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Summary. In this work an efficient tool is presented to numerically solve stochastic delay differential equations by transforming
them to stochastic differential equations. This approach allows the use of methods originally implemented for stochastic differential
equations, while algorithms specialized to delay problems can be also be included. The convergence and stability of the numerous
solver methods are investigated through Monte-Carlo simulations for different case studies.

Introduction

In scientific computing to analyze the behavior of dynamical systems a widely used approach is to numerically integrate
the corresponding differential equation (DE). For a large number of problem classes (e.g., ordinary DEs (ODEs), delay
DEs (DDEs), stochastic ODEs (SODEs or SDEs)), there is a wide range of official integrator solutions to choose from,
both open-source and commercial [8]. However, for stochastic delay DEs (SDDEs) there exists no such solver, despite
that there are algorithms already introduced since the late 90’s [1, 5, 3] along with proof of convergence for SDDEs with
point delays.
The goal of this work is to introduce a feature rich and “easy-to-use” open source tool to solve stochastic delay differential
equations. These features include but are not limited to parallelized Monte-Carlo calculations, use of arbitrary precision
numbers or the automatic differentiation of the solution w.r.t. to the parameters of the SDDE. This solver is available as a
Julia package under the name of StochasticDelayDiffEq.jl and is part of the DifferentialEquations.jl [7] ecosystem.

Stochastic Delay Differential Equations as SODEs

Consider the Itô stochastic delay differential equation (SDDE)

dx(t) = f(x(t), xt, t)dt+ g(x(t), xt, t)dW (t), x(θ) = ϕ(θ), −τ ≤ θ ≤ 0, (1)

where f, g : Rd×C([−τ, 0) ,Rd)×R→ Rd are smooth functions, xt(θ) = x(t+θ) ∈ Rd, θ ∈ [−τ, 0) defines the state at
time t (segment of the solution),W (t) is anFt-measureable standard Wiener process and the initial state ϕ : [−τ, 0]→ Rd

is sufficiently nice and F0 measureable. Note that the present state x(t) is separated from the solution segment xt and
this study is restricted to systems with J number of point delays, namely 0 < τ1 < τ2 < . . . < τJ := τ , since
distributed delays can be approximated as point delays using e.g. shifted Dirac delta distributions [4] or via Clenshaw-
Curtis quadrature [9].
Since all values of the interval xt are available at time t, the SDDE (1) can be rewritten as a SODE:

dx(t) = f̂(x(t), t)dt+ ĝ(x(t), t)dW (t). (2)

The transformation is performed by dynamically embedding the initial ϕ and current xt states into the functions f̂ and ĝ
as a time dependent inhomogenity, namely

f̂(x(t), t) = f(x(t), φt, t), ĝ(x(t), t) = g(x(t), φt, t), (3)

where

φt(θ) =

{
ϕ(t+ θ) t+ θ ≤ 0

x(t+ θ) t+ θ > 0
. (4)

This representation is similar to the method of steps [2], however it allows uninterrupted integration (with discontinu-
ity handling) and the utilization of the solver algorithms and features of the already existing SODE ecosystem from
StochasticDiffEq.jl [6].
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Figure 1: Demonstration of the convergence of multiple methods for f(x(t), x(t − 1), t) = x(t) − sin(x(t− 1)),
g(x(t), x(t− 1), t) = sin(x(t)) and ϕ(t) = t− 1. The sample trajectories in a) are calculated with the Euler-Maruyama
method using multiple time resolutions h, and with delay τ = 1, while the trajectories are integrated up to time T = 4.
For the convergence plots in b) the `T measure is used, defined in Eq. (7).

Convergence tests

As an example, if the general SDDE (1) has a single point delay it can be rewritten in the form

dx(t) = f(x(t), x(t− τ), t)dt+ g(x(t), x(t− τ), t)dW (t). (5)

If the Euler-Maruyama method is chosen from the package as the integrator algorithm with time step h = τ/Nh, where
Nh ∈ N+, the approximation of the value xn+1 ≈ x(tn+1 = (n+ 1)h) inherently reduces to:

xn+1 = xn + f(xn, xn−Nh
, tn)h+ g(xn, xn−Nh

, tn) ξn
√
h, ξn ∼ N (0, 1), (6)

which is shown to be convergent to the solution of (5) in [1]. The presented solver package can help to show the strong
and weak convergence of other methods from the StochasticDiffEq.jl as well as newly created methods for SDDEs. Some
examples are shown in Fig. 1, where numerical Monte-Carlo experiments were used to approximate the convergence of
the solution at the final time point T by studying

`T (h) = E
(∥∥xh(T )− xhref(T )

∥∥
2

)
, (7)

where xh is the solution of the SDDE (1) approximated with time resolution h and href = 2−15 is the reference time
resolution.
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