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ABSTRACT 
The paper presents the dynamic analysis of a crane-like 

manipulator system equipped with complementary cables and 
ducted fan actuators. The investigated under-actuated 
mechanical system is described by a system of differential-
algebraic equations. The position/orientation control problem 
is investigated with respect to the trajectory generation and the 
fine positioning of the payload. The closed form results 
include the desired actuator forces as well as the nominal load 
angle corresponding to the desired motion of the payload. 
Considering a PD controller, numerical simulation results and 
also experiments demonstrate the applicability of the concept 
of using complementary actuators for controlling the swinging 
motion of the payload.  

1 INTRODUCTION 
Cranes are widely used in industry to transport a suspended 
load to the place of interest. However, precise payload 
positioning by an overhead crane is a difficult task, since the 
payload exhibits pendulum-like swinging motion. Beside 
performance limitations, the swinging motion of the payload 
may result in safety concerns like damage of payload and 
personnel.  
Many researchers have worked on the issue of anti-swing 
control of overhead crane systems ([1], [2], [3], [4]). The goal 
of the different control algorithms is to achieve both position 
regulation and anti-swing control. This means that the payload 
should move along a prescribed trajectory in such a way that 
the load angle oscillation is suppressed as quickly as possible. 
Other crane designs may compensate for the swinging of the 
load by using more than one supporting cables. For example, 
the NIST RoboCrane [5] utilizes a cable based inverted 
Stewart platform in order to provide improved load stability. 
Obviously, using a parallel mechanism enables also the 6 

degrees of freedom payload control; however, the workspace 
of this robotic crane is limited by the cable supports. 
A novel field of using crane-like systems is service robotics, 
where sharing the place with humans is an important problem. 
Reference [6] presents a ceiling based mobile robot platform, 
where the cart of the overhead crane system is substituted by a 
magnetic support/transport system and, instead of cables, the 
payload is attached to a platform that is oriented by 3 
telescopic actuators. Evidently, this concept solves the 
problem of swinging payloads, while also provides space 
division between the robot and obstacles without the ultimate 
need of time-sharing and -scheduling. On the other hand, 
while the control problem is simpler in this case, the 
mechanical structure of this device is much more complex 
than that of an overhead crane. In addition, the vertical 
workspace of such a robot is limited. 
Taken into account the above considerations, one can 
conclude that using simple complementary actuators may be 
advantageous when relatively small payloads are to be 
transported and there is also a need for fine positioning and 
orienting the carried load. 
This paper investigates the concept of using complementary 
cable-winding motors and ducted fans for payload control. 
Since partially the ducted fans accelerate the payload the 
weight of the payload should not be large compared to the 
maximal thrust force. Together with these additional actuators, 
the payload becomes a kind of ‘swinging actuator’. Figure 1 
shows the design of the prototype of this under-actuated 
manipulator. In the case we consider here, three cables 
orientate the swinging load, while two parallel-direction 
ducted fans are used for stabilizing the motion of the payload 
along the desired trajectory. The thrust provided by the ducted 
fans makes it also possible to move the payload even if the 
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cable suspension point does not move at all. Nevertheless the 
suspension point is moved during normal operation of the 
system. Further equipments can be connected to the platform 
via a special mechanical connection interface.  
 

 
Figure 1.  Concept of the swinging actuator 

2 PLANAR MODEL OF THE ACTUATOR  
In this study, we investigate the reduced planar case of the 
swinging actuator. The mechanical model of the investigated 
planar crane-like manipulator system is presented in Figure 2. 
Only two cables orientate and one ducted fan stabilizes the 
swinging load. In this model, the suspension point O is 
considered to be fixed in a certain position. The bar AB 
models the body of the swinging actuator itself, and also the 
payload with total weight m and mass moment of inertia JC. 
The centre of gravity affected also by the attached payload is 
denoted by point C. The main suspending cable between point 
O and D has a constant length L, while the secondary cables 
AD and BD are considered to be winded by DC motors fixed 
on the swinging actuator at A and B. In addition, the force FT 
denotes the thrust of the ducted fan parallel to the bar and 
placed below the system. 

 
Figure 2.  Planar model of the swinging actuator 

According to Figure 2, the system has 4 degrees of freedom, 

which can uniquely be described by the load angle ϑ of the 
main suspending cable, the tilt angle φ of the swinging 
platform and the coordinates x and y of the centre of gravity 
C. The number of the generalized coordinates is dimq = 4. The 
task is described by the position coordinates of C and the tilt 
angle φ thus the dimension of the task is dimt = 3. Since the 
task requires less than the available degrees of freedom, the 
swinging actuator is kinematically redundant. However, the 
system can only be actuated by 3 control inputs so it is also 
under-actuated. One actuator is the thrust force FT of the 
ducted fan, while the torques of the cable winding motors 
provide the cable forces FA and FB acting at the points A and 
B respectively (see Figure 2). The number of the control 
inputs is dimu = 3.  
In case of most of the (under-)actuated manipulators, the 
dimension of the available control inputs is higher than the 
dimension of the task. Thus, the following inequality holds: 

dim dim
u t

≥ .                                    (1) 

In the dimu = dimt case, the kinematic redundancy is 
automatically dissolved with the help of the (dimq – dimu) 
number of differential equations beside of the dimt number of 
algebraic equations of task definition and the generalized 
coordinates can be calculated uniquely with respect to the 
task. The investigated manipulator belongs to this class with 
dimq = 4, dimu = dimt = 3.  
Note that in the dimu > dimt cases, the system is kinematically 
redundant, which means that the generalized coordinates can 
not be determined uniquely with respect to the task, and the 
standard optimization algorithms can be applied (see:[8], [9], 
[10]).  

  
Figure 3.  Free body diagrams of the actuator 

In order to derive the equations of motion, the following set of 
redundant coordinates is introduced 

T
x y x yD Dϕ =  x ,                           (2) 

where (x, y), and (xD, yD) are the Cartesian coordinates of the 
centre of gravity C and the cable connection point D of the 
three cables, respectively. Although four coordinates are 
needed only, it is easier to derive the cable force as the 
function of the redundant coordinates (2), in this case. Then 
the three active forces and the ideal constraining force FS of 
the suspension are as follows 

( )D AA A
λ= −F r r ,                                      (2.a) 

( )D BB B
λ= −F r r ,                                         (3) 

T
cos sinF

T T
ϕ ϕ =  F ,                               (2.c) 

S Dλ=−F r ,                                             (2.d) 



 3 Copyright © 2009 by ASME 

where λ is the Lagrangian multiplier related to the suspension 
force. The cable control forces FA and FB are expressed in a 
similar form by using the scalar time-dependent scaling 
factors λA and λB, although they are not constraining forces, 
rather virtual stiffnesses that are controlled actively by means 
of the winders at A and B. The position vectors can clearly be 
expressed by the geometry of the structure given by the 
parameters a, b, h and L (see in Figure 3). 
The redundant set of coordinates defined in (2) and 
constraining and control forces in (3) lead to the following 
Lagrangian equations of the first kind in the form 

( ) ( )

( ) ( )

sin

cos 0,

J a b x xA B DC

a b y y F hA B D T

ϕ λ λ ϕ

λ λ ϕ

+ − − −

− − − =

��

                        (4) 

( ) ( ) ( ) cos 0mx x x F a bA B D T A Bλ λ λ λ ϕ+ + − − + − =�� ,             (5) 

( ) ( ) ( ) sin 0my y y F a b mgA B D T A Bλ λ λ λ ϕ+ + − − + − + =�� ,     (6) 

( ) ( ) ( )cos 0a b x xA B A B A BD
λ λ ϕ λ λ λ λ λ− + + + − + = ,          (7) 

( ) ( ) ( )sin 0a b y yA B A B A BD
λ λ ϕ λ λ λ λ λ− + + + − + = ,          (8) 

together with the single geometric constraint equation 

2 2 2
0x y l

D D
+ − = .                                                          (9) 

The set of equations of motions (4-9) consists of three 
differential equations and three algebraic ones. Due to the 
appropriate selection of the redundant coordinates, one can 
recognize that the algebraic equations (7-9) can be solved for 
xD, yD and λ in closed form 

( ) ( )cos cosx a y bA B
x
D A B

λ ϕ λ ϕ

λ λ λ

− + +
=

+ +
,                (10) 

2 2
y L xD D

=− − ,                                                (11) 

1 2 42 122
C C Cλ

 
= − + − 

 
,                                  (12) 

with 

( )

( ) ( )( )

( ) ( )( )

2

1

2
cos

2

2
sin

,
2

C A B

a b xA B A B

L

a b yA B A B

L

λ λ

λ λ ϕ λ λ

λ λ ϕ λ λ

= + −

− − +
+

− − +

                  () 

( )2
2

C A Bλ λ= + .                                                  () 

If these formulae are substituted into the system of 3 second 
order differential equations (4-6), the actual motion can be 
integrated for given actuator force functions λA(t), λB(t) and 
FT(t). So the differential algebraic system can be reduced to a 
system of ordinary differential equations. 

3 COMPUTED TORQUE CONTROL  
When computed torque control technique is to be applied, the 
actuator forces have to be calculated based on the desired 
trajectory of the swinging actuator given by the functions xd(t), 
yd(t) and φd(t). If these functions are prescribed, then using the 
algebraic equations (7-8) and writing the constraint equation 

in the form of two separate equations with the parameter ϑ : 

sin cosx L y L
D D

ϑ ϑ= = −                       (13) 

yield the load (nutation) angle as the function of the prescribed 
coordinates and accelerations as 

( )( )
( ) ( )( )

c c
arctan

c

J mhx mx y g x sC d d d d d d d d

J s mh y g my y g x sC d d d d d d d d

ϕ
ϑ

ϕ

− + − + −
=

− + + + −

�� �� �� ��

�� �� �� ��
,  (14) 

where sd = sinφd and cd = cosφd according to the standard 
robotic notation. Since equations (4-6) are linear in the 
actuator force functions λA(t), λB(t) and FT(t), the substitution 
of the above results in 

+ =Af b 0                                       (15) 

with 

( ) ( ) ( ) ( )s c s c

c c c

s s s

h a x x a y y b x x b y yd D d d D d d D d d D d

x x a x xD bd d D d d d

y y a y yD bd d D d d d

 − − − − − − + −
 

= − − − − + 
 − − − − + 

A  

T
FT A Bλ λ =  f ,                                                          (16) 

( )
T

J mx m g yC d d dϕ = − b �� �� �� .                                       (15.c) 

This makes it possible to calculate the desired actuator forces 
in closed form. Then the computed torque controller can be 
formulated as 

( ) ( )

T

T

,

,

,

,

x y

x yd d dd

d derr P D

control err

ϕ

ϕ

 =  

 =  

= − + −

= +

z

z

f K z z K z z

f f f

� �

                                       (17) 

where z denotes the controllers feedback, and fcontrol is the 
control output that regulates the swinging actuator around the 
desired trajectory. The matrices KP and KD contain the 
proportional and derivative feedback gains for the state 

variables x, y and ϕ. Note, that the force functions λA(t) and 
λB(t) in f do not give the actuator forces directly. According to 
equation (3), the calculation of the control forces (torques) of 
the cable winding motors requires also the feedback of the 
load angle. The scaling parameter functions λA(t) and λB(t) can 
be interpreted as time dependent stiffness values of the cables 
if they were springs. In this sense, the controller in (17) 
behaves similarly to active suspension systems with varying 
stiffness. 

4 SIMULATION RESULTS 
To demonstrate the applicability of the controller presented in 
equations (17), an example is considered when the swinging 
actuator should move from a steady state to another point with 
zero tilt angle (see Table 1). In this case, the desired trajectory 
can easily be given by an analytical formula. This trajectory 
together with the mass, the inertia and the geometry 
information are provided in Table 1. 
Based on the parameters listed in Table 1 and Table 2, the 
actuator forces are calculated according to equations (13-16). 
The results presented in Figure 6 show the actuator forces 
required for the open loop control of the swinging actuator. 

The load angle ϑ  can be seen on Figure 4.  
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Table 1.  Mechanical and geometry data of he swinging 
actuator and the desired path  

Mechanical Parameters of the swinging actuator 

Total weight m 5 [kg] 

Moment of inertia  JC 0.02 [kg m
2
] 

Main cable length  L 0.3 [m] 

Geometric data a 0.18 [m] 

Geometric data b 0.22 [m] 

Geometric data h 0.1 [m] 

Desired trajectory 

Position of C xd(t)  (0.2/π) arctan(4(t-5))  [m] 

Position of C yd(t) - 0.65 - (0.2/π) arctan(4(t-5))  [m] 

Tilt angle φd(t)  0  [rad] 

 

Table 2.  Initial conditions for calculating the nominal 
actuator forces and the corresponding initial deviation 

used in the simulation 

Initial value Deviation 

x(0) 0.1 [m] xerr(0) 0.05 [m] 

y(0) -0.55 [m] yerr(0) 0.05 [m] 

φ(0) 0 [rad] φerr(0) 0.3 [rad] 

x� (0) 0 [m/s] x� err(0) 0 [m/s] 

y� (0) 0 [m/s] y� err(0) 0 [m/s] 

ϕ� (0) 0 [rad/s] ϕ� err(0) 0 [rad/s] 

 

 
Figure 4.  Load angle ϑ  corresponding to the desired 

motion of the swinging actuator 

  
Figure 5.  The calculated scaling factors λA(t), λB(t)  

 

   

  
Figure 6.  The nominal actuator forces FA , FB and FT 

For testing the controller in (17), the initial position of the 
swinging actuator was shifted by 50 mm deviation in both x 
and y directions, and the tilt angle φ was set to 0 with 0.3 rad 
initial error (see Table 2). The proportional and derivative gain 
matrices were selected in SI units as 

2 0 0 80 0 0

0 2 50 0 180 80

0 2 50 0 180 80

K K
P D

   
   

= − = −   
      

      (18) 

The gain values were tuned via trial and error based 
simulations. The horizontal position error x-xd was used for 
calculating the necessary thrust force of the ducted fan, while 
the cable forces are calculated according to the vertical 
position error y-yd and the orientation error  φ-φd. 
Despite of the large initial deviation from the desired 
trajectory, Figure 7 shows that the controller with the selected 
gains (18) quickly regulates the motion of the centre of gravity 
and also the tilt angle. It follows exactly the prescribed linear 
trajectory after a few seconds only. 

  
Figure 7.  Controlled motion of the swinging actuator. 

Left: initial configuration, right: configuration at the end of 
the path 
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The time characteristics of each control variables and also that 
of the load angle are presented in Figure 8. Beside the 
regulation of the position error of the swinging actuator, the 
fast settling of the tilt angle can also be observed. 

  
Figure 8.  Comparison of the desired and realized 
motion during simulation: load angle and tilt angle 

  
Figure 9.  Comparison of the desired and realized 

motion during simulation: x and y positions 

5 PROTOTYPE EXPERIMENT 
Laboratory experiments have been carried out with the 
prototype of the swinging manipulator (see Figure 10).  The 
communication and supply cables go down to the swinging 
actuator along the main cable. Because the above control 
approach was tested in space and not just in the vertical plane, 
small cross-direction secondary fans were also applied during 
the experiments. 
In the spatial case, numerical methods were used instead of the 
analytical formulas derived for the planar model. The path was 
given by a high degree polynomial interpolation between the 
target points. 
The position of the swinging actuator was measured by an 
ultrasonic system. Figure 11 and Figure 12 show the measured 
motion around the desired trajectory. The averaged error was 
about 15mm (10,7%) due to the continuous perturbation 
caused by the noisy signal of the ultrasonic measuring system, 
on which the PD controller was based. The accuracy of the 
control was also influenced by the airflow and the elasticity of 
the main and secondary suspending cables. These effects are 
neglected in the mechanical model presented in section 2. 

 
Figure 10.  Prototype of the swinging actuator 

 

 
 

 
Figure 11.  Time history of the desired and measured 

space coordinates 
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Figure 12.  Desired and measured path 

6 CONCLUSIONS 
The dynamics of a planar crane-like structure with 
complementary actuators were analyzed with respect to its 
applicability for transporting relatively small payloads along a 
desired trajectory. The system is redundant and under-
actuated. In the investigated planar case, it was shown that 
using the analytically derived formulae for computing the 
desired actuator forces, a simple PD controller could 
effectively provide the desired motion of the system using the 
classical computed torque control method. This way, the 
otherwise undesirable swinging of the manipulator can be 
utilized to achieve fast trajectory following. 
Future work includes the systematic design of the control 
parameters based on detailed stability analysis and the 
application/extension of the concept to three dimensional 
swinging actuator systems. The swinging actuators will be 
useful in many applications far beyond the crane systems, like 
in case of cooperative and collaborative robots.  
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