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Abstract

The empirically developed force control in cases of the tiabpolishing
and the rehabilitation robots serve as a motivation for thdysof the peculiar
dynamic behaviour of digital force control. The effect oéthampling times
of the digital controllers are studied analytically, and torresponding stability
charts are presented for different gain and mechanicahpateas describing also
the different sampling frequencies at the force sensorsratiee digital control
loop. The types of bifurcations are also identified at theistg limits. As one
of the practical conclusions, the negative role of diffé¢ia@rgain is explained in
digital force control.
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I ntroduction

When a robot has to interact with the environment, the cowoirthe contact
force between its actuator and the workpiece is often reduiForce control
tries to maintain prescribed contact force. Apart from tieubing effects
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of the so-called unmodelled high-frequency dynamics ofehgystems, basic
textbooks often call the attention to the destabilizingtdigeffects, like sam-
pling (Slotine and Li, 1991). At the stability limits preged in the parameter
space of the sampling time, control gains and further machbhparameters,
several kinds of bifurcations occur, showing a large vgr@tnonlinear dy-
namic behaviour. These analytical results have a centaimanderstanding
the technical phenomena and in forming our physical senseetkduring the
design of force controlled systems.

The present study has been motivated by two laboratory qgigojeOne is
the Rehabilitation Robotics (REHAROB IST-1999-13109)ject (Arz et al.,
2003) that uses force control during the teaching-in phdgbeoantispastic
physiotherapy of patients suffering from the spastic hemggis of the upper
limbs (Kovacs and Stépan, 2003). The other project is thedhyplosition/force
controlled Newcastle robot designed for turbine bladeshatig (Stépan and
Haller, 1995). In both practical applications, peculiandgnical behaviour
and unexpected vibrations occurred referring to sevefaldzition phenomena
during the experiments.

The present study first describes the basic problems ofegpfadice control,
then briefly reviews the motivation of this study. The anabitstudy of the
simplified 1 degree-of-freedom (DoF) mechanical modelé wifferent sam-
pling effects at the force sensor and in the control loop ared in details.
The results are presented in the form of stability charterrigfg also to the
types of bifurcations in the system. In the concluding sectgualitative ex-
planation is given why differential gains are avoided ingtical force control
applications like rehabilitation robotics or robotic @hling.

1. Applied Force Control

Several excellent books (like Gorinevsky et al., 1997; Iied and Villani,
1999; Natale, 2003) have been published recently on foragraoof robot
manipulators, showing the great demand for understandiagsgnthesizing
experiences in this field. These books investigate modeds\aral degrees of
freedom in cases of continuous-time force control. The ewxpnts validating
the proposed control algorithms, however, are exclusieelyied out using
digitally controlled experimental testbeds. Only briefatitative discussions
and over-simplified analytical studies are presented dagguthe dynamics of
the digitally controlled counterparts of these systems Mlajor simplification
in the analytical studies is, that the analyzed mathenlaticalels are scalar
and of first order only, i.e., the inertial forces are ofteglaeted compared
to the viscous damping ones. In the meantime, the persistegstigation
of the delayed oscillators (Stépan, 1989) call the attartiothe difficulty of
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the mathematical problem here, also having important phaysonsequences,
explaining unexpected vibration phenomena.

The reassuring statement, that the digital controller witdreasing sam-
pling frequency should approach the characteristics o€tlneesponding con-
tinuous controller, can be posed in a confusing way, too: fanite sampling
time results in substantially smaller gain parameters thancorresponding
analogue controllers may have. Apart from these general ifah contradic-
tory) statements, it is much less studied that the decrdasanpling frequency
does not decrease maximum gains uniformly at the limit dfibtg and a large
sampling time may result in better stability properties gtithatory systems
than small ones have.

It depends on the control parameters and mechanical piepeitthe sys-
tem whether a control algorithm with a certain sampling fiexaicy can be con-
sidered continuous, or the digital effects have to be takém account. For
example, a digital force control algorithm with high samglifrequency can
be considered “continuous” if the end effector of the robmmes to contact
with a soft environment where the effective stiffness ofskistem is very low
and the effective (or modal) mass is high. However, if tharemment is very
stiff, or there are high-frequency vibration modes with lovedal damping,
then the effects of the discrete-time nature of the comradlill have signifi-
cant influence on the dynamic behaviour of the force comtdoflystem even
at high sampling rate. This significant influence means, fangle, that the
maximum stable proportional gains are severely limitedhase cases.

2. M otivation

The stability properties of the 3 degree-of-freedom (DoF)brid
position/force controlled Newcastle robot was analysedétail both theo-
retically and experimentally (Stépan and Haller, 1995).e Tbbot was used
and designed for turbine blade polishing, and it maintaiceastant contact
force between the polisher and the blade. The bendingessfof the polished
blade was strongly determined by the principal directidithe matrix of area
moment of inertia of the wing-shaped cross section of theebl®epending on
the direction of the force control that was normal to the bladrface, the robot
lost stability and started self-excited oscillations wigatively low frequen-
cies in the range of a couple of Hertz. Figure 1 shows the 2 DeE&hamical
model of the robot in the force controlled direction reprasey the elasticity
of the force sensor and also that of the contacted envirofymdmch is the
turbine blade in this case.

The experimentally confirmed stability chart shows thelstadgions in the
plane of the sampling time of the digital controller and the proportional gain
P for the identified mechanical parameters not presented Aérere are two
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Figure1l. Mechanical model and stability chart for force control inbine blade polishing

important conclusions of this series of experiments. Fingt largest gains can
be found not at the lowest realisable sampling times. Secamgattempt to
apply the derivative of the force error multiplied with afdiential gainD in
the digital control resulted in further reduction of thetdéadomains.

The other example for stability problems with force contoines from the
so called RehaRab project (Arz et al., 2003). During theh@agin phase,
the force is controlled between the patient’s arm (attadbetthe orthosis in
Fig. 2) and the robotic arm. Figure 2 shows also the corregipgrmechanical
model and stability chart. The parameter values are n&disere, but the
corresponding stability chart shows the stable contrahupater region for the
real mechanical parameter values. Since the differenéiisgcaused stabil-
ity problems, again, only proportional gaih and integral gainf were used.
Actually, the integral terms did not improve the system b&ha much. In
this case, we also experienced the improved stability fgelaampling times,
but those sampling time values were unreasonably high, sdidveot study
them further.

All these experiences, and similar reports in the litemtirected our in-
vestigation to the mechanical root of the problem. In thessghent sections,
we study the simplest possible 1 DoF force control model secaf a PD
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Figure2. Mechanical model and stability chart for force control
applied in rehabilitation robotics

controller with respect to the force error in the presencthefdigital effects,
namely for finite sampling times.

3. M echanical model

Consider the mechanical model shown in Figure 3. This is aR fdodel that
can give a good approximation for the behavior of a robotic aith force con-
trol in one direction. The equivalent massnd equivalent stiffnedsrepresent
the inertia and stiffness of the robot and the environmetiterforce controlled
direction. These parameters can either be identified exgeitally or calcu-
lated using the constraint Jacobian representing the fametrolled direction,
and the mass and stiffness matrices of the robot (Kovecsas €003). The
generalized forc&) represents the effects of the joint drives. Similar models
are frequently used in other papers and books to analyze éanatrol (Stépan,
2001; Craig, 1986; Gorinevsky et al., 1997; Quian and Sehut892).

In the model presented in Figure 3, the notatignrefers to the position
that corresponds to the desired constant fdige= kx4, while the coordinate
y = x — xq measures the deformation of the spring relative to thisrelési
equilibrium position. The spring is used to represent theraction force with
the environment. Using the force error signal detectedhaaspring deforma-



Figure3. Mechanical model of unidirectional PD force control

tion, the simple PD controller determines the control sigoathe DC motor
that provides the control force (or torqu@)at the joint drive of the robot. The
equation of motion of the above mechanical model can beemris

mi(t) = —kx(t) — Csgnz(t) + Q(t) ' 1)
Q(t) = Fm(t) - P(Fm(t) - Fd) - DFm(t)

where P and D are the proportional and the differential gains of the PD-con
troller, respectively. In additionf,,,(t) = kxz(t) denotes the time-dependent
measured force. If there is no dry friction considered inrttaglel, i.e.C = 0,
the trivial solutionz(t) = x4 satisfies equation (1). In this case, the system
can reach the desired equilibrium positiop without a steady state error in
principle. Dry friction results in non-zero steady forceoerand the higher the
proportional gain is, the less this steady force error ii@;r1986). This is
one of the main reasons why we are interested in applying@e faoportional
gains as possible, while in the meantime, we often run irebility problems
this way. In other words, the steady-state force error cabasimply elimi-
nated by increasing the proportional gain without the rislosing stability.

In case of analogue control, however, there is no stabilibplem to occur
in the above simple 1 DoF model. Introducing a perturbaticurad the de-
sired equilibrium position as

CC(t) = Tq+ y(t) ) 2

the equation of motion and its characteristic polynompial) obtained by the
exponential trial solutiony(t) = cexp(At), ¢ € R, A € C or by Laplace
transformation has the form

mij(t) + Dky(t) + Pky(t) = 0, (3)
p(A) = X2+ DA+ Pw? = 0 (4)

wherew, = \/k/m is the natural angular frequency of the uncontrolled me-
chanical system. The Routh-Hurwitz criterion yields theg $olutiony(t) = 0
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corresponding to the desired contact fofGg(t) = Fj, is asymptotically sta-
ble for any control gaing > 0, D > 0. There is no upper limit for the gains,
which, according to (Craig, 1986), also means that the gtetade force error
could be eliminated in principle.

However, stable and accurate digital force control reguile analysis of
the more refined discrete-time dynamics of the system. Adwe i the sub-
sequent sections, this will explain the unexpected bitisngophenomena for
certain proportional gains and sampling frequencies, dsasahe undesired
destabilising effect of the differential gain.

4. Digital control model

To model the digital computer controlled system, we comnsaeero-order-
hold (ZOH). The force sensor is sampled with the frequehey, while the
digital processor sets the control output at the time instap = nAt,
n = 0,1,2,..., whereAt is the sampling time of the digital control that is
considered to be a large integer multiple of the sampling tirinthe force sen-
sor. Thus, the measured force is available at every samjistgnts of the
controller, and the time derivative of the measured forae lwa estimated by
finite differences of the measured force values in practice.

The conventional form of the digital control force for a Phtoller would
be

Q(t) = (1 = P)ky((n — 1)At) — Dkj((n — 1)AL) + kg,
t € [nAt, (n+ 1)At) (5)

and the corresponding equation of motion has the form

j(t) + wiy(t) = (1 = P)why((n — 1)At) — Dwig((n — 1)At),
t € [nAt, (n+1)At) (6)

To reduce the number of parameters, introduce the dimdas®rtime
T = t/At, and the notation for the derivatives as

d , d, . d
O =) and 2() = w0 ™

Then the equation of motion is simplified to
y"(T) +y(T) = (1= P)yp—1 — Dwny, 1, T €[Tn,Tnr1)  (8)

To realize digital force control in the presence of the foeceor derivative,
some kind of digital approximation is needed in practiceliertime derivative.
The simplest possibility is to use a finite difference appration in the form

Fu(nAt) 2 2 (Fy((n = )AL = By (n— )AL= 7). (9)

T
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Now, according to (6), (8) and (7), the equation of motionhaf system in the
dimensionless time domain can be written in the form

y"(T) +y(T) = (1= P)yn—1— (1?% (Yn—1 — yn—2+q) )

T e [T, Tyt1) (10)
where

At — 1
At

q= AT =w, At and y, o1 =y ((n —2+4q)AT) . (11)

The new parametej can be interpreted as a sampling quotient relating the
sampling time of the force sensor to the sampling time of tireroller. Com-
paring the resulting equation with (8), we can see that tfierdntial term here

is divided by the dimensionless sampling timg". Therefore, we can fore-
see that for high ratios of the mechanical system naturglfmacyf, and the
control system sampling frequengy, i.e., for f,,/ fs = AT/(2x), the control

will be increasingly similar to the simple proportional ¢amler case when

d = Dw, = 0.

5. Stability analysis and bifurcations

The procedure of the stability analysis of the above egoaifanotion (10) is
based on the construction of a discrete map using the piseeamalytic solu-
tion of the non-homogeneous equation of motion for each aghmterval,

where the non-homogeneous term is piecewise constant. ¥detoealculate
the position of the robot not only at the sampling instafits= nAT' of the

controller, but also at every,,_;,, = (n — 1 4+ ¢)AT instants in order to
obtain the measured contact force for the finite differenmer@imation of
the contact force derivative. The lengthy algebraic mdaimn results in a
simple discrete map in the form

Zpt1 = WZTL ) (12)

where the 7 dimensional discrete state vector is chosemnatigtas

T
Zn = [Un, Yns Yn—2+q> Yn—1> Ypn—1> Yn—3+q+ Yn—2] (13)

Using the common robotic notatiorss(AT) = car andsin(AT) = sar,
the transition matriXW of the above mapping can be written in the form
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car sar (I—car)D (1—car)P 0 0 0
—SAT CAT SAT[) SATP 0 0 0
0 0 0 coar  Sqar (1—cqar)D (1—cqar)P
W= 1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
(14)
where
De—D  gng po1_p_ D (15)

(1-qAT (1—qAT "

The exponential stability of the digital force control isuaglent to the sta-
bility of the above discrete mapping, i.e., to the convecgenf this vector
geometric series. Consequently, the stability of the systan be investi-
gated by checking the 7 eigenvalyes 7 of the transition matriW, whether
these eigenvalues are located within the open unit disceo€timplex plane.
With the help of standard numerical methods, we can cheskctindition of
stability.

The correspondingf,,/fs — P stability charts are calculated for small
(d = 0.1) and high(d = 1) dimensionless differential gains and presented
in Figure 4 and 5, respectively. These figures show the demm@tfrom the
ideal charts constructed for zero force sensor samplingtiga 0 as the finite
difference approximation of the derivative of the meastioede shows up with
7 > 0. The shaded domain bounded by the thick solid lines refeheéaase
when the time derivative of the measured force is considasea continuous
input signal of the controller, i.e., the sampling time af force/torque sensor
is negligible compared to the sampling time of the digitatécontrol loop.
In this case, the shaded stable domains also illustratectfiedic nature of the
fn/fs — P stability charts.

The thin solid line presents the deviations from these shaitien the finite
difference approximation is characterized by= 0.1At, i.e. the sampling
frequency of the force sensor is ten times higher than th@kagrfrequency of
the force controller. The dashed line shows the case whem#asured force
is sampled only five times in a sample period of the contrallerr = 0.2A¢.

Figure 4 shows that the finite difference approximation & theasured
force causes that the periodic nature of the stability ctigeppears with the
increase of the frequency ratio. Moreover, the shape oftdif@esdomain of
control parameters will converge to the shape of the stelaitiart obtained for
zero differential gain (see Stépan, 2001). Thus, for seffity high frequency
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ratios, the PD digital force control with finite differencppaoximation works
as a pure proportional control.

Figure 5 presents the case when the differential gain i®lahg this case,
the above described convergence of the stable domainssigjgsrent. In
the meantime, the deviations of the stability boundarias ¢brrespond to the
finite difference approximation at the differential parttioé digital force con-
troller are better illustrated. For low frequency ratidgre is not much change
in the stability domain due to the finite difference approaiion.

The comparison of the charts in Figures 4 and 5 clearly shuat, the in-
crease of the differential gain causes loss of most of th#estagions.

The charts also represent those critical eigenvaluesf the transition
matrix W that are of modulus 1 at the limit of stability. This clearhosvs that

T
—7—0
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-1 =0.2At
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either secondary Hopf (in other words, Neimark-Sackenrbdtions or pe-
riod doubling (in other words, flip) bifurcations can occogrresponding to
the complex conjugate pairs of eigenvalygs, or to they = —1 eigenvalue,
respectively. This means, that the largest frequency oattsing self-excited
vibrations cannot be greater than the half of the sampliegquency of the
system.

6. Conclusion

The application of differential terms in the digital forcentrol results in the
reduction of most of the regions of stability in the paramsteace. This effect
is the same if a finite difference approximation is used fer fibrce deriva-
tive term in the control loop. The finite difference approation provides a
simple kind of filtering of the force derivative signal. Fdiffsnechanical sys-
tems having large natural frequengy, the force control stability properties
converge to that of the simple proportional controller.

The stability charts of digital force control show an inate structure, and
several bifurcations can occur at the limits of stabilitther with or without
differential gains in it. The digital effects need specitieation during the
design of force control in case of stiff mechanical systenith Wow internal
viscous damping to be contacted.
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