1 then the

eigenvalues tend to k2 ! �cy=my and k3 ! �v=L. In

this case, the creep effect and the kinematic effect

separates to different time scales. As cx=mx and cy=my

are supposed to have the same order of magnitude, we

can say that we have a multi-scale system with the fast

eigenvalues k1 and k2 and the slow eigenvalue

k3 � k1; k2. In this case, the eigenvector of k3 tends

to the w axis, and the corresponding stable manifold

lays close to the line ux ¼ uy ¼ 0, as well (see Fig. 4).

How do the trajectories of the system behave in the

vicinity of the equilibrium at the origin? Due to the

multi-scale dynamics with k1; k2 � k3, the creep

velocities ux and uy decay much faster than the caster

angle w. (The eigenvectors are approximately parallel

to the coordinate directions.) Thus, the trajectories

approach the line ux ¼ uy ¼ 0 very fast, and then, they

converge to the origin along this line governed by the

slow eigenvalue k3 ¼ �v=L. Although pure rolling

does not occur, the trajectories are quantitatively very

close to that.

It can be shown (see later in Sect. 5.4.2) that

mx\my and my is typically much larger than mx. If the

values of cx and cy are close to each other then cx=mx is

typically larger than cy=my. That is, during the fast

dynamics in the plane ux � uy, most trajectories

approach the w axis along the eigendirection of the

eigenvalue k2 � �cy=my. Later, this property of the

eigenvectors can be compared to the results from the

nonsmooth analysis with the Coulomb model.
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5 Analysis with the Coulomb model

5.1 Nonsmooth vector field from the Coulomb

model

By substituting the expression of Coulomb model (15)

into (25), we get

_ux ¼
v

L
sinwþ uy

L

� �
v sinw� lN

mx
� uxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2x þ u2y

q ;

_uy ¼
v

L
sinwþ uy

L

� �
v cosw� lN

my
� uyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2x þ u2y

q ;

_w ¼ � v

L
sinw� uy

L
:

ð32Þ

This set of differential equations is valid for the case of

slipping. In the 3D phase space of the system (32), the

vector field has a discontinuity on the line

ux ¼ uy ¼ 0, which line is called discontinuity set

and denoted by R (see the left panel of Fig. 5). We can

say that R is a codimension–2 discontinuity set

because it has two dimensions less than the full phase

space. Thus, the discontinuous dynamical system (32)

can be categorized as an extended Filippov system.

The mathematical background of these systems, more

general definitions and solution methods can be found

in [1]. Now, we restrict ourselves to the introduction of

the concepts and formalisms which are necessary for

the analysis of our mechanical problem.

In the discontinuity set R, and the limit of the vector

field (32) does not exist. (Note the singularity at ux ¼
uy ¼ 0 at the denominator of the friction terms.)

However, we can define the directional limit of the

vector field in the phase space.

Denote the polar angle in the plane ux � uy by /.
(See the right panel of Fig. 5.) Then, the slipping

velocities can be written in polar coordinates as

ux ¼ u cos/;uy ¼ u sin/; ð33Þ

where u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2x þ u2y

q
is the magnitude of slipping and

the physical meaning of / is the direction of slipping.

Let us select a valuew and a point xR ¼ ð0; 0;wÞ in the
discontinuity set R. Then, the function nð/Þ ¼
ðcos/; sin/; 0Þ provides the possible unit vectors

perpendicular to R. Consider the directional limit

f
ðxR;/Þ :¼ lim
u!0þ

fðxR þ unð/ÞÞ; ð34Þ

which we call limit vector field at xR, depending on the

angle /. By using the notation f
 ¼ ð _u
x ; _u
y ; _w

Þ, the

components of the limit vector field of (32) become

_u
xð/Þ ¼
v2

L
sin2 w� lN

mx
cos/;

_u
yð/Þ ¼
v2

L
sinw cosw� lN

my
sin/;

_w

ð/Þ ¼ � v

L
sinw:

ð35Þ

This limit vector field can be used for two purposes.

On the one hand, it provides the rolling dynamics,

which process is almost trivial in our example. On the

other hand, the limit vector field (35) provides the

possibility of a detailed analysis of the rolling-slipping

transitions.

5.2 Rolling dynamics

The rolling constraint (17) shows that the rolling state

of the system corresponds to ux ¼ uy ¼ 0, and the

Fig. 4 Sketch of the phase phase of the towed wheel system

(45) with linear creep model, where the parameter S ¼
ðv=LÞ=ðcy=myÞ is very small. Then, the eigenvalues k1 and k2
associated to the creep effect correspond to a much faster time

scale than the eigenvalue k3 of the kinematic effect. In the

vicinity of the origin, the trajectories converge fast to the line

ux ¼ uy ¼ 0 and then, they approach the origin being asymp-

totically close to this line
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dynamics in the rolling state is described purely by the

caster angle w.
If the third component of the limit vector field (35)

depended on the direction /, then the rolling dynamics

could be calculated by a convex combination in an

integral form (see [1] for details). However, in our

system, the third component _w


is independent of /,

and thus, it directly gives the rolling dynamics in the

form

_w ¼ � v

L
sinw: ð36Þ

(Note that an alternative way to derive (36) is the pure

kinematic description of the system in the presence of

the rolling constraint (17).)

The solution of (36) can be given analytically, the

solution

wðtÞ ¼ w0 expð�vt=LÞ ð37Þ

of the linearised equation _w ¼ �v=L � w is a very good

approximation of the full solution

wðtÞ ¼ arccos

1þcosw0

1�cosw0
� expð�2vt=LÞ

1þcosw0

1�cosw0
þ expð�2vt=LÞ

0
@

1
A; ð38Þ

where w0 ¼ wð0Þ is the initial condition. In the case of
pure rolling, the caster exponentially tends to the

centre position w ¼ 0.

In the next subsection, we analyse the solutions of

the system when transitions occur between rolling and

slipping.

5.3 Transitions between slipping and rolling

Let us express the first two components of the limit

vector field (35) by using polar coordinates according

to (33). Then, we get

_u
 ¼ Rð/Þ; ð39Þ

_/
 ¼ lim
u!0þ

1

u
Vð/Þ

� �
; ð40Þ

where

Rð/Þ ¼ f
ð/Þ � nð/Þ ¼ _u
x cos/þ _u
y sin/; ð41Þ

Vð/Þ ¼ f
ð/Þ � nð/þ p
2
Þ ¼ _u
y cos/� _u
x sin/:

ð42Þ

According to (39)–(40), the function Rð/Þ shows the
rate of change of the magnitude u of the slipping

velocity, and Vð/Þ is related to the rate of change of

the angle of the slipping velocity. By direct calcula-

tion, we get

Fig. 5 Left panel: structure of the phase space of the nonsmooth

dynamical system (32) of the towed wheel. The vector field is

not defined at the line ux ¼ uy ¼ 0, which is the codimension-2

discontinuity set R. At a point xR of this set, the vector field has

continuously many directional limits, denoted by f
ðxR;/Þ.
Right panel: For a chosen point xR 2 R and a chosen direction

/ 2 ½0; 2p�, the limit vector f
 can be separated to a radial part

R (measuring the change of the magnitude of slipping) and

circumferential part V (measuring the change of the direction of

slipping). These functions have an important role during the

analysis
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Rð/Þ ¼ v2

L
sinw sinðwþ /Þ

� lN
cos2 /
mx

þ sin2 /
my

� �
;

ð43Þ

Vð/Þ ¼ v2

L
sinw cosðwþ /Þ

þ lN
sin/ cos/

mx
� sin/ cos/

my

� �
:

ð44Þ

This polar coordinate form is useful to find and analyse

the possible directions (angles) where the transitions

between rolling and slipping occur.

The system in the original form (32) is not defined

at the discontinuity at ux ¼ uy ¼ 0. That is the reason

why the limit (40) is not defined except for some

special values of /. This limit exists at the roots of the

equation Vð/Þ ¼ 0. These roots are called limit

directions.

Definition 1 (Limit direction) An angle /1 2 ½0; 2p�
and the corresponding direction is called a limit

direction of the dynamics at the point xR 2 R if

Vð/1Þ ¼ 0.

By finding the limit directions, we can determine

the possible directions of transition between slipping

and rolling. When the slipping wheel starts rolling, the

slipping velocity vanishes along the corresponding

limit direction. When the rolling wheel starts slipping,

the slipping velocity is initiated along the correspond-

ing limit direction.

Our analysis has three main steps to achieve a

qualitative overview of the slipping-rolling transitions:

1. Determine the number and location of limit

directions, which show the direction of the

slipping-rolling transitions.

2. Determine the attracting or repelling property of

the limit directions, which shows whether slipping

turns into rolling or vice versa.

3. Determine the dominant or isolated property of

the limit directions, which show whether the limit

direction corresponds to a typical or a special

solution.

These calculations can be performed analytically if the

linearised system of (32) is considered where the

caster angle is assumed to be small in the sense of

w � 1. Then, we get the system

_ux �
v

L
uyw� lN

mx
� uxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2x þ u2y

q ;

_uy �
v2

L
wþ v

L
uy �

lN
my

� uyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2x þ u2y

q ;

_w � � v

L
w� uy

L
:

ð45Þ

where the higher-order terms in w are neglected. Thus,

the functions R and V from (43)–(44) become

Rð/Þ � v2

L
w sin/� lN

cos2 /
mx

þ sin2 /
my

� �
; ð46Þ

Vð/Þ � v2

L
wþ lN

1

mx
� 1

my

� �
sin/

� �
cos/:

ð47Þ

5.3.1 Number and location of the limit directions

According to Definition 1, the limit directions are

determined by Vð/Þ ¼ 0. The roots of (47) can be

written in the form

/1;2 ¼ 	 p
2
; ð48Þ

/3;4 ¼
p
2
	 arccos

v2m̂w
lNL

; ð49Þ

where

1

m̂
¼ 1

mx
� 1

my
¼ R2

JCy
� L2

JAz
: ð50Þ

The limit directions /1 and /2 always exist, but the

limit directions/3 and/4 exist only for a certain range

of the caster angle w. It will be shown in Sect. 5.4.2

that for the physically relevant mass distribution of the

wheel, we have 1=mx [ 1=my, and thus, the parameter

m̂ is always positive. Then, we can state the following

proposition:

Proposition 1 A point xR ¼ ð0; 0;wÞ of the system

(45) possesses four limit directions given by (48)–(49)

if

jwj\ lNL
v2m̂

: ð51Þ

If jwj[ lNL=ðv2m̂Þ then the system has two limit

directions given by (48).
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Note that in the case jwj ¼ lNL=ðv2m̂Þ, we get

/3 ¼ /4, the two limit direction vanishes in a

bifurcation (see in Sect. 5.4).

5.3.2 Attracting and repelling limit directions

Definition 2 A limit direction /i with Vð/iÞ ¼ 0 is

called attracting if Rð/iÞ\0 and it is called repelling

if Rð/iÞ[ 0.

In the attracting case, the trajectories approach the

discontinuity set along the limit direction, which

corresponds to the slipping-to-rolling transition. In the

repelling case, the trajectories leave the discontinuity

set, which corresponds to the rolling-to-slipping

transition. By substituting the values from (48)–(49),

we get

Rð/1;2Þ ¼ 	 v2

L
w� lN

1

my
; ð52Þ

Rð/3;4Þ ¼ �lN
1

mx
: ð53Þ

Thus, we can state the following proposition:

Proposition 2 The limit directions /3 and /4 in (49)

are always attracting. The limit direction /1 is

attracting for w\lNL=ðv2myÞ, and /2 is attracting

for w[ � lNL=ðv2myÞ.

If all limit directions are attracting

(jwj\lNL=v2my), then a transition from rolling to

slipping is not possible, and from a rolling initial

condition, the wheel sustains the rolling state. More-

over, if a perturbation initiates a small amplitude of

slipping, the system robustly comes back to the rolling

state along one of the attracting limit directions.

However, if a repelling limit direction appears, then

rolling-slipping transition becomes possible. We can

say that the rolling behaviour suffers from some kind

of instability because after a small perturbation, an

increasing amount of slipping initiated along the

repelling limit direction.

As an interest, one can check that the boundary of

these two scenarios coincides to the maximum

admissible friction force calculated from the Coulomb

model when the static friction coefficient is assumed to

be l0 ¼ l. That is, a part of the analysis of the limit

directions provides the alternative method to

determine the possibility of rolling purely from the

slipping differential equations.

5.3.3 Dominant and isolated limit directions

Definition 3 A limit direction /i with Vð/iÞ ¼ 0 is

called dominant if Rð/iÞ � dVð/iÞ=d/[ 0 and it is

called isolated if Rð/iÞ � dVð/iÞ=d/\0.

In the dominant case, the limit direction attracts the

surrounding trajectories when approaching the dis-

continuity in the positive or negative direction of time.

Then, the limit direction is an asymptote of continu-

ously many trajectories. In the isolated case, the limit

direction is repelling the surrounding trajectories at the

discontinuity. Thus, only a single trajectory is con-

nected to the discontinuity along the limit direction.

From the mechanical point of view, the dominant

attracting limit directions are the typical directions of

transitions from slipping to rolling, and at the isolated

attracting limit directions, the transition occurs in a

special case only. In case of repelling directions, the

authors have found only isolated ones in mechanical

systems with Coulomb friction, and this seems to be a

generic property (see a partial proof in [2]).

By substituting the values from (48), (49) into the

conditions of the definition, we get

Rð/1;2Þ �
dV

d/
ð/1;2Þ

¼ � 	 v2

L
w� lN

1

my

� �
	 v2

L
wþ lN

1

m̂

� �
;

ð54Þ

Rð/3;4Þ �
dV

d/
ð/3;4Þ

¼ �lN
1

mx

� �
lN

1

m̂
cos2 /3;4

� �
:

ð55Þ

The consequences can be summarized in the following

proposition:

Proposition 3 The limit directions /3 and /4 in (49)

are always isolated. The limit directions /1 and /2

are dominant for sufficiently small absolute values of

w, and this property can be changed at the values

jwj ¼ lNL=ðv2myÞ and jwj ¼ lNL=ðv2m̂Þ.

That is, for very small caster anglesw, the transition
from slipping to rolling typically occurs along the limit
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directions /1 and /2. By increasing the absolute value

of w, the situation gets more complicated. The

different scenarios are summarized in the next

subsection through a bifurcation analysis.

5.4 Bifurcations and typical types of behaviour

5.4.1 Limit directions and bifurcations

During the previous subsection, we analysed the

dynamics of the slipping velocities ux and uy only,

and we considered the caster angle as a parameter.

This approach and the subsequent bifurcation analysis

needs to be confirmed from the point of view of the

strength of the leading terms of the dynamics.

When we calculate the Taylor expansion of _w from

(45) at a xR ¼ ð0; 0;wÞ, the leading term is linear.

When this linear term is non-zero, the dynamics near

this point is dominated by the linear part, the higher-

order terms are less significant, and the tendency of the

solution is exponential.

In the case of the time derivatives _ux and _uy in (45),

the dominant term is the nonsmooth term containing

the square root. It can be showed by the transformation

of the time (see [1]), that in the vicinity of the

discontinuity set R, the nonsmooth terms generate a

convergence that is faster than exponential, and the

trajectories reach the discontinuity in finite time in the

forward or backward direction of the time.

Compared to these nonsmooth terms, the effect of

the linear and higher-order terms can be neglected

when we are close enough to the discontinuity. Then,

as the dynamics of the caster angle w does not contain

nonsmooth terms, its change can be neglected, and w
can be fixed as a parameter, and the system can be

reduced to the plane of ux and uy. (Of course, when we

are further from the discontinuity, the dynamics of w
becomes significant.)

From this consideration, we can treat the statew as a

parameter, and this can be used as a bifurcation

parameter for categorizing the typical behaviours of

the system. A value w is considered as a bifurcation

point from the point of view of limit directions then

either the number of the limit directions or their

properties (attracting–repelling, dominant–isolated)

change. From summarizing the previous subsection,

we can state that bifurcations occur at

jwj ¼ wP ¼ lNL
v2m̂

ð56Þ

and

jwj ¼ wT ¼ lNL
v2my

: ð57Þ

(The subscripts refer to the type of the bifurcation,

which is explained later.) To compare the location of

these bifurcation points, we have to determine the

relationship between the reduced parameters my and

m̂.

5.4.2 On the inertial parameters of the model

We have not specified the modelled system; the towed

wheel can be a part of several wheeled machines from

a shopping trolley to an aeroplane. Thus, the values of

the parameters can be significantly different in the

applications. Still, we can obtain information about the

relation between the equivalent masses mx, my (see

(13)) and m̂ (see (50)) which appear in the formulae

(56), (57) of the bifurcation points.

To minimize the number of the parameters and

make the formulae easier, we used the moments of

inertia JCy and JAz. If we want to express them with the

massmc of the caster and the massmw of the wheel, we

get

JCy ¼ jwymwR
2;

JAz ¼ jczmcL
2 þ jwzmwR

2 þ mwL
2:

ð58Þ

The dimensionless moments of inertia of the wheel

with respect to its centre of gravity are denoted by

0\jwy\1 and 0\jwz\1=2. The dimensionless

moment of inertia of the caster with respect to the

king pin A is denoted by 0\jcz\1. Then, from (13),

mx ¼
JCy
R2

¼ jwymw;

my ¼
JAy
L2

¼ jczmc þ 1þ jwz
R2

L2

� �
mw:

ð59Þ

By direct calculation from (50), it can be shown that

m̂\my is satisfied when
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1þ jcz
mc

mw
þ jwz

R2

L2
� 2jwy [ 0 ð60Þ

This expression would be negative if compared to the

caster, the wheel is very small and very heavy at the

same time, which is physically unrealistic. That is, for

physically relevant parameters, m̂\my,

wP [wT : ð61Þ

Thus, by increasing the amplitude of the caster angle

in the linearised model (45), the system first goes

through the bifurcation point wT and after that, the

bifurcation point wP.

5.4.3 The bifurcations of the limit directions

Now, we have all the information to analyse the

bifurcations of the limit directions in the system (45),

which is summarized in Fig. 6.

The region jwj\wT is denoted by number 1 in

Fig. 6. Here, there are four limit directions, all of them

are attracting, two of them are dominant (/1 and /2)

and the other two is isolated (/3 and /4).

At jwj ¼ wT , one of the dominant directions turn

around and becomes an isolated repelling direction.

According to the similar name from the literature (see

[10] or [5]), we call this bifurcation a tangency

bifurcation, because, at the bifurcation point, one

trajectory is exactly tangent to the discontinuity set.

The region wT\jwj\wP is denoted by number 2 in

Fig. 6. Here, there are still four limit directions, but

one of them is repelling.

At jwj ¼ wP, the remaining three attracting direc-

tions collide at one point. After that, a single attracting,

isolated limit direction remains. We call this bifurca-

tion a pitchfork bifurcation of limit directions.

The region wP\jwj is denoted by number 3 in

Fig. 6. Here, there are only two limit directions; both

are isolated, one attracting and one repelling.

After the overview of the bifurcations, let us

explore what happens in the phase plane of the regions

1–3 and what are the mechanical consequences.

5.4.4 The three typical scenarios of the system

If we sketch the parameter map of the caster angle w
and the velocity v of the vehicle, we get the graph of

the left side of Fig. 7. Here we can detect the three

regions and the two bifurcations from Fig. 6. In each

scenario, the limit directions help us to understand

what happens with the system from the point of

slipping-rolling transitions. Both the figure and the

explanation corresponds to the positive caster angle w,
but the opposite direction can be treated in a similar

way.

In region 1, all the four limit directions are

attracting, and thus, there is no possibility to escape

from the discontinuity. Therefore, the rolling motion

of the wheel is realizable. If a perturbation initiates a

small amount of slipping, the system returns back to

rolling in finite time. Then, the transition from slipping

to rolling occurs along one of the dominant directions.

The isolated directions behave as separatrices between

the areas denoted by ’a’ and ’b’ in Fig. 7. From the area

’a’, the slipping-rolling transition occurs along the

Fig. 6 Bifurcation diagram

showing the location and

type of the limit directions

/i against the caster anglew.
The solid line denotes the

dominant attracting limit

directions. The dashed line

denotes the isolated
attracting limit directions.

The double line denotes the

isolated repelling limit

directions. The tangency
bifurcation is denoted by T,

and the pitchfork bifurcation
of limit directions is denoted
by P
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limit direction /1, that is, the slipping velocity

vanishes from the positive uy direction. From the area

’b’, the slipping velocity vanishes from the negative uy
direction, along the limit direction /2.

In region 2, one of the limit directions becomes

repelling, and thus, the continuous rolling becomes

impossible. When a perturbation pushes the system

into the area denoted by ’c’, the solution escapes along

the limit direction /2, and slipping initiated in the

negative uy direction. In this region, the dominant

attracting direction /1 still exists, which has interest-

ing consequences. If a perturbation pushes the system

into the area ’d’, the solution first converges to the

origin along the attracting direction, and then, it

escapes along the repelling one. That is, there is a

transition from slipping to rolling, but at the same

moment, the system switches from rolling to slipping,

again.

This latter behaviour vanishes in region 3, where

only two limit directions remain. The continuous

rolling is not realizable in this region either. For almost

any small perturbations, the solutions escape along the

limit direction /2. That is, the system just starts

slipping without any complications.

5.5 Results for the full nonlinear system

In Sects. 5.3, 5.4, the linearised model (45) was

analysed assuming small caster angles. For the

nonlinear system (32) with the Coulomb model, the

procedure cannot be repeated analytically but just

numerically. The qualitative result of this process can

be seen in Fig. 8. Two significant differences appear

compared to the linear model.

On the one hand, a new, fourth region appears for

large caster angles. In this region, there are two

attracting limit direction, one dominant and one

isolated. Unlike in region 1, there is only one dominant

direction for the slipping-rolling transition. For almost

all perturbations, the slipping velocity vanishes along

the limit direction /2.

On the other hand, for large caster angles, the limit

direction /1 and /2 do not remain in 	p=2, but they
can have a significant deviation from that (see Fig. 8).

Fig. 7 The three typical scenarios of slipping-rolling transitions

in the linearised system (45) with the Coulomb model. Left part

of the figure: the three regions denoted by numbers 1–3 in the

parameter map shows the three regions of the bifurcation

diagram Fig. 6. The corresponding bifurcations appear in the

graph as lines denoted by T and P. In the middle of the figure, the

towed wheel can be seen with the corresponding limit directions

in the different cases. The right side of the figure: the phase plane

of the slipping velocities in the three cases. The origins of these

phase planes correspond to the rolling state of the wheel
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6 Comparison of the results from various

mechanical models

6.1 Comparison of the Coulomb model

and the linear creep model

At the end of the paper, let us compare the analytical

results of the Coulomb model and the linear creep

model. When we assumed that the creep coefficients

are large enough, we got a structure of the trajectories

on the ux � uy plane which is similar to region 1 of the

Coulomb model. (Compare Figs. 4 and 7.) For the first

sight, we can see some analogy between the eigendi-

rections of the smooth system (with creep) and the

limit directions of the nonsmooth system (with the

Coulomb friction model). They both act as organizing

directions of the trajectories towards a critical set—the

smooth, stable manifold or the discontinuity set.

However, there are two fundamental differences

between eigendirections and limit directions.

1. The eigendirections are two-directional (lines),

but the limit directions are unidirectional (half-

lines). The two sides of an eigendirection corre-

spond to the same eigenvalue and have similar

behaviour. But each limit direction can have

independent dynamical properties.

2. The eigendirections correspond to an exponential

decay characterised by the corresponding eigen-

values, where the full convergence to the critical

set requires infinite time. In the case of the limit

directions, the convergence is faster than expo-

nential and solutions converge in finite time.

These properties explain the main qualitative differ-

ences and the quantitative similarities between the

linear creep model and the corresponding similar

region of the Coulomb model. In the system with the

Coulomb model, the trajectories reach the discontinu-

ity set in finite time. Then, pure rolling begins, and the

dynamics is determined by purely the caster angle w.
In the creep model with large creep coefficients, the

slipping velocities decay much faster than the caster

angle, but with a similar exponential tendency. Thus,

the system gets very close to the rolling state but

reaches the pure rolling only when the caster angle

decays to zero.

The main difference is that the Coulomb friction

model contains the saturation of the contact force

which leads to a new phenomenon in the scenarios 2–4

including the vanishing of the continuous rolling state

and the different kinds of slipping-rolling transitions.

6.2 Comparison of the Coulomb model

and the nonlinear creep model

The system with the nonlinear creep model is analysed

by means of numerical simulations. As we did in

Fig. 7, the vector field is projected to the plane ux � uy,

and the resulting phase portrait shows the behaviour of

the system in the vicinity of a chosen state

xR ¼ ð0; 0;wÞ. In Figs. 9, 10 and 11, the system

parameters are set to L ¼ 0:4m, N ¼ 18:75N,

mx ¼ 0:5 kg, my ¼ 1:458 kg, l ¼ 0:8,

cx ¼ cy ¼ 100Ns/m, v ¼ 10m/s. The state w in

Figs. 9, 10 and 11 is chosen to w ¼ 0:024 ¼ 1:38�,
w ¼ 0:048 ¼ 2:75� and w ¼ 0:096 ¼ 5:50�, respec-
tively. These values are related to scenarios 1, 2, and 3,

respectively (see Fig. 7).

In each diagram, the dashed circle denotes the

region where the relative difference between the

forces from the nonsmooth (Coulomb) and nonlinear

creep models is more than 10%. Inside the circle, the

creep effect is significant, but outside this circle, the

phase portraits are very similar to those obtained from

Fig. 8 Modification of the results in Fig. 7 when the original

nonlinear model (32) is considered. The continuous lines denote

the bifurcations of the nonlinear system; the dashed lines

correspond to previous results of the linearised system. A new,

fourth region appears with two attracting directions
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the Coulomb model (see Fig. 7). In each diagram, the

trajectories with the thick lines are related to the limit

directions of the Coulomb model (see Fig. 7).

In Fig. 9, the structure of the phase space is similar

to that of the Coulomb model. The small circle shows

the nullcline of the dynamics, which is an equilibrium

point of the projected dynamics. In the full system, this

state is very close to the pure rolling motion, which

would be located in the origin of the figure. The two

dominant attracting limit directions of the nonsmooth

model coincides with one of the eigendirections of the

nonlinear creep model (the vertical line in the figure).

The continuation of the other eigendirection becomes

curved (denoted by a dashed line), and its asymptote is

parallel to the isolated limit directions of the nons-

mooth model.

In Fig. 10, we can see the effect of the tangency

bifurcation of the nonsmooth system, which is related

to a structural change in the system with the nonlinear

creep model. The nullcline vanishes, and a special

trajectory is created pointing downwards from the

origin, which attracts the trajectories. This behaviour

cannot be shown directly from the nonlinear creep

model, but it can be predicted from the repelling limit

direction of the nonsmooth system (see Fig. 7).

Physically, it means that the uy component of the

slipping velocity vanishes, and the slipping typically

becomes parallel to the motion of the vehicle.

Figure 11 is not much different from Fig. 10; thus,

the pitchfork bifurcation of the nonsmooth system

does not create a structural change in the nonlinear

creep system. However, there is a geometric change:

In Fig. 11, all trajectories possess an inflection point.

In Fig. 10, there are trajectories with and without an

inflection points, corresponding to regions ’c’ and ’d’

in Fig. 7. That is, the isolated limit directions of the

Fig. 10 Numerical simulation of the system (25) with the

nonliner creep model (21) related to scenario 2 (see Fig. 7)

Fig. 11 Numerical simulation of the system (25) with the

nonliner creep model (21) related to scenario 3 (see Fig. 7)

Fig. 9 Numerical simulation of the system (25) with the

nonlinear creep model (21) related to scenario 1 (see Fig. 7)
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nonsmooth systems separate the regions with different

tendencies of the vanishing of the lateral slipping

velocity uy that can be seen in the nonlinear creep

model.

In all three cases in Figs. 9, 10 and 11, the

analytical results from the nonsmooth Coulomb model

could be used to predict the qualitative behaviour of

the nonlinear creep model.

7 Conclusion

In this paper, we investigated the simplest relevant

model of the towed wheel while focusing on the

dynamical effects of different contact models. The

model leads to a system of three first-order differential

equations for the angle of the caster and the compo-

nents of the slipping velocity of the wheel. It is shown

that, at asymptotic expansion, the Coulomb model can

be considered as the leading approximation of non-

linear creep models. In another way, the linear creep

model can also be used as an approximation. The

analytical investigation of the system was carried out,

considering these two models. With the linear creep

model, the linear stability analysis and multi-scale

considerations are used to obtain qualitative informa-

tion about the system. With the Coulomb friction

model, a special nonsmooth system was created,

which was analysed by the recent methods of the

extended Filippov systems. By using the concept of

limit directions, we determined four typical scenarios

regarding the types of possible slipping-rolling

transitions.

It was shown that the analytical results from the

nonsmooth model could be used to get a throughout

overview of the qualitative behaviour of the full

nonlinear system close to the rolling behaviour. These

analytical results can be used to validate multibody

software that use more complex contact models.

In future research, the global dynamics of the

system should be investigated. It is also important to

introduce stiffness to the king pin to create the

possibility of the self-excited oscillations [21]. The

presented nonsmooth methods hopefully help to

analyse and understand such situations when the

self-excited instability is coupled with the dissipative

effects from the friction models. From the general

analysis of the towed wheel, more specific results can

be obtained if the parameters are gained from the

selected application.
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