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Effects of Varying Dynamics of
Flexible Workpieces in Milling
Operations
In this study, surface error calculations and stability conditions are presented for milling
operations in case of slender parts. The dynamic behavior of the flexible beam-type work-
piece is modeled by means of finite element method (FEM), while the varying dynamical
properties related to the feed motion as well as the material removal process are incorpo-
rated in the model. The FEM-generated direct frequency response function is verified
through a closed-form solution based on the distributed transfer function method. Relative
errors and convergence of the FEM are investigated based on the analytical solutions of the
continuum model, from which appropriate element size and mode number can be selected
for modal coordinate transformations. The pattern in the variation of the natural frequen-
cies is explored using the analytical model in case of high radial depth of cut relative to the
original cross section of the beam-like workpiece. Both the stability conditions and the
resulted surface errors are predicted as a function of the tool position. The presented
approach and the results are validated by laboratory tests. [DOI: 10.1115/1.4045418]
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1 Introduction
Cutting is a widely used manufacturing method; however, this

kind of machining process can be disturbed by harmful vibrations
that can reduce the life of the machine tool and the surface
quality. It is an important task to provide a reliable prediction of
machine tool vibrations, both in terms of increasing productivity
and minimizing costs and losses. The most accepted explanation
for the large amplitude machine tool vibrations (chatter) is the
so-called surface regenerative effect [1], where the position of the
previous cutting edge influences the chip cross-section [2], which
can be described by delayed differential equations [3].
The range of chatter-free technological parameters is usually rep-

resented in so-called stability charts, which are determined by the
stability of the stationary solution of the corresponding mathemati-
cal model. In the last decades, several numerical methods have been
developed to calculate these stability charts in order to support the
technological design. Without completeness, we mention:

(i) the methods in the time domain such as the semi-discretiza-
tion method [4], the full-discretization method [5], the inte-
gration method [6], the Chebyshev collocation method [7],
and the temporal finite element analysis [8];

(ii) the methods in the frequency domain such as the zero-order
approximation [9], the multi-frequency solution (MFS) [10],
or the extended multi-frequency solution (EMFS) [11].

In the time domain, the dynamical behavior of the model can be
described by means of the identification of the modal parameters,
which is a complex engineering procedure itself. An advantage of
the frequency domain solutions is that they can directly use the mea-
sured frequency response function (FRF) after applying some filter-
ing techniques.
For high-precision machining, for example, the errors of the

machined surface are still relevant even in case of stable machining
operations. These surface errors may appear during both turning and
milling processes. In the case of stable turning, there is an offset
error generated by the constant cutting force [12]. Due to the inter-
mittent characteristics of milling processes, relative vibrations are

induced between the tool and the workpiece even in case of
stable cutting operations. Consequently, not just the so-called
surface location error (SLE) appears, but also the surface roughness
(R) [13–15]. In Ref. [16], the surface location errors and the stability
lobe diagram are presented together on a so-called superchart.
It is well known that the dynamical characteristics of the CNC

machine and the workpiece significantly influence the behavior of
the machining process. It is an essential task to predict this dynami-
cal behavior precisely in order to construct a reliable superchart,
from which, one can select robust parameter combinations to
reach a high-material removal rate [17]. The dynamical properties
may vary during machining due to the different configurations of
the machine tool structure within the workspace [18–21] and due
to the variation of the workpiece geometry according to the material
removal [17,22–24]. The latter is dominant for thin-walled struc-
tures, so it is essential to take these changes into account. Finite
element method (FEM) is a natural choice for modeling thin-walled
workpieces and to trace the dynamical properties during material
removal [25–27].
Although the finite element method can be used for any complex

workpiece geometry, the model and the associated FE mesh have to
be updated frequently to make it follow the variation of the geom-
etry due to the material removal process. This requires significant
computational time and effort [25]. The modal matrices of the
FEM are quite large for an appropriately densed finite element
mesh. Thus, it requires significant computational effort to obtain
the stationary solutions of the milling process and to determine
their stability. One way to decrease the size of the matrices and to
save computational cost is the application of modal coordinate
transformation [28] by considering only a few dominant vibration
modes [29].
The sufficient number of modes and the resolution of the FE

mesh have to be selected appropriately to reach a proper balance
between accuracy and computational needs. These parameters are
usually determined based on test cases for which an analytical
solution exists.
In this study, we analyze the dynamical behavior of a flexible

workpiece model that can be used in both for turning and for
milling processes. For this reason, we use a beam-type workpiece,
which is complex enough to capture all aspects of the varying work-
piece dynamics, but simple enough for analytical modeling. Note
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that for complex models such as turbine blade, pocket milling, rib
machining, cutting tubular, and thin-walled parts, the change in
the dynamic properties are very problem specific and it is difficult
to draw a general conclusion.
First, the model based on FEM is generated for Bernoulli beam

elements, which is later compared with the exact FRF of the work-
piece. Using a suitable Green function, the closed analytical form is
based on the distributed transfer function method (DTFM) [30].
This eliminates the need for finite element discretization and the
need for solving the large eigenvalue-eigenvector problem, which
may require high-computational resources [31]. Then, we
examine the FE mesh resolution and the number of considered
modes in the modal transformation to obtain the parameters of suf-
ficiently accurate FRF for stability and surface error calculations.
Usually, in the case of a general industrial machining process, the

technological parameters are already given, such as tool path relat-
ing to workpiece geometry, cutting tool, and other machining
parameters, they are technology-dependent. Modifications only in
the spindle speed and the feed rate are allowed due to these limita-
tions from the industrial side.
With this model, we examine in detail how dynamic properties

change as a function of the tool position according to the material
removal process of cutting. In the next step, stability chart and
surface property calculations are developed using an FRF-based
model for milling operation. The variations of the dynamic proper-
ties caused by the material removal and the changing tool position
are also considered. Finally, the predicted phenomena are identified
by measurement results.
The paper is organized as follows: in Sec. 2, we provide the FRF

based on FEM model of the workpiece which is validated through
analytical FRF. Then, in Sec. 3, the effects of the feed motion are
analyzed with respect to the dynamical parameters. In this
section, an extreme case is illustrated, from which, one can get a
picture into the changing dynamics of the underlying system.
Section 4 gives the governing equation of the milling process
together with the corresponding stability and surface error calcula-
tions. A case study is conducted in Sec. 5 with numerical and mea-
surement results, where we analyze the machined surface quality
and investigate the effects of the feed motion. Finally, in Sec. 6,
we summarize conclusions and discuss future research directions.

2 Dynamics of the Workpiece
In this section, we describe the mechanical model of the cutting

process, with special attention on the dynamic behavior of the flex-
ible workpiece while the material removal process is also taken into
account.
During the machining process, the cutting tool’s actual position

along its path determines the location of the contact region, that
is, the resulting cutting force acts only at the actual contact point
identified by the coordinate e in Fig. 1. In the dynamical models,
only the relative vibrations between the tool and the workpiece
are included. Therefore, only the direct FRF, with excitation and
response at the same position, have to be taken into account in
the stability and surface error calculations.
From the dynamical point of view, the workpiece dynamics can

change significantly during the cutting process in two different
ways [32]. One corresponds to the varying contact position,
which is taken into account by means of the variation of the
modal stiffness through the corresponding mode shapes. The
other one relates to the effects of the material removal process.
According to the feed motion, the cross section is reduced along
the preceding tool path. This leads to changing workpiece geometry
and correspondingly varying dynamical parameters, especially in
the natural frequencies of the workpiece.
Due to the reason that one of the main scopes of this contribution

is to explore the behavior of the varying dynamics, the workpiece is
assumed to be much more flexible when compared with the cutting
tool together with the whole machine tool structure. This

assumption is valid for thin-walled workpieces [19], as shown for
example in Fig. 1. Thus, the cutting tool and the workpiece are
assumed to be rigid and flexible, respectively. Note that for a
given workpiece geometry, the appropriate modal matrices can be
extracted from most of the industrial FEM software. In addition,
one can include the dynamic characteristic of the cutting tool and
the machine tool and can extend the model by means of measuring
and adding the tool tip FRF to the computed workpiece FRF
[18,21,33].

2.1 Discrete Model of theWorkpiece. The mechanical model
of the flexible workpiece during the machining process is shown in
Fig. 1(c). It is assumed that the transverse dimensions are negligible
relative to the longitudinal one. In this case, the horizontal (longitu-
dinal) vibration is not modeled, since the structure is more rigid in
this direction when compared with the transverse one. According to
these assumptions, bending vibration dominates the model, which
justifies the consideration of a beam model. For the actual tool posi-
tion e, the governing equation assumes the form

M(e)Ÿ(t) + C(e)Ẏ(t) +K(e)Y(t) = v(e)Fy(t) (1)

where the deformation of the workpiece is described by the
N-dimensional generalized coordinate vector Y and the dynamical
parameters are defined by means of the mass, damping, and stiff-
ness matrices as M(e), C(e), and K(e), respectively. On the right-
hand side, the general force vector is composed as a product. Its
first term is the vector v(e) that represents the actual contact posi-
tion; all its elements are zero except the unitary one of the
element at the int(1+ (N− 1)e/L)th coordinate. The second term
Fy(t) describes the cutting-force component in the y-direction,
which is time-periodic in case of the milling process. Following
the assumption in Refs. [34,35], the dynamics of the feed motion
is considered to be slow relative to the fast dynamics of Y(t) and
F(t), that is, the variation of the tool position e is considered to
be quasi-static [36].
Up to this point, Eq. (1) can describe both milling and turning

processes. The only difference between them is the cutting force
on the right-hand side, which is discussed in detail in Sec. 4.
According to the theory of modal analysis [29], in the case of

proportional damping, the equation of motion in Eq. (1) can be
given as decoupled equations of each modal coordinate ξk. After

(a)

(b)

(c)

Fig. 1 Schematic figure of the applied beam-type workpiece
considering the material removal for (a) milling, (b) turning pro-
cesses, and (c) discrete model of the flexible workpiece
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transforming to the frequency domain of ω, it reads as

−ω2ξk(ω) + iω2ζk(e)ωn,k(e)ξk(ω) + ω2
n,k(e)ξk(ω) = ϕk(ω) (2)

where ϕk(ω) is the modal force of the kth mode shape, ωn,k(e) is the
kth undamped natural angular frequency, and ζk(e) is the modal
damping of the kth mode shape (k= 1, 2, …, m, where m is the
number of the modes). In case of proportional damping, the
damping coefficients ζk(e) can be calculated as

ζk(e) =
αM

2ωn,k(e)
+
αK
2
ωn,k(e) (3)

where αM and αK are the proportional damping coefficients in C=
αMM+ αKK (see Ref. [29]). With a FEM-based model, the slow
variation of the FRF can be given for each mode. The corresponding
scalar-valued direct FRF H(ω, e) is given as a function of the fre-
quency ω and the tool position e:

H̃(ω, e) =
∑̃m
k=1

T̃
2
e,k(e)

−ω2 + iω2ζ̃k(e)ω̃n,k(e) + ω̃2
n,k(e)

(4)

where T̃e,k(e) is the element of the kth mass normalized mode shape
vector at the contact point and m̃ ≤ m is the number of relevant
modes. Tilde denotes the approximation of the exact FRF. The dis-
crete model tends to the exact FRF only if the element size of the
corresponding FE mesh tends to zero and the number of considered
modes tends to infinity.

2.2 Distributed Parameter Model. In order to validate the
FEMmodel, we present the mathematical background of the closed-
form expression of FRF through the derivation of the bending vibra-
tion of continuum beams based on DTFM [30]. Since there is a
sharp change in the geometry of the cross section at the tool position
e, the total length L of the workpiece is distinguished with index
i along the x coordinate of the beam. In the displacement function
yi(x, t), the subscript i refers to the corresponding section: i= 1
for the part that has already been machined (x∈ [0, e]), while
i= 2 for the intact part (x∈ [e, L]). The linearized equations of
motion form the partial differential equations [37–39]

ρAiÿi(x, t) + cMiẏi(x, t) + cKiẏ
′′′′
i (x, t) + IziEy

′′′′
i (x, t)

=
1
2
Fy(x, t)δ(x − e), i = 1, 2

(5)

with the corresponding boundary conditions

y1(0, t) = 0, y′1(0, t) = 0

y2(L, t) = 0, y′2(L, t) = 0
(6)

at the clamped ends, and the interface conditions

y1(e, t) = y2(e, t), y′1(e, t) = y′2(e, t)
Iz1y

′′
1(e, t) = Iz2y

′′
2(e, t), Iz1y

′′′
1 (e, t) = Iz2y

′′′
2 (e, t)

(7)

that describe the smooth connection between the two segments.
Prime stands for differentiation with respect to the spatial coordinate
x. The material parameters ρ and E are the density and the young
modulus, respectively. Also, cMi and cKi are the proportional
damping coefficients, which are related to the proportional
damping coefficients (see in Eq. (3)): cMi= αMρAi and cKi=αKIzi E.
The cross sections are characterized with area Ai and area

moment of inertia (or second moment of area) Izi. Note that the gov-
erning equation (5) is suitable to model the beam-like workpiece
during milling and turning processes (see Figs. 1(a) and 1(b)), but
the parameters Ai and Izi are calculated with different formulas.

Laplace transform of Eq. (5) leads to(
s2ρAi + scMi

)
yi(x, s) +

(
scKi + IziE

)
y′′′′i (x, s)

=
1
2
Fy(x, s)δ(x − e), i = 1, 2

(8)

where y(x, s) = L(y(x, t)) and Fy(x, s) = L(Fy(x, t)) are the Laplace
transforms of y(x, t) and Fy(x, t), respectively, and s ∈ C represents
the complex Laplace domain.
We introduce the following state space vector:

ηi(x, s) = yi(x, s) y′i(x, s) y′′i (x, s) y′′′i (x, s)
( )T

(9)

and the corresponding excitation vector

Φi(x, s) = 0 0 0
Fy(x, s)δ(x − e)
2(scKi + IziE)

( )T

(10)

Therefore, the governing equation and the corresponding boundary
conditions in Eqs. (5) and (6)–(7) can be written as a first-order ordi-
nary differential equation

η′(x, s) = A(s)η(x, s) +Φ(x, s) (11)

with boundary conditions

Pη(0, s) +Qη(e, s) + Rη(L, s) = 0 (12)

where η(x, s) = (η1(x, s)
T η2(x, s)

T)T and Φ(x, s) = (Φ1(x, s)T

Φ2(x, s)T)T. The coefficient matrix of Eq. (11) can be given as

A(s) =
A1(s) 0
0 A2(s)

( )
(13)

where

Ai(s) =

0 1 0 0
0 0 1 0
0 0 0 1

−
s2ρAi + scMi

scKi + IziE
0 0 0

⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠ (14)

and 0 stands for the 4 × 4 zero matrix. The coefficient matrices

P =

I 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎛
⎜⎜⎝

⎞
⎟⎟⎠, R =

0 0 0 0
0 0 I 0
0 0 0 0
0 0 0 0

⎛
⎜⎜⎝

⎞
⎟⎟⎠ (15)

in Eq. (12) are defined to fulfill the boundary conditions Eq. (6),
while coefficient matrix

Q =

0 0 0 0
0 0 0 0
I 0 −I 0
0 Iz1EI 0 −Iz2EI

⎛
⎜⎜⎝

⎞
⎟⎟⎠ (16)

comes from the interface condition Eq. (7). In Eqs. (15) and (16),
where I and 0 stand for 2 × 2 identity and zero matrices,
respectively.
The homogeneous solution of Eq. (11) is

η(x, s) = eA(s)xη(0, s) (17)

where eA(s)x is the exponential of matrix A(s)x also called funda-
mental matrix. Substitute Eq. (17) into the boundary conditions
Eq. (12):

P +QeA(s)e + ReA(s)L
( )

η(0, s) = 0 (18)

The eigenvalues of the continuum model are the roots sk of the tran-
scendent characteristic equation

det P +QeA(s)e + ReA(s)L
( )

= 0 (19)
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which can be used to extract the modal parameters

sk = −ζkωn,k ± iωn,k


1 − ζ2k

√
, k = 1, . . . , m̃ (20)

Note that this result can be used to validate the parameters of the
FEM; however, the challenging root-finding problem of Eq. (19)
is not necessary to determine the exact FRF.
According to Ref. [30], the unique solution of Eq. (11), which

satisfies the boundary conditions Eq. (12), can be written in the fol-
lowing form:

η(x, s) =
∫L
0
G(x, ϑ, s)q(ϑ, s) dϑ (21)

where the matrix Green function is given as

G(x, ϑ, s) = W(x, s)Pe−A(s)ϑ if x ≥ ϑ
−W(x, s)ReA(s)(L−ϑ) if x < ϑ

{
(22)

and

W(x, s) = eA(s)x P +QeA(s)e + ReA(s)L
( )−1

(23)

Finally, the exact scalar-valued direct FRF H(ω, e) at the contact
point of the tool can be calculated by means of the substitution of
x = ϑ = e and s= iω into Eq. (22) and by selecting the matrix
element 1,4

H(ω, e) =
G1,4(e, e, iω)
Iz1E(1 + iωαK)

(24)

The indexes in G1,4(e, e, iω) refer to the corresponding first element
of the state space vector in Eq. (9) and the fourth element of the
excitation vector Eq. (10).
It should be noted that the DTFM can give exact and closed-form

solution of the FRF without any truncation or approximation by
using only the inverse and the exponent of 8 × 8 matrices.

2.3 Validation of the Finite Element Model. The conver-
gence of natural frequencies and mode shapes regarding the
element size of FE model is well-established. Since for the stability
calculation of the milling process, a full FRF function is needed, and
the effects of the FE model parameters on the FRF function is not so
common; therefore, in this subsection, the convergence analysis of
the FEM is based on the exact analytical solution of the continuum
model. First, the resolution of the FE mesh is investigated through
the comparison of the essential natural frequencies in order to deter-
mine sufficient element size. The relative error between the exact
natural frequencies calculated with DTFM and the ones obtained
from FEM is

ϵωn,k =
|ωn,k − ω̃n,k|

ωn,k
(25)

Figure 2 shows the fourth-order convergence of each natural fre-
quency that belongs to the Bernoulli beam-type finite elements. The
convergence is limited by the floating-point arithmetic in two ways.
On the one hand, numerical noise appears below the relative error
around 10−8 for both DTFM and FEM. On the other hand, numer-
ical errors accumulate in the iterative method applied for the solu-
tion of the eigenvalue problem, which is typical for higher
frequencies. From Fig. 2, one can select an appropriate element res-
olution to keep the relative error within a desired range. For further
investigation, we select 100 elements along the workpiece.
As a next step, the reduction of the number m̃ of the considered

modes in Eq. (4) is investigated based on the deviation in the

resulted FRF. The relative error between the exact direct FRF
H(ω, e) and the one computed by FEM H̃(ω, e) is given by
means of the formula

ϵH =

�L
0

�ωmax

0 |H(ω, e) − H̃(ω, e)| dω de�L
0

�ωmax

0 |H(ω, e)| dω de
(26)

applied for the investigated frequency domain [0, ωmax]. Figure 3
represents the relative errors in a logarithmic scale for different
domains, which cover a couple of essential natural frequencies.
It is easy to show that the relative error decreases by increasing
the number of considered modes. Note that even if we liked to
model the first two natural frequencies only in the direct FRF
with ωmax= 4500 Hz, then at least 20 modes (m̃ ≥ 20) should be
considered to achieve a high accuracy like ɛH= 10−4.
Also, the achievable accuracy in the case of more than 50 modes

is strongly limited by the errors generated by the floating-point
arithmetic. If ωmax is selected for the bandwidth of the given exci-
tation, then an appropriate number of modes can be selected with
the help of the diagram in Fig. 3.
As a conclusion, to capture the chatter frequency, usually the first

or the second “lobe rows” play a role, which is closely related to the
first- and second-natural frequencies. So, one might choose only
one or two natural frequencies, however, not only the first few
modes are relevant to create the proper FRF. Therefore, a high
number of modes have to be considered in this type of modeling;
consequently, it requires a good resolution of the FE mesh, as well.

Fig. 2 Relative error of the natural frequencies as a function of
the number of elements at e=L/2. Parameters are defined in
Table 1 for Workpiece I.

Fig. 3 The convergence of the relative error in the function of
considered mode number for the different frequency domains
[0, ωmax]. Parameters are defined in Table 1 for Workpiece I.
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3 Analysis of Varying Dynamics
In this section, we analyze the variation of the dynamic properties

along the tool path during the material removal.
In Fig. 4, the amplitude of the direct FRF (colormap) and the

natural frequencies (dashed curves) is presented for different tool
positions. The natural frequencies of a prismatic beam are linearly
proportional to the thickness of the cross section, which is v for rect-
angular and d for cylindrical cross-section. Thus, the natural fre-
quencies at the end position (e= L) of the tool are 16.7% smaller
than they are at its starting position (e= 0), for example, ω1(0)=
1155 Hz →ω1(L)= 958 Hz. However, during the material removal
process, the natural frequencies change in an intricate way; it can
increase or decrease whether the mass or the stiffness reduction
has a larger influence. In the colormap of Fig. 4, the variation of
the abs(FRF) peaks is proportional to the corresponding mode
shapes. It also visualizes that the workpiece is ideally stiff at both
ends; moreover, it is dynamically stiff at the nodes of the corre-
sponding mode shapes.
The effects of material removal can be visualized better in Fig. 5,

where the relative frequency change for first- and second-natural
frequencies is represented along the tool path for different
amounts of material removal. The larger the cross-section reduction
is, the more the natural frequency values fluctuate. In an extreme
reduction (close to 100%) as an illustrative example, it tends to a
specific characteristic, referred to as the backbone curve of the
material removal.
This limit case can be given if the system is decomposed into two

separate beam segments while the connection between them is

replaced by different boundary conditions (see the schematic repre-
sentation in Fig. 6). If we consider a very high stiffness ratio of the
parts, then the stiffer (thick blue) beam is not influenced by the more
flexible (thin red) one and the stiffer beam can be modeled as a can-
tilever beam. Meanwhile, the upper end of the more flexible beam
is almost fixed by the stiffer one, so it can be modeled as a clamped-
clamped beam. The corresponding natural frequencies can be
determined from the following frequency equations [40], for the
cantilever beam as

cos (L − e)


ω2
n
A2ρ
Iz2E

4

√( )
cosh (L − e)


ω2
n
A2ρ
Iz2E

4

√( )
= −1 (27)

and for clamped-clamped beam as

cos e


ω2
n
A1ρ
Iz1E

4

√( )
cosh e


ω2
n
A1ρ
Iz1E

4

√( )
= 1 (28)

The natural frequencies of the decomposed models (solutions of
Eqs. (27) and (28)) are plotted by blue- and red-dashed curves,
while natural frequencies relating to the original model are plotted
by black curves for 85% cross-section reduction in Fig. 6.
Intersections of two backbones curves can be considered as

attractive points, to which the curves of the natural frequencies
tend (see points A and B in Fig. 6). Between these points, the
natural frequencies of the original model follow one of the back-
bone curves. In the meantime, close to the attractive points, they
swap to another backbone curve, where two adjacent frequencies
are close to each other (see, for example, points C and D in
Fig. 6). With the proposed decomposition method, the pattern in
the fluctuation of the natural frequencies can be identified and
visualized.
Recall that the presented workpiece models can be used for

milling and turning operations, as well. In Sec. 4, the cutting
force is derived for the milling process, and for the turning
process, it can be obtained as its special case.

4 Milling Process
To achieve the stability calculation and to anticipate the quality of

the machined surface, the cutting operation of the milling process is
described.

4.1 Cutting Force. The widespread linear cutting force char-
acteristic is applied, where the cutting force is linearly proportional
to the instantaneous chip thickness [41]. It can provide a good esti-
mation for the forced vibration [42] and can suitably describe the
chatter phenomena [4], as well. Note that the description of
models for general milling tool can be found in Ref. [43], but in
our analysis, we focus on the description of traditional helical end-
mills only. The radial and the tangential components of the

Fig. 4 Direct FRF of the workpiece at the actual tool position,
where the thickness of the plate was reduced by 16.7%. The
amplitude and the natural frequencies are denoted by colormap
and dashed black curves, respectively. Parameters are pre-
sented for Workpiece I in Table 1.

Fig. 5 Characteristics of the dimensionless natural frequencies
as a function of the tool position for different cross-section
removal rate

Fig. 6 Decomposition of the beam model; black curves repre-
sent natural frequencies in case of 85% cross section reduction,
while blue- and red-dashed curves represent the natural frequen-
cies of cross section reduction tending to 100%. (Color version
online.)
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elementary cutting forces acting on an elementary segment dz of the
jth cutting edge (see Fig. 7) are given as

dFr,j(t) = Krg
(
φj(t, z)

)
hj
(
φj(t, z)

)
dz cos η

dFt,j(t) = Ktg
(
φj(t, z)

)
hj
(
φj(t, z)

)
dz cos η

(29)

where Kr and Kt are the radial and the tangential cutting coefficients,
respectively. These parameters are usually identified by several
cutting experiments for given cutting parameters and tool geometry
[44]. The screen function is

g(φ) = 1 if φenter < φ < φexit

0 otherwise

{
(30)

which tracks whether the jth edge is in contact with the material or
not in case of radial depth of cut ae (see Fig. 7). The angular position
of the jth cutting edge for constant helix angle and equally distrib-
uted teeth is

φj(t, z) = Ωt +
2π(j − 1)

Z
−
2πz
Zlp

(31)

where Z is the number of the cutting edges, Ω stands for the spindle
speed in (rad/s), lp is the helix pitch and η = arctanDπ/(Zlp) denotes
the helix angle. Also, h(φj(t, z)) denotes the actual chip thickness,
which is the sum of the stationary hstat(φj(t, z)) and the dynamic
hdyn(φj(t, z)) chip thicknesses [4]. The stationary one can be given
as the projection of the feed per tooth fz into the tool tip velocity
direction, which translates into

hstat
(
φj(t, z)

)
= fz sinφj(t, z) (32)

in the case of circular tooth path approximation [2]. It should be
noted that the stationary chip thickness affects only the forced sta-
tionary vibration, and it has no influence on the stability of the
cutting process in case of linear cutting force function [15]. The
dynamic chip thickness relates to the surface regenerative effect
of the cutting operation [9], which is relevant in the stability analy-
sis of the machining process [4]. It reads as

hdyn
(
φj(t, z)

)
=
(
y(e, t) − y(e, t − τ)

)
cosφj(t, z) (33)

where y(e, t) denotes the general coordinate that describes the
motion of the workpiece relative to the tool at the contact point e

(see in Fig. 7). Note that the delayed position y(e, t− τ) represents
the vibration copied onto the surface caused by the preceding
cutting edge, where τ= 2π/(ΩZ ) denotes the tooth passing period.
In order to obtain the resultant cutting force, we project the force

components from the local tangential-radial coordinate system into
the global x− y coordinate system. Also note that the SLE compu-
tation requires the forced vibration perpendicular to the surface.
This beam model is flexible only in this direction; so, the dFy(t)
component is presented in the next steps. This elementary force
components are integrated along the z-coordinate for the axial
depth of cut ap to obtain

Fy(t) =
∑N
j=1

∫
ap

Kt Kr
[ ]

h
(
φj(t, z)

)
g
((
φj(t, z)

))

−sinφj(t, z) cosφj(t, z)
[ ]T

dz

(34)

Note that for certain axial depth of cut values like ap= lp, 2lp, 3lp,
…, also called trivial appropriate axial immersions [42,45], the sta-
tionary component of the cutting force is constant in time (see illus-
tration in Fig. 8).
By means of the above-described force model, both the surface

quality prediction and the stability calculation can be carried out.

4.2 Surface Location Error. In what follows, the calculation
steps of SLE induced by the forced vibration are presented [45]. The
machined surface profile is a result of the relative motion of the
workpiece and the cutting edges. The forced stationary vibration
of the contact point can be determined by means of the direct
FRF H(ω, e) (Eqs. (4) or (24)) according to

y(e, t) = F−1(H(ω, e)ϕy(ω)
)

(35)

where ϕy(ω) denotes the Fourier transformation of the cutting force
(34). The motion of the workpiece relative to the jth cutting edge is
described by means of the superposition of the rotating edges and
the forced stationary vibration y(e, t), that is

rj(e, t, z) = y(e, t) −
D

2
cosφj(t, z) (36)

The SLE is determined as the extremum of these in the form

SLE(e, z) =max
t,j

(rj(e, t, z)) −
D

2
(up −milling)

SLE(e, z) =min
t,j

(rj(e, t, z)) +
D

2
(down −milling)

(37)

As a result, the SLE(e, z) depends not only on the tool position e
only but also on the axial coordinate z of the tool. Consequently,
the so-called maximum surface location error MSLE(e) parameter

Fig. 7 Model of the milling process

Fig. 8 Cutting force in different axial depth of cuts during one
tool revolution for spindle speed N=17,000 rpm and helix pitch
lp=10 (mm). Parameters are given in Table 2.
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is introduced [45], which can be obtained by

MSLE(e) =max
z

(SLE(e, z)) (38)

The described method is capable to forecast the MSLE values
along the tool position for a given set of technological parameters.
Note that this calculation is based on stable forced vibration, so it is
valid only if the milling operation is in the chatter-free (stable)
domain.

4.3 Stability Analysis. In this section, the calculation of stabi-
lity boundaries is briefly discussed according to the surface regen-
erative effect, which is based on the method of the so-called
extended multi-frequency solution (EMFS) [11]. The EMFS is an
effective computational algorithm in order to calculate the stability
boundaries. It is based on the real and the imaginary parts of the
truncated Hill’s infinite determinant. Then, the stability chart is
determined in the plane of the spindle speed Ω and the tool location
e by means of the so-called multi-dimensional bisection method
[46]. The combination of MDBM and EMFS is capable to deter-
mine the stability boundaries in a computationally effective way,
even if closed stable or unstable islands appear. Figure 9 shows
the stability chart for parameters presented in Tables 1 and 2 consid-
ering that the entire width of the workpiece is machined (ap=w). It
should be noted that this stability diagram does not show the tradi-
tional lobe structure since the vertical axis is not the axial immersion
ap, but the tool position coordinate e. Still, the typical phenomenon,
that one side of the lobes tend to the natural frequencies or their
integer quotients (ωn/k, k= 1, 2, …) can be observed in Fig. 9.

5 Case Study
In this section, the previously presented calculation methods are

applied in two different case studies and compared with laboratory
tests, for which, peripheral milling tests of beam-type workpieces
are carried out with w= ap. The technological parameters are
shown in Tables 1 and 2, and the direct FRF is presented in Fig. 4.

5.1 Numerical Results. The so-called superchart (see in Figs.
10 and 11) [16,45] visualizes the stability chart together with the
MSLE values in the plane of the spindle speed N and the tool posi-
tion coordinate e.
For the test case presented in Fig. 10, the chatter-free parameter

regions (pockets) can be found among the stability lobes near to
the resonant spindle speeds (N≈ 15,000, 21,000, 41,000 rpm). On
the one hand, chatter can be avoided for the total length of the

workpiece. On the other hand, these regions are usually not recom-
mended from the viewpoint of the surface errors since significant
resonant vibrations take place (see Fig. 10). However, it can be
observed that negligible MSLE values are resulted along the
spindle speed and tool position curves belonging to the angular
frequencies ωn,1/2 and ωn,2/2.
Figure 11 shows the results of the second test with a wider work-

piece where w= ap= 2lp. Accordingly, the cutting force does not
vary in time, and no resonance occurs that would generate large
MSLE. In the meantime, however, the unstable region became
larger due to the increased axial immersion.
It is well-known that large resonant stationary vibrations can

occur if one of the natural frequencies is excited by one of the
Fourier components of the cutting force variation. As a result, con-
siderable MSLE can be generated at resonant spindle speeds

Ω =
ωn

iZ
, i = 1, 2, . . . , (39)

which can be observed at the vertical dotted lines in Fig. 12.
However, for helical cutting tools, there exist so-called trivial and
non-trivial appropriate axial immersions [42,45], where no resonant
vibrations take place and negligible MSLE can be realized even
along these “resonant” vertical lines of the stability chart. The
trivial appropriate axial immersion can be given by

w = jlp, j ∈ N (40)

represented by horizontal dashed lines in Fig. 12. Note that in this
case, the cutting edges cover full periods [0, k2π]; thus, they
result in constant cutting force independently from the spindle
speed Ω. The non-trivial appropriate axial immersion (see the slant-
ing black lines in Fig. 12) can be given as

w(Ω) = k
Ω
ωn

lpZ, k ∈ N (41)

for which, no resonant vibrations emerge at the “resonant” spindle
speeds. This way, we can find low MSLE values for certain large
axial immersions in the stable pockets along the vertical resonant
spindle speed lines.

Fig. 9 Stability diagram in the plane of the tool path e and the
spindle speed Ω. The red curves show the stability boundaries
corresponding different vibration modes provided by the EMFS
and the light red shaded area presents the corresponding unsta-
ble domains. (Color version online.)

Table 1 Parameters of the milled workpieces (Workpiece
I. and II.)

Parameter Symbol Workp. I. Workp. II.

Width w 15 (mm) 20 (mm)
Thickness v2 3 (mm) 5 (mm)
Length L 105 (mm)
Material AlMgSi05

Density ρ 2935
kg
m3

( )
Young’s modulus E 50 (GPa)
Stiffness prop. damping coeff. αK 1.43 · 10−6 (s)

Mass prop. damping coeff. αM 45
1
s

( )

Table 2 Parameters of the case study [44]

Parameter Symbol Value

Feed per tooth fz 0.05 (mm)
Number of teeth Z 4
Helix pitch lp 10 (mm)
Tool diameter D 8 (mm)
Radial immersion ae 0.4 (mm)

Radial force coefficient Kr 300 · 106 N
m2

( )

Tang. force coefficient Kr 800 · 106 N
m2

( )
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From a practical point of view, the favorable cases are when the
ratio of the helix pitch and width of the workpiece can be expressed
as a ratio of two integers:

i

k
=
lp
w
, i, k ∈ N (42)

in order to provide a condition for the number i of the higher
harmonics of the resonant spindle speeds ωn/(iZ) (see in Fig. 12).
In the case study of Workpiece I in Fig. 10, lp/w= 2/3 and

Eq. (42) holds for parameter pairs [i, k]= [2, 3], [4, 6], [6, 9], ….
This means that every second (even) resonant spindle speeds lead
to negligible MSLE values (e.g., ωn,1/2 relates to point A in
Fig. 12), while the odd ones create resonant vibrations and large
surface errors.
In the case study of Workpiece II in Fig. 11, lp/w= 1/2 and

Eq. (42) holds for parameter pairs [i, k]= [1, 2], [2, 4], [3, 6], …,
which means that none of the “resonant” spindle speeds lead to

resonance. This case demonstrates a special case, where the axial
immersion ap is the double of the helix pitch lp; hence, this situation
corresponds to the trivial appropriate axial immersion which relates
to the horizontal red-dashed line at w= 2lp in Fig. 12. Thus, the
cutting force is constant, there is no forced vibration and the
small MSLE is determined by the static deformation only.

5.2 Measurement Results. Measurements were performed
both on Workpiece I and II fixed as a clamped-clamped beam in
the NCT EmR-610Ms 3 axis CNC milling machine. The photo of
the experimental setup is presented in Fig. 13. The corresponding
parameters are presented in Tables 1 and 2, which were identified
by modal analysis and cutting tests [41,44].
The FRF along the tool path for Workpiece I before the milling

operation was measured by modal testing where the workpiece
was excited at different positions. The first two natural frequencies
and the corresponding mode shapes are visualized in a Pulse B&K
data acquisition system, as shown in Fig. 14. Note that in this case,
the natural frequencies do not change along the plate length, since
there is no changing geometry. The predicted natural frequencies
of the equivalent model can be seen from Fig. 4 at e= 0 m, and
they are compared with the measured values in Table 3. It should
be noted that there was a slight difference between the measured
and the predicted natural frequencies (3.77% and 7.64%). The
major effect of the discrepancies can be the ideal modeling of the
clamped-clamped ends, which may be a too strict condition in prac-
tice. For accurate modeling of the clampings, it could be replaced by
flexible spring-damper elements, which parameters can be tuned.
There is a mild asymmetry in the mode shapes, which also indicates

Fig. 10 The superchart with maximum surface location error
and stability diagram in the plane of the spindle speed and the
tool path for up-milling of Workpiece I; chatter appears within
the pink domains. Parameters: lp=10 mm; ap=w=15 mm, v=
3 mm. (Color version online.)

Fig. 11 The superchart with maximum surface location error
and stability diagram in the plane of the spindle speed and the
tool path for up-milling of Workpiece II; chatter appears within
the pink domains. Parameters: lp=10 mm; ap=w=20 mm, v=
5 mm. (Color version online.)

Fig. 12 Schematic representation of superchart with MSLE col-
ormap and stability lobes in the plane of spindle speed and axial
immersion together with the resonant spindle speeds (vertical
dotted lines). The trivial appropriate axial immersions (horizontal
dashed lines) and the non-trivial appropriate axial immersions
(slanting black lines) are given for a single-degree-of-freedom
milling model. (Color version online.)

Fig. 13 Experimental setup
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not symmetrical clamping conditions. For our investigation, this
difference (<8%) is acceptable, because, only to the change of the
workpiece dynamics is in the focus of the paper. Thus, the effects
and description of the optimized constraints are out of the scope
of this paper, although there exist several models in the literature
[27,31].
The first measurement was performed for Workpiece I at N=

17,000 rpm, which is close to the first-resonant spindle speed
belonging to the first natural frequency of the workpiece.
Figure 15 shows the scaled photo of the surface contour of the
workpiece and its laser scanned profile (colored curves) together
with the theoretically predicted values (black curve). The detailed
surface profile measurement method is presented in Ref. [47]. It
can be seen that the pattern of the large MSLE along the length of
the workpiece has a similar form to the respective first mode
shape. In this test, no chatter marks were observed. Similar
shapes were predicted in Fig. 10 based on the numerical analysis
of the corresponding mechanical model, but the asymmetry resulted
from the different clampings was not captured by the model. As
Fig. 15 shows, there is a slight difference between the measured
and predicted surface profile (black curve). Since the amplitude of
the resulting vibration, consequently, the magnitude of surface

errors are depending on the “distance” from the resonant spindle
speed, a slight deviation in the natural frequencies may cause this
discrepancy in the magnitude of the surface errors.
The spindle speed N= 22,000 rpm was also tested which is near

to the second-resonant spindle speed belonging to the second-
natural frequency. In this case, only negligible MSLE values were
measured as predicted in Eq. (42) for [i, k] = [2, 3]. However,
chatter marks can be observed in regions according to the second-
mode shape shown in Fig. 16; this is also presented by the high fluc-
tuations of the measured surface profile. The reasons for this could
be that the domain of the two unstable islands is underestimated and
the line of the selected spindle speed crosses them in the chart
Fig. 10.
During the measurement performed for Workpiece II, we find

chatter marks along the whole workpiece for all the tested spindle
speeds as predicted by the numerical results in Fig. 11. The spectro-
gram of a typical vibration signal is shown in Fig. 17, which repre-
sents that the varying chatter frequency along the tool path relates to
the fluctuated natural frequency. Note that, there is no one single-
dominant chatter frequency, but multiple ones, which is typical in
highly interrupted milling [48]. As an example, the machined
surface at N= 17,000 rpm is presented in Fig. 18, which shows

Fig. 14 FRF of Workpiece I along the tool position (waterfall
diagram) for the first two natural frequencies and mode shapes

Table 3 Natural frequencies of Workpiece I before machining
(see Figs. 14 and 4 at e=0 (m))

ωn,1 ωn,2

Calculated 1142 (Hz) 3155 (Hz)
Measured 1099 (Hz) 2914 (Hz)
Relative error 3.77% 7.64%

(a)

(b)

Fig. 15 (a) Measured surface profile at along the workpiece and
(b) scaled photo of the surface contour in the function of the tool
position for spindle speed N=17,000 rpm; parameters from
Tables 1 and 2 for Workpiece I

(a)

(b)

Fig. 16 Photo of the chatter marks (a) and the laser-scanned
surface profile (b) for Workpiece I at spindle speed N=
22,000 rpm; parameters from Tables 1 and 2

Fig. 17 Typical spectrum for a fully unstable milling case at
spindle speed N=21,660 rpm

Fig. 18 Chatter marks on the milled surface for Workpiece II at
N=17,000 rpm; parameters from Tables 1 and 2
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chatter marks along the full length of the tool path. Note that neg-
ligible shape deviation is detected, because trivial appropriate
axial immersion is applied (see Eq. (40) for ap= 2lp).
All the results of the performed measurements are in correlation

with the theoretical predictions. The measurements also show that
the varying dynamical properties have relevant influence on the
surface errors and the stability properties in case of flexible work-
pieces. The differences can be explained by the non-ideal and non-
symmetric clampings, which may lead to change in natural frequen-
cies, asymmetry in mode shapes, and consequently in surface errors.
All the above-presented steps of MSLE and stability computation

can be performed in case of more complex geometry. However, in a
general situation, an analytical solution may not exist, but from a
detailed FE model, one can compute the FRF along the tool path.
With this extended FRF, the stability chart and the surface quality
can be predicted at each step along the tool path. Based on these
methodologies, the cutting technology of the milling operations
can be optimized in order to achieve efficient production and
reach acceptable surface errors.

6 Conclusions
In this contribution, it is shown how the change of the frequency

response function affects the stability and surface errors of the
milling operations. To demonstrate this, the workpiece is consid-
ered as a flexible beam; moreover, the stiffness variation caused
by the material removal and the change in the excitation point
(tool position) are also taken into consideration. First, finite
element formulation is derived for the direct frequency response
function, then its parameters are validated through an analytical
closed-form solution (called distributed transfer function method).
The pattern of the natural frequency fluctuation caused by the mate-
rial removal is explained through extreme cross-sectional reduction,
for which analytical solution is provided in the limit case.
The stability boundaries together with the MSLE values are pre-

sented in the superchart as a function of spindle speed and tool
position.
The case studies show that the chatter-free parameter domains

are located at the resonant spindle speeds. It is also shown that
the maximum surface location errors can be significant at these
spindle speeds. However, if the trivial or the non-trivial appropriate
axial immersions are applied, then good surface quality can be
achieved even for resonant spindle speeds. In this sense, the
results of this paper may help understand the connections
between the mode shapes/natural frequencies and the location of
the unstable areas and surface errors. The numerical and the exper-
imental case studies show agreement, which validates the theoreti-
cal predictions.
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