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The ACROBOTER Platform - Part 2:
Servo-Constraints in Computed Torque Control

Ambrus Zelei and Gabor Stépan

Abstract The paper presents the motion control of the ceiling baseadcgerobot
platform ACROBOTER that contains two main subsystems. Tinebing unit is a
serial robot, which realizes planar motion in the plane efc¢hiling. The swinging
unit is hoisted by the climbing unit and it is actuated by vabté cables and ducted
fans. The two subsystems form a serial and subsequent dlospdinematic chain
segments. Because of the complexity of the system we useahé@artesian) coor-
dinates to describe the configuration of the robot, whilet@&algebraic equations
represents the geometric constraints. Thus the dynamicdkhof the system is
given in the form of differential-algebraic equations (DAEhe system is under-
actuated and the the inverse kinematics and dynamics caenstlved in closed
form. The control task is defined by the servo-constraint€lvare algebraic equa-
tions that have to be considered during the calculation nfrobforces. In this paper
the desired control inputs are determined via the numesiadation of the resulting
DAE problem using the Backward Euler discretization method

1 Introduction

Indoor service robots can effectively use the ceiling ofitidoor environment to
provide obstacle free motion of the base of these robotdewié carried working
units can practically move in the whole inner space of tharenment [7]. The

present paper describes the motion control of a new serwotoet platform devel-
oped within the ACROBOTER (IST-2006-045530) project [3j€ldeveloped robot
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utilizing the ceiling for the planar motion, and its cablesganded pendulum-like
subsystem is the working unit.

A major challenge in ceiling based locomotion is that thdirmgibased unit has
to hold the total weight of the robot and the payload safety has to provide
fast motion of the carried objects at the same time. To yatigfse requirements,
permanent magnets are applied to develop a ceiling absatbbie base in [7]. In
case of ACROBOTER, a serial robot based climbing unit waslbd@ed that can
crawl on an anchor point system installed on the ceiling [s&én Fig. 1).

The other main subsystem of ACROBOTER is the swinging uhig.¢onnected
to the climbing unit via a windable cable that is called theimzble hereafter.
The swinging unit has a mechanical interface to connecewdfft tools. This unit
can be positioned and oriented with three orineting seagrzibles and ducted fan
actuators. For more detailed description of the ACROBOTERigh the reader is
referred to [3]. The kinematic structure of its planar metgbal model is described
in detail in Section 2.

In this paper, first, the dynamical model of the investigai@tiplex robotic struc-
ture is described by natural coordinates [2]. The resukéiggations of motion are
formulated as Lagrangian equations of motion of the firstkin addition to the
introduced geometric constraints, the task of the roboefindd by the so-called
servo-constraints which introduce further algebraic éigna associated with the
original DAE problem of calculating the desired control inng of the computed
torque control (CTC) of ACROBOTER. In the second part of thagk the numer-
ical solution of the DAE system of equations is presented $iggithe Backward
Euler discretization method. At the end a real parametex sasulation study is
provided to demonstrate the applicability of the proposatroller.

2 Structure of the ACROBOTER platform

The mechanical structure of the ACROBOTER can be seen IEfginl. The climb-
ing unitis an RRT robot that provides the ceiling based loctom of the system. Its
task is to position the suspension point (cable outlet) éytlane of the ceiling. The
climbing unit consists of the anchor arm, the rotation arm afinear axis moving
the winding mechanism. The anchor arm swaps between neiglgtzamchor points,
while the rotation arm and the linear axis provide additltwa degrees-of-freedom
(DoFs). Thus the climbing unitis a kinematically redundalanhar manipulator, ex-
ceptin the case when both ends of the anchor arm is fixed tetlireg: The winding
mechanism hoists the swinging unit via the main cable, whitih contains three
additional cable actuators. The main role of these cablesritrol the orientation of
the unit, but they also can regulate its elevation yieldifigrener redundancy. In ad-
dition to these cables, three pairs of ducted fans are eragltwyorient and position
the swinging unit. The orienting cables are assumed to [z idehe model.

In the planar model shown right in Fig. 1, the climbing unic@nsidered as a
single linear axis. The cable connector modeled as a poiss wih 2 DoFs and
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Fig. 1 The ACROBOTER structure (left), planar mechanical modgh{)

the swinging unit is a rigid body with 3 DoFs. The kinemati¢sh® swinging unit
is described by the redundant set of coordinates assodcigtteg@ointsP3z andP,.

The total number of DoFs is 6 and we use 7 descriptor coorenalus one
geometric constraint which represents the constant distaf.

The position of the climbing unitis controlled by the foilge while the swinging
unit is actuated via the cable forcEg F, andF3 and the thrust forc&r. In the
modelC denotes the center of gravity of the swinging unit. Pdirdetermines the
line of action of the thrust forcBr being parallel to the local axi. And O is an
arbitrarily selected point that has to be controller to morehe desired trajectory.

3 CTC with Backward Euler discretication

The equations of motion (1) and (2) of the system is derivethenform of the
Lagrangian equation of motion of the first kind:

Mg +®g(q)A = Qg+H(q)u, (1)
@a) =0, 2)

whereq € R" denotes the descriptor coordinates &d R"" is the constant mass
matrix. In eq. (2) the vectop(q) € R™ represents geometric constraints. Matrix
®q(q) = 09(q)/dqg € R™" is the constraint Jacobian. Vectdre R™ contains
the Lagrange multipliers an@q € R" is the constant generalized force vector of
the gravitational terms. The control input vectouis R' is mapped by the input
matrixH(q) € R™!. The above formalism can directly be applied to the spatiséc
yielding the same form of the equations of motion as (1) and (2
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The inverse kinematical and dynamical calculations havguansolution if the
number of control inputs and the dimension of the task is kffija Thus the
task have to be defined dynumber of algebraic equations. This set of addi-
tional constraint equations are the so-called servo-caings (control-constraints)
@s(g,p(t)) = 0. We assume that these servo-constraint equations can tbenaini
the formes(q,p(t)) = g(q) — p(t) whereg(q) represents, for example, the end-
effector position of the robot anult) is the performance goal to be realized [1].

For under-actuated robotic systems modeled by Lagrangjaation of motion
of the second kind, the computed torque control method wasrgézed in [6]. The
generalized method is called Computed Desired Computegu&€Control (CD-
CTC) method. Here the expression “computed desired” refetise fact that a set
of uncontrolled coordinates can be separated from the altedrones, and the de-
sired values of these uncontrolled coordinates have to loalated by considering
the internal dynamics of the system.

The CDCTC method proposed in [6] can be applied to dynamicstess that
are described by ordinary differential equations onlysTgrioblem can be resolved
by projecting the equations of motion 1 and 2 to the subspbaéroissible motions
associated with the geometric constraints [5]. The simeltais application of this
projection (including the configuration corrections dgrithe numerical solution)
and the CDCTC algorithm is complex and computationally espe=. In addition,
it has to be noted that the selection of the controlled ananuinclled coordinates
might be highly intuitive in case of complex (non-conveadnrobotic structure
like ACROBOTER. The introduction of this kind of distinct@alinates is possible
only if the servo-constraint equations can be solved inedd®rm for the set of
controlled coordinates.

Instead of the application of the CDCTC method, we apply thelvard Euler
discretization for the DAE system the resulting set of imipéquations are solved
by the Newton-Raphson method for the desired control inpu@onsidering a PD
controller with gain matriceK p andK p the control law can be formulated as

M+ @ (gAY = Qg+ H(g)u—Kp(a®—a)—Kp(@®—a),  (3)
®(q’,p(t)) = 0, @
®(g!) =0, ©

where superscrigl refers to desired quantities. Then, the first order form afeeq
tion (3) reads

g¢ =y° (6)
¥ =M~ [~ @F(aA + Qg+ H(a%)u— Kp(a® ~q) ~Ko(@ ~a)| . ()
Equations (6) and (7) are first order ordinary differentiquations, while equa-

tions (4) and (5) are algebraic ones. We use the Backwardr Eorlmula with
timesteph to discretize the DAE system, that result in the set of naamalge-



Servo-Constraints in Computed Torque Control of the ACROBR Service Robot 5

braic equations for the unknowns desired valmes = [q% ; v, Uiy1 A%, ] in
the form:

a1 —af —hy

ijﬂ —yd—hm-1 [*‘Dg(qgﬂ)’\&l +Qg+H (Qid+1)ui+l —Ke]

(@) @s(a, 1, p(ti1)) ®)
o0, ,)
d _ A
with K = [Kp : KD] and e= |\c-llc;-r£|'.._9lj_l‘| ) (9)
Qif1—div1

For the solution the initial values aqgj andyg ati = 0. They should satisfy the
servo-constraints and the geometric constraints. Dufinglation the initial values

of the stateg)p andyg only have to satisfy the geometric constraints. The numeri-
cal solution of 8 and 9 is based on the well-known Newton-Rapmethod. The
corresponding Jacobian matdiz; 1) = dF(zi;+1)/0zi+1 is calculated numerically,
however it could aslo be constructed semi-analytically T4len the iteration

2 =2 = I )F () (10)
provides the solution at each time instants, whelre is the n" approximation of
Zi+1. The initial guesz?+l in each time step comes from the best approximation
zN of the previous time step. Usually the Newtor-Raphson tiE@naconverges in

N = 2-- 6 steps depending also on the required tolerance.

4 Real parameter case simulation

This section presents the simulation results obtainedhfemptanar model of AC-
ROBOTER shown rightin Fig. 1. The selected descriptor cmatés are the Carte-
sian coordinates of the poirfs, i =1...4 yieldingq = [X1 X2 22 X3 Z3 X4 z4]T. The
control inputs are colleted in vector= [F_ F; F; Fs Fr]T. The single geometric
constraint represents the constant distdngdetween the point8; andP4 and can
be written as:

@) = [(xs—Xa)?+ (28— 22)* — L] (11)

The mass of the swinging unit iegy = 9.3kg and its moment of inertia with
respect to the axis & is |g) = 0.4kgn?. The mass of the cable connectomisc =
0.5kg and the mass of the linear drive that represents the eliontit ismgy = 20kg.
The distancd 34 is set to be Gtm. The position of the center of gravity is given
by rc = [0.2 0.05]" , while the point of application of the thrust force and the
position of pointO are defined by the vectors = [0.2 —0.05]" andro = [0.2 0]T
respectively in the local fram&,z) measured in meters.
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Fig. 2 Modified ramp function (left), block diagram of the simutati(right)

The task of the robot is to track a given trajectory of the p@nAt the same
time the elevation of the cable connector and the horizitytafl the swinging unit
are also prescribed. The servo-constreift], p(t)) = g(q) — p(t) is defined by

.
9(q) = [Xl 22723224 X3;X4 23224 23724} : (12)
p(t) = [Xtd:u hdc xq, 2, O]T 5 (13)

where the desired climbing unit positiofl, = 0.4w(3,4), the desired cable con-
nector elevatiomd. = 0.8 —0.2w(2,4), the desired swinging unit horizontal posi-
tion xd, = 0.2w(2,4) and the vertical positiod}, = —1.5+ 0.4w(2,4) are given in
meters and they are used to calculate the reference valties cdntroller. The cor-
responding weighting functiong2,4) andw(3,4) are defined byv(ty,t2) as shown
in Fig. 2. In the investigated simple case, it is possibleoleesthe servo-constraint
equations and the geometric constraint equation for thuiively chosen set of con-
trolled coordinatesc = [X1 22 X3 z3 z4]". with qu = [%2 4] . The corresponding
solution for the controlled coordinates reads:

x1=x3,, =2, +hd., x3:xd5U—L—;4, ==4;andz =24, (14)
The uncontrolled coordinate comes directly from the geometric constraint equa-
tion. Despite of the available closed form solution, here do not separate the con-
trolled and the uncontrolled coordinates. Instead thecseonstrains are directly
attached to the control law (3-5) proposed in Section 3.

The equations of motion was solved using the fourth ordeigReeiutta method,
and the control input was calculated by the simultaneouystyied Backward-Euler
algorithm as shown in Fig. 2. The simulation of the DAE systeas accomplished
by using Baumgarte’'s method [2] under the assumption theatgdometric con-
straints do not depend on time explicitly:

Mell[4g] Qg+ Hu
qu Oq} [}‘} B {_d’qq—%aq’qq—ﬁzfp (15)

In equation (15 = 40 andf3 = 60 are constant numbers that effects the suppres-
sion of the geometric constraint errors. The time step ofsthmilation was set to
h=0.01s.
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Using the experimentally tuned gain matri¢gs= diag(150,0,10,1,3,1,3) and
Kp = diag(10000.5,10,15,20, 15, 20), the simulated motion of the system is pre-
sented in Fig. 3, where panel (a) shows the stroboscopiomofithe planar AC-
ROBOTER. The realized path of poitis denoted by the thick curve that slightly
oscillates around, but converges to the desired path depét a thin straight line.
The desired configurations are shown by dashed lines, widledntinuous lines
presents the realized configurations of the robot. Accgrdiinthe task equations
(12) and (13) the robot is commanded to stand stilltti# 2s, then the reference
pointO is commanded to move along a straight line with constantoigldOuring
the same period of time the desired elevation of the cableexdor is decreasing.

The climbing unitis commanded to start moving with constetbcity att = 3s.
Then, at = 4s the task is to keep the swinging unit in a certain fixed posiPanel
(b) in Fig. 3 shows the constraint violation with the maximofdmm. Note that
the constraint violation depend on theand 8 parameters of eq. (15). Panels (c)
and (d) show the servo-constraint errors. The error in thebthg unit's position
is ¢ 1, the elevation error of the cable connectogis, the horizontal and vertical
position errors corresponding to the coordinates of pOiare ¢ 3 andgs 4 and the
orientation error of the swinging unit ig;5 (see egs. (12) and (13)).

The servo-constraint errors show that the large initiabrsridecreasing in the
first 2 second. Then the sudden change of the desired vewdatuses further,
but settling oscillations. When the system has to stdp-a#s the oscillations are
suppressed, too. However, the relatively high frequencillason of ¢ 4 dies out
slowly. This corresponds to the oscillations of the cablenaztor having relatively
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Fig. 3 Simulation results: (a) stroboscopic movement of the sys{b) violation of the geometric
constraint, (c) and (d) servo constraint violations
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small mass compared to the swinging unit. It is hard to sugsattee horizontal vibra-
tion of the cable connector due to the under-actuated ctearatthe robot. These
oscillations could be decreased by prescribing smootadtajies.

5 Conclusions

The computed torque control method was generalized andeadpl the tracking
control of ACROBOTER using descriptor type system modelingontrast to [6],
the control inputs were determined via the direct solutibihe corresponding DAE
problem. The control task was defined by servo-constrainagons incorporated
in the algebraic equations. Considering the experimsstiafied control parameters
the presented simulation results show the applicabilitthefproposed simple PD
controller for the tracking control of the under-actuat€dROBOTER system.
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