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Sliding and Crossing Dynamics in Extended Filippov Systems∗

Mate Antali† and Gabor Stepan†

Abstract. In spatial contact problems of rigid bodies, Coulomb friction results in dynamical systems with
codimension-2 discontinuity manifolds, which are outside the scope of piecewise smooth dynamical
systems. This motivated the authors to extend Filippov systems to codimension-2 discontinuity
manifolds, which leads to the definition of extended Filippov systems. In these systems, sliding
and crossing regions can be defined analogously to those of standard Filippov systems. A con-
vex construction of the sliding vector is also presented in the paper. The developed methods are
demonstrated on mechanical problems with spatial Coulomb friction.
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1. Introduction. In the field of the theory of piecewise smooth systems, many concepts
and tools have been developed in the last decades. One of the main classes of piecewise
smooth systems is Filippov systems where the vector field has discontinuity on some switching
surfaces of the phase space. The first substantial theory was developed by Filippov [11]. A
thorough overview of Filippov systems and further references can be found in the handbook
of di Bernardo and co-authors [6].

Filippov systems can be used for many applications in mechanics and control. Coulomb
friction is one of the fundamental effects which provide a discontinuity leading to Filippov
systems. This occurs at planar contact problems of rigid bodies when the discontinuity
occurs on a codimension-1 switching surface determined by the zero relative velocity at the
contact point. However, in spatial contact problems of rigid bodies, Coulomb friction results
in discontinuity when both components of the relative velocity are zero at the same time
(see, e.g., [22]). This results in a codimension-2 discontinuity surface, and thus, the resulting
dynamical system is outside the scope of Filippov systems and even of piecewise smooth
systems.

This spatial Coulomb friction gives the motivation to extend the concepts and tools of
Filippov systems to the case when there is a codimension-2 discontinuity set in the phase
space. In this paper, the usual Filippov systems with codimension-1 discontinuities are called
simple Filippov systems, and we introduce the term extended Filippov systems to the case of
codimension-2 discontinuity manifolds.
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Note, that the framework of complementary problems and set-valued force laws can also
be used to analyze discontinuous mechanical systems with spatial Coulomb friction (see [12],
[13], [19], and [5]). However, this paper uses a different approach: we extend the framework
of piecewise smooth systems to include the systems with codimension-2 discontinuities.

It is important to distinguish the present extension from the analysis of Dieci and co-
authors [9, 8, 7] and Jeffrey [15]. In those papers, the dynamics at the intersection of two
switching surfaces is analyzed in simple Filippov systems. This situation also provides codi-
mension-2 discontinuity manifolds, as an intersection of two codimension-1 discontinuity sets.
In contrast, in this paper, we consider isolated codimension-2 discontinuities.

The structure of the paper is the following: In section 2, a short overview of simple Filippov
systems is presented, and some new concepts are defined which are used subsequently. In
section 3, the concept of extended Filippov systems is introduced which contain codimension-
2 manifolds in the phase space. In section 4, the different possibilities of the behavior of the
trajectories is explored at the discontinuity set. In section 5, we define sliding and crossing
regions of the codimension-2 discontinuity sets and we present the construction of the sliding
dynamics. In section 6, the application of the theory is demonstrated on mechanical examples
with spatial Coulomb friction.

2. Simple Filippov systems—The codimension-1 case. In this section, we take a short
overview of Filippov systems to have the necessary basis to the following analysis. In subsec-
tion 2.1, the most important concepts of Filippov systems are summarized from the literature.
We mainly follow the notation of [6]. In subsection 2.2, we introduce a few new concepts which
are used later for the extension to codimension-2 discontinuity sets.

2.1. Overview of Filippov systems.

2.1.1. Codimension-1 discontinuity manifolds. Let us consider an open set D ⊂ R
m and

an m− 1 dimensional smooth manifold Σ ⊂ D. The manifold can be generated as a zero set
of a smooth function H : D → R, that is,

(2.1) Σ = {x ∈ D : H(x) = 0} .

We require that the gradient ∇H of H does not vanish anywhere in Σ. Then, for each x0 ∈ Σ,
the two unit vectors orthogonal to Σ are

n1(x0) :=
∇H(x0)

‖∇H(x0)‖
, n2(x0) := −n1(x0),(2.2)

where ‖.‖ is the usual 2-norm on R
m.

The manifold divides D into two regions,

(2.3)
S1 := {x ∈ D : H(x) > 0} ,
S2 := {x ∈ D : H(x) < 0} ,

where S1 ∪ S2 ∪ Σ = D. (See the left panel of Figure 1.) The term piecewise smooth system
is used for vector fields on R

m when the flow of the system is smooth in S1 and S2, but it
is nonsmooth on Σ. Then, Σ is called the discontinuity manifold or switching manifold of
the system. According to the type of the discontinuity, we can speak about hybrid systems,
Filippov systems, and continuous piecewise smooth systems (see [6, p. 73]).
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Figure 1. Concept of codimension-1 discontinuity manifold (switching manifold). Left panel: basic concepts
of Filippov system. Right panel: typical types of behavior at the discontinuity manifold. In each region, a pair
of typical limit trajectories are depicted. The tangency points are denoted by dots.

2.1.2. Basic notation of Filippov systems. Let us consider the differential equation

(2.4) ẋ = F (x),

where the vector field F : D \ Σ → R
m can be written into the form

(2.5) F (x) =

{
F1(x), x ∈ S1,
F2(x), x ∈ S2,

and F1, F2 are smooth vector fields on S1 ∪Σ and S2 ∪Σ, respectively. Moreover, we require
F1(x0) �= F2(x0) for all x0 ∈ Σ. That is, the discontinuity at Σ is uniform with degree one
(see [6, p. 73]), and thus, (2.5) is a Filippov system.

The discontinuity manifold Σ has two typical regions according to the direction of the
surrounding trajectories. (See the right panel of Figure 1.)

Definition 2.1 (sliding region). The sliding region of Σ is the set of points x0 ∈ Σ for either
〈Fi, ni〉 (x0) < 0 for all i ∈ {1, 2} or 〈Fi, ni〉 (x0) > 0 for all i ∈ {1, 2}. The sliding region is
denoted by Σsl ⊂ Σ.

Definition 2.2 (crossing region). The crossing region of Σ is the set of points x0 ∈ Σ for
the fact that there exists i, j ∈ {1, 2} with 〈Fi, ni〉 (x0) > 0 and 〈Fj , nj〉 (x0) < 0. The crossing
region is denoted by Σcr ⊂ Σ.

The bracket 〈., .〉 denotes the usual scalar product on R
m. The sliding region is called

attracting if 〈Fi, ni〉 (x0) < 0 for all i ∈ {1, 2} and it is called repelling if 〈Fi, ni〉 (x0) > 0 for
all i ∈ {1, 2}. Points of boundaries between sliding and crossing regions form a further subset
of Σ, where either F1 or F2 is tangent to the discontinuity set.

Definition 2.3 (tangency point). A point x0 ∈ Σ is called a tangency point if there exists
i ∈ {1, 2} with 〈Fi, ni〉 (x0) = 0. The set of tangency points is denoted by Σta ⊂ Σ.

These three types of points cover the whole discontinuity set, that is, Σsl ∪Σcr ∪Σta = Σ.
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2.1.3. Sliding dynamics. In the crossing region, trajectories of F1 and F2 can be con-
catenated to obtain a trajectory of F . However, in the sliding region, the trajectories cannot
be continued through Σ and they get stuck in Σ in forward or backward time. Then, the
vector field F can be extended to the discontinuity set by introducing the sliding vector field
Fs : Σsl → R

m, which is required to be tangent to Σ.
The most straightforward method to construct the sliding dynamics is Filippov’s convex

method (introduced in [11]), which considers simply the convex combination of F1 and F2 in
the form

(2.6) Fs := (1− α)F1 + αF2

with α ∈ R. The convex combination can be also expressed in the form

(2.7) Fs =
F1 + F2

2
+ β

F2 − F1

2
,

where β = 2α − 1. In the literature, (2.6) is sometimes called Filippov’s form of the sliding
vector while (2.7) is called Utkin’s form (see [6, p. 77]). The convex combination requires
0 ≤ α ≤ 1, which corresponds to −1 ≤ β ≤ 1.

If there is additional explicit information about the dynamics in the sliding region, then
the sliding dynamics can be expressed in a more general form than (2.6) by using nonconvex
combination. This can be done, e.g., by Utkin’s equivalent control method [23]. In this paper,
we restrict ourselves to the concept of convex combination in the forms (2.6) or (2.7). (See
the left panel of Figure 1.)

The parameters α(x0) and β(x0) have to be chosen to have a resulting sliding vector Fs

being tangent to Σ at any x0 ∈ Σsl. This can be expressed by 〈Fs, n1〉 (x0) = 0, which leads
to

(2.8) α(x0) =
〈F1, n1〉

〈F1, n1〉+ 〈F2, n2〉
(x0)

and

(2.9) β(x0) =
〈F1, n1〉 − 〈F1, n2〉
〈F1, n1〉+ 〈F1, n2〉

(x0).

In the sliding region Σsl, we have 0 < α < 1 (or −1 < β < 1), which we can call nontrivial
convex combination because Fs �= Fi for all i ∈ {1, 2}.

2.2. Establishing extension to the codimension-2 case. In this subsection, we introduce
some new concepts and notation for Filippov systems which will be used in the subsequent
sections to extend the concept of Filippov systems to codimension-2 discontinuity sets.

2.2.1. Set of orthogonal directions. At a point x0 ∈ Σ of the discontinuity set, let Tx0Σ
denote the tangent space of Σ, and let Ox0Σ denote its orthogonal complement defined by

(2.10) Ox0Σ := {v ∈ R
m : 〈v,w〉 = 0; ∀w ∈ Tx0Σ} .

That is, Ox0Σ contains the vectors that are normal to Σ at x0. (See the left panel of Figure 1.)
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Let E(x0) denote the set of unit vectors in the orthogonal space at x0, that is,

(2.11) E(x0) := {n ∈ Ox0Σ : ‖n‖ = 1} .

As Ox0Σ is one dimensional (1D), E(x0) contains two elements: E(x0) = {n1(x0), n2(x0)},
vectors are defined in (2.2). Each unit vector can be identified with its direction, and thus,
we can refer to ni(x0) simply as a direction orthogonal to Σ and E(x0) can be called the set
of orthogonal directions. Elements ni(x0) of E(x0) are referred to by the indices i ∈ {1, 2}.

2.2.2. Directional limits of the vector field. The vector field F is not defined in Σ but
the limits

(2.12) F ∗
i (x0) := lim

ε→0+
F
(
x0 + εni(x0)

)
= Fi(x0)

exist for i ∈ {1, 2}. We call F ∗
1 and F ∗

2 the directional limits with respect to the directions
n1 and n2, respectively. These directional limits will play an important role in subsection 3.2
when considering codimension-2 discontinuity manifolds.

2.2.3. Limit trajectories. Let us define the following two types of trajectories that ap-
proach points of the discontinuity set in forward or backward time.

Definition 2.4 (ω-trajectory). Consider a point x0 ∈ Σ and a trajectory γ : (t0, t1) → R
m

of F . Suppose that limt→t1 γ(t) = x0, and limt→t1 〈F (γ(t)), n1(x0)〉 �= 0. Then, γ is called an
ω-trajectory of x0 with respect to the dynamics of F .

This means that ω-trajectories tend to x0 in finite time in the forward direction of time.
The condition with the scalar product is required to exclude trajectories that are tangent to
Tx0Σ at x0. Similarly, we can define trajectories tending to x0 in finite time in the backward
direction of time.

Definition 2.5 (α-trajectory). Consider a point x0 ∈ Σ and a trajectory γ : (t0, t1) → R
n

of F . Suppose that limt→t0 γ(t) = x0, and limt→t0 〈F (γ(t)), n1(x0)〉 �= 0. Then, γ is called an
α-trajectory of x0 with respect to the dynamics of F .

The α- and ω-trajectories of x0 are called the limit trajectories of x0. The number and
type of limit trajectories characterize the subsets Σsl, Σcr, and Σta of the discontinuity set.
In the sliding and crossing regions, any point x0 has 2 limit trajectories. In case of tangency
points, there are 0 or 1 limit trajectories.

In the crossing region, a point x0 has an α-trajectory and an ω-trajectory, which can
be connected together to obtain a trajectory of F crossing the discontinuity surface. In the
sliding region, a point x0 has either two α-trajectories (repelling sliding) or two ω-trajectories
(attracting sliding), and thus, the trajectories reach the discontinuity manifold in forward or
backward time. These trajectories can be continued with the sliding dynamics. Some typical
limit trajectories are depicted in the right panel of Figure 1.

2.2.4. Equivalent definitions of sliding region. In the literature, sliding region is usually
defined by Definition 2.1 (see, e.g., [6, p. 76]). However, other definitions could also be used
as is stated by the following proposition.
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Proposition 2.6 (equivalence of three definitions of the sliding region). For a point x0 ∈ Σ,
the following three statements are equivalent:

(a) either 〈Fi, ni〉 (x0) < 0 for all i ∈ {1, 2} or 〈Fi, ni〉 (x0) > 0 for all i ∈ {1, 2};
(b) there exists a sliding vector Fs(x0) with 0 < α(x0) < 1;
(c) x0 has either two α-trajectories or two ω-trajectories with respect to F .

The proof if straightforward: Equivalence of (a) and (b) can be proved from (2.8), and
equivalence of (a) and (c) can be proved by considering the trajectories of F1 and F2 at x0.
However, we will see in subsection 5.4 that although statements of Proposition 2.6 can be all
extended to the codimension-2 case, the generalized statements are not equivalent.

2.2.5. Compact form of constructing the sliding dynamics. Let us rewrite the formulae
(2.6) and (2.7) to have expressions easy to extend to the codimension-2 case. By introducing
α1 := 1− α and α2 := α, the formula (2.6) can be written in the form

Fs =
2∑

i=1

αiFi,
2∑

i=1

αi = 1.(2.13)

In this form, the sliding vector field is expressed as the weighted average of F1 and F2, where
the weights α1 and α2 depend on the location x0 in the sliding region. Similarly, let β1 := −β,
β2 := β. Then, (2.7) can be written into the form

Fs = F + 1
2

2∑
i=1

βi
(
Fi − F

)
,

2∑
i=1

βi = 0,(2.14)

where

(2.15) F := 1
2

2∑
i=1

Fi.

In this form, the sliding vector field is expressed as the average F of the vector fields F1 and
F2 plus the weighted average of the deviations from the average with the weights β1 and β2,
where βi = 2αi − 1.

3. Extended Filippov systems—Extension to the codimension-2 case. The manifold Σ
of simple Filippov systems can be called either a switching manifold between F1 and F2 or a
discontinuity manifold of F (see (2.5)). These two names for the same notion refer to slightly
different approaches to the system. The term switching manifold emphasizes that regions of
smooth dynamics are separated by this manifold. The term discontinuity manifold emphasizes
that the manifold is embedded into the region of smooth dynamics.

These two points of view lead to different ways to extend to higher codimension cases.
Taking the intersection of two switching manifolds leads to systems analyzed by Dieci and
Lopez [9] and Jeffrey [15]. Then, a codimension-2 discontinuity manifold is generated by
the intersection of the codimension-1 switching surfaces. However, we can also consider a
discontinuity on a single codimension-2 discontinuity manifold, which leads to the systems
analyzed in the present paper.
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3.1. Codimension-2 isolated discontinuity manifolds. Let us consider the open set D ⊂
R
m and the m− 2 dimensional smooth manifold Σ ⊂ D. The manifold can be defined in the

form

(3.1) Σ = {x ∈ D : Hj(x) = 0, j = 1, 2} ,

where each Hj : D → R is a smooth function having gradients ∇Hj(x0) �= 0 that satisfy
〈∇H1,∇H2〉 (x0) = 0 for all x0 ∈ Σ. At a point x0 ∈ Σ, let Tx0Σ be the tangent space of Σ
and let Ox0Σ be its orthogonal complement defined as in (2.10). In this case, Tx0Σ is m− 2
dimensional and Ox0Σ is 2D.

As in (2.11), let

(3.2) E(x0) := {n ∈ Ox0Σ : ‖n‖ = 1}

be the set of unit vectors in Ox0Σ. In the codimension-1 case of simple Filippov systems, the
1D orthogonal space contained only two unit vectors. In contrast, in the codimension-2 case,
there are continuously many unit vectors in Ox0Σ; the elements of E(x0) form a unit circle.

To express the elements of E(x0) explicitly, let us define

n(1)(x0) :=
∇H1(x0)

‖∇H1(x0)‖
, n(2)(x0) :=

∇H2(x0)

‖∇H2(x0)‖
,(3.3)

which provide an orthonormal basis of Ox0Σ. Then, the periodic function

(3.4) n(φ)(x0) := cos(φ)n(1)(x0) + sin(φ)n(2)(x0)

can be defined which maps the interval [0, 2π) onto the set E(x0) of unit normal vectors. (See
the right panel of Figure 2.) The parameter φ expresses the angle between n(1) and n(φ).
Thus, we can refer to φ as a direction in the orthogonal space. The basis vectors n(1) and n(2)

generate a local coordinate system in the orthogonal space Ox0Σ by

x(1) :=
〈
x− x0, n(1)

〉
, x(2) :=

〈
x− x0, n(2)

〉
.(3.5)

In this paper, we investigate vector fields which are smooth in the vicinity of the manifold
Σ but that have discontinuity on Σ.

3.2. Definition of extended Filippov systems. Let us now extend Filippov systems to
codimension-2 discontinuities. Consider the dynamical system

(3.6) ẋ = F (x),

where F is a vector field F : D \ Σ → R
m and Σ is an m − 2 dimensional manifold in D.

Analogously to (2.12), let us define the limit

(3.7) F ∗(φ)(x0) := lim
ε→0+

F (x0 + εn(φ)(x0)) .

Then, we can introduce the following definition that is the center concept of the analysis in
this paper.
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Figure 2. Vector field at a codimension-2 discontinuity manifold of extended Filippov systems. Left panel:
the vector field in the vicinity of a point x0 ∈ Σ. For each angle φ ∈ [0, 2π), the unit normal vector n(φ) is used
to calculate the limit F ∗(φ) of the vector field. Right panel: coordinate systems and components of the limit
vector F ∗(φ) in the orthogonal space.

Definition 3.1 (extended Filippov system). Consider the m− 2 dimensional smooth mani-
fold Σ in D ⊂ R

m and the vector field F : D \ Σ → R
m. Assume that F is smooth on D \ Σ.

Moreover, assume that for all x0 ∈ Σ,
(a) the limit F ∗(φ)(x0) exists for all φ ∈ [0, 2π), and
(b) there exists φ1, φ2 ∈ [0, 2π) with F ∗(φ1)(x0) �= F ∗(φ2)(x0).
Then, we call F an extended Filippov system and we call Σ a codimension-2 isolated

discontinuity manifold of F .

This construction results in a natural generalization of simple Filippov systems to the
codimension-2 case. (See the left panel of Figure 2.) The properties (a)–(b) in Definition (b)
are analogous to the condition of uniform discontinuity with degree one which is required in
simple Filippov systems.

A vector field with this kind of discontinuity is not a piecewise smooth system. In this
case, there is no switching between different types of dynamics, but the vector field is smooth
everywhere around the discontinuity surface. In the meantime, we get continuously many
types of behavior of the system if we approach the discontinuity set from different directions
of n(φ) (see Figure 2). At a given point x0 ∈ Σ, the vector field F ∗(φ) maps the set [0, 2π)
into R

m, which we call the limit vector field of F at x0. The properties of F and n induce
that F ∗(φ)(x0) depends smoothly on both variables.

If property (b) in Definition 3.1 were released and if we allowed a constant limit vector
field F ∗(φ), then we would include vector fields which are continuous on Σ but there is
still discontinuity in the derivatives. This case would be the codimension-2 generalization of
piecewise smooth continuous vector fields, but these systems are not considered in this paper.

The term isolated discontinuity set is used to distinguish this type of singularity from the
intersection of codimension-1 manifolds in Filippov systems (see [9] and [15]). In those systems,
the resulting codimension-2 discontinuity manifold is not isolated but it is embedded into the
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codimension-1 discontinuity manifolds. In this paper, we consider isolated discontinuities
described in Definition 3.1. We omit the term isolated where it is not necessary to emphasis
this difference.

The term extended Filippov system could be replaced by the term codimension-2 Filippov
system. However, that term would be ambiguous because systems in Definition 3.1 are not
Filippov systems in the classical sense but they provide a new set of nonsmooth dynamical
systems. It must be possible to analyze simple Filippov systems, extended Filippov systems,
and higher codimension cases in a common framework, but this project is outside the scope
of this paper.

4. Limit trajectories of extended Filippov systems. In the codimension-2 case, we can
introduce similar definitions of α-trajectories and ω-trajectories as we did in Definitions 2.4–
2.5 for simple Filippov systems.

Definition 4.1 (ω-trajectory in an extended Filippov system). Consider a point x0 ∈ Σ and
a trajectory γ : (t0, t1) → R

m of F . Suppose that limt→t1 γ(t) = x0, and there does not exist
any v ∈ Tx0Σ for that limt→t1 F (γ(t)) = v. Then, γ is called an ω-trajectory of x0 with respect
to the dynamics of F .

Definition 4.2 (α-trajectory in an extended Filippov system). Consider a point x0 ∈ Σ and
a trajectory γ : (t0, t1) → R

n of F . Suppose that limt→t0 γ(t) = x0, and there does not exist
any v ∈ Tx0Σ for that limt→t0 F (γ(t)) = v. Then, γ is called an α-trajectory of x0 with respect
to the dynamics of F .

In the definitions, we exclude the special cases when a trajectory approaches x0 from any
direction in the tangent space. The set of limit trajectories of x0 ∈ Σ consist of the corre-
sponding α-trajectories and ω-trajectories. To determine the occurrence of these trajectories,
we transform the vector field F first into polar coordinates. Then, the time scale is trans-
formed to resolve the discontinuity. This is a similar process to the method of polar blowup
(see [10] or [18, p. 160]).

Let us define the functions

F(1)(φ) :=
〈
F ∗(φ), n(1)

〉
, F(2)(φ) :=

〈
F ∗(φ), n(2)

〉
,(4.1)

where F(1) and F(2) are the components of the limit vector field F ∗(φ) with respect to the
basis vectors of the orthogonal space Ox0Σ. (See the right panel of Figure 2.) The projected
vector field (4.1) can be expressed in a coordinate system fixed to n(φ), and we get

R(φ) := 〈F ∗(φ), n(φ)〉 = F(1)(φ) cos φ+ F(2)(φ) sin φ,

V (φ) := 〈F ∗(φ), n(φ + π/2)〉 = F(2)(φ) cosφ− F(1)(φ) sin φ.
(4.2)

From (4.2), the planar dynamical system

(4.3)

(
ṙ

φ̇

)
=

(
R(φ)

V (φ)/r

)

can be constructed where the variables (r, φ) ∈ R
+ × [0, 2π) are polar coordinates in the

orthogonal space. Formally, we let φ ∈ R in the calculations, but we identify φ with φ+2hπ for



832 MATE ANTALI AND GABOR STEPAN

any integer h to remain in the interval [0, 2π). In the vicinity of x0, (4.3) describes the dynamics
of F (x) projected into the orthogonal space Ox0Σ. Corresponding to the discontinuity of F
at x0, the system (4.3) has a discontinuity at the line r = 0 in the phase plane (r, φ) of (4.3).
We are interested in the trajectories of (4.3) when r → 0.

To get an auxiliary system without the singularity at r = 0, let us transform the time t
to a new time variable τ ; this transformation can be defined by the initial condition problem

dt(τ)

dτ
= r(τ), t(τ)τ=0 = 0.(4.4)

Then, (4.3) becomes

(4.5)

(
dr/dτ
dφ/dτ

)
=

(
rR(φ)
V (φ)

)
,

which is defined also for r = 0. If we exclude the special case when R(φ) and V (φ) have
common zeroes; then the fixed points of (4.5) are given by r = 0 and V (φ) = 0.

4.1. Case of existing limit directions. Consider the case when V (φi) = 0 for i = 1 . . . k.
Then, the k fixed points of (4.3) are (0, φi), and the Jacobian of (4.3) at φi is

(4.6) Ji =

(
R(φi) 0
0 V ′(φi)

)
,

where the dash ′ denotes differentiation with respect to φ. The eigenvalues are R(φi) and
V ′(φi), and the eigenvectors are the directions of the r and φ coordinates, respectively. The
eigenspace of R(φ) is the half line determined by φ = φi and r ≥ 0, and we can state the
following proposition to describe the solutions of (4.3) on this half line.

Proposition 4.3. Let (0, φi) be a fixed point of (4.5) with R(φi) �= 0 and let r0 ∈ R
+. Then,

the trajectory of (4.3) passing through (r0, φi) tend to (0, φi) in finite time in the forward or
backward direction of time.

Proof. In the case R(φi) < 0, the initial condition leads to the solution

(4.7)

(
r(τ)
φ(τ)

)
=

(
r0 exp(R(φi)τ)

φi

)

of (4.5), which converges to (0, φi) when τ → ∞. By (4.4), the time variable τ can be
transformed back to the original time variable t of (4.3). Then, the time of approaching r = 0
becomes

(4.8) lim
τ→∞ t(τ) = lim

τ→∞

∫ τ

0

dt(s)

ds
ds = lim

τ→∞

∫ τ

0
r(τ)ds =

−r0
R(φi)

,

which is a positive real number. The case R(φi) > 0 can be proved analogously by calculating
the limit at τ → −∞.
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The consequence of Proposition 4.3 is that for each φi with V (φi) = 0 and R(φi) �= 0, the
point x0 possesses a limit trajectory with respect to F . Hence, we can call such a φi direction
a limit direction of x0. If R(φi) < 0, then the solution (4.7) corresponds to an ω-trajectory
of x0, and if R(φi) > 0, then (4.7) is related to an α-trajectory of x0. In these cases, the
limit direction φi is called an attracting direction or a repelling direction of x0, respectively.
In the special case R(φi) = 0, (4.7) becomes an constant solution and hence, φi is not a limit
direction of x0.

If R(φi) · V ′(φi) < 0, then (0, φi) is a saddle, and if R(φi) · V ′(φi) ≥ 0, then (0, φi) is
a node or a degenerate saddle-node. In case of the saddle, (4.7) is the only trajectory of
(4.5) which tends to (0, φi) in forward or backward direction of time, that is, the attracting
or repelling direction φi corresponds to a single ω- or α-trajectory of x0, respectively. In
case of the node and the saddle-node, infinitely many trajectories tend to (0, φi), that is, the
attracting or repelling direction φi corresponds to continuously many ω- or α-trajectories of
x0, respectively.

We demonstrate these results on two examples.

Example 4.4 (system with attracting directions). Consider the system

(4.9) F (x1, x2, x3) =

⎛
⎜⎜⎝
− x1√

x2
1+x2

2

+ 3
2 · x1x2

x2+x2
2
+ 1

2

− x2√
x2
1+x2

2

+ 3
2 ·

x2
2

x2+x2
2

−x3

⎞
⎟⎟⎠

with (x1, x2, x3) ∈ D = R
3 \ Σ, where the discontinuity manifold Σ is the x3-axis. For any

x0 = (0, 0, x30) ∈ Σ, we can choose n(φ)(x0) = (cosφ, sinφ, 0), which results in

(4.10) F ∗(φ)(x0) =

⎛
⎝− cosφ+ 3

2 cosφ sinφ+ 1
2

− sinφ+ 3
2 sin

2 φ
−x30

⎞
⎠ ,

R(φ) = −1 +
3

2
sinφ+

1

2
cosφ, V (φ) = −1

2
sinφ.(4.11)

The zeroes of V (φ) are φ1 = 0 and φ2 = π, and we have R(0) = −1/2 and R(π) = −3/2.
That is, both φ1 = 0 and φ2 = π are attracting directions. As V ′(0) < 0 and V ′(π) > 0, the
direction φ1 = 0 corresponds to infinitely many ω-trajectories while φ2 = π corresponds to a
single ω-trajectory (see Figure 3).

Example 4.5 (system with attracting and repelling directions). Consider the system

(4.12) F (x) =

⎛
⎜⎜⎝
− x1√

x2
1+x2

2

+
2·x2

1

x2+x2
2
− 1

2

− x2√
x2
1+x2

2

−x3

⎞
⎟⎟⎠
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x2 = x(2)

x1 = x(1)

φ2

φ1

R, V

r

φ

φ

φ1 φ2 φ1 + 2π

2π

R(φ)

V (φ)

Figure 3. Behavior of the system in Example 4.4: case of attracting directions. Top-left panel: graph of
the functions R(φ) and V (φ). Bottom-left panel: projected phase portrait in polar coordinates corresponding
to (4.3). The circles and crosses denote nodes and saddles, respectively. Right panel: projected phase portrait
in Cartesian coordinates corresponding to (4.1). The dot denotes the point x0 of the discontinuity set and the
thick lines denote the limit directions. The depicted typical trajectories are the same in the two phase portraits.

with (x1, x2, x3) ∈ D = R
3 \ Σ, where the discontinuity manifold Σ is the x3-axis, again. For

any x0 = (0, 0, x30) ∈ Σ, we can chose n(φ)(x0) = (cos φ, sinφ, 0), which results in

(4.13) F ∗(φ)(x0) =

⎛
⎝− cosφ+ 2cos2 φ− 1

2
− sinφ
−x30

⎞
⎠ ,

R(φ) = −1− 1

2
cosφ+ 2cos3 φ, V (φ) =

1

2
sinφ− 2 sinφ cos2 φ.(4.14)

The function V (φ) has six zeroes, φi = (i− 1) · π/3 with i = 1 . . . 6. The sign of R(φi) shows
that φ1 = 0 is a repelling directions, and the other five directions are attracting. The sign
of R(φi) · V ′(φ) shows that the directions φ3 = 2π/3 and φ5 = 4π/3 are related to nodes of
(4.3) and each of them corresponds to infinitely many ω-trajectories. The other directions
correspond to saddles of (4.3), the direction φ1 = 0 has a single α-trajectory, and each of the
directions φ2 = π/3, φ4 = π, and φ6 = 5π/3 has a single ω-trajectory (see Figure 4).

4.2. Case of no limit directions. Consider the case when V (φ) �= 0 for all φ ∈ [0, 2π).
Then the equation dφ/dτ = V (φ) results in the fact that the solution φ(τ) increases or
decreases monotonically for all initial conditions.

Proposition 4.6. Suppose that V (φ) �= 0 for all φ ∈ [0, 2π). Consider the quantity

(4.15) c0 :=

∫ 2π

0

R(φ)

|V (φ)|dφ.
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x2 = x(2)

x1 = x(1)

φ4

φ1

R, V

r

φ

φ

φ1 φ4 φ1 + 2π

2π

R(φ)

V (φ)

φ5 φ6

φ3 φ2

φ2 φ3 φ5 φ6

Figure 4. Behavior of the system in Example 4.5: case of attracting and repelling directions. The notation is
the same as in Figure 3. By considering the bottom-left panel, it is not clear how the trajectories between φ2 and
φ6 can reach the repelling direction at φ1. As the whole r = 0 axis corresponds to the origin of the original phase
space, small perturbations can easily push the dynamics to the repelling direction. The internal connection(s)
between the limit trajectories can be understood, e.g., by regularizing the system (see subsection 6.3).

If c0 < 0, then all trajectories of (4.5) tend to r = 0 in finite time in the forward direction
of time. If c0 > 0, then all trajectories of (4.3) tend to r = 0 in finite time in the backward
direction of time.

Proof. Consider the initial conditions (r, φ) = (r0, φ0). Then, the solution of (4.5) for r
becomes

(4.16) r(τ) = r0 exp

(∫ τ

0
R
(
φ(s)

)
ds

)
.

If we change the variable of (4.16) from τ to φ, we get

(4.17) r̂(φ) := r(τ(φ)) = r0 exp

(∫ φ

φ0

R(s)

V (s)
ds

)
.

This can be written into the form

(4.18) r̂(φ) = r0 exp (c1φ) · exp
(∫ φ

φ0

(
R(s)

V (s)
− c1

)
ds

)
=: r0 exp (c1φ) ·K(φ),

where

c1 :=

∫ 2π

0

R(φ)

V (φ)
dφ, K(φ) := exp

(∫ φ

φ0

(
R(s)

V (s)
− c1

)
ds

)
(4.19)
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and K(φ) is a periodic function with a period of 2π. The sign of the multiplier c1 determines
whether (4.18) converges to zero if φ → ±∞. We transform φ to τ and then to the original
time variable t by

dt(φ)

dφ
=

dt(τ)

dτ
· dτ(φ)

dφ
=

r̂(φ)

V (φ)
,(4.20)

and we get

(4.21) t(φ) =

∫ φ

φ0

r̂(s)

V (s)
ds =

∫ φ

φ0

(
r0 exp(c1s) ·

K(s)

V (s)

)
ds.

As F ∗ is bounded and V (φ) �= 0, the sign of V (φ) is constant along [0, 2π), which is denoted
by c2 := sgnV (φ). In the case c1 < 0 and c2 > 0, the time for reaching r = 0 can be estimated
by

(4.22) 0 ≤ lim
φ→∞

t(φ) ≤ r0
c1c2

exp(c1φ0) · max
φ∈[0,2π)

K(φ)

|V (φ)| ,

that is, the trajectory tends to r = 0 in finite time in forward direction of time. Similar
estimates can be made for the different signs of c1 and c2. The four possibilities can be
simplified to two cases by introducing the constant (4.15), which can be expressed by c0 =
c1c2.

The consequence of Proposition 4.6 is that for c0 < 0, the point x0 has infinitely many
ω-trajectories and for c0 > 0, the point x0 possesses infinitely many α-trajectories. In the
special case c1 = 0, (4.18) becomes r̂(φ) = r0K(φ), which is a periodic function. Then, all
solutions of (4.3) are periodic and x0 has no limit trajectories.

We demonstrate these results on an example.

Example 4.7 (system with no limit directions). Consider the system

(4.23) F (x) =

⎛
⎜⎜⎝

x2√
x2
1+x2

2

− x1/4√
x2
1+x2

2

+ 1
2

− x1√
x2
1+x2

2

− x2/4√
x2
1+x2

2

−x3

⎞
⎟⎟⎠

with (x1, x2, x3) ∈ D = R
3 \ Σ, where the discontinuity manifold Σ is the x3-axis. For any

x0 = (0, 0, x30) ∈ Σ, we can chose n(φ) = (cosφ, sinφ, 0), which leads to

F ∗(φ)(x0) =

⎛
⎝sinφ− 1

4 cosφ+ 1
2

− cosφ− 1
4 sinφ

−x30

⎞
⎠ ,(4.24)

R(φ) =
1

2
cosφ− 1

4
, V (φ) = −1− 1

2
sinφ.(4.25)

The function V (φ) does not have zeroes and we have
∫ 2π
0 R(φ)/|V (φ)|dφ ≈ −1.814 < 0. That

is, any x0 ∈ Σ has infinitely many ω-trajectories and no α-trajectories (see Figure 5).
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x2 = x(2)

x1 = x(1)

R, V

r

φ

φ

2π

V (φ)

R(φ)

Figure 5. Behavior of the system in Example 4.7: case of no limit directions. The notation is the same as
in Figure 3. The phase portrait in Cartesian coordinates shows a focus-like behavior. However, the trajectories
reach the discontinuity set in finite time.

4.3. Effect of the different types of terms. It is important to note that all along the
analysis of sections 4 and 5, the analysis is restricted to the system behavior caused by
discontinuity. The systems (4.3) and (4.5) are defined by the limit vector field F ∗. Therefore,
they contain no information about the change of the vector field when moving away from the
discontinuity manifold. It may be relevant to review the effect of neglecting of these terms
from the point of view of our results.

In the vicinity of a point x0 ∈ Σ, let us separate the vector field into two parts in the form

(4.26) F (x) = Fdiscont(x) + Fcont(x),

where Fdiscont(x) is defined by

(4.27) lim
ε→0+

Fdiscont(x0 + εn(φ)(x0))− F ∗(φ)(x0) = 0

and

(4.28) lim
ε→0+

dkFdiscont(x0 + εn(φ)(x0)

dεk
= 0

for all k ∈ N
+ and φ ∈ [0, 2π). By this construction, Fdiscont(x) contains the discontinuity itself

at x0. In contrast, the continuous part Fcont(x) contains the information about the change
of the vector field when moving away from x0. The point x0 is a removable discontinuity of
Fcont, because by combining (3.7), (4.26), and (4.27), we get

(4.29) lim
ε→0+

Fcont(x0 + εn(φ)(x0)) = 0
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f(z)

z

fdiscont(z)

z

flin(z)

z

fnonlin(x)

z

Figure 6. Demonstration of the separation of the dynamics into continuous and discontinuous parts in the
case of a simple 1D vector field. Consider the system ż = f(z) with z ∈ R\0, where the graph of f(z) is depicted
in the left panel of this figure. The vector field can be separated in the form f(x) = fdiscont(x)+flin(x)+fnonlin(x).
In the vicinity of z = 0, the discontinuous (zero order) part has the most dominant effect on the behavior; the
local structure of the dynamics is not modified by the higher order terms. A similar effect arises in the case of
the extended Filippov systems in the form (4.30).

for all φ ∈ [0, 2π). Thus, Fcont can be considered a continuous vector field. Note that the
derivatives of Fcont can be still discontinuous. Formally, the vector field Fcont can be further
separated into linear and nonlinear parts, and thus, we get

(4.30) F (x) = Fdiscont(x) + Flin(x− x0) + Fnonlin(x− x0).

A similar separation of the vector field is demonstrated in case of a simple 1D vector field in
Figure 6.

We want to emphasize some analogies to the fixed points of smooth vector fields. In the
generic case, the structure of the dynamics in the vicinity of these fixed points is determined
by the linear part of the system. As the linear terms typically cause exponential decay (in
forward or backward time), the subexponential decay caused by the higher order (nonlinear)
terms typically does not effect the local structure of the dynamics. This property of hyperbolic
fixed points is ensured by the Hartman–Grobman theorem (see, e.g., [6, p. 61]). However, in
the case of nonhyperbolic fixed points with a zero real part of an eigenvalue, the exponential
decay from the linear terms vanishes (in some directions), and the structure of the dynamics
is determined by the slower (subexponential) decay of the nonlinear terms.

In the case of an extended Filippov system, the effect of the discontinuity appears az a
“zero order” effect, which becomes dominant even compared to the first order (linear) terms
(see Table 1). As was shown in Propositions 4.3–4.6, the presence of the discontinuity typically
causes decay of the trajectories in finite time, that is, we can consider it a stronger-than-linear
(superexponential) effect. From the point of view of this zero order term Fcont, even the linear
terms are considered higher order ones.

In this sense, the analysis of the systems (4.3) and (4.5) with neglecting the second and
third terms of (4.30) is a similar process to the analysis of a fixed point of a smooth system with
neglecting the nonlinear terms. If all limit directions have a definite attracting or repelling
tendency (R(φi) �= 0; see Proposition 4.3) or there is no limit direction but a definite attracting
or repelling tendency (c1 �= 0; see Proposition 4.6), then the trajectories decay to the point
x0 in finite time in forward or backward direction of the time. In this case, the relatively slow
(exponential) decay of the linear terms is clearly negligible, and thus, the omitting of these
terms in (4.3) and (4.5) does not modify the local structure of the dynamics.
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Table 1
Speed of decay caused by the different terms in the original and transformed time scale. The time trans-

formation (4.4) slows down the dynamics when creating (4.5) from (4.3). Then, the typical dynamics caused
by the discontinuous terms becomes exponential.

Type of terms Discont. terms
(zero order)

Linear terms
(first order)

Nonlinear terms
(higher order)

Notation in (4.30) Fdiscont Flin Fnonlin

Original time scale
(see (4.3))

superexponential exponential subexponential

Transformed time scale
(see (4.5))

exponential subexponential subexponential

However, in the degenerate cases R(φi) = 0 (in Proposition 4.3) or c1 = 0 (in Proposi-
tion 4.6), there is no definite attracting or repelling behavior from the discontinuous behavior.
Then, the effect of the relatively higher order (linear, nonlinear) terms should be analyzed to
determine the structure of the dynamics around the chosen point x0. Still in this case, the num-
ber and type of the limit trajectories are not affected by the linear terms because of Definitions
4.1–4.2. The connecting trajectories possibly caused by the linear and nonlinear terms are
not limit trajectories in the sense of these definitions because they do not decay in finite time.

5. Sliding and crossing regions of extended Filippov systems. In the previous section,
we explored the possibilities of limit trajectories of a point x0 ∈ Σ. In this section, we define
sliding and crossing regions of codimension-2 discontinuity surfaces, whose definition is based
on the properties of the limit trajectories.

5.1. Definition of the different regions.

5.1.1. Sliding region. It was mentioned before that the properties (a)–(c) of Proposition
2.6 are equivalent in the case of simple Filippov systems. However, these concepts are not
equivalent when extending to the codimension-2 case, and thus, we have to select one of them.

The question is, Among (a)–(c), which property of the sliding region do we want to
preserve when generalizing to extended Filippov systems? The most natural approach is to
require that in the sliding region, a trajectory cannot be continued through the discontinuity
set either in forward or in backward direction of time. Thus, roughly speaking, we can say
that in the sliding region, points have either no α-trajectories or no ω-trajectories. This leads
to the generalization of the property (c) of Proposition 2.6, which results in the following
definition.

Definition 5.1 (sliding region in extended Filippov systems). Consider a point x0 ∈ Σ for
which we have F ∗(φ) /∈ Tx0Σ for all φ ∈ [0, 2π). Suppose that all limit trajectories of x0
are either only ω-trajectories or only α-trajectories. The set of points with these properties is
called the sliding region of Σ and denoted by Σsl ⊂ Σ. The case with ω-trajectories is called
attracting sliding and the case with α-trajectories is called repelling sliding. These regions are
denoted by Σa

sl and Σr
sl, respectively, and Σsl = Σa

sl ∪ Σr
sl.

From this definition, we can derive conditions to determine if a point is in the attracting
or in the repelling sliding region of Σ. These propositions are not proved here as they are the
direct consequences of the results of section (4).
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Proposition 5.2 (condition of attracting sliding). Consider a point x0 ∈ Σ with the functions
R(φ)(x0) and V (φ)(x0) defined in (4.2). The point x0 is located in the attracting sliding region
Σa
sl if and only if the following statements hold:
(a) If there exist φi ∈ [0, 2π), i = 1 . . . k with V (φi) = 0, then R(φi) < 0 for all i = 1 . . . k.
(b) If V (φ) �= 0 for all φ ∈ [0, 2π), then

∫ 2π
0 R(φ)/|V (φ)|dφ < 0.

In both cases, x0 has infinitely many ω-trajectories.

Proposition 5.3 (condition of repelling sliding). Consider a point x0 ∈ Σ with the functions
R(φ)(x0) and V (φ)(x0) defined in (4.2). The point x0 is located in the repelling sliding region
Σr
sl if and only if the following statements hold:
(a) If there exist φi ∈ [0, 2π), i = 1 . . . k with V (φi) = 0, then R(φi) > 0 for all i = 1 . . . k.
(b) If V (φ) �= 0 for all φ ∈ [0, 2π), then

∫ 2π
0 R(φ)/|V (φ)|dφ > 0.

In both cases, x0 has infinitely many α-trajectories.

Let us apply these propositions to our previous examples. In Example 4.4, the sliding
region covers the whole discontinuity set Σ. This example corresponds to case (a) of Propo-
sition 5.2, because we can find attracting directions for the ω-trajectories. In Example 4.7,
the whole discontinuity set corresponds to the sliding region, again. This example is related
to case (b) of Proposition 5.2; we find no attracting directions to the ω-trajectories.

5.1.2. Crossing region. Based on the construction of Definition 5.1, we can define the
crossing region for extended Filippov systems. We require that in case of crossing, any x0 ∈ Σ
is connected to trajectories both in forward and backward directions of time which makes the
dynamics possible to cross x0.

Definition 5.4 (crossing region in extended Filippov systems). Consider a point x0 ∈ Σ and
suppose that x0 possesses at least one ω-trajectory and at least one α-trajectory. The set of
points with these properties is called the crossing region of Σ and denoted by Σcr ⊂ Σ.

Based on the results of section 4, we can state the following proposition to determine the
conditions of the crossing region.

Proposition 5.5 (condition of crossing region). Consider a point x0 ∈ Σ with the functions
R(φ)(x0) and V (φ)(x0) defined in (4.2). The point x0 is located in the crossing region Σcr if
and only if there exist φi ∈ [0, 2π), i ∈ 1 . . . k with V (φi) = 0 and there exist i, j ∈ 1 . . . k for
that R(φi) < 0 and R(φj) > 0.

Definition 5.4 includes also the existence of several α- and ω-trajectories. In that case, the
continuation of solutions through x0 is not unique in forward or backward direction of time.
In Example 4.5, all points of Σ are in the crossing region. There is only a single α-trajectory,
that is, all solutions crossing x0 leave the discontinuity set along this trajectory. However,
there are infinitely many ω-directions, and hence, there is ambiguity of the solutions in the
backward time direction.

5.1.3. Tangency points. The requirement F ∗(φ) /∈ Tx0Σ of Definition 5.1 excludes the
special case when R(φi) = V (φi) = 0 for some φi ∈ [0, 2π). This degenerate case is defined as
a tangency point. As in simple Filippov systems, tangency points are located on the boundary
between sliding and crossing regions.
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Definition 5.6 (tangency points in extended Filippov systems). Consider a point x0 ∈ Σ for
which there exist a φ0 ∈ [0, 2π) with F ∗(φ) ∈ Tx0Σ. Suppose that all limit trajectories of x0
are either only ω-trajectories or only α-trajectories. Then, the point x0 is called a tangency
point of Σ. The region of these points is denoted by Σta ⊂ Σ.

As we did for the sliding and crossing regions, properties of the tangency points can be
determined from the results of section 4:

Proposition 5.7 (condition of tangency points). Consider a point x ∈ Σ with the functions
R(φ)(x0) and V (φ)(x0) defined in (4.2). The point x0 is located in the set Σta of tangency
points if and only if there exist φi ∈ [0, 2π) with V (φi) = 0 and i = 1 . . . k, and the following
statements hold:

(a) Either R(φi) ≤ 0 for all i = 1 . . . k or R(φi) ≥ 0 for all i = 1 . . . k;
(b) and there exists φi ∈ 1 . . . k with R(φi) = 0.

Note that for F ∗(φ) ∈ Tx0Σ for some φ ∈ [0, 2π), a point x0 is not necessarily a tangency
point. Instead, the vector field F ∗ can be tangent to Σ also in the crossing region. But in
that case, a point x0 ∈ Σ has α- and ω- trajectories, and thus, the existence of directions with
F ∗(φ) ∈ Tx0Σ does not modify the crossing behavior. This property is different from that of
the simple Filippov systems where F ∗(φ) ∈ Tx0Σ cannot exist in the crossing region.

5.1.4. Center points. In case of simple Filippov systems, the sliding region, the crossing
region, and the tangency points cover the whole discontinuity set Σ. However, in extended
Filippov systems, some points are missing from these three categories. By comparing the
conditions of Definitions 5.1, 5.4, and 5.6, we can realize that the case is still missing when
x0 has neither α- nor ω- trajectories. For that, a fourth region of Σ is introduced.

Definition 5.8 (center points of extended Filippov systems). Consider a point x0 ∈ Σ for
which x0 does not have any limit trajectories. Then, the point x0 is called a center point of
Σ. The region of these points is denoted by Σce ⊂ Σ.

The conditions of x0 for being a center point are the following.

Proposition 5.9 (condition of center points). Consider a point x0 ∈ Σ with the functions
R(φ)(x0) and V (φ)(x0) defined in (4.2). The point x0 is located in the set Σce if and only if
the following statements hold:

(a) If there exist φi ∈ [0, 2π), i = 1 . . . k, with V (φi) = 0, then R(φi) = 0 for all i = 1 . . . k.
(b) If V (φ) �= 0 for all φ ∈ [0, 2π), then

∫ 2π
0 R(φ)/|V (φ)|dφ = 0.

Case (a) of Proposition 5.9 is a degenerate case which has the properties of both center
points (no limit trajectories) and tangency points (boundary point between crossing and
sliding regions). In case (b), center points separate the regions of attracting and repelling
sliding of case (b) of Propositions 5.2 and 5.3. In the latter case, the projection F into Ox0Σ
results in periodic trajectories, and the phase portrait of this projected vector field is similar
to a center of smooth systems.

Thus, we obtained a complete categorization of points of the codimension-2 discontinuity
set Σ, based on the behavior of the corresponding limit trajectories. The essence of these
definitions can be found in Table 2. In the next example, one can find all types of these
regions of the discontinuity set.
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Table 2
Classification of points of the codimension-2 discontinuity manifolds in extended Filippov systems. The

table is based on the conditions of Definitions 5.1, 5.4, 5.6, and 5.8. This results in a complete categorization
of the points of Σ, and we have Σsl ∪ Σcr ∪ Σta ∪ Σce = Σ. The first and second columns of the sliding region
correspond to attracting and repelling sliding, respectively. The first and second columns of the tangency points
show whether the tangency point separates the crossing region from the attracting or repelling sliding region,
respectively. All these cases can be found in Example 5.10.

Subset of Σ Sliding region Crossing region Tangency points Center points

Notation Σsl Σcr Σta Σce

α-trajectories no yes yes no yes no

ω-trajectories yes no yes yes no no

F ∗(φ) ∈ Tx0Σ no yes or no yes yes or no

Example 5.10 (system with all typical behaviors). Consider the system

(5.1) F (x) =

⎛
⎜⎜⎜⎜⎜⎝

x4x1−x3x2√
x2
1+x2

2

+ 1

x4x2+x3x1√
x2
1+x2

2

−x3
−x4

⎞
⎟⎟⎟⎟⎟⎠

with x = (x1, x2, x3, x4) ∈ D = R
4\Σ, where the discontinuity manifold Σ is the x3−x4-plane.

For any x0 = (0, 0, x30, x40) ∈ Σ, we can choose n(φ)(x0) = (cosφ, sin φ, 0, 0), which results in

F ∗(φ)(x0) =

⎛
⎜⎜⎝
x40 cosφ− x30 sinφ+ 1
x40 sinφ+ x30 cosφ

−x30
−x40

⎞
⎟⎟⎠ ,(5.2)

R(φ) = x40 + cosφ, V (φ) = x30 − sinφ.(5.3)

The behavior of the trajectories in the vicinity of x0 can be visualized in the discontinuity
surface Σ, which is the plane of the variables x3 and x4 (see Figure 7). The lines x3 = ±1
separate the cases when V (φ) has or does not have zeroes. If V (φ) has zeroes, then the circle
x23 + x24 = 1 gives the location of the tangency points, whose curve separates the sliding and
crossing regions. If V (φ) does not have zeroes, then the center points are located on the line
x4 = 0, and this line separates the domains of attracting and repelling regions.

5.2. Necessary condition of sliding region. In this subsection, we prove Theorem 5.11,
which provides a necessary condition for sliding which can be checked by using a single formula.
On the other hand, this theorem will be used to prove Theorem 5.15.

The projection (4.1) of the limit vector F ∗(φ) into the orthogonal space Ox0Σ can be
formulated as a complex function

F ∗
c (φ) = F(1)(φ) + i · F(2)(φ),(5.4)

where the notation i is used for the imaginary unit in this subsection only. The graph of F ∗
c

is a closed curve in the complex plane.
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Case 1 2 3 4 5 6 7 8 9

Behavior Crossing Tangency Sliding Center Crossing
Number of saddles 2 1 1 1 0 0 0 0 2
Number of stable nodes 0 0 1 1 0 0 0 0 0
No. of degenerate fixed points 0 1 0 0 1 0 0 1 0

Figure 7. Behavior of the system in Example 5.10. Left panel: sketch of the discontinuity set x1 = x2 = 0
with the different regions. In the right panel, the typical trajectories are visualized in the orthogonal space
spanned by x1 and x2. The numbers corresponds to the points shown in the left panel. As in Figures 3–5,
the trajectories are projected into the orthogonal space. The origin is blown up to a small circle to better
understanding of the trajectories. The cases numbered by 1–9 are listed in the table with the corresponding
behavior (crossing, sliding, tangency, center) and the number and type of the fixed points on the blowup circle.

If F ∗(φj) ∈ Tx0Σ for some φj ∈ [0, 2π), then F ∗
c (φj) = 0, that is, F ∗

c crosses the origin. If
F ∗(φ) �= 0 for all φ ∈ [0, 2π), then Cauchy’s argument principle can be applied in the form

(5.5) N :=
argF ∗

c (2π)− argF ∗
c (0)

2π
=

1

2πi

∫ 2π

0

F ′
c(φ)

Fc(φ)
dφ

to calculate the number N ∈ N of encirclements of F ∗
c around the origin. By expressing F ∗

c

by the functions R and V , (5.5) becomes

(5.6) N = 1 +
1

2π

∫ 2π

0

R(φ)V ′(φ)− V (φ)R′(φ)
R2(φ) + V 2(φ)

dφ.

The unit normal vectors n(φ) can be defined also in complex form by

(5.7) nc(φ) :=
〈
n(φ), n(1)

〉
+ i ·

〈
n(φ), n(2)

〉
= cosφ+ i · sinφ.

Let us define the function

(5.8) γ(φ) := argF ∗
c (φ)− arg nc(φ) = argF ∗

c (φ)− φ,

which expresses the angle between F ∗
c (φ) and nc(φ) in the complex plane. The multivalued

arg function makes the definition of γ ambiguous, but by prescribing γ(0) ∈ [0, 2π) and by
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requiring γ to be continuous, (5.8) becomes completely defined. Then, the difference

(5.9) γ(2π)− γ(0) = argF ∗
c (2π) − argF ∗

c (0)− 2π = 2π(N − 1)

can be expressed by the number N of encirclements from (5.6).
It can be shown by direct calculation that the values φj with γ(φj) = 2nπ and n ∈ N

are the repelling directions of x0. Similarly, γ(φj) = (2n + 1)π corresponds to the attracting
directions. This leads to the following theorem.

Theorem 5.11 (necessary condition for existence of sliding). If point x0 ∈ Σ is located in
the sliding region Σsl, then the number N of encirclements of F ∗

c around the origin is 1, that
is,

(5.10)

∫ 2π

0

R(φ)V ′(φ)− V (φ)R′(φ)
R2(φ) + V 2(φ)

dφ = 0.

Proof. From (5.6), the condition (5.10) is equivalent to N = 1, and from (5.9), this is
equivalent to γ(2π) = γ(0). If N �= 1, then γ(2π) = γ(0) + 2πK with K = N − 1. Hence,
there exists an integer n for that both 2nπ and (2n+1)π are in [γ(0), γ(2π)] or in [γ(2π), γ(0)].
Then, the intermediate value theorem guarantees that the function γ takes both values. That
is, there is an attracting and a repelling direction, and thus, x0 is in the crossing region.

Note that the converse of Theorem 5.11 is not true and N = 1 does not guarantee the
sliding behavior. For instance, consider R(φ) = cosφ− sin(φ)/2 and V (φ) = sin(2φ). In this
case, we have N = 1 but there are two attracting and two repelling directions which means
crossing behavior.

5.3. Sliding dynamics.

5.3.1. Construction of the sliding dynamics. Let us present a natural generalization of
the convex combination to extended Filippov systems to construct the sliding vector field Fs.
Analogously to (2.13), the convex combination of the vectors of the limit vector field F ∗(φ)
can be written in the form

(5.11) Fs =

∫ 2π

0
α(φ) · F ∗(φ) dφ,

where the α is a [0, 2π) → R function with

(5.12)

∫ 2π

0
α(φ) dφ = 1.

Instead of the discrete weights α1 and α2 of simple Filippov systems, we have now a weight
function α(φ) on the domain [0, 2π). The convex combination requires α(φ) ≥ 0 for all
φ ∈ [0, 2π). The convex combination is trivial if Fs = F ∗(φ1) for some φ1 ∈ [0, 2π), which
results in α(φ) = δ(φ− φ1), where δ is the Dirac delta function. To exclude this case, we can
define the nontrivial convex combination when we have φ1 �= φ2 for which α(φ1), α(φ2) > 0.

Analogously to (2.14), the sliding vector field can be written also in the form

(5.13) Fs = F +
1

2π

∫ 2π

0
β(φ)

(
F ∗(φ)− F

)
dφ,
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Tx0Σ

Ox0Σ

x0

Σ

F ∗([0, 2π))

H(x0)

Tx0Σ

Ox0Σ

x0

Σ

F ∗([0, 2π))

H(x0)

span(F − FA, F − FB)

Figure 8. Uniqueness of the sliding vector of extended Filippov systems. Left panel: in the general case,
the convex hull H(x0) of F ∗([0, 2π)) is an m dimensional body. Its intersection with the tangent space Tx0Σ
results in an m− 2 dimensional set of the possible sliding vectors (thick line between the crosses). Right panel:
if the limit vector field has a form of (5.16), then the convex hull lays in a 2D hyperplane and the intersection
provides a unique sliding vector (denoted by a cross).

where

(5.14) F :=
1

2π

∫ 2π

0
F ∗(φ)dφ

is the integral average of F ∗ on [0, 2π), and β is a [0, 2π) → R function with

(5.15)
1

2π

∫ 2π

0
β(φ)dφ = 0.

By comparing (5.11) and (5.13), we get β(φ) = 2πα(φ)−1. Thus, for the convex combination,
we require β(φ) ≥ −1 for all φ ∈ [0, 2π). In the case of nontrivial convex combination, there
exist φ1 �= φ2 for which β(φ1), β(φ2) > −1.

We require that the resulting sliding vector Fs is tangent to Σ, that is, Fs ∈ Tx0Σ. The
existence and the uniqueness of such Fs is determined by the set Tx0Σ∩H(x0), where H(x0) is
the convex hull of the set F ∗([0, 2π)). The sliding vector Fs exists if Tx0Σ∩H(x0) is nonempty.
A sufficient condition for existence is provided by Theorem 5.15.

The sliding vector Fs is unique if Tx0Σ ∩ H(x0) contains a single element, which is not
satisfied in general (see Figure 8). The set H(x0) is a convex m dimensional set and Tx0Σ is
an m− 2 dimensional subspace of Rm. In the general case of a nonempty Tx0Σ ∩ H(x0), the
intersection is an m−2 dimensional subset of Tx0Σ, which contains continuously many suitable
sliding vectors. This property is similar to the systems with intersection of n codimension-1
discontinuity manifolds [15]. In that case, Jeffrey suggests a natural choice of the sliding
vector by constructing the convex canopy of the 2n+1 limit vectors. It is an open question if
there is a similar natural choice of Fs in the case of isolated codimension-2 discontinuity sets.
A necessary condition for uniqueness is presented in subsection 5.3.2.
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5.3.2. Necessary condition for uniqueness of sliding. To ensure a unique nontrivial
sliding vector, we require the convex hull H(x0) to be two dimensional. This special case
occurs often at mechanical problems with Coulomb friction. (See the examples in section 6.)
The set H(x0) is 2D if the curve F ∗([0, 2π)) lays in a 2D hyperplane in R

m.

Theorem 5.12 (necessary condition for uniqueness of sliding). Suppose that F ∗ can be written
in the form

(5.16) F ∗(φ) = F +A(φ) · FA +B(φ) · FB ,

where FA, FB are vectors in R
m, and span(F −FA, F −FB) is not parallel to Tx0Σ. The vector

F is the integral average defined in (5.14), and A(φ), B(φ) are [0, 2π) → R functions with∫ 2π

0
A(φ)dφ = 0,

∫ 2π

0
B(φ)dφ = 0.(5.17)

In that case, (5.11) provides a unique sliding vector Fs ∈ Tx0Σ.

Proof. Substituting (5.16) into (5.11) results in

(5.18) Fs = F +

∫ 2π

0
α(φ)A(φ)dφ · FA +

∫ 2π

0
α(φ)B(φ)dφ · FB = F + aFA + b FB ,

where

a :=

∫ 2π

0
α(φ)A(φ)dφ, b :=

∫ 2π

0
α(φ)B(φ)dφ.(5.19)

The condition Fs ∈ Tx0Σ is equivalent to the conditions
〈
Fs, n(1)

〉
= 0 and

〈
Fs, n(2)

〉
= 0,

where n(1) and n(2) are the basis vectors of Ox0Σ. These conditions lead to

(5.20)

〈
F, n(1)

〉
+

〈
FA, n(1)

〉
· a+

〈
FB , n(1)

〉
· b = 0,〈

F, n(2)

〉
+

〈
FA, n(2)

〉
· a+

〈
FB , n(2)

〉
· b = 0.

As span(F − FA, F − FB) is not parallel to Tx0Σ, (5.20) is independent, and thus, there is
unique solution for a and b, and then, (5.18) gives an unique Fs.

Note that the theorem does not guarantee the existence of such Fs that is constructed as
a convex combination of F ∗. The existence of sliding also requires a weight function α with
α(φ) ≥ 0. The unique values a and b still not determine a unique weight function α(φ), but
(5.19) determines a class of possible weight functions. Thus, the direct checking of α(φ) ≥ 0
is not straightforward. Instead, one can use the sufficient condition for existence provided by
Theorem 5.15, which states that there always exists a sliding vector in the sliding region.

5.4. Comparison with possible alternative definitions of sliding region. We decided to
preserve the property (c) of Proposition 2.6 when extending the definition of sliding region
to extended Filippov systems. It would be also possible to extend the properties (a) and (b),
which would result in different definitions of the sliding region.

5.4.1. Comparison with the definition from the radial dynamics. The property (a) of
Proposition 2.6 means that the component of the limit vector field F ∗ in the direction of the
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corresponding normal vector n points toward the discontinuity set. The natural extension of
this property leads to the following definition.

Definition 5.13 (region with attracting or repelling radial dynamics). Consider a point x0 ∈ Σ
with the function R(φ)(x0) = 〈F ∗, n〉 (φ)(x0). Suppose that either R(φ) < 0 for all φ ∈ [0, 2π)
or R(φ) > 0 for all φ ∈ [0, 2π). The set of such points are denoted by Σradial ⊂ Σ.

The sliding region of Filippov systems is usually defined by Definition 2.1, and therefore,
it seems to be natural to extend the concept of sliding region by Definition 5.13. The authors
also suggested this definition in [3], because Definitions 5.1 and 5.13 give the same results in
many mechanical examples with Coulomb friction. However, analysis of the present paper
shows that Definition 5.13 would result in a too strong definition of sliding region.

It is obvious that Σradial ⊂ Σsl, because the constant sign of R is valid also for the
limit directions. However, there are points in the sliding region Σsl which are not located in
Σradial. In Example 4.4, the function R(φ) changes sign along [0, 2π), that is, x0 /∈ Σradial.
However, the directions φi of the limit trajectories are both located in the subset of [0, 2π)
with R(φ) < 0, which results in an attracting sliding behavior. In Example 4.7, R(φ) also
changes sign along [0, 2π), but the integral (4.15) shows that all limit trajectories of x0 are
ω-trajectories, and x0 is located in the sliding region.

A further disadvantage of Definition 5.13 is that smooth transformation of the variables
could change the radially attracting or repelling property of the system. In Definitions 5.1
and 5.4, such coordinate transformation cannot change the sliding or crossing property.

5.4.2. Comparison with the definition from existing sliding vector. The sliding region
could also be defined from the extension of property (b) of Proposition 2.6, which requires the
existence of the sliding vector constructed from convex combination. In the case of extended
Filippov systems, this condition leads to the following definition.

Definition 5.14 (region with sliding vector from convex combination). Consider a point
x ∈ Σ and suppose that there exists a sliding vector Fs ∈ Tx0Σ, where (5.11) is a nontrivial
convex combination. The set of such points are denoted by Σconvex ⊂ Σ.

In other words, Σconvex contains the points x0 such that the intersection Tx0Σ ∪H(x0) is
nonempty. The relation between Σconvex and the sliding region Σsl is given by the following
theorem.

Theorem 5.15 (existence of the sliding vector in the sliding region). If x0 is located in the
sliding region Σsl, then there exists a sliding vector Fs ∈ Tx0Σ, where (5.11) is a nontrivial
convex combination. That is, Σsl ⊂ Σconvex.

Proof. Theorem 5.11 states that in the sliding region, the graph of projection of F ∗ into
Ox0Σ circles around the origin once. That is, the origin is in the interior of the convex hull of
F ∗
c ([0, 2π)). By projection to Ox0Σ, the origin is the image of all points of Tx0Σ and F ∗

c ([0, 2π))
is the image of F ∗([0, 2π)). Therefore, F ∗([0, 2π)) ∩ Tx0Σ is nonempty, and x0 ∈ Σconvex.

The converse of Theorem 5.15 is not true; a point x0 ∈ Σconvex with an existing sliding
vector is not necessarily located in the sliding region. In Example 4.5, the sliding vector
Fs = (0, 0,−x30) can be constructed as a nontrivial convex combination of F ∗(φ) for all
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(0, 0, x30) ∈ Σ. However, the whole discontinuity set corresponds to the crossing region. That
is, Definition 5.14 would result a too weak definition for sliding region.

In this subsection, we showed that the extension of the properties of Proposition 2.6 lead
to different subsets of the discontinuity set Σ, determined by Definitions 5.1, 5.13, and 5.14.
Among them, we chose Definition 5.1 because it seems to be the most natural extension of the
sliding region of simple Filippov systems to the extended Filippov systems. Definition 5.13
provides a sufficient condition and Definition 5.14 gives a necessary condition for sliding be-
havior.

6. Application to mechanical systems with Coulomb friction. The motivation behind
developing the mathematical methods in this paper was the mechanical problems with Cou-
lomb friction in three dimensions.

Consider two rigid bodies slipping on each other at a single contact point, and assume
a simple Coulomb model where the magnitude of the friction force is proportional to the
normal force and its direction is opposite to the relative velocity at the contact point. Then,
the components C1 and C2 of the friction force can be written into the form

C1 = −μN
u1√

u21 + u22
, C2 = −μN

u2√
u21 + u22

,(6.1)

where N is the normal force between the bodies, μ is the friction coefficient, and u1, u2 are
the components of the relative velocity in the tangent plane at the contact point in the same
coordinate system used for C1 and C2. In the special planar (2D) case with u2 ≡ 0, (6.1)
leads to

C1 = −μN
u1
|u1|

, C2 = 0.(6.2)

In the derivation of the differential equations of the rigid bodies from the Newton–Euler equa-
tions, the expression of the accelerations leads to the solution of a linear algebraic equation.
Thus, the discontinuous terms u1/|u1| and u1/

√
u21 + u22 appears in the resulting differential

equations, as well. In the planar case, the discontinuity at u1 = 0 is a codimension-1 dis-
continuity manifold, and thus, it leads to a simple Filippov system. In the spatial (3D) case,
u1 = u2 = 0 is a codimension-2 discontinuity manifold, and thus, it leads to an extended
Filippov system.

The classical method to analyze these mechanical systems is to derive the equations of
motion separately for the case of the rolling of the bodies. At the discontinuity of the slipping
equations, the dynamics is replaced by the rolling equations. This approach can be used for
the numerical simulation of the system (see, e.g., [22]), but it gives not much information of
the connection between the rolling and slipping behavior. The theory of Filippov systems
provide a deeper understanding of the problem by analyzing the discontinuous behavior of
the vector field. The theory of simple Filippov systems can be used effectively for systems
with planar Coulomb friction (see the examples and applications in [6]), but not in the 3D
case. However, extended Filippov systems can be used for the analysis of systems with spatial
Coulomb friction between 3D rigid bodies.

In this section, we demonstrate the methods presented above on two mechanical examples.
In these examples, we determine the dynamical equations by the Newton–Euler equations in
the spatial case which provide an extended Filippov system. From the vector field F , the
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C1

u1

C1

u1

C1

u1

Figure 9. Different types of Coulomb model given by the relation between the friction force C1 and the
slipping velocity u1. These diagrams refer to the planar (2D) case (see (6.2)), but similar (multivariable)
models are used in the spatial (3D) case. Left panel: simple Coulomb model with no difference between static
and dynamic friction. Middle panel: sticktion model with discontinuity between the static and dynamic friction.
In this case, the convex methods of both simple Filippov systems and extended Filippov systems do not give a
proper result. Right panel: Coulomb friction and Stribeck effect with continuous connection between static
and dynamic friction. In this case, convex methods can be applied again, both in simple Filippov systems and
extended Filippov systems.

sliding region and the sliding dynamics can be determined based on the definitions above. We
find that the sliding dynamics is the same that one could get from applying Newton’s second
law separately for the nonslipping (sticking or rolling) case. Moreover, the condition of being
in the sliding region becomes the same as the condition of the maximal possible static friction
in case of the Coulomb model. Thus, methods of extended Filippov systems can be used in
problems with spatial Coulomb friction in the same way as using simple Filippov systems for
planar Coulomb friction.

In the following examples, we assume simple Coulomb friction with uniform magnitude of
static and dynamic friction force. (See the left panel of Figure 9.) As in the case of simple
Filippov systems, the convex methods of extended Filippov systems do not work automatically
with the sticktion model where the independent values of static and dynamic friction introduce
an additional discontinuity to the model. (See the middle panel of Figure 9.) However, the
methods work again if the Stribeck-effect is also considered. (See the right panel of Figure 9.)

In the examples below, we do not just reproduce those results obtained from considering
the sticking or rolling dynamics, but we can get additional information about the limit tra-
jectories, as well; which describes the qualitative behavior of the system at slipping-rolling
or slipping-sticking transitions. Moreover, the presented methods can be applied to deter-
mine the condition of slipping even in some cases where this process cannot be carried out
by checking the maximal friction force (see [1] and [2]). The application of extended Filippov
systems has similarities to the method used in [4] for mechanical systems with friction between
colliding bodies.

6.1. Rigidly connected pair of mass points on the plane. Let us consider a rigid body
on a horizontal plane which consist of two mass points P and Q connected by a rigid massless
rod (see Figure 10). The mass points have uniform mass m, the length of the rod is 2d.
The mass point P is subjected to Coulomb friction with a friction coefficient μ; the friction
between the mass point Q and the plane is neglected. A torque T is acting on the body in
the vertical direction. The gravitational acceleration is denoted by g.
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Σcr :

n(2)(x0)n(1)(x0)

x0 = (0, 0, ω0)

Ox0Σ = {(u1, u2, ω0)}

Tx0Σ ≡ Σ = {(0, 0, ω)}

Σsl :

ω2
0
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C/(2md)
ω̃2
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C = μmg

μ

Figure 10. Rigidly connected pair of mass points on the plane. Left panel: sketch of the mechanical model
with the parameters and state variables. Middle panel: sketch of the state space in the case |T | ≤ 2Cd. Then,
there are two tangency points at ±ω̃0. Between the tangency points, there is sliding (thick solid line), and
outside, there is crossing (thick dashed line). Right panel: location ω̃0 of the tangency points as a function of
the moment M . The numbers in the form N(M) in the different regions of the graph denote that the number
of limit directions is N , and M of them are repelling directions.

6.1.1. Dynamics. In this mechanical system, the location and the orientation do not
modify the dynamics, and the state of the body can be described by the velocity state only.
Let x = (u1, u2, ω), where ω is the angular velocity of the body, while u1 and u2 are the
velocity components of the mass point P described in a coordinate system attached to the
body. (See the left panel of Figure 10.) By assuming that P is slipping on the plane, the
relevant components of the Newton–Euler equations are

(6.3)

2m ·
(
u̇1 − ωu2 + ω2d

)
= C1,

2m · (u̇2 − ω̇d) = C2,

2md2ω̇ = C2d+ T,

where

C1 = −μmg
u1√

u21 + u22
, C2 = −μmg

u2√
u21 + u22

(6.4)

are the components of the Coulomb friction force at the mass point P . The first two equations
of (6.3) are the two components of Newton’s second law in the horizontal plane, where the
expressions in the brackets are the acceleration components of the center of the gravity of the
body. Note that the velocities u1 and u2 are measured in the inertial (fixed) reference system
but in a coordinate system co-rotating with the body, which leads to additional terms in the
accelerations. The third component of (6.3) is the Euler equation of rotation for the vertical
direction. From (6.3), the time derivatives of the variables can be expressed, and we get the
differential equation

(6.5)

⎛
⎝u̇1
u̇2
ω̇

⎞
⎠ = F (x) =

⎛
⎜⎜⎜⎝
− C

2m
u1√
u2
1+u2

2

+ ωu2 − ω2d

−C
m

u2√
u2
1+u2

2

− ωu1 +
T

2md

− C
2md

u2√
u2
1+u2

2

+ T
2md2

⎞
⎟⎟⎟⎠ ,



SLIDING AND CROSSING IN EXTENDED FILIPPOV SYSTEMS 851

where C :=
√

C2
1 + C2

2 = μmg is the magnitude of the Coulomb friction force at slipping.
Note that the velocities u1 and u2 are not interchangeable in (6.5) because these variables are
measured in the rotating coordinate system connected to the body. For example, an additional
2 in the denominator appears in the first component of (6.5); a unit force acting at P can
create half of the acceleration in the direction u1 (when accelerating both mass points) than
in the direction of u2 (when only one of them is accelerated due to the rotation of the body).

The discontinuity set Σ is the line determined by u1 = u2 = 0; this corresponds to the
case when the point P is stuck to the plane. For any x0 = (0, 0, ω0) ∈ Σ, we can choose the
basis vectors n(1) = (1, 0, 0), n(2) = (0, 1, 0). Then, the limit vector field becomes

F ∗(φ)(x0) =

⎛
⎜⎝

− C
2m cosφ− ω2

0d

−C
m sinφ+ T

2md

− C
md sinφ+ T

2md2

⎞
⎟⎠ .(6.6)

The physical meaning of φ is the direction of slipping of point P on the plane.

6.1.2. Sliding and crossing regions. Let us now determine the sliding and crossing regions
of the system. From (6.6), we get

R(φ) = − C

2m

(
1 + sin2 φ

)
− ω2

0d cosφ+
T

2md
sinφ,(6.7)

V (φ) = − C

2m
cos2 φ+ ω2

0d sinφ+
T

2md
cosφ.(6.8)

Determining the zeroes of (6.7) leads to a fourth order polynomial in cosφ, which results in
lengthy formulae. Instead, let us determine the special case of tangency points which separate
the sliding and crossing behavior. The necessary condition of the tangency points is to have
a direction φ1 with V (φ1) = R(φ1) = 0, which results in

sinφ1 =
T

2dC
, cosφ1 = −

√
1−

(
T

2dC

)2

, ω̃2
0 =

√(
C

2md

)2

−
(

T

4md2

)2

.(6.9)

That is, the tangency points are located at ω = ±ω̃0 (see Figure 10), and then, the direction
φ1 on the boundary of being an attracting or a repelling direction is determined by (6.9). It
can be checked that in that case, the direction φ2 = π − φ1 is always an attracting direction
and there are no other limit directions. It can be shown that the case |ω0| < ω̃0 corresponds
to the attracting sliding region and the case |ω0| > ω̃0 corresponds to the crossing region.
The tangency points exist only if |T | ≤ 2dC; otherwise, the crossing region covers all the
discontinuity set Σ. (See the right panel of Figure 10.) This is consistent to the results from
the assumption of the the maximal admissible friction force at the Coulomb model.

The special case ω0 = 0 can still be investigated analytically. Then, we get

(6.10) V (φ) = cosφ

(
− C

2m
cosφ+

T

2md

)
.

In the case |T | < dC, there are four attracting directions (sliding), in the case dC ≤ |T | ≤ 2dC,
there are two attracting directions (still sliding), and in the case |T | > 2dC, there is an
attracting and a repelling direction (crossing). The dotted line in the right panel of Figure 10
shows the boundary between the cases of 2 and 4 attracting directions.
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u1

u2

v2

v1

μ

−Kv1

−Kv2

g
v2

v1

7µmg
2K

sliding region
tangency points

crossing region

2(0)

2(1)

Figure 11. Ball at the bottom of a pool. Left panel: sketch of the mechanical model with the parameters
and state variables. Right panel: sketch of the discontinuity set Σ with the crossing and sliding regions. The
meaning of the numbers is the same as in the right panel of Figure 10.

6.1.3. Sliding dynamics. Let us write (6.6) into the form (5.16), and by choosing A(φ) =
cosφ, B(φ) = sinφ, we get

F =

⎛
⎜⎝
−ω2

0d
T

2md
T

2md2 ,

⎞
⎟⎠ FA =

⎛
⎜⎝− C

2m

0
0

⎞
⎟⎠ , FB =

⎛
⎜⎝ 0

−C
m

− C
md

⎞
⎟⎠ .(6.11)

Then, the solution of (5.20) is

a = −2mω2
0d

C
, b =

T

2dC
,(6.12)

and the sliding vector from (5.18) becomes

(6.13) Fs(x0) =

⎛
⎜⎝ 0

0
T

4md2

⎞
⎟⎠ .

This is the same result as we would get from the Newton–Euler equations by assuming that
point P is stuck to the plane by static Coulomb friction and the body is rotating around this
point.

6.2. Ball at the bottom of a pool. Let us consider a rigid homogeneous ball moving at
the bottom of a pool. We assume that Coulomb friction force is acting on the bottom of the
ball with a friction coefficient μ, and the effect of the water is modeled by a viscous force with
a linear coefficient K (see Figure 11). The mass of the ball is m, the radius of the ball is ρ,
and the gravity is denoted by g.

6.2.1. Dynamics. The state of the ball is described by x = (u1, u2, v1, v2), where u1 and
u2 are the velocity components of the bottom point and v1 and v2 are the velocity components
of the center of gravity. The components of the angular velocity of the ball in the horizontal
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plane can be expressed by (u2 − v2)/ρ and (v1 − u1)/ρ. Then, for the case when the ball is
slipping, Newton’s second law for the center of gravity is

(6.14)

mv̇1 = −μmg
u1√

u21 + u22
−Kv1,

mv̇2 = −μmg
u2√

u21 + u22
−Kv2,

and Euler’s equations for the rigid body become

(6.15)

2

5
mρ2 · u̇2 − v̇2

ρ
= −μmg

u2√
u21 + u22

· ρ,

2

5
mρ2 · v̇1 − u̇1

ρ
= μmg

u1√
u21 + u22

· ρ,

where 2/5mρ2 is the mass moment of inertia of the ball.
By expressing the derivatives of the state variables from (6.14)–(6.15), we get the differ-

ential equation

(6.16)

⎛
⎜⎜⎝
u̇1
u̇2
v̇1
v̇2

⎞
⎟⎟⎠ = F (x) =

⎛
⎜⎜⎜⎜⎜⎝

−7
2μg

u1√
u2
1+u2

2

− K
mv1

−7
2μg

u2√
u2
1+u2

2

− K
mv2

−μg u1√
u2
1+u2

2

− K
mv1

−μg u2√
u2
1+u2

2

− K
mv2

⎞
⎟⎟⎟⎟⎟⎠ .

The discontinuity manifold Σ is the hyperplane u1 = u2 = 0 in the 4D state space. At
any point x0 = (0, 0, v10, v20) ∈ Σ, we choose the basis vectors n(1) = (1, 0, 0, 0) and n(2) =
(0, 1, 0, 0), which leads to

(6.17) F ∗(φ)(x0) =

⎛
⎜⎜⎜⎜⎝
−7

2μg cosφ− K
mv10

−7
2μg sinφ− K

mv20

−μg cosφ− K
mv10

−μg sinφ− K
mv20

⎞
⎟⎟⎟⎟⎠ .

The physical meaning of φ is the direction of slipping of the bottom point of the ball.

6.2.2. Sliding and crossing regions. For determining the sliding region, let us calculate
the functions

R(φ) = −7

2
μg − K

m
(v10 cosφ+ v20 sinφ) , V (φ) = −K

m
(v20 cosφ− v10 sinφ) .(6.18)

The zeroes of V (φ) are φ1 = arctan(v20, v10) and φ2 = φ1 + π. The direction φ1 is always an
attracting direction while φ2 is attracting only if

(6.19)
√

v210 + v220 <
7μgm

2K
.
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That is, the sliding region determined by (6.19) is the interior of a circle in the discontinuity
set. (See the right panel of Figure 11.) The points of this circle are tangency points and there
is crossing outside the circle.

Equation (6.19) gives the same result as could be obtained from applying Newton’s second
law separately for the case when the ball is rolling at the bottom of the pool and from
considering the maximum admissible friction force from the simple Coulomb model.

6.2.3. Sliding dynamics. By choosing A(φ) = cosφ and B(φ) = sinφ, the vectors of
(5.16) become

F =

⎛
⎜⎜⎜⎜⎝
−K

mv10

−K
mv20

−K
mv10

−K
mv20

⎞
⎟⎟⎟⎟⎠ , FA =

⎛
⎜⎜⎜⎝
−7

2μg

0
−μg

0

⎞
⎟⎟⎟⎠ , FB =

⎛
⎜⎜⎜⎝

0
−7

2μg

0
−μg

⎞
⎟⎟⎟⎠ .(6.20)

The solution of (5.20) leads to

a = −2Kv10m

7μg
, b = −2Kv20m

7μg
(6.21)

and to the sliding vector

(6.22) Fs =

⎛
⎜⎜⎜⎝

0
0

−5
7
K
mv10

−5
7
K
mv20

⎞
⎟⎟⎟⎠ .

This vector field describes the ball during rolling on the ground, and the equation is consistent
with the one obtained from Newton’s second law in the rolling case.

6.2.4. Planar case—Comparison to simple Filippov systems. Let us demonstrate that
the results are consistent also to those from simple Filippov systems. By applying the con-
straints u2 ≡ v2 ≡ 0, (6.16) becomes

(6.23) F (x) =

⎛
⎜⎜⎜⎝
−7

2μg sgnu1 −
K
mv1

0

−μg sgnu1 − K
mv1

0

⎞
⎟⎟⎟⎠ ,

which is a Filippov system describing the problem in two dimensions. By applying the methods
described in section 2, we obtain Fs = (0, 0,−5Kv10/(7m), 0) and |v10| < (7μgm)/(2K), which
coincide with (6.22) and (6.19).

6.3. Regularization of the Coulomb friction model. By considering a small positive
parameter ε, the planar (2D) Coulomb model (6.2) can be approximated by

(6.24) C1 =

{
−μNu1/ε if |u1| < ε,

−μNu1/|u1| if |u1| ≥ ε.
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ε ε

C1

u1

C1

u1

Figure 12. Different regularizations of the Coulomb friction model (6.1). Left panel: piecewise linear
regularization from (6.24). Right panel: smooth regularization by the tanh function from (6.25). These models
for the planar (2D) friction can be extended to the spatial (3D) case in the form (6.26) and (6.27).

This formulation provides a piecewise linear model, where the discontinuity at u1 = 0 is
eliminated (see Figure 12). Note that the model is still not smooth at |u1| = ε. A different
way to regularize (6.2) is to use a smooth approximating function, e.g., in the form

(6.25) C1 = −μN
u1
|u1|

· tanh
(
|u1|
ε

)
= −μN tanh

(u1
ε

)
.

The formula (6.24) fits into the framework of the regularization according to Sotomayor and
Teixeira [21]. Thus, the mathematical reason behind this regularization is to analyze the
dynamics in the discontinuity set by blowing up the single surface into a boundary layer.
However, there is a physical justification behind these regularized models, as well. If the
normal force N between rolling bodies is large enough compared to the local stiffness of the
bodies, then the local deformation at the contact point cannot be neglected. From the point
of view of the rigid body motion, this effect of creep appears as a slight slipping between the
rolling surfaces. Then, the value 1/ε gets the physical meaning of the linear creep coefficient,
which can be calculated from the mechanical analysis of the elastic deformations (see [16,
p. 242]).

The regularized models (6.26) and (6.27) can be extended to the 3D Coulomb friction,
and we get

(6.26) C1 =

⎧⎨
⎩
−μNu1/ε if

√
u21 + u22 < ε,

−μN u1√
u2
1+u2

2

if
√

u21 + u22 ≥ ε,

or

(6.27) C1 = −μN
u1√

u21 + u22
tanh

(
1

ε

√
u21 + u22

)
,

where the component C2 can be written into a similar form. By taking ε → 0, both models
(6.26) and (6.27) tend to (6.1). In the case of (6.26), a boundary tube with a diameter of 2ε
appears around the codimension-2 discontinuity manifold of the original system. The model
(6.27) provides a smooth friction model.

The form of the formulae (6.26)–(6.27) can be used for the regularization not just in
systems originated in mechanical applications but in other Filippov systems as in the examples
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mentioned before. By approximating the nonsmooth terms as in (6.27) in Examples 4.4
and 4.7, the origin of the projected phase space becomes a stable node and a stable focus,
respectively.

In the regularized system obtained from Example 4.5, there is a stable node and a saddle
close to each other. This result harmonizes with the phase portrait of the original system in
polar coordinates. (See the left-bottom diagram in Figure 4.) That is, there are trajectories
in the regularized system which tend to the stable node and which are not leaving along the
repelling direction. This example demonstrates that the analysis of the regularized system can
be important at points with several limit directions. Definitions 5.1 and 5.4 of crossing and
sliding are based purely on the existence of the attracting and repelling limit trajectories. An
appropriate regularization can show more details about the connection between the trajectories
at the discontinuity manifold.

By reversing the direction of time in Example 4.5, we get a system where there are more
than one repelling limit directions. In that case, the uniqueness of the solution in forward time
is violated. By the regularization (6.27), an unstable node and a saddle appear in that system.
Depending on the initial condition, the trajectories follow different repelling directions, and
thus, the nonuniqueness is resolved by the regularization. It is an open question whether this
situation of more than one repelling direction can be obtained from a mechanical system with
spatial Coulomb friction. So far, the authors have not found such an example.

This subsection simply gave some ideas about the regularization of extended Filippov
systems. It can be the topic of further research to investigate whether the recent results of
the regularization of simple Filippov systems (see, e.g., [17]) can be modified and applied to
extended Filippov systems.

7. Conclusion. Motivated by the spatial Coulomb friction, we defined the concept of
extended Filippov systems, where there are isolated codimension-2 discontinuities in the phase
space. Unlike in simple Filippov systems, there are not only two, but continuously many
directions normal to the discontinuity manifold at any point. By introducing the notion of
limit trajectories, the points of the discontinuity set can be classified into sliding and crossing
regions, tangency points, and center points. From the limit vector field at a chosen point of
the discontinuity set, one can decide the region where the chosen point is located.

In the sliding region, the sliding dynamics is considered as a weighted integral average
of the limit vector field, which is analogous to the convex combination at simple Filippov
systems. We proved that in the sliding region, such a sliding vector always exists, but there
are continuously many choices in general. The subset of systems with unique sliding vector is
important, because mechanical problems tend to result this type of systems.

The developed tools of extended Filippov systems are demonstrated on two mechanical
problems with spatial Coulomb friction. The resulting conditions of sliding (mechanical stick-
ing/rolling) and crossing (mechanical slipping) are consistent to the results from computing
the friction forces directly. That is, extended Filippov systems can have the same role when
modeling spatial Coulomb friction as that of the simple Filippov systems at systems with
planar Coulomb friction.

These results of the paper present the foundations of the theory and many questions are
still open. It would be interesting to see whether the nonuniqueness of the sliding vector
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can be resolved by similar methods to that of the intersecting discontinuity manifolds of
simple Filippov systems (see [15]). It would be important to extend also the categorization
of boundary equilibrium bifurcations (see, e.g., [14]) to the codimension-2 discontinuity. The
numerical methods of piecewise smooth systems (see, e.g., [20]) could also be generalized
for extended Filippov systems. The recent results about the regularization methods (see,
e.g., [17]) could possibly be used for extended Filippov systems, as well. Finally, it could be
interesting to see if the spatial Coulomb friction is the only practical source of this type of
discontinuity or there are other applications which result to extended Filippov systems.

Acknowledgments. The authors wish to thank Professor S. John Hogan from the Uni-
versity of Bristol for the useful discussions about the topic. We also thank Elena Bossolini
from the Technical University of Denmark for the suggestions about the literature of blowup
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