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a b s t r a c t

The paper investigates the motion planning of a suspended service robot platform
equipped with ducted fan actuators. The platform consists of an RRT robot and a cable sus-
pended swinging actuator that form a subsequent parallel kinematic chain and it is
equipped with ducted fan actuators. In spite of the complementary ducted fan actuators,
the system is under-actuated. The method of computed torques is applied to control the
motion of the robot.

The under-actuated systems have less control inputs than degrees of freedom. We
assume that the investigated under-actuated system has desired outputs of the same num-
ber as inputs. In spite of the fact that the inverse dynamical calculation leads to the solution
of a system of differential–algebraic equations (DAE), the desired control inputs can be
determined uniquely by the method of computed torques.

We use natural (Cartesian) coordinates to describe the configuration of the robot, while a
set of algebraic equations represents the geometric constraints. In this modeling approach
the mathematical model of the dynamical system itself is also a DAE.

The paper discusses the inverse dynamics problem of the complex hybrid robotic system.
The results include the desired actuator forces as well as the nominal coordinates corre-
sponding to the desired motion of the carried payload. The method of computed torque
control with a PD controller is applied to under-actuated systems described by natural
coordinates, while the inverse dynamics is solved via the backward Euler discretization
of the DAE system for which a general formalism is proposed. The results are compared
with the closed form results obtained by simplified models of the system. Numerical sim-
ulation and experiments demonstrate the applicability of the presented concepts.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

Obstacle avoidance is an important problem in service and mobile robotics, especially when the robots have to move in an
everyday indoor environment. Static obstacles on the floor of a room include various objects such as stairs, doorsteps, chairs,
tables and even the edge of carpets. In addition, floor based domestic robots need to have strategies to overcome randomly
placed objects, e.g., children toys left on the floor. Hence, these robots need improved sensing capabilities and control, or the
use of auxiliary devices, e.g., virtual walls to avoid obstacles.

A new direction in the development of indoor service robots is the use of robotic structures that can move on the almost
obstacle free ceiling of a room, while transport the payload or an actuator mechanism similarly to gantry cranes. For
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example, the Flora ceiling absorbed service robot [9] utilizes permanent magnets to keep and move its mobile cart on the
ceiling, and its working unit is actuated by three telescopic arms in the vertical direction.

A design of a tethered aerial robot is presented by McKerrow and Ratner [10], in which the working unit is suspended on a
single cable and equipped with two ducted fan actuators. The system is transported by an unmanned aerial vehicle, and the
fans are used to stabilize the motion of the working unit that carries tiny robotic agents, which are used for exploring tasks in
rescue operations. Although the described service robotic application is outdoor by itself, the concept can be realized in in-
door environments by substituting the aerial vehicle with a ceiling based transporting unit.

The above solutions solve the problem of avoiding obstacles on the floor, while they are able to roam over almost the
whole inner space of a room, and compared to gantry cranes, they enable the use of co-operating multiple units. Cable sus-
pended structures provide larger vertical workspace and they are lightweight, however, the limited possibility of the actu-
ation of the suspended payload is a critical issue.

The present paper describes a new indoor service robot locomotion technology developed within the ACROBOTER (IST-
2006-045530) project [7]. The suspended payload platform is equipped with windable complementary orienting cables and
ducted fan actuators in order to make the payload position and orientation controllable.

Cranes are pendulum-like structures that are widely used for transporting a payload to a specified position which is usu-
ally accurately defined. Additionally, the payload sometimes has to follow a prescribed spatial trajectory, too. Since cranes
are nonlinear oscillating systems, it is a complicated task to achieve a good motion control which suppresses the swinging
motion of the payload. In the case of general cranes such as tower cranes, gantry cranes or overhead cranes the position con-
trol of the payload is realized by the controlled movement of the top mounting point of the cable. The low actuating possi-
bilities also complicate the controlling strategies. The oscillating behavior of floating and aerial cranes significantly becomes
more intense because the position of the top mounting point is disturbed by environmental effects such as waves and wind.

In order to achieve high efficiency, the automation of the crane movements is significant. Several controlling strategies
have been developed; most commonly feedback controllers [13] and time delayed feedback controllers are used for oscilla-
tion suppression [5,13]. In order to attain better anti-sway control fuzzy logic controllers [13] are also used.

Cranes and the ACROBOTER robot are under-actuated systems, because they have lower number of control inputs than
degrees of freedom (DoFs). The following mathematical definition of under-actuated mechanical systems is adapted from
[1,2]. The generalized mathematical model of the dynamical system can be written as:

€q ¼ fð�q; _�qÞ þ Gð�qÞu; ð1Þ

where �q is a vector of independent generalized coordinates, f is a vector field that determines the dynamics of the system, G
the input matrix, and u is the vector of generalized inputs. The system is under-actuated if the rank of G is smaller than the
dimension of �q. Thus, if a dynamical system contains less independent actuators than the degrees of freedom it has, the sys-
tem is under-actuated.

2. The ACROBOTER platform

Structure and the first prototype of the ACROBOTER service robotic platform [7,12] are presented in Fig. 1. The system is
attached to the ceiling by using anchor points that are simple and passive elements providing fixation and through which the

Fig. 1. Structure (left) and the first prototype (right) of the ACROBOTER platform.
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power is supplied. The climber unit (CU) is an RRT robot which can move in a grid of anchor points and transport the working
unit of the system in the horizontal direction. The used planar RRT structure is redundant and provides smooth change of
anchor points with respect to the motion of its end-effector, i.e., the winding actuator of the main suspending cable (MC).
The lower end of the main suspending cable is attached to the cable connector (CC), which clamps three additional windable
cables that orient the base plate of the swinging unit (SU). The swinging unit is equipped with six ducted fan actuators which
generate thrust forces parallel to the plane of the base plate and a torque that can rotate the swinging unit at the same time.
A mechanical interface is attached to the bottom of the swinging unit that serves as a tool changer with electrical
connections.

From the point of view of dynamics modeling, the small sized cable connector can be considered as point mass and the
weight of the cables can be neglected. Then the degrees of freedom (DoFs) of the whole system is 12 in total containing the 3
plus 3 DoFs of the climber unit and the cable connector, and the 6 DoFs of the swinging unit, respectively. The actuators of
the system is the three joint drives of the climber unit, the four cable winches and the effective thrust forces (a coplanar and
perpendicular pair) and torque provided by the ducted fans. Consequently, despite of these complementary actuators, the
system is still under-actuated. This analysis refers to the fact that the cable connector can only be actuated by the windable
cables and its horizontal position cannot directly be actuated. Moreover, the vertical position of the swinging unit is deter-
mined by both the lengths of the secondary cables and the main cables, which makes the system kinematically redundant.

3. Method of computed torques

3.1. Introduction

In this work we assume that the system has desired outputs of the same number as control inputs [6,12]. The servo con-
straints define the desired system outputs accordingly to the task [6,11]. In spite of the fact that the inverse dynamical cal-
culation leads to the solution of a system of differential algebraic equations (DAE), the desired control inputs can be
determined uniquely by the computed torque method generalized for under-actuated systems.

Several dynamical systems, especially robots with parallel kinematic chains have a complex dynamics, which may hardly
be modeled using conventional robotic approaches. An alternative modeling technique is to use natural (Cartesian) coordi-
nates to describe the configuration of the robot. The number of descriptor coordinates is larger than the DoFs thus a set of
algebraic equations represents the geometric constraints. In this approach the dynamics of the controlled system is modeled
by a DAE.

The generalization of computed torque control for under-actuated systems is discussed in [14]. The method called CDCTC
(computed desired computed torque control) can be applied only for systems that are represented by minimum number
generalized coordinates �q, and the mathematical model is an ODEs:

Mð�qÞ€�qþ fð�q; _�q; tÞ ¼ Hð�qÞu; ð2Þ

where M is the mass matrix, fð�q; _�q; tÞ represents the external and internal forces except the control forces, H is the input
matrix and u is the input vector. The phrase ‘‘computed desired” means that the uncontrolled coordinates cannot be arbi-
trarily prescribed but they can be calculated from the internal dynamics of the controlled system. Contrarily the controlled
coordinates are prescribed. The control law that eliminates the error of the controlled coordinates at t ?1 is:

Hð�qdÞu ¼ Mð�qdÞ€�qd þ fð�qd; _�qd; tÞ þ KPð�qd � �qÞ þ KDð _�qd � _�qÞ; ð3Þ

where KP and KD are the gain matrices of the linear compensator. Eq. (3) has to be solved for the control input u and for the
uncontrolled subset of generalized coordinates �q. The basic idea is to use the null space N of the input matrix H to project the
equations into the space of the uncontrolled motion (4). The projected system can be solved for the uncontrolled coordinates.
If we know the uncontrolled coordinates, the control inputs can be determined by Eq. (5)

0 ¼ NT ½Mð�qdÞ€�qd þ fð�qd; _�qd; tÞ þ KPð�qd � �qÞ þ KDð _�qd � _�qÞ�; ð4Þ
u ¼ ðHð�qdÞT Hð�qdÞÞ�1Hð�qdÞT ½Mð�qdÞ€�qd þ fð�qd; _�qd; tÞ þ Kpð�qd � �qÞ þ KDð _�qd � _�qÞ�: ð5Þ

It is possible to adopt the CDCTC method for natural coordinate based system, which is described by a redundant set of
descriptor coordinates q and the equations of motion constitute a DAE. The solution requires an additional projection [8] that
results an ODE. After the projection the CDCTC method can be applied, but it may be computationally too expensive because
of the repeated projections.

Instead of the application of the CDCTC method we solve the inverse dynamic problem via the backward Euler discret-
ization of the DAE system. The backward method requires the solution of a system of nonlinear algebraic equations in each
time step, which is solved by Newton–Raphson iteration. A general formalism is proposed for the analytical calculation of the
Jacobian of the Newton–Raphson method.

The results are presented in the form of a case study for the ACROBOTER system and confirmed by numerical simulation.
The numerical results are compared with analytical calculations.
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3.2. Problem formulation

By using the redundant set of descriptor coordinates q the equation of motion, the geometric constraint vector of the sys-
tem and the servo constraint vector can be written as:

M€qþUT
qðqÞk ¼ Q g þHðqÞu; ð6Þ

uðqÞ ¼ 0; ð7Þ
usðq;pðtÞÞ ¼ 0: ð8Þ

Eq. (6) is the Lagrangian equation of motion of the first kind, where M is the n � n sized constant matrix [3]. Symbol Q g is
the generalized gravity force. The m number of geometric constraints are represented by the vector u(q) in (7) and UqðqÞ is
the Jacobian matrix of the constraints. The corresponding Lagrange multipliers are denoted by k. The l dimension input vec-
tor is u and the n � l sized H(q) is the generalized input matrix.

The number l of the control inputs is less than the n �m DoFs of the system, thus it is under-actuated. The task of the
robot is formulated by the servo constraint vector us(q,p(t)) [6,11] given in Eq. (8). The dimension of the servo constraint
vector is also l that means the l number of control inputs can uniquely be determined.

The servo constraints depend on the function p(t) that can be handled as the desired system output and it may describe
the desired trajectory of a certain point and/or the desired orientation of the end-effector. The servo constraints can be for-
mulated as:

usðq;pðtÞÞ ¼ hðqÞ � pðtÞ; ð9Þ

where h(q) gives the prescribed system outputs as the function of the descriptor coordinates. We assume that the servo con-
straints and a well chosen subset of geometric constraints can be solved for the controlled coordinates qc in closed form.
Than the task can be defined by qc ¼ qd

c , where the superscript d refers to the desired value. Important to notice that the
computed torque control method by direct discretization does not require to use qc ¼ qd

c , because the direct discretization
can handle the full constraint system composed by u(q) and us(q,p(t)), but the size of the system increases.

For the partitioning of the descriptor coordinates we introduce the vector of controlled coordinates with qc ¼ ST
c q and

qu ¼ ST
uq, respectively [14], where Sc and Su are task dependent selector matrices. The vector of descriptor coordinates can

be reassembled as q = Scqc + Suqu.
Summarizing, the aim is to determine the desired value of the uncontrolled coordinates qu, the input vector u and adjunc-

tively the Lagrange multipliers k that satisfies the differential algebraic equation system (6)–(8). In some simplified cases this
calculation can be done analytically. Section 4 presents analytical results for the simplified models of the ACROBOTER
platform.

4. Analytical inverse dynamics

In case of under-actuated systems the solution of the inverse kinematics problem naturally involves dynamic calcula-
tions. In addition, the redundancy of ACROBOTER may be resolved by optimization. However, applying some reasonable sim-
plifications the complex problem of the inverse dynamical calculation of the under-actuated and redundant robot can be
converted into the inverse dynamical problem of a double pendulum system. For brevity the method is presented for the
spatial double pendulum, but the results are compared with the planar model of ACROBOTER only. The investigated pendu-
lum models and the complete planar model are presented in Fig. 2.

4.1. Single pendulum model

The ducted fan actuators generate typically low thrusts compared to the possible total weight of the robot including the
payload. Thus they can be excluded from the dynamical model during inverse dynamical calculation and they are only em-
ployed to eliminate the small disturbances. The prescribed trajectories of the climber unit and the windable cables have to be
determined to provide the desired pendulum-like motion of the platform during which the orientation of the swinging unit
is kept constant (e.g., horizontal) by the secondary cables (see Fig. 1). In the control of the system this trajectory can be used
for calculating feedforward torques for the corresponding actuators, while the ducted fans can be used for stabilizing the
motion of the swinging unit along its prescribed trajectory. In addition, since the cable connector has much lower weight
than the swinging unit, the cable connector might be seen as a source of high frequency but small disturbances, only.

These considerations lead to the single pendulum model presented on the left in Fig. 2, where the point mass, mSU stands
for the swinging unit. The inputs of the inverse calculation are the desired positions xd, yd and zd of the center of mass of the
swinging unit.

The goal of the inverse dynamics tasks is to define the corresponding desired trajectory of the climber unit denoted by xd
CU

and yd
CU , the desired forces which formulates the control input vector: u ¼ Fd

x ; F
d
y ; F

d
C

h i
, and the nominal cable length ld in

closed form. Forces Fx and Fy are the forces that acts on the top mounting point of the cable and FC is the cable force. The
matrix equation of motion of the single pendulum model can be expressed with descriptor coordinates q = [xCU,yCU,x,y,z]T

in the form:

2208 A. Zelei et al. / Commun Nonlinear Sci Numer Simulat 16 (2011) 2205–2217



Author's personal copy

0 0 0 0 0
0 0 0 0 0
0 0 mSU 0 0
0 0 0 mSU 0
0 0 0 0 mSU

26666664

37777775

€xCU

€yCU

€x
€y
€z

26666664

37777775þ
0
0
0
0

mSUg

26666664

37777775 ¼
Fx þ FCðx� xCUÞ=l

Fy þ FCðy� yCUÞ=l

�FCðx� xCUÞ=l

�FCðy� yCUÞ=l

�FCz=l

26666664

37777775; ð10Þ

where the cable length is expressed as

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxCU � xÞ2 þ ðyCU � yÞ2 þ z2

q
: ð11Þ

The task is defined by the servo constraint vector with h(q) = [x,y,z]t and p(t) = [xd(t),yd(t),zd(t)]T. The dimension of the servo
constraint vector is three since the number of control inputs is also three. The servo constraint can be formulated as:

usðq;pðtÞÞ ¼ ½x� xd; y� yd; z� zd�T : ð12Þ

The servo constraints can easily be solved for the desired value of the controlled coordinates x = xd, y = yd and z = zd. From
the equations of motion we can calculate the desired or in other words the nominal values of the uncontrolled coordinates
xd

CU and yd
CU which gives the desired trajectory of the climber unit and the control forces Fd

x ; F
d
y and Fd

C as follows:

xd
CU ¼ xd �

€xdzd

€zd þ g
; ð13Þ

yd
CU ¼ yd �

€ydzd

€zd þ g
; ð14Þ

Fd
x ¼ mSU€xd; ð15Þ

Fd
y ¼ mSU€yd; ð16Þ

Fd
C ¼ �mSUld €zd þ g

zd
: ð17Þ

With the above formulae (13)–(17) it is straightforward to calculate the desired length of the main suspending cable from Eq.
(11), and the corresponding winding torque can also be expressed by knowing the dynamics of the winding actuator.

An important result of the above calculation is that the use of the single pendulum model in trajectory generation of the
climber unit requires C4 continuity of the desired swinging unit trajectory.

This is because the climber unit trajectories need to be two times continuously differentiable to have smooth desired
accelerations.

4.2. Double pendulum model

A further step in modeling the ACROBOTER platform could be the double pendulum model presented in the middle of
Fig. 2. Beyond enabling a more accurate calculation of the desired trajectory of the climber unit this model makes it possible
to consider the redundant actuation of the windable cables in the vertical direction. In the following the vertical distance

Fig. 2. Single pendulum (left), double pendulum (middle) and complete planar models (right).
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zCC � z between the swinging unit and the cable connector (see middle of Fig. 2) is considered as a desired parameter that can
be obtained as a fixed value by experiments or it can be calculated based on some optimization method.

In the case of the double pendulum model the control input vector contains the lateral forces acting on the top mounting
point of the upper pendulum and the two cable forces that acts on the cable lengths l1 and l2. Thus the control input is
u ¼ ½Fd

x ; F
d
y; F

d
C1; F

d
C2�. The equation of motion is written with the coordinates q = [xCU,yCU,xCC,yCC,zCC,x,y,z]T in the following

matrix form:

0
0

mCC€xCC

mCC€yCC

mCC€zCC

mSU€x

mSU€y

mSU€z

266666666666664

377777777777775
þ

0
0
0
0

mCCg
0
0

mSUg

266666666666664

377777777777775
¼

Fx þ FC1ðxCC � xCUÞ=l1

Fy þ FC1ðyCC � yCUÞ=l1

�FC1ðxCC � xCUÞ=l1 þ FC2ðx� xCCÞ=l2

�FC1ðyCC � yCUÞ=l1 þ FC2ðy� yCCÞ=l2
�FC1zCC=l1 þ FC2ðz� zCCÞ=l2

�FC2ðx� xCCÞ=l2

�FC2ðy� yCCÞ=l2

�FC2ðz� zCCÞ=l2

266666666666664

377777777777775
: ð18Þ

Besides the desired motion of the system is defined by the four dimensional servo constraint with pðtÞ ¼ ½xdðtÞ;
ydðtÞ; zdðtÞ;hd

CCðtÞ�
T , where hd

CCðtÞ is the desired elevation of the cable connector above the swinging unit and with
h(q) = [x,y,z,zCC � z]T:

usðq;pðtÞÞ ¼ ½x� xd; y� yd; z� zd; zCC � z� hd
CC �

T
: ð19Þ

Afterwards the inverse kinematics and dynamics of the double pendulum model can be solved in two steps. First the
swinging unit can be considered as a single pendulum attached to the cable connector which is interpreted as a floating sus-
pension point above the swinging unit at a desired elevation. Then the resulting trajectory of the cable connector plays the
role of the desired trajectory of the bob of a single pendulum system composed of the cable connector and the climber unit.
Consequently, the desired trajectories of the cable connector can be expressed similar to Eqs. (13), and (14) in the form

xd
CC ¼ xd þ

€xdhd
CC

€zd þ g
; ð20Þ

yd
CC ¼ yd þ

€ydhd
CC

€zd þ g
; ð21Þ

zd
CC ¼ zd þ hd

CC : ð22Þ

The desired motion of the swinging unit is provided by the force delivered through its suspending cable:

Fd
C2 ¼

mSUld
2ð€zd þ gÞ
hd

CC

: ð23Þ

As a second step the desired trajectory of the climber unit can be calculated as:

xd
CU ¼ xd

CC þ
Fd

C2ðxd � xd
CCÞ �mCCld2€xd

CC

mCCld
2ð€zd þ €hd

cc þ gÞ � Fd
C2hd

CC

ðhd
CC þ zdÞ; ð24Þ

yd
CU ¼ yd

CC þ
Fd

C2ðyd � yd
CCÞ �mCCld

2€yd
CC

mCCld
2ð€zd þ €hd

cc þ gÞ � Fd
C2hd

CC

ðhd
CC þ zdÞ: ð25Þ

Finally the cable force in the upper pendulum which stands for the main cable force:

Fd
C1 ¼ �ld

1
mCCld

2ð€zd
CC þ €hd

CC þ gÞ þ Fd
C2hd

CC

ld
2ðzd þ hd

CCÞ
: ð26Þ

A numerical example can be seen in Fig. 3. The desired x trajectory of the swinging unit is given by a six degree polyno-
mial function, while the desired y trajectory is yd = 0 and the desired vertical trajectory is given by the desired values
zd = �1.5 m and hd

CC ¼ 0:35 m.
Fig. 3 shows that a significant difference shows up between the desired xCU trajectory calculated by the single or by the

double pendulum model.

4.3. Complete planar model

In order to present the applicability of the results obtained for the single and double pendulum models, the complete pla-
nar model of ACROBOTER (see right in Fig. 2) is considered which also includes the secondary (orienting) cables of the swing-
ing unit.

2210 A. Zelei et al. / Commun Nonlinear Sci Numer Simulat 16 (2011) 2205–2217
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The dimension of the swinging unit is characterized by the variables a and b, which together with the vertical distance c
describes the location of the center of mass of the unit. In addition, coordinate n denotes the relative distance of the cable
connector to the rod that represent the swinging unit, while h is the elevation of the cable connector above the swinging unit.

The desired orientation of the swinging unit is considered to be fixed, and without the loss of generality it is assumed that
the swinging unit is kept always horizontal by the secondary orienting cables. This restriction is reasonable in a wide range
of possible applications, such as pick and place objects in indoor environments.

The desired horizontal orientation of the swinging unit implies that the corresponding angular acceleration is zero, which
yields the equation of motion of the planar model in the simplified form

m€x ¼ F1 cos u1 � F2 cos u2; ð27Þ
m€z ¼ F1 sinu1 þ F2 sin u2 �mg and ð28Þ
0 ¼ �F1ða sin u1 þ c cos u1Þ þ F2ðb sin u2 þ c cos u2Þ; ð29Þ

where F1 and F2 are the cable forces of the orienting cables and u1 and u2 are their angles at the swinging unit, respectively.
In Eqs. (27)–(29) the number of unknown parameters is 5 in total: n, F1, F2, u1 and u2, since the trajectories x(t) and y(t) of

the center of mass of the swinging unit are prescribed. When the elevation h of the cable connector above the swinging unit
is also a desired parameter, the necessary independent constraint equations can be formulated for the cable angles as:

cos u1 ¼
nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 þ h2
q ; ð30Þ

cos u2 ¼
aþ b� nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðaþ b� nÞ2 þ h2
q : ð31Þ

Then the solution of the system of Eqs. (27)–(31) results in the desired relative position of the cable connector in the form

nd ¼ ðc þ hdÞ€xd þ að€zd þ gÞ
€zd þ g

; ð32Þ

which reduces exactly to Eq. (20) with the substitutions of expressions xd
CC ¼ xd � aþ nd and zd

CC ¼ zd þ c þ hd.

Fig. 3. Numerical example for the inverse calculation of the single pendulum and the double pendulum model.
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The above heuristic derivations demonstrates that due to the assumption of the horizontality of the swinging unit the
complete planar model and the simplified double pendulum model result the same desired trajectory of the cable connector.
Obviously the desired trajectory of the climber unit is also the same in both models.

5. Computed torque control method with backward Euler discretization

We apply the backward Euler discretization of the DAE system and the resulting set of equations are solved by the New-
ton–Raphson method for the desired actuator forces and uncontrolled coordinates and Lagrange multipliers.

We assume that the servo constraints result a qc ¼ qd
c for which the control input u is bounded. Considering a PD control-

ler with gain matrices Kp and KD the control law can be formulated as:

M€qd þUT
qðqdÞk ¼ Q g þHðqdÞu� KPðqd � qÞ � KDð _qd � _qÞ; ð33Þ

uðqdÞ ¼ 0; ð34Þ

where q is the measured and qd is the desired descriptor coordinate vector. The measured value of the coordinates appears
only in the linear compensator.

Introducing yd ¼ _qd we derive the first order form of Eqs. (33) and (34). After the decomposition of the controlled and
uncontrolled coordinates the control law can be written as:

_qd
c ¼ yd

c ; ð35Þ
_qd

u ¼ yd
u; ð36Þ

_yd
c ¼ ST

c M�1ð�UT
qðqdÞkþ Q g þHðqdÞu� KPðqd � qÞ � KDðyd � _qÞÞ; ð37Þ

_yd
u ¼ ST

uM�1ð�UT
qðqdÞkþ Q g þHðqdÞu� KPðqd � qÞ � KDðyd � _qÞÞ; ð38Þ

uðqdÞ ¼ 0: ð39Þ

Eq. (35) is identity thus we can leave it out of consideration. Eq. (36)–(39) can be discretized by the backward Euler
method:

qd
u;iþ1 � qd

u;i

h
¼ yd

u;iþ1; ð40Þ

yd
u;iþ1 � yd

u;i

h
¼ ST

uM�1ð�UT
qðqd

iþ1Þkiþ1 þ Q g þHðqd
iþ1Þuiþ1 � KPðqd

iþ1 � qiþ1Þ � KDðyd
iþ1 � _qiþ1ÞÞ; ð41Þ

0 ¼ � _yd
c;iþ1 þ ST

uM�1ð�UT
qðqd

iþ1Þkiþ1 þ Q g þHðqd
iþ1Þuiþ1 � KPðqd

iþ1 � qiþ1Þ � KDðyd
iþ1 � _qiþ1ÞÞ; ð42Þ

0 ¼ uðqd
iþ1Þ: ð43Þ

Eqs. (40)–(43) constitute a system of 2n � l + m number of nonlinear equations for the (i + 1)th value of the desired uncon-
trolled coordinates qd

u;iþ1, their time derivatives yd
u;iþ1, the control inputs ui+1 and the Lagrange multipliers ki+1. It can be for-

mulated as a function Fi+1 of the vector of unknowns z ¼ ½qd
u;iþ1; y

d
u;iþ1 þ uiþ1 þ kiþ1�T as follows:

Fiþ1 ¼

qd
u;iþ1 � qd

u;i � hyd
u;iþ1

yd
u;iþ1 � yd

u;i � hST
uM�1 �UT

qðqd
iþ1Þkiþ1 þ Q g þHðqd

iþ1Þuiþ1 � KPðqd
iþ1 � qiþ1Þ � KDðyd

iþ1 � _qiþ1Þ
� �

_yd
c;iþ1 � ST

c M�1 �UT
qðqd

iþ1Þkiþ1 þ Q g þHðqd
iþ1Þuiþ1 � KPðqd

iþ1 � qiþ1Þ � KDðyd
iþ1 � _qiþ1Þ

� �
uðqd

iþ1Þ

26666664

37777775: ð44Þ

The system of nonlinear equations is solved by Newton–Raphson method in the form Ji+1(zi+1 � zi) = �Fi+1. The Jacobian is the
following:

Jnþ1 ¼

I �hI 0 0

hST
uM�1 @ðUT

qk�HuÞ
@qd

u
þ KPSu

� �
Iþ hST

uM�1KDSu �hST
uM�1H hST

uM�1UT
q

ST
c M�1 @ðUT

qk�HuÞ
@qd

u
þ KPSu

� �
ST

c M�1KDSu �ST
c M�1H ST

c M�1UT
q

UqSu 0 0 0

2666664

3777775: ð45Þ

In some cases the Jacobian matrix may be ill-conditioned, but the problem can be handled by singular value decomposition
where we leave out the relatively small elements.
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6. Simulations and comparison with analytical results

The planar ACROBOTER model is examined with the present computed torque method based on the backward Euler dis-
cretization of the DAE system. The mechanical model can be seen in Fig. 4. The equations of motion is constructed as ex-
plained in [3].

The climber unit is modeled by a linear drive and its position is denoted by the coordinate x1. The cable connector is mod-
eled by a point mass with mass mCC and denoted by P2 in Fig. 4. The swinging unit is modeled by a rigid body with full mass
mSU and the descriptor coordinates is the outlet points of the secondary cables P3 and P4 respectively. The center of gravity of
the swinging unit is denoted by CG and qCG points into its position in the body frame. Summarizing, the system is described
by the redundant set of descriptor coordinates.

q ¼ ½ x1 x2 z2 x3 z3 x4 z4 �T : ð46Þ

The position of the linear drive is controlled by force FL the control forces act on cable L1 L2 and L3 are F1 F2 and F3, respec-
tively. Thus the control input can be written as:

u ¼ ½ FL F1 F2 F3 �T : ð47Þ

The mass of the swinging unit is mSU = 5 kg and the cable connector is modeled by a point mass mCC = 0.5 kg. The center of
gravity is positioned in the midpoint of the L34 line. The distance of the cable outlet points P3 and P4 is fixed, so the geometric
constraint vector is the following:

uðqÞ ¼ ½ðx4 � x3Þ2 þ ðz3 � z4Þ2 � L2
34�: ð48Þ

A desired trajectory is defined for the midpoint of the L34 distance. According to Eq. (9) the servo constraint vector
us(q,p(t)) = h(q) � p(t) is written with:

hðqÞ ¼ 1
2
ðx3 þ x4Þ

1
2
ðz3 þ z4Þ z2 �

1
2
ðz3 þ z4Þ z3 � z4

� �T

; ð49Þ

pðtÞ ¼ ½ xd zd hd
CC 0 �T ; ð50Þ

from which we can see that the servo constraint and the geometric constraint together can be solved for the controlled coor-
dinate z2 ¼ zd þ hd

CC ; x3 ¼ xd � 1
2 L34; z3 ¼ zd; z4 ¼ zd and can be substituted into the control law (33), and (34).

The desired uncontrolled coordinate values x1, x2 and x4, the Lagrange multiplier k1 and the desired forces FL, F1, F2 and F3

are calculated by the computed torque control algorithm. The unknowns are scaled in order to obtain better conditioned sys-
tem. The parallel simulation of the controlled dynamical system must be done at the same time because the linear compen-
sator calculates a position and a velocity error qd � q and _qd � _q. The simulation was accomplished with the Baumgarte
stabilization of the equation of motion [3], which can be written as follows if the geometric constraints do not depend on
time explicitly:

Fig. 4. The ACROBOTER model for numerical simulation.
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M UT
q

Uq 0

" #
€q
k

� �
¼

Q
� _Uq _q� 2aUq _q� b2u

� �
: ð51Þ

The gain matrices of the linear compensator are presently given as KP ¼ PH0
eK and KP ¼ DH0

eK with P = 0.25 N/m,
D = 0.02 Ns/m and

eK ¼
120 �30 0 5 0 5 0

0 0 20 0 0 0 0
0 0 0 0 10 0 0
0 0 0 0 0 0 10

26664
37775: ð52Þ

Matrix eK is tuned by trial and error method and H0 is the input matrix evaluated in a characteristic equilibrium configuration
of the robot: x1 ¼ 0 m; x2 ¼ 0 m; z2 ¼ �1 m; x3 ¼ � 1

2 L34; z3 ¼ �1:5 m; x4 ¼ 1
2 L34 and z4 = �1.5 m.

In order to avoid the unbounded values occurring in the forward calculated control forces, the desired trajectories are
given by C1 continuous analytical functions. The horizontal xd and vertical position zd of the swinging unit and the desired
elevation hd

CC of the cable connector above the swinging unit are prescribed by

xd ¼ 0:25½m� 2
p

arctanð2:5½1=s�ðt � 6½s�ÞÞ;

zd ¼ �1:5½m� þ 0:02½m=s�t;
hd

CC ¼ 0:5½m�:

The numerical simulations are accomplished with dt = 0.01 s time step, which requires that the controller must compute
the desired control inputs in each 10 ms period. The tests showed that the on-board PC of the ACROBOTER prototype is capa-
ble of this challenge. Fig. 5 shows the results of the numerical simulation.

The desired value of the uncontrolled coordinate x1 is calculated in closed form by the single and the double pendulum
model, and x1 is also calculated numerically. Fig. 5a shows that the result gained from the numerical simulation is closer to
the result of the single pendulum model than the result of the double pendulum model. The experimental results (see Sec-
tion 7) also showed that the application of the single pendulum model gives adequate results.

The sent out control force signals can be seen in Fig. 5b. F1 is the main cable force F2 and F3 are the secondary cable forces.
FL is the force that is provided by the linear drive. After the initial perturbations the oscillations of the force signals are sup-
pressed. The high acceleration of the swinging unit at t = 6 s also causes oscillations, especially in the FL signal. The nominal
value of the Lagrange multiplier k1 is also calculated by the control algorithm and depicted in Fig. 5c. The geometric con-
straint violation was under 10�10 m during the simulation.

The dashed curves show the desired path and the continuous curves show the simulated path of the points P2, P3 and P4 in
Fig. 5d.

Fig. 5e shows the desired and the simulated horizontal position of the midpoint of the swinging unit. The desired value is
given in p(t) and the simulated value is given by h(q). The error between the desired and the simulated value is depicted in
Fig. 5f. In the initial configuration the horizontal position of the swinging unit has an error of 1 cm. As Fig. 5f shows, this error
is decreased by the linear compensator.

The desired and simulated vertical position of the swinging unit and the error are shown in Fig. 5g and Fig. 5h. The initial
error in the horizontal position causes oscillating error in the vertical position, but the compensation is significantly faster,
because the cable winding actuators can act on the vertical position directly, while there is no direct actuation on the vertical
position of the swinging unit and the cable connector.

The desired and the simulated elevation of the cable connector above the swinging unit is shown in Fig. 5i. The simulated
tilt is shown in Fig. 5j, while the desired tilt is zero.

To summarize, the diagrams show that the computed torque control method with backward Euler discretization gives
feasible control inputs, suppresses the error of the controlled coordinates, and the results are in strong connection with
the analytical results.

7. Experimental results

Simulation and experimental results corresponding to the single pendulum model of ACROBOTER are presented in
(Fig. 6). The required path of the robot (center of gravity of the swinging unit) was set to a slanted rectangle with
300 mm by 400 mm projected size onto the horizontal plane and with 130 mm elevation in the z direction. These dimensions
correspond to maximum workspace of the prototype experimental setup, in which the climber unit and the winding actuator
of the main suspending cable were emulated by a Hirata MB-H230/ MB-H180 3D Cartesian robot (see right in Fig. 1.). The
single pendulum model is characterized by the estimated cable length of 820 mm and the weight 2.8 kg of the swinging unit,
while the elevation of the cable connector with respect to the swinging unit was set to 500 mm.

The desired trajectories were calculated by using 6th order polynomial approximation of the required rectangular path.
The top left panel in Fig. 3 presents one segment of this trajectory in the x direction, where the crosses denotes the data used
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for fitting the polynomial. The bottom left panel summarizes the results of the numerical simulations applied for the same
desired trajectory segment. It shows that the calculated trajectories of the climber unit are close to each other in case of both
the single and double pendulum models. During experiments the HIRATA robot were commanded to move along the sim-
ulated climber unit trajectories providing an open loop continuous path control for realizing the desired motion of the
swinging unit. In the right panels of Fig. 5, the experimental results show that even the applied open loop controller can pro-
vide tolerable errors, since the maximum deviation (abs error) from the desired path remained below 60 mm that may be
compensated by the ducted fans of the swinging unit.

Fig. 5. The results of the numerical simulation.
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8. Conclusion

By using single and double pendulum based dynamical models, the inverse dynamical problem of the under-actuated and
redundant service robot platform ACROBOTER is solved in closed form. The applicability of these concepts is demonstrated
by numerical simulation and experiments. Within the limitations of reasonable/practical restrictions the presented results
can be generalized for a class of ceiling based service robots including the complex 3D model of the ACROBOTER system.

A formalism was proposed for the computed torque control of under-actuated and furthermore natural coordinate based
dynamical systems. The numerical simulations showed the applicability of the algorithm. The simulation also showed that
the method gives the same results as the analytical solution of the inverse dynamic problem.

Our studies indicated that in case of more complex and larger systems the Jacobian matrix may be ill-conditioned. The
examination of this problem is a future work.

The feasibility of the present control approach is planned to be tested in the framework of the ACROBOTER project.

Patents pending

Application No.: HU-P0900466. Application date: July 28, 2009. Title: ‘‘Payload suspension system”. Application No.: HU-
P0900467. Application date: July 28, 2009. Title: ‘‘Suspended payload platform thrusted by fluid mass flow generators”.
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Fig. 6. Experimental results based on the single pendulum model.
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