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Machine tool chatter is one of the most complex dynamical processes.
Since the accuracy of a machine tool is strongly affected by the vibrations
arising during the cutting process, several models appeared in the specialist
literature to explain and to predict these vibrations. From dynamical systems
view-point, the most complicated models are the ones which describe the so-
called self-excited vibrations of the machine tools. Within this group of
models, the complexity of the model increases with the number of degrees of
freedom, i.e. with the dimension of the phase space where the trajectories
are embedded. The greater the dimension of the phase space is, the more
complex the described dynamical phenomena can be.

An essential cause of the vibrations in the cutting process is the regener-
ative effect. Its mechanical model can still be a single degree of freedom
system, but the corresponding mathematical model is an infinite dimen-
sional one. The presence of the time delay results delay-differential equations
(DDE), and the trajectories can uniquely be described in an infinite dimen-
sional phase space only. Since the mechanical model can still be simple and

deterministic, there is a possibility for analytical, often closed form calcula-



tions and the topological description of trajectories may present complicated,
even chaotic nonlinear vibrations. If we take a careful look at the experimen-
tal results, they always contain more or less stochastic components. Since
the numerical simulation of the complex models may or may not include
stochasticity which refers to the dynamics of the model and the discretiza-
tion technique together, it is important to predict nonlinear vibrations also
with analytical work now involving computer algebra, too.

First, we summarize briefly the stability analysis of linear autonomous
DDEs. Some of the stability charts relevant in modelling oscillatory systems
with delay are also presented. Then simple mechanical models are given for
regenerative machine tool chatter. The construction of basic stability charts
in the plane of the technological parameters is explained. Finally, local and
global nonlinear phenomena are described when the nonlinearity occurring
in the DDE model is related to the cutting force. Delay differential equa-
tions with time periodic coefficients are not discussed here. Note, however,
that such mathematical models are also important in modelling machine
tool vibrations in case of milling, when the number of cutting edges working

together varies in time (see e.g. Minis, 1994).

1 GUIDE TO DELAY-DIFFERENTIAL EQUATIONS

The simplest DDE has the form

#(t) = z(t — 1) (1)

where the state variable x is scalar, z(t) € R, dot stands for differentiation
with respect to the time ¢, and the time delay is just 1. The DDE describes
a system where the present rate of change of state depends on a past value
of the state. Substituting the trial solution z(t) = Ke*, K, \ € € we obtain

a non-trivial solution for K when
A—eMKeM = A—e*=0.

The latter equation is also called characteristic equation which has infinitely

many solutions for the complex characteristic roots \;, j =1,2,.... As this
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simple example suggests, the theory of DDEs is a quite direct generalization
of the theory of ordinary differential equations (ODE) into infinite dimen-
sional phase spaces. This generalization is not a trivial task, though, and it
uses the mathematical tools developed for functional differential equations
(FDE). For a thorough introduction into this theory see the books (Hale
1977; Kuang, 1993).

In case of linear, time-independent mechanical models describing vibra-
tory systems in the presence of time delay, the most general mathematical

model assumes the form
0 0
Mx(t)+ [ dB@)x(t+60)+ [ dCO)x(t+60)=0. (2)

It has a similar structure to the well-known matrix differential equation of
small oscillations in a finite degree of freedom (DOF) system about its stable
equilibrium. In this equation, x(¢) € R" where the mechanical system has
n DOF. The constant matrix M is the usual symmetric and positive definit
mass matrix, while the matrices B, C describe the weights of some past-
effects with respect to the ‘damping’ and the ‘stiffness’ in the system back
in the time till ¢ — r. The elements of B(6) = [b;x(0)], C(#) = [c;x(0)] are
functions of bounded variation, and the corresponding terms in (2) contain
the so-called Stieltjes integrals. This is a kind of short-hand which is very
convenient to describe two different types of delays which will also appear
in regenerative machine tool chatter models. One is the ‘discrete delay’ 7,
the other is the ‘continuous delay’ described by a weight function w over a

certain time interval. For example, the scalar:

0 g€ [-r, —7)
) -1 6 € [—7,—h)
O =\ h140+ bsin(n/h) 0¢[-h0) 3)
h 0= 0

in Figure 1 gives

[ 2t 4+ 0)ae(0) = (1) + /_Oh(1 + cos(Om/h))z(t + 0)d0 — a(t — 7).

since dc¢(f) = ¢(8)df where c is differentiable, and de() = ¢(0 +0) — (6 —0)

where ¢ has a discontinuity. Thus, the coefficients of the discrete delay terms
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at 0 and —7 are
c(+0) —e(=0)=+1 and c¢(—74+0) —c¢(—7—0) = -1
while the weight function for the continuous time delay term is

w(f) = %0(9) =1+ cos(0r/h), 0¢€[—h0).

h-1

Figure 1: Description of discrete and continuous delays with (3)

The trivial solution x = 0 of the DDE (2) is not necessarily stable,
of course. However, the necessary and sufficient condition for asymptotic
stability is the same as it is for ODEs: the real parts of all the (infinitely
many) characteristic roots have negative real parts. These characteristic
roots are the zeros of the transcendental characteristic function

DY) = det (MX” + OT \MAB(O) + [ ac() ) (4)

-r
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obtained by substituting the trial solution Ke* into the DDE (2) as shown
in the introductory scalar example (1).

The infinite dimensional version of the Routh-Hurwitz criterion used for
the characteristic polynomial of ODEs is needed to analyze the zeros of the

characteristic functions (4) of DDEs. If we define the real functions
R(w) =ReD(iw), S(w)=ImD(iw), we€]|0,00), (5)
and the real zeros of R are denoted by p; > ...p, >0, i.e.
R(pr) =0, k=1,...,r

then the equilibrium of the linear delayed mechanical system (2) of n DOF
is asymptotically stable if and only if
S(pr) # 0, k=1,...,r and (6)
,
Y (=DfsgnS(pr) = (=1)"n. (7)
k=1

In case of n DOF systems, the dimension of the phase space is 2n, i.e.
always even. The above mentioned stability criterion has a somewhat more
complicated form for DDEs with odd dimensions (like (1) — see further
details in Stépan 1989).

In the following section, the most important stability charts are summa-
rized for delayed vibratory systems. These are presented and explained for
simple cases having the minimum number of mathematical parameters only,
and later these charts will be referred to when the equations of regenerative
machine tool chatter are analyzed fully loaded with the necessary mechanical

and technological parameters and parameter functions.

2 BASIC STABILITY CHARTS OF DELAYED VIBRATORY SYSTEMS

A stability chart presents those domains in the space of the system pa-
rameters where the equilibrium is asymptotically stable. By presenting the
number of the pure imaginary (or zero) characteristic roots along the sta-

bility limits it can also refer to the way the equilibrium loses its stability.

5



The stability limits can be determined in the parameter space (often plane)
by plotting the co-dimension 1 surfaces (often curves) given by the so-called
D-curves:

R(w)=0, Sw)=0, wel0,00) (8)

where R, S are defined in (5) by means of the characteristic function D,
and w takes the role of the parameter of the curve. In general, these curves
separate infinitely many disjunct domains, and we need the stability criteria
(6,7) to select the ones which correspond to asymptotic stability.
As an introductory example consider the simple first order scalar DDE
:'c(t)—l—c/o w(@)z(t+60)dd =0, beR. 9)

The weight function
w(f) =e’™, 0 e (—o0,0] (10)

is often used to model delay effects with a simple approximation. The effect
of the past is fading away exponentially in the past, and 7 > 0 is assumed
as a measure of the delay in the system. The characteristic function

0 1
D()\):)\+c/ eg/TegAd9:A+c)\+1/T

has two zeros only which also come from the polinomial
M+ AT +e. (11)

The Routh-Hurwitz criterion implies that the trivial solution of (9) is asymp-
totically stable if and only if ¢ > 0. The analysis of this DDE is easy since
the delay with this exponential weight function increases the dimension of
the system by one only. It can be shown that the DDE (9) with the weight
function (10) is equivalent to a second order ODE. Differentiate (9) with
respect to the time ¢, and use partial integration to calculate

0
i(t) + c/ it +0)df =

—00

() + exlt) - < [ " Ot 4 0)df =

—00

#(#) + %:t(t) +en(t). (12)



Its characteristic polinomial is just (11).

In case of oscillatory mechanical systems without viscous damping, the
D-curves are usually lines in the parameter plane. The examples with finite
and continuous delay like

0
() + con(t) — cl/ w(@)z(t + 0)df = 0 (13)

-1

with the simplest weight function
w(@) =1, 0¢€[-1,0] (14)

have the characteristic function

DA) =N N+c¢—c /01 eMdh = N 4 ¢y — 011 _Ae_A L A#0 (15)
with understanding
D(0) = }\% D(A\) =¢p—cy,
of course. Since the D-curves (8) have the form
R(w) = —w? +¢o — Clsinw =0, Sw)= Cll_% =0,
the zeros of S can be given as w = 2kn, kK = 0,1,... or ¢; = 0, and the

D-curves in the plane of ¢g, ¢; are lines, indeed
_ _ 4122
ci=0and ¢y >0, ¢ =c¢y, co=4kn”.

The criteria (6),(7) with n = 1 DOF can be used to select the stability regions
bordered by these lines. The first condition (6) clearly gives

co 7 4k*T* k=1,2,.... (16)
If
0< g <c (17)
then
R(0)=¢y—c; >0 and Jim R(w) = —o0, (18)



and the number 7 of the real positive zeros of R is odd, while S is positive
at all the zeros py of R due to (16), so

r r

> (=1)Fsgn S(pr) = > (—1)F = —1

k=1 k=1

and the stability condition (7) is satisfied. If either ¢; < 0 or ¢; > ¢y then
this condition is not satisfied. The stability chart of Figure 2 shows the
shaded stability domains determined by the necessary and sufficient condi-
tions (16,17) for asymptotic stability. This example calls the attention for
the difficulty of selecting stability domains just by drawing the D-curves.
Although the criteria (60,(7) will not be checked and analyzed in the sub-
sequent examples, we emphasize their importance in the construction of the

stability charts.

c f4n’ —

c /an’

Figure 2: Stability chart of DDE (13) with (14)

If the DDE (13) is considered with the weight function

w(8) = —g sin(rf), 0 € [—1,0] (19)



then the characteristic function reads

m214e?

D()\) = )\2 + ¢y — Cl?m

, A F tim
with a continuous extension at 4im, i.e. with

D(ir) = lim D(\) = —7* + o + i%cl .

This results the D-curves

721+ cosw 72 sinw

R(w) = —w? + ¢y — Oy = 0, Sw)= e 0
where S = 0 can be solved in closed form again giving ¢; =0 or w = jm, j =
0,2,3,... (note j # 1). Substituting these into R = 0 we obtain the following
lines as D-curves:
1+ (=1)

5 cr = —(2=1D)(co—j°7%), j=2,3,...

ci=0andcy >0, ¢ =c,

In the corresponding stability chart of Figure 3 the shaded stability regions
selected by (6,7) are bordered by these lines. The w values above the stability
chart represent the critical angular frequencies at the corresponding stability
limits.

The comparison of the stability charts in Figures 2 and 3 for the same
DDE shows the great influence of the shape of the weight function on stability,
both weight functions satisfy

though.
The DDE
Z(t) + boi(t) + cox(t) — crz(t —1) =0 (20)

can also be assumed as a special case of the DDE (13) when by = 0, i.e.
there is no damping in the system, and the weight function is the so-called
Dirac function at —1, i.e. w(f) = §(1 + #). The D-curves calculated from

the characteristic function
D()\) = A% 4+ oA + ¢y — cre™ (21)
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Figure 3: Stability chart of DDE (13) with (19)

can be given as:
Rw)=—w?+cy—cicosw=0, S(w)=bhbyw+c;sinw=0.
When by = 0, these are equivalent to
co=0and ¢y >0, (—=1)Y¢, =co—j*n%, j=0,1,...,

which border the shaded stability regions in Figure 4 presenting a similar
structure to that of Figure 3. Figure 5 also shows the stability regions when
by = 1. The damping increases the regions of stability, but the D-curves are

not straight lines any more:

w w
, €] = —— , wFO0,m27m,. ..
tanw Sin w

C():(,U2—
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Figure 4: Stability charts of DDE (20) with by = 0

Finally, the stability chart of the DDE

d* d
Tt (D) + boa(t) — et —1) =0 (22)

is presented in Figure 6. The structure of this chart is the same again with
the important difference that the stability domains are located in the half-
plane ¢; < 0 only. This kind of DDE of odd order becomes important when
continuous delay with an exponential weight function (10) is added to an
oscillatory system already having a discrete delay.

The stability chart also serves information about possible non-linear vi-
brations in that non-linear system the linearization of which is the corre-
sponding linear DDE. All the stability limits but the ones ¢; = ¢y in the
stability charts of Figures 3, 4, 5 and ¢; = 0 in Figure 6 refer to possible
Hopf bifurcations with critical characteristic roots +iw presented above the
charts. Stable or unstable periodic motions may appear there with angular

frequency at about w.
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Figure 5: Stability charts of DDE (20) with by = 1

3 BASIC DDE MODELS OF REGENERATIVE MACHINE TOOL CHAT-
TER

The basic idea of the regenerative effect is well understood in the special-
ist literature (Tlusty and Spacek 1954; Tobias 1965) and experiments clearly
confirmed its existence. The machine tool is an elastic structure, so the tool
and the workpiece can move relative to each other. In case of stationary cut-
ting conditions, the chip thickness f, the chip width, and the cutting speed
v are constant values as prescribed by the designed technology. Because of
some external or internal perturbation, the single tool and the workpiece
start a damped vibration relative to each other, and the surface of the work-
piece becomes wavy. After a round of the workpiece (or the tool), the chip
thickness will vary at the tool because of this wavy surface. Consequently,
the cutting force will also vary and excite the structure. Moreover, this ex-
citation frequency seems to be very dangerous since it is almost the same as
the natural frequency of the structure. However, this phenomenon cannot
be modeled as an excited vibration, it is rather a self-excited one, where the
cutting force is determined by the designed technological parameters, but its

variation depends on the difference of the relative displacement of the tool
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Figure 6: Stability chart of DDE (22)

and the workpiece at the given time instant and one round of the workpiece
earlier. This special kind of self-excited vibration, where past effects also take
place, is called regenerative vibration. In this sense, the appearance of the
regenerative vibration is a stability problem in a delayed oscillatory system,
in other words, in a damped oscillatory system with a delayed feed-back, or
dead time.

Figure 7 shows the simplest, IDOF mechanical model of the regenerative
machine tool vibration in the planar case of the so-called orthogonal cut-
ting. This model will allow us to explain the basic stability problems and
nonlinear vibrations arising in this system. In case of industrial applications,
the 1 DOF mechanical model is to be subsituted by the result of a thorough

experimental modal analysis of the machine tool structure as often presented
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Figure 7: Mechanical model and cutting force variation

in the specialist literature (see for examle Shi and Tobias 1984). However, it
is also true that the lowest natural frequencies are the most involved ones in
the regenerative vibrations, and low DOF mechanical models can still serve
good quantitative results.

The zero value of the coordinate x of the tool edge position is set in a
way that the x component F, of the cutting force F' is in balance with the
spring force while the chip thickness f is just the prescribed value fy. Then

the equation of motion of the tool is clearly
1
i+ 2kai + or = —AF,(f) (23)
m

where a = \/% is the natural angular frequency of the undamped free
oscillating system, and k = b/(2ma) is the so-called relative damping factor.
The calculation of the cutting force variation AF, requires an expression of
the cutting force as a function of the technological parameters, primarly as a
function of the chip thickness f which depends on the position x of the tool
edge.

A simple but empirical way to calculate the cutting force is the application

of the so-called Taylor formulae. According to this, the cutting force FT
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Figure 8: Cutting force and chip thickness relation

depends on the chip thickness as shown in Figure 8 where the superscript
T refers to the Taylor approximation. This is a degressive function usually
given as a certain power of f which is less than 1. This might be convenient
in some technological design algorithms, but dynamical calculations prefer a

power series form around f, like

p . i —
AFEG) =2 - G = { S I R 2T e

where the chip thickness variation is

Af=f—o, (25)
the so-called cutting force coefficient
dFy (fo)
)P — 26
= (26)

describes the linear approximation of the cutting force variation, and the
further coefficients of the power series come from

_ dE(fo)

]—W, ]:2,3, (27)
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Note that the cutting force is zero for negative chip thickness (f < 0 &
Af < —fy), which does not exist physically, of course. This is an important
non-linear part of the cutting force variation to be discussed later.

An improved way to calculate the cutting force is to determine the stress

resultant of the distributed force system P along the active face of the tool:

F() = [ Palf)ds. (28)

This is a challenging task of continuum mechanics. Although some early
results can be found in the literature (Usui, Shirakashi and Kitagawa 1978),
the most precise and detailed results has been published recently (Maru-
sich and Ortiz 1996). Their finite element algorithm accounts for inertia
effects, contact and friction, heat generation and conduction, thermal soften-
ing, mechanical hardening, rate-sensitivity, brittle and ductile fracture and
fragmantation, and permits chip morphologies as a function of the techno-
logical parameters. This finite element calculation can trace the rigid body
dynamics, too, but the great amount of numerical work does not allow us
to have analytical study of the regenerative effect and to produce stability
charts to summarize the effect of system and technological parameters on
stability. As shown later, however, the variation of the distributed force sys-
tem P on the active face of the tool has an important role in the dynamics of
the system. The following approximation of the x component P, of the force
system combines the Taylor approximation of the cutting force FI with an

estimated shape function W (with unit [1/m]):
Po(f,s) = F (H)W(s), s€[-1,0]

where the origin of the local coordinate s is fixed to the tip of the tool and
describes the distance (arc length) back along the active face having a length
[, and

0
/ W(s)ds=1.
-1
The estimation of W may be supported by the finite element calculations

mentioned above. Under stationary cutting conditions f = f, and
0 0
(o) = [ Palfors)ds = FL(fo) [ W(s)ds = F/(f0),  (29)
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i.e. the improved calculation of the cutting force results the conventional
Taylor description.
Let a long discrete time delay 7, and a short continuous one h be intro-

duced by

d z
=" p==. (30)
v v

A certain point on the surface of the workpiece needs the time 7 to meet
the tool again, i.e. to travel one round with the cutting speed v along the
circumference dym of the cylindrical workpiece of diameter dy. The speed of
the chip along the active face is proportional to the cutting speed v. For the
sake of simplicity, let it also be v which means that a certain particle of the
chip needs the time h to slip along the active face.

The shape of the stress distribution can also be given in the time domain
by introducing a ‘local time’ # = s/v. This ‘local time’ # € [—h, 0] is negative
and gives how much earlier a certain paricle of the chip was at the tip of the
tool. The stress distribution function in this ‘local time’ is denoted by w
(with unit [1/s]):

w(0) = oW (08) = /Ohw(e)de —1. (31)

Express the cutting force distribution in x direction in the time domain

using the global time ¢ and the local one 6:

1
po(t,0) = Po(f(t,0),v0) = FX (f(t, 9));11)(9) , t€lty,0), 6 €[—h,0].
(32)
Above the active face of the tool, the chip thickness is approximated in the

time domain by
f(t,0)=fo+az(t—7+0)—x(t+0), tEeElty,00), 0€[-h,0, (33
that is the chip thickness at the tool tip is assumed to be
f(t,0) = fo+x(t — 1) — x(t).

As a result of the above relations (28),(29),(32),(31), the power series
(24) and also the chip thickness variation coming from (33), the cutting
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force variation in x direction reads
AF(f(t, ) = E(f(t ) = Eelfo) = [ PulF(t,5/0),9)ds — F () =
[ pa(5(0.0),00000 = X () = [ (FE(0,0)) = ET(fo))w(0)d0 =

0 glﬁﬁgj(Aﬂtm) if Af(t,0)>~fo |, B
[ T a2 Juo
/ {Z‘;’lk(( T4 0) —z(t+0) ifat+0) < fotralt—T1+0)

FI(fo) if x(t+0)> fo+a(t—71+06)
/ ko (2t — 7+ 0) — 2(t + 0))w(9)dd.

The substitution of the linearized cutting force variation (35) in the equa-
tion of motion (23) results in a linear DDE like (2) in a scalar case with
weights similar to (3) with respect to the past. Its stability analysis is pre-
sented in the next section. We obtain a nonlinear DDE suitable for Hopf
bifurcation calculations if the Taylor series (24) truncated at the 3rd degree
(p = 3) is substituted in the calculation of the cutting force variation at (34).
However, the global non-linear behavior is also strongly determined by that
part of the non-linearity where the cutting force variation is constant, when
the tool edge leaves the workpiece and the regenerative effect, i.e. the delay
disappears from the system for a certain time period. The last section will

deal with these non-linear effects.

4 STABILITY OF CUTTING UNDER REGENERATIVE CONDITIONS

Even the linear model of regenerative machine tool vibrations exist in
several more or less modified versions in the sepcialist literature. These
modifications and improvements are needed to push the theoretical results
closer to the experimental observations. Some of these will be mentioned
during the stability analysis of the model derived in the previous section.

Substitute the linear cutting force variation (35) into the differential equa-
tion (23) of the 1 DOF model:

i(t) + 2kai(t) + o’ (t) +

18
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ko w(@)z(t + 0)do — b /Th w(T+0)z(t+6)d0=0. (36)

m J—h m

The ratio of the short time delay h and the long one 7 is constant:

_h
7= T dorm
as it comes from their definitions in (30). From now on, the long time delay

7 will be kept as a parameter, i.e.
h =qr

is substituted, where 7 is inversely proportional to the cutting speed v or to

the angular velocity 2 of the workpiece:

0= (37)

T

It has a unit [rad/s], of course, but in the stability charts below it is converted
to [r.p.m.].
The trivial solution of (36) refers to the stationary cutting. When its

stability is investigated, the D-curves coming from the characteristic function
k
D(X\) = X2+ 250 + o + —Dy(1)), (38)
m

D) = [ "

—qr

w(0)eMd — / T w(r+9)eMdd (39)
—(1+q)7
should be calculated as defined in (5):
k
Rw) = —w? 4+ o + %1}20 (rw) =0, (40)

Ry(Tw) = /

—qr

0

w(0) cos(wh)df — / w(r +0) cos(wh)dd, (41)

—(14q)T

k
S(w) = 2kow + —Sy(Tw) =0, (42)

m

0 -7

So(Tw) = / w(9) sin(wh)dd — / oy, BT H O sin(0)d0 . (43)
—qT —(14q)7
In these equations of the D-curves, all the transcendental expressions are
separated in the formulae of Ry and Sy. They depend only on the product
of the time delay 7 and the critical frequency w (which also serves as a

parameter for the D-curves).
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The stability charts are traditionally constructed in the plane of the cut-
ting force coefficient k; and the angular velocity © of the workpiece (see
(37)), since these parameters are proportional to the width of cut and the
cutting speed, respectively, so the stability chart helps technology design in
a somewhat direct way. The angular frequency w of the vibration occurring
at the loss of stability is also presented above the stability chart against the
running speed . The D-curves (40),(42) can be rearranged with respect to
these technological parameters, and the stability limits can be plotted in the
(2, k1) plane with the following explicit expressions where the new parameter
Y(= Tw) € R is introduced:

_( Ro®) )

“) = ( s T\ S&(w)’ )
Q(w)ZQMTW), (45)
ki (y) = —zmm;)((‘i)) : (46)

where Ry and Sy are defined in (41) and (43).

Four basic cases will be considered and discussed here. The first case is
when the contact length [ of the chip and tool is negligiable relative to the
circumference dym of the workpiece. This can be modelled by choosing the

Dirac function as the weight function:
w(f) =46(0) . (47)
Then the equation (23) of motion will contain the long discrete delay 7 only:
i(t) + 2k (t) + o’z(t) + %(x(t) —z(t—71)) =0,
and the expressions (41) and (43) simply give

Ry(tw) =1 — cos(tw),

So(Tw) = sin(Tw) .

Since

Ry (1) _ 1_COS¢: (0

tan —

So(0) ~ smo 2
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the parameter ¢ can be eliminated from (44), and the stability limits (45)

and (46) can be expressed in a more explicite form as a function of w as

follows:
Qw)=—"2  — j=12,..., (48)
jm — atn “’%Oj‘d
m (w? — a?)? + 4k%a’w?
k = 49
1((")) 9 W2 — a2 ( )

Since k; > 0, the stability limit (49) already shows that the vibrations arising
at the loss of stability will have vibration frequencies somewhat greater than
the natural frequency of the system, that is w > «. The stability chart in
Figure 9 is constructed by means of the above D-curves in the same way
as shown in the basic example (20) in Figure 5. The fixed parameters are
m = 50 [kg], kK = 0.05, « = 775 [rad/s].

It is important to observe that there exist a constant lower boundary of
the stability limits which can easily be calculated from (49) as its minimum
where

dky
dw

This basic stability chart is well-known from the early books on machine

(w*) =0 = w' = a/ 1+ 2/{, kl,min = kl (w*) = 2ma2/{(1 4+ /‘i}) .

tool vibration (Tobias 1965). However, this stability chart has only been veri-
fied experimentally in the middle range of the cutting speed. The real cutting
process shows somewhat better stability properties at low and high cutting
speed. In order to explain this experimental observation, Tobias introduced
the so-called dynamic cutting theory, where he inserted an additional damp-
ing in the equation of motion which was inversely proportional to the cutting
speed. This effect is very slight for turning, somewhat greater in the case
of milling, and the strongest for drilling. The quantitative identification of
this kind of additional damping is difficult, and does not provide a universal
method for the correct prediction of regenerative vibrations at low and high
speed. The introduction of the idea of a complex cutting force coefficient
may also help to get better quantitative agreement between theory and ex-
periments (Tlusty 1978), but the experimental identificaiton of this cutting
force coefficient as a function of cutting speed, frequency, rake angle, etc. is

difficult and the results still are not reliable for any kind of cutting.
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Figure 9: Stability chart with stress distribution (47)

When further weight functions W are considered in this section, we call
the attention on the ‘damping effect’ caused by the distributed force system P
acting on the tool active face. This becomes stronger as the tool-chip contact
length [ becomes gretaer and greater relative to the distance dym between two
cutting edges, i.e. as ¢ increases. This is the smallest for turning and the
greatest for drilling.

In the second case what we discuss here, the shape of the distributed

cutting force system is approximated by an exponential function

1 s v v 1 0
Wi(s)=—exp— = w(f)=—exp(+0)=—exp—, 0 € (—00,0
( ) lo P lo ( ) lo p(lo ) qoT onT ( (i())

where the contact length is infinite, but still, the length of this short delay
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effect can be characterized by [y, or by the ratio
lU/U h[)
o= 77— = —.
dow/v T
In the same way as in the basic example (9) and the equivalent equation (12),

the equation of motion (36) can be transformed into a higher (here third)

order system without a continuous time delay, but still having the discrete

delay :
Bz A%z
qOTW(t) + (1 + 2/‘6046107')@(75) +
da k k
(20 + a®qo7) 1 (1) + (0 + El)x(t) - Elx(t —7)=0.

The stability of this kind of equation can be analyzed in the same way as
shown in Figure 6 for (22), but the stability limits will not be straight lines,
of course. The D-curves are constructed from (45) and (46) with

1 —cost + qoysiny _sine) — qotp(1 — cos )

a 1+ ggop? ’ a 1+ qgy?

calculated by partial integration from the formuale (41) and (43). The results

Ry () So(¥)

are summarized in the stability chart of Figure 10 where the damping effect
at low cutting speed appears clearly showing a good qualitative agreement
with the experimental observations.

The shape of the stability chart is even more realistic in the third case
we consider:

Wi(s) = %(Hcos(%)), s [=1,0], = w(f) = qiT(Hcos(qlTe)), 0 —qr0].
(51)

If this weight function is substituted in (41) and (43), the functions

2 & w ) 2 1 — ’l,/) -9 2’(,/}2
Ry(¢) = (1 — cos w)qwﬁ(ﬂiﬂi((é?;Z) + Smwﬂ ( qwc((:i(q_ ()Ilw2) : ;
So(®) = sinp—SIY) g gy T Cos(aw) — 2677

qp(7* — ¢*¢?) qp(n? — ¢*p?)
can be calculated and inserted into the calculation of the stability chart with
(45) and (46). This is shown in Figure 11, where the improved stability
properties can be detected both at low and high cutting speeds.
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Figure 10: Stability chart with stress distribution (50), ¢o = 0.01

Finally, we present the stability chart for the weight function

W(s) = —21[ sin(%s), se[-1,0], = w(§) = _quf sin(qiTe), 0 € [—qr,0].
(52)

The corresponding stability chart is calculated using the functions

Ro() == ((1 cos T s@) | sinay) ) |

R A
> (o L+ cos(qy in(qy)
So(v) = % (sm w%zgi?) — (1 — cos 1[))%)

in the stability limits (45) and (46). The chart in Figure 12 is presented
for low damping (k = 0.01). It has a very complicated structure with a
rich frequency content which may be very surprising from technical view-

point. However, this chart may still describe a realistic situation: in case of
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Figure 11: Stability chart with stress distribution (51), ¢ = 0.01

drilling, the ratio of the short delay and the long one gets close to 1, and the
maximum of the distributed cutting force is ‘behind’ the tool edge because

of the negative rake angle at the chisel edge of the drill.

5 NON-LINEAR REGENERATIVE VIBRATIONS OF MACHINE TOOLS

The stability charts of cutting under regenerative conditions may refer to
very complex linear stability properties depending on the technological and
mechanical parameters, but the practical applicability of the results is still
very limited. Apart of the uncertainty in the identification of some of the

parameters, this is due to the fact that the domain of attractivity of the stable
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Figure 12: Stability chart with stress distribution (52), ¢ = 0.2

stationary cutting may still be very small in the infinite dimensional phase
space. In other words, relatively small perturbations may push the system
away from the otherwise asymptotically stable equilibrium, and the arising
non-linear vibrations will survive. This was clearly proved experimentally
(Shi and Tobias 1984).

Two important reasons of non-linear regenerative vibrations are discussed
qualitatively in this section. Both are related to the non-linearity of the
cutting force shown in Figure 8, and also in the cutting force variation formula
(34). First, consider the ‘local’ non-linearity of the cutting force, when it is
assumed that the vibration amplitudes are still small in the sense that the

tool does not leave the material of the workpiece:
z(t) < fo+a(t—1).

The stability charts of Figures 9, 10, 11, 12 show that Hopf bifurcation occurs

26



at the stability limits, that is stable or unstable periodic motions exist around
the equilibrium depending on the nature of the bifurcation, whether it is
supercritical or subcritical, respectively. The approximate frequency of these
vibrations is w which is usually somewhat above the natural frequency of the
system.

The algorithm of the Hopf bifurcation calculation has been worked out
in the literature (Hassard, Kazarinoff and Wan 1981), and computer alge-
bra may help carrying out the tedious algebraic calculations. A 3rd degree
approximation of the cutting force at the desired chip thickness f, will con-
tain also 2nd degree terms since the cutting force variation is not symmetric
there. This makes the calculation even more difficult, since the center mani-
fold, the critical invariant two-dimensional surface embedded in the infinite
dimensional phase space, cannot be approximated by its tangent plane at
the origin only, the determination of its 2nd degree approximation is also
required. The result of this calculation is a closed form algebraic approxima-
tion of the periodic motion, and its stability is also determined. Note that
co-dimension 2 bifurcations may also occur referring to the existence of sta-
ble or unstable quasiperiodic oscillations (tori) in the phase space with those
frequencies where discontinuity appears in w above the stability charts. Ex-
amples for such detailed calculations are presented in the literature (Stépan
and Haller 1995; Campbell, Bélair, Ohira and Milton 1993) for robotics and
population dynamics, respectively.

Some numerical examples show that the Hopf bifurcation in regenerative
machine tool virations is subcritical, there is no evidence or mathematical
proof that it cannot be supercritical in other cases, though. The experi-
ments (Shi and Tobias 1984) also refer to the existence of unstable periodic
motions. Figure 13 presents a simplified bifurcation diagram when the cut-
ting force coefficient (or the width of cut) is the bifurcation parameter. The
dashed curve refers to the unstable periodic motion or limit cycle, and this
Hopf bifurcation calculation does not show any attractor around the unstable
equilibrium (dashed line) or outside the unstable limit cycle.

There must be an attractor somewhere ‘outside’. Consequently, the Hopf

bifurcation cannot describe that attractor, and another, say ‘global’ non-
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Figure 13: Bifurcation diagram

linearity must also be considered. This will be served by that part of the

cutting force where the tool leaves the workpiece:
z(t) > fo+x(t—71).

This is presented with respect to the cutting force variation in formula (34).
For the time being, simulation seems to be the only way to get any infor-
mation about the DDE model with this kind of nonlinearity. However, the
existence of an attractor due to this global non-linearity can easily be ex-
plained qualitatively. If the system parameters are taken from the unstable
region of the stability chart, or they are from the stable region but the per-
turbations are great enough to push the state variables outside the unstable
periodic motion, then the coordinate x increases, and the tool sooner or later
leaves the workpiece. At this point the cutting force becomes zero (or in other
words, the cutting force variation in (34) becomes the constant —F) (fo)),
and the regenerative effect is ‘switched off’. This non-linearity is extremely
strong: the delay effect in the infinite dimensional phase space is valid for
a certain region of this phase space only, and the trajectories spiralling out-
wards will hit an (eventually also infinite dimensional) surface from where
they jump onto the two dimensional phase plane of a simple oscillator, which
refers to the motion of the free tool outside the workpiece material. That

motion is damped, of course, and the tool will soon return to the workpiece.
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There are several options then. The tool may arrive back from the phase
plane into the infinite dimensional phase space outside the unstable limit
cycle. Then it goes out again, and a series of switches occur between the
two dynamics: the infinite dimensional delayed one, and the 2 dimensional
dynamics of the simple oscillator. The result of these switches could either
be some stable periodic or quasiperiodic motion, or a chaotic one. The
observation of the fractal-like surfaces of the workpieces (Moon 1994) also
confirm the possible existence of chaos in these systems. The third option is
that transient chaotic motion occurs, since after some chaotic jumps between
the two dynamics, the trajectory may arrive back to te delayed dynamics
inside the unstable limit cycle, and the temporary chaotic motion of the
system will settle at the stable stationary cutting. However, the length of
this transient chaotic motion varies stochastically, and might be so long that
the cutting process is already over. The structure of the transient chaotic
motion here is the same as that of the shimmy problem of towed wheels

(Stépan 1992) in a higher dimensional phase space, though.

6 CONCLUDING REMARKS

Regenerative vibrations are one of the most important reasons of machine
tool vibrations. The delay-differential equation models of regenerative vibra-
tions describe a very rich dynamics since the corresponding phase space is
infinite dimensional. Even the linear stability analysis of these models serve
an interesting and complex view of these systems and the stability charts in
the space of the technological parameters may present fractal-like stability
domains. Non-linear vibrations refer to the existence of unstable periodic
motions, the co-existence of quasiperiodic and chaotic motions is also likely.
Transient chaotic motions may also occur in some parameter domains. In
the view of these DDE models we can conclude that the prediction of ma-
chine tool vibration is difficult even if we have a reliable mechanical and

mathematical model at hand.
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