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On Differential Equations with Codimension-n Discontinuity Sets\ast 3
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5

Abstract. This paper investigates fundamental properties of a new class of dynamical systems, which are6

everywhere smooth except for a codimension-n discontinuity manifold with an arbitrary positive7

integer n. Such systems emerge naturally in modeling the motion of bodies with spatial point8

contacts as well as with finite contact surfaces under dry friction. As a special case, the investigated9

class includes Filippov systems (n = 1) as well as the recently introduced extended Filippov systems10

(n = 2). Trajectories reaching the discontinuity manifold are studied in detail, and new types of11

pathological behavior are uncovered, in systems where the local dynamics around the discontinuity12

manifold involves polycycles or strange attractors. The concept of crossing and sliding dynamics is13

extended for this type of system. The results are illustrated by several examples.14
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1. Introduction. The field of piecewise smooth systems is a rapidly developing area of20

dynamical systems theory, which can be used for modeling many physical, engineering, or21

biological systems. An important subclass of these systems is often called Filippov systems,22

where the vector field has a jump on a certain switching manifold in the phase space. The23

concept of these vector fields with the switching behavior was founded mainly by Filippov24

[11], Utkin [35], and Teixeira [33, 34]. A detailed overview of the area and further references25

can be found in [7] and [17].26

Mechanics of contacting bodies is an important application of discontinuous dynamics27

(see [24] for an overview). The main motivation of the present analysis is mechanical systems28

with dry friction, especially when it is modeled by the Coulomb friction model. Consider a29

planar problem with a rigid block slipping on a rough surface, which is a usual application30

example of piecewise smooth systems. Then, the one-dimensional description of the velocity31

state (slipping left or right) leads to a piecewise smooth Filippov system, where the static32

sticking state is related to the switching surface in the phase space.33

However, in more complicated cases, dry friction goes beyond the area of piecewise smooth34

systems. In the case of planar friction with a single contact point, the switching surface is a35
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codimension-1 discontinuity set. When we analyze the spatial problem of a slipping block with36

two velocity components, the vector field has a discontinuity in a codimension-2 discontinuity37

set. Then, the phase space shows a rather different picture from switching between distinct38

regions. For the analysis of such extended Filippov systems, the concepts of piecewise smooth39

systems were generalized in [2], and the results were applied to spatial mechanical problems40

in [3]. Systems with higher codimensional discontinuity emerge when local deformations and41

friction over a finite contact area are considered. Adding drilling friction (normal friction42

torque) to the friction model creates a codimension-3 discontinuity, which can be seen from43

the results in [23] and [21]. Moreover, adding the creep effect of rolling elastic bodies [18]44

introduces discontinuous coupling with further state variables which can lead to a reduced45

system with a codimension-5 discontinuity set.46

Our motivation is to describe the class of vector fields, which covers all types of discon-47

tinuities mentioned above. For that, we consider a vector field which is smooth everywhere48

except in a codimension-n submanifold of the phase space. Then, we use the concepts and49

terminology of piecewise smooth systems [7, 17]. In the literature, different approaches such50

as complementary problems and set-valued force laws [23, 13, 5, 37] are used for the analysis51

of the discontinuities induced by spatial friction. Further formulations can be found in [4],52

and [28]. A detailed comparison of these approaches is a task left for future work. We note,53

however, that a clear benefit of our approach is uncovering special objects such as limit di-54

rections and limit cones, which determine the qualitative behavior of the vector field at the55

discontinuity set.56

A wide variety of discontinuity-induced dynamics is known to emerge at the intersection57

of several discontinuity sets, which arise, for example, in mechanical systems with multiple58

contacts. The intersection of k codimension-1 discontinuities was analyzed in detail in [8,59

16, 26, 19]. This situation results in a non-isolated codimension-k discontinuity set, which60

requires a different approach from that of the present paper. Some basic results about the61

intersection of codimension-2 discontinuity sets can be found in [1], but a detailed analysis of62

this topic is beyond the scope of this paper.63

In the literature, analysis of piecewise smooth systems is often based on regularization, the64

blow-up method, or the combination of the two (see [32, 25] or the recent works [29, 6, 30]).65

These methods often lead to multiscale dynamical systems (see [22] for an overview), analyzed66

in the context of Fenichel theory [10]. In this paper, we use a basic approach of polar blow-up67

around the codimension-n discontinuity set in order to investigate local dynamics in a close68

neighborhood of the discontinuity set. In addition, initial steps are taken to define and study69

sliding dynamics along the discontinuity. Other questions of sliding dynamics and bifurcations70

induced by codimension-n discontinuities are questions left for future work.71

The structure of the paper is the following. In section 2, the analyzed class of vector72

fields is introduced, and the basic concepts are formulated. The central part of the paper is73

section 3, where the qualitative behavior of the system is analyzed focusing on the trajectories74

which are connected to the discontinuity set. In section 4, several examples illustrate the main75

findings. In section 5, the concepts of sliding and crossing regions are extended to this type76

of systems using Filippov's convex method, and sliding dynamics within the discontinuity77

manifold is also defined.78
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2. Vector fields with codimension-\bfitn discontinuities. In this section, we introduce79

codimension-n discontinuities of vector fields and the necessary mathematical formulation80

for the subsequent analysis.81

2.1. Problem statement. Consider the differential equation82

(2.1) \.x = F(x),83

where x = (x1, x2 . . . xm) \in \BbbR m and F = (F1, F2, . . . Fm) is an \BbbR m \rightarrow \BbbR m vector field. A dot84

means differentiation with respect to time t, and the explicit time dependence x(t) is not85

denoted except when it is necessary. We assume that the vector field has a codimension-n86

discontinuity in the subspace \Sigma spanned by the coordinates x1 . . . xn. That is, we consider87

the discontinuity set88

(2.2) \Sigma = \{ x \in \BbbR m : x1 = x2 = . . . xn = 0\} .89

Assume that F is smooth everywhere in \BbbR m \setminus \Sigma . Even though F is not defined in \Sigma , it is90

assumed that in all points \=x \in \Sigma the limit91

(2.3) F \star (\=x,v) := lim
\epsilon \searrow 0

F(\=x+ \epsilon v)92

exists for any vector v \in \BbbR m not tangential to \Sigma , and the limit depends smoothly on v and93

\=x.94

Our aim is to understand how the trajectories of the differential equation (2.1) behave95

locally in a small neighborhood of \Sigma . In particular, we will focus in sections 2--4 on trajectories96

that start or end at a point \=x \in \Sigma .97

Note that the description could be extended from the state space \BbbR m to an m dimensional98

smooth manifold, and the discontinuity \Sigma would be anm - n dimensional smooth submanifold.99

By mapping the manifolds locally to linear spaces, the formulation (2.1)--(2.2) can be used for100

a local analysis without loss of generality.101

2.2. On the classification and terminology of nonsmooth systems. The classification102

and terminology of nonsmooth dynamical systems vary slightly in the different works in the103

literature. In this subsection, we give a brief overview of the classification from different104

aspects and show the location of the analyzed system (2.1) in these categories.105

\bullet The codimension of the discontinuity: The term piecewise smooth systems is106

used for a large class of nonsmooth dynamical systems---including maps and vector107

fields---where the system is smooth everywhere in the phase space except on some108

codimension-1 discontinuity sets (manifolds) [7, 17, 24]. In some cases, the discontinu-109

ity set can be called a switching surface separating some smooth regions of dynamics.110

The system (2.1) is a piecewise smooth system for n = 1. However, it is beyond the111

class of piecewise smooth systems for n > 1 because a higher codimensional discon-112

tinuity appears. The case n = 2 was presented by the second author in [3], and the113

general n \geq 1 case is analyzed in the present paper. Note that in piecewise smooth114

systems, higher codimensional discontinuities can appear at the intersection of several115

codimension-1 discontinuity sets [8, 16, 17]. However, the behavior of those intersecting116
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discontinuities is rather different from the isolated higher codimensional discontinu-117

ities of (2.1). Here, we cannot speak about switching behavior or being smooth in118

distinct regions: In the n > 1 case of (2.1), the system is smooth everywhere around119

the higher codimensional discontinuity set.120

\bullet The type of the discontinuity: On page 73 of [7], we can find the definition of degree121

of smoothness (DS) of piecewise smooth systems with the following consequence: The122

case DS = 0 corresponds to the hybrid systems where the trajectory has a jump at123

the discontinuity set. (A typical physical source of these systems is impact between124

rigid bodies.) In the DS = 1 case, the vector field has a jump at the discontinuity.125

These vector fields are often called Filippov systems (see, e.g., [7, p. 75]). In the case126

DS \geq 2, the vector field is \scrC \mathrm{D}\mathrm{S} - 1 continuous at the discontinuity set, systems which127

are usually called piecewise smooth continuous systems. In the case n = 1 of (2.1), the128

discontinuity \Sigma has a uniform degree of smoothness 1, except if (2.3) is independent129

of the direction v. Thus, this is the case of Filippov systems. If n > 1, (2.1) ensures130

a similar type of discontinuity. This was the reason that the case n = 2 was called an131

extended Filippov system in [3].132

\bullet The behaviour outside and inside the discontinuity: Part of the analysis of133

nonsmooth systems is related to the analysis of the sections of the trajectories in the134

smooth regions of the phase space outside the discontinuity set. A further task is to135

connect the sections of the trajectories through or even inside the discontinuity set. For136

the latter case, the dynamics can be sometimes extended to the discontinuity set, which137

is called sliding dynamics. For this, additional information or assumptions are needed138

about the dynamical system. The simplest possibility is to create a convex combination139

of the directional limits of the vector field, which is usually called Filippov's convex140

method. In addition to the convex method being linear in some switching variables,141

there are nonlinear ways to connect the boundaries of the discontinuity (see, e.g.,142

[35, 6, 29, 17]. Most of the present paper is devoted to the analysis of trajectories in143

the vicinity of the discontinuity set \Sigma (section 2 to 4), where we still do not have to144

include the convex or nonconvex assumptions in the discontinuity. In section 5, a brief145

analysis is shown by using a convex combination similar to Filippov's convex method.146

The detailed analysis of sliding and crossing dynamics by considering the nonlinear147

sliding dynamics is beyond the scope of the paper.148

2.3. Appropriate transformations for the analysis. In this subsection, we carry out some149

transformations of the system (2.1) to reach a form of the equations appropriate for the150

subsequent analysis.151

2.3.1. Decomposition to tangential and orthogonal parts. Let us first separate the state152

variable x into parts orthogonal to \Sigma (denoted by xo) and tangential to \Sigma (denoted by xt).153

That is,154

(2.4) x = xo + xt = (x1, . . . xn, 0, . . . 0) + (0, . . . 0, xn+1, . . . xm).155

The vector field is written in the form F = Fo+Ft such that the dynamics becomes \.xo = Fo(x)156

and \.xt = Ft(x).157



CODIMENSION-n DISCONTINUITY SETS 5

2.3.2. Introducing spherical variables. In the next step, let us rewrite the orthogonal158

variable xo in a similar way to that of polar and spherical coordinates. We consider159

(2.5) xo = rw,160

where r = \| xo\| =
\sqrt{} \sum n

i=1 x
2
i is the distance of x from the discontinuity \Sigma , and w = xo/\| xo\| =161

(w1, . . . wn, 0, . . . 0) is the unit vector showing the direction of x around \Sigma . Note that through-162

out the paper, \| a\| =
\surd 
a\top a denotes the usual 2-norm of a vector, a \in \BbbR m, and \top denotes the163

transpose of a vector or a linear mapping. Note that this set of variables is redundant, and164

the solutions preserve the constraint165

\| w\| =

\sqrt{}    n\sum 
i=1

w2
i = 1.(2.6)166

167

Thus, w is located on the unit sphere \BbbS n - 1 \subset \BbbR m. By the transformation (2.4)--(2.5), the168

triplet (r,w,xt) \in \BbbR + \times \BbbS n - 1 \times \BbbR m - n is mapped to x \in \BbbR m \setminus \Sigma . That is, we can identify the169

two sets, x = (r,w,xt), and we use the two notations interchangeably.170

The orthogonal part of the vector field can be written in the form171

(2.7) Fo = R(x)w +V(x),172

where173

(2.8) R(x) = w\top Fo(x)174

is the radial part of the vector field and175

(2.9) V(x) = Fo  - w\top Fo(x)w176

is the circumferential part. By these notations, we recast (2.1) as177

\.r = R(r,w,xt),(2.10)178

\.w = V(r,w,xt)/r,(2.11)179

\.xt = Ft(r,w,xt).(2.12)180
181

Note that due to the smooth dependence required in (2.3), the functions R, V, and Ft are182

smooth in the set \BbbR + \times \BbbS n - 1 \times \BbbR m - n \ni (r,w,xt), and the discontinuity is located at r = 0.183

2.3.3. Limit of the vector field at the discontinuity. The assumed continuity properties184

of F imply that the functions R, V, and Ft have well-defined limit values185

R \star (w,xt) := lim
r\searrow 0

R(r,w,xt),(2.13)186

V \star (w,xt) := lim
r\searrow 0

V(r,w,xt),(2.14)187

F \star 
t (w,xt) := lim

r\searrow 0
Ft(r,w,xt),(2.15)188

189

which are smooth functions in w and xt.190
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Our goal is to analyze trajectories which either start from or end at a point x = \=x =191

(0,0, \=xt) \in \Sigma of the discontinuity set. Thus, we analyze an approximate dynamics in the192

vicinity of a point \=x. By using the limits (2.13)--(2.15), we can approximate (2.10)--(2.12) by193

the asymptotic dynamics194

\.r = R \star (w, \=xt),(2.16)195

\.w = V \star (w, \=xt)/r,(2.17)196

\.xt = F \star 
t (w, \=xt).(2.18)197

198

By using the decomposition x = rw+xt, the approximate dynamics in the original form (2.1)199

becomes200

(2.19) \.x = F \star (x) = R \star (w, \=xt)w +V \star (w, \=xt) + F \star 
t (w, \=xt).201

We will show later in subsection 3.3 that from the analysis of the asymptotic approximation202

(2.17)--(2.18), we can get information about the structure of the phase space of the full system203

(2.10)--(2.12), as well. Roughly speaking, we can think of the asymptotic dynamics as a204

leading-order approximation involving zeroth-order terms.205

2.3.4. Time rescaling at the singularity. The singularity associated with r = 0 is removed206

by a singular rescaling of time,207

d

d\tau 
= r

d

dt
.(2.20)208

209

Then, (2.10)--(2.12) becomes210

r\prime = rR(r,w,xt),(2.21)211

w\prime = V(r,w,xt),(2.22)212

x\prime 
t = rFt(r,w,xt),(2.23)213

214

where the dash denotes derivation with respect to the new time variable \tau . This transformation215

does not change the trajectories of the system.216

If we extend the domain of the functions by using the limit values (2.13)--(2.15), then the217

system (2.21)--(2.23) is smooth in (r,w,xt) \in \BbbR \geq 0\times \BbbS n - 1\times \BbbR m - n, including r = 0. The region218

r < 0 is still excluded due to the restriction r \geq 0 of the spherical radial coordinate. Time219

rescaling (2.20) of the asymptotic dynamics (2.16)--(2.18) becomes220

r\prime = rR \star (w, \=xt),(2.24)221

w\prime = V \star (w, \=xt),(2.25)222

x\prime 
t = rF \star 

t (w, \=xt).(2.26)223
224

3. Analysis via multiple time scales. In the vicinity of r = 0 located at the former225

discontinuity, the system (2.21)--(2.23) behaves as a multiple time scale dynamical system226

where w is a fast variable and r and xt are slow variables.227

In the approximated system (2.24)--(2.26), the fast dynamics of w fully decouples from228

the other two slow variables and (2.25) can be solved independently. (Note that \=xt is a fixed229

value.) First, we give a brief overview on possible types of fast dynamics (2.25). Then, the slow230

dynamics is investigated by taking into account the long-term behavior of the fast variables.231

Finally, we draw consequences to the qualitative behavior of the full system (2.21)--(2.23).232
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Figure 1. Sketch of the phase space around the discontinuity for different values of the codimension n.
Upper row: the sketch of the phase space projected onto the subspace of the orthogonal variables \bfx o. In these
projected graphs, the discontinuity is depicted as a point, which contains the other (tangential) variables \bfx t.
Bottom row: the subspace of the fast dynamics of \bfw on a unit sphere \scrS n - 1. Left column: the codimension-1
case, corresponding to the (classical) Filippov systems. Here, the phase space of the fast dynamics consists of
two discrete points corresponding to two trivial limit directions \^\bfw 1 and \^\bfw 2. Middle column: the codimension-2
case; the fast dynamics of \bfw is located on a unit circle. Right column: the codimension-3 case; the fast dynamics
of \bfw is located on a unit sphere.
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3.1. Fast dynamics of \bfitw . The fast system (2.25) is a smooth dynamical system whose241

state space is the n - 1 sphere \BbbS n - 1 \subset \BbbR m of radius 1. As we will see in Section 3.2, the long-242

term behavior of the fast subsystem has a crucial role in the analysis of the slow dynamics.243

To that end, we briefly review classical results of dynamical systems theory [14] regarding the244

qualitatively different types of long-term behavior for low values of n:245

\bullet Codimension-1 discontinuity, Filippov systems: If n = 1, then the domain of246

the fast dynamics is two isolated fixed points \^w1 = (1, 0, . . . 0) and \^w2 = ( - 1, 0, . . . 0).247

That is, the dynamics of w is trivial, w(t) \equiv \^w1 or w(t) \equiv \^w2 as illustrated by the248

leftmost column of Figure 1. This is the well-known case of classical Filippov systems249

where the discontinuity manifold has two disconnected sides [7, 17].250

\bullet Codimension-2 discontinuity, extended Filippov systems: If n = 2, then the251

domain of (2.25) is the unit circle \BbbS 1; see the middle column of Figure 1. This is252

the case of extended Filippov systems investigated in [2]. Trajectories of dynam-253

ical systems on circles always converge to fixed points forward and backward in254

time, or every trajectory is a periodic orbit covering the circle (if there are no fixed255

points).256

\bullet Codimension-3 discontinuity: If n = 3, then the domain of (2.25) is the unit sphere257

\BbbS 2 (right column of Figure 1). According to the Poincar\'e--Bendixson theorem and its258

generalizations [27], modest regularity assumptions imply that trajectories converge259

to fixed points, limit cycles, or polycycles. Among these, the last one will result in260

subtle difficulties during the analysis of the induced slow dynamics, as explained in261

Section 3.2 and illustrated by Example 4.5 below.262
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\bullet Higher codimension cases: If n > 3, then the domain is a unit hyper-sphere \BbbS n - 1.263

Trajectories may have various qualitatively different types of behavior, including con-264

vergence to fixed points, periodic orbits, quasi-periodic orbits, polycycles, and strange265

attractors. As we will see in subsection 3.2, the first three types allow the use of266

averaging techniques to predict the slow dynamics; however, this is not the case for267

other types in general.268

3.2. Slow dynamics of \bfitr . When the fast dynamics (2.25) of w approaches an invariant269

set presented in subsection 3.1, we want to analyze the dynamics of r according to (2.24). For270

this analysis, it is useful to introduce the rescaled radial variable \rho = log r. If the solution271

w(\tau ) is known from the fast dynamics (2.25), then the evolution of \rho is given by272

(3.1) \rho (\tau ) - \rho (0) =

\int \tau 

0
\rho \prime (\eta )d\eta =

\int \tau 

0

r\prime (\eta )

r(\eta )
d\eta =

\int \tau 

0
R \star (w(\eta ), \=xt)d\eta .273

The discontinuity set \Sigma is located at r = 0, which corresponds to \rho =  - \infty . Thus, a trajectory274

tending to \Sigma in forward or backward time is characterized by lim\tau \rightarrow \pm \infty \rho (\tau ) =  - \infty , which275

leads to276

lim
\tau \rightarrow \pm \infty 

\int \tau 

0
R \star (w(\eta ), \=xt)d\eta =  - \infty .(3.2)277

278

For each type of invariant set of w (see subsection 3.1), we can describe the radial dynamics279

by analyzing the integral (3.2).280

3.2.1. Fixed points of \bfitw -limit directions of the system. We have seen that the fast281

dynamics often converges to a fixed point w = \^w. Then, the analysis of (3.2) reduces to282

checking the sign of R \star ( \^w).283

Definition 3.1. Consider the fixed point \^w of the circumferential dynamics satisfying V \star ( \^w,284

\=xt) = 0. Then, we call \^w a limit direction of the system (2.1) at \=xt. In the case R \star ( \^w, \=xt) < 0285

or R \star ( \^w, \=xt) > 0, \^w is called an attracting or a repelling limit direction, respectively.286

By using the term limit direction, we identify the point \^w \in \BbbS n - 1 \subset \BbbR m and the half-line287

\scrL : \BbbR + \rightarrow \BbbR m, \scrL (\rho ) = \=x + \rho \^w. The concept of limit direction is depicted in the left column288

of Figure 2.289

Theorem 3.2. Consider an attracting limit direction \^w at \=x = \=xt \in \Sigma . Then, there exists296

a trajectory x(t) of (2.19) and \^t \in \BbbR such as297

(3.3) lim
t\nearrow \^t

x(t) = \=x298

and299

lim
t\nearrow \^t

w(t) = \^w(t).(3.4)300

301

Proof. Consider a trajectory x(\tau ) = (r(\tau )),w(\tau ),xt(\tau )) with a starting point r(0) = r0 =302

exp \rho 0; w(0) = \^w; xt(0) = xt,0. Then, w(\tau ) \equiv \^w according to Definition 3.1, and from303
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Figure 2. Limit directions and limit cones at the discontinuity depicted in the codimension-3 case. The
upper and lower rows show the phase space projected to the orthogonal subspace and the fast subspace, respec-
tively, similarly to Figure 1. Left column: a limit direction is a characteristic direction in the (orthogonal)
phase space and a fixed point in the fast subspace of \bfw . Right column: a limit cone is a conical-shaped orga-
nizing surface of trajectories in the orthogonal space, which corresponds to a limit cycle in the fast subspace
of \bfw .

290

291
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293
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295

(2.19), (3.4) is trivially satisfied for any time \^t until the discontinuity manifold is reached.304

The constant value R \star ( \^w, \=xt) < 0 makes the integrand of (3.2) finite and negative, thus,305

lim\tau \rightarrow \infty \rho (\tau ) =  - \infty corresponding to r \rightarrow 0. In particular, \rho (\tau ) = \rho 0 + R \star ( \^w, \=xt)\tau . Let t(\tau )306

denote the time of the original time scale according to (2.20). By assuming t(0) = 0, the time307

\^t of reaching the discontinuity becomes308

309

(3.5) \^t = lim
\tau \rightarrow \infty 

t(\tau ) =

\int \infty 

0

dt(\tau )

d\tau 
d\tau =

\int \infty 

0
r(\tau )d\tau 310

=

\int \infty 

0
exp(\rho 0 +R \star ( \^w, \=xt)\tau )d\tau =

 - exp(\rho 0)

R \star ( \^w, \=xt)
=

 - r0
R \star ( \^w, \=xt)

.311

312

Then, (2.26) implies that by choosing313

xt,0 = \=xt +
r0F

 \star 
t (w, \=xt)

R \star ( \^w, \=xt)
,314

the trajectory satisfies (3.3), which completes the proof.315

A variant of Theorem 3.2 can be proposed for the repelling limit directions.316

Theorem 3.3. Consider a repelling limit direction \^w at \=x = \=xt \in \Sigma . Then, there exists a317

trajectory x(t) of (2.19) and \^t \in \BbbR such as318

lim
t\searrow \^t

x(t) = \=x, lim
t\searrow \^t

w(t) = \^w.(3.6)319

320

Proof. The proof is analogously to Theorem 3.2.321
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Theorems 3.2--3.3 are trivial in the case of n = 1 (Filippov systems) and they have been322

proved by [2] in the case of n = 2. The generalization to arbitrary n is a new contribution of323

this work.324

There is an analogy between limit directions of a point \=x \in \Sigma and the eigenvectors of a325

usual fixed point: both are organizing lines of trajectories approaching the critical point of326

the vector field. However, there are two fundamental differences:327

\bullet More accurately, the eigenvectors are lines (bidirectional), but the limit directions are328

half-lines (unidirectional).329

\bullet Along a usual eigenvector, the trajectories approach the equilibrium point exponen-330

tially (the convergence takes infinite time). Along a limit direction, the trajectories331

approach \=x faster than exponentially (the convergence takes finite time).332

\bullet The number of eigenvectors cannot be higher than the dimension of the state space;333

there is, however, no such limitation for limit directions.334

Note that by the time transformation (2.20), we effectively slow down the system in such a335

way that the convergence becomes exponential in the transformed time scale \tau . (See the linear336

leading term of r in the radial dynamics (2.24).)337

At the borderline case of R \star ( \^w, \=xt) = 0 a bifurcation occurs between the attracting and338

repelling behavior. This bifurcation can be considered either a special subset of \Sigma satisfying339

R \star ( \^w, \=xt) = 0 or a special property of a fixed \=x \in \Sigma in the presence of varying system340

parameters. In the codimension-1 case of Filippov systems, this is called a tangency point341

(see [17, p. 50]), and the concept was extended to the codimension-2 case in [2]. General342

analysis of this bifurcation is beyond the scope of the present work. Now we just point343

out that the name tangency seems to be appropriate in the codimension-n description: If344

V( \^w, \=xt) = 0 and R \star ( \^w, \=xt) = 0, then the approximate dynamics (2.24)--(2.26) gives that the345

vector field is tangent to the discontinuity set \Sigma at the selected point \=x and at the direction \^w.346

In the proof of Theorem 3.2, we constructed a single trivial trajectory at the fixed point347

\^w of (2.25). According to the type of the fixed point, the limit directions can be categorized348

to get information about other trajectories satisfying (3.3)--(3.4).349

Definition 3.4. Consider a limit direction \^w at \=x = (0,0, \=xt) \in \Sigma . Assume that \^w is a350

hyperbolic fixed point of (2.25) with eigenvalues \lambda 1 . . . \lambda k. The limit direction is called351

\bullet dominant if352

(3.7) min
i\in 1...k

R \star ( \^w, \=xt)Re\lambda i > 0;353

\bullet isolated if354

(3.8) max
i\in 1...k

R \star ( \^w, \=xt)Re\lambda i < 0;355

\bullet saddle-type if356

(3.9) min
i\in 1...k

R \star ( \^w, \=xt)Re\lambda i \cdot max
i\in 1...k

R \star ( \^w, \=xt)Re\lambda i < 0.357

In other words, a stable node or focus of (2.25) corresponds to an attracting-dominant or358

a repelling-isolated limit direction, an unstable node or focus corresponds to an attracting-359

isolated or repelling-dominant limit direction, and a saddle corresponds to a saddle-type limit360

direction.361
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Figure 3. Left panel: Phase space of the system (3.10)--(3.11) with four different types of limit directions.
Right panel: illustration of the fast dynamics via a sketch of the phase space where the origin is visually blown
up to a circle. Here limit directions are depicted by fixed points. The dominant limit directions ( \^\bfw 1, \^\bfw 4) are
connected to continuously many trajectories while each isolated limit direction ( \^\bfw 2, \^\bfw 3) is connected to the
single trivial trajectory.

377
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This categorization expresses whether a limit direction attracts the nearby trajectories362

in the time direction of approaching the discontinuity set. At a dominant limit direction, the363

trivial trajectory from Theorem 3.2 has a neighborhood where all trajectories are connected to364

\Sigma along the limit direction. At an isolated limit direction, there is a single isolated trajectory365

which is connected to \Sigma . At a saddle-type limit direction, there is a mixed behavior according366

to the stable and unstable directions of the saddle.367

The types of limit directions in Definition 3.4 are visualized in Figure 3 showing the vector368

field of a codimension-2 example369

\.x1 = w1(w1 + w2  - w2
2),(3.10)370

\.x2 = w2(w1 + w2 + w2
1),(3.11)371

372

where w1 = x1/
\sqrt{} 

x21 + x22 and w2 = x2/
\sqrt{} 

x21 + x22. The system leads to R \star = w1 + w2 and373

V \star = w1w2( - w2, w1), and we obtain four limit directions: \^w1 = (1, 0) is repelling-dominant,374

\^w2 = (0, 1) is repelling-isolated, \^w3 = ( - 1, 0) is attracting-isolated, and \^w4 = (0, - 1) is375

attracting-dominant.376

When calculating the eigenvalues in Definition 3.4, the linearization of (2.25) at a fixed382

point \^w can be written in the form383

(3.12) w\prime = V \star 
\bfw ( \^w, \=xt)(w  - \^w) +\scrO 2,384

where \scrO 2 denote the higher-order terms, and the Jacobian V \star 
\bfw is calculated by385

(3.13) V \star 
\bfw =

\partial V \star 

\partial w
 - \partial V \star 

\partial w
ww\top .386

The second term of (3.13) implements the projection onto the unit sphere \BbbS n - 1: w\top V \star 
\bfw w =387

0, that is, the radial dynamics is eliminated. Moreover, the dynamics along the sphere is388
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preserved in (3.13), V \star 
\bfw dw = \partial V \star /\partial w dw, because all dw from the tangent space of the389

sphere satisfy w\top dw = 0. Then, V \star 
\bfw is an m \times m matrix with m  - n + 1 trivial zero390

eigenvalues and k \leq n  - 1 nontrivial eigenvalues. In Definition 3.4, only these nontrivial391

eigenvalues \lambda 1 . . . \lambda k are considered, which corresponds to the dynamics on the unit sphere.392

3.2.2. Limit cycles of \bfitw -limit cones of the system.393

Definition 3.5. Assume that wc(\tau ) : [0, T ] \rightarrow \BbbR 3 is a limit cycle \^w of the circumferential394

dynamics (2.25) with a time period T . Then, we call wc a limit cone of the system (2.19) at395

\=x. Consider the average396

(3.14) R \star =
1

T

\int T

0
R \star (wc(\eta ), \=xt)d\eta .397

In the cases R \star < 0 or R \star > 0, wc is called an attracting or a repelling limit cone, respectively.398

By using the term limit cone, we identify the limit cycle wc(\tau ) and the cone \scrC : \BbbR + \times 399

[0, T ) \rightarrow \BbbR n, \scrC (\rho , \eta ) = \=x + \rho wc(\eta ). The concept of limit cones is illustrated by the right400

column of Figure 2.401

Theorem 3.6. Consider an attracting limit cone wc at \=x = (0,0, \=xt) \in \Sigma . Then, there402

exists a trajectory x(t) of (2.19) and \^t \in \BbbR such as403

(3.15) lim
t\nearrow \^t

x(t) = \=x404

and x(t) lies in the limit cone.405

Proof. Consider a trajectory x(\tau ) = (r(\tau )),w(\tau ),xt(\tau )) with a starting point r(0) = r0 =406

exp \rho 0; w(0) = w0 = wc(\eta 
\ast ); xt(0) = xt,0 where \eta \ast \in [0, 2\pi ]. Equations (3.2) and (3.14)407

imply lim\tau \rightarrow \infty \rho (\tau ) =  - \infty , corresponding to r \rightarrow 0. The periodicity of wc and (3.1) leads to408

\rho (\tau + T ) = \rho (\tau ) + R \star T . As the function R \star is bounded due to the properties of (2.3), the409

following values exist:410

\Delta \rho \mathrm{m}\mathrm{i}\mathrm{n} = min
\tau \in [0,T )

\biggl( \int \tau 

0
R \star (wc(\eta ), \=xt)d\eta  - R \star \tau 

\biggr) 
,(3.16)411

\Delta \rho \mathrm{m}\mathrm{a}\mathrm{x} = max
\tau \in [0,T )

\biggl( \int \tau 

0
R \star (wc(\eta ), \=xt)d\eta  - R \star \tau 

\biggr) 
;(3.17)412

413

these are the extrema of the deviation of \rho (\tau ) from the approximate solution \rho (\tau ) \approx \rho 0+R \star \tau .414

Thus, we can make an estimation415

(3.18) \rho 0 +R \star \tau +\Delta \rho \mathrm{m}\mathrm{i}\mathrm{n} \leq \rho (\tau ) \leq \rho 0 +R \star \tau +\Delta \rho \mathrm{m}\mathrm{a}\mathrm{x}.416

Calculations analogous to (3.5) imply that on the original time scale, the time \^t required for417

reaching the discontinuity is finite, and it can be bounded by418

(3.19)
 - r0 exp(\Delta \rho \mathrm{m}\mathrm{i}\mathrm{n})

R \star 
\leq \^t \leq  - r0 exp(\Delta \rho \mathrm{m}\mathrm{a}\mathrm{x})

R \star 
.419
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Finally, by choosing the initial condition420

(3.20) xt,0 = \=x - 
\int \^t

0
F \star 
t (w(t), \=xt)dt,421

the trajectory satisfies the statements of the theorem.422

In the theorem, a single trajectory from the starting point \eta \ast \in [0, 2\pi ] was considered, but423

as \eta \ast can be chosen from this interval, we get a continuous family of trajectories covering the424

limit cone and tending to \=x \in \Sigma . We can propose a similar theorem for the repelling case.425

Theorem 3.7. Consider a repelling limit cone wc at \=x = (0,0, \=xt) \in \Sigma . Then, there exists426

a trajectory x(t) of (2.19) and \^t \in \BbbR such as427

(3.21) lim
t\searrow \^t

x(t) = \=x428

and x(t) lies in the limit cone.429

Proof. The proof is analogous to that of Theorem 3.6.430

Note that the case of limit cones is not relevant if n = 1, whereas for n = 2, at most one431

single limit cone can exist. This limit cone covers the full state space (the unit circle) of the432

fast dynamics. In this special case, the existence of trajectories with appropriate limits in the433

statements of Theorems 3.6--3.7 has been proved by [2] whereas the requirement of lying in434

the limit cone is trivially satisfied.435

In the case of limit cones, a trajectory does not have a well-defined tangent when it436

approaches the discontinuity set. From this point of view, the surrounding trajectories in437

the fast subsystem are similar to the phase portrait of a focus point in a smooth system.438

But the convergence is, again, faster than exponential, and the oscillating solutions reach the439

discontinuity set in finite time either in forward or in backward direction of time. This point440

is illustrated by Example 4.4 and by Figure 6.441

3.2.3. More complicated invariant sets of \bfitw . If a trajectory of the fast dynamics is not442

converging to a fixed point or periodic orbit, one needs to consider the infinite integral (3.2).443

In some cases like convergence to a quasi-periodic orbit, the long-term average of R \star along444

trajectories is known to exist and converge to a well-defined limit value regardless of the exact445

initial conditions [36]. Hence446

R \star = lim
\tau \rightarrow \pm \infty 

\int \tau 
0 R \star (w(\eta ), \=xt)d\eta 

\tau 
(3.22)447

448

can be used in the analysis as done before. This case will not be elaborated further in this449

paper.450

There are cases in which the analysis described above faces fundamental difficulties. In451

the case of trajectories converging to strange attractors, the limit (3.22) exists for almost all452

fixed initial conditions in the measure-theoretic sense; however, convergence is not robust in453

the topological sense: an arbitrarily small neighborhood of a typical initial condition contains454

possible initial conditions for which the value of R \star is different by a finite amount or for455
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which convergence does not occur at all [31]. It is certainly possible to prove the existence456

of trajectories starting or ending at the discontinuity manifold; nevertheless such a result has457

moderate practical significance. In the presence of any noise or uncertainty with respect to458

initial conditions, it may become unpredictable if a trajectory starts (ends) at the discontinuity459

or not.460

For fast dynamics converging to a polycycle, a similar problem occurs. Even though the461

full system appears to have a ``topological limit cone,"" however, the radial dynamics along462

this manifold becomes ill-defined because the limit (3.22) usually fails to converge for most463

initial conditions [12]. Divergence is generated by the presence of multiple fixed points \^wj464

j = 1, 2, . . . , k along the polycycle. A trajectory starting at a general point of a polycycle will465

converge to one of these fixed points. For a trajectory converging to \^wj , the limit (3.22) will be466

equal to the value R \star ( \^wj , \=xt) corresponding to that fixed point. Other trajectories initiated467

in a small neighborhood of the polycycle do not converge to any of the individual points,468

but they asymptotically converge to the polycycle, such that they spend longer and longer469

times in small neighborhoods of the fixed points as they pass by. More detailed analysis [12]470

reveals that the time average of a scalar function like (3.22) along those trajectories oscillates471

in an interval (a, b) with minj R
 \star ( \^wj , \=xt) < a < b < maxj R

 \star ( \^wj , \=xt). It is possible that the472

interval (a, b) contains 0 in its interior. In such cases, r gets infinitely close to zero from time473

to time, but it diverges again and again. Hence there is no meaningful way to classify the474

radial dynamics as attractive or repelling. This behavior is illustrated by Example 4.5 below.475

Because the pathological behavior of radial dynamics and the lack of known applications where476

such limit sets may emerge, these cases are not examined further.477

3.3. Limit directions and limit cones in the full system. In the previous subsection, the478

multiple time scale analysis was applied to the approximate asymptotic system (2.24)--(2.26).479

In this subsection, we demonstrate that previous results related to fixed points and periodic480

orbits of the fast dynamics can be applied to the full system (2.21)--(2.23) as well. Because of481

the difficulties associated with all other types of attractors (see Section 3.2.3) those cases are482

not investigated in the rest of the paper.483

The set r = 0 is an invariant set of (2.21)--(2.23) where the dynamics is determined by484

r\prime = 0,(3.23)485

w\prime = V \star (w,xt),(3.24)486

x\prime 
t = 0.(3.25)487

488

As x\prime 
t = 0, the set r = 0 can be partitioned to invariant subsets (layers) parametrized by xt.489

For a chosen layer xt = \=xt, (3.24) coincides with the fast dynamics (2.25) of the asymptotic490

approximate system. Thus, (3.24) can be considered as a vector field depending smoothly on491

the parameter xt. Consequently, in the case of a hyperbolic fixed point or limit cycle of (3.24),492

the local dynamics of the system is topologically equivalent in all layers in the neighborhood493

of xt = \=xt.494

In the local neighborhood of r = 0 and xt = \=xt, the vector fields can be written into495

Taylor series form496
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R(r,w,xt) = R \star (w, \=xt) +R \star 
r(w, \=xt)r +R \star 

\bfx t
(w, \=xt)(xt  - \=xt) +\scrO 2,(3.26)497

V(r,w,xt) = V \star (w, \=xt) +V \star 
r(w, \=xt)r +V \star 

\bfx t
(w, \=xt)(xt  - \=xt) +\scrO 2,(3.27)498

Ft(r,w,xt) = F \star 
t (w, \=xt) + F \star 

t,r(w, \=xt)r + F \star 
t,\bfx t

(w, \=xt)(xt  - \=xt)+\scrO 2,(3.28)499
500

where the meaning of the subscripts is501

R\ast 
r(w, \=xt) =

\partial R(r,w,xt)

\partial r

\bigm| \bigm| \bigm| \bigm| 
r=0,\bfx t=\=\bfx t

,(3.29)502

R\ast 
\bfx t
(w, \=xt) =

\partial R(r,w,xt)

\partial xt

\bigm| \bigm| \bigm| \bigm| 
r=0,\bfx t=\=\bfx t

,(3.30)503

504

and \scrO 2 denotes the higher-order terms. Then, the dynamics (2.21)--(2.23) becomes505

r\prime = rR \star (w, \=xt) +\scrO 2,(3.31)506

w\prime = V \star (w, \=xt) +V \star 
r(w, \=xt)r +V \star 

\bfx t
(w, \=xt)(xt  - \=xt) +\scrO 2,(3.32)507

x\prime 
t = rF \star 

t (w, \=xt) +\scrO 2.(3.33)508
509

In what follows we shall discuss limit directions and limit cones separately with similar con-510

clusions in the two cases.511

3.3.1. Limit directions. Consider a fixed point \^w with V \star ( \^w, \=xt) = 0. Then, from (3.12)512

and (3.31)--(3.33), the full linearized system at the fixed point (r,w,xt) \equiv (0, \^w, \=xt) is513

(3.34)

\left(  r\prime 

\~w\prime 

\~x\prime 
t

\right)  =

\left(  R \star ( \^w, \=xt) 0 0
V \star 

r( \^w, \=xt) V \star 
\bfw ( \^w, \=xt) V \star 

\bfx t
( \^w, \=xt)

F \star 
t ( \^w, \=xt) 0 0

\right)  \left(  r
\~w
\~xt

\right)  +\scrO 2,514

where \~w = w  - \^w, \~xt = xt  - \=xt, and V \star 
\bfw was defined in (3.13). The characteristic equation515

of the matrix in (3.34) is516

(3.35) (R \star ( \^w, \=xt) - \lambda ) \cdot det (V \star 
\bfw ( \^w, \=xt) - \lambda In) \cdot det

\bigl( 
 - \lambda Im - n

\bigr) 
= 0,517

where In denotes the n \times n identity matrix. Then, we have the following three types of518

eigenvalues and eigenvectors of the linearized system:519

1. The roots of det (V \star 
\bfw ( \^w, \=xt) - \lambda In) = 0 are the eigenvalues of V \star 

\bfw ( \^w, \=xt). As it was520

explained at (3.12), there are k \leq n  - 1 nontrivial eigenvalues and a trivial zero521

eigenvalue. It can be shown that the corresponding eigenvectors of (3.34) have the522

form v = (0,v\bfw ,0) where v\bfw coincide with the eigenvectors of the fast subsystem523

(3.12).524

2. The roots of det ( - \lambda Im - n) = 0 are m - n zero eigenvalues. The corresponding eigen-525

vectors have the form v = (0,v\bfw ,v\bfx t) and they can be calculated by solving526

(3.36) V \star 
\bfw ( \^w, \=xt)v\bfw +V \star 

\bfx t
( \^w, \=xt)v\bfx t = 0.527

The expression (3.36) is strongly related to the total derivative of the right-hand side of528

the fast dynamics (3.24) at a fixed point. In fact, (3.36) determines the tangent space529

of a critical manifold (see [22, p. 12]) determined by V \star (w,xt) = 0, which contains530

the fixed points in the different layers of the fast dynamics.531
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3. At the eigenvalue R \star ( \^w, \=xt), regularity conditions should be checked. In the singular532

cases when either V \star 
\bfw ( \^w, \=xt) - R \star ( \^w, \=xt)I

n is a singular matrix or R \star ( \^w, \=xt) = 0, the533

corresponding eigenvector coincides with that of the two previous types of eigenvalues.534

In the regular case when R \star ( \^w, \=xt) is neither zero nor an eigenvalue of V \star 
\bfw ( \^w, \=xt), the535

corresponding eigenvector has the form v = (1,v\bfw ,v\bfx t) satisfying536

(3.37)

\biggl( 
V \star 

\bfw ( \^w, \=xt) - R \star ( \^w, \=xt)I
n V \star 

\bfx t
( \^w, \=xt)

0  - R \star ( \^w, \=xt)I
m - n

\biggr) \biggl( 
v\bfw 

v\bfx t

\biggr) 
=

\biggl( 
V \star 

r( \^w, \=xt)
F \star 
t ( \^w, \=xt)

\biggr) 
.537

The first two types of eigenvectors do not have a component in the r direction, so they538

are not related to trajectories leaving or arriving at the discontinuity at r = 0. The only539

eigenvector transversal to r = 0 is the eigenvector of R \star ( \^w, \=xt) in the regular case. One side540

of the eigenvector points to r < 0, which is irrelevant in our original system. However, at541

r > 0, this eigenvector corresponds to a stable (R \star ( \^w, \=xt) < 0) or unstable (R \star ( \^w, \=xt) > 0)542

manifold where trajectories from r > 0 are connected to the selected point \=x \in \Sigma . This is543

the same behavior that was proposed in Theorems 3.2 and 3.3 in the case of attracting and544

repelling limit directions, respectively. Moreover, as the eigenvalues of V \star 
\bfw ( \^w, \=xt) appear both545

in (3.12) and in (3.34), the dominant, saddle-type, and isolated properties from Definition 3.4546

are inherited to the full system in the case of hyperbolic fixed points of the fast dynamics.547

Hence, we conclude that in the nonsingular cases, the multiple time scale analysis of limit548

directions of the asymptotic approximate system (2.24)--(2.26) can be used for the qualitative549

analysis of the full system (2.21)--(2.23).550

3.3.2. Limit cones. Consider now a periodic orbit \^w(\tau ) of (3.24) with period T such that551

\^w\prime = V \star ( \^w, \=xt) (where dependence of \^w on \tau has been hidden). The full linearized system552

at the periodic orbit (r,w,xt) \equiv (0, \^w(\tau ), \=xt) is again given by (3.34) with the only difference553

being that the coefficient matrix is now time-dependent and periodic.554

The linear stability of periodic solutions of (3.34) is analyzed via a linearized Poincar\'e555

map. In particular, consider a Poincar\'e section \scrP transversal to the flow through the point556

(r,w,xt) \equiv (0, \^w(0), \=xt). This point is a fixed point of the Poincar\'e map. The linearized557

Poincar\'e map is determined by (3.34) and takes the form558

(3.38)

\left(  r( \~T )

\~w( \~T )

\~xt( \~T )

\right)  = P

\left(  r(0)
\~w(0)
\~xt(0)

\right)  +\scrO 2,559

where \~T is the time of first return to the Poincar\'e section. Note that \~T \not = T in general;560

however, for r(0) = \~w(0) = \~xt(0) = 0, we have \~T = T .561

In general, there is no simple formula to express P in terms of the equation of the linearized562

flow; however, the special structure of the coefficient matrix in (3.34) allows us to express P563

as follows.564

Notice first that the linearized dynamics of r is given by (3.34) as r\prime = R \star ( \^w, \=xt)r. This565

homogeneous, linear, nonautonomous scalar equation yields566

(3.39) r(\tau ) = r(0)e
\int \tau 
0 R \star ( \^\bfw (\xi ),\=\bfx t)d\xi .567
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Second, the linearized dynamics of \~xt is given by (3.34) as \~x\prime 
t = F  \star 

t ( \^w, \=xt)r. Using (3.39), we568

can now express569

(3.40) \~xt(\tau ) = \~xt(0) + r(0)

\int \tau 

0
F  \star 
t ( \^w(\zeta ), \=xt)e

\int \zeta 
0 R \star ( \^\bfw (\xi ),\=\bfx t)d\xi d\zeta .570

In a last step, we find \~w(\tau ) from the remaining set of equations given by (3.34):571

(3.41) \~w\prime = V \star 
r( \^w, \=xt)r +V \star 

\bfw ( \^w, \=xt) \~w +V \star 
\bfx t
( \^w, \=xt)\~xt +\scrO 2

572

which is a nonautonomous, periodic, linear, inhomogenous vector-valued ODE. The solution573

of that system is574

\~w(\tau ) = \Phi (\tau ) \~w(0) . . .575

+

\int t

0
\Phi (\tau )\Phi  - 1(\xi )

\bigl( 
V \star 

r( \^w(\xi ), \=xt)r(\xi ) +V \star 
\bfx t
( \^w(\xi ), \=xt)\~xt(\xi )

\bigr) 
d\xi ,(3.42)576

577

where \Phi (\tau ) is the so-called principal matrix solution of the equation (see Theorem 1.2.5 in578

[9]). We will not need the exact form of \Phi . Note that the first term in (3.42) is the solution579

of the homogeneous part of the equation, which is identical to the asymptotic fast dynamics580

(2.25).581

According to (3.39), (3.40), r(\tau ), \~xt(\tau ) are linear functions of r(0) and \~xt(0), and thus we582

can write the Poincar\'e map as583 \left(  r( \~T )

\~w( \~T )

\~xt( \~T )

\right)  =

\left(  r(T )
\~w(T )
\~xt(T )

\right)  +\scrO 2
584

=

\left(  e
\int T
0 R \star ( \^\bfw (\xi ),\=\bfx t)d\xi 0 0

\ast \Phi (T ) \ast \ast 
\ast \ast \ast 0 Im - n

\right)  \left(  r(0)
\~w(0)
\~xt(0)

\right)  +\scrO 2.(3.43)585

586

The star symbols in the matrix represent closed-form expressions, which are omitted for587

brevity. It is notable that the matrix in (3.43) has a similar structure to the matrix in (3.34).588

The characteristic equation of the matrix in (3.43) is589

(3.44)
\Bigl( 
e
\int T
0 R \star ( \^\bfw (\xi ),\=\bfx t)d\xi  - \lambda 

\Bigr) 
\cdot det (\Phi (T ) - \lambda In) \cdot det

\bigl( 
Im - n  - \lambda Im - n

\bigr) 
= 0,590

which allows us to draw conclusions similar to the case of limit directions. In particular,591

1. the roots of det (\Phi (T ) - \lambda In) = 0 are the eigenvalues determining the linear stability592

of the periodic solution of the asymptotic fast dynamics (2.25);593

2. the roots of det (Im - n  - \lambda Im - n) are m - n unit eigenvalues;594

3. the eigenvalue e
\int T
0 R \star ( \^\bfw (\xi ),\=\bfx t)d\xi exceeds 1 (corresponding to instability) if \=R\ast > 0 (see595

(3.14)) and it is below 1 (corresponding to stability) in the opposite case. The case of596

\=R\ast = 0 is degenerate and out of scope of this work.597

As before, the eigenvectors corresponding to the first two types of eigenvalues have no radial598

components whereas the eigenvector of the last eigenvalues does have such a component.599

Again, we find that the attracting/repelling and dominant/saddle-type/isolated properties of600

the full system are inherited by the asymptotic approximate system.601
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4. Examples. We now present several simple examples to cover all the important cases602

detected in the analysis above and to illustrate the behavior of these systems. In Examples 4.1603

to 4.3, the limit sets of the fast dynamics are fixed points; the purpose of these examples is to604

illustrate how the limit directions organize the dynamics in the neighborhood of the discon-605

tinuity set. Example 4.4 exemplifies local dynamics in the presence of a limit cone. Finally,606

Example 4.5 illustrates pathologic behavior if the fast dynamics converges to a polycycle. In607

Examples 4.6 to 4.8, simple mechanical examples are shown demonstrating codimension-1, 2608

and 3 discontinuities. In these examples, we focus on the radial and circumferential dynamics,609

and thus the tangential dynamics is either trivial or missing. The tangential dynamics is610

analyzed in detail in section 5.611

4.1. Fast dynamics converging to fixed points.612

Example 4.1 (isolated limit directions). Consider the system613

(4.1) F(x) =

\left(    
2x1/

\sqrt{} 
x21 + x22 + x23

x2/
\sqrt{} 
x21 + x22 + x23

 - x3//
\sqrt{} 

x21 + x22 + x23
1

\right)    ,614

where x \in \BbbR 4. (In the long formulae, we denote the vectors by columns matrices.) In this615

case, xo = (x1, x2, x3, 0), xt = (0, 0, 0, x4) and the codimension-3 discontinuity surface \Sigma is616

defined by x1 = x2 = x3 = 0. Polar decomposition yields617

R(r,w,xt) = 2w2
1 + w2

2  - w2
3,(4.2)618

V(r,w,xt) = (2w1, w2, - w3, 0) - (2w2
1 + w2

2  - w2
3)(w1, w2, w3, 0),(4.3)619

Ft(w,xt) = (0, 0, 0, 1),(4.4)620
621

where622

r =
\sqrt{} 

x21 + x22 + x23,(4.5)623

w = (x1, x2, x3, 0)/
\sqrt{} 
x21 + x22 + x23 = (w1, w2, w3, 0).(4.6)624

625

In this case, none of the functions above depends on r or x4, hence R \equiv R \star , V \equiv V \star , and626

Ft \equiv F \star 
t (see (2.13)--(2.15)). The tangential dynamics in the x4 direction is now trivial.627

The fast dynamics \.w = V \star (w,xt) has six invariant points denoted by \^w1 . . . \^w6, each628

corresponding to a limit direction of the system (Figure 4(a)). From Definition 3.1, the sign629

of R \star (w,xt) decides whether the limit direction is attracting or repelling. From the eigenvalues630

of the fixed point (see (3.12)), Definition 3.4 can be used to determine the dominant or isolated631

property of the limit direction.632

The properties of the limit directions of the system are summarized in Table 1. We can641

see that for this simple example, the limit directions appear in pairs, \^w1 =  - \^w2, \^w3 =  - \^w4,642

\^w5 =  - \^w6, and the properties of the two limit directions in each pair are identical. Generic643

trajectories of the fast (circumferential) dynamics of the system start from \^w5 or \^w6 and644

end at \^w1 or \^w2, and the unit sphere is partitioned by the stable manifolds of the saddles645
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Figure 4. Illustration of the limit vector fields for (a) Example 4.1, (b) Example 4.3, (c) Example 4.4,
and (d) Example 4.5. Thin curves (blue online) denote some trajectories, thick curves (red online) depict (a),
(b), (d) heteroclinic orbits and (c) periodic orbit of the circumferential dynamics. Fixed points are denoted by
circles. Dark shading denotes those directions where R \star < 0, i.e., trajectories move toward the discontinuity in
the radial direction. Note that the limit vector field of Example 4.2 is identical to (a) except that the shading is
inverted.

633

634

635

636

637

638

Table 1639

Limit directions of (4.1) in Example 4.1.640

Location R \star ( \^\bfw , \=\bfx ) Fixed point Limit direction

\^\bfw 1 (1, 0, 0, 0) 2 stable node repelling-isolated

\^\bfw 2 ( - 1, 0, 0, 0) 2 stable node repelling-isolated

\^\bfw 3 (0, 1, 0, 0) 1 saddle repelling-saddle

\^\bfw 4 (0, - 1, 0, 0) 1 saddle repelling-saddle

\^\bfw 5 (0, 0, 1, 0)  - 1 unstable node attracting-isolated

\^\bfw 6 (0, 0, - 1, 0)  - 1 unstable node attracting-isolated

\^w3 and \^w4. The signs of R \star at the fixed points reveal that all nodes are isolated, hence646

generic trajectories do not reach the discontinuity. In forward time, the trajectories diverge647
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radially along the repelling directions \^w1 or \^w2, and in backward time, they diverge along the648

attracting directions \^w5 or \^w6 as illustrated by numerical simulation in Figure 5(a). There are649

only special trajectories which are connected to the discontinuity either forward or backward650

in time.651

The analysis of the limit directions outlined above makes it possible to categorize the652

trajectories in the vicinity of a point \=x of the discontinuity set \Sigma . We can find653

\bullet generic trajectories which are not connected to \Sigma ,654

\bullet two isolated trajectories ending at \Sigma along \^w5 and \^w6,655

\bullet two isolated trajectories starting from \Sigma along \^w1 and \^w2,656

\bullet trajectories in the unstable manifolds of \^w3 and \^w4 starting from \Sigma along \^w3 and \^w4.657

(These trajectories correspond to heteroclinic orbits of the fast dynamics in the plane658

x3 = 0.)659

Example 4.2 (dominant limit directions). Consider a variant of the previous example663

where V \star (w,xt) is kept the same and R \star (w,xt) is multiplied by  - 1. For that, consider664

the system665

(4.7) F(x) = F1(x) - 2w\top F1(x)w,666

where w = 1/
\sqrt{} 

x21 + x22 + x23 \cdot (x1, x2, x3, 0) and F1(x) equals to the vector field (4.1) of the667

previous example. Then, we get668

R \star (w, \=xt) =  - 2w2
1  - w2

2 + w2
3,(4.8)669

V \star (w, \=xt) = (2w1, w2, - w3, 0) - (2w2
1 + w2

2  - w2
3)(w1, w2, w3, 0),(4.9)670

F \star 
t (w, \=xt) = (0, 0, 0, 1).(4.10)671

672

Calculations similar to the previous example yield the results summarized in Table 2. The673

main difference between Examples 1 and 2 is that now all nodes are dominant. That is, the674

typical trajectories in the vicinity of the discontinuity set are connected to \Sigma (Figure 5(b)).675

We can identify the following types of trajectories:676

\bullet generic trajectories starting from \Sigma along \^w5 or \^w6 and ending at \Sigma along \^w1 or \^w2,677

\bullet trajectories in the unstable manifolds of \^w3 and \^w4 starting from \Sigma along \^w3 and \^w4,678

\bullet two isolated trajectories starting from \Sigma along \^w5 or \^w6 and leaving the vicinity of \Sigma ,679

\bullet four isolated incoming trajectories ending at \Sigma along \^w1, \^w2, \^w3, and \^w4.680

Example 4.3 (nontrivial limit directions). In order to reduce the complexity of calculations,681

Examples 4.1 to 4.2 contain such symmetries that the limit directions are organized into pairs682

opposite to each other and having the same properties. This symmetry can be broken by683

adding a constant term to (4.1). Consider the system684

(4.11) F(x) =

\left(    
2x1/

\sqrt{} 
x21 + x22 + x23 + 1/2

x2/
\sqrt{} 

x21 + x22 + x23
 - x3//

\sqrt{} 
x21 + x22 + x23
1

\right)    .685

By following the calculation steps of Example 4.1, one obtains the results summarized in686

Table 3. The number and type of limit directions in Examples 4.1 and 4.3 are the same.687
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Figure 5. Numerically determined trajectories of (a) Example 4.1, (b) Example 4.2, (c) Example 4.4,
and (d) Example 4.5. Initial conditions at t = 0 are (a), (b) x = y = z = 10 - 3, (c) x = y = 4 \cdot 10 - 3, z = 10 - 3,
and (d) x = y = 10 - 3, z = 1.013 \cdot 10 - 3. Each trajectory was followed forward and backward in time.

660

661

662
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Table 2691

Limit directions of (4.7) in Example 4.2.692

Location R \star ( \^\bfw , \=\bfx ) Fixed point Limit direction

\^\bfw 1 (1, 0, 0, 0)  - 2 stable node attracting-dominant

\^\bfw 2 ( - 1, 0, 0, 0)  - 2 stable node attracting-dominant

\^\bfw 3 (0, 1, 0, 0)  - 1 saddle attracting-saddle

\^\bfw 4 (0, - 1, 0, 0)  - 1 saddle attracting-saddle

\^\bfw 5 (0, 0, 1, 0) 1 unstable node repelling-dominant

\^\bfw 6 (0, 0, - 1, 0) 1 unstable node repelling-dominant

Table 3693

Limit directions of (4.11) in Example 4.3.694

Location R \star ( \^\bfw , \=\bfx ) Fixed point Limit direction

\^\bfw 1 (1, 0, 0, 0) 5/2 stable node repelling-isolated

\^\bfw 2 ( - 1, 0, 0, 0) 3/2 stable node repelling-isolated

\^\bfw 3 ( - 1
2
,
\surd 
3

2
, 0, 0) 1 saddle repelling-saddle

\^\bfw 4 ( - 1
2
, - 

\surd 
3

2
, 0, 0) 1 saddle repelling-saddle

\^\bfw 5 ( - 1
6
, 0,

\surd 
35
6

, 0)  - 1 unstable node attracting-isolated

\^\bfw 6 ( - 1
6
, 0, - 

\surd 
35
6

, 0)  - 1 unstable node attracting-isolated

Thus, the local dynamics is topologically equivalent (see Figure 4(b)). However, the geometry688

of the phase space has changed: the symmetries mentioned above are broken, and the limit689

directions are not constrained to trivial pairs any more.690

4.2. Fast dynamics converging to a limit cycle.695

Example 4.4. Consider the system696

(4.12) F(x) =

\left(    
 - x2/

\sqrt{} 
x21 + x22 + x23

x1/
\sqrt{} 
x21 + x22 + x23

 - x3/
\sqrt{} 
x21 + x22 + x23
1

\right)    +

\biggl( 
3x21 + 4x23

x21 + x22 + x23
 - 2

\biggr) 
\cdot w,697

where w = 1/
\sqrt{} 

x21 + x22 + x23 \cdot (x1, x2, x3, 0). The polar transformation now reveals698

R \star (w, \=x) = 3w2
1 + 3w2

3  - 2,(4.13)699

V \star (w, \=x) = ( - w2 + w1w
2
3, w1 + w2w

2
3, - w3 + w3

3, 0),(4.14)700

F \star 
t (w, \=x) = (0, 0, 0, 1).(4.15)701

702

Inspection of the third component of V reveals that the sets w3 = 0 and w3 = \pm 1 are703

invariant. The first one corresponds to a circle wc, and the second one corresponds to two704

fixed points \^w1 = (0, 0, 1, 0) and \^w2 = (0, 0, - 1, 0). Considering the fast dynamics of w, the705

generic trajectories start from \^w1 or \^w2 and converge to the limit cycle wc (Figure 4(c)). The706

dynamics of w1, w2 over wc is given by707
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w\prime 
1 =  - w2,(4.16)708

w\prime 
2 = w1,(4.17)709

710

which generates periodic motion.711

Consider now the radial dynamics (Figure 4(c)). From (4.13), we get R \star = 1 for both715

fixed points \^w1 and \^w2; thus, the two related limit directions are repelling-dominant type.716

The radial dynamics at wc is determined by the time average (3.14). By introducing the polar717

angle \phi with w1 = cos\phi , w2 = sin\phi , the periodic motion corresponds to \phi = \phi 0+\tau and (3.14)718

is equivalent to719

R \star =

\int 2\pi 

0
3w2

1  - 2 d\phi =

\int 2\pi 

0
3 cos2 \phi  - 2 d\phi =  - \pi .(4.18)720

721

That is, the limit cone is attracting-dominant. Consequently, the possible types of nearby722

trajectories are723

\bullet generic trajectories starting from \Sigma along the limit directions \^w1 or \^w2 and ending in724

\Sigma along the limit cone wc (see Figure 5(b));725

\bullet two isolated trajectories starting from \Sigma along \^w1 or \^w2 and leaving the vicinity of \Sigma ;726

\bullet a continuous family of incoming trajectories ending at \Sigma along wc.727

It is straightforward to show that the plane x3 = 0 is an invariant plane of the full system728

(4.12) with the dynamics729

\.x1 =  - w2 + w1(3w
2
1  - 2),(4.19)730

\.x2 = w1 + w2(3w
2
1  - 2),(4.20)731

732

where w1 = w1/
\sqrt{} 

x21 + x22 and w2 = w2/
\sqrt{} 

x21 + x22. We know from (3.19) that the trajectories733

in the vicinity of a limit cone converge in finite time. This is confirmed by the numerical734

simulation of (4.19)--(4.20), which can be seen in Figure 6.735

x2

x1

x1,x2

x1(t)
x2(t)

finite time convergence

Figure 6. Oscillatory behavior related to a limit cone in Example 4.4. Left panel: in the invariant plane
x3 = 0, the system exhibits oscillations with a decay faster than exponential. Right panel: the trajectories
converge to the origin in finite time.

712

713

714
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4.3. Fast dynamics converging to a polycycle.736

Example 4.5. Consider the system737

F(x) =

\left(      
x1(x1 - x2 - x3) - x1x2

x2
1+x2

2+x2
3

x2(x1 - x2 - x3) - x2x3

x2
1+x2

2+x2
3

x3(x1 - x2 - x3) - x3x1

x2
1+x2

2+x2
3

1

\right)      .(4.21)738

739

The polar transformation results in740

R \star (w, \=xt) = w1  - w2  - w3  - w2
1w2  - w2

2w3  - w2
3w1,(4.22)741

V \star (w, \=xt) =

\left(    
 - w1w2 + w3

1w2 + w1w
2
2w3 + w2

1w
2
3

 - w2w3 + w3
2w3 + w2w

2
3w1 + w2

2w
2
1

 - w3w1 + w3
3w1 + w3w

2
1w2 + w2

3w
2
2

1

\right)    ,(4.23)742

F \star 
t (w, \=xt) = (0, 0, 0, 1).(4.24)743

744

We will focus on the circumferential dynamics in the positive octant of the state space, that745

is, 0 \leq w1, w2, w3 \leq 1 (Figure 4(d)). Here, the existence of four fixed points can be verified746

by substitution into (4.23): \^w1 = (1, 0, 0, 0), \^w2 = (0, 1, 0, 0), \^w3 = (0, 0, 1, 0), \^w4 = 1/
\surd 
3 \cdot 747

(1, 1, 1, 0).748

If w3 = 0, then the dynamics becomes749

V(r,w,xt) =
\bigl( 
 - w1w2, w

2
2w

2
1, 0, 1

\bigr) 
,(4.25)750

751

that is, in the selected octant, w\prime 
1 < 0 < w\prime 

2 and w\prime 
3 = 0. Hence there is a heteroclinic orbit752

from \^w1 to \^w2. Similar heteroclinic orbits exist from \^w2 to \^w3 and from \^w3 to \^w1.753

In order to uncover the full phase portrait of the circumferential dynamics, we consider a754

Lyapunov-like function L(w) = lnw1 + lnw2 + lnw3. It is straightforward to prove by using755

(2.6) and the inequality of arithmetic and geometric means that L(w) attains its maximum756

value over the positive octant of the unit sphere at \^w4. Furthermore, it does not have any757

local extrema, and it diverges to minus infinity as one approaches any of the previously found758

heteroclinic orbits due to limx\searrow 0 lnx =  - \infty . The directional time derivative of L along w(t)759

is given by760

d

d\tau 
L(w(t)) =

3\sum 
i=1

\partial L/\partial wiw
\prime 
i =

3\sum 
i=1

w - 1
i Vi(4.26)761

=  - w1  - w2  - w3 + w2
1(w2 + w3) + w2

2(w3 + w1)762

+ w2
3(w1 + w2) + w2

1w2 + w2
2w3 + w2

3w1.763
764

The rearrangement inequality [15] and (2.6) imply765

d

d\tau 
L(w(t)) \leq  - w1  - w2  - w3 + w2

1(w2 + w3)) + w2
2(w3 + w1)(4.27)766

+ w2
3(w1 + w2) + w3

1 + w3
2 + w3

3767

=  - w1  - w2  - w3 + (w2
1 + w2

2 + w2
3)(w1 + w2 + w3) = 0.768

769
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Hence, L is monotonically decreasing along trajectories, which means that general trajectories770

converge to \^w4 backward in time and to the \^w1 \rightarrow \^w2 \rightarrow \^w3 \rightarrow \^w1 polycycle forward in time.771

Convergence to a polycycle means that trajectories visit close neighborhoods of \^w1, \^w2, \^w3772

in alternating order and spend longer and longer time before transition to the next point.773

The rapidly increasing amount of time spent in close neighborhoods of the invariant points is774

responsible for the divergent behavior of the time average (3.22) as pointed out in section 3.2.3.775

It can be shown from (4.22) that R \star ( \^w, \=x) takes the values 1, - 1, - 1, - 2/
\surd 
3 at the fixed776

points \^w1, \^w3, \^w3, \^w4, respectively (Figure 4(d)). That is, trajectories converging to the777

polycycle visit both repelling ( \^w1) and attracting ( \^w2, \^w3) fixed points. More detailed analysis778

following [12] also reveals that the time average (3.22) oscillates in an interval (a, b) with779

 - 1 < a < 0 < b < 1. Accordingly, r gets infinitely close to zero from time to time, but it780

diverges again and again as illustrated by our numerical simulation in Figure 5(d).781

4.4. Application to motion under dry friction. The equations of motion of rigid bodies785

under dry friction provide natural examples of dynamical systems with discontinuity sets.786

Below we present three simple examples, all demonstrated on a slipping block: Example 4.6787

shows the classical textbook example of Filippov systems, Example 4.7 contains a codimension-788

2 discontinuity, and Example 4.8 demonstrates codimension-3 discontinuity.789

Example 4.6 (slip motion in one dimension). Consider the motion of a block slipping on a790

horizontal line in one dimension (see Figure 7(a)). The velocity of the block is denoted by u,791

and we push the block by a constant force P \geq 0. By assuming that the block is slipping on792

the plane in the presence of Coulomb friction, the dynamics is described by a single differential793

equation794

(4.28) m \.u = P  - \mu mg
u

| u| 
,795

where m is the mass of the block, g denotes the gravitational acceleration, and \mu is the friction796

coefficient between the block and the plane. The single point u = 0 is a trivial codimension-797

1 discontinuity set. The decomposition of variables yields xo = (u), r = | u| , w = (w1),798

w1 = u/| u| . As the codimension of the discontinuity set is 1, the circumferential dynamics is799

trivial, V \star = 0, and the limit of the radial dynamics becomes R \star (w) = Pw1/m  - \mu g. The800

two trivial limit directions are \^w1 = ( - 1) and \^w2 = (1), related to the slipping of the block801

to left and the right, respectively. The direction \^w1 is always attracting; \^w2 is attracting for802

P < \mu mg and repelling for P < \mu mg.803

u1

u2

P

g

m
μ

u1

u2

P

g

mu
P

g

m

μ

ω u1

μ,ρ,c
(a) (b) (c)

Figure 7. Three examples of discontinuous dynamics induced by dry friction: a block slipping in one
dimension (panel (a)) and in two dimensions (panel (b)) under the effect of Coulomb friction, and a block
slipping in two dimensions under the effect of Coulomb friction combined with spinning friction (panel (c)).

782

783

784
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The results of the analysis are consistent with the well-known behavior of this trivial804

mechanical system:805

\bullet For a small pushing force (P < \mu mg), the sticking of the block (u = 0) is realizable,806

because small perturbations of the slipping velocity u are eliminated by the system in807

finite time, and the block starts sticking, again.808

\bullet For a higher pushing force (P > \mu mg), sticking is not realizable: The limit direction809

\^w2 becomes repelling, which makes the block slip to the right immediately. But if the810

perturbation causes slipping to the left (u < 0), a sticking phase occurs for a moment811

before permanent slipping to the right.812

Example 4.7 (slip motion in two dimensions). Consider a block similar to the previous813

example, which moves freely on a plane in two dimensions (with the forces being three-814

dimensional). Let u1 and u2 denote the components of the slipping velocity and let the815

pushing force P > 0 be parallel to u1 (see Figure 7(b)). Then, by assuming Coulomb friction,816

the dynamics in the state space (u1, u2) is given by the system817

m \.u1 = P  - \mu mg
u1\sqrt{} 

u21 + u22
, m \.u2 =  - \mu mg

u2\sqrt{} 
u21 + u22

.(4.29)818

819

The state space has a codimension-2 discontinuity set u1 = u2 = 0. Decomposition of the820

variables yields xo = (u1, u2), r =
\sqrt{} 

u21 + u22, and w = (w1, w2) where w1 = u1/
\sqrt{} 

u21 + u22821

and w2 = u2/
\sqrt{} 

u21 + u22. The limit values at the discontinuity are R \star (w) = Pw1/m  - \mu g,822

and V \star (w) = P/m \cdot (w2
2, - w1w2). By solving V \star (w) = 0, one obtains the limit directions823

\^w1 = ( - 1, 0), \^w2 = (1, 0), which are physically the same as in the previous example. By direct824

calculation, it can be shown that \^w1 is attracting-isolated, whereas \^w2 is attracting-dominant825

for P < \mu mg and repelling-isolated for P > \mu mg.826

The mechanical consequences are the following:827

\bullet The condition P < \mu mg of the realizable slipping motion is the same as that in the828

planar model. The effect of a small perturbation in the slipping velocities disappears829

in finite time. Moreover, the slipping velocity vanishes typically along the dominant830

limit direction \^w2, that is, the velocity is opposite to the pushing force just before831

sticking initiates.832

\bullet In the case P > \mu mg, there is a repelling and an attracting limit direction, both of833

which are isolated. That is, the generic behavior of the adjacent trajectories is avoiding834

the discontinuity at u1 = u2 = 0. Accordingly, small perturbations typically initiate835

slip motion in the direction of the pushing force without creating an instantaneous836

sticking state.837

Example 4.8 (slip motion under drilling torque). If the friction force is modeled as a dis-838

tributed force field over a finite contact area, the resultant force and torque need to be con-839

sidered at the same time (see Figure 7(c)). Based on the results of [23] and [21], the combined840

effect of the slipping velocities u1 and u2 and the spinning angular velocity \omega can be described841

by a simple phenomenological model leading to the equations842

m \.u1 = P  - \mu mgu1\sqrt{} 
u21 + u22 + \rho 2\omega 2

,(4.30)843
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m \.u2 =  - \mu mgu2\sqrt{} 
u21 + u22 + \rho 2\omega 2

,(4.31)844

J \.\omega =  - c\mu Jg\omega \sqrt{} 
u21 + u22 + \rho 2\omega 2

.(4.32)845

846

In (4.30)--(4.32), \rho is a parameter with dimension length, which is related to the size of the847

contact area between the block and the plane. J is the moment of inertia of the block, and c848

is a dimensionless parameter assumed to be in the range 0 < c < 1. Based on the phase space849

xo = (u1, u2, \rho \omega ), the calculations presented above lead to the following results:850

\bullet For (1  - c)\mu mg < P < \mu mg, there is an attracting-isolated limit direction \^w1 =851

( - 1, 0, 0) and an attracting-dominant limit direction \^w2 = (1, 0, 0). For \mu mg < P ,852

\^w2 becomes repelling-isolated. In these two cases, the block behaves similarly to the853

previous model.854

\bullet For P < (1  - c)\mu mg, \^w2 = (1, 0, 0) becomes attracting-saddle type, and two further855

limit directions \^w3,4 = (cos \delta , 0,\pm sin \delta ) appear with856

(4.33) \delta = arccos(P/(\mu mg(1 - c))),857

which are both attracting-dominant. In this new scenario, the sticking state is typically858

reached along these new directions where the u1 component of the slipping velocity859

and the spinning angular velocity \omega are related by u1 sin \delta \pm \rho \omega cos \delta = 0.860

Note that in the case c > 1 the analysis can be done analogously. The value of the parameter861

c depends on the geometry and the pressure distribution of the contact area, which are not862

discussed here.863

5. Sliding and crossing. In the previous section, we determined and analyzed the possible864

trajectories which tend to the discontinuity set \Sigma in positive or negative direction of time.865

Now, our goal is to explore the possibilities to concatenate these trajectories and to extend866

the dynamics to \Sigma . This goal resulted in the concept of sliding and crossing in piecewise867

smooth dynamical systems.868

It was mentioned in subsection 2.2 that in addition to the vector field outside \Sigma , we869

need further information at discontinuity to determine this concatenation and the sliding and870

crossing regions. In the case of piecewise smooth systems, the jump at the discontinuity can be871

expressed by using switching variables (containing the nonsmooth terms). The choice of this872

expression modifies significantly the sliding and crossing behavior, which can be analyzed in873

detail by exploring the hidden dynamics inside the discontinuity set blown up to a boundary874

layer; see, for example, [17]. The simplest choice to connect the vector field through the875

discontinuity set is Filippov's convex method.876

The main focus of the present paper has been on the structure of the vector field and877

trajectories in the vicinity of the discontinuity set. Nevertheless, in this section, we make878

initial steps toward defining sliding and crossing at the discontinuity set. The analysis is879

restricted to the convex method. In this case, the sliding dynamics can be obtained by linear880

expressions, which is shown for the codimension-1 case in [7, p. 76], and for the codimension-2881

case in [2]. Now, we extend these concepts to the general codimension-n case. The analysis882

of nonlinear sliding [35, 6, 29, 17] is left for future work.883
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5.1. Crossing and sliding regions. We have seen that the circumferential dynamicsV \star (w,884

\=xt) may have several types of invariant sets (see subsection 3.1). We now restrict the analysis885

to systems where the invariant sets are fixed points (related to attracting and repelling limit886

directions) and limit cycles (related to attracting and repelling limit cones). The points \=xt \in \Sigma 887

can be categorized according to the attracting or repelling property of these objects.888

Definition 5.1 (crossing and sliding). Consider a point x = \=xt \in \Sigma and assume that all the889

invariant sets of V \star (w, \=xt) are fixed points and limit cycles.890

\bullet We call \=xt a crossing point of \Sigma if there is at least one attracting limit direction or891

limit cone and there is at least one repelling limit direction or limit cone.892

\bullet We call \=xt an attracting sliding point of \Sigma if all the limit directions and limit cones893

are attracting.894

\bullet We call \=xt a repelling sliding point of \Sigma if all the limit directions and limit cones are895

repelling.896

Note that alternatively, repelling sliding could be called ``escaping,"" and then attracting897

sliding could be referred to simply as ``sliding."" Both naming conventions are used in relation898

to classical Filippov systems.899

According to Definition 5.1, the discontinuity set \Sigma is partitioned to the crossing region900

\Sigma c, the attracting sliding region \Sigma a, and the repelling sliding region \Sigma r. The special cases at901

the boundaries between these regions are not analyzed here.902

At a crossing point, there exist at least one trajectory of F ending at \=xt and at least one903

trajectory starting from \=xt, which trajectories can be connected through the discontinuity.904

However, unlike in classical Filippov systems, there are typically several starting and ending905

trajectories at \=xt and the actual connection of them is ambiguous. This problem could possibly906

be resolved by regularization as done at the singularities of Filippov systems [20], but it is907

beyond the scope of the paper. Now, we can say that this definition of crossing gives the908

possibility to concatenate the trajectories at the current point of the discontinuity set.909

At a sliding point, connecting trajectories through the discontinuity is clearly not possible910

because either all the trajectories end at \=xt (attracting sliding) or they all start from \=xt911

(repelling sliding). That is, the trajectories are ``stuck"" into the discontinuity set in forward912

or backward direction of time. In order to achieve a complete description of the behavior of913

the system, we define the sliding dynamics inside \Sigma in the following.914

5.2. Sliding dynamics. At the sliding region, the straightforward way to complete the915

dynamics is to create a sliding vector field \~F : \Sigma a \cup \Sigma r \rightarrow \BbbR m. At a point \=xt \in \Sigma , the sliding916

vector \~F(\=xt) is assumed to be generated by the limit vector field F\ast (w, \=xt), which dependence917

can be either convex or nonconvex. Already in the codimension-1 discontinuity of the classical918

Filippov system, the nonconvex combination introduces an additional level of complexity and919

several new phenomena (see [17] for an overview). Now, the analysis is restricted to the sliding920

vector field from convex combination.921

5.2.1. Definition of sliding dynamics.922

Definition 5.2 (sliding vector from convex combination). Consider a point \=xt \in \Sigma . The923

vector \~F(\=xt) is called a (convex) sliding vector if there exists a function \alpha : \BbbS n - 1 \rightarrow [0, 1]924

satisfying925
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\BbbS n - 1

\alpha (w)dw = 1,(5.1)926 \int 
\BbbS n - 1

\alpha (w) \cdot F \star 
o(w, \=xt)dw = 0,(5.2)927 \int 

\BbbS n - 1

\alpha (w) \cdot F \star 
t (w, \=xt)dw = \~F(\=xt).(5.3)928

929

That is, the resulting vector \~F(\=xt) is tangent to \Sigma , and the orthogonal component Fo =930

vanishes. We assume that in the codimension-1 case, the integration in (5.1)--(5.2) reduces to931

the summation of the two elements in \BbbS 0. With this construction, two fundamental questions932

arise:933

\bullet Does the sliding vector \~F(\=xt) exist for any point \=xt in the sliding region \Sigma a \cup \Sigma r?934

In the codimension-1 case of Filippov systems, \=xt being in the closure of the sliding935

region is equivalent to the existence of \~F(\=xt) ([7, p. 76]). In the codimension-2 case936

of extended Filippov systems, \=xt being in the sliding region is a sufficient but not937

necessary condition of the existence of \~F(\=xt) [2]. We expect that this is the case also938

in the higher codimension cases, but we do not prove this.939

\bullet Is this construction \~F(\=xt) unique? In the codimension-1 case, the convex sliding940

vector is unique; however, nonuniqueness arises at the intersection of discontinuity941

sets [8, 16, 19]. In the codimension-2 case, the sliding vector is nonunique except942

for a restricted class of systems, which satisfy certain linearity conditions [2]. As we943

point out below, the same thing happens in the higher codimensional case: (5.1)--(5.3)944

generate a convex hull of the set F \star (\BbbS n - 1, \=xt), and the intersection of this set with \Sigma 945

is typically not a single point. We do not attempt to resolve nonuniqueness in general;946

however, we identify an important class of systems where the sliding vector is unique.947

In those systems where the existence and uniqueness of the sliding vector are ensured, we948

can create the system949

(5.4) \.x = \~F(x)950

in x \in \Sigma a \cup \Sigma c which we call the sliding dynamics. The sliding dynamics is a consistent951

complement of the original nonsmooth system (2.1) in the sliding region.952

5.2.2. Systems with unique sliding vector. We now establish a subclass of the systems953

where the sliding vector field is unique. The case described in the next theorem is practically954

important because mechanical problems with dry friction often have this form of equation.955

Theorem 5.3. Consider a point \=xt \in \Sigma . Assume that the limit vector field (2.19) has the956

form957

F \star 
o(w, \=xt) =

\biggl( 
Ao(\=xt)

0

\biggr) 
\cdot b(w, \=xt) +

\biggl( 
co(\=xt)

0

\biggr) 
,(5.5)958

F \star 
t (w, \=xt) =

\biggl( 
0

At(\=xt)

\biggr) 
\cdot b(w, \=xt) +

\biggl( 
0

ct(\=xt)

\biggr) 
,(5.6)959

960

where b, co \in \BbbR n, ct \in \BbbR m - n, Ao \in \BbbR n\times n is an invertible matrix, and At \in \BbbR n\times (m - n).961

Assume that a sliding vector \~F(\=xt) satisfying (5.1)--(5.3) exists. Then, the sliding vector is962

unique and it is determined by963
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(5.7) \~F(\=xt) =

\biggl( 
0

ct(\=xt) - At(\=xt)A
 - 1
o (\=xt)co(\=xt)

\biggr) 
.964

Proof. The formulation (5.5)--(5.6) ensures that for fixed \=xt, the values of F \star for any965

w belong to an n-plane F \in \BbbR m described in a parametric form. By eliminating b(w, \=xt),966

(5.5)--(5.6) can be rearranged to the explicit form967

(5.8) F \star 
t (w, \=xt) =

\biggl( 
0

\~A(\=xt)

\biggr) 
F \star 
o(w, \=xt) +

\biggl( 
0

\~c(\=xt)

\biggr) 
,968

where969

\~A(\=xt) = At(\=xt)A
 - 1
o (\=xt), \~c(\=xt) = ct(\=xt) - At(\=xt)A

 - 1
o (\=xt)co(\=xt).(5.9)970

971

By using (5.8), we can transform (5.3) into972

\~F(\=xt) =

\biggl( 
0

\~A(\=xt)

\biggr) \int 
\BbbS n - 1

\alpha (w) \cdot F \star 
o(w, \=xt)dw +

\biggl( 
0

\~c(\=xt)

\biggr) \int 
\BbbS n - 1

\alpha (w)dw.(5.10)973

974

Then, further substitution of (5.1) and (5.2) into (5.10) yields (5.7).975

In summary, if we are able to put the vector field into the form (5.5)--(5.6), then not only976

is the uniqueness of the sliding vector field ensured but we have an explicit formula (5.7).977

Many mechanical problems with dry friction induce dynamics that satisfies (5.5)--(5.6) with978

b(w, \=xt) = w. However, the presented theorem applies to a more general class of systems.979

5.3. Sliding dynamics in mechanical problems with dry friction.980

Example 5.4 (rolling-slipping ball). The examples in section 4 contained a trivial dy-981

namics of the tangential variables xt, and thus, the concept of sliding and crossing were not982

demonstrated. In the last example, we show a simple mechanical model which exhibits cross-983

ing and sliding regions, and where the sliding dynamics describes the mechanical effect of984

rolling.985

Consider a homogeneous ball undergoing a combination of roll and slip motion on a plane986

in the presence of a viscous medium (see Figure 8(a)). The radius of the ball is \rho , its mass987

is m, and its moment of inertia is 2/5 \cdot m\rho 2. The friction coefficient at the contact point is988

\mu , and the effective gravitational acceleration is denoted by g (buoyancy is included). The989

state of the ball is described by the variables x = (u1, u2, v1, v2) where u1, u2 are the velocity990

components of the contact point and v1, v2 are the velocity components of the center of gravity991

of the ball. The effect of the medium is modeled simply as a linear drag force at the center992

of gravity of the ball with components  - Kv1 and  - Kv2 where K is a drag parameter. Then,993

the Euler--Lagrange equations of the ball lead to the differential equation994

(5.11)

\left(    
\.u1
\.u2
\.v1
\.v2

\right)    = F(x) =

\left(       
 - 7

2\mu g
u1\surd 
u2
1+u2

2

 - K
mv1

 - 7
2\mu g

u2\surd 
u2
1+u2

2

 - K
mv2

 - \mu g u1\surd 
u2
1+u2

2

 - K
mv1

 - \mu g u2\surd 
u2
1+u2

2

 - K
mv2

\right)       .995
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Figure 8. Model of a ball slipping on a plane in a viscous medium. (a) Sketch of the model with the state
variables of the system. (b) Sliding and crossing regions of the discontinuity set \Sigma \ni \bfx t = (0, 0, v1, v2). (c), (d)
Dynamics of the normal variables \bfx o = (u1, u2, 0, 0) at the discontinuity set in the sliding and crossing regions,
respectively.

1008

1009

1010

1011

The codimension-2 discontinuity set is u1 = u2 = 0; the orthogonal and tangential parts996

of the state variable are xo = (u1, u2, 0, 0) and xt = (0, 0, v1, v2), respectively. The polar997

decomposition becomes r =
\sqrt{} 
u21 + u22 and w = (u1/

\sqrt{} 
u21 + u22, u2/

\sqrt{} 
u21 + u22). From the998

calculation steps shown in the previous examples, we can show that there are always two limit999

directions, \^w1,2 = \pm (v1/
\sqrt{} 
v21 + v22, v2/

\sqrt{} 
v21 + v22), which are parallel to the velocity of the1000

center of gravity of the ball. The direction \^w1 is always attracting-isolated. The direction \^w21001

is attracting-dominant for
\sqrt{} 

v21 + v22 < 7\mu mg/(2K) (Figure 8(c)) and it is repelling-isolated for1002 \sqrt{} 
v21 + v22 > 7\mu mg/(2K) (Figure 8(d)). Thus, on the plane (v1, v2) of the tangential variable1003

xt, the sliding and crossing regions are separated by the circle
\sqrt{} 

v21 + v22 = 7\mu mg/(2K) (see1004

Figure 8(b)). Outside this circle, being in the crossing region means that the roll motion of1005

the ball is not realizable. Inside the circle, being in the sliding region means that the ball is1006

capable of sustained roll motion.1007

Next, we determine the sliding dynamics in the sliding region and its mechanical meaning.1012

At u1 = u2 = 0, the limit vector field F \star can be put into the form (5.5)--(5.6), where b = w,1013

and the matrices become1014

Ao =

\biggl( 
 - 7

2\mu g 0
0  - 7

2\mu g

\biggr) 
, At =

\biggl( 
 - \mu g 0
0  - \mu g

\biggr) 
, co = ct =

\Biggl( 
 - K

mv1

 - K
mv2

\Biggr) 
.(5.12)1015

1016

By using the formula (5.7), the sliding dynamics becomes1017

(5.13) \~F =

\left(     
0
0

 - 5
7
K
mv1

 - 5
7
K
mv2

\right)     .1018

It can be checked that (5.13) recovers correctly the differential equations of the rolling ball,1019

which can be derived by the Newton--Euler equations considering the rolling constraint u1 =1020

u2 = 0. This example demonstrates that in mechanical problems, the sliding dynamics cor-1021

responds to the local static mechanical state at the contact point (sticking or rolling). The1022

mechanical slipping is described by the dynamics outside the discontinuity set.1023
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6. Conclusion. Classical Filippov systems with codimension-1 discontinuity sets are nat-1024

ural descriptions of various natural phenomena. However, many simple models give rise to1025

discontinuity sets of higher codimensions. For example, the one-dimensional motion of a1026

rigid body under dry friction is modeled by a Filippov system; however, two-dimensional mo-1027

tion and motion under spinning frictional torque induce dynamics with codimension-2 and1028

3 discontinuities. The dynamics of systems with codimension-2 discontinuity was recently1029

analyzed by [2], and in the present paper, we presented a similar analysis in the general case1030

of codimension-n discontinuity sets.1031

In both cases, the dynamics in a small neighborhood of the discontinuity set is captured by1032

decomposition of the vector field to radial, tangential, and circumferential components. The1033

circumferential component is trivial in the case of Filippov systems. For n = 2, all important1034

properties of the circumferential dynamics are captured by analyzing its fixed points (i.e.,1035

limit directions), with special attention for the case of missing limit directions. In contrast,1036

the case of n > 2 may give rise to richer circumferential dynamics with convergence to various1037

possible types of invariant sets ranging from fixed points to polycycles and strange attractors.1038

We show how some of these give rise to pathological behavior, and thus we propose to exclude1039

such systems from further analysis.1040

We make initial steps toward completing the discontinuous vector fields by defining sliding1041

and crossing points as well as sliding dynamics along the discontinuity set. Similarly to the1042

codimension-2 case, the uniqueness of the sliding vector field is not satisfied but by a restricted1043

class of systems. Importantly, we find that models of friction-induced dynamics are consistent1044

with these restrictions. Sliding dynamics represents the physical stick or roll motion at the1045

contacts in this case.1046

Our analysis regarding dynamics at the discontinuity set remains incomplete. Most im-1047

portantly, crossing points were characterized by the existence of concatenated trajectories1048

crossing the discontinuity, whereas sliding points were characterized by the absence of such1049

trajectories. We formulated the unproven conjecture that the sliding vector field exists for1050

all sliding points. However, it should be noted that the sliding vector exists at some crossing1051

points. In such a case, it is a subtle question, beyond the scope of this work, of which type1052

of behavior is chosen by the system. There are even more types of nonuniqueness associated1053

with crossing points: a crossing point can have multiple or even infinitely many outgoing1054

trajectories, and any of them can be used as the continuation of an incoming trajectory. Re-1055

solving this type of nonuniqueness, analyzing bifurcation points from sliding to crossing as1056

well as other types of transition points are among the questions left for future work. We also1057

expect that deeper analysis will uncover further peculiar behavior in analogy with the known1058

singularities of Filippov systems associated with tangencies.1059
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