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ABSTRACT
Lane keeping control of the single track vehicle model with

linear tire characteristics is analyzed in the presence of time de-
lay. In order to compensate time delay, the predictor control
approach called finite spectrum assignment is applied. This con-
troller uses an internal model of the plant to predict current sys-
tem states in spite of the time delay. The predictions are based
on a simplified version of the vehicle model, neglecting tire dy-
namics. The predictive control approach is compared with tradi-
tional feedback control using analytically derived stability maps
and numerical simulations. Robustness to parameter mismatches
and numerical issues related to the implementation of the control
law are also analyzed.

INTRODUCTION
One of the fundamental problems related to a variety of ad-

vanced driver assistance systems and autonomous driving in gen-
eral is the lateral positioning of the vehicle. Be it a lane change
maneuver, lane keeping assistance or general path following, it is
important to have reliable control of the vehicle’s lateral position.

It is therefore not surprising that a large number of ap-
proaches have been proposed over the years [1]. Kinematic con-
trollers, such as pure pursuit [2] or the Stanley controller [3] are
the most common solutions because of their simplicity. These
controllers can be extended by the consideration of the dynamic

effects acting on the vehicle [4]. Another popular approach is
optimal control (especially the linear quadratic regulator), where
a certain cost function is specified, and the control gains are cho-
sen so that this cost function is minimized [5]. Model predictive
control is also widely covered in the automotive literature [6].
These controllers find the best control input that optimizes the
system response according to a plant model and a cost function.
Other solutions include adaptive, and classical, such as PID or
sliding mode control. For more details, see the overview of con-
trol methods in [1] and the references therein.

In the analysis of these controllers, the presence of time de-
lay is rarely considered, although it can influence control per-
formance, see [7]. The overall time delay may originate from
sensor delays, communication and computation times, as well as
non modeled actuator dynamics. Position estimation, in particu-
lar, may contribute a large part to the overall delay of the system,
especially when vision-based approaches are involved. The cor-
responding image processing algorithms are generally rather re-
source intensive, and most commercialized solutions are not ca-
pable of processing road information with high frequency [8, 9].
As an example, the vision delay was considered to amount to
0.15 s in [10] and 0.2 s in [11]. In [12], a time constant of 0.3 s
was used for a low level steering angle controller, while [3] used
0.4 s as a conservative estimate for the steering delay.

In order to compensate time delay, the predictor control ap-
proach called finite spectrum assignment (FSA) is going to be
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used in this paper [13–15]. Similarly to the classical Smith pre-
dictor, this controller uses a mathematical model of the plant to
calculate predictions of the current system states. Thus instead
of the delayed feedback signals, these predictions can be used to
control the system. In the ideal case, if the mathematical model
in the controller perfectly matches the real system, the control
signal is implemented accurately and there are no disturbances
or measurement noise, then the FSA controller cancels out the
delay terms, and the predicted states will be equal to the actual
system states.

This paper is a continuation of our previous work [16],
where we demonstrated the use of the FSA controller through
a simple vehicle model. In [16], the internal model of the con-
troller was a perfect representation of the controlled system, and
modeling errors could only stem from parameter mismatches. In
this paper, we extend the model of the controlled vehicle with
the inclusion of tire side slip, which allows the dynamics of the
internal model to diverge from the controlled system, similarly to
real life applications. Thus, the dynamics of the two models are
different, but both models are simple enough to allow analytical
calculations. In addition, the effects of parameter mismatches
between the models in terms of vehicle longitudinal velocity and
time delay are also analyzed using stability maps and numerical
simulations. Since the emphasis in our analysis is on the effects
of time delay and modeling errors, we are only going to consider
a simple straight-line trajectory. As this is an equilibrium state of
the system, the corresponding stability criteria can be derived in
a straightforward, analytical manner.

The rest of the paper is organized as follows: first, the equa-
tions of motion for both the kinematic and the dynamic vehicle
models are derived. Next, the stability analysis of delayed state
feedback is presented. Finite spectrum assignment is detailed af-
terwards, including a theoretical overview and its application to
the dynamic vehicle model. In the last section, instability mech-
anisms related to the implementation of the control law and the
effects of parameter mismatches in the model are demonstrated.

VEHICLE MODELS
Two versions of the single-track vehicle model [17, 18]

are presented in this section. The simpler, kinematic model is
used within the controller as the base of predictions, while the
dynamic vehicle model (which includes lateral tire dynamics)
forms the controlled system.

Kinematic Vehicle Model
In this simplified form of the bicycle model (see Fig. 1 (a)),

we assume that no tire side slip occurs at the wheels and the lon-
gitudinal velocity V of the vehicle is kept constant. The resulting
model is very compact, it only includes a small number of pa-
rameters and the computational cost of its numerical integration

FIGURE 1. The kinematic (a) and dynamic (b) vehicle models [17,
18].

is low, which makes it ideal for control purposes.
The assumption of zero tire side slip forces the velocity vec-

tors at the front and rear axles (represented by points F and R)
to be parallel with the planes of the wheels. This can be de-
scribed using kinematic constraints. In addition, the assumption
of a constant longitudinal velocity adds another kinematic con-
straint. The resulting constraint equations are

ẋsin(ψ +δs)− ẏcos(ψ +δs)− f ψ̇ cosδs = 0 ,
−ẋsinψ + ẏcosψ = 0 ,

ẋcosψ + ẏsinψ =V ,

(1)

where the system states are the coordinates x and y of the rear
axle (point R) and the vehicle heading ψ . The steering angle,
which is going to be used as control input, is denoted by δs, and
the wheelbase is f . The equations of motion can be reached by
solving the above constraint equations for the state derivatives:

ẋ(t) =V cosψ(t) ,

ẏ(t) =V sinψ(t) ,

ψ̇(t) = V
f tanδs(t) .

(2)

Dynamic Vehicle Model
The main difference to the previous model is that tire side

slip may occur in the dynamic vehicle model, which means the
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velocity vectors of points F and R do not necessarily point in the
same direction as the wheels (see Fig. 1 (b)).

In order to derive the equations of motion, we keep only one
of the three kinematic constraints of the previous model, namely,
the longitudinal speed of the vehicle is still assumed to be con-
stant. The equations of motion can be derived by means of the
Lagrange–d’Alembert method [19], or by more efficient alterna-
tives like the Gibbs–Appell [20–22] or Kane’s method [21, 23].
Here, we are going to apply the Gibbs–Appell method, which is
commonly used for low degrees-of-freedom nonholonomic sys-
tems [24, 25]. One great advantage of this method is that the
states can be handled in a ground-fixed coordinate system, while
the velocities can be described in a body-fixed one.

For the derivation of the equations of motion, 2 pseudo ve-
locities must be chosen, since the difference between the number
of states (3: x, y, ψ) and the kinematic constraints (1: longitudi-
nal speed of the vehicle is assumed to be constant) is 2. Although
the pseudo velocities are chosen intuitively, they must satisfy the
kinematic constraints. In our case, σ1 is the lateral velocity of
point R of the vehicle, while σ2 is the yaw rate. The definition of
the pseudo velocities along with the kinematic constraint results
in a system of three equations, from which the state derivatives
can be expressed as:

ẋ =V cosψ−σ1 sinψ ,

ẏ =V sinψ +σ1 cosψ ,

ψ̇ = σ2 .

(3)

The equations for the pseudo-accelerations, that define the dy-
namics of the system, can be reached using the Gibbs–Appell
equations

∂G
∂ σ̇i

= Γi , i = 1, 2 , (4)

where G is the so-called energy of acceleration (or Gibbs func-
tion) that is defined as

G =
1
2

ma2
C +

1
2

Jzψ̈
2 + . . . (5)

for in-plane motion. Here aC is the acceleration of the center
of gravity and ψ̈ is the angular acceleration of the vehicle. The
energy of acceleration includes further terms that disappear after
performing the derivation in Eqn. (4). Expressing aC and ψ̈ as a
function of the pseudo-velocities and their time derivatives, the

derivations result in

∂G
∂ σ̇1

= m(dσ̇2 + σ̇1 +V σ2) , (6)

∂G
∂ σ̇2

=
(
d2m+ Jz

)
σ̇2 +dm(σ̇1 +V σ2) . (7)

The right-hand side of Eqn. (4) includes the pseudo-forces
Γi that can be determined from the virtual power of the active
forces. In our model, active forces emerge at the tires, where we
consider the side slip forces as

F lat
i =Ciαi , i ∈ {F, R} , (8)

where Ci refers to the cornering stiffness and the indeces F and
R denote the front and rear wheels respectively.

Since the resultant lateral force F lat is not applied at the cen-
ter of the contact patch, it also generates an aligning torque. This,
however, is neglected in our analysis, because the corresponding
moment arm is insignificant compared to the vehicle geometry.

The slip angles in our case are

αF = arctan
(

ẏ+ f cosψψ̇

ẋ− f sinψψ̇

)
−ψ−δs , (9)

αR = arctan
(

ẏ
ẋ

)
−ψ . (10)

Transforming the tire forces into the global coordinate system
leads to

FF =

FF,x
FF,y

0

=

 F lat
F sin(ψ +δs)
−F lat

F cos(ψ +δs)
0

 ,

FR =

FR,x
FR,y

0

=

 F lat
R sinψ

−F lat
R cosψ

0

 .

(11)

This way the virtual power is

δP = FFδvF +FRδvR , (12)

where δ denotes the virtual quantities. Expanding Eqn. (12)
gives

δP = δσ1 ((FF,y +FR,y)cosψ− (FF,x +FR,x)sinψ)+

+δσ2 f (FF,y cosψ−FF,x sinψ) ,
(13)
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where the notations Fi, j represent the x or y components of the
lateral force vectors in Eqn. (11). The coefficients of the virtual
pseudo-velocities in Eqn. (13) form the pseudo-forces:

Γ1 = (FF,y +FR,y)cosψ− (FF,x +FR,x)sinψ , (14)
Γ2 = f (FF,y cosψ−FF,x sinψ) . (15)

Using Eqn. (6) with Eqn. (14) and Eqn. (7) with Eqn. (15), the
equations of motion can be given as

m(σ̇1−V σ2) =−
d2m+ Jz

Jz
(sinψ (FF,x +FR,x)

−cosψ (FF,y +FR,y))+
f dm
Jz

(sinψFF,x− cosψFF,y) ,

(16)

Jzσ̇2 = sinψ ((d− f )FF,x +dFR,x)− cosψ ((d− f )FF,y +dFR,y) .
(17)

The above two equations (after substituting the force components
according to Eqn. (11)), along with the general coordinate veloc-
ities in Eqn. (3) form the governing equations of the dynamic
vehicle model.

FEEDBACK CONTROL WITH TIME DELAY
Our goal is to stabilize the rectilinear motion along the x

axis. First, this is achieved by generating the steering angle using
the delayed feedback of the vehicle’s lateral position and yaw
angle:

δs(t) =−Pyy(t− τ)−Pψ ψ(t− τ) , (18)

where τ denotes the total delay in the system, including mea-
surement and communication delays, processing time, and the
dynamics of the actuators and the steering mechanism. Py and
Pψ denote the proportional gains of the vehicle’s lateral position
and yaw angle. We are going to refer to this control method in
the following as the PP controller.

After substituting the control law Eqn. (18) into the equa-
tions of motion of the dynamic vehicle model, the system is lin-
earized about the rectilinear motion along the y = 0 line. This
leads to the state space representation

ẋ(t) = Ax(t)+Bu(t− τ) , (19)

where u(t)=−Pyy(t)−Pψ ψ(t). Since the longitudinal position x
does not influence stability as it can be decoupled from the other

equations, the state vector can be reduced to x =
[
y ψ σ1 σ2

]T.
Consequently, the system and input matrices are

A =


0 V 1 0
0 0 0 1
0 0 A33 A34
0 0 A43 A44

 , B =


0
0

B3
B4

 , (20)

with elements

A33 =−
B3

V
− CR(d2m+ Jz)

mV Jz
, A34 =−B3

f
V
−V ,

A43 =−
B4

V
+

CRd
V Jz

, A44 =−B4
f

V
,

(21)

and

B3 =
CF(d(d− f )m+ Jz)

mJz
, B4 =

CF( f −d)
Jz

. (22)

Using the gain vector K=
[
−Py −Pψ 0 0

]
, the steering angle can

be written as u(t− τ) = Kx(t− τ), leading to the characteristic
equation

D(λ ) := det
(

λ I−A−BKe−λτ

)
= 0 , (23)

where λ ∈ C is the characteristic exponent and I denotes the
identity matrix. The characteristic function D(λ ) is of the form

λ
4 +a3λ

3 +
(

a2,a +a2,be−λτ

)
λ

2 +a1e−λτ
λ +a0e−λτ , (24)

with coefficients

a3 =
CF
(
d2m−2d f m+ f 2m+ Jz

)
+CR

(
d2m+ Jz

)
JzmV

,

a2,a =
mV 2 (d (CF +CR)−CF f )+CFCR f 2

JzmV 2 ,

a2,b =
CFV 2

(
m(d− f )

(
dPy−Pψ

)
+ JzPy

)
JzmV 2 ,

a1 =
CFCR f Pψ

JzmV
, a0 =

CFCR f Py

Jzm
.

In the delay-free case (τ = 0), Eqn. (24) reduces to a polynomial,
with the second degree coefficient a2 = a2,a +a2,b. The stability
analysis in this case can be performed using the Routh–Hurwitz
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criterion. The delay-free system is stable, if the polynomial co-
efficients a0, a1, a2 and a3, as well as the following Hurwitz
determinant are all positive:

∆3 =

∣∣∣∣∣∣
a3 a1 0
a4 a2 a0
0 a3 a1

∣∣∣∣∣∣ . (25)

The corresponding boundaries of stability and the stable domain
in the (Py, Pψ ) plane is depicted in Fig. 2 (a). Note that the coef-
ficient a3 depends only on the physical vehicle parameters and,
assuming that all of them (including V ) are positive, it will al-
ways be positive. Along the boundary a0 = 0, a real character-
istic exponent crosses the imaginary axis, leading to a static loss
of stability. This translates to Py = 0 in the (Py, Pψ ) plane. On the
other hand, the ∆3 = 0 curve represents the boundary of dynamic
stability loss (Hopf bifurcation).

When τ > 0, the D-subdivision method is used to determine
the stable domains. This involves substituting λ = iω into the
characteristic equation, then separating the real and imaginary
parts. The resulting equations can be solved for Py and Pψ , lead-
ing to a parametric expression of the so-called D-curves as a
function of ω (the angular frequency of the resulting oscillatory
motion at a given point of the D-curves). Similarly to the delay-
free case, the boundary of static stability loss is Py = 0. The
number of unstable characteristic roots in the different regions
of the parameter plane can be calculated using Stepan’s formu-
lae [26]. The region where this number is zero is going to be the
stable domain. Fig. 2 (b) shows how the stable region shrinks
with increasing time delay.

FIGURE 2. Stability charts of the dynamic vehicle model with simple
state feedback with (a) zero feedback delay and (b) non-zero feedback
delay (the dotted line shows the ∆3 = 0 boundary of the delay-free sys-
tem for comparison and the gray shading corresponds to the stable re-
gion for τ = 0.1 s). Dashed lines represent the boundaries of static loss
of stability.

FINITE SPECTRUM ASSIGNMENT
In order to overcome the negative effects of feedback de-

lay, we are going to employ a predictor based control approach,
called finite spectrum assignment [13,14]. The main idea of pre-
dictor control is to use a mathematical model of the plant to cal-
culate a prediction for the current state values based on the de-
layed feedback information. These predicted states are then used
to determine the necessary control action.

Theoretical Background
The FSA controller considers a linear state space model of

the plant as the predictive model:

ẋ(t) = Ãx(t)+ B̃u(t− τ̃) . (26)

The parameters of the predictive model within the controller are
going to be denoted by tildes. If the (assumed) time delay of
the system is τ̃ , then the FSA controller calculates the solution
of Eqn. (26) over an interval of τ̃ by taking x(t − τ̃) as initial
condition. This leads to the control law

u(t) = KeÃτ̃ x(t)+K
∫ 0

−τ̃

e−ÃsB̃u(t + s)ds . (27)

It can be shown that if the internal model in Eqn. (26) perfectly
matches the real system (Ã = A, B̃ = B and τ̃ = τ), then the
above control law cancels out the delayed terms, leading to the
simplified dynamics ẋ(t) = (A+BK)x(t). This reduces the infi-
nite dimensional nature of the original delayed problem to a finite
number of poles that can be freely assigned through K, given that
the pair A and B is controllable.

However, in practice, the control law Eqn. (27) can hardly
be implemented accurately. On one hand, because of parameter
uncertainties and modeling errors, the internal model will almost
always be different from the controlled system. As a result, the
delayed terms cannot be canceled out and the problem will re-
main infinite dimensional. Thus arbitrary pole placement cannot
be achieved in this case.

On the other hand, the integral term in the control law can
only be approximated in practice, which may also lead to stabil-
ity issues. Using numerical quadrature to calculate the integral
term modifies the control law to

u(t) = KeÃτ̃ x(t)+K
r̃

∑
j=0

eÃθ j,r̃ B̃u(t−θ j,r̃)h j,r̃ , (28)

where θ j,r̃ ∈ [0, τ̃], h j,r̃ ∈ R, and r̃ is an integer that determines
the precision of the approximation: r̃ → ∞ produces the exact
value of the integral. This way the distributed time delay in the
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original control law is approximated by a sum of point delays
and the resulting system is defined by a set of neutral functional
differential equations:

ẋ(t) = Ax(t)+Bu(t− τ) , (29)

u̇(t) = KeÃτ̃ Ax(t)+KeÃτ̃ Bu(t− τ)

+
r̃

∑
j=0

KeÃθ j,r̃ B̃u̇(t−θ j,r̃)h j,r̃ .
(30)

This neutral system, however, may become unstable even though
the original system was stable, regardless of the resolution of the
numerical quadrature [27, 28]. This is explained by the appear-
ance of a set of unstable characteristic roots with a large mod-
ulus when the numerical approximation is introduced. As r̃ is
increased, some of these roots tend to the roots of the original
system, but there may be others that move off to infinity without
leaving the right half plane.

It was shown in [27], that a necessary condition for the sta-
bility of the closed loop system with control law Eqn. (28) is the
stability of the difference part of Eqn. (29) and Eqn. (30), i.e.

x(t) = 0 , (31)

u(t) =
r̃

∑
j=0

KeÃθ j,r̃ B̃u(t−θ j,r̃)h j,r̃ . (32)

As r̃→ ∞, this latter condition is equivalent to the stability of

u(t) = K
∫ 0

−τ̃

e−ÃsB̃u(t + s)ds . (33)

Finally, it was also shown in [29] that small perturbations of the
integral time step may also lead to unstable behavior, which is
important regarding the choice of integration scheme. In the sin-
gle input case, the corresponding stability criterion is

S =
∫

τ̃

0

∣∣∣KeÃsB̃
∣∣∣ds < 1 . (34)

Following [28], we are going to refer to the case when the
original closed loop system with an accurate implementation of
the integral is stable as ideal stability. If the functional differen-
tial equation in Eqn. (33) is also stable, we refer to it as theoreti-
cal stability. Additionally, if the condition in Eqn. (34) regarding
robustness to perturbations of the integral time step is also met,
it will be referred to as robust stability.

Since the conditions of theoretical and robust stability are
related to unstable characteristic roots with large imaginary parts,

these restrictions can be avoided by applying a low-pass filter or
piece-wise constant input through a digital controller. See [30]
for a more detailed examination of these restrictions.

Application to the Vehicle Model
We are going to use the linearized version of the kinematic

vehicle model as the predictive model of the FSA controller. The
corresponding system and input matrices are

Ã =

[
0 Ṽ
0 0

]
, B̃ =

[
0

Ṽ/ f̃

]
, (35)

leading to the steering angle definition (see Eqn. (27))

u(t) =
[
−Py −Pψ

]([1 Ṽ τ̃

0 1

][
y(t)
ψ(t)

]
+
∫ 0

−τ̃

[
1 −sṼ
0 1

][
0

Ṽ/ f̃

]
u(t + s)ds

)
.

(36)

Applying the above control law to the linearized dynamic vehicle
model and assuming the solution to be in the exponential form
Ceλ t (C ∈ C5), the system can be written as


λ −V −1 0 0
0 λ 0 −1 0
0 0 λ −A33 −A34 −B3e−λτ

0 0 −A43 λ −A44 −B4e−λτ

Py Pψ +PyṼ τ̃ 0 0 g(λ )


︸ ︷︷ ︸

M(λ )

C = 0 , (37)

where M(λ ) includes the elements of A and B from Eqn. (20),
and

g(λ ) =
1

f̃ λ 2

(
f̃ λ

2−Ṽ e−λ τ̃
(
Py(λ τ̃Ṽ +Ṽ )+λPψ

)
+PyṼ 2 +λPψṼ

)
.

(38)

This leads to the characteristic equation of the system as

D(λ ) := det(M(λ )) = 0 , (39)

from which the boundaries of ideal stability can be determined
using D-subdivision. This stability condition applies if the in-
tegral term in the FSA control law can be implemented accu-
rately. If numerical approximation is used, then the functional
difference equation in Eqn. (33) must also be stable in order to
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guarantee stability of the closed loop system. The characteristic
equation of Eqn. (33) can be reached by substituting x(t)≡ 0 and
δs(t) = δs,0 eλ t into the control law:

D(λ ) =
1

f̃ λ 2

((
λ ( f̃ λ +PψṼ )+PyṼ 2)+

−e−λ τ̃Ṽ
(
Py(λ τ̃Ṽ +Ṽ )+λPψ

))
.

(40)

Finally, the condition of robust stability with regards to perturba-
tions of the integral time step is

S =
∫

τ̃

0

∣∣∣∣Ṽ (−PysṼ −Pψ)

f̃

∣∣∣∣ds < 1 . (41)

FIGURE 3. Application of the FSA controller (based on the kinematic
vehicle model) to the dynamic model for V = 20 m/s and τ = 0.5 s.
Panel (a): stability chart of ideal stability (solid lines and shading).
The dotted line represents the border of stability of the delay-free PP
controller. Panel (b): stability chart showing the superposition of ideal
(solid lines), theoretical (dashed) and robust stability (dash-dot line).

Figure 3 (a) shows the stable region of ideal stability. Al-
though the parameter values of the internal model match those
of the dynamic vehicle model ( f̃ = f , Ṽ = V , τ̃ = τ), since not
all of the dynamics are included in the controller, the stable re-
gion is significantly smaller than in the case of the delay-free PP
controller. It is also interesting to note that parts of the stability
boundary of the FSA controller are very close to the boundaries
of theoretical stability (Fig. 3 (b)). This is also because the dy-
namics of the internal model differ from the vehicle model, and
thus, the FSA controller cannot completely cancel out the de-
layed terms, even when there are no parameter mismatches. This
means that the effects of the controller always remain present,
and we cannot get back the stability regions of the delay free PP
controller even with perfect implementation and zero parameter
errors. However, if we used the linearized dynamic model within
the controller, then (assuming no parameter errors and perfect

TABLE 1. Vehicle Parameters Used in Stability Maps and Simula-
tions

Parameter Notation Value

Vehicle wheelbase f 2.7 m
Distance between rear
axle and center of gravity d 1.35 m

Vehicle mass m 1430 kg

Yaw moment of inertia Jz 2500 kgm2

Lateral stiffness of front tire CF 45 kN

Lateral stiffness of rear tire CR 45 kN

Longitudinal velocity V 20 m/s

Time delay τ 0.5 s

implementation) the characteristic equation would reduce to that
of the delay-free PP controller, and the full stable region of Fig.
2 (a) would indeed be stable for the FSA controller too.

NUMERICAL SIMULATIONS
The vehicle parameters used for the numerical simulations

are listed in Table 1 (the same parameters were used for the
creation of stability maps too). Using the semi-discretization
method [31], we determined the control gains that lead to the
most highly damped system response: for the PP controller,
these are Py = 0.00077 m−1 and Pψ = 0.0805, while for the FSA
Py = 0.0016 m−1 and Pψ = 0.1253. This means that the char-
acteristic multipliers of the corresponding semi-discrete systems
were closest to zero at these parameter values. The simulations
were run using the nonlinear vehicle model. An initial position
of y(0) = 3.75 m and ψ(0) = 0 was selected to model a lane
change maneuver. For the time interval t ∈ [−τ,0), all initial
values were set to zero, representing that a change in the ref-
erence signal (i.e. the decision to perform a lane change) only
occurs at t = 0. Therefore, because of the time delay, the FSA
controller assumes in the first τ time interval of the simulations
that the vehicle is on the desired path, and no control action is
needed.

Theoretical and Robust Stability
The simulation results in Fig. 4 demonstrate the significance

of theoretical and robust stability. A rectangular approximation
of the integral term was used within the FSA controller, with
a nominal time step of 0.025 s. The simulation time step was
set to 0.0025 s. The integration time step, however, was peri-
odically varied according to the following rule: ∆t1 = 0.025 s,
∆t2 = 1.5∆t1, ∆t3 = ∆t1 and ∆t4 = 0.5∆t1. As a result, the control
gains have to be chosen from the robustly stable area in order
to achieve stability (Fig. 4 (a)). If a uniform integration time

7 Copyright c© 2019 by ASME



FIGURE 4. Actual (black) and predicted (red) system response of
the vehicle model with FSA using a rectangular approximation of the
integral with periodically varied time steps. The control parameters
are chosen such that (a) robust stability is ensured (Py = 0.0048m−1,
Pψ = 0.237), (b) the system is theoretically stable, but not robustly
stable (Py = 0.01m−1, Pψ = 1.2), (c) only ideal stability is ensured
(Py = 0.04m−1, Pψ = 1.6).

step is used, however, the theoretically (but not robustly) stable
domain will also lead to stable behavior. Otherwise, as shown
in Fig. 4 (b), the continuously increasing oscillations of the pre-
dicted states will eventually lead the system to lose its stability.
Parameter pairs from the ideally, but not theoretically stable do-
main can only stabilize the system if the integration time step and
the simulation time step are the same, which would correspond
to a discretized approximation of a continuous implementation of
the integral. Otherwise, as in Fig. 4 (c), the system will quickly
lose its stability. Note, however, that the exact stability bound-
aries also depend on the details of implementation (simulation
and integration time steps, and the kind of perturbation added),
therefore they are generally different from the analytically de-
termined results. The exact stable regions can be checked for
example by semi-discretization [31].

Since the instability mechanisms of theoretical and robust
stability are related to higher frequency ranges, the use of a dig-
ital controller will overcome these restrictions. Assuming that
the automotive implementation in our example would be digital
anyways, the following analysis will be limited to ideal stability.
Nevertheless, we deemed it important to be aware of the previ-
ously detailed mechanisms.

Parameter Mismatches
Figure 5 shows how parameter errors in terms of V and τ af-

fect the (ideally) stable regions of the FSA controller. Thus, not
only does the internal model differ from the controlled vehicle
by not including tire dynamics, but the velocity and time delay
values used for prediction are also off in these cases. The sta-

FIGURE 5. Stable regions of the dynamic vehicle model with the PP
controller (solid borders) and the FSA controller (dashed) in case of
−20%, 0% and +20% errors in the estimated vehicle velocity and/or
the time delay (V = 20 m/s and τ = 0.5 s).

bility regions of the delayed feedback controller are also plotted
for comparison. Numerical simulations were also run for the 9
cases of Fig. 5, all using the optimal control gains for case (e),
i.e. no parameter mismatches are assumed while tuning the con-
troller. The time histories of the simulations are shown in Fig. 6,
including the trajectories predicted by the FSA controller.

Settling time was calculated to measure the performance of
the two controllers. We define settling time as the lowest time
instant t∗ for which |y(t)| < 0.02 |y(0)| ∀t > t∗. In addition, the
root mean square error (RMSE) between the predicted and actual
system states was chosen to measure prediction accuracy for the
FSA controller:

RMSEy =

√
1
N

N

∑
i=1

(yi− yp,i)2 , (42)

where yi and yp,i are the actual and predicted state values at the
ith simulation time step. In order to accentuate the differences
between the investigated cases, the first τ time interval, where all
predictions have the same error in y (with magnitude of |y(0)|),
was not included in the above sum. The errors were considered
until t = 10 s and RMSEψ was calculated the same way. The
actual values of settling time and RMSE are listed in Table 2.

The stable regions of the FSA controller are significantly
larger than those of the PP controller, even when the velocity and
time delay values used in the internal model have a 20% error
(the third parameter of the internal model, the wheelbase f is as-
sumed to be known accurately). In fact, the stable area of the
PP controller is only comparable in size to the analytically deter-
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FIGURE 6. Simulation results of the PP controller (dotted lines) and the FSA controller (solid lines) in case of −20%, 0% and +20% errors in the
estimated vehicle velocity and/or the time delay (V = 20 m/s and τ = 0.5 s). The predicted trajectories of the FSA controller are also shown in red.

mined robustly stable domain of the FSA controller (the darkest
shaded area in Fig. 3 (b)). The optimal point of this larger stable
domain is located at higher control gains, which leads to a faster
system response. The settling time values in Table 2 show that
even in the worst case, when both the vehicle velocity and the
time delay are overestimated (case (i)), the FSA steers the vehi-
cle ∼15% faster into the desired lane than the PP controller. The
RMSE of the predicted lateral vehicle position is also the largest
in this case, but it is still less than 11 cms (which is approximately
3% of the initial position).

Since the dynamics of the steering mechanism are not mod-
eled, as the FSA controller becomes aware of the change in ref-
erence at t = τ , the steering angle jumps instantaneously to the
value determined by the controller. According to the kinematic
model, the vehicle can directly follow this non-smooth jump in
the steering angle, thus the predicted vehicle heading of the FSA
controller includes a kink at t = τ (see Fig. 6). Because of
the elasticity of the tires, however, the vehicle initially follows
a larger turning radius than predicted. At t = 2τ the result of
the initial steering action reaches the controller, which leads to
another non-smooth change in the predicted signals and conse-
quently in the steering angle. The elastic tires, however, mini-
mize the effect of these sudden changes of the steering angle on
the actual vehicle path.

CONCLUSION
The application of the predictor control approach called fi-

nite spectrum assignment was demonstrated in this paper for lat-
eral vehicle control. The model used for predictions was a sim-
plified version of the controlled system, which lead to imper-
fect predictions even in the so-called ideal case. Nevertheless,

TABLE 2. Settling Time and Root Mean Square Error Values of the
Dynamic Vehicle Model

Settling Time (s) RMSE FSA

Case PP FSA y (m) ψ (rad)

(a) 11.799 9.709 0.092 0.0028

(b) 11.799 9.553 0.056 0.0019

(c) 11.799 9.851 0.031 0.0016

(d) 11.799 9.559 0.057 0.0022

(e) 11.799 9.512 0.035 0.0018

(f) 11.799 9.891 0.059 0.0019

(g) 11.799 9.500 0.036 0.0022

(h) 11.799 9.559 0.062 0.0023

(i) 11.799 10.006 0.109 0.0026

it was shown that even in the presence of parameter mismatches
on top of the modeling simplifications, the FSA controller is able
to steer the vehicle into the desired trajectory significantly faster
than simple delayed state feedback. This, however, comes at the
price of increased computational requirements.

Future work may involve testing the limits of the system in
more challenging scenarios, such as higher speeds, varying path
curvature, etc., where the differences between the two vehicle
models are more pronounced.
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