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ABSTRACT

Abstract

When a rigid body is in normal contact with two rigid surfaces, rolling or slipping

motion can occur at both contact points. This situation leads to four kinematic cases of

the body: dual-point rolling, dual-point slipping and two mixed rolling-slipping cases.

In case of dual-point rolling, the rolling constraints at the two contact points are not

independent; therefore, the contact forces are undetermined in the scope of rigid body

dynamics. Hence, the dynamic condition of slipping from the Coulomb model cannot

be determined.

This indeterminacy is avoided by analysing the discontinuous vector �eld of the

dynamics of the system. In two-dimensional contact problems of rigid bodies, the

Coulomb friction model leads to nonsmooth Filippov type dynamical systems. How-

ever, the three-dimensional contact with Coulomb friction is out of the scope of Filippov

systems, because it leads to an isolated codimension-2 discontinuity in the phase space.

For that purpose, the de�nition of extended Filippov systems is introduced, which is a

natural generalisation of Filippov systems. The de�nition of sliding and crossing re-

gions are de�ned analogously to usual Filippov systems and the construction of sliding

dynamics is presented, as well.

The concept of extended Filippov systems is applied to the problem of the dual-point

rolling body, and thus, the indeterminacy of the contact forces is avoided. This mechan-

ical system contains two codimension-2 discontinuity sets in the phase space, and the

dual-point rolling dynamics is located in the intersection of these sets. By analysing

the vector �eld of the slipping dynamics in the vicinity of this subset, conditions are

determined to decide whether there is a possibility of slipping at one or both contact

points.

The developed analytical methods are demonstrated on two mechanical applica-

tions. One of them is the dynamics of a railway wheelset running with a constant

speed on a straight track. Instead of the commonly used nonlinear creep model, the

contact forces are approximated by Coulomb friction. From the discontinuous dynam-

ical system, the conditions of slipping of the wheelset are determined. The maximum

amplitude of the oscillations without slipping is derived, as well. In case of dual-point

rolling, the e�ect of the amplitude of the kinematic oscillations is determined on the

angular frequency of the oscillations.

The other application is the concept of a special �owmeter, where the �ow rate is
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ABSTRACT

measured from the motion of a ball driven by the �ow. During usual operation, the ball

is in a dual-point rolling contact with the bottom and the wall of a cylindrical vessel.

The analysis of the discontinuous system shows that slipping of the ball occur at one or

both contact points as the �ow rate increases. The variation of the parameters results

in several bifurcations of the system.
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OVERVIEW

Overview

Outline of the thesis

The thesis is divided into �ve chapters. The chapters are constructed as units that

present the di�erent topics of the research work. However, the chapters are strongly

connected to each other as the di�erent topics were developed together during the

research (see Figure 1).

Chapter 1

Chapter 2 Chapter 3 Chapter 4

Chapter 5

2014- 2013- 2013-

2015-2012-2015

Figure 1: Chapters of the thesis. The arrows show the dependencies between the chapters. The numbers

above the chapters denote the years of the corresponding research work.

In Chapter 1, the kinematic oscillations of a single railway wheelset are investigated.

If rolling constraints are assumed between the wheelset and both rails then the motion

of the wheelset is determined purely by kinematics. The frequency of the nonlinear

oscillations is analysed with the exact modelling of the 3D motion of the wheelset.

The relation between the amplitude and the frequency of the oscillations is shown,

and the e�ect of the local geometry is derived, as well. The problem of calculating

the conditions of slipping on the wheelset in this dual-point rolling case leads to the

analysis of the following chapters.

In Chapter 2, the concept of Filippov systems is generalised to the codimension-

2 case, which leads to the concept of extended Filippov systems. In other words, the

analysis of dynamical systems is introduced that possess codimension-2 discontinuity

surfaces in the phase space. Properties of sliding and crossing are generalised to these

systems and the sliding dynamics can be de�ned similarly to that of simple Filippov

systems. The main motivation behind this generalisation is that extended Filippov sys-

tems can be used e�ectively for modelling bodies with spatial Coulomb friction.

In Chapter 3, the general motion of a rigid body is investigated that is in normal
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OVERVIEW

contact with two �xed surfaces. At both contact points, either rolling or slipping can

occur, that is, there are four possible kinematic cases of the body. In case of dual-point

rolling, the rolling constraints of the two contact points are not independent. Hence, the

contact forces cannot be determined from rigid body dynamics, and thus, the condition

of slipping cannot be calculated directly from the Coulomb model. However, conditions

of slipping can be determined from the dynamics of the slipping cases by using the

methods of extended Filippov systems. The resulting procedure is used to obtain the

results of Chapters 4 and 5.

In Chapter 4, the dynamics of a �owmeter is analysed where the �uid �ows through

the device moving a ball along the edge of a cylindrical vessel. During its motion, the

ball is in dual-point contact with the vessel, and it is possible that either one contact

point or both contact point will slip. The conditions of slipping can be determined

from the equations of motion by using the methods of extended Filippov systems. The

resulting bifurcation diagrams of the stationary solutions show the limitations of the

�owmeter depending on the di�erent parameters.

In Chapter 5, the motion of a single wheelset is analysed by assuming Coulomb

friction between the wheels and the rails. In contrast to the smooth nonlinear creep

models used in the literature, this approach leads to discontinuous behaviour of the

wheelset with switching between rolling and slipping. By the methods of extended

Filippov systems, the condition of slipping is determined without calculating the con-

tact forces. The maximum amplitude of the kinematic oscillation is calculated that is

possible without the slipping of the wheelset at any of the contact points.

Notes for the reading of the thesis
Introductions to the di�erent topics can be found at the beginning of each chapter.

These introduction sections contain the overview of the topic and the corresponding

literature. The joint reference list can be found at the end of the thesis. The new results

are summarised at the end of each chapter in the form of thesis statements.

During the preparation of the thesis, it seemed hopeless to create a global nomen-

clature containing all notations of the thesis. Instead, the important notations are sum-

marized in tables at the beginning of each chapter. Symbols with less frequent usage

are explained in the text at the �rst appearance. All along the thesis, the vectors and

tensors related to the 3D physical quantities are denoted by boldface letters. All other

quantities – including the vectors without a physical meaning – are denoted by italic

letters.

2



Chapter 1

Kinematic oscillations of railway
wheelsets

1.1 Introduction

The conical shape of railway wheels is one of the most fundamental achievements

in railway dynamics, which was a result of a long empirical development (see [72] for

a historical overview). A pair of wheels are �xed rigidly to each other, and thus, there

is no possibility for di�erent rotating speeds of the wheels in railway curves. Still,

rolling is possible at both wheels because due to the conical pro�le shape, the lateral

displacement of the wheelset changes the rolling radii of the wheels (see Figure 1.2).

This e�ect ensures steering of the vehicle in curves without any active intervention.

The side-e�ect of the conical shape is the appearance of the so-called hunting os-
cillations which are induced by the geometry of the pro�les, and which are modi�ed

by several physical e�ects (see Figure 1.3). In usual circumstances, the local deforma-

tions at the wheel–rail contact are signi�cant, and the resulting creep e�ect has to be

included in the kinematic and dynamic description of the wheelset. This topic is dis-

cussed in more details in Chapter 5 of this thesis. See [35] for a brief overview or [14]

for a more detailed description of the di�erent models.

In the limit case of small deformations, the creep e�ect can be neglected and it can be

assumed that there is pure rolling at the contact of both wheels. Then, the oscillations

are purely determined by the geometry of the bodies; thus, they are called kinematic
oscillations. The concept of kinematic oscillation is more important than being only

a theoretical limit case. At low velocity of the vehicles, the kinematic description is

a good approximation of the problem. It was shown that an isolated wheelset with

creep e�ect provides oscillations which has a frequency very close to the kinematic

oscillations [71], and this frequency can appear at the motion of a whole vehicle, too

[64]. The frequency of kinematic oscillation appears in small-scale experiments, as

well [45, 66], where the deformations are negligible. In the standards, the quantity of

equivalent conicity is calculated from the kinematic oscillations [22, 67].

3



CHAPTER 1. KINEMATIC OSCILLATIONS OF RAILWAY WHEELSETS

Variable Meaning
g
e
o

m
e
t
r
i
c

p
a
r
a
m

e
t
e
r
s

r rolling radius of the wheelset

b half-distance between contact points

δ contact angle

h nominal conicity (tangent of the contact angle, h = tanδ )

Rr radius of curvature of the rail pro�le

Rw radius of curvature of the wheel pro�le

R′w ,R
′
r derivatives of the radii of the curvatures along the pro�le curves

R′′w ,R
′′
r second derivatives of the radii of the curvatures along the pro�le

curves

p
a
r
a
m

e
t
r
i
c

s
u

r
f
a
c
e
s

cr (Ur ) pro�le curve of the rails

cw (Uw ) pro�le curve of the wheels

Ur ,Uw variables of the pro�le curves

(distance along the axle of the wheelset)

e1, e2, e3 basis vectors of the coordinate system

f±r (Ur ,Vr ) surface of the rails (left and right)

Vr variable for the distance along the rails

f±r (Uw ,Vw ) surface of the wheels in central position (left and right)

Vw variable for the angle around the sufrace of the wheelset

ˆf±r (Uw ,Vw ) surface of the wheels in general position (left and right)

k
i
n

e
m

a
t
i
c
s

w,y, z longitudinal, lateral and vertical displacements of the geometric

centre of the wheelset

ψ yaw angle of the wheelset (vertical axis)

ϑ roll angle of the wheelset (longitudinal axis)

φ rotation angle of the wheelset around its axle

U ±r ,V
±
r coordinates of the contact points on the surface of the rails

U ±w ,V
±
w coordinates of the contact points on the surface of the wheels

q vector of generalised coordinates

q̂ vector of dependent variables

k
i
n

e
m

a
t
i
c

o
s
c
i
l
l
a
t
i
o

n
s

v speed of the wheelset along the track

ωL angular frequency of small amplitude kinematic oscillations

(linear case)

ωKli approximation of the angular frequency by Klingel

ωHeu,ωLor,ωMei improvements of Klingel’s approximation in the literature

λL wavelength of small amplitude oscillations

h∗L equivalent conicity for small amplitude oscillations

ȳ amplitude of the kinematic oscillations

ωN (ȳ) angular frequency of �nite amplitude kinematic oscillations

(nonlinear case)

h∗N (ȳ) equivalent conicity for �nite amplitude oscillations

λN (ȳ) wavelength of �nite amplitude oscillations

a01,b10 linear coe�cients of the di�erential equations

a03,a21,b30,b12 nonlinear coe�cients of the di�erential equations

β nonlinearity factor

Table 1.1: Important notations of Chapter 1.
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1.1. INTRODUCTION

P− P+

C

Figure 1.2: The change of the rolling radii of the wheelset due to the lateral displacement of the wheelset.

The dotted lines denote the rolling radii in displaced position, and P+ and P− are the contact points. In

the �gure, the cone angle is shown exaggeratedly. In practice, the conicity of the wheelset is about

1:100–1:20.

v

Figure 1.3: The oscillation of a railway wheelset on a straight track. These oscillations are superposed

onto the top of the stationary rolling of the wheelset. In general, these oscillations are called hunting
oscillations. The limit case of small deformations and pure rolling results in the case of kinematic oscilla-
tions.

The basic mechanical description of kinematic oscillations originates from the XIX.

century and these relations are contained in every textbook of railway dynamics (see

e.g. [14]). Yet, there are many inaccuracies and unexplained approximations in the liter-

ature. Many inaccuracies arise from the incorrect calculation of the three-dimensional

rotation of the wheelset. The exact three-dimensional description of motion of the

wheelset can be found in only a few works in the literature, and it is still not applied to

kinematic oscillation. In his works, de Pater applied the 3D description of the motion

to model the geometric constraint between the wheels and the rails accurately [18, 27].

The accurate calculation of multiple contact points needs the 3D description of motion,

too (see e.g. [1]).

The motivation behind research work of this chapter was to achieve a thorough 3D

description of kinematic oscillation of a railway wheelset assuming straight track and

identical pro�les at both wheels. The main goals of the chapter are to determine the

5



CHAPTER 1. KINEMATIC OSCILLATIONS OF RAILWAY WHEELSETS

frequency of kinematic oscillations and its analytical dependence on the geometry of

the bodies. The nonlinear dynamics of the wheelset is considered to reveal the e�ect

of the amplitude on the frequency of oscillations. The �rst ideas of this chapter were

presented in the Master’s Thesis of the author [2], and in the next years, further results

were published in three papers [12, 4, 9]. In a large part of this chapter, the discussion

of [9] is followed.

The structure of the chapter is the following. Section 1.2, contains an overview of

the results in the literature related to the frequency of kinematic oscillations. In Section

1.3, the new mechanical model is introduced and the di�erential equations of the system

are derived. In Section 1.4, the angular frequency of kinematic oscillations is derived

for the linear (small-amplitude) and for the nonlinear (�nite amplitude) cases. The con-

cept of nonlinearity factor is introduced which measures the change of the frequency

when the amplitude of the oscillation is increasing. In Section 1.5, the formulae of the

kinematic parameters are derived from the geometry of the wheel and rail pro�les. The

new results are summarised in Section 1.6.

1.2 Existing results in the literature

A single wheelset is considered running on a straight track with a constant speed

v (see Figure 1.3). In this section, the existing methods and formulae are presented to

determine the frequency (angular frequency) of the oscillations.

1.2.1 Klingel’s approximate formula for small oscillations

The �rst approximate formula for the frequency of kinematic oscillations was deter-

mined by Klingel [43]. A possible derivation of this fundamental formula is presented

below. For an alternative derivation, see e.g. [72], p. 8.

During this „naive” linearisation, it is required that the lateral displacementy of the

wheelset and the yaw angle ψ is small (see Figure 1.4). Moreover, it is assumed that

the nominal contact angle δ between the wheels and the rails is small in the sense that

the roll angle ϑ and the vertical displacement z can be completely neglected. Then, the

time derivative of the lateral displacement can be approximated by

ẏ ≈ v tanψ ≈ vψ (1.1)

The angular velocity Ω of the wheelset and the position vector rP+P− between the con-

tact points (see Figure 1.2) can be approximated by

Ω ≈



0

v/r
˙ψ


, rP+P− ≈



0

−2b

∆r (y)


, (1.2)

6



1.2. EXISTING RESULTS IN THE LITERATURE

w

y
z

ϑ

ψ
φ

e3

e2

e1

C

Figure 1.4: Quantities for describing the kinematics of the wheelset.

b b

r

Rw

Rr

Ur ,Uw

cr (Ur ), cw (Uw )

δ = arctanh

cw

cr

C

e3

e2

Figure 1.5: Geometric parameters of the wheelset in the central position.

whereb is the distance between the contact points, r is the rolling radius of the wheelset

in the central position (see Figure 1.5), and ∆r (y) is the di�erence between the rolling

radii of the wheels at a laterally displaced position (see Figure 1.2).

The wheelset is rolling at both points P+ and P−, that is, the angular velocity Ω is

parallel to rP+P− . This leads to

˙ψ ≈ −v ·
∆r (y)

2br
. (1.3)

Equations (1.1) and (1.3) form a system of two �rst-order di�erential equations, and

they can be transformed to a single second-order di�erential equation in the form

ÿ +v2
∆r (y)

2br
≈ 0. (1.4)

For purely conical wheels, the rolling radius di�erence can be approximated by

∆r (y) ≈ 2hy, (1.5)

7



CHAPTER 1. KINEMATIC OSCILLATIONS OF RAILWAY WHEELSETS

where h = tanδ denotes the conicity of the wheels. Then, (1.4) provides harmonically

oscillating solutions in the form

y (t ) = ȳ · cos(ωKli · t ), (1.6)

where ȳ is the amplitude and

ωKli = v

√
h

br
(1.7)

is the angular frequency of the kinematic oscillations. This formula is called Klingel’s

Formula, which was published already in 1883 [43]. In the literature, (1.7) is often

presented for the frequency, time period or wavelength of oscillations, but angular

frequency contains the same information about the phenomenon.

1.2.2 Improvements of the linear formula

Instead of the approximate formula (1.7), more accurate formulae can also be found

in the literature. In 1937, Heumann [32] published the improved formula

ωHeu = v

√
h

br
·

Rw
Rw − Rr

(1.8)

where Rw and Rr are the radii of curvature of the wheel and rail pro�le, respectively

(see Figure 1.5). This formula shows that for worn wheel pro�les, where Rw and Rr are

possibly close to each other, the frequency of oscillations can be much higher than pre-

dicted by (1.7). In the limit case Rw → ∞ of the conical wheels, (1.8) tends to (1.7). The

formula (1.8) was still derived by using a similar „naive” linearisation that is presented

in the previous subsection.

In 1993, Lorant [49] derived the formula

ωLor = v

√
h

br
·

(
1 +

Rrh

b
√

1 + h2

)
, (1.9)

which is valid for rail pro�les with constant curvature and purely conical wheels. This

is an exact formula obtained by linearising the nonlinear di�erential equations of the

wheelset. In the limit case h → 0, (1.9) tends to Klingel’s Formula.

In 2002, Meijaard [63] published the formula

ωMei = v

√
h

br
·

Rw
Rw − Rr

·

(
1 +

Rrh

b
√

1 + h2

)
. (1.10)

The derivation of this formula cannot be found neither in [63] nor in [52], but it was

presumably derived by exact linearisation. It is not clear whether (1.10) is valid for the

case when the radii of the curvature are not constant. Meijaard also derived a more

general formula for the case when the radii of curvatures are not the same at the two

wheels [53].
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1.3. MECHANICAL MODEL WITH FULL 3D DESCRIPTION

1.2.3 E�ects of the amplitude of the oscillations

Linear formulae (1.7)-(1.10) are valid for small-amplitude kinematic oscillations.

However, the increasing amplitude may cause a substantial change in the frequency

of kinematics oscillations. This dependence is denoted by the function ωN (ȳ) with

ωN (0) = ωL, where ωL denotes the linear angular frequency (for small amplitudes) and

ωN denotes the nonlinear angular frequency (for �nite amplitudes).

In the literature (see e.g. [58] or p. 107 of [14]) and in the standards (see [67, 22]),

the dependence of the angular frequency on the amplitude is connected to the concept

of equivalent conicity (sometimes called e�ective conicity). The equivalent conicity h∗

can be de�ned by

ωL = v

√
h∗L
br

(1.11)

for small oscillations and by

ωN (ȳ) = v

√
h∗N (ȳ)

br
(1.12)

for �nite oscillations, where h∗L and h∗N denote the equivalent conicity for the small and

�nite amplitudes, respectively. As a limit case of small oscillations, h∗N (0) = h
∗
L holds. In

fact, the value of equivalent conicity provides the conicity of a purely conical wheelset

for which Klingel’s formula (1.7) provides the desired angular frequency. For purely

conical wheels, h∗ ≈ h, the exact dependence can be expressed from (1.9).

Di�erential equation (1.4) contains the dependence on the lateral displacement y,

which is usually the basis of calculation in the literature. Equation (1.4) can be used to

calculate an approximate numerical dependence of the equivalent conicity h∗N (ȳ) from

the rolling radius di�erence function ∆r (y) [22, 67]. For describing the change of the

equivalent conicity due to the amplitude, Polach suggests a nonlinearity parameter [58],

which is based on chord approximation of the slope of the function h∗N (ȳ).

All these methods in the literature can be applied numerically, and the dependence

of angular frequency on the amplitude can be determined from measurements, as well.

Yet, there exists no analytical formula to calculate this relation from the geometry of

the pro�les. To determine such formula is one of the main goals of this chapter.

1.3 Mechanical model with full 3D description

In this section, the a mechanical model is introduced to derive the di�erential equa-

tions of the system. First, the 3D description of the geometry and the motion is pre-

sented. Then, the geometric and kinematic constraints are applied to get the di�erential

equations of the system.

9



CHAPTER 1. KINEMATIC OSCILLATIONS OF RAILWAY WHEELSETS

1.3.1 Geometry and kinematics

The nominal contact points are de�ned as the contact points in the central position

of the wheelset. Assume that the left and right wheels and rails are identical. The pro�le

curves of the rails and the wheels are denoted by cr (Ur ) and cw (Uw ), respectively. The

variables Ur and Uw measure the distance along the axle of the wheelset, and at the

nominal contact point, cr (0) = cw (0) = 0 (see Figure (1.5)). In the subsequent analysis,

it is required that the curves cr and cw are four times di�erentiable at the nominal

contact point. This requirement is valid for a general worn wheelset, but it is satis�ed

many new wheels, as well, if the amplitude of the oscillations is not too large.

The surfaces of the wheels and the rails are expressed by explicit parametric sur-

faces. Let e1, e2, e3 denote the basis vectors of the coordinate system and let the origin

be located at geometric centre C of the wheelset in its central position (see Figure 1.4-

1.5). Then, the prismatic surfaces f+r and f−r of the rails are given by

f±r (Ur ,Vr ) :=



Vr
±(b +Ur )

−r + cr (Ur )


, (1.13)

where b is the half-distance of the contact points, r is the nominal rolling radius of the

wheels and the coordinateVr measures the distance along the rails. Along this chapter,

the superscripts + and − correspond to the left (+) and right (-) wheels (see Figure 1.4),

and the superscript ± is used as shorthand notation for both cases.

In central position, we can express also the surfaces f+w and f−w of the wheels in explicit

parametric form,

f±w (Uw ,Vw ) :=



(−r + cw (Uw )) sinVw
±(b +Uw )

(−r + cw (Uw )) cosVw


, (1.14)

whereVw denotes the angle measured along the circumference of the wheels. In general
position, the surfaces of the wheels are transformed to

ˆf+w and
ˆf−w , where

ˆf±w (Uw ,Vw ) =



1 0 0

0 cosϑ − sinϑ

0 sinϑ cosϑ


·



cosψ − sinψ 0

sinψ cosψ 0

0 0 1



·



cosφ 0 sinφ

0 1 0

− sinφ 0 cosφ


· f±w (Uw ,Vw ) +



w

y

z


. (1.15)

The variablesw,y, z measure the displacement of the geometric centreC from the cen-

tral position, and the Euler angles ϑ , ψ and φ describe the orientation of the wheelset

(see Figure 1.4). According to the convention of the literature, ϑ is called roll angle, ψ
is called yaw angle and φ is the rotation angle of the wheelset around its axle. (Note in

[12], the authors used a di�erent naming convention.)

10



1.3. MECHANICAL MODEL WITH FULL 3D DESCRIPTION

By direct calculation, the velocity of a point on the surface of the wheels can be

expressed by

v±(Uw ,Vw ) =



˙ϑ − φ̇ sinψ

φ̇ cosψ cosϑ − ˙ψ sinϑ

φ̇ cosψ sinϑ + ˙ψ cosϑ


×

*..
,

ˆf±w (Uw ,Vw ) −



w

y

z



+//
-
+



ẇ

ẏ

ż


. (1.16)

1.3.2 Geometric constraints

In general position of the wheelset, let (U +w ,V
+
w ) and (U −w ,V

−
w ) denote the location of

the contact points on the surfaces of the wheels, and let us use the notations (U +r ,V
+
r )

and (U −r ,V
−
r ) similarly to the rails. As the wheels and rails are in contact in these points,

we require

f±r (U
±
r ,V

±
r ) = ˆf±w (U

±
w ,V

±
w ). (1.17)

Moreover, the surfaces of the wheels and the rails are tangent to each other, which can

be expressed by

*
,

∂ˆf±w
∂Uw

×
∂ˆf±w
∂Vw

+
-
(U ±w ,V

±
w ) ·
∂f±r
∂Ur

(U ±r ,V
±
r ) = 0,

*
,

∂ˆf±w
∂Uw

×
∂ˆf±w
∂Vw

+
-
(U ±w ,V

±
w ) ·
∂f±r
∂Vr

(U ±r ,V
±
r ) = 0.

(1.18)

The mixed product in (1.18) expresses that at each contact point, the partial derivatives

of the surface functions must lay in the same plane.

The constraints (1.17)-(1.18) contain 10 independent scalar equations (see later in

(1.46)-(1.47)), and there are 14 scalar variables (6 variables from the rigid body motion

(1.15) and the 8 variables related to the loci of the contact points on the surfaces). That

is, 14 − 10 = 4 generalised coordinates can be chosen. Let the vector of generalised

coordinates be

q :=
[
y,ψ ,φ,w

]
. (1.19)

This choice of independent variables proves to be appropriate to express all other vari-

ables. The vector of dependent variables is denoted by

q̂ :=
[
ϑ , z,U +r ,U

−
r ,V

+
r ,V

−
r ,U

+
w ,U

−
w ,V

+
w ,V

−
w

]
. (1.20)

1.3.3 Kinematic constraints and di�erential equations

When the wheelset is rolling at both contact points, the velocity is zero at the con-

tact points, that is,

v±(U ±w ,V
±
w ) = 0. (1.21)

From these 6 scalar constraint equations, 2 equations can be eliminated since in the

normal direction of the surfaces, the velocity is already �xed to zero by the geometric

11



CHAPTER 1. KINEMATIC OSCILLATIONS OF RAILWAY WHEELSETS

constraints. A further equation can be also eliminated because the velocities of the two

points of a rigid body cannot be chosen fully independently. That is, (1.21) leads to 3

independent scalar equations.

A further kinematic constraint prescribes that the velocity of the geometric centre

of the wheelset along the track has constant value v , that is,

ẇ = v . (1.22)

The independent components of kinematic constraints (1.21)-(1.22) lead to four inde-

pendent linear scalar equations for the time derivatives q̇ of the generalised coordinates

(see later in (1.48)). Thus, the derivatives of the four generalised coordinates can be for-

mally written as

ẏ = fy (y,ψ ,w,φ),

˙ψ = fψ (y,ψ ,w,φ),

φ̇ = fφ (y,ψ ,w,φ),

ẇ = v .

(1.23)

The set (1.23) of four �rst-order di�erential equations describes the dynamics of the

wheelset. That is, the motion of the system is determined purely by the constraints, and

there is no need for considering Newton’s Second Law or the Euler–Lagrange equa-

tions. In fact, this system corresponds to the special case of Gibbs–Appell equations

([26], p. 254) where no quasi-velocities remain.

Note, that the right-hand side of (1.23) cannot be expressed explicitly because ge-

ometric constraints (1.17)-(1.18) lead to implicit equations of trigonometric functions

(see below in (1.46)-(1.47)). In Section 1.4, the formal relation between the frequency

and the amplitude is derived from the structure and the symmetries of (1.23). In Section

1.5, the truncated Taylor series of (1.23) is produced to derive the dependence of this

relation on the geometrical parameters.

1.4 Linear and nonlinear kinematic oscillations
In this section, the structure of the di�erential equations is utilized to characterize

the kinematic oscillations of the wheelset. The main objective is to describe the formal

dependence of the angular frequency on the amplitude of the oscillations by a few

parameters. The values of these parameters are calculated from the geometry of the

pro�les in Section 1.5.

1.4.1 Symmetries

By considering symmetries of the system, many properties of (1.23) can be predicted

before calculating the actual formulae. The system has a translation symmetry with

12



1.4. LINEAR AND NONLINEAR KINEMATIC OSCILLATIONS

v v

v v

y

y

y

y

ψ ψ

ψψ

Figure 1.6: The symmetries of the system. The dotted line denotes the centreline of the track. Left

panel: the rotation symmetry (1.25). Right panel: the re�ection symmetry (1.26).

respect to the location of the wheelset along the track, that is, the right-hand side of

(1.23) does not depend onw . Moreover, the rotational symmetry of the wheelset around

its axle results in the missing of the dependence on φ, too. Hence, (1.23) should have

the form of

ẏ = fy (y,ψ ),

˙ψ = fψ (y,ψ ),

φ̇ = fφ (y,ψ ),

ẇ = v .

(1.24)

In other words, the variables w and φ are cyclic variables, that is, they do not e�ect

the dynamics of the other variables. Therefore, the �rst two equations of (1.24) can be

investigated separately, and the dynamics can be reduced to the plane of y andψ .

There are further symmetries in the system (see Figure 1.6). Consider the rotation

of the wheelset about the vertical axis z by 180 degrees, which corresponds to the trans-

formation y → −y and v → −v (see the left panel of Figure 1.6). As the change of the

direction of the velocity v should change the signs of ẏ and
˙ψ , we require

fy (−y,ψ ) = fy (y,ψ ), fψ (−y,ψ ) = −fψ (y,ψ ). (1.25)

Similarly, consider the re�ection of the wheelset about the planeyz, which is related

to the transformationψ → −ψ andv → −v (see the right panel of Figure 1.6). Inverting

the direction of the motion changes the signs of ẏ and
˙ψ , again, thus,

fy (y,−ψ ) = −fy (y,ψ ), fψ (y,−ψ ) = fψ (y,ψ ). (1.26)

Symmetry properties (1.25) and (1.26) have important consequences. The evalua-

tion of (1.25)-(1.26) at y = ψ = 0 leads to fy (0, 0) = 0 and fψ (0, 0) = 0. Hence, the trivial

13



CHAPTER 1. KINEMATIC OSCILLATIONS OF RAILWAY WHEELSETS

solution of (1.23) can be written in the form

y (t ) ≡ 0,

ψ (t ) ≡ 0,

φ (t ) = φ0 + fφ (0, 0) · t ,

w (t ) = w0 +vt .

(1.27)

In this case, the wheelset remains in the central position (y = 0,ψ = 0), and by starting

from the initial state φ0 and w0, the wheelset is rolling along the track without the

presence of kinematic oscillations. When dynamics of the equations (1.23) is perturbed

from the stationary rolling (1.27), we get the e�ect of kinematic oscillation.

By restricting the dynamics to the phase plane (y,ψ ) of the reduced system, the

stationary rolling (1.27) becomes the equilibrium point y = ψ = 0. The kinematic

oscillations correspond to trajectories around this equilibrium point. The odd and even

properties (1.25) and (1.26) provide symmetries in the phase plane: the phase portrait

is symmetric with respect to the re�ection about the lines y = 0 and ψ = 0. In this

case, if the equilibrium y = ψ = 0 is found to be a centre then there is a neighbourhood

of the equilibrium where all trajectories are periodic (see see [65] p. 164). That is, the
kinematic motion of the wheelset is neutrally stable also for �nite amplitude oscillations.

1.4.2 Linear oscillations

By considering the symmetries (1.25)-(1.26), the �rst-order Taylor expansion of

(1.24) results in

ẏ = a01ψ + O
3(y,ψ ),

˙ψ = b10y + O
3(y,ψ ),

(1.28)

where

aij =
∂ fy

∂ψ
(0, 0), bij =

∂ fψ

∂y
(0, 0), (1.29)

and On (y,ψ ) denotes the nth
or higher order terms. If we expect a01 · b10 < 0 then the

system (1.28) can be transformed into the single second-order di�erential equation

ÿ + ω2

Ly + O
3(y, ẏ) = 0, (1.30)

where

ωL :=
√
−a01b10 (1.31)

is the angular frequency of the linear (small amplitude) oscillations.
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1.4.3 Nonlinear oscillations

Let us continue the Taylor expansion (1.28) up to the third order terms. By consid-

ering the symmetries (1.25)-(1.26), we get

ẏ = a01ψ + a03ψ
3 + a21y

2ψ + O5(y,ψ ),

˙ψ = b10y + b30y
3 + b12yψ

2 + O5(y,ψ ),
(1.32)

where

aij =
1

i!j!

∂i+j fy

∂yi∂ψ j
(0, 0), bij =

1

i!j!

∂i+j fψ

∂yi∂ψ j
(0, 0). (1.33)

The system (1.32) can be also expressed as a single second-order di�erential equa-

tion,

ÿ + ω2

Ly + c03y
3 + c21yẏ

2 + O5(y, ẏ) = 0, (1.34)

where the formulae

c03 = −a01b30 − a21b10, c21 = −
a01b12 + 2a01a21 + 3a03b10

a2

01

(1.35)

for the constants are obtained by direct calculation from (1.32). Note that the depen-

dence on ẏ was missing from the di�erential equation (1.4). This shows the de�ciency

of the classical approximate derivation from the rolling radius di�erence.

To determine the angular frequency of the system, let us apply the transformation

y∗(y,ψ ) = y ·
(
1 +A20y

2 +A02ψ
2 + O4(y,ψ )

)
,

ψ ∗(y,ψ ) = ψ ·
(
B00 + B20y

2 + B02ψ
2 + O4(y,ψ )

)
.

(1.36)

By the appropriately chosen constants of (1.36), the system (1.32) can be put into the

form

[
ẏ∗

˙ψ ∗

]
=

( [
0 ωL

−ωL 0

]
+

(
y∗2 +ψ ∗2

) [
0 βωL

−βωL 0

]
+ O2(y∗2 +ψ ∗2)

)
·

[
y∗

ψ ∗

]
. (1.37)

The angular frequencyωL of small oscillations was de�ned in (1.31), and it can be shown

by direct calculation that the formula for the parameter β becomes

β :=
1

8

·

(
3b30

b10

+
a21

a01

−
b12

a01

−
3a03b10

a2

01

)
. (1.38)

The structure of the system (1.37) has a structure similar to that of the normal form of

the Hopf bifurcation (see [29] p. 152 or [73] p. 385), but the main diagonal of the second

matrix of (1.37) is empty due to the neutral stability of the system.

Let us perform a further transformation by replacingy∗ andψ ∗ by polar coordinates.

That is, let us de�ne

ρ :=

√
y∗2 +ψ ∗2, tan ε :=

ψ ∗

y∗
, (1.39)

15
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ψ

y

ψ ∗

y∗

ρ

ε

(1.36)

ȳ ȳ∗

(1.39)

Figure 1.7: The sketch of the transformations (1.36) and (1.39). Left panel: phase plane of (1.32). Middle

panel: phase plane of (1.37). Right panel: phase plane of (1.40). The transformation from (y,ψ ) to

(y∗,ψ ∗) is a near-identity transformation with respect to y, because y ≈ y∗ in linear approximation. The

transformation into polar coordinates causes that the equilibrium y = ψ = 0 of (1.32) corresponds to the

line ρ = 0 in (1.40).

where ρ is related to the amplitude of the oscillation and ε is related to the phase angle

of the oscillation (see Figure 1.7). Then, (1.37) becomes

ρ̇ = 0 + O5(ρ), ϵ̇ = −ωL ·
(
1 + βρ2 + O4(ρ)

)
, (1.40)

The �rst equation shows that the amplitude ρ of the oscillations in (1.37) is constant

even by considering the third-order terms. The absolute value of the time derivative ε̇

gives the nonlinear angular frequency ωN of the oscillation. By linear approximation,

the amplitude ȳ in the original variable can be expressed by ρ ≈ ȳ∗ ≈ ȳ, that is, the

formula for the angular frequency becomes

ωN (ȳ) = ωL ·
(
1 + βȳ2 + O4(ȳ)

)
. (1.41)

This formula can also be derived from (1.34) by the method of harmonic balance (see

[39], p. 138), which is presented here only concisely. Let us approximate the solutions

by

y (t ) ≈ ȳ · cos (ωN (ȳ) · t ) , (1.42)

and let us substitute it into (1.34). By Fourier expansion of the resulting expression and

by neglecting the terms of the higher frequencies, we get

ωN (ȳ) ≈

√
4ω2

L + 3c03ȳ2

4 − c21ȳ2
= ωL · *

,
1 + *

,

c21

8

+
3c03

8ω2

L

+
-
ȳ2 + O4(ȳ)+

-
. (1.43)

It can be checked from (1.31) and (1.35) that (1.43) gives the same formula as (1.41) with

the nonlinearity factor (1.38).

The formula (1.41) gives the angular frequency for oscillations with a �nite am-

plitude ȳ. Let us call β the nonlinearity factor of the system, which expresses the ef-

fect of the amplitude on the angular frequency of the oscillations. If β > 0 then the
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y

t

y

t

Figure 1.8: The e�ect on the amplitude on the frequency of the kinematic oscillations. Left panel:

β > 0, the frequency is increasing with the increasing amplitude. Right panel: β < 0, the frequency is

decreasing with the increasing amplitude. A period of oscillation is denoted by continuous lines. The

dashed line denotes the parabolic relation (1.44) between the wavelenght (time period) and amplitude.

frequency is increasing with the increasing amplitude (see Figure 1.8), and if β < 0

then the frequency is decreasing with the increasing amplitude. These tendencies are

valid by assuming weakly nonlinear approximation, that is, by considering the ampli-

tude range where the �fth and higher order terms can be neglected in (1.32). Then, the

di�erence between the linear and nonlinear angular frequencies can be approximated

by ωN (ȳ) − ωL ≈ βωLȳ
2
. That is, the di�erence is proportional to the square of the

amplitude.

From the formula (1.41), we can get expressions also for the wavelength of the os-

cillation and the equivalent conicity of the system. The wavelength λ(ȳ) for �nite am-

plitude oscillations can be calculated by

λN (ȳ) =
2πv

ωN (ȳ)
=

2πv

ωL (1 + βȳ2 + O4(ȳ))
= λL ·

(
1 − βȳ2 + O4(ȳ)

)
, (1.44)

where λL = 2πv/ωL is the wavelength for small oscillations. Based on (1.12), the equiv-

alent conicity can be expressed as

h∗N (ȳ) =
br

v2
ωN (ȳ)

2 = h∗L ·
(
1 + 2βȳ2 + O4(ȳ)

)
, (1.45)

where h∗L is the equivalent conicity for small oscillations.

Example 1.1. (Nonlinearity factor from numerical data) In this example, the form of

(1.44) is validated by the numerical results of Schwab and Meijaard [52]. In Figures 7-8.

in [52], the oscillation of the wheelset is plotted against the distance for several ampli-

tudes, which result was obtained by numerical simulation for two di�erent geometries.

From these �gures, the wavelength of the oscillation can be determined, which is plot-

ted in Figure 1.9 by dots. In both cases, the formula (1.44) can be �tted nicely to the

�rst four data points (see the continuous line in Figure 1.9), and we get the nonlinear-

ity factors β = 0.12 1/mm
2

and β = 0.0021 1/mm
2
, respectively. The deviation of the
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Figure 1.9: The �tting of (1.44) to the numerical results of Schwab and Meijaard [52]. Left panel: the

data points are from Figure 7 of [52]. Right panel: the data points are from Figure 8 of [52].

last data points from the �tted curves is probably caused by the higher-order terms in

(1.44).

1.5 Determining parameters from the geometry
The application of (1.41) to a given rail and wheel pro�le requires the values of

the linear angular frequency ωL and the nonlinearity factor β . In this section, analytic

formulae of these parameters are determined from the geometry of the pro�le curves.

1.5.1 Unfolding of the constraints

After performing the calculations, the geometric constraint (1.17) leads to

−(V ±r −w ) + (cw (U
±
w ) − r ) cosψ sin(V ±w − φ) ∓ (U ±w + b) sinψ = 0,

y +
(
(cw (U

±
w ) − r ) sinψ sin(V ±w − φ) ± (U ±w + b) cosψ

)
cosϑ

− (cw (U
±
w ) − r ) sinϑ cos(V ±w − φ) ∓ (U ±r + b) = 0,

z +
(
(cw (U

±
w ) − r ) sinψ sin(V ±w − φ) ± (U ±w + b) cosψ

)
sinϑ

+ (cw (U
±
w ) − r ) cosϑ cos(V ±w − φ) − cr (U

±
r ) + r = 0,

(1.46)

and (1.18) becomes

c′w (U
±
w ) tanψ ± sin(V ±w − φ) = 0,

c′w (U
±
w )

(
c′r (U

±
r ) tanϑ ± 1

)
+ cos(V ±w − φ) cosψ

(
tanϑ ∓ c′r (U

±
r )

)
= 0.

(1.47)

It can be checked that in the central positionq = q0 = [0, 0,φ,w], the trivial solution q̂ =

[0, 0, 0, 0,w,w, 0, 0,φ,φ] for the dependent variables satis�es (1.51). In the nontrivial

case, the dependent variables cannot be expressed explicitly, except for some special

geometries (see [12]).
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The four independent components of (1.21)-(1.22) can be expressed in the form

(
W +Z− −W −Z+

)
· ẇ +

(
Y+Z− − Y−Z+

)
· ẏ = 0,(

− (Y+ − Y−) · sinϑ + (Z+ − Z−) · cosϑ
)
· ẇ +

(
Y+Z− − Y−Z+

)
· ˙ψ = 0,(

(Z+ − Z−) · sinϑ + (Y+ − Y−) · cosϑ
)
· ẇ +

(
Y+Z− − Y−Z+

)
· cosψ · φ̇ = 0,

ẇ −v = 0,

(1.48)

where



W ±

Y±

Z±


=



1 0 0

0 cosϑ − sinϑ

0 sinϑ cosϑ


·



cosψ − sinψ 0

sinψ cosψ 0

0 0 1


· f±w (U

±
w ,V

±
w − φ) (1.49)

is a shorthand notation for the location of the contact points. From (1.48), we can

express

ẏ = ˜fy (ψ ,ϑ ,φ,U
±
w ,V

±
w ) =

Z+W − − Z−W +

Y+Z− − Y−Z+
,

˙ψ = ˜fψ (ψ ,ϑ ,φ,U
±
w ,V

±
w ) =

(Y+ − Y−) · sinϑ − (Z+ − Z−) · cosϑ

Y+Z− − Y−Z+
.

(1.50)

As the geometric constraints (1.46)-(1.47) cannot be expressed in an explicit form,

transformation of (1.50) cannot be carried out into the full nonlinear form of fy (y,ψ )

and fψ (y,ψ ). However, implicit di�erentiation can be used to expand the constraints

into Taylor series in the form (1.28) or (1.32).

1.5.2 Angular frequency of linear oscillations

The geometric constraints (1.46)-(1.47) can be written into the form

дi (q, q̂) = 0, i = 1 . . . 10. (1.51)

By taking the total derivative of (1.17) with respect to the general coordinate qk , we get

*.
,

∂дi
∂qk
+

10∑
j=1

∂дi
∂q̂j
·
∂q̂j

∂qk

+/
-

dqk ≡ 0. (1.52)
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CHAPTER 1. KINEMATIC OSCILLATIONS OF RAILWAY WHEELSETS

From these equations, the partial derivatives ∂q̂j/∂qk of the dependent variables can be

expressed. Then, the �rst-order Taylor expansion of the dependent variables becomes

ϑ (y,ψ ) =
h

b − hr
· y +O2(y,ψ ),

z (y,ψ ) = 0 +O2(y,ψ ),

U ±r (y,ψ ) = ∓
Rr

(
b + Rw

h√
1+h2

)
(b − hr ) (Rw − Rr )

· y +O2(y,ψ ),

Vr (y,ψ ,w ) = w ∓ (b − hr ) ·ψ +O2(y,ψ ),

U ±w (y,ψ ) = ∓
Rw

(
b + Rr

h√
1+h2

)
(b − hr ) (Rw − Rr )

· y +O2(y,ψ ),

V ±w (y,ψ ,φ) = φ ∓ hψ +O2(y,ψ ),

(1.53)

where Rw and Rr are the nominal radii of curvature of the wheel and rail pro�les, re-

spectively (see Figure 1.5). In the derivation of (1.53), it is taken into consideration

that

cr (0) = cw (0) = 0, c′r (0) = c
′
w (0) = h, (1.54)

and that the radii of curvature and the second derivatives of the pro�le curves are

related through

c′′r (0) = −

(√
1 + h2

)
3

Rr
, c′′w (0) = −

(√
1 + h2

)
3

Rw
. (1.55)

By substituting (1.53) into (1.50) and by calculating the linear coe�cients of (1.28),

we get

a01 = v ·
b − hr

b
, b10 = −v ·

hRw

(
b + Rr

h√
1+h2

)
br (b − hr ) (Rw − Rr )

, (1.56)

thus, the linear angular frequency (1.31) becomes

ωL = v

√
h

br
·

Rw
Rw − Rr

·

(
1 +

Rrh

b
√

1 + h2

)
. (1.57)

This is the same formula as the formula (1.10) of Meijaard. That is, the formula of Mei-

jaard cannot be further improved and it is valid for any di�erentiable pro�le curves on

a straight track. The present analysis lets the angular frequency ωL to depend on the

change of the radius of the curvature, as well, but (1.57) shows that this e�ect does not

modify the angular frequency. The formulae (1.7)-(1.9) can be obtained by the assump-

tion of the small conicity h in the sense hRr � b and h2 � 1.
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1.5.3 Angular frequency of nonlinear oscillations

By taking the second total derivative of (1.51), we get

*.
,

∂2дi
∂qk∂ql

+

10∑
j=1

*
,

∂2дi
∂q̂j∂ql

+

10∑
m=1

∂2дi
∂q̂j∂q̂m

·
∂q̂m
∂ql

+
-
·
∂q̂j

∂qk
+

+

10∑
j=1

∂дi
∂q̂j
·
∂2q̂j

∂qk∂ql

+/
-

dqkdql ≡ 0, (1.58)

and the process can be continued further to the third derivatives. From these equations,

we can get the second and third partial derivatives of the dependent variables q̂ with

respect to the generalised coordinates q. At this point, the analytical calculations be-

come so complicated that it is cumbersome to follow them by hand. Thus, the computer

algebra system Maxima was used for the subsequent calculations.

The steps are similar to those of the linear calculations. First, the second and third

derivatives of the dependent variables are expressed. Then, the Taylor series expansion

(1.53) can be continued up to the third order terms, and it is used for determining the

parameters of (1.32) from (1.50). Finally, the nonlinearity factor β is calculated by (1.38).

The resulting full formula for β can be obtained by computer algebra, but it gives an

unacceptably long expression. Instead of that, we can consider the approximate formula

when the conicity h is small in the sense

hr � b, hb � r , h2 � 1, hRr � b, hRw � b . (1.59)

From (1.55), the higher order derivatives of the wheel pro�le are approximated by

c′′w (0) ≈ −1/Rw ,

c′′′w (0) ≈ (R′w + 3h)/R2

w ,

c′′′′w (0) ≈ (R′′wRw − 2(R′w )
2 − 3)/R2

w

(1.60)

at the nominal contact point, where R′w and R′′w denote the derivatives of the radius of

curvature with respect to the axial coordinate Uw . By using a similar notation for the

rail pro�le, the calculations lead to

β ≈
3r − 4Rw

16r (Rw − Rr )2
+
R′w (Rw − Rr ) + 3Rr (R

′
w − R

′
r )

16h(Rw − Rr )3
−
Rr (R

′′
wRw − R

′′
r Rr )

16(Rw − Rr )3
. (1.61)

That is, the nonlinearity factor is a�ected by the wheel and rail pro�les up to the fourth
derivatives of the pro�le curves, which is related to the second derivatives of the radii

of curvature.

Let us consider two special cases of (1.38). For pro�les with constant curvature, we

have R′w = R′′w = R′r = R′′r = 0, and (1.38) becomes

β ≈
3r − 4Rw

16r (Rw − Rr )2
. (1.62)
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constant Rw 4.798 Hz 4.797 Hz

varying Rw 4.798 Hz 5.949 Hz

Figure 1.10: The data and the results of Example 1.2. The graph in the middle: the rail and the wheel

pro�les at the nominal contact point. The constant curvature approximation is denoted by a dashed

line (Rw is constant), and the conical approximation is denoted by a dotted line (Rw → ∞). Top table:

the parameters of the system. Middle table: the frequency of the small amplitude oscillations according

to formulae (1.7),(1.8),(1.10) and (1.57). Bottom table: the change of the frequency for �nite amplitudes

according to formulae (1.62) and (1.64).

The formula shows that if the pro�les are nearly conformal (Rw ≈ Rr ) then not only

the linear angular frequency (1.57) becomes high but β increases, too; thus, the angular

frequency becomes sensitive to the amplitude of the oscillations. If the pro�les are far

from being conformal (values of Rw and Rr are far from each other) then the e�ect of

the amplitude is relatively small because in practice, the amplitude ȳ is in the range of

a few millimetres.

If the curvatures of the pro�les are changing at the nominal contact point, and the

conicity h is small in the sense

hr � R′w , hr � R′r , hR′′wr � R′r , hR′′r r � R′r (1.63)

then the second term of (1.61) becomes dominant and we get

β ≈
R′w (Rw − Rr ) + 3Rr (R

′
w − R

′
r )

16h(Rw − Rr )3
. (1.64)

The formula shows that if the derivatives R′r and R′w of the radii of curvature are not

negligible then the nonlinearity factor β can be very large due to the small value of

the conicity h in the numerator. That is, the e�ect of the amplitude on the angular

frequency is signi�cant even in the case when Rw and Rr are far from each other.

Example 1.2 (Calculation of the nonlinearity factor from the geometry). The e�ect of

the varying curvature is demonstrated on a numerical example (see Figure 1.10). It is

assumed that the rail pro�le has a constant radius Rr of curvature, but the radius of
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curvature of the wheel pro�le is varying (given by Rw and R′w ). The chosen parameter

values in Figure 1.10 are from the physically realistic range. Formulae (1.10) and (1.57)

show that the angular frequency for small amplitudes is ωL = 30.15 1/s, that is, the

frequency is 4.798 Hz. If the variation of the pro�le is neglected (R′w → 0) then the

nonlinearity factor becomes β ≈ −2.0 ·10
−6

1/mm
2
. Then, for the amplitude ȳ = 10 mm,

the frequency changes by only 0.2 per cent. However, by considering the value R′w , 0,

the nonlinearity factor becomes β ≈ 2.4 · 10
−3

1/mm
2
. In this case, the same amplitude

ȳ = 10 mm modi�es the frequency by 25 per cent. This example demonstrates that

the variation of the curvature can lead to a signi�cant change in the frequency of the

kinematic oscillations.

1.6 New results

Thesis Statement 1. Consider the model of a railway vehicle running with a con-

stant speed v along a straight track, where the dynamics of one of its wheelsets is

described by the lateral displacement y and the yaw angle ψ . Rolling is assumed

between the wheelset and each rail.

i) The nonlinear dynamics of the kinematic oscillations of thewheelset
is described by di�erential equations in the form

ẏ = a01ψ + a03ψ
3 + a21y

2ψ + O5(y,ψ ),

˙ψ = b10y + b30y
3 + b12yψ

2 + O5(y,ψ ),

where On () denotes the nth or higher order terms, and the coe�cients aij
and bij are determined by the geometry of the surfaces and the speed v of
the vehicle.

ii) For a �nite amplitude ȳ of the kinematic oscillation, the angular
frequency is given by

ωN (ȳ) = ωL ·
(
1 + βȳ2 + O4(ȳ)

)
,

where ωL =
√
−a01b10 is the angular frequency of small-amplitude oscilla-

tions and β is the nonlinearity factor determined by

β =
1

8

(
3b30

b10

+
a21

a01

−
b12

a01

−
3a03b10

a2

01

)
.

The distance between the contact points is b, the nominal rolling radius of the

wheelset is r , the conicity of the wheelset is h. The radii of curvatures of the wheel

23



CHAPTER 1. KINEMATIC OSCILLATIONS OF RAILWAY WHEELSETS

and rail pro�les are denoted by Rw and Rr , respectively, and their variations along

the axis of the wheelset are described by the derivatives R′w ,R
′′
w , . . . and R′r ,R

′′
r , . . . .

iii) The angular frequency of the small-amplitude kinematic oscilla-
tions is given by

ωL = v

√
h

br
·

Rw
Rw − Rr

·

(
1 +

Rrh

b
√

1 + h2

)
.

Therefore, the formula of Meijaard is valid also for pro�les with varying
curvature.

iv) The nonlinearity factor β is determined by the wheel and rail pro-
�les up to the second derivatives of the radii of curvatures. For small conic-
ity h of the wheelset, the approximate value of the nonlinearity factor is

β ≈
R′w (Rw − Rr ) + 3Rr (R

′
w − R

′
r )

16h(Rw − Rr )3
.

The small value h in the denominator of the formula shows that the variation

of the curvature of the pro�les has a signi�cant e�ect on the change of the angular

frequency for increasing amplitudes.

Related publications: [2], [4], [9], [12].

24



Chapter 2

Codimension–2 extension of
Filippov systems

2.1 Introduction

The theory of Filippov systems provides useful mathematical tools when analysing

mechanical systems with discontinuities. In a Filippov system, them dimensional phase

space of the dynamics is separated into regions by m − 1 dimensional surfaces. Inside

each region, the dynamics is described by a smooth vector �eld, while the vector �eld

has a discontinuity at the boundary surfaces.

A concept of such systems was established in the book of Filippov [23], and many re-

sults and methods has been developed in the following decades. A throughout overview

of the topic with a large number of references can be found in the book of di Bernardo

and his co-authors [19].

One of the oldest and most frequent application of Filippov systems is modelling

of mechanical systems with Coulomb friction. In case of the two-dimensional contact

of two rigid bodies, the tangential contact force has a jump when the direction of the

relative velocity at the contact point changes sign during the motion. This e�ect leads

to a Filippov system where the discontinuity surface corresponds to the state where

the relative velocity is zero at the contact points of the bodies.

However, when we consider the three-dimensional contact of two rigid bodies, the

Coulomb friction becomes discontinuous only when both components of the relative

velocity at the contact point becomes zero at the same time. This results an m − 2

dimensional discontinuity manifold in the phase space of the system, which is out of

scope of Filippov systems.

The main motivation of this chapter is the following: How can we extend Filippov
systems to include spatial Coulomb friction to the analysis? The analysis of Filippov sys-

tems can be applied for m − 1 dimensional (codimension-1) discontinuity manifolds,

while we require methods for m − 2 dimensional (codimension-2) discontinuity mani-

folds. The main ideas of this chapter can be found in a paper of the candidate [11].
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Notation Filippov systems extended Filippov systems

d
i
s
c
o

n
t
i
n

u
i
t
y

s
e
t

D ⊂ Rm domain of the di�erential equation

Σ codimension-1

discontinuity manifold

codimension-2

discontinuity manifold

H (x ) function for implicit form of Σ

H (1) (x ),H (2) (x ) functions for implicit form of Σ

i ∈ {1, 2} indices of two sides of Σ

ϕ ∈ [0, 2π ) direction angle around Σ

ni (x0) unit vector normal to Σ at x0

n(ϕ) (x0) unit vector normal to Σ at x0

n (1) (x0),n (2) (x0) basis for generating n(ϕ) (x0)

d
i
s
c
o

n
t
i
n

u
o

u
s

d
y

n
a
m

i
c
s

F (x ) vector �eld of the system

F ∗i (x0) = Fi (x0) limit vector at x0 from the direc-

tion of ni (x0)

F ∗ (ϕ) (x0) limit vector at x0 from the direc-

tion of n(ϕ) (x0)

R (ϕ) component of F ∗ (ϕ)

in the direction of n(ϕ)

V (ϕ) component of F ∗ (ϕ) normal to

both Σ and n(ϕ)

Σsl , Σcr ⊂ Σ sliding and crossing regions

s
l
i
d

i
n

g

Fs (x0) sliding vector at x0

αi (x0) weight of Fi for the sliding vec-

tor at x0

α (ϕ) (x0) weight function for the sliding

vector at x0

F , FA, FB ,A(ϕ),B (ϕ) quantities for expressing F ∗ (ϕ)

in case of unique sliding

a,b weights for expressing Fs from

FA and FB

Table 2.1: Important notations of Chapter 2. The two columns show the similarities and di�erences

between the concepts of Filippov systems and those of extended Filippov systems.
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It is important to distinguish this extension from the case of the intersection of two

codimension-1 manifolds in Filippov systems (see [19], p. 404 or [20] and [36] for the

most recent results). A possible source of those systems can arise when two planar

contact pairs are presented in a mechanical system.

Note that discontinuous dynamics of Coulomb friction can be investigated from a

fully di�erent viewpoint of complementary problems (see Chapter 10 of [25]). A further

approach can be found in [15].

The structure of the chapter is the following: Section 2.2 gives an overview of Fil-

ippov systems, and it is organised to establish the necessary basis for extension to the

codimension-2 case. The main part of the chapter is Section 2.3, where the fundamental

concepts of Filippov systems are extended to codimension-2 discontinuity sets, which

results to the theory of extended Filippov systems. In Section 2.4, the theory is demon-

strated on a mechanical problem. The new results are summarised in Section 2.5.

2.2 Overview of Filippov systems

In this section, an overview of Filippov systems is provided. Sections 2.2 and 2.3 are

organised in a similar way to help to follow the extension of the concepts. The most

important notations can be found in Table 2.1.

2.2.1 Definition of Filippov systems

Consider a domain D ⊂ Rm and an m − 1 dimensional smooth manifold Σ ⊂ D.

The manifold Σ can be de�ned as the zero set of a smooth function H : D → R by

Σ := {x ∈ D : H (x ) = 0} . (2.1)

This manifold Σ separates the domain D into two regions,

S1 := {x ∈ D : H (x ) > 0} , S2 := {x ∈ D : H (x ) < 0} , (2.2)

and hence, we have Σ ∪ S1 ∪ S2 = D. With these notations, we can de�ne the concept

of a Filippov system:

Definition 2.1 (Filippov system). Consider the sets (2.1)-(2.2) and the ordinary di�eren-
tial equation

ẋ = F (x ) (2.3)

in the form

F (x ) =

{
F1(x ), x ∈ S1

F2(x ), x ∈ S2

, (2.4)

where F1 and F2 are smooth functions on S1 ∪ Σ and S2 ∪ Σ, respectively. Suppose that for
any x0 ∈ Σ, F1(x0) , F2(x0) is satis�ed. Then, (2.3) is called a Filippov system.
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S1

S2

Σ n2 (x0)

n1 (x0)

x0

F1 (x )

F2 (x )

Fs (x0)

F1 (x0)

F2 (x0)
∇H (x0)

Figure 2.2: Basic concepts of Filippov systems depicted in the phase space of the system.

The set Σ is called the discontinuity manifold or switching manifold of the system.

This manifold separates the phase space into two regions with dynamics described by

F1 and F2 (see Figure 2.2). The condition F1(x0) , F2(x0) at the discontinuity is called

the uniform degree 1 of smoothness of the system (see [19], p. 75).

Note that a more general de�nition of Filippov systems can be found in the litera-

ture, where there are more discontinuity manifolds in the phase space (see [19], p. 73 ).

However, the restriction of De�nition 2.1 to a single discontinuity manifold is su�cient

for the analysis of the present work.

If we require that the gradient ∇H (x0) is nonzero for any point x0 ∈ Σ, then

n1(x0) :=
∇H (x0)

‖∇H (x0)‖
, n2(x0) := −n1(x0). (2.5)

give the two unit vectors which are normal to Σ at x0. The symbol ‖.‖ is used for the

usual 2-norm of a vector. De�nition 2.1 implicitly includes that the limits of F exist

from both sides of Σ, that is,

F ∗
1
(x0) := lim

ϵ→0
+
F
(
x0 + ϵn1(x0)

)
= F1(x0),

F ∗
2
(x0) := lim

ϵ→0
+
F
(
x0 + ϵn2(x0)

)
= F2(x0).

(2.6)

2.2.2 Definition of sliding and crossing regions

The discontinuity manifold Σ has two typical regions (see Figure 2.3):

Definition 2.2 (Sliding region). The subset Σsl ⊂ Σ satisfying

〈F1,n1〉 (x0) · 〈F2,n2〉 (x0) > 0 (2.7)

for any x0 ∈ Σsl is called the sliding region of Σ.

Definition 2.3 (Crossing region). The subset Σcr ⊂ Σ satisfying

〈F1,n1〉 (x0) · 〈F2,n2〉 (x0) < 0 (2.8)

for any x0 ∈ Σcr is called the crossing region of Σ.
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attracting

sliding

crossing repelling

sliding

Figure 2.3: Crossing and sliding regions in the phase space of a Filippov system. The arrows denote

the vector �eld at the discontinuity set, and the thin lines denote some typical trajectories. The thick

line shows a trajectory which reaches the discontinuity set Σ in the attracting sliding region. Then, the

trajectory evolves inside Σ until it reaches the tangency point at the boundary of the sliding and crossing

regions. Then, the trajectory leaves the discontinuity set.

In the de�nitions, 〈., .〉 denotes the usual scalar product of vectors. In the sliding

region, the vector �eld F either points towards Σ on both sides or points away from Σ

on both sides. These cases are called attracting sliding and repelling sliding, respectively.

In the crossing region, the vector �eld points towards Σ on the one side and it points

away from Σ on the other side. In the special case when 〈F1,n1〉 (x0) · 〈F2,n2〉 (x0) = 0,

the point x0 is called tangency point of Σ.

Let us introduce the concept of limit trajectories which is used for generalising the

concept of sliding and crossing regions to the codimension-2 case.

Definition 2.4 (α-trajectory). Consider a point x0 ∈ Σ. A trajectory γ : (t0, t1) → D

with limt→t0 γ (t ) = x0, and limt→t0

〈
F (γ (t )),n1(x0)

〉
, 0 is called an α -trajectory of x0

with respect to F .

Definition 2.5 (ω-trajectory). Consider a point x0 ∈ Σ. A trajectory γ : (t0, t1) → D

with limt→t1 γ (t ) = x0, and limt→t1

〈
F (γ (t )),n1(x0)

〉
, 0 is called an ω-trajectory of x0

with respect to F .

That is, α- and ω-trajectories tend to the points of Σ transversally in backward and

forward direction of time, respectively. We refer α- and ω-trajectories together as limit
trajectories. In the sliding and crossing regions, each point x0 has exactly two limit

trajectories, because a trajectory of both F1 and F2 can be found going through x0. As

De�nitions 2.2 and 2.3 determine the direction of the vector �eld on the two sides of Σ,

we can state the following proposition:

Proposition 2.6 (Limit trajectories in the sliding and crossing regions). In the sliding
region, a point has either two α-trajectories (repelling sliding) or two ω-trajectories (at-
tracting sliding). In the crossing region, a point has exactly one α- trajectory and one
ω-trajectory.
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2.2.3 Construction of sliding dynamics

In the case of crossing, trajectories of F1 and F2 can be connected together at the dis-

continuity set Σ, and thus, a trajectory of F crosses Σ. However, in the case of sliding,

the trajectories cannot be continued through Σ in either forward or backward direc-

tion of time, and they get stuck into Σ. Then, the dynamics can be extended to the

discontinuity set by constructing the sliding vector �eld being tangent to Σ.

At a point x0 ∈ Σsl , the simplest construction for the sliding vector �eld Fs is the

convex combination of F1 and F2. That is, we consider the sliding vector �eld in the

form

Fs = α1F1 + α2F2 =

2∑
i=1

αiFi (2.9)

with α1,α2 ∈ R and α1 + α2 = 1, and we require 〈Fs ,n1〉 = 0 for the tangency between

Fs and Σ. These conditions lead to

α1(x0) =
〈F2,n2〉

〈F1,n1〉 + 〈F2,n2〉
(x0), α2(x0) =

〈F1,n1〉

〈F1,n1〉 + 〈F2,n2〉
(x0). (2.10)

The formulae (2.10) show that the sliding vector exists uniquely except for the case

when both F1 and F2 are tangent to Σ. However, the sliding vector �eld (2.9) is valid

only in the sliding region.

This convex construction of the sliding vector is called Filippov’s convex method. A

more general construction is Utkin’s non-convex equivalent control method [68], which

is out of the scope of this thesis.

Example 2.7 (Mechanical example with Coulomb friction). Consider a disk slipping on

a rough horizontal surface, where the centre of the disk is connected to a �xed support

by a spring (see the left panel of Figure 2.4). The mass of the disk is denoted by m, the

gravitational acceleration is denoted by д, and the sti�ness of the spring is k . The state

of the disk is described by the position w and the velocity v of its centre of gravity,

and by the velocity u of the contact point. By assuming Coulomb model with a friction

coe�cient µ, the dynamics of the variables x = [w,v,u] is described by the vector �eld

F (x ) =



v

−k/m ·w − µд sgnu

−k/m ·w − 3µдsgnu


. (2.11)

The discontinuity set Σ is de�ned by H (x ) = u = 0. Then, (2.11) is a Filippov system

with

F1(x ) =



v

−k/m ·w − µд

−k/m ·w − 3µд


, F2(x ) =



v

−k/m ·w + µд

−k/m ·w + 3µд


, n1 = −n2 =



0

0

1


. (2.12)
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sliding region

crossing region

3µдm
k−

3µдm
k

v

µ

д

u

k
w

v

w

Figure 2.4: A mechanical example of Filippov system. Left panel: the sketch of the system with a

slipping disk. Right panel: the sliding and crossing regions in the discontinuity set Σ.

The weights (2.10) of the sliding vector are given by α1 = −k/(6µmд) ·w + 1/2 and

α2 = k/(6µmд) ·w + 1/2, and thus, the sliding vector (2.9) results in

Fs (x ) =



v

−2/3 · k/m ·w

0


. (2.13)

From De�nition 2.2, the condition 〈F1,n1〉 · 〈F2,n2〉 > 0 of the sliding region leads to

|w | < 3µдm/k , hence, the sliding region is an in�nite strip in the plane Σ (see the right

panel of Figure 2.4). It can be checked that (2.13) is exactly the vector �eld that describes

the dynamics of the disk in case of rolling. Moreover, by assuming the same coe�cient

µ for the static and the dynamic friction, the condition |w | < 3µдm/k of the sliding

region coincides with the dynamic condition of slipping from the contact forces.

2.3 Generalisation to the codimension–2 case

In this section, the main ideas of Filippovs theory are extended to those systems

where there is a codimension–2 discontinuity set in the phase space. For this new

concept of extended Filippov systems, we use similar notations to those of the Filippov

systems (see Table 2.1). The analogies and di�erences from simple Filippov systems are

emphasised along the section.

2.3.1 Definition of extended Filippov systems

Let us consider a domain D ∈ Rm and an m − 2 dimensional smooth manifold Σ.

The manifold can be de�ned by

Σ :=
{
x ∈ D : H (1) (x ) = 0 and H (2) (x ) = 0

}
, (2.14)

where H (1) and H (2) are smooth real-valued functions on D. We require that for any

x0 ∈ Σ, the gradients ofH (1) andH (2) are nonzero and

〈
∇H (1) (x0),∇H (2) (x0)

〉
= 0. Then,
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F ∗ (ϕ)

x0

n(ϕ)

Σ

Figure 2.5: Behaviour of the vector �eld of an extended Filippov system at a pointx0 of the codimension–

2 discontinuity set. The set n(ϕ) of the unit normal vectors forms a unit circle and the limit vector �els

F ∗ (ϕ) results in a closed curve in Rm .

by de�ning

n (1) (x0) :=
∇H (1) (x0)

‖∇H (1) (x0)‖
, n (2) (x0) :=

∇H (2) (x0)

‖∇H (2) (x0)‖
, (2.15)

we get an orthonormal basis (n (1),n (2) ) (x0) for expressing vectors normal to Σ at x0.

The corresponding unit vectors can be expressed by

n(ϕ) (x0) := cos(ϕ) n (1) (x0) + sin(ϕ) n (2) (x0). (2.16)

At a given point x0 ∈ Σ, n(ϕ) maps the interval [0, 2π ) onto the set of the unit

vectors normal to Σ. The meaning of ϕ is the angle of n(ϕ) measured from n (1) . In the

codimension-1 case, we had only the two directions n1 and n2 to approach a point x0

of the discontinuity set. However, in the codimension-2 case, there are continuously
many directions to approach Σ (see Figure 2.5), which are parametrised by the angle

ϕ ∈ [0, 2π ).

Now, we can state the de�nition of the extension of Filippov systems to the codi-

mension-2 case which is the centre concept of this chapter:

Definition 2.8 (Extended Filippov system). Consider the manifold (2.14) and the di�er-
ential equation

ẋ = F (x ), (2.17)

where F is a vector �eld D \ Σ→ Rm. Suppose that the following conditions are satis�ed:

(a) The vector �eld F is smooth on D \ Σ.

(b) The limit
F ∗(ϕ) (x0) := lim

ϵ→0
+
F (x0 + ϵn(ϕ) (x0)) (2.18)

exists for all x0 ∈ Σ and ϕ ∈ [0, 2π ).
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(c) For all x0 ∈ Σ, there exist ϕ1,ϕ2 ∈ [0, 2π ) for that F ∗(ϕ1) , F ∗(ϕ2).

Then, the system (2.17) is called an extended Filippov system.

Condition (a) of De�nition 2.8 requires the vector �eld to be smooth outside the

discontinuity manifold Σ. Condition (b) states that at the discontinuity Σ, the limit

vector F ∗ exists from any direction ϕ. Condition (c) ensures that there is indeed a

discontinuity at any x0 ∈ Σ. Conditions (b)-(c) are analogous to the uniform degree 1

of smoothness of the discontinuity manifold of Filippov systems. Thus, De�nition 2.8

is a natural extension of Filippov systems to the codimension-2 case.

We call Σ a codimension-2 discontinuity manifold. To emphasize the di�erence from

the concept in [36], it can be speci�ed that Σ is an isolated discontinuity manifold and

it is not connected to lower codimensional discontinuities.

Note that extended Filippov systems de�ned in De�nition 2.8 are not piecewise

smooth systems, and their discontinuity manifolds are not switching manifolds. In

piecewise smooth systems, there are two regions of smooth dynamics separated by Σ.

However, in extended Filippov systems, the regionD\Σ of smooth dynamics is a single

simple connected set (compare Figures 2.2 and 2.5).

A consequence of De�nition 2.8 is that at any point x0 ∈ Σ, we get a limit vector
�eld F ∗(x0) : [0, 2π ) → Rm. This is analogous to (2.6) at Filippov systems, when there

were two limit vectors F ∗
1
(x0) and F ∗

2
(x0) at any point x0 ∈ Σ. However, at the extended

Filippov systems, F ∗(ϕ) (x0) provides continuously many limit vectors at a point x0 ∈

Σ. Due to the smoothness of F around Σ, the limit vector �eld F ∗(x0) is a smooth

2π -periodic function of the direction angle ϕ. These results are demonstrated on an

example:

Example 2.9 (Extended Filippov system). Consider the system de�ned by

ẋ = F (x ), F (x ) =



−
x1√
x2

1
+x2

2

+ x3

−
x2√
x2

1
+x2

2

−
x1√
x2

1
+x2

2

− x3



, x =



x1

x2

x3


∈ D = R3. (2.19)

The discontinuity set Σ is the line x2

1
+ x2

2
= 0, which is a codimension-2 submanifold

of R3
. The discontinuity set can be generated simply by H (1) (x ) = x1 and H (2) (x ) = x2.

Then, for x0 = [0, 0,x3] ∈ Σ, we get

n (1) =



1

0

0


, n (2) =



0

1

0


, n(ϕ) =



cosϕ

sinϕ

0


, F ∗(ϕ) (x0) =



− cosϕ + x3

− sinϕ

− cosϕ − x3


. (2.20)

The limit vector �eld F ∗(ϕ) (x0) satis�es De�nition 2.8, thus, (2.19) is an extended Fil-

ippov system.
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2.3.2 Definition of sliding and crossing regions

Let us extend De�nitions 2.2 and 2.3 to preserve the properties in Proposition 2.6

for extended Filippov systems. The concept of limit trajectories is extended by the

following de�nitions:

Definition 2.10 (α-trajectory). Consider a point x0 ∈ Σ. A trajectory γ : (t0, t1) → D

with limt→t0 γ (t ) = x0 and

lim

t→t0

〈
F (γ (t )),n (1) (x0)

〉
2

+ lim

t→t0

〈
F (γ (t )),n (2) (x0)

〉
2

, 0 (2.21)

is called an α -trajectory of x0 with respect to F .

Definition 2.11 (ω-trajectory). Consider a point x0 ∈ Σ. A trajectory γ : (t0, t1) → D

with limt→t1 γ (t ) = x0, and

lim

t→t1

〈
F (γ (t )),n (1) (x0)

〉
2

+ lim

t→t1

〈
F (γ (t )),n (2) (x0)

〉
2

, 0 (2.22)

is called anω-trajectory of x0 with respect to F .

The conditions (2.21) and (2.22) exclude the degenerate case when the trajectories

are tangent to Σ at x0. The α- and ω- trajectories together are called limit trajectories,
as those of the simple Filippov systems. By using the concept of limit trajectories, we

can de�ne the sliding and crossing regions of extended Filippov systems:

Definition 2.12 (Sliding region of an extended Filippov system). A point x0 ∈ Σ corre-
sponds to the sliding region Σsl ⊂ Σ if and only if it satis�es:

(a) The limit trajectories of x0 are either all α-trajectories or all ω-trajectories, and

(b)
〈
F ∗(ϕ) (x0),n (1) (x0)

〉
2

+
〈
F ∗(ϕ) (x0),n (2) (x0)

〉
2

, 0 for any ϕ ∈ [0, 2π ).

Definition 2.13 (Crossing region of an extended Filippov system). A point x0 ∈ Σ

corresponds to the crossing region Σcr ⊂ Σ if and only if x0 has at least one α-trajectory
and at least one ω-trajectory.

Condition (b) of De�nition 2.12 excludes the degenerate case when there exists an

angle ϕ1 ∈ [0, 2π ) for that F ∗(ϕ) is tangent to Σ at x0. This case can be de�ned as a

tangency point of an extended Filippov system, because it is on the boundary between

sliding and crossing.

Let us now derive a theorem to provide a direct method to determine the sliding

and crossing regions. Consider the system

ṙ = R (ϕ), ˙ϕ = V (ϕ)/r , (2.23)

where

R (ϕ) :=
〈
F ∗(ϕ),n(ϕ)

〉
(x0), V (ϕ) :=

〈
F ∗(ϕ),n(ϕ + π/2)

〉
(x0). (2.24)
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n(ϕ)

ϕ

n (1)

n (2)

rV (ϕ)

R (ϕ)

projection of F ∗ (ϕ)
onto the plane of

n (1) and n (2)

Figure 2.6: The de�nition of the functions R (ϕ) and V (ϕ).

In the vicinity of x0 ∈ Σ, the system (2.23) describes the asymptotic behaviour of F

projected into the plane orthogonal to Σ at x0. The parameters r and ϕ provide polar

coordinates on this plane spanned by the basis vectors n (1) (x0) and n (2) (x0) (see Figure

2.6). The coordinate r > 0 measures the distance from the discontinuity set, and the

limit case r = 0 corresponds to x0 for any angle ϕ. That is, (2.23) preserves the dis-

continuity of (2.17) and the limit trajectories of (2.17) tending to x0 are related to the

trajectories of (2.23) tending to r = 0.

Definition 2.14 (Attracting and repelling limit directions of a point x0). Consider a
point x0 ∈ Σ and the functions R andV in (2.24). A direction ϕ0 ∈ [0, 2π ) is called a limit
direction of x0 if V (ϕ0) = 0. The direction is called a�racting when R (ϕ0) < 0, it is
called repelling when R (ϕ0) > 0 and it is called neutral if R (ϕ0) = 0.

Theorem 2.15. Suppose that a point x0 ∈ Σ posesses k > 0 limit directions. Then, the
following statements hold:

(a) The point x0 is located in the sliding region Σsl if and only if either all limit directions
are attracting or all limit directions are repelling.

(b) The point x0 is located in the crossing region Σcr if and only if x0 has both attracting
and repelling limit directions.

Proof. Let us denote the k limit directions by ϕi ∈ [0, 2π ),V (ϕi ) = 0, i = 1 . . .k . Firstly,

let us prove that each limit direction corresponds to a limit trajectory. For a chosen

i ∈ {1 . . .k }, consider the initial condition r (0) = r̂ , ϕ (0) = ϕi . Then, the solution of

(2.23) is r (t ) = r̂ +R (ϕi ) · t and ϕ (t ) ≡ ϕi . If R (ϕi ) , 0 then the trajectory tends to r = 0

when t → −r̂/R (ϕi ). That is, this trajectory is a limit trajectory.

Secondly, let us prove that each limit trajectory corresponds to a limit direction ϕi .

If a trajectory tends to
¯ϕ ∈ [0, 2π ) when r → 0 then

¯ϕ = ϕi , otherwise
˙ϕ diverges at

r → 0. The case when the limit trajectory does not tend to any
¯ϕ is possible only when

V does not have zeroes, which case is excluded in the Theorem.
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The sign of R (ϕi ) decides the type of the limit trajectory. Hence, the presence of an

α-trajectory is equivalent to the existence of a repelling limit direction and the presence

of an ω-trajectory is equivalent to the existence of an attracting limit direction. Then,

the Theorem follows directly from De�nitions 2.12 and 2.13. �

Note that this theorem does not contain the case when x0 possesses no limit direc-

tions. Still, there can exist spiral-shaped limit trajectories around x0. Including this case

into Theorem 2.15 would need further analysis.

Theorem 2.15 provides a direct method to decide if a point corresponds to the sliding

or crossing region. The steps are the following: at any point x0, the quantities F ∗(ϕ) (x0),

V (ϕ) and R (ϕ) can be determined. Then, the limit directions can be obtained from the

zeroes of V , and the type of the limit directions decides if the point lays in the sliding

or crossing region. Let us demonstrate it on our previous example:

Example 2.16 (Application of Theorem 2.15). Consider the extended Filippov system

in Example 2.9. From the limit vector �eld F ∗ in (2.20), we get

R (ϕ) = −1 + x3 cosϕ, V (ϕ) = −x3 sinϕ . (2.25)

The limit directions are ϕ1 = 0 and ϕ2 = π , which results R (ϕ1) = −1 + x3 and R (ϕ2) =

−1 − x3. That is, the (attracting) sliding region of Σ is |x3 | < 1 and the crossing region

is |x3 | > 1.

2.3.3 Construction of sliding dynamics

In (2.9), the sliding vector �eld was constructed as a convex combination of the two

vector �elds. In the codimension-2 case, there are continuously many limit vectors,

thus, the convex combination can constructed as an integral average of the limit vector

�eld in the form

Fs =

∫
2π

0

α (ϕ) · F ∗(ϕ) dϕ, (2.26)

where α (ϕ) is a [0, 2π ) → R function with∫
2π

0

α (ϕ) dϕ = 1. (2.27)

Hence, instead of the discrete weights αi at (2.9), we have a weight function α (ϕ) on

the domain [0, 2π ).

In case of Filippov systems, formulae (2.10) provide a unique sliding vector �eld

from convex combination. However, in the codimension-2 case, the uniqueness of Fs
is not provided. In general, (2.26) results continuously many sliding vectors which

are tangent to Σ, which is a similar problem to that of the intersecting codimension-1

discontinuity sets [36]. It is still an open question if there is a „most natural” choice of

the sliding vector to eliminate this ambiguity.

However, if at a point x0, the image F ∗(ϕ) is located in a 2D subspace of Rm, then

Fs is provided uniquely by (2.26). This is stated in the following theorem:
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Theorem 2.17. Suppose that at a point x0, the limit vector �eld F ∗(ϕ) (x0) can be written
into the form

F ∗(ϕ) = F +A(ϕ) · FA + B (ϕ) · FB, (2.28)

where

F :=

∫
2π

0

F ∗(ϕ)dϕ, (2.29)

FA, FB ∈ R
m and A(ϕ),B (ϕ) are [0, 2π ) → R functions with∫

2π

0

A(ϕ)dϕ = 0,

∫
2π

0

B (ϕ)dϕ = 0. (2.30)

Moreover, suppose that〈
FA,n (1)

〉
·
〈
FB,n (2)

〉
−

〈
FA,n (2)

〉
·
〈
FB,n (1)

〉
, 0. (2.31)

Then, the construction (2.26) provides a unique sliding vector Fs .

Proof. By the substitution of (2.28) into (2.26), we get

Fs = F +

∫
2π

0

α (ϕ)A(ϕ)dϕ · FA +

∫
2π

0

α (ϕ)B (ϕ)dϕ · FB = F + a FA + b FB, (2.32)

where

a :=

∫
2π

0

α (ϕ)A(ϕ)dϕ, b :=

∫
2π

0

α (ϕ)B (ϕ)dϕ . (2.33)

As the sliding vector �eld is tangent to Σ, the conditions

〈
Fs ,n (1)

〉
= 0 and

〈
Fs ,n (2)

〉
= 0

provide two scalar equations for a and b. It can be proved by direct calculation, that

except for the degenerate case (2.31), a and b are determined uniquely, that is, Fs is

determined uniquely. �

Although, the Theorem ensures the uniqueness only for a special case, this class of

systems has a practical importance in many mechanical systems with Coulomb friction

lead to the form (2.28). Let us now demonstrate the results on our previous example:

Example 2.18 (Construction of the sliding vector). Consider our extended Filippov

system in Examples 2.9 and 2.16. The limit vector �eld F ∗ can be written into the form

(2.28) with

F =



x3

0

−x3


, FA =



−1

0

−1


, FB =



0

−1

0


, A(ϕ) = cosϕ, B (ϕ) = sinϕ . (2.34)

Then, from the tangency condition, we get a = x30, b = 0, and the sliding vector �eld

becomes

Fs (x ) =



0

0

−2x3


. (2.35)

37



CHAPTER 2. CODIMENSION–2 EXTENSION OF FILIPPOV SYSTEMS

Ff

u

Ff

u

Ff

u

Figure 2.7: Characteristic curves of the di�erent types of Coulomb models, where the friction force Ff is

plotted against the relative velocity u of the surfaces at the contact point. In case of the simple Coulomb

model (left panel) and the Stribeck model (right panel), the static friction force can be obtained as a

limit of the dynamic friction force when the relative velocity tends to zero. These cases can be modelled

appropriately with Filippov systems. In the case of the sticktion model (middle panel), the choice of the

static friction is inconsistent with the limit of the dynamic friction at zero relative velocity, which causes

problems during the modelling by a Filippov system. These properties of the model are essentially the

same at extended Filippov systems with three-dimensional friction.

2.4 Application to mechanical problems

Mechanical problems with a single two-dimensional contact with Coulomb friction

often lead to Filippov systems. A simple system can be found in Example 2.7 (see [5] for

a more detailed analysis), and many other examples can be found in the literature (see

e.g. [19] and its references). In those systems, the rolling or sticking state of the bodies

corresponds to the sliding dynamics on the codimension-1 discontinuity set (switching

surface). The two vector �elds F1 and F2 are related to the mechanical slipping of the

surfaces to the two directions. Moreover, if we use a friction model with a consistent
static and dynamic friction (see the left and right panels of 2.7) then the boundary of

the sliding and crossing regions corresponds to the boundary when the rolling/sticking

behaviour ceases to exist (see Example 2.7).

The de�nition of extended Filippov systems was motivated by the desire to have a

similar framework that can be applied to model mechanical systems with three-dimen-
sional Coulomb friction. Now, the application is demonstrated on a simple mechanical

example. More complicated applications can be found in Chapters 4 and 5 of this thesis.

2.4.1 Example: ball on the bo�om of the pool

Consider a homogeneous ball rolling and slipping on the bottom of the pool (see

Figure 2.8). We assume that there is Coulomb friction between the bottom of the ball

and the bottom of the pool and there is a viscous force between the ball and the sur-

rounding liquid. Of course, more complicated models could be used but we restrict

ourselves to a simple model to focus on the application of the mathematical methods.

We use the following notations: m is the mass of the ball, r is the radius of the ball,

µ is the friction coe�cient of the Coulomb model, K is the linear viscous coe�cient
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uz

uy

vy

vz

µ

−Kvz

−Kvy

д

Figure 2.8: The mechanical model of the ball rolling on the bottom of a pool. The e�ect of the liquid

is modelled by the viscous force components −Kvy and −Kvz , and the Coulomb friction is acting at the

bottom of the ball.

between the ball and the liquid, and д is the gravity.

The state of the ball is described by the coordinates vy and vz of the velocity of the

centre of the ball and the coordinates uy and uz of the velocity of the bottom point of

the ball. The components Ωy and Ωz of the angular velocity of the ball are expressed

by

Ωy =
1

r
(uz −vz ) Ωz = −

1

r
(uy −vy ) (2.36)

In the case when the ball is slipping on the ground, the relevant components of the

Newton-Euler equations become

mv̇y = −Kvy + FCy,

mv̇z = −Kvz + FCz,

2

5

mr 2 ·
1

r
(u̇z − v̇z ) = rFCz,

2

5

mr 2 ·
1

r
(v̇y − u̇y ) = −rFCy,

(2.37)

where the components of the Coulomb friction force are

FCy = −µmд
uy√
u2

y+u
2

z
, FCz = −µmд

uz√
u2

y+u
2

z
. (2.38)

The dynamics of the slipping ball can be described by the extended Filippov system

ẋ = F (x ), F (x ) =



−7

2
µд

uy√
u2

y+u
2

z
− K

mvy

−7

2
µд uz√

u2

y+u
2

z
− K

mvz

−µд
uy√
u2

y+u
2

z
− K

mvy

−µд uz√
u2

y+u
2

z
− K

mvz



, x =



uy
uz
vy
vz



∈ D = R4. (2.39)
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vz

vy

7µдm
2K

sliding region

crossing region

1

2

uz

uy

uz

uy

ϕ2

ϕ1

ϕ2

ϕ1

1 2

Σ Σ

Figure 2.9: The sliding and crossing behaviour of the system (2.39). Left panel: the sliding and crossing

regions in the discontinuity set Σ. Middle panel: a typical phase portrait of the system in the vicinity of

x0 in the sliding region. The phase portrait is projected into the plane of n (1) and n (2) , that is, into the

plane of coordinates uy and uz . In this case, the ball starts rolling in �nite time. Right panel: a typical

phase portrait of the system in the vicinity of x0 in the crossing region. In this case, no rolling can occur.

In the 4D phase space, the discontinuity manifold Σ is the hyperplane uy = uz = 0,

which corresponds to the case when the relative velocity at the contact point disap-

pears. Let us choose H (1) (x ) = uy and H (2) = uz . Then, at a chosen point x0 =

[0, 0,vy,vz] ∈ Σ, we obtain

n (1) =



1

0

0

0



, n (2) =



0

1

0

0



, n(ϕ) =



cosϕ

sinϕ

0

0



, F ∗(ϕ) =



−7

2
µд cosϕ − K

mvy

−7

2
µд sinϕ − K

mvz

−µд cosϕ − K
mvy

−µд sinϕ − K
mvz



. (2.40)

In this example, the angle ϕ has also a physical meaning: it expresses the direction of

the velocity of the bottom point of the ball. Thus, the limit vector �eld F ∗(ϕ) describes

the dynamics of the ball for the di�erent directions of the in�nitesimally small slipping

velocities.

For determining the slipping velocities, let us calculate the functions R and V ac-

cording to (2.24):

R (ϕ) = −7

2
µд − K

m

(
vy cosϕ +vz sinϕ

)
, V (ϕ) = −K

m

(
vz cosϕ −vy sinϕ

)
. (2.41)

By calculating the limit directions, we get ϕ1 = arctan(vz,vy ) and ϕ2 = ϕ1 + π . That is,

the limit directions correspond to the case when the slipping velocity of the bottom of

the ball is parallel to the velocity of the centre of the ball. We get

R (ϕ1) = −
7

2
µд − K

m

√
v2

y +v
2

z , R (ϕ2) = −
7

2
µд + K

m

√
v2

y +v
2

z . (2.42)
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As R (ϕ1) is always negative, ϕ1 is always an attracting direction (see Figure 2.9). How-

ever, ϕ2 is attracting only if √
v2

y +v
2

z <
7µдm

2K
=: vcrit. (2.43)

That is, as the magnitude of the velocity of the centre of the ball is larger than the crit-

ical velocity vcrit, the bottom point of the ball starts slipping instantaneously into the

direction ϕ2, which is opposite to the velocity of the centre of the ball. The correspond-

ing sliding and crossing regions are determined by (2.43), the boundary is a circle in

the discontinuity set Σ (see Figure 2.9).

Inside the sliding region, the sliding dynamics can be de�ned which corresponds to

mechanical rolling. The limit vector �eld (2.40) has the form of (2.28) by considering

F =



−K
mvy

−K
mvz

−K
mvy

−K
mvz



, FA =



−7

2
µд

0

−µд

0



, FB =



0

−7

2
µд

0

−µд



, A(ϕ) = cosϕ, B (ϕ) = sinϕ . (2.44)

By requiring that the sliding vector in (2.28) is tangent to Σ, we get a = −2Kmvy/(7µд),

b = −2Kmvz/(7µд), and the sliding vector �eld becomes

Fs (x ) =



0

0

− 5K
7mvy

− 5K
7mvz



. (2.45)

By taking the rolling constraint uy ≡ uy ≡ 0, and applying the Newton-Euler equa-

tions for the rolling case, we get the same dynamics as Fs in (2.45). Moreover, by check-

ing the maximum admissible static friction force in the rolling case, we get the same

boundary as the condition (2.43) of the sliding region. Hence, the example demon-

strates that the theory of extended Filippov system provides consistent results to our

mechanical expectations when modelling three-dimensional Coulomb friction.
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2.5 New results

Thesis Statement 2. By introducing the de�nition of extended Filippov sys-
tems, the concept of Filippov systems is generalised to vector �elds that
are discontinuous in an isolated codimension-2 manifold. In these sys-
tems, the directional limit of the vector �eld at the discontinuity set takes
continuouslymany values. From the resulting limit vector �eld, the sliding
and crossing regions of the discontinuitymanifold are de�ned by using the
concept of limit trajectories. In the sliding region, the sliding dynamics is
de�ned by taking the convex combination of the limit vector �eld.

Related publications: [5], [11].
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Chapter 3

Rolling-slipping transitions of
dual-point rolling bodies

3.1 Introduction

In Chapter 1, the motion of a railway wheelset was analysed, which is rolling on the

two rails. By generalising the arrangement of this mechanical system, we can consider

a rigid body which is moving subjected to normal contacts with two �xed rigid surfaces.

At each contact point, rolling or slipping can occur, which leads to 4 di�erent kinematic

situations. Besides the case when the body is rolling at both contact points (dual-point

rolling), the body can slip at either one of the contact points (rolling-slipping) or even

at both contact points (dual-point slipping).

During the motion of the body, the dynamics may switch between these four kine-

matic cases. Conditions of the slipping and sticking of the contact points are determined

by the friction properties of the surfaces. The common feature of Coulomb friction and

many other friction models is that the conditions of the slipping are expressed depend-

ing on the normal and tangential forces at the contact points (for a through overview

of the di�erent friction models, see recent review papers [55] and [51]). By using these

models, the decision whether a contact point starts slipping requires determining the

contact forces. This is not always possible in the scope of rigid body dynamics.

It can be checked that the contact forces are undetermined when a rigid body is

in rolling contact with both rigid surfaces (dual-point rolling case), which is a similar

problem to the indeterminacy of the reaction forces of a beam with two pin supports.

As the contact forces are unknown, the condition of the slipping cannot be determined

by applying the inequalities depending on the normal and tangential components of

the contact forces. A possible method to treat this indeterminacy is to give up the rigid

body model and model the deformation of the surfaces at least in the vicinity of the

contact points.

But based on the results of Chapter 2, a di�erent method can be developed which

remains in the scope of rigid body motion. With the concepts of sliding and crossing re-
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Notation Meaning

g
e
o

m
e
t
r
y

C centre of the gravity of the moving body

P+, P− contact points (of the moving body)

r+, r− location of P+ and P− measured from C

n+,n− unit vectors normal to the surfaces at the contact points

t+
1
, t+

2
, t−

1
, t−

2
unit vectors in the tangent plane at the contact points

a unit vector parallel to r+ − r−

k
i
n

e
m

a
t
i
c
s

v+, v− velocity of P+ and P−

u+
1
,u+

2
,u−

1
,u−

2
velocity components of the contact points

va velocity component of v+ and v− in the direction of a
vC velocity of C

Ω angular velocity of the body

Ωa velocity component of Ω in the direction of a
q vector of generalised coordinates

s vector of quasi-velocities

e
q

u
a
t
i
o

n
o

f
m

o
t
i
o

n

Fe ,Me resultant of the external loads

F+, F+ contact forces at P+ and P−

N +,N − normal force components

T +
1
,T +

2
,T −

1
,T −

2
tangential force components

m mass of the body

J(q) mass moment of inertia of the body

µ friction coe�cient of Coulomb model (both static and dynamic)

n
o

n
s
m

o
o

t
h

d
y

n
a
m

i
c
s

D ⊂ R8
phase space

x = (q, s ) ∈ D state vector of the system

FSS (x ) vector �eld for the slipping-slipping case

(extended Filippov system)

FSR (x ) vector �eld for the slipping-rolling case (Filippov system)

FRS (x ) vector �eld for the rolling-slipping case (Filippov system)

FRR (x ) vector �eld for the rolling-rolling case (smooth system)

ΣSR discontinuity set of FSS at rolling at P−

ΣRS discontinuity set of FSS at rolling at P+

ΣRR double discontinuity in the intersection if ΣSR and ΣRS

at dual-point rolling

ϕ+,ϕ− angle measured in the phase space about ΣRS and ΣSR

n+ (ϕ+),n− (ϕ−) unit vectors normal to ΣRS and ΣSR, respectively

F ∗+
SS
(ϕ+), F ∗−

SS
(ϕ−) limit vector �elds of FSS at ΣRS and ΣSR, respectively

n̂(ϕ+,ϕ−) unit vectors normal to ΣRR

F̂ ∗
SS
(ϕ+,ϕ−) limit vector �eld at the double discontinuity ΣRR

R̂ components of F̂ ∗
SS

in the direction of n̂

V̂ +, V̂ − component of F̂ ∗
SS

in directions normal to both n̂ and ΣRR

Table 3.1: Important notations of Chapter 3. For the other notations about extended Filippov systems,

see Table 2.1.
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3.2. KINEMATICS OF A BODY WITH DUAL-POINT CONTACT

gions, theory of Filippov systems provides a natural method to determine condition of

slipping, which is valid for friction models where static and dynamic friction models �t

consistently (see Figure 2.7). In Chapter 2, we introduced the concept of extended Filip-

pov systems, which makes it possible to �nd sliding and crossing regions in mechanical

systems containing spatial Coulomb friction. In that way, conditions of slipping can be

determined from purely the di�erential equations for the slipping cases, and thus, we

can avoid calculating the contact forces in case of the dual-point rolling motion of a

body.

The motivations behind analysing bodies in dual-point contact were the applica-

tions in the subsequent chapters. In Chapter 4, the model of a special �owmeter is

analysed where a ball is in dual-point contact with a cylindrical vessel and rolling-

slipping transitions can occur. In Chapter 5, the railway wheelset is analysed from the

point of view of slipping on the rails. References about these applications can be found

in the related chapters. A further application area may be the motion of the rolling

element in tapered roller bearings [76] or in angular contact ball bearings [13, 54].

The structure of the chapter is the following: In Section 3.2, the kinematic descrip-

tion of the body is presented with introducing an appropriate choice of variables. In

Section 3.3, the structure of the di�erential equations is derived for the four kinematic

cases by using the concepts of Filippov systems and extended Filippov systems. In Sec-

tion 3.4, the trajectories of slipping dynamics are used to determine the conditions of

the slipping in the case of dual-point rolling. The new results are summarised in Section

3.5.

3.2 Kinematics of a body with dual-point contact
Consider a rigid body which is in contact with two �xed rigid surfaces. The rigid

body without constraints has 6 degrees of freedom, and the contact conditions with the

two supporting bodies result in 2 independent scalar geometric constraints. Thus, the

body with dual-point contact has 4 degrees of freedom, and hence, at least locally, the

geometric state can be described by the generalised coordinates

q = [q1,q2,q3,q4]. (3.1)

In practice, the generalised coordinates are usually chosen intuitively (see (1.19)).

3.2.1 Geometry

The centre of gravity of the body is denoted by C and the two contact points are

denoted by P+ and P− (see Figure 3.2). The loci of the contact points are denoted by

r+ and r−, which are measured from the centre C of gravity. The unit normal vectors

at the contact points are denoted by n+ and n−, respectively. During this chapter, it is

assumed that r+(q), r−(q), n+(q) and n−(q) depend smoothly on q in a neighbourhood
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r+

r−

n+
n−

a
t−
2

t−
1

t+
1

t+
2

C

P−

P+

Figure 3.2: The de�nition of the local coordinate systems at the contact points. The �gure shows an

example of a ball rolling between two perpendicular planes, but the analysis is valid for arbitrary ge-

ometries. The centre C of the gravity is chosen not at the geometric centre of the ball to demonstrate

that n+ and n− do not necessarily lay in the plane spanned by r+ and r−.

of an initial position q = 0. For that, it is required that the surfaces of the contacting

bodies are smooth and it is excluded that further contact points appear. In practice,

the explicit dependence of these vectors on q can be quite complicated, but it can be

determined locally by the parametric description of the surfaces (see Section 1.5).

Let us construct some coordinate systems at the contact points in the following way.

Let

a :=
r+ − r−

‖r+ − r−‖
(3.2)

be the unit vector in the direction of the axis between the contact points. Then, let

t+
1

:=
a × n+

‖a × n+‖
, t−

1
:=

a × n−

‖a × n−‖
(3.3)

be the unit vectors which are tangent to the surfaces at the corresponding contact point

and which are perpendicular to a. The unit vectors of the other tangent direction can

be obtained by

t+
2

:= n+ × t+
1
, t−

2
:= n− × t−

1
(3.4)

which unit vectors point to the direction of the projection of r+ − r− onto the tangent

planes at the contact points. If special cases t+
1
= 0 and t−

1
= 0 are excluded from the

analysis then (n+, t+
1
, t+

2
) and (n−, t−

1
, t−

2
) form orthonormal bases at the corresponding

contact points (see Figure 3.2).
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3.2.2 Kinematics

After choosing the generalised coordinates, the trivial description of the kinematic

state of the body is to use the time derivatives q̇ = [q̇1, q̇2, q̇3, q̇4]. However, it is more

convenient to describe the velocity state by variables by which the rolling constraints

can be expressed easier. For that, the velocities of the contact points are used to express

the velocity state of the body.

In the coordinate systems at the contact points, the velocities of the contact points

can be written into the form

v+ := u+
1
t+
1
+ u+

2
t+
2
,

v− := u−
1
t−
1
+ u−

2
t−
2
,

(3.5)

where u+
1
,u−

1
,u+

2
,u−

2
are the components of v+ and v− in the corresponding tangent

directions and the normal components are zero due to the geometric constraints.

The velocities v+ and v− cannot be chosen fully independently, because the rigid

body motion results the relation

v+ − v− = Ω × (r+ − r−), (3.6)

where Ω is the angular velocity of the body. By taking the scalar product of (3.6) by the

vector a, we get 〈
v+, a

〉
−

〈
v−, a

〉
=

〈
Ω × (‖r+ − r−‖ · a), a

〉
= 0. (3.7)

Substitution of (3.5) into (3.7) leads to

u+
2

〈
t+
2
, a

〉
− u−

2

〈
t−
2
, a

〉
= 0. (3.8)

This condition can be satis�ed by introducing a new variable ua with

ua := u+
2

〈
t+
2
, a

〉
= u−

2

〈
t−
2
, a

〉
(3.9)

which is the common velocity component of the contact points in the direction of the

axis r+ − r−. Then, the velocities of the contact points can be written in the form

v+ = u+
1
t+
1
+ ua/

〈
t+
2
, a

〉
t+
2
,

v− = u−
1
t−
1
+ ua/

〈
t−
2
, a

〉
t−
2
.

(3.10)

Therefore, the velocity of the contact points can be expressed by the variables u+
1

,

u−
1

and ua . The velocity state of the body is still not fully determined by these three

variables. The cross product of a and (3.6) leads to

a × (v+ − v−) = ‖r+ − r−‖ · Ω − ‖r+ − r−‖ · 〈a,Ω〉 · a. (3.11)

A new scalar variable Ωa is de�ned by

Ωa := 〈a,Ω〉 , (3.12)
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which is the component of the angular velocity Ω in the direction of the axis a, and

whose value can be chosen independently from the velocities of the contact points. By

substituting (3.12) into (3.11), the angular velocity becomes

Ω = Ωa · a + a ×
v+ − v−

‖r+ − r−‖
. (3.13)

Finally, we have four scalar variables u+
1
,u−

1
,ua and Ωa , which determine the veloc-

ity of the contact points and the angular velocity by (3.10) and (3.13). Then, the velocity

state of the body is described by these four variables; they are called quasi-velocities
([26], p. 254) and are denoted by

s = [s1, s2, s3, s4] = [u+
1
,u−

1
,ua,Ωa]. (3.14)

The advantage of choosing this set of quasi-velocities is the simple expression of

the rolling constraints. If the body is rolling at P+ then v+ = 0, which is equivalent to

u+
1
= ua = 0. (3.15)

If the body is rolling at P− then v− = 0 leads to

u−
1
= ua = 0. (3.16)

Note that the rolling constraints (3.15) and (3.16) are not fully independent, and there

are only three independent constraints in the case of dual-point rolling (see also (1.48)).

As the quasi-velocities fully describe the velocity state through (3.10) and (3.13), the

time derivatives of the generalised coordinates can be expressed as a linear combination

of the quasi-velocities in the form

q̇ = K (q) · s, (3.17)

where K (q) is a 4 by 4 matrix possibly depending on q.

The analysis of this chapter follows the choice (3.14) of quasi-velocities, but the

derivations leaves open the possibility for some modi�cations (see (4.10) and (5.18)).

The variables u+
1

, u−
1

and ua can be modi�ed by a constant multiplier, and Ωa can be

replaced by any quasi-velocity for which q̇ can be expressed in the form (3.17).

3.3 Discontinuous dynamics

3.3.1 Equations of motion

At the contact points, let us denote the contact forces by F+ and F−, respectively,

which consist of normal forces and friction forces in the form

F+ = N +n+ +T +
1
t+
1
+T +

2
t+
2
,

F− = N −n− +T −
1
t−
1
+T −

2
t−
2
.

(3.18)
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N +
N −

T −
2

T −
1

T +
1

T +
2

C

P−

P+

Me

Fe

Figure 3.3: Force system acting on the moving body.

It is assumed that the resultant of all other forces acting on the body is given as a force

Fe acting at C and a torque Me (see Figure 3.3). Let m denote the mass of the body and

let J(q) denote the mass moment of inertia which possibly depends on q. Then, the

Newton-Euler equations of the body become

mv̇C = F+ + F− + Fe ,

J(q) ˙Ω + Ω × (J(q)Ω) = r+ × F+ + r− × F− +Me ,
(3.19)

where vC is the velocity of the centre C of gravity given by

vC = v+ − Ω × r+. (3.20)

Note that the kinematic quantities vC and Ω can be expressed by the quasi-velocities s .

It is assumed that there is Coulomb friction at both contact points with a uniform

µ coe�cient of friction for both static and dynamic case. In the dynamic case when the

body is slipping at P+ or P−, the contact forces become

F+ := N +n+ − µN +
v+

‖v+‖
,

F− := N −n− − µN −
v−

‖v−‖
,

(3.21)

respectively. In the case of rolling at P+ or P−, the inequalities

‖F+ − N +n+‖ ≤ µN +,

‖F− − N −n−‖ ≤ µN −
(3.22)
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kinematic case acronym
constraints free variables

u+
1

u−
1

ua Ωa in s in q

slipping-slipping SS 4 4

slipping-rolling SR 0 0 2 4

rolling-slipping RS 0 0 2 4

rolling-rolling RR 0 0 0 1 4

Table 3.4: The four kinematic cases of the body with the corresponding kinematic constraints. The �rst

and second letter of the acronym corresponds to the slipping (S) or rolling (R) state of the contact point

P+ and P−, respectively. These acronyms are used along Chapters 3-5.

ensure the dynamic condition of rolling.

According to the slipping or rolling state of the two contact points, there are four

kinematic cases of the body, which are denoted by the two-letter acronyms SS, SR, RS,

and RR (see Table 3.4). In each case, the dynamics can be expressed as a set of �rst-order

di�erential equations in the form

q̇ = K (q) · s,

ṡ = f (q, s ),
(3.23)

where the �rst equation is given by (3.17) and the second equation can be calculated

from the dynamic equations (3.19) and the corresponding appropriate conditions from

(3.15), (3.16) and (3.21) (see Table 3.5). The full state space of the body can be described

by the 8 dimensional vector

x = (q, s ) = [q1,q2,q3,q4,u
+
1
,u−

1
,ua,Ωa], (3.24)

and then, (3.23) can be written into the form

ẋ = F (x ) = (K (q) · s, f (q, s )). (3.25)

In the presence of additional constraints of the cyclic coordinates, some variables from

(3.24) can be excluded (see (4.23) and (5.31)).

Example 3.1 (Kinematic oscillations of railway wheelsets). In Chapter 1, the chosen

generalised coordinates were q = [y,ψ ,φ,w] (see (1.19)). Instead of Ωa , it is more

convenient to choose s4 with ẇ = s4, because of the additional kinematic constraint of

constant speed of the train (1.22). The kinematic oscillations correspond to the dual-

point rolling (RR) case, that is, the quasi-velocities are s = [u+
1
,u+

1
,ua, s4] = [0, 0, 0, s4].

Then, by taking

K (q) =



0 0 0 fy (y,ψ )/v

0 0 0 fψ (y,ψ )/v

0 0 0 fφ (y,ψ )/v

0 0 0 1



(3.26)
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SS SR RS RR
time derivatives of the quasi-velocities (ṡ) 4

components of F+ and F− 6

total number of unknowns 10
dynamic equations (3.19) 6

kinematic constraints (3.15)-(3.16) 0 2 2 3

Coulomb friction (3.21) 4 2 2 0

total number of equations 10 10 10 9
missing equations 0 0 0 1

Table 3.5: The number of the unknowns and the equations in the di�erent kinematic cases. It can be

seen that in Cases SS, SR and RS, there are enough equations to determine the di�erential equations and

the contact forces. However, in Case RR, the number of equations is less than the unknowns which leads

to indeterminacy in the contact forces.

from (1.24), by taking f (q, s ) = [0, 0, 0, 0] and by choosing the initial conditions s (0) =

[0, 0, 0,v], the equations (3.23) provide the same dynamics as (1.24). The slipping cases

of the railway wheelset are investigated in Chapter 5.

3.3.2 Dynamics of the di�erent cases

In each kinematic case, we get a di�erent vector �eld F (x ), which are denoted by

FSS(x ), FSR(x ), FRS(x ) and FRR(x ). Because of the constraints and discontinuities, these

four vector �elds are valid in di�erent subsets of the domainD 3 x of the phase space.

Case SS The discontinuities of the system FSS are caused by the Coulomb friction

(3.21) for slipping. By substituting (3.10) into (3.21), we get

T +
1
= −µN +

u+
1√

(u+
1
)2 + u2

a

〈
t+
2
, a

〉 , T +
2
= −µN +

ua
〈
t+
2
, a

〉
√
(u+

1
)2 + u2

a

〈
t+
2
, a

〉
2

, (3.27)

T −
1
= −µN +

u−
1√

(u−
1
)2 + u2

a

〈
t−
2
, a

〉 , T −
2
= −µN −

ua
〈
t−
2
, a

〉
√
(u−

1
)2 + u2

a

〈
t−
2
, a

〉
2

. (3.28)

The discontinuities of (3.27) and (3.28) appear in the vector �eld FSS. The contact force

(3.27) becomes discontinuous if u−
1
= ua = 0, which corresponds to Case SR (see Table

3.4). Therefore, we can de�ne the set

ΣSR =
{
x ∈ D : u−

1
= 0 and ua = 0

}
, (3.29)
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which is a codimension–2 discontinuity set of FSS (see De�nition 2.8). Similarly, the

contact force (3.28) is discontinuous when u+
1
= ua = 0, which corresponds to Case RS.

Then, we obtain the set

ΣRS =
{
x ∈ D : u+

1
= 0 and ua = 0

}
, (3.30)

which is a codimension–2 discontinuity set of FSS. That is, the vector �eld FSS is an

extended Filippov system (see De�nition 2.8) with discontinuity sets ΣSR and ΣRS. These

discontinuity sets intersect each other at u+
1
= u−

1
= ua = 0, which de�nes the set

ΣRR =
{
x ∈ D : u+

1
= 0 and u−

1
= 0 and ua = 0

}
, (3.31)

that is,

ΣRR = ΣSR ∪ ΣRS. (3.32)

In the 8 dimensional phase space of FSS, ΣRR is a 5 dimensional (codimension–3) hy-

perplane in the intersection of the 6 dimensional (codimension–2) hyperplanes ΣRS and

ΣSR (see Figure 3.6). This results a similar situation to the intersection of codimension–

1 discontinuity sets in simple Filippov systems (see [20] and [36]). In the phase space,

the unit vectors related to the variables u+
1
,u−

1
and ua are denoted by e+

1
, e−

1
and ea ,

respectively (see Figure 3.6).

Consider the codimension-2 discontinuity set ΣSR. By comparing (3.29) and (2.14),

we have H (1) = u
−
1

and H (2) = ua , and thus, (2.16) becomes

n−(ϕ−) = cosϕ−e−
1
+ sinϕ−ea . (3.33)

Then, the corresponding limit vector �eld is

F ∗−
SS
(ϕ−) (x0) := lim

ϵ→0
+
FSS

(
x0 + ϵn

−(ϕ−)
)
. (3.34)

We can de�ne the function R−(ϕ−) and V −(ϕ−) according to (2.24).

Note that as there are two discontinuity sets, the notations n−,ϕ− and n+,ϕ+ are

used correspondingly to the discontinuity sets ΣSR and ΣRS, respectively. For the dis-

continuity set ΣRS, we get the unit vectors

n+(ϕ+) = cosϕ+e+
1
+ sinϕ+ea, (3.35)

and the limit vector �eld

F ∗+
SS
(ϕ+) (x0) := lim

ϵ→0
+
FSS

(
x0 + ϵn

+(ϕ+)
)
. (3.36)

The corresponding functions R+(ϕ+) and V +(ϕ+) are de�ned according to (2.24).

Case SR The dynamics of FSR corresponds to the case u−
1
= ua = 0, that is, FSR can

be restricted to ΣSR. Then, (3.28) is no more valid and (3.27) becomes

T +
1
= −µN + sgnu+

1
, T +

2
= 0. (3.37)

That is, FSR has a discontinuity at u+
1
= 0, which corresponds to ΣRR. Hence, FSR re-

stricted to ΣSR is a Filippov system with the codimension–1 discontinuity set ΣRR (see

De�nition 2.1).
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ua

u+
1

u−
1

ΣSRΣRS

e+
1

e−
1

ea
ϕ−ϕ+

ΣRR

Figure 3.6: The discontinuity sets of the system. Among the 8 dimensions of x = (q, s )), only u+
1
,u−

1

and ua are shown in the �gure. The codimension-3 (5 dimensional) discontinuity set ΣRR is located in

the intersection of the codimension-2 (6 dimensional) discontinuity sets ΣSR and ΣRS.

Case RR Case SR

Case RS Case SS

slipping at P+

slipping at P+

slipping

at P−
slipping

at P−

slip
p
in

g
at P +

an
d P −

Figure 3.7: The sketch of the transitions between the di�erent kinematic cases of the body.

Case RS In the slipping-rolling case, the vector �eld FRS can be restricted to ΣRS.

Then, (3.27) is not valid and (3.28) becomes

T −
1
= −µN − sgnu−

1
, T −

2
= 0. (3.38)

The set ΣRR is a codimension–1 discontinuity set of FRS, and hence, FRS is a Filippov

system.

Case RR In the rolling-rolling case, there is no need for the slipping Coulomb friction

law (3.21) (see Table 3.5). That is, the discontinuities of (3.27) and (3.28) do not appear

in FRR. Thus, FRR is a smooth vector �eld restricted to the set ΣRR.

3.3.3 Indeterminacy of the contact forces

If we want to check the condition of the slipping of the body when switching

between the di�erent kinematic cases (see Figure 3.7), conditions (3.21) of the static

Coulomb friction can be applied. For that, the components of the contact forces F+ and
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Fe Fe

Az

Ay

Bz

By

Figure 3.8: Static indeterminacy of the reaction forces at a beam with two pin supports. The compo-

nents Az and Bz still can be determined from the external force Fe , but the components Ay and By are

undetermined. A similar problem occurs at a body which is rolling on two surfaces (Case RR). Then, the

velocity is constrained to zero at P+ and P− and the contact force components in the direction of r+ − r−

are undetermined in the scope of rigid body mechanics.

F− should be known. The system of equations (3.15), (3.16), (3.19) and (3.21) provides a

unique solution for these contact forces in Cases SS, SR and RS (see Table 3.5).

However, there are not enough independent equations in Case RR, and thus, the

contact forces cannot be fully determined (this is a similar problem to that of the beam

with two pin supports, see Figure 3.8). Consequently, the condition (3.22) cannot be

checked directly.

One possibility to resolve this uncertainty of the contact forces is modelling the

elastic properties of the body and the supports, which would lead to many complica-

tions in the model. However, by using the results of Chapter 2, a solution can be found

in the scope of the present model of rigid body dynamics, as well. The idea is that there
is no need to calculate the contact forces in case of rolling, but the condition of slipping can
be determined from the attracting or repelling properties of the vector �eld of the slipping
case (see the example in Subsection 2.4.1).

3.4 Conditions of slipping in case of dual-point rolling

To avoid the calculation of the contact forces in Case RR, we use the concept of limit

trajectories of Filippov systems and extended Filippov systems to determine whether

the slipping vector �eld pulls away or pushes back the trajectories to the discontinuity

sets.

To carry out that, �rst we have to express the conditions whether the vector �elds of

the slipping cases SS, SR and RS generate the sliding dynamics compatibly to the related

lower dimensional vector �elds. Then, we have to investigate limit trajectories at ΣRR,

which are located in the intersection of two codimension-2 discontinuity sets. Then,

the conditions of slipping can be determined by categorizing the possible scenarios of

the limit trajectories.
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3.4. CONDITIONS OF SLIPPING IN CASE OF DUAL-POINT ROLLING

3.4.1 Compatibility of the dynamics of the di�erent cases

By using the theory of Filippov systems (Section 2.2), the sliding dynamics of FSR

and FRS can be determined in ΣRR. For FSS, the theory of extended Filippov systems

(Section 2.3) can be applied to determine the sliding dynamics in ΣSR and ΣRS, which

are possibly not unique. To check the validity of the modelling by Filippov systems and

extended Filippov systems, we have to ensure that the four vector �elds FSS, FSR, FRS

and FRR are compatible in the sense of calculating the sliding dynamics:

Definition 3.2 (Compatibility of the dynamics of the kinematic cases). The vector �elds
FSS, FRS, FSR and FRR are called compatible if the following requirements are satis�ed:

(a) The sliding dynamics of the extended Filippov system FSS is uniquely de�ned in ΣSR,
and this sliding vector �eld equals to the vector �eld FSR.

(b) The sliding dynamics of the extended Filippov system FSS is uniquely de�ned in ΣRS,
and this sliding vector �eld equals to the vector �eld FRS.

(c) The sliding vector �eld generated by the Filippov system FSR in ΣRR equals to the
vector �eld FRR.

(d) The sliding vector �eld generated by the Filippov system FRS in ΣRR equals to the
vector �eld FRR.

This property of the compatibility implies that the vector �elds of the four kinematic

cases are not independent from each other but the vector �elds of Cases SR, RS and RR

are generated by the dynamics of Case SS. The conjuncture of the author is that the

compatibility is always ensured in the case of the Coulomb friction model. But in the

lack of the exact proof, the compatibility conditions of De�nition 3.2 should be checked

in applications.

3.4.2 Double discontinuity at the intersection of discontinuites

Both the limit vector �elds F ∗+
SS

and F ∗−
SS

are discontinuous in ΣRR, where the two

codimension-2 discontinuities ΣSR and ΣRS intersect each other. Instead of elaborating

the theory of this degenerate case in details, only those concepts are presented brie�y

which are necessary for the subsequent analysis of this chapter.

We need the set of directions in the 3D space spanned by e+
1
, e+

2
and ea . Let us

construct the set of unit vectors n̂(ϕ+,ϕ−) de�ned by〈
n̂(ϕ+,ϕ−),n(ϕ+ + π/2)

〉
≡ 0,〈

n̂(ϕ+,ϕ−),n(ϕ− + π/2)
〉
≡ 0,

‖n̂(ϕ+,ϕ−)‖ ≡ 1,

(3.39)
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ΣSR

n− (ϕ−)
n+ (ϕ+)

n̂(ϕ+,ϕ−)

ϕ−ϕ+

ua

u+
1 u−

1

ΣRS

ΣRR

Figure 3.9: The de�nition of the set n̂(ϕ+,ϕ−) of unit vectors which are normal to ΣRR. In the subspace

of u+
1
,u−

1
and ua , the vector n̂(ϕ+,ϕ−) gives the space diagonal of a cuboid whose face diagonals are

parallel to n+ (ϕ+) and n− (ϕ−).

where the ranges of the variables are

|ϕ+ | ∈ (0,π ), |ϕ− | ∈ (0,π ), sgn sinϕ+ = sgn sinϕ−. (3.40)

By this construction, the projection unit vector n̂(ϕ+,ϕ−) onto the plane spanned by

e+
1

and ea is parallel to n(ϕ+), and its projection onto the plane spanned by e−
1

and ea is

parallel to n(ϕ−) (see Figure 3.9). In the special cases, we get

n̂(ϕ+, sgn sinϕ+ · π/2) = n(ϕ+), n̂(sgn sinϕ− · π/2,ϕ−) = n(ϕ−). (3.41)

The constraint between the signs in (3.40) is required because (3.33) and (3.35) both

have components in the direction ea . The image of n̂ on the domain (3.40) covers the

unit sphere in the space spanned by e+
1
, e−

1
and ea , except for the directions ±e+

1
and ±e−

1
,

which correspond to the directions of the discontinuity sets ΣRS and ΣSR, respectively.

As we did (2.18), we can de�ne a limit vector �eld F̂ ∗
SS
(ϕ+,ϕ−) in a point x0 ∈ ΣRR by

F̂ ∗
SS
(ϕ+,ϕ−) (x0) := lim

ϵ→0
+
FSS

(
x0 + ϵn̂

−(ϕ+,ϕ−)
)
. (3.42)

In a similar way as we did in (2.24), we can de�ne

R̂ (ϕ+,ϕ−) :=
〈
F̂ ∗

SS
(ϕ+,ϕ−), n̂(ϕ+,ϕ−)

〉
,

V̂ +(ϕ+,ϕ−) :=
〈
F̂ ∗

SS
(ϕ),n+(ϕ+ + π/2)

〉
,

V̂ −(ϕ+,ϕ−) :=
〈
F̂ ∗

SS
(ϕ),n−(ϕ− + π/2)

〉
.

(3.43)

By considering the orthogonality conditions (3.40), the pair (ϕ+
1
,ϕ−

1
) is called a limit

direction if V̂ +(ϕ+
1
,ϕ−

1
) = V̂ −(ϕ+

1
,ϕ−

1
) = 0, that is, if F̂ ∗

SS
is parallel to n̂. For a limit

direction (ϕ+
1
,ϕ−

1
), the sign of R̂ (ϕ+

1
,ϕ−

1
) determines if the limit direction is attracting or

repelling. It can be shown that the attracting and repelling limit directions are related
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to ω- and α-trajectories, respectively. As we de�ned in De�nitions 2.12 and 2.13, the

sliding and crossing behaviour can be discriminated and the boundary points are called

the tangency points.
In the parametrisation (3.40), values 0 and π are missing, which correspond to the

directions ±e+
1

and ±e−
1

. These directions are tangent to the discontinuity sets ΣSR and

ΣRS, and thus, they are related to slipping at only one of the contact points. To check

these cases, the sliding or crossing properties of FSR and FRS are need to be investigated

at ΣRR, too.

3.4.3 Conditions of slipping and rolling

For systems which are compatible in the sense of De�nition 3.2, we can state the

following proposition, which summarises the possible types of behaviour according to

the limit trajectories at ΣRR:

Proposition 3.3. Consider amechanical system described by the vector �elds FSS, FSR, FRS

and FRR and a point x0 ∈ ΣRR. The evolution of the mechanical system from x0 is deter-
mined

(a) by FSS if and only if x0 possesses an α-trajectory with respect to FSS, that is, there
exists a repelling limit direction (ϕ+

1
,ϕ−

1
) with V̂ +(ϕ+

1
,ϕ−

1
) = V̂ +(ϕ+

1
,ϕ−

1
) = 0 and

R̂ (ϕ+
1
,ϕ−

1
) > 0;

(b) by FSR if and only if x0 possesses an α-trajectory with respect to FSR denoted by
γ : (0, t1] → R8 with limt→0

+ = x0; and there exists 0 < t2 ≤ t1 for that , γ (t ) is
located in the attracting sliding region of ΣSR with respect to FSS for any 0 < t ≤ t2;

(c) by FRS if and only if x0 possesses an α-trajectory with respect to FSR denoted by
γ : (0, t1] → R8 with limt→0

+ = x0; and there exists 0 < t2 ≤ t1 for that , γ (t ) is
located in the attracting sliding region of ΣRS with respect to FSS for any 0 < t ≤ t2;

(d) by FRR, otherwise.

In cases (a)-(c), the conditions of α-trajectories simply require the existence of tra-

jectories that start from ΣRR and escape to higher dimensional cases SR, RS or SS. In

cases (b)-(c), condition of attracting sliding is required to exclude the cases when the

body starts slipping at the other contact point, too. The compatibility conditions of

De�nition 3.2 guarantee that the vector �elds are not independent and there are no

ambiguous cases when more than one from (a)-(c) occurs at the same time. Case (d)

shows that the dual-point rolling occurs only when there is no possibility for instanta-

neous slipping either at one of the contact points or at both contact points.
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3.5 New results

Thesis Statement 3. Consider a rigid body in normal contact with two rigid sur-

faces by assuming Coulomb friction. At both contact points, slipping or rolling

can occur, which leads to four kinematic cases of the body: dual-point slipping,

dual-point rolling and two mixed slipping-rolling cases. In the case of dual-point

rolling, the rolling constraints at the two contact points are not independent. Con-

sequently, the contact forces are undetermined in the scope of rigid body dynamics,

and thus, the conditions of slipping cannot be determined from the contact forces.

i) In case of dual-point slipping, the dynamics of the body leads to an
extended Filippov system with two intersecting codimension-2 disconti-
nuitymanifolds. In each of themixed slipping-rolling cases, the dynamics
is given by a Filippov system, and it is restricted to one of these disconti-
nuity sets. In case of dual-point rolling, the dynamics is restricted to the
intersection of the two discontinuity manifolds.

Assume that the dynamics of the four kinematic cases of the body are compat-

ible to each other in the sense that the dynamics of each lower dimensional system

coincides with the sliding dynamics generated from the corresponding higher di-

mensional system.

ii) The analysis of the limit trajectories of slipping cases at the dual-
point rolling submanifold shows whether there is a possibility to the tran-
sition fromdual-point rolling to slipping cases. Therefore, the condition of
slipping can be determined in the scope of the rigid body dynamics with-
out the calculation of the contact forces.

Related publications: [3], [6], [7], [8], [10].
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Chapter 4

Bifurcations of a rotating ball
flowmeter

4.1 Introduction

One of the possible principles of �ow rate measurement is placing a body into the

�uid �ow and measure the e�ect of the �ow on the body. A possible construction of this

idea is called rotating ball �owmeter, cyclonic �owmeter [21], or orbital ball �owmeter
[57], which can be found in several accepted patents. The sketch of this �owmeter can

be seen in Figure 4.2. The idea of the operation is the following: the �uid �ow goes

through a vessel, where the swirling of the �ow is created by using e.g. tilted blades

at the inlet. The swirling �ow makes a metal ball move around the edge of the vessel

with a dual-point rolling motion. The speed of the ball can be measured from outside

the vessel by using e.g. an inductive sensor. After calibration, the device can be used

for measuring the �ow rate through the vessel.

The �rst appearance of this idea can be found in the patent of Kearsley [42] from

1950. Since then, many similar patents have been submitted (see [24, 34, 62, 75, 16, 21]

and the recent patents of Peters [56, 57]). The usage of these devices are not widespread,

they can be useful in highly contaminating environments (see [70], p. 165), because the

motion of the ball provides a self-cleaning of the surfaces.

The dynamics of the ball in these �owmeters has not been investigated in the lit-

erature. In this chapter, the motivation is to determine the conditions of the slipping

of the ball at the contact points and to analyse the consequences for the operation of

the �owmeter. The objective of this project is not to obtain an accurate quantitative

description of the device but to explore and understand the rolling-slipping transitions

by analysing the simplest relevant model. For this purpose, the methods of Chapter

3 are applied because the ball is in a dual-point contact with the vessel, and slipping

can occur at both contact points. The analysis of this chapter is based on the recently

published paper of the candidate [7]. Similar analysis was presented in the conference

papers [3] and [6].
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Notation Meaning

m
o

d
e
l

p
a
r
a
m

e
t
e
r
s

r radius of the ball

d + r inner radius of the vessel

m mass of the ball

j ·m · r 2
mass moment of inertia of the ball (j = 2/5 for a solid sphere)

д reduced gravitational acceleration (including buoyancy)

µ friction coe�cient between the ball and the vessel

vf velocity of the �ow around the circumference of the vessel

c ·m linear coe�cient of drag force between the ball and the �uid

v
a
r
i
a
b
l
e
s

v velocity of the centre of the ball around the vessel

u+
1

slipping velocity at P+ in the direction of the motion of the ball

u−
1

slipping velocity at P− in the direction of the motion of the ball

u2 slipping velocities at P+ and P− perpendicular to the direction of

the motion of the ball

b
i
f
u

r
c
a
t
i
o

n
s

XRR,XRR,XRR,XRR stationary solutions in the four kinematic cases

vf ,RR/SR value vf at the transition between XRR and XSR

vf ,RR/SS value vf at the transition between XRR and XSS

vf ,SR/SS value vf at the transition between XSR and XSS

vf , fold value vf at the fold bifurcation of XSS

µfold value µ where the fold bifurcation disappears

Table 4.1: Important notations of Chapter 4. For further notations, see also Tables 2.1 and 3.1.

e2

e1

d

r

д blades for

swirling the �ow

in�ow

out�ow

swirling �ow

m, j
µP−

1

P+
1

C

Figure 4.2: The sketch of a possible arrangement of the rotating ball �owmeter.
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4.2. MECHANICAL MODEL

The structure of the chapter is the following: In Section 4.2, the mechanical model of

the �owmeter is introduced and the equations of motion are derived. In Section 3.3, the

dynamics of the possible slipping and rolling cases are presented and the nonsmooth

system is investigated by using the tools of Chapter 3. In Section 4.4, the stationary

solutions of the dynamical system are determined in the di�erent kinematic cases, and

the e�ect of the parameters are investigated. The new results are summarised in Section

4.5.

4.2 Mechanical model
Consider one of the simplest geometric arrangements of the rotating ball �owmeter

when the ball is rolling along the edge of a cylindrical vessel (see Figure 4.2). This

construction can be found e.g. in [21]. The radius of the ball is denoted by r , and the

inner radius of the vessel is denoted by d + r . During the subsequent calculations, we

apply the methods and notations presented in Chapter 3. The centre C of gravity is

located in the geometric centre of the ball, P+ denotes the contact point at the bottom

of the vessel, and P− refers to the contact point on the wall of the vessel.

4.2.1 Kinematics

For the description of the components of the vectors, we use a steady reference
system �xed to the vessel, but a rotating coordinate system de�ned by the basis vectors

e1, e2 and e3 (see Figures 4.2-4.3). The basis vector e2 is �xed and it points upwards into

the direction of the axis of the vessel, while e1 and e3 are co-rotating with the motion

of the centre of gravity of the ball. In this coordinate system, the location vectors r+,

r− of the contact points and the normal vectors n+, n− do not depend on the state of

the ball and they can be expressed in a simple form:

r+ =



0

−r

0


, r− =



−r

0

0


, n+ =



0

1

0


, n− =



1

0

0


. (4.1)

The unit vector pointing to the direction of r+ − r− becomes

a =



√
2/2

−
√

2/2

0


. (4.2)

Then, according to (3.3)-(3.4), the tangential unit vectors at the contact points P+ and

P− become

t+
1
=



0

0

1


, t+

2
=



1

0

0


, (4.3)
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P+

P−

e2

e1

n−

n+

t+
2

t−
2

e2

e3

n+

t−
1

t+
1

t−
2C

Figure 4.3: The basis vectors of the local coordinate systems at the contact points. Left panel: front

view. Right panel: side view.

and

t−
1
=



0

0

1


, t−

2
=



0

−1

0


, (4.4)

respectively (see Figure 4.3).

The formula (3.8) gives u+
2
= u−

2
, because we have

〈
t+2 , a

〉
=

〈
t−2 , a

〉
=
√

2/2. That is,

there is no need for separate notations for u+
2

and u−
2

, and we can introduce

u2 := u+
2
= u−

2
. (4.5)

Then, the velocities of the contact points become

v+ =



u2

0

u+
1


, v− =



0

−u2

u−
1


. (4.6)

Due to the contact constraints, the velocity vC of the centreC of gravity has a com-

ponent only in the direction e3, which is denoted by v , and which shows the speed of

the ball along the circumference of the vessel. The components of the angular velocity

Ω of the ball are denoted by Ωw ,Ωy and Ωz . Then, the velocity state of the ball is given

by

vC =



0

0

v


, Ω =



Ωw

Ωy

Ωz


. (4.7)

From these quantities, the velocities of the contact points can be expressed through

v+ = vC + Ω × r+,

v− = vC + Ω × r−.
(4.8)
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By comparing (4.6) and (4.8), the components of the angular velocity become

Ωw =
v − u+

1

r
, Ωy = −

v − u−
1

r
, Ωz =

u2

r
. (4.9)

Instead of the choice (3.14) of quasi-velocities in Chapter 3, we choose the variable

set

s = [s1, s2, s3, s4] = [u+
1
,u−

1
,u2,v], (4.10)

because it provides simpler expressions in this model. According to (3.9) and (3.12), the

relationship between the variables is determined by

ua =

√
2

2

u2, Ωa =

√
2v

r
−

√
2

2r
(u+

1
+ u−

1
), (4.11)

and the two sets of quasi-velocities are related by the linear transformation



u+
1

u−
1

ua
Ωa



=



1 0 0 0

0 1 0 0

0 0

√
2/2 0

−
√

2/(2r ) −
√

2/(2r ) 0

√
2/r



·



u+
1

u−
1

u2

v



. (4.12)

Note that in [7], a further set of quasi-velocities is used, which is determined by (4.10)

through



Ωw,slip

Ωy,slip

Ωz

v



=



−1/r 0 0 0

0 1/r 0 0

0 0 1/r 0

0 0 0 1



·



u+
1

u−
1

u2

v



. (4.13)

The slipping angular velocities Ωw,slip := Ωw − v/r and Ωy,slip := Ωy + −v/r show the

deviation of the components from dual-point rolling (compare (4.6) and (4.9)).

To derive the accelerations of the ball, the time derivations have to be carried out in

the rotating coordinate system. For that, we need the angular velocity of the coordinate

system, which is

ΩCS =



0

v/d

0


, (4.14)

because the centre of the ball is moving with a speed v along a circular path with a

radius R (see Figure 4.2). The acceleration of the centre C of gravity becomes

v̇C =



0

0

v̇


+ ΩCS × vC =



v2/d

0

v̇


, (4.15)

and the angular acceleration of the ball is

˙Ω =



Ω̇w

Ω̇y

Ω̇z


+ ΩCS × Ω =

1

r
·



v̇ − u̇+
1
+vu2/d

−v̇ + u̇−
1

u̇2 −v
2/d +vu+

1
/d


. (4.16)
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1 2 3 4

Coulomb friction

viscous friction

µ

u

Figure 4.4: The friction coe�cient plotted against the relative velocity in the presence of a lubricant.

The �gure is reproduced from [48], p. 761. The typical regimes of the curve are: 1: boundary lubrication,

2: mixed lubrication, 3: hydrodynamic lubrication, 4: superlaminar �ow. Although the friction coe�-

cient decreases due to the presence of the lubricant, the Coulomb friction model is still applicable for

small relative velocities for determining the rolling-slipping transitions. Note that even for u → 0, the

lubricated friction coe�cient can be signi�cantly smaller than the friction coe�cient without lubrication.

4.2.2 Dynamics

Assume that the mass of the ball is m and its mass moment of inertia is jmd2
. The

value of the dimensionless mass moment of inertia j is 2/5 for a solid sphere and its

value is in the range 0 < j < 2/3 for a non-homogeneous spherical symmetric mass

distribution (e.g. if the ball has a core from a di�erent material). By using the Newton-

Euler equations, the equations of motions of the ball become

mv̇C = F+ + F− + Fд + F�uid,

jmr 2 ˙Ω = r+ × F+ + r− × F− +M�uid,
(4.17)

where Fд is the resultant force from gravity and buoyancy, F�uid and M�uid are the

resultant force and torque from the e�ect of the �uid, and

F+ =



T +
2

N +

T +
1


, F− =



N −

−T −
2

T −
1


(4.18)

are the contact forces at P+ and P−, respectively (see (3.18)).

If the axis of the vessel is parallel to the direction of the gravity of the Earth then

Fд becomes

Fд =



0

−mд

0


(4.19)

where the д is the reduced gravitational acceleration including the buoyancy e�ect.

For modelling the contact between the ball and the vessel, Coulomb model (3.21)-

(3.22) is assumed with a friction coe�cient µ, which is a suitable assumption if the mea-

sured �uid is a gas. In case of liquids, the friction coe�cient varies signi�cantly with
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the relative velocity of the surfaces, because the liquid behaves as a lubricant between

the bodies (see Figure 4.4). However, the assumption of the Coulomb friction model

is still valid for the regime of small relative velocities between the surfaces, which is

called the state of boundary lubrication (see [48], p. 761). Hence, although the Coulomb

friction model is inaccurate when modelling substantial slipping velocities in a liquid,

it is appropriate when analysing the transitions between slipping and rolling.

The e�ect of the moving �uid on the ball is complicated and its accurate description

would require the modelling of the �ow �eld (see e.g. [61] and [46]). Instead, let us

choose the simplest relevant model for the qualitative analysis of the problem. We

consider the case when the �uid �ows though the vessel with a constant mass �ow

rate. Then, it can be assumed that at a distance d from the centre of the vessel, the �uid

is moving around the circumference with a constant speed v f . That is, the velocity of

the �uid at C is

vC,�ow =



0

0

v f


. (4.20)

Then, the e�ect of the �uid on the ball is modelled by a linear drag law in the form

F�uid = −c ·m · (vC − vC,�ow) =



0

0

−cm(v −v f )


. (4.21)

This model contains several simpli�cations. The linear drag law is valid in case of a lam-

inar �ow, and it should be extended by adding a second-order term for high Reynolds

numbers (see [59], p. 452). The resultant torque of the �uid (see [28], p. 42) and the

force from the rotation of the ball (called Magnus e�ect, see [59], p. 474) is neglected,

as well. For an accurate quantitative analysis of the �owmeter, these e�ects should be

included in the model. However, the objective of the present analysis is to explore the

rolling-slipping transitions caused by the Coulomb friction at the two contact points.

For this purpose, it is enough to assume that the drag force tries to eliminate the relative
velocity between the ball and the �ow. It is important to emphasise that the e�ect of the

�uid �ow will appear explicitly only in (4.70), (4.71) and (4.74). All the other results are

not a�ected by the choice of the model (4.21).

With these assumptions, the equation of motion (4.17) can be written in the form

mv2/d = T +
2
+ N −,

0 = N + −T −
2
−mд,

mv̇ = T +
1
+T −

1
− cm(v −v f ),

jmv̇ − jmu̇+
1
+ jmvu2/d = −T

+
1
,

−jmv̇ + jmu̇−
1
= T −

1
,

jmu̇2 − jmv2/d + jmvu+
1
/d = T +

2
+T −

2
.

(4.22)
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For the di�erent kinematic cases, (4.22) is coupled to the corresponding rolling con-

straints (3.15)-(3.16) and the equations (3.21) of Coulomb friction (see Table 3.5).

4.3 Nonsmooth dynamics

4.3.1 Di�erential equations for the di�erent cases

In the kinematic description, no generalised coordinates were introduced, and the

dynamic equations (4.22) do not contain the location and the orientation of the ball.

This is caused by the cylindrical symmetry of the system about the axis of the vessel

and by the spherical symmetry of the ball. A set of appropriate generalised coordinates

could be introduced, but they would be cyclic coordinates and they would not a�ect the

dynamics of the other variables.

That is, the dynamics of the quasi-velocities can be analysed independently from

the geometric state, and instead of the 8 dimensional state space (3.24), we consider the

4 dimensional state space

x = s = [u+
1
,u−

1
,u2,v] (4.23)

of quasi-velocities. As the variables ua and u2 di�ers only in a constant multiplier (see

(4.11)), the discontinuity sets ΣSR, ΣRS and ΣRR are the same as in Section 3.3.

Case SS In case of dual-point slipping, the expressions (3.27)-(3.28) of the tangential

contact forces become

T +
1
= −µN +

u+
1√

(u+
1
)2 + u2

2

, T +
2
= −µN +

u2√
(u+

1
)2 + u2

2

, (4.24)

and

T −
1
= −µN −

u−
1√

(u−
1
)2 + u2

2

, T −
2
= −µN −

u2√
(u−

1
)2 + u2

2

. (4.25)

Then, the solution of (4.22) for the normal contact forces is

N + =m ·

д −v2/d ·
µu2√

(u−
1
)2+u2

2

1 +
µu2√

(u+
1
)2+u2

2

·
µu2√

(u−
1
)2+v2

2

, N − =m ·

v2/d + д ·
µu2√

(u+
1
)2+v2

2

1 +
µu2√

(u+
1
)2+v2

2

·
µu2√

(u−
1
)2+v2

2

, (4.26)

and the vector �eld becomes

FSS(x ) =



−c (v −v f ) +vu2/d +
1+j
j ·

T+
1

m +
T−

1

m

−c (v −v f ) +
1+j
j ·

T−
1

m +
T+

1

m

v (v − u+
1
)/d + 1

j ·
T+

2

m +
1

j ·
T−

2

m

−c (v −v f ) +
T+

1

m +
T−

1

m .



. (4.27)
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The vector �eld FSS is discontinuous in the codimension-2 discontinuity sets ΣSR de�ned

by u−
1
= u2 = 0 and ΣRS de�ned by u+

1
= u2 = 0. That is, (4.27) is an extended Filippov

system.

Case SR If the ball is rolling on the wall, but it is slipping at the bottom of the vessel

then the constraint u−
1
= u2 = 0 is satis�ed (see (3.15)). Then, (4.25) is not valid, and

(4.24) becomes

T +
1
= −µN +sgnu+

1
, T +

2
= 0. (4.28)

Finally, the solution of (4.22) for the normal forces is

N + =mд − jmv (v − u+
1
)/d, N − =mv2/d, (4.29)

and the dynamics becomes

FSR(x ) =



− c
1+j · (v −v f ) +

1+2j
j (1+j ) ·

T+
1

m

0

0

− c
1+j · (v −v f ) +

1

1+j ·
T+

1

m



. (4.30)

The vector �eld FSR restricted to ΣSR is a Filippov system, and it is discontinuous at the

codimension-1 discontinuity set ΣRR de�ned by u+
1
= 0.

Case RS In the rolling-slipping case, the constraint u+
1
= u2 = 0 causes that (4.24) is

not valid and (4.25) becomes

T −
1
= −µN −sgnu−

1
, T −

2
= 0. (4.31)

Then, the solution of (4.22) leads to

N + =mд, N − =m(1 + j )v2/d, (4.32)

FRS(x ) =



0

− c
1+j · (v −v f ) +

1+2j
j (1+j ) ·

T−
1

m

0

− c
1+j · (v −v f ) +

1

1+j ·
T−

1

m



. (4.33)

The vector �eld FSR is a Filippov system in ΣSR , and it has a codimension-1 discontinuity

set ΣRR de�ned by u−
1
= 0.
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Case RR In case of dual-point rolling, the rolling constraints (3.15)-(3.16) are both

valid and u+
1
= u−

1
= u2 = 0. Then, (4.22) leads to

FRR(x ) =



0

0

0

− c
1+2j · (v −v f )



, (4.34)

The vector �eld FRR is a smooth dynamical system in ΣRR. Note that in this case, the

contact forces are undetermined (see Section 3.3).

4.3.2 Compatibility of the dynamics of the di�erent cases

Let us check if the vector �elds for the di�erent kinematic cases are compatible in

the sense of De�nition 3.2.

Case SR as the sliding dynamics of Case SS Consider the vector �eld FSS and the

discontinuity at u−
1
= u2 = 0 caused by the Coulomb friction between the ball and the

bottom of the vessel. Due to the transformation ua → u2 in (4.11), the unit vectors in

(3.33) become

e−
1
=



0

1

0

0



, e2 =



0

0

1

0



, (4.35)

and then, the set of unit vectors normal to ΣSR is given by

n−(ϕ−) =



0

cosϕ−

sinϕ−

0



. (4.36)

When calculating the limit vector �eld according to (3.34), the discontinuous terms

in (4.24)-(4.25) tend to

u+
1√

(u+
1
)2 + u2

2

→ sgnu+
1
,

u2√
(u+

1
)2 + u2

2

→ 0. (4.37)

u−
1√

(u−
1
)2 + u2

2

→ cosϕ−,
u2√

(u−
1
)2 + u2

2

→ sinϕ−. (4.38)
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Then, the expressions (4.26) for the normal forces become

N + =mд −mv2/d · µ sinϕ−, N − =mv2/d, (4.39)

and the limit vector �eld at a point x0 ∈ ΣSR is given by

F ∗−
SS
(x0) (ϕ

−) =



−c (v −v f ) +
1+j
j ·

T+
1

m +
T−

1

m

−c (v −v f ) +
1+j
j ·

T−
1

m +
T+

1

m

v (v − u+
1
)/d + 1

j ·
T−

2

m

−c (v −v f ) +
T+

1

m +
T−

1

m



, (4.40)

where the tangential forces are determined by (4.24)-(4.25) and (4.37)-(4.38).

The limit vector �eld (4.40) can be written into the form (2.28) with

F =



−c (v −v f ) −
1+j
j µд sgnu+

1

−c (v −v f ) − µд sgnu+
1

v (v − u+
1
)/d

−c (v −v f ) − µд sgnu+
1



, (4.41)

FA =



−µv2/d

−
1+j
j µv

2/d

0

−µv2/d



, FB =



1+j
j µ

2v2/d · sgn (u+
1
)

µ2v2/d · sgnu+
1

−1

j · µv
2/d

µ2v2/d · sgnu+
1



. (4.42)

Then, Theorem 2.17 guarantees the uniqueness of the sliding dynamics. By direct cal-

culation, the coe�cients of (2.32) proves to be

a =
−c (v −v f ) − µд sgnu+

1
+ jµv (v − u+

1
) sgnu+

1
/d

1+j
j µv

2/d
,

b =
v (v − u+

1
)/d

1

j µv
2/d

.

(4.43)

Finally, according to (2.32), the sliding vector is given by Fs = F + aFA + bFB . It can

be checked that this sliding vector �eld computed from FSS coincides with the vector

�eld FSR of the sliding-rolling case in (4.30). That is, condition (a) in De�nition 3.2 is

satis�ed.
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Case RS as the sliding dynamics of Case SS The condition (b) of De�nition 3.2 can

be checked by considering the discontinuity u+
1
= u2 = 0 of FSS caused by the Coulomb

friction on the bottom of the vessel. Then, (3.35) gives

e+
1
=



1

0

0

0



, e2 =



0

0

1

0



, n−(ϕ−) =



cosϕ+

0

sinϕ+

0



. (4.44)

By calculating the limit in (3.36), the discontinuous terms in (4.24)-(4.25) become

u+
1√

(u+
1
)2 + u2

2

→ cosϕ+,
u2√

(u+
1
)2 + u2

2

→ sinϕ+. (4.45)

u−
1√

(u−
1
)2 + u2

2

→ sgnu−
1
,

u2√
(u−

1
)2 + u2

2

→ 0, (4.46)

and the normal forces (4.26) are given by

N + =mд, N − =mv2/d +mдµ sinϕ+. (4.47)

Then, at a point x0 ∈ ΣRS, we obtain the limit vector �eld

F ∗+
SS
(x0) (ϕ

+) =



−c (v −v f ) +
1+j
j ·

T+
1

m +
T−

1

m

−c (v −v f ) +
1+j
j ·

T−
1

m +
T+

1

m

v2/d + 1

j ·
T+

2

m

−c (v −v f ) +
T+

1

m +
T−

1

m



, (4.48)

where the tangential forces are given by (4.24)-(4.25) and (4.45)-(4.46). By using similar

steps as we did with (4.41), it can be checked by direct calculation that the sliding vector

�eld generated by (4.48) coincides with the vector �eld (4.33) of Case RS.

Case RR as the sliding dynamics of Cases SR and RS Conditions (c)-(d) can be

checked by the methods of Filippov systems. This is presented brie�y for the disconti-

nuity ΣRR of FSR.

In (2.10), F1 and F2 are equals to FSR in (4.30) by assuming u+
1
> 0 and u+

1
< 0,

respectively. The normal vectors are n1 = e+
1

and n2 = −e
+
1

. Then, the weights α1 and

α2 are given by

α1 =

c
1+j · (v −v f ) − µ

1+2j
j (1+j ) · (д − jv2/d )

−2µ 1+2j
j (1+j ) · (д − jv2/d )

,

α2 =
− c

1+j · (v −v f ) − µ
1+2j
j (1+j ) · (д − jv2/d )

−2µ 1+2j
j (1+j ) · (д − jv2/d )

.

(4.49)
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Finally, the sliding dynamics from the formula (2.9) coincides with the dynamics (4.34)

of the dual-point rolling case.

By carrying out the same calculations, it can be checked, as well, that the sliding

dynamics generated by FRS on ΣRR coincides with FRR. That is, all the conditions from

De�nition 3.2 are satis�ed and the vector �elds FSS, FSR, FRS and FRR are compatible.

Hence, Proposition 3.3 can be used to determine the conditions of slipping in case of

dual-point rolling.

4.4 Analysis of stationary solutions

The operation of the �owmeter is based on the stationary states of the ball: It is

assumed that for a stationary �ow through the �owmeter, the ball should move around

the edge of the vessel with a constant speed. In this section, the possible stationary

states of the ball are determined, which are the equilibrium points of the vector �elds

FSS, FSR, FRS and FRR of the four kinematic cases. In these states, the ball is running along

the edge of the vessel with a constant speed and its angular velocity is constant in the

coordinate system de�ned by e1, e2 and e3. We focus on the e�ect of the parameter v f

of the �ow around the circumference of the vessel (see (4.20)), which is related to the

mass �ow rate through the �owmeter.

4.4.1 Stationary solution of the rolling-rolling case

In case of dual-point rolling, the system (4.34) has a single stationary state x ≡ XRR

with

XRR(v f ) =



0

0

0

v f



. (4.50)

In this stationary state, the ball is moving with the same speed v f as the surrounding

�ow. It can be checked that XRR is an asymptotically stable equilibrium of FRR, and for

any initial condition, the speed v of the ball converges to v f . This behaviour results in

a favourable operation of the �owmeter: for a (slow) change of the parameter v f , the

ball follows the velocity of the �ow.

However, this behaviour is not realizable if the ball starts slipping at one or both

contact points. The contact forces are undetermined in Case RR, but the conditions of

slipping can be determined by Proposition 3.3.
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Transition to Case SR To check the case (b) of Proposition 3.3, let us evaluate (4.30)

at x = XRR to determine whether XRR has an α-trajectory of FSR. Then, we obtain

FSR(XRR) =



−
1+2j
j (1+j ) · µ (д − jv2

f
/d )sgnu+

1

0

0

− 1

1+j · µ (д − jv2

f
/d )sgnu+

1



, (4.51)

It can be checked from De�nition 2.2 that for

v f < v f ,RR/SR :=

√
дd

j
, (4.52)

the equilibriumXRR is located in the attracting sliding region of ΣRR with noα-trajectories

and for v f > v f ,RR/SR, the equilibrium is located in the repelling sliding region of ΣRR

with two α-trajectories. In borderline case v f = v f ,RR/SR, the equilibrium becomes

XRR/SR := XRR(v f ,RR/SR) =



0

0

0√
дd/j



. (4.53)

That is, forv f > v f ,RR/SR, the ball possibly starts slipping at the point on the bottom

of the vessel. To determine if there is no slipping at the other contact point, let us check

the second condition of (b) of Proposition 3.3. By direct calculation, we get

F ∗−(XRR/SR) (ϕ
−) =



−
1+j
j · (д − µд/j · sinϕ−) · µsgnu+

1
− µд/j · cosϕ−

−
1+j
j · µд/j · cosϕ− + (д − µд/j · sinϕ−) · µsgnu+

1

д/j − 1

j µд/j · sinϕ−

(д − µд/j · sinϕ−) · µsgnu+
1
− µд/j · cosϕ−



. (4.54)

In the general case, the limit directions of (4.54) cannot be determined analytically.

However, we can �nd the neutral limit directions by assuming R (ϕ) = V (ϕ) = 0 (see

De�nition 2.14). This condition is equivalent to

〈
e−

1
, F ∗−(ϕ−)

〉
=

〈
e2, F

∗−(ϕ−)
〉
= 0,

which leads to

ϕ− = π/2, j = µ . (4.55)

It can be checked, that for µ < j, the point XRR/SR is located in the crossing region

of ΣRS, and thus, the transition from Case RR to Case SR is not possible. However, in

the case µ > j, XRR/SR is in the attracting sliding region, and the conditions of (b) of

Proposition 3.3 are satis�ed.

One still have to ensure the non-negativeness of the normal forces at the transition.

By substituting (4.53) into (4.29), we get N + = 0 and N − > 0, which is still acceptable.

Finally, we can summarise the result in the following statement:

Proposition 4.1. If µ > j then the existence of the stationary solution (4.50) is limited by
the condition v f ≤

√
дd/j due to the slipping of the ball on the bottom of the vessel.
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Transition to Case RS Case (c) of Proposition 3.3 can be checked by evaluating (4.33)

at x = XRR, and we obtain

FRS(XRR) =



0

−
1+2j
j (1+j ) · µ (1 + j )v

2

f
/d · sgnu−

1

0

− 1

1+j · µ (1 + j )v
2

f
/d · sgnu−

1



. (4.56)

According to De�nition 2.2, it can be calculated that XRR is in the attracting sliding

region if

v2

f > 0, (4.57)

and then, there is noα-trajectories ofXRR. In the limit casev f = 0, the vector FRS(XRR) =

0 vanishes, and thus, there is no limit trajectory, again. Consequently, there is no pos-

sibility for transition from Case RR to Case RS when the ball is in the stationary state

XRR.

Transition to Case SS Consider case (a) of Proposition 3.3 when the ball starts slip-

ping at both contact points. Then, the vector �eld (3.42) at x = XRR becomes

F̂ ∗(ϕ+,ϕ−) (XRR) =



1+j
j ·

T+
1

m +
T−

1

m

1+j
j ·

T−
1

m +
T+

1

m

v2

f
/d + 1

j ·
T+

2

m +
1

j ·
T−

2

m

T+
1

m +
T−

1

m



, (4.58)

where the normal forces are

N + =m ·
д −v2

f
/d · µ sinϕ−

1 + µ2
sinϕ+ sinϕ−

, N − =m ·
v2

f
/d + д · µ sinϕ+

1 + µ2
sinϕ+ sinϕ−

, (4.59)

and the tangential forces can be calculated according to (4.24)-(4.25), (4.38) and (4.45).

The limit directions of (4.58) cannot be expressed analytically, but in the boundary case

of neutral limit direction, we can check the condition R̂ (ϕ) = V̂ +(ϕ) = V̂ −(ϕ) = 0 (see

(3.43)). This condition is equivalent to〈
e+

1
, F̂ ∗(ϕ+,ϕ−)

〉
=

〈
e−

1
, F̂ ∗(ϕ+,ϕ−)

〉
=

〈
e2, F̂

∗(ϕ+,ϕ−)
〉
= 0, (4.60)

which results in

ϕ+ = ϕ− = ±π/2 (4.61)

and

v2

f

d
−
µ

j
·
д ∓v2

f
/d · µ

1 + µ2
−
µ

j
·
v2

f
/d ± д · µ

1 + µ2
= 0. (4.62)
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The ± sign in (4.62) refers to the two cases of ϕ = π/2 and ϕ = −π/2, respectively,

which leads to two di�erent critical values

v f ,RR/SS :=

√
дd

µ
·

√
µ2(µ + 1)

µ2(j + 1) + j − µ
(4.63)

and

ṽ f ,RR/SS :=

√
дd

µ
·

√
−µ2(µ − 1)

µ2(j + 1) + j + µ
. (4.64)

It can be checked that for ṽ f ,RR/SS < v f < v f ,RR/SS, there is no α-trajectory of FSS, and

an α-trajectory appears on the boundaries of the interval in the directions ϕ = ±π/2.

The requirement of non-negativeness of the contact forces (4.59) gives that for

ṽ f ,RR/SS, the component N + is always negative, that is, this case is irrelevant. For

v f ,RR/SS the non-negativeness of N + and N − is ensured for µ < j, and N + becomes

negative for µ > j. For subsequent calculations, let us de�ne XRR/SS := X (v f ,RR/SS). We

can state the following proposition:

Proposition 4.2. If µ < j then the existence of the stationary solution (4.50) is limited by
the condition v f ≤ v f ,RR/SS due to the slipping of the ball simultaneuosly at both contact
points.

4.4.2 Stationary solutions of the other cases

Case SR In the slipping-rolling case (4.30), the stationary solution of FSR is

XSR(v f ) :=



v f −
дd
jvf

0

0

v f



. (4.65)

It can be shown by linear stability analysis that (4.65) is asymptotically stable for v f >

v f ,RR/SR and it is unstable for v f < v f ,RR/SR.

In the stationary stateXSR, the condition of slipping can be checked either by deter-

mining whether XSR has an α-trajectory of FSS, or by checking (3.22) directly. By both

methods, we get that there is no transition from Case SR to Case SS if

v f > v f ,SR/SS :=

√
дd

µ
. (4.66)

In the limit case, we can de�ne XSR/SS := XSR(v f ,SR/SS). The results are summarized in

the following proposition:

Proposition 4.3. The existence of the stationary solution (4.65) is limited by the condition
v f ≥

√
дd/µ due to the slipping of the ball on the wall of the vessel.
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Case RS In the rolling-slipping case (4.33), a stationary solution exists only when

v f = 0, and then,

XRS =



0

u−
1

0

0



(4.67)

for every u−
1
∈ R. That is, forv f = 0, there is not a single stationary solution but a one-

parameter family of stationary solutions. In the state of (4.67), there is no �uid �ow; the

ball is not moving but it is spinning on the bottom of the vessel with a constant angular

velocity. It can be checked that (4.67) is stable but not asymptotically stable, and there

is a zero eigenvalue with the eigenvector e−
1

. It can be checked from calculating the

tangential forces that in the stationary state, there is no transition from Case RS to SS.

Case SS In case of dual-point slipping, the stationary solution of (4.27) exists only if

µ < j, and it can be written in the form

XSS(φ) =



v+
1
(φ)

0

v2(φ)

v (φ)



, 0 ≤ φ < π/2, (4.68)

where

v (φ) =
√
дdµ

√
1 + µ sin

2 φ

µ2(1 + j sin
2 φ) + (j − µ ) sinφ

,

v+
1
(φ) = −

дdµ2

jv (φ)
·

−(j − µ ) cosφ

µ2(1 + j sin
2 φ) + (j − µ ) sinφ

· cosφ,

v2(φ) = −
дdµ2

jv (φ)
·

−(j − µ ) cosφ

µ2(1 + j sin
2 φ) + (j − µ ) sinφ

· sinφ.

(4.69)

The velocity v f of the �ow can be expressed by the auxiliary parameter φ in the

form

v f (φ) = v (φ) +
дµ

c
·

−(j − µ ) sinφ cosφ

µ2(1 + j sin
2 φ) + (j − µ ) sinφ

. (4.70)

Then (4.69)-(4.70) gives the dependence of (4.68) on v f , but the explicit dependence

XSS(v f ) cannot be expressed analytically. The special cases of (4.68) give

XSS(−π/2) = XRR/SS, XSR(0) = XSR/SS. (4.71)

The function v f (φ) is necessarily monotonous, and there can exist two stationary

solutions for some values of v f . The special point de�ned by

dv f

dφ
(φfold) = 0 (4.72)
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corresponds to a fold (saddle-node) bifurcation, and the corresponding stationary so-

lution is

XSS,fold := XSS(φfold) at v f ,fold := v (φfold). (4.73)

The existence of the fold bifurcation depends on the value of µ compared to the critical

value

µfold :=
3

√
c2d

4д
. (4.74)

It can be shown that for µ < µfold, there is no fold bifurcation but there is a single sta-

tionary solution XSS for allv f ,RR/SS ≤ v f ≤ v f ,SR/SS, which is asymptotically stable (see

Figure 4.5). In the case µfold < µ < j, there is a single asymptotically stable stationary

solution for v f ,RR/SS ≤ v ≤ v f ,SR/SS and there is a pair of stable and unstable stationary

solutions for v f ,SR/SS ≤ v ≤ v f ,fold (see Figure 4.6).

4.4.3 Bifurcation diagrams

From the viewpoint of the operation of the �owmeter, the most important param-

eter is the velocity v f of the �uid �ow, which is related to the �ow rate through the

device. Hence, the stationary solutions are analysed by the use of bifurcation diagrams

plotted against v f .

The stationary solutions are located in the 4 dimensional phase space, thus, an ap-

propriate projection is necessary for the visualization in the bifurcation diagrams. Plot-

ting thev component of the solutions would cause overlapping between some branches

of solutions (see Figure 4.10). Therefore, consider the variable Ωw from (4.9), which de-

notes the angular velocity of the ball around the axis normal to the wall of the vessel.

The value of the friction coe�cient µ creates three di�erent cases of bifurcation

diagrams, which can be seen in Figures 4.5-4.7. If the stationary solutions are plotted in

case of µ < µfold, we get the diagram in Figure 4.5. In this case, the solution XRR of the

dual-point rolling exists for low values ofv f . By increasing the �ow velocity tov f ,RR/SS,

there is a transition of the stationary solution toXSS, and the ball starts slipping at both

contact points. Based on the term persistence bifurcation of Filippov systems (see [19],

p. 221), we can call this bifurcation a codimension-3 persistence bifurcation, because ΣRR

is a codimension-3 discontinuity set of the system. This bifurcation is denoted by P3

in the diagrams. By increasing v f further to v f ,SR/SS, the stationary solution turns into

XSR, and the ball starts rolling on the wall while it is still slipping on the bottom of the

vessel. This bifurcation is called a codimension-2 persistence bifurcation (denoted by P2),

because ΣSR is a codimension-2 discontinuity set of FSS.

If the friction coe�cient is in the range µfold < µ < j then we get the diagram in

Figure 4.6. The persistence bifurcation (P3) still exists atv f ,RR/SS, but there are changes

in the diagram due to the appearance of the two co-existing stationary solutions of Case

SS. At v f = v f ,fold, there is a simple fold bifurcation between the two branches of XSS
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P2

P3

Ωw

vf

vf ,SR/SSvf ,RR/SS

XRR

XSS XSR

Figure 4.5: Bifurcation diagram of the system for µ < µfold.

NF2

P3

F

Ωw

vf

vf , foldvf ,SR/SSvf ,RR/SS

XRR

XSS XSR

Figure 4.6: Bifurcation diagram of the system for µfold < µ < j.

Ωw

vf
vf ,RR/SRvf ,SR/SS

XSR

XRR

DNF2

DNT1

non-realisable XSS

non-realisable XRR

Figure 4.7: Bifurcation diagram of the system for j < µ.
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Acronym Bifurcation Value of v f condition

P3 codimension-3 persistence v f ,RR/SS µ < j

DNT1 degenerate nonsmooth

transcritical bifrucation

v f ,RR/SR j < µ

P2 codimension-2 persistence v f ,SR/SS µ < µfold

NF2 codimension-2 nonsmooth

fold

v f ,SR/SS µfold < µ < j

DNF2 degenerate codimension-2

nonsmooth fold

v f ,SR/SS j < µ

F fold v f ,fold µfold < µ < j

Table 4.8: The list of bifurcations of the system (see also Figures 4.5-4.7).

(denoted by F). Atv f ,SR/SS, there is no more a persistence bifurcation but a codimension-
2 nonsmooth fold appears (denoted by NF2), where the unstable branch of XSS (denoted

by a dashed line) is connected to XSR. These bifurcations lead to a hysteresis e�ect: if

v f is increasing then the solutionXSS turns intoXSR at the fold F, but ifv f is decreasing

then it turns into XSS at the nonsmooth fold NS2.

In the case j < µ, the diagram changes substantially, which can be seen in Figure 4.7.

The dual-point sliding solution XSS is no more present. The dual-point rolling solution

XSS turns into XSR at v f ,RR/SR, but there is an unstable region of XSR between v f ,SR/SS

and v f ,RR/SR, as well. The bifurcation structure is odd for the �rst sight, but it can

be understood if some non-realisable stationary solutions are considered, too (see the

dotted lines in Figure 4.7). In the casev f > v f ,RR/SR (4.51), XRR is in the repelling sliding
region, thus, this would be considered as an unstable solution (see Figure 2.3). It can

be checked that this solution would result in a negative normal force N +, which is not

allowed by the mechanical model. Still, if the bifurcation is completed with this unstable

branch atv f ,RR/SR, we get a degenerate version of the nonsmooth transcritical bifurcation
(see [47]) and it is denoted by DNT1. At v f ,SR/SS, a stable branch of stationary solution

XSS can be found in a similar form to that of (4.68), but it is non-realisable due to the

negative normal force N +. Mathematically, the point v f ,SR/RR is a degenerate version

of the non-smooth fold bifurcation (denoted by DNF2).

The notations and properties of the bifurcations in Figures 4.5-4.7 are collected in

Table 4.8. By visualising the bifurcation parameters in the plane of the parameters v f

and µ, we get the diagram in Figure 4.9. In this diagram, the bifurcations are denoted

by thick lines, which divide the parameter plane into several regions. In each region,

the number and type of the stationary solutions are denoted by the usual acronyms.

The values µ = µfold and µ = j correspond to higher order bifurcations where the

bifurcation lines are connected to each other. The arrows show the intersections of the

three typical regions of µ, which correspond to Figures 4.5, 4.6 and 4.7, respectively.
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µ

vf

RR+SR

RR

SR

SS

SS(×2)+SR

jµfold

vf , fold

vf ,RR/SR

vf ,SR/SS

vf ,RR/SS

Fig. 4.5 Fig. 4.6 Fig. 4.7

Figure 4.9: Bifurcations of the system plotted on the plane of the parameters vf and µ.

v

vf

XSR

v

vf

XRR
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Figure 4.10: The characteristic curves of the ball corresponding to Figures 4.5, 4.6 and 4.7, respectively.

4.4.4 Limitations of the operation of the flowmeter

At a given construction of the �owmeter, the connection between the mass �ow

rate and the �ow velocity v f in the vessel can be provided by calibration. Thus, the

quantity v f can be considered as the input variable of the device and the output is the

stationary velocity v of the ball, which can be measured from the outside of the vessel.

Based on the bifurcation diagrams in Figures 4.5-4.7, the characteristic curves between

the quantities v f and v are sketched in Figure 4.10. In each case, limitations appear,

which result problems in the practical usage of the �owmeter.

Problems of the case depicted in Figure 4.5 In the case µ < µfold (see the left

panel of Figure 4.10), there is a single stable stationary solution all along the parameter

range of v f , which is favourable for the operation of the �owmeter. However, the
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Figure 4.11: The data and the results of Example 5.2.

formula (4.74) shows that the value of µfold is in the range of 10
−2

for physically relevant

parameters. That is, the case µ < µfold cannot be ensured reliably in practice.

Problems of the case depicted in Figure 4.6 In the case µfold < µ < j (see the

middle panel of Figure 4.10), the problem is caused by the hysteresis of the bifurcations

NF2 and F. In the region of the hysteresis, it is impossible to use the �owmeter because

there are two stable stationary solutions. Moreover, there is a substantial di�erence

between v and v f (see (4.70)), which reduces the sensitivity of the device also in the

lower region ofXSS. The �owmeter can be used only for low �ow velocities in the range

of the dual-point rolling case XRR, which is a substantial limitation of the device.

Problems of the case depicted in Figure 4.7 In the case µ > j (see the right panel

of Figure 4.10), the stationary velocity of the ball equals to the velocity v f of the �uid

along the whole domain of v f . However, the stationary solutions XRR and XSR overlap

each other in a region (see the section between the two dots in Figure 4.10. Although the

slipping-rolling solutionXSR is unstable in the overlapping region, the vanishing of the

normal force N + leads to a problems in this region. Perturbation can make the ball to

separate from the ground of the vessel, which leads to impacts, which are unfavourable

for the operation of the �owmeter (see [7] for the detalis).

Example 4.4 (Numerical example). The results are demonstrated on a physically re-

alistic parameter set of the �owmeter. Suppose that the ball is made of polyamide and

the �uid is water. The necessary data can be found in Figure 4.11. The reduced grav-

itational acceleration is calculated by д = (ρb − ρ f )/ρb · д0 = 1.35 m/s
2
, where д0 is

the gravitational acceleration, and ρb , ρ f denote the densities of the ball and the �uid,

respectively. The linear coe�cient c of the drag force is approximated by Stokes’ Law

(see e.g. [59], p. 451) in the form

c =
9ν f

2r 2
·
ρ f

ρb
= 0.039 ·m/s2, (4.75)
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whereν f is the kinematic viscosity of the water. The critical friction coe�cient becomes

µfold = 0.03, thus, the system corresponds to the case in the middle panel of Figure 4.10.

The resulting velocities of the bifurcation points can be found in Figure 4.11. Note that

the values of v f ,RR/SS and v f ,SR/SS do not depend on the model of the drag force.

4.5 New results

Thesis Statement 4. Consider the model of the rotating ball �owmeter containing

a ball moving along the edge of a cylindrical vessel with vertical axis; the ball is

driven by the swirling �ow inside the device. The di�erence between the radii of

the vessel and the ball is d , and the dimensionless mass moment of inertia is j. It is

assumed that the �ow velocityv f around the vessel is constant, and its e�ect on the

ball is modelled by a linear drag force. The resultant acceleration from gravitation

and buoyancy e�ect is denoted by д. The contact between the ball and the vessel is

modelled by Coulomb friction with a uniform coe�cient µ for both the static and

the dynamic cases.

i) The analysis of the resulting extended Filippov system shows that in
the case µ < j, the stationary state of dual-point rolling case exists if

v f <

√
дd

µ
·

√
µ2(µ + 1)

µ2(j + 1) + j − µ
.

Otherwise, the ball starts slipping at both contact points. In case µ > j, the
stationary state of dual-point rolling case exists if

v f <

√
дd

j
,

otherwise, the ball starts slipping at the contact point on the bottom of the
vessel.

By calculating the equilibrium solutions of the slipping cases, as well, the bi-

furcation diagrams of the system can be created for the bifurcation parameter v f .

ii) In the system, a fold bifurcation and a degenerate nonsmooth tran-
scritical bifurcation occur, moreover, the variants of nonsmooth fold and
persistence bifurcations occur related to the codimension-2 discontinuity
manifolds.

The analyses of these bifurcations show signi�cant limitations of the corre-

sponding �owmeter device.

Related publications: [3], [6], [7].
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Chapter 5

Nonsmooth contact model of railway
wheelsets

5.1 Introduction

In Chapter 1, the kinematic oscillations of railway wheelsets were analysed, where

we assumed pure rolling between the wheels and the rails. However, for large contact

forces and for large velocities of the railway vehicle, the behaviour of the wheelset can

be substantially di�erent from pure rolling. In the literature, this e�ect is called creep.

The Creep e�ect of rolling elastic bodies was already described by Reynolds [60]

in 1875. Large normal forces between the contacting bodies initiate the formation of a

�nite contact area around the theoretical contact point. Due to the local deformations,

the surfaces are sticking in some regions of the contact area but they are slipping on

each other in other regions. The resulting motion leads to a deviation from pure rolling,

which is characterised by the creep velocity, or in other words, by the slipping velocity

of the contact point. Several models can be found in the literature for describing the

relation between the creep velocities and the tangential forces (also creep forces).
A linear creep model was introduced by Carter [17] for the analysis of the contact

between the railway wheelsets and the rails. From that model, the critical velocity

of a single wheelset can be determined where unstable oscillations of the wheelset

appear (see e.g. [66, 53]). The coe�cients of the linear model can be approximated

from the contact theory of Hertz [30, 31]. For increasing creep velocities, the linear

creep model overestimates the forces and the creep forces saturates for large creeps.

This e�ect is described by nonlinear creep models introduced �rst by Vermeulen and

Johnson [69, 38]. A detailed analysis of the sticking and slipping regions of the contact

area was analysed by Kalker [40, 37, 41], who developed practical methods to determine

the parameters of the creep models. The nonlinearity of the creep models can lead to

complicated dynamics of the wheelset (see [44, 33]), and this e�ect can be combined

with nonlinearity from �ange contact, too (see [50, 74]). For a more detailed description

of the di�erent creep models and for further references, see [35, 14].
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Notation Meaning

v
a
r
i
a
b
l
e
s

y lateral displacement of the wheelset

ψ yaw angle of the wheelset

φ rotation angle of the wheelset about its symmetry axis

w location of the wheelset along the track

u+
1
,u−

1
slipping velocities at the contact points in the direction of the

track

ua transversal slipping velocity at the contact points

Ψ = bψ normalized yaw angle

m
o

d
e
l

p
a
r
a
m

e
t
e
r
s

b half-distance between contact points

r rolling radius of the wheelset

v speed of the wheelset along the track

a01,b10 linear coe�cients of the di�erential equation of

kinematic oscillations

µ friction coe�cient between the wheels and the rails

Fload vertical load of the wheelset from the vehicle (axle load)

m mass of the wheelset

Jφ mass moment of inertia of the wheelset with respect to its sym-

metry axis

Jψ mass moment of inertia of the wheelset with respect to the axes

normal to the symmetry axis

c
o

m
p

o
s
e
d

p
a
r
a
m

e
t
e
r
s C = µFload/(2m) normalized magnitude of Coulomb friction force

ωL =
√
−a01 · b10 angular frequency of small amplitude oscillations

η=
√
−a01/(b2 ·b10) dimensionless geometric factor

αy =
√
ky/m natural angular frequency from the lateral sti�ness

αψ =
√
kψ /Jψ natural angular frequency from the yaw sti�ness

Mψ =mb2/Jψ dimensionless parameter from Jψ
Mφ =mr 2/Jφ dimensionless parameter from Jφ

Table 5.1: Important notations of Chapter 5. For further notations, see Tables 2.1 and 3.1.
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The new idea presented in this chapter is approximating the nonlinear (saturated)

creep force model with the Coulomb friction model. Then, instead of the nonlinear de-

scription of the creep forces, there is a nonsmooth contact force law including the pure

rolling and pure slipping dynamics between the wheelset and the rails. The resulting

mechanical system can be analysed by methods introduced in Chapter 3. Hence, we

can obtain the conditions of transition between the dual-point rolling and slipping be-

haviour of the wheelset. Parts of these results has been published in the conference

poster [10] of the candidate. In the conference paper [8], a similar problem was anal-

ysed with a ball rolling in a trough.

The structure of the chapter is the following: In Section 5.2, the mechanical model

of the wheelset is presented by using the linearised kinematics from Chapter 1, but by

considering slipping with the Coulomb friction law, too. In Section 5.3, the resulting

discontinuous dynamical system is derived and it is analysed by the tools presented in

Chapter 3. In Section 5.4, the conditions of slipping are derived in case of dual-point

rolling, and hence, the maximum possible amplitude of the oscillations is determined

without slipping. The new results are summarised in Section 5.5.

5.2 Mechanical model

In this section, the model of the railway wheelset is derived based on the kinematic

model of Chapter 1, but by adding the possibility of slipping at the contact points, as

well. The most important notations are summarized in Table 5.1.

5.2.1 Kinematics

In Chapter 1, the dynamics of the dual-point rolling of the wheelset was derived for

generalised coordinates

q = [y,ψ ,φ,w], (5.1)

and we derived the set

ẏ = a01ψ + O
3(y,ψ ),

˙ψ = b10y + O
3(y,ψ ),

φ̇ =
v

r
+ O2(y,ψ ),

ẇ = v

(5.2)

of �rst-order di�erential equations, which are purely determined by kinematics (see

(1.23)-(1.27) and (1.28)). In this chapter, the analysis is restricted to the linear case of

small amplitudes and thus, the higher order terms are neglected.

At the case when the wheelset starts slipping at one or both contact points, the
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structure of the equations (5.2) can be preserved in the form

ẏ = a01ψ + ẏslip,

˙ψ = b10y + ˙ψslip,

φ̇ =
v

r
+ φ̇slip,

ẇ = v,

(5.3)

where the terms ẏslip, ˙ψslip and φ̇slip denote the deviations of the time derivatives from

the dual-point rolling case. These quantities are determined from the velocities of the

contact points by using the formulation of Chapter 3.

The centreC of the wheelset and the contact point P+ and P− can be seen in Figures

1.2 and 5.2. By using (1.13) and (1.15), the location of the contact points becomes

r+ =



V +r −w

b +U +r − y

−r + cr (U
+
r ) − z


, r− =



V −r −w

−b −U −r − y

−r + cr (U
−
r ) − z


. (5.4)

The unit normal vectors can be determined from the cross product of partial derivatives

of (1.13), and we get

n+ =



0

−c′r (U
+
r )

1


, n− =



0

c′r (U
−
r )

1


. (5.5)

For an accurate calculation, the expansion (1.53) should be substituted into (5.4) and

(5.5), which leads to lengthy formulae. Instead, an approximate description is used in

the subsequent calculations by considering

r+ ≈



0

b

−r


, r− ≈



0

−b

−r


, (5.6)

and

n+ ≈



0

0

1


, n− ≈



0

0

1


. (5.7)

These approximations contain not only the assumption linear (small-amplitude) oscil-

lations but the assumption that the limit case h → 0 of the conicity h of the wheels,

as well. Note that this assumption is used for calculating only the slipping part of the

kinematics and the Newton-Euler equations. However, in the kinematic equations (5.3),

it is essential to assume a �nite value of h when calculating the coe�cients a01 and b10

of kinematic oscillations.
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1

t−
2

t+
1

t+
2

Figure 5.2: The local coordinate systems at the contact points.

From (5.6), we get

r+ − r− ≈



0

2b

0


, a ≈



0

1

0


, (5.8)

and from the formulae (3.3)-(3.4), the tangential unit vectors at the contact points be-

come

t+
1
≈



1

0

0


, t+

2
≈



0

1

0


, (5.9)

t−
1
≈



1

0

0


, t−

2
≈



0

1

0


(5.10)

(see Figure 5.2). The formula (3.9) gives ua = u+
2
= u−

2
, and the approximate velocities

of the contact points given by (3.10) become

v+ ≈



u+
1

ua
0


, v− ≈



u−
1

ua
0


. (5.11)

Let

vC,slip ≈



0

ẏslip

0


, Ωslip ≈



0

φ̇slip

˙ψslip


(5.12)

be the slipping part of the velocity vC of the centre of gravity and the angular velocity

Ω of the body, respectively. These quantities measure the deviation from the dual-point

rolling case, hence, the kinematic relations

v+ = vC + Ω × r+,

v− = vC + Ω × r−
(5.13)
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can be separated into

0 =
(
vC − vC,slip

)
+

(
Ω − Ωslip

)
× r+,

0 =
(
vC − vC,slip

)
+

(
Ω − Ωslip

)
× r−,

(5.14)

and

v+ = vC,slip + Ωslip × r+,

v− = vC,slip + Ωslip × r−.
(5.15)

By comparing (5.11) and (5.15), the slipping terms in (5.3) can be expressed by the slip-

ping velocities u+
1
,u−

1
and ua in the form

ẏslip ≈ ua, ˙ψslip ≈ −
u+

1
− u−

1

2b
, φ̇slip ≈ −

u+
1
+ u−

1

2r
. (5.16)

By substituting (5.16) into (5.3), we get the approximate linearised equations

ẏ = a01ψ + ua,

˙ψ = b10y −
u+

1
− u−

1

2b
,

φ̇ =
v

r
−
u+

1
+ u−

1

2r
,

ẇ = v .

(5.17)

In (5.17), the time derivatives of the generalised coordinates are expressed by the set

s = [u+
1
,u−

1
,ua, ẇ] (5.18)

of quasi-velocities. From (5.17), the second derivatives of the generalised coordinates

become

ÿ = a01b10y − a01

u+
1
− u−

1

2b
+ u̇a,

¨ψ = a01b10ψ + b10ua −
u̇+

1
− u̇−

1

2b
,

φ̈ = −
u̇+

1
+ u̇−

1

2r
,

ẅ = 0.

(5.19)

5.2.2 Dynamics

The dynamics of the wheelset is analysed by following the steps and notations of

Section 3.3. From (3.18), the contact forces become

F+ ≈



T +
1

T +
2

N +


, F− ≈



T −
1

T −
2

N −


. (5.20)
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It is assumed that the centreC of the wheelset is connected rigidly to the vehicle in the

longitudinal direction e1, and the corresponding constraint force is denoted by Ftract

(traction force). In the vertical direction, the axial load Fload is acting atC which contains

the force from the weight of the vehicle and the weight of the wheelset. The force Fload

is considered as a known parameter. The wheelset is connected to the vehicle with a

resultant lateral sti�ness ky and a resultant yaw sti�ness kψ . Therefore, the external

loads acting on the wheelset become

Fe =



Ftract

−kyy

−Fload


, Me =



0

0

−kψψ


. (5.21)

The Newton-Euler equations from (3.19) lead to the algebraic equations

T +
1
+T −

1
+ Ftract = 0,

N +
1
+ N −

1
− Fload = 0,

b (N + − N −) = 0,

(5.22)

and the equations of motion

mÿ + kyy − (T +
2
+T −

2
) = 0,

Jψ ¨ψ + kψψ + b (T
+
1
−T −

1
) = 0,

Jφφ̈ − r (T
+
1
+T −

1
) = 0.

(5.23)

From (5.22), the normal forces become N + = N − = Fload/2.

In the literature, the velocity components of the contact points are called creep

velocities and the tangential forces are calculated in the form

T +
1
= Tlong(u

+
1
,ua ), T +

2
= Ttrans(u

+
1
,ua ),

T −
1
= Tlong(u

−
1
,ua ), T −

2
= Ttrans(u

−
1
,ua ),

(5.24)

where Tlong and Ttrans are the characteristic curves of the longitudinal and transversal

creep forces, respectively. Due to the large normal forces between the wheelset and the

rails, the deformation of the surfaces is signi�cant, and contact areas are formed around

the theoretical contact points.

A typical creep force curve can be seen in Figure 5.3 (denoted by dashed line). For

small values of creep velocity, the creep force is nearly proportional to the creep veloc-

ity. In this range, the wheelset is slipping in some regions of the contact area and it is

sticking in other regions. For larger creep velocities, the curve saturates and the force

tends to the value of the Coulomb friction force when the whole contact area starts

slipping.

The usual creep model for the linear region was introduced by Carter [17] in the

form

Tlong(u
+
1
,ua ) = −κlong ·

u+
1

v
, Ttrans(u

+
1
,ua ) = −κtrans ·

ua
v
. (5.25)
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Tlong (u
+
1
, 0)

u+
1

pure slipping

nonlinear creep

Cm
pure rolling

linear creep

−Cm

Figure 5.3: The comparison of creep models and the Coulomb model. The nonlinear creep model is

denoted by dashed line. For small creep, the curve can be approximated by a linear creep model (denoted

by a dotted line). The Coulomb model is an appropriate approximation for large creep in the sense (5.28).

wherev is the velocity of the wheelset along the track and κlong and κtrans are the linear

creep coe�cients (see the dotted line in Figure 5.3). The values of these coe�cients are

usually determined by the theory of Kalker [40, 41].

The nonlinear region of the creep force curve was described by Johnson and Ver-

meulen [69, 38] where the saturation is described by a piecewise polynomial model.

The modi�cations of this model are used nowadays in simulations of the wheel-rail

contact forces (see [35]). The saturation e�ect can be described by a single formula, as

well, e.g. by the following curve:

Tlong(u
+
1
,ua ) = −Cm

u+
1√

(u+
1
)2 + u2

a

tanh

(κlong

Cmv

√
(u+

1
)2 + u2

a

)
,

Ttrans(u
+
1
,ua ) = −Cm

ua√
(u+

1
)2 + u2

a

tanh

(κtrans

Cmv

√
(u+

1
)2 + u2

a

)
,

(5.26)

where C := µFload/(2m) is the normalized magnitude of the Coulomb friction force.

If the magnitude of the creep velocity is small in the sense√
(u+

1
)2 + u2

a � min

(κlong

Cmv
,
κtrans

Cmv

)
(5.27)

then the model (5.26) tends to the linear creep model (5.25). In the other limit case when

the creep velocity is large in the sense√
(u+

1
)2 + u2

a � max

(κlong

Cmv
,
κtrans

Cmv

)
(5.28)

then (5.26) tends to the simple Coulomb model

Tlong(u
+
1
,ua ) = −Cm

u+
1√

(u+
1
)2 + u2

a

,

Ttrans(u
+
1
,ua ) = −Cm

ua√
(u+

1
)2 + u2

a

.
(5.29)
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That is, Coulomb friction model is an appropriate model for wheel-rail contact in the

case (5.28), which is satis�ed at large creep velocities, large values of the linear coe�-

cients κlong and κtrans or low velocitiesv of the vehicle (see the thick solid line in Figure

5.3).

In the literature, it is a common implicit assumption that the creep of the wheelset is

always symmetric. Then, u+
1
≡ −u−

1
, and (5.24) leads toT +

1
= −T −

1
andT +

2
= T −

2
. Hence,

the third equation of (5.23) becomes φ̈ ≡ 0, and the other two equations become a set

of two second-order di�erential equations in the form

mÿ + kyy − 2Ttrans(u
+
1
,ua ) = 0,

Jψ ¨ψ + kψψ + 2bTlong(u
+
1
,ua ) = 0,

(5.30)

where the creep velocities from (5.17) are given by ua = ẏ − a01ψ and u+
1
= −( ˙ψ +b10y)

(see [66, 53]). In the subsequent calculations, non-symmetric slipping of the wheelset is

considered, too, where u+
1
, u−

1
. That is, the case when the φ̇slip , 0 is considered, as

well (see (5.16)).

5.3 Nonsmooth dynamics

5.3.1 Di�erential equations for the di�erent cases

From the four generalised coordinates (5.1), the cyclic coordinates φ and w can be

separated (see (1.24)) because they do not a�ect the dynamics of the other variables. To

get a simpler form of the equations, let us introduce the normalised yaw angle Ψ := bψ ,

which has a dimension of length. From the four quasi-velocities (5.18), the velocity v

is omitted because it is prescribed as a parameter. Finally, we have the minimal set

x = [y,Ψ,u+
1
,u−

1
,ua] (5.31)

of state variables containing variables y and Ψ of the kinematics oscillation and the

three slipping velocities u+
1
,u−

1
and ua .

Let us introduce the linear angular frequency ωL =
√
−a01b10 of the kinematic os-

cillations (see (1.31)) and the geometric factor η :=
√
−a01/(b10b2). By using these no-

tations, the �rst two equations from (5.17) become

ẏ = ωLηΨ + ua,

Ψ̇ = −
ωL

η
y −

u+
1
− u−

1

2

.
(5.32)

From (5.23), the derivatives of the slipping velocities can be expressed. By substi-
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tuting the accelerations (5.19) into (5.23), we get

m

(
−ω2

Ly − ωLη
u+

1
− u−

1

2

+ u̇a

)
+ kyy − (T +

2
+T 1

2
) = 0,

Jψ

b2

(
−ω2

LΨ +
ωL

η
ua −

u̇+
1
− u̇−

1

2

)
+
kψ

b2
Ψ + (T +

1
−T −

1
) = 0,

Jφ

r 2
·
u̇+

1
+ u̇−

1

2

− (T +
1
+T −

1
) = 0.

(5.33)

Let us introduce the following parameters. Let αy :=
√
ky/m denote the natural angular

frequency of free oscillation of the wheelset in the lateral direction (consider (5.23)

without the contact forces). Similarly, let αψ :=
√
kψ/Jψ denote the natural angular

frequency for the yaw rotation. The dimensionless parameters Mψ := mb2/Jψ and

Mφ := mr 2/Jφ are related to the mass moments of inertia of the wheelset. With these

notations, (5.33) can be written in the form

u̇a = −(α
2

y − ω
2

L)y − ωLη ·
u+

1
− u−

1

2

+
T +

2
+T −

2

m
,

u̇+
1
= (α2

ψ − ω
2

L)Ψ −
ωL

η
ua + (Mφ +Mψ ) ·

T +
1

m
+ (Mφ −Mψ ) ·

T −
1

m
,

u̇−
1
= −(α2

ψ − ω
2

L)Ψ +
ωL

η
ua + (Mφ −Mψ ) ·

T +
1

m
+ (Mφ +Mψ ) ·

T −
1

m
.

(5.34)

The time derivatives (5.32) and (5.34) provide the di�erential equations for the four

kinematic cases (see Table 3.5). In the subsequent calculations, the methods and nota-

tions from Chapter 3 are used.

Case SS In the case when the wheelset is slipping at both contact points, (5.24) and

(5.29) lead to

T +
1
= −Cm

u+
1√

(u+
1
)2 + u2

a

, T +
2
= −Cm

ua√
(u+

1
)2 + u2

a

, (5.35)

T −
1
= −Cm

u−
1√

(u−
1
)2 + u2

a

, T −
2
= −Cm

ua√
(u−

1
)2 + u2

a

(5.36)
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(see also (3.27)-(3.28). Hence, from the equations (5.32) and (5.34), we get the vector

�eld

FSS =



ωLη · Ψ + ua

−
ωL
η · y −

u+
1
−u−

1

2

(α2

ψ
− ω2

L)Ψ −
ωL
η ua − (Mφ +Mψ ) ·

Cu+
1√

(u+
1
)2+u2

a
− (Mφ −Mψ ) ·

Cu−
1√

(u−
1
)2+u2

a

−(α2

ψ
− ω2

L)Ψ +
ωL
η ua − (Mφ −Mψ ) ·

Cu+
1√

(u+
1
)2+u2

a
− (Mφ +Mψ ) ·

Cu−
1√

(u−
1
)2+u2

a

−(α2

y − ω
2

L)y − ωLη ·
u+

1
−u−

1

2
−

Cua√
(u+

1
)2+u2

a
−

Cua√
(u−

1
)2+u2

a



. (5.37)

This vector �eld is an extended Filippov system, it is discontinuous in the codimension-

2 discontinuity sets ΣSR de�ned by u−
1
= ua = 0 and ΣRS de�ned by u+

1
= ua = 0.

Case SR If the wheelset is rolling at P− but it is slipping at P+ then the constraint

u−
1
= ua = 0 is satis�ed. Then, (5.36) is not valid and (5.35) becomes

T +
1
= −Cm sgnu+

1
, T +

2
= 0. (5.38)

Then, from (5.32) and (5.34), we get the vector �eld

FSR =



ωLη · Ψ

−
ωL
η · y −

u+
1

2

2Mψ
Mφ+Mψ

· (α2

ψ
− ω2

L)Ψ −C ·
4MψMφ

Mψ+Mφ
· sgnu+

1

0

0



. (5.39)

This vector �eld is a Filippov system in ΣSR and the discontinuity set is ΣRR de�ned by

u+
1
= 0.

Case RS Due to the symmetry of the wheelset and the rails, we get similar results for

Case RS to those of Case SR. In the rolling-slipping case, the rolling constraint u+
1
= ua

is satis�ed, and the Coulomb friction (5.36) leads to

T −
1
= −Cm sgnu−

1
, T −

2
= 0. (5.40)

Then, we get the vector �eld

FRS =



ωLη · Ψ

−
ωL
η · y +

u−
1

2

0

−
2Mψ

Mφ+Mψ
· (α2

ψ
− ω2

L)Ψ −C ·
4MψMφ

Mψ+Mφ
· sgnu+

1

0



, (5.41)

which is a Filippov system in ΣRS with the discontinuity set ΣRR at u−
1
= 0.
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Case RR If the wheelset is rolling at both contact points then the kinematic con-

straints u+
1
= u−

1
= ua = 0 are satis�ed. Then, from (5.32)-(5.34), we obtain the smooth

vector �eld

FRR =



ωLη · Ψ

−
ωL
η · y

0

0

0



. (5.42)

This is the dynamics of the kinematic oscillations described also by (1.28) and (5.2).

5.3.2 Compatibility of the dynamics of the di�erent cases

In this subsection, the compatibility of the vector �elds FSS, FSR, FRS and FRR is

checked according to De�nition 3.2.

Case SR as the sliding dynamics of Case SS The set ΣSR is a codimension-2 dis-

continuity set of the vector �eld FSS. According to (3.33), the set n−(ϕ−) of unit vectors

is given by

e−
1
=



0

0

0

1

0



, ea =



0

0

0

0

1



, n−(ϕ−) =



0

0

0

cosϕ−

sinϕ−



. (5.43)

Then, the limit (3.34) leads to

F ∗−
SS
(x0) (ϕ

−) =



ωLη · Ψ

−
ωL
η · y −

u+
1

2

(α2

ψ
− ω2

L)Ψ − (Mφ +Mψ ) ·C sgnu+
1
− (Mφ −Mψ ) ·C cosϕ−

−(α2

ψ
− ω2

L)Ψ − (Mφ −Mψ ) ·C sgnu+
1
− (Mφ +Mψ ) ·C cosϕ−

−(α2

y − ω
2

L)y − ωLη ·
u+

1

2
−C sinϕ−



. (5.44)

This limit vector �eld can be written into the form (2.28) by taking

F =



ωLη · Ψ

−
ωL
η · y −

u+
1

2

(α2

ψ
− ω2

L)Ψ − (Mφ +Mψ ) ·C sgnu+
1

−(α2

ψ
− ω2

L)Ψ − (Mφ −Mψ ) ·C sgnu+
1

−(α2

y − ω
2

L)y − ωLη ·
u+

1

2



, (5.45)
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FA =



0

0

−C (Mφ −Mψ )

−C (Mφ +Mψ )

0



, FB =



0

0

0

0

−C



. (5.46)

Then, there is an unique sliding dynamics guranteed by Theorem 2.17 and the coe�-

cients of (2.32) become

a =
−(α2

ψ
− ω2

L)Ψ − (Mφ −Mψ ) ·C sgnu+
1

C (Mφ +Mψ )
, b =

−(α2

y − ω
2

L)y − ωLη ·
u+

1

2

C
. (5.47)

From (2.32), the sliding dynamics on ΣSR can be computed. The resulting vector �eld

coincides with FSR. That is, the vector �elds FSS and FSR are compatible in the sense of

De�nition 3.2.

Case RS as the sliding dynamics of Case SS Due to the symmetry of the system,

the compatibility for the Case RS can be proven very similarly to the previous case. The

set of the unit vectors corresponding to ΣRS are given by

e+
1
=



0

0

1

0

0



, ea =



0

0

0

0

1



, n+(ϕ+) =



0

0

cosϕ+

0

sinϕ+



, (5.48)

and the limit vector �eld from (3.36) leads to

F ∗+
SS
(x0) (ϕ

+) =



ωLη · Ψ

−
ωL
η · y +

u−
1

2

(α2

ψ
− ω2

L)Ψ − (Mφ +Mψ ) ·C cosϕ+ − (Mφ −Mψ ) ·C sgnu−
1

−(α2

ψ
− ω2

L)Ψ − (Mφ −Mψ ) ·C cosϕ+ − (Mφ +Mψ ) ·C sgnu−
1

−(α2

y − ω
2

L)y + ωLη ·
u−

1

2
−C sinϕ+



. (5.49)

The following steps are similar to those of Case SR, and we get that the sliding dynamics

generated by FSS in ΣRS equals to the vector �eld FRS.

Case RR as the sliding dynamics of Cases SR and RS Conditions (c)-(d) of Def-

inition 3.2 can be proven. By taking simply u̇−
1
= u̇a = 0 and then u+

1
= ua = 0, the

vector �eld FSR tends to the rolling dynamics FRR. This is satis�ed similarly for FRS.

That is, the vector �elds FSS, FSR, FRS and FRR are compatible according to De�nition

3.2, and thus, Proposition 3.3 can be applied to determine the conditions of slipping of

the dual-point rolling case.
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5.4 Analysis of the slipping of the wheelset

5.4.1 Conditions of slipping

Assume that the wheelset is in the state of dual-point-rolling, which corresponds

to a point x0 in the set ΣRR with

x0 = [y,Ψ, 0, 0, 0]. (5.50)

In case of dual-point rolling, the contact forces are undetermined (see Table 3.5). That

is, the condition of slipping of the wheelset cannot be determined directly from (3.22).

Instead, Proposition 3.3 is used to determine whether there is slipping in any state x0.

Transition to Case SR Let us evaluate FSR at x = x0 to check the condition (b) of

Proposition 3.3. Then, we get

FSR(x0) =



ωLη · Ψ

−
ωL
η · y

2Mψ
Mφ+Mψ

· (α2

ψ
− ω2

L)Ψ −C ·
4MψMφ

Mψ+Mφ
· sgnu+

1

0

0



. (5.51)

From this expression, it can be shown by direct calculation that according to De�nition

2.2, the point x0 lays in the attracting sliding region of ΣRR if

|Ψ| < Ψsli :=
2CMψ

����α
2

ψ
− ω2

L

����

. (5.52)

The α-trajectory of x0 with respect to FSR appears in the boundary case Ψ = ±Ψsli

corresponding to two parallel lines in the plane y − Ψ of the phase space of dual-point

rolling (see the dashed lines in Figure 5.4).

In the case αψ > ωL and Ψ = +Ψsli, the α-trajectory of x0 corresponds to u+
1
> 0

(see (5.51)). By substituting these values, the limit vector �eld (5.44) becomes

F ∗−
SS
(y,Ψsli, 0, 0, 0) (ϕ

−) =



ωLη · 2CMψ/(α
2

ψ
− ω2

L)

−
ωL
η · y

−(Mφ −Mψ ) ·C · (cosϕ− + 1)

−(Mφ +Mψ ) ·C · (cosϕ− + 1)

−(α2

y − ω
2

L)y −C sinϕ−



. (5.53)

The condition of the neutral limit trajectory is

〈
e+

1
, F ∗−

SS

〉
=

〈
ea, F

∗−
SS

〉
= 0, which leads to

y = 0, ϕ− = π . (5.54)
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Ψsli =
2CMψ

����α
2

ψ −ω
2

L
����

dual-point rolling

(kinematic oscillation)

2C
|α 2

y−ω2

L |

Ψ = bψ

y

Figure 5.4: The condition of slipping of the wheelset during dual-point rolling motion. The dashed lines

denote the condition of slipping at one of the contact points (transition to Cases SR or RS), and the ellipse

denotes the condition of slipping at both contact points (transition to Case SS). As the latter condition is

stricter, there is no possibility for slipping at only one of the contact points but slipping occurs at both

contact points simultaneously.

It can be checked numerically that for both y < 0 and y > 0, the point x0 is in the

crossing region of ΣSR with respect to FSS. The same result can be proven for αψ < ωL

and for Ψ = −Ψsli. Hence, conditions of case (b) of Proposition 3.3 is not satis�ed, that

is, there is no possibility for transition of the dynamics from Case RR to Case SR.

Transition to Case RS Due to the symmetries of the system, there is no fundamental

di�erence between the two contact points. Thus, by carrying out the same calculation

as for Case SR, we get that there is no possibility for transition of the dynamics from Case
RR to Case RS.

Transition to Case SS For case (d) of Proposition 3.3, let us calculate the limit vector

�eld of FSS at the double discontinuity ΣRR (see (3.42)),

F̂ ∗
SS
(x0) (ϕ

+,ϕ−) =



ωLη · Ψ

−
ωL
η · y

(α2

ψ
− ω2

L)Ψ − (Mφ +Mψ )C cosϕ+ − (Mφ −Mψ )C cosϕ−

−(α2

ψ
− ω2

L)Ψ − (Mφ −Mψ )C cosϕ+ − (Mφ +Mψ )C cosϕ−

−(α2

y − ω
2

L)y −C sinϕ+ −C sinϕ−



. (5.55)

The conditions of the neutral limit direction are〈
e+

1
, F̂ ∗

SS
(x0) (ϕ

+,ϕ−)
〉
= 0,〈

e−
1
, F̂ ∗

SS
(x0) (ϕ

+,ϕ−)
〉
= 0,〈

ea, F̂
∗
SS
(x0) (ϕ

+,ϕ−)
〉
= 0,

(5.56)
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from which we obtain

ϕ+ = arctan

(
−(α2

y − ω
2

L)y, (α
2

ψ − ω
2

L)Ψ/Mψ

)
, ϕ− = π − ϕ+, (5.57)

and

(α2

y − ω
2

L)
2y2 +

(α2

ψ
− ω2

L)
2

M2

ψ

Ψ2 = 4C2. (5.58)

The equation (5.58) determines an ellipse in the y − Ψ plane of ΣRR (see Figure 5.4). In

the special case y = 0, (5.58) is equivalent to Ψ = ±Ψsli, therefore, the lines determined

by (5.52) touch the ellipse in the phase plane.

It can be checked numerically that inside the ellipse determined by (5.58), there is

no α-trajectory, that is, there is no transition from Case RR to Case SS. Outside the

ellipse, there is an α-trajectory, that is, the dynamics switches to Case SS. The results

are summarized in the following proposition:

Proposition 5.1. Consider the wheelset from the initial state x0 = [y,Ψ, 0, 0, 0] corre-
sponding to the dual-point rolling case. If

(α2

y − ω
2

L)
2y2 +

(α2

ψ
− ω2

L)
2

M2

ψ

Ψ2 < 4C2
(5.59)

then the dynamics of the wheelset is described by (5.42), and the wheelset is rolling at both
contact points, otherwise, the dynamics is described by (5.37), and the wheelset is slipping
at both contact points.

Let us solve the equations (3.39) in the case ϕ− = π − ϕ+, which corresponds to the

boundary case when the α-trajectory appears. For the direction of the limit trajectory,

we get

n̂(ϕ+,−ϕ+) =
1√

2 cos
2 ϕ+ + sin

2 ϕ

·



0

0

cosϕ+

− cosϕ+

sinϕ+



. (5.60)

This vector lays in the hyperplane u−
1
= −u+

1
, which is related to the assumption of

the symmetric slip in (5.30). That is, that assumption is valid in the sense that the

wheelset starts slipping at both contact points with u−
1
= −u+

1
. Then, the symmetry in

the variables in FSS keeps this assumption valid and the wheelset remains in the state

of symmetric slipping. However, if the perturbations of the system create a state of

slipping with u−
1
, −u+

1
, the usage of separate variables for u+

1
and u−

1
is still necessary.

5.4.2 Velocity dependence of the critical amplitudes

In the previous subsection, we obtained a local condition of the transition from

dual-point rolling to dual-point slipping. Let us now consider the condition from the

viewpoint of amplitude of kinematic oscillations.
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Ψ = bψ

y
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ȳ
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2
/η

Figure 5.5: The condition of slipping in the phase plane of the kinematic oscillations. Left panel: ȳ1 < ȳ2.

Right panel: ȳ1 > ȳ2. The thick ellipse denotes the condition (5.58) of slipping. Inside the ellipse, the

elliptical trajectories of the kinematic oscillations are valid (continuous lines). If a trajectory crosses the

boundary ellipse, the wheelset starts slipping at both contact points, and the dynamics leaves the 2D

phase plane of the �gure. That is, the trajectories denoted by dashed lines are not realizable.

By integrating the vector �eld (5.42), trajectories of the dual-point rolling case can

be written into the form

y2 + η2Ψ2 = ȳ2, (5.61)

where ȳ is the amplitude of the oscillations expressed by the lateral displacement (see

also (1.6)). These trajectories are ellipses in the plane y − Ψ of ΣRR. By considering the

intersection between these ellipses and the ellipse (5.58), two di�erent typical situations

occur depending on the eccentricity of the ellipses.

In the case

ηMψ >

������

α2

ψ
− ω2

L

α2

y − ω
2

L

������
, (5.62)

the trajectories (5.61) are inside the ellipse (5.58) for ȳ < ȳ1 (see the left panel of Figure

5.5), where

ȳ1 :=
2C

���α
2

y − ω
2

L
���
. (5.63)

At the critical amplitude ȳ = ȳ1, the trajectory touches the ellipse (5.58) of the boundary

of the slipping (see the black dots in the �gure). Trajectories with larger amplitudes

intersect the boundary ellipse transversally, and then, the trajectory leaves ΣRR to the

�ve-dimensional phase space and the wheelset starts slipping.

In the case

ηMψ >

������

α2

ψ
− ω2

L

α2

y − ω
2

L

������
, (5.64)
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ȳ1

ȳ2
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Figure 5.6: The velocity dependence of the maximum amplitudes of oscillation without slipping. Left

panel: the case when the value ωL2 does not extis. Right panel: the case when both ωL1 and ωL2 exist.

The dashed line in the graphs corresponds to condition (5.63), and the solid line corresponds to condi-

tion (5.65). The minimum of these curves are denoted by thick solid line, which is the actual maximal

amplitude of the kinematic oscillations.

the trajectories are inside the ellipse (5.58) for ȳ < ȳ2 (see the right panel of Figure 5.5),

where

ȳ2 :=
2CMψη

����α
2

ψ
− ω2

L

����

. (5.65)

The trajectory with an amplitude ȳ = ȳ2 touches the ellipse of the condition of slipping.

Hence, the maximum amplitude of kinematic oscillations without slipping is deter-

mined by min(ȳ1, ȳ2). These quantities are depicted in Figure 5.6 as a function of the

angular frequency ωL of the kinematic oscillations (which is proportional to the veloc-

ity v , see (1.57)). In the region which is below both curves, the kinematic oscillation

is possible without slipping. The boundary case between (5.62) and (5.64) corresponds

to the intersection points of the curves in Figure 5.6. These values are determined by

ȳ1 = ȳ2, which leads to the angular frequencies

ωL1 =

√√
α2

ψ
+Mψηα

2

y

1 +Mψη
, ωL2 =

√√
α2

ψ
−Mψηα

2

y

1 −Mψη
. (5.66)

The plots in Figure 5.6 show the results for di�erent typical values of parameters.

When the angular frequency of the kinematic oscillation is close to one of the natural

angular frequencies of the wheelset then the corresponding critical amplitude tends

to in�nity. This property leads to the existence of some special kinematic oscillations

(denoted by a black dot in Figure 5.6) where the wheelset starts slipping if the velocity

of the vehicle increases or decreases.

Determining the connection between the e�ects of the Coulomb model (5.29) and

the nonlinear creep model (5.26) would need a further detailed analysis. It can be seen

100



5.5. NEW RESULTS

ȳ
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Figure 5.7: The data and the results of Example 5.2. The notations of the graph are the same as those

of Figure 5.6.

from Figure 5.6 that the nonsmooth Coulomb model does not provide a given critical

velocity arising from the linear stability loss of the wheelset. Instead, we get a velocity-
dependent critical amplitude of the system.

Example 5.2 (Numerical example). The results are demonstrated on a parameter set of

a high-speed railway vehicle. In Figure 5.7, the majority of the parameter values origi-

nates from the paper of Wu and Chi [74], and parameters µ and η are set to some phys-

ically realistic values. From these parameters, we get the natural angular frequencies

αy = 63.2 1/s and αψ = 93.6 1/s, and the further composed parameters are Mψ = 1.64

and C = 10.29 N/kg. Formulae (5.63)-(5.65) lead to the curves in Figure 5.7. The ve-

locity corresponding to ωL1 is v = 283.3 km/h, where the two curves intersect each

other. This velocity is between the resonance peaks at v = 236.1 km/h and v = 349.3

km/h, at which values the kinematic oscillation excites the lateral and the yaw motion,

respectively.

5.5 New results

Thesis Statement 5. Consider the model of a railway vehicle running with a con-

stant speed along the straight track, where the dynamics of one of its wheelsets

is described by the lateral displacement y and the yaw angle ψ . Assume that the

linearised di�erential equations of the kinematics oscillations are written into the

form ẏ = ωLηb · ψ and
˙ψ = −ωL/(ηb) · y, where b is the distance between the

contact points on the two rails, η is a dimensionless geometric parameter, and ωL

is the linear angular frequency of the kinematic oscillations.

Assume that the forces acting on the wheelset from the vehicle are modelled by

the axle load Fload and the elastic forces of e�ective sti�nesses ky,kψ of the lateral
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and yaw suspensions, respectively. The wheelset has a massm and a mass moment

of inertia Jψ about the vertical axis. The contact between the wheelset and the rails

is modelled by Coulomb friction with a uniform coe�cient µ for both the static and

the dynamic cases.

i) The analysis of the resulting extended Filippov system shows that
for small conicity of the wheelset, the dual-point rolling in a state (y,ψ ) is
realizable if

*
,

k2

y

m2
− ω2

L
+
-

2

y2 + *
,

k2

ψ

J 2

ψ

− ω2

L
+
-

2 (
Jψ

m

)
2

ψ 2 <

(
µFload

m

)
2

,

otherwise, the wheelset starts slipping at both contact points. Moreover,
there is no possibility for the slipping of the wheelset at only one of the
contact points.

ii) The maximum amplitude of the oscillations without slipping is de-
termined by min(ȳ1, ȳ2), where

ȳ1 =
µFload/m

���k
2

y/m2 − ω2

L
���
, ȳ2 =

ηµFload b
2/Jψ

����k
2

ψ
/J 2

ψ
− ω2

L

����

.

Related publications: [8], [9], [10].
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Conclusion and outlook

In this thesis, the dynamics of a rigid body was investigated with two rolling con-

tacts, which mechanical problem is strongly related to engineering applications, but

which has a natural relation to applied mathematics, as well.

In Chapter 1, the analysis of the railway wheelset showed that the kinematic oscil-

lations caused by the dual-point rolling can be quite sensitive to the local geometry of

the bodies. The formal dependence of the frequency on the amplitude was determined

merely from the structure and the symmetries of the system.

The problem of the indeterminacy of the contact forces at the railway wheelset lead

to a di�erent approach of the system, where the conditions of slipping are determined

from the trajectories in the phase space. In many cases, the modelling of Coulomb

friction by a Filippov system provides an alternative method for checking the condition

of slipping without calculating the contact forces. In case of dual-point rolling, this

alternative becomes a necessary approach, because the contact forces are undetermined.

For the three-dimensional problem of a dual-point rolling body, it was necessary to

extend the theory of Filippov systems to codimension-2 discontinuity manifolds (Chap-

ter 2). Some concepts and tools were obtained for analysing these systems, which might

lead to a deeper understanding of Coulomb friction in three-dimensional contact prob-

lems. The theory of extended Filippov systems contains several open questions, and

some further concepts of usual Filippov systems could be possibly generalised for ex-

tended Filippov systems.

The developed methods can be used to determine the conditions of slipping in the

problem of the dual-point rolling body if the vector �elds of the di�erent kinematic

cases are compatible (Chapter 3). It would be useful to determine the class of mechanical

systems for which the compatibility of the vector �elds is satis�ed automatically.

The dynamics of the model presented in Chapter 4 is strongly related to a similar

system which was analysed brie�y in [6]. In that system, the ball is not driven by the

�uid �ow but by the circular motion of the vessel in the horizontal plane. Further analy-

sis of that system would be useful, because without the complexities of �uid dynamics,

an experimental validation of the results could be achieved more conveniently.

The results of Chapter 5 have been derived recently, and there are several further

objectives in this project. It would be necessary to compare the dynamics caused by

the nonsmooth model of the contact forces with the results from the nonlinear creep
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models. The rolling trajectories touching the boundary of the sliding region might lead

to limit cycles in a similar way as it was obtained in [5]. In that case, the maximum

amplitude without slipping would be an estimation of the limit cycle of the system with

the nonlinear creep model.

The usual numerical methods proved to be not reliable for simulating systems with

codimension-2 discontinuities. This is the reason why the validation of the analyti-

cal results by numerical simulations is missing from Chapters 4 and 5. It seems that

the main challenge for the numerical solvers is to follow the trajectories when en-

tering the sliding region from outside of the discontinuity set. It would be necessary

to develop numerical algorithms which are capable to follow the trajectories robustly

through several transitions between rolling and slipping. Then, the global dynamics

of the systems of Chapters 4 and 5 could be investigated, as well. Such a numerical

solver can be applied e�ectively for simulating other problems with three-dimensional

frictional contacts, too.

When the sequential results lead to even more tasks and questions about mechanical

problems, we can realize the limits of human knowledge. While working on the small

questions of science and engineering, we should not forget about the big questions of

life.

Deus, propitius esto mihi peccatori.
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