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Abstract  

Paddling sports usually demand very 
sophisticated and well synchronized 
body motion, furthermore, balancing is a 
difficult task in itself for a beginner 
athlete. Although, it is usually the boat’s 
lengthwise acceleration that is in the 
centre of interest of coaches, the boat 
oscillates in vertical direction, too, due 
to the rowing motion of the athlete. In 
the present study, the balancing effect of 
the vertical periodic motion of the 
athlete’s body is examined. The so-
called parametric excitation arises in 
these systems due to the vertical periodic 
motion of the mass centre. This unusual 
class of excitation is studied with respect 
to the stability of the system composed 
by the athlete and the row-vessel.  

We construct a one-degree-of-freedom 
dynamical model by prescribing a non-
stationary geometric constraint, that is, 

by moving the centre of gravity 
periodically in the vertical direction. 
This periodic movement causes 
parametric excitation, and the equation 
of motion is obtained in the form of the 
so-called Mathieu equation. By using the 
so-called Incze-Strutt stability chart of 
the Mathieu equation, we can find sets of 
parameters where the stabilization of a 
normally unstable floating rigid body is 
possible. This has an effect, for example, 
that can help in stabilization in case of a 
canoeist. Experimental and numerical 
investigations were also accomplished to 
support the idea 
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1 Introduction 

Flat-water paddling sports especially 
kayaking and canoeing are fairly popular 
water-sports. Canoes and kayaks are 
pretty labile, using mechanical 
terminology, we call them statically 
unstable. In this work we focus on the 
balancing of these row-vessels. The boat 
basically moves in lengthwise direction 
and also oscillates in vertical direction 
due to the rowing motion of the athlete. 
We examine the stabilizing effect of the 
vertical periodic motion of the mass 
centre of the athlete-boat system. The 
main objective of this work is to 
investigate the possibility of the 
stabilization of a normally unstable 
floating body by parametric excitation. 
First, we briefly summarize the theory, 
since parametric excitation cannot be 
investigated analytically in closed form 
even in linear systems. 

1.1 Floquet Theory 

Floquet Theory was developed to 
investigate the stability of parametrically 
excited systems. Parametric excitation 
means that some of the parameters of the 
system change as a periodic/quasi-
periodic/stochastic function of time. The 
most general periodic form of a 
parametrically excited system is given 
by the Floquet-equation [1]:  

 0yAy =+ )()()(' τττ , (1) 

where matrix A  is π2 -periodic: 

 )()2( τπτ AA =+ . (2) 

This system can be reduced to the Hill 
equation, which is only one dimensional 
but still typical in mechanical systems 
due to the presence of the acceleration 
term:  

 0)()()('' =+ τττ xpx , (3) 

where the time dependent parameter p  

(that could be the stiffness of the 
systems) is periodic: 

 )()2( τπτ pp =+ . (4) 

If the coefficient of x  is harmonic, [2] 
we obtain the so-called Mathieu 
equation:  

 ( ) 0)cos()('' =++ τεδτx . (5) 

The Mathieu-equation can be 
transformed to Floquet-equation form, 
when the periodic coefficient matrix is 
written as: 
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1.2 Stabilization 

Parametric excitation usually considered 
as an unexpected cause of instability 
problems, but under certain conditions, it 
can also be used for stabilizing unstable 
processes or equilibria. The main idea is 
to eliminate an oscillation with the help 
of another oscillation. The oldest known 
example is the inverted pendulum which 
can be stabilized by the harmonic 
vibration of the suspension pivot point 
[3, 4]. If the amplitude of the vibration is 
large enough, the upper equilibrium can 
be balanced by parametric excitation. In 
this work, we examine whether it is 
possible to stabilize a normally unstable 
floating rigid body in a similar way, and 
if so, for what ranges of the parameters. 

The stability chart of the Mathieu 
equation was derived in 1928 (see [5, 
6]). It is known as Incze-Strutt diagram 
(see Fig. 1.). 

 
Fig. 1. Stability chart of Mathieu-equation 
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The basic idea was to find the stability 
boundaries in a double series expansion 
with respect to the parameter δ  and the 
solution x  as a function of the “small” 
parameter ε  that is the amplitude of the 
parametric excitation: 

 …+++= 2
210)( εδεδδεδ , (7) 

 …+++= 2
210 )()()(),( ετεττετ uuux  (8) 

In this work, we are interested in the 
0<δ  region of the Incze-Strutt diagram, 

were the equilibrium is obviously 
unstable for 0=ε  but it can become 
stable for a narrow 0>ε  region. After 
the application of the Floquet Theory, 
the truncated stability boundaries in 
question appear in the following form: 

 2
1 2

1
)( εεδ −= , (9) 
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1
)( εεεδ −−= . (10) 

1.3 Phase-space geometry 

The geometric background of the 
Floquet Theory can be demonstrated in a 
phase-space of a two dimensional 
dynamical system extended by the time 
axis. Due to the π2 -periodic coefficient 
matrix, the motion having the same 
initial conditions π2  later (see Fig. 2. 
dashed line) is exactly the same (Fig. 2. 
continual curve). 

  
Fig. 2. Phase-space of a 2-dimensional 

dynamical system  

Therefore we can fold back the phase 
space, where the 0=τ  plane is its so-
called Poincaré-section. The π2 - 
periodic folded phase space can be seen 
in Fig. 3. presenting a cylindrical 
structure 

  
Fig. 3. Folded cylindrical phase-space 

The stability boundaries are defined by 
the π2  and the π4  periodic solutions of 
the Mathieu equation. The cross sections 
of the trajectories at the 0=τ  plane 
(Fig. 3., 4.) represent the periodicity of 
the solutions.  

  
Fig. 4. π2  periodic solution 
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Fig. 5. π4  periodic solution 

1.4 Goal of study 

In the subsequent sections, we 
investigate the application of the Floquet 
Theory for floating bodies. The 
fundamental question is whether the 
parametric excitation helps the paddling 
athletes to balance themselves.  

2 Mechanical model 

2.1 Planar model of a floating body 

A floating body, like a ship, has 6 
degrees of freedom (DoF), which are the 
3 rotations, namely roll, pitch and yaw 
and the 3 transversal motions, namely 
the surge, sway and heave. In order to 
use as simple model as possible for the 
analytic calculations we investigate 
planar motion only (see the vertical 
plane in Fig. 6.).  

  
Fig. 6. Spatial ship motions 

Roll, sway and heave are the general 
coordinates of the planar mechanical 
model. The generalized coordinates are 
chosen to be the roll angle ϕ  and the 
position coordinates x  and y  of the 

centre of gravity. The parameters also 
shown in Fig. 7. are: 

l : length of the body in direction z  

a : width of the body 

p : height of the mass centre 

m : mass; 

CJ : moment of inertia 

We introduce the modified density 
parameter: 

 alρµ = . (11) 

The shallow dive h  can be calculated as: 

 
µ
m

h = . (12) 

  
Fig. 7. Planar mechanical model of the 

floating body 

The water surface is assumed to be 
ideally flat and steady. The potential 
function of the system can be seen in 
Fig. 8. and Fig. 9. Rectangular and 
triangular regions (denoted by R and T 
in Fig. 8., 9.) are distinguished. If the 
roll angle is large, only one corner of the 
body is in the water, thus the wetted part 
of the body is triangular shaped. The 
critical value 

CRITϕ  separates the two 

regions. 
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It is well known that the vertical position 
of a symmetric floating body is an 
equilibrium position. First, we identify 
other possible equilibria of the square 
shaped floating body. The stability of 
each equilibrium can be examined by the 
analysis of the potential function of these 
conservative systems. The vertical 
position is stable in Fig. 8. and unstable 
in Fig. 9. The stability loss of the vertical 
position leads to two tilted equilibrium 
positions of the body. 

  
Fig. 8. Potencial function of a vertically 

stable case 

  
Fig. 9. Potencial function of a vertically 
unstable case. Two stable equilibria arise. 

The Lagrangian is given by the kinetic 
and the potential energy. The damping 
effect of the water is completely 
neglected. Then the Lagrangian can be 
written as: 
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The general coordinate x  does not 
appear in the Lagrangian, so x  is a so-
called cyclic coordinate. Therefore, we 
can fix the horizontal motion of the 
body. 

2.2 Parametrically excited model – 

effect of paddling 

The aim is to derive a 1 DoF model of 
the parametrically excited ship model. 
We prescribe the height of the centre of 
gravity by a harmonic function )(ty : 

 )cos()( 10 tyyty ω+= . (14) 

Because both coordinates of the centre 
of gravity are constrained, the only 
generalized coordinate is the roll angle.  

  
Fig. 10. 1 DoF planar model 

The constant term of the excitation 
0y  is 

also determined by the roll angle.  

 ( )
ϕcos

1
0 hpy −= . (15) 

The two parameters of the parametric 
excitation are the amplitude 

1y  and the 

angular frequency ω . 

We use the Lagrangian equation to 
derive the equation of motion of the 
shaken body: 
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Since we only investigate the stability of 
the vertical position, where 0=ϕ , the 

equation of motion can be linearized. 
We use the dimensionless time tωτ = . 
Finally the linearized equation of motion 
(17) is in complete correspondence with 
the Mathieu-equation: 

 { } 0)cos('' =++ ϕτεδϕ , (17) 

where the parameters are: 
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If 0=ε  0<δ  then the vertical position is 
unstable and the boat capsizes, But it can 
be stable if the amplitude 

1y  increases, 

that is, when 0≠ε . 

3 Stability of the parametri-

cally excited floating body 

We can apply the Incze-Strutt diagram 
for the equation (17) of motion of the 
floating body with the physical 
parameters (18) and (19). The 
transformed stability chart shows the 
physical parameters of the excitation 
only, namely the angular frequency and 
the amplitude. The stability boundaries 
are obtained by substituting expressions 
(18) and (19) into the equations of the 
boundaries )(1 εδ  (9) and )(2 εδ  (10). 

  
Fig. 11. Stability chart of the parametrically 

excited floating body 

Appropriate finite values of the 
amplitude and the frequency of the 
harmonic oscillation are needed for the 
stabilization of the normally unstable 
floating body. The stability boundaries 
are highly sensitive to the changes in the 
geometrical parameters and the mass. 

4 Verification 

We investigate the possibility of 
stabilizing a row-vessel that is unstable 
without parametric excitation. The 
parametric excitation is generated by the 
vertical periodic motion of the 
sportsman’s body. Due to the harmonic 
motion of the mass centre, the shallow 
dive also changes periodically. This 
effect helps the athletes to balance the 
boat. 

4.1 Numerical simulation 

Athletes are told to keep a good rhythm 
of rowing and not to row faster but row 
more powerfully when they want to go 
faster. Frequency of 80-85 strokes per 
minute is typical. Usually, accelerations 
of 2m/s2  and N150  force can be 
measured in horizontal direction [7]. The 
specific literature rarely refers to the 
vertical displacements, accelerations and 
forces, which, in our view, are important 
in the stabilization process. The forces 
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acting between the shell and the rower 
and between the water and paddle blade 
change the resting waterline causing 
oscillations of 4–6 cm [8]. 

The chosen parameters of the numerical 
simulation are: 

]m12[kg 2⋅=J C
, 

90[kg]m= , 

3.5[m]l= , 

0.55[m]a= , 

0.6[m]p= , 

]srad6.28[ω= . 

The nonlinear equation (16) of motion 
was used for the numerical simulation. A 
constant angular frequency has been set, 
and the stability boundaries were crossed 
by increasing the amplitude parameter 

1y . We investigate the time history of 

the roll angle ϕ  and the Poincaré section 
(see Fig. 12.). 

  

  

  
Fig. 12. Numerical results (a.: amplitude is 
too small to the stabilization, b.: stable, c.: 
amplitude is too large to the stabilization) 

4.2 Experiment 

An experiment verified the practical 
validity of the mechanical model and its 
analytical and numerical study. A small 
boat was constructed and 2 eccentric 
counter-rotating rotors provided the 
necessary parametric excitation in the 
vertical direction (see Fig. 13., 14.).  

  
Fig. 13. Stopped rotors 

 
Fig. 14. Running rotors 

The experiment clearly showed that the 
ship stabilization is possible via 
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parametric excitation: the boat floated 
stably with the rotors running, while it 
capsized immediately when the rotors 
were stopped. 

5 Conclusion 

The possibility of the stabilization of an 
unstable floating body by parametric 
excitation has been proved by analytic 
calculations. There are realistic and 
finite parameter domains, which can be 
feasible for sportsmen. Consequently, 
the parametric excitation induced by the 
athlete assists in the stabilization of the 
boat, and the athlete’s balancing effort 
may be less this way. 

The investigation of true ship geometries 
and the consideration of water-boat 
interaction require further mechanical 
modelling and numerical computation. 

In future work, a model should be 
investigated that is stabilized by a PD 
controller and parametric excitation 
together, which is likely to be the 
realistic scenario in case of paddle 
systems. 
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