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Abstract: This paper investigates stability issues related to time delay in lateral vehicle
control. First, the effects of feedback delay are examined in a single track vehicle model with
proportional state feedback. The time delay is then compensated using a predictor based control
approach called finite spectrum assignment (FSA). This controller calculates the states based
on an internal model of the plant. This requires the online calculation of an integral term,
which can negatively affect stability. The effects of parameter mismatches are also investigated.
A comparison of delayed state feedback and the FSA controller is then carried out based
on stability charts and numerical simulations. It is shown that the FSA has a significant
advantage in performance compared to delayed state feedback even in the presence of parameter
mismatches.
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1. INTRODUCTION

With the increasing number of driver assistance systems
applied in today’s automobiles and the continuous ad-
vances in autonomous driving, the importance of reliable
stabilizing controllers is higher than ever. One very impor-
tant aspect of such controllers is time delay: the presence
of feedback delay in the control loop can cause oscillations
and unstable behaviour. Delay compensation is therefore
a highly important aspect of controller design.

Predictive controllers provide an efficient way of com-
pensating time delay using an internal representation of
the plant. Based on its internal model, the controller
can estimate the current state of the process, thus the
control action no longer needs to be generated according
to the delayed information. The most widely known such
controller is the Smith predictor (Smith (1957)). Since its
introduction, several modifications of the Smith predictor
have been published, including control methods such as the
prediction based on optimal control (Kleinman (1969)),
the reduction approach (Artstein (1982)), the predictive
pole-placement control (Gawthrop (2002)) or the finite
spectrum assignment (Manitius and Olbrot (1979); Wang
et al. (1999)).

In vehicular technology, model predictive controllers based
on optimizing a cost function are generally more widespread,
both in path generating and path tracking (Ji et al. (2017);
Schildbach and Borrelli (2015)). For an overview of motion
planning techniques, please see González et al. (2016).
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In this paper, a single track vehicle model is analyzed.
First, the model is extended with delayed proportional
state feedback in order to achieve stable rectilinear motion
along a given line. This represents the simplest trajectory
to follow, which allows us to reach compact, closed-form
results. The analysis can be extended to more complex
trajectories using the same principles. It is shown how the
presence of feedback delay in the control loop negatively
affects stable parameter domains. Next, the predictor
based control method called finite spectrum assignment
is applied to the vehicle model. This controller predicts
the states by generating the solution of the system equa-
tions. This requires the online calculation of an integral
term, which if done numerically, can result in unstable be-
haviour. The instability mechanisms related to numerical
integration are analyzed in detail. Finally, a comparison
of delayed state feedback and the FSA controller is pre-
sented using stability charts and numerical simulations.
We pay particular attention to the effects of parameter
mismatches.

The rest of this paper is organized as follows: the equations
of the vehicle model are derived in Section 2. The appli-
cation of delayed state feedback and the corresponding
stability analysis is presented in Section 3. In Section 4,
we introduce the FSA controller. This section is organized
in three parts: first, the general concept of the controller
is explained, then the instability mechanisms related to
numerical quadrature are presented and finally the FSA
controller is applied to the vehicle model. The effects of
parameter mismatches and a comparison to delayed state
feedback is presented in Section 5 using stability charts and
numerical simulations. Finally, the results are concluded in
Section 6.



Fig. 1. The single track vehicle model.

2. MECHANICAL MODEL

The so-called single track (or bicycle) vehicle model is
the most commonly used model to analyze lateral vehicle
dynamics. We are going to investigate the in-plane motion
of the single track model of a front wheel steered, rear
wheel drive vehicle, with the assumption that no side
slip occurs in the tire contact patch (see Fig. 1). This
simplification keeps the equations of motion significantly
less complicated, which in turn allows us to include exact,
closed form expressions of the later analyses. On the other
hand, only the kinematics of the vehicle are modeled this
way.

The notations of the model are as follows: points F and
R represent the front and rear axles respectively, the
wheelbase is denoted by f and the steering angle is δs.
The system states are the coordinates of point R x and y,
and the vehicle heading ψ. The tires are not allowed to slip
laterally, which means the direction of the wheels deter-
mine the direction of the corresponding velocity vectors.
Furthermore, we fix the longitudinal velocity at a constant
value V . The above simplifications can be expressed math-
ematically via the following kinematic constraints:

ẋ sin(ψ + δs)− ẏ cos(ψ + δs)− fψ̇ cos δs = 0 ,

−ẋ sinψ + ẏ cosψ = 0 ,

ẋ cosψ + ẏ sinψ = V .

(1)

Solving the above system of equations for the derivatives
of the states leads directly to the equations of motion of
the vehicle:

ẋ(t) = V cosψ(t) ,

ẏ(t) = V sinψ(t) ,

ψ̇(t) = V
f tan δs(t) .

(2)

3. STATE FEEDBACK

Our goal is to reach stable rectilinear motion along the
y = 0 axis. This is going to be achieved by feeding back
the states y and ψ, and generating the steering angle δs
accordingly. With the introduction of control elements,
however, feedback delay also appears in the system:

δs(t− τ) = −Pyy(t− τ)− Pψψ(t− τ) , (3)

where the delay term τ includes the feedback lag, the
processing time of the controller and the dynamics of the
steering mechanism. Py and Pψ represent the correspond-
ing proportional gains.

Fig. 2. Illustration of the preview control concept, where
the desired trajectory is the middle of the lane.

Note that this control law can be considered as a linearized
version of a proportional-derivative (PD) feedback con-
troller, since

δs(t) = −Pyy(t)−Dy ẏ(t) ≈ −Pyy(t)−DyV︸ ︷︷ ︸
=Pψ

ψ(t) (4)

using (2) and approximating sinψ with ψ. Moreover, this
is also identical to the basic preview model, where the
vehicle lateral position T seconds ahead (y(t+ T )) is used
assuming a straight trajectory as it is shown in Fig. 2. The
corresponding linearized control law in this case reads as

δs(t) = −Pyy(t+ T ) ≈ −Pyy(t)− PyTV︸ ︷︷ ︸
=Pψ

ψ(t) . (5)

The linearized equations of motion can be written in the
traditional state space form

ẋ(t) = Ax(t) + Bu(t− τ) . (6)

Since the position along the x axis is not relevant in
our case (it is a cyclic coordinate), it can be neglected,

resulting in the state vector x = [y ψ]
T

. The corresponding
system matrix A and input matrix B are

A =

[
0 V
0 0

]
, B =

[
0
V/f

]
. (7)

The system input u(t) is the steering angle, which using
the controller (3) can be written as

u(t− τ) = Kx(t− τ) , (8)

where K = [−Py −Pψ] includes the control gains. This
control method will be referred to as the PP controller.
The characteristic equation of the system reads

D(λ) = det
(
λI−A−BKe−λτ

)
= λ2 +

PψV e
−λτ

f
λ+

PyV
2e−λτ

f
= 0 ,

(9)

where λ = σ + jω is the characteristic exponent and I
denotes the identity matrix. When there is no time delay
present in the system (τ = 0), the characteristic function
D(λ) reduces to a polynomial and the system’s stability
can be assessed using the Routh - Hurwitz criterion. In
this case, assuming forward motion (V > 0), control
parameters from the whole upper right quadrant of the
Py − Pψ plane result in stable behaviour.

When no feedback delay is present in the system, larger
gains generally result in a faster response (as long as
the resulting steering angle is lower than 90◦ - it is a
simplification that the steering angle is not limited in our



model), but the presence of feedback delay severely limits
the stable domains.

Static loss of stability occurs when a stable characteristic
exponent crosses the imaginary axis in the origin. The
condition D(0) = 0, considering that parameters f and
V are not zero, translates into Py = 0. On the boundary
of dynamic stability loss (Hopf-bifurcation), the character-
istic exponents are purely imaginary (D(jω) = 0). In this
case, according to the D-subdivision method, the stability
boundaries (or D-curves) can be determined by separating
the real and imaginary parts of the characteristic equation
and solving them for Py and Pψ:

Py(ω) =
fω2

V 2
cos(ωτ) , Pψ(ω) =

fω

V
sin(ωτ) . (10)

Here, ω represents the frequency of the resulting oscillatory
motion at a given point of the stability boundary. Once the
D-curves are known, the number of unstable characteristic
exponents can be determined in each region using Stepan’s
formulae (see Stepan (1989)).

4. FINITE SPECTRUM ASSIGNMENT

In this section, we are going to introduce a predictive
model based controller called finite spectrum assignment
(FSA) (Manitius and Olbrot (1979); Wang et al. (1999);
Jankovic (2009)). The main idea behind this control
method is that a mathematical model that perfectly de-
scribes the dynamics of a system allows us to determine the
states for any time instant given that an initial condition is
known. In other words, the controller can compensate time
delay by estimating the current states based on an internal
model of the system and the delayed sensor information
(see Fig. 3).

4.1 General concept

If the system to be controlled is of the form (6), the internal
model of the controller is

ẋ(t) = Ãx(t) + B̃u(t− τ̃) , (11)

where the tildes denote the model parameters used within
the controller. In order to compensate the time delay τ
of the real system, the control signal has to be in the
form u(t − τ) = Kx(t), which means that despite the
time delay, the controller has to act based on the current
system states. This is equivalent to u(t) = Kx(t + τ),
which shows that the required system states are in the
future from the controller’s point of view. These future
states are estimated by taking the solution of (11) with
the initial condition x(t− τ̃) over the time interval τ̃ . This
results in the control signal

u(t) = KeÃτ̃x(t) + K

∫ 0

−τ̃
e−ÃsB̃u(t+ s)ds . (12)

The above formula shows that the control signal in any
given time is based on the latest available state feedback
and the past control actions generated over the delay pe-
riod. If the internal model perfectly describes the dynamics
of the real system and all the parameters are exactly
known, then the delay terms cancel out and the system
can be simplified to the form ẋ(t) = (A + BK)x(t).
This, however, assumes a perfect implementation of the
control law, which in most cases is impossible to achieve
in practice.

4.2 Implementation

Using numerical quadrature to approximate the integral
term of (12) results in

u(t) = KeÃτ̃x(t) + K

r̃∑
j=0

eÃθj,r̃B̃u(t− θj,r̃)hj,r̃ , (13)

where θj,r̃ ∈ [0, τ̃ ], hj,r̃ ∈ R, and r̃ is an integer that
determines the precision of the approximation: r̃ → ∞
produces the exact value of the integral.

The numerical approximation replaces the distributed
time delay in (12) with a sum of point delays. This leads
to a set of neutral functional differential equations:

ẋ(t) = Ax(t) + Bu(t− τ) , (14)

u̇(t) = KeÃτ̃Ax(t) + KeÃτ̃Bu(t− τ)+

+

r̃∑
j=0

KeÃθj,r̃B̃u̇(t− θj,r̃)hj,r̃ .
(15)

However, the above system can become unstable for ar-
bitrarily large values of r̃ even when the original system
is stable (Michiels and Niculescu (2007)). The reason for
this is the appearance of unstable characteristic roots with
a large absolute value when using numerical quadrature.
As r̃ is increased, some of these poles tend to those of
the original system, while others may converge to infinity
without leaving the right half plane.

A necessary condition for the stability of the system (6)
and (13) for sufficiently large values of r̃ (assuming that
the original system defined by (6) and (12) is stable) is the
stability of the difference equation

u(t) =

r̃∑
j=0

KeÃθj,r̃B̃u(t− θj,r̃)hj,r̃ . (16)

If r̃ → ∞, the roots of equation (16) tend to the roots of
the functional difference equation

u(t) = K

∫ 0

−τ̃
e−ÃsB̃u(t+ s)ds . (17)

Following Michiels et al. (2003) and Molnar and Insperger
(2016), we are going to refer to the stability of the original
system as ideal stability and to the stability of (17) as
theoretical stability. Meeting both conditions ensures that
all poles of the system with the numerical integration are
on the left half plane. However, the system might still
become unstable because of arbitrarily small perturbations
of the discretization parameter θj,r̃. This may occur during
practical application or with the use of specific integration
schemes. In order to ensure robust stability with regards
to perturbations of θj,r̃, the strong stability of the delay-
difference equation (16) is required. The necessary and
sufficient condition for this (see Michiels et al. (2003)) in
the single input case is

S =

∫ τ̃

0

∣∣∣KeÃsB̃∣∣∣ds < 1 . (18)

The conditions of theoretical and robust stability, however,
are related to high frequency ranges. Therefore the corre-
sponding restrictions can be avoided with the application
of a low-pass filter or a digital controller. For example,



an implementation using dynamic feedback is presented
in Mondie and Michiels (2003), which results in a low-
pass filtering behaviour of the control law. For further
alternatives, the reader is referred to Zhong (2006).

4.3 Application on the vehicle model

Fig. 3. Illustration of the prediction concept, where the
desired trajectory is the middle of the lane.

We are going to include the single track vehicle model as
the internal model (11) of the FSA controller, with the
notations

Ã =

[
0 Ṽ
0 0

]
, B̃ =

[
0

Ṽ /f̃

]
. (19)

This way, following (12), the steering angle is defined as

δs(t) = [−Py −Pψ]

([
1 Ṽ τ̃
0 1

] [
y(t)
ψ(t)

]
+

∫ 0

−τ̃

[
1 −sṼ
0 1

] [
0

Ṽ /f̃

]
δs(t+ s)ds

)
.

(20)

Using the exponential trial function Ceλt (C ∈ C3), the
linearized vehicle model with the steering angle (20) can
be written in the matrix form λ −V 0

0 λ
V

f
e−λτ

Py Pψ + PyṼ τ̃ g(λ)


︸ ︷︷ ︸

M(λ)

C = 0 , (21)

where

g(λ) =
1

f̃λ2

(
f̃λ2 − Ṽ e−λτ̃

(
Py(λτ̃ Ṽ + Ṽ ) + λPψ

)
+PyṼ

2 + λPψṼ
)
.

(22)

The characteristic equation of the system is

D(λ) = detM(λ) = 0 , (23)

which is used to assess ideal stability.

Theoretical stability depends on the characteristic equa-
tion of (17), which in our case can be reached by substi-
tuting x(t) ≡ 0 and δs(t) = δs,0 e

λt into the control law:

D(λ) =
1

f̃λ2

((
λ(f̃λ+ PψṼ ) + PyṼ

2
)

+

−e−λτ̃ Ṽ
(
Py(λτ̃ Ṽ + Ṽ ) + λPψ

))
.

(24)

Finally, robust stability with respect to the integral time
step is ensured if the following holds:

S =

∫ τ̃

0

∣∣∣∣∣ Ṽ (−PysṼ − Pψ)

f̃

∣∣∣∣∣ds < 1 . (25)

Fig. 4. Stability charts of the FSA controller applied to
the single track vehicle model with no parameter
mismatches: (a) the region of ideal stability, (b) sta-
bility of the associated functional difference equation
(required to achieve theoretical stability), (c) stability
of the associated delay-difference equation (required
for robust stability), and (d) their superposition (f =
2.7 m, V = 20 m/s, τ = 0.5 s).

If the internal model of the FSA controller is a perfect

representation of the real system (Ã = A and B̃ =
B), then the characteristic equation (23) reduces to the
characteristic equation (9) of normal state feedback with
no time delay (τ = 0). This means that in this case the
conditions of ideal stability are the same as the stability
conditions of the delay free system, and the corresponding
stability maps are identical. The conditions of theoretical
and robust stability, however, cannot be further simplified
in case of a perfect internal model, because these depend
only on the controller and not the real system.

The stability charts of ideal, theoretical and robust stabil-
ity of the FSA controller can be seen in Fig. 4. Control
gains that are not within the region of ideal stability
(Fig. 4 (a)) result in unstable behaviour. Parameter pairs
that are in this region but are not theoretically stable
(Fig. 4 (b)) may become unstable when applying numerical
integration. Finally, robust stability with regards to the
integration time step can only be guaranteed in the region
where the condition (25) is also met (Fig. 4 (c)). This
means that considering all the effects related to numerical
integration reduces the stable area to the intersection of
the previous 3 regions (Fig. 4 (d)). Alternatively, as we
mentioned previously, the restrictions of theoretical and
robust stability can be avoided by applying a low-pass
filter or a digital controller.

Fig. 5 illustrates the system response related to the above
instability mechanisms. The simulation time step was set
to 0.005 s, while the integration within the FSA controller
was performed using rectangular approximation with a pe-
riodically varied time step of ∆t1 = 0.05 s, ∆t2 = 1.5∆t1,
∆t3 = ∆t1 and ∆t4 = 0.5∆t1. Because of this variation of



Fig. 5. System response of the vehicle model with FSA
using a rectangular approximation of the integral with
periodically varied time steps. The control parameters
are chosen such that (a) robust stability is ensured,
(b) the system is theoretically stable, but not robustly
stable, (c) only ideal stability is ensured (f = 2.7 m,
V = 20 m/s, τ = 0.5 s).

the integration time step, the system can only be stabilized
by control parameters from the robustly stable domain.
The corresponding system response is shown in Fig. 5 (a).
When the chosen control parameters are outside the ro-
bustly stable area but they are still theoretically stable, the
resulting system response is unstable (Fig. 5 (b)). Using
a uniform integration time step, however, would result in
stable behaviour. In case (c), we used control parameters
that are outside the theoretically stable domain but they
are still ideally stable. In this case, the simulation can only
be stabilized by setting an equal (constant) simulation and
integration time step, which would correspond to a dis-
cretized approximation of a system that uses a continuous
implementation of the integral.

5. STABILITY CHARTS, NUMERICAL
SIMULATIONS

In this section, we are going to compare the performance
of the two controllers, as well as analyze the sensitivity of
the FSA controller to parameter mismatches. Parameter
mismatches of the internal model of the controller degrade
performance and can even cause stability loss. Fig. 6 shows
the regions of ideal stability of the FSA controller with
varying degrees of parameter mismatches in terms of ve-
locity V and time delay τ . The third parameter, the vehicle
wheelbase f , is assumed to be known precisely. Although
the stable region of the PP controller remains the same in
all 9 cases, it is shown for comparison purposes. Assuming
a digital implementation, the regions of theoretical and
robust stability are not included in this comparison.

According to the charts of Fig. 6, the stable regions of the
FSA controller are considerably larger than simple state
feedback, even when the internal model parameters are
20% inaccurate. It’s also apparent that the stable areas are
much more sensitive to the accuracy of time delay than to
the accuracy of velocity. The larger stable domains allow
for higher gains, which lead to a faster system response.

Numerical simulations were also performed based on the
9 cases of Fig. 6, using the nonlinear vehicle model (see

Fig. 6. Stable regions of the PP controller and the FSA
controller in case of −20%, 0% and +20% errors in the
estimated vehicle velocity and time delay (f = 2.7 m,
V = 20 m/s, τ = 0.5 s).

Fig. 7. Simulation results of the PP controller and the FSA
controller in case of −20%, 0% and +20% errors in the
estimated vehicle velocity and time delay (f = 2.7 m,
V = 20 m/s, τ = 0.5 s).

Fig. 7). The initial position was set to y(0) = 3.75 m, the
simulation time step was 0.001 s, and the integration time
step of the FSA controller was set to 0.05 s. The control
parameters were determined using the semi-discretization
method (Insperger and Stepan (2011)): after numerically
evaluating the stable domains point by point, we chose
the parameter pairs where the characteristic multipliers
of the semi-discrete system had the smallest modulus.
This results in the most highly damped system response.
In case of state feedback these optimal values are Py =
0.0022 1/m, Pψ = 0.1250, and for the FSA controller (with
perfect internal model) Py = 0.0165 1/m and Pψ = 0.4239.
The lateral vehicle positions are presented in Fig. 7, while
the numerical values of settling time are listed in Table 1
(we define settling time as the lowest time instant t0 where
|y(t)| < 0.02 |y(0)| for ∀t > t0).

Because of no modeling errors and an accurate enough
implementation of the integral, the FSA controller almost
completely removes the time delay in case (e), which means



Table 1. Settling Time Values of the Numerical
Simulations in Seconds

Case PP FSA

(a) 6.428 4.324

(b) 6.428 4.265

(c) 6.428 4.593

(d) 6.428 4.377

(e) 6.428 4.188

(f) 6.428 4.645

(g) 6.428 4.25

(h) 6.428 4.234

(i) 6.428 4.776

that its system response in that case is practically the
same as the response of the delay free PP controller. In
all the other cases, the parameter mismatches degrade the
performance of the FSA, although it is still much faster
than simple state feedback, thanks to the larger gains. As
the stability charts have already suggested, inaccuracies
in the estimated time delay cause the biggest decline
in performance. The 3 worst cases are (c), (f) and (i),
where the feedback delay is consistently overestimated. We
experience the longest settling time in case (i), where both
the time delay and the velocity terms have an error of
+20%, which results in the largest overestimation of the
distance covered during the delay interval.

It is worth noting that for the sake of more notable
differences in the simulations, we used a conservative
estimate for the feedback delay. In practice, depending on
the details of the implementation and the design goals, the
feedback delay can be expected to be lower than 500 ms,
which leads to larger stable domains, higher permissible
gains and thus faster responses.

6. CONCLUSIONS

A single track vehicle model with feedback delay was
analyzed in this paper. First, we applied proportional state
feedback and presented how time delay affects the stable
parameter domains. Then the predictive control method
called finite spectrum assignment was introduced to com-
pensate deadtime. Stability issues related to implementa-
tion difficulties and parameter mismatches were discussed.
We compared the performance of the FSA controller with
delayed state feedback using stability charts and numeri-
cal simulations. The FSA significantly outperformed state
feedback even when the system parameters had an error
of 20%.

A very simple vehicle model was used in this comparison,
so that the fundamentals of the controllers could be
presented in a compact, easy to understand form. In
practice, however, there will always be differences not only
between the parameters, but between the dynamics of the
internal model and the controlled system too. Therefore,
as far as computational resources allow it, a more detailed
internal model is recommended to use.
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