AZ MMB TÖRÉSI TESZT ALKALMAZÁSA
HOSSZÚ REPEDÉSEK ESETÉN
APPLICATION OF THE MMB FRACTURE TEST WITH LONG
CRACK LENGTHS

Szekrényes András*

ABSZTRAKT
Az ún. mixed-mode bending, azaz vegyes módús hajlító tesztet 1988-ban fejlesztették ki kompozit anyagok rétegközi szilárdságának vizsgálatára. Azóta számos tudományos közlemény jelent meg a tesztről. Mindössze néhány évvel később, hogy a berendezést egyszerűsíteni kísérletezve, megjelent egy nagyobb képest, hogy a rétegközi hosszú repedéses tesztkifejezésen is alkalmazhatjuk. Ebben a közleményben ennek részleteit mutatjuk be.

ABSTRACT
The mixed-mode bending system was developed in 1988 to measure the interlaminar fracture toughness of composite materials. Since then, a large number of scientific papers have been published. Although it was possible to apply a larger crack length compared to the original apparatus, this work presents the details of the new setup.

Külezzzavak: rétegközi törés, kompozit anyag, kísérlet, rüdelmélet

1. BEVEZETÉS

1. ábra. Az MMB teszt részletei (a: 1 – alap, 2 – támaszkép, 3 – acélgörgő, 4 – erőbevezetés, 5 – digitális mérőkép, 6 – próbatest, 7 - golyóscsapágy) és geometriai paramétereit (b).

* egyetemi adjunktus, BME Műszaki Mechanikai Tanszék
2. AZ ANALITIKUS MEGOLDÁS ÁTTEKINTÉSE

Az MMB teszt a jól ismert double-cantilever beam (DCB) és az end-notched flexure (ENF) típusú próbatestek kombinációja [2]. A 2.a és b ábrán látható szuperpozíciós sémá alapján a terhelések:

\[P_1 = P \frac{3c-L}{4L}, \quad P_2 = P \frac{c+L}{2L} \]
\[P_{ll} = P \frac{c+L}{L} \]

(1)

2. ábra. Az MMB próbatest terhelésének szétosztása a szuperpozíció elve alapján (a), a DCB és ENF próbatestek deformációján (b).

2.1 A DCB rész analízise

A DCB próbatest (2.b ábra, felső rajz) hajlítsásból és nyírásból adódó deformáció a Timoshenko-féle rúdelméletből számolható [5]. A 2.a ábrán látható DCB model 1 és 2 pontjainak az elmozdulások:

\[\delta_{l1} = \frac{P((2a-9ac+6al+6Le+6L^2))}{12Lh^3E_{11}} \]
\[\delta_{l12} = \frac{P((a-L)^2(2ac-6al+7Le+3L^2))}{24Lh^3E_{11}} + \frac{P((a-L)(6c-18L))}{12Lh^3G_{12}} \]

(2)

ahol \(P \) a külső terhelés (ld 1.b ábra), \(a \) a repedés hossza, \(L \) a teljes hossz fele, \(c \) a terhelésbevezetés pozíciója, \(h \) a próbatest szélessége, \(k \) a próbatest félvastagsága, \(k = 5/6 \) nyírás korrekciós tényező, \(E_{11} \) a próbatest anyagának hajlítomodulusa, \(G_{12} \) pedig a csúsztató rugalmassági modulusz. A tartó elmozdulása tovább pontosítható a Winkler-Pasternak-féle kétáramú rugalmas ágyazás alkalmasával. A 3.ábrán látható tartó elmozdulási függvénye a következő differenciál-egyenlet írható fel [6]:

\[w'' - 2\eta w' + 4\beta^2 w = 0, \]

ahol:

\[2\eta = k_0 \frac{1}{I_1E_{11}}, \quad 4\beta^4 = k_r \frac{1}{I_1E_{11}} \]
\[I_2 = \frac{bh^3}{3}, \quad k_r = 2 \frac{h}{E_{32}}, \quad k_c = 4.08hb\sqrt{E_{11}E_{33}} \]

(3)

Az 1 és 2 terhelési pontokban a kétparaméteres ágyazásból adódó elmozdulásövnekények a \(\nu \) és \(\theta \)其间g-based elmozdulásban számolt elmozdulás, illetve szögelfordulás segítségével fejezhetők ki:

\[\nu_0 = \frac{M_r(m_{32}^2 - m_{52}^2)}{(m_{32}^2 + m_{52}^2)^2}, \]
\[\theta_0 = \frac{2M_r m_{32}}{(m_{32}^2 + m_{52}^2)^2} \]

(4)

ahol \(m_{32} \) és \(m_{52} \) a differenciál-eigenlet karakterisztikus gyökéi:

\[m_{32} = \frac{1}{2} \sqrt{4\beta^2 - 2\eta^2}, \quad m_{52} = \frac{1}{2} \sqrt{4\beta^2 + 2\eta^2} \]

(5)

Az elmozdulások a terhelési pontokban így:

\[\delta_{l1} = \nu_0 + \theta_0 a \]
\[\delta_{l12} = \nu_0 + \theta_0 (a-L) \]

(6)

3. ábra. Kétparaméteres, rugalmas ágyazású tartó az MMB próbatest modellizéséhez.

Az ún. Saint-Venant-féle deformációt több cikkből is bemutatták [7]. Ehhez szükség van a repedéssúcsban ébredő hajlítomények számítására:

\[M = Pa - P_2 (a-L) = \frac{P(a-c-3L) + 2L(c+L)}{4L} \]

(8)

Ennek segítségével számolható ki a keresztmetszet szögelfordulása [7]:

\[\theta = \frac{M}{bh^2 E_{11} \pi} = \frac{6P(a-c-3L) + 2L(c+L)}{4Lh^2E_{11} \pi} \left(\frac{G_{12}}{E_{11}} \right)^{\frac{1}{2}} \]

(9)

Az ebből származó elmozdulásnövények a \(P_1 \) és \(P_2 \) erők támadáspontjában:

\[\delta_{l1} = \delta a, \quad \delta_{l12} = \delta (a-L) \]

(10)
Végül, mindkét pontban összegezve az elmozdulásokat kapjuk, hogy:
\[
\begin{align*}
\delta_1 &= \delta_{1m1} + \delta_{w1} + \delta_{w2}, \\
\delta_2 &= \delta_{1m2} + \delta_{w2} + \delta_{w3}.
\end{align*}
\]
(11)

2.2 Az ENF rész analízise

Az ENF típusú próbatest rugóállandója a hajlítási deformáció alapján [4]:
\[
C_{ENF} = \frac{(3a^2 - 18a^2 L + 36aL^2 - 16L^3)}{8bh^2E_{11}}.
\]
(12)

Ebben a próbatestben a repedéscsöcs nyírási deformációt is figyelembbe lehet venni [8]. A nyírási deformációt a következő differenciálegyenlet írja le:
\[
\frac{d^2 \tau}{dx^2} - \rho^2 \tau = 0,
\]
\[
\rho = \frac{21G_{12}}{4E_{11}h^2}.
\]
(13)

Az egyenlet egyszerűen megoldható, majd abból a rugóállandót növelő tag is kifejezhető:
\[
C_{ENF2} = \frac{a^3}{8bh^2E_{11}} f_{SH},
\]
(14)
ahol:
\[
f_{SH} = 0.98 \left(\frac{h}{a} \right) \left(\frac{E_{11}}{G_{12}} \right)^{\frac{1}{2}} - 0.43 \left(\frac{h}{a} \right)^2 \left(\frac{E_{11}}{G_{12}} \right).
\]
(15)
A teljes rugóállandó pedig:
\[
C = C_{ENF} + C_{ENF2}.
\]
(16)

2.3 MMB teszt – szuperpozíció elve

Az MMB teszt teljes rugóállandója az eredmények szuperpozíciója alapján számolható ki. Az erők által végzett munka egyenlőségéből kapjuk, hogy:
\[
P\delta = P_1\delta_1 - P_2\delta_2 + P_{\parallel}\delta_{ENF},
\]
(17)
ahol \(\delta \) az 1.b ábrán látható \(P \) erő támadásponțjában számolt elmozdulás. Mivel \(2\delta_1 = C_1P_1 \), \(2\delta_2 = C_2P_2 \) és \(\delta_{ENF} = C_{ENF}P_{\parallel} \), igy azt kapjuk, hogy:
\[
C = \left(\frac{3c - L}{4L} \right) C_1 - \left(\frac{c + L}{2L} \right) C_2 + \left(\frac{c + L}{L} \right)^2 C_{ENF}.
\]
(18)
A repedésfeszítő erőt célzó külön az I-es és II-es módusra is kiszámítani [2] alapján:
\[
G_{11} = \frac{12P^2}{b^2h^2E_{11}} \left(\frac{ac - 3aL + 2Lc + 2L^2}{4L} \right)^2 + \frac{P^2}{b^2h^2G_{12}} \left(\frac{c - 3L}{4L} \right)^2
\]
\[
+ \frac{12P^2}{b^2h^2E_{11}} \left(\frac{ac - 3aL + 2Lc + 2L^2}{16L^2} \right) E_{11} \frac{E_{11}}{G_{12}} + \frac{12P^2a^2}{b^2h^2E_{11}} \left(\frac{c - 3L}{4L} \right)^2 f_{SP},
\]
(19)
ahol:
\[
f_{SP} = 0.85 \left[\frac{L}{a} \left(\frac{E_{11}}{E_{22}} \right)^{\frac{1}{2}} + 0.71 \left(\frac{h}{a} \right)^2 \left(\frac{E_{11}}{E_{22}} \right)^{\frac{1}{2}} - 1.69 \left(\frac{h}{a} \right)^2 \left(\frac{L}{a} \right) \left(\frac{c + L}{3L - c} \right) \left(\frac{E_{11}}{E_{22}} \right)^{\frac{1}{2}} \right]
\]
(20)
A II-es módosú repedésfeszítő erő [8] alapján:
\[
G_{12} = \frac{9P^2(2L - a)^2}{16b^2h^2E_{11}} + \frac{P^2a^2}{16b^2h^2E_{11}} f_{SH},
\]
(21)

3. A GEOMETRIAI PARAMÉTEREK BEÁLLÍTÁSA

Az eredeti MMB próbatest egyik fontos tulajdonsága, hogy a \(G_{11}/G_{12} \) módarány változtatható a \(c \) távolság változtatásával. A módosított változtatásban ez szintén igaz, viszont a módarány a repedési hossztól is függ. A 4. ábrán látható, hogy hogyan változik a módarány az \(a/L \) és \(c/L \) arányokkal. A számításokat egy BME Műszaki Mechanikai Tanszékén is többször vizsgált üvegszál erősítő políészter próbatestekre végeztük el, melynek rugalmasságai: \(E_{11} = 33 \) GPa, \(E_{22} = 7.2 \) GPa, \(G_{12} = 3 \) GPa.

4. ábra. A módszerek arányának változása az MMB próbatestnél az a/L és c/L viszonyok függvényében.
Az MMB teszt geometria paramétereinek nem tetszőlegesek. A próbatestben csak akkor tudunk létrehozni epidéziskinályást, ha a DCB rész felső és alsó próbakestekben a középső erőbevezetéstől balra haladva nem érintkeznek (ld. 1.b ábra). A mechanikai modell alapján a feltétel: $\delta \leq 0$. A (2) képlet második tagja alapján, a következőt kapjuk az a/L viszonyra:

$$\frac{a}{L} \geq \frac{7c/L + 3}{2(c/L - 3)} \quad (22)$$

Megjegyzvezzük, hogy a (22) képletben csak az Euler-Bernoulli rúdelmélet eredményét vettük figyelembe, ami a (2) képletben az első tagok. Az 5.a ábrán látható, hogy a pontosított megoldás ettől nem sokban tér el. A (22) képletet visszatéve a módarány képletébe (a (19) és (21) képletkeből számlálható) kapjuk az 5.b ábrán látható függvényt. Az 5.b ábra alapján a kísérlet megtervezésekor a kivánt módarány értékéből indulunk ki. Ez után ki kell számíthatni, hogy ehhez a módarányhoz milyen c/L viszony szükséges. Az 5.b ábra alapján látható, hogy minden módarány esetén két megoldásunk van. A megoldások és az 5.a ábra alapján visszaszámíthatók a minimálisan szükséges repedési hosszak a kontakt elkerülése érdekében. Ebből az is következik, hogy a módarány változtatását nem elég a c/L viszony (azaz tulajdonképpen a c paraméter) változtatással, hanem a repedési hosszat is változtatni kell. Mivel a pontosított megoldás egy kicsit nagyobb repedési hosszt ira elő a kontakt elkerüléséhez (ld. 5.a ábra), ezért a kísérlet tervezésekor célszerű a számított minimálisan szükséges repedési hosszat 5%-al megnövelni.

![5. ábra. A minimálisan szükséges a/L viszony ábrázolása a c/L viszony függvényében a kontakt elkerülése érdekében (a). A módarány változása a c/L viszony függvényében kontakt nélkül (b).](image)

ÖSSZEFoglalás

Ebben a cikkben az MMB próbatest módosított változatát elemzük és megmutattuk, hogy a rendszer geometriai paraméreit hagynán kell beállítani ahhoz, hogy a tervezett módarányt meg tudjuk valósítani. Az eredmények alapján a kívánt módarány eléréséhez a c/L viszony mellett a kontakt elkerüléséhez szükséges a/L viszonyt is meg kell állapítani. E két paraméter megfelelő beállításával az MMB teszt sikeresen alkalmazható hosszú repedésekre is.

SUMMARY

In this paper the modified version of the MMB test was analysed and it was shown how to set the geometrical parameters of the system in order to realize the designated mode ratio. To reach the desired mode ratio, it is necessary - apart from setting the c/L ratio - to set the proper a/L ratio eliminating contact between the specimen arms. By the proper adjustment of these two parameters it is possible to successfully apply the MMB test even for long cracks.

KÖSZÖNETNYILVÁNÍTÁS

A munka szakmai tartalma kapcsolódik a "Minőségorientált, összehangolt oktatási és K+F+1 stratégia, valamint működési modell kidolgozása a Miegyetemen" c. projekt szakmai célkitűzéseinek megvalósításához. A projekt megvalósítását az ÚMFT TÁMOP-4.2.1/B-09/1/KMR-2010-0002 programja, valamint az OTKA T34040 pályázat és a Bolyai János Kutatói ösztöndíj támogatja.

IRODALOMJEGYZÉK