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1. Introduction 

This paper represents an intermediate state of an 
automatic modal identification tool that is able to 
extract modal behavior of a mechanical structure. 
These parameters are mandatory from vibrational 
monitoring and model developing perspective.  

During the measurements one collects the so-
called frequency response functions (FRF’s) 
between various excitation and sensing points. All 
of these functions are collected into a 3D array 
which serves as input for the fitting algorithm. The 
algorithm uses the assumption of linearity for the 
curve fitting procedure. After the fitting was 
performed the modal parameters can be determined 
and stored for evaluation of the vibrational behavior 
or used for creating hybrid finite element models 
(FEM) based on the results of experimental modal 
analysis results.  

The dynamic models based on the fitting 
algorithm are carrying the actual tested vibratory 
behaviour of the mechanical system. This results in 
a better simulation environment where the initial 
state of the system is ensured due to this 
characterization technique. 

2. Fitting algorithm 

The transfer function (TF) contains all 
information about the transient and stationary 
behavior of a given mechanical system. However, 
there is no possible way to actually measure TF. 

2.1 FRF function in modal analysis 

The FRF is a slice at s = i ω of the TF. In 
connection with this relation we identify s and ω 
being in Laplace and Fourier domain, respectively. 
Due to the multiple excitation and sensing points the 
TF can be given in the following, so-called right 
polynomial fraction form: 

 )()()( 1 sss  BAH . (1) 

The modal parameters are hidden inside the 
poles, which are the singular points of the Transfer 
function. In the fractional form this means 

 0)(det sB . (2) 

The goal is to calculate the modal parameters such 
as the natural frequency ωn and damping ratio ζ 
from s 
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where k = 1, …, N. There is one thing only the FRF 
can be measured instead of a TF, but not even all 
necessary points can be reached during a real 
industrial test. Thus only a truncated version of the 
theoretical FRF H(ω) can be measured, which 
forms a non-symmetric matrix as 

 nmCR :)( .   (4) 

Eq. (4) describes the data input for the algorithm and 
(1) describes the fitting model which was used in the 
algorithm. 

2.2 Mathematical model of the algorithm 

According to (1), the FRF can be modeled as a 
fraction of two matrices as well, here: a non-
symmetric A and symmetric matrix functions B [1]: 

 ),()()( 1   BAH  (5) 

 ,:)(,:)( nnnm CRCR    BA   

where each of the two matrices are made from 
Forsythe base polynomials Pl (ω) [2], which are 
orthogonal (avoid numerical errors) and Hermitian 
symmetric (property of a real linear system). To do 
the fitting the following error term were defined and 
minimized (A(ω):=Σl Al Pl(ω), B(ω):=Σl Bl Pl(ω)), 
as 

 )()()()(  BAE   with (6) 
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2.3 Calculation of the modal parameters 

The results of (6) are the polynomial 
coefficients. Using that and the base polynomial 
terms, so-called comrade matrix [3] can be 
constructed, which eigenvalues are approximately 
the sk’s, thus from (3) the modal parameters (ωn, ζ) 
are definable. 

2.4 Measurement results 

Putting all together, sk’s calculated with several 
fitting polynomial order, from which the modal 
parameter, in this case the “founded” 
eigenfrequencies can be calculated. Plotting these 
eigenfrequencies for every fitting order the stability 
diagram can be constructed as shown in Fig. 2. 

 
Fig. 2. Stability diagram. 

From Fig. 2. it can be seen that for several cases 
the algorithm was able to identify the proper modal 
parameters: in this case the eigenfrequencies. But 
there were certain situation where it did wrong. This 
was because the fitting process is a root (poles) 
finding method after all. Some of the roots contain 
physical meaning i.e.: describes the structure’s 
vibrational mode, others just arise with the 
mathematical nature of the method. 

 
Fig. 3. Mathemathical roots. 

Fig. 3. shows that some of the mathematical roots 
show unstable behavior already at the end of the 
fitting process. The problem is that there are 
unstable roots hidden on the stable region of the 
complex plane. This phenomena brings the 

question: how can the real, physical solutions be 
separated from the wrong, mathematical ones.  

3. Pole iteration 

One possible solution candidate could be an 
iteration process where all of the poles that was 
calculated in a certain fitting order will be iterated 
in another fitting order with the Newton-Raphson 
method. Here, the assumption was that, any physical 
roots are stable and remain stable through the 
iteration process. In the other hand the unstable 
roots may wander to the unstable region of the 
complex plane through the iteration, thus a filtering 
condition can be set up to get rid of these solutions. 

 
Fig. 4. Pole iteration. 

4. Conclusions 

The fitting process itself is not enough to create 
and automatic fitting tool, because the appearance 
of the mathematical solutions. The pole iteration 
could filter out those solutions but further tests are 
need to check whether the unstable behavior 
appears at every mathematical poles during the 
iteration process. This behavior could serve as a 
filter condition to separate the solutions.  
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