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A B S T R A C T

The prediction of chatter-free machining parameters is not reliable for industrial applications without guaran-
teed robustness against modeling uncertainties. Measurement inaccuracies, fitting uncertainties, simplifications
and modeling errors typically lead to a mismatch between the mathematical model and the real physical
system. This paper presents the robust stability analysis of milling operations based on a pseudospectral
approach to take into account the effect of bounded parametric uncertainties both in the cutting coefficients
and in the modal parameters. In order to make the predictions more accurate, the operational modal analysis
of the spindle during rotation was conducted. The natural frequencies and damping ratios of the dominant
vibration modes were identified from the impact tests of the rotating tool at different spindle speeds. The
uncertainties of the fitted parameters were included in the computation of the pseudospectral radius of the
monodromy operator of the time-periodic system. The solver is tested in a case study and experimental chatter
tests are also included for demonstration purposes.

1. Introduction

The continuously increasing demand for competitive, fast, high-
quality and economical production forces the manufacturing industry
to push the operational conditions of machines to their limit. However,
after a certain point often quality and reliability decreases, while
deterioration and costs increase. In material removal processes, such
as milling, turning, grinding, or drilling, one of the most destruc-
tive phenomenon that limits productivity the most is machine tool
vibration [1].

The first mathematical equations describing the evolution of unsta-
ble vibrations appeared in the work of Tobias [2] and Tlusty [3] in
the 1950s and 1960s, although the importance of the phenomenon was
already recognized by Taylor at the beginning of the 20th century [4].
Their observations laid down the fundamentals of the so-called surface
regeneration effect, which became the most widely accepted explana-
tion for machine tool vibration. The geometry of the chip is modified
by the relative motion between the tool and workpiece, which induces
variation in the cutting force. The vibrations in the past are embedded
in the surface of the workpiece, which affects every subsequent cut
by the modified geometry of the chip that depends on present and
past states, too. Dependencies on past events in dynamical models are
described by delay-differential equations (DDEs). When the stationary
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solution of the DDE loses stability, the amplitude of vibration increases
until the physical contact between the workpiece and the tool is lost.
This large-amplitude self-excited vibration is called chatter.

A milling operation is an intermittent cutting process, where the
chip geometry varies periodically at every tooth-passing interval. The
surface regeneration couples with parametric excitation and results in
a DDE with periodically varying coefficients, also called time-periodic
delay-differential equation (TPDDE). The stationary solution in a stable
operation is periodic (at most with the spindle revolution period),
which can undergo secondary Hopf or period doubling bifurcations [5]
as the machining parameters change.

The harmful unstable vibrations must be avoided during the op-
eration in order to reach the required quality and maximize the pro-
duction. The highest performance of machining centers, however, can
only be reached if the machine is safely operated at high speeds
close to stability boundaries. These conditions require a reliable and
accurate prediction of dynamical behavior. The domain of chatter-free
machining parameters are visualized by the so-called stability lobe
diagrams. Nevertheless, deterministic models considered during calcu-
lations often fail to accurately predict dynamical behavior and therefore
experimental cutting tests do not always match the expectations. One
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of the reason is the uncertainties in the dynamical model that affect the
prediction of chatter-free machining parameters.

The need for reliable predictions considering variations in ma-
chining and dynamical parameters was already recognized by the
engineering community, and many attempts were made to construct
such stability lobe diagrams that take the effect of modeling errors
into account. These diagrams are referred to as robust stability lobe
diagrams, where the domain of robust stable machining parameters
can retain the stability if bounded uncertainties in the model arise. In
the simplest case, Monte Carlo simulations and statistical evaluations
were performed in [6,7], which require significant computational effort
and therefore their practical application without major improvements
is limited. The advantage of these methods, however, is the statistical
data provided after a large amount of computations. To obtain sim-
ilar results without huge computational efforts, research papers also
provide local sensitivity methods, e.g. [8–10], that are based on local
derivatives (sensitivity) and extrapolations. A global sensitivity method
is presented in [11], which approximates a multi-dimensional integral
of the probability density function (PDF) by separated one-dimensional
integrals. The Robust Chatter Prediction Method (RCPM) presented
in [12] is also an alternative method for global analysis, which is based
on the discretization of the PDF.

Robust methods, where the worst-case perturbations are sought,
were also used in the literature. For instance, the Edge Theorem com-
bined with the Zero Exclusion Principle presented in [13] provides
robust stability boundaries for time-invariant models, but the compu-
tational effort is often large. A different robust method called Multi-
frequency Solution with Structured Singular Value Analysis is based
on the direct perturbation of the measured frequency response func-
tions (FRFs), where parameter perturbations are replaced by FRF per-
turbations, see [14]. In this latter case the computational effort is
significantly reduced, but the prediction can be very conservative.

This paper presents the application of a pseudospectral approach
that considers uncertainties in the dynamical parameters of milling
operations and provides robust stable machining domains to exploit
the highest productivity. The method is based on an iterative solver,
that computes the worst-case uncertainty and therefore no conserva-
tiveness is introduced. In order to make the computations effective,
the calculation of the characteristic multipliers (Floquet multipliers)
of the time-periodic DDE is carried out by discretizing the eigenvalue
problem of the monodromy operator into a generalized eigenvalue
problem (GEP), using a spectral method. The iterations converge to a
local maximizer of the pseudospectral radius in the space of allowable
perturbations. However, global optimality is achieved by incorporating
a restarting strategy, where several dominant Floquet multipliers of
the original system are used to initialize the iteration. The related
problem of computing the globally rightmost point of pseudospectra
of time-invariant systems is addressed in [15].

The paper is structured as follows. In Section 2 the dynamical model
of milling operations is presented, then the stability of time-periodic
DDEs is investigated in Section 3 by introducing the new formalism.
The pseudospectral approach to access robust stability is detailed in
Section 4. A case study to test the computation of robust boundaries
along with experimental chatter tests are presented in Section 5. The
calculated stability boundaries are compared to a structured singular
value analysis in Section 6. The conclusions are presented in Section 7.

2. Modeling of milling operations

A regular cutting tool with uniform helix angle is presented in
Fig. 1(a). The equation of motion of the tool-tip subjected to time-
dependent forcing can be described in the modal space by introducing
the vector of the modal coordinates 𝐪(𝑡) ∈ R𝑑 . In case of propor-
tional damping models, the eigenmodes of the system are real and the
equation can be transformed into the form

�̈�(𝑡) + [2𝜁𝑙𝜔n,𝑙]�̇�(𝑡) + [𝜔2
n,𝑙]𝐪(𝑡) = 𝐔⊤𝐅

(

𝑡, 𝐫(𝑡), 𝐫(𝑡 − 𝜏)
)

, (1)

Fig. 1. Dynamical model of milling in case of regular cutting tools with diameter 𝐷,
helix angle 𝛾 = 45◦, 𝑍𝑡 = 4 cutting edges and depth of cut 𝑎p. (a) Three-dimensional
model; (b) Cutting forces acting on an elementary disk of width d𝑧.

where 𝐅(𝑡, ⋅) ∈ R2 is the forcing vector at the tool-tip in the (𝑥, 𝑦)-plane,
𝑑 is the modeled number of degrees of freedom, [⋅] = diag(⋅) ∈ R𝑑×𝑑 are
diagonal matrices, 𝜔n,𝑙 is the 𝑙th natural angular frequency (𝑙 = 1,… , 𝑑),
𝜁𝑙 is the corresponding relative damping ratio, 𝐫(𝑡) = [𝑥(𝑡), 𝑦(𝑡)]⊤ denotes
the displacement of the tool-tip in the (𝑥, 𝑦)-plane and 𝐔 ∈ R2×𝑑 is the
modal transformation matrix that connects the modal space and the
tool-tip’s motion as 𝐫(𝑡) = 𝐔𝐪(𝑡) [16].

The cutting force acting at the tool-tip is described by empirical
force models, that highly depend on the tool geometry and material
properties. Next, for sake of brevity, regular cutting tools with 𝑍𝑡
number of equally distributed cutting edges and with uniform helix
angle 𝛾 are modeled. Thus, the angular position of the 𝑗th cutting edge
(𝑗 = 1,… , 𝑍𝑡) along the axial direction reads

𝜑𝑗 (𝑡, 𝑧) = 𝛺 2𝜋
60

𝑡 + 2𝜋
𝑍𝑡

𝑗 −
2 tan 𝛾
𝐷

𝑧, (2)

where 𝑧 is the coordinate along the axial immersion and 𝛺 is the spindle
speed given in rpm. The cross-section of the cutter is presented in
Fig. 1(b). The elementary cutting-force components in tangential and
radial directions acting on tooth 𝑗 at a disk element of width d𝑧 are
given as

d𝐹𝑗,𝑐 (𝑡, 𝑧) = 𝑔𝑗 (𝑡, 𝑧)𝐾𝑐ℎ
(

ℎ𝑗 (𝑡, 𝑧)
)

d𝑧, (3)

d𝐹𝑗,𝑛(𝑡, 𝑧) = 𝑔𝑗 (𝑡, 𝑧)𝐾𝑛ℎ
(

ℎ𝑗 (𝑡, 𝑧)
)

d𝑧, (4)

where ℎ𝑗 (𝑡, 𝑧) is the theoretical chip thickness cut by tooth 𝑗 at axial
immersion 𝑧, moreover 𝐾𝑐ℎ(ℎ) and 𝐾𝑛ℎ(ℎ) are the empirical cutting
force characteristics assumed in the shifted linear form

𝐾𝑐ℎ(ℎ) = 𝑘𝑐𝑝 + 𝑘𝑐𝑠ℎ, (5)

𝐾𝑛ℎ(ℎ) = 𝑘𝑛𝑝 + 𝑘𝑛𝑠ℎ, (6)

where 𝑘𝑐𝑝 and 𝑘𝑐𝑠 are cutting coefficients in the main direction (tan-
gential), and 𝑘𝑛𝑝 and 𝑘𝑛𝑠 are cutting coefficients in radial direction
according to the Shearing & Ploughing (S&P) cutting force model [17].
The indicator function 𝑔𝑗 (𝑡, 𝑧) is a piecewise constant function, which
gives whether the cutting edge is in contact with the material or not.
𝑔𝑗 (𝑡) can be written as

𝑔𝑗 (𝑡, 𝑧) =

{

1, if 𝜑en <
(

𝜑𝑗 (𝑡, 𝑧)mod 2𝜋
)

< 𝜑ex,
0, otherwise,

(7)

where 𝜑en is the angle where the elementary disk starts cutting and 𝜑ex
is the angular position where it leaves the workpiece, see Fig. 1(b). The
actual chip thickness cut by tooth 𝑗 at axial immersion 𝑧 then can be
calculated approximately as

ℎ𝑗 (𝑡, 𝑧) ≈
[

sin𝜑𝑗 (𝑡, 𝑧)
cos𝜑𝑗 (𝑡, 𝑧)

]⊤
(

𝐟𝑧 + 𝐫(𝑡) − 𝐫(𝑡 − 𝜏)
)

, (8)
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Fig. 2. Discretization of 𝐱(𝑡) at the Chebyshev points over the domain [−𝜏, 𝑇 ].

where 𝐟𝑧 = [𝑓𝑧, 0]⊤ is the feed per tooth in direction 𝑥, and the time-
delay (equal to the tooth-passing period) in case of equally distributed
cutting edges is 𝜏 = 60∕(𝑍𝑡𝛺). The resultant cutting force vector in the
(𝑥, 𝑦)-plane concentrated theoretically at the tool-tip is calculated as

𝐅(𝑡, ⋅) = −
𝑍𝑡
∑

𝑗=1
∫

𝑎p

0
𝐓𝑗 (𝑡, 𝑧)

[

𝐾𝑐ℎ
(

ℎ𝑗 (𝑡, 𝑧)
)

𝐾𝑛ℎ
(

ℎ𝑗 (𝑡, 𝑧)
)

]

𝑔𝑗 (𝑡, 𝑧)d𝑧, (9)

where the transformation matrix is written as

𝐓𝑗 (𝑡, 𝑧) =
[

cos𝜑𝑗 (𝑡, 𝑧) sin𝜑𝑗 (𝑡, 𝑧)
− sin𝜑𝑗 (𝑡, 𝑧) cos𝜑𝑗 (𝑡, 𝑧)

]

. (10)

Inserting the regenerative forcing model into the governing equa-
tion, then assuming small perturbation 𝜺(𝑡) about the periodic motion
𝐪p(𝑡) of the stationary cutting, i.e., 𝐪(𝑡) = 𝐪p(𝑡)+𝜺(𝑡), the equation of the
variational system omitting the periodic term is written as

�̈�(𝑡) + [2𝜁𝑙𝜔n,𝑙]�̇�(𝑡) + [𝜔2
n,𝑙]𝜺(𝑡) = 𝐔⊤𝐐(𝑡)𝐔

(

𝜺(𝑡) − 𝜺(𝑡 − 𝜏)
)

, (11)

where the directional matrix 𝐐(𝑡) = 𝐐(𝑡 + 𝜏) is introduced as

𝐐(𝑡) = 𝜕𝐅
𝜕𝐫(𝑡)

(

𝑡, 𝐫p(𝑡), 𝐫p(𝑡 − 𝜏)
)

=

−
𝑍𝑡
∑

𝑗=1
∫

𝑎p

0
𝐓𝑗 (𝑡, 𝑧)

[

𝑘𝑐𝑠
𝑘𝑛𝑠

](

sin𝜑𝑗 (𝑡, 𝑧)
cos𝜑𝑗 (𝑡, 𝑧)

)⊤

𝑔𝑗 (𝑡, 𝑧)d𝑧, (12)

where the dependency on 𝑔𝑗 (𝑡, 𝑧) for 𝑗 = 1,… , 𝑍𝑡 make 𝐐(𝑡) discontin-
uous, but piecewise smooth, see [18]. The time-periodic DDE (11) can
be rewritten into a first-order form
[

�̇�(𝑡)
�̈�(𝑡)

]

=

[

𝟎𝑑 𝐈𝑑
−[𝜔2

n,𝑙] + 𝐔⊤𝐐(𝑡)𝐔 −[2𝜁𝑙𝜔n,𝑙]

]

[

𝜺(𝑡)
�̇�(𝑡)

]

+

[

𝟎𝑑 𝟎𝑑
−𝐔⊤𝐐(𝑡)𝐔 𝟎𝑑

] [

𝜺(𝑡 − 𝜏)
�̇�(𝑡 − 𝜏)

]

. (13)

where 𝐈𝑑 is the 𝑑 × 𝑑 identity matrix and 𝟎𝑑 is the 𝑑 × 𝑑 zero matrix.

3. Stability of time-periodic time-delay systems

We observe that the governing equation (13) is of the form

�̇�(𝑡) = 𝐀(𝑡)𝐱(𝑡) + 𝐁(𝑡)𝐱(𝑡 − 𝜏), (14)

where 𝐱(𝑡) ∈ R𝑛 is the vector of state variables at time 𝑡, and 𝐀, 𝐁 are
R𝑛×𝑛-valued periodic functions with main period 𝑇 = 𝜏. In the present
and in the following section we briefly illustrate a novel pseudospectral
approach to assess the stability robustness of a system of time-periodic
DDEs, which was introduced in a more general form in [19]. In this
manuscript we adapt the description to systems of the form (14). We
first explain the adopted approach for general matrix-valued functions
𝐀 and 𝐁. At the end of the section, we explain how the method can
be improved by exploiting the property that the coefficients in (13) are
piecewise smooth functions.

The solution of the infinite-dimensional time-delay system governed
by (14) depends on the time history of 𝐱(𝑡), therefore an initial function

is required to determine the evolution of states in time. In order to
generalize the notation, let  = ([−𝜏, 0],C𝑛) be the space of continuous
functions on the interval 𝐼 = [−𝜏, 0] and let us introduce the notation
𝐱𝑡 ∶= 𝐱(𝑡 + 𝜗), 𝜗 ∈ [−𝜏, 0] in order to denote the solution segment over
the interval [𝑡 − 𝜏, 𝑡]. The Cauchy problem associated with the system
(14) is written as
{

�̇�(𝑡) = 𝐀(𝑡)𝐱(𝑡) + 𝐁(𝑡)𝐱(𝑡 − 𝜏), 𝑡 > 𝑡0,
𝐱(𝑡0 + 𝜗) = 𝐱𝑡0 , 𝜗 ∈ [−𝜏, 0],

(15)

with 𝐱𝑡0 ∈  being the initial function. The solution segment of the
system at any time 𝑡 associated with the initial function 𝐱𝑡0 is described
by the evolution operator  (𝑡, 𝑡0) ∶  → , defined through the
relation

𝐱𝑡 =  (𝑡, 𝑡0)𝐱𝑡0 . (16)

The asymptotic stability of the trivial solution 𝐱(𝑡) ≡ 𝟎 of (14)
is determined by the spectral properties of the monodromy operator
 ∶=  (𝑇 , 0) (setting 𝑡0 = 0), as it is proven by the Floquet theory [20].
The nonzero elements of the spectrum of  are called characteristic
multipliers (or Floquet multipliers) and can also be defined by

Ker(𝜇 −) ≠ {𝟎}, 𝜇 ≠ 0, (17)

with  being the identity operator. Any 𝜇 ∈ C, 𝜇 ≠ 0 is a Floquet
multiplier if and only if there exists an eigenfunction 𝝋 ∈ , 𝝋 ≠ 𝟎,
such that

 (𝑡 + 𝑇 , 0)𝝋 = 𝜇 (𝑡, 0)𝝋, for all 𝑡 ≥ 0. (18)

In general, there are no explicit expressions for the evolution op-
erator and the characteristic multipliers. However, several numeri-
cal methods exist for approximating the operator and the multipli-
ers. As examples, interested readers are referred to numerical meth-
ods such as the Semi-discretization technique [5], the Spectral Ele-
ment Method [21,22], Chebyshev polynomial-based collocation meth-
ods [23,24] or the Improved Chebyshev Collocation Method [17], just
to mention a few. In order to provide a technique amendable for the
adopted pseudospectra-based approach towards uncertainty, a different
Chebyshev polynomial-based approach is presented: as we will see, the
Floquet multipliers are computed as the eigenvalues of a generalized
eigenvalue problem which preserves linearity w.r.t. the entries of the
nominal matrices 𝐀 and 𝐁.

For systems like (14), where 𝑇 = 𝜏, the proposed approach approx-
imates the solution 𝐱 on the interval [−𝜏, 𝑇 ] by a piecewise polynomial
𝐩 in the form

𝐱(𝑡) ≈ 𝐩(𝑡) =
2
∑

𝑗=1
𝐩𝑗 (𝑡)𝐼𝑗 (𝑡), (19)

where 𝐼𝑗 (𝑡) is the indicator function of the interval 𝐼𝑗 (1 if 𝑡 ∈ 𝐼𝑗 , and
0 otherwise), and where 𝐼2 = [−𝜏, 0], 𝐼1 = [0, 𝑇 ], as it is seen in Fig. 2.
We consider the mesh {𝛼𝑙}𝑀+1

𝑙=1 of Chebyshev-distributed points on the
interval [−1, 1]

𝛼𝑙 = −cos
( 𝜋𝑙
𝑀 + 1

)

, 𝑙 = 1,… ,𝑀 + 1, (20)

𝑀 + 1 is the number of Chebyshev-distributed points, from which we
can define the mesh {𝑡(𝑗)𝑙 }𝑀+1

𝑙=1 on any 𝐼𝑗 = [𝑎𝑗 , 𝑏𝑗 ] (and viceversa) by
using the following transformations

𝑡(𝑗)𝑙 ∶= 1
2
(

𝑎𝑗 + 𝑏𝑗
)

+
𝛼𝑙
2
(

𝑏𝑗 − 𝑎𝑗
)

, 𝑡(𝑗)𝑙 ∈ 𝐼𝑗 ,

𝛼𝑙 =𝑤𝑗
(

𝑡(𝑗)𝑙
)

=
(

𝑡(𝑗)𝑙 − 1
2
(

𝑎𝑗 + 𝑏𝑗
)

) 2
𝑏𝑗 − 𝑎𝑗

.
(21)

The solution is approximated on each interval based on a linear
combination of Chebyshev polynomials (𝑇𝑠) of the first kind with
degree 𝑠 as

𝐩𝑗 (𝑡) =
𝑀
∑

𝑠=0
𝐜(𝑗)𝑠 𝑇𝑠

(

𝑤𝑗 (𝑡)
)

, (22)
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and 𝐜(𝑗)𝑠 ∈ C𝑛 are the coefficients to be determined. In order to formulate
the solution in terms of the polynomials, the following conditions are
imposed:

• Collocation constraint for (18) for 𝑙 = 1,… ,𝑀 + 1

𝜇
𝑀
∑

𝑠=0
𝐜(2)𝑠 𝑇𝑠(𝛼𝑙) −

𝑀
∑

𝑠=0
𝐜(1)𝑠 𝑇𝑠(𝛼𝑙) = 𝟎. (23)

• Continuity in 𝑡 = 0 gives 𝐩2(0) = 𝐩1(0), i.e.,

−
𝑀
∑

𝑠=0
𝐜(1)𝑠 𝑇𝑠(−1) +

𝑀
∑

𝑠=0
𝐜(2)𝑠 𝑇𝑠(1) = 𝟎. (24)

• Collocation constraint for the TPDDE (14) gives

�̇�(𝑡(1)𝑙 ) = 𝐀(𝑡(1)𝑙 )𝐩(𝑡(1)𝑙 ) + 𝐁(𝑡(1)𝑙 )𝐩(𝑡(1)𝑙 − 𝜏), (25)

for 𝑙 = 1,… ,𝑀 + 1, which using (22) gives
𝑀
∑

𝑠=1
𝐜(1)𝑠

2
𝑇
𝑠𝑈𝑠−1(𝑤1(𝑡

(1)
𝑙 )) −

𝑀
∑

𝑠=0
𝐀(𝑡(1)𝑙 )𝐜(1)𝑠 𝑇𝑠(𝑤1(𝑡

(1)
𝑙 ))+

−
𝑀
∑

𝑠=0
𝐁(𝑡(1)𝑙 )𝐜(2)𝑠 𝑇𝑠(𝑤2(𝑡

(2)
𝑙 )) =

𝑀
∑

𝑠=1
𝐜(1)𝑠

2
𝑇
𝑠𝑈𝑠−1(𝛼𝑙) −

𝑀
∑

𝑠=0
𝐀(𝑡(1)𝑙 )𝐜(1)𝑠 𝑇𝑠(𝛼𝑙)+

−
𝑀
∑

𝑠=0
𝐁(𝑡(1)𝑙 )𝐜(2)𝑠 𝑇𝑠(𝛼𝑙) = 𝟎

(26)

for all 𝑙 = 1,… ,𝑀 . Here, we have applied the fact that 𝑤′(𝑡(1)𝑙 ) =
2∕𝑇 and �̇�𝑠(𝑡) = 𝑠𝑈𝑠−1(𝑡), where 𝑈𝑠(𝑡) is the Chebyshev polynomial
of the second kind of degree 𝑠.

The conditions above result a generalized eigenvalue problem in the
form

(𝐒 − 𝐑𝜇)𝐂 = 𝟎, (27)

where 𝐂 = [𝐜(2)0 ,… , 𝐜(2)𝑀 , 𝐜(1)0 ,… , 𝐜(1)𝑀 ]⊤ ∈ C2𝑛(𝑀+1) and 𝐑,𝐒 ∈
R2𝑛(𝑀+1)×2𝑛(𝑀+1). The coefficient matrices in (27) can be expressed as
follows

𝐑 =
[

𝐑11 𝟎
𝟎 𝟎

]

, 𝐒 =
[

𝟎 𝐒12
𝐒21 𝐒22

]

, (28)

where

𝐑11 = 𝐒12 =
⎡

⎢

⎢

⎣

𝑇0(𝛼1)𝐈𝑛 ⋯ 𝑇𝑀 (𝛼1)𝐈𝑛
⋮ ⋱ ⋮

𝑇0(𝛼𝑀+1)𝐈𝑛 ⋯ 𝑇𝑀 (𝛼𝑀+1)𝐈𝑛

⎤

⎥

⎥

⎦

, (29)

𝐒21 = −

⎡

⎢

⎢

⎢

⎢

⎣

𝐁(𝑡(1)1 )𝑇0(𝛼1)𝐈𝑛 ⋯ 𝐁(𝑡(1)1 )𝑇𝑀 (𝛼1)𝐈𝑛
⋮ ⋱ ⋮

𝐁(𝑡(1)𝑀 )𝑇0(𝛼𝑀 )𝐈𝑛 ⋯ 𝐁(𝑡(1)𝑀 )𝑇𝑀 (𝛼𝑀 )𝐈𝑛
𝑇0(1)𝐈𝑛 ⋯ 𝑇𝑀 (1)𝐈𝑛

⎤

⎥

⎥

⎥

⎥

⎦

, (30)

𝐒22 =

⎡

⎢

⎢

⎢

⎢

⎣

𝟎𝑛
2
𝑇 𝑈0(𝛼1)𝐈𝑛 ⋯ 𝑀 2

𝑇 𝑈𝑀−1(𝛼1)𝐈𝑛
⋮ ⋮ ⋱ ⋮
𝟎𝑛

2
𝑇 𝑈0(𝛼𝑀 )𝐈𝑛 ⋯ 𝑀 2

𝑇 𝑈𝑀−1(𝛼𝑀 )𝐈𝑛
𝟎𝑛 𝟎𝑛 ⋯ 𝟎𝑛

⎤

⎥

⎥

⎥

⎥

⎦

−

⎡

⎢

⎢

⎢

⎢

⎣

𝐀(𝑡(1)1 )𝑇0(𝛼1)𝐈𝑛 ⋯ 𝐀(𝑡(1)1 )𝑇𝑀 (𝛼1)𝐈𝑛
⋮ ⋱ ⋮

𝐀(𝑡(1)𝑀 )𝑇0(𝛼𝑀 )𝐈𝑛 ⋯ 𝐀(𝑡(1)𝑀 )𝑇𝑀 (𝛼𝑀 )𝐈𝑛
−𝑇0(−1)𝐈𝑛 ⋯ −𝑇𝑀 (−1)𝐈𝑛

⎤

⎥

⎥

⎥

⎥

⎦

,

(31)

When 𝐀 and 𝐁 are smooth functions, the solutions emanating from
an eigenfunction are smooth on [−𝜏, 0] and [0, 𝑇 ]; hence, they can be
well approximated by polynomials on each of these intervals, ensuring
spectral convergence of the eigenvalue approximations as a function

of the degree 𝑀 . However, if 𝐀 and 𝐁 are only piecewise smooth, as
might be the case for (13), the discontinuities in 𝐀 and 𝐁 impact the
smoothness of the solutions and negatively affect the convergence rate
of polynomial approximations. However, this problem can be overcome
by a choice of piecewise polynomial consistent with the location of the
discontinuities, while at the intersections only continuity is imposed.
We refer the reader interested in a more detailed description on interval
splitting to [19,22] or [24].

4. Pseudospectral method for robust analysis

In this section we assume that the generic system of time-periodic
DDEs (14) is affected by a set of real-valued scalar uncertainties, that
result the perturbed equation in the form

�̇�(𝑡) =
(

𝐀(𝑡) +
𝐾
∑

𝑘=1
𝐃0𝑘(𝑡)𝛥𝑘𝐄⊤

0𝑘(𝑡)
)

𝐱(𝑡)+

(

𝐁(𝑡) +
𝐾
∑

𝑘=1
𝐃1𝑘(𝑡)𝛥𝑘𝐄⊤

1𝑘(𝑡)
)

𝐱(𝑡 − 𝜏), (32)

where 𝛥𝑘 ∈ R, 𝑘 = 1,… , 𝐾, are the uncertainties, and 𝐃𝑖𝑘(𝑡), 𝐄𝑖𝑘(𝑡) ∈ R𝑛

(𝑖 = 0, 1, 𝑘 = 1,… , 𝐾) are time-periodic scaling matrices defining the
structure and the weight of each uncertainty 𝛥𝑘 (this will be clarified
in the numerical experiments). We indicate each vector of uncertainties
with the compact notation 𝜟 = [𝛥1,… , 𝛥𝐾 ]⊤ ∈ R𝐾 . In addition, we
set an upper bound equal to 1 on the absolute value of each 𝛥𝑘,
i.e., |𝛥𝑘| ≤ 1 for 𝑘 = 1,… , 𝐾: observe that this can be done without
losing of generality, since we can assign different weights to each
uncertainty using the scaling matrix-valued functions 𝐃𝑖𝑘, 𝐄𝑖𝑘. For the
more complex case of matrix-valued uncertainties 𝜟𝑘 we refer again the
reader to [19].

Each uncertainty 𝛥𝑘 perturbing the time-periodic matrix 𝐀 or 𝐁
necessarily affects the collocation constraints for the TPDDE defined in
(26) for 𝑙 = 1,… ,𝑀 + 1: thus we redefine the generalized eigenvalue
problem corresponding to (27) as

𝐹 (𝜇;𝜟)𝐂 ∶=
(

(

𝐒 +
𝐾
∑

𝑘=1
𝛿𝐒(𝑘)

)

− 𝐑𝜇
)

𝐂 = 𝟎, (33)

where 𝛿𝐒(𝑘) indicates the perturbation of 𝐒 induced by parametric
uncertainty 𝛥𝑘. The construction of the perturbation matrix is given
in Appendix.

In order to analyze the worst-case scenario for this class of per-
turbations we look for the Floquet pseudospectral radius 𝜇𝐿, i.e., the
eigenvalue with largest modulus that the perturbed generalized eigen-
value problem (33) can attain. If the Floquet pseudospectral radius has
modulus less than one, then we are guaranteed that the zero solution of
(32) is asymptotically stable despite the uncertainties. Hence, the Flo-
quet pseudospectral radius allows to assess the stability robustness. The
worst-case analysis is performed by applying a (projected) gradient-
ascent method in the space of uncertainties, thereby optimizing the
modulus of the dominant Floquet multiplier: this approach is concep-
tually similar to the state-of-the-art approach [15,25] in the worst-case
analysis of time-invariant functional-differential equations, where the
rightmost eigenvalue generated by a class of bounded perturbations is
maximized.

To compute the Floquet pseudospectral radius we solve the opti-
mization problem

max |𝜇𝐷|
s.t. 𝜟 ∈ R𝐾 , |𝛥𝑘| ≤ 1, for each 𝑘 = 1,… , 𝐾,

(34)

where 𝜇𝐷 is the dominant eigenvalue of perturbed problem

𝐹 (𝜇;𝜟)𝐯 = 𝟎, for some 𝐯 ∈ C2𝑛(𝑀+1). (35)

This problem can be solved by simply using a projected gradient
method in the space of 1-bounded perturbations 𝜟: in the following
we first construct the gradient of the dominant eigenvalue 𝜇𝐷 of the
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perturbed generalized eigenvalue problem (33) w.r.t. to uncertainties
𝛥𝑘. Let 𝐮, 𝐯 ∈ C2𝑛(𝑀+1) be the left and the right eigenvector of 𝜇𝐷 with
unit norms and such that 𝜉 ∶= 𝐮∗𝐑𝐯 > 0, where 𝐮∗ is the complex
conjugate of 𝐮. The derivative of |𝜇𝐷|2 w.r.t. 𝛥𝑘 as follows

𝐺𝑘 ∶=
𝜕|𝜇𝐷|

2

𝜕𝛥𝑘
= 2R

(

𝜇∗
𝐷
𝜕𝜇𝐷
𝜕𝛥𝑘

)

= 2
𝜉
R

(

𝜇∗
𝐷𝐮

∗ 𝜕𝛿𝐒(𝑘)
𝜕𝛥𝑘

𝐯
)

, (36)

for 𝑘 = 1,… , 𝐾. Note, that 𝛿𝐒(𝑘) depends affinely on the uncertainty
𝛥𝑘, and therefore 𝜕𝛿𝐒(𝑘)∕𝜕𝛥𝑘 is a (sparse) matrix, which does not
change during the iterations. Therefore the calculation of 𝐺𝑘 in (36) is
numerically efficient. A fast way to compute 𝐺𝑘 is given in Appendix.
We can now use a (projected) gradient method to solve the optimization
problem (34) using the following fundamental step at each iteration 𝓁

𝛥(𝓁+1)
𝑘 = 𝛥(𝓁)

𝑘 + 𝛾𝓁𝑃
(𝓁)
𝑘 , 𝑘 = 1,… , 𝐾, (37)

where 𝛾𝓁 is the stepsize at iteration 𝓁 and 𝑃 (𝓁)
𝑘 is the ascent direction

defined as follows

𝑃 (𝓁)
𝑘 =

{

0, if |𝛥(𝓁)
𝑘 | = 1, sign(𝐺(𝓁)

𝑘 𝛥(𝓁)
𝑘 ) > 0,

𝐺(𝓁)
𝑘 , otherwise,

(38)

where 𝐺(𝓁)
𝑘 is the derivative of the largest eigenvalue of the generalized

eigenvalue problem (33) perturbed with uncertainties 𝛥(𝓁)
𝑘 . Observe

that 𝑃 (𝓁)
𝑘 is the projection of the derivative 𝐺(𝓁)

𝑘 on the feasible set,
which is needed to avoid the violation of the norm constraint.

4.1. Implementation

We here provide some more technical details about the implementa-
tion of the described method: the algorithm is stopped at some iteration
𝓁 such that the norm of the (projected) derivative 𝑃 (𝓁)

𝑘 is below a
prescribed tolerance for 𝑘 = 1,… , 𝐾; of course, being a gradient ascent
method, this algorithm is not guaranteed to converge globally rather
than locally. Sticking to the state of the art (see [25,26]), including the
following strategies in order to compute the globally dominant Floquet
multiplier has proved to be effective:

• The adaptive stepsize guarantees the monotonicity of the itera-
tions: at each step 𝓁, the initial step 𝛾𝓁−1 is reduced by a scaling
factor 2 until monotonicity is guaranteed; vice versa, if 𝛾𝓁−1
already guarantees monotonicity, an extra computation with a
doubled stepsize is carried out: the stepsize 𝛾𝓁 that guarantees
the largest eigenvalue is then adopted.

• The restarting strategy: the method is run multiple times, each
time initializing 𝛥(0)

𝑘 , 𝑘 = 1,… , 𝐾, from the left and right eigenvec-
tors (see [15] for the details) corresponding to several dominant
eigenvalues of the unperturbed problem.

4.2. Extension to modal parameter uncertainties

The application of the pseudospectral method relies on a numeri-
cally efficient computation of the gradient in (36). In order to apply
the strategies discussed in this paper, we need the governing equation
(including the perturbations) to be represented in the form of (32).
In order to make the method easily applicable to system (13), we
introduce a transformation in this subsection.

The modal parameters 𝜔n,𝑙 and 𝜁𝑙 (and their uncertainty) show up
nonlinearly in the system (13), however, the latter can be transformed
to a linear form by introducing a slack variable 𝒗(𝑡) = [𝜔n,𝑙]𝜺(𝑡), and
increasing the dimension of the state vector. Then, the linearity is

established and the system reads as follows

∶= 𝐋
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
⎡

⎢

⎢

⎣

𝟎𝑑 𝟎𝑑 𝟎𝑑
𝐈𝑑 𝟎𝑑 𝟎𝑑
𝟎𝑑 𝐈𝑑 [2𝜁𝑙]

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

�̇�(𝑡)
�̈�(𝑡)
�̇�(𝑡)

⎤

⎥

⎥

⎦

=

= 𝐀(𝑡)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
⎡

⎢

⎢

⎣

[𝜔n,𝑙] 𝟎𝑑 −𝐈𝑑
𝟎𝑑 𝐈𝑑 𝟎𝑑

𝐔⊤𝐐(𝑡)𝐔 𝟎𝑑 −[𝜔n,𝑙]

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝜺(𝑡)
�̇�(𝑡)
𝒗(𝑡)

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

𝟎𝑑 𝟎𝑑 𝟎𝑑
𝟎𝑑 𝟎𝑑 𝟎𝑑

−𝐔⊤𝐐(𝑡)𝐔 𝟎𝑑 𝟎𝑑

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
= 𝐁(𝑡)

⎡

⎢

⎢

⎣

𝜺(𝑡 − 𝜏)
�̇�(𝑡 − 𝜏)
𝒗(𝑡 − 𝜏)

⎤

⎥

⎥

⎦

.

(39)

Observe that the leading matrix 𝐋 of the system is not the identity
matrix anymore, and that it is perturbed by the uncertainty affecting
𝜁𝑙: however, the methodology illustrated in Section 4 can be trivially
extended to account for uncertain leading matrices as well. Regarding
the computation of Floquet multipliers as introduced in Section 3, it is
easy to see that 𝐈𝑛 in the definition of the first matrix in 𝑺22 in (31)
must be replaced by 𝐋 ( see the left-hand-side of (25), which has to be
modified by introducing 𝐋). Also note that this extension requires two
pairs of scaling matrices associated with the perturbation of 𝜔n,𝑙, but
the implementation of the pseudospectral method is not affected.

5. Case study and experiment

Experimentally determined stability limits are often different from
the ones predicted based on a dynamical model. It is known that natural
frequencies and damping ratios measured on the rotating spindle may
differ from the ones measured on the idle tool, and this effect can be
responsible for variations in the stability lobe diagrams. However, this
characteristics can be measured prior to the experiments or predicted
based on preliminary chatter tests, see [28,29] and especially [30] for
the so-called inverse stability solution, and the references therein.

An experiment is carried out in an NCT EmR-610Ms milling ma-
chine. The cutting forces were measured by a Kistler 9129AA mul-
ticomponent dynamometer and data were acquired by NI-9234 Input
Modules and an NI cDAQ-9178 chassis. Other devices are shown in
Fig. 3. First, cutting tests were performed at two levels of depth of
cut (𝑎p = 1, 2 mm) and five feed rates (𝑓𝑧 = 0.02, 0.04, 0.06, 0.08,
0.1 mm/tooth) with full-immersion. Then cutting parameters were esti-
mated by minimizing the difference between the measurements and the
theoretical cutting forces. Second, we first performed an experimental
modal analysis (EMA) on the real cutting tool during idle conditions,
by measuring the responses and the excitations in directions 𝑥 and 𝑦
at the tool tip. The measured frequency response functions (FRFs) are
presented in Fig. 4. The fitted FRFs are given in the form

𝐇(𝜔) =
[

𝐻𝑥𝑥(𝜔) 𝐻𝑥𝑦(𝜔)
𝐻𝑦𝑥(𝜔) 𝐻𝑦𝑦(𝜔)

]

= (40)

𝑑
∑

𝑙=1
𝐔𝑙

1
−𝜔2 + 2𝜁𝑙�̂�n,𝑙i𝜔 + �̂�2

n,𝑙

𝐔⊤
𝑙 = (41)

𝑑
∑

𝑙=1

[

𝛷𝑥𝑥,𝑙 𝛷𝑥𝑦,𝑙
𝛷𝑦𝑥,𝑙 𝛷𝑦𝑦,𝑙

]

1
−(𝜔∕�̂�n,𝑙)2 + 2𝜁𝑙i𝜔∕�̂�n,𝑙 + 1

, (42)

where 𝛷𝑖𝑗,𝑙 = 𝑈𝑖,𝑙𝑈𝑗,𝑙∕�̂�2
n,𝑙 are the static compliances (𝑖, 𝑗 = 𝑥, 𝑦) and

hat-symbol on �̂�n,𝑙 refers to the reference value of the 𝑙th natural
frequency measured in idle state. The identified dominant modes and
modal parameters are given in Table 1.

The cutter was replaced by a cylindrical dummy tool and a thorough
operational modal analysis (OMA) was performed from 0 rpm to 13,000
rpm. During the OMA the tool was hit by a small bullet and vibrations
were measured by a high-precision laser sensor, see Fig. 3 (similar
test are performed in a hardware-in-the-loop experiment in [29]). Then
natural frequencies and damping ratios corresponding to the vibration
modes of the real tool were identified, and the difference was scaled
proportionally to match the modal parameters of the real cutter. The
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Fig. 3. Configuration and devices used during the experiment. The detailed specifications of the laser sensor and ball shooter gun are presented in [27].

Fig. 4. Measured and fitted frequency response functions (FRFs). The main (diagonal)
FRFs (𝐻𝑥𝑥(𝜔), 𝐻𝑦𝑦(𝜔)) are fitted, but the cross FRFs (𝐻𝑥𝑦(𝜔), 𝐻𝑦𝑥(𝜔)) are neglected
during the calculations due to the bad coherence in the measurements.

Table 1
Modal parameters measured at the tool tip under idle conditions.
𝑙 �̂�n,𝑙 (Hz) 𝜁𝑙 (%) 𝐔𝑙 × 103 (kg−1∕2) 𝛷𝑖𝑗,𝑙 (μm∕N)

1 752.8 1.86 2.14 [0 1]⊤ (𝑦𝑦, 1) 0.2047
2 782.7 1.84 1.92 [1 0]⊤ (𝑥𝑥, 2) 0.1524
3 2063.5 3.24 3.59 [0 1]⊤ (𝑦𝑦, 3) 0.0767
4 2351.4 2.51 3.37 [1 0]⊤ (𝑥𝑥, 4) 0.0520

fitted parameters in the range 5000–13,000 rpm can be seen in Fig. 5,
where black dots denote the fitted data, and dashed curves are second-
order fitted characteristics in the presented region. The parameters of
the fitted characteristics are given in Table 2. The uncertainty bound
was determined by calculating the standard deviation (𝜎) of the fitted
parameters around the mean, which gave the ±3𝜎 gray region in Fig. 5.
The uncertainty region was assumed to be independent of the spindle
speed 𝛺. This results in 𝛥𝑘 ∈ R, 𝑘 = 1,… , 8, scalar parametric
uncertainties, that can be included in the pseudospectral method. Since
𝛥𝑘 is a normalized variable (|𝛥𝑘| < 1), the weight 𝜖𝑘 is introduced to
represent the actual scaling of the uncertain parameters. Let 𝜌𝑘 be one
of the parameter under considerations (given in Table 2 for this specific
case), then its perturbed value can be written as 𝜌𝑘+𝛥𝑘𝜖𝑘. The weights
𝜖𝑘 can be used to construct the scaling matrices 𝐃𝑖𝑘 and 𝐄𝑖𝑘 in (32). The
list of the speed-dependent modal parameters and their uncertainties

Fig. 5. Change of modal parameters along the spindle speed. (a) Natural frequencies
(b) Damping ratios. Black dots denote the fitted modal parameters, dashed curves are
the fitted characteristics and gray region is the constant ±3𝜎 uncertainty region around
the fitted mean.

determined from experiments are given in Table 2. The cutting force
characteristics were identified from preliminary cutting tests, where the
tangential and radial cutting coefficients 𝑘𝑐𝑠 and 𝑘𝑛𝑠 were both assumed
to have 10% relative uncertainty. The uncertainties of the modal pa-
rameters were chosen to be equal to the 3𝜎 deviation, see Fig. 5 and
the last row of Table 2. Note, that variation in the modeshapes 𝐔𝑙 are
difficult to measure and are often neglected (see [30]). In this study we
also assume that the modeshapes do not change and no uncertainty is
added.

The stability lobe diagrams corresponding to machining parame-
ters given in Table 3 can be seen in Fig. 6(b), where dashed curves
denote the stability boundaries obtained by neglecting speed depen-
dency (modal parameters in Table 1), and solid black curves are the
boundaries obtained by the speed-dependent parameters in Table 2.
Fig. 6(a) presents the strengths of the harmonics of the chatter vibra-
tions that can be calculated from the dominant eigenvalue and the
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Fig. 6. Calculated and measured stability lobe diagrams. (a) Dominant chatter frequencies obtained by calculations (continuous gray-shaded curves indicate the magnitude of
frequency components along the stability boundaries) and observed in experiments (black crosses); (b) Stability diagrams: dotted – speed-independent modal parameters, solid –
speed-dependent modal parameters, gray-shaded – robust stable; (c–f) FFTs of measured velocity signals corresponding to points A-B-C-D in panel (b).

Table 2
Change of the parameters along the spindle speed (𝜌𝑘(𝛺) = 𝑎0,𝑘 + 𝑎1,𝑘𝛺 + 𝑎2,𝑘𝛺2,
𝛺 ∈ [5000,13,000] rpm) and their (additive) uncertainty (𝜖𝑘 is independent from 𝛺).
𝜌𝑘 𝑎0,𝑘 𝑎1,𝑘 × 103 𝑎2,𝑘 × 106 𝜖𝑘
𝜔n,1 (Hz) 751.43 1.6050 −0.269 7.89
𝜔n,2 (Hz) 779.74 0.7423 −0.239 9.09
𝜔n,3 (Hz) 2072.7 2.4369 −0.225 8.13
𝜔n,4 (Hz) 2354.6 1.4227 −0.176 8.49
𝜁1 (%) 2.042 −0.046 0.0212 0.81
𝜁2 (%) 1.940 −0.040 0.0180 0.42
𝜁3 (%) 3.236 −0.112 0.0122 0.42
𝜁4 (%) 2.711 −0.079 0.0083 0.27

𝑘𝑐𝑠 (MPa) 1095 – – 109.5
𝑘𝑛𝑠 (MPa) 176 – – 17.6

Table 3
Machining parameters.

Tool Workpiece
Al2024-T351

Process

𝑍𝑡 = 2 𝑘𝑐𝑝 = 16 N/mm 50% down-milling
𝐷 = 16 mm 𝑘𝑐𝑠 = 1095 MPa 𝜑en = 90◦

𝛾 = 30◦ 𝑘𝑛𝑝 = 34 N/mm 𝜑ex = 180◦

𝑘𝑛𝑠 = 176 MPa 𝑓𝑧 = 0.1 mm/tooth

Fourier transform of the corresponding eigenvector, see the method
presented in [18]. In panel (a) black denotes the dominant chatter
frequency 𝜔c,d, while gray shading indicates the other harmonics with
less energy. This diagram is used to identify the dominant frequencies
from measurements.

The robust stability lobe diagram was determined using the pseu-
dospectral method. During the calculations, ten parametric uncertain-
ties were assumed with weights given in the last column of Table 2.

Experimental chatter tests were carried out with fine resolution
from spindle speed 5000 rpm to 13,000 rpm. Accelerometers were

mounted onto the workpiece and spindle housing, moreover a mi-
crophone was also placed close to the machining area. Chatter was
identified based on the spectra of the signals measured during cutting.
Each measured point in panel (a) was marked by a filled circle if the
operation was stable, by a cross if it was unstable, and by a triangle if
chatter was not clearly identifiable. When the operation was unstable,
the dominant chatter frequency was selected and it was marked in
Fig. 6(a), also by a cross. For quantitative chatter indicators obtained
from the cutting force and acceleration signals, we refer the reader to
the method presented in [31].

Four sample spectra are given in Fig. 6(c–f), which were captured by
an accelerometer mounted on the spindle housing in direction 𝑦. Panels
(c–d) are measured at spindle speed 7600 rpm, with depth of cut 0.75
and 1 mm. From the signal of the accelerometer the spectrum of the
velocity 𝑣𝑦 was calculated and the dominant peaks were compared to
the predicted chatter frequencies. The absolute value of the FFT of the
signal is indicated by dark gray curves, while dashed and point-dotted
vertical lines indicate the tooth-passing frequency ftp = 60∕(𝑍𝑡𝛺), its
half, and their integer multiplies. The dominant chatter peak and the
shifted harmonics are colored by black. It can clearly be seen in panel
(d) that the dominant chatter frequency occurs at 2204 Hz, which is
close to the third vibration mode. A similar test is shown in panels (e–
f), where tests were carried out at speed 12,000 rpm, at depth of cuts
were 1 and 1.5 mm. The dominant chatter frequency was identified at
724 Hz, close to the predicted first mode.

Although small uncertainties were assumed initially in the model,
the robust stable maximum depth of cuts at the lowest points decrease
by nearly 30%. On the other hand by measuring the vertical differences,
a 0.15–1 mm wide uncertainty band can be observed, which is also
significant.

Experiments show a qualitatively good agreement with the predic-
tions, but not all of the points inside the robust stable domain were
indeed stable during the chatter tests. This indicates that there are
still modeling errors and uncertainties present, which can explain this
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discrepancy. Possible reasons can be the linear force characteristics
used during calculations or the dynamical model with proportional
damping which are simplifications of reality. On the other hand the
run-out of the tool, nonlinearities and stochastic effects may also have
a strong impact on the stability boundaries.

6. Comparison with the MFS-SSV method

There exist several statistical methods in the literature to approx-
imate the probability of stability if the probability density function
of the uncertain parameters is known. However, there are only a
few methods that guarantee stability if only upper and lower bounds
on parameter values are available. These techniques are all called
robust methods, such as the approach inferred from the Edge The-
orem [13], the structured singular value analysis [14] or the pseu-
dospectral method. These approaches cannot determine the probability
of stability, but the calculation is typically less time-consuming.

The Edge Theorem is applied to time-invariant models in [13], but
the extension to time-periodic systems is not straightforward, because
the characteristic equation cannot be determined in a similar way.
It also requires an affine dependence of the (scalar) characteristic
equation on the uncertain parameters. The Multi-frequency Solution
with Structured Singular Value analysis (MFS-SSV, [14]) provides an
alternative way to assess the robust stable region, but this method
also has drawbacks. It is only applicable to modal parameter uncer-
tainties, and the approximations of robust stable regions can be more
conservative than others. In this section we assume that only the modal
parameters are uncertain (Table 2) and compare the results obtained by
the pseudospectral method and the MFS-SSV approach.

The Multi-frequency Solution of [32] can directly be applied to
the measured frequency response functions 𝐇(𝜔) without parameter
identification. This technique has been extended in [14] in order to
consider additive uncertainties in the FRFs in the form 𝐇(𝜔) + 𝛿𝐇(𝜔),
where 𝛿𝐇(𝜔) is a complex-valued uncertainty. The structured singular
value analysis assumes that the uncertainty can be restructured into a
block-diagonal matrix �̂�, such that the governing equation is written
as

det
(

𝐈 − �̂�(𝑎p, 𝛺, 𝜔c)�̂�
)

= 0, (43)

where �̂�, �̂� ∈ C2(2𝑟+1)×2(2𝑟+1) are constructed according to [14], and 𝑟
is the highest number of harmonics considered during the expansion.
The system is not robust stable if the determinant in (43) is zero for
some �̂� and 𝜔c. The computational algorithm presented in [14] gives a
lower bound on such �̂�, which can be rephrased in terms of sufficient
conditions for robust stability of the system.

Fig. 7 presents two scenarios, which compare the above detailed
methods. Red curves indicate the robust boundary obtained by the
pseudospectral method, where 𝑀 = 22 and [0, 𝑇 ] is split into 3
subintervals. The iterations have been restarted from the 3 largest
Floquet multipliers at each point of the parameter space, the maximum
iterations were set to 50, but iterations were stopped if the error
reached |𝛥(𝓁+1)

𝑘 − 𝛥(𝓁)
𝑘 | ≤ 10−3 (for all 𝑘). The pseudospectral radius was

calculated on a 120 × 40 grid on the plane (𝛺, 𝑎p). The computation
time was approximately 6 h. Blue curves bound the approximation of
the robust stable domain obtained by the MFS-SSV approach, where the
highest number of harmonics considered in the approximation was 𝑟 =
30, and the grid in the parameter space (𝛺, 𝑎p, 𝜔c) was 120 × 40 × 200
(this method requires a sweep along a third dimension also). The calcu-
lation time was approximately 50 min, which includes the generation
on the uncertainty envelopes of the frequency response functions for
all spindle speeds. We applied the Multi-dimensional Bisection Method
presented from [33] in order to reduce the computational time.

Panels (a) and (b) in Fig. 7 show the different robust boundaries
at different uncertainty levels. There is a very important remark. The
pseudospectral method is not conservative, since the iterations are
kept inside the domain of the allowable perturbations (resulting in

Fig. 7. Comparison of the pseudospectral method and the Multi-frequency Solution
with Structured Singular Values (MFS-SSV [14]). (a) Robust boundaries corresponding
to the uncertainties in the modal parameters given by Table 2. (1 × 𝜖𝑘), (b) and the
double of it (2 × 𝜖𝑘).

an inner approximation of the robust stable region), and at the same
time the globally dominant Floquet multiplier is computed. Meantime,
the MFS-SSV method is always conservative, because the uncertainty
envelope is bounded from above, leading to an outer approximation
of the robust stable region. In our case (Fig. 7) the gap between
the two curves is very narrow, which proves the accuracy of both
methods in the present study. Note also, that the MFS-SSV method
can be significantly more conservative in case of large uncertainties
(see the explanations in [14]), and the method cannot handle cutting
force model perturbations either. As opposed to this, the pseudospectral
method is more flexible and can provide a reliable robust boundary.

7. Conclusion

An accurate prediction of dynamical stability of machining opera-
tions is limited by model simplifications and parametric uncertainties.
In order to reduce the gap between predictions and actual measured
stability limits, variations and uncertainties in modal parameters of the
tool-tip were determined by means of experimental and operational
modal analyses performed on the idle and rotating spindle. To reach the
highest stable depths of cuts and avoid chatter, parametric uncertainties
were considered and a pseudospectral method was applied.

The solver was tested in a case study, and stability predictions were
compared to experimental chatter tests. The traditional stability lobe
diagrams without considering the uncertainties predicted the domi-
nant chatter frequencies well, but the maximum stable axial depth
of cuts were inaccurate. Robust stability boundaries were determined
to include the effect of inaccuracies in modal parameters and in the
cutting coefficients. The obtained new boundaries gave more reliable
predictions than conventional methods, which proves the effectiveness
of robust calculation. Another property of the pseudospectral method
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is that the basic algorithm converges locally to the worst-case perturba-
tion by keeping the uncertainties inside the prescribed bounded region,
and therefore inner approximations of the robust stable regions are
obtained. This can also be viewed as a drawback, because the iterations
may not converge globally. However, by incorporating restarts from
several largest Floquet multipliers of the original problem (three in the
case-study) a robust algorithm for computing the globally dominant
Floquet multipliers is obtained, allowing to compute the actual robust
stable region. In order to test the accuracy, the solver is compared to
a robust structured singular value based analysis, which showed good
accuracy for both methods.
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Appendix. Calculation of the gradient

In order to make the computations numerically efficient, the pseu-
dospectral approach is applied to perturbed generalized eigenvalue
problems, where uncertainties linearly affect the coefficient matrices.
In this paper we treat scalar uncertainties only, however, the method
is also effective to matrix-valued uncertainties, see [19]. Let us recall
the perturbed time-periodic DDE in the form

�̇�(𝑡) =
(

𝐀(𝑡) +
𝐾
∑

𝑘=1
𝐃0𝑘(𝑡)𝛥𝑘𝐄⊤

0𝑘(𝑡)
)

𝐱(𝑡)+

(

𝐁(𝑡) +
𝐾
∑

𝑘=1
𝐃1𝑘(𝑡)𝛥𝑘𝐄⊤

1𝑘(𝑡)
)

𝐱(𝑡 − 𝜏), (44)

where 𝛥𝑘 ∈ R, 𝑘 = 1,… , 𝐾, are the uncertainties, and 𝐃𝑖𝑘(𝑡), 𝐄𝑖𝑘(𝑡) ∈
R𝑛 (𝑖 = 0, 1, 𝑘 = 1,… , 𝐾) are time-periodic scaling matrices. These
scales propagate through the collocations constraints and affect the
generalized eigenvalue problem in the form

𝐹 (𝜇;𝜟)𝐂 ∶=
(

(

𝐒 +
𝐾
∑

𝑘=1
𝛿𝐒(𝑘)

)

− 𝐑𝜇
)

𝐂 =

(

(

𝐒 −
𝐾
∑

𝑘=1

1
∑

𝑖=0

𝑀
∑

𝑙=1
�̂�𝑙
𝑖𝑘𝛥𝑘�̂�𝑙⊤

𝑖𝑘

)

− 𝐑𝜇
)

𝐂 = 𝟎, (45)

where �̂�𝑙
𝑖𝑘, �̂�𝑙

𝑖𝑘 ∈ R2𝑛(𝑀+1) (𝑙 = 1,… ,𝑀 + 1) are new scaling matrices
that can be constructed from 𝐃𝑖𝑘 and 𝐄𝑖𝑘. The optimization problem is
solved by using a projected gradient method. Let again 𝐮, 𝐯 ∈ C2𝑛(𝑀+1)

be the left and the right eigenvectors of 𝜇𝐷 with unit norms and such
that 𝜉 ∶= 𝐮∗𝐑𝐯 > 0, and let us define

�̂� =
[

R(𝐮)⊤
I(𝐮)⊤

]⊤

, �̂� =
[

R(𝐯)⊤
I(𝐯)⊤

]⊤

, 𝜞 =
[

R(𝜇𝐷) I(𝜇𝐷)
−I(𝜇𝐷) R(𝜇𝐷)

]

. (46)

Then the derivative of |𝜇𝐷|2 w.r.t. 𝛥𝑘 is given explicitly as

𝐺𝑘 ∶=
𝜕|𝜇𝐷|

2

𝜕𝛥𝑘
= 2R

(

𝜇∗
𝐷
𝜕𝜇𝐷
𝜕𝛥𝑘

)

= 2
𝜉
R

(

𝜇∗
𝐷𝐮

∗ 𝜕𝛿𝐒(𝑘)
𝜕𝛥𝑘

𝐯
)

= (47)

− 2
𝜉
R

( 1
∑

𝑖=0

𝑀
∑

𝑙=1
𝜇∗
𝐷𝐮

∗�̂�𝑙
𝑖𝑘�̂�

𝑙⊤
𝑖𝑘 𝐯

)

= (48)

− 2
𝜉

1
∑

𝑖=0

𝑀
∑

𝑙=1
R
((

�̂�𝑙⊤
𝑖𝑘 𝐮

)∗ (
𝜇∗
𝐷𝐯

∗�̂�𝑙
𝑖𝑘

))

= (49)

− 2
𝜉

1
∑

𝑖=0

𝑀
∑

𝑙=1

(

�̂�𝑙⊤
𝑖𝑘 �̂�𝜞 �̂�⊤�̂�𝑙

𝑖𝑘

)

, (50)

see [19] for more extensions and details.
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