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Every man naturally desires knowledge,

but what good is knowledge without fear of God?

The more you know and the better you understand,

the more severely will you be judged,

unless your life is also the more holy.

Do not be proud, therefore, because of your learning or skill,

but fear because of the knowledge given you.

/Thomas a Kempis: The Imitation of Christ/
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Introduction

Most of us must have travelled thousands of kilometres by train, but it is not a

usual activity to stare the wheels of a railway vehicle from a short distance. If we

still try, we can observe that the wheels are not exactly cylindrical, but slightly

conical. This little difference in the geometry let us to produce wheelsets – pairs of

wheels – without a differential gear, and it provides a very effective way to follow

the curves of the track.

Conical shape of wheels is certainly one of the most ingenious ideas from the

history of railways, but it has a side-effect which usually called hunting. This

phenomenon covers a type of vibration of the wheelset, which can reach the vehicle

or can be a reason of derailment. Therefore hunting motion is a subject or research

for a very long time.

Nowadays complicated contact mechanical models are used to describe and

understand hunting motion, aspects like elastic deformation, friction or plastic

effects are often included into them. Most of them are built on the top of a linear

rigid-body motion, where the angle of the cone and the change of the orientation

are assumed to be small. Models containing the full three-dimensional description

seem to be unavailable in the literature, even for the simple one-point rolling.

In this diploma thesis the task is to create a mechanical model to investigate

the geometric nonlinearities of three-dimensional motion during hunting of railway

wheelsets. Rigid bodies are considered with one-point rolling, but calculations are

performed without the usual linear approximations. After deriving the equations

of motions we will try to explore its dynamics by using various methods.
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CHAPTER 1. PHENOMENON AND MODELLING

Chapter 1

Phenomenon and modelling

1.1 Phenomenon of hunting motion

First of all the important notions and concepts are presented in connection with

the hunting phenomenon of railway wheelsets. For a more detailed introduction

see for the railway dynamics handbooks of Wickens [17] or Iwnicki [5].

1.1.1 Wheelsets and vehicle

In the case of railway vehicles we usually speak about wheelsets instead of wheels,

because a pair of wheels is produced and used as a single part. Sketch of a typical

wheelset can be seen in Figure 1.1. The conical wheel threads provide the rolling

connection between the rails and the wheelset, the flanges secure the wheelset

against derailment and the axle connects the wheels rigidly with each other and

possibly with the engine or the generator of the vehicle.

wheels

axle

wheel thread

flange

Figure 1.1: Elements of a wheelset

It can be determined from the degrees of freedom, that rigid connection between
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1.1. PHENOMENON OF HUNTING MOTION

bearings with elasticity

bogies

Figure 1.2: Schematic arrangements of bogies. If there is only one wheelset (right), it is enough

in each bearing to ensure an elastic radial foundation in two dimensions, which can be created

typically by springs. If there is two wheelsets in the bogie (left), then between them also the

relative rotation in the horizontal plane is to be allowed, which leads to complicated constructions

in practice.

the bearings of more wheelsets makes the system over-constrained, and it disables

the possibility of proper rolling of the wheelsets. Therefore bearings of wheelsets

are suspended to bogies, which can rotate freely around vertical axes relative to

the body of the vehicle. Usually more than one wheelset can be connected to one

bogie. In both cases the bearings can be constructed to ensure the independent

three-dimensional motion of all wheelsets in order to prevent large-scale sliding.

These arrangements can be seen in Figure 1.2.

1.1.2 Guidance and lateral displacement

From the very beginning of railway history, the wheel threads are not cylindrical-

but slightly conical-shaped where the radius decreases outwards. This geometry is

crucial for the proper operation of wheels through allowing a small change in the

radius of the wheels. On one hand, this ability substitutes the differential gear, on

the other hand, it provides the guidance from the changing curvature of the rails

and keeps the wheelset on the track.

The differential mechanism can be seen in Figure 1.3. On a straight track the

wheelset is located symmetrically related to the rails, the radii of rolling are the

same. In a curved track the wheelset moves a bit outwards, which reduces the

inner and increases the outer radius of rolling. This lateral displacement enables

both wheels to roll in curves. Curvature of the track is designed to change continu-

9



CHAPTER 1. PHENOMENON AND MODELLING

lateral displacement

pitch angle

Figure 1.3: Behaviour of a wheelset in a curve. The wheelset ,slides’ outwars with the amount

of the lateral displacement which increases the outer radius and creates the pitch angle. Pitch

angle is always smaller than the angle of the cone.

ously, therefore change in the lateral displacement can tune the radii of the wheels

smoothly to the shape of the track. Lateral displacement appears together with a

rotation of the axis, which is called the pitch angle.

Even more important, that the conical shape can itself produce a resultant

contact force which makes the wheelset to follow the track, even without using the

flanges. During ordinary operation, the flanges do not touch the rails. However if

vibrations or sliding suddenly create a large lateral displacement, impact between

the flange and the rail can prevent derailment of the wheelset.

1.1.3 Natural motion and hunting motion

From the previous subsection we can conclude, that if the curvature of the track

is constant, there exists a lateral motion which can create a natural motion of the

wheelset. That is, in the co-moving reference frame of the vehicle the symmetry

axis of the wheelset does not move, and the motion of the wheelset is a pure rotation

around this axis.

However this natural motion can be disturbed due to different circumstances

(for example sliding, impacts, etc.), and a so-called hunting motion can occur.

This is an oscillation superposed on the natural motion, which contains continuous

change in the lateral displacement and in the orientation of the symmetry axis of

the wheelset.

This motion, also called parasite motion can be understood from Figure 1.4.

Together with the lateral displacement the so-called yaw angle is changing, which

measures the horizontal rotation of the wheelset. Hunting motion can be a periodic

10



1.2. MODELS IN THE LITERATURE

yaw angle lateral displacement

Figure 1.4: Sketch of hunting motion. Zero value of yaw angle corresponds to local maximum of

lateral displacement and it becomes maximal where lateral displacement vanishes. This creates a

vibration, which is generally non-periodic according to the experiences. Yaw angle can be much

larger than the angle of the cone.

motion, but it can also intensify or die down. From engineering point of view,

hunting motion is not favourable because it can cause unwanted vibrations of the

vehicle and it increases the dynamic loads of the parts especially near the contact.

In more serious case hunting motion can produce so large vibrations which can

cause derailment of the wheelset.

Therefore it is important to minimize hunting motion by finding the conditions

for increasing or decreasing the intensity of hunting. However lots of circumstances

can modify this motion, and it usually complicated to build an appropriate model.

1.2 Models in the literature

Let us now make a short overview of the existing mechanical models of hunting

motion. For a more detailed overview see for the contact mechanics books of

Johnson [7], or Kalker [10], the railway dynamics textbook of Wickens [17] or the

historical overview of Knothe [12].

Models of hunting motion can be classified according to different aspects. A

single wheelset or more wheelsets in a bogie can be investigated as well as a whole

vehicle. The vehicle can have a constant or a changing velocity, and the track can

be straight or curved.

In this project we restrict the analysis to a single wheelset moving on a straight

track with a constant velocity. The wheelsets and bodies can be assumed simply

either rigid or elastic bodies. Another possibility is to consider elasticity only in the

region of the contact. Of course different assumptions can be used for the wheelset

and for the wheels. Now some of the important models are introduced.

11



CHAPTER 1. PHENOMENON AND MODELLING

1.2.1 Rigid models

Both the wheelset and the rails can be considered as rigid bodies. Then the contact

of the bodies can be described by their outer surfaces, which are often assumed to

be smooth. In the case of two general rigid surfaces they touch each other at a

single point, which is called the contact point, and the model is called the one-point

contact model. At the contact point the tangent planes of the surfaces coincide.

One-point can exit continuously in time only if the normal component of the

relative velocity at the contact point is zero (vn = 0). The tangential component

of the relative velocity in the contact point (vt) is called the velocity of sliding.

The vector of the relative angular velocity can be also divided into tangential (ωt)

and normal (ωn) component, they are called angular velocity of rolling and angular

velocity of spinning, respectively. The one-point contact restricts only one degree-

of-freedom from the motion, the possible velocities can be described by ωt,ωn and

vt.

Usually we call rolling the case where vt = 0, in other words when the relative

velocity at the contact point is zero. If vt is non-zero, the motion is called sliding.

From the analysis of the degrees of freedom of a single wheelset with one-point

contact and rolling on each wheel, it turns out, that if the velocity of the vehicle is

given, then the motion of the wheelset can be determined purely from kinematics.

The first approximate calculation was done in 1883 by Klingel [11]. For very

small value of the angle of the cone (denoted by α) he derived the following linear

approximation of the equation of motion expressed by the lateral displacement y:

d2y

dt2
+ v2

h

d̂R̂
y = 0, (1.2.1)

from which a pure sinusoidal solution y(t) = sin(ωKt) occurs with the angular

frequency

ωK := v

√

h

d̂R̂
(1.2.2)

Here d̂ denotes the half-distance between the contact points, and R̂ is the radius

of rolling, both corresponding to the natural motion. The tangent of the cone is

denoted by h = tanα and v is the velocity of the vehicle. These quantities can

be found in Figure 1.5. Expression (1.2.2) is called Klingel’s formula, and it can

be found in every railway dynamics books. In fact for small α and y values it is

accurate enough for engineering practice, especially if we consider the limits of the

12



1.2. MODELS IN THE LITERATURE

R̂d̂d

α

Figure 1.5: Important parameters of a wheelset. The half-distance d̂ is measured between the

contact points in natural position, and d is the half-distance of the centres of the approximate

cylinders of the rail profile. If α is small, then they are close to each other.

one-point contact model. From (1.2.1) a similar equation can be obtained for the

yaw angle, while the effect of the pitch angle is neglected in this investigation.

A correction of this model was made in 1993 by Gábor Lóránt [13], which is

valid also for large α angle, and the following formulae was derived for the hunting

angular frequency:

ωL := v

√

hd

d̂2R̂
= ωK

√

d

d̂
(1.2.3)

Here the rails are considered to be cylinders and d denotes the half-distance between

the axes of these cylinders.

1.2.2 Elastic models

The rails and the wheelset can also be considered as elastic bodies. Then we can use

the tool kit of continuum mechanics in the model to describe the stress, strain and

displacement fields of the bodies. For the modelling of the material of the wheelset

and the rails, simple material models can be used. The boundary conditions are

not obvious both between the wheelset and the vehicle, both at the foundation of

the rails.

In the case of elastic bodies a finite contact surface appears instead of a single

contact point (Figure 1.6). Points of the contact surface have zero normal velocity

and can have two possible states, micro-slip and micro-stick, according to their

tangential velocities. Points in the stick state have zero tangential velocity, and

tangential velocity of points in slip state is non-zero. As velocity changes continu-

ously, the contact surface consists of finite slip and stick zones.
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CHAPTER 1. PHENOMENON AND MODELLING

contact point

contact region

contact surface

Figure 1.6: Difference between rigid and elastic contact. The common part of the surfaces is called

the contact surface. A common-used approximation restricts the elastic effect into a practically

chosen contact region.

The complexity of the problem causes that apart from semi-empirical and ap-

proximate methods, the hunting motion can be examined only by numerical meth-

ods like finite element analysis. Due to the contact analysis and the transient

effects from the hunting, it is a complicated task to get accurate results even with

a professional FEA software. There are no widespread models used typically for

hunting motion, usually the combination of general-purpose FEA algorithms are

used in practice.

1.2.3 Combined rigid-elastic models

The main idea of most widely-used contact models, that the elastic deformation is

taken into consideration only in the contact region, in the vicinity of the contact

surface, as illustrated in Figure 1.6. If the contact forces are not too large compared

to the stiffness of the bodies, then the contact surface is small, stresses and strains

near the contact surface are much larger than in other parts of the bodies. The

contact region is an appropriately chosen volume around the contact surface, which

includes points of large strains. Therefore elastic models can be used in the contact

region, but globally the bodies can be considered rigid.

The localised elastic assumption has the advantage that contact problems with

different global geometries can be investigated together if the behaviour in the con-

tact surface is similar. The first fundamental theory was created in 1882 by Hertz

[3]. He investigated the strain and stress fields at contact regions between bodies

approximated locally by plane-, cylinder- and sphere-shaped geometry. Hertz’s the-

ory became the basis of contact mechanics, and in the next decades it was extended

14



1.3. AIM OF THIS THESIS

and generalized by many researchers.

The problem from the rigid body approach was investigated by Reynolds [15],

who performed experiments of rolling bodies made of different materials. He expe-

rienced the phenomenon of creep, that means a rigid motion very close to rolling,

but a small amount of sliding seems to appear. The notion of creep velocity is used

for measuring the slight sliding of the surfaces. The creep ratio is defined as

νc =
vt

V
(1.2.4)

where V is the speed of rolling, which is the speed of translation of the contact

point on the surfaces, which can be calculated from ωt and the curvature of the

surfaces. A similar coefficient can be defined also for spinning. If νc = 0 then

the ideal rolling is obtained, but for real rolling νc is a small but finite number

due to deformations and slip. It is determined by the forces in the contact region,

from which the tangential forces are called creep forces. Creep models creates the

connection between the creep force and the creep ratio.

Already Hertz noticed the importance of the contact theory specifically for the

dynamics of railway wheelsets, but the first successful application of Hertz’s Theory

for the creep of the hunting motion was made in 1926 by Carter [1]. He was able to

calculate the critical speed of the vehicle, above which the hunting motion becomes

unstable. The same result was presented independently by four other authors ([7],

p. 252) within a few years.

Although the main concept remained the same, these results were developing

together with the new results of the general contact mechanics. With the works of

Johnson [6] and Kalker [9] plastic behaviour, nonlinear creep theory and friction

forces were introduced to the models as well as exploring the micro-slip and micro-

stick regions of the contact surface. Theories used nowadays are mainly based on

these results supported by computer techniques.

1.3 Aim of this thesis

In the present work the rigid assumption is going to be used do explore the nonlinear

effects caused by the three-dimensional rolling of the conical wheelsets. Most of

dynamic calculations of hunting, from Klingel’s equation (1.2.1) to the modern

models use the assumption, that the cone angle α is very small. As for practically-

used geometries α is a few degrees, this assumption works nicely..

15



CHAPTER 1. PHENOMENON AND MODELLING

However analysis of hunting motion with one-point rolling model can be useful,

even if most creep models calculate the small deviation from it. From a three-

dimensional nonlinear model the full scope of the rigid model can be separated

from the elastic effects. As it was mentioned, Lóránt made a full three-dimensional

calculation of the problem, however the formulae became impracticably long. Al-

though he succeeded to obtain the linear formula for the hunting frequency, he did

not get an explicit formula for the differential equation of the system. The stability

of the natural motion of the rigid model is still an open question.

This project is supposed to answer some of these problems.

16



Chapter 2

Mechanical model

2.1 Physical description

A single railway wheelset is investigated travelling along a straight track. Our

objective is to build up the simplest mechanical model which is able to describe

the phenomenon of hunting motion, but already contains the nonlinearities caused

by three-dimensional motion.

2.1.1 Model of the track

The rails are modelled as rigid bodies, and their geometry is approximated by two

parallel cylinders, because top of most common-used rail profiles is described by a

single arc. If the contact points remain on this arc, and do not reach the fillets of the

edges, then approximating with cylinders does not mean any difference compared

to the full profile. Let the radius be denoted by r.

The foundation of the wheels are also assumed to be rigid, thus the rails are

modelled to be fixed to an inertial frame. Let the axes of the cylinders lay in the

same horizontal plane and let the distance of the axes be 2d. The sketch of the

geometry can be seen in Figure 2.1.

2.1.2 Model of the wheelset

The wheelset is also considered to be rigid. From the wheel profile neither the

flanges, nor the transitional curves but only the conical wheel thread is modelled.

Therefore the geometry of the wheelset can be considered as a so-called bicone, two

17



CHAPTER 2. MECHANICAL MODEL

r

d

Figure 2.1: Model of the track. The modelled arc of the rail profile typically has a radius r of a

few hundreds of millimetres and an opening angle of 5-10 degrees. The notation of d is consistent

with Figure 1.5, its value is typically around 1500 mm.

R

α

Figure 2.2: Model of the wheelset. R is not the same as R̂ in Figure 1.5, but at small α they are

almost equal. Typical value of α is 1-5 degrees.

identical right circular cones glued together at their base circles. Let the bottom

radius be R and the half of the opening angle is α.

The mass and the mass moments of inertia are not defined because they are

not needed for the following calculations..

2.1.3 Contact and loads

The rigid property is assumed in the whole body, therefore one-point contact model

is used between the wheelset and the rails. There must be a contact point between

each half of the bicone and the corresponding rail. At the contact points the

surfaces must be tangential to each other.

Ideal rolling is supposed, therefore in the contact points relative tangential

velocities between the surfaces must be zero. As the rails are fixed, velocity of the

bicone at the contact points can be prescribed to be zero.

It is assumed, that the constant velocity v of the vehicle is not modified by

the motion of the wheelset. The connection between the bearings and the vehicle

is supposed to be elastic, which would result a complicated boundary condition.

18



2.2. MATHEMATICAL IMPLEMENTATION

However it is a reasonable assumption that the centre of the wheelset has also a

constant velocity component v to the direction of the track.

The forces acting on the wheelset without driving, can arise from four sources:

from the gravity, from the contact, from the bearings and from the driving. We

will see later that the rolling constraints and the pulling with constant velocity

determine the equations of the system without knowing the forces. Therefore the

modelling of the forces is not necessary.

v

Figure 2.3: Towing load of the wheelset. v denotes only the component parallel to the track. The

another two components of velocity of the geometric centre is allowed to change freely.

2.2 Mathematical implementation

In this section the physical requirements of our mechanical model are implemented

in mathematical model. During the calculations := means the defining equation of

an object, ≏ denotes an axiom of the model, and the single = means an equality

derived from existing equations.

2.2.1 Notations

The motion of the wheelset is described in a three-dimensional vector space V, the

vectors are denoted by small boldface letters, like v ∈ V. A scalar product

(V,V) → R, (v,w) → v ·w (2.2.1)

and a vector product

(V,V) → V, (v,w) → v ×w (2.2.2)

19



CHAPTER 2. MECHANICAL MODEL

are defined on V.

The dual space of V, is denoted by V
∗ = Hom(V,R). The dual vector of a

vector v, is denoted by v∗ ∈ V
∗ which satisfies equation

v∗w = v ·w (2.2.3)

for all w ∈ V.

The linear transformations of V are denoted by capital boldface letters, A ∈
Hom(V,V). The inverse of A is denoted by A−1 ∈ Hom(V,V), for which

AA−1 = A−1A = I, (2.2.4)

and I is the identity transformation.

The set of orthonormal, dextrorotatory bases on V is denoted by Bas(V) ⊂ V
3.

A basis as a triplet of vectors, denoted by (bi) ∈ Bas(V) where i ∈ {1, 2, 3}.
Orthonormal and dextrorotatory properties mean

bi · bj = δij (2.2.5)

and

bi × bj = ǫijkbk (2.2.6)

for all i, j, k ∈ {1, 2, 3}. Here δij is the Kronecker-symbol and ǫijk the Levi-Civita

symbol. For the indices Einstein’s summation notation convention is used here and

during the following calculations of this chapter. For the details see for the first

chapter of [4].

Coordinates of a vector v with respect to a basis bi are denoted by

vi = b∗
iv (2.2.7)

Components of a linear transformation A is denoted similarly, by

Aij = b∗
iAbj (2.2.8)

These coordinates of vectors and transformations are enumerated in column ma-

trices and square matrices, respectively.

A linear transformation T is called a rotation if for any basis (bi) ∈ Bas(V),

the transformed triplet is also an orthonormal, dextrorotatory basis, that is:

(Tbi) ∈ Bas(V) (2.2.9)

The set of rotations are denoted by Rot(V) ⊂ Hom(V,V).

20



2.2. MATHEMATICAL IMPLEMENTATION

2.2.2 Free motion of the wheelset

The geometry of the wheelset is given in its material reference frame. This coordi-

nate system is moving, therefore its motion is to be described first.

Let us consider a transformation of a general rigid body motion, denoted by

u : V → V, which can be composed from a translation and a rotation:

u(r) := Rr+ x, (2.2.10)

where x : R → V, t → x(t) is the translation of a chosen pivot point and R : R →
Rot(V), t→ R(t) is the rotation of the body around the pivot point.

Let us differentiate (2.2.10) with respect to time. After substituting the inverse

of (2.2.10) the Eulerian velocity field is obtained:

v(r) := u̇ ◦ u−1(r) = Ω(r− x) + ẋ (2.2.11)

Here ẋ is the velocity of the pivot point and Ω := ṘR−1 is the angular velocity

of the body in tensor form. From this point a dot over a symbol always denotes

differentiation with respect to time.

These objects describe the free motion of the wheelset. The position of the

body is given by the pair (x,R), and the state of velocity is described by the

triplet (ẋ,Ω,x). For the calculations it is necessary to express these by scalar

functions.

Let (ei) ∈ Bas(V) be a basis fixed to the rails, where e1 point to the moving

direction of the vehicle and e3 points vertically upwards, as can be seen in Figure

2.4.

The vector x is simply parametrised by its Cartesian coordinates with respect

to (ei):

e∗ix :=









x

y

z









(2.2.12)

The rotation tensor R is parametrised with Euler angles:

e∗iRej := Pik(ϑ)Qkl(ψ)Rlj(ϕ), (2.2.13)

where

Pij(ϑ) :=









1 0 0

0 cosϑ − sin ϑ

0 sinϑ cosϑ









(2.2.14)
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CHAPTER 2. MECHANICAL MODEL

e3

e2

e1

rails

Figure 2.4: Directions of basis (ei) fixed to the track. e1 and e2 are in a horizontal plane, e1

shows the direction of the track.

Qij(ψ) :=









cosψ − sinψ 0

sinψ cosψ 0

0 0 1









(2.2.15)

Rij(ϕ) :=









cosϕ 0 sinϕ

0 1 0

− sinϕ 0 cosϕ









(2.2.16)

The angles ϕ, ψ and ϑ are called roll angle, yaw angle, and pitch angle, re-

spectively. The roll angle corresponds to the rotation of the wheelset around its

symmetry axis. The pitch and yaw angles determine the direction of this symmetry

axis, their meaning can be seen in Figures 2.5-2.6.

The Euler angles are chosen so, that the state ϑ = 0 and ψ = 0 corresponds

to the natural position of the wheelset. Rotations of the Euler angles define a

sequence of bases which will be used in the following calculations:

fi := P−1
ij (ϑ) ej

gi := Q−1
ij (ψ) fj

hi := R−1
ij (ϕ) gj,

(2.2.17)

where P−1
ij (ϑ), Q−1

ij (ψ) and R−1
ij (ϕ) are the corresponding inverse matrices. Using

(2.2.17) and (2.2.13) we get:

hi = Rei, (2.2.18)

hence the basis hi is fixed to the moving wheelset.

The geometric state of the system is now expressed with six real variables, the

state of the unconstrained wheelset can be described by

qu := (x, y, z, ϕ, ψ, ϑ) ∈ R
6 (2.2.19)
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ϑ

Figure 2.5: Meaning of the pitch angle, ϑ > 0, ψ = 0

ψ

Figure 2.6: Meaning of the yaw angle, ψ > 0, ϑ = 0

(ei) (fi) (gi) (hi)P(ϑ) Q(ψ) R(ϕ)

Figure 2.7: Connection between bases and Euler angles. To the direction of lower arrows the

matrices can be used for basis transformation of vector components, to the direction of upper

arrows the corresponding inverse is needed.

2.2.3 Geometry of the bodies

We define the rigid bodies by their surfaces described as two-parametric vector

functions. The rails are modelled as two infinite parallel cylinders with radius r

and distance 2d apart. Let ρ
l and ρ

r denote the surfaces of left and right rails.

The functions of the rails are described by the fixed basis (ei):

e∗iρ
lr(ξ, γ) :=









ξ

r sin γ ± d

r cos γ









(2.2.20)

Terminologies of left and right have a sense if we assume the movement to the

direction of e1. Throughout this chapter, whenever required, upper and lower signs

refer to the left and right quantities, respectively. The origin is in the middle in
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e1

e2
e3ρ

l(ξ, γ)

ρ
r(ξ, γ)

e3

e1

γ

ξ

Figure 2.8: Surface model of the rails

the common plane of the axes of the cylinders. Here ξ is the surface parameter

increasing along the direction of the rails. The γ surface parameter shows the angle

around the cylinder, γ = 0 corresponds to the top of the rails. Their ranges are:

ξ ∈ (−∞,∞)

γ ∈ [−π, π)
(2.2.21)

The surface of the wheelset is modelled with a bicone, the base radius R and,

the half of the conical angle is α, and h := tanα. The surface is described by κ,

which is given by basis hi fixed to the wheelset. Let

h∗
iκ(χ, δ) := h∗

ix +









c(χ) sin(δ)

χ

c(χ) cos(δ)









, (2.2.22)

where the directrix of the bicone is

c(χ) :=

{

−R + hχ if χ ≥ 0

−R− hχ if χ ≤ 0

}

(2.2.23)

Here χ is the surface parameter which measures the distance on the symmetry axis,

and the angle δ generates the axisymmetric geometry from the directrix c(χ). The

value χ = 0 shows the symmetry plane of the bicone, and the δ = 0 is the lowest

directrix of the bicone in natural position. The range of the parameters are:

χ ∈ (−R/h,R/h)
δ ∈ (−π, π)

(2.2.24)

It can be seen from (2.2.22), that the vector x of the pivot point is in the

geometric centre of the bicone.
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h3
h2

h1

κ(χ, δ) h3

h2

δ

χ

Figure 2.9: Surface model of the wheelset

2.2.4 Constraints

It is not easy to implement the constraints directly for the qu variable, but the

parametric definition of the surfaces provides a straightforward way for it. The

main idea is to follow the surface coordinates during the motion with additional

variables. With this method first the configuration space is extended with the sur-

face coordinates of the contact points, then with appropriate number of constraint

equations, these new variables and some of the old ones are eliminated simultane-

ously.

Let us call the contact points left and right contact points according to the

rails. The surface coordinates of the left contact point are denoted by ξl and γl on

the left rail, and χl, δl on the wheelset. The coordinates of the right contact point

is denoted similarly just with an upper index r.

These quantities are considered to be functions of time and they correspond

to the state of the system. Therefore we can add them to the variables and an

extended state variable of the unconstrained system is obtained:

qe = (x, y, z, ϕ, ψ, ϑ, ξl, γl, χl, δl, ξr, γr, χr, δr) ∈ R
14 (2.2.25)

Of course this 14-dimensional space is redundant, although (2.2.19) was so too

without applying the constraints.

After introducing these new variables the constraints can be implemented easily.

First let us consider that the contact points must have coincidence on the two
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contacting bodies. Therefore

κ(χl, δl) ≏ ρ
l(ξl, γl)

κ(χr, δr) ≏ ρ
r(ξr, γr)

(2.2.26)

have to be satisfied.

The surfaces are not just touching each other but they are in tangential connec-

tion at the contact points. This can be mathematically expressed by the equality

of the tangent spaces of the surfaces at the contact points. Thus

T(χl,δl)κ ≏ T(ξl,γl)ρ
l

T(χr ,δr)κ ≏ T(ξr ,γr)ρ
r

(2.2.27)

have to be fulfilled where Txf denotes the tangent space of the function f at a

point x.

The coincidence constraints in (2.2.26) are vector equations, therefore each

means three scalar equations. However the tangent constraints in (2.2.27) mean

two scalar equations for each. We can see later, that all of these scalar equations are

independent, they altogether reduce the number of the variables by 3+3+2+2 = 10.

We assume ideal rolling, and the rails are fixed, hence the velocity of the

wheelset must be zero at the contact points:

v ◦ κ(χl, δl) ≏ 0

v ◦ κ(χr, δr) ≏ 0
, (2.2.28)

where ◦ denotes the composition of functions. The two rolling constraints would

mean theoretically 6 scalar equations, but their independence from each other and

from the geometric constraints in (2.2.26)-(2.2.27) has to be explored. We will see

that the rolling constraints add only 3 more independent equations to the geometric

equations.

Up to this point the constraints has described the contact between the wheelset

and the rails. The last constraint is completely independent from them and it has

been introduced as a load. The speed of the rail vehicle is considered to be constant

v, and the geometric centre of the gravity of the wheelset can be assumed to move

with this constant velocity along the rails. This can be included into the equation:

e∗1v ◦ x = v (2.2.29)

Constraints are usually classified as holonomic and non-holonomic constraints,

which definitions contain properties of integrability. For our purposes it is more
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straightforward to distinguish geometric constraints, which provide restrictions be-

tween the variables in (2.2.25) and kinematic constraints which contains restric-

tions also for the derivatives of the variables. From this point of view (2.2.26) and

(2.2.27) are geometric, (2.2.28) and (2.2.29) are kinematic constraints.

2.3 Derivation of the equations of motion

In this section our aim is to calculate the differential equations of the system. First

the geometric constraints (tangent and coincidence) are applied to restrict the vari-

ables, then we consider the kinematic constraints (rolling and pulling) restricting

the velocities. It turns out that we do not need Newtonian equations to derive the

differential equations, because the constraints determine the motion of the system.

Although the coincidence constraints are more fundamental physically, it is

better to begin with the tangent constraints, because they can be solved separately

and some of the variables can be eliminated immediately.

2.3.1 Tangent constraint

There are several ways of applying the requirement of common tangent space of

two surfaces. The parallelism of the normal vectors could be examined or the

perpendicularity of a normal vector with the tangent vectors of the other surface

could be described.

In the following let us use the property, that if the tangent space is common

at the contact point, then all the possible tangent vectors of the surfaces must be

in the same plane. It is easy to calculate the normal vectors generated by partial

differentiation respect to the surface parameters. If the coordinate net of a surface

has no singularity at the contact point, then the partial derivatives span the tangent

space. Therefore it is enough to check for each contact point, that any three from

the four partial derivative vectors are in the same plane.

The calculations are made simultaneously with the left and right contact points.

The derivatives are calculated in the own bases of the bodies then they are trans-

formed to an appropriate common system to apply the constraints.
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The partial derivatives of the rails at the contact points:

e∗i (∂1ρ
lr)(ξ, γ) =









1

0

0









(2.3.1)

e∗i (∂2ρ
lr)(ξ, γ) =









0

r cos γ

−r sin γ









(2.3.2)

The partial derivatives of the bicone in its own basis:

h∗
i (∂1κ)(χ, δ) =









c′(χ) sin δ

1

c′(χ) cos δ









(2.3.3)

h∗
i (∂2κ)(χ, δ) =









c(χ) cos δ

0

−c(χ) sin δ









(2.3.4)

The four vectors are all transformed to the basis denoted by gi in order to

simplify the calculations:

g∗
i (∂1ρ

lr)(ξ, γ) = Q−1
ij (ψ)P

−1
jk (ϑ)e∗k(∂1ρ

lr)(ξ, γ) =









cosψ

− sinψ

0









(2.3.5)

g∗
i (∂2ρ

lr)(ξ, γ) = Q−1
ij (ψ)P

−1
jk (ϑ)e∗k(∂2ρ

lr)(ξ, γ) =









r sinψ cos(ϑ+ γ)

r cosψ cos(ϑ+ γ)

−r sin(ϑ+ γ)









(2.3.6)

g∗
i (∂1κ)(χ, δ) = Rij(ϕ)h

∗
j (∂1κ)(χ, δ) =









c′(χ) sin(ϕ+ δ)

1

c′(χ) cos(ϕ+ δ)









(2.3.7)

g∗
i (∂2κ)(χ, δ) = Rij(ϕ)h

∗
j (∂2κ)(χ, δ) =









c(χ) cos(ϕ+ δ)

0

−c(χ) sin(ϕ+ δ)









(2.3.8)

The linear dependence of three vectors can be examined by evaluating the

triple scalar product of them. If three vectors are linearly dependent, then the
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triple product must be zero. The triple product can be calculated easily from the

matrix composed from the vectors. Hence (2.2.27) becomes

det
[

g∗
i (∂1κ)(χ

lr, δlr) g∗
i (∂2κ)(χ

lr, δlr) g∗
i (∂1ρ

lr)(ξlr, γlr)
]

= 0 (2.3.9)

det
[

g∗
i (∂1κ)(χ

lr, δlr) g∗
i (∂2κ)(χ

lr, δlr) g∗
i (∂2ρ

lr)(ξlr, γlr)
]

= 0 (2.3.10)

These equations contain the linear dependence of the four vectors in both points.

Let us first calculate (2.3.9). After substitution of the derivatives the equation

becomes
∣

∣

∣

∣

∣

∣

∣

∣

c′(χlr) sin(ϕ+ δlr) c(χlr) cos(ϕ+ δlr) cosψ

1 0 − sinψ

c′(χlr) cos(ϕ+ δlr) −c(χlr) sin(ϕ+ δlr) 0

∣

∣

∣

∣

∣

∣

∣

∣

= 0. (2.3.11)

Calculating the determinant:

−c(χlr)
(

sin(ϕ+ δlr) cosψ + c′(χlr) sinψ
)

= 0 (2.3.12)

Let us suppose that the contact points are on different cones of the bicone, that is

χl > 0 χr < 0 (2.3.13)

This causes c′(χlr) = ±h. By substituting (2.2.24) into (2.2.23) we can be ensured

that c(χlr) > 0 Therefore (2.3.12) gives:

sin(ϕ+ δlr) = ∓h tanψ (2.3.14)

This is useful to understand the meaning of the ϕ + δlr angle. As the body

is axysymmetric, a change only in the rolling angle ϕ has the same effect on the

system as a same change only in the δ variable. Therefore none of them, only their

sum can have direct geometric meaning. They together determine the directrices on

both half-cones, which contain the contact points, and the angle of these directrices

is measured from the ψ = 0 natural position.

Equation (2.3.14) contains a restriction to the ψ angle, as the absolute value of

the sine function must be smaller or equal than one. From this we get:

| tanψ| < 1

h
(2.3.15)

In the physical relevant case |ϕ+ δlr| < π/2, therefore:

cos(ϕ+ δlr) =
√

1− h2 tan2 ψ (2.3.16)
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Let us now calculate the other part of the tangent constraint in (2.3.10):
∣

∣

∣

∣

∣

∣

∣

∣

c′(χlr) sin(ϕ+ δlr) c(χlr) cos(ϕ+ δlr) r sinψ cos(ϑ+ γlr)

1 0 r cosψ cos(ϑ+ γlr)

c′(χlr) cos(ϕ+ δlr) −c(χlr) sin(ϕ+ δlr) −r sin(ϑ+ γlr)

∣

∣

∣

∣

∣

∣

∣

∣

= 0 (2.3.17)

During calculation of the determinant (2.3.14) and (2.3.16) can be already used:

rc(χlr)

( ±h
cosψ

cos(ϑ+ γlr) +
√

1− h2 tan2 ψ sin(ϑ+ γlr)

)

= 0 (2.3.18)

In the physically realistic case we can assume that |ϑ + γlr| < π/2. With this we

find:

sin(ϑ+ γlr) =
∓h

cosψ
√
1 + h2

(2.3.19)

cos(ϑ+ γlr) =

√

1− h2 tan2 ψ√
1 + h2

(2.3.20)

One can check that if condition (2.3.15) is satisfied, then the right-hand side of

these equations must remain below one in absolute value.

The tangent constraints have been applied, and finally (2.3.14)-(2.3.16) and

(2.3.19)-(2.3.20) are obtained. From this four variables, γl, γr, δl and δr could be

calculated, but it is unnecessary as the following derivations can be done with using

directly the sum of these angles.

2.3.2 Coincidence constraint

For the calculation of the coincidence constraints (2.2.26), the functions of the

surfaces should be transformed to a common coordinate system. Bases (gi) or (fi)

can be used easily, but the second one leads to simpler formulae.

Let us transform the function of the rail in (2.2.20) to the coordinate system

defined by basis (fi):

f∗i ρ
lr(ξ, γ) = P−1

ij (ϑ)e∗jρ
lr(ξ, γ) =









ξ

r sin(ϑ+ γ)± d cosϑ

r cos(ϑ+ γ)∓ d sinϑ









(2.3.21)

Let us consider the contact points and let us use the results from (2.3.19)-(2.3.20)

to get:

f∗i ρ
lr(ξlr, γlr) =











ξlr

±
(

d cosψ cosϑ− rh√
1+h2

)

1
cosψ

∓d sinϑ+
r
√

1−h2 tan2 ψ
√
1+h2











(2.3.22)
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1− l k−1+lk
1

l

Figure 2.10: Dimensionless parameters. In the figure all lengths are resized by d to get the

dimensionless quantities. Terms k − 1 + l and 1 − l appear often in the calculations and also

in the final form of the differential equation. Comparing with Figure 1.5, d̂/d = 1 − l and

R̂/d = h(k − 1 + l).

The equation of the bicone is also transformed to the fi basis:

f∗i κ(χ, δ) = Qij(ψ)Rjk(ϕ)h
∗
kκ(χ, δ) =

=









c(χ) sin(ϕ+ δ) cosψ − χ sinψ

c(χ) sin(ϕ+ δ) sinψ + χ cosψ

c(χ) cos(ϕ+ δ)









+ f∗i x (2.3.23)

Substituting the contact points again, and using (2.3.14)-(2.3.16) we obtain:

f∗i κ(χ
lr, δlr) =









− sinψ
(

(1 + h2)χlr ± Rh
)

cosψ
(

(1− h2 tan2 ψ)χlr ±Rh tan2 ψ
)

−R
√

1− h2 tan2 ψ ± χlrh
√

1− h2 tan2 ψ









+ f∗i x (2.3.24)

The constraints in (2.2.26) are not used directly, but rather their sum and

difference is examined to utilize the symmetries of the left and right sides:

ρ
l(ξl, γl)− ρ

r(ξr, γr) = κ(χl, δl)− κ(χr, δr) (2.3.25)

ρ
l(ξl, γl) + ρ

r(ξr, γr) = κ(χl, δl) + κ(χr, δr) (2.3.26)

Before performing the calculations let us introduce the following new parameters:

k :=
R

dh
l :=

rh

d
√
1 + h2

(2.3.27)

Parameters k and l are introduced to simplify the expressions, but they have geo-

metrical meaning according to Figure 2.10.
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Let us produce the two sides of (2.3.25) in our current coordinate system fi. To

simplify the calculations, the equations are divided by 2d:

f∗i ρ
l(ξl, γl)− f∗i ρ

r(ξr, γr)

2d
=









ξl−ξr

2d

(cosψ cosϑ− l) 1
cosψ

− sinϑ









(2.3.28)

f∗i κ(χ
l, δl)− f∗i κ(χ

r, δr)

2d
=









− sinψ
(

χl−χr

2d
(1 + h2) + kh2

)

cosψ
(

χl−χr

2d
(1− h2 tan2 ψ) + kh2 tan2 ψ

)

χl+χr

2d
h
√

1− h2 tan2 ψ









(2.3.29)

After equalizing them, the following results can be obtained:

χl − χr

2d
=

(cosϑ cosψ − l)− kh2 sin2 ψ

cos2 ψ(1− h2 tan2 ψ)
(2.3.30)

χl + χr

2d
=

− sin ϑ

h
√

1− h2 tan2 ψ
(2.3.31)

ξl − ξr

2d
= − sinψ

(cosϑ cosψ − l) (1 + h2)− kh2

cos2 ψ(1− h2 tan2 ψ)
(2.3.32)

Then let us work out the left-hand side of the another equation in (2.3.26):

f∗i ρ
l(ξl, γl) + f∗i ρ

r(ξr, γr)

2d
=









ξl+ξr

2d

0
l
h

√

1− h2 tan2 ψ









(2.3.33)

To the right-hand side also (2.3.31) and (2.3.30) are substituted:

f∗i κ(χ
l, δl) + f∗i κ(χ

r, δr)

2d
=









−χl+χr

2d
(1 + h2) sinψ

χl+χr

2d
(1− h2 tan2 ψ) cosψ

−kh
√

1− h2 tan2 ψ + χl−χr

2d
h
√

1− h2 tan2 ψ









+

+
f∗i x

d
=















sinϑ sinψ(1+h2)

h
√

1−h2 tan2 ψ

− sinϑ cosψ(1−h2 tan2 ψ)

h
√

1−h2 tan2 ψ

(cosϑ cosψ−l)h2−kh2 cos2 ψ

cos2 ψh
√

1−h2 tan2 ψ















+
f∗i x

d
(2.3.34)

Using (2.3.26) f∗i x can be expressed:

f∗i x

d
=













ξl+ξr

2d
− sinϑ sinψ(1+h2)

h
√

1−h2 tan2 ψ

sinϑ cosψ(cos2 ψ−h2 sin2 ψ)

cos2 ψh
√

1−h2 tan2 ψ
−h2 cos ϑ cosψ+l(1+h2) cos2 ψ+kh2 cos2 ψ

cos2 ψh
√

1−h2 tan2 ψ













(2.3.35)
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Transforming it to the outer coordinate system:

e∗ix

d
= Pij(ϑ)

f∗j x

d
=















ξl+ξr

2d
− sinϑ sinψ(1+h2)

h
√

1−h2 tan2 ψ

sinϑ (cosϑ cosψ−l)(1+h2)−kh2

h
√

1−h2 tan2 ψ

cosψ
√

1−h2 tan2 ψ
h

− cosϑ (cosϑ cosψ−l)(1+h2)−kh2

h
√

1−h2 tan2 ψ















(2.3.36)

Which comparing to (2.2.12) gives:

ξl + ξr

2d
=
x

d
+

sinϑ sinψ(1 + h2)

h
√

1− h2 tan2 ψ
(2.3.37)

y

d
= sinϑ

(cosϑ cosψ − l) (1 + h2)− kh2

h
√

1− h2 tan2 ψ
(2.3.38)

z

d
=

cosψ
√

1− h2 tan2 ψ

h
− cosϑ

(cosϑ cosψ − l) (1 + h2)− kh2

h
√

1− h2 tan2 ψ
(2.3.39)

With the help of equations (2.3.30)-(2.3.32) and (2.3.37)-(2.3.39) now ξl, ξr, χl,

χr, y and z variables can be eliminated. Other variables could also be chosen for

expression but this choice seems to be the simplest. Considering also the tangent

constraint, all of our variables in (2.2.25) can be expressed using the three Euler

angles and x. Therefore the new variables after using the constraints:

qc := (x, ϕ, ψ, ϑ) ∈ R
4 (2.3.40)

Thus after applying the geometric constraints a four-dimensional configuration

space is obtained, in other words four general coordinates can be used for describing

our system. It is important that the coordinates of the contact points are absent

from qc as there was planned at the beginning of the section. The physical meaning

of the remaining variables are straightforward: x and ϕ describe the natural motion

of the wheel, ϑ and ψ characterize the hunting motion.

2.3.3 Rolling and pulling constraints

Similar to the coincidence constraint, not equations in (2.2.28) are examined di-

rectly, but their sum and difference. After making this transformation and substi-

tuting the velocity function from (2.2.11) we get:

Ω
(

κ(χl, δl)− κ(χr, δr)
)

= 0 (2.3.41)
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and

Ω
(

κ(χl, δl) + κ(χr, δr)− 2x
)

+ 2ẋ = 0 (2.3.42)

For applying the constraints the angular velocity tensor is to be determined. It

can be done according to the definition in (2.2.11):

e∗iΩej = e∗i ṘR∗ej =

=





0 −ϕ̇ cosψ sinϑ− ψ̇ cosϑ ϕ̇ cosψ cosϑ− ψ̇ sinϑ

ϕ̇ cosψ sinϑ+ ψ̇ cosϑ 0 −ϑ̇+ ϕ̇ sinψ

−ϕ̇ cosψ cosϑ+ ψ̇ sinϑ ϑ̇− ϕ̇ sinψ 0



 (2.3.43)

The calculation is more simple if we transform it to basis (fi):

f∗i Ωfj = P−1
ik (ϑ)e∗kΩelPlj(ϑ) =









0 −ψ̇ ϕ̇ cosψ

ψ̇ 0 −ϑ̇+ ϕ̇ sinψ

−ϕ̇ cosψ ϑ̇− ϕ̇ sinψ 0









(2.3.44)

Equation (2.3.41) can be rewritten using (2.3.25):

Ωρ
l(ξl, γl)−Ωρ

r(ξr, γr)

2d
= 0 (2.3.45)

The final form of the difference of the contact points using all geometric constraints:

e∗iρ
l(ξl, γl)− e∗iρ

r(ξr, γr)

2d
=









− sinψ (cosϑ cosψ−l)(1+h2)−kh2

cos2 ψ(1−h2 tan2 ψ)

(cosψ cosϑ− l) 1
cosψ

− sin ϑ









=:









v1

v2

v3









(2.3.46)

The v1-v3 notations are introduced in order to shorten the calculation. Substituting

this into (2.3.45) we get:








0 −ψ̇ ϕ̇ cosψ

ψ̇ 0 −ϑ̇+ ϕ̇ sinψ

−ϕ̇ cosψ ϑ̇− ϕ̇ sinψ 0









·









v1

v2

v3









=









0

0

0









(2.3.47)

Let us create a system of linear equations from this equation:








0 −v2 v3 cosψ

−v3 v1 v3 sinψ

v2 0 −v2 sinψ − v1 cosψ









·









ϑ̇

ψ̇

ϕ̇









=









0

0

0









(2.3.48)

It can be checked that the rank of the coefficient matrix is 2, therefore only two

of the three constraint equations are independent. Any two of the three equations

can be chosen. For the simplicity the first and third are picked:

−ψ̇v2 + ϕ̇v3 cosψ = 0 (2.3.49)
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ϑ̇v2 − ϕ̇(v1 cosψ + v2 sinψ) = 0 (2.3.50)

Substituting these back into the definitions of the v1-v3 components and after some

manipulation:

ψ̇
cosϑ cosψ − l

cos2 ψ
+ ϕ̇ sinϑ = 0 (2.3.51)

ϕ̇h2
(

k − cosϑ cosψ − l

cos2 ψ

)

sinψ − ϑ̇
cosϑ cosψ − l

cos2 ψ
(1− h2 tan2 ψ) = 0 (2.3.52)

For calculating (2.3.42) the appropriate expression for the distance is needed

from (2.3.34):

f∗i κ(χ
l, δl) + f∗i κ(χ

r, δr)

2d
− f∗i x

d
=















sinϑ sinψ(1+h2)

h
√

1−h2 tan2 ψ

− sinϑ cosψ(1−h2 tan2 ψ)

h
√

1−h2 tan2 ψ
(cosϑ cosψ−l)h2−kh2 cos2 ψ

cos2 ψh
√

1−h2 tan2 ψ















=:









v4

v5

v6









(2.3.53)

Also the velocity of the centre of the wheelset is to be calculated:

f∗i x = P−1
ij (ϑ)e∗jx =









ẋ

ẏ cosϑ+ ż sinϑ

ż cosϑ− ẏ sinϑ









(2.3.54)

Substituting back into (2.3.42):








0 −ψ̇ ϕ̇ cosψ

ψ̇ 0 −ϑ̇ + ϕ̇ sinψ

−ϕ̇ cosψ ϑ̇− ϕ̇ sinψ 0

















v4

v5

v6









+
1

d









ẋ

ẏ cosϑ+ ż sinϑ

ż cosϑ− ẏ sinϑ









= 0 (2.3.55)

It can be seen immediately that the second and third scalar equations are not

independent from the coincidence constraint, they can be obtained by differentia-

tion of (2.3.38) and (2.3.39) with respect to time. This is not surprising because

the coincidence constraints have to ensure the zero relative velocity at the contact

point in the normal direction of the surfaces. Therefore only one scalar equation

can be obtained from the first row of the vector equation:

ϕ̇ cosψv6 − ψ̇v5 +
ẋ

d
= 0 (2.3.56)

After substitution:

−ϕ̇h2
(

k − cosϑ cosψ − l

cos2 ψ

)

+ ψ̇ sin ϑ(1− h2 tan2 ψ) + h
ẋ

d
= 0 (2.3.57)
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Finally we found, that from the six of the rolling constraint equations only three

are independent from each other and from the geometric constraints, these lead to

equations (2.3.51), (2.3.52) and (2.3.57).

The calculation of the constant pulling speed of the wheelset is clearly the

simplest one compared to the previous constraints. Let us calculate (2.2.29) to

obtain:

ẋ = v (2.3.58)

2.3.4 Equations of motion of the system

We have applied all kinematic constraints, and got equations (2.3.51), (2.3.52),

(2.3.57) and (2.3.58). These kinematic equations mean four independent linear

equations for ϑ̇, ψ̇,ϕ̇ and ẋ. These equations can be solved, and these derivatives

can be expressed explicitly as functions of the general coordinates.

This fact means that all of the time derivatives become known at a given point

of the configuration space. Hence Newton’s Second Law is not needed to derive the

differential equations, they can be derived from the dynamical constraint equations.

Thus for (2.3.51), (2.3.52), (2.3.57) and (2.3.58) we find

ẋ = v

ϕ̇ =
cosϑ cosψ − l

cos2 ψ
· S(ψ, ϑ)

ψ̇ = − sinϑ · S(ψ, ϑ)

ϑ̇ =
h2 sinψ

1− h2 tan2 ψ

(

k − cosϑ cosψ − l

cos2 ψ

)

· S(ψ, ϑ)

(2.3.59)

(2.3.60)

(2.3.61)

(2.3.62)

where the

S(ψ, ϑ) :=
V

cosϑ cosψ−l
cos2 ψ

(

k − cos ϑ cosψ−l
cos2 ψ

)

h2 + sin2 ϑ(1 − h2 tan2 ψ)
(2.3.63)

function is introduced for shorthand notation, and

V :=
vh

d
(2.3.64)

is the dimensionless velocity.

Therefore we have obtained the equations of the motion of the system. It is

very comfortable that due to the lack of the second-order Newtonian equations it is

already a system of first-order differential equations, thus the general coordinates
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become phase variables and the configuration space is equivalent with the phase

space.

If we consider the system in the point o f view of the Appell-equations (see

Gantmacher [2], p. 61.), this result is not surprising. If an n-dimensional config-

uration space is exposed to m kinematic constraints, then a 2n − m-dimensional

system of equations can be obtained. This system consists of n−m scalar Appell

equations, n − m equations from the definitions of the pseudo-velocities and m

equations from the kinematic constraints. As we have n = m = 4, there are only

equations from the constrains.

In the next chapter these equations are going to be investigated. The properties

of the phase space and the physically relevant solutions will be examined to explore

the behaviour of the rolling wheelset proposed by this physical model.
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Chapter 3

Analysis of the equation of motion

3.1 Analysis of the system of equations

Our investigation starts from equations (2.3.59)-(2.3.62), let Y : (x, ϕ, ψ, ϑ) →
(ẋ, ϕ̇, ψ̇, ϑ̇) denote the four dimensional vector field generated by them.

As one can quickly recognise this vector field does not depend on ϕ and x,

which has an obvious physical explanation. The independence from ϕ is caused by

the axysymmetry of the wheelset, and change of x has also no effect, because the

system is symmetric with respect to translation of the wheelset along the track.

Hence x and ϕ can be separated from the system, because the dynamics of ϑ

and ψ can be determined without these so-called cyclic coordinates. Let us denote

the restricted vector field by X : (ψ, ϑ) → (ψ̇, ϑ̇), where the components of X are

generated by (2.3.61)-(2.3.62):

X1(ψ, ϑ) = − sin ϑ · S(ψ, ϑ) (3.1.1)

X2(ψ, ϑ) =
h2 sinψ

1− h2 tan2 ψ

(

k − cosϑ cosψ − l

cos2 ψ

)

· S(ψ, ϑ) (3.1.2)

The range of the two variables of X can be taken to ψ ∈ (−π/2, π/2) and

ϑ ∈ [−π, π). The singularity of the Euler parametrisation at ψ = ±π/2 does not

cause a problem, because such large yaw angles are physically unavailable. Thus

the phase space is:

U := (−π/2, π/2)× [−π, π) ⊂ R
2 (3.1.3)

An element from the space is denoted by pairs (ψ, ϑ) ∈ U , and X = (X1, X2) is a

U → R
2, function which may have singularities on U .
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Figure 3.1: The restrictions caused by the apex (left) and the base circle (right). These cases

are not available by real wheelsets due to the flanges, but conditions of them mean a sufficient

condition to exclude some problematic parts of the phase plane explicitly.

Therefore the system of X can be written as

ψ̇ = X1(ψ, ϑ)

ϑ̇ = X2(ψ, ϑ)
(3.1.4)

which a set of two first-order autonomous differential equations.

The system (3.1.4) has a trivial fixed point at the origin. If this is substituted

into Y , we get the following solution:

x = x0 + vt ϕ = ϕ0 +
v

dh(k − 1 + l)
t ψ ≡ 0 ϑ ≡ 0 (3.1.5)

This is called a stationary solution of Y , which refers to the natural motion of the

wheelset, the hunting caused by ψ and ϑ is not present. Thus the investigation of

the stationary motion (3.1.5) of Y can be performed by examining the fixed point

of X in the origin, which is done in the following subsections.

3.1.1 Physical restrictions of the bicone

During the derivation of the equation of motion we have found a strict condition

in (2.3.15) which corresponds to the possibility of the tangent constraint, but we

did not take into consideration the permitted range of the surface parameters of

the contact points. These are determined by (2.2.21), (2.2.24) and (2.3.13). Inves-

tigation of these conditions helps to find and analyse only the physically relevant

areas of U .

Practically we find restrictions only for χl and χr, which is caused by the finite

height of the bicone. The contact points can pass neither through the apex of the

cone, nor through the base circle of the bicone (condition (2.3.13)). Let us call

these properties apex effect and base circle effect. The explanation can be seen in

Figure 3.1.
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0 π
4−π

4
ψ

−π
2

π
2

0

ϑ

arctan 1
h

Figure 3.2: Restriction curves of the apex effect, h = 0.5, k = 1.36, l = 0.1. The vertical straight

lines correspond to the requirement of non-negative expression under the square root in (3.1.6),

which coincides with (2.3.15).

The apex effect is ensured by first row of (2.2.24). If χl and χr expressed from

(2.3.30) and (2.3.31) are substituted into that we get:

± sinϑ cos2 ψ
√

1− h2 tan2 ψ + kh cos2 ψ − h(cosϑ cosψ − l) > 0 (3.1.6)

The boundary curves in explicit form is:

ϑ(ψ) = ± arccos
h(k cos2 ψ + l)

cos2 ψ
√
1 + h2

± arccos
h

cosψ
√
1 + h2

(3.1.7)

These typical curves on the phase plane can be observed in figure 3.2, the effect of

the parameters on the curves and the allowed regions can be seen in figure 3.3.

The base circle effect is ensured by restrictions in (2.3.13). Substituting them

into (2.3.30) and (2.3.31) we obtain:

± sinϑ cos2 ψ
√

1− h2 tan2 ψ + kh3 sin2 ψ − h(cosϑ cosψ − l) < 0 (3.1.8)

The boundary curves explicitly:

ϑ(ψ) = ± arccos
h(kh2 sin2 ψ + l)

cos2 ψ
√
1 + h2

± arccos
h

cosψ
√
1 + h2

(3.1.9)

These curves can be seen in Figure 3.4, and the parametric dependence in Figure

3.5. For determining the allowed region, the intersect of gray areas of Figures 3.3

and 3.5 can be considered.
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√
1+h2

h

h√
1+h2

1

√
1+h2

h
1

l

k

Figure 3.3: Regions allowed by the apex effect - dependence on parameters. The continuous

thick lines denote the boundary between the topologically different regions. The small diagrams

have the small meaning as Figure 3.2. The dotted line with the gray stripe denote the region of

physically relevant region determined by the positiveness of 1− l and k−1+ l according to Figure

2.10

0 π
4−π

4
ψ

−π
2

π
2

0

ϑ

Figure 3.4: Restriction curves of the base circle effect, h = 0.5, k = 1.36, l = 0.1. The vertical

straight lines are the same as in Figure 3.2.
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√
1+h2

h

√
1+h2

h

h√
1+h2

1

1

l

k

Figure 3.5: Regions allowed by the base circle effect - dependence on parameters. Notations are

the same as in Figure 3.3.

3.1.2 Singularities

Now the singularities of (3.1.4) are determined, where the vector field is not defined.

The X2 function is singular on the curve

1− h2 tan2 ψ = 0 (3.1.10)

On this boundary X1 is generally finite, therefore trajectories approaching this

curve tend to the vertical direction on the phase plane.

Another singularity occurs when the denominator of the fraction of S(ψ, ϑ) in

(2.3.63) is zero, that is:

cosϑ cosψ − l

cos2 ψ

(

k − cosϑ cosψ − l

cos2 ψ

)

h2 + sin2 ϑ(1 − h2 tan2 ψ) = 0 (3.1.11)

This can be reformulated to a second-order equation, and cosϑ can be expressed

explicitly, but the formula is complicated.

Conditions of singularities fulfil only for relatively large ψ and ϑ angles, which

are outside of our interest. It can be showed already from the implicit form of

the curves, that (3.1.10) and (3.1.11) does not intersect the area determined by

(3.1.6) and (3.1.8). The singular curves can be seen in Figures 3.6 and 3.7 for some

example values.
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0 π
4−π

4
ψ

−π
2

π
2

0

ϑ

Figure 3.6: Singular curves on the phase plane, h = 0.5, k = 1.36, l = 0.1, the dashed line denotes

area denotes the allowed region due to physical restrictions. In this case the singular curve goes

through the edge of the boundary of this area.

0 π
4−π
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ψ

−π
2

π
2

0

ϑ

Figure 3.7: Singular curves on the phase plane, h = 0.5, k = 1.36, l = 0.2, the dashed line denotes

area denotes the allowed region due to physical restrictions. In this case the singular curves are

not in connection with this area.
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3.1.3 Linear stability of the origin

Let us determine the fixed points of the system (3.1.4). First the nullclines are

calculated, that is, the curves where X1 or X2 are zero:

X1(ψ, ϑ) = 0 ⇔
sinϑ = 0

or

cosψ = 0

(3.1.12)

X2(ψ, ϑ) = 0 ⇔

sinψ = 0

or

cosψ = 0

or

k − cosϑ cosψ−l
cos2 ψ

= 0

(3.1.13)

As ψ ∈ (−π/2, π/2), the cosψ = 0 condition could not be fulfilled. From these the

candidates for being fixed points are:

(ψ1, ϑ1) = (0, 0)

(ψ2, ϑ2) = (0,−π)

(ψ3,4, ϑ3,4) =

(

arccos
1±

√
1− 4kl

2k
, 0

)

(3.1.14)

Points (ψ3, ϑ3) and (ψ4, ϑ4) are on the singularity curve (3.1.11), and calculating

the limits they prove singular points. Point (−π, 0) is surely out of the range of

both (3.1.6) and (3.1.8), which is physically meaningless. Therefore the origin is

the only fixed point, which corresponds to the physical reality.

As we found in (3.1.5), (0, 0) corresponds to the natural motion of the wheelset.

The linear approximation of the system field around the origin is:

ψ̇ = a10ψ + a01ϑ+O2(ψ, ϑ)

ϑ̇ = b10ψ + b01ϑ+O2(ψ, ϑ),
(3.1.15)

where the coefficients are:

a10 := ∂1X1(0, 0) = 0

a01 := ∂2X1(0, 0) =
−V

h2(1− l)(k − 1 + l)

b10 := ∂1X2(0, 0) =
V

1− l

b01 := ∂2X2(0, 0) = 0

(3.1.16)
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Therefore the linear approximation in matrix form is:
[

ψ̇

ϑ̇

]

=

[

0 −V
h2(1−l)(k−1+l)

V
1−l 0

][

ψ

ϑ

]

+O2(ψ, ϑ) (3.1.17)

The characteristic equation of the matrix is:

λ2 +
V 2

h2(1− l)2(k − 1 + l)
= 0 (3.1.18)

It can be seen from Figure 2.10, that in the physically relevant case k−1+ l > 0

and 1−l > 0. Then the eigenvalues of the system are ±iω, where i is the imaginary

unit, and

ω :=
√

a01b10 =
V

h(1− l)
√
k − 1 + l

(3.1.19)

Or, with the original parameters:

ω =
v

d− rh√
1+h2

√

√

√

√

hd

R− h
(

d− rh√
1+h2

) (3.1.20)

If we introduce the effective half-distance

d̂ := d− rh√
1 + h2

(3.1.21)

and the effective radius

R̂ := R− h

(

d− rh√
1 + h2

)

, (3.1.22)

we get

ω =
v

d̂

√

hd

R̂
, (3.1.23)

which is the same as Lorant’s result in (1.2.3).

The origin of the linear system is a centre, but this is not surely true for the

nonlinear equation. Hence nonlinear techniques are needed for determining the

orbit structure around the origin.

3.1.4 Nonlinear stability of the origin

The Hopf Bifurcation Theorem can be used to determine the type of a fixed point,

which is a centre in the linear approximation of the system. Let us continue the

Taylor expansion of (3.1.15) up to the third-order terms:

ψ̇ = a01ϑ+ a03ϑ
3 + a21ϑψ

2 +O4(ψ, ϑ)

ϑ̇ = b10ψ + b30ψ
3 + b12ψϑ

2 +O4(ψ, ϑ),
(3.1.24)
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where

aij :=
1

i!j!
∂i1∂

j
2X1(0, 0) (3.1.25)

bij :=
1

i!j!
∂i1∂

j
2X2(0, 0) (3.1.26)

and the coefficients equal to zero are omitted from (3.1.24).

With an appropriate linear transformation the first-order normal form can be

calculated. Let
[

ψ̃

ϑ̃

]

:=





√

ω
−a01

0

0
√

ω
b10





[

ψ

ϑ

]

(3.1.27)

Applying the transformation, the linear normal form of 3.1.24 is obtained:

[ ˙̃ψ
˙̃ϑ

]

=

[

0 −ω
ω 0

][

ψ̃

ϑ̃

]

+

[

ã03ϑ̃
3 + ã21ϑ̃ψ̃

2 +O4(ψ̃, ϑ̃)

b̃30ψ̃
3 + b̃12ψ̃ϑ̃

2 +O4(ψ̃, ϑ̃)

]

(3.1.28)

The new coefficients with the tilde can be calculated from the transformation. Let

us calculate the Poincare-Lyapunov constant δ (according to the book of Wiggins

[18], p. 385):

δ =
1

16
(ã30 + ã12 + b̃21 + b̃03)+

+
1

16ω

(

ã11(ã20 + ã02)− b̃11(b̃20 + b̃02)− ã20b̃20 + ã02b̃02

)

(3.1.29)

All coefficients which are needed for the formula are missing from (3.1.28), therefore

the Poincare-Lyapunov constant is identically zero. If it were positive or negative,

the fixed point would be found to be an unstable or stable focus, respectively. But

in the case of δ = 0 the Hopf Bifurcation Theorem cannot help to determine the

stability, the fixed point can be either a centre or a focus.

However the answer can be obtained by exploiting the symmetries of X. The

vector field X on a set U is called (time-)reverse symmetric with respect to an

invertible mapping G of U onto itself, if

(DG)X +X ◦G = 0 (3.1.30)

where DG is the Jacobian tensor of G, and ◦ refers composition of functions. This

definition means that if we apply the transformation G on the phase space, then

the orbits of the system of X remain the same, only the direction of the time is

reversed. If G is a time-reverse symmetry of the system, then it preserves the

curves of the trajectories.
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We can found two simple, linear symmetries for our system (3.1.4), denoted by

G = (G1, G2) and F = (F1, F2):

G1(ψ, ϑ) := ψ

G2(ψ, ϑ) := −ϑ
(3.1.31)

This transformation G performs a mirroring respect to the axis ψ. This symmetry

can be checked if we substitute it to the definition (3.1.30):

X1(ψ, ϑ) +X1(ψ,−ϑ) = 0

−X2(ψ, ϑ) +X2(ψ,−ϑ) = 0
(3.1.32)

Therefore X1 must be an odd, and X2 to be an even function of ϑ, which is true.

The other, similar reverse-symmetric transformation is:

F1(ψ, ϑ) := −ψ
F2(ψ, ϑ) := ϑ

(3.1.33)

This means a mirroring to the ϑ = 0 axis. Substituting it back to (3.1.30):

−X1(ψ, ϑ) +X1(−ψ, ϑ) = 0

X2(ψ, ϑ) +X2(−ψ, ϑ) = 0
(3.1.34)

The meaning of this condition is that X1 is even, and X2 is an odd function of ψ,

which can be checked from the formulae of these functions.

These symmetries cause that the trajectories on the phase space are symmetric

with respect to the two axes of the coordinate system which is true also for the orbits

around the origin. It can be our strong corollary, that in the close neighbourhood

of a focus, the orbits cannot be symmetric to the axes, therefore the origin should

be a centre.

Although this statement is not obvious, it can be proved. We can state (book

of Strogatz [16], p. 164), that if only one of the mirroring time-reverse symmetries

G and F is present in the system, and the origin of the linear system is a centre,

then the origin of the nonlinear system is also a centre.

In other words, there is a neighbourhood around the origin of (3.1.4), within

which all trajectories are closed. Therefore the origin of X is a centre,

which is neutrally stable.

It is an interesting question if the system in (3.1.4) is conservative or not, or in

other words, if there is a function of the state variables which is preserved along
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the trajectories. It is known from basic examples, that a time-reverse symmetric

system can be both conservative and non-conservative.

The question of conservativity is not examined here, but in some sense we can

say, that the system is locally conservative around the origin. That is, an energy

function can be constructed by using the closed trajectories as level sets, which is

constant along the orbits.

This conservative region can be extended surely as far as the trajectories are

closed. The investigation of the extent and the boundary of this area is not exam-

ined in this project, it can be a further task.

3.2 Transformation to a second-order equation

Every second-order differential equation can be transformed to a two-dimensional

system of first-order equations, which is done regularly during investigation of

the one degree-of-freedom mechanical systems. Our situation is the opposite, we

already have the system in (3.1.4), but after finding a second-order equation equiv-

alent to the system, we can understand the equation better by exploiting the meth-

ods and formalisms of mechanics.

It seems to be hopeless to do it analytically with our system (3.1.4). However

after an appropriate change of the time variable, a fully nonlinear second-order

equation can be calculated. After that a local, approximate equation is presented,

for making quantitative analysis easier.

3.2.1 Exact transformation using the new time variable

Let us first extend the system (3.1.4) with a third state variable, τ . Let us suppose,

that τ is a cyclic coordinate, therefore it does not have an effect on the dynamics any

of the variables. Thus X1 and X2 functions are preserved, and the third component

of the extended vector field is defined, denoted by X3:

τ̇ = X3(ψ, ϑ) := S(ψ, ϑ) (3.2.1)

From ψ, ϑ, τ and X1, X2, X3 a three dimensional dynamical system is composed,

which provides the same solutions for ψ and ϑ as (3.1.4).

Now let us differentiate ψ and ϑ with respect to τ , using the chain rule:

dψ

dτ
=
ψ̇

τ̇
=
X1

X3
= − sinϑ (3.2.2)
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dϑ

dτ
=
ϑ̇

τ̇
=
X1

X3

=
h2 sinψ

1− h2 tan2 ψ

(

k − cosϑ cosψ − l

cos2 ψ

)

(3.2.3)

This two equations build a new dynamical system, and it can be solved for the

functions ϑ̃(τ) and ψ̃(τ). The tilde sign is omitted in the following calculations, if

it is unnecessary, but the derivative respect to τ is denoted by accents instead of

dots.

Therefore the following system of equations are obtained:

ψ′ = Z1(ϑ, ψ)

ϑ′ = Z2(ϑ, ψ)
(3.2.4)

where

Z1(ψ, ϑ) := − sin ϑ (3.2.5)

Z2(ψ, ϑ) :=
h2 sinψ

1− h2 tan2 ψ

(

k − cos ϑ cosψ − l

cos2 ψ

)

(3.2.6)

In fact, a transformation on the independent time variable has been done from t

to τ , but this transformation is defined by the dependent variables ψ and ϑ. This

leads a complication when one tries to calculate for example the ϑ(t) function from

ϑ(τ) obtained from (3.2.4). However the tangent of the trajectories dϑ/dψ remain

the same, thus the trajectories can be examined using (3.2.4) instead of (3.1.4).

With (3.2.4) a much simpler form of the equations are obtained, from which

a second-order equation can be created for ψ. From (3.2.5) the sine of ϑ can be

expressed:

sin ϑ = −ψ′ (3.2.7)

The cosine of ϑ:

cosϑ =
√

1− ψ′2 (3.2.8)

Differentiating (3.2.7):

ψ′′ = − cosϑϑ′ (3.2.9)

The expression for ϑ′ can be obtained from (3.2.6), and after eliminating all ϑ-

dependent terms by using (3.2.7)-(3.2.8) the second-order equation is obtained:

ψ′′ +
√

1− ψ′2
h2 sinψ

1− h2 tan2 ψ

(

k −
√

1− ψ′2 cosψ − l

cos2 ψ

)

= 0 (3.2.10)

Solving that for ψ̃(τ) and calculating ϑ̃(τ) = − arcsin ψ̃′(τ) the same trajectories

can be obtained as for (3.1.4). However the complicated singularity of S(ψ, ϑ) is

eliminated in (3.2.4) and (3.2.10). Therefore the phase portrait can be illustrated

easier using a numerical simulation. (Figures 3.8-3.9).
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Figure 3.8: Phase portrait of the system by numerical simulation, h = 0.5, k = 1.36, l = 0.1. It is

made by fourth-order Runge-Kutta method used on (3.2.4). In the case of (3.2.4), there are two

saddle points on the ψ axis, which are the same as in the third row of (3.1.14). Although these

saddles are eliminated in the original equation (3.1.4) by the singularities, the orbit structure

remains the same.
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−π
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Figure 3.9: Phase portrait of the system by numerical simulation, h = 0.5, k = 1.36, l = 0.2.

Increasing the value of l in Figure 3.8, the saddle points reach the singular lines, and the orbit

stucture changes. The bifurcation points can be calculated from the third row of (3.1.14).
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3.2.2 Approximation with the original time variable

If quantitative information is also needed about movement on the trajectories, the

original time variable should be used. The method used for (3.2.4) leads so compli-

cated formulae if we apply it for (3.1.4), that no analytical results can be obtained.

Therefore we derive a nonlinear approximation of the second-order equation.

The first equation of (3.1.4) means an (ψ, ϑ) → ψ̇ mapping. The inverse func-

tion (ψ, ψ̇) → ϑ should be calculated to eliminate ϑ. This process can be done up

to the third-order terms applying implicit differentiation on the first equation of

(3.1.24):

ϑ =
1

a01
ψ̇ − a03

a401
ψ̇3 − a21

a201
ψ̇ψ2 +O5(ψ, ψ̇) (3.2.11)

Let us now differentiate the first equation of (3.1.24) with respect to time:

ψ̈ = a01ϑ̇+ 3a03ϑ
2ϑ̇+ a21ϑ̇ψ

2 + 2a21ϑψψ̇ +O5(ϑ, ϑ̇, ψ, ψ̇) (3.2.12)

Let us substitute the second equation of (3.1.24) into this:

ψ̈ = a01b10ψ + a01b30ψ
3 + a01b12ψϑ

2 + 3a03b10ϑ
2ψ + a21b10ψ

3+

+ 2a21ϑψψ̇ +O5(ϑ, ψ, ψ̇) (3.2.13)

The function from (3.2.11) is also substituted:

ψ̈ = a01b10ψ + a01b30ψ
3 +

b12
a01

ψψ̇2 +
3a03b10
a201

ψψ̇2 + a21b10ψ
3+

+
2a21
a01

ψψ̇2 +O5(ψ, ψ̇) (3.2.14)

After collecting the terms of the variables:

ψ̈ = a01b10ψ + (a01b30 + a21b10)ψ
3 +

(

b12
a01

+
3a03b10
a201

+
2a21
a01

)

ψψ̇2 +O5(ψ, ψ̇)

(3.2.15)

New constants can be introduced:

ω2 := −a01b10
µ := − (a01b30 + a21b10)

ν := −
(

b12
a01

+
3a03b10
a201

+
2a21
a01

)

(3.2.16)

The notation ω forecasts, that it is equal to (3.1.19). With these, (3.2.15) becomes:

ψ̈ + ω2ψ + µψ3 + νψψ̇2 +O5(ψ, ψ̇) = 0 (3.2.17)

which can be used as a third-order approximation of the second-order equation for

ψ.
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3.2.3 Approximation with the new time variable

A third-order equation similar to (3.2.17) can be obtained from the equation

(3.2.10). Let:

W (ψ, ψ′) :=
√

1− ψ′2
h2 sinψ

1− h2 tan2 ψ

(

k −
√

1− ψ′2 cosψ − l

cos2 ψ

)

(3.2.18)

With this, (3.2.10) becomes

ψ′′ +W (ψ, ψ′) = 0 (3.2.19)

Calculating the Taylor expansion respect to the variables ψ and ψ′:

ψ′′ + ω̄2ψ + µ̄ψ3 + ν̄ψψ′2 +O5(ψ, ψ′) = 0 (3.2.20)

where

ω̄2 := ∂1W (0, 0)

µ̄ := ∂31W (0, 0)

ν̄ := ∂1∂
2
2W (0, 0)

(3.2.21)

Equation (3.2.20) can be examined in the same way as (3.2.17), but the con-

stants of them are obviously not the same. The connection between them can be

derived through the transformation (3.2.2). The derivatives with respect to τ can

be expressed with time derivatives according to the definition:

ψ′′ =
ψ̈

τ̇ 2

ψ′ =
ψ̇

τ̇

(3.2.22)

Substituting them back to (3.2.20):

ψ̈

τ̇ 2
+ ω̄2ψ + µ̄ψ3 + ν̄ψ

(

ψ̇

τ̇

)2

+O5

(

ψ,
ψ̇

τ̇

)

= 0 (3.2.23)

Multiplying by τ̇ 2:

ψ̈ + ω̄2ψτ̇ 2 + µ̄ψ3τ̇ 2 + ν̄ψψ̇2 + τ̇ 2O5

(

ψ,
ψ̇

τ̇

)

= 0 (3.2.24)

Let us expand τ̇ 2 into Taylor series:

τ̇ 2 = X2
3 (ψ, ϑ) = c00 + c20ψ

2 + c02ϑ
2 +O2(ψ2, ϑ2), (3.2.25)
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where

c00 := X2
3 (0, 0)

c20 := ∂21X
2
3 (0, 0)

c02 := ∂22X
2
3 (0, 0)

(3.2.26)

The term ϑ2 can be expressed using (3.2.7):

ϑ2 = ψ′2 +O2(ψ′2) =
ψ̇2

τ̇ 2
+O2

(

ψ̇2

τ̇ 2

)

(3.2.27)

After implicit differentiation and substitution to (3.2.25):

τ̇ 2 = c00 + c20ψ
2 +

c02
c00

ψ̇2 +O2(ψ2, ψ̇2) (3.2.28)

Finally after substituting to (3.2.24) we get:

ψ̈ +
(

ω̄2c00
)

ψ +
(

µ̄c00 + ω̄2c20
)

ψ3 +

(

ν̄ + ω̄2 c02
c00

)

ψψ̇2 +O5(ψ, ψ̇) = 0 (3.2.29)

Comparing to (3.2.17) the constants are:

ω2 = ω̄2c00

µ = µ̄c00 + ω̄2c02

ν = ν̄ + ω̄2 c20
c00

(3.2.30)

This means an alternative method to (3.2.16) to determine ω2, µ and ν.

3.2.4 Calculating the parameters of the approximation

Equation (3.2.17) can be obtained directly or through (3.2.20). It is useful to

produce the constants using the physical parameters of the mechanical system.

The linear coefficient is known from (3.1.19):

ω2 =
v2hd

(

d− rh√
1+h2

)2 (

R− h
(

d− rh√
1+h2

))

(3.2.31)

Similar, but much longer expressions can be calculated for µ and ν using (3.2.16)

or (3.2.30), which are not presented here. But if h is small, these expressions can

be expanded to Taylor series respect to h. With the original parameters:

µ

ω2
= −7

6
− 4rR+ 2d2

3Rd
h+O2(h) (3.2.32)

ν = −3 +
3R2 − 10rR− 2d2

2Rd
h+O2(h) (3.2.33)

For small h, the leading approximations µ ≈ −7/6 and ν ≈ −3 can be used

effectively.
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3.3 Analysis of the third-order approximation

Let us investigate the behaviour of the system around the origin. Then the fifth-

order terms in (3.2.17) can be neglected and the following approximate equation is

obtained:

ψ̈ + ω2ψ + µψ3 + νψψ̇2 = 0 (3.3.1)

In many nonlinear dynamics books a similar equation, namely the undamped

Duffing oscillator is investigated, which can be obtained from (3.3.1) substituting

ν = 0. That is probably the simplest equation which is appropriate to demonstrate

the differences between linear and nonlinear systems. However the behaviour of

(3.3.1) is examined now, focused on effect of the ν parameter.

3.3.1 Iterative method of finding an energy function

It has been obtained at Subsection 3.1.4, that the orbits around the origin consti-

tutes a nonlinear centre, and there exists an energy function in the neighbourhood

of the centre. As the symmetries of (3.1.24) are preserved in (3.3.1), thus the

existence of the energy function can be expected, at least locally. Let us try to

calculate this energy function.

For the shorter notation the terms in the equation depending on only ψ are

collected:

f(ψ) := ω2ψ + µψ3 (3.3.2)

The following derivations are true for any f(ψ) integrable functions. Using a me-

chanical analogy f(ψ) can be called a stiffness function. Substituting it back we

find:

ψ̈ + f(ψ) + νψψ̇2 = 0 (3.3.3)

Let us consider a time instance t0 and a point in the phase space denoted by

(ψ0, ψ̇0). Let ψ(t) be a solution of (3.3.1) from these initial conditions, and with

choosing another time instance t1, the point (ψ1, ψ̇1) := (ψ(t1), ψ̇(t1)) is determined.

Let us now integrate (3.3.3) with respect to ψ on the trajectory between these

two points. Through the chain rule the integration variable can be changed to time

immediately:

∫ ψ1

ψ0

(

ψ̈ + f(ψ) + νψψ̇2
)

d(ψ(t)) =

∫ t1

t0

(

ψ̈ + f(ψ) + νψψ̇2
)

ψ̇dt = 0 (3.3.4)
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Integration of the first term is straightforward, and the second term leads a

simple one-variable integral of the stiffness function:

∫ t1

t0

(

ψ̈ψ̇ + f(ψ)ψ̇ + νψψ̇3
)

dt =

[

1

2
ψ̇2

]ψ̇1

ψ̇0

+

∫ ψ1

ψ0

f(ψ)dψ +

∫ t1

t0

νψψ̇3dt (3.3.5)

However we cannot find a function depending on ψ and ψ̇, from which the third

term could be created through a total derivation. That is why the equation could be

considered non-integrable in some sense. However its integration can be performed

iteratively, using partial integration and (3.3.3) alternately. Let us integrate the

third term by parts:

∫ t1

t0

νψψ̇3dt =

[

1

2
νψ2ψ̇2

]t1

t0

−
∫ t1

t0

νψ2ψ̇ψ̈dt =

=

[

1

2
νψ2ψ̇2

]t1

t0

+

∫ t1

t0

νψ2ψ̇
(

f(ψ) + νψψ̇2
)

dt =

=

[

1

2
νψ2ψ̇2

]t1

t0

+

∫ ψ1

ψ0

(νψ2)f(ψ)dψ +

∫ t1

t0

(νψ2)νψψ̇3dt

(3.3.6)

We have to worry only with the last term. Let us apply the same procedure again:

∫ t1

t0

(νψ2)νψψ̇3dt =

=

[

1

4
(νψ2)2ψ̇2

]t1

t0

+

∫ ψ1

ψ0

1

2
(νψ2)2f(ψ)dψ +

∫ t1

t0

1

2
(νψ2)2νψψ̇3dt (3.3.7)

A regularity during these steps can be observable. It can be expressed in the

following way:

∫ t1

t0

(νψ2)k

k!
νψψ̇3dt =

=

[

1

2
ψ̇2 (νψ

2)k+1

(k + 1)!

]t1

t0

+

∫ ψ1

ψ0

(νψ2)k+1

(k + 1)!
f(ψ)dψ +

∫ t1

t0

(νψ2)k+1

(k + 1)!
νψψ̇2dt (3.3.8)

Repeating this procedure by induction we get the following result:

∫ ψ1

ψ0

(

ψ̈ + f(ψ) + νψψ̇2
)

dψ(t) =

=

[

1

2
ψ̇2

∞
∑

k=0

(νψ2)k

k!

]t1

t0

+

∫ ψ1

ψ0

f(ψ)

∞
∑

k=0

(νψ2)k

k!
dψ (3.3.9)
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The expression in the summation proves not only convergent, but a simple expo-

nential function:
∞
∑

k=0

(νψ2)k

k!
= eνψ

2

(3.3.10)

Using that we find:

∫ ψ1

ψ0

(

ψ̈ + f(ψ) + νψψ̇2
)

dψ(t) =

[

1

2
ψ̇2eνψ

2

]t1

t0

+

∫ ψ1

ψ0

f(ψ)eνψ
2

dψ (3.3.11)

Let us define the following function called potential energy :

U(ψ) :=

∫ ψ

0

f(ψ)eνψ
2

dψ (3.3.12)

Using our current f(ψ) from (3.3.2):

U(ψ) =
νω2 − µ

2ν2
(eνψ

2 − 1) + ψ2 µ

2ν
eνψ

2

(3.3.13)

The integration constant is chosen to have U(0) = 0. Similarly an other function

called kinetic energy can be defined:

T (ψ, ψ̇) :=
1

2
ψ̇2eνψ

2

(3.3.14)

Using these functions (3.3.11) can be expressed very briefly:

T (ψ1, ψ̇1) + U(ψ1) = T (ψ0, ψ̇0) + U(ψ0) (3.3.15)

Let us define the following function:

E(ψ, ψ̇) := T (ψ, ψ̇) + U(ψ) (3.3.16)

With this (3.3.15) becomes:

E(ψ1, ψ̇1) = E(ψ0, ψ̇0), (3.3.17)

that is function E has the same value at points (ψ0, ψ̇0) and (ψ1, ψ̇1). As the time

instance t1 is chosen arbitrary, the value of E is constant along the trajectory.

Therefore E is an energy function of the differential equation, which has a full

form of:

E(ψ, ψ̇) =
1

2
ψ̇2eνψ

2

+
1

2

νω2 − µ

ν2
(eνψ

2 − 1) +
1

2
ψ2µ

ν
eνψ

2

(3.3.18)

The function can be seen in Figure 3.10 for a set of parameters typical to a railway

wheelset.
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ψ̇

ψ
1

1

Figure 3.10: Graph of the energy function (3.3.18), ν = −3, µ/ω2 = −7/6. The circle and the

two crosses denote the centre and two saddle points, respectively.

This result can be checked if the total derivative of (3.3.18) is calculated:

Ė =
dE

dt
= ψ̇eνψ

2

(

ψ̈ + ω2ψ + µψ3 + νψψ̇
)

= 0 (3.3.19)

In the brackets we got the differential equation (3.3.1), thus the total derivative of E

is identically zero. Moreover, the domain of E covers the whole real plane, therefore

(3.3.18) is a global energy function of the system, and (3.3.1) is conservative.

It is interesting, that although a non-potential term νψψ̇2 is presented in the

equation, the potential and kinetic energy still can be used in the classical sense,

and the total energy of the system is obtained by summing the two, similarly as

classical conservative systems.

The kinetic energy function simplifies to the usual kinetic energy if ν = 0 is

assumed in (3.3.14)

T (ψ, ψ̇)
∣

∣

∣

ν=0
=

1

2
ψ̇2 (3.3.20)

It is not trivial that the formula of the potential energy gives back the common

result for the Duffing oscillator, as ν = 0 cannot be directly substituted to (3.3.13).

However, the limit of it letting ν → 0 can be calculated:

lim
ν→0

U(ψ) =
1

2
ω2ψ2 +

1

4
µψ4, (3.3.21)

which is the result we expected for the Duffing oscillator.

This procedure can be generalized a bit, if we assume equations in the form:

ψ̈ + f(ψ) + g(ψ)ψ̇2 = 0, (3.3.22)
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where g(ψ) can be any integrable function. In this case the energy function is:

E(ψ, ψ̇) =
1

2
ψ̇2e2

∫
g(ψ)dψ +

∫ ψ

0

f(ψ)e2
∫
g(ψ)dψdψ (3.3.23)

If we try to generalize the iteration method having terms ψ̇4 and other higher order

even powers of ψ̇, it does not work in the way presented before. One should do

several iterations embedded to each other and calculations become impracticable.

If the energy function is known, then the trajectories can be calculated as

implicit functions. Let us choose a trajectory by picking an E0 := E(ψ0, ψ̇0) value.

Then from (3.3.17):

1

2
ψ̇2eνψ

2

+
1

2

νω2 − µ

ν2
(eνψ

2 − 1) +
1

2
ψ2µ

ν
eνψ

2

= E0 (3.3.24)

From this ψ̇ can be expressed explicitly:

ψ̇ = ±
√

(

2E0 +
νω2 − µ

ν2

)

e−νψ2 − νω2 − µ

ν2
− ψ2

µ

ν
(3.3.25)

Let us denote

C := 2E0 +
νω2 − µ

ν2
(3.3.26)

Then the equation of the trajectories are:

ψ̇ = ±
√

Ce−νψ2 − νω2 − µ

ν2
− ψ2

µ

ν
(3.3.27)

Some typical trajectories can be seen in Figure 3.11, using the parameter values

from Subsection 3.2.4. Similarly to the Duffing oscillator, µ < 0 creates two saddle

points at ψ = ±
√

ω2/µ. If µ > 0, these saddle points are missing and the phase

plane is topologically equivalent to the field of a linear centre. The ν parameter

does not modify the topology of the phase plane, however it distorts the geometry

of it.

3.3.2 General method of finding an energy function

In the last subsection we have found an energy function for the equation, which is

in strong analogy with the total mechanical energy. It is obvious that if E(ψ, ψ̇) is

constant along the curves then any function of E is also constant. In this section

the objective is to determine all possible energy functions of the system, and their

connection with the (3.3.18) function. The symbols with tilde denotes the general
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Figure 3.11: Trajectories of the approximated ψ − ψ̇ phase plane, ν = −3, µ/ω2 = −7/6. The

thick lines denote the heteroclinic orbits of the saddle points.

quantities of this calculation, and plain versions of them refer to the quantities

from the previous subsection.

Let us suppose that Ẽ(ψ, ψ̇) is an energy function of (3.3.1). Then the total

derivative of Ẽ along the trajectories must be zero:

d

dt
Ẽ
(

ψ, ψ̇
)

= ∂1Ẽ
(

ψ, ψ̇
)

ψ̇ + ∂2Ẽ
(

ψ, ψ̇
)

ψ̈ = 0 (3.3.28)

Substituting ψ̈ from the differential equation (3.3.1) we get:

∂1Ẽ
(

ψ, ψ̇
)

ψ̇ − ∂2Ẽ
(

ψ, ψ̇
)

(ω2ψ + µψ3 + νψψ̇2) = 0 (3.3.29)

Let the energy function be analytic, then it can be expanded into Taylor series

around the origin. As the trajectories are symmetric respect to the time-reverse

symmetry transformations, thus the energy function has to be also symmetric to

the ψ and ψ̇ axes. This means that the Taylor series can only contain even powers

of both variables:

Ẽ(ψ, ψ̇) =

∞
∑

i,j=0

ẽijψ
2iψ̇2j , (3.3.30)

where the eij symbols are real numbers to be determined. In fact the whole Taylor

series could be used, but the other coefficient later become zero.
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Let us write up some terms from the beginning of the series:

Ẽ(ψ, ψ̇) = e00 + e10ψ
2 + e01ψ̇

2 + e20ψ
4 + e11ψ

2ψ̇2 + e02ψ̇
4 +O6(ψ, ψ̇) (3.3.31)

After performing the differentiations:

∂1Ẽ(ψ, ψ̇) = 2e10ψ + 4e20ψ
3 + 2e11ψψ̇

2 +O5(ψ, ψ̇) (3.3.32)

∂2Ẽ(ψ, ψ̇) = 2e01ψ̇ + 2e11ψ
2ψ̇ + 4e02ψ̇

3 +O5(ψ, ψ̇) (3.3.33)

Now these expressions can be substituted to (3.3.29). After performing the opera-

tions a series is obtained, which can be only identically zero if the coefficients of all

monomials are zero. It can be checked that only terms being odd in both ψ and ψ̇

are present.

The only second-order term we get an equation:

ψψ̇ : 2e10 − 2ω2e01 = 0 (3.3.34)

It can be written into matrix form, which seems not very expedient but helps for

recognizing the regularities:

[2][e10] = [2ω2][e01] (3.3.35)

From that the coefficient e10 can be expressed with e01, and the energy function

can be written into the form:

Ẽ(ψ, ψ̇) = e00 +
(

ω2ψ2 + ψ̇2
)

e01 +O4(ψ, ψ̇) (3.3.36)

Let us continue with the fourth-order terms, from which two equations can be

obtained:

ψ3ψ̇ : 4e20 − 2e01µ− 2e11ω
2 = 0

ψψ̇3 : 2e11 − 2e01ν − 4e02ω
2 = 0

(3.3.37)

They can be rewritten to matrix form:
[

4 −2ω2

0 2

][

e20

e11

]

=

[

2µ 0

2ν 4ω2

][

e01

e02

]

(3.3.38)

From this the coefficients e20 and e11 can be determined using e01 and e02. With

them the energy function can be written as:

Ẽ(ψ, ψ̇) = e00 +

(

ω2ψ2 + ψ̇2 + νψ2ψ̇2 +
1

2
(µ+ νω2)ψ4

)

e01+

+
(

ω4ψ4 + 2ω2ψ2ψ̇2 + ψ̇4
)

e02 +O6(ψ, ψ̇)

(3.3.39)
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This procedure can be continued with the higher-order terms. It can be recog-

nised that each step if we consider the 2k−th order coefficients from (3.3.29), then

k equations can be obtained for the k + 1 2k−th order coefficients of Ẽ. It can be

also proven that these equations are independent, thus in each step all coefficients

except one can be determined. If we follow the method above, then for the next j

the e0j coefficients can be chosen freely, and the other eij numbers are determined

by the equations.

With having eij coefficients we have the energy function only if the power series

is convergent. Let us assume it now, and examine the convergence later. Let us

define the generator function of the energy function:

G̃(y) := Ẽ(0,
√

2y) =

∞
∑

j=0

ẽ0j(2y)
j = e00 + 2e01y + 4e02y

2 +O3(y) (3.3.40)

It can be recognised, that the right-hand side of the equation is a Taylor series of

a general analytic function. Therefore one can choose any generator function G̃,

and from that an energy function can be determined to fulfil G̃
(

ψ̇2

2

)

= Ẽ(0, ψ̇), if

the series is convergent. The resulting Ẽ can be written as:

Ẽ(ψ, ψ̇) = e00 + ε1(ψ, ψ̇)e01 + ε2(ψ, ψ̇)e02 + · · · = e00 +
∞
∑

j=1

εj(ψ, ψ̇)e0j (3.3.41)

Here the εj(ψ, ψ̇) symbols are power series, and can be considered to be functions

only if they are convergent at least on a finite region.

For proving that the energy function from the previous subsection can be useful.

Let us determine the generator function of (3.3.18):

G(y) := E(0,
√

2y) = y (3.3.42)

Comparing it with (3.3.40):

e01 =
1

2

e0j = 0 if j 6= 1
(3.3.43)

Substituting it to (3.3.41):

E(ψ, ψ̇) =
1

2
ε1(ψ, ψ̇) (3.3.44)

From that:

ε1(ψ, ψ̇) = 2E(ψ, ψ̇), (3.3.45)
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thus ε1(ψ, ψ̇) has to be convergent and it is proportional to E. This fact can be

illustrated by expanding (3.3.18) to Taylor series:

E(ψ, ψ̇) =
1

2

(

ω2ψ2 + y2 + νψ2y2 +
1

2
(µ+ νω2)

)

+O6(ψ, ψ̇) (3.3.46)

Comparing with (3.3.39) the identity up to the fourth order terms can be checked.

This method can be applied to all εk(ψ, ψ̇) functions having

Gk(y) := Ek(0,
√

2y) (3.3.47)

From that, similarly as above we find:

εk(ψ, ψ̇) = (2E)k(ψ, ψ̇) (3.3.48)

With this, (3.3.41) becomes:

Ẽ(ψ, ψ̇) = e00 +
∞
∑

j=1

e0j(2E)
j(ψ, ψ̇) = (G̃ ◦ E)(ψ, ψ̇) (3.3.49)

Therefore any energy function of equation (3.3.1) can be written in the form:

Ẽ(ψ, ψ̇) = (G̃ ◦ E)(ψ, ψ̇), (3.3.50)

where E(ψ, ψ̇) is the function determined in (3.3.18) and G̃ is an arbitrary analytic

function.

From this result the new information is clearly not the trivial fact that a function

of the conserved quantity E is also conserved, but the fact that all conserved

quantity is the function of E. Moreover, the iterative method in the previous

subsection produces the simplest relevant energy function provided by the general

method.

3.3.3 Hamiltonian and Lagrangian formulation

If only the second-order differential equation is known, usually is not easy to re-

construct the Hamiltonian and Lagrangian functions from which the equation can

be derived. But as our system in (3.3.1) has proved conservative and the energy

function is derived in (3.3.18), this calculations can be done systematically.

Let us assume, that the Hamiltonian can be written in the form H(ψ, p), where

p is the general momentum corresponding to ψ. The assumption that the explicit

time-dependence is not present in H , could be obtained using Noether’s Theorem,
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but it is also reasonable from the analogy with one degree-of-freedom conservative

mechanical systems.

The Hamiltonian equations generated by H(ψ, p) are:

ψ̇ = ∂2H(ψ, p)

ṗ = −∂1H(ψ, p)
(3.3.51)

We can consider this system equivalent to equation (3.3.18), if performing an ap-

propriate p(ψ, ψ̇) substitution, the two systems give the same solutions for ψ.

It can be checked using the Hamilton equations, that the total derivative of H

is zero:

Ḣ = ψ̇∂1H + ṗ∂2H = −ψ̇ṗ+ ṗψ̇ = 0, (3.3.52)

that is H is a conserved quantity. It is known that every conserved quantity has

to be in the form (3.3.50), thus

H ◦ p = Ẽ = G̃ ◦ E (3.3.53)

for any ψ, ψ̇. Let us differentiate both sides of (3.3.53) partially respect to ψ and

ψ̇:

∂1H ◦ p+ (∂2H ◦ p)∂1p = (∂G̃ ◦ E)∂1E
(∂2H ◦ p)∂2p = (∂G̃ ◦ E)∂2E

(3.3.54)

Let us substitute the derivatives of H from (3.3.51):

−ṗ + ψ̇∂1p = (∂G̃ ◦ E)∂1E
ψ̇∂2p = (∂G̃ ◦ E)∂2E

(3.3.55)

The total derivative of p is:

ṗ = ψ̇∂1p+ ψ̈∂2p (3.3.56)

Substituting it to (3.3.55):

−ψ̈∂2p = (∂G̃ ◦ E)∂1E
ψ̇∂2p = (∂G̃ ◦ E)∂2E

(3.3.57)

Calculating the second equation of (3.3.57):

∂2p =
(∂G̃ ◦ E)∂2E

ψ̇
(3.3.58)

63



CHAPTER 3. ANALYSIS OF THE EQUATION OF MOTION

Substituting it back to the first equation of (3.3.57):

ψ̇(∂G̃ ◦ E)∂1E + ψ̈(∂G̃ ◦ E)∂2E = 0 (3.3.59)

(∂G̃ ◦ E)Ė = 0 (3.3.60)

The last equality stands identically because E is an energy function.

The conclusion is that the only restriction to p is from (3.3.58):

∂2p =
(∂G̃ ◦ E)ψ̇eνψ2

ψ̇
(3.3.61)

Thus the possible p functions are:

p(ψ, ψ̇) =

∫

(∂G̃ ◦ E)ψ̇eνψ2

ψ̇
dψ̇ + h(ψ), (3.3.62)

where h is an arbitrary function. We can choose the generator function G̃ and

h freely, but the simplest case is preferred, when h(ψ) = 0 and G̃ is the identity

mapping. Then:

p(ψ, ψ̇) = ψ̇eνψ
2

(3.3.63)

Choosing G̃ identity makes (3.3.53):

H ◦ p = E (3.3.64)

Therefore the inverse of p is needed to determine the Hamiltonian:

ψ̇ = p(ψ, ψ̇)e−νψ
2

(3.3.65)

Finally, the Hamiltonian is:

H(ψ, p) = E(ψ, ψ̇)
∣

∣

∣

ψ̇=pe−νψ2
(3.3.66)

After substitution we get:

H(ψ, p) =
1

2
p2e−νψ

2

+
1

2

νω2 − µ

ν2
(eνψ

2 − 1) +
1

2
ψ2 µ

2ν
eνψ

2

(3.3.67)

From that the Hamiltonian equations are:

ṗ = νψp2e−νψ
2 − ω2ψeνψ

2 − µψ3eνψ
2

ψ̇ = pe−νψ
2

(3.3.68)
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Having the Hamiltonian it becomes straightforward to calculate the Lagrangian

by definition:

L(ψ, ψ̇) := p(ψ, ψ̇)ψ̇ −H(ψ, p(ψ, ψ̇)) = p(ψ, ψ̇)ψ̇ −E(ψ, ψ̇) (3.3.69)

L(ψ, ψ̇) =
1

2
ψ̇2eνψ

2 − 1

2

νω2 − µ

ν2
(eνψ

2 − 1)− 1

2
ψ2 µ

2ν
eνψ

2

(3.3.70)

From that the Lagrange equations can be used:

d

dt
∂2L(ψ, ψ̇)− ∂1L(ψ, ψ̇) = 0, (3.3.71)

and the equation we obtain is:

eνψ
2

(

ψ̈ + ω2ψ + µψ3 + νψψ̇
)

= 0, (3.3.72)

which is equivalent to our differential equation (3.3.1).

It is interesting, that the Lagrange function can be calculated as the difference

of the kinetic and potential energy defined in the last subsection:

L(ψ, ψ̇) = T (ψ, ψ̇)− U(ψ) (3.3.73)

This fact arises from the analogy to simple mechanical systems. The connection

between the general momentum p and the kinetic energy T is also the same as in

mechanics:

T (ψ, ψ̇) =
1

2
p(ψ, ψ̇)ψ̇ (3.3.74)

3.3.4 Approximate solution around the origin

In (3.3.27) the trajectories has been determined, but we do not know much about

the solution of (3.3.1) along the time. The exact analytical solution seems to be a

dream, because it does not exist already for the equation for the Duffing oscillator.

But there are possibilities to include the effect of the nonlinear terms of µ and ν

into approximate solutions.

One well-known method is called the small-parameter perturbation method

which was developed first by Poincare. The method starts from the linear equa-

tion and the nonlinear solution is created through a series of functions using the

nonlinear parameters for a Taylor expansion. The method is used for the Duffing

oscillator in the book of Malkin [14], now the same formulation is applied for (3.3.1).

The main difference comes from the two-variable expansion and the handling of

the ψ̇ term.
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It is derived in Subsection 3.1.4, that there is a neighbourhood around the

origin where all trajectories are closed. From (3.3.27) this range could be calculated

explicitly, but this is not very important now. If an orbit is closed and contains

the origin, it must intersect both axes. Therefore one can investigate the solution

of the following initial condition problem without the loss of generality:

ψ̈ + ω2ψ + µψ3 + νψψ̇2 = 0

ψ(0) = A

ψ̇(0) = 0

(3.3.75)

A is a positive real number and can be called to the amplitude of the solution.

It is useful to rescale the variable with A and the time with ω:

y(t) :=
ψ(t/ω)

A
(3.3.76)

Two new parameters are also introduced:

λ1 :=
A2µ

ω2
(3.3.77)

λ2 := A2ν (3.3.78)

With this substitutions (3.3.75) becomes:

ÿ + y + λ1y
3 + λ2yẏ

2 = 0

y(0) = 1

ẏ(0) = 0

(3.3.79)

Let us suppose that with this initial condition the curve of the solution is in

the periodic region. Let T be the time period of the solution, that is:

y(t+ T ) = y(t) (3.3.80)

Then the angular frequency of the solution can be calculated:

β :=
2π

T
(3.3.81)

This quantity depends on the parameters λ1 and λ2. Let us suppose that the square

of β can be written as a Taylor series of these parameters:

β2(λ1, λ2) =

∞
∑

i,j=0

gijλ
i
1λ

j
2, (3.3.82)
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where gij mean real coefficients. The expansion is done around λ1 = λ2 = 0,that is

why they are called the small parameters. Let us note that not µ or ν themselves

are considered to be small, but their product with the square of the amplitude A

of the solution. If we check the simplest case, λ1 = λ2 = 0, from the solution of

the linear equation we get:

β2(0, 0) = g00 = 1 (3.3.83)

The main idea of Poincare’s method to expand the solution y(t) to a Taylor

series of functions using again the small parameters λ1 and λ2:

y(t) =

∞
∑

i,j=0

yij(t)λ
i
1λ

j
2 (3.3.84)

The functions yij are supposed to be all T -periodic:

yij(t+ T ) = yij(t) (3.3.85)

From the point of view of the initial conditions, the leading term y00 is consid-

ered to be different from the other ones. The leading term has to fulfil the initial

conditions of (3.3.79).

y00(0) = 1

ẏ00(0) = 0
(3.3.86)

However the other yij 6= y00 terms all have homogeneous initial conditions:

yij(0) = 0

ẏij(0) = 0
(3.3.87)

This is a usual method used at perturbation calculations, and makes any finite

slice of the function series exactly compatible to the initial conditions. Moreover

one have not to worry about the convergence of the functions at the initial time

instance. The yij terms are considered to be corrections superposed to the leading

approximation y00. It is very important to see, that y00 is not the solution of the

linear equation, because it has an angular frequency β but not 1. Although β is

not known, the terms of the series of β and y(t) are determined simultaneously

during the calculations.

Let us substitute the series of y(t) to the differential equations. For making

easier to follow the calculations, only the first few terms of the series are written:

(ÿ00 + λ1ÿ10 + λ2ÿ01 + . . . )+

(y00 + λ1y10 + λ2y01 + . . . ) + λ1(y00 + λ1y10 + λ2y01 + . . . )3+

+λ2(y00 + λ1y10 + λ2y01 + . . . )(ẏ00 + λ1ẏ10 + λ2ẏ01 + . . . )2 = 0

(3.3.88)
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As we want to obtain solutions of angular frequency β, the ,1’ multiplier of the

linear term is expressed from (3.3.82). The last term is also multiplied by a fraction

,β2/β2’, but expressed with (3.3.82) in the numerator. These are important to

cancel out later the β2 multipliers arise from the derivation of the solution:

(ÿ00 + λ1ÿ10 + λ2ÿ01 + . . . ) + (β2 − λ1g10 − λ2g01 − . . . )·
·(y00 + λ1y10 + λ2y01 + . . . ) + λ1(y00 + λ1y10 + λ2y01 + . . . )3+

+λ2(y00 + λ1y10 + λ2y01 + . . . ) · 1 + λ1g10 + λ2g01 + . . .

β2
·

·(ẏ00 + λ1ẏ10 + λ2ẏ01 + . . . )2 = 0

(3.3.89)

Now the terms according to the different powers of the small parameters are

collected. In the first step the ,constant’ terms are considered, which not contain

the small parameters:

λ01λ
0
2 : : ÿ00 + β2y00 = 0 (3.3.90)

From this simple linear equation the leading solution can be calculated using the

initial conditions from (3.3.86):

y00(t) = cos(βt) (3.3.91)

Now the terms being first-order in λ1 are examined:

λ11λ
0
2 : : ÿ10 + β2y10 − g10y00 + y300 = 0 (3.3.92)

Substituting (3.3.91) and rearranging:

ÿ10 + β2y10 = g10 cos(βt) + cos3(βt) (3.3.93)

Let us perform the Fourier-expansion on the right-hand side of the equation to get

rid of the cos3 term:

ÿ10 + β2y10 =

(

g10 −
3

4

)

cos(βt)− 1

4
cos(3βt) (3.3.94)

This is a linear inhomogeneous equation for y10. The homogeneous solution

has an angular frequency of β. Therefore the cos(β) terms in the excitation cause

resonant solution of the equation. As all yij functions in the series is supposed to be

periodic according to (3.3.85), the coefficient of the potential resonant excitation

term must be zero:

g10 =
3

4
(3.3.95)
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After that condition (3.3.94) can be solved using the initial conditions (3.3.87):

y10 =
1

32β2
(cos(3βt)− cos(βt)) (3.3.96)

The terms linear in λ2 are examined in the similar way:

λ01λ
1
2 : : ÿ01 + β2y01 − g01y00 +

1

β2
y00ẏ

2
00 = 0 (3.3.97)

Substituting the known y00 function we get:

ÿ01 + β2y01 = g01 cos(βt) + sin2(βt) cos(βt) (3.3.98)

The β2 term is cancelled because during the derivation of ẏ200 a β2 multiplier ap-

pears. It can be shown for the higher order steps, that any even function being in

Fourier series of leading angular frequency β cause the same cancellation. Let us

transform the right-hand side similarly as before:

ÿ01 + β2y01 =

(

g01 −
1

4

)

cos(βt) +
1

4
cos(3βt) (3.3.99)

This is a linear differential equation for y01. Avoiding the resonance explained

above, the coefficient of cos(βt) is prescribed to be zero:

g01 =
1

4
(3.3.100)

Solving (3.3.99):

y01 = − 1

32β2
(cos(3βt)− cos(βt)) (3.3.101)

Let us summarize the results after calculating the first-order terms. The square

of the angular frequency β is in linear approximation:

β2 = 1 +
3

4
λ1 +

1

4
λ2 +O2(λ1, λ2) (3.3.102)

Also the first nonlinear approximation of the solution can be determined:

y(t) = cos(βt) +
1

32β2
(λ1 − λ2) (cos(3βt)− cos(βt)) +O2(λ1, λ2) (3.3.103)

Now the method is not continued towards the higher-order terms but it can be

done formally, this can be checked if we examine the structure of the steps made

before. In each step a homogeneous linear equation with β2 angular frequency

is to be solved, and the excitation can be calculated from the known lower-order

solutions. To avoiding the resonance an equation can be expressed to determine
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Figure 3.12: Trajectories from the perturbation method, ω = 1, ν = −3, µ/ω2 = −7/6, A = 0.4.

The thick continuous line denotes the first nonlinear approximation according to (3.3.106), while

the thin line corresponds to the trajectory from the linear equation. The dashed line is the

analytic trajectory from (3.3.27).

a new gij coefficient for the series of β2 and after the new yij(t) solution can be

calculated.

However one should be worried about the convergence of these series both for

β2 and y(t). The convergence of the method is proven for the ν = 0 equation in

[14], but presence of the derivative of the functions might cause problems about it.

The convergence of the method for the equation (3.3.1) remains an open question

in this derivation.

Anyway, if the orbits are close to the origin, that is, A is small, then the small

parameters are much smaller than one, and already the first-order correction of the

frequency and of the solution can be used. Let us transform the solutions back

to the original variables and parameters. Then the nonlinear angular frequency is

approximately (β now corresponds to the original time variable):

β2

ω2
≈ 1 + A2 3µ+ νω2

4ω2
(3.3.104)

β ≈ ω

√

1 + A2
3µ+ νω2

4ω2
(3.3.105)
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Figure 3.13: Time diagram of ψ from perturbation method, ω = 1, ν = −3, µ/ω2 = −7/6, A = 0.4.

Meaning of the continuous lines is the same as in Figure 3.12. The dashed line corresponds to

numerical simulation of (3.3.1) using fourth-order Runge-Kutta method.
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Figure 3.14: Time diagram of ψ̇ from perturbation method, ω = 1, ν = −3, µ/ω2 = −7/6, A = 0.4.

Meaning of the continuous lines is the same as in Figure 3.12. The dashed line corresponds to

numerical simulation of (3.3.1) using fourth-order Runge-Kutta method.
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Also the solution for ψ(t) can be given approximately:

ψ(t) ≈ A cos(βt) + A3µ− νω2

32β2
(cos(3βt)− cos(βt)) (3.3.106)

For the first sight the parameter ν does not mean qualitatively new behaviour

in the approximate solution compared to µ. However it can be observed, that in

that approximation using a positive µ and ν cause the same effect on the frequency,

the positiveness of these parameters increase the β angular frequency.

But considering the approximate solution the two parameters have opposite

effect, the positive values of µ and ν mean an opposite perturbation in the terms

cos(3βt) − cos(βt). The expression µ − νω2 in (3.3.106) has appeared already in

the expression of the trajectories in (3.3.27).

A similar perturbation method can be found in the textbook of Jordan and

Smith [8] (page 138), and if we apply it for our equation, the result are not the

same, but they coincide for the linear terms of the small parameters.

If we choose the typical values of the parameters from Subsection 3.2.4, we

obtain:

β ≈ ω

√

1− A2
13

8
, (3.3.107)

which means that the angular frequency is decreased by the nonlinear effects. The

trajectories for these parameters can be seen in Figure 3.12, the time diagrams of

the approximation can be found in Figures 3.13-3.14 compared with analytic and

numeric results. It can be seen that the nonlinear approximation provides a large

improvement in accuracy compared to the linear model.
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Conclusion

Our mechanical model included simple assumptions but derivation of the nonlinear

equation of motion is not trivial at many points of the calculation. It turned out,

that this system has four degrees of freedom in the geometric point of view, from

which two coordinates describe the natural motion and the other two correspond

to the hunting motion. The kinematic constraints reduce the degrees of freedom to

zero in the point of view of velocities, they provide the equations of motion without

Newton’s Second Law, in fact the models lead to a problem of pure kinematics.

Coordinates of the natural motion prove cyclic, therefore the dynamics of the

system is determined by only the restricted system two other variables. Natural

motion of the whole system corresponds to the origin in this two-dimensional sys-

tem. This fixed point is neutrally stable in linear approximation, and from the

symmetric properties of the system the neutral stability of the nonlinear system

can be also proven. Therefore solutions of small perturbations around the natural

motion are periodic independently from the velocity. That is, there is not a critical

speed in the one-point rolling model, the system is on the boundary of stability at

any velocity. Hence stability problems of the hunting have to arise purely from the

creep effect, which is caused physically by slip and deformation.

After transforming the time variable the equations of the restricted system can

be reformulated as a single second-order differential equation which results a strong

analogy with one degree-of-freedom mechanical systems. This analogy can be ex-

ploited during the third-order approximation of the equation, the energy function

can be derived and the problem can be expressed as a Hamiltonian or Lagrangian

system. Using perturbation methods the approximations of the periodic solutions

and the nonlinear angular frequency can be determined, on which effects of non-

linearities can be observed.

Many aspect of this model could be explored in the future. For example, differ-

ent boundary conditions for the connection between the vehicle and the wheelset
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can be used. If we chose pulling with a constant force instead of a constant velocity,

then a five-dimensional system could be obtained, which would obtain already a

Newtonian equations. More complicated models of the bearings could be used with

springs and dampers.

An other direction of improvement is to calculate the contact forces and examine

the conditions of sliding at the case of one-point rolling with a friction model.

Sliding can occur at both contact points at the same time, but geometry allows the

wheelset to slide at one of the contact points and roll at the other one. From this

simple assumption a critical speed might be obtained. The whole problem could

be examined on a curved track, which brakes one of the symmetries of the system

and may cause interesting effects.

Probably the most important question that is it whether possible to combine

the nonlinear rigid motion with the advanced contact mechanics models with creep.

Maybe it is possible, but we should judge if it is worth from practical point of

view, which could be decided by a quantitative comparison of the effects of three-

dimensional motion and creep.

Since I started working on this project, I usually watch wheels of the trains

more carefully. Technical complications like hunting motion always remind me

that our technical creations and scientific theories are always imperfect. Hence

although we are continuously trying to make them better, it is useful to see, that

technical development cannot fulfil the deep desire of perfection in the hearts of

human beings. Because the One, who entrusted us to ’conquer the world’, said also

that ’set your hearts on the kingdom of the Father first ’.

O veritas Deus: fac me unum tecum in caritate perpetua. Taedet

me saepe multa legere et audire: in te est totum, quod volo et

desidero. Miserere mei secundum misericordiam tuam.
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SUMMARY

Summary

In this diploma thesis the so-called hunting motion is investigated, which occurs

at the dynamics of railway wheelsets. Hunting is a vibration of three-dimensional

motion of the wheelset, which is caused by its concial shape, and which has usually

unpleasant consequences in the practice.

After summarizing the phenomenon and the existing models we create a me-

chanical model to analyse the three-dimensional motion of the wheelset. A single

wheelset is considered which is towed on a straight track with a constant velocity.

Both the wheelset and the rails are assumed to be rigid, with a one-point contact

and pure rolling between them.

The equation of motion is derived by following the positions of the contact

points during applying the constraints on the system. During the calculations

there is no linearisation, therefore the equations remain relevant also for large

values of the parameters and the variables. Dynamics of the system is examined

on the equation of motion, the singularities and fixed points are determined. We

investigate stability of the natural – free from hunting – motion of the wheelset by

linear and nonlinear methods.

Due to the type and amount of constrains this model does not result a real

equation of motion in the classical mechanical sense, but the equations can be

transformed to a second-order differential equation which can be examined by the

usual methods of mechanics. We try to find conserved quantities and the system

is expressed by Lagrangian and Hamiltonian formulations. We investigate the

nonlinear approximate solutions for small values of perturbations in the initial

condition. The model can be improved in the future at several points, finally we

introduce the possible directions about that.
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ÖSSZEFOGLALÁS

Összefoglalás

A diplomamunkában az úgynevezett vadászó mozgás jelenségével foglalkozunk,

mely a vasúti kerekek dinamikájánál fordul elõ. A vadászó mozgás a kerekek három

dimenziós mozgásában megjelenõ rezgés, melyet a kerekek kúpos alakja idéz elõ,

és mely gyakorlati szempontból általában kedvezõtlen.

A jelenség és a használatos modellek áttekintése után egy mechanikai modellt

hozunk létre, mely képes a kerék három dimenziós mozgásának leírására. Egy

egyszerû kerék-párt tekintünk, melyet állandó sebességgel vontatnak egy egyenes

vágányon. Mind a kerék-párt, mind a síneket merev testnek feltételezzük, melyek

között egy-pontos kapcsolat és tiszta gördülés van.

A mozgásegyenlet levezetését a kényszerek felírása közben az érintési pontok

helyzetének követésével végezzük. A levezetés során nem linearizálunk, így a kapott

egyenletek érvényesek lesznek a paraméterek és változók nagy értékei esetén is. A

rendszer dinamikáját a mozgásegyenletek segítségével vizsgáljuk és meghatároz-

zuk az egyensúlyi helyzeteket és szinguláris pontokat. A természetes – vadászó

mozgástól mentes – mozgás stabilitását lineáris és nemlineáris módszerekkel is el-

emezzük.

A kényszerek jellege és száma miatt a modell nem eredményez valódi mozgás-

egyenletet a klasszikus mechanikai értelemben, de az egyenletek másodrendû differ-

enciálegyenletté alakíthatók, mely már vizsgálható a mechanika megszokott mód-

szereivel. Igyekszünk megmaradó mennyiséget találni és a rendszert Lagrange-

valamint Hamilton-egyenletek segítségével is jellemezzük. A kezdeti értékekben

fellépõ kis zavarások esetén vizsgáljuk a megoldásokat nemlineáris közelítés segít-

ségével. A modell a jövõben számos ponton továbbfejleszthetõ, végezetül ennek

lehetséges irányait tekintjük át.
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