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Abstract 

In this work, a simple regenerative formulation of the axles rolling process is presented. This work only 

considers a simple representation of the elastic-plastic deformation subjected to the regeneration that arises 

during the rolling operation. Simple two degrees of freedom mechanical model is introduced with an ideal 

constant control force. The deformation force is considered simply according to the literature including elastic 

and elastic-plastic regions on the empirical deformation characteristics. This induces a very much the same 

effect as the flyover in cutting processes that causes abrupt vanish of the cutting force, however here the elastic-

plastic relay brings nonsmooth behaviour in the rolling process. In order to understand the process, steady 

rolling is extended to the real axles rolling process with constant feed, where overlapping can occur. The 

equations are simplified and time domain based simulations are performed including this simple consideration 

of the elastic-plastic relay. 
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1 Introduction 

Axles rolling process is an important cold forming process in the train industry. Almost all cases, train shafts 

have to be rolled to increase surface hardness by favorable residual compressive stress field, and to eliminate 

microcracks originated from previous turning processes [1]. This removing of the microcracks can increase 

the lifetime of train shafts drastically, which is a key importance in avoiding serious train accidents reported 

by [2]. This cold forming process is a fairly slow process and it requires heavy machinery due to the relatively 

high press force, that is usually granted by electro-hydraulic control system [3]. With the rotating workpiece 

(shaft), one can expect similar regenerative effect that appears in cutting processes in [4]. Even though, in this 

case, the strict geometric accuracy is not that important, however, large amplitude vibrations can cause ripples 

on the surface, that is very much refused by quality standards. Like any other forming process, rolling is also 

a quite complicated continuous mechanical process due to the simultaneous operation of elastic and plastic 

deformations. In the literature, sheet rolling process is quite extensively investigated by [5], and [6]; although 

it is quite a different process than axles rolling.  In sheet rolling process, large portion of the workpiece is 

deformed, while in axles rolling the elastic foundation of the usually quite thin deformed layer also has its 

importance. That is why cylinder rolling on elastic-plastic material can come into the front. There are various 

attempts in the literature to model this operation on finite element basis [7]. These models are quite specific, 

and due to their large sizes, usually they are not adequate for dynamic modeling. There are much more 

promising, although much complicated methods to describe the elastic-plastic deformation during cylinder 

rolling. These models have only a few parameters, however, those use plenty of assumptions related to the 

plastic zones along slip lines in [8]. We do not attempt to improve the inaccuracies of the formation models of 
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cylinder rolling, described in the literature in [9]. By accepting their results, we derive the mathematical 

formalism of regenerative rolling processes that causes high amplitude vibrations. The paper has the following 

structure. The simple rolling force characteristics is explained after [9] and adjusted to the latter dynamic 

analysis. A two degrees of freedom (DoF) dynamic model is introduced with a constant control force to have 

the simplest possible model to describe an axles rolling process. A general model is introduced for steady 

rolling with no feed using one constant delay, that introduces the concept of plastic penetration function 𝛿p(𝑡) 

as an additional state of the system. This model is improved to operate with feed introducing multiple 

penetration functions. The model is transformed into a multi-delayed dynamic model, that is more convenient 

to perform time domain simulations. Lastly a finite element model (FEM) is shown by predicting the feed 

dependency of the resulting force generated by the overlapping effect. 

 

Figure 1: a) shows the sketch of the rolling process, while b) presents the specific force based on [9]. Panel c) 

shows the simple consideration of elastic-plastic effect during rolling by tracing plastic and elastic-plastic 

deformations 𝛿p and 𝛿ep, respectively. 

2 Simplified rolling force model 

Simple plane strain model is considered here after the work of [9]. In that work an analytical formula is 

presented for narrow wheel penetration and rolling (see Figure 1a). The paper of [9] claims that, if the width 

𝑏 is relatively small compared to the radius of the wheel 𝑟, a simple power characteristics can be derived 

between the chord length ℎ of the material contact and the penetration 𝛿. By accepting the derivations in [9] 

nonlinear specific plastic force characteristics can be given as 

𝑓𝑊,p(𝛿):= 𝜅𝑟𝜒(𝛿)√2
𝛿

𝑟
√1 −

1

2

𝛿

𝑟
, 𝑓𝐻,p(𝛿):= 𝜅𝑟𝜒(𝛿)

𝛿

𝑟
  and 𝜒(𝛿) = (2 + 𝜋 − 4arcsin√

𝛿

2𝑟
 ). (1) 

This specific force characteristics are depicted in Figure 1b. Obviously, there are plenty of questions about the 

validity of these elastic-plastic models presented in [9]. Although, one could imagine the overall specific 

rolling force should vanish for no penetration, and should be a nonlinear function of the roller penetration 𝛿, 

what is currently true for (1). These formulae do not deal with the redistributed material along the side 'edges' 

of the roller, and do not describe the probably different rolling behaviour of multiple passes.  

The specific force formulae (1) follow ones expectation to have much larger vertical force component than the 

one on the horizontal direction (Figure 1b). In the vertical direction rolling behaves more like an indentation, 

while in the horizontal direction the rubbing of the forward upheaval material is the influencing phenomenon. 

In this very simple framework, the following description can be derived based on the elastic-plastic effect 

dominating the multi-passing rolling process. Post the yield condition the material is plastically deformed, then 

elastically released. Having the second loading, after the elastic uploading, the force is 'continued' exactly from 

the same level, from where the first plastic deformation had been released. This is very different than the 

operation of the cutting force characteristics, where in each cutting passes the same behaviour is happening 

over and over [10]. 
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This means, actually the material 'remembers' its deformation state, which can be modelled by using a 

coordinate transformation on the rolling force characteristics as presented in Figure 1c. In detail, the material 

undergoes plastic deformation from the intact state of surface A to the primary deformed state B. This 

penetration is measured with the value of plastic deformation 𝛿p. By releasing the surface from rolling pressure 

it recovers along its elastic stiffness 𝐾𝑊 (𝑊: vertical direction after [9]) line to C. This released state is 

measured by the value of elastic-plastic deformation 𝛿ep. Note that, from now on, more deformation can only 

be achieved by using more force. That is, in the next round, if specific force on that surface segment is not 

increased the segment only undergoes elastic deformation only reaching D along 𝑓𝑊,e(𝛿, 𝛿ep) = 𝐾𝑊(𝛿 − 𝛿ep). 

Additional plastic deformation is only possible from D to E by pressing more the surface segment. In order to 

ease the latter dynamic modelling, and since the actual rolling force characteristics is unknown, the rolling 

force is considered elastic until a limit penetration 𝛿l that can be calculated from the following equality 𝐾𝑊𝛿 =

𝑓𝑊,p(𝛿) → 𝛿l. 

Due to this simple description, an inconsistency can be felt with the very definition of the penetration 𝛿, which 

was measured to the intact surface according to [9]. This penetration in the next pass would be much smaller, 

but this highly deformed elastic-plastic consideration of the rolling is not available yet in the literature. In this 

work, we point out the dynamic modeling problems, that can be later improved with the real rolling force 

characteristics considering multiple passes, which probably introduces different 𝑓𝑊 & 𝑓𝐻 characteristics for 

each number of passes. 

 

Figure 2: The two DoF rolling model is depicted in a), where feed is 𝐯𝑓, the assigned generalized coordinates 

are (𝑥1, 𝑥2). In b) the parameters used for describing overlapping are presented, while c) shows the elastic-

plastic force for different previous deformations. Sample time domain simulations are presented in d), where 

equilibrium �̅�1 denoted with red line. A stable and a saturated solution corresponding with an unstable 

equilibrium are depicted by blue and green.  

3 Dynamics 

In this section, we model the behavior of the axles rolling process taking into account the simple rolling force 

behaviour in Figure 1c. The aim is to model the mechanics with an ideal control providing constant force 𝐹c =

|𝐅c| ≔ const.. It is necessary to know, in the standard, the desired pressing force is specified for a given rolling 

process not the value of the local plastic deformation. That means, the model lacks all electro-hydraulic 

components that keep this constant force 𝐅c controlled. This actually results in, the model described below 

would not cover all types of self-excited vibration phenomena that cause poor rolled surface. 

Accepting the simple specific rolling force characteristic originated from [9] at (1) and their elastic-plastic 

behaviour (see Figure 1c), the simplest two DoF mechanical model can be built with rigid roller and elastic-

plastic workpiece (WP in Figure 2a). The dynamics of the machine is mimicked by one (dominant, not rigid) 

mode with a linear spring with stiffness 𝑘, and a linear viscous damper with damping 𝑏. The two DoF motion 
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is described by two generalized coordinates 𝑥1 and 𝑥2 (see Figure 2c), with which the roller centre (𝑥1) and 

the modal displacement of the dominant mode (𝑥2) are described. One can build a model, where the roller rolls 

through the same material over and over, the one which actually performs real rolling process with moderate 

feed and overlapping (Figure 2a).  Lastly, the version with extremely high feed in such, the roller actually goes 

on a helical spiral without any overlapping. Real process follows case where the plastic deformation is 

dominant with 

𝛿(𝑡): = −𝑥1(𝑡). (2) 

In this sense, the specific rolling force depends on the momentary penetration δ(𝑡) and it is integrated along 

𝛽 (see Figure 2b) the contact length of the roller as 

𝐅r(𝛿(𝑡)) = [𝐹𝑊(𝛿(𝑡)) 𝐹𝑓(𝛿(𝑡)) −𝐹𝐻(𝛿(𝑡))]
⊺
= ∫[𝑓𝑊(𝛿(𝑡)) 𝑓𝑓(𝛿(𝑡)) −𝑓𝐻(𝛿(𝑡))]

⊺

𝛽

 d𝛽 (3) 

In (3) 𝑓𝑊, 𝑓𝐻 and 𝑓𝑓 are the vertical, horizontal and feed directional specific force components. Note that, in 

this simple description the horizontal and feed direction does not effect the dynamics. Thus, during the process, 

the equilibrium state would be defined, when the 𝑥 component of rolling force 𝐅r is in balance with the control 

force 𝐅c. Other components are carried ideally by the frictionless guide constrains. 

3.1 Equations of Motions  

The equations of motion can be derived by e.g. Lagrange equation approach II by assuming the rolling force, 

which only depends on the momentary penetration 𝛿(𝑡) and does not on the penetration speed �̇�(𝑡). In this 

manner a simple equations of motion can be derived as 

 
𝑚r�̈�1(𝑡) + 𝑐 �̇�1(𝑡) − 𝑐�̇�2(𝑡) + 𝑘𝑥1(𝑡) − 𝑘𝑥2(𝑡) = 𝐹𝑊(𝛿(𝑡)),

𝑚�̈�2(𝑡) − 𝑐�̇�1(𝑡) + 𝑐�̇�2(𝑡) − 𝑘𝑥1(𝑡) + 𝑘𝑥2(𝑡) = −𝐹c.
 (4) 

This two DoF model has a rigid body mode and a finite mode with 𝜔n,1 = 0 and 𝜔n,2 = √𝑘
𝑚+𝑚r

𝑚𝑚r
. Applying a 

real (not constant) control force 𝐅c, which would be state dependent, the first natural frequency would be 

consolidated diverting from a rigid mode. 

3.2 Simple axles rolling with overlapping 

The overlapping is caused by the constant feed 𝑓 = 𝐯𝑓𝜏. Consequently, in each revolution of the workpiece, 

there is always a primary region, where mainly plastic deformation, while in the subsequent regions elastic-

plastic deformation are working. The constant feed 𝑓 defines the width of the regions, simply 𝑏𝑙 = 𝑓 for each 

region 𝑙 = 1,… ,𝑁 − 1, where 𝑁 = ⌈𝑏/𝑓⌉. The last region has the width as 𝑏𝑁 = 𝑏 − ⌊(𝑏 − 𝜖)/𝑓⌋𝑓 (𝜖 is a 

sufficiently small number). Since, the regions on the surface moving forward, due to the constant feed multiple 

regeneration of the surface can occur. This local plastic deformation can be defined in a recursive formula, as 

𝛿p,𝑙(𝑡) = max𝑖=0
𝑙−1𝛿(𝑡 − 𝑖𝜏), for 𝑙 = 1,2,… ,𝑁. (5) 

Consequently, all possible plastic deformations during the process are originated back to one of the delayed 

state, since (2). In Figure 2c) the same train of thought is introduced as in (5) by considering all possible plastic 

and elastic-plastic states. Hence, always the minimum possible force is going to be realized connected possible 

plastic states (see 𝛿p(𝑡 − 2 𝜏) and 𝛿p(𝑡 − 4 𝜏)).  

For example, the current state δ(𝑡) in Figure 2c) causes tiny elastic specific force part related to the previous 

remained plastic deformation 𝛿p(𝑡 − 2 𝜏). All other previous plastic deformations relate to a larger force, but 

those deformations are no longer active since (5). Consequently, on the 𝑙th portion the following force arises 
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𝐹𝑊,𝑙(𝛿(𝑡)) = 𝑏𝑙min𝑖=0
𝑙−1𝑓𝑊,𝑙−𝑖 (𝛿(𝑡), 𝛿p,𝑙−𝑖−1(𝑡 − (𝑖 + 1)𝜏)), where 

𝑓𝑊,𝑙(𝛿(𝑡), 𝛿p,𝑙−1(𝑡 − 𝜏)) =

{
 
 

 
 

0, if     𝛿(𝑡) ≤ 𝛿ep,𝑙−1(𝑡 − 𝜏),

𝑓𝑊,e(𝛿(𝑡), 𝛿p,𝑙−1(𝑡 − 𝜏)),
if  𝛿ep,𝑙−1(𝑡 − 𝜏) < 𝛿(𝑡)

and    𝛿(𝑡) ≤ 𝛿p,𝑙−1(𝑡 − 𝜏),

𝑓𝑊,p(𝛿(𝑡)), otherwise.

 
(6) 

Substituting consistently (5) into (6), summing the force portions, and finally considering the same two DoF 

dynamics introduced in (4) the following convenient form can be formulated 

 
𝑚r�̈�1(𝑡) + 𝑐 �̇�1(𝑡) − 𝑐�̇�2(𝑡) + 𝑘𝑥1(𝑡) − 𝑘𝑥2(𝑡) =∑𝑏𝑙min𝑖=0

𝑙−1𝑓𝑊,𝑙−𝑖(−𝑥1(𝑡),max𝑗=0
𝑙−𝑖−2(−𝑥1(𝑡 − (𝑖 + 1 + 𝑗)𝜏))),

𝑁

𝑙=1

𝑚�̈�2(𝑡) − 𝑐�̇�1(𝑡) + 𝑐�̇�2(𝑡) − 𝑘𝑥1(𝑡) + 𝑘𝑥2(𝑡) = −𝐹c

 (7) 

The form (7) does not contain any additional state variable related to the surface. Although, it is only 

convenient for rough time domain simulations, where 'min' and 'max' functions are evaluated momentarily 

fairly easily. In accurate time domain simulation a possible switch on the 'min' and 'max' functions has to be 

located with event detection. However, one can argue that many different effect actually influences this simple 

clear mathematical framework, and it is fair to say, the rough time domain simulation should be actually closer 

to the reality with its heuristic approach. 

 

Figure 3: a) Equivalent von Mises stress at the FEM model after overlapping rolling simulation, b) reaction 

force acting on the roller as a function of the feed. 

4 Finite element modelling 

In order to improve the modelling of the specific cutting FEM is developed for cold rolling process. We 

perform single, multi and overlapped passes to achieve a general model where the effect of the parameter 

changes can be simulated. The final aim is to have simple analytical representation of the rolling force to be 

included in the dynamic description providing better results given by the simple description originated from 

[9]. In Figure 3 a sample simulation is shown where the feed (𝐯𝑓) was varied from the case when the roller 

goes exactly in its path to the one where it actually produces a helix on the workpiece. One can realize the 

obvious difference between the FEM results (Figure 3b) and the analytical description (6, 7) considering 

constant initial penetration 𝛿 = −𝑥1. 
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5 Conclusions 

The dynamic model of the axles rolling process was derived in this work. The goal of this research to reveal 

the dynamic modeling issues in this cold forming process. By introducing a simple elastic-plastic force 

characteristics the delayed differential equation (DDE) form of the steady axles rolling process is introduced. 

The algebraic condition for the momentary plastic deformation is simplified by introducing multiple constant 

delays. Consequently, the current plastic deformation is actually originated from all other previous states of 

the roller itself. Time domain simulation is shown that the process itself can loose its stability without 

considering the force control in the machine. Finite element model of the axles rolling process was presented 

that links the simple model with the reality for example pointing out the feed dependency in the overall force, 

which is clearly not modelled correctly in the simple analytical description. 

6 Acknowledgement 

The research was supported by the Hungarian National Research, Development and Innovation Office (NKFI 

FK 124361) and ASTRACOMP Project (EXP-00102217) from the Innoglobal program of the Spanish 

Ministry of Economy, Industry and Competitiveness. 

7 References 

[1] Carboni, M., 2012. "MARAXIL Project - Effect of cold-rolling onto axle life prediction", ESIS TC24 

Workshop, Milano, Italy. 

[2] Bracciali, A., 2016. “Railway wheelsets: History, research and developments. International Journal of 

Railway Technology”, 5(1), 23-52. 

[3] Walters, R. 1991. “Hydraulic and electro-hydraulic control systems”, Wembley. 

[4] Dombovari, Z., Barton, D.A., Wilson, R.E., and Stepan, G., 2010. “On the global dynamics of chatter in 

the orthogonal cuttingmodel”, International Journal of Non-Linear Mechanics, 46, 330-338. 

[5] Kiutchi, M., Yanagimoto, J., and Wakamatsu, E., 2000. “Overall thermal analysis of hot plate/sheet 

rolling”, CIRP Annals, 49(1), 209-212. 

[6] Lee, D., Nam, J., Kang, J., Chung, J., and Cho, S., 2017. “Investigation of the cause of the chatter and 

physical behavior of a work roll in compact endless rolling”, Int J Adv Manuf Technol, 94(9-12), 4459-4467. 

[7] Jiang, Y., Xu, B., and Sehitoglu, H., 2002. “Threedimensional elastic-plastic stress analysis of rolling 

contact”, Journal of Tribology, 124, 699-708. 

[8] Collins, I., 1972. “A simplified analysis of the rolling of a cylinder on a rigid/perfectly plastic half-space”, 

Int. J. mech. Sci., 14, 1-14.  

[9] Hambleton, J. and Drescher, A., 2009. “On modeling a rolling wheel in the presence of plastic deformation 

as a three- or two-dimensional process”, International Journal of Mechanical Sciences, 51(1), 846-855. 

[10] Dombovari, Z. and Stepan, G., 2015. “On the bistable zone of milling processes”, Phil. Trans. R. Soc. A, 

373(2051), 20140409. 

[11] di Bernardo, M., Budd, C., Champneys, A., and Kowalczyk, P., 2008. “Piecewise-smooth dynamical 

systems: theory and applications”, Applied Mathe-matical Sciences. 163, Springer-Verlag, London 

[12] Li, D., Zhu, Z., Xiao, S., Zhang, G., Lu, Y., 2017. “Plastic flow behavior based on thermal activation and 

dynamic constitutive equation of 25CrMo4 steel during impact compression”, Materials Science and 

Engineering: A, 707, 459-465 


