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Abstract In this paper, the general kinematics and
dynamics of a rigid body is analysed, which is in con-
tact with two rigid surfaces in the presence of dry fric-
tion. Due to the rolling or slipping state at each con-
tact point, four kinematic scenarios occur. In the two-
point rolling case, the contact forces are undetermined;
consequently, the condition of the static friction forces
cannot be checked from the Coulomb model to decide
whether two-point rolling is possible. However, this
issue can be resolved within the scope of rigid body
dynamics by analysing the nonsmooth vector field of
the system at the possible transitions between slipping
and rolling. Based on the concept of limit directions of
codimension-2 discontinuities, a method is presented
to determine the conditions when the two-point rolling
is realizable without slipping.
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1 Introduction

In modelling and analysis of mechanical systems, one
of the most challenging issues is the contact prob-
lem between the bodies, which leads to nonsmooth
effects. The nonsmoothness originates from two phys-
ical sources, from the unilateral property of the normal
contact forces, and from the dry friction characteristics
of the tangential contact forces.

At the tangential contact of rigid bodies, we dis-
tinguish a slipping contact state and a static contact
state which includes sticking or rolling. By assuming
deformations at the contact, these states are defined
locally, and the cumulated friction effect can be com-
puted numerically or can be interpreted by different
contact models [13,14]. However, when the stiffnesses
of the contactingbodies are large enough, the rigid body
model is an acceptable assumption, and at the contact
state of the discrete contact point, we can sharply dis-
tinguish the slipping and rolling–sticking cases. Then,
the Coulomb model and similar dry friction models
include both a constraint of rolling–sticking and a force
law of slipping (see [16], [17], or [21] for an overview).
These models include the conditions of the transitions
between the two states, aswell; these transitions change
not just the equations but also the dimension of the
resulting dynamical systems.

As constraints are included in the friction mod-
els, the presence of multiple contact points brings out
many issues related to multiple contacts, including the
indeterminacy of contact forces. This scenario occurs
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already at a single three-dimensional rigid body with
two contact points, which is themain topic of this paper.

When a rigid body is in contact with two rigid sur-
faces, four different contact states are possible from
the combination of rolling and slipping at each con-
tact point. It can be shown that at two-point rolling,
the contact forces are undetermined, which makes it
impossible to check the limitations of friction forces,
and thus, to determine the transition into slipping. It
seems that the problem is beyond the available tools of
rigid body mechanics, and one should include models
with elastic deformation to resolve the indeterminacy
and to get a complete description of the problem. How-
ever, the indeterminacy can be avoided within the rigid
body model: by careful analysis of the vector field of
the resulting dynamical system, it is possible to find the
trajectories of slipping–rolling transitions without cal-
culating the missing contact forces. For this approach,
we use the tools of analysis of codimension-2 disconti-
nuities of vector fields, which was presented in [3] and
[4].

The scenario of a rigid body with two contact points
can be found in several mechanical applications, such
as the railwaywheelsets [2,11,19], the rolling elements
of bearings [10,20,29], the compressed elements of the
tensegrity structures [24], or in the rotatingball flowme-
ter [7,23], which was analysed by the authors in [1].
The example of a ball with two contact points has been
recently used for demonstrating a new approach of fric-
tion models [26].

The paper is organized as follows: in Sect. 2, the
mechanical model is presented containing the rigid
bodywith two contact points, and the necessary formu-
lation is derived for the subsequent analysis. In Sect. 3,
the nonsmooth behaviour is presented in the state space,
and we demonstrate that the direct description of the
transitions is not possible due to the indeterminacy of
contact forces. In Sect. 4, the concepts of possible and
realizable rolling states are presented in the case of a
single contact point. This approach is extended to the
body with two contact points in Sect. 5, and the condi-
tions of the realizable rolling states are determined. In
Sect. 6, the results are demonstrated on a mechanical
example with closed form calculations.

2 Mechanical model of a rigid body with two
contact points

Consider the motion of a rigid body which is in normal
contact with two fixed, rigid surfaces at the points P+
and P−, respectively. Assume that the external forces
and the geometry of the surfaces ensure that the contact
points persist continuously during the motion, and no
other contact points appear. It is assumed that the nor-
mal contact persists in a regular state and compilations
of the Painleve paradox [6] do not occur.

2.1 Geometry

At a certain configuration of the body, letn+,n− denote
the normal unit vectors of the surfaces at P+ and P−.
Let C denote the centre of gravity of the moving body,
and let the locations of the contact points are r+ =−−→
CP+ and r− = −−→

CP− (see Fig. 1).
For the convenient kinematic description of friction

effects, we introduce orthonormal bases at the contact
points. First, let us consider the vector r+ − r− point-
ing from P− to P+, and define the corresponding unit

Fig. 1 Geometric description of a body with two contact points.
The figure shows a sphere in contact with two planes, but the
analysis is valid for general geometries of the rigid body and the
rigid surfaces
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vector

a = r+ − r−
∥
∥r+ − r−∥

∥
. (1)

Then, two tangential unit vectors can be defined at each
contact point:

t+1 = a × n+
∥
∥a × n+∥

∥
, t−1 = a × n−

∥
∥a × n−∥

∥
, (2)

t+2 = n+ × t+1 , t−2 = n+ × t−1 . (3)

We exclude the degenerate cases when the two con-
tact points coincide, or, r+ − r− is parallel to n+
or n−. Then, (1)–(3) provide the orthonormal bases
(n+, t+1 , t+2 ) and (n−, t−1 , t−2 ).

2.2 Kinematics

At the contact points, the velocities of the moving body
are denoted by

v+ = vP+ = u+
1 t+1 + u+

2 t+2 ,

v− = vP− = u−
1 t−1 + u−

2 t−2 ,
(4)

respectively. These velocities are not independent, but
they are related by the reduction formula of rigid body
kinematics,

v+ − v− = � × (r+ − r−), (5)

where � is the angular velocity vector of the body and
× denotes cross product.

The scalar product of the right-hand side of (5) by
a vanishes. Thus, we can introduce the variable

ua = 〈

v+, a
〉 = 〈

v−, a
〉

, (6)

which is the common velocity component of P+ and
P− in the direction of a. From (4) and (6), we get
u+
2 = c+ua and u−

2 = c−ua , where

c+ = 1/
〈

t+2 , a
〉

, c− = 1/
〈

t−2 , a
〉

. (7)

Then, the velocities (4) become

v+ = u+
1 t+1 + c+uat+2 ,

v− = u−
1 t−1 + c−uat−2 .

(8)

The cross product of (5) by a gives

a × (v+ − v−) = ‖r+ − r−‖ · � − ‖r+ − r−‖ · 〈a,�〉 · a.

(9)

Then, by using the notation

�a := 〈a,�〉 (10)

for the angular velocity component parallel to a, the
angular velocity vector can be expressed in the form

� = �a · a + a × v+ − v−

‖r+ − r−‖ . (11)

Consequently, (8) and (11) show that in a given
configuration, the velocity state of the body can be
described uniquely by the four variables u+

1 , u−
1 , ua

and �a .
The rolling of the body at P+ is characterized by

v+ = 0, which is equivalent to u+
1 = ua = 0. Sim-

ilarly, the rolling at P− is characterized by v− = 0,
which is equivalent to u−

1 = ua = 0.

2.3 Newton–Euler equations

At the contact points P+ and P−, the contact forces
are denoted by F+ and F−, respectively (see Fig. 2).
They are expressed in the form

F+ = N+n+ + T+, F− = N−n− + T−, (12)

where N+ > 0 and N− > 0 are the normal force
components, and the tangential forces are given by

T+ = T+
1 t+1 + T+

2 t+2 , T− = T−
1 t−1 + T−

2 t−2 . (13)

All other external loads are reduced into the centre of
gravity C of the body, leading to the resultant external
force Fe and the resultant external torque Me. Then,
the Newton–Euler equations of the rigid body become

mv̇C = F+ + F− + Fe,

J�̇ + � × (J�) = r+ × F+ + r− × F− + Me,
(14)

where J is the mass moment of inertia of the body,

vC = v+ − � × r+. (15)

is the velocity of the centre of gravity of the body, and
the dot denotes differentiation with respect to the time.
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Fig. 2 The force system acting on a rigid body with two contact
points. The effect of external forces is reduced to the centre of
gravity C

2.4 Coulomb friction model

Tocomplete ourmodel,we assume the simpleCoulomb
frictionmodel between the bodies. That is, the point P+
can be either in slipping state characterized by

∥
∥v+∥

∥ > 0, (16)

T+ = −μN+ v+
∥
∥v+∥

∥
, (17)

or, in rolling state characterized by

v+ = 0, (18)
∥
∥T+∥

∥ ≤ μN+. (19)

Similarly, the slipping and rolling states of P− are
given by

∥
∥v−∥

∥ > 0, (20)

T− = −μN− v−
∥
∥v−∥

∥
, (21)

and

v− = 0, (22)
∥
∥T−∥

∥ ≤ μN−, (23)

respectively.

To simplify the notations, we implicitly assumed,
that the friction coefficient μ is the same at the two
contact points, which restriction can be released if nec-
essary.We also assume that the static and dynamic fric-
tion coefficients are the same, which can be generalized
for a class of friction models presented in Sect. 4.1.
Note that instead of the presented basic description,
the contact laws could be alternatively interpreted as
set-valued force laws (see [8] and [28]).

2.5 Kinematic cases

The slipping or rolling states of the two contact points
lead to four different kinematic cases of the body.
Throughout the paper, these cases are referred to by
the following acronyms:

– Case SS: slipping–slipping case, the body is slip-
ping at both P+ and P−,

– Case SR: slipping–rolling case, the body is slipping
at P+ and rolling at P−,

– Case RS: rolling–slipping case, the body is rolling
at P+ and slipping at P−,

– Case RR: rolling–rolling case, the body is rolling
at both P+ and P−.

Note that we assume a permanent normal contact
where there is no separation or impacts between the
surfaces. When the analysis is extended to the cases
with dynamic effects fromnormal contact, several other
kinematic cases appear at two contact points already in
problems in two dimensions [15,18,27]. With the loss
of contact in spatial problems with two contact points,
we obtain at least nine kinematic cases [1]. In this paper,
we assume that the normal contact is ensured, leading
to the four kinematic cases listed above.

3 Nonsmooth dynamics

3.1 State space

The six degrees of freedom of a free rigid body are
reduced by two because of the two normal contact con-
straints. Thus, at least in the vicinity of an initial con-
figuration, the configuration space of contacting body
can be parametrized by generalized coordinates in the
form

q = (q1, q2, q3, q4) . (24)
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We parametrize the velocity state of the body by the
vector

s = (s1, s2, s3, s4) = (

u+
1 , u−

1 , ua,�a
)

, (25)

which quantities are called the quasi-velocities (see [9],
p. 217) of the system.

The vectors r+, r−, n+ and n− depend on the gener-
alized coordinates q, and the moment of inertia tensor
J depends on q, as well. Moreover, we assume that the
external loads Fe and Me depends only on q and s.
In addition, all these dependencies are assumed to be
smooth.

Then, dynamics of the moving body is determined
in a state spaceX composed from the generalized coor-
dinates (24) and the quasi-velocities (25),

x = (q, s) ∈ X ⊂ R
8. (26)

The dynamics inX is governed by a set of first-order
ordinary differential equations. As the velocity state
depends linearly on the first derivatives of the general-
ized coordinates, these derivatives can be expressed in
the form

q̇ = K (q)s, (27)

where K (q) is a four-by-fourmatrix depending smoothly
on q. The dynamics of s is written in the form

ṡ = f (s, q), (28)

where the function f (s, q) can be derived from the
Newton–Euler equations by selecting the appropriate
contact state equations from (16)–(23). Finally, the full
dynamics of the state space is formally given by

ẋ = F(x) = (

K (q)s, f (s, q)
)

. (29)

3.2 The different types of dynamics in the state space

Consider the set

�+ = {

x ∈ X : u+
1 = ua = 0

}

(30)

in the state space. This is the subspace where

– the rolling condition (18) is satisfied,
– the friction law (17) has a discontinuity.

Similarly, the set

�− = {

x ∈ X : u−
1 = ua = 0

}

(31)

contains the states where

– the rolling condition (22) is satisfied,

– the friction law (21) has a discontinuity.

These sets (30) and (31) are codimension-2 sub-
spaces of the state space X . Their intersection is the
codimension-3 subspace

�# = �+ ∩ �+ = {

x ∈ X : u+
1 = u−

1 = ua = 0
}

.

(32)

Purely from kinematic point of view, the location of
the different types of dynamics is the following:

– Case RR (rolling–rolling) is located at �#.
– Case RS (rolling–slipping) is located at �+ \ �#.
– Case SR (slipping–rolling) is located at �− \ �#.
– Case SS (slipping–slipping) is located atX \(�+∪

�−).

The properties of the four kinematic cases can be found
in Table 1.

It can be shown that from the Newton–Euler equa-
tions (14) and the appropriate conditions from (16)–
(23), we can derive the differential equation in the form
(29). (Alternatively to theNewton–Euler equations, the
kinematic constraints could be directly included to the
rolling cases by the Gibbs–Appell equation from [9],
p. 254.) Then, we get the vector field F(x) for each
kinematic case, which we denote by FSS(x), FSR(x),
FRS(x) and FRR(x).

3.3 Indeterminacy of the contact forces

If we want to determine the rolling–slipping transi-
tions between the different cases (see Fig. 3), we have
to consider the restrictions (19) and (23) of the fric-
tion forces, as well. In each kinematic case, Equations
(14) and (16)–(23) form a differential-algebraic equa-
tion (DAE), where the unknowns are the contact forces
F+, F−, and derivatives ṡ of the quasi-velocities. If we
count the independent scalar equations and unknowns
(see Table 2), we get that in the cases SS, SR, and
RS, all unknowns are determined including the contact
forces. However, in Case RR, we do not have enough
equations, which causes the central issue of this paper.

The problem is the following: the rolling constraints
(18) and (22) are not independent, and thus, we get
only 3 kinematic constraints, while 4 unknowns appear
whenwe replace (17) and (21) with (19) and (23). Con-
sequently, the contact forces are undetermined. With-
out the value of the contact forces, the conditions of the
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Table 1 Notations and properties of the four kinematic cases of the two-point contacting body

Kinematic case Acronym Kinematic constraints Free variables Location Codimension
u+
1 u−

1 ua �a in s in q of the subset

Slipping–slipping SS 4 4 X \ (�+ ∪ �−) 0

Slipping–rolling SR 0 0 2 4 �− \ �# 2

Rolling–slipping RS 0 0 2 4 �+ \ �# 2

Rolling–rolling RR 0 0 0 1 4 �# = �+ ∩ �− 3

In the cases containing rolling, the dimension of the problem is reduced by the rolling constraints (18) and (22). The number of the
independent equations from the rolling constraints gives the codimension of the rolling subspaces in the state space, which is an important
property of the discontinuous property of the dynamics caused by the Coulomb friction model

Table 2 Number of unknowns and equations in the four kinematic cases

Case Scalar unknowns Scalar equations Missing
in ṡ in F+, F− Total In (14) In (17),(21) Total Equations

SS 4 6 10 6 4 10 0

SR 2 6 8 6 2 8 0

RS 2 6 8 6 2 8 0

RR 1 6 7 6 0 6 1

In Cases SS, SR and RS, the Newton–Euler equations and the contact conditions completely determine both the differential equations
and the contact forces. In Case RR, the rolling constraints at the two contact points are not independent. Thus, although the differential
equation is still can be computed, a scalar equation is missing for determining the contact forces. This indeterminacy can be resolved
within the scope of rigid body dynamics by using the method presented in the paper

transition between Case RR and the other cases cannot
be determined from the inequalities (19) and (23).

It seems that the complete dynamical description
of the model is not possible within the framework of
the rigid body dynamics and Coulomb friction model.
However, by exploiting an internal consistency of the
Coulomb model, we can avoid the problem and make
the transitions well defined.

For doing that, let us focus on the behaviour of the
vector field of the slipping cases in the vicinity of the
subspace containing the rolling-rolling case.Wewill do
this in Sect. 5, while the necessary tools are presented
step by step in Sect. 4.

4 Analysis of realizable rolling states at a
single-point contact

4.1 The basic ideas of slipping directions and
realizable sticking

Consider the trivial example of a block freely slip-
ping on a vertical line, which can be seen in the left
panel of Fig. 4. The notation is the following: m is the

Fig. 3 Possible transitions between the four kinematic cases.
The downward arrows denote slipping of the body at one or both
contact points. The upward arrows correspond to the transition
from sticking to rolling. At Case RR, the corresponding arrows
are dashed, denoting the fact that these transitions cannot be
checked by directly using the Coulomb friction law, because the
contact forces are undetermined
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Fig. 4 Left panel: the example where the possible and realizable
sticking is demonstrated. Right panel: the graph of the Coulomb
model with a Stribeck effect

mass of the block, u is the velocity of the block, g is the
gravitational acceleration, and L is the loading force.
We consider the Stribeck extension of the Coulomb
model in the form of velocity-dependent friction coef-
ficient μ(|u|). In the limiting cases, the monotonically
decreasing friction coefficient provides the static fric-
tion coefficient μs = lim|u|→0 μ(|u|) and the dynamic
friction coefficientμd = lim|u|→∞ μ(|u|) (see the right
panel of Fig. 4).

According to the Coulomb model with this exten-
sion, the slipping contact state is described by the dif-
ferential equation

u̇ = L

m
− μ(|u|)g u

|u| . (33)

The static (sticking) contact state is given by u ≡ 0 and
the ’dynamics’ is given by the static equation

mu̇ = L − Ts = 0, (34)

where Ts is the static friction force. Consider an initial
sticking state and push the block by a force L . Our
question is whether the block keeps its slipping state or
not. Consider the following two different approaches,
which we call the possibility and realizability of the
sticking state.

First, we can use the direct condition from the
Coulomb friction model which restrict the value of the
static friction force:

Definition 1 Under the load L , sticking of the block is
possible if the static friction force Ts = L satisfies

|Ts| ≤ μsmg. (35)

Second, we can consider the infinitesimal slipping
perturbations u → 0+, and u → 0−, which correspond
to the right and left directions of slip, respectively. The
sticking state is realizable if both of these perturbations
are eliminated by the dynamics (33), and thus, stick-
ing is regained. In other words, the acceleration and
velocity should not have the same direction:

Definition 2 Under the load L , sticking of the block is
realizable if

lim
u→0+ uu̇ ≤ 0 and lim

u→0− uu̇ ≤ 0. (36)

It can be checked bydirect calculation that the condi-
tions (35) and (36) are equivalent, and thus, the possible
and realizable sticking coincides in this example. It is
important to show that the two conditions are concep-
tionally rather different: when checking possibility, we
used the condition (35), which is an additional piece of
empirical information from the Coulombmodel, which
complements the formula Td = −μmgu/|u| of the
dynamic friction force Td. However, the condition (36)
does not contain this additional information, but it is
purely based on some qualitative assumptions of the
slipping dynamics (33).

The example demonstrates that the Coulomb or the
Coulomb–Stribeck models contain some internal con-
sistency: the restriction of themaximal contact forces is
given in such way which is consistent with the direction
of the surrounding vector field in the state space.

In Sect. 4.2, this property is shown for general rigid
body in the planar and spatial cases of the single-point
contact, which has been analysed throughout in [4].
Then, in Sect. 5, we can show how the concept of real-
izability can be applied even in the two-point contact
case when the possibility cannot be checked due to the
indeterminacy of the contact forces.

4.2 Realizable static states at single point contact

4.2.1 Planar contact case

Now, we generalize the case of the previous exam-
ple. Consider a rigid body with a single contact point
with a rigid surface. In the planar (two-dimensional)
case, the slipping velocity at the contact point is
described purely by a single component u, and the static
(rolling or sticking) case is characterized by u = 0.
In the presence of Coulomb friction, the dynamics of
such body often leads to a Filippov-system, which can
be defined in the following way:

Definition 3 (Filippov system) Consider a system

ẋ = F(x), x = (x1, . . . xm) ∈ R
m . (37)

Assume that (37) has the following properties:
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Fig. 5 Sketch of a state space of a Filippov system, related to
the dynamics of a rigid body with a single planar contact. The
rolling or sticking dynamics is located in the discontinuity set�,
and the slipping dynamics is located outside. The point x̄ with
the red limit vectors represents a attracting sliding point, where
both limit vectors point towards �, and thus, the rolling motion
is realizable. The point x̄ ′ with the blue vectors corresponds to
the crossing case when the rolling motion is not realizable

1. F is defined in Rm \ � where

� = {x : x1 = 0} . (38)

2. For all x̄ ∈ � the limits

F∗
1 (x̄) = lim

ε→0+ x̄ + εn1,

F∗
2 (x̄) = lim

ε→0+ x̄ + εn2
(39)

exist where n1 = (1, 0, . . . 0) and n2 = (−1, 0, . . .
0).

3. For all x̄ ∈ �, F∗
1 (x̄) �= F∗

2 (x̄).

Then, we call (37) a Filippov system.

In Definition 3,

– � is the codimension-1 discontinuity set (also
called switching surface),

– n1 and n2 are the unit normal vectors of �,
– F∗

1 (x̄), F∗
2 (x̄) are called limit vectors at a point

x̄ ∈ � (see Fig. 5).

The normal component of F∗
1 and F∗

2 with respect
to� express whether the trajectories approach or leave
the discontinuity set �. This distinction leads to the
following categorization:

Definition 4 Consider a point x̄ of the discontinuity
set �.

– The point x̄ is called an attracting sliding point of
� if

〈

F∗
1 (x̄), n1

〉

< 0 and
〈

F∗
2 (x̄), n2

〉

< 0.
– The point x̄ is called a crossing point of � if

〈

F∗
1 (x̄), n1

〉 · 〈

F∗
2 (x̄), n2

〉

< 0.
– The point x̄ is called a repelling sliding point of

� if
〈

F∗
1 (x̄), n1

〉

> 0 and
〈

F∗
2 (x̄), n2

〉

> 0.

For more details about Filippov systems and about
the more general class of piecewise smooth systems,
see [5] and [12].

When themotionof the rigid body leads to aFilippov
system in the state space, the static contact states are
located in the discontinuity set � (see Fig. 5). Follow-
ing our assumptions from the block example presented
above, we would like to ensure that all possible pertur-
bations in the slipping velocity are eliminated by the
dynamics. That is, the static (rolling or sticking) con-
tact state of the body is realizable when the vector field
point towards � from both sides:

Definition 5 (Realizable rolling or sticking in 2D)
Consider the rigid body with a single planar contact
where the slipping velocity is denoted by u, and the
static contact state corresponds to u = 0. Assume that
the motion of the body can be described by a Filippov
system (37) where x1 = u. We say that a rolling or
sticking state x̄ of the body is realizable if and only if
the given state in the state space is an attracting sliding
point of �.

We expect that this realizability of the static contact
case is equivalent to the possibility required by the
Coulomb model and its generalizations. This coinci-
dence can be proved as a special case of Theorem 4 in
[4].

Unfortunately, the term ’sliding region’, which has
become usual in the literature, is a bit misleading in
mechanical applications: in the state space, there is no
slipping in the sliding region, but it is the location of the
static (rolling or sticking) behaviour. Thus, we avoid
the term ’sliding’ in the mechanical sense and use the
term ’slipping’ instead.
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4.2.2 Spatial contact case

Now, let us consider the spatial (three-dimensional)
variant of the previous scenario, when the slipping
velocity at the single contact point has two compo-
nents u1 and u2, and the static state is characterized by
u1 = u2 = 0. When Coulomb friction is assumed at
the contact, the dynamics often leads to an extended
Filippov system.

Definition 6 (Extended Filippov system) Consider a
system

ẋ = F(x), x = (x1, . . . xm) ∈ R
m . (40)

Assume that (40) has the following properties:

1. F is defined in Rm \ � where

� = {x : x1 = x2 = 0} . (41)

2. For all x̄ ∈ � and φ ∈ [0, 2π) the limit

F∗(x̄, φ) = lim
ε→0

x̄ + εn(φ) (42)

exists where n(φ) = (cosφ, sin φ, 0, . . . 0).
3. For all x̄ ∈ �, there exist φ1, φ2 ∈ [0, 2π) such that

F∗(x̄, φ1) �= F∗(x̄, φ2).

Then, we call (40) an extended Filippov system.

In Definition 3,

– � is a codimension-2 discontinuity set,
– n(φ) maps the interval φ ∈ [0, 2π) onto the set of

unit normal vectors of �,
– F∗(x̄, φ) is called the limit vector field of (40) at
a given point x̄ ∈ � (see Fig. 6).

Unlike in the codimension-1 case, a point x̄ ∈ � has
now continuously many normal directions φ ∈ [0, π).
We can find certain special limit directions. In the nor-
mal space, the limit directions are the asymptotes of the
trajectories connected to the discontinuity set. First, let
us define the quantities

R(x̄, φ) = 〈

F∗(x̄, φ), n(φ)
〉

,

V (x̄, φ) = 〈

F∗(x̄, φ), n(φ + π/2)
〉

,
(43)

which are the radial and circumferential component of
the limit vector field at x̄ . A limit direction φ1 and the
corresponding normal vector n(φ1) are an asymptote
of at least one trajectory at x̄ ∈ � in the normal plane
if the circumferential component V vanishes:

Fig. 6 Sketch of a state space of an extended Filippov system,
related to the dynamics of a rigid body with a single spatial
contact. The rolling or sticking dynamics is located in the dis-
continuity set �, and the slipping dynamics is located outside.
At a point x̄ ∈ �, there are continuously many normal vectors
n(φ), which generates the limit vector field F∗(x̄, φ) contain-
ing the possible directional limits of the vector field. The green
vector shows the projection of F∗ onto the normal space of x̄ .
The polar components of these projection gives the functions
R(φ) and V (φ), which are used to determine whether the rolling
motion is realizable

Definition 7 (Limit direction) Assume that the direc-
tion φ1 ∈ [0, 2π) satisfies V (x̄, φ1) = 0. Then, φ1 is
called a limit direction of F at x̄ ∈ �. This limit direc-
tion is called attracting if R(x̄, φ1) < 0 or repelling
if R(x̄, φ1) > 0.

That is, the attracting and repelling limit directions cor-
respond to the trajectories which reach x̄ in forward or
backward direction of time. By using the concept of
limit directions, the sliding and crossing points of �

can be defined analogously to those of the classical
Filippov systems:

Definition 8 Assume that F possesses at least one
limit direction at x̄ ∈ �.

– The point x̄ is called an attracting sliding point
of � if all the corresponding limit directions are
attracting.

– The point x̄ is called a crossing point of � if there
exists at least one attracting and one repelling limit
direction.

– The point x̄ is called a repelling sliding point
of � if all the corresponding limit directions are
repelling.
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In the spatial (3D) case, the realizability of the static
(rolling or sticking) contact case requires that no solu-
tions can escape along repelling limit directions:

Definition 9 (Realizable rolling or sticking in 3D)
Consider the rigid body with a single spatial contact
where the components of the slipping velocity are
denoted by u1 and u2, and the static contact state cor-
responds to u1 = u2 = 0. Assume that the motion
of the body can be described by an extended Filippov
system (40) where x1 = u1 and x2 = u2. We say that
a rolling or sticking state x̄ of the body is realizable
if and only if the given state in the state space is an
attracting sliding point of �.

It can be shown that this realizable property of
rolling is equivalent to the possibility of rolling pre-
scribed by theCoulombmodel. This proof can be found
in Theorem 4 of [4], although the term ’realizable’ is
still not mentioned there.

5 Analysis of realizable rolling states at two-point
contact

In the single-point contact case, we recognized that for
the Coulomb and Coulomb–Stribeck models, the con-
dition of possibility of the static contact state does not
add further information to that we know from the real-
izability based on the vector field of the system. Con-
sequently, if we can establish the realizability for the
two-point contact state, then we do not need the infor-
mation from the condition of the maximum values of
static friction force. Thus, the problem of the undeter-
mined contact forces can be resolved.

5.1 Nonsmooth dynamics in Case SS

Based on the concepts shown above, let us continue
the analysis from the end of Sect. 3.2. In the two-point
slipping case (Case SS), the equations (17) and (21)
can be written into the form
T+
1 = −μN+λ+

1 , T+
2 = −μN+λ+

2 ,

T−
1 = −μN−λ−

1 , T−
2 = −μN−λ−

2 ,
(44)

where

λ+
1 = u+

1√

(u+
1 )2+(u+

2 )2
, λ+

2 = u2√

(u+
1 )2+(u+

2 )2
,

λ−
1 = u−

1√

(u−
1 )2+(u−

2 )2
, λ−

2 = u2√

(u−
1 )2+(u−

2 )2
.

(45)

These quantities satisfy (λ+
1 )2+(λ+

2 )2 = 1 and (λ−
1 )2+

(λ−
2 )2 = 1, and they formally contain the nonsmooth

dependence on the quasi-velocities u+
1 , u−

1 , ua of (25).
(Note that u+

2 = c+ua and u−
2 = c−ua , see (7).)

Let us use the notation λ = (λ+
1 , λ+

2 , λ−
1 , λ−

2 ). Then,
the Newton–Euler equations (14) can be decomposed
into algebraic and differential parts in the form

AN (s, q, λ(s)) ·
(

N+
N−

)

= bN (s, q) (46)

and

ṡ = fsmooth(s, q) + As(s, q, λ(s)) ·
(

N+
N−

)

, (47)

where

– the matrices AN and As depend smoothly on s and
q, and they depend linearly on λ;

– the vectors bN and fsmooth depend smoothly on s
and q.

Assume that (46) provides strictly positive values for
the normal forces N+ and N−. Then, the combination
of (46) and (47) leads to

ṡ = fsmooth(s, q) + fnonsmooth(s, q, λ(s)) (48)

where fnonsmooth = As A
−1
N bN . We can conclude that

in general, the components of fnonsmooth are rational
functions in λ with a quadratic numerator and denom-
inator.

By adding the (smooth) kinematic part of the vector
field from (27), we get the differential equation (29) in
the form

ẋ = FSS(x) (49)

for the two-point slipping case. The sets �+ and �−
from (30)–(31) are exactly the codimension-2 discon-
tinuity sets of (49), where the auxiliary variables (45)
and the contact forces (44) are not defined. The discon-
tinuity sets are intersecting each other at �# (see (32)),
which is the location of the two-point rolling case. The
structure of the state space can be seen in Fig. 7.

Let us consider the angles

φ+ = arctan(u+
a , u+

1 ), φ− = arctan(u−
a , u−

1 ). (50)
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Fig. 7 Structure of the state space of the two-point contact body.
The two codimension-2 subspaces �+ and �− are the discon-
tinuity sets of the two-point slipping dynamics (Case SS), and
these are the loci of themixed rolling slipping cases (SR andRS),
respectively. The intersection�# of these sets corresponds to the
two-point rolling case (Case RR). The possible directions of slip-
ping in Cases RS and SR correspond to unit circles parametrized
by φ+ and φ−. The possible directions of two-point slipping in
Case RR correspond to a unit sphere, which can be parametrized
by φ+ and φ− (see Fig. 8)

Then, we get

λ+
1 = cosφ+

√

cos2 φ+ + (c+ sin φ+)2
,

λ+
2 = c+ sin φ+

√

cos2 φ+ + (c+ sin φ+)2
,

λ−
1 = cosφ−

√

cos2 φ− + (c− sin φ−)2
,

λ−
2 = c− sin φ−

√

cos2 φ− + (c− sin φ−)2
.

(51)

Let us denote the normal vectors of the discontinuity
sets by

n+(φ+) = (cosφ+, 0, sin φ+, 0 . . . 0),

n+(φ−) = (0, cosφ−, sin φ−, 0 . . . 0).
(52)

At a point x̄ ∈ �+ \ �#, we can take the limit

F∗+
SS (x̄, φ+) = lim

ε→0+ FSS(x̄ + εn+(φ+)). (53)

Similarly, at x̄ ∈ �− \ �#, we can take the limit

F∗−
SS (x̄, φ−) = lim

ε→0+ FSS(x̄ + εn−(φ−)). (54)

Fig. 8 Parametrization of the unit sphere of normal directions
by using the angles φ+ and φ−. Left panel: the parameter lines
depicted on the unit sphere. Right panel: the parameter ranges.
The “northern” and “southern” hemispheres of the left panel cor-
respond to the two squares of the parameter plane on the right
panel. The “equator” of the sphere corresponds to the parame-
ter values sin φ+ = sin φ− = 0, where the parametrization is
singular

From the structure of the equations (48)–(49), we can
check that the limit (53)–(54) satisfy the conditions
of Definition 6. That is, (49) can be considered an
extended Filippov system with two intersecting discon-
tinuity sets.

By calculating the limit directions of the vector field
from (53) and (54), we could determine the realizabil-
ity of the mixed rolling–slipping cases (RS and SR),
and thus, the conditions of their transition to the two-
point slipping case (see the continuous arrows in Fig.
3). However, we do not focus on these transitions, but
instead, we try to determine the realizability of the two-
point rolling (RR) case.

5.2 Transition from Case RR to Case SS

The two-point rolling case (RR) is located at the inter-
section of�+ and�−, where a codimension-3 discon-
tinuity set �# appears in the phase space (see Fig. 7).
The possible directions normal to�# can be visualized
by a 2-sphere.

We would like to parametrize this sphere by using
the anglesφ+ andφ−. Thus, consider the normal vector
n(φ+, φ−) in the form

n(φ+, φ−) = sin φ+

| sin φ+| ·

⎛

⎜
⎜
⎜
⎝

sin φ− cosφ+√
1−cos2 φ+ cos2 φ−
sin φ+ cosφ−√

1−cos2 φ+ cos2 φ−
sin φ+ sin φ−√

1−cos2 φ+ cos2 φ−

⎞

⎟
⎟
⎟
⎠

, (55)

where the parameter range of the angles is
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(φ1, φ2) ∈ �=(0, π) × (0, π)∪(π, 2π)×(π, 2π).

(56)

The graph of (56) is an unit sphere spanned by the
components u+

1 , u−
1 and u2 (see Fig. 8). The vector

(55) is a unit vector satisfying
〈

n(φ+, φ−), n(φ+, φ−)
〉 = 1, (57)

and it satisfies the normality conditions
〈

n(φ+, φ−), n+(φ+ + π/2
〉 = 0,

〈

n(φ+, φ−), n−(φ− + π/2
〉 = 0.

(58)

The formulae 58 express that the projections of the
normal vector n(φ+, φ−) onto the normal spaces of
�+ and�− are perpendicular to n+(φ+) and n−(φ−),
respectively (see Fig. 7).

The parametrization (55) is singular at sin φ+ =
sin φ− = 0. For the nonsingular parameter region
(φ1, φ2) ∈ � (see (56)), we can define the limit

F∗
SS(x̄, φ

+, φ−) = lim
ε→0+ FSS(x̄ + εn(φ+, φ−)) (59)

Then, the radial and circumferential components of the
vector field can be defined analogously to (43):

R(x̄, φ+, φ−) = 〈

F∗
SS(x̄, φ

+, φ−), n(φ+, φ−)
〉

,

V+(x̄, φ+, φ−) = 〈

F∗
SS(x̄, φ

+, φ−), n+(φ++π/2)
〉

,

V−(x̄, φ+, φ−) = 〈

F∗
SS(x̄, φ

+, φ−), n−(φ− + π/2)
〉

.

(60)

The singularity of the parametrization at sin φ+ =
sin φ− behaves the following way:

– Consider the four parameter combinations given by
(cosφ+, cosφ−) = (±1,±1). Each of them is a
single point in the parameter plane (excluding peri-
odicity, see the number 1-4 in the right panel of
Fig. 8). In the same time, each of this combination
covers a quarter arc on the unit sphere of normal
directions (see the left panel of Fig. 8), which cor-
responds to continuously many slipping directions
with the same tangential forces.

– Consider the parameter combinations cosφ+ =
±1, cosφ− �= ±1 or cosφ− = ±1, cosφ+ �= ±1.
These values cover the edges of the square regions
in the parameter plane. In the same time, they cor-
respond to the discrete pointswhere the unit sphere
intersects the codimension-2 discontinuity sets of
Cases SR and RS. Thus, these states should be
excluded from the analysis, because they corre-
spond to the single-point slipping.

Thus, we denote the singular parameter set by

(φ1, φ2) ∈ �̃ = {0, π} × {0, π} (61)

and the corresponding normal vectors by

ñ(φ+, φ−) =
⎛

⎝

cosφ+/
√
2

cosφ−/
√
2

0

⎞

⎠ . (62)

By the formula (62), the normal vectors correspond to
the middle points of the four quarter arcs of the “equa-
tor” of the unit sphere (see Fig. 8). Then, the domain
of the limit (59) can be extended to � ∪ �̃. The func-
tions (60) can be applied to �̃, as well, but V+ and
V− coincide in this case because n+ is then parallel to
n−. Thus, we require a further vector for the following
definition:

Ṽ (x̄, φ+, φ−) = 〈

F∗
SS(x̄, φ

+, φ−), (0, 0, 1, 0 . . . 0)
〉

.

(63)

Now, we have all the formulation to define the limit
directions of the transitions between Cases RR and SS.

Definition 10 (Limit directions at the intersection)
Consider a point x̄ in the intersection�# of the disconti-
nuity sets�+ and�−.Assume that the pair (φ+

1 , φ−
1 ) ∈

� ∪ �̃ satisfies V+(x̄, φ+, φ−) = V−(x̄, φ+, φ−) =
0, and it also satisfies Ṽ (x̄, φ+, φ−) = 0 if (φ+

1 , φ−
1 ) ∈

�̃. Then, (φ+
1 , φ−

1 ) is called a limit direction of FSS
at x̄ ∈ �#. This limit direction is called attracting if
R(x̄, φ+

1 , φ−
1 ) < 0 or repelling if R(x̄, φ+

1 , φ−
1 ) > 0.

If a point x̄ possesses a repelling limit direction, then
the two-point rolling state is not realizable because
trajectories can escape from Case RR into Case SS
through this direction. That is, all limit directions at
x̄ ∈ �# must be attracting to avoid the two-point slip-
ping, which condition is analogous to that of an attract-
ing sliding point in Definition 8. However, we should
also check the possibility of transitions when the body
starts slipping at only one of the contact points.

5.3 Transition from Case RR into Cases RS and SR

In the rolling–slipping case (Case RS), the rolling con-
straint (18) leads to u+

1 = u2 = 0. Then, the tangential
forces at P− are given by

T−
1 = −μN− u−

1

|u−
1 | , T−

2 = 0. (64)

123



Slipping–rolling transitions of a body with two...

In a similar way we did in (46)–(47), a system of alge-
braic equations can be solved for N+, N−, T+

1 and T+
2 ,

and then, we can express the time derivatives of the
nonconstrained quasi-velocities u̇−

1 and �̇a . It can be
shown that the resulting differential equation

ẋ = FRS(x) (65)

is a Filippov system, where �# is embedded into �+
as a codimension-1 discontinuity set given by u−

1 = 0.
The slipping–rolling case (Case SR) leads to a sim-

ilar scenario: Then, the contact forces at P+ are given
by

T+
1 = −μN+ u+

1

|u+
1 | , T+

2 = 0, (66)

and the resulting differential equation

ẋ = FSR(x) (67)

is a Filippov system where �# is a codimension-1 dis-
continuity set at u+

1 = 0.
At a point x̄ ∈ �, a transition from Case RR into

Cases RS or SR can occur along a trajectory of FRS(x)
or FSR(x) pointing away from the discontinuity set�#.
Thus, to avoid single-point slipping at P+ or P−, the
state x̄ ∈ �# must be an attracting sliding point of
FRS(x) or FSR(x), respectively.

5.4 Realizability of the two-point rolling case

Now we can formulate the main consequence of the
analysis. In the state space, the dynamics of Case RR
(located in �#) is surrounded by domains of the slip-
ping cases (Cases SS, RS and SR). When any slip-
ping transition occurs between Case RR and a slipping
case, at least a trajectory of the slipping vector fields
FSS(x), FRS(x) or FSR(x) at �# needs to leave �# at
the given point. Thus, the two-point rolling case is real-
izable when all slipping trajectories point towards the
discontinuity set �#. Then, the effect of small pertur-
bations is eliminated by the slipping vector fields from
all directions, and the two-point rolling state is recov-
ered. Based on our results presented in the paper, our
final consequence can be formulated:

Definition 11 (Realizable two-point rolling) Let us
consider the rigid body with two spatial contacts

Fig. 9 Sketch of the example analysed in Sect. (6): a ball rolling
in a horizontal right angle trough. By using themethod developed
in the paper, we can determine the conditions for the constant
loading torque when the two-point rolling is realizable. Due to
the undetermined contact forces, this process cannot be done by
the usual techniques of rigid body mechanics

described in Sects. 2 and 3. We say that a rolling or
sticking state x̄ ∈ �# of the body is realizable if and
only if

– at x̄ , all limit directions of FSS(x) are attracting,
– x̄ is an attracting sliding point of �# with respect
to FRS(x),

– and x̄ is an attracting sliding point of �# with
respect to FSR(x).

6 Application example—ball in a trough

The practical testing of the realizability conditions
of Definition 11 often requires numerical techniques,
because (60) leads to nonlinear equations in the sine
and cosine of the angles φ+ and φ−. In this last sec-
tion, we demonstrate the method on a simple example
where the conditions can be calculated analytically.

Consider a homogeneous ballmoving in a horizontal
V-shaped trough (see Fig. 9). A general constant load-
ing torque vectorMe is acting on the ball. Our goal is to
calculate the conditions when the two-point rolling of
the ball is realizable. We assume a friction coefficient
μ = μs = μd at both contact points.
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In this example, the location of the contact points
and the normal vectors are independent of the config-
uration, and they are given by

r+ = −r j, r− = −r i, n+ = j, n− = i, (68)

where r is the radius of the ball and i, j, k are the basis
vectors fixed to the trough (see Fig. 9). Then, (1)–(3)
become

a = i − j√
2

, t+1 = t−1 = k, t+2 = i, t−2 = −j.

(69)

From (7), we get c+ = c− = 1/
√
2. Thus, we can

use the notation u2 = u+
2 = u−

2 = ua/
√
2, and the

velocities of the contact points become

v+ = u+
1 k + u2i,

v− = u−
1 k − u2j.

(70)

For the homogeneous ball, the centre of the gravity C
is the geometric centre. Let v denote the velocity of C
along the trough, and the velocity vector is

v̇C = v̇k. (71)

From (70) and (71), the angular velocity of the ball can
be expressed,

�̇ = 1

r

(

(v̇ − u̇+
1 )i + (u̇−

1 − v̇)j + u̇2k
)

. (72)

In this simple case, we replace (25) by a new set

s = (u+
1 , u−

1 , u2, v) (73)

of quasi-velocities, which choice simplifies the form of
the equations. The transformation

⎛

⎜
⎜
⎝

u+
1

u−
1
u2
v

⎞

⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 1/

√
2 0

0 0 0 r/
√
2

⎞

⎟
⎟
⎠

·

⎛

⎜
⎜
⎝

u+
1

u−
1
ua
�a

⎞

⎟
⎟
⎠

(74)

between (25) and (73) is just a rescaling of some com-
ponents, which does notmodify the general description
presented above.

The external force system consists of the resultant
force Fe = −mg/

√
2(i + j) from the gravity g and the

resultant torque Me = Mex i + Meyj + Mezk. From the

Newton–Euler equations (14), we get

mv̇ = T+
1 + T−

1 ,

jmu̇+
1 = −Mex

r
+ (1 + j)T+

1 + jT−
1 ,

jmu̇−
1 = Mey

r
+ jT+

1 + (1 + j)T−
1 ,

jmu̇2 = Mez

r
+ T+

2 + T−
2 ,

(75)

and

−mg√
2

+ T+
2 + N− = 0,

−mg√
2

− T−
2 + N+ = 0,

(76)

where m is the mass of the ball, an jmr2 is the mass
moment of inertia, where j = 2/5 for a homogeneous
sphere.

The right-hand sides of (28) and the algebraic equa-
tions (29) are fully determined by the variables u+

1 , u
−
1

and u2, and they do not depend on either v or an arbi-
trary set of q describing the configuration of the ball.
(Note that the system is symmetric with respect to the
rotation of the ball around its centre and to the trans-
lation of the ball along the trough.) Consequently, the
nonsmooth dynamics can be reduced to the space of
quasi-velocities,

x = s = (u+
1 , u−

1 , u2, v). (77)

The discontinuity sets are given by the variables
(0, u−

1 , 0, v) ∈ �+, (u+
1 , 0, 0, v) ∈ �−, and (0, 0, 0, v) ∈

�# = �+∩�−. According to (75)–(76), the two-point
rolling in �# is given by

⎛

⎜
⎜
⎝

u̇+
1

u̇−
1
u̇2
v̇

⎞

⎟
⎟
⎠

= FRR(x) =

⎛

⎜
⎜
⎜
⎝

0
0
0

Mex−Mey
mr(1+2 j)

⎞

⎟
⎟
⎟
⎠

, (78)

and the components N+, N−, T+
2 and T−

2 of the contact
forces are undefined.

At a point x̄ = (0, 0, 0, v̂) ∈ �#, we want to
determine the conditions, where the two-point rolling
motion of the realizable two-point motion. As the vari-
able v does not directly affect the dynamics, the same
result is expected independently from the choice of x̄ .
Thus, instead of varying the state x̄ , we investigate the
dependence on the external torque components Mex ,
Mey and Mez as parameters.
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For the simplicity of the formulae, we consider the
dimensionless form

mx = Mex
√
2

mgr
, my = Mey

√
2

mgr
, mz = Mez

√
2

mgr
,

(79)

of the torque components, and the realizable rolling
states are explored in theparameter space (mx ,my,mz).

6.1 Transition from Case RR to Cases RS and SR

In Case RS, the vector field FRS can be derived
from (75)–(47) by considering the rolling constraint
u+
1 = u2 = 0 and the slipping friction force (64).

Then, from the normal vectors n1 = (0, 0, 1, 0) and
n2 = (0, 0,−1, 0) the limits (39) of the vector field
become

F∗
RS1(x) = g√

2
·

⎛

⎜
⎜
⎜
⎝

0
+μ(1+2 j)(1−mz)+(1+ j)my+ jmx

j ( j+1)
0

+μ(1−mz)+mx
( j+1)

⎞

⎟
⎟
⎟
⎠

,

(80)

F∗
RS2(x) = g√

2
·

⎛

⎜
⎜
⎜
⎝

0
−μ(1+2 j)(1−mz)+(1+ j)my+ jmx

j ( j+1)
0

−μ(1−mz)+mx
( j+1)

⎞

⎟
⎟
⎟
⎠

.

(81)

From Definitions (11) and 4, a realizable rolling
states needs to satisfy

〈

F∗
SR1, n1

〉

< 0 and
〈

F∗
SR2, n2

〉

<

0. By using direct calculation from (80)–(81), the
boundary cases

〈

F∗
SR1, n1

〉 = 0 and
〈

F∗
SR2, n2

〉 = 0
leads to

jmx + (1 + j)my − μ(1 + 2 j)(mz + 1) = 0,

jmx + (1 + j)my + μ(1 + 2 j)(mz + 1) = 0,
(82)

respectively.
Due to the symmetry of the mechanical system, a

very similar calculation can be applied to Case SR, and
in the boundary case, we get the equations

jmy + (1 + j)mx − μ(1 + 2 j)(mz − 1) = 0,

jmy + (1 + j)mx + μ(1 + 2 j)(mz − 1) = 0.
(83)

In the parameter space (mx ,my,mz) of the dimen-
sionless components of the external torque, (35)–(36)
describe four planes, which encompass a tetrahedron

Fig. 10 Surfaces at the boundary case of slipping in the param-
eter space of the dimensionless torques m1,m2, and m3. The
blue edged tetrahedron visualizes the planes (82)–(83), which
are related to the one-point slipping. The curved surfaces are
given by (88), which is related to the two-point slipping. The
body inside of these surfaces gives the region where the two-
point rolling is realizable (see Fig. 11)

(see Fig. 10). Inside this tetrahedron, there is no one-
point slip transition to Cases RS and SR. However, we
have to check the two-point slip transition, as well.

6.2 Transition from Case RR to Case SS

As we changed ua into u2 in the transformation (74),
we can redefine the angles (50) by

φ+ = arctan(u2, u
+
1 ), φ− = arctan(u2, u

−
1 ). (84)

Then, (51) simplifies to λ+
1 = cosφ+, λ+

2 = sin φ+,
λ−
1 = cosφ− and λ−

2 = sin φ−. Then, by using (75)–
(76) with the friction forces from (44), the limit vector
field (59) can be written into the form

F∗
SS=

⎛

⎜
⎜
⎜
⎝

−Mex
rmj − μ(1+ j)

jm N+ cosφ+ − μ
m N− cosφ−

Mey
rmj − μ(1+ j)

jm N− cosφ− − μ
m N+ cosφ+

Mez
rmj − μ

mj N
+ sin φ+ − μ

mj N
− sin φ−

− μ
m N+ cosφ+ − μ

m N− cosφ−

⎞

⎟
⎟
⎟
⎠

,

(85)

where the normal forces are given by

N+ = mg√
2

· 1 − μ sin φ−

1 + μ2 sin φ+ sin φ− ,

N− = mg√
2

· 1 + μ sin φ+

1 + μ2 sin φ+ sin φ− .

(86)

The limit vector field (85) can be used to calculate the
conditions of the transition from Case RR to Case SS.
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Slipping initiates simultaneously at both contact
points, when an attracting limit direction appears at�#

according to Definition 10. In boundary case between
and attracting and repelling limit direction,

R(φ+, φ−) = V+(φ+, φ−) = V−(φ+, φ−) = 0 (87)

needs to be satisfied. From the three equations (87),
the dimensionless moments mx , my and mz can be
expressed as a function of the angles φ+ and φ− char-
acterizing the direction of the slip transition:

mx = −μ
(1+ j) cosφ+(1−μ sin φ−)+ j cosφ−(1+μ sin φ+)

1+μ2 sin φ+ sin φ−

my = μ
(1+ j) cosφ−(1+μ sin φ+)+ j cosφ+(1−μ sin φ−)

1+μ2 sin φ+ sin φ−

mz = μ
sin φ++sin φ−

1+μ2 sin φ+ sin φ−

(88)

The expressions (88) form a parametric representation
of a surface in the parameter space (mx ,my,mz). This
surface can be seen in Fig. 10, where the upper and
lower branches of the curved surface are related to the
two regions of the domain of directions in (56) and in
Fig. 8.

6.3 Realizable two-point rolling

In the parameter space, the realizable region of two-
point rolling is determined by the interplay between
the surfaces of one-point and two-point slipping transi-
tions (see (82)–(83) and (88), respectively). Then, we
got a three-dimensional region in the parameter space
of the dimensionless torquesmx ,my and ,mz (see Fig.
11). The resulting “body” in the parameter space has
four planar faces (denoted by solid grey), where the
two-point rolling (Case RR) motion turns into one-
point slipping (Cases RS and SR); and two curved faces
(denoted by the coloured parameter lines) where two-
point slipping (Case SS) appears.

Whenwe analyse the effect of the torque component
Mez , let us consider the special values

Mez1 = mgr√
2

2μ2

1 + μ2 ,

Mez2 = mgr√
2

μ2 + μ

2μ2 − μ + 1
,

Mez3 = mgr√
2

2μ

1 + μ2 .

(89)

Fig. 11 The region in the parameter space of the dimensionless
torques m1,m2, and m3, where the two-point rolling motion is
realizable. This three-dimensional region is determined by the
surfaces in Fig. 10. The grey planar surfaces correspond to one-
point slipping, and the coloured curved surfaces correspond to
two-point slipping. The special points (90) are denoted by small
circles, squares and triangles. The edge highlighted by red shows
the parameter values where themaximum acceleration of the ball
can be achieved in (78) with a realizable two-point rolling

It can be shown from (82)–(83) and (88) that the cor-
responding dimensionless values

mz1 = 2μ2

1 + μ2 ,

mz2 = μ2 + μ

2μ2 − μ + 1
,

mz3 = 2μ

1 + μ2

(90)

are related to the special points in Fig. 11 denoted by
circles, squares and triangles, respectively. The value
of the torque component Mez separates the following
cases:

– For |Mez| ≤ Mez1, Case SS can turn into Cases
SR or RS for large values of |Mex | and |Mey | (only
single-point slipping).

– For Mez1 ≤ |Mez| ≤ Mez2, Case SS can turn into
Cases SR, RS or SS for large values of |Mex | and
|Mey | (single- or two-point slipping).

– For Mez2 ≤ |Mez| ≤ Mez3, Case SS can turn into
Case SS for large values of |Mex | and |Mey | (only
two-point slipping).

– For Mez3 ≤ |Mez|, the two-point rolling is not real-
izable.

By analysing the region of the realizable rolling
states, we can obtain a following interesting result: the
maximal magnitude of acceleration v̇ of the centre of
the ball can be determined (see (78)). By direct calcu-
lation, it can be shown that this maximal acceleration
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with realizable two-point rolling is given by

v̇max = √
2μg, (91)

and this acceleration is achieved by the torque vectors
corresponding to the red coloured edge in Fig. 11.

7 Conclusion

In this paper, we analysed the motion of a rigid body
that is in contact with two rigid surfaces in the presence
of dry friction. When the normal contacts are main-
tained at both contact points, the slipping or rolling
at each contact point results in four kinematic cases.
It was shown that in the presence of Coulomb model
or similar dry friction models, the state space of the
two-point slipping system contains two codimension-2
discontinuity sets. These subspaces correspond to the
two mixed rolling-slipping cases, and they intersect
each other in the codimension-3 discontinuity set of
the two-point rolling case. The nonsmooth dynamics
of the body contains transitions between these cases
in the corresponding subspaces. It can be shown that
the kinematic constraints of rolling at the two contact
points are not fully independent, which makes the con-
tact forces undetermined in the two-point rolling case.
Thus, the transitions from two-point rolling to the slip-
ping cases cannot bedetermineddirectly from the limits
of the static friction forces prescribed by the Coulomb
model.

We showed that the indeterminacy can be resolved
by the qualitative analysis of the vector field at the dis-
continuity, which procedure is based on the consistency
of the dry friction models. The analytical tools of nons-
mooth systems were utilized to find the possible direc-
tions where trajectories are connected to the intersec-
tion of the two codimension-2 discontinuity sets, and
thus, the possible rolling–slipping transitions can be
explored without knowing the undetermined contact
forces. Finally, we presented the dynamic conditions
which ensure that the two-point rolling is realizable
without slipping. Then, the method was demonstrated
with analytical calculations for a ball rolling in a trough.
It was proven that its maximal realizable acceleration
without slipping is

√
2μg.

The method can be applied to mechanical engi-
neering problems containing two-point contact parts
like railway wheelsets [11,19], where the qualitative
behaviour of the dynamics could be explored in the

parameter space. Another application of the method
is to create analytical solutions of reference examples
to test the capabilities of numerical methods of multi-
body software packages in cases of multiple contact
points with dry friction.

A possible generalization of the analysis would be
to consider more advanced friction models, including
dynamical effects or pre-sliding displacement (see [16,
21] for an overview), or the assumption of finite contact
region creating spinning torques (see e.g. [14]).

It would be interesting to include frictional contacts
applied though kinematic joints. For the analysis of the-
ses system, the assumptions about of the friction should
be reconsidered according to the energetic issues of the
normal contact models [22,25].

Furthermore, it would be useful to check whether
the formulation presented in the paper could help to
improve numerical integration of mechanical systems
with two or more contact points. The existence of
limit directions provide some preliminary qualitative
information about the solutions, which can be possibly
exploited at numerical simulation.
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