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Abstract— The saturation of actuators is an essential

nonlinearity, and the consideration of the bounded actuator

torques during the design of the computed torque control

(CTC) is a challenging task. In this study, the saturation of

the actuator torques is treated as a temporary reduction of

the number of independent control inputs. Consequently,

a manipulator, which is fully actuated in the neighbour-

hood of its desired motion, becomes underactuated when

the intricate combinations of the actuator saturations oc-

cur. The cascade of two CTC algorithms is applied to

resolve the problem of the temporary underactuation: the

classical CTC method is self-interrupted and exchanged to

a generalized CTC that is extended to underactuated sys-

tems. The corresponding control algorithm is applicable

even in those cases of multi-body problems where the use of

non-minimum set of coordinates provides the computation-

ally efficient mathematical description together with servo-

constraint based task definitions leading to differential al-

gebraic equations.

Keywords: underactuated systems, actuator saturation, con-

strained manipulators, redundancy, servo-constraints

I. Introduction

Robotic structures may change their topology during

their operation for several reasons. The cause of the topol-

ogy variation could be related to the variation of the con-

tact points between the robot and the environment, or to the

intermittent variation in the number of the actually control-

lable actuators. The present work is about the second case:

the change of the topology is due to the loss of some of the

accessible actuators because they reached their saturation

levels.

Every driver applied in robotic systems has some limita-

tions which are typically speed, power and/or torque limits.

These limitations can be included in the mathematical mod-

els and so they can be taken into account already during the

design of the task. Still, the actuator torque saturation may

cause essential problems when a manipulator performs the

tracking of a desired trajectory. Clearly, the risk of actuator

saturation is higher, for example, when high accelerations

are prescribed.

Several CTC based control algorithms can be found in

the literature, which take into account the limited actua-

∗zelei@mm.bme.hu
†stepan@mm.bme.hu

tor torques. In [1], a continuous-time predictive control

approach is used to derive the nonlinear constrained con-

trol law for trajectory tracking control in the presence of

actuator saturation. The proposed method is limited for

those systems that are input-output feedback-linearizable

after a specific treatment called dynamic expansion. The

resulting control minimizes the tracking errors even with

saturated actuators. In reference [2], an adaptive full-state

feedback controller as well as an exact-model-knowledge

output feedback controller are designed, and a comparative

numerical analysis is carried out to demonstrate the ben-

efits of the two proposed controllers. On the basis of the

classical CTC method, a composite nonlinear feedback de-

sign method is presented in [3] for robot manipulators with

bounded torques at the actuators. The controller consists of

two loops. The inner loop is for the full compensation of

the manipulator’s nonlinear dynamics, while the outer loop

is the composite nonlinear feedback controller for stabiliza-

tion and performance enhancement.

The above mentioned control approaches handle the ac-

tuator saturation as a nonlinearity of the system. Alterna-

tively, actuator saturation can also be modelled as the decre-

ment of the number of accessible control inputs, which is

practically equivalent to the variation of the manipulator’s

topology.

In the subsequent sections, first, the classical computed

torque control (CTC) method (see, for example, [4, 5])is

formulated briefly when non-minimum set of descriptor co-

ordinates (in other terminology, redundant set of general-

ized coordinates) is used and the task is defined by servo-

constraints. Then extended CTC methods (see [6–8]) are

introduced for underactuated systems. In order to handle

actuator saturation in fully- and/or underactuated manipu-

lators, a specific combination of the classical CTC method

and one of the extended CTC methods (see [8]) is devel-

oped, which is applicable even for complex multi-body sys-

tems that are modeled by non-minimum set of descriptor

coordinates. After the discussion of the possible ways of

the dimension reduction of servo-constraints, the efficiency

of the proposed combined CTC algorithm is demonstrated

in the case study of an RR manipulator with essential actu-

ator saturations.

II. Classical and extended CTC algorithms

In case of serial and fully actuated robotic manipulators,

an independent control input is associated with each de-
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gree of freedom (DOF). Consequently, the classical CTC

method can easily be applied for such systems, especially

when they are modeled in the classical way of using min-

imum set of generalized coordinates, and the correspond-

ing equation of motion has an ordinary differential equation

(ODE) form [4, 5]. This is not the case for underactuated

robotic manipulators.

The computed torque control method was generalized for

underactuated systems by [6]: it was named computed de-

sired computed torque control (CDCTC) method, where the

term “desired” refers to the fact that the desired values of a

set of uncontrolled coordinates have to be calculated first,

and after the calculation of this desired zero dynamics, the

control inputs can be determined. This method requires the

separation of the generalized coordinates into controlled

and uncontrolled ones. Partial feedback linearization can

also be used for the control of underactuated systems [9].

The main idea of the method is to substitute the original

nonlinear system with a partially equivalent linear system

by means of a non-linear transformation. The CTC method

for underactuated systems can be further generalized for

systems modeled by non-minimum set of descriptor coor-

dinates when the mathematical model is extended with ge-

ometric constraint equations and arranged into a system of

differential algebraic equations (DAE).

The subsections below detail a servo-constraint based

CTC method for constrained systems described by non-

minimum set of descriptor coordinates. Then the method

is applied for underactuated systems with unbounded con-

trol inputs, while the application for bounded systems is

explained in the subsequent section III.

A. Problem formulation

When multi-body systems are described by non-

minimum set of descriptor coordinates q ∈ R
n, geometric

constraint equations provide the specific connections of the

redundant descriptor coordinates. These additional equa-

tions are represented by ϕ(q, t) ∈ R
m, so the system has

n −m DoF. The Lagrangian equation of the first kind has

the form

M(q)q̈+C(q, q̇) +ϕT
q
(q, t)λ = H(q)u (1)

ϕ(q, t) = 0, (2)

which is a DAE [10, 11]. is a positive definite mass ma-

trix. The descriptor coordinates are chosen intuitively, but

if they are chosen properly like in case of the so-called nat-

ural coordinates (see [11]), the mass matrix M(q) ∈ R
n×n

is a constant matrix M(q) ≡ M. This is a relevant ob-

servation when the advantages of modeling by DAE are

listed. The vector C(q, q̇) ∈ R
n describes the inertial, gy-

roscopic, Coriolis terms and all external forces, including

gravity, spring and damping forces if present.

The Jacobian matrix associated with the geometric con-

straints is presented by and ϕ
q
(q, t) = ∂ϕ(q)/∂q ∈

R
m×n. The corresponding Lagrange multipliers are col-

lected in the time dependent vector λ ∈ R
m; these pro-

vide the time-history of the constraint forces corresponding

to the additional geometric constraints, so their calculation

will not be important from control view-point.

The l dimensional control input vector is u ∈ R
l and

H(q) ∈ R
n×l is the generalized control input matrix. If

the number l of the control inputs is less than the n − m
DoF of the system, then it is called underactuated, while if

l = n−m than the system is fully actuated.

The task of the manipulator is defined in the form

of holonomic and rheonomic constraint equations called

servo-constraints or control-constraints [7, 12–15]. This

way, any kind of manipulator tasks can be handled simi-

larly to the geometric constraints in (2). By means of the

servo-constraint vector σ(q, t) ∈ R
l, the servo-constraint

equation can be written as:

σ(q, t) = 0. (3)

We assume that the investigated underactuated system has

desired outputs of the same number l as inputs. In spite

of the fact that the inverse dynamical calculation leads to

the solution of a system of DAE, the desired control inputs

can be determined uniquely by the method of computed

torques [7,8,16]. Reference [17] mentions that the classical

Lagrangian multiplier technique works only for indepen-

dent constraints, where the constraint Jacobian is a full row

rank matrix. Considering this, we assume that the servo-

constraints are linearly independent. Besides, we assume

that they are also consistent, that is, there are no contradic-

tory constraints, and first, we also assume that they can be

satisfied with bounded control inputs.

After the introduction of servo-constraint equations, the

number n of independent descriptor coordinates are con-

strained by tha same number n = m+l constraint equations

in fully actuated cases. When n > m + l in underactuated

systems, a part of the dynamics is independent from the ge-

ometric and the servo-constraints, which is also called zero

dynamics.

Our goal is to determine the input vector u, which re-

quires the determination of the desired values of the de-

scriptor coordinates in q, and adjunctively the vector λ of

Lagrange multipliers, which all satisfy the DAE system (1),

(2) and (3). While in some simple cases this goal can be

achieved analytically, efficient numerical methods have to

be used in general cases in order to carry out the calcula-

tions in each sampling period. In order to explain the dif-

ficulties related to the solution of these systems, consider

first the case of fully actuated systems.

B. Servo-constraint based CTC for fully actuated systems

To provide a general overview of the difference between

the inverse dynamic calculation of fully actuated and under-

actuated systems, let us consider an unconstrained dynam-



ical system with the complementary servo-constraint equa-

tion:

M¨̄q+C(q̄, ˙̄q) = H(q̄)u, (4)

σ(q̄, t) = 0, (5)

where q̄ ∈ R
n is now the vector of minimum set general-

ized coordinates.

The desired values in q̄ can be obtained from the servo-

constraint equation (5) as the function of time. However,

the servo-constraint vector σ(q̄, t) is usually a nonlinear

function of q̄, so numerical methods should be applied at

this point. After this, the control input can easily be calcu-

lated, because in case of unconstrained, fully actuated sys-

tems, the control input matrix H(q̄) ∈ R
n×n is invertible

[5]:

u = H−1(q̄)
[

M¨̄q+C(q̄, ˙̄q)
]

. (6)

The inverse dynamical calculation becomes somewhat

more challenging if the fully actuated system is described

by non-minimum set of descriptor coordinates q ∈ R
n, and

geometric constraints are introduced as the governing equa-

tions (1) and (2) show. In such cases, the geometric con-

straint equation (2) and the servo constraint equation (3)

are both needed to obtain the desired values of the descrip-

tor coordinates q ∈ R
n. In contrast with the unconstrained

systems, here, the control input can not be calculated with

the inverse of H(q) ∈ R
n×l, because it is not a square ma-

trix. The algorithm introduced in the following subsection

will resolve this problem.

C. Servo-constraint based CTC for underactuated systems

In order to solve the inverse dynamic problem for under-

actuated systems where even non-minimum set of descrip-

tor coordinates are used, the application of the direct back-

ward Euler discretization of the DAE system (1), (2) and

(3) is proposed here. The backward Euler method requires

the solution of a system of nonlinear algebraic equations in

each sampling time step of the control. This can efficiently

be carried out by NewtonRaphson iterations. The method

works even in those cases when the separation of the co-

ordinates into controlled and uncontrolled ones (see [6]) is

not possible [16].

Transform the unconstrained dynamic equation (1) into a

first order system via introducing the new variable y = q̇.

Then we consider the geometric constraint equation (2) and

the stabilized second time derivative of the servo-constraint

equation (3). After that, the control law will be obtained for

u ∈ R
l as a solution of the 2n + l +m dimensional DAE

system:

q̇ = y, (7)

ẏ = −M(q)−1
[

C(q,y) +ϕT
q
(q)λ−H(q)u

]

,

ϕ(q) = 0, (8)

σq(q, t)ẏ + σ̇q(q,y, t)y + σ̇t(q,y, t) +

Kα[σq(q, t)y + σt(q, t)] +

Kβσ(q, t) = 0 , (9)

where the subscripts for q and t refer to corresponding par-

tial derivatives, and u ∈ R
l, q ∈ R

n, y ∈ R
n and λ ∈ R

m

are the unknowns of same number as equations. The gain

matrices Kα and Kβ are chosen either by trial and error, or

by certain optimization algorithms that are designed for the

discretized version of the calculation.

In oreder to get the discretized version, the problem is

reformulated in the following way. The backward Euler

discretization of the DAE system (7-9) results in a system

of nonlinear algebraic equations:

qd
i − qi−1 − hyd

i = 0, (10)

yd
i − yi−1 + hM(qd

i )
−1 ×

(

C(qd
i ,y

d
i ) +ϕT

q
(qd

i )λi −H(qd
i )ui

)

= 0,

ϕ(qd
i ) = 0, (11)

σq(q
d
i , ti)(y

d
i − yi−1) +

σ̇q(q
d
i ,y

d
i , ti)y

d
i + σ̇t(q

d
i ,y

d
i , ti) +

Kα[σq(q
d
i , ti)y

d
i + σt(q

d
i , ti)] +

Kβσ(q
d
i , ti) = 0 , (12)

where h denotes the sampling time used for the time dis-

cretization. In this discretized form, the unknowns are the

ith values of the desired coordinates qd
i , their time deriva-

tives yd
i , the control inputs ui and the Lagrange multipliers

λi, while qi−1 and yi−1 are known as the measured values

at the previous sampling instant, that is, at the preceding

(i− 1)st time step. This system can also be formulated in a

compact form F(zi) = 0 for the vector of unknowns:

zi = [qd
i ,y

d
i ,ui,λi]

T. (13)

The only important part of the solution is the control input

ui since qd
i , yd

i and λi are dropped in the next timestep: the

coordinates and velocities will be substituted by the mea-

sured ones and the constraining forces are not needed at all.

The nonlinear algebraic equation (13) is solved by

Newton-Raphson iteration. The (j + 1)st estimation for

the unknown vector zi in the ith time step is expressed as:

z
j+1

i = z
j
i − J−1(zji )F(z

j
i ); j = 0, 1, ..., nNR. (14)

If the initial estimations z0i = znNR

i−1 are used from the pre-

vious time step, then accurate enough results are obtained

in a few steps of iterations, that is nNR is usually not larger



than 2 or 3. If the above iteration process is simplified by

the use of the initial approximation of the inverse Jacobian

in the form:

z
j+1

i = z
j
i − J−1(z0i )F(z

j
i ); j = 0, 1, ..., nNR, (15)

we still obtain an accurate enough result in 2-3 iteration

steps, and the whole numerical calculation becomes fast

enough that it is managable even in on-line control algo-

rithms by providing the control input ui within znNR

i in

each sampling time instant.

III. Combined fully- and underactuated CTC algo-

rithm for handling saturation

In the proposed concept, the control algorithm first cal-

culates the desired control input vector u ∈ R
l for all actu-

ators, and then it checks whether the value of each control

input ui, i = 1 . . . l exceeds the maximum or minimum

limiting values u+
i or u−i , respectively (see Fig. 1).

If some actuators saturate, then the number of the non-

saturated actuators is reduced to l̂. The saturated actuators

provide a constant torque u+
i or u−i , and the algorithm re-

calculates the desired control inputs û ∈ R
l̂ with l̂ < l as an

underactuated system. The number l̂ of the still accessible

non-saturated control inputs is always less than the number

of DoF, so the system is actually underactuated. For the

l − l̂ number of saturated actuators, the limiting values u+
i

or u−i are commanded by the controller. This operation is

repeated in each sampling time step again and again if new

and new actuators saturate, but it stops if there are no further

actuators to saturate, or if all the actuators are saturated.

u
commanded

u
real

-
u

+
u

Fig. 1. Actuator saturation: nonlinear connection between commanded

and real control input

The partitioning of the control input vector into saturated

and non-saturated parts leads to the following structure of

the equation of motion:

Mq̈+C(q, q̇) +ϕT
q
(q)λ =

H(q)Ru± +H(q)Tû, (16)

where u± contains the corresponding maximal and mini-

mal values u+
i or u−i , while û ∈ R

l̂ contains the accessible

control inputs, T ∈ R
l×l̂ and R ∈ R

l×l are selector matri-

ces defined by

u = Ru± +Tû . (17)

In (16) and (17), the selector matrix R collects the saturated

control inputs, and T identifies the non-saturated (still ac-

cessible) control input vector as:

û = TTu . (18)

In (16), the term H(q)Ru± is a known, constant external

force vector, while the term H(q)Tû is responsible for the

actuation of the system. Thus, we can introduce a reduced

size control input matrix Ĥ(q) ∈ R
n×l̂ for the saturated

system as

Ĥ(q) = H(q)T (19)

and the new vector of inertial forces in the form

Ĉ(q, q̇) = C(q, q̇)−H(q)Ru± . (20)

This way, equation (16) assumes the form

Mq̈+ Ĉ(q, q̇) +ϕT
q
(q)λ = Ĥ(q)û , (21)

which is fully compatible with the form (1) used in the

problem formulation of underactuated systems described

by redundant set of coordinates.

It is still true, however, that the inverse calculation can be

unique only if the dimension of the servo-constraint vector

(that is, the dimension of the task) is equal to the number l̂
of accessible control inputs û. Consequently, a reduced size

servo-constraint vector has to be defined for the case when

some of the actuators saturate, which practically means the

redesign of the desired task. In the saturated cases, we use

this reduced size servo-constraint vector σ̂(q, t) ∈ R
l̂ in-

stead of the original σ(q, t) ∈ R
l used in (3).

The dimension reduction of the servo-constraint vector is

a critical step because the transformation between σ̂(q, t)
and σ(q, t) is not unique: several optimization techniques

can be used, which are explained in the following section.

IV. Dimension reduction of servo-constraints

The dimension reduction of the desired task in case of

actuator saturations is introduced first for specific, then for

general cases.

A. Specific case

In the equation of motion (1) of controlled dynamical

systems, the term H(q)u represents the control force. This

control force can also be viewed as a constraining force (or

“control reaction force”) interpreted by means of a vector

λu ∈ R
l of Lagrange multipliers, which are associated with

the servo-constraint σ(q, t) and its Jacobian σT
q
(q, t) (see

[7] and [13]). Using this concept, the equation of motion

can be rewritten in the form:

Mq̈+C(q, q̇) +ϕT
q
(q)λ+ σT

q
(q, t)λu = 0 (22)



considering that

σT
q
(q, t)λu = −H(q)u. (23)

The connection of the control input u and the multiplier λu

is trivial if the servo-contstraint Jacobian and the negative

control input matrix are just equal:

σT
q
(q, t) = −H(q) , (24)

u = λu . (25)

This is called “specific case” when the directions defined by

the control input matrix and the servo-constraint Jacobian

are the same.

The structure of the matrix H(q) definitely depends on

the mechanical design of the system and the chosen set of

generalized coordinates, while σq(q, t) depends on the task

description. In these specific cases, the effect of the con-

trol inputs on the system coordinates is the same as the ef-

fect of the servo-constraints on the motion: the correspon-

dence of the control inputs and the servo-constraints is triv-

ial. Clearly, the above conditions can be satisfied in specific

cases only (see examples later in section V).

In the saturated system, the control input matrix of the

still non-saturated inputs is defined by equation (19). In

the specific case, the connection of the reduced servo-

constraint Jacobian σ̂q(q, t) and the reduced size control

input matrix Ĥ(q) should be defined as equation (24) does:

σ̂
T
q
(q, t) = −Ĥ(q) . (26)

Considering equation (19) we can write:

σ̂
T
q
(q, t) = σT

q
(q, t)T. (27)

From (27), the suggested reduced servo-constraint is sim-

ply:

σ̂(q, t) = TTσ(q, t). (28)

Note that in these special cases, the servo-constraint reduc-

tion transformation is the same as the transformation be-

tween the full control input vector and the vector of the

non-saturated control inputs in equation (18).

B. General case

In general cases, the servo-contstraint Jacobian and the

negative control input matrix are not equal:

σT
q
(q, t) 6= −H(q), (29)

which means that the directions defined by the control input

matrix and the servo-constraint Jacobian are not necessarily

the same. If minimum set of generalized coordinates are

used, the transformation between u and λu can be deduced

from (23) as

λu = −(σT
q
(q̄, t))−1H(q̄)u . (30)

The reduced servo constraint then can be obtained by means

of the same transformation:

σ̂(q̄, t) = −TTH(q̄)−1σT
q
(q̄, t)σ(q̄, t) , (31)

which simplifies to (28) in the special case of (24).

If non-minimum set of descriptor coordinates are used

and/or some actuators saturate, the same procedure should

be repeated for an already constrained and/or underactuated

system, respectively. Since the matrices are non-symmetric

in these cases, the transformation between u and λu can

be deduced from (23) with the use of the Moore-Penrose

generalized inverse (pseudo-inverse). Although the trans-

formation is not unique, we can choose, for example, the

formula:

λu = −(σT
q
(q, t))†H(q)u . (32)

The pseudo-inverse calculation itself is not unique either,

although the standard optimized calculation

(σT
q
)† =

(

σqσ
T
q

)−1
σq, (33)

is widely used for convenience.

Similarly to the above cases, equation (32) generates the

reduced servo-constraint in the form

σ̂(q, t) = Γ̂†(q, t)σ(q, t), (34)

where Γ̂(q, t) is defined as

Γ̂(q, t) = −(σT
q
(q, t))†H(q)T. (35)

In the following case study, this formula will also be used

for the dimension reduction of the servo-constraint.

V. Case study for an RR manipulator

Numerical simulations were accomplished for a two-link

(SCARA-type) manipulator shown in Fig. 2, which con-

sists of two homogeneous prismatic bars with parameters

m1 = 0.2 kg, L1 = 0.4m, m2 = 0.2 kg and L2 = 0.4m.

The manipulator moves in the horizontal plane.

L
2
, m

2

L
1
, m

1

P
1

P
2

P
3

a
1

a
2

Fig. 2. Mechanical model of the studied RR manipulator



The geometric description and the derivation of the equa-

tions of motion for the chosen system would be straight-

forward with the minimum set of generalized coordinates

α1 and α2. Still, in order to show the applicability of the

generalized CTC algorithm, a non-minimum set of descrip-

tor coordinates is used. Thus, the Cartesian coordinates

q = [x1, y1, x2, y2, x3, y3]
T of the endpoints of the bars are

chosen as descriptor coordinates of number n = 6. Con-

sequently, a 4 dimensional geometric constraint vector is

introduced in the form:

ϕ(q) =









x1

y1
(x2 − x1)

2 + (y2 − y1)
2 − L2

1

(x3 − x2)
2 + (y3 − y2)

2 − L2
2









. (36)

Both joints P1 and P2 are actuated, so the l = 2 dimen-

sional control input vector is u = [ τ1 τ2 ]
T with torques

τ1,2. The actuators saturate when the actuator torques reach

the limiting values: u±1 = ±0.04Nm and u±2 = ±0.04Nm.

Following the derivation detailed in [11], the control in-

put matrix H(q) is obtained after the virtual substitution of

the control torques by pairs of forces applied at the base

points:

H(q) =





















−y1−y2

L2

1

0
x1−x2

L2

1

0
y1−y2

L2

1

−y2−y3

L2

2

−x1−x2

L2

1

x2−x3

L2

2

0 y2−y3

L2

2

0 −x2−x3

L2

2





















. (37)

In the following subsections the manipulator is subjected

to two tasks defined by two servo-constraints. In the first

specific case, the angles α1 and α2 of the bars are pre-

scribed in time by αd
1(t) and αd

2(t). The desired initial and

end configurations are shown in the left panel of Fig. 3. In

the second case study, a linear path of the endpoint P3 of

the manipulator is prescribed (see the right panel of Fig. 3).

The transitions from the initial to the end configurations are

defined in time by arc tangent functions in both cases.

A. Specific case

By intuition, we can define the servo-constraint in the

form

σ(q, t) =





− tan−1

(

x1−x2

y1−y2

)

− αd
1(t)

− tan−1

(

x2−x3

y2−y3

)

− αd
2(t)



 . (38)

A lengthy calculation shows that σT
q
(q, t) = −H(q), that

is, (24) is satisfied. The above intuition can be explained

physically since the servo-constraints are related to the an-

gles of the bars, and the control torques also act directly at

the same angles.

Fig. 3. The prescribed initial and end configurations in specific (left) and

in general (right) cases

The simulation results in Fig 4 and 5 are presented for

three different cases. In case A, the actuator torques do

not saturate, the value of the control torque u1 reaches

even 0.13Nm as it can be seen in Fig 5. With the chosen

set of proportional and differential gains Kα = 60 I 1/s,

Kβ = 48 I 1/s2 and sampling time h = 40ms in equa-

tions (10-12), the servo-constraint violation was kept under

0.02 rad as shown in Fig 4. In the graphs, σ1 and σ2 denotes

the violation of the first and the second servo-constraint re-

spectively. The fluctuation in the servo-constraint violation

at t = 8 s was caused by the high acceleration demand at

the inflection point of the arc tangent time histories.

Case B shows the effect of the actuator saturation when

the above introduced control algorithm is not implemented,

that is, the control inputs are simply truncated. Significant

increment occurs in the servo-constraint violation when the

control input u1 reaches the critical 0.04 Nm saturation

value as it can be seen in the graphs of panel B of Fig. 4

and 5. Note that the second control input u2 remains under

the saturation level all the time. In case C, the controller

switches to the reduced servo-constraint (28) with selector

matrix

T =

[

0
1

]

(39)

during the saturation of the first actuator as explained in

Section III:

σ̂(q, t) =
[

− tan−1

(

x2−x3

y2−y3

)

− αd
2(t)

]

. (40)

When the first actuator saturates, the second control input

is recalculated as if the system were underactuated, and this

causes the increased value of the input u2. As a result, the

first servo-constraint violation σ1 is reduced substantially

as compared to case B.

The phisical meaning of the use of equation (40) during

the saturation of the first actuator is that the control effort

then focuses on the second servo-constraint which is in con-

nection with the non-saturated and still accessible control



Fig. 4. Numerical results for specific cases A, B and C: servo-constraint

violations

Fig. 5. Numerical results for specific cases A, B and C: control inputs

input u2. One can observe that the second actuator also

saturates for a very short time in case C. This shows that

the available performance of the actuators are utilized more

efficiently than they are in case B.

B. General case

The task of the manipulator is to move the endpoint P3

of the manipulator from point Pinit to Pend on a prescribed

straight line trajectory as shown in the right panel of Fig. 3.

The task is defined by the servo-constraint vector:

σ(q, t) =

[

x3 − xd(t),
y3 − yd(t)

]

, (41)

where xd(t) is described by an arc tangent function in time

and yd(t) ≡ −0.6m is a constant value. Clearly, for the

task defined by (41), H(q) 6= −σT
q
(q, t), so the connection

of the servo constraints and the control inputs is general.

The dimension reduction of the servo-constraint vector is

carried out by the method explained in Section IV-B.

Three cases are considered again, and the corresponding

results are shown in Fig. 6 and 7. In case A, the actua-

tors do not saturate and the value of the control torque u1

reaches -0.08 Nm. With the same set of control gains and

sampling time as above, the initially set servo-constraint er-

rors 4 and 12 mm tend to zero in a short time and after that

the servo-constraint violation is kept under 0.2 mm. Case B

shows the effect of the actuator saturation when the reduced

servo-constraint is not implemented. Significant increment

occurs in the servo-constraint violation when the actuator

torque u1 reaches the critical level of 0.04 Nm. In case C,

the controller uses the reduced servo-constraint (34) during

the actuator saturation. After a large transient, the servo

constraint violation σ1 approaches zero much faster than in

case B, while σ2 also decreases somewhat.

VI. Conclusion

The combination of computed torque control algorithms

developed for constrained and underactuated systems was

successfully implemented for handling actuator saturation.

The developed frame algorithm manages the continuous

variation of the number of saturated and non-saturated ac-

tuators via employing two inferior CTC algorithms: one

for fully actuated and one for underactuated systems. Nu-

merical simulations in a case study presented the effi-

ciency of the proposed method. The developed method

requires the temporary dimension reduction of the origi-

nal servo-constraint either in the specific case, when the

servo-constraint Jacobian and the control input matrix are

equal or in the general case when they are not equal. While

the case study shows moderate improvement in folloing the

prescribed task during the saturation of one or more of the

actuators, further research can optimize the servo-constraint

reduction further by means of the large number of free pa-

rameters appearing in the pseudo inverse calculations in

(34).



Fig. 6. Numerical results for cases A, B and C: servo-constraint violations

Fig. 7. Numerical results for case A, B and C: control inputs
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