
International Journal of Machine Tools & Manufacture 43 (2003) 35–40

Stability of up-milling and down-milling, part 2: experimental
verification
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Abstract

The stability of interrupted cutting in a single degree of freedom milling process was studied experimentally. An instrumented
flexure was used to provide a flexible workpiece with a natural frequency comparable to the tooth pass frequency, mimicking high
speed milling dynamics. The displacement of the system was sampled continuously and periodically once per cutter revolution.
These data samples were used to asses the stability of the system. Results confirm the theoretical predictions obtained in Part 1.
 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Predictive models for machining operations provide
an opportunity to improve process efficiencies and
dimensional precision. Dynamic machining models give
manufacturers the capability to predict regions of stable
and unstable cutting for a large combination of process
parameters. This allows analytical methods and/or simul-
ation to be used in place of costly trial and error for
process optimisation. The advances in digital computers
over the last decade have made the latest research efforts
more accessible for industrial applications. This is true
for industrial application from conventional turning [1],
to advanced high-speed milling [2].

The implementation of dynamic machining models
requires accurate identification of model parameters such
as cutting force coefficients and dynamic parameters for
the machine tool structure. Several alternatives are avail-
able for estimation of mechanistic cutting coefficients
[3]; here the methods of Halley [4] are applied. Dynamic
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parameters can also be identified by the methods of
Inman [5] for adequately spaced modes or by the
methods of Juang [6] for closely spaced modes.

Unstable machining vibrations can be detected by the
analysis of the chatter signal [7–10]. Trajectory recon-
struction methods of stochastic processes can be effec-
tively used for identifying the relative motion of the tool
and the workpiece from noisy time series [11]. The stab-
ility charts published in the specialist literature are com-
monly accompanied by frequency diagrams illustrating
chatter frequencies at the loss of stability [12,13]. The
reason for this practice is that these frequencies can be
identified experimentally and this is a direct way to
theoretical models and predictions.

In this second part of the research report, the theoreti-
cal methods presented in the first part [14] are exper-
imentally verified. The governing mathematical model
developed in the companion paper is the delay-differen-
tial equation

ẍ(t) � 2zwnẋ(t) � w2
nx(t)

� �
bKs(t)

m
[x(t)�x(t�t)],

(1)

where x(t) is the deviation between the ideal periodic
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motion and the real tool motion, z is the damping ratio,
wn is the natural angular frequency, Ks(t) is the t-per-
iodic specific cutting force variation, b is the nominal
depth of cut, m is the modal mass and t � 60/N� [s]
is the tooth pass period, � is the spindle speed given in
rpm and N is the number of teeth.

2. Stability prediction summary

Both the finite element analysis in time (FEAT) and
the semi-discretization (SD) method described in the first
part of this study [14] approximate the milling system
behaviour by discretizing the independent time variable
of Eq. (1). The result is the formation of a discrete linear
map equation in the form

an � Qan-1. (2)

The stability of the system is determined directly from
the eigenvalues m of the transition matrix Q. These eig-
envalues are also called characteristic exponents. For a
range of operating conditions (depth of cut b and spindle
speed �) the transition matrix is formed and the eigenva-
lues are found. If the magnitude of any eigenvalue
exceeds one, the solution is unstable.

The predicted boundaries between stable and unstable
cutting as a function of spindle speed and depth of cut
are shown in Fig. 1. Two distinct types of instability
are illustrated by eigenvalue trajectories in the complex
plane: (1) a flip bifurcation or period doubling phenom-
enon occurs when the negative real eigenvalue passes
through �1; (2) a Hopf bifurcation occurs when a com-
plex eigenvalue obtains a magnitude greater than 1.
These eigenvalue trajectories are shown in the bottom
graphs of Fig. 1 with the corresponding speed and depth
of cut points shown in the top stability chart.

Fig. 1. Stability predictions and eigenvalue trajectories for up-mill-
ing.

Fig. 2. Experiment schematic diagram.

3. Experiment description

Milling tests were performed with an experimental
flexure designed to mimic the single degree of freedom
(SDOF) system assumed in the first part of the paper
[14]. A monolithic, unidirectional flexure was machined
from aluminium and instrumented with a single non-con-
tact, eddy current displacement transducer. A schematic
diagram of the experiment is shown in Fig. 2.

3.1. Workpiece dynamics

Since the system under consideration contains a single
dominant structural mode, several methods may be used
for extraction of modal parameters [5]. One alternative
is to compare the experimental transfer function in the
x-direction (shown in Fig. 3) to the single degree of free-
dom transfer function

H(w) �
1 /k

1�(w /wn)2 � i2zw /wn

(3)

of Eq. (1), where w is forcing frequency, k � mw2
n is the

system is the system stiffness. The natural frequency was

Fig. 3. Flexure transfer function.
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experimentally determined to be fn � ωn / 2π �
146.5 Hz (consequently, wn � 20.5 rad /s).

The magnitude of Eq. (3) at w � 0 gives the inverse
of the system stiffness. Stiffness estimates were obtained
by averaging the inverse value of the real portion of the
transfer function over the first 20 Hz. The stiffness of
the flexure to deflections in the x-direction was measured
to be k � 2.18 × 106 N/m. In comparison, the values of
stiffness in the perpendicular y- and z-directions were
more than 20 times greater than in the x-direction. The
damping ratio is given by substitution w � wn into
Eq. (3):

z �
1/k

2Im(H(w)w=wn
)
. (4)

According to Eq. (4), the damping ratio was estimated
to be z � 0.0032 from the experimental transfer function
imaginary peak. The system modal mass was computed
to be m � k /w2

n � 2.573 kg.

3.2. Cutting forces

The cutting coefficients in the tangential and normal
directions were determined from the rate of increase of
cutting force as a function of chip load during separate
cutting tests on a Kistler Model 9255B rigid dyna-
mometer [4]. The estimated values were Kn �
2.0 × 108 N/m2 and Kt � 5.5 × 108 N/m2. Measured

and predicted cutting forces are shown in Fig. 4.

3.3. Test procedures

A radial immersion a � 4.515 mm was used to up-
mill and down-mill aluminium (7075-T6) test samples
of width 6.35 mm (1/4 inch) over a specified range of
spindle speeds and axial depths of cut. A 19.05 mm (3/4
inch) diameter carbide end mill with a single flute was
used (the second flute was ground off to remove any
effects due to asymmetry or runout). Consequently, the
radial immersion ratio was a /D � 0.237. Since the num-

Fig. 4. Cutting force in the x-direction for half immersion up-milling.

ber N of teeth is one, the tooth pass period t is equal to
the rotation period 60/� of the tool. Feed was held at a
constant 0.1016 mm/rev (0.004 in/rev). For these techno-
logical parameters, the theoretical specific cutting force
variation Ks(t) is shown in Fig. 5.

The displacement transducer output was anti-alias fil-
tered and sampled (16-bit precision, 12 800 samples/s)
with SigLab 20-22a data acquisition hardware connected
to a Toshiba Tecra 520 laptop computer. A periodic
1/rev pulse was obtained with the use of a laser tach-
ometer to sense a black-white transition on the rotating
tool holder. The displacement data was recorded for
approximately 15 seconds. The calibration of the dis-
placement transducer was 1.2668 × 10�4 m/V. The
spectral analysis was performed using a Hanning win-
dow with no averaging procedures.

The sequential order for the cutting tests was to cut
first in the regions of predicted stability. The next step
was to perform cutting tests in the less robust stable
regions between the stability lobes. The final series of
cutting tests were all performed in the regions of pre-
dicted instability. The order of the cutting tests was
adopted to prevent premature damage to both the tool
and/or flexure.

4. Experimental results

Experimental results for up-milling and for down-
milling have been superimposed onto a plot of the theor-
etical stability predictions in Figs. 6 and 7, respectively.
Since stability boundaries for both the FEAT and the SD
methods converge to the same result, as shown in the
first part of this paper [14], a single stability boundary
is shown. The boundaries in Figs. 6 and 7 were determ-
ined by the FEAT method with approximation para-
meter E � 4, that is, the infinite dimensional DDE (1)
was approximated by 10 × 10 dimensional discrete sys-
tem. Cutting tests were declared stable if the 1/rev-
sampled position of the tool approached a steady con-
stant value [9]. The agreement between stability predic-
tions and theoretical results are very good.

In Figs. 6 and 7, plots of the arising vibration fre-
quencies are accompanied to the stability charts. The
theoretical chatter frequencies of Hopf type (fH) and of
period doubling type (fPD) are denoted by continuous

Fig. 5. Theoretical specific cutting force variation for a/D=0.237.
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Fig. 6. Up-milling analytical stability boundaries vs. experimental
results (�—stable cutting, ×—chatter, +—border) and analytical
vibration frequencies (�—fH, �—fPD, �—fTPE, �—fd).

Fig. 7. Down-milling analytical stability boundaries vs. experimental
results (�—stable cutting, ×—chatter, +—border) and analytical
vibration frequencies (�—fH, �—fPD, �—fTPE, �—fd).

lines, the tooth pass excitation frequencies (fTPE) are
denoted by dashed lines and a dotted line denotes the
damped natural frequency of the flexure at fd �
fn√1�z2�146.5 Hz. For both up- and down-milling

cases, four points are emphasized: A (� � 3000 rpm,
b � 0.5 mm), B (� � 3300 rpm, b � 0.8 mm),
C (� � 3550 rpm, b � 1.1 mm), D (� � 3650 rpm,
b � 2.3 mm) for up-milling, and E (� � 3450 rpm,
b � 1.3 mm), F (� � 3550 rpm, b � 1.1 mm), G
(� � 3700 rpm, b � 3700 rpm, b � 1.1 mm), H
(� � 4100 rpm, b � 0.5 mm) for down-milling. The
frequencies related to these points are denoted by various
symbols: � for fH, � for fPD, � fTPE and � for fd.

Points A, C, F and H are related to stable, chatter-free
machining. For these cases, only fTPE- and fd-frequencies
are expected.

Points B and G are related to unstable behaviour pre-
dicted in the theoretical model by complex eigenvalues
with a magnitude greater than one. These correspond to
Hopf bifurcations. In this case, two additional fH-fre-
quencies are predicted in the neighbourhood of each
fTPE-frequencies.

Points D and E are related to period doubling, when
the dominant eigenvalue is negative and real with a mag-
nitude greater than one. In this case, the chatter becomes
a subharmonic of order 2, and fPD-frequencies show up
in the middle of two fTPE-frequencies.

The experimental power spectra of the data sets corre-
sponding to these 8 points are shown in Figs. 8 and 9.
The symbols mentioned above help to identify all the
various frequency sets. The comparison of the theoretical

Fig. 8. Power spectra for parameter points A, B, C and D of Fig. 6
(�—fH, �—fPD, �—fTPE, �—fd).
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Fig. 9. Power spectra for parameter points E, F, G and H of Fig. 7
(�—fH, �—fPD, �—fTPE, �—fd).

Fig. 10. Continuous time histories, 1/rev sampled signals, and Poin-
caré sections for points A, B, C and D of Fig. 6.

frequencies in Figs. 6 and 7 and the experimental power
spectra in Figs. 8 and 9 shows good agreement.

Raw measurements and once per cutter revolution
data samples are shown in Fig. 10 for up-milling and in
Fig. 11 for down-milling. The 1/rev displacement
samples are used to construct experimental Poincaré sec-
tions as discussed by Virgin [15]. Data sets A, C, F and

Fig. 11. Continuous time histories, 1/rev sampled signals, and Poin-
caré sections for points E, F, G and H of Fig. 7.

H of Fig. 10 and Fig. 11 are clear examples of stable
behaviour. Although the vibration amplitude of each of
these data sets differ in magnitude, each 1/rev plot shows
that the cutting tooth returns to the same position each
time it hits the surface.

For Hopf type instabilities, the chatter vibrations are
generally unsynchronised with tooth passage. This
results a quasiperiodic motion as shown by data set B
in Fig. 10. For data set G in Fig. 11, a kind of period
triple phenomenon can be observed. This is a special
case of quasiperiodic motions, when the two governing
frequencies are multiple of each other. In this case, the
smallest tooth pass excitation frequency
(fTPE)min�62 Hz is about the triple of the smallest chatter
frequency (fH)min�20.5 Hz, as it is shown by the power
spectrum of data set G in Fig. 9. This means that the
critical characteristic multipliers are the unit roots
m1,2 � exp( ± i 2π/3), and the cutting tool returns to the
same position after three revolution of the tool. For the
data set B, the governing frequencies are
(fTPE)min�55 Hz and (fH)min�17 Hz, and they are not a
simple multiple of each other.

The phenomenon of period doubling is shown in data
set D in Fig. 10 and data set E in Fig. 11. In this case,
there exists a characteristic multiplier m1 � exp(i π) �
�1, and the cutting tool returns to the same position

after two revolution of the tool.
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5. Summary and conclusions

In this paper, a SDOF model for low radical immer-
sion up-milling and down-milling is validated exper-
imentally. In the companion paper [14], two essentially
different methods, the FEAT and the SD methods, are
used to transform the governing equations into approxi-
mate discrete maps. The eigenvalues of these maps (the
so-called characteristic multipliers) are used to deter-
mine the stability of the system. Eigenvalues with mag-
nitude greater than one indicate instability. The FEAT
and the SD methods converge to the same result.

Experimental evidence confirms the analytical stab-
ility predictions for both the case of up-milling and
down-milling. The experiments also show that different
stability behaviour may occur for up-milling and down-
milling at the same parameter combinations (depth of
cut, and spindle speed). In particular, the relocation of
the quasiperiodic chatter phenomenon (Hopf lobe) for
the case of down-milling was confirmed. The experi-
mental observation of this change in the sequence of the
Hopf lobes and the flip lobes for the cases of up- and
down-milling has a practical relevance for the design of
high-speed technological parameters.

The carefully identified frequency branches of quasip-
eriodic chatter, period doubling chatter and those of the
tooth pass excitation, gave a rigorous validation of the
mechanical model and its analytical and numerical
investigation. Time signals were determined experimen-
tally for stable and unstable cutting operations, period
doubling and quasiperiodic motions were identified by
spectral analysis, too. A kind of period triple behaviour
was also detected, as a special case of quasiperiodic
chatter.

The constructed test rig allows exploration of system
stability behaviour in a SDOF interrupted cutting pro-
cess. It is not intended to replicate a particular industrial
cutting process, but instead to focus on the stability
mechanisms. The relatively low natural frequency of the
system allows the investigation of cutting dynamics typi-
cally seen at much higher spindle speed.

Since an actual high-speed milling process usually
involves at least two degrees of freedom, future analyti-
cal and experimental work will focus on expanding the
methods presented to more realistic models with mul-
tiple degrees of freedom.
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