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macroscopic properties of traffic flow. Parameter domains are determined where the uniform flow equilibrium
is stable but sufficiently large excitations may trigger traffic jams. This behavior becomes more robust as the
reaction time delay is increased.
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I. INTRODUCTION

Vehicular traffic has been modeled for more than half a
century �1� but the precise mechanism for generation and
propagation of traffic jams is still not fully understood. Re-
cently developed numerical techniques of dynamical systems
can help to shed light on the microscopic dynamics underly-
ing the emergent behavior in these complex systems. These
methods also allow one to extract macroscopic flow proper-
ties that can lead to better understanding of the fundamental
principles of traffic jam formation.

It is well known that for sparse traffic there exists a uni-
form flow equilibrium where vehicles follow each other with
the same velocity, while oscillations may arise when the traf-
fic becomes more dense. One of the typical oscillations is a
stop-and-go wave; the velocity breaks down and vehicles
become densely packed on a section of the highway and the
congestion propagates upstream as a density wave with a
characteristic wave speed of 15–20 km/h. The congested re-
gime of finite length is enclosed by two fronts that travel
with the same velocity: a “stop-front” where vehicles enter
the congested regime and a “go-front” where they leave the
traffic jam. A driver may encounter such a traffic jam many
minutes after it formed and many kilometers behind the
place where it emerged. The name “phantom jam” is also
used for these congestion waves since drivers cannot see any
cause of the jam when leaving the congested regime.

There exist many different models that are able to repro-
duce uniform flow as well as stop-and-go waves. However,
the transition between these two qualitatively different solu-
tions is still not clarified. Here, we briefly review the basic
deterministic approaches of traffic modeling and their pro-
posed mechanisms for jam formation. Continuum or macro-
scopic models that characterize traffic in terms of density and
velocity fields use partial differential equations �PDEs� to

describe the time evolution of the system. The current state-
of-the-art macroscopic models use hyperbolic PDEs �2,3�. In
this setup both the uniform flow and the stop-and-go solu-
tions are marginally stable �if they exist�. Consequently, one
may drive the system from one solution to the other by ap-
plying large perturbations. More precisely, a vehicle needs to
come to a halt in order to lead the system to the stop-and-go
state: “actions have to be as large as the effects.”

Car-following or microscopic models describe vehicles as
individual entities. In the simplest case the time evolution of
the system is described by ordinary differential equations
�ODEs� �4,5�. These models suggest that traffic jams form
spontaneously when traffic becomes dense enough. More
precisely, there exists a critical traffic density, below which
the uniform flow is asymptotically stable but it becomes un-
stable above. Then even tiny fluctuations may develop into
stop-and-go waves as they cascade back along the highway,
i.e., “tiny actions have large effects.” Clearly the hyperbolic
PDE and the ODE models suggest two very different mecha-
nisms for jam formation.

When driver reaction times are incorporated in a car-
following model, delay differential equations �DDEs� de-
scribe the time evolution of the system �6–8�. In this paper,
we study a simple model with reaction time delay and show
that it may reconcile the conflict between the results of the
PDE and ODE models by introducing an extended regime
where the uniform flow is asymptotically stable but excit-
able, so stop-and-go jams may still emerge. Previously, ex-
citable behavior was detected only in narrow parameter re-
gimes and papers either focused on the mathematical
analysis of the underlying bifurcations for relatively small
numbers of vehicles �9,10� or conjectured excitability from
numerical simulations �11,12�. Calculating the bifurcation
structure explicitly for realistic numbers of vehicles and con-
necting the results to macroscopic traffic phenomena are cur-
rent interests in the traffic community �13,14�. We remark
that one may use nonhyperbolic PDEs to model the dynam-
ics of traffic �15� and also incorporate reaction times into
continuum models �16�. The effects of time delays are also
shown to be significant in many other networked systems
including neural networks �17,18� and gene regulatory net-
works �19�.

The most widely used method to investigate the nonlinear
dynamics of traffic is numerical simulation. Recently, meth-
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ods from dynamical systems theory �normal form calcula-
tions and numerical continuation� have also been applied to
investigate traffic dynamics �9,20–23�. The advantage of
these methods is that both stable and unstable solutions can
be studied. Indeed, unstable motions can hardly be observed
in the physical system but they can influence the emergent
behavior by “separating” qualitatively different stable mo-
tions. In this paper, we apply numerical continuation tech-
niques �24� to reveal the intricate microscopic dynamics un-
derlying jam formation and to extract macroscopic flow
properties.

The layout of the paper is the following: We introduce the
car-following model in Sec. II and review the bifurcation
analysis of the uniform flow in Sec. III. Numerical continu-
ation techniques are introduced in Sec. IV. They are applied
to the traffic model in Sec. V where the fundamental dynami-
cal principles behind excitability are explained. The limit of
infinitely many vehicles is discussed in Sec. V A and the
spatial motion of waves is studied in Sec. V B. The full
nonlinear dynamics is presented in Sec. VI and we conclude
our research and discuss future directions in Sec. VII.

II. CAR-FOLLOWING MODELS WITH REACTION TIME
DELAY

Here, we discuss general modeling issues and introduce
the specific model analyzed in this paper. Assuming identical
vehicles and nearest neighbor interactions, the acceleration
of the i-th vehicle is given by

v̇i�t� = f„hi�t − �1�, ḣi�t − �2�,vi�t − �3�… , �1�

where the dot stands for differentiation with respect to time t,
vi is the velocity of the i-th vehicle while hi is the bumper-
to-bumper distance between the i-th and the i+1-st vehicles
also called the headway; see Fig. 1�a�. The reaction time
delays �1 , �2 , �3�0 are generally different, but sometimes,
for the sake of simplicity, they are considered to be equal to
each other or to be zero. In this paper, we focus on the effects
of �1. Figure 1�a� shows that the headway can be defined as

hi�t� = xi+1�t� − xi�t� − � , �2�

where xi is the position of the front bumper of the i-th ve-
hicle and � is the vehicles’ length. Taking the time derivative
one obtains the velocity difference

ḣi�t� = vi+1�t� − vi�t� , �3�

and this kinematic condition completes system Eq. �1�.
One also has to specify boundary conditions. For simplic-

ity we assume periodic boundary conditions: N vehicles are
placed on a circular road of length L+N� that yields the
algebraic equation

�
i=1

N

hi�t� = L , �4�

where L is called the effective ring length. Using this equa-
tion one may express one headway �for example, hN� as a
functions of the others and so reduce the number of dynami-
cal variables by one. That is, system �Eqs. �1�, �3�, and �4��
can be written as a system of 2N−1 DDEs. Notice that the
vehicle length � does not appear in the dynamical equations.
The role of this parameter will be clarified in Sec.V B. Note
that one may also study the system on semi-infinite roads
where similar patterns can develop as on the ring road for
large L and N, but convective instabilities may also need to
be handled �25�.

In previous studies, the case of arbitrarily many vehicles
with weak nonlinearities was studied by performing normal
form calculations �23� and the case of few vehicles with
strong nonlinearities was investigated by numerical continu-
ation �21,22�. Here, we analyze the case of large number of
vehicles with strong nonlinearities. The results are presented
for N=33, which is low enough to represent the detailed
microscopic dynamics but high enough to compare the re-
sults to the case N→�. Note that N is increased such that
L /N is kept constant. We remark that when reproducing the
results for larger number of vehicles �e.g., N=99�, no signifi-
cant deviations are found but the illustrations become more
elaborate and so less instructive.

To determine the function f in Eq. �1� one needs to take
into account some general modeling principles; see �13� for
details. In this paper we consider a simple, yet widely ac-
cepted model, the so called optimal velocity �OV� model
�4,6,9,21� where

f�h, ḣ,v� =
1

T
�V�h� − v� . �5�

In spite of its simplicity, �e.g., it does not depend on the

velocity difference ḣ� this model is able to reproduce uni-
form flow as well as stop-and-go waves.

The parameter T is called the relaxation time �and 1 /T is
called the sensitivity�. Note that T differs from the reaction
times �1 , �2 , �3: the finite relaxation time represent the fact
that vehicles have inertia while the reaction times are explicit
time delays in the system. In this paper, we consider �1�0
and �3=0 to model the human behavior that drivers react to
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FIG. 1. �Color online� A sketch of two vehicles following each
other is displayed in panel �a� while the optimal velocity function
Eq. �6� and its first derivative are shown in panels �b� and �c�,
respectively.
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their headway with finite reaction time �1 and know their
current velocity instantly. �Note that �2 does not appear in the

equations since there is no ḣ term.�
The function V is called the OV function that satisfies the

following properties:
�i� it is continuous, non-negative, and monotone increas-

ing;
�ii� it approaches the maximum velocity v0 for large head-

way, i.e., V�h�→v0 as h→�, where the desired speed v0

corresponds to the speed limit;
�iii� it is zero for small headway, i.e., V�h��0 if

h� �0,hstop�, where hstop is called the stopping distance.
We remark that the results presented here are robust

against changes in the OV function as long as it satisfies
�i–iii�.

Before specifying the OV function we rescale distances
by hstop and rescale time by hstop /v0. Consequently, velocities
�including the OV function� are scaled by v0. In this paper
we use the rescaled OV function

V�h� = �0, if h � �0,1� ,

�h − 1�3

1 + �h − 1�3 , if h � �1,�� , � �6�

that is shown together with its first derivative in Figs. 1�b�
and 1�c�. Notice that the rescaled speed limit is 1. By defin-
ing the dimensionless parameters

� =
hstop

Tv0 , � =
�1v

0

hstop
, �7�

the rescaled model can be written into the form

v̇i�t� = ��V„hi�t − ��… − vi�t�� , �8�

that is closed by the rescaled versions of Eqs. �3� and �4�. For
approximate realistic values of parameters T , �1 , v0 , hstop
see �21,23�.

III. BIFURCATIONS OF THE UNIFORM FLOW

The system �Eqs. �3�, �4�, and �8�� possesses a uniform
flow equilibrium

hi�t� � h� = L/N, vi�t� � v� = V�h�� , �9�

for i=1, . . . ,N that may lose stability when the parameter h�

is varied.
To describe what kind of patterns can appear in system

�Eqs. �3�, �4�, and �8�� we briefly summarize the results of
the linear stability analysis shown in �21–23�. Linearizing the
system about the uniform flow equilibrium Eq. �9�, using
trial solutions proportional to e�t, ��C and considering the
critical eigenvalues ��hcr

� �= � i	, one can obtain the stability
curves

V��hcr
� � =

	

2 cos		� −
k


N

sin	 k


N

 ,

� = − 	 cot		� −
k


N

 , �10�

that are parameterized by the frequency 	�R+. Here,
k�Z+ is a discrete wave number such that 1�k�N /2.
When crossing a stability curve, a Hopf bifurcation takes
place, i.e., a pair of complex conjugate eigenvalues crosses
the imaginary axis. The appearing small-amplitude oscilla-
tions are travelling waves with frequency 	 and wave num-
ber k.

In Figs. 2�a� and 2�b� the stability curves are compared
for �=0 and ��0. Notice that for �=0 the curves become
the straight lines

� = 2 cos2	 k


N

V��hcr

� � , �11�

and �→� as 	→�. For ��0 the curves approach vertical
asymptotes located at

V��hcr
� � =

k


N

2� sin	 k


N

 , �12�

when 	→ 1
�

k

N . That is for large enough � the curves are

contained by the regime V�� � 1
2� , 


4� �.
The stability curves are ordered such that the mode with

lowest wave number k=1 �i.e., with the longest wavelength�
gives the stability boundary and the curves with k�1 lead to
further instabilities as k is increased. This means that the
uniform flow loses its stability to travelling waves with long
wavelength first and then waves with shorter and shorter
wavelength may show up, too. This behavior is illustrated in
Figs. 2�a� and 2�b� where the uniform flow is linearly stable
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FIG. 2. Linear stability diagrams without and with reaction time
delay. Domains where the uniform flow is linearly stable are
shaded. Panels �a,b� show stability charts on the (V��h�� ,�)-plane
that are transformed to the �h� ,��-plane in panels �c,d�. The arrows
represent the increase of wave number k.
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in the shaded domains and the arrows show the increase of
wave number k. The ordering of stability curves is
preserved for any feasible model Eq. �1� with zero delays
�1=�2=�3=0; see �13�. In the case of the delayed model
Eq. �8� we found that the order is also kept for ��0.

Using the derivative of the OV function Eq. �6� in Fig.
1�c�, one may transform the stability charts from the
�V��h�� ,��-plane �Figs. 2�a� and 2�b�� to the �h� ,��-plane
�Figs. 2�c� and 2�d��. For �=0 there is a single curve for each
wave number k in the �h� ,��-plane such that the wave num-
ber increases from outside to inside. For sufficiently large
values of � the uniform flow is stable for any value of the
average density h�. For �=1 there are two curves for each
wave number k with vertical asymptotes, i.e., for any values
of � the uniform flow is stable for large h� �sparse traffic�
and small h� �dense traffic� and it is unstable for intermediate
values of h�. One may check that this behavior persists as N
is increased and the N=33 case is a good representation of
the large N case. Note that in the stable regime for small h�

vehicles travel with the low velocity or stand on the freeway
when h��1.

We remark that for 0���3·2−7/3 the stability chart is
similar to the �=0 case �but the maxima of the curves are
larger�. At �=3·2−7/3�0.595 the curve for wave number
k=1 becomes unbounded above. When increasing � further,
curves for higher and higher wave numbers become un-
bounded above finishing with the curve for k=N /2 at
�=3
 ·2−10/3�0.935. This can be seen by calculating the
maximum of V��h� from Eq. �6� and using Eq. �12�.

In the literature, stability diagrams are often plotted using
the dimensional parameter 1 /T instead of �. Then in the
nondelayed case the maxima of the closed stability curves
are proportional to v0 but to obtain stability curves that are
unbounded above the limit v0→� needs to be taken. In the
delayed case, the curves are unbounded above even for mod-
erate values of v0.

When h� is close to hcr
� , the small-amplitude travelling

wave solution can be written into the form

vi�t� = v� +
1

2
vamp cos	2
k

N
i + 	t
 , �13�

for i=1, . . . ,N. From Eq. �10�, one can determine a disper-
sion relation �	 as the function of k� and calculate the spatial
wave speed

c0 = v� − h�V��hcr
� ��1 − O	 k


N

2
 . �14�

At leading order the delay only influences the wave speed by
changing the quantity V��hcr

� �.
To determine the peak-to-peak amplitude of oscillations

vamp in Eq. �13� nonlinearities has to be considered. Using
third-order approximation of nonlinearities and carrying out
Hopf normal form calculations, one may obtain the ampli-
tude

vamp = 2�−
Re����hcr

� ��



�h� − hcr
� � , �15�

where ���hcr
� � describes the “speed” of crossing the imagi-

nary axis by the critical eigenvalue ��hcr
� �=i	 as the param-

eter h� is varied. For 
�0 the Hopf bifurcations are super-
critical �small amplitude oscillations appear after the pair of
complex conjugate eigenvalues crosses the imaginary axis�,
while for 
�0 they are subcritical �oscillations appear be-
fore the eigenvalues cross the imaginary axis�. For k=1 su-
percriticality results in stable small-amplitude waves while
subcriticality gives unstable ones. For k�1 both cases lead
to unstable waves as will be discussed in Secs. V and VI. It
was shown in �23� that when the delay is included in the
model, the bifurcations are robustly subcritical and 
 was
given in a closed form for arbitrary N.

Indeed, the wave speed Eq. �14� and the amplitude Eq.
�15� are only good approximations for small-amplitude os-
cillations when h� is close to hcr

� . To describe the behavior far
from the bifurcation points one needs to use numerical meth-
ods.

IV. NUMERICAL CONTINUATION TECHNIQUES

In this section, we provide the reader with some details
about the numerical continuation techniques that are the
principal tools of investigation in the subsequent sections.
Those who are familiar with such techniques may skip this
section. The main advantage of these methods, compared to
numerical simulation, is that both stable and unstable states
can be studied. For ODEs one can use the package AUTO
�26� while for DDEs the packages DDE-BIFTOOL �27� and
PDDE-CONT �28� are available. We describe the capabilities
of these packages that are exploited in this paper; for more
details see �24�.

Numerical continuation packages are able to follow
branches of equilibria and periodic solutions as a parameter
is varied. Stability information is computed along the
branches and bifurcation points—where the stability of solu-
tions changes—are detected automatically. For example,
considering the DDE �Eqs. �3�, �4�, and �8�� one may fix �
and �, vary the parameter h� and study the uniform flow
equilibrium and the oscillations arising at the Hopf bifurca-
tion points.

Substituting the uniform flow equilibrium into the DDE
results in algebraic equations. For a chosen parameter h�,
these can be solved numerically by using an initial guess and
the Newton-Raphson method. Then the result can be used as
an initial approximation when solving the same set of alge-
braic equations for the slightly changed parameter h�+dh�.
By continuing this process, a branch of equilibria is obtained
as a function of the bifurcation parameter. Indeed, this is a
numerical representation of Eq. �9�.

To determine the stability of equilibria the linearization of
the DDE is considered and the corresponding complex ei-
genvalues ��C are computed numerically. There are infi-
nitely many eigenvalues but only finitely many are located
on the right side of a chosen vertical boundary in the com-
plex plane. The uniform flow equilibrium is stable when all
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eigenvalues are located on the left-half complex plane. Hopf
bifurcations of equilibria are detected when a pair of com-
plex conjugate eigenvalues crosses the imaginary axis at
�i	.

To be able to follow the branches of arising periodic so-
lutions the oscillations are represented on a finite mesh with
a �small� number of so-called collocation points in between
the mesh points. On each mesh interval the solution is given
by a polynomial and the degree of the polynomial is equal to
the number of collocation points. In the close vicinity of the
Hopf bifurcation points the first harmonics with frequency 	
�cf. Eq. �13�� can be used as initial approximation for the
periodic orbits and these can be corrected by the Newton-
Raphson method. Then, similarly to equilibria, branches of
periodic orbits can be continued by using the solution at a
certain branch point as an initial approximation for the next
branch point.

To determine the stability of oscillatory solutions the so-
lution operator of the DDE is discretized and the eigenvalues
of the resulting large matrix, the Floquet multipliers, are cal-
culated. There are infinitely many Floquet multipliers but
only finitely many are located outside a chosen neighbor-
hood of the origin. The periodic solutions are stable when all
Floquet multipliers are located inside the unit circle �except a
trivial multiplier at +1 corresponding to continuous transla-
tional symmetry along the periodic orbit�. Fold bifurcations
of periodic solutions are detected when an additional real
Floquet multiplier crosses the unit circle at +1. Since the
branch folds back in this case, arclength parametrization of
the curve is implemented.

It is also possible to fix only the parameter � and vary the
remaining two parameters h� and � while prescribing the
additional constraint that a bifurcation occurs. For example,
considering the uniform flow equilibrium and assuming that
Hopf bifurcation occurs �i.e., there exists a pair of purely
imaginary eigenvalues �i	�, the Hopf bifurcation curves in
the �h� ,��-plane can be traced numerically. More impor-
tantly, considering periodic solution and assuming that fold
bifurcation occurs �i.e., there exist a double Floquet multi-
plier at +1�, fold bifurcation curves can be traced in the
�h� ,�� parameter plane. We remark that for DDEs this can
only be achieved by using the recently developed package
PDDE-CONT �28�.

We emphasize that the application of continuation pack-
ages is a much more efficient way of exploring parameter
space than performing mass ensemble simulation of the ini-
tial value problem. This is especially true for DDEs where
the initial conditions are functions in the interval t� �−� ,0�.

V. NONLINEAR DYNAMICS BEHIND EXCITABILITY

In Sec. III, we determined that the stability curve for
k=1 gives the stability boundary. In this section we focus on
the nonlinear behavior arising from this long wavelength in-
stability by using the techniques described in Sec. IV. These
methods allow us to reveal the intricate microscopic dynam-
ics of the system including hidden unstable oscillations.
Moreover, macroscopic properties of the flow can also be
extracted.

First we fix � and � and vary h�, i.e., we study the system
along the horizontal line �=1 in Figs. 2�c� and 2�d�. In Figs.
3�a� and 3�b� the peak-to-peak velocity amplitude

vamp = max
t

vi�t� − min
t

vi�t� , �16�

of the appearing oscillations are shown as a function of the
average headway h�. Note that vamp is the same for every i
since the motion of vehicles is identical except a shift in
time. We will exploit this property when defining quantities
like the flux further below. Solid green �light grey� and
dashed red �dark grey� curves correspond to stable and un-
stable states, respectively. The thick curve along the horizon-
tal axis represents the uniform flow that is stable for small
and large values of h� and unstable for intermediate values.
For the oscillatory solutions vamp�0, as shown by the thin
curves. The Hopf bifurcation points—where the uniform
flow loses and gains stability—are shown as black stars. The
Hopf bifurcations are subcritical, that is, the appearing small
amplitude oscillations are unstable. This corresponds to

�0 in Eq. �15� that approximates the peak-to-peak ampli-
tude close to the Hopf bifurcation point. The branches of
oscillatory solutions fold back for large amplitude resulting
in stable oscillations. These fold bifurcation points are
marked by blue�−s.
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FIG. 3. �Color online� Bifurcation diagrams for the lowest wave
number k=1 without and with reaction time delay in case of �=1.
In panels �a,b� the peak-to-peak velocity amplitude vamp is plotted
as a function of the average headway h� while in panels �c,d� the
flux q is plotted as a functions of the average density 1 /h�. The
right side of panel �a� corresponds to the left side of panel �c� and
the same holds for panels �b� and �d�. Thick curves correspond to
the uniform flow and thin curves correspond to oscillatory �travel-
ling wave� solutions. Stable and unstable states are shown as solid
green �light grey� and dashed red �dark grey� curves, respectively.
The black dotted curve in panels �c,d� corresponds to the approxi-
mation of the flux for N→�. Hopf and fold bifurcations are de-
noted by black stars and blue�−s, respectively. The black dots A-E
in panels �b,d� correspond to the time profiles in Fig. 4.
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The bifurcation diagrams show that there exist three
qualitatively different behaviors:

�i� In the regimes to the left of the left fold point and to
the right of the right fold point the only linearly stable state
is the uniform flow solution and consequently this state is
globally stable.

�ii� In the regime between the two Hopf points the uni-
form flow is linearly unstable and the only linearly stable
state is the large-amplitude oscillatory solution that is conse-
quently globally stable.

�iii� In the regimes between Hopf and fold points both the
uniform flow and the large-amplitude oscillatory solutions
are linearly stable and they are separated by an unstable os-
cillatory solution. This means that the system is bistable:
depending on the initial conditions either the uniform flow or
the oscillatory solution is approached. Observe that the
bistable regimes become much more pronounced in the de-
layed case; the delay makes this behavior very robust. In
fact, for certain OV functions �that differ from Eq. �6�� the

bistability may disappear for �=0 but it always exists for
large enough �; see �23�.

To reveal the details of the nonlinear dynamics we marked
the points A-E along the oscillatory branch in Fig. 3�b�.
Points A, B are in the bistable regime on the right �h�=2.9�,
point C is in the regime where the uniform flow is linearly
unstable �h�=2.0� and points D,E are in the bistable regime
on the left �h�=1.1�. Figures 4�a�–4�e� shows the corre-
sponding time profiles for velocity �solid curve� and head-
way �dashed-dotted curve� for the first vehicle, while panels
�f–h� depict the periodic orbits in state space. These solutions
preserve the travelling wave features: the time profiles of the
other vehicles can be obtained by shifting the oscillations
with Tp /N where Tp is the period of oscillations.

The small-amplitude unstable oscillations in panel �a�
consists of a plateau of constant velocity that is interrupted
by a “ditch” where the velocity is reduced for a short time
�the driver taps the brake shortly�. The velocity along the
plateau is close to �but slightly higher than� the velocity of
the uniform flow Eq. �9�. This can be observed in panel �f�
where the “corner” of the small-amplitude periodic orbit cor-
responds to the plateau while the dot at �h� ,v�� represents the
uniform flow. �The ‘‘corner’’ and the dot are very close and
the dot is located ‘‘inside’’ the limit cycle.� The unstable
periodic orbit is similar to a homoclinic orbit and for N
→� this becomes a homoclinic orbit since the length of the
plateau goes to infinity. Moving point A along the unstable
oscillatory branch in Fig. 3�b� �from left to right� the velocity
is reduced more and more during the ‘‘ditch’’ reaching zero
at the fold point.

The small-amplitude unstable oscillations in panel �e� are
similar to those in panel �a� but here the velocity plateau is
interrupted by a “hump” where the velocity is increased for a
short period of time. Again, the velocity along the plateau is
close to the values of the uniform flow Eq. �9� and the un-
stable periodic orbit is close to a homoclinic orbit as dis-
played in panel �h�. Moving point E along the unstable os-
cillatory branch in Fig. 3�b� �from right to left� the velocity
increases more and more during the “hump.”

The large-amplitude stable oscillations shown in panels
�b–d� consist of a high-velocity plateau and a low-velocity
plateau that are connected by a ‘‘stop-front’’ �where vehicles
decelerate� and a “go-front” �where cars accelerate�. The cor-
responding travelling wave is a stop-and-go wave. The oscil-
lations are shown in state space in panels �f–h� where the
“corners” of the large-amplitude periodic orbits correspond
to the velocity plateaux. The stable periodic orbit is similar
to a heteroclinic orbit and for N→� it becomes a hetero-
clinic orbit since the length of the plateaux become infinite.
Observe that the period of oscillations does not change sig-
nificantly between panels �a–e�.

Moving along the stable oscillatory branch in Fig. 3�b�
�from right to left� the velocity along the plateaux and the
shape of the fronts do not change significantly but the frac-
tion of time spent in the low-velocity state increases. To
quantify this change we introduce Tjam, the time interval cor-
responding to vi�t��1 /3. Thus one can define the flux
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FIG. 4. Oscillations for wave number k=1 corresponding to the
black dots A-E in Figs. 3�b� and 3�d�. In panels �a – e� the velocity
of the first vehicle is shown as a solid curve �scaled on the left�
while the headway of the first vehicle is shown as a dashed-dotted
curve �scaled on the right�. Panels �f – h� show the oscillations in
state space. Notice that the small-amplitude unstable oscillations
�a,e� are similar to homoclinic orbits, while the large-amplitude
stable oscillations �b – d� are similar to heteroclinic orbits.
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q =
mint vi�t�
mint hi�t�

Tjam

Tp
+

maxt vi�t�
maxt hi�t�

	1 −
Tjam

Tp

 , �17�

where Tp is the period of oscillations. This quantity gives
only an approximate value of the flux but it is a good esti-
mate for large N when the width of the plateaux is much
smaller than the width of the fronts. Indeed, the choice 1/3 is
arbitrary but choosing any other velocity between 0 and 1
only results in small quantitative differences.

In Figs. 3�c� and 3�d� the so-called fundamental diagrams
show the flux q as a function of average density ��=1 /h�.
Note that the right side of panel �a� corresponds to the left
side of panel �c� �and vice verse�, and the same holds for
panels �b� and �d�. For the uniform flow one may calculate
the flux as

q� =
v�

h�
=

V�h��
h�

= ��V���� , �18�

that gives the thick concave curve. Considering the spatial
wave speed Eq. �14� for N�k and h�=hcr

� one obtains

c0 � V�hcr
� � − hcr

� V��hcr
� � = �dq�

d���
��=1/hcr

�
, �19�

which is the derivative of the concave curve at 1 /hcr
� where

the flow loses and gains stability. This is in agreement with
the kinetic theory of linear waves �29�. From the fundamen-
tal diagram one may notice that c0 changes sign as one in-
creases the delay, i.e., the unstable small-amplitude waves
propagate backward for �=0 and propagate forward for
�=1. However, this does not persist for large-amplitude
waves that always propagate upstream as will be demon-
strated in Sec. V B.

Bistability can be observed in the fundamental diagrams
and this behavior becomes very robust for the delayed case.
Observe that the flux for unstable oscillations is almost the
same as the flux of the uniform flow since the velocity
changes in a very short time interval in Figs. 3�a� and 3�e�.
This vindicates that studying only the fundamental diagram
is not adequate to reveal the mechanism behind jam forma-
tion in the bistable regime but one needs to pay close atten-
tion to driver behavior. We remark that to trace the stable
part of the fundamental diagram one may use numerical
simulations and different vehicle counting methods �30�.

A. Large N Limit

Now we compare our results to the large N limit that is
taken as N→� while fixing h�=L /N. In particular, we are
interested in where the fold points are located for large N. In
�22� it was shown that for intermediate values of the head-
way the system reaches the large N limit fast, that is, no
quantitative differences can be found for N�20. In this re-
gime we may introduce

h− = min
t

hi�t�, h+ = max
t

hi�t� ,

v− = min
t

vi�t�, v+ = max
t

vi�t� , �20�

and realize that

v− � V�h−�, v+ � V�h+� . �21�

These quantities do not change significantly along the stable
oscillatory branch except when the parameters are close to
the fold bifurcation points.

Furthermore, calculating Tjam along the branch we obtain
that

Tjam

Tp
�

h+ − h�

h+ − h− . �22�

Substituting Eqs. �20�–�22� into Eq. �17� gives

q �
V�h−�

h−

h+ − h�

h+ − h− +
V�h+�

h+

h� − h−

h+ − h− , �23�

that corresponds to the kinetic theory of nonlinear waves
�29�. This allows us to calculate the flux along the stable
oscillatory branch to any average headway h� �or average
density 1 /h�� using the quantities h− and h+ that are deter-
mined from a single �intermediate� value of h�. Indeed, the
larger N is the more accurate are the approximations Eqs.
�21�–�23�. In Figs. 3�c� and 3�d� the flux Eq. �23� is plotted
as a dotted black curve that estimates the solid green �light
grey� branch of oscillations with high accuracy �except close
to the fold points�. The congested state �h− ,v−� and the free-
flow state �h+ ,v+� are shown together with the uniform flow
equilibrium �h� ,v�� in Figs. 4�f�–4�h�. In the N→� limit
these “quasiequilibria” are connected by heteroclinic orbits.

Formula �22� also reveals what happens at the fold bifur-
cation points. At the right fold point the length of the low
velocity plateau goes to zero �Tjam�0�: almost all vehicles
travel with velocity v+ and they are separated by h+. That is,
the fold bifurcation occurs when h��h+. Similarly, at the left
fold point the length of the high velocity plateau goes to zero
�Tjam�Tp�: almost all vehicles travel with velocity v− and
separated by h− and so h��h−. Again, these approximations
become more accurate as N is increased.

h∗

α

h∗

α

h− h+

h− h+

(a) (b)

τ = 0 τ = 1

FIG. 5. �Color online� Phase diagrams for wave number k=1
comparing the nondelayed and delayed cases. The uniform flow is
linearly stable in the light and dark grey domains and unstable in
the white domain that is bounded by the solid black Hopf bifurca-
tion curves. Large amplitude oscillations exist in the white and dark
grey regimes between the solid blue fold bifurcation curves. Con-
sequently, the system is bistable in the dark grey domains. Dashed
blue curves indicate the boundaries of bistability in the N→� limit
and collisions occur below the horizontal dashed-dotted lines. No-
tice that the bistable regimes are much more extended in the case
with delay.
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To check how close the N=33 case is to the N→� case,
we locate the fold bifurcations and also the limits h− and h+

for different values of �. The results are shown in Fig. 5. The
solid black curves �separating the white and dark grey re-
gions� are the Hopf bifurcation curves for k=1; cf. the out-
ermost curves in Figs. 2�c� and 2�d�. The solid blue curves
�separating the light and dark grey regions� are the fold bi-
furcation curves and they are determined by two-parameter
numerical continuation. The dashed blue curves show h− and
h+. These are calculated using Eq. �20� from one-parameter
numerical continuation when � is varied and h� is fixed. The
fold curves are very close to the h− and h+ curves, which
vindicates that the large N limit is well approximated by the
N=33 case. In the large N limit, one may also determine the
boundary of collisions from the h− curve. Collisions occur
for negative h−, that is, for � values that are below the point
where the h− curve intersects the vertical axis. This boundary
is shown Fig. 5 as dashed-dotted horizontal line. Notice that
the collision regime is more extended in the delayed case.

Regimes of globally stable uniform flow �outside the fold
curves�, globally stable stop-and-go oscillations �between the
Hopf curves� and bistability �enclosed by Hopf and fold
curves� are shaded as light grey, white and dark grey, respec-
tively. Observe that the bistable regime is much larger in the
delayed case. For �=0 it shrinks to zero and disappears as �
increases while for ��0 it persists even for large �, i.e., the
delay makes the bistability robust. We emphasize that in the
bistable regime the system is excitable: small perturbations
decay while large perturbations lead to stop-and-go waves.

B. Bistable Wave Dynamics

In this section we use numerical simulation to investigate
the spatiotemporal dynamics induced by bistability. We focus
on the regime on the right of Figs. 3�b� and 5�b� and study
the excitable dynamics in detail. We demonstrate that one
may obtain qualitatively different emergent behaviors by
changing only the initial conditions. We also quantify the
‘critical’ initial conditions that separate different behaviors.
Recall that the initial conditions are functions on the interval
t� �−� ,0� �that are chosen to be constant functions here�.

It was shown analytically in �23� that imposing large
enough sinusoidal spatial inhomogeneity on the system may
lead to stop-and-go waves. However, the time profiles in Fig.
4�a� suggest that even localized perturbations can trigger
traffic jams. To test this idea we set the initial conditions as
follows: all vehicles are at the uniform flow equilibrium Eq.
�9� except one which has its velocity reduced by vper and its
headway increased by hper. This setup mimics the effect that
a driver taps the brake for a short time interval. More pre-
cisely, we assume that the selected driver has decelerated
with abr�0 for the time interval Tbr, and so its velocity is
reduced by

vper = �abr�Tbr, �24�

and its headway is increased by

hper = 1
2 �abr�Tbr

2 . �25�

We fix the braking interval Tbr and vary the braking strength
abr to determine the critical perturbation needed to trigger

stop-and-go traffic jams. In Fig. 6�a� the peak-to-peak veloc-
ity amplitude Eq. �16� is compared with the critical velocity
perturbation vper; cf. the right side of the bifurcation diagram
in Fig. 3�b�. Similarly, in Fig. 6�b� the peak-to-peak headway
amplitude

hamp = max
t

hi�t� − min
t

hi�t� , �26�

is compared with the critical headway perturbation hper.
Circles � and diamonds � correspond to Tbr=5.0 and
Tbr=7.5, respectively. The results vindicate that sufficiently
large localized excitations can trigger stop-and-go jams and
that the critical excitation increases with the amplitude of
unstable oscillations. This demonstrates that a single driver
may drive the whole system to the stop-and-go state even
though the uniform flow is stable against small perturbations.
Indeed, there is no perfect match between the critical excita-
tion and the amplitude since the localized perturbations do
not exactly place the system to the unstable manifold of the
limit cycle but simply to “one or the other side of the stable
manifold” of the limit cycle. Still, the qualitative dynamics
of the system is determined by the unstable oscillations.

To illustrate the spatiotemporal dynamics we fix h�=2.9,
which corresponds to the dots A,B in Figs. 3�b� and 6 and to
the oscillation profiles in Figs. 4�a�, 4�b�, and 4�f�. The
results are shown in Fig. 7 where the velocities of every
third vehicle are depicted in the top panels �a,b� and the
corresponding positions are displayed in the bottom
panels �c,d�. The initial conditions are chosen according
to Eqs. �24� and �25�, i.e., we set �Tbr=5.0, abr
=−0.60�⇒ �vper=0.30, hper=0.76� on the left panels �a,c�
and �Tbr=5.0, abr=−0.61�⇒ �vper=0.305, hper=0.7625�
on the right panels �b,d�. The latter case corresponds to the
circle in Fig. 6 at h�=2.9. The small differences in initial
conditions lead to very different emergent behavior. On the
left the perturbations decay and the system returns to the
uniform flow equilibrium, while on the right perturbations
are amplified as they cascade back along the road and a
stop-and-go wave develops.

Now we focus on the development of the stop-and-go
wave in Figs. 7�b� and 7�d�. For t�100 the small amplitude
wave propagates downstream corresponding to c0�0 in Eqs.
�14� and �19� but as the amplitude increases a backward
propagating stop-and-go wave emerges. We detect when the
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FIG. 6. �Color online� Comparing the peak-to-peak amplitudes
Eqs. �16� and �26� of unstable oscillations with the critical strength
of localized perturbations Eqs. �24� and �25� for the velocity �a� and
the headway �b� in case of k=1. The circles � and diamonds �
correspond to braking intervals Tbr=5.0 and Tbr=7.5.
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velocity of a vehicle drops below 1/3 and this gives the stop-
front in space �lower curve, highlighted as red�. We also
detect when the velocity of a vehicle exceeds 1/3 and this
gives the go-front in space �upper curve, highlighted as
green�. These fronts separate the congested regime �where
the velocity is below 1/3� and the free-flow regime in space.
Detecting these velocity crossings provides us with discrete
points in space time but these are lined up to visualize the
front motion. The time evolution of the stop-and-go wave
can be described through the motion of the corresponding
fronts.

As the wave develops there exist two different stop-
and-go regimes with different front behavior and wave

speed. For 100� t�200 the stop-front and the go-front
propagate upstream with different velocities such that they
move away from each other, i.e., the congested region ex-
tends. For t�200 the fronts propagate with the same velocity
and the system reaches the state corresponding to Figs. 4�b�
and 4�f�. The regime where the velocity is below 1/3 in Fig.
4�b� corresponds to the congested regime in Fig. 7�d�. In
fact, at a given moment in time most vehicles are either at
the congested state �h− ,v−� or at the free-flow state �h+ ,v+�
and only a few cars travel with velocity between v− and v+ as
shown by the zoom in Fig. 8�a�, where the trajectories of all
vehicles are displayed.

In the regime t�200, the front velocities are well ap-
proximated by

c =
h+v− − h−v+

h+ − h− � 0, �27�

that is obtained from kinetic theory of nonlinear waves �29�.
For the parameters considered here we have c=−0.0567 that
fits very well to Fig. 7�d�.

So far we only considered vehicles of zero length, i.e.,
�=0 in Eq. �2�. For nonzero � the qualitative dynamics do
not change since the dynamical system �Eqs. �3�, �4�, and
�8�� does not contain this parameter. However, the parameter
� alters the spatial wave propagation speed of the stop-go-
wave significantly according to

c� = c	1 +
�

h−
 . �28�

This is demonstrated in Fig. 8�b� where the same spatiotem-
poral plot is shown as in Fig. 8�a� but for �=0.35. This
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FIG. 7. �Color online� Demonstration of bistability in space-
time. In panels �a,b� the velocities of every third vehicle are shown
while panels �c,d� display the corresponding positions. The trajec-
tory of the first vehicle is emphasized as black. Observe that the
small difference in initial conditions between �a,c� and �b,d� leads to
large differences in the emergent state. In panel �d� the stop-front
�lower curve� and the go-front �upper curve� are highlighted as red
and green, respectively; see Fig. 8�a� for zoom-in. Notice the dif-
ferent spatial wave speed of the developing and the fully developed
stop-and-go wave.
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FIG. 8. �Color online� Zoom of Fig. 8�d� is shown in panel �a�
when all trajectories are displayed. Panel �b� shows the same situ-
ation but with nonzero vehicle length ��0. The bottom and the top
of a “fat trajectory” correspond to the motion of the front and rear
bumper of a vehicle. The stop-front �lower curve� and the go-front
�upper curve� are highlighted as red and green, respectively. Ob-
serve that the vehicle length alters the wave propagation speed
significantly.
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FIG. 9. �Color online� Bifurcation diagrams for �=1 �a,b� and
phase diagrams �c,d� comparing the cases without and with reaction
time delay for all wave numbers. The same notation is used as in
Figs. 3 and 5. In the regimes between the outermost Hopf curve the
k-th fold curve �counting from outside to inside� one may excite k
stop-and-go waves. The black dots F,G in panel �b� correspond to
the time profiles in Fig. 10.
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indicates that considering lorries instead of automobiles re-
sults in significantly faster wave propagation.

VI. TRIGGERING MULTIPLE JAM FORMATIONS

In this section, we investigate oscillations corresponding
to higher wave numbers k�1. It was shown in Fig. 2 that
such oscillations arise when crossing Hopf bifurcation curves
in the linearly unstable parameter domain. The resulting
small amplitude oscillations are always unstable but further
bifurcations may occur as the amplitude increases.

The velocity amplitude of oscillations are shown in Figs.
9�a� and 9�b� for �=1 where the same notation is used as in
Figs. 3�a� and 3�b�, except that unstable branches are shown
as solid red �dark grey� curves. The outermost branch be-
longs to k=1 and k increases from outside to inside. We
found that the oscillatory solutions are always unstable for
k�1. When the Hopf bifurcation is subcritical the oscillatory
branch undergoes a fold bifurcation �similarly to the k=1
case� but it does not gain stability. In the non-delayed case
only the first 7 branches appear. The Hopf bifurcations are
subcritical for the outer branches k=1, . . . ,3 and supercriti-
cal for the inner branches k=4, . . . ,7. In the delayed case all
16 branches are present and the Hopf bifurcations are sub-
critical for all branches. This robust subcriticality leads to
extended regions where the stable uniform flow coexist with
oscillations belonging to different wave numbers.

Figures 9�c� and 9�d� depict the Hopf and fold curves in
the �h� ,��-plane where the same notation is used as in Figs.
5�a� and 5�b�. These figures demonstrate that, similarly to the
bistable regions, the regions of coexistence are much more
pronounced in the delayed case. The outer fold curves are
almost equally spaced: they divide the bistable domain into
regions of equal width and the “complexity of the dynamics”
�the number of unstable oscillations� increases when moving
from outside to inside.

To understand the role of this complexity in the emergent
behavior we study the oscillations for k�1 in detail. We
choose the k=4 case to demonstrate the dynamics but the
result are qualitatively the same for any k�1 with small
k /N. We marked the points G,F along the k=4 branch in Fig.
9�b� �at h�=2.9� and plot the corresponding oscillations in

Fig. 10. The same notation and time scales are used as in
Figs. 4�a�, 4�b�, and 4�f�, that is, the period of oscillations for
k�1 is about one k-th of the oscillations for k=1. �In general
the period is proportional to N /k.� Furthermore, there are
remarkable similarities between the k=1 and k�1 cases con-
sidering the shape of the periodic orbits. The velocity of the
small-amplitude �homoclinic-like� oscillations plateaus at ap-
proximately the same value and only differ in how much the
velocity is reduced during the “ditches.” For the large ampli-
tude �heteroclinic-like� oscillations the plateaux and the
fronts look almost identical. Notice that adding up the time
intervals when the velocity is below 1/3 for k�1 approxi-
mately gives Tjam for k=1, that is, the time spent in conges-
tion is preserved for small k�1.

One may study the stability of these solutions in detail
and find that while the small amplitude oscillations are
“strongly unstable” �there exist a Floquet multiplier that is
much larger than 1 in magnitude�, the large amplitude oscil-
lations are only “weakly unstable” �the largest Floquet mul-
tiplier is outside the unit circle but very close to it�. Due to
this weak instability the system can stay in the neighborhood
of large amplitude oscillations for long �but still finite� time.
This suggest that applying sufficiently large localized pertur-
bations �at k sites� one may excite large amplitude oscilla-
tions of wave number k. To observe such excitable behavior
the parameters need to be chosen from the regimes between
the outermost Hopf curve and the k-th fold curves �counting
from outside to inside� in Fig. 9.

Similarly to the k=1 case, the critical value of localized
perturbations can be determined by numerical simulations
for k�1. For example, considering k=4 we initialize the
system into the uniform flow but reduce the velocity and
increase the headway of four different vehicles by vper and
hper according to Eqs. �24� and �25�. Figure 11 compares the
peak-to-peak amplitude of oscillations for k=4 �cf. the right
side of Fig. 9�b�� with the critical perturbations needed to
trigger four stop-and-go jams. The results are presented for
Tbr=5.0 �circles �� and Tbr=7.5 �diamonds ��. Observe that
the excitable behavior is qualitatively similar to the k=1
case; cf. Fig. 6.

To illustrate this excitability in space-time, we fix
h�=2.9 that corresponds to the dots F,G in Figs. 9�b� and 11
and to the oscillation profiles in Fig. 10. Using
Eqs. �24� and �25� we set the initial conditions as
�Tbr=5.0, abr=−0.80�⇒ �vper=0.40, hper=1.0� corre-
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FIG. 10. Oscillations for wave number k=4 corresponding to
the black dots F,G in Fig. 9�b�. Notation and time scales are as in
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sponding to the circle in Fig. 11 at h�=2.9. The spatiotem-
poral plot in Fig. 12�a� shows the position of every third
vehicle and the detected stop-fronts �lower red curves� and
go-fronts �upper green curves�. These fronts enclose the con-
gested regions where the velocity is below 1/3. Note that the
fronts are detected simultaneously as time progresses and it
requires further data processing to separate the points for
individual fronts.

The fronts travel with almost the same velocity which is
well approximated by c in Eq. �27�. To reveal the slow dy-
namics we eliminate this constant velocity motion in Fig.
12�b� and show time on a logarithmic scale. The relative
velocity of the fronts with respect to each other is usually
very small but there are ‘‘abrupt’’ changes when a stop-front
and a go-front of a traffic jam approaches each other and the
congested regime disperses. Through these dispersions the
number of traffic jams gradually decreases to one, that is, the
stable stop-and-go wave for k=1 is approached. Notice that
the sum of the width of congested regimes is approximately
constant for any k, i.e., the number of vehicles in congestion
is preserved for small k�1. We remark that one may trigger
k traffic jams using localized perturbations that are not
evenly distributed. Still, the slow dynamics of fronts remain
qualitatively similar to Fig. 12�b�, except that merging of
traffic jams may occur as well when the stop-front of a traffic
jam approaches the go-front of the neighboring jam. It may
be an interesting future research to model the spatiotemporal
front dynamics explicitly.

VII. CONCLUSION AND DISCUSSION

In this paper we studied a car-following model with driver
reaction time delay. We found that the dynamics of the re-
lated DDEs are robustly excitable. Extended regimes are
identified in parameter space where the uniform flow is lin-

early stable but traffic jams can be triggered by large enough
localized perturbations. This phenomenon is explained by the
existence of unstable small-amplitude oscillations that sepa-
rate the uniform flow and the large-amplitude stop-and-go
solutions. Along the excitable regime the amplitude of criti-
cal perturbations decreases as the traffic becomes more and
more dense until the regime of spontaneous jam formation is
reached. At one end a vehicle must almost stop to trigger a
stop-and-go jam: “actions have to be as large as the effects.”
At the other end there is spontaneous jam formation: “tiny
actions have large effects.” That is, the delayed car-following
model establishes a solid connection between the dynamics
of continuum models and the dynamics of non-delayed dis-
crete car-following models.

Our results show that in order to understand the emergent
behavior of traffic it is crucial to pay attention to the behav-
ior of individual drivers. A single driver can trigger a stop-
and-go wave by tapping the brake hard enough. Doing so,
the driver reduces the overall flux of the system significantly.
Still if such braking is below a critical limit, the ripples de-
cay and the flow remains smooth. This behavior can only be
determined by studying the intricate microscopic dynamics
of the system and cannot be concluded by simply looking at
flux-density �fundamental� diagrams �31,32�.

The obtained dynamics should be taken into account
when optimizing ramp metering on highways �33�, i.e., when
the inflow from on-ramps are controlled by traffic lights
based on flow measurements. The current algorithms only
consider how much inflow is allowed in order to keep the
density on the main highway below a certain limit �that is
given by the maximum of the fundamental diagram�. Our
results vindicate that it is also important that vehicles reach
their desired speed before joining the main flow. This may be
achieved by long enough on-ramps and letting only one or
two vehicles per green period enter the on-ramps.

The diversity of human drivers may still impede our abil-
ity to control the emergent behavior of traffic on highways,
since it is impossible to eliminate all irregularities of driver
behavior �bad lane changes, sudden strong braking�. How-
ever, many new vehicles are equipped with Autonomous
Cruise Control devices that are able to measure distances
between vehicles and actuate the cars accordingly. Time de-
lays arise in these system due to the time required for sens-
ing, computation and actuation. These are smaller than the
human reaction time but still need to be considered when
designing the control algorithms �34,35�. Furthermore, the
effects of uncertainties may also need to be considered in
these decentralized control systems �36�.
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