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Abstract The paper presents the motion control of the ceiling based service robot
platform ACROBOTER that contains two main subsystems. The climbing unit is a
serial robot, which realizes planar motion in the plane of the ceiling. The swinging
unit is hoisted by the climbing unit and it is actuated by windable cables and ducted
fans. The two subsystems form a serial and subsequent closed-loop kinematic chain
segments. Because of the complexity of the system we use natural (Cartesian) coor-
dinates to describe the configuration of the robot, while a set of algebraic equations
represents the geometric constraints. Thus the dynamical model of the system is
given in the form of differential-algebraic equations (DAE). The system is under-
actuated and the the inverse kinematics and dynamics cannotbe solved in closed
form. The control task is defined by the servo-constraints which are algebraic equa-
tions that have to be considered during the calculation of control forces. In this paper
the desired control inputs are determined via the numericalsolution of the resulting
DAE problem using the Backward Euler discretization method.

1 Introduction

Indoor service robots can effectively use the ceiling of theindoor environment to
provide obstacle free motion of the base of these robots, while the carried working
units can practically move in the whole inner space of the environment [7]. The
present paper describes the motion control of a new service robot platform devel-
oped within the ACROBOTER (IST-2006-045530) project [3]. The developed robot
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utilizing the ceiling for the planar motion, and its cable suspended pendulum-like
subsystem is the working unit.

A major challenge in ceiling based locomotion is that the ceiling based unit has
to hold the total weight of the robot and the payload safely, and has to provide
fast motion of the carried objects at the same time. To satisfy these requirements,
permanent magnets are applied to develop a ceiling absorbedmobile base in [7]. In
case of ACROBOTER, a serial robot based climbing unit was developed that can
crawl on an anchor point system installed on the ceiling (seeleft in Fig. 1).

The other main subsystem of ACROBOTER is the swinging unit. It is connected
to the climbing unit via a windable cable that is called the main cable hereafter.
The swinging unit has a mechanical interface to connect different tools. This unit
can be positioned and oriented with three orineting secondary cables and ducted fan
actuators. For more detailed description of the ACROBOTER design the reader is
referred to [3]. The kinematic structure of its planar mechanical model is described
in detail in Section 2.

In this paper, first, the dynamical model of the investigatedcomplex robotic struc-
ture is described by natural coordinates [2]. The resultingequations of motion are
formulated as Lagrangian equations of motion of the first kind. In addition to the
introduced geometric constraints, the task of the robot is defined by the so-called
servo-constraints which introduce further algebraic equations associated with the
original DAE problem of calculating the desired control inputs of the computed
torque control (CTC) of ACROBOTER. In the second part of thiswork the numer-
ical solution of the DAE system of equations is presented by using the Backward
Euler discretization method. At the end a real parameter case simulation study is
provided to demonstrate the applicability of the proposed controller.

2 Structure of the ACROBOTER platform

The mechanical structure of the ACROBOTER can be seen left inFig. 1. The climb-
ing unit is an RRT robot that provides the ceiling based locomotion of the system. Its
task is to position the suspension point (cable outlet) in the plane of the ceiling. The
climbing unit consists of the anchor arm, the rotation arm and a linear axis moving
the winding mechanism. The anchor arm swaps between neighboring anchor points,
while the rotation arm and the linear axis provide additional two degrees-of-freedom
(DoFs). Thus the climbing unit is a kinematically redundantplanar manipulator, ex-
cept in the case when both ends of the anchor arm is fixed to the ceiling. The winding
mechanism hoists the swinging unit via the main cable, whichunit contains three
additional cable actuators. The main role of these cables tocontrol the orientation of
the unit, but they also can regulate its elevation yielding afurther redundancy. In ad-
dition to these cables, three pairs of ducted fans are employed to orient and position
the swinging unit. The orienting cables are assumed to be ideal in the model.

In the planar model shown right in Fig. 1, the climbing unit isconsidered as a
single linear axis. The cable connector modeled as a point mass with 2 DoFs and
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Fig. 1 The ACROBOTER structure (left), planar mechanical model (right)

the swinging unit is a rigid body with 3 DoFs. The kinematics of the swinging unit
is described by the redundant set of coordinates associatedwith pointsP3 andP4.

The total number of DoFs is 6 and we use 7 descriptor coordinates plus one
geometric constraint which represents the constant distanceL34.

The position of the climbing unit is controlled by the forceFL, while the swinging
unit is actuated via the cable forcesF1, F2 andF3 and the thrust forceFT . In the
modelC denotes the center of gravity of the swinging unit. PointT determines the
line of action of the thrust forceFT being parallel to the local axisx . And O is an
arbitrarily selected point that has to be controller to moveon the desired trajectory.

3 CTC with Backward Euler discretication

The equations of motion (1) and (2) of the system is derived inthe form of the
Lagrangian equation of motion of the first kind:

Mq̈+ΦΦΦT
q(q)λλλ = Qg +H(q)u , (1)

φφφ(q) = 0 , (2)

whereq ∈R
n denotes the descriptor coordinates andM ∈ R

n×n is the constant mass
matrix. In eq. (2) the vectorφφφ(q) ∈ R

m represents geometric constraints. Matrix
ΦΦΦq(q) = ∂φφφ(q)/∂q ∈ R

m×n is the constraint Jacobian. Vectorλλλ ∈ R
m contains

the Lagrange multipliers andQg ∈ R
n is the constant generalized force vector of

the gravitational terms. The control input vector isu ∈ R
l is mapped by the input

matrixH(q)∈R
n×l . The above formalism can directly be applied to the spatial case

yielding the same form of the equations of motion as (1) and (2).
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The inverse kinematical and dynamical calculations have unique solution if the
number of control inputs and the dimension of the task is equal [1]. Thus the
task have to be defined byl number of algebraic equations. This set of addi-
tional constraint equations are the so-called servo-constraints (control-constraints)
φφφs(q,p(t)) = 0 . We assume that these servo-constraint equations can be written in
the formφφφs(q,p(t)) = g(q)− p(t) whereg(q) represents, for example, the end-
effector position of the robot andp(t) is the performance goal to be realized [1].

For under-actuated robotic systems modeled by Lagrangian equation of motion
of the second kind, the computed torque control method was generalized in [6]. The
generalized method is called Computed Desired Computed Torque Control (CD-
CTC) method. Here the expression “computed desired” refersto the fact that a set
of uncontrolled coordinates can be separated from the controlled ones, and the de-
sired values of these uncontrolled coordinates have to be calculated by considering
the internal dynamics of the system.

The CDCTC method proposed in [6] can be applied to dynamical systems that
are described by ordinary differential equations only. This problem can be resolved
by projecting the equations of motion 1 and 2 to the subspace of admissible motions
associated with the geometric constraints [5]. The simultaneous application of this
projection (including the configuration corrections during the numerical solution)
and the CDCTC algorithm is complex and computationally expensive. In addition,
it has to be noted that the selection of the controlled and uncontrolled coordinates
might be highly intuitive in case of complex (non-convetional) robotic structure
like ACROBOTER. The introduction of this kind of distinct coordinates is possible
only if the servo-constraint equations can be solved in closed form for the set of
controlled coordinates.

Instead of the application of the CDCTC method, we apply the Backward Euler
discretization for the DAE system the resulting set of implicit equations are solved
by the Newton-Raphson method for the desired control inputsu. Considering a PD
controller with gain matricesK P andK D the control law can be formulated as

Mq̈d +ΦΦΦT
q(qd)λλλd = Qg +H(qd)u−KP(qd

−q)−KD(q̇d
− q̇) , (3)

φφφs(qd ,p(t)) = 0 , (4)

φφφ(qd) = 0 , (5)

where superscriptd refers to desired quantities. Then, the first order form of equa-
tion (3) reads

q̇d = yd (6)

ẏd = M−1
[

−ΦΦΦT
q(qd)λλλd +Qg +H(qd)u−KP(qd

−q)−KD(q̇d
− q̇)

]

. (7)

Equations (6) and (7) are first order ordinary differential equations, while equa-
tions (4) and (5) are algebraic ones. We use the Backward Euler formula with
timesteph to discretize the DAE system, that result in the set of nonlinear alge-
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braic equations for the unknowns desired valueszi+1 =
[

qd
i+1 yd

i+1 ui+1 λλλd
i+1

]T
in

the form:

F(zi+1) =











qd
i+1−qd

i −hyd

yd
i+1−yd

i −hM−1
[

−ΦΦΦT
q(qd

i+1)λλλ
d
i+1 +Qg +H(qd

i+1)ui+1−Ke
]

φφφs(qd
i+1,p(ti+1))

φφφ(qd
i+1)











(8)

with K =
[

K P K D
]

and e=

[

qd
i+1−qi+1

q̇d
i+1− q̇i+1

]

. (9)

For the solution the initial values areqd
0 andyd

0 at i = 0. They should satisfy the
servo-constraints and the geometric constraints. During simulation the initial values
of the statesq0 andy0 only have to satisfy the geometric constraints. The numeri-
cal solution of 8 and 9 is based on the well-known Newton-Raphson method. The
corresponding Jacobian matrixJ(zi+1) = ∂F(zi+1)/∂zi+1 is calculated numerically,
however it could aslo be constructed semi-analytically [4]. Then the iteration

zn+1
i+1 = zn

i+1−J(zn
i+1)F(zn

i+1) (10)

provides the solution at each time instants, wherezn
i+1 is thenth approximation of

zi+1. The initial guessz0
i+1 in each time step comes from the best approximation

zN
i of the previous time step. Usually the Newtor-Raphson iteration converges in

N = 2÷6 steps depending also on the required tolerance.

4 Real parameter case simulation

This section presents the simulation results obtained for the planar model of AC-
ROBOTER shown right in Fig. 1. The selected descriptor coordinates are the Carte-
sian coordinates of the pointsPi, i = 1. . .4 yieldingq = [ x1 x2 z2 x3 z3 x4 z4 ]T. The
control inputs are colleted in vectoru = [FL F1 F2 F3 FT ]T. The single geometric
constraint represents the constant distanceL34 between the pointsP3 andP4 and can
be written as:

φφφ(q) =
[

(x3− x4)
2 +(z3− z4)

2
−L2

34

]

(11)

The mass of the swinging unit ismSU = 9.3kg and its moment of inertia with
respect to the axis atP3 is ISU = 0.4kgm2. The mass of the cable connector ismCC =
0.5kg and the mass of the linear drive that represents the climber unit ismCU = 20kg.
The distanceL34 is set to be 0.4m. The position of the center of gravity is given
by r̄C = [0.2 0.05]T , while the point of application of the thrust force and the
position of pointO are defined by the vectors̄rT = [0.2 −0.05]T andr̄O = [0.2 0]T

respectively in the local frame(x,z) measured in meters.
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Fig. 2 Modified ramp function (left), block diagram of the simulation (right)

The task of the robot is to track a given trajectory of the point O. At the same
time the elevation of the cable connector and the horizontality of the swinging unit
are also prescribed. The servo-constraintφφφs(q,p(t)) = g(q)−p(t) is defined by

g(q) =
[

x1 z2−
z3 + z4

2
x3 + x4

2
z3 + z4

2
z3− z4

]T
, (12)

p(t) =
[

xd
CU hd

CC xd
SU zd

SU 0
]T

, (13)

where the desired climbing unit positionxd
CU = 0.4w(3,4), the desired cable con-

nector elevationhd
CC = 0.8−0.2w(2,4), the desired swinging unit horizontal posi-

tion xd
SU = 0.2w(2,4) and the vertical positionzd

SU = −1.5+0.4w(2,4) are given in
meters and they are used to calculate the reference values ofthe controller. The cor-
responding weighting functionsw(2,4) andw(3,4) are defined byw(t1,t2) as shown
in Fig. 2. In the investigated simple case, it is possible to solve the servo-constraint
equations and the geometric constraint equation for the intuitively chosen set of con-
trolled coordinatesqc = [ x1 z2 x3 z3 z4 ]T. with qu = [ x2 x4 ]T . The corresponding
solution for the controlled coordinates reads:

x1 = xd
CU , z2 = zd

SU + hd
CC, x3 = xd

SU −
L34

2
, z3 = zd

SU and z4 = zd
SU (14)

The uncontrolled coordinatex4 comes directly from the geometric constraint equa-
tion. Despite of the available closed form solution, here, we do not separate the con-
trolled and the uncontrolled coordinates. Instead the servo-constrains are directly
attached to the control law (3-5) proposed in Section 3.

The equations of motion was solved using the fourth order Runge-Kutta method,
and the control input was calculated by the simultaneously applied Backward-Euler
algorithm as shown in Fig. 2. The simulation of the DAE systemwas accomplished
by using Baumgarte’s method [2] under the assumption that the geometric con-
straints do not depend on time explicitly:

[

M ΦΦΦT
q

ΦΦΦq 0

][

q̈
λλλ

]

=

[

Qg +Hu
−Φ̇̇Φ̇Φqq̇−2αΦΦΦqq̇−β 2φφφ

]

(15)

In equation (15)α = 40 andβ = 60 are constant numbers that effects the suppres-
sion of the geometric constraint errors. The time step of thesimulation was set to
h = 0.01s .
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Using the experimentally tuned gain matricesK P = diag(150,0,10,1,3,1,3) and
K D = diag(1000,0.5,10,15,20,15,20), the simulated motion of the system is pre-
sented in Fig. 3, where panel (a) shows the stroboscopic motion of the planar AC-
ROBOTER. The realized path of pointO is denoted by the thick curve that slightly
oscillates around, but converges to the desired path depicted as a thin straight line.
The desired configurations are shown by dashed lines, while the continuous lines
presents the realized configurations of the robot. According to the task equations
(12) and (13) the robot is commanded to stand still tillt = 2s, then the reference
point O is commanded to move along a straight line with constant velocity. During
the same period of time the desired elevation of the cable connector is decreasing.

The climbing unit is commanded to start moving with constantvelocity att = 3s.
Then, att = 4s the task is to keep the swinging unit in a certain fixed position. Panel
(b) in Fig. 3 shows the constraint violation with the maximumof 4mm. Note that
the constraint violation depend on theα andβ parameters of eq. (15). Panels (c)
and (d) show the servo-constraint errors. The error in the climbing unit’s position
is φs,1, the elevation error of the cable connector isφs,2, the horizontal and vertical
position errors corresponding to the coordinates of pointO areφs,3 andφs,4 and the
orientation error of the swinging unit isφs,5 (see eqs. (12) and (13)).

The servo-constraint errors show that the large initial errors decreasing in the
first 2 second. Then the sudden change of the desired velocities causes further,
but settling oscillations. When the system has to stop att = 4s the oscillations are
suppressed, too. However, the relatively high frequency oscillation of φs,4 dies out
slowly. This corresponds to the oscillations of the cable connector having relatively

Fig. 3 Simulation results: (a) stroboscopic movement of the system, (b) violation of the geometric
constraint, (c) and (d) servo constraint violations



8 Ambrus Zelei and Gábor Stépán

small mass compared to the swinging unit. It is hard to suppress the horizontal vibra-
tion of the cable connector due to the under-actuated character of the robot. These
oscillations could be decreased by prescribing smooth trajectories.

5 Conclusions

The computed torque control method was generalized and applied for the tracking
control of ACROBOTER using descriptor type system modeling. In contrast to [6],
the control inputs were determined via the direct solution of the corresponding DAE
problem. The control task was defined by servo-constraint equations incorporated
in the algebraic equations. Considering the experimentally tuned control parameters
the presented simulation results show the applicability ofthe proposed simple PD
controller for the tracking control of the under-actuated ACROBOTER system.
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