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Abstract

The dynamic stability of the milling process is investigated through a single degree of freedom mechanical model. Two alternative
analytical methods are introduced, both based on finite dimensional discrete map representations of the governing time periodic
delay-differential equation.

Stability charts and chatter frequencies are determined for partial immersion up- and down-milling, and for full immersion milling
operations. A special duality property of stability regions for up- and down-milling is shown and explained.
 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Increased industrial competition has driven the need for
manufacturers to reduce costs and increase dimensional
accuracy. Machining operations are one of the most
widely used manufacturing processes [1]. The efficiency
of a machining operation is dictated by the metal removal
rates, cycle time, machine down time and tool wear.
Optimisation of these parameters without sacrificing part
quality is of key importance. A primary factor that limits
process optimisation in machining is a phenomenon called
chatter. Chatter is a dynamic instability that can limit
material removal rates, cause a poor surface finish and
potentially damage the tool and the workpiece.

The history of machine tool chatter goes back almost
100 years, when Taylor [2] described machine tool chat-
ter as the “most obscure and delicate of all problems
facing the machinist”. After the extensive work of Tlusty
et al. [3], Tobias [4] and Kudinov [5,6], the so-called
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regenerative effect has become the most commonly
accepted explanation for machine tool chatter [7–10].
This effect is related to the wavy workpiece surface gen-
erated by the previous cutting tooth passage. The corre-
sponding mathematical models are delay-differential
equations (DDEs) with infinite dimensional state spaces.

For continuous cutting operations, like turning, the
governing equation is autonomous, and stability con-
ditions can be given in closed form [1,11,12]. The study
of nonlinear phenomena in the cutting process showed
that the chatter frequencies are related to unstable per-
iodic motions about the stable stationary cutting, i.e. a
so-called subcritical Hopf bifurcation occurs, as it was
proved experimentally by Shi and Tobias [13] and later
analytically by Ste´pán and Kalma´r-Nagy [14].

In the case of milling, the direction of the cutting force
is changing due to the tool rotation, and the cutting is
also interrupted as each tooth enters and leaves the work-
piece. Consequently, the resulting equation of motion is
a DDE with a time periodic coefficient. The Floquet
theory of periodic ordinary differential equations
(ODEs) can be extended for these systems [15,16], and
the stability properties are determined by the eigenvalues
of the monodromy operator of the systems. These eigen-
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values are the so-called characteristic multipliers. The
monodromy operator can be represented by an infinite
dimensional matrix. This causes difficulties, of course,
when trying to obtain closed form stability predictions.
Usually, a finite dimensional approximate transition
matrix is used to predict stability properties. Several ana-
lytical methods have been developed to determine the
stability boundaries for milling [11,17–23]. Numerical
simulation can also be used to capture the interrupted nat-
ure of the milling process [24–28], but the exploration of
parameter space via time domain simulation is inefficient.

Analytical investigations have predicted the occur-
rence of new bifurcation phenomena in interrupted cut-
ting processes. In addition to Hopf bifurcations, period
doubling bifurcations are also a typical form of insta-
bility, as it was shown analytically by Insperger and Sté-
pán [21], Corpus and Endres [29], Bayly et al. [22], Dav-
ies et al. [20], via numerical simulation by Zhao and
Balachandran [26], and confirmed experimentally by
Bayly et al. [22] and Davies et al. [20]. The nonlinear
analysis of Stépán and Szalai [30] showed that this per-
iod doubling bifurcation is also subcritical.

In this paper, two analytical methods are introduced
for stability prediction of general milling operations: the
finite element analysis in time (FEAT) method and the
semi-discretization (SD) method. Both methods form a
finite dimensional transition matrix as an approximation
of the infinite dimensional monodromy operator. The
FEAT method presented in this paper is an extension of
the method developed by Bayly et al. [22] for an inter-
rupted turning process. The current analysis is different
because it models milling more closely by including the
changing direction of cutting forces. The SD method,
first introduced by Insperger and Stépán [31], is also
applied to milling. Due to the complicated and not fully
explored structure of the stability charts, the comparison
of the results of the two basically different approxi-
mation methods gives validity to the calculations. The
analyses are carried out for various radial immersions of
up-milling and down-milling for a single degree of free-
dom (SDOF) mechanical model. Stability predictions
show that the regions of instability for up-milling and
down-milling are about reversed at low immersions.
Experimental evidence is given to confirm stability pre-
dictions in Section 2 of the paper.

2. Mechanical model

A schematic diagram of the milling process is shown
in Fig. 1. The structure is assumed to be flexible in the
x-direction only, so the system can be treated as SDOF.
A summation of cutting forces acting on the tool pro-
duces the following equation of motion:

ẍ(t) � 2zwnẋ(t) � w2
nx(t) �

Fx

m
, (1)

Fig. 1. SDOF mechanical model of the milling process.

where m is the modal mass, z is the damping ratio, wn

is the natural angular frequency, and Fx is the cutting
force in the x-direction for a zero helix cutter. According
to Fig. 2, the x component of the cutting force on the
pth tooth is given by:

Fxp � gp(t)(�Ftpcosqp�Fnpsinqp), (2)

where gp (t) acts as a switching function. It is equal to
one if the pth tooth is active and zero if it is not cutting
[11,17]. The tangential and normal cutting force compo-
nents are considered to be the product of the tangential
and normal linearised cutting coefficients Kt and Kn,
respectively, the nominal depth of cut b, and the instan-
taneous chip width wp:

Ftp � Ktbwp, (3)

Fnp � Knbwp, (4)

where wp depends on the feed per tooth h, the cutter
angle qp, and the regeneration in the flexible direction
of the structure, as follows:

wp(t) � hsinqp(t) � [x(t)�x(t�t)]sinqp(t). (5)

Here τ � 60/N� [s] is the tooth pass period, � is the
spindle speed given in rpm and N is the number of teeth.

A summation over the total number of cutting teeth
N, and the substitution of Eqs. (3-5) into eq. (2) yield
the total cutting force acting in the x-direction:

Fx(t) � �N
p � 1

gp(t)[�Ktbcosqp�Knbsinqp]{hsinqp(t) (6)

� [x(t)�x(t�t)]sinqp(t)}.

Fig. 2. Cutting force components in milling process.
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The angular position of the tool reads qp (t) �
(2π� / 60)t � p2π/N, where � is given in rpm. A

reduction in notation is achieved by substitution of the
following terms:

Ks(t) � �N
p � 1

gp(t)[Ktcosqp(t) � Knsinqp(t)]sinqp(t), (7)

f0(t) � �N
p � 1

gp(t)[Ktcosqp(t) � Knsinqp(t)]hsinqp(t). (8)

The functions Ks(t) and f0(t) are t-periodic. The resulted
equation of motion becomes:

ẍ(t) � 2zwnẋ(t) � w2
nx(t) � �

bKs(t)
m

[x(t)�x(t�t)] (9)

�
bf0(t)

m
.

Here, the term bf0(t)/m can be eliminated from the equ-
ation. Assume the solution of the form:

x(t) � xp(t) � x(t), (10)

where xp (t) � xp (t � t) is a t-periodic motion that can
be considered as the unperturbed, ideal tool motion when
no self-excited vibrations arise, and x(t) is the pertur-
bation. Substitution of Eq. (10) into Eq. (9) yields:

ẍp(t) � 2zwnẋp(t) � w2
nxp(t) � ẍ(t) � 2zwnẋ(t) (11)

� w2
nx(t) � �

bKs(t)
m

[x(t)�x(t�t)]�
bf0(t)

m
.

In the ideal case x�0, this gives

ẍp(t) � 2zwnẋp(t) � w2
nxp(t) � �

bf0(t)
m

. (12)

Since the excitation term bf0(t)/m is t-periodic, the parti-
cular solution of Eq. (12) is also t-periodic. This proves
the existence of a t-periodic xp(t) and verifies the
assumed form of Eq. (10). Now, the equation of motion
is reduced to

ẍ(t) � 2zwnẋ(t) � w2
nx(t)

� �
bKs(t)

m
[x(t)�x(t�t)].

(13)

This is the variational system of Eq. (9) about the t-
periodic ideal motion xp(t). In other words, the stability
of the x(t)�0 solution of Eq. (12) gives the stability of
the t-periodic ideal solution xp(t) of Eq. (9). The term
Ks(t) in Eq. (13) is often called specific cutting force
variation.

Eq. (13) is the standard linear non-autonomous DDE
model of the milling process. The stability properties are
determined by the eigenvalues of the monodromy oper-
ator.

3. Up-milling and down-milling

The relationship between the direction of tool rotation
and feed defines two types of partial immersion milling
operations: the up-milling and the down-milling (see Fig.
3). Both operations essentially produce the same result,
but the dynamics and stability properties are not the
same. Partial immersion milling operations are charac-
terized by the number N of teeth and the radial immer-
sion ratio a/D, where a is the radial depth of cut, D the
diameter of the tool.

Fig. 4 presents the specific cutting force variation Ks(t)
for different partial and full immersion up-milling and
down-milling operations by a single fluted tool. The fol-
lowing experimentally identified parameters were used:
m � 2.573 kg, Kn � 2.0 × 108 N/m2 and Kt �
5.5 × 108 N/m2 (see Part 2 of this report).

In the case of partial immersion milling, the specific
cutting force variation is different for up- and down-mill-
ing operations. Obviously, the slotting (full immersion
milling) is the same for both up- and down-milling, since
these cases are mirror images of each other.

4. Finite element analysis in time

The stability of the milling process is dependent upon
the perturbation growth or decay about the periodic
motion determined by Eq. (13). Since this equation does
not have a closed form solution, an approximate solution
is sought to understand the behaviour of the system. One
such approximation technique used for dynamic systems
is time finite elements [32]. This method was first
applied to an interrupted turning process by Halley [33]
and Bayly et al. [34]. The authors matched an approxi-

Fig. 3. Up-milling (a) and down-milling (b).
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Fig. 4. The specific cutting force variation.

mation for the cutting motion obtained with a single
finite element to the exact solution for free vibration to
obtain a discrete map. The eigenvalues of the map were
used to determine the stability of the system. Compari-
sons with experimental tests showed strong agreement
for small fractions of the spindle period in the cut r.
However, the authors noticed diminished correlation for
larger values of r. This was corrected by Bayly et al.
[22] by dividing the time in the cut into multiple finite
elements in time. The analysis presented in this section
adapts the method developed by Bayly et al. [22] for an
interrupted turning process to model milling more
closely by including the changing direction of cutting
forces.

When the tool is not in contact with the workpiece,
the system experiences free vibration:

ẍ(t) � 2zwnẋ(t) � w2
nx(t) � 0, (14)

which has the solution x(t) � c1el1t � c2el2t, where
l1,2 � �zwn ± iwd and wd � wn√1�z2 is the damped
natural angular frequency. If we let t � tc as the tool
leaves the material and tf be the duration of free
vibration, a state transition matrix is obtained that relates
the final state of free vibration to the initial state as in
Bayly et al. [22]:

�x(tc � tf)

ẋ(tc � tf)
� �

1
l1�l2

(15)

�λ1eλ2tf�λ2eλ1tf eλ1tf�eλ2tf

λ1λ2eλ2tf�λ1λ2eλ1tf λ1eλ1tf�λ2eλ2tf
� �x(tc)

ẋ(tc)
�.

This equation is true for every period, such that for all n:

�x(nt)
ẋ(nt)

� � f�x((n�1)t � tc)

ẋ((n�1)t � tc)
� , (16)

where � is the 2 × 2 matrix in Eq. (15).
When the tool is in the cut, the perturbation about the

periodic tool motion is described by Eq. (13). Since this
equation does not have a closed form solution, an
approximate solution for the displacement of the tool
during the jth element of the nth period of revolution is
assumed in the following form [22]:

x(t) � �4

i�1

an
jifi(sj(t)). (17)

Here sj(t) � t�nt��j�1

k � 1

tk is the “ local” time within

the jth element of the nth period, the length of the kth

element is tk and the trial functions φi(sj) are the cubic
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Hermite polynomials. On the jth element these func-
tions are:

f1(sj) � 1�3�sj

tj
�2

� 2 �sj

tj
�3

(18a)

f2(sj) � tj��sj

tj
��2�sj

tj
�2

� �sj

tj
�3� (18b)

f3(sj) � 3�sj

tj
�2

�2 �sj

tj
�3

(18c)

f4(sj) � tj���sj

tj
�2

� �sj

tj
�3�. (18d)

These functions are particularly useful because they
allow the coefficients of the assumed solution to be
found by matching the initial and final velocities for
each element.

The initial conditions are

x(tn
0j) � an

01, ẋ(tnoj) � an
j2, (19)

and the final conditions are

x(tn
1j) � an

j3, ẋ(tn1j) � an
j4, (20)

where

tn0j � �nt � �j�1

k � 1

tk�, tn1j � �nt � �j

k � 1

tk�. (21)

Substitution of the assumed solution into the equation of
motion (13) leads to a non-zero error. This equation may
be applied to the jth element:

��4

i � 1

an
j1f̈i(t)� � 2zwn��4

i � 1

an
jiḟi(t)�

� w2
n��4

i � 1

an
jifi(t)� � b

Ks(t)
m

[��4

i � 1

an
jifi(t)� (22)

���4

i � 1

an�1
ji fi(t)�] � e(t).

In the method of weighted residual, the error �(t) is
“weighted” by a set of test functions yp(σj), p � 1, 2
and the integral of the weighted error is set to zero to
obtain two more equations per element [35,22]. The test
functions are chosen to be the simplest possible func-
tions: y1 (σj) � 1 and y2(σj) � σj / tj �1/2. The integral
is taken over the time interval for each element, tj �
tc /E, thereby dividing the time in the cut tc into E

elements. The resulted two equations are thus

�
tj

0

[��4

i � 1

an
jif̈i(sj)yp(sj)�

� 2zwn��4

i � 1

an
jiḟi(sj)yp(sj)�

� w2
n��4

i � 1

an
jiḟi(sj)yp(sj)�]dsj

� b�
tj

0

Ks(sj)
m

[��4

i � 1

an�1
ji ḟi(sj)yp(sj)�

���4

i � 1

an�1
ji ḟi(sj)yp(sj)�]dsj � 0, p � 1,2,

(23)

where Ks (sj) has been used in place of the previously
defined Ks (t) to show dependence on the local time.

The displacement and velocity of the tool at the entry
into the cut are specified by the coefficients of the first
two basis functions on the first element: an

11 and an
12. The

relationship between the initial and final conditions dur-
ing free vibration can be rewritten in terms of the coef-
ficients as:

�a11

a12
�n

� ��aE3

aE4
�n�1

, (24)

where E is the total number of finite elements in the
cut. For the remainder of the elements, the position and
velocity at the end of one element are equal to the pos-
ition and velocity at the beginning of the next element:

�aj1

aj2
�n

� �a(j�1)3

a(j�1)4
�n

. (25)

Eqs. (23) and (25) can be arranged into a global matrix
relating the coefficients of the assumed solution in terms
of the coefficients of the previous tooth passage. The
following expression is for the case when the number of
elements is E � 2:

�
1 0 0 0 0 0

0 1 0 0 0 0

N1
11 N1

12 N1
13 N1

14 0 0

N1
21 N1

22 N1
23 N1

24 0 0

0 0 N2
11 N2

12 N2
13 N2

14

0 0 N2
21 N2

22 N2
23 N2

24

	 ��
a11

a12
�

�a21

a22
�

�a23

a24
�	

n

(26)
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� �
1 0 0 0 �11 �12

0 1 0 0 �21 �22

P1
11 P1

12 P1
13 P1

14 0 0

P1
21 P1

22 P1
23 P1

24 0 0

0 0 P2
11 P2

12 P2
13 P2

14

0 0 P2
21 P2

22 P2
23 P2

24

	 ��
a11

a12
�

�a21

a22
�

�a23

a24
�	

n�1

,

where �11, �12, �21, �22 are the elements of � in Eq.
(16), and

Nj
pi � �

tj

0

�f̈i(sj) � 2zwnḟi(sj)

� �w2
n �

bKs(sj)
m �fi(sj)�yp(sj)dsj,

(27)

Pj
pi � �

tj

0

bKs(sj)
m
fi(sj)yp(sj)dsj. (28)

It should be noted that the indices for Nj
pi and Pj

pi give
the location of these terms in Eq. (27) for higher E as
well.

Eq. (26) describes a discrete dynamic system, or map,
that can be written as

Aan � Ban�1, (29)

or

an � Qan�1. (30)

The eigenvalues of the transition matrix Q � A�1B
determine the stability of the system. If the eigenvalues
for a given depth of cut b and spindle speed � are in a
modulus less than one, the milling process is asymptoti-
cally stable. If the magnitude of any eigenvalue exceeds
one then the process is unstable.

The chatter frequencies for an unstable cutting process
are also determined by the eigenvalues m of the transition
matrix Q, as it was shown by Insperger et al. [36]. These
eigenvalues are also called characteristic multipliers. For
the case of Hopf bifurcations, the critical eigenvalue has
the form m � e ± iwt. The chatter frequencies in this
region are given by

fH � 
 ± w � n
2p
t �[rad / s]

� 
 ±
w
2p

� n
N�

60 �[Hz], n � …,�1,0,1,… ,

(31)

where the angular chatter frequency is w � Im (In m)/t
with the restriction w�(0,2t).

In the case of a period doubling bifurcation, m � �

1 � exp(ip), consequently w � p, and the chatter fre-
quencies are

fPD � 
pt � n
2p
t � [rad / s]

� 
N�

30
� n

N�

60 �[Hz], n � …,�1,0,1,…,

(32)

The frequencies coming from the tooth pass excitation
effect are determined by

fTPE � 
n
N�

60 �[Hz], n � 1,2,.... (33)

The indices H, PD and TPE refer to secondary Hopf,
period doubling and tooth pass excitation, respectively.

5. Semi-discretization method

Discretization techniques are important for differential
equations for which the solution cannot be given in
closed forms. The so-called semi-discretization is a well
known technique in the finite element analysis of solid
bodies, or in computational fluid mechanics. The basic
idea is, that the corresponding partial differential equ-
ation (PDE) is discretized along the spatial coordinates
only, while the time coordinates are unchanged. From a
dynamical systems viewpoint, the PDE has an infinite
dimensional state space, which is approximated by the
finite dimensional state space of a higher dimensional
ODE.

Semi-discretization of a DDE means that the time
delayed term is approximated by a piecewise constant
function, while the current time domain terms are left in
the original form. Thus, the DDE is approximated by a
series of ODEs.

Rewrite Eq. (13) in the form

ẍ(t) � 2zwnẋ(t) � �w2
n �

bKs(t)
m � x(t) (34)

�
bKs(t)

m
x(t�t).

Let us introduce the interval division (ti, ti�1),
ti+1�ti=�t, i�Z, of the time domain, so that t � (M �
1/2) �t, where M is a positive integer, and approximate

the t-period DDE (34) by

ẍ(t) � 2zwnẋ(t) � �w2
n �

bKsi

m �x(t) (35)

�
bKsi

m
xi�M, t�[ti, ti+1), i � 0,1,... ,

where xi � x(ti) for all i�Z, and
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Ksi �
1
�t �

ti+1

ti

Ks(t)dt. (36)

Eq. (35) is also a DDE with a t-periodic, saw-like time
delay t̃, as it is shown in Fig. 5. As the parameter
M→0 while �t→0, Eq. (35) converges to Eq. (34) (for
details, see [31]).

Although Eq. (35) is a DDE, it also defines an auton-
omous linear ODE with constant excitation on the right-
hand side in each interval (ti, ti�1), i�Z. For the initial
conditions, x(ti) � ξi, ẋ(ti) � ẋi the solution and its
derivative at each time instant ti�1 can be determined:

xi+1 � x(ti+1) � a00xi � a01ẋi � b0Mxi�M, (37)

ẋi+1 � ẋ(ti+1) � a10xi � a11ẋi � b1Mxi�M, (38)

where

a00 � �10exp(λ1�t) � �20exp(λ2�t),

a01 � �11exp(λ1�t) � �21exp(λ2�t),

a10 � �10λ1exp(λ1�t) � k20λ2exp(λ2�t),

a11 � �11λ1exp(λ1�t) � �21λ2exp(λ2�t),

b0M � s1exp(λ1�t) � s2exp(λ2�t) �
Ksib

mw2
n � Ksib

,

b1M � s1l1exp(l1�t) � s2l2exp(l2�t),

and

l1,2 �
�2zwn ± �(2zwn)2�4(w2

n � Ksib /m)

2
,

k10 �
l2

l2�l1
, k11 �

�1
l2�l1

, s1 �
�l2

l2�l1

Ksib
mw2

n � Ksib
,

k20 �
�l1

l2�l1
, k21 �

1
l2�l1

, s2 �
l1

l2�l1

Ksib
mw2

n � Ksib
.

Eqs. (37) and (38) defines the discrete map

yi+1 � Biyi, (39)

where the M � 2 dimensional state vector is

yi � col(ẋi xi xi-1 ... xi-M), (40)

and the coefficient matrix has the form

Fig. 5. Time delay approximation.

Bi � �
a11 a10 0 … 0 b1M

a01 a00 0 % 0 b0M

0 1 0 … 0 0

� � � � � �

0 0 0 … 0 0

0 0 0 … 1 0

	 . (41)

Eq. (39) makes the connection between states at time ti

and ti+1.
The connection between the states at t0 and t0 �

k�t � tk is given by coupling of the coefficient matrices
in each interval:

yk � Bk-1Bk-2...B0y0. (42)

The Floquet transition matrix can approximately be
given by coupling the solutions of the first M � 1 inter-
vals:

� � BMBM-1...B0, (43)

since if �t is small enough and M is large, then
(M � 1) �t→t. The stability properties are determined
by the eigenvalues of �, that is, by the characteristic
multipliers. If all these eigenvalues are in modulus less
than one, than the process is asymptotically stable. The
frequencies of the arising vibrations can be calculated
by the same formulas as in Eqs. (31)–(33).

6. Stability charts, comparison of methods

Stability charts and chatter frequencies are determined
by both methods for a series of milling processes. For
the calculations, the experimentally identified parameters
were used: m � 2.573 kg, ζ � 0.0032, fn � wn /2p �
146.5 Hz, Kn � 2.0 × 108 N/m2 and Kt �
5.5 × 108 N/m2 (see Part 2 of this report).

In Fig. 6, stability charts and the chatter frequencies
f are presented for full immersion milling case. These
frequencies are either fH or fPD determined by Eqs. (31)
and (32), while the tooth pass excitation frequencies
FTPE are not presented in these charts. In Fig. 6 (a), the
lobes presented by continuous lines were obtained by the
FEAT method with E � 2 that results a 6 × 6 sized tran-
sition matrix. The lobes presented by dashed lines were
obtained by the SD method with M � 8 that results a
10 × 10 sized transition matrix. The comparison of the
lobes obtained by the two methods show large deviations
at some parameter ranges. In Fig. 6(b), the continuous
curves were obtained by FEAT method with E � 4 (
10 × 10 sized transition matrix), the dashed curves were
obtained by the SD method with M � 48 (50 × 50 sized
transition matrix). In this case, the differences in the
stability predictions are slight and acceptable.
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Fig. 6. Stability lobes and chatter frequencies for full immersion milling.

The size of the applied transition matrix gives a kind
of base to compare the two methods. In the case of the
FEAT method, the infinite dimensional DDE (13) is
approximated by 6 × 6 and 10 × 10 dimensional discrete
systems, in the case of the SD method, 10 × 10 and
50 × 50 dimensional discrete approximation is used.

The lobes shown in Fig. 6 show that the FEAT method
is more efficient than the SD method. There are two
basic reasons for this. First, the FEAT method contains
a symbolic calculation that makes the procedure faster.
Second, the FEAT method discretizes only the time in
the cut, while the SD method discretizes all the time
domain independently if it is in the cut or not. However,
this effect is negligible for high immersion milling, when
the time in the cut is large, and the SD method can be
used for more general cases of distributed time delays
or varying cutting speeds.

In Fig. 7, stability charts and the corresponding chatter
frequencies are shown for 0.1, 0.5 and 0.75 immersion
up- and down-milling. The continuous curves were
obtained by the FEAT method with 10 × 10 sized tran-
sition matrix, the dashed curves were obtained by the
SD method with 50 × 50 sized transition matrix. The
curves show good agreement.

There are two types of stability lobes [36]: the ones
related to secondary Hopf bifurcation, and the ones
related to period doubling (or flip) bifurcations. These
lobes are referred to as Hopf lobes and flip lobes,
respectively. For the case of flip lobes, the chatter fre-
quencies depend linearly on the spindle speed as it is
shown by Eq. (32). For the Hopf lobes, the number of
chatter frequencies are duplicated, since the relevant
characteristic multipliers are a complex conjugate pair
crossing the unit circle. This phenomenon is shown by
both the FEAT and the SD methods. Independently from
the applied approximation method, the physical conse-
quences of the results are discussed in the subsequent
concluding section.

7. Conclusions

In Fig. 7, the similarities and the differences between
up-milling and down-milling cases can be clearly
observed. The flip lobes, for example, vary in size, but
they are located more or less at the same spindle speed
ranges. This is not always true for the Hopf lobes. For
low immersion up-milling, the Hopf lobes are located to
the left of the flip lobes, while for down-milling, the
Hopf lobes are positioned to the right of the flip lobes.
Also, the frequency plots of up- and down-milling cases
show this special duality or mirror symmetry for immer-
sions 1/2 and below.

The physical explanation for these surprising results
is as follows. The flip lobes are related to the impact
effects of entering and leaving the workpiece material.
These are more or less independent of the sense (up or
down) of the milling. This is not the case for the Hopf
lobes. It is well known but rarely referred to, that the
conventional stability chart of turning contains a part for
negative depth of cut which has no physical meaning
there (see Fig. 8). The corresponding dimensionless
autonomous DDE model has the from

ẍ(t) � 2zẋ(t) � x(t) � �
bK

mw2
n

[x(t)�x(t�t)], (44)

where b is the depth of cut, K is the cutting coefficient
of turning, m, z, wn are model parameters and t is the
tooth pass period.

At the negative depth of cut region, the Hopf lobes
are just in the dual regions of cutting speeds. These lobes
may become relevant and be transformed into the posi-
tive depth of cut region for operations where specific
cutting force variation Ks (t) (or the corresponding cut-
ting coefficient K of turning) has a negative time-average
value. This is just what happens in cases of half and less
immersion down-milling as shown also in the upper right
diagrams of Fig. 4.
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Fig. 7. Stability lobes and chatter frequencies for partial immersion up- and down-milling operations.

Fig. 8. Stability boundaries for Eq. (44).

These results are also confirmed experimentally as
presented in Part 2 of this report. The practical relevance
of these observations are obvious: high-speed milling
operations can be stabilized simply by changing to
down-milling from up-milling at certain wide high-speed
parameter domains.
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