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2 MTA-BME Lendület Human Balancing Research Group, Budapest,H-1111,

Hungary
bencsik@mm.bme.hu,

3 Department of Applied Mechanics, Budapest University of Technology and
Economics

insperger@mm.bme.hu, stepan@mm.bme.hu

Abstract. The dynamic analysis of legged locomotion typically involves
issues related to multibody dynamics, underactuation, motion planning
and stability. In addition to biomechanics of humans and animals, the
dynamic analysis of legged locomotion is also an important issue in the
control development of pedal robots. For these robots, stable internal
dynamics has to be guaranteed in order to achieve reliable control.
The goal of this study is the conceptual proof of a direct eigenvalue
analysis method for the internal dynamics of legged robotic locomotors.
The starting point is a planar model of hopping, which provides stable
periodic motion without the feedback control of the locomotion speed. In
the present study, we extend the existing model with a controller whose
goal is to zero the virtual constraint related to the prescribed locomotion
speed. We expect that the locomotion speed can be set arbitrarily in a
certain range, where the internal dynamics is stable. The stability of
the internal dynamics is analyzed using a recently published method
based on direct eigenvalue analysis. Although, this method is not usual
in control theory, it can efficiently be applied for multibody systems.

Keywords: Pedal locomotion, multibody dynamics, underactuated sys-
tems, zero dynamics, piecewise smooth dynamical systems, periodic or-
bits, eigenvalue analysis.

1 Introduction

The understanding of the dynamics of pedal locomotion is an important task
both in biomechanics and in robotics [1–9]. The related models are typically
underactuated, since the independent control inputs are less than the number
of degrees-of-freedom (DoF). The stability of underactuated systems such as
locomotors is guaranteed only if their internal dynamics is stable. One may
analyze the internal dynamics by the priory separation of the controlled and
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the internal dynamics [10, 11]. However, in this study, we apply an alternative
approach which is based on the direct eigenvalue analysis of the system [12].

The legged locomotion is typically split into the flight (airborne) and the
ground (stance) phases, which are connected by ground-foot collisions and ground-
food detachments [1,3,5,9]. Therefore, the corresponding dynamical models usu-
ally belong to the group of hybrid systems [3, 13]. Methods for the dynamic
analysis of hybrid systems are also utilized in this work.

We demonstrate the direct eigenvalue analysis on a hopping leg model [9],
which 1) provides stable hopping motion and 2) guarantees the prescribed loco-
motion speed. The latter control goal, which is achieved by event-based stride-
to-stride control decisions [14], is a new development in our model. The control
algorithm is time-invariant, so that no precomputed trajectories are needed to
realize the motion. The stability of the internal dynamics is achieved by a zero-
moment-pole (ZMP) control [4,5], while the locomotion speed control is achieved
by a higher level feedback controller.

2 A dynamic model of stable hopping locomotion

The hopping model analysed in this paper consists of the dynamic equations
of the underlying multibody system (Sec. 2.1). The dynamic equations are cou-
pled with the equations of the transitions between the ground and flight phases
(Sec. 2.2). Furthermore, the control equations form a coherent part of the math-
ematical model (Sec. 2.3). The control includes a certain set of equations for
providing stable hopping similarly as in the previous model in [9]. The control
of the locomotion speed is realized in a higher level control, which is a new
extension of the model.

2.1 Mechanical structure

The planar mechanical model of our human-like hopping leg is depicted in Fig. 1.
The rigid, homogeneous, prismatic segments 1, 2 and 3 correspond to the foot,
shank and thigh, respectively. The kinematic pairs A, B, C and D correspond to
the tiptoe, the ankle joint, the knee joint and the hip joint, respectively. These
are characterized by their masses mi and lengths li, i = 1, 2, 3. The overall
centre of mass (CoM) location is indicated by G. The upper body is modelled
by a reaction wheel with mass mr. Its moment of inertia with respect to the
y-axis through point D is Jr. The input torques are exerted at joints B, C and
D, as it is shown on the right of Fig. 1. The actuating torques MB, MC and
MD are defined by the control law introduced in Sec. 2.3. Neglecting nonlinear
spring characteristics related to the muscle-tendon dynamics [2], muscle torques
kB(θ12 − α12) and kC(θ23 − α23) are modelled by linear torsional springs of
stiffness kB and kC, where α12 and α23 denote the ankle- and knee-joint angles
corresponding to the unstretched springs, respectively.

The general coordinates q = [xA, zA, θ1, θ12, θ23, θr]
T describe the n = 6 DoF

system. The Cartesian coordinates of the tiptoe are xA and zA in horizontal and



Au
th
or
s’
pe
rs
on
al
co
py

Internal dynamics of a legged hopping model with locomotion speed control 3

Fig. 1. Segmented leg model with torsional springs, under vertical gravity above a flat,
rigid, horizontal ground (left). Free-body-diagram showing control torques (right).

vertical direction, respectively. The foot angle θ1 is measured from the horizontal,
while θ12 and θ23 are the relative angles of the ankle and the knee. The angular
position of the reaction wheel is θr. The equation of motion is formulated in the
general form

H(q)q̈ + C(q, q̇) = Q(q, q̇) , (1)

where q̇ and q̈ are the vectors of general velocities and accelerations, respectively.
The mass matrix is H ∈ Rn×n, and vector C ∈ Rn contains the centrifugal and
Coriolis forces. The gravitational forces, the torques of the torsional springs and
the control torques are collected in the general force vector Q ∈ Rn.

2.2 Flight and ground phase transitions

In the airborne phase, the system has 6 DoFs, while, in the stance phase, the
tiptoe is fixed to the ground. In order to use the first order form of the dynamic
equations we introduce the state variable vector x = [q, q̇]

T
, where x ∈ R2n.

The dynamic equation (1) of the flight and ground phases are reformulated as

ẋ(t) = fF(x(t)), ẋ(t) = fG(x(t)) (2)

respectively, where

fF(x(t)) =

[
q̇

−H−1(C−Q)

]
, fG(x(t)) =


02×1

q̇red

02×1

−H−1
red(Cred −Qred)

 (3)

are smooth vector fields. Due to the constraint provided by fixing the tiptoe
to the ground, the reduced general velocity vector q̇red = [θ̇1, θ̇12, θ̇23, θ̇r]

T is
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applied in the ground phase. Similarly, the reduced mass matrix Hred is obtained
by truncating the first two rows and columns of H, while Cred and Qred are
obtained by truncating the first two rows of C and Q, respectively. The vector
field fG results that the acceleration and velocity components of the tiptoe are
ẍA = 0, z̈A = 0 and ẋA = 0, żA = 0 respectively.

Flight to ground (F2G) The flight to ground transition happens when the
switching surface ΣF2G, defined by

hF2G(x) := zA = 0 (4)

is crossed. Technically, the switching surface ΣF2G is the ground itself in the
present model. The F2G transition includes the collision of the foot with the
ground. The collision is completely inelastic and instantaneous and there is no
rebound [6, 7, 9]. Our further assumption is that the friction force prevents the
slip of the foot [8]. All in all, the velocities ẋA and żA become zero and the
angular velocities have discontinuities too when the solution reaches ΣF2G. This
abrupt change of the general velocities in q̇ is described by the jump function:

gF2G(x) =

[
q

(In×n −Pc)q̇

]
. (5)

The mapping gF2G(x) specifies the post-impact location of the solution, with the
projection of the velocities into the direction which is admissible by the physical
constraints γ(q) [15,16]. The projection can be formulated as:

Pc = H−1γT
q (γqH−1γT

q )−1γq. (6)

Ground to flight (G2F) The ground to flight transition at the surface ΣG2F,
defined by

hG2F(x) := λz = 0, (7)

is a switch from the smooth vector field fG to fF (see (2)) without any disconti-
nuity of the solution. In (7), the Lagrange multiplier represents the magnitude
of the contact force and the positive sign of λz refers to a pulling force. The
mathematical form of the corresponding jump function is

gG2F(x) = x. (8)

The contact force λ is calculated by evaluating following expression[
q̈
λ

]
=

[
H(q) γT

q (q)
γq(q) 0

]−1 [
Q(q, q̇)−C(q, q̇)
−γ̇q(q, q̇)q̇

]
(9)

with the already calculated values of q and q̇. The expression in (9) is identical
with the from-3-to-1 index reduction scheme of differential algebraic equations
in [17]. The Jacobian of the constraint vector is γq(q) = ∂γ(q)/∂q and the
ground-foot contact is represented by γ(q) = 0 with

γ(q) = [xA , zA]
T
. (10)
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2.3 Internal dynamics stabilization and locomotion speed control

The time-dependent and time-invariant control concepts of legged locomotion are
clearly distinguished in [4, 5]. In case of time-dependent control approaches the
control goal is the tracking of precomputed trajectories. However, our concept
fits better into the group of time-invariant approaches, when the control actions
are driven by the events along the motion of the locomotor. The control goal
is the stable gait generation; and additionally, the nominal locomotion speed is
prescribed without the tracking of any prescribed trajectories.

Stable gait generation The required control torques are formalized sepa-
rately for the flight ((11)-(13)) and ground ((15)-(17)) phase. The control torques
MF

B and MF
C play the role of dampers. The horizontal position xA of the tip-

toe relative to the nominal horizontal position xG + x∆ is maintained by the
proportional-derivative (PD) controller realized by torque MF

D. The torques MF
B ,

MF
C and MF

D are given by

MF
B = −DBθ̇12 , (11)

MF
C = −DCθ̇23 , (12)

MF
D = P (xA − (xG + x∆)) +D(ẋA − ẋG) , (13)

where DB, DC, P and D are control gains. We emphasize, that the CoM position
xG is not precomputed, but obtained from the actual state. In order to achieve
a ZMP control [4, 5], the value x∆ in the nominal tiptoe position is given by

x∆ = PΠ ΠA −Kv , (14)

where ΠA is the angular momentum about the point A, PΠ is an associated
control gain and Kv is a control parameter responsible for tuning the locomotion
speed. We note that the pre-impact positioning of the tiptoe is considered as the
foot touchdown preparation.

In the stance phase, the mechanical energy level is maintained by means of
the control torques at the ankle and the knee (see Eqs. (15), (16)). The control
goal is the zeroing the difference of the total mechanical energy E and the target
energy level E0, which is arbitrarily chosen in the stable range. The torque MG

D

in (17) plays the role of a spring and a viscous damper and therefore prevents the
continuous growth of the angular velocity θ̇r. The control torques of the ground
phase are given by

MG
B = PE(E − E0) sgn(θ̇12) , (15)

MG
C = PE(E − E0) sgn(−θ̇23) , (16)

MG
D = −Prθr −Drθ̇r , (17)

where PE , Pr and Dr are control gains.
The torques in (11)-(17) are supposed to guarantee the stability of the inter-

nal dynamics, i.e. the periodicity of the motion. The tuning of the parameters
in (11)-(17) are based on the investigation of the stability of the internal dyna-
mics [10] as detailed in Sec. 3.
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Maintenance of the locomotion speed Besides the stable gait, an additional
control goal is to keep the prescribed average locomotion speed, which is achieved
by zeroing the following virtual constraint σ ∈ R1:

σ = xG(t+ T )− xG(t)− Tvd, (18)

where xG describes the horizontal position of the CoM and T is the time pe-
riod. Equation (18) is the generalization of the so-called servo-constraint (virtual
holonomic constraint) [18]. The servo-constraint in the original sense is a func-
tion of the current state variables. However, (18) includes the motion for the
whole period: ẋG(t) is integrated over the interval [t, t+ T ]. The output (18) is
evaluated once in each period.

The output (18) is guaranteed by a higher level feedback controller that
performs the stride-to-stride modification of Kv, which is a gain parameter in
the low level controller (13). In order to have a compact form of the mathematical
description of the whole dynamics, the gain parameter Kv is maintained as a
state variable. The dynamics of Kv is defined in the flight and ground phase by

K̇v(t) = fKvF (Kv(t)), K̇v(t) = fKvG (Kv(t)) (19)

respectively, where the smooth vector fields fKvF ∈ R1 and fKvG ∈ R1 are defined
as

fKvF (Kv(t)) = [0], fKvG (Kv(t)) = [0]. (20)

The gain Kv does not change during the continuous phases. The value of the
gain Kv is updated at the end of each period which is in coincidence with the
time instance of the G2F transition. The corresponding R1 jump functions are

gKvF2G(Kv) = [Kv] (21)

gKvG2F(Kv) = [Kv − Pσσ] (22)

where σ is the control output defined in (18) and Pσ is the associated posi-
tive control gain. Equation (22) realizes the feedback for the locomotion speed
control. Based on (18) and (22), the controller performs stride-to-stride control
decision which is typical in time-invariant control approaches [5].

3 Stability analysis of the internal dynamics

The stability analysis of the internal dynamics [10] is necessary when stable
control is designed. We apply the direct eigenvalue analysis detailed in [12].

3.1 A compact mathematical formulation

In order to obtain a compact mathematical form, we couple the state variables
x̂ ∈ Rn̂ (with n̂ = 2n + 1) and the dynamic equations (2) and (19) of the
mechanical system and the feedback control as

x̂ =

[
x
Kv

]
, ˙̂x(t) = f̂F(x̂(t)), ˙̂x(t) = f̂G(x̂(t)) (23)
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respectively, where the smooth vectorfields f̂F(x̂(t)) ∈ Rn̂ and f̂G(x̂(t)) ∈ Rn̂ are

f̂F(x̂(t)) =

[
fF(x(t))

fKvF (Kv(t))

]
, f̂G(x̂(t)) =

[
fG(x(t))

fKvG (Kv(t))

]
. (24)

We also put together the jump functions (5) with (21) and (8) with (22) for the
F2G and G2F transitions respectively:

ĝF2G(x̂) =

[
gF2G(x)

gKvF2G(Kv)

]
, ĝG2F(x̂) =

[
gG2F(x)

gKvG2F(Kv)

]
. (25)

The illustration of the solution of the resulting n̂ = 2n + 1 dimensional hybrid
dynamical system is depicted in Fig. 2. The dashed curves show a solution for
x(t) and Kv(t) with a general initial condition, and the continuous curves show
the periodic solutions x∗(t) and K∗

v (t).

3.2 Direct analysis of the internal dynamics

We shortly overview the analysis of internal dynamics in case of our dynamic
system, which is n̂ dimensional with the state vector x̂. The output σ in (18) is
one dimensional, therefore the relative degree r [10,19] is a scalar, which defines
the input-output relation. Based on the partial feedback linearization [10,19], the
control problem can be described with r number of states in general: if r < n̂,
then n̂ − r number of states is not necessary for the exact definition of the
output. In such case the full state input-output linearization is not possible and
the internal dynamics of n̂− r dimensions exists [10]. The related unobservable

Fig. 2. The piecewise smooth solution for the general coordinates and velocities x and
the gain parameter Kv.
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states cannot be seen from the input-output relationship. Besides, the controlled
dynamics of dimensions r can be separated by the partial feedback linearization.

In what follows, a recently published method is applied [12]. This method
eliminates the need of the a priori transformation of the system into controlled
and internal dynamics. The method in [12] is based on the direct eigenvalue anal-
ysis technique of differential algebraic systems. The method in [12] utilizes that
the equation of motion is subjected to servo-constraints. Regarding the servo-
constraint, the restricted and the admissible directions can be distinguished in
the state space. Free motion is possible only in the admissible direction and it
belongs to the internal dynamics [12].

The above explained idea is applied for the eigenvalue analysis of the mon-
odromy matrix of our hybrid hopping system. Assuming that the relative periodic
orbit is found with a shooting approach, we apply the first variational equation
in the following form separately for the flight and the grounded phase for the
calculation of the fundamental solution matrices [3, 13,16] Φ̂F(t) and Φ̂G(t):

˙̂
ΦF(t) = (∇x̂f̂F(x̂))Φ̂F(t),

˙̂
ΦG(t) = (∇x̂f̂G(x̂))Φ̂G(t) (26)

with initial conditions Φ̂F(0) = I and Φ̂G(0) = I. Here I is the Rn̂×n̂ identity

matrix. The solution Jacobian Φ̂(t) which is also referred as monodromy matrix,
is then obtained for the entire relative periodic orbit by the composition

Φ̂(tG2F) = ŜG2F Φ̂G(tG2F) ŜF2G Φ̂F(tF2G). (27)

Here, matrices ŜG2F and ŜF2G describe the contribution of the mappings at
the phase transitions, which are known as the saltation matrices. The saltation
matrices are determined based on [3, 16]. The stability of the relative periodic
orbit is determined from the eigenvalues µi (i = 1 . . . n̂) of the monodromy matrix

Φ̂(tG2F), which are known as the Floquet-multipliers [13].
The identification of the Floquet-multiplier related to the controlled motion

is achieved by the local sensitivity analysis regarding the feedback parameter
Pσ. The remaining n̂ − 1 number of Floquet-multipliers are related to the in-
ternal dynamics. For the local sensitivity analysis, the partial derivatives of all
µi Floquet multipliers are calculated with respect to Pσ. The resulting Jacobian
assumes the form

T =
[
∂µ1

∂Pσ
· · · ∂µn̂∂Pσ

]
. (28)

In practice this matrix can be constructed with numerical differentiation. Here
the largest elements of the Jacobian T are associated with the controlled dynam-
ics and the remaining eigenvalues are associated with the internal dynamics.

4 Results

Forward hopping (case A), hopping on the spot (case B) and backward hopping
(case C) are investigated as shown in Fig. 3. For all the three cases, five hops are
simulated which is shown by the periodic blue and red curves, which show the
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path of the CoM and the tiptoe, respectively. The stroboscopic view of the model
is shown for each period in different phase shifts. The internal dynamics, which
is related to the periodic hopping, was stable as the simulation results show: the
hopping height and the velocity was uniform in each period. Furthermore, the
controller maintains the locomotion speed defined as an output by (18).

5 Conclusions

We applied a novel sensitivity based direct eigenvalue analysis for the investiga-
tion of the stability of the internal dynamics of an underactuted hopping model.
The internal dynamics related to the hopping motion was stable and the locomo-
tion speed was guaranteed by the controller. The results were demonstrated by
numerical simulations and will be applied in further research related to legged
locomotion dynamics.
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Fig. 3. Simulation results for forward hopping, hopping on the spot and backward
hopping
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