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Abstract In the optimization of continuous-time dynamical systems, it can be important
to numerically calculate the parametric sensitivity of some long-time-averaged quantities in
the system. These computations are challenging for the typical numerical methods in the
presence of oscillations, which can originate from the internal structure of an autonomous
dynamical system, or be caused by an external periodic excitation. The case of periodic ex-
citation is motivated by the heat conduction of mechanical parts in engines, where the mean
strength of heat fluctuation can be an important parameter in the engineering design. The
authors investigate approaches to transform periodically excited systems into autonomous
systems that are appropriate for sensitivity analysis. Least squares shadowing method is
used for computing sensitivities, and the effect of the different kinds of transformations are
compared to each other. The resulting numerical method is presented on the motivational
example of heat conduction.

Keywords sensitivity · least squares shadowing · periodic excitation

1 Introduction

In modelling of engineering systems, it is a common situation to have a periodic load on
the bodies in the model. When it is necessary to perform an optimization of the system,
the presence of the oscillating excitation leads to a challenge to find appropriate numerical
methods.

A typical method of optimisation is to compute the parametric sensitivity of the appro-
priately chosen objective function, which can be a basis of a numerical iteration. It is useful
for a wide class of systems to calculate of the sensitivity of the trajectories by directly using
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the chain rule for the objective function. However, recent studies show [1,2,3], that for sys-
tems with periodic and chaotic attractors, this direct method can fail if the objective function
contains long-time average of the solutions.

For avoiding these problems, the least squares shadowing (LSS) method was introduced
by Wang and co-authors [4,3,5,6], based on the consequences of the shadowing lemma [7].
This method is applicable directly for autonomous ordinary differential equations (ODEs),
but originally, the problems of our interest are described by non-autonomous partial differ-
ential equations (PDEs). The semi-discretisation can be performed carefully, but it is not
trivial how to transform a non-autonomous system into an autonomous one to avoid diver-
gence of the method.

In this paper, we analyse possible transformations by considering the effect on the cal-
culation of the parametric sensitivity of long-time averaged objective functions. The other
purpose of the paper is improving the least squares shadowing method appropriately for the
periodically excited problems to reduce the error of the numerical method. For that, we use
a more general norm than [3], and the tuning of the numerical parameters is analysed, as
well.

The topic of the research is motivated by heat conduction problems from mechanical en-
gineering. In engines working in stationary state, the solid parts are exposed to a heat cycle,
thus, they suffer from periodic thermal excitation. This excitation creates a stationary oscil-
lation in temperature in the parts, as well. The dependence on parameters and excitations
can be often quite complicated [8,9,10,11,12]. Minimising the intensity of oscillations in
the temperature is important to increase the lifetime of the machine.

We introduce a simple motivation problem of a periodically excited 1D heat conduction
system. The effect of the excitation frequency on the heat fluctuation is analysed. The chosen
global objective function is the long-time average of the intensity of the oscillations, which
is averaged in space, as well. This example can be solved analytically, which provides a
strong basis of checking the numerical results.

The paper is organised as follows. In Section 2, the motivation problem is presented. In
Section 3, some parametric sensitivity concepts are summarised for solutions and for objec-
tive functions of autonomous systems. In Section 4, we investigate possible transformations
of the periodically excited systems into autonomous systems. In Section 5, the numerical
method of least squares shadowing [3] is improved and the numerical algorithm is pre-
sented. In Section 6, the presented methods are demonstrated on the motivation problem of
heat conduction.

2 Motivation problem from thermal engineering

Let us consider a wall with a static thermal boundary condition at one side (model of the
environment of the engine) and harmonic boundary condition at the other side (model of the
inside of the engine connected to the heat cycle, see Figure 1). In this transfer problem, sev-
eral types of boundary conditions could be assumed (e.g. prescribed temperature, prescribed
heat flux, heat convection), but the essence of the problem does not change by applying a
homogeneous boundary condition of prescribed temperatures at both boundaries.

Let L be the thickness of the wall, a is the thermal diffusivity, ω̂ is the angular fre-
quency of the excitation and T̂A is the amplitude of the excitation (see Figure 1). The 1D
heat conduction equation of the form

˙̂T (x̂, t̂) = a · d
2T̂

dx̂2 (x̂, t̂) (1)
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Fig. 1 Sketch of the motivation problem of Section 2. An infinite wall is subjected to a harmonically os-
cillating temperature load at one side, and the temperature is kept fixed at the another side. The task is to
determine the sensitivity of the mean strength of temperature fluctuation in the wall. The distance through
the wall is measured by the variable x̂ ∈ [0,L]. Its dimensionless form x ∈ [0,1] in used Section 2, as well,
and the discrete variable j ∈ {0,1, . . .m} is used in Section 6 at the demonstration of the presented numerical
methods.

is considered together with the boundary conditions

T̂ (0, t̂) = T̂A sin(ω̂ t̂), T̂ (L, t̂) = 0, (2)

and the initial condition
T̂ (x̂,0) = T̂I(x̂), (3)

where the ˙̂T denotes the derivative of the temperature with respect to the time t̂, and the
location along the wall is denoted by x̂.

Let us transform the problem (1)-(3) into a dimensionless form by using the transforma-
tions

x :=
x̂
L
, t :=

t̂a
L2 , T (x, t) :=

T̂
(
xL, tL2/a

)
T̂A

. (4)

Then, (1) leads to the dimensionless PDE

Ṫ (x, t) =
d2T
dx2 (x, t), (5)

and the boundary and initial conditions (2)-(3) become

T (0, t) = sin(ωt), T (1, t) = 0, T (x,0) = TI(x) :=
T̂I(xL)

T̂A
, (6)

where

ω :=
ω̂L2

a
. (7)

is the dimensionless angular frequency. Instead of a, L and ω̂ , the dimensionless ω can be
chosen as a single optimisation parameter.

Our goal in the engineering problem is to reduce the amplitude of the heat fluctuations
in the wall. For measuring the instantaneous strength heat fluctuation at a time instance t, let
us choose the function

D(t) :=
∫ 1

0
(T (x, t)−〈T 〉(x))2 dx, (8)
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where the integral provides averaging through the thickness of the wall. Here 〈T 〉(x) denotes
the long-time-averaged temperature at a location x, defined by

〈T 〉(x) := lim
t1→∞

1
t1

∫ t1

0
T (x, t)dt. (9)

By averaging D(t) in time, we get a mean strength of fluctuation,

D(t1) :=
1
t1

∫ t1

0
D(t)dt =

1
t1

∫ t1

0

∫ 1

0
(T (x, t)−〈T 〉(x))2 dxdt. (10)

To analyse long-time behaviour, the long-time average is calculated by

〈D〉 := lim
t1→∞

D(t1) = lim
t1→∞

1
t1

∫ t1

0

∫ 1

0
(T (x, t)−〈T 〉(x))2 dxdt. (11)

We have implicitly assumed, that the limits in (9) and (11) exist, which can be checked from
the physical behaviour of the system.

If the value of ω is varied then the objective function 〈D〉= 〈D〉(ω) expresses the aver-
age strength of temperature fluctuations in the wall. To explore the effect of the parameter
ω , we would like to determine the sensitivity

S(ω) :=
d〈D〉(ω)

dω
. (12)

The calculation of this derivative is challenging for numerical methods because of the dif-
ferentiation of the objective function with an improper integral inside (see the integration
with respect to t1 in (11)). This problem is the motivation for the subsequent analysis of this
paper. Sections 3-5 contain the main results of the paper, and the developed methods are
demonstrated on this motivation problem in Section 6.

3 Parametric sensitivity of autonomous systems

In this section, a short overview is presented on the parametric sensitivity of autonomous
systems. These notions are important for the subsequent derivations.

3.1 Direct and generalised sensitivity of the solutions

Let us consider the set U ⊂ Rn of the phase variables, the set P ⊂ R of a single scalar
parameter, and the smooth vector field f : U ×P→ Rn,(u, p)→ f (u, p). Let us denote the
initial condition by u0 : P→U, p→ u0(p), which also depends smoothly on the parameter
p. The family of the integral curves are denoted by u : [0,∞)×P→U,(t, p)→ u(t, p), and
it satisfies the initial value problem

u̇(t, p) := ∂1u(t, p) = f (u(t, p), p),

u(0, p) = u0(p),
(13)

where ∂1 denotes the partial derivative with respect to the first variable.
If we require that the dependence on the parameter p is continuously differentiable then

the direct parametric sensitivity of the solution can be defined by

u′(t, p) := ∂2u(t, p). (14)
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From (13)-(14), the initial value problem for u′ is given by

u̇′(t, p) = ∂1 f (u(t, p), p) ·u′(t, p)+∂2 f (u(t, p), p),

u′(0, p) = ∂1u0(p).
(15)

If the typical time scale of the dynamics is also modified by the change of the parameters
then the direct sensitivity (14) usually diverges in time and it does not express properly the
effect of the parameters. A possible generalization of (14) can be created by considering the
transformation t→ t̃(t, p) of the time with

∂1t̃(t, p0) = 1, ∂2t̃(t, p) = µ(t, p), (16)

where µ(t, p) : [0,∞)×P→R+ measures the time dilation due to the change of parameters
and p0 ∈ P is a chosen fixed parameter. By using this time transformation, the transformed
solution is

ũ(t, p) := u(t̃(t, p), p). (17)

Then, the generalised parametric sensitivity of the solution can be defined by the sensitivity
of the transformed solution by

u∗(t, p) := ũ′(t, p), (18)

which leads to

u∗(t, p) = ∂2u(t, p)+µ(t, p) ·∂1u(t, p) = u′(t, p)+µ(t, p) · f (u(t, p), p). (19)

By differentiating (19), the initial value problem for u∗ can be written into the form

u̇∗(t, p) = ∂1 f (u(t, p), p) ·u∗(t, p)+∂2 f (u, p)+ µ̇(t, p) · f (u(t, p), p),

u∗(0, p) = ∂1u0(p)+µ(0, p) · f (u0, p).
(20)

Note that the time dilation function µ(t, p) is still undetermined, and it is not obvious how
to chose it properly. For our purposes, the goal is to choose µ(t, p) in such a way that it
cancels out the time dilation due to the parameter change (see Fig. 2). Such a time dilation
function can be found either intuitively or it can be calculated by using a numerical method.
One possible solution is the least squares shadowing (LSS) method introduced by Wang [3],
which provides the time dilation µ and the sensitivity u∗ simultaneously.

3.2 Direct and generalised sensitivity of the objective function

We consider an objective function 〈Q〉 : P→ R, which is defined by

〈Q〉(p) := lim
t1→∞

1
t1

∫ t1

0
Q(u(t, p), p)dt, (21)

where the objective function is obtained from a long-time integral average of the instanta-
neous objective function Q : U×P→R. We restrict the analysis to those systems where the
limit (21) exists. This condition is typically satisfied for systems with bounded solutions.

Our goal is to calculate the sensitivity

S(p) :=
d〈Q〉(p)

dp
=

d
dp

lim
t1→∞

1
t1

∫ t1

0
Q(u(t, p), p)dt, (22)
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Fig. 2 Difference between the direct and the generalised parametric sensitivity. In the case of generalised
sensitivity, the change of the trajectory is measured by shifting the time variable. The amount of this shift is
described by the time dilation function µ(t, p). The figure demonstrates that by an appropriate choice of µ ,
the generalised sensitivity u∗ can measure the effect of the parameter better than the direct sensitivity u′.

which expresses the sensitivity of 〈Q〉(p) with respect to the parameter p. The straightfor-
ward idea is to calculate S from the sensitivity of Q.

The sensitivity of the instantaneous objective function Q can be calculated from the
direct sensitivity method, through u′,

Q′(u, p) := ∂1Q(u, p) ·u′(t, p)+∂2Q(u, p), (23)

or, from the generalised sensitivity method, through u∗,

Q∗(u, p) := ∂1Q(u, p) ·u∗(t, p)+∂2Q(u, p). (24)

If we swap the order of differentiation and the limit then the approximation of (22) can
be obtained by using the direct sensitivity (23), and we get

S(p)≈ Š(p) := lim
t1→∞

1
t1

∫ t1

0

(
∂1Q(u, p) ·u′(t, p)+∂2Q(u, p)

)
dt, (25)

if the limit exists. Or, if we use the generalised sensitivity from (24) then we obtain

S(p)≈ Ŝ(p) := lim
t1→∞

1
t1

∫ t1

0
∂1Q(u, p) ·u∗(t, p)dt + lim

t1→∞

1
t1

∫ t1

0
∂2Q(u, p))dt

+ lim
t1→∞

1
t1

∫ t1

0
Q(u, p)

(
µ̇(t, p)dt

)
+ lim

t1→∞

(
− 1

t2
1
·µ(t1, p) ·

∫ t1

0
Q(u, p)dt

)
, (26)

if the limit exists. The third term of (26) is obtained from integration by substitution (see
(16) for the time transformation). The fourth term of (26) originates from the sensitivity of
t1 in the denominator (see (16), again). By simplifying (26), we get

S(p)≈ Ŝ(p) := lim
t1→∞

1
t1

∫ t1

0

(
∂1Q(u, p) ·u∗(t, p)+∂2Q(u, p)+ µ̇(t, p) ·Q(u, p)

)
dt

−
(

lim
t1→∞

1
t1

µ(t1, p)
)
·
(

lim
t1→∞

1
t1

∫ t1

0
Q(u, p)dt

)
. (27)
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It is not obvious how accurate the approximation of S is by Š or Ŝ. Generally, the change
in the order of the limit and differentiation is not permissible. In the case of direct sensi-
tivity, Š can be rather different from S if u′ is not uniformly bounded (see [1] and [3] for
demonstration). This is true for Ŝ as well if an arbitrary time dilation function µ is chosen.
However, the shadowing lemma guarantees that for uniformly hyperbolic attractors, a uni-
formly bounded u∗ and a corresponding µ can be found (see [13], [14], p. 50). In this case,
Ŝ = S can be reached if the smoothness of the applied instantaneous objective function Q is
ensured.

4 Sensitivity of systems with periodic excitation

In the sensitivity computation methods presented in Section (3), autonomous systems are
considered. If we want to calculate the parametric sensitivity of non-autonomous systems
then the differential equation have to be transformed appropriately into an autonomous sys-
tem. This is not a trivial operation if the previous methods are to be used effectively.

4.1 The test problem

For a demonstration of the properties of the different methods, let us consider the following
test problem,

ẏ(t,ω) =−y+ sin(ωt), y(0,ω)≡ y0, (28)

with y ∈ R and the instantaneous objective function Q(y,ω) = y2. We want to determine
the sensitivity of the long-term integral-average of Q with respect to the parameter ω (see
(21)-(22)).

The sensitivity of this simple test problem can be still determined analytically by direct
calculation. After the decay of any transients, the solution of (28) tends to the particular
solution

yp(t) =
1

1+ω2 sin(ωt)− ω

1+ω2 cos(ωt). (29)

Then, the objective function becomes

〈Q〉(ω) = lim
t1→∞

1
t1

∫ t1

0
y2(t)dt =

1
2(1+ω2)

, (30)

and its derivative gives the sensitivity

S(ω) =
d〈Q〉(ω)

dω
=− ω

(1+ω2)2 . (31)

In the following subsections, we calculate the sensitivities Š or Ŝ according to (25)-(27)
for different approaches to transform (28) into an autonomous system.
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4.2 Methods for transformation into an autonomous system

There are more possible ways to convert systems with harmonic excitation into an au-
tonomous system. The trivial method is to choose an additional state variable with τ(t, p)≡ t
as a dependent time variable. Then, the system (28) becomes[

ẏ
τ̇

]
=

[
−y+ sin(ωτ)

1

]
,

[
y
τ

]
(0,ω) =

[
y0
0

]
. (32)

This choice has a few disadvantages. Firstly, the solution for τ is surely unbounded, secondly
the parameter inside the terms sin(ωt) results unbounded derivatives when computing the
sensitivities in (14) and (18). The latter issue can be solved by choosing the phase of the
excitation for the new variable τ(t,ω) = ωt, then, the system (28) becomes[

ẏ
τ̇

]
=

[
−y+ sinτ

ω

]
,

[
y
τ

]
(0,ω) =

[
y0
0

]
. (33)

If we want to produce the excitation from bounded auxiliary variables, a two-dimensional
sub-system can be used, for example in the form ẏ

τ̇s
τ̇c

=

−y+ τs
ωτc
−ωτs

 ,
 y

τs
τc

(0,ω) =

y0
0
1

 , (34)

where u = (y,τs,τc), τs(t,ω) := sin(ωt) and τc(t,ω) := cos(ωt). The excitation is produced
by the linear oscillator in the phase plane of τs and τc. In this construction the perturbations
in the initial conditions cause error not only in the phase shift, but in the amplitude of the
excitation, as well. This error can be damped by adding a control term which pulls back the
trajectory to the unit circle, ẏ

τ̇s
τ̇c

=

 −y+ τs
ωτc−δτs(τ

2
s ,+τ2

c −1)
−ωτs−δτc(τ

2
s ,+τ2

c −1)

 ,
 y

τs
τc

(0,ω) =

y0
0
1

 , (35)

where δ > 0 is a damping parameter.
All the systems (32)-(35) provide the same solution as the initial value problem (28).

However, they behave differently when computing the parametric sensitivities presented in
Subsection 3.1.

The presented transformations can be generalized to the case of several periodic excita-
tion terms. Consider e.g. the following system

ẏ(t,ω) =−y+ cos(2t)+ sin(ωt)+ sin3(t/ω
2 +1/3), y(0,ω)≡ y0, (36)

where the three excitation terms are modified by the parameter ω in a different way. In
that case, we can generalize the transformation (33) by choosing three state variables for
the phase of each excitation term: τ1 = 2t, τ2 = ωt τ3 = t/ω2 + 1/3. Then, the resulting
autonomous system becomes

ẏ
τ̇1
τ̇2
τ̇3

=


−y+ cosτ1 + sinτ2 + sin3

τ3
2
ω

1/ω2

 ,


y
τ1
τ2
τ3

(0,ω) =


y0
0
0

1/3

 . (37)
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The transformations resulting to (34) and (35) can be applied to (36), as well. Then, two
variables in the autonomous system can be introduced to each excitation term. Note that
the periodic excitation terms are not restricted to be harmonic. However, a smooth periodic
function can be transformed into a series of harmonic functions.

4.3 Failure of the direct sensitivity method

In this subsection, we demonstrate that the direct sensitivity method (15) computes incor-
rect sensitivities for the non-autonomous system (28) and for all corresponding autonomous
systems (32)-(35) presented in the last subsection.

Let us first check the result of the direct sensitivity method in the case when the sys-
tem (28) is not transformed to an autonomous system, but it is kept in its original non-
autonomous form. Then, the single phase variable is u = y, the parameter is p = ω , and the
evolution equation (15) becomes

ẏ′ =−y′+ t cos(ωt). (38)

The solution of this linear scalar differential equation can be written in the form y′(t) =
C1 sin(ωt + c1)+C2t cos(ωt + c2)+C3 exp(−t), where the coefficients C1,C1,C3,c1,c2 de-
pend on ω and y0. The second term is linearly growing, y′ becomes unbounded, and the
sensitivity in (25) does not exist.

Let us consider the different types of transformations in (32)-(35). In the case of (32),
we have u = (y,τ) and p = ω . By substituting them into the evolution equation (15) of the
sensitivities, we get [

ẏ′

τ̇ ′

]
=

[
−1 ω cos(ωτ)
0 0

][
y′

τ ′

]
+

[
τ cos(ωτ)

0

]
. (39)

The solution for τ ′(t) is constant, but the solution for y′ is unbounded, because of the mul-
tiplier τ(t)≡ t in the second term. Therefore, the term ∂1Q ·u′ = 2yy′ diverges in (23), and
thus, the limit in (25) does not exist. Consequently, the direct sensitivity method does not
provide a relevant result for the system (28).

Let us now consider the next transformation possibility in (33). Then, (15) becomes[
ẏ′

τ̇ ′

]
=

[
−1 ω cosτ

0 0

][
y′

τ ′

]
+

[
0
1

]
. (40)

Its solution for τ ′ is τ ′(t) = τ ′0 + t, the solution for y′ is divergent, and the limit (25) does not
exist, again.

We could think that the divergent property is caused by the unbounded behaviour of τ in
(32)-(33), but the similar effect is caused in the case of the formulation (34) of the excitation.
By considering (34) with u = (y,τs,τc), the equation (15) givesẏ′

τ̇ ′s
τ̇ ′c

=

−1 1 0
0 0 ω

0 −ω 0

y′

τ ′s
τ ′c

+
 0

τc
−τs

 . (41)

Because of τs(t) = sin(ωt) and τc(t) = sin(ωt), external resonance of the differential equa-
tion can be observed, and the solution of the exciting subsystem can be written into the
form

τ
′
s(t) = τ

′
c0 sin(ωt)+ τ

′
s0 cos(ωt)+ t cos(ωt)

τ
′
c(t) =−τ

′
s0 sin(ωt)+ τ

′
c0 cos(ωt)+ t sin(ωt),

(42)
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where τ ′s0 and τ ′c0 are the initial conditions. The last terms with the t multipliers appear
independently from the initial conditions, making the sensitivity y′ unbounded. Then, (25)
does not exist, again. The situation does not change even if the damped formulation (35) is
applied.

We can conclude that the direct sensitivity method does not provide correct results in
the case of this example of periodic excitation. The physical reasoning is clear: the typical
time-scale of the system is tuned by the parameter ω and a small change of the parameter
causes a phase shift of the oscillation which increases in time without a limit. The growth
rate of this oscillation is linear due to the increasing phase difference. In chaotic systems, a
similar issue occurs with an exponential growth of the sensitivities. That behaviour is caused
by the existence of unstable Characteristic Lyapunov Vectors (see [6]).

4.4 Analytical solution by the generalised sensitivity method

The change of the time scale of the system due to parameters can be considered by the
time dilation function µ of the generalised sensitivity method. However, one cannot find an
appropriate µ for all transformations from (32)-(35).

In the case of the trivial formulation (32) of the excitation, we can modify (39) by using
(20) instead of (15). Then, we get[

ẏ∗

τ̇∗

]
=

[
−1 ω cos(ωτ)
0 0

][
y∗

τ∗

]
+

[
τ cos(ωτ)

0

]
+ µ̇

[
−y+ sin(ωτ)

1

]
. (43)

The second equation gives
τ̇
∗ = µ̇, (44)

which expresses that τ∗ and µ differ in an additive constant only. As we have seen in the
previous subsection, the unbounded solutions for the sensitivities cause divergence in the
sensitivity of the objective function. If we require τ∗ to be bounded then µ has to be also
bounded due to (44). But then, the term τ cos(ωτ) causes divergence in the sensitivity y∗,
and the sensitivity of the objective function does not exist. That is, the trivial transformation
(32) of the excitation cannot be used properly even with the generalised sensitivity method.

Let us now apply the generalised sensitivity method to (33). Instead of (15), let us apply
(20) to rewrite (40). Then, we get[

ẏ∗

τ̇∗

]
=

[
−1 cosτ

0 0

][
y∗

τ∗

]
+

[
0
1

]
+ µ̇

[
−y+ sinτ

ω

]
. (45)

As in the previous cases, our target is to find a time dilation function µ(t), for which the
sensitivities y∗ and τ∗ are bounded. Let us consider the second equation of (41),

τ̇
∗ = 1+ µ̇ω. (46)

The simplest appropriate choice is µ̇(t) = −1/ω , which makes τ∗ constant, i.e. bounded.
Let us check the value of the sensitivity computed by (27). By considering τ(t) = ωt from
the definition and y(t) = yp(t) from (29), the solution of (43) tends to the particular solution

y∗p(t) =−
2ω

(1+ω2)2 sin(ωt)+
1−ω2

(1+ω2)2 cos(ωt) (47)
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Then, the sensitivity (27) becomes

Ŝ(ω) = lim
t1→∞

1
t1

∫ t1

0

(
2y(t)y(t)∗− 1

ω
· y2(t)

)
dt +

1
ω
·
(

lim
t1→∞

1
t1

∫ t1

0
y2(t)dt

)
=

=− ω

(1+ω2)2 , (48)

which gives back the exact result of (31).
That is, the intuitive choice µ̇(t)≡−1/ω is appropriate for obtaining the correct result

of the test problem (28) by using the autonomous model (33).
The similar method is applicable also for (34). Then, the evolution of the sensitivities

from (20) becomesẏ∗

τ̇∗s
τ̇∗c

=

−1 1 0
0 0 ω

0 −ω 0

y∗

τ∗s
τ∗c

+
 0

τc
−τs

+ µ̇

−y+ τs
ωτc
−ωτs

 . (49)

By using the value µ̇(t)≡−1/ω , again, the lase term of (49) cancels the second term, which
term caused the divergence in (41). Then, the particular solution of (49) for y∗ coincides with
(47). The computation of the generalised sensitivity (27) leads to (48), again.

The physical explanation behind the value−1/ω is that the long-time solution of (28) is
periodic with the same frequency as the excitation. By changing the frequency of the exci-
tation, the typical time scale of the long-time behaviour is also changed, and the connection
is reciprocal. If the frequency is increased then the time dilation must be negative to follow
the faster behaviour.

5 Numerical solution with least squares shadowing method

5.1 Improvement to the least squares shadowing method

The least squares shadowing (LSS) method was introduced by Wang and co-authors [3,5,
6]. The goal of the method is to find the shadowing direction, which corresponds to a a
certain sensitivity u∗(t) with special properties. By adding a perturbation in this direction,
the perturbed trajectory remains uniformly close to the original trajectory (see [13] and [14],
p. 50). The perturbation of the time scale corresponds to the time dilation function µ(t).

In the LSS method, the least squares distance between the original and perturbed trajec-
tory is minimized to find the shadowing trajectory. In the terms of the sensitivity u∗(t) and
the time dilation function µ(t), it is required that the function

Π(u∗,µ) := lim
t1→∞

1
t1

∫ t1

t=1

1
2
||u∗||2 + 1

2
α

2
µ̇

2dt (50)

is minimal, while the functions satisfy the evolution equation

u̇∗(t, p) = ∂1 f (u, p) ·u∗+∂2 f (u, p)+ µ̇(t, p) · f (u, p) (51)

from (20). Here, α is a constant parameter for the method and ||.|| is the norm of the vector.
In the original method of Wang, ||.|| means the simple two-norm, but for our purposes,

it is now generalised to

||u∗|| :=
√
(u∗)T Gu∗, (52)
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where G is a positive definite matrix, containing the weight factors for the different variables.
If the entries of u originates from a physical model, and we have preliminary information of
these variables then the form of G can be chosen intuitively to increase the accuracy of the
method. For example, in the heat conduction problem in Section 6, the last entry of u comes
from the periodic excitation, and all the other variables are temperatures. Then, by having
different weights in G for the different kinds of variables, we can improve the performance
of the numerical method.

5.2 Creating a time-discrete problem

For a time discretisation, the step size ∆ t and the number of time steps N is to be chosen.
The time of integration is then given by t1 = N∆ t. Let the discrete approximation of the
solution u(t, p) be

ui :≈ u(i∆ t), i = 0 . . .N, (53)

which are supposed to be calculated by usual time integration. The unknown values of the
sensitivities and the time dilation at the discrete points are denoted by

vi :≈ u∗(i∆ t), i = 0 . . .N, η
i :≈ µ̇ ((i−1/2)∆ t) , i = 1 . . .N. (54)

With these, (51) can be approximated by the discrete variables. By using trapezoid integra-
tion, we get

vi− vi−1

∆ t
=

∂1 f (ui, p)vi +∂1 f (ui−1, p)vi−1

2
+

∂2 f (ui, p)+∂2 f (ui−1, p)
2

+

+η
i f (ui, p)+ f (ui−1, p)

2
, i = 1 . . .N. (55)

This equation can be written into linear form,

Ci−1
1 vi−1 +Ci

2vi +Ci
3η

i +Ci
4 = 0, (56)

where the meaning of the constants are

Ci
1 :=

I
∆ t

+
∂1 f (ui, p)

2
, Ci

2 :=− I
∆ t

+
∂1 f (ui, p)

2
, (57)

Ci
3 :=

f (ui, p)+ f (ui−1, p)
2

, Ci
4 :=

∂2 f (ui, p)+∂2 f (ui−1, p)
2

. (58)

The function Π in (50) can also be approximated by the discrete values,

Π(u∗,µ)≈ 1
N +1

(
N

∑
i=0

1
2
(vi)T Gvi +

N

∑
i=1

1
2

α
2(η i)2

)
. (59)

This expression creates a constrained extreme value problem together with equations (56).
The method of Lagrange multipliers is applied, and the function

Π̃(vi,η i,λ i) :=
N

∑
i=0

1
2
(vi)T Gvi +

N

∑
i=1

1
2

α
2(η i)2+

+
N

∑
i=0

λ
i (Ci−1

1 vi−1 +Ci
2vi +Ci

3η
i +Ci

4
)

(60)
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is defined, where λ i, i = 1 . . .N denote the Lagrange multipliers. The solution for the mini-
mum is given by the partial derivatives, i.e.

∂Π̃

∂vi = 0,
∂Π̃

∂η i = 0,
∂Π̃

∂λ i = 0. (61)

5.3 Steps of numerical solution

From calculating (61), we get the following set of equations,

Gvi +(Ci
2)

T
λ

i +(Ci
1)

T
λ

i+1 = 0, i = 0 . . .N, (62)

α
2
η

i +(Ci
3)

T
λ

i = 0, i = 1 . . .N, (63)

Ci−1
1 vi−1 +Ci

2vi +Ci
3η

i +Ci
4 = 0, i = 1 . . .N. (64)

This creates a set of linear equations for the unknowns vi, η i, λ i. The system can be simpli-
fied by using Gauss elimination, and after eliminating vi and η i variables, we obtain

−Li
λ

i−1−Ki
λ

i−Li+1
λ

i+1 +Ci
4 = 0, i = 1 . . .N, (65)

with the formal notation of λ 0 := λ N+1 := 0. Here the Ki and Li matrices are given by

Ki :=Ci−1
1 G−1(Ci−1

1 )T +Ci
2G−1(Ci

2)
T +

1
α2 Ci

3(C
i
3)

T , (66)

Li :=Ci−1
1 G−1(Ci−1

2 )T . (67)

In matrix form, (65) gives

K1 L2

L2 K2 L3

L3 . . .
. . .

. . . KN−1 LN

LN KN




λ 1

λ 2

...
λ N−1

λ N

=


C1

4
C2

4
...

CN−1
4
CN

4

 , (68)

which is a block-tridiagonal matrix with a block size n.
For this tridiagonal problem, a direct solution algorithm can be built easily. (A similar

block-cyclic reduction method, see [15], p. 197.) First, the following matrices are calculated
iteratively, for increasing index i,

K̃1 := K1, (69)

C̃1
4 :=C1

4 , (70)

K̃i := Ki−Li−1(K̃i−1)−1Li−1, i = 2 . . .N, (71)

C̃i
4 :=Ci

4−Li−1(K̃i−1)−1C̃i−1
4 , i = 2 . . .N. (72)

Then, the Lagrange multipliers λ i can be calculated iteratively, for decreasing index i,

λ
N+1 = 0, (73)

λ
i = (K̃i)−1 (C̃i

4−Li
λ

i+1) , i = N . . .1. (74)
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Then, from (63) and (64), the sensitivities and time dilations can be computed,

η
i =− 1

α2 (C
i
3)

T
λ

i, (75)

vi =−G−1 ((Ci
2)

T
λ

i +(Ci
1)

T
λ

i+1) . (76)

Finally, by using the rectangle rule for numerical integration of (27), we get

Ŝ(p)≈ 1
N +1

N

∑
i=0

(
∂1Q(ui, p)vi +∂2Q

)
+

1
N

N

∑
i=1

(
Q(ui, p)+Q(ui−1, p)

2
−Q

)
η

i (77)

for the sensitivity of the objective function, where

〈Q〉(p)≈ Q :=
1

N +1

N

∑
i=0

Q(ui, p) (78)

is the approximation of the objective function.

6 Application to the heat conduction problem

Now, the methods of Section 4-5 are applied to the motivation problem presented in Section
2. In case of this problem, the sensitivities can be determined analytically and compared to
those of the numerical method.

6.1 Creating the semi-discrete model

As the applied numerical methods are based on ODEs, we create the semi-discretised ap-
proximation of the continuous problem described in Section 2. For more complex problems,
the set of ODEs can be created by appropriate finite difference methods.

Let interval x = [0,1] of the wall be divided into m equal sections, and let

Tj(t)≈ T
(

j
m
, t
)
, j = 0, . . .m, (79)

be a discrete approximation of the temperature distribution in (5). The temperature at the
endpoints are fixed by the boundary conditions,

T0(t) = sin(ωt), Tm(t) = 0. (80)

The dynamics at the remaining points can be approximated by applying the central differ-
ence scheme

d2T
dx2

(
j

m
, t
)
≈

Tj−1(t)−2Tj(t)+Tj+1(t)
( j/m)2 (81)

to (5). The resulting m−1-dimensional ODE can be written in the form

Ṫd(t) = m2HTd(t)+m2 sin(ωt)e1, (82)
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where

Td(t) :=


T1(t)
T2(t)

...
Tm−1(t)

 , H :=


−2 1
1 −2 1

. . .
. . .
1 −2

 , e1 :=


1
0
...
0

 . (83)

The initial condition (6) for the discrete system becomes

TdI =


TI(1/m)
TI(2/m)

...
TI((m−1)/m)).

 (84)

From the discrete solution Td(t), let us determine the approximate value Dd(t) ≈ D(t).
Based on (8), by using trapezoid integration, we get

Dd(t) =
1
m

m−1

∑
j=1

Tj(t)Tj(t)+
1

2m
sin2(ωt). (85)

The long-time average of the fluctuation can be defined in a similar manner to (11) as

〈Dd〉 := lim
t1→∞

1
t1

∫ t1

0
Dd(t)dt. (86)

In the subsequent calculations we use numerical methods to approximate

Sd(ω) :=
d〈Dd〉(ω)

dω
, (87)

and if m is large enough then this is an appropriate approximation also for Sd(ω)≈ S(ω).

6.2 Analytical reference solution

The solution of the linear ODE (82) can be written in the form

Td(t) = TdH(t)+TdP(t), (88)

where the TdH homogeneous solution in the form

TdH(t) := exp(m2Ht) · (TdI−A), (89)

and the TdP particular solution can be written in the form

TdP(t) := Acos(ωt)+Bsin(ωt). (90)

By substituting (90) into (82) and by using harmonic balance for the terms with sine and
cosine, we get [

m2H ωI
−ωI m2H

]
·
[

A
B

]
=

[
0

m2e1

]
, (91)
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Fig. 3 Analytical solution for the objective function 〈D〉(ω) of the continuous test problem (dotted line) and
for the objective function 〈Dd〉(ω) of the semi-discrete test problem (solid lines).
Analytical solutions for the sensitivity S(ω) of the continuous test problem (dotted line) and for the sensitivity
Sd(ω) of the semi-discrete test problem (solid lines).

where

W (ω) :=
(

H2 +
(

ω

m2

)2
I
)−1

, (92)

and I denotes the m×m identity matrix. Then, the solution for the constants A and B of the
particular solution is

A =− ω

m2 W e1, B =−HW e1. (93)

Independently from the initial condition, the homogeneous solution (89) converges to
zero because H has only negative real eigenvalues. Thus, for the long-time behaviour of the
system, the particular solution can be considered only. Performing the calculations in (86),
we obtain

〈Dd〉=
1
2

1
m

(
AT A+BT B+

1
2

)
, (94)

and after substituting A and B from (93), it can be simplified to

〈Dd〉(ω) =
1

2m
eT

1 W (ω)e1 +
1

4m
. (95)

This result is shown in the left panel of Fig. 3 for different values of m. It can be shown
numerically that by increasing m, this discrete approximation 〈Dd〉 tends to the continuous
objective function

〈D〉(ω) =
1√
8ω
· sinh

√
2ω− sin

√
2ω

cosh
√

2ω− cos
√

2ω
(96)

(see the left panel of Fig. 3 denoted by a dashed line). The formula (96) can be derived by
using the form of the homogeneous continuous solution (see [16], p.146.) and by using the
Rayleigh-Krulov functions (see e.g. [17], p. 205). The steps of the derivation are similar
to those of the discrete case 〈Dd〉, but the derivation is lengthy. Thus, only the result is
presented here as a curiosity.

It is hard to analytically express the sensitivity Sd(ω) := d〈Dd〉/dω , but it can be calcu-
lated for a reasonable value of m by using a computer algebra software. The results can be
seen in the right panel of Fig. 3, denoted by solid lines. The sensitivity S(ω) computed from
(96) is denoted by a dashed line in the right panel of Fig. 3.
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6.3 Numerical solution by the least square shadowing method

By using the method from (33) to create an autonomous system, the differential equation
(82) can be written into the general form u̇ = f (u, p) from (13) with

u =


T1
T2
...

Tm−1
τ

=

[
Td
τ

]
, f (u, p) =

[
m2HTd +m2 sinτe1

ω

]
, (97)

and p = ω . Then, the objective function Q = Dd from (85) becomes

Q(u, p) =
1
m

m−1

∑
j=1

TjTj +
1

2m
sin2

τ. (98)

The partial derivatives of (97) and (98) result in

∂1 f (u, p) =
[

m2H m2 cosτe1
0 0

]
, ∂2 f (u,ω) = em :=


0
0
...
0
1

 , (99)

∂1Q(u, p) =
[ 2

m T1
2
m T2 . . . 2

m Tm−1 sinτ cosτ
]
, ∂2Q(u, p) = 0. (100)

Suppose that the discrete approximation

ui =

[
T i

d
τ i

]
≈
[

Td(i∆ t)
τ(i∆ t)

]
(101)

is known from the numerical solution of the semi-discretised problem (82). Then, we want
to determine the sensitivity (87) by using the least square shadowing method from Section
5.

The vector of the sensitivities is given by

u∗ =
[

T ∗d
τ∗

]
, (102)

and the computation of the matrices (58) gives

Ci
1 =

[ I
∆ t +

1
2 m2H 1

2 m2 cosτ ie1
0 1

∆ t

]
,

Ci
2 =

[
− I

∆ t +
1
2 m2H 1

2 m2 cosτ ie1
0 − 1

∆ t

]
,

Ci
3 =

[ 1
2 m2H

(
T i

d +T i−1
d

)
+ 1

2 m2
(
sinτ i + sinτ i−1

)
e1

ω

]
,

Ci
4 = em.

(103)
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Fig. 4 Coordinate vi
1 of the sensitivity of the trajectory, by using the parameters m = 30, α = 1, ndiv = 50,

nper = 8, ω = 5. Left panel: for small value of β = 3, there is a significant error in the sensitivity. Right panel:
by increasing the parameter to β = 20, we get a better approximation.

Let us choose a diagonal matrix G for the norm (52). In the main diagonal of G, let us
choose a uniform 1 weight for the temperature sensitivities, and let the weight for the time
phase τ be denoted by β 2. Then, we have the weighting matrix G = diag(1,1, . . . ,1,β 2),
and we simply get

G−1 = diag(1,1, . . . ,1,1/β
2). (104)

Now, we have all of the expressions to compute the sensitivities according to the algo-
rithm described in the previous subsection. The parameters α and β are to be chosen for the
least squares shadowing method, and ∆ t, N are chosen to have the appropriate time grid.

6.4 Results and the effect of numerical parameters

The parameter p = ω is related to the time scale of the dynamics. Therefore, the numerical
parameters ∆ t and N can be chosen effectively by using dimensionless parameters contain-
ing ω . Let us introduce the numerical parameters

ndiv :=
2π

ω∆ t
and nper :=

N∆ tω
2π

. (105)

The parameter ndiv expresses the number of time steps during a period of oscillation (num-
ber of divisions in a period), and nper expresses the number of oscillations covered by the
calculations (number of periods); both are real numbers. Now, we have the parameter set
(α,β ,ndiv,nper) to modify the behaviour of the algorithm.

The results obtained from some parameter settings can be seen in the subsequent fig-
ures. All numerical computation were performed with m = 30 for the spatial discretization.
The presented effects of the parameters do not ensure general tendencies of the numerical
method, which would need a further throughout mathematical analysis. Instead, we are in-
tended to demonstrate the importance of tuning these numerical parameters and to explore
some typical tendencies in the case of the current example of the heat conduction problem.

In Figure 4, we can see the the first component of the sensitivity vi of the trajectories
along the time (see (54)) for a chosen parameter ω = 5. By increasing the parameter β

typically reduces the error of this quantity. Increasing β also reduces the oscillations in the
rate of time dilation (see Figure 5).
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Fig. 6 Computation of the sensitivities at m = 30. Left panel: inappropriately chosen parameters (α = 1,
β = 10, ndiv = 8, nper = 5), which cause significant error for small values of ω (low frequencies). Right
panel: appropriately chosen parameters (α = 0.1, β = 100, ndiv = 20, nper = 50).

If the sensitivity is computed for the whole range of the angular frequency ω , we get
the graphs in Figure 6. The appropriate setting of (α,β ,ndiv,nper) can be used to reduce the
error for small ω values.

The relative error of the method can be seen in Figure 7 depending on the different
numerical parameters. The arrows show the increase of the current parameter through the
curves. The error is large for ω values near zero, but it decreases fast, especially for the
properly set parameters.

It is found that the error becomes smaller if the value of α is decreased (see the top-left
panel of Fig. 7). The very large value of α pulls the values of η i to zero. However, increasing
the value of β makes the computation more accurate (see the top-left panel of Fig. 7), by
minimizing the τ ′ sensitivities of the phase shift. From the bottom-left and bottom-right
panel of Figure 7, we can conclude that increasing of the number of the time steps decreases
the error, either by increasing ndiv or nper. However, increasing ndiv has diminishing returns
(bottom-left panel of Fig. 7), and further decrease of the error can be achieved by increasing
nper.
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Fig. 7 Effect of the parameters on the relative error of the method, m = 12 in all cases. Top-left panel:
effect of α with β = 1, ndiv = 100, nper = 20 and α ∈ {0.01,0.1,1,5,20}. Top-right panel: effect of β with
α = 0.1, ndiv = 100, nper = 20 and β ∈ {0.5,0.8,1,10,200}. Bottom-left panel: effect of ndiv with α = 0.1,
β = 200, nper = 20 and ndiv ∈ {3,10,20,100,300}. Bottom-right panel: effect of nper with α = 0.1, β = 200,
ndiv = 100 and nper ∈ {1,5,20,50,200}.

7 Conclusion

We investigated the computation of parametric sensitivity of dynamical systems with a peri-
odic excitation, which is motivated by heat conduction problems from mechanical engineer-
ing.

By using a simple test example, we demonstrated that sensitivity calculation by using
the direct sensitivities of the trajectories leads to an incorrect result when considering long-
time-averaged objective functions in the presence of periodic excitations. Moreover, the
method of generalised sensitivity fails, as well, when we use the trivial transformation of the
system to an autonomous differential equation. We analysed several approaches and showed
that this transformation should be performed carefully enable the computation of accurate
sensitivities.

The method of least squares shadowing can be used to compute the parametric sensi-
tivities numerically, but we improved the method to obtain a greater freedom to choose the
numerical parameters. This makes it possible to perform the calculations more effectively
in the case of badly conditioned differential equations transformed from non-autonomous
systems.

We demonstrated the results on the example of an 1D heat conduction problem with
periodic excitation. We obtained several numerical parameters that affect the accuracy of
the computation. The numerical result showed good agreement with the reference analytical
solution.
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