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Kinematic oscillations of railway wheelsets
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Abstract We show that Klingel’s classical formula for the frequency of the small kinematic
oscillations of railway wheelsets results in a significant error even in the simplest physi-
cally relevant cases. The exact 3D nonlinear equations are derived for single contact point
models of conical wheels and cylindrical rails. We prove that the resulting nonlinear system
exhibits periodic motions around steady rolling, which consequently is neutrally stable. The
linearised equations provide the proper extension of Klingel’s formula. Our results serve
as an essential basis for checking multibody dynamics models and codes used in railway
dynamics.

Keywords railway wheelset, nonholonomic system, kinematic oscillation, Klingel’s
formula

1 Introduction

The conical profile of railway wheelsets is one of the oldest and most important inventions
in railway engineering. It provides effective guidance of the vehicle on a curved track by
varying rolling radii of the wheels (see Figure 1).
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Fig. 1 Change of the rolling radii on a curved track. The lateral and vertical displacements of the geometric
centre are denoted by y and z, respectively. The pitch angle is denoted by ϑ, and the roll angle ϕ corresponds
to the rotation of the wheelset around its principal axis of rotation.
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Fig. 2 Kinematic oscillation on a straight track. The longitudinal and lateral displacements of the geometric
centre are denoted by x and y, respectively. The yaw angle is denoted by ψ, its projection on the horizontal
plane is shown in the figure, and the roll angle ϕ corresponds to the rotation of the wheelset around its
principal axis of rotation.

v velocity of the vehicle (see Fig. 2)
α half-angle of the approximating cone
h conicity of the wheelset (tangent of α)
d0,R0 nominal semi-gauge and nominal rolling radius
d semi-distance of the approximating cylinders of the rails
R radius of the base circle of the approximating cone of the wheelset
r radius of the approximating cylinders of the rails
k,l dimensionless parameters related to R and r, respectively (see Eqn. (27))
ω angular frequency of the kinematic oscillation (see Eqn. (56))
ωK approximate angular frequency according to Klingel’s formula (see Eqn. (7))

Table 1 List of geometric and kinematic parameters (see Figures 2 and 3)

x, y, z longitudinal, lateral and vertical translation of the centre of the wheelset
ϕ roll angle of the rotation of the wheelset around its axis of rotational symmetry
ψ,ϑ yaw and pitch angles of the axis of rotational symmetry
χ±, δ± surface parameters of the contact point on the left (+) or right (−) wheel
ξ±, γ± surface parameters of the contact point on the left (+) or right (−) rail

Table 2 List of state variables (see Figures 1, 2 and 4)
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However, conicity of the wheelset has a serious side-effect which is usually called kine-
matic oscillation [24]. This vibration is superposed on the steady rolling of the wheelset,
and represents a 3D motion which is usually described by lateral displacement and yaw
(see Figure 2). This was observed by George Stephenson [8], and the first analytical study
was carried out by Klingel [12]. Several extensions of Klingel’s theory appeared later partly
related to the non-conical wheel profiles, partly related to wear [[6],[24],[10]]. Klingel’s
theory is linear both in terms of the state variables and some of the parameters. Attempts
to provide geometric nonlinear extensions can be found in the works of de Pater ([19], [20]
and [5]).

As stated by Iwnicki [8], this kinematic oscillation is modified by the effects of creep.
When combined with creep, the resulting oscillation is called hunting. Carter [3] derived
the equations including creep, from which the critical speed can be determined above which
steady rolling is unstable to hunting. Carter’s model has been further extended with im-
proved creep and stick-slip models, summarized in the books of Johnson [9] and Kalker
[11]. More recent models include material nonlinearities and the effects of the flanges ([14],
[16], [1], [23], [22] and [7] ). For a detailed historic overview see [13] and [26].

In the current paper we deal with the kinematic oscillations in the absence of creep.
We obtain analytical results which can serve as an important tool for checking both multi-
body software and specific railway dynamics software. For small amplitude oscillations,
this means that Klingel’s formula needs to be modified when the product of the sine of the
half-angle α and the ratio of the radius r and the semi-gauge d is not negligible (see Figure
3). For large amplitudes, we prove that the kinematic oscillations are periodic leading to a
neutrally stable steady rolling. These two results provide an effective numerical challenge
for current multibody software.

The paper is organised as follows. In Section 2, we give an overview on existing kine-
matic oscillation models of railway wheelsets focusing on Klingel’s theory and its current
linear and nonlinear extensions. In Section 3, we construct the fully nonlinear single contact
point model in 3D assuming arbitrary conical wheelsets and cylindrical rails. In Section 4,
we derive the exact governing equations of the system, and obtain the simplest possible sec-
ond order nonlinear differential equation, which fully determines the 3D motion. In Section
5, we linearise the system to obtain a proper extension of Klingel’s formula, and we also
show that the fully nonlinear system has a conserved quantity, a pseudo-energy function.

2 Overview of kinematic oscillation models

2.1 Klingel’s formula

Klingel’s famous model for the small oscillations of a single wheelset was published in 1883
[12]. It can be derived using Rendtenbacher’s geometric relation ([26], p. 5). An essentially
similar derivation can be performed using the rolling constraint directly, as follows.

A single wheelset is considered with a conical profile rolling on two parallel cylindrical
rails, which is the simplest physically relevant arrangement for modelling kinematic oscilla-
tions. The half cone angle of the wheelset is denoted by α, and the radius of the cylindrical
rails is r (see Figure 3, left panel, and Tables 1 and 2 for the list of the parameters and the
state variables). During stationary rolling of the wheelset, the distance of the contact points
is 2d0, and the rolling radius is denoted by R0.

The derivation of Klingel’s formula is called linearised, not only in the sense that the
pitch angle ϑ and the yaw angle ψ are considered to be small, but also including the assump-
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tions α � 1 and r � d0. In other words, linearisation is carried out not only in the variables
but also in some of the parameters. When the symbol ≈ is used in this section, it includes
all these approximations.

The model is usually derived for the lateral displacement y and the yaw angle ψ. From
Figure 2 it can be seen that

ẏ ≈ vψ., (1)

where v denotes the constant velocity of the geometric centre of the wheelset along the track.
If ideal rolling is assumed, then the two contact points of the wheelset have zero velocity.

Therefore the direction of the angular velocity vector ω must be parallel to the vector rAD

in Figure 1, which leads to

ω × rAD = 0, (2)

where × means the vector product. The vectors between the contact points A and D and
their projections to the symmetry axis of the wheelset, C and D, can be approximated by

rAB ≈




0
0

R0 − hy


 , rBC ≈




0
2d0
0


 , rCD ≈




0
0

−R0 − hy


 , (3)

where h := tanα is the conicity of the wheelset. From these, the vector rAD = rAB +
rBC + rCD can be determined. The angular velocity can be approximated as

ω ≈




0
v/R0

ψ̇


 . (4)

By substituting these into (2) we get

ψ̇ ≈ − hv

R0d0
y. (5)

From (1) and (5) we can see that

ÿ ≈ −ω2
Ky (6)

where ωK is an approximation to the angular frequency ω of small oscillations of the
wheelset given by

ω ≈ ωK := v

�
h

R0d0
, (7)

which is called Klingel’s formula. It is usually not mentioned in the literature, that the ap-
proximate angular frequency ωK includes the parametric linearisation assumptions α � 1
and r � d0. In the current paper we will show, that without these assumptions this deriva-
tion cannot be done. Ignoring these assumptions requires a complete nonlinear derivation,
which results an improved formula for the accurate value ω.
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Fig. 3 Left panel: Modelling the geometry of wheelset and rails. The parameter set (α, d0, R0, r) can be
chosen independently, the other parameters are given by: h := tanα, z0 := R0 + r cosα, R := R0 −
d0 tanα and d := d0 + r sinα. Right panel: Relative error of Klingel’s formula depending on parameters.
Each curve corresponds to a constant relative error, computed from (57). The arrow shows the direction of
increasing error of the formula.

2.2 Corrections of Klingel’s model and general approach

Recent corrections of Klingel’s formula are mainly based on the notion of equivalent conic-
ity, denoted by h∗, which is defined using an empirically known value of ω, by

h∗ :=
v2R0d0

ω2
. (8)

The motivation is to have an accurate frequency value when h is replaced by h∗ in (7).
Several approximations of the equivalent conicity have been developed (see e.g. [6], [10], or
[2] for an overview). Let us now consider Joly’s correction [10] for concave wheel profiles:

h∗J =
rw

rw − r
h, (9)

where rw is the curvature radius of the profile at the contact point. If we check the case when
the wheel is purely conical, that is, rw → ∞, we obtain h∗J → h, which is the conicity itself.
Thus, on one hand, (9) includes an arbitrary value of r, on the other hand, it reproduces
Klingel’s approximation for conical wheelsets, which is valid only for r � R0.

This and other improvements are based on the assumption that Klingel’s formula is
correct for conical wheelsets and cylindrical rails. But we will see that it is not accurate
when finite values of r and α are assumed. A nonlinear derivation is essential to create the
correction of Klingel’s formula even for the simplest geometries.

De Pater clearly realised the importance of nonlinear effects for full 3D motion, and per-
formed calculations in [19], [20] and [5]. In these models arbitrary profiles of the wheelset
and the rails are allowed, and the description is extended not only to the kinematic oscilla-
tion, but to the full hunting motion with creep effects. However his models proved to be too
general, as he succeeded in obtaining only numerical results, and no analytical corrections.

In the current paper the kinematic oscillations of the conical wheelset is investigated
through a full nonlinear extension, and the correct differential equations are derived instead
of (1) and (5). From these the accurate expression of the angular frequency of the small
kinematic oscillations can be obtained, which is a correction of Klingel’s formula.
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3 Mechanical model

We investigate the problem of a single wheelset travelling along a straight track. Both the
wheelset and the rails are modelled as rigid bodies, and single contact points are assumed
between the wheelset and each of the rails. The use of rigid body models is an accepted and
justified assumption for the global dynamics, since wheel-rail deformations are concentrated
in a tiny region of the contact area only. In the meantime, the assumption of single contact
points has two significant effects on the model. On the one hand, it reduces the dimension of
the dynamics of the system, on the other hand, it neglects the possible stabilizing or desta-
bilizing effect of the local deformations, i. e. the creep forces. Consequently, our applied
assumptions make it possible to investigate the kinematic oscillation separately. Clearly, the
single contact point model is a limiting case of creep force models, as the load of the wheels
decreases and/or the local stiffness of the wheel increases.

We proceed as follows. The unconstrained wheelset has 6 degrees of freedom (DoF).
Two DoF are constrained by the geometric constraints between the surfaces of the wheelset
and each of the rails. Pure rolling can be expressed by kinematic constraints, which means
two nonholonomic scalar equations for each contact point. We will show that this set of non-
holonomic constraints is redundant, and results in 3 independent scalar equations. Therefore
the number of the degrees of freedom of the purely rolling wheelset is given by 6-2-3=1. If
the movement of the wheelset is prescribed along the track, then this last DoF is also con-
strained. Therefore the 3D motion of the wheelset is fully determined by kinematics alone,
without the need for Newton’s equations. That is why it was named kinematic oscillation.

3.1 Motion of the wheelset

The motion of the rigid wheelset is described by a displacement u : R3 → R3, which is
made up of a rotation and a translation:

u(r) := Rr+ x. (10)

Here r denotes a point of the wheelset in a given reference state, and u(r) is the position
of the point in the current state. The translation vector x ∈ R3 is parametrised by Carte-
sian coordinates, x :=

�
x y z

�T. The rotation tensor R ∈ R3×3 is an orthonormal matrix
parametrised by Euler angles (ϑ,ψ,ϕ) called pitch, yaw and roll angles, respectively, and
given by

R :=

�
1 0 0
0 cosϑ − sinϑ
0 sinϑ cosϑ

�
·
�
cosψ − sinψ 0
sinψ cosψ 0
0 0 1

�
·
�

cosϕ 0 sinϕ
0 1 0

− sinϕ 0 cosϕ

�
, (11)

where ϑ ∈ [−π,π), ψ ∈ (−π/2,π/2) and ϕ ∈ [0, 2π). The meanings of ψ, ϑ and ϕ are
shown in Figures 1 and 2.

Hence, the current position of the wheelset can be described by six scalar variables:
x and ϕ are related to the steady rolling of the wheelset without oscillation, and y,z,ϑ,ψ
describe kinematic oscillation.

If x and R are functions of time, then the derivative of u gives the Lagrangian velocity
field

v(r) := u̇(r) = RΩr+ ẋ, (12)
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where the dot denotes differentiation with respect to time, and Ω := R−1Ṙ is the angular
velocity in tensor form. For a full explanation of the meaning and importance of Ω see [17],
p.26. We find that ẋ =

�
ẋ ẏ ż

�T, and

Ω =

�
0 −ϑ̇ cosψ sinϕ− ψ̇ cosϕ ϕ̇− ϑ̇ sinψ

ϑ̇ cosψ sinϕ+ ψ̇ cosϕ 0 −ϑ̇ cosψ cosϕ+ ψ̇ sinϕ

−ϕ̇+ ϑ̇ sinψ ϑ̇ cosψ cosϕ− ψ̇ sinϕ 0

�
. (13)

3.2 Geometry of the track

Rail profiles are usually constructed from arcs and straight lines. During normal contact of
the wheelset and the rails, the contact point is on the upper arc of the profile having a radius
r. That is the reason for modelling the straight track as two infinite parallel cylinders, whose
symmetry axes are at a distance of 2d apart (see Figure 3).

The left and right rails are described by parametric surfaces denoted by ρ+ and ρ−, re-
spectively. The definition of ρ± in a frame with an orthonormal coordinate system (e1, e2, e3)
fixed to the track is:

ρ±(ξ, γ) :=




ξ

r sin γ ± d

r cos γ − z0


 , (14)

where ξ ∈ (−∞,∞) and γ ∈ [−π,π) are the rail surface parameters. The surface parametri-
sation and coordinate directions are sketched in Figure 4.

3.3 Geometry of the wheelset

A common property of most wheel profiles is a tilted line segment around the usual location
of the contact point. Other parts of the profile are excluded from our analysis as well as the
change of the profile due to wear (see [28]). Thus the whole wheelset can be considered as
a bicone, that is two identical circular straight cones glued together at their bases, as shown
in Figure 3. The half cone angle is denoted by α, and R is the radius of the base circle. The
parametric surface κ of the wheelset is defined in a reference position corresponding to the
steady rolling, which can be seen in Figure 4:

κ(χ, δ) :=



c(χ) sin δ

χ

c(χ) cos δ


 , (15)

where c(χ) is the profile of the wheelset given by

c(χ) :=

�
−R+ hχ if χ ≥ 0
−R− hχ if χ ≤ 0

�
. (16)

Here h := tanα, χ ∈ (−R/h,R/h) and δ ∈ [−π,π).
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Fig. 4 Surface model of the wheelset and the rails in the reference configuration. The coordinate system is
fixed to the rails, but its origin is determined by the geometric centre of the wheelset in the reference config-
uration. The meshes on the surfaces denote the parameter lines, χ and ξ are measured along the symmetry
axes, δ and γ denote angle parameters.

3.4 Contact

A possible method to define a singe-point contact between two surfaces is to keep the surface
parameters of the contact point as auxiliary variables, and to prescribe coincidence of the
surfaces and their tangent planes at the contact point.

Let us denote the locations of the contact points between the wheelset and the left/right
rail by ξ±, γ±,χ±, δ±. Then the conditions of coincidence of the contact points are

u
�
κ(χ+, δ+)

�
= ρ+(ξ+, γ+),

u
�
κ(χ−, δ−)

�
= ρ−(ξ−, γ−)

, (17)

and the equalities of the tangent spaces are

T(χ+,δ+)u(κ) = T(ξ+,γ+)ρ
+,

T(χ−,δ−)u(κ) = T(ξ−,γ−)ρ
−, (18)

where the symbol Txf denotes the tangent space of the function f at a point x. The coinci-
dence and tangent equations are geometric constraints, as they provide algebraic restrictions
between the variables.

If pure rolling is assumed at the contact points then the relative velocity between the
bodies is zero, that is, the velocities of the wheelset must be zero at the contact points.
Mathematically:

v
�
κ(χ+, δ+)

�
= 0,

v
�
κ(χ−, δ−)

�
= 0.

(19)

The rolling constraint is a kinematic constraint, therefore it does not impose a direct restric-
tion on the configuration space, but on the tangent bundle.
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3.5 Constant velocity constraint

As we will see later, the prescribed 1D motion of the wheelset along the track determines
the evolution of the system through purely kinematic expressions. Therefore we can assume
without the loss of generality, that the geometric centre of the wheelset runs at constant
velocity v along the track:

e1 · v(0) = v. (20)

4 Derivation of the equations of the wheelset

The constraint equations in (17)-(20) are expressed in vector formulation, but they can be
reformulated using scalar variables. From the geometric constraints, algebraic equations can
be obtained to eliminate some of the variables, the remaining ones are called generalised
coordinates. Then the kinematic constraint equations can be transformed to a set of first-
order differential equations. This process is straightforward, but the calculations are lengthy.
Hence only the main ideas and results are presented.

4.1 Tangency condition

It is expedient to start with the tangency conditions, because some of the variables can
be eliminated immediately. The equality of the tangent spaces in (18) is satisfied if the
directional derivatives of the surfaces along the parameter lines are all in the same plane.
This can be expressed by the equations

�
∂1κ(χ

±, δ±), ∂2κ(χ
±, δ±), ∂1ρ

±(ξ±, γ±)
�
= 0 (21)

and �
∂1κ(χ

±, δ±), ∂2κ(χ
±, δ±), ∂2ρ

±(ξ±, γ±)
�
= 0, (22)

where ∂1 and ∂2 denotes a partial derivative of a function with respect to its first and second
variable, and the angle brackets denote the scalar triple product. Evaluating (21) leads to

−c(χ±)
�
sin(ϕ+ δ±) cosψ ± h sinψ

�
= 0. (23)

Since 0 < χ+ < R/h and −R/h < χ− < 0 then

sin(ϕ+ δ±) = ∓h tanψ. (24)

From (22) and using (24), we find

rc(χ±)
�

±h

cosψ
cos(ϑ+ γ±) +

�
1− h2 tan2 ψ sin(ϑ+ γ±)

�
= 0, (25)

and hence

sin(ϑ+ γ±) =
∓h

cosψ
√
1 + h2

. (26)
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4.2 Coincidence condition

We introduce the following dimensionless parameters:

k :=
R

dh
=

R

d
cotα, l :=

rh

d
√
1 + h2

=
r

d
sinα. (27)

It proves effective to work with the difference of the two equations in (17), namely

Rκ(χ+, δ+)−Rκ(χ−, δ−) = ρ+(ξ+, γ+)− ρ−(ξ−, γ−). (28)

Then, taking into account equations (24) and (26) the following equations can be obtained:

χ+ − χ−

2d
=

(cosϑ cosψ − l)− kh2 sin2 ψ

cos2 ψ(1− h2 tan2 ψ)
, (29)

χ+ + χ−

2d
=

− sinϑ

h
�
1− h2 tan2 ψ

, (30)

ξ+ − ξ−

2d
= − sinψ

(cosϑ cosψ − l) (1 + h2)− kh2

cos2 ψ(1− h2 tan2 ψ)
. (31)

Similarly, if we sum the two equations in (17), we find:

Rκ(χ+, δ+) +Rκ(χ−, δ−) + 2x = ρl(ξ+, γ+) + ρr(ξ−, γ−). (32)

After lengthy algebraic manipulation we obtain:

ξ+ + ξ−

2d
=

x

d
+

sinϑ sinψ(1 + h2)

h
�
1− h2 tan2 ψ

, (33)

y

d
= sinϑ

(cosϑ cosψ − l) (1 + h2)− kh2

h
�

1− h2 tan2 ψ
, (34)

z

d
=

cosψ
�

1− h2 tan2 ψ

h
− cosϑ

(cosϑ cosψ − l) (1 + h2)− kh2

h
�
1− h2 tan2 ψ

. (35)

Using equations (24), (26), (29)-(31) and (33), we can obtain expressions for all the auxil-
iary variables δ±,γ±,χ± and ξ±, while (34) and (35) give geometric constraints for y and
z. A configuration space consisting of the generalised coordinates (ψ,ϑ,ϕ, x) is obtained
describing the motion of the wheelset restricted to the single-point contact.
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4.3 Velocity conditions

Similarly to the coincidence constraints, the sum and difference of equations (19) are inves-
tigated. From the difference we have

Ωκ(χ+, δ+)−Ωκ(χ−, δ−) = 0. (36)

Three linear equations can be obtained for ϑ̇, ψ̇ and ϕ̇, but only two of them are indepen-
dent due to the anti-symmetry of the angular velocity tensor with detΩ = 0. These scalar
equations are

ψ̇
cosϑ cosψ − l

cos2 ψ
+ ϕ̇ sinϑ = 0, (37)

ϕ̇h2

�
k − cosϑ cosψ − l

cos2 ψ

�
sinψ − ϑ̇

cosϑ cosψ − l

cos2 ψ
(1− h2 tan2 ψ) = 0. (38)

Similarly, the sum of equations (19);

Ω
�
κ(χ+, δ+)− x

�
+Ω

�
κ(χ−, δ−

�
− x) + 2ẋ = 0 (39)

leads to three equations. Two of these equations can be derived by using the time derivatives
of (34) and (35). That is not surprising, because the coincidence constraint disables the
motion of the contact point in a direction normal to the surfaces. Therefore only one new
scalar equation arises from (39):

−ϕ̇h2

�
k − cosϑ cosψ − l

cos2 ψ

�
+ ψ̇ sinϑ(1− h2 tan2 ψ) + ẋ

h
�
1− h2 tan2 ψ

d cosψ
= 0. (40)

Equations (37), (38) and (40) are nonholonomic constraints; they cannot be expressed by
the generalised coordinates themselves.

The constant velocity constraint (20) can be rewritten as:

ẋ = v. (41)

It is a holonomic constraint, which for x0 := x(0), becomes

x = x0 + vt. (42)

4.4 Equations of motion of the system

Equations (37), (38), (40) and (41) form a system of equations for the time derivatives of the
coordinates, from which ψ̇, ϑ̇, ϕ̇ and ẋ can be determined as a function of the configuration
variables ψ and ϑ.

If we introduce the notation

B(ψ,ϑ) :=
vh

d

�
1− h2 tan2 ψ/ cosψ

cosϑ cosψ−l
cos2 ψ

�
k − cosϑ cosψ−l

cos2 ψ

�
h2 + sin2 ϑ(1− h2 tan2 ψ)

, (43)
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then for (37), (38), (40) and (41) we find

ψ̇ = − sinϑ ·B(ψ,ϑ), (44)

ϑ̇ =
h2 sinψ

1− h2 tan2 ψ

�
k − cosϑ cosψ − l

cos2 ψ

�
·B(ψ,ϑ), (45)

ϕ̇ =
cosϑ cosψ − l

cos2 ψ
·B(ψ,ϑ), (46)

ẋ = v. (47)

It can be seen immediately, that the variables ϕ and x are cyclic, that is, do not have an
effect on the evolution of the system. Therefore the kinematic oscillation is determined in
the (ψ,ϑ) phase plane, described by (44) and (45).

The above reduction of the dynamics of the nonholonomic railway wheelset model
to a plane can also be followed if the Appell-Gibbs formulation of the equations is con-
sidered (see [4], p. 61., or [15] for details and examples, and also [18] for a similar ap-
proach). The wheelset has 6 DoF without constraints. The tangency condition (18) linked
to the coincidence condition (17) results in 2 scalar stationary (time-independent) geomet-
ric constraints (34) and (35) for y and z. Then the velocity conditions lead to one scalar
non-stationary (time-dependent) geometric constraint (42) for x and 3 nonholonomic (non-
integrable) scalar kinematic constraints (37), (38) and (40).

The 3 geometric constraints reduce the number of DoF by 3, while the 3 kinematic
constraints reduce the number of DoF by ”one and a half”, leading to a system of 3 first-
order ordinary differential equations (44)-(46) for the Euler-angles. There are no pseudo-
velocities left to be introduced, which means that there are no Appell-Gibbs equations left,
with which to express the Newtonian dynamics. In this way we arrive again to the notion of
kinematic oscillation.

We could have used an approach based on constrained Lagrangian equations. However,
the existing redundancy in the kinematic constraint (36) leads to indeterminacy in the contact
forces, and difficulties handling the resulting differential-algebraic equations.

4.5 Phase-plane reduction and simplification

The equations (44)-(45) can be simplified even further if a pseudo-independent dimension-
less time τ is introduced by

τ̇ := B(ψ,ϑ). (48)

Then, the time derivative of any variable f can be transformed to a derivative with respect
to τ by the chain rule:

f � :=
df

dτ
= ḟ

dt

dτ
=

ḟ

B(ψ,ϑ)
. (49)

This transformation is acceptable only on the domain where B(ψ,ϑ) is neither zero, nor
diverging to infinity. One can check, that for the physically relevant values of the variables
this condition is fulfilled. Hence, equations (44)-(45) become

ψ� = − sinϑ, (50)

ϑ� =
h2 sinψ

1− h2 tan2 ψ

�
k − cosϑ cosψ − l

cos2 ψ

�
. (51)
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π
2

0

ϑ

Fig. 5 The phase plane of (50)-(51) for h = 0.5, l = 0.1, k = 1.36, simulated by Runge-Kutta method.
The solutions become singular at the vertical dashed lines given by tanψ = ±1/h. Outside these lines the
vector field is not defined. The orbit structure is the same if we consider (44)-(45).

This system can be written as a single second order differential equation:

ψ�� +
�

1− ψ�2 h2 sinψ

1− h2 tan2 ψ

�
k −

�
1− ψ�2 cosψ − l

cos2 ψ

�
= 0. (52)

The solution of this equation for ψ(τ) and ϑ(τ) = − arcsinψ�(τ) gives the trajectories for
the kinematic oscillation of the wheelset, which can be seen in Figure 5.

5 Stability of steady rolling

Let X(ψ,ϑ) denote the vector field generated by (44)-(45). We will only consider the phys-
ically relevant fixed point of X at the origin, since the two saddles on the ψ axis in Figure 5
are singular points of the original equations (44) and (45). The origin of X corresponds to a
steady motion for the full system (44)-(47), given by:

ψ ≡ 0, ϑ ≡ 0, ϕ = ϕ0 +
v

dh(k − 1 + l)
t, x = x0 + vt. (53)

This corresponds to the steady rolling of the wheelset, without kinematic oscillation.



14 Mate Antali et al.

5.1 Stability of the linear system

We now investigate the stability of the origin of X , which corresponds to the stability of the
steady rolling to small perturbations in ψ and ϑ. The linearization of X at the origin yields

�
ψ̇

ϑ̇

�
=

�
0 a01
b10 0

� �
ψ

ϑ

�
+O2(ψ,ϑ), (54)

where

a01 =
−v

dh(1− l)(k − 1 + l)
=

−vd

R0d0
, b10 =

hv

d(1− l)
=

hv

d0
. (55)

The eigenvalues are pure imaginary, hence the linear system has a centre at the origin, and
so is neutrally stable. The eigenvalues are denoted by ±iω, where

ω :=
v

d(1− l)
√
k − 1 + l

=
v

d0

�
hd

R0
(56)

is the natural angular frequency of the small-amplitude kinematic oscillation. Comparing
with Klingel’s formula (7), we find

ωK

ω
=

√
1− l =

�
1− r

d
sinα (57)

Hence Klingel’s formula underestimates the accurate value of the natural angular frequency
ω. Klingel’s formula is valid only for l � 1 as shown in the right panel of Figure 3. The
relative error, approximated by rh/2d for small h, remains around 2-3% in practice, for
commonly used geometries of wheelsets and rails see [25], p.2.

5.2 Stability of the weakly nonlinear system

Pure imaginary eigenvalues also correspond to an oscillating solution for the nonlinear cen-
tre for small perturbations, but its origin can be either a centre or a spiral point. The Hopf
Bifurcation Theorem can be used to characterise such fixed points. The third-order system
is given by �

ψ̇

ϑ̇

�
=

�
0 a01
b10 0

� �
ψ

ϑ

�
+

�
a03ϑ

3 + a21ϑψ
2

b30ψ
3 + b12ψϑ

2

�
+O4(ψ,ϑ). (58)

Writing ψ̃ = ψ
�

−ω/a01 and ϑ̃ = ϑ
�

ω/b01, the system can be transformed to
�
˙̃ψ
˙̃ϑ

�
=

�
0 −ω

ω 0

� �
ψ̃

ϑ̃

�
+

�
ã03ϑ̃

3 + ã21ϑ̃ψ̃
2

b̃30ψ̃
3 + b̃12ψ̃ϑ̃

2

�
+O4(ψ̃, ϑ̃). (59)

The Poincare-Lyapunov constant λ can be calculated (see for example [27], p.385.) from
the second- and third-order coefficients of (59):

λ :=
1

16
(ã30 + ã12 + b̃21 + b̃03)+

+
1

16ω

�
ã11(ã20 + ã02)− b̃11(b̃20 + b̃02)− ã20b̃20 + ã02b̃02

�
, (60)

where ãij is the coefficient of the term ψ̃iϑ̃j . We see here that λ ≡ 0, because all the
coefficients vanish in (60). The Hopf Bifurcation Theorem hence does not help to determine
the stability of the system.
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5.3 Symmetries and stability of the fully nonlinear system

We can exploit the symmetry properties of our equations to determine the stability of the
nonlinear system (44)-(45). The vector field X is called time-reverse symmetric with respect
to an invertible mapping G of the phase space onto itself if

DG(ψ,ϑ)X(ψ,ϑ) = −X(G(ψ,ϑ)) (61)

for any (ψ,ϑ) in the phase space, where DG is the gradient tensor of G. The system X, built
from (44)-(45), is time-reverse symmetric respect to a reflection in either the ψ = 0 or the
ϑ = 0 axis:

G1(ψ,ϑ) :=

�
1 0
0 −1

� �
ψ

ϑ

�
, G2(ψ,ϑ) :=

�
−1 0
0 1

� �
ψ

ϑ

�
. (62)

Substituting these into (61), it turns out that these symmetries arise from even and odd
properties of the vector field X .

If a system is time-reverse symmetric with respect to a transformation then the tra-
jectories are symmetric. It seems obvious, that the orbits around a spiral point cannot be
symmetric with respect to a reflection, but the proof is not trivial. Hence the presence of one
of the symmetries G1 and G2 is enough to prove that if the origin of the linear system is a
centre, then the origin of the nonlinear system is also a centre ([21], p.164.).

In other words, there is a finite neighbourhood around the origin, within which all
trajectories are closed. Therefore the steady rolling is neutrally stable.

In general, time-reverse symmetry does not makes the system conservative, but around
a centre of a time-reverse symmetric system, a pseudo-energy function can be defined using
the closed trajectories as level sets. In this sense the system can be considered conservative
in a finite range around the origin.

6 Conclusion

We have investigated the kinematic oscillations of a conical railway wheelset travelling on
cylindrical rails with single contact points. For the first time, we derived the exact 3D non-
linear equations, and simplified them to a governing equation in the plane of the yaw and
pitch coordinates only (see (52)). From our equations, we have shown the following:

– Klingel’s formula for the angular frequency

ωK = v

�
h

R0d0

of small-amplitude linear oscillations is valid only when
r

d
sinα � 1

(see Figure 3).
– The correct formula for this angular frequency is given by

ω =
ωK�

1− r
d sinα

.

– For large amplitudes, we have shown that the kinematic oscillations are periodic result-
ing in neutrally stable steady rolling.

Our results provide an effective numerical challenge for current multibody dynamics soft-
ware.
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Erratum

In the final publication, an expression
�
1− h2 tan2 ψ/ cosψ was missing from the formu-

lae (40) and (43).

References

1. Ahmadian, M., Yang, S.: Hopf bifurcation and hunting behaviour in a rail wheelset with flange contact.
Nonlinear Dynamics 15, 15–30 (1998)

2. Ayasse, J.B., Chollet, H.: Wheel-Rail Contact. Book chapter in: S. Iwnicki: Handbook of Railway Vehi-
cle Dynamics. CRC Press (2006)

3. Carter, F.W.: On the action of a locomotive driving wheel. Proc. Royal Society 112, 151–157 (1926)
4. Gantmacher, F.: Lectures in Analytical Mechanics. MIR Publishers (1975)
5. Gu-ang, Y., de Pater, A.D.: The determination of the nonlinear motion of a railway vehicle. Vehicle

System Dynamics 20, 225–239 (1992)
6. Heumann, H.: Lauf der Drehgestell-Radsatze in der Geraden. Organ für die Fortschritte des Eisenbahn-

wesens 92, 149–173 (1937)
7. Hoffmann, M., True, H.: The dynamics of european two-axle railway freight wagons with uic standard

suspension. Vehicle System Dynamics 46, 225–236 (2008)
8. Iwnicki, S.: Simulation of wheel-rail contact forces. Fatigue Fract Engng Mater Struct 26, 887–900

(2003)
9. Johnson, K.L.: Contact Mechanics. Cambridge University Press (1985)

10. Joly, R.: Etude de la stabilite transversale d’un vehicule ferroviaire. Revue Francaise de Mecanique 36,
5–26 (1970)

11. Kalker, J.J.: Three-Dimensional Elastic Bodies in Rolling Contact. Kluwer Academic Publishers, Dor-
drecht (1990)
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