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Abstract

When a robot has to interact with the environment, force control of the contact between its actuator and the

workpiece may be required. Force control tries to maintain a prescribed contact force. Basic text books often call the

attention for the destabilizing digital e�ects, like sampling, in these systems. In this paper, the stability limits are

presented in the parameter space of the sampling time, control gains and mechanical parameters. The least force error

and the fastest settling force signal is calculated with simple closed form formulae. These analytical results have a

central role in understanding the technical phenomena and in forming the common sense in design work. Ó 2001

Elsevier Science Ltd. All rights reserved.
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1. Introduction

The main di�culty in the digital force control of robots is originated in the facts that the force sensor
used at the actuator, and also the environment (or workpiece) touched by the actuator, are elastic elements.
Moreover, the compliance of the environment is often unknown, it may vary in di�erent tasks, and it is
di�cult to prepare the control of the robot to handle this problem. The Newcastle robot developed for
turbine blade polishing (see Steven and Hewitt, 1987 or St�ep�an et al., 1990) is a clear example for this, the
blade of wing-shaped cross-section has a varying sti�ness normal to its surface as the robot actuator slides
along it. A great number of other applications could be mentioned where vibration problems occur in
similar computer controlled systems (Raibert and Craig, 1981; Chen, 1987; Eppinger and Seering, 1987;
Vischer and Khatib, 1990 etc.,).

In order to achieve high accuracy in maintaining the prescribed contact force, high control gains are to
be used. In practical, realizations of this force control, however, the robot often loses stability, and starts to
oscillate at a relatively low frequency in the range of 2±20 Hz. This frequency looks far smaller than the
usual sampling frequency of the digital control. From the mechanical engineering view point, the 0.1±2 kHz
sampling frequency applied to a mechanical structure having inertia in the range of 10±100 kg with a ®rst
natural frequency in the range of 1±10 Hz, looks ÔalmostÕ continuous and negligible. This is not true
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(Whitney, 1977, 1985), and simple analytical calculations show that the digital e�ects have to be taken into
account when oscillatory systems are to be controlled, which is the case in force control. Even for a
sampling frequency of 10 kHz (i.e. for a sampling time as short as s � 0:1 ms), the simulation results of
Kuno et al. (1988), prove that the dynamics of the digital processor and the mechanical structure should be
modeled together since loss of stability may occur for certain parameter values of the mechanical structure
and the control system.

The subsequent sections of this paper describe the basic concept of force control in an ideal one degree-
of-freedom (DOF) mechanical model, and the stability analysis of a discrete mathematical model of the
digital control. Then a stability chart is presented in the plane of mechanical and control parameters, and
also the non-linear behavior of the system is forecasted after the loss of stability. The conclusions are
derived from the analytical estimations of the least possible force error and that of the exponential power of
the fastest settling force signal.

2. Force control

2.1. Continuous model

Fig. 1 presents an ideal one DOF mechanical model of the force control, where m stands for the mass
modeling the inertia of the robot, and s denotes the sti�ness of the spring which models the elastic force
sensor, the elastic environment, or both. This model is often used in basic textbooks to analyze force
control (Craig, 1986). The single coordinate y is chosen in a way that the spring is relaxed at y � 0. The
control force Q is provided by the ideal actuator, and calculated by the digital processor from the contact
force error Fe � Fm ÿ Fd, which is the di�erence of the measured and the desired contact force. If the
simplest proportional controller is used with the gain P > 0 and the contact force is measured via the
deformation y of the spring, the control force assumes the form

Q � ÿP �sy ÿ Fd� � sy: �1�
Other types of control forces are also mentioned by Craig (1986), and some of them are discussed in Section
5.

If C denotes the constant Coulomb friction force, the equation of motion is as follows:

m�y � sy � ÿP �sy ÿ Fd� � sy ÿ C sgn _y: �2�
Clearly, the trivial solution y�t� � y0 � Fd=s satis®es this equation when there is no dry friction, i.e. when

C � 0. When the perturbation x is introduced by

y�t� � y0 � x�t�; �3�
the equation of motion,

m�x� Psx � ÿC sgn _x �4�

Fig. 1. Mechanical model.
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refers to the desired contact force with its trivial zero solution. Clearly, Eq. (4) may have any other constant
solution in the interval �ÿC=�Ps�;C=�Ps��, and the corresponding accuracy of the force control can be
characterized by the maximum possible force error

DFe � C
P
: �5�

Thus, the higher the gain is, the less the force error is. Theoretically, there is no upper limit for the gain P,
since the zero solution of Eq. (4) is always stable when C � 0, moreover, it becomes asymptotically stable in
the presence of viscous damping or di�erential controller. Experiments show, however, that the real system
is not stable for high gain P (St�ep�an et al., 1990). The instability is caused by the digital e�ects as explained
below.

2.2. Discrete model

The digital processor samples the force signal at the time instants tj � js, j � 0; 1; 2; . . . ; where s stands
for the sampling time, f � 1=s is the sampling frequency. The control force is piecewise constant in the
sampling intervals (this e�ect is also referred to as zero-order holder) and it is calculated from the contact
force signal sampled at the beginning of the previous sampling interval:

Q�t� � ÿP �sy�tj ÿ s� ÿ Fd� � sy�tj ÿ s�; t 2 �tj; tj � s�: �6�
When this control force is substituted into the equation of motion (2), the same trivial solution y0 is ob-
tained, and formula (5) of the contact force accuracy is also the same. However, the stability properties of
the equation of motion

m�x�t� � sx�t� � s�1ÿ P �x�tj ÿ s�; t 2 �tj; tj � s�; j � 0; 1; 2; . . . �7�
for the perturbation variable x are quite di�erent from those of Eq. (4). The stability analysis of the zero
solution of Eq. (7) needs somewhat di�erent methods, the well-known Routh±Hurwitz criterion cannot be
applied here directly. Still, this stability analysis can be carried out in closed form, and its results can easily
be arranged in a stability chart.

To prepare this calculation, let us introduce the angular natural frequency c and the natural frequency n
by

c �
��������
s=m

p
; n � c=�2p�

in the uncontrolled system, and also introduce the dimensionless time T by

t � T s; tj � js � Tjs ) Tj � j; j � 0; 1; 2; . . .

The dimensionless time measures the time by the multipliers of the sampling time. If 0 denotes di�erenti-
ation with respect to the dimensionless time, and Eq. (7) is divided by the mass m, and also multiplied by the
square of the sampling time s, the mathematical model of the system assumes the form

x00�T � � �cs�2x�T � � �cs�2�1ÿ P �x� jÿ 1�; T 2 � j; j� 1�; j � 0; 1; 2; . . . �8�
This equation has a central role in the description of the stability of digital force control.

3. Stability analysis

The stability investigation of the trivial solution of the piecewise continuous system (8) is carried out via
the analytical construction of a discrete mapping having the same stability properties.
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3.1. Discrete mapping

Since the non-homogeneous ordinary di�erential equation (8) has a piecewise constant right-hand side,
the general solution of Eq. (8) for each sampling interval can be constructed from the sum of the general
solution of the homogeneous part and a particular solution of the non-homogeneous part:

x�T � � xh�T � � xp�T � � B1 cos�csT � � B2 sin�csT � � �1ÿ P�x� jÿ 1�; T 2 � j; j� 1�; �9�
while its derivative, the velocity, assumes the form

x0�T � � ÿB1cs sin�csT � � B2cscos�csT �; T 2 � j; j� 1�: �10�
The coe�cients B1;2 come from the initial conditions x�j�; x0�j� for the corresponding jth sampling interval.
After the substitution of T � j in Eqs. (9) and (10), the coe�cients are obtained from the system of linear
algebraic equations

cos�csT � sin�csT �
ÿcs sin�csT � cscos�csT �

� �
B1

B2

� �
� x� j� ÿ �1ÿ P�x� jÿ 1�

x0� j�
� �

in the form

B1 � ÿ�1ÿ P �cos�csj�x� jÿ 1� � cos�csj�x� j� ÿ 1

cs
sin�csj�x0� j�;

B2 � ÿ�1ÿ P � sin�csj�x� jÿ 1� � sin�csj�x�j� � 1

cs
cos�csj�x0� j�:

Clearly, the position and the velocity of the block can be calculated at the end of the jth sampling interval
by substituting T � j� 1 into Eq. (9), and also into its derivative (10). After some trigonometric trans-
formation, the substitutions of B1;2 result

x� j� 1� � �1ÿ P ��1ÿ cos�cs��x� jÿ 1� � cos�cs�x� j� � 1

cs
sin�cs�x0� j�; �11�

x0� j� 1� � �1ÿ P �cs sin�cs�x� jÿ 1� ÿ cs sin�cs�x� j� � cos�cs�x0� j�: �12�
These formulae mean that the position and the velocity of the block at the � j� 1�th sampling instant can be
calculated as a linear combination of the position at the � jÿ 1�th and the jth sampling and that of the
velocity at the jth sampling. This can also be arranged in matrix form if the 3-D vector

zj �
x� jÿ 1�

x� j�
x0� j�

0@ 1A; j � 1; 2; . . . �13�

is introduced. The coe�cient matrix A of the 3-D linear mapping

zj�1 � Azj �14�
can be built up from the coe�cients of the corresponding terms of formulae (11) and (12) as follows:

A �
0 1 0

�1ÿ P ��1ÿ cos�cs�� cos�cs� 1
cs sin�cs�

�1ÿ P �cs sin�cs� ÿcs sin�cs� cos�cs�

0@ 1A: �15�

Clearly, the convergence of the 3-D geometrical series (14) is equivalent to the asymptotic stability of the
zero solution of Eq. (8), which describes the digital force control.
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3.2. Convergence

As explained in basic text books like Kuo (1977), the trivial solution of the linear mapping (14) is asym-
ptotically stable, if and only if all the eigenvalues l1;2;3 of A are located within the unit circle (i.e. in the open
unit disc) of the complex plane. This is a direct generalization of the well-known convergence criterion for
scalar geometrical series. In order to reveal its relation to the stability criteria of continuous systems,
consider the di�erence equation

z�T � � Az�T ÿ 1�; T 2 �1;1� �16�
with the initial function

z�T � �
0

x�T �
x0�T �

0@ 1A � 0
x�0�cos�csT � � x0�0�

cs sin�csT �
ÿx�0�cs sin�csT � � x0�0�cos�csT �

0@ 1A; T 2 �0; 1�;

where the functions x(T) and x0�T � are the solutions of Eq. (8) with the initial conditions x(0) and x0�0�, and
with x�ÿ1� � 0 on the right-hand side. While this di�erence equation reproduces the solution of Eq. (8) in
the time domain, it also coincides with the discrete mapping (14) when T � j� 1 and j � 0; 1; 2; . . .

The stability condition for the di�erence equation can be constructed via the application of the Laplace
transformation for Eq. (16) in the same way as in the case of ordinary di�erential equations or di�erential-
di�erence (or delay-di�erential) equations. For the characteristic roots k, this procedure gives the same
characteristic equation as the substitution of the standard exponential trial solution

z�T � � KekT ; k 2 C; K 2 R3 �17�
in Eq. (16), that is

�Iÿ Aeÿk�K � 0 and K 6� 0 ) det�Iÿ Aeÿk� � 0: �18�
This characteristic equation has an in®nite number of roots kk, k � 1; 2; . . . which are situated along

®nite number of vertical lines in the complex plane as shown in Fig. 2. As it follows from Eq. (17), the
solutions tend to zero if and only if the real parts of all of these characteristic roots are negative. To simplify
this calculation, introduce the new complex variable l by

Fig. 2. Transformations for stability and decay analysis.
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l � ek ) fRekk < 0; k � 1; 2; . . . () jl1;2;3j < 1g: �19�
Since the characteristic Eq. (18) gives just the eigenvalues l of the matrix A, we arrived at the same stability
condition for the di�erence equation (16) as the convergence condition for the discrete mapping (14).

This connection of the two descriptions becomes relevant when the vibration frequencies and expo-
nential decay are calculated in the time domain. For the stability analysis, we follow the calculation of the
eigenvalues l from the characteristic equation (18) after the substitution of Eq. (19)

det�lIÿ A� �
X3

k�0

bkl
k � 0; where

b3

b2

b1

b0

0BB@
1CCA �

1
ÿ2cos�cs�

P � �1ÿ P �cos�cs�
ÿ�1ÿ P ��1ÿ cos�cs��

0BB@
1CCA: �20�

In order to avoid the tedious algebraic work during the solution of the above third degree equation, the so-
called Moebius transformation can be used for the new variable g:

l � g� 1

gÿ 1
) fjlj < 1 () Reg < 0g: �21�

This is also shown in Fig. 2 (the inverse of this transformation is identical to itself), and the open unit disc is
mapped back to the left half of the complex plane. After the application of this transformation in Eq. (20)
and its multiplication by �gÿ 1�3, the equation again becomes third degree polynomial

p3�g� �
X3

k�0

akg
k � 0 : �22�

The coe�cients ak can easily be calculated from the coe�cients bk in Eq. (20) as

a3

a2

a1

a0

0BB@
1CCA �

1 1 1 1
3 1 ÿ1 ÿ3
3 ÿ1 ÿ1 3
1 ÿ1 1 ÿ1

0BB@
1CCA

b3

b2

b1

b0

0BB@
1CCA � 2

P �1ÿ cos�cs��
�3ÿ 2P ��1ÿ cos�cs��

P � �2ÿ P�cos�cs�
1� cos�cs�

0BB@
1CCA; �23�

where the kth column of the transformation matrix contains the binomial coe�cients of �g� 1�4ÿk �
�gÿ 1�kÿ1

, k � 1; 2; 3; 4:
As it follows from Eq. (21), it has to be checked whether all the roots g1;2;3 of p3 in Eq. (22) are located in

the left half of the complex plane. This can, of course, be done by the well-known Routh±Hurwitz criterion
(Farkas, 1994) applied to the coe�cients in Eq. (22).

The above algorithm for the convergence investigation of any linear discrete mapping like Eq. (14) is
given in a densed form in JuryÕs criterion (Kuo, 1977). The detailed geometrical interpretation of the al-
gorithm also given in Fig. 2 helps the construction of analytical formulae and stability charts, it can also be
generalized for frequency and decay analysis within or out of the stability limit, and also gives information
on the types of motions bifurcating at the boundaries of stability.

3.3. Stability chart

Note that there are only two parameters in coe�cients (23) of the polynomial p3 in Eq. (22). One is the
(dimensionless) gain P of the force control, the other one is the (also dimensionless) cs which is propor-
tional to the ratio of the natural frequency n of the uncontrolled system and the sampling frequency f of the
control (both measured in Hz):

n=f � �c=�2p��=�1=s� � cs=�2p�: �24�
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This gives the possibility to construct 2-D stability charts showing all vibration e�ects arising in simple
force controlled systems in a single parameter plane.

In accordance with the Routh±Hurwitz criterion, the stability of the polynomial p3 in Eq. (22) is
equivalent to the positiveness of all the coe�cients ak, k � 0; 1; 2; 3 and also that of the second Hurwitz
determinant H2. Considering formulae (23) of the coe�cients, these result the following stability conditions:

a3 > 0 () P > 0 and cs 6� 2kp; k � 0; 1; . . . ; �25�

a2 > 0 () P < 3
2

and cs 6� 2kp; k � 0; 1; . . . ; �26�

a1 > 0 () P > ÿ2
cos�cs�

1ÿ cos�cs� ; �27�

a0 > 0 () cs 6� �2k � 1�p; k � 0; 1; . . . ; �28�

H2 � a2a1 ÿ a3a0 > 0 () 1 > P > ÿ3
cos�cs�

1ÿ cos�cs� or 1 < P < ÿ3
cos�cs�

1ÿ cos�cs� : �29�

The corresponding domains of stability are shaded in Fig. 3.
This chart has a surprising structure, and relevant conclusions can be drawn from it, which are essential

for designers and experimentalists who detect di�erent kinds of vibration phenomena in these structures.
They are discussed in detail in Section 5. Note the main di�erence between the stability of the frictionless
�C � 0� continuous model (4) and that of the more realistic digital model (8): without digital e�ects, the
desired contact force is stable (but not asymptotically stable) for any positive gain P, while the digital e�ects
may result asymptotic stability in very limited distinct parameter domains only where the gain has to be less
than 3=2 and the sampling and the natural frequencies have to be tuned properly.

4. Dynamic properties

In the stability chart of Fig. 3, the critical characteristic roots are also presented at the stability limit.
With their help the kind of bifurcating motions can be identi®ed, the frequencies of vibrations occurring
can be estimated, and also the strongest exponential decay, the fastest settling signal, can be calculated.

Fig. 3. Stability chart and vibration frequencies.
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4.1. Bifurcations

As can be shown generally, only the coe�cients of the highest and lowest degree terms and the Hurwitz
determinant provide the borders of stability, that is conditions (26) and (27) are redundant in this respect.

When a3 � 0, there is an eigenvalue l of the linear mapping (14) at �1 on the unit circle. The physical
meaning of this bifurcation at P � 0 is obvious: the desired contact force is unstable for negative gains (the
control works Ôjust in the wrong wayÕ), and other stable equilibria may show up around it, depending on the
exact structure of the non-linearity in the system. If it is symmetric, a supercritical pitchfork bifurcation is
the most typical case here. The physical interpretation of the degenerate bifurcations along the vertical lines
n=f � 1; 2; . . . ; i.e. at cs � 2p; 4p; . . . ; is more di�cult and has little importance since they disappear in the
presence of the slightest viscous damping in the system. However, a lot of additional calculations are re-
quired to prove this.

When a0 � 0, another kind of degenerate bifurcation occurs along n=f � 1=2; 3=2; . . . ; i.e. at
cs � p; 3p; . . ., where the linear mapping (14) has eigenvalues at ÿ1 on the unit circle. This bifurcation,
however, exhibits the period doubling (or ¯ip) bifurcation (Guckenheimer and Holmes, 1986) in the
presence of perturbation via slight viscous damping. The corresponding vibration frequency is just the half
of the sampling frequency; in other words, its period of oscillation is the double of the sampling time s.
These frequency values are shown at the corresponding peaks of the vibration frequency curves above the
stability chart in Fig. 3.

Along the further stability limits there are complex conjugate roots on the unit circle in the form
l1;2 � cosa� i sina, a 2 �0; p� (see them and their transformed versions also in Fig. 2). If the corresponding
discrete solutions are transformed back into the dimensionless time domain of T by k � lnl, oscillatory
solutions are obtained with the dimensionless angular frequencies a� 2kp. Actually, there are in®nitely
many of these, but the lowest a is experienced the strongest in the spectrum of oscillations in practice, the
existence of the higher order ones refer only to the fact that the motion is a combined series of shifted
piecewise harmonic oscillations as calculated in Eqs. (9) and (10), so they cannot be expressed as a ®nite
sum of harmonic components. This bifurcation is still analogous to the Hopf bifurcation (or ¯utter) in the
time domain.

4.2. Vibration frequencies

In the case of the Hopf bifurcation H2 � 0, the lowest angular frequencies in the oscillation at the loss of
stability can be calculated in closed form. There are two cases as shown by formula (29) when the roots of
Eqs. (22) and (20) can be calculated easily:

P � 1) g1;2 � �i
sin�cs�

1ÿ cos�cs� ) l1;2 � e�ics )

a � �ÿ1�k�csÿ kp�; cs 2 �kp; �k � 1�p�; k � 0; 1; . . . ; �30�

or

P � ÿ3
cos�cs�

1ÿ cos�cs� ) g1;2 � �i
1���
3
p ) l1;2 � ÿ

1

2
� i

���
3
p

2
) a � 2p

3
: �31�

The corresponding frequencies a=�2p� are presented above the stability limits in Fig. 3. The frequencies in
the original time domain t � T s are a=�2ps� in Hz. Clearly, these frequencies may be far smaller than the
sampling frequency f � 1=s and cannot be greater than the half of it.
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4.3. Exponential decay

There are several view points the engineer should consider during the design of a force-controlled
structure. One is the minimum force error, which requires high gains. The highest gain 3/2 can be achieved
at the limit of stability only, which means that the system will settle slowly, with high accuracy, though.
However, some applications may require fast settling, short transients, as opposed to high accuracy.

The relation of the di�erence equation model (16) and the discrete mapping (14) shows that the estimate,

jl1;2;3j < q�6 1� ) Rekk < lnq; k � 1; 2; . . . ) 9K > 0; 8T > 0: jx�T �j < KeT ln q; �32�
is true (see also Fig. 2). This means that the smaller the spectral radius q of the eigenvalues l1;2;3 is, the
stronger the exponential decay of the signal is. With the help of the new complex variable v and the
transformation l � qv, the domains of stability can be shrunk to identify those smaller parameter regions
in the �P ; n=f � parameter plane, where the vibration signal x settles with an exponential power less than
lnq�6 0�. To do this, the same Moebius transformation has to be repeated between v and g as before in
Eq. (21) (see also in Fig. 2). Thus,

l � qv; v � g� 1

gÿ 1
) fjlj < q () jvj < 1 () Reg < 0g; �33�

and the same algorithm results the polynomial p3 in Eq. (22) with the following coe�cients:

a3

a2

a1

a0

0BB@
1CCA �

1 1 1 1
3 1 ÿ1 ÿ3
3 ÿ1 ÿ1 3
1 ÿ1 1 ÿ1

0BB@
1CCA

q3b3

q2b2

qb1

b0

0BB@
1CCA

�
q3 ÿ 2q2 cos�cs� � q�P � �1ÿ P �cos�cs�� ÿ �1ÿ P ��1ÿ cos�cs��

3q3 ÿ 2q2 cos�cs� ÿ q�P � �1ÿ P �cos�cs�� � 3�1ÿ P ��1ÿ cos�cs��
3q3 � 2q2 cos�cs� ÿ q�P � �1ÿ P �cos�cs�� ÿ 3�1ÿ P ��1ÿ cos�cs��
q3 � 2q2 cos�cs� � q�P � �1ÿ P �cos�cs�� � �1ÿ P ��1ÿ cos�cs��

0BB@
1CCA: �34�

For certain ®xed values of q, the domains in question can be plotted by the use of the Routh±Hurwitz
criterion in the same way as in case of the stability chart.

We can ®nd, however, in closed form that critical value qmin of the radius where the domains shrink to a
point. There are two possibilities for this. In the domain cs 2 �0; 2p=3�, i.e. for n=f 2 �0; 1=3�, the domain
disappears when a3 � a2 � a1 � 0 (which yields also H2 � a2a1 ÿ a3a0 � 0). This means three equations for
the three unknowns P, cs, and q. The explicit elimination of P and cos�cs� leaves the algebraic equation

q3 � 3q2 ÿ 1 � 0: �35�
Its only solution in the interval [0,1] and also the corresponding other parameters assume the form

qmin;1 � ÿ1� 2cos
2p
9
� 0:532; �cs�1 � 0:647; �n=f �1 � 0:103; P1 � 0:254: �36�

There is another point where the exponential decay boundaries disappear; it is at cs 2 �2p=3; p�, i.e. at
n=f 2 �1=3; 1=2�. Now, the system of the three equations a2 � a1 � a0 � 0 (yielding H2 � 0 again) leads to

q3 ÿ 3q2 � 1 � 0 �37�
having the solutions

qmin;2 � 1� 2 cos
5p
9
� 0:653; �cs�2 � 2:936; �n=f �2 � 0:467; P2 � 1:141: �38�

These points are also presented in the stability chart of Fig. 3.
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When decision has to be made which point is better in practice, the dilemma of the designer is clear:
either use parameter point 1 with force error (5) and decay (32) given as

DFe � C=P1 � 3:937C; jx�t�j6Ket ln qmin;1=s � Keÿ0:631t=s �39�
or use parameter point 2 with

DFe � C=P2 � 0:876C; jx�t�j6Ket ln qmin;2=s � Keÿ0:427t=s; �40�
i.e. either the error is high and settling is fast, or the error is small but settling is slow. In the extreme case,
when the force error reaches its minimum at 2C/3, the system already starts losing stability with the value
q� 1, lnq� 0.

5. Conclusions

In the case of computer controlled elastic structures, the digital implementation of force control may
result in unexpected stability behavior and vibrations. These problems occur even for very high values of
sampling frequencies which otherwise result Ôalmost continuousÕ signals for the mechanical structure.

The stability chart in Fig. 3 of digital force control shows that the stability limit for the maximum
proportional control gain strongly depends on the ratio of the natural frequency of the uncontrolled system
and the sampling frequency of the digital control. It is not the shortest sampling time, which provides the
highest gain within the stability limit, and this calls the attention for the proper tuning of the sampling
frequency. Since the highest proportional gain is 3=2, the best force accuracy is 2C/3, i.e., the force error
cannot be guaranteed to be below 66% of the dry friction in a structure with negligible viscous damping.

Note also that Craig (1986) suggests the control force in the form

Q � ÿP �sy ÿ Fd� � Fd �41�
instead of Eq. (1). This seems to result in a smaller force error

DFe � C
P � 1

�42�

than the one given in Eq. (5). Still, the digital implementation of this slightly di�erent control will result the
same force error since the repeated calculations for Eq. (41) show that the maximum possible gain P within
the stability limit is 1/2 only, the whole stability chart in Fig. 3 is shifted downwards by 1. Thus, there is no
practical di�erence between the control (1) and (41).

Although all kinds of possible bifurcations of discrete systems can be found along the stability limits, the
typical one is the ¯utter (or Hopf bifurcation) in practical cases. The vibration frequencies after the loss of
stability may be in the range of 0±50% of the sampling frequency (see the upper part of Fig. 3). This
frequency may be so small (even smaller than the natural frequencies of the mechanical structure itself) that
the experimentalist would never suspect the high frequency digital e�ects as a cause of the problem.

The exponential decay of the signal cannot be better than exp�ÿ0:631t=s� as shown in Eq. (39), where
the short sampling delay s results fast settling, of course. However, at this parameter point (Fig. 3) the force
error is quite high, almost four times the Coulomb friction in the structure. The stability chart of Fig. 3 is a
good tool to develop physical sense of these digitally controlled structures, and the designer can optimize
between the view points of least error and fastest settling. The method described here can be used also for
systems with viscous damping or with more degrees of freedom, although, the calculations cannot be re-
peated in closed form anymore, and the in¯uence of the parameters cannot be represented geometrically in
simple stability charts.
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