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ABSTRACT
In the recent decade, active dampers have been introduced

to machining for the avoidance of machine tool chatter in milling
processes. The tuning strategy for most of these devices is based
on models which do not account for the dynamics of control
loop within the active dampers, hence neglect the dynamics of
actuator and measuring device, and do not consider filtering.
However, these simplified models might lead to inaccurate sta-
bility predictions which can deteriorate the performance of ac-
tive dampers. In order to better approximate the real behavior of
milling processes controlled by active dampers, this paper de-
velops a new mathematical model which incorporates the dy-
namics of control loop within these devices. In particular, the
inertial actuator is modeled as an electromagnetic proof-mass
transducer, while the dynamics of piezoelectric accelerometer
and finite-impulse-response filtering are also taken into account.
By the computation of stability lobe diagrams, it is shown that,
at low-frequency actuation and at high-speed milling, the con-
sideration of control loop dynamics in active dampers can be
essential.

1 INTRODUCTION
Machine tool chatter is a long-studied phenomenon in ma-

chining literature. Large-amplitude chatter vibrations can occur
between the workpiece and the machined surface due to self-
excitation. The so-called regenerative effect [1, 2], modeled by
delay-differential equations (DDEs), has provided a commonly
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accepted explanation for machine tool chatter. Via stability anal-
ysis of these DDEs so-called stability lobe diagrams (SLDs) can
be computed which depict the regions associated with chatter-
free machining in the parameter space of spindle speed and axial
depth of cut. Since chatter vibrations are mostly undesired, it has
been a subject of great interest how stable domains in SLDs can
be increased. Various passive [3, 4], semi-active [5, 6] and ac-
tive [7, 8] methods have been developed for suppression of ma-
chine tool chatter.
Among these, active methods apply controllers which involve
feedback loops. The industrial realizations of these controllers
all employ discrete sampling and digital data processing. How-
ever, in spite of the discrete nature of controllers, most studies as-
sume continuous-time measurements and data processing. Due
to the required high computational effort posed by the stability
analysis of mathematical models accounting for the discrete na-
ture of control loop, only a few studies [9, 10] have been con-
ducted on this topic, most of them on the turning process. Such
studies could reveal whether the neglect of discreteness in the
control loop cause changes in SLDs used for tuning of control
parameters. Recently, a numerical method [11] has been devel-
oped which enables the time-efficient computation of SLDs for
such models of milling processes subjected to active damping.

In addition to the neglect of discrete nature in control loop,
the tuning strategies for active dampers are based on models
which do not consider the full dynamics of control loop of the
active damper. These strategies use simplified models to account
for the dynamics of actuator and measuring device, and do not
consider the discrete nature of filtering. However, these sim-
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a) b)

FIGURE 1. Electromechanical model of inertial actuator.

plified models might lead to inaccurate stability predictions that
result in a choice of control parameters that brings inferior per-
formance to the active damper. In order to better approximate
the real behavior of milling processes subjected to active damp-
ing, in this paper we develop a new mathematical model which
takes into account the dynamics of control loop in more detail.
We model the active damper as an electromechanical proof-mass
transducer, incorporate the dynamics of piezoelectric accelerom-
eter and take into account finite-impulse-response filtering rules
applied to the output signal of accelerometer. By computation of
SLDs, we show that at low-frequency actuation and at high-speed
milling a more precise modeling of the control loop dynamics
can be essential for the efficient tuning of active dampers.

2 MODELING
This section presents the step-by-step construction of the

mathematical model. For clarity, the modeling of actuator, ac-
celerometer, milling process, cutting force and filtering are de-
scribed in separate subsections.

2.1 Actuator
In this study, we assume that the active damper is an iner-

tial (proof-mass) actuator which is modeled according to Chapter
3.2.1 in [12]. This subsection presents the subsystem of actuator
which is later integrated into the model of milling in Section 2.3.
Fig. 1 shows the electromechanical model of a proof-mass actu-
ator fixed to rigid support. The Newtonian equation, governing
the mechanical part of the model is

mIξ̈ (t)+ cIξ̇ (t)+ kIξ (t) =− f (t), (1)

where mI, cI and kI are the mass, damping and stiffness of in-
ertial actuator, respectively. The Laplace force induced by the
electromagnetic field is denoted by f (t) = −Ti(t), where T is
the transducer constant and i(t) is the electric current of the ac-

TABLE 1. PARAMETERS OF INERTIAL ACTUATOR FROM
TAB. 2 IN [13].

Parameter Notation Value Unit

moving mass mI 1.35 [kg]

damping ratio ζI 0.05 [1]

natural angular frequency ωI 2π×40 [rad/s]

transducer constant T 5.6 [N/A]

resistance R 1.7 [Ω]

inductance L 0.298×10−3 [H]

tuator. The governing equation of the electric circuit reads as

eI(t)+L
di(t)

dt
+Ri(t) = E(t), (2)

where L is the inductance and R is the resistance of coil. Voltage
source E(t) moves current along the circuit, and according to
Faraday’s law, the voltage between the circuit’s two end is eI(t)=
T ξ̇ (t). The total force, applied to the support is

Q(t) =−mIξ̈ (t). (3)

Using Eqns. (1)–(3), the transfer function between voltage in-
put E(t) and force output Q(t) can be expressed in the Laplace
domain as

GI(s) =
Q(s)
E(s)

=− s2(
ω2

I +2ζIωIs+ s2
)
(R̃+ L̃s)+ sm̃−1

I
, (4)

where ωI =
√

kI/mI is the natural angular frequency and ζI =
cI/(2mIωI) is the damping ratio of the inertial actuator, while
R̃ = R/T , L̃ = L/T and m̃I = mI/T denote the specific resistance,
inductance and mass of the inertial actuator, respectively. For the
typical parameter setting specified in Tab. 1, the magnitude and
phase plots of GI(iω) are shown in Fig. 2 with red color.

Simplification I. With the neglect of inductance L and
assuming current instead of voltage generator, the governing
equation Eqn. (2) of the electric circuit can be omitted and us-
ing Eqn. (1) and Eqn. (3), the transfer function between voltage
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FIGURE 2. Magnitude and phase shift of the transfer function of iner-
tial actuator subjected to different simplifications and using parameters
from Tab. 1. The magnitude plot is shifted to the nominal transmis-
sion coefficient of ideal force generator (marked by black line). The
red dashed lines mark cutoff frequencies corresponding to ±3 dB dif-
ferences in magnitude from the nominal transmission coefficient.

input and force output becomes

ḠI(s) =
Q(s)
Ri(s)

=− R̃−1s2

ω2
I +2ζIωIs+ s2 (5)

This is a common assumption used during the modeling of iner-
tial actuators [14–16]. Note that by assuming large m̃I and small
L̃, GI(s) ≈ ḠI(s). For the typical parameter setting specified in
Tab. 1, the magnitude and phase plots of ḠI(iω) are shown in
Fig. 2 with blue color.

Simplification II. Note that for small L̃ and large s (that
is for high frequencies) |GI(s)| ≈

∣∣ḠI(s)
∣∣≈ R̃−1, therefore at high

frequencies the actuator behaves like an ideal force generator.
This is also a common assumption in the literature [8, 17].

As references [8,14–17] show, the herein presented two sim-
plifications are widespread in the machining literature for inertial
actuator models. In order to see the effect of such simplifica-
tions on stability of the general model, developed in this paper,
we compare the results obtained with and without the above de-
scribed simplifications.

a) b)

FIGURE 3. Electromechanical model of piezoelectric accelerometer.

2.2 Accelerometer
Most mathematical models of control systems involving ac-

celeration feedback assume ideal measurements of the acceler-
ation signal without accounting for the dynamics of measuring
device. Here we incorporate the piezoelectric accelerometer in
the mathematical model of the actively damped milling process.
This is done in order to see how the neglect of the dynamics of
accelerometer affects the results for stability. This subsection
presents the subsystem of piezoelectric accelerometer adopted
from [18]. This subsystem is integrated into the model of milling
in Section 2.3.

The mechanical model of the piezoelectric accelerometer is
shown in Fig. 3/b. The governing equation of the seismic mass
mA can be easily derived using Newtonian mechanics, it reads as

−mA (ẍ(t)+ η̈(t)) = kAη(t)+ cAη̇(t), (6)

where kA and cA are the stiffness and damping coefficients, re-
spectively between the case and seismic mass. Coordinate x is
measured in a steady frame of reference and it locates the sensor
case fixed to a moving part. Coordinate η gives the position of
seismic mass relative to the case, measured from the position of
seismic mass under no motion (that is from the steady position
of seismic mass). Governing equation Eqn. (6) can be rearranged
as

η̈(t) =−ω
2
Aη(t)−2ζAωAη̇(t)− ẍ(t), (7)

with ωA =
√

kA/mA and ζA = cA/(2mAωA) being the natural
angular frequency and damping ratio of seismic mass, respec-
tively. The piezoelectric transducer of the sensor assumes a lin-
ear relationship between the output charge q and the displace-
ment of seismic mass η in the form q(t) = Kqη(t), where Kq is
the charge output of unit displacement. The piezoelectric subsys-
tem can be modeled by the equivalent circuit shown in Fig. 3/a
(for more details, see [18]), where charge generated due to dis-
placement of seismic mass is included in the current generator
iPZT(t) = q̇(t). The equivalent capacity of wiring, amplifier and
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TABLE 2. PARAMETERS OF ACCELEROMETER BRÜEL &
KJÆR VIBRO AS–022.

Parameter Notation Value Unit

seismic mass mA 0.05 [kg]

damping ratio ζA 0.02 [1]

natural angular frequency ωA 2π×35×103 [rad/s]

electric sensitivity Se 4.9328×105 [V/m]

electric time constant τA 0.1194 [s]

transducer is denoted by CA, while RA is the equivalent resis-
tance of amplifier and transducer. The voltage measured on the
transducer is denoted by eA(t). According to Kirchoff’s current
law−iPZT(t)+ iC(t)+ iR(t) = 0, which after applying Ohm’s law
gives

ėA(t) = Seη̇(t)− 1
τA

eA(t), (8)

where Se = Kq/CA is the electric sensitivity of piezoelectric ac-
celerometer, while τA = RACA is the electric time constant. To-
gether, Eqn. (7) and Eqn. (8) form the system of governing equa-
tions for the piezoelectric accelerometer. The transfer function
between input acceleration ẍ(t) and output voltage eA(t) can be
expressed from Eqns. (7)–(8) in the Laplace domain as

GA(s) =
eA(s)
s2x(s)

=−ST
τAs

τAs+1
ω2

A

s2 +2ζAωAs+ω2
A
, (9)

where ST = SmSe is the sensor sensitivity, with Sm = 1/ω2
A being

the mechanical sensitivity.

Simplification III. The magnitude and phase plots of
transfer function GA(iω) are shown in Fig. 4 for the typical pa-
rameter setting given in Tab. 2. As Fig. 4 illustrates, the transfer
function of piezoelectric accelerometer has a constant magnitude
and an almost-constant shift in a wide frequency domain. This
is the frequency range of measurement. Given this characteristic
of the transfer function, it is a common assumption that the dy-
namics of piezoelectric accelerometer does not need to be incor-
porated in the mathematical model. However, this simplification
might leads to error in stability computations therefore its effect
is investigated within this paper.

FIGURE 4. Magnitude and phase shift of the transfer function of
piezoelectric accelerometer using parameters from Tab. 2. The magni-
tude plot is shifted to the nominal transmission coefficient correspond-
ing to ideal relationship between output voltage eA(t) and input acceler-
ation ẍ(t). The red dashed lines mark cutoff frequencies corresponding
to ±3 dB differences in magnitude from the nominal transmission coef-
ficient.

2.3 Milling process
A simplified model of milling with active damping is shown

in Fig. 5. It is assumed that the cutting tool can be represented
at point P with a single modal mass m, modal stiffness k and
modal damping coefficient c corresponding to direction X . The
displacement of center point P of the cutting end of the tool is
measured with respect to a steady frame using coordinate x. Note
that, in general, milling cannot be modeled using a single mode
and the modal direction does not coincide with that of the feed
velocity vf (see e.g. [19]). However, in order to focus the atten-
tion on modeling of active damper, only a single mode is taken
into account whose direction is parallel to vf. Consequently, the
vibration of cutting tool is neglected in directions perpendicular
to the feed velocity vf. It is assumed that, as Fig. 5 indicates, the
piezoelectric accelerometer and inertial actuator are assembled
on opposite sides of the cutting tool at point R. It is also assumed
that point R is close-enough to point P such that the motion of
point R can be directly given by x. Here we note that the effect of
points P and R being non-collocated might deserves attention in
future studies. The voltage signal eA(t) of accelerometer is pro-
cessed by a finite impulse response (FIR) filter, then after the ap-
plication of a control law it is fed back to the voltage signal E(t)
of inertial actuator. The modeling of FIR filtering and control
law are addressed in Section 2.5. The displacement of seismic
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FIGURE 5. Model of milling process subjected to active damping.

mass mA and moving mass mI are denoted by xA, and xI, respec-
tively, both in the steady reference frame. Governing equations
for the model shown in Fig. 5 can be derived using a Lagrangian
approach with the inclusion of Eqn. (2) and Eqn. (8), that is the
circuit equations of actuator and accelerometer. Choosing the
vector of general coordinates as q = [x ξ η ]ᵀ with ξ = xI− x
and η =−x−xA, the Lagrangian equation of motion of 2nd kind
reads as

Mq̈(t)+Cq̇(t)+Kq(t) = F(t), (10)

where coefficient matrices are

M=

m+mI+mA mI mA
mI mI 0
mA 0 mA

, (11)

C=

 c 0 0
0 cI 0
0 0 cA

, K=

 k 0 0
0 kI 0
0 0 kA

, (12)

and the force vector is

F(t) =
[

F(t) − f (t) 0
]ᵀ
, (13)

with F(t) being the horizontal cutting force acting on the tool.
Formulas used for the cutting force are detailed in Section 2.4.
After attaching circuit equations Eqn. (2) and Eqn. (8) to the

first-order form of Eqn. (10), furthermore by normalizing time
according to t̂ = ωnt, with ωn =

√
k/m and dropping the hat im-

mediately, the governing equation reads as

ż(t) = Az(t)+bF(t)+dE(t), (14)

where the state vector is z(t) = [qᵀ(t) q̇ᵀ(t) i(t) eA(t)]
ᵀ and co-

efficient matrices are

A=


0

(3×3)
I

(3×3)
0

(3×1)
0

(3×1)

−K̃ −C̃ Q̃I
0

(3×1)

0
(2×3) E EI EA

, b=


0

(3×1)

Q̃c

0
(2×1)

, d=


0

(6×1)
1

ωnL

0

 , (15)

with 0
(α×β )

and I
(α×β )

being zero and identity matrices, respec-

tively of size α×β . Other coefficient sub-matrices are

K̃=
1

ω2
n

M−1K=

 1 −νI −νA
−1 νI (1+µI) νA
−1 νI νA (1+µA)

 , (16)

C̃=
1

ωn
M−1C=2ζ

 1 −δI −δA
−1 δI (1+µI) δA
−1 δI δA (1+µA)

 , (17)

Q̃I=
1

ω2
n

M−1

 0
T
0

= T
m̂

 −1
1+µI

1

 , (18)

Q̃c=
1

ω2
n

M−1

1
0
0

= 1
m̂

 1
−1
−1

 , (19)

E=

[
0 −T/L 0
0 0 Se

]
, EI=

[
−R̂/L

0

]
, EA=

[
0

−1/τ̂A

]
, (20)

where ωn is the natural angular frequency and ζ = c/(2mωn)
is the damping ratio corresponding to the horizontal mode of the
tool, νI = kI/k, νA = kA/k are the stiffness ratios, µI = m/mI and
µA = m/mA are the mass ratios, while δI = cI/c and δA = cA/c
are the damping coefficient ratios. The normalized modal mass
is m̂ = mω2

n , the normalized resistance is denoted by R̂ = R/ωn
and the dimensionless electric time constant is τ̂A = τAωn.

Changes in the governing equation Eqn. (14), due to simpli-
fications detailed under Sections 2.1–2.2, are discussed below.

Simplification I. This simplification omits the dynamics
of electric circuit in the inertial actuator, which results in i(t) =
E(t)/R and leads to a governing equation formally equivalent to
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Eqn. (14), where the state vector is z(t) = [qᵀ(t) q̇ᵀ(t) eA(t)]
ᵀ

and coefficient matrices are

A=


0

(3×3)
I

(3×3)
0

(3×1)

−K̃ −C̃ 0
(3×1)

0
(1×3) E1 −1/τ̂A

, b=


0

(3×1)

Q̃c

0

, d=
1
R


0

(3×1)

Q̃I

0

 , (21)

with sub-matrices defined according to Eqns. (16)–(20) and E1 =
[0 0 Se].

Simplification II. This simplification leads to an ideal
force generator with the constant linear relationship Q(t) =
−E(t)/R̃ between force output Q(t) and input voltage E(t) of the
inertial actuator. The resulting governing equation takes the form
of Eqn. (14), where the state vector is z(t) = [qᵀ(t) q̇ᵀ(t) eA(t)]

ᵀ,
with general coordinates q = [x η ]ᵀ. Now the coefficient matri-
ces of Eqn. (14) are

A=


0

(2×2)
I

(2×2)
0

(2×1)

−K̃2 −C̃2
0

(2×1)

0
(1×2) E2 −1/τ̂A

, b=


0

(2×1)

Q̃c,2

0

, d=


0

(2×1)

Q̃I,2

0

 , (22)

with sub-matrices

K̃2=

[
1 −νA
−1 νA (1+µA)

]
, C̃2=2ζ

[
1 −δA
−1 δA (1+µA)

]
, (23)

Q̃I,2=
T

Rm̂

[
−1
1

]
, Q̃c,2=

1
m̂

[
1
−1

]
, E2=[0 Se]. (24)

Simplification III. Ideal relationship between the mea-
sured accelerometer output voltage eA(t) and input acceleration
ẍ(t) is assumed by this simplification. This leads to the omis-
sion of seismic mass dynamics and corresponding electric cir-
cuit dynamics from the governing equation Eqn. (14), where the
state vector is z(t) = [qᵀ(t) q̇ᵀ(t) i(t)]ᵀ, with general coordinates
q = [x ξ ]ᵀ. Now the coefficient matrices of Eqn. (14) are

A=


0

(2×2)
I

(2×2)
0

(2×1)

−K̃3 −C̃3 Q̃I,3

0
(1×2) E3 −R̂/L

, b=


0

(2×1)

Q̃c,2

0

, d=

 0
(4×1)

1
ωnL

 , (25)

with sub-matrices defined according to Eqn. (24) and

K̃3=

[
1 −νI
−1 νI (1+µI)

]
, C̃3=2ζ

[
1 −δI
−1 δI (1+µI)

]
, (26)

Q̃I,3=
T
m̂

[
−1

1+µI

]
, E3=[0 −T/L]. (27)

2.4 Cutting force
In this study we assume that the cutting force on each cutting

teeth can be computed according to the linear formula

Fp
(t,r)

(t) =
[

Kt
Kn

]
ahp(t), p = 1, . . . ,Z; (28)

where a is the axial depth of cut, hp is the chip thickness on the
p-th tooth, Kt and Kn are the tangential and normal cutting force
coefficients, respectively and Z is the number of cutting teeth. It
worths mention that other formulas have also been used in ma-
chining literature for modeling of cutting force, a good summary
can be found in Fig. 1 of [20].

Although more accurate formulas for the chip thickness can
also be found in the literature (see e.g. [21–23]), here we limit
our attention only to the effect of active damping and employ
the widespread circular tooth path approximation (for details on
this approximation, see Chapter 5.2.4 in [24]). After introducing
normalized time t̂ = ωnt and dropping the hat immediately, fur-
thermore with the neglect of vibrations perpendicular to the feed
velocity, the circular tooth path approximation gives

hp(t)≈ ( fZ + x(t− τ̂)− x(t))sinϕp(t), (29)

where fZ = v̂fτ̂ is the feed rate, with v̂f = vf/ωn being the nor-
malized feed rate. The normalized tooth pass period is denoted
by τ̂ = ωnτ , with τ = 60/(ΩZ) being the tooth pass period. The
normalized spindle speed is Ω̂ = 2πΩZ/(60ωn), with Ω being
the spindle speed in [rpm]. The angular position of each tooth is
given according to ϕp(t) = (Ω̂ t +(p−1)2π)/Z.

Note that in Eqn. (28), Fp is given in the tangential-radial
(t,r) coordinate system. After transformation to the steady
(X ,Y ) coordinate system, the resultant cutting force vector is
given by

Fc
(X ,Y )

(t) =
Z

∑
p=1

gp(t)Tp(t)Fp
(t,r)

(t), (30)

where matrix

Tp(t) =
[

cosϕp(t) sinϕp(t)
−sinϕp(t) cosϕp(t)

]
, (31)
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transforms cutting force Eqn. (28) to the (X ,Y ) coordinate sys-
tem and window function

gp(t) =

{
1 if ϕent ≤ ϕp(t)mod2π ≤ ϕex,

0 otherwise,
(32)

accounts for whether the p-th tooth is in or out of the cut. Here
ϕent and ϕex stand for the entrance and exit angles. For up-
milling operation ϕent = 0 and ϕex = arccos(1− 2ae/D), where
ae is the radial immersion and D is the diameter of cutting tool
(see Fig. 5). For down-milling operation ϕent = arccos(2ae/D−
1) and ϕex = π . Note that, due to the neglect of vibrations per-
pendicular to vf, only the horizontal component of cutting force
Fc is of interest to us. From Eqn. (30), this component reads as

F (t,x,x(t− τ̂)) = F0(t)+H(t)(x(t− τ̂)− x(t)) , (33)

where

F0(t) = a fZ

Z

∑
p=1

g(t)(Kn sinϕp(t)+Kt cosϕp(t)) (34)

H(t) = a
Z

∑
p=1

g(t)(Kn sinϕp(t)+Kt cosϕp(t))sinϕp(t) (35)

are the state-independent part of horizontal cutting force and the
time-periodic cutting force coefficient, respectively.

2.5 Filtering and control
The overwhelming majority of studies in the machining lit-

erature assume continuous actuator signal (see e.g. [8, 15, 16]).
In addition, many of them do not account for the time delay be-
tween measurement and actuation (see e.g. [8, 15]). However, in
reality, the actuator input is piecewise-constant and there is time
lag between the measured signal and the computed input of the
actuator due to data processing. In this paper, we account for
all these factors in order to see how the continuous and delay-
free actuator signal assumptions affect the stability of actively
damped milling processes.

It is assumed that the output voltage signal eA(t) of ac-
celerometer is sampled with frequency fs. We employ velocity
feedback control, which is intended to provide artificial damping
to the milling process. Consequently, the acceleration signal is
numerically integrated, and its value is updated upon the arrival
of new accelerometer output voltage samples. This results in the
piecewise-constant velocity signal

v(t) = vi, [ti, ti+1) , (36)

where the rectangle rule

vi = vi−1 +
∆t
ST

eA (ti− rint∆t) (37)

is applied for integration. Here i ∈ N, ∆t = ti+1− ti = 1/ fs is
the sampling period, and rint∆t is the time demand of integration,
with rint ∈ Z+. The velocity signal is passed through a FIR filter
of order N, which uses N +1 number of the most recent velocity
values. Consequently, after filtering, the velocity signal reads as

vFIR(t) =
N

∑
r=0

cr v(t− (r+ rFIR)∆t) (38)

where cr are the FIR filter coefficients and the time demand
rFIR∆t of filtering is assumed to be an integer rFIR ∈ Z+ mul-
tiple of the sampling period. The filtered velocity signal (38) is
fed back to the actuator input voltage according to

E(t) = GvFIR(t j),
[
t j, t j+1

)
, (39)

with velocity feedback gain G. This formula assumes zero-order
hold of the actuator input signal: E(t) is updated at t j = j∆T time
instants, and it is kept constant between two subsequent updates.
We assume that the actuation period ∆T = κ∆t is a positive inte-
ger κ ∈ Z+ multiple of the sampling period. After rescaling time
according to t̂ = ωnt and dropping the hat immediately, E(t) can
be expressed from Eqns. (36)–(39) as

E(t) = E j, t ∈
[
t j, t j +∆T̂

)
, (40)

E j = E j−1 +
N+1

∑
r=0

Cr

κ−1

∑
k=0

eA
(
t j−

(
r+ rp− k

)
∆t̂
)
, (41)

where rp = rint + rFIR, with rp∆t being the overall delay due to
data processing. The dimensionless feedback coefficients are
Cr = (G̃∆t̂cr)/ST, where G̃ = G/ωn is the normalized velocity
feedback gain and ∆t̂ = ωn∆t is the dimensionless sampling pe-
riod. The dimensionless actuation period is ∆T̂ = ωn∆T .

Specifications In order to avoid the resonance of seismic mass
in accelerometer, the sampling frequency is set below the upper
cutoff frequency (≈ 18× 103 [Hz]) of the accelerometer: fs =
18×103 [Hz].

In order to attenuate lower frequencies amplified by integra-
tion and to avoid resonant frequencies of the actuator, a high-pass

7 Copyright © 2019 ASME



FIGURE 6. Magnitude response function of FIR filter applied to ve-
locity signal v(t) in Eqn. (38). The filter was designed in Matlab, using
Kaiser window. Design specifications are listed in Tab. 3. The pass-
band and stopband frequencies, the limits for passband ripple and the
stopband attenuation are illustrated with dashed lines.

TABLE 3. PARAMETERS OF HIGH-PASS FIR FILTER

Parameters Value Unit

stopband frequency 40 [Hz]

passband frequency 260 [Hz]

passband ripple 2 [dB]

stopband attenuation 20 [dB]

sample rate 18×103 [Hz]

FIR filter of order N = 70 is applied whose design specifications
are provided in Tab. 3 and whose magnitude response function
is plotted in Fig. 6. Note that frequencies below the lower cut-
off frequency (/ 80 [Hz]) of the actuator (indicated with a red
dashed line in Fig. 2) are attenuated.

The magnitude response of actuator transfer function in
Fig. 2 shows that frequencies above the upper cutoff frequency
(≈ 1000 [Hz]) are suppressed, hence the increase of actuation
frequency fa = 1/∆T above the double of this cutoff frequency
cannot significantly improve the performance of the controller.
Consequently, the actuation frequency is chosen to be fa = 2000
[Hz]. Given that fs is almost one order of magnitude higher than
fa, assumption ∆T = κ∆t, κ ∈ Z+ is justified.

3 STABILITY ANALYSIS
After substitution of Eqn. (33) and Eqns. (40)–(41) into (14),

the closed-loop governing equations of the full model and of

models subjected to Simplifications I-II take the form of

ż(t) = (A−B(t))z(t)+B(t)z(t− τ̂)+E j−1+

rp+N

∑
r=rp

Cr

κ−1

∑
k=0

z(t j +(k− r)∆t̂)+Fp(t), t ∈
[
t j, t j +∆T̂

)
, (42)

E j = E j−1 +
rp+N

∑
r=rp

Cr

κ−1

∑
k=0

z(t j +(k− r)∆t̂) , (43)

which is a hybrid system of DDEs and difference equations
(DEs) with coefficient matrices

B(t) = H(t)b [1 0 · · · 0] , Cr =Cr−rpd [0 · · · 0 1] (44)

and vectors E j = dE j, Fp(t) = bF0(t). By fixing the ratio be-
tween time period τ̂ of periodic coefficient H(t) and time-period
∆T̂ of actuation as τ̂/∆T̂ = σ/ρ with σ ,ρ ∈ Z+, a dimension-
less principal period T̂p = σ∆T̂ = ρτ̂ can be established. For
this special case, a periodic solution of Eqns. (42)–(43) can be
found. The stability of this periodic solution is then determined
by variational system

φ̇(t) = (A−B(t))φ(t)+B(t)φ (t− τ̂)+ ε j−1+

rp+N

∑
r=rp

Cr

κ−1

∑
k=0

φ (t j +(k− r)∆t̂) , t ∈
[
t j, t j +∆T̂

)
, (45)

ε j = ε j−1 +
rp+N

∑
r=rp

Cr

κ−1

∑
k=0

φ (t j +(k− r)∆t̂) , (46)

where φ(t) and ε j are the perturbation around the periodic so-
lution. For more details and for a more rigorous treatment of
similar hybrid time delay systems, see [11].

By following the same derivation process, Simplification III
results in a variational system of the form

φ̇(t) = (A−B(t))φ(t)+B(t)φ (t− τ̂)+ ε j−1+

rp+N

∑
r=rp

C3,r

κ−1

∑
k=0

φ̇ (t j +(k− r)∆t̂) , t ∈
[
t j, t j +∆T̂

)
, (47)

ε j = ε j−1 +
rp+N

∑
r=rp

C3,r

κ−1

∑
k=0

φ̇ (t j +(k− r)∆t̂) , (48)
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TABLE 4. SYSTEM PARAMETERS

Parameter Notation Value Unit

modal mass m 0.03993 [kg]

damping ratio ζ 0.011 [1]

natural angular frequency ωn 2π×922 [rad/s]

tangential force coefficient Kt 6×108 [N/m2]

normal force coefficient Kn 2×108 [N/m2]

number of cutting teeth Z 2 [1]

radial immersion ratio ae/D 0.1 [1]

sampling frequency fs 18×103 [Hz]

actuation frequency fa 2×103 [Hz]

where C3,r = Cr−rpd [0 0 0 1 0]. The stability analysis of varia-
tional systems Eqns. (45)–(48) was carried out using the methods
detailed in [11].

4 RESULTS
Under parameter values displayed in Tab. 4, results show

that significant differences in SLDs can occur between the full
model and its simplifications at low and high speed machining.
With the increase of feedback gain G these differences are am-
plified. While Simplification I results in minor differences, Sim-
plifications II-III lead to significant changes compared to the full
model.

5 CONCLUSIONS
This paper dealt with the development of a new, generalized

model for actively damped milling processes. The dynamics and
control loop of the active damper was incorporated in addition
to the so-called regenerative effect which is often the source of
machine tool chatter in milling processes. It was shown that the
consideration of inertial actuator and accelerometer dynamics in
the model of the closed-loop system can be essential in order to
obtain accurate results for stability lobe diagrams.
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