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Discontinuity-induced bifurcations of a dual-point contact ball
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Abstract In this paper, dynamics of a ball is investigated,
which is in dual-point contact with a cylindrical vessel. This
model is based on a concept of a type of flowmeter. Rolling,
slipping and separation of surfaces can all occur at both con-
tact points, which results in a nonsmooth dynamical system.
Stationary solutions of the system and their stability are de-
termined in the different kinematic cases. By introducing the
concept of stability with respect to slipping, existence of the
stationary solutions can be checked even in the case when
the contact forces are undetermined. Discontinuity-induced
bifurcations of the system are explored.

Keywords dual-point contact, flowmeter, nonsmooth
dynamics, discontinuity-induced bifurcations

Introduction

One of the basic principles of flow rate measurement is to
place a solid body into the fluid and to let it be moved or
rotated by the fluid flow. One possible concept of this idea
can be seen in Fig. 1, which can be found in several accepted
patents from the last decades. A metal ball is placed into an
axisymmetric vessel, in which swirling flow is created by
blades or other geometric solutions at the inlet. The swirling
flow makes the ball roll round along the edge of the vessel.
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The velocity of the ball can be measured e.g. by an inductive
sensor outside the vessel. After calibration, the flow rate of
the fluid can be determined. This concept is called cyclonic
flowmeter [9] or orbital ball flowmeter [27] in the literature.

For the application of this concept, one of the earliest
patents was submitted by Kearsley [17] already in 1950.
Since then, several similar patents were applied [11,30,7,
9], and new variations for the geometry were introduced [15,
33]) even in the recent years [26,27]. Contrary to the large
number of the patents, dynamics of the ball has not been
investigated analytically.

Dynamics of the ball in the flowmeter is based on the
dual-point contact kinematics, which means that the two bod-
ies involved have two contact points during the motion. This
problem can be found in other fields of mechanical engineer-
ing. For example, kinematic oscillation of railway wheel-
sets has the same kinematic scenario [32,25], which was re-
cently analysed by the authors [2,1]. Similar kinematics can
be found in roller bearings. In tapered roller bearings [34]
and in angular contact ball bearings [3,24,14], rolling ele-
ments have essentially the same constraints as the ball in the
flowmeter.

In this paper, dynamics of the ball is investigated ana-
lytically in the case of stationary flow of the fluid. Even for
this simple excitation from the flow, behaviour of the ball
becomes complicated due to the several kinematic cases re-
lated to slipping and unilateral contact at the contact points.
As we focus on qualitative description of the system, the
flow field in the vessel and its effect on the ball is simplified
as much as possible.

In Section 1, the mechanical model is created and the
equations of motion are derived for all kinematic cases of
the system. After determining the stationary solutions of the
ball, we identify the parameter values for which the station-
ary solutions exist (Section 2). However, it cannot be done in
the case of dual-point rolling due to the undetermined con-
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Fig. 1 Sketch of the mechanical model. The swirling flow of the fluid
makes the ball travel round along the edge of the vessel.

Notation Quantity Dimen.
m mass of the ball kg
r radius of the ball m
j dimensionless moment of inertia

of the ball
−

R+ r radius of the vessel m
µ friction coefficient between the

ball and the bottom of the vessel
−

η friction coefficient between the
ball and the wall of the vessel

−

g reduced gravitational accelera-
tion (including buoyancy)

m/s2

ω0 stationary angular velocity of the
fluid

1/s

m · c viscous drag coefficient kg ·m/s

Table 1 List of physical parameters.

tact forces. This problem can be solved by a new method
introduced in Section 3, which is applied in the case of dual-
point rolling in Section 4. Based on these results, the bi-
furcations of the system are characterised (Section 5) and
limitations of this type of flowmeters are identified.

1 Mechanical model

Let us consider a cylindrical vessel that guides the ball. This
is one of the simplest possible geometries (see Fig. 1), which
can be found in [9]. Let the ball have a radius of r, and let
the inner radius of the cylinder be equal to R+ r (see Table
1 for the list of the parameters).
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Fig. 2 Kinematic cases of the ball. The two characters of the acronym
describe the type of contact with the bottom and the wall, respectively.
Rolling, slipping and no contact are denoted by capital letters R, S
and N, respectively. In each panel, the three numbers are: the number
of necessary variables to describe the geometric state, the number of
independent quasi-velocities and the dimension of state space, respec-
tively.

1.1 Kinematic cases

Let A denote the downmost point of the ball, where con-
tact can occur with the bottom of the vessel . Similarly, let
B denote the outermost point of the ball, which can be in
contact with the wall of the vessel. At a contact point be-
tween the bodies, three possible situations can occur. The
ball can be in rolling or slipping contact with the vessel,
or the ball can be separated from the surface of the vessel.
For the contact points A and B, this results in 9 different
kinematic cases (see Fig. 2). Throughout the paper, differ-
ent kinematic cases are denoted by two-letter acronyms, the
first letter corresponds to point A, the second refers to point
B. Both letters of the acronyms can be R (rolling contact), S
(slipping contact) or N (no contact), depending on the state
of the contact (see Fig. 2).

In this paper, we focus on the stationary solutions of the
ball. It is physically foreseeable that in cases with no contact
with the wall (Cases RN, SN and NN), no such stationary
motion is realisable. Therefore, the analysis is restricted to
the 6 cases of the first two columns of Fig. 2.

1.2 Kinematics

The components of the vectors are computed in a coordinate
system co-rotating with the centre of the ball. The basis vec-
tors of this Cartesian coordinate system are denoted by i, j,
k, where i points radially inwards, j points axially upwards



Discontinuity-induced bifurcations of a dual-point contact ball 3

Notation Phase variable Dimen.
y axial displacement m
vy axial velocity m/s
ωc angular velocity of the coordinate

system co-rotating with the centre
of the ball

1/s

ω̃x radial angular velocity of slipping 1/s
ω̃y axial angular velocity of slipping 1/s
ω̃z tangential angular velocity of

slipping
1/s

Notation Auxiliary variable Dimen.
vA slipping velocity at point A m/s
vB slipping velocity at point B m/s
α slipping direction at point A −
β slipping direction at point B −

Table 2 List of variables. Phase variables are used to describe the state
of the system uniquely (see also (19) and Table 4). Auxiliary variables
are used in some parts of the paper to simplify calculations.

and k is defined by k := i × j, where × denotes the cross
product of vectors. Let the originO of the coordinate system
be located in the middle of the bottom of the vessel. In this
coordinate system, the location of the centre C of the ball is
given by

rOC =

 −Rr + y

0

 , (1)

where y(t) is the axial displacement of the ball. At y = 0,
the ball touches the bottom of the vessel. The notation of all
phase variables can be found in Table 2. Throughout the pa-
per, dependence of variables on the time t is indicated only
if it is necessary.

Let us denote the angular velocity of the co-rotating co-
ordinate system by ωc(t) = ωc(t)j. Then, by calculating
the time derivatives in this rotating coordinate system, the
velocity and acceleration of the centre of the ball are given
by

vC = ṙOC + ωc × rOC =

 0

vy
Rωc

 (2)

and

aC = v̇C + ωc × vC =

Rω2
c

v̇y
Rω̇c

 , (3)

respectively, where vy(t) := ẏ(t) is the axial velocity of the
ball.

The angular velocity ω of the ball can be split up into a
rolling part ω̄ and a slipping part ω̃ in the form

ω = ω̄ + ω̃ =

 R
r ωc
−Rr ωc
1
rvy

+

ω̃xω̃y
ω̃z

 , (4)

where ω̃x(t), ω̃y(t) and ω̃z(t) are the slipping components
of the angular velocity. By differentiating (4) as we did in
(3), we obtain that the angular acceleration ε of the ball is

ε =

Rr ω̇c + 1
rωcvy + ˙̃ωx + ωcω̃z
−Rr ω̇c + ˙̃ωy

1
r v̇y −

R
r ω

2
c + ˙̃ωz − ωcω̃x

 . (5)

The possible contact pointsA andB are located at rCA =

−rj and rCB = −ri. Their velocities are given by

vA =

 rω̃z
0

−rω̃x

 , vB =

 0

−rω̃z
rω̃y

 , (6)

thus, the kinematic conditions of rolling at A or B are satis-
fied exactly when the corresponding slipping angular veloc-
ities are zero. In order to simplify some subsequent calcula-
tions, let us express (6) in polar coordinates by defining the
slipping velocities

vA := r
√
ω̃2
z + ω̃2

x, vB := r
√
ω̃2
z + ω̃2

y (7)

and the slipping directions

α := arctan(ω̃x, ω̃z), β := arctan(ω̃y, ω̃z). (8)

1.3 Forces

The gravity field points axially downwards and results in
the force Fg = −mgj, where g is the reduced gravita-
tional acceleration including the buoyancy effect of the fluid.
The effect of the fluid flow is simplified as much as possi-
ble to focus on the essence of the problem. We assume that
in the outer region of the vessel the fluid has a rigid-body-
like motion and it rotates with a constant angular velocity
ω0 = ω0j. The velocity of the fluid at point C is calculated
as vfC = ω0 × rOC = ω0Rk. The viscous force Ff is
modelled by Stokes’ drag law (see e.g. [28], p. 451.),

Ff = −mc (vC − vfC) =

 0

−mcvy
−mcR(ωc − ω0)

 . (9)

The drag coefficient is written in the form mc to make the
calculations easier, and c can be calculated as

c =
9νf
2r2
· ρf
ρb
. (10)

Here, νf is the kinematic viscosity of the fluid, and ρb, ρf
denote the density of the ball and the fluid, respectively. We
do not make effort to model the effect of the fluid accurately
(as it is done e.g. in [29] and [18]) because the approximate
value of the linear coefficient c is sufficient for qualitative
analysis. If we assume water and a steel ball with a diameter
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of a few millimetres then the order of magnitude of the value
of c is 10−2 1/s, and it is much smaller in the case of gases.

For modelling the contact at one of the contact points,
we assume single-point contact because the loading forces
are very small compared to the stiffness of the parts. Hence,
we consider the concentrated contact forces

FA =

AxAy
Az

 , FB =

BxBy
Bz

 . (11)

In the case of no contact, the contact force vanishes (FA =

0 or FB = 0). In the case of rolling and slipping, we re-
quire non-negative normal force at the corresponding con-
tact point, that is,

Ay ≥ 0, Bx ≥ 0. (12)

In the case of rolling, we assume that the tangential forces
are restricted by the simple Coulomb model,√
A2
x +A2

z ≤ µAy,
√
B2
y +B2

z ≤ ηBx, (13)

where µ and η are the friction coefficients on the bottom and
on the wall, respectively.

In the case of slipping, the formulae

FA = Ay(j− µdir vA), ω̃2
x + ω̃2

z 6= 0, (14)

FB = Bx(i− η dir vB), ω̃2
y + ω̃2

z 6= 0 (15)

can be used if we assume the same friction coefficients for
static and dynamic friction. For a non-zero vector v, the di-
rection function dir v := v/‖v‖ assigns the corresponding
unit vector, thus, (14) is equivalent to

Ax = −µAy ω̃z√
ω̃2
z+ω̃

2
x

, Az = µAy
ω̃x√
ω̃2
z+ω̃

2
x

, (16)

and (15) leads to

By = ηBx
ω̃z√
ω̃2
z+ω̃

2
y

, Bz = −ηBx ω̃y√
ω̃2
z+ω̃

2
y

. (17)

To obtain a better approximation for the contact in water,
a velocity-dependent friction coefficient µ̄(‖vA‖) could also
be used instead of µ. Then, (14) could be replaced by

FA = Ay (j− µ̄(‖vA‖) · dir vA) , (18)

where µ̄(0) = µ, and this generalisation could also be done
for FB and η. In this paper, we restrict our calculations to
the simple Coulomb model (13)-(15), which proves to be
effective for qualitative analysis. Even for the more realis-
tic Stribeck model, there exists a low velocity range called
boundary lubrication where the static friction coefficient is
a good approximation of the characteristic curve (see e.g.
[22], p. 761). Thus, the simple Coulomb model is satisfac-
tory to grab the essence of our problem here. We neglect the
effect of the difference between static and dynamic friction
coefficients (see e.g. [31]) and the effect of drilling friction
(see e.g. [23]).

Case Constraints Known forces
RR ω̃x = ω̃y = ω̃z ≡ 0,

vy ≡ 0, (y ≡ 0)
RS ω̃x = ω̃z ≡ 0,

vy ≡ 0, (y ≡ 0)
FB = Bx(i−η dir vB)

SR ω̃y = ω̃z ≡ 0,
vy ≡ 0, (y ≡ 0)

FA = Ay(j−µdir vA)

SS vy ≡ 0, (y ≡ 0) FB = Bx(i−η dir vB)
FA = Ay(j−µdir vA)

NR ω̃y = ω̃z ≡ 0,
y ≥ 0

FA = 0

NS y ≥ 0 FA = 0
FB = Bx(i−η dir vB)

Table 3 Constraints and known forces for the different kinematic
cases.

1.4 Equations of motion of the kinematic cases

As we can see from (2) and (4), the state of velocity of the
ball can be described by the variables vy, ωc, ω̃x, ω̃y and ω̃z .
These five quantities can be called quasi-velocities (see e.g.
[13], p. 217). After considering the spherical symmetry of
the ball (3-dimensional) and the cylindrical symmetry of the
vessel (1-dimensional), the geometric state of the ball can be
described by the single variable y ≥ 0. Therefore, the state
of the system can be given by the vector

x =
[
y vy ωc ω̃x ω̃y ω̃z

]T ∈ X (19)

of the state space X ∼= R6.
The mass moment of inertia matrix is denoted by J =

jmr2I, where j is the dimensionless moment of inertia and I

is the identity matrix. The value of j is between 0 and 2/3. In
the case of uniform mass distribution, j = 2/5. By using the
results of the previous subsections, Newton’s Second Law
for rigid bodies can be written in the form{
Fg + FA + FB + Ff = maC ,

rCA × FA + rCB × FB = Jε + ω × Jω.
(20)

Together with the relation between y and vy , equation (20)
leads to a set of differential-algebraic equations (DAEs),

Ax+Bx=mω
2
cR,

Ay+By−m(g+cvy)=mv̇y,

Az+Bz−mRc(ωc−ω0)=mRω̇c,

−Azr=jmr2
(
R
r ω̇c+

1
r ωcvy+

˙̃ωx+ωcω̃z
)
,

Bzr=jmr
2
(
−Rr ω̇c+

˙̃ωy
)
,

Axr−Byr=jmr2
(
1
r v̇y−

R
r ω

2
c+

˙̃ωz−ωcω̃x
)
,

ẏ=vy.

(21)

For a full set of DAEs in x, FA and FB , (21) has to be
extended by 5 additional scalar equations.

For the different kinematic cases, these missing equa-
tions can be obtained from the constraints and from the known
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contact force components, which can be seen in Table 3. For
all cases but Case RR, we have the additional 5 independent
scalar equations, which lead to a linear system of DAEs with
a unique solution. In Case RR, there are only 4 equations,
which leads to indeterminacy in the contact forces. By using
(21) and Table 3, a system of first-order ordinary differential
equations (ODEs) can be created in the form

ẋ = fRR(x), . . . ẋ = fNS(x), (22)

for all the six cases (see Table 4 for the notations). The for-
mulae of the vector fields for the different cases are

fRR(x) =



0

0

−
c(ωc−ω0)

1+2j

0

0

0


, (23)

fRS(x) =



0

0

−
c(ωc−ω0)

1+j +
BRS
z

(1+j)mR

0

−
cR(ωc−ω0)

(1+j)r +
(1+2j)BRS

z

j(1+j)mr

0


, (24)

fSR(x) =



0

0

−
c(ωc−ω0)

1+j +
ASR
z

(1+j)mR

cR(ωc−ω0)
(1+j)r −

(1+2j)ASR
z

j(1+j)mr

0

0


, (25)

fSS(x) =



0

0

−c(ωc−ω0)+
ASS
z +BSS

z

mR

cR(ωc−ω0)
r −ωcω̃z−

(1+j)ASS
z +jBSS

z

jmr

−cR(ωc−ω0)
r +

jASS
z +(1+j)BSS

z

jmr

R
r ω

2
c+ωcω̃x+

ω̃zA
SS
z

ω̃xjmr
+
ω̃zB

SS
z

ω̃yjmr


, (26)

fNR(x) =



vy

−cvy−g+jr
(
ω̃xωc+

R
r ω

2
c

)
1+j

−
c(ωc−ω0)

1+j

cR(ωc−ω0)
(1+j)r −

ωcvy
r

0

0


, (27)

Case Domain Active variables Dynamics
RR XRR

∼= R1 ωc fRR

RS XRS
∼= R2 ωc, ω̃x fRS

SR XSR
∼= R2 ωc, ω̃y fSR

SS XSS
∼= R4 ωc, ω̃x, ω̃y , ω̃z fSS

NR XNR
∼= R4 y, vy , ωc, ω̃y fNR

NS XNS
∼= R6 y, vy , ωc, ω̃x, ω̃y , ω̃z fNS

Table 4 Notations for the dynamics of the different kinematic cases.
The domains of the different cases are subspaces of the whole space
X = XNS, they are defined by the constraints (see the second column
of Table 3).

fNS(x) =



vy

−cvy−g−
ω̃zB

NS
z

ω̃xm

−c(ωc−ω0)+
BNS
z

mR

cR(ωc−ω0)
r −ωcω̃z−

ωcvy
r −

BNS
z

mr

−cR(ωc−ω0)
r +

(1+j)BNS
z

jmr

R
r ω

2
c+ωcω̃x−

cvy+g
r +

ω̃z(1+j)B
NS
z

ω̃xjmr


, (28)

where the expressions of the corresponding contact force
components are

BRS
z :=−η(1+j)mRω2

c sgn ω̃y,

ASR
z :=µm(g−jRω2

c−jrωcω̃x) sgn ω̃x,

ASS
z :=

mg−mω2
cRη

ω̃z√
ω̃2
z+ω̃

2
y

1+ηµ ω̃z√
ω̃2
z+ω̃

2
x

ω̃z√
ω̃2
z+ω̃

2
y

·µ ω̃x√
ω̃2
z+ω̃

2
x

,

BSS
z :=

−mω2
cR−mgµ

ω̃z√
ω̃2
z+ω̃

2
x

1+ηµ ω̃z√
ω̃2
z+ω̃

2
x

ω̃z√
ω̃2
z+ω̃

2
y

·η
ω̃y√
ω̃2
z+ω̃

2
y

,

BNS
z :=−ηmRω2

c

ω̃y√
ω̃2
z+ω̃

2
y

.

(29)

The set of vector fields (23)-(28) determines the dynam-
ics for all kinematic cases. By considering the active (uncon-
strained) variables, we have a rough picture of the 6-dimen-
sional state space X . In Fig. 3, the sketch of some typical
sections of the state space can be seen with the correspond-
ing kinematic cases. In Table 4, notations for the different
cases are presented.

2 Stationary solutions

We investigate the stationary solutions of (22), which be-
long to stationary motions of the mechanical system. During
these stationary motions, the centre of the ball travels round
the vessel with a constant velocity, and its angular velocity
is also constant in the rotating coordinate system. Operation
of the flowmeter is based on these stationary motions: for a
constant flow velocity (characterised by ω0), the centre of
the ball should have a constant velocity along the circumfer-
ence of the vessel (characterised by ωc(t) ≡ ω0

c ).
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ω̃z
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ω̃y

ωc

ω̃x

ω̃y
XRR

XSR

XRS

XSS

XSR XRS

XRR

XSS

ωc ∈ R ω̃z = 0

Fig. 3 Sections of the state space X. Left panel: section of y = 0,
vy = 0, ωc ∈ R, right panel: section of y = 0, vy = 0, ω̃z = 0.
Cases RS and SR are located on planes which intersect each other in a
line containing Case RR. Therefore, Cases SR and RS lay in the same
3-dimensional section (left panel) of the 4-dimensional space of XSS.
Case SR is also embedded into a 4-dimensional space of XNR, and
Case NS fills the 6-dimensional state space X = XNS.

To obtain the stationary solutions, let us substitute x ≡ 0

into (21). We immediately get

vy ≡ 0, Bz = 0, (30)

and the new set of algebraic equations



Ax +Bx = mω2
cR,

Ay +By = mg,

Az = mRc(ωc − ω0),

−Az = jmrωcω̃z,

Ax −By = −jmω2
cR− jmrωcω̃x,

(31)

has to be solved for the different kinematic cases. In the next
subsections, the resulting propositions can be proven by di-
rect calculation; we present the details only for Case SS.
Throughout this section, asymptotic stability, neutral stabil-
ity and instability of solutions are considered within the cor-
responding phase spaces in the different kinematic cases.
Stability with respect to slipping is discussed later in Sec-
tions 3-4.

2.1 Case RR

Proposition 1 The stationary solution for fRR is

ωc ≡ ω0, (32)

which is asymptotically stable. For the stationary solution,
Az = 0 and the contact force components Ax, Ay , Bx, By
are undetermined.

Due to the indeterminacy of the contact forces, the con-
dition (13) cannot be checked.

2.2 Case RS

Proposition 2 The stationary solutions for fRS are[
ωc
ω̃y

]
≡
[
ω0

ω̃0
y

]
, ω0 = 0, ω̃0

y ∈ R, (33)

which are neutrally stable with a zero eigenvalue. For the
stationary solutions, the contact force components are

Ay = mg, Ax, Az, Bx, By = 0. (34)

This family of stationary solutions exists only for the
single parameter value ω0 = 0 corresponding to zero ve-
locity of the fluid flow. The ball is staying in one position,
and it is spinning on the bottom of the vessel with a constant
angular velocity ω̃0

y .

2.3 Case SR

Proposition 3 The stationary solution for fSR is[
ωc
ω̃x

]
≡
[

ω0
g

jω0r
− ω0

R
r

]
, ω0 ≤

√
g

ηR
, (35)

which is asymptotically stable for ω0 >
√
g/(jR) and un-

stable for ω0 <
√
g/(jR). For the stationary solution, the

contact force components are

Bx = mω2
0R, By = mg, Ax, Ay, Az = 0. (36)

2.4 Case SS

Proposition 4 The stationary solution for fSS is
ωc
ω̃x
ω̃y
ω̃z

 ≡


ω0
c (α)

v0A(α)/r · sinα
0

v0A(α)/r · cosα

 , (37)

where

ω0
c (α) =

√
µg
R

√
1+η cos2 α

(1+j cos2 α)µη+(j−η) cosα , (38)

v0A(α) = µg
jω0
c(α)
· −(j−η) sinα
(1+j cos2 α)µη+(j−η) cosα . (39)

The solution (37) exists for

−π
2
≤ α < 0, η ≤ j, (40)

the parameter ω0 can be expressed as

ω0(α) = ω0
c (α)−

gµ
Rc cosα sinα(j−η)

(1+j cos2 α)µη+(j−η) cosα , (41)

and the normal force components are

Ay(α) = mg(j−η) cosα
(1+j cos2 α)µη+(j−η) cosα ,

Bx(α) = µmg(1+j cos2 α)
(1+j cos2 α)µη+(j−η) cosα .

(42)
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Proof By using the slipping angle α defined in (8), the Cou-
lomb law (16) becomes

Ax = −µAy cosα, Az = µAy sinα. (43)

By considering Bz = 0 from (30), the Coulumb law (17)
results in

ω̃y ≡ 0, By = ηBx sgn ω̃z = ηBx sgn cosα. (44)

If we substitute (8), (43) and (44) into (31), we get the sys-
tem of equations



−µAy cosα+Bx −mω2
cR = 0,

Ay + ηBx sgn cosα = mg,

µAy sinα−mRc(ωc − ω0) = 0,

−µAy sinα− jmωcvA cosα = 0,

−µAy cosα− ηBx sgn cosα

+jmω2
cR+ jmωcvA sinα = 0.

(45)

In the case cosα < 0, there is no solution, and in the case
cosα > 0, we obtain (38), (39), (41) and (42). The condi-
tions (40) are because of (12) and due to vA > 0 in the case
of slipping. ut

Stability conditions for (37) cannot be expressed explic-
itly, they are computed numerically in Section 5. Equation
(41) shows that ω0

c 6= ω0, that is, even in the stationary case,
there is a relative velocity between the ball and the surround-
ing fluid flow.

2.5 Case NR

Proposition 5 The stationary solutions for fNR are


y

vy
ωc
ω̃x

 ≡


y0

0

ω0
g

jω0r
− ω0

R
r

 , ω0 ≥
√

g

ηR
, (46)

which are neutrally stable with a zero eigenvalue. For the
stationary solutions, the contact force components are

Bx = mω2
0R, By = mg, Ax, Ay, Az = 0. (47)

The stationary solutions (46) differ from each other only
in the height y0 where the ball is rolling around (see [6], p.
215 for a similar problem).

2.6 Case NS

It can be proved that (28) does not have a stationary solution.
However, the coordinate y does not appear at the right side
of (28), therefore, this cyclic coordinate can be separated
from the system. That is, we get a reduced vector field f̂NS

with

fNS(x) =

[
vy

f̂NS(x̂)

]
, (48)

where x̂ :=
[
vy ωc ω̃x ω̃y ω̃z

]T ∈ X̂ is an element of the
reduced phase space X̂ .

Proposition 6 The stationary solution for f̂NS is
vy
ωc
ω̃x
ω̃y
ω̃z

 ≡

− g−ηω

2
0R

c

ω0
η−j
j ω0

R
r

0
g−ηω2

0R
cr

 , ω0 <

√
g

ηR
, (49)

which is neutrally stable with a pure imaginary pair ±iω0

of eigenvalues. For the stationary solution, the contact force
components are

Bx = mω2
0R, By = ηmω2

0R,

Ax, Ay, Az = 0.
(50)

Physically, (49) describes a motion where the axial (ver-
tical) displacement of the ball decreases with a uniform speed
vy . Although (49) is a non-stationary solution of the origi-
nal system fNS, it interacts with (46) through a bifurcation.
Note that (46) is a stationary solution both for fNS and f̂NS.

3 Stability with respect to slipping

In the previous section, the existence of the rolling were
checked by using the condition (13). That is, the rolling mo-
tion at a contact point cannot exist if the magnitude of the
tangential force is above a certain value. However, the con-
dition of existence of rolling can be investigated from a dif-
ferent point of view. Physically, the rolling motion does not
exist if a small perturbation can switch the system into per-
manent slipping. In this section, we introduce the mathemat-
ical description of this concept which can be called stability
with respect to slipping.

3.1 Concept of stability with respect to slipping

Let us consider a mechanical system with rolling, which
leads to a phase space Y and vector field fY . Let us switch
some of the rolling constraints into slipping with Coulomb
friction, thus, we get a phase space Z and a vector field
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fZ . The phase space Y of the rolling system is embedded
into the phase space Z of the slipping system. For a point
x∗ ∈ Y , let W (x∗) denote the orthogonal complement of Y
at x∗. That is,W (x∗) is the set of vectors that are orthogonal
to Y at x∗. The dimension

dimW = dimZ − dimY (51)

is called the codimension of the subspace Y . We assume that
fZ is discontinuous in Y , hence, Y is called a discontinuity
surface in Z.

Let ΦY and ΦZ denote the flows of fY and fZ , respec-
tively. Let us consider a trajectory ΦY (x∗) of the rolling sys-
tem. We would like to perturb this trajectory to switch the
system into the slipping behaviour. For that, let us consider
a vector n ∈ W (x∗) normal to the space Y and let ε ∈ R+.
Hence, the point x∗ + εn is the perturbed value of x∗ in the
direction of n. The perturbed value is outside Y , the slip-
ping dynamics fZ is valid there, and we get the perturbed
trajectory ΦZ(x∗ + εn).

Let us define the quantity

γ(x∗,n) :=

lim
ε→0+

d
dt (ΦZ(x∗ + εn)− ΦY (x∗)) · n, (52)

which measures the rate of change of the distance between
the perturbed and unperturbed trajectories in the direction of
n. As n is normal to fY , (52) can be simplified to

γ(x∗,n) = lim
ε→0+

fZ (x∗ + εn) · n. (53)

If the value of (53) is nonzero, its sign determines if the
slipping vector field points towards Y (in case of γ < 0)
or points away from Y (in case of γ > 0) for the perturbed
point x∗+ εn. If directions of all possible n are considered,
we can introduce the following notions:

Definition 1 The point x∗ ∈ Y is called stable with respect
to slipping if γ(x∗,n) < 0 for all n ∈W (x∗).

Definition 2 The point x∗ ∈ Y is called unstable with re-
spect to slipping if there exists n1 ∈ W (x∗) for which
γ(x∗,n1) > 0.

Definition 3 The point x∗ ∈ Y is called neutrally stable
with respect to slipping if γ(x∗,n) ≤ 0 for all n ∈ W (x∗)

and there exists n1 ∈W (x∗) for which γ(x∗,n1) = 0.

If a point is stable in this sense then we can create a tem-
porary slipping by a small perturbation, but the slipping dy-
namics pulls the system back to the rolling behaviour. How-
ever, if a point is unstable in this sense then there exists a
perturbation for which the dynamics pushes away the system
from the rolling behaviour and permanent slipping begins.

Our definitions are in connection with Filippov’s theory
of piecewise smooth systems. If Y is a codimension-1 dis-
continuity surface in Z then it is also a switching surface.

Then, the point x∗ is stable in the sense of Definition 1 if
and only if it is located in an attracting sliding region of Y
(see [10] or [4], p. 76). However, there are higher codimen-
sion discontinuity surfaces in our system, where Filippov’s
theory is not applicable.

Note that some recent papers (see [16] and [8]) gen-
eralise Filippov’s theory in the case of intersection of two
sliding surfaces. This intersection leads to a special case of
a codimension-2 discontinuity surface, but it still does not
cover our problem. In our case, spatial slipping of rigid bod-
ies at one contact point results in a codimension-2 disconti-
nuity surface which cannot be composed from intersecting
two codimension-1 discontinuity surfaces.

In the next subsection, the conditions of stability with re-
spect to slipping are calculated in Case NR. Then, in Section
4, we apply the method for the stationary solution of Case
RR.

3.2 Example: Transition from Case NR to Case NS

Let us consider the stability of Case NR with respect to slip-
ping at pointB. Then, with the notations of the previous sub-
section, Y = XNR, Z = XNS, fY = fNR and fZ = fNS.
The dimensions are dimY = 4, dimZ = 6, dimW = 2,
and Y is a codimension-2 discontinuity surface in Z.

At every point x∗ ∈ XNR, the orthogonal space W

is the plane spanned by the coordinates ω̃y and ω̃z . It is
enough to consider the unit vectors from W , which can be
parametrised easily by the slipping direction β,

n(β) =
[
0 0 0 0 sinβ cosβ

]T
, β ∈ [0, 2π). (54)

That is, (53) can be also parametrised by β in the form

γ(x∗, β) = lim
ε→0+

fNS(x∗ + εn(β)) · n(β). (55)

Let us substitute the vector field fNS from (28) and com-
pute the limit, then, we get

γ(x∗, β) =
(
g
r +

cv∗y
r + ω∗c ω̃

∗
x + R

r (ω∗c )2
)

cosβ+

+ cR
r (ω0 − ω∗c ) sinβ − ηR(j+1)

rj (ω∗c )2, (56)

where x∗ =
[
y∗, v∗y , ω

∗
c , ω̃

∗
x, 0, 0

]T ∈ XNR. According to
Definition 1, the point x∗ is stable with respect to slipping
if (56) is negative for all β. As (56) is differentiable with
respect to β, we can find the extreme values of γ(x∗, β) by
solving

d

dβ
γ(x∗, β) = 0, (57)
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ω̃y

ω̃zCase NR

Case NS x∗

ω̃y

t

ω̃z

ε

nB(β) β

x∗+εnB(β)

Fig. 4 Demonstration of a stable point with respect to slipping, the tra-
jectory returns to Case NR. Left panel: Effect of perturbation in time.
Right panel: Projection of the trajectories onto the orthogonal space.

from which we obtain the values

β1 = arctan
cR
r (ω0 − ω∗c )(

g
r +

cv∗y
r + ω∗c ω̃

∗
x + R

r (ω∗c )2
) ,

β2 = β1 + π.

(58)

That is, x∗ is stable with respect to slipping if

γ(x∗, β1) < 0 and γ(x∗, β2) < 0. (59)

By substituting (58) into (56), analytical formulae are ob-
tained which determine a subset of stable points in XNR.

For the stationary solution (46) of Case NR, β1 = 0,
β2 = π and we obtain

γ(x∗, β1) = − j+1
rj

(
ηRω2

0 − g
)
< 0,

γ(x∗, β2) = − j+1
rj

(
ηRω2

0 + g
)
< 0,

(60)

that is, (46) is stable with respect to slipping if

ω0 >

√
g

ηR
. (61)

In this case, the dynamics extinguishes the effect of the per-
turbation, and after a while, the ball returns to the station-
ary solution of Case NR (see Fig. 4). However, if ω0 <√
g/(ηR) then the stationary solution is unstable with re-

spect to slipping and the dynamics repels the trajectories
away from the stationary solution of Case NR (see Fig. 5).

If only neutral stability is required then instead of (61),
we get the same result as in (46), which was obtained from
the requirement (13). By direct calculation from (27) and
(56), one can check that this agreement is valid not only for
the stationary solution but also for any point in XNR. The
reasons behind this coincidence can be explained from the
properties of the simple Coulomb friction model (see [12],
p. 85 and p. 139).

4 Stability with respect to slipping of the two-point
rolling stationary motion

In this section, we focus on the stationary solution (32) of
Case RR. As we mentioned in Subsection 2.1, condition (13)

ω̃y
ω̃y

ω̃z

t

ω̃z

ε

nB(β) β

x∗

x∗+εnB(β)

Fig. 5 Demonstration of a unstable point with respect to slipping, the
trajectory remains in Case NS permanently. Left panel: Effect of per-
turbation in time. Right panel: Projection of the trajectories onto the
orthogonal space.

Case RR

rolling

ro
lli

ng

Case RS

rolling

sl
ip

pi
ng

Case SR

slipping

ro
lli

ng
Case SS

slipping

sl
ip

pi
ng

Case NR

no contact

ro
lli

ng

Case NS

no contact

sl
ip

pi
ng

Fig. 6 Transitions to higher-order kinematic cases. Continuous arrows
denote slipping at point A. Dashed arrows denote slipping at point B.
Dotted arrows denote separation of the surfaces at point A.

cannot be checked in this case. However, we can use the
concept of stability with respect to slipping to determine the
existence of (32).

With the notations of the previous section, let Y = XRR,
fY = fRR, and let

x∗ =
[
ω∗c , 0, 0, 0, 0, 0

]T
, x∗ ∈ XRR (62)

be a point of the state space of Case RR. In the following
subsections, the stability of x∗ is investigated with respect
to slipping. Slipping is possible at A, B or both A and B
(see Fig. 6), hence, transitions to Cases RS, SR and SS are
analysed separately.

4.1 Transition to Case RS

Let us investigate slipping at point B, then, Z = XRS and
fZ = fRS. In this codimension-1 case, the two possible unit
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vectors of the one-dimensional orthogonal space W are de-
noted by

n± :=
[
0 0 0 0 ±1 0

]T
. (63)

With these, (53) can be written as

γ±(x∗) := lim
ε→0+

fRS(x∗ + εn±) · n±. (64)

In the case of stability with respect to slipping, we require

γ+(x∗) < 0 and γ−(x∗) < 0, (65)

which result in

|ω∗c − ω0| −
µ

jc
(1 + j)(1 + 2j)(ω∗c )2 < 0. (66)

In the case of the stationary solution ωc = ω0, we get

ω2
0 > 0 (67)

for the stability condition with respect to slipping at pointB.
This is violated only in the case ω0 = 0 when the system is
neutrally stable. This corresponds to a bifurcation point; the
stationary solutions (32) and (33) coincide if ω0 = ω̃y = 0.

AsXRR is a codimension-1 discontinuity surface ofXRS,
it can be considered also as a switching surface and the re-
sults can be obtained also from Filippov’s theorem. Let

f±RS(x∗) := lim
ε→0+

fRS(x∗ + εn±) (68)

be the dynamics at the two sides of the switching surface.
Then, the dynamics of Case RR is exactly the sliding motion
of the system, which can be expressed from f+RS and f−RS

by using Filippov’s convex method (see [4], p. 76). That is,
there exists δ(x∗) : XRR → R for that

fRR = δ · f−RS + (1− δ) · f+RS. (69)

It can be checked that the condition 0 < δ < 1 of the at-
tracting sliding region is equivalent to the stability condition
(64) with respect to slipping.

4.2 Transition to Case SR

Let us now investigate slipping at point A, thus, Z = XSR,
fZ = fSR, and the unit vectors of W are denoted by

n± :=
[
0 0 0 ±1 0 0

]T
. (70)

In this case, (53) becomes

γ±(x∗) := lim
ε→0+

fSR(x∗ + εn±) · n±. (71)

The point x∗ is stable with respect to slipping if

γ+(x∗) < 0 and γ−(x∗) < 0, (72)

which leads to

|ω∗c − ω0| −
(1 + 2j)µ

jRc

(
g − jR(ω∗c )2

)
< 0. (73)

In the stationary case ωc = ω0, we get

ω0 <

√
g

jR
(74)

for the stability condition with respect to slipping. At the
neutrally stable case ω0 =

√
g/(jR), the stationary solu-

tions (32) and (35) coincide.
As in the previous subsection, transition to Case SR could

be investigated also by Filippov’s theorem because XRR is
a codimension-1 discontinuity surface of XSR.

4.3 Transition to Case SS

In this case, we investigate slipping at both points A and
B. This situation cannot be composed from the two previ-
ous cases because the rolling conditions at A and B are not
independent.

With the previous notations, Z = XSS, fZ = fSS, and
XRR is a codimension-3 discontinuity set of XSS. That is,
the orthogonal space W is 3 dimensional and the unit vec-
tors of W are located on a two dimensional unit sphere. By
using the slipping directions α and β, this sphere can be
parametrised as

n(α, β) :=

sgn (π/2−α)√
1+tan2 α+tan2 β

·
[
0, 0, 0, tanα, tanβ, 1

]T
, (75)

where

(α, β) ∈ A := [−π2 ,
π
2 ]2 ∪ [π2 ,

3π
2 ]2. (76)

This parametrisation is singular at α, β = ±π/2. With these
parameters, (53) can be formulated as

γ(x∗, α, β) :=

lim
ε→0+

fSS(x∗ + εn(α, β)) · n(α, β). (77)

If x∗ is stable with respect to slipping then (77) is neg-
ative for any (α, β) ∈ A. The local extrema can be found
by

d

dα
γ(x∗, α, β) = 0,

d

dβ
γ(x∗, α, β) = 0. (78)

If we substitute the vector field (26) and the stationary solu-
tion ωc = ω0 into (78), we get a system of equations in α
and β in the form

C(cosα∗, cosβ∗) ·
[
sinα∗

sinβ∗

]
=

[
0

0

]
, (79)
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where C is a two-by-two matrix including lengthy algebraic
expressions in its elements. The trivial solution is sinα =

sinβ = 0, and according to (76), the possible pairs are

(α1, β1) = (0, 0), (α2, β2) = (π, π). (80)

It can be checked numerically that the values (80) corre-
spond to the global extrema of γ(x∗, α, β) in A. Thus, we
require

γ(x∗, 0, 0) < 0 and γ(x∗, π, π) < 0 (81)

in the case when x∗ is stable with respect to slipping. From
these conditions, we get

ω0 <
√

g
ηR ·

√
µη(η+1)

µη(1+j)+j−η , (82)

ω0 >
√

g
ηR ·

√
µη(η−1)

µη(1+j)+j+η , (83)

respectively.
From calculating the normal force components Ay and

Bx by using (29) and (80), we get that the stability loss at
the critical value of (83) contradicts to (12). From similar
reasons, we get that the stability loss at the critical value of
(82) can occur only if η < j.

5 Bifurcations of the system

During the following analysis, we choose ω0 as the primary
bifurcation parameter, and we focus also on the friction co-
efficients η and µ because they have the most significant ef-
fect on the qualitative behaviour of the system.

Besides usual bifurcations of smooth systems, we have
to deal with bifurcations caused by the discontinuities of
the system. These bifurcations are generally called discon-
tinuity-induced bifurcations (DIBs), and the term boundary
equilibrium bifurcation (BEB) is used for the cases when
equilibrium points interact with discontinuity surfaces. These
types of bifurcations are explained e.g. in [5], [19] and [20],
or see the textbooks [4] and [21] for a deeper overview of the
topic. Besides the discontinuity-induced variants of the basic
bifurcation types (e.g. nonsmooth fold), BEBs include the
persistence (or border-crossing) bifurcation, when an equi-
librium passes through a discontinuity surface.

5.1 Bifurcation surfaces in the parameter space

From the previous sections, let us collect the values of ω0 for
which the number of the stationary solutions change in the
different kinematic cases. From (40) and (41), let us define

ω01 := ω0(0) =
√

g
ηR

√
µη(η+1)

µη(1+j)+j−η , (84)

which value appears also in (82). Similarly, let us define

ω02 := ω0

(
−π

2

)
=
√

g
ηR , (85)

which we obtained also in (35), (46) and (49). Finally, let us
define

ω03 :=

√
g

jR
, (86)

which appears in (74). We can see later that the values ω01−
ω03 correspond to discontinuity-induced bifurcations of the
system. However, we can also find a usual fold bifurcation
in Case SS:

Proposition 7 Let us consider ω0(α) from (41) and let

j > η > ηcr :=
c2R

4gµ2
. (87)

Then, there exists α̂ ∈ [−π/2, 0] for that there is a fold bi-
furcation of the stationary solution (37) at

ω04 := ω0(α̂). (88)

Proof Let

w(α) :=
dω0

dα
(α). (89)

It can be checked by direct calculation that if (87) is satis-
fied then w(−π/2) > 0 and w(0) < 0. As w(α) is con-
tinuous, Bolzano’s theorem guarantees the existence of α̂ ∈
[−π/2, 0] for that w(α̂) = 0. By using the chain rule,

dω0

dωc
(α̂) =

w(α̂)
dωc
dα (α̂)

,
dω0

dvA
(α̂) =

w(α̂)
dvA
dα (α̂)

(90)

are both zero. This results in a fold bifurcation of the sta-
tionary solution (37) at ω0 = ω04 . ut

We can check numerically that there exists only one such
ω04, and ω04 > max(ω01, ω02). The stable branch of the
solution exists for ω0 ∈ [ω01, ω04] the unstable branch exists
for ω0 ∈ [ω02, ω04].

The surfaces ω01–ω04 divide the parameter space into
regions where the number of the equilibria remains the same
for each kinematic case. This can be seen in Figs. 7 and 8.
Inside the different regions, the kinematic cases are denoted
where corresponding equilibria exist. In Case RS, equilibria
exist only on the axis ω0 = 0, this case is not denoted in the
graphs.

In Fig. 7, the value of µ is fixed, and the value of η is
varied along the horizontal axis. In Fig. 8, values of µ = η

are varied together. The two cases result in similar graphs.
The main difference is, that, for fixed value of µ (Fig. 7),
there exists an equilibrium in Case RR also for η = 0, up to
a certain value of ω0.
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η

RR+SR+NR

RR+NS

SR+NR

Fig. 10. and 9. Fig. 11. and 9.

jηcr

√
gµ
jR

SS+
NS

SS+SR+NR

ω0

ω02

ω04 ω03

ω01

Fig. 7 Bifurcation surfaces in the parameter space, all parameters are
fixed except ω0 and η.

η = µ

ω0

RR+SR+NR

RR+NS

SR+NR

SS+NS

SS+SR+NR

j

Fig. 8 Bifurcation surfaces in the parameter space, all parameters are
fixed except ω0 and η = µ.

On the boundaries, some equilibria appear or vanish,
which correspond to codimension-1 bifurcations explained
below. The intersections of these boundaries (denoted by
black dots in Figs. 7 and 8) correspond to higher codimen-
sion bifurcations, which are not analysed in this paper. In
Fig. 7, the values of η for these higher codimension bifur-
cations are η = j and η = ηcr. It is denoted in Fig. 7, that
typical values of η are chosen from the intervals (ηcr, j) and
(j,∞) for which we determine the bifurcation diagrams in
the next subsection. Note that according to (10) and (87),
the order of the magnitude of ηcr · µ2 is below 10−6 for
physically realistic parameters, thus, the case η < ηcr is
practically irrelevant.

Let us emphasise that the codimension of the bifurcation
(in the parameter space) is different from the codimension
of the discontinuity set (in the phase space). For example, all
the bifurcations in Table 5 are codimension-1, and the codi-
mension of the corresponding discontinuity sets are denoted
in brackets.

Value Bifurcation Notation Cases
ω01 persistence

(codimension-3)
P3 RR–SS

ω02 nonsmooth fold
(codimension-2)

NF2 SS–SR

ω02 persistence
(codimension-2)

P2 NS–
NR

ω03 nonsmooth transcriti-
cal
(codimension-1)

NT1 RR–
SR

ω04 fold F SS

Table 5 Bifurcation values of ω0 with the name and abbreviation of
the bifurcation and the corresponding kinematic cases.

5.2 Bifurcation diagrams

In the different kinematic cases, the equilibrium solutions
are located in different subspaces of X . Thus, for the full
bifurcation diagram of ω0, a 7-dimensional graph would be
needed. If we want to describe the location of the equilibria
by a single variable, the natural choice of ωc does not result
in clear bifurcation diagrams due to overlapping of curves
(see Fig. 13). Instead, let us define

ω0
x := ω̃0

x +
R

r
ω0
c , (91)

where ωc ≡ ω0
c and ω̃x ≡ ω̃0

x are the coordinates of the sta-
tionary solution. Physically, (91) means the angular velocity
of spinning on the wall (the first coordinate of (4)).

Equilibria of the system can be visualised more clearly
if they are divided into two groups. In Cases NS and NR,
the ball is on the wall being separated from the ground. In
Cases RR, SR and SS, the ball is on the bottom of the vessel.
All occurring bifurcations are summarised in Table 5 and we
explain them in details in the next paragraphs.

Bifurcation diagram for Cases NS and NR can be seen in
Fig. 9. Bifurcation of these cases appears on the surface ω02

and qualitatively the same diagram is obtained for both sec-
tions of Fig. 7. At ω0 = ω02, the stationary solution of Case
NS vanishes as it reaches XNR, which is a codimension-
2 discontinuity set of XNS. Simultaneously, an equilibrium
point of Case NR appears. From another point of view, the
equilibrium point gets stuck into the lower dimensional dis-
continuity set. This bifurcation can be called a persistence
bifurcation, if the notion (see e.g. [4], p. 221) is generalised
for discontinuity sets with a higher codimension. On the di-
agrams, this bifurcation is denoted by P2.

In the cases where y ≡ 0, we get rather different bifur-
cation diagrams for the two sections of Fig. 7. For η < j,
the diagram in Fig. 10 is obtained. At ω0 = ω01, the equilib-
rium point of Case RR disappears, and an equilibrium point
of Case SS appears. We can also say that the equilibrium
point leaves XRR which is a codimension-3 discontinuity
set of XSS. As in the previous case, this can be also called



Discontinuity-induced bifurcations of a dual-point contact ball 13

ω0
x

ω0

P2

ω02

Case NR

Case
NS

Fig. 9 Bifurcation diagram for y > 0, which is valid both for η < j

and η > j. This diagram contains only the equilibria, where the ball
is separated from the ground (Cases NR and NS), and y is a cyclic
coordinate.

NF2

P3 Case SS Case SR

Ca
se

RR F

ω0
x

ω0ω04ω02ω01

Fig. 10 Bifurcation diagram for η < j and y ≡ 0. The dashed line
denotes an unstable equilibrium within XSS.

a persistence bifurcation, which is denoted by P3 in the di-
agrams. At ω0 = ω04, a fold occurs between the stable and
unstable equilibria of Case SS (denoted by F). At ω0 = ω02,
the stable equilibrium of Case SR and the unstable equilib-
rium of Case SS collapses. This can be called a nonsmooth
fold, and we denote it by NF2, as XSR is a codimension-2
subset of XSS.

For η > j, we get the bifurcation diagram in Fig. 11.
There are discontinuity-induced bifurcations at ω0 = ω02

and ω0 = ω03, but their type is unclear, because some equi-
libria seem to vanish. It is because of the degenerate equilib-
ria of the system. Let us emphasise, that equilibria (35) and
equilibrium (46) coincide if y0 = 0, that is, equilibrium of
Case SR is connected to a (degenerate) family of equilibria
of Case NR (compare Figs. 9 and 11).

This degeneracy of the system can be resolved if condi-
tion (12) is ignored, that is, we allow the traction Ay < 0.
Then, we get the bifurcation diagram in Fig. 12. Of course,
this diagram is not valid for our physical system, but this
modification helps us to understand the bifurcations of the
real system. In Fig 12, all the bifurcations appear, which we
found in the case η < j (P3, F and NF2, see Fig. 10). More-
over, we get a further bifurcation at ω0 = ω03. By increasing
ω0 through ω03, the unstable equilibrium of Case SR reaches
XRR, where it meets the stable equilibrium of Case RR, and
it becomes stable. In the interval ω03 < ω0 < ω01, the equi-
librium of Case RR is unstable with respect to slipping to

ω0
x

ω0ω03

Case SR

Ca
se

RR

ω02

Fig. 11 Bifurcation diagram for η > j and y ≡ 0. The dashed line
denotes an unstable equilibrium withinXSR. At ω02 and ω03, bifurca-
tions appear, but their type cannot be determined due to the degeneracy
of the system.

ω0
x

ω0
ω03

Case SR

Ca
se

RR

ω02

Case SS
FNF2

P3

ω01
ω04

NT1
Case SS

Fig. 12 Bifurcation diagram for η > j and y ≡ 0, where (12) is re-
leased, that is, Ay < 0 is allowed. Dashed lines denote unstable equi-
libria.

Case SR from all directions (see (73)), which is called a vir-
tual pseudo-equilibrium (see [4], p. 234). That is, the bifur-
cation at ω0 = ω03 can be called a nonsmooth transcritical
bifurcation (see also [20]), which is denoted by NT1 on the
graph.

By understanding the bifurcations in Fig. 12, we can
summarize, that we can find the degenerate variants of the
discontinuity-induced bifurcations NF2 and NT1 at ω02 and
ω03, respectively, in our physically correct bifurcation dia-
gram (Fig. 11).

5.3 Limitations of operation of the flowmeter

As it was mentioned in the introduction, operation of the
flowmeter is based on measuring the velocity of the ball
around the vessel, which means measurement of ωc(t). For
stationary flow velocity characterised by ω0, a constant ωc(t)
≡ ω0

c value is measured if we are in the bases of attraction of
the stationary solutions. In the descriptions of many patents,
it is explicitly assumed that the ball remains in the case of
dual-point rolling (Case RR) with ω0

c (t) ≡ ω0, but we have
seen that the situation is much more complicated.

In Fig. 13, we can see theoretical characteristic curves of
the flowmeter which are based on the results of the previous
subsections. In the left panel of Fig. 13, it can be seen, that
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ω0
c

ω0
ω01 ω02 ω04

Case SS

Cases

ω0
c

ω0

Case RR

ω02 ω03

Case RR

SR, NR

Cases
SR, NR

Fig. 13 Characteristic curves of the possible flowmeter. Left panel: for
η < j, the arrows denote the hysteresis effect. Right panel: η > j,
coincidence between curves of the different cases are made unambigu-
ous by the dotted lines. The black dot denote the location of transient
effects at unloading.

in the case η < j, the dual-point slipping causes compli-
cations. At ω0 = ω01, the stationary solution passes over to
Case SS, and there is a jump in the slope of the characteristic
curve. Between ω01 and ω02, calibration of the flowmeter is
possible, but for physically realistic parameters, the slope of
the curve is very small here, which decreases the accuracy of
the flowmeter. Between ω02 and ω04, two co-existing stable
stationary solutions can be found. This causes a hysteresis
effect (denoted by arrows in Fig. 13) and makes the cali-
bration impossible in this region. In the case ω0 > ω02, the
co-existing stationary solutions of Cases SR and NR corre-
spond to ω0

c = ω0, which can be used for measurement,
again.

On the right panel of Fig. 13, the case η > j can be seen.
The stationary solutions of Cases RR, SR and NR all overlap
on the line ω0

c = ω0, which results in a more favourable dy-
namics for the flowmeter. However, the motion correspond-
ing to Case RR is different from the others (see also Fig. 11),
because other coordinates of the solution do not coincide. If
in the region ω0 > ω03, a small perturbation pushes the sta-
tionary solution from Case SR to Case NR, the dynamics can
remain in this case also for slow decreasing of ω0 between
ω02 and ω03. As the characteristic curves of Cases RR and
NR coincide, this hysteresis effect is interesting only when
we reach ω02 by decreasing ω0 (see the black dot in Fig.
13). Then, the stationary solution of Case NR vanishes, and
after a temporary existing solution of Case NS (see Fig. 9),
transient effects and impacts can occur before reaching the
stationary solution of Case RR. This is, again, unfavourable
from the point of view of the measurement.

To summarize, we can say, that in both cases of Fig. 13,
transitions between different kinematic cases and bifurca-
tions cause limitations in favourable operation of the flow-
meter. To keep the stationary solution in Case RR, one pos-
sible strategy is to increase the values of ω01 (if η < j) and
ω02 (if η > j) through the parameters of the system. Al-
ternatively, shape of the swirling blades could be tuned to
reach not too large values of ω0. Too much reduction in ω0,

however, results in inaccuracy in the measurement of the ve-
locity of the ball.

Let us emphasise, that our analysis was restricted to the
stationary solutions in the case of stationary fluid flow. Pos-
sible existence of periodic or chaotic attractors of the system
and effects of transient flow may cause further problems in
usage of these types of flowmeters.

6 Conclusion

We analysed a model of a concept of a type of a flowmeter
which contains a ball moving round in a cylindrical vessel.
Due to the slipping and unilateral contact at both contact
points, nine kinematic cases of the system are possible. By
assuming Coulomb’s friction law for slipping and Stokes’s
drag law for the fluid, we derived the equations of motion
for the different cases which build a nonsmooth dynamical
system.

We determined the stationary solutions of the different
cases and determined their stability within the current kine-
matic case. Limitations of existence of stationary solutions
were investigated from restrictions of the contact forces, which
could not be done in the dual-point rolling case when the
forces are undetermined.

We introduced the concept of stability with respect to
slipping, which can be used for determining the existence of
solutions in the lower-dimensional kinematic cases without
determining all contact forces. By this method, we deter-
mined conditions of existence of the stationary motion also
in the dual-point rolling case.

Bifurcations of the system were investigated focusing on
the parameters of the fluid velocity ω0 and the friction co-
efficients µ and η. We discovered several nonsmooth bifur-
cations in the system such as persistence bifurcation, nons-
mooth fold and nonsmooth transcritical bifurcation.

From the results, we were able to show qualitative lim-
itations of the concept of this flowmeter that arise from the
nonsmooth behaviour of the dual-point contact of the ball.
If the fluid flow is modelled more accurately, then, based on
our results, also quantitative results can be obtained for a
given geometry of the flowmeter.
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